
G2 JavaLink

User’s Guide
Version 2015

G2 JavaLink User’s Guide, Version 2015

December 2015

The information in this publication is subject to change without notice and does not represent a
commitment by Gensym Corporation.

Although this software has been extensively tested, Gensym cannot guarantee error-free
performance in all applications. Accordingly, use of the software is at the customer’s sole risk.

Copyright (c) 1985-2015 Gensym Corporation

All rights reserved. No part of this document may be reproduced, stored in a retrieval system,
translated, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of Gensym Corporation.

Gensym®, G2®, Optegrity®, and ReThink® are registered trademarks of Gensym Corporation.

NeurOn-Line™, Dynamic Scheduling™ G2 Real-Time Expert System™, G2 ActiveXLink™, G2
BeanBuilder™, G2 CORBALink™, G2 Diagnostic Assistant™, G2 Gateway™, G2 GUIDE™,
G2GL™, G2 JavaLink™, G2 ProTools™, GDA™, GFI™, GSI™, ICP™, Integrity™, and SymCure™
are trademarks of Gensym Corporation.

Telewindows is a trademark or registered trademark of Microsoft Corporation in the United States
and/or other countries. Telewindows is used by Gensym Corporation under license from owner.

This software is based in part on the work of the Independent JPEG Group.

Copyright (c) 1998-2002 Daniel Veillard. All Rights Reserved.

SCOR® is a registered trademark of PRTM.

License for Scintilla and SciTE, Copyright 1998-2003 by Neil Hodgson, All Rights Reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/).

All other products or services mentioned in this document are identified by the trademarks or
service marks of their respective companies or organizations, and Gensym Corporation disclaims
any responsibility for specifying which marks are owned by which companies or organizations.

Gensym Corporation
52 Second Avenue
Burlington, MA 01803 USA
Telephone: (781) 265-7100
Fax: (781) 265-7101 Part Number: DOC055-1200

Contents
Preface vii

About this Guide vii

Software Requirements vii

Audience vii

Conventions viii

Related Documentation ix

Customer Support Services xii

Chapter 1 Introduction 1

Introduction 1

Summary of Features 2
Mapping Between G2 and Java Types and Classes 2
Object-Oriented API 3
Multi-Threaded Bridges 3
Synchronous RPC Calling 3
Unicode Support 3
Comprehensive Error Handling 3
Multiple Connections and Bridge-Initiated Connections 4
Java Remote Method Invocation (RMI) Support 4
G2 Support for the JavaBeans Event Model 4
Ease of Migration 4

Components of G2 JavaLink 4
G2 JavaLink Packages 5
The G2 Javalink Module 12

Chapter 2 Mapping between G2 and Java 13

Introduction 13

How JavaLink Maps Data Types 13
Automatic Conversion of Data Types 14
Supporting G2 Symbols in Java 16
Supporting Java Built-in Types 16

How G2 Classes Map to Java Classes 18
Naming Conventions 18
iii

Attributes Accessors 19
Class Methods 19
Class Mapping and Multiple Inheritance 20
Local or Remote Access 20
How JavaLink Resolves a G2 Class to a Java Class 21
How to Export a G2 Class as a Java Class 22
How JavaLink Creates an Exported Java Class 24
Location and Package Name of an Exported G2 Class 25
When JavaLink Exports a G2 Class 26
How JavaLink Finds a Previously Exported Class at Run Time 28
Creating a Local G2 Object in the Java Client 30

Chapter 3 Remote Procedure Calls 31

Introduction 31

Accessing G2 Procedures and Methods from Java 32
callRPC() 32
startRPC() 33
setRemoteRPCReturnKind() 33
Reporting G2 Runtime Errors to Java 34
Setting the Maximum Number of Contexts 34
Calling a G2 Procedure From Java 34
Calling G2 Methods From Java 36

Accessing Java Methods from G2 40
Registering a Java Method as Callable from G2 40

Using Multiple Java Threads to Access G2 45

Chapter 4 Passing Messages 47

Introduction 47

Sending a Message to the G2 Message Board 48
Example 48

Sending an Error Message to the G2 Operator Logbook 49
Example 49

Receiving a Message from G2 49

Chapter 5 Listening for Changes in G2 Items 51

Introduction 51

The ItemListener Interface 52
Example 53

The VariableValueListener Interface 56
iv

Chapter 6 Connection Events 57

Introduction 57

Connection Events 57
Communication Error Has Occurred 58
The Connection Between G2 and JavaLink has Closed 58
The Connection Has Been Made With a G2 Server 58
The Connected G2 Has Paused 58
The Connected G2 Has Resumed 58
The Connected G2 Has Been Reset 59
The Connected G2 Has Been Started 59
The Connected G2 Has Sent a Message 59
A Read Blockage Event Occurred 59
A Write Blockage Event Occurred 59

Registering a G2ConnectionListener 59
Example 60

Chapter 7 Using Java RMI to Communicate with G2 63

Introduction 63

Starting an RMI Registry 64

Starting an RMI Server 64

Connecting to G2 as an RMI Client 65

Example of Calling a G2 Method Over RMI 66

Detecting Middle Tier Connection Closed Events 67

Using an Applet to Connect to G2 68

Chapter 8 Adding JavaBeans Events to G2 Classes 69

Introduction 69

The JavaBeans Event Model 70
Event Source 70
Event Listener 70

JavaBeans Event Model Naming Conventions 71
The Add Listener Method 71
The Remove Listener Method 71

Implementing the JavaBeans Event Model in G2 72
Adding a G2 Event Listener Interface to a G2 Class 72
Example 73

How JavaLink Exports G2 Event Listener Interfaces to Java 77
Using G2 Event Listener Interfaces From Java 78
v

Index 81
vi

Preface
Describes this guide and the conventions that it uses.

About this Guide vii

Software Requirements vii

Audience vii

A Note About the API viii

Conventions viii

Related Documentation x

Customer Support Services xi

About this Guide
This guide describes the basic features of G2 JavaLink (JavaLink) and explains
how you can use these features to create applications.

Software Requirements
For information about the software requirements and installation of this version
of G2 JavaLink, refer to the readme-javalink.html file supplied with
G2 JavaLink, which includes this and other important instructions.

Audience
This document assumes you are familiar with the features and syntax of the Java
programming language, and you know how to develop Java applications. It also
assumes you are familiar with the syntax of G2.
vii

Conventions
This guide uses the following typographic conventions and conventions for
defining system procedures.

Typographic

Convention Examples Description

g2-window, g2-window-1,
ws-top-level, sys-mod

User-defined and system-defined
G2 class names, instance names,
workspace names, and
module names

history-keeping-spec, temperature User-defined and system-defined
G2 attribute names

true, 1.234, ok, “Burlington, MA” G2 attribute values and values
specified or viewed through
dialogs

Main Menu > Start

KB Workspace > New Object

create subworkspace

Start Procedure

G2 menu choices and button labels

conclude that the x of y ... Text of G2 procedures, methods,
functions, formulas, and
expressions

new-argument User-specified values in
syntax descriptions

text-string Return values of G2 procedures
and methods in syntax
descriptions

File Name, OK, Apply, Cancel,
General, Edit Scroll Area

GUIDE and native dialog fields,
button labels, tabs, and titles

File > Save

Properties

GMS and native menu choices

workspace Glossary terms
viii

Related Documentation
Note Syntax conventions are fully described in the G2 Reference Manual.

Procedure Signatures

A procedure signature is a complete syntactic summary of a procedure or
method. A procedure signature shows values supplied by the user in italics, and
the value (if any) returned by the procedure underlined. Each value is followed by
its type:

g2-clone-and-transfer-objects
(list: class item-list, to-workspace: class kb-workspace,
delta-x: integer, delta-y: integer)

-> transferred-items: g2-list

Related Documentation

G2 Core Technology

• G2 Bundle Release Notes

• Getting Started with G2 Tutorials

• G2 Reference Manual

• G2 Language Reference Card

• G2 Developer’s Guide

• G2 System Procedures Reference Manual

c:\Program Files\Gensym\ Windows pathnames

/usr/gensym/g2/kbs UNIX pathnames

spreadsh.kb File names

g2 -kb top.kb Operating system commands

public void main()
gsi_start

Java, C and all other external code

Convention Examples Description
ix

• G2 System Procedures Reference Card

• G2 Class Reference Manual

• Telewindows User’s Guide

• G2 Gateway Bridge Developer’s Guide

G2 Utilities

• G2 ProTools User’s Guide

• G2 Foundation Resources User’s Guide

• G2 Menu System User’s Guide

• G2 XL Spreadsheet User’s Guide

• G2 Dynamic Displays User’s Guide

• G2 Developer’s Interface User’s Guide

• G2 OnLine Documentation Developer’s Guide

• G2 OnLine Documentation User’s Guide

• G2 GUIDE User’s Guide

• G2 GUIDE/UIL Procedures Reference Manual

G2 Developers’ Utilities

• Business Process Management System Users’ Guide

• Business Rules Management System User’s Guide

• G2 Reporting Engine User’s Guide

• G2 Web User’s Guide

• G2 Event and Data Processing User’s Guide

• G2 Run-Time Library User’s Guide

• G2 Event Manager User’s Guide

• G2 Dialog Utility User’s Guide

• G2 Data Source Manager User’s Guide

• G2 Data Point Manager User’s Guide

• G2 Engineering Unit Conversion User’s Guide

• G2 Error Handling Foundation User’s Guide

• G2 Relation Browser User’s Guide
x

Related Documentation
Bridges and External Systems

• G2 ActiveXLink User’s Guide

• G2 CORBALink User’s Guide

• G2 Database Bridge User’s Guide

• G2-ODBC Bridge Release Notes

• G2-Oracle Bridge Release Notes

• G2-Sybase Bridge Release Notes

• G2 JMail Bridge User’s Guide

• G2 Java Socket Manager User’s Guide

• G2 JMSLink User’s Guide

• G2 OPCLink User’s Guide

• G2 PI Bridge User’s Guide

• G2-SNMP Bridge User’s Guide

• G2 CORBALink User’s Guide

• G2 WebLink User’s Guide

G2 JavaLink

• G2 JavaLink User’s Guide

• G2 DownloadInterfaces User’s Guide

• G2 Bean Builder User’s Guide

G2 Diagnostic Assistant

• GDA User’s Guide

• GDA Reference Manual

• GDA API Reference
xi

Customer Support Services
You can obtain help with this or any Gensym product from Gensym Customer
Support. Help is available online, by telephone, by fax, and by email.

To obtain customer support online:

 Access G2 HelpLink at www.gensym-support.com.

You will be asked to log in to an existing account or create a new account if
necessary. G2 HelpLink allows you to:

• Register your question with Customer Support by creating an Issue.

• Query, link to, and review existing issues.

• Share issues with other users in your group.

• Query for Bugs, Suggestions, and Resolutions.

To obtain customer support by telephone, fax, or email:

 Use the following numbers and addresses:

To obtain G2 JavaLink specific customer support by e-mail:

 Use the following address:

javalink-service@gensym.com

Americas Europe, Middle-East, Africa (EMEA)

Phone (781) 265-7301 +31-71-5682622

Fax (781) 265-7255 +31-71-5682621

Email service@gensym.com service-ema@gensym.com
xii

1

Introduction
Provides an overview of G2 JavaLink features and components.

Introduction 1

Summary of Features 2

Components of G2 JavaLink 4

Introduction
G2 JavaLink (JavaLink) allows you to write G2 bridges entirely in Java. By using
Java, you as a developer will immediately feel the benefit from a modern multi-
threaded, object-oriented language. Additionally, extra features exist in JavaLink
that are not available in the standard G2 Gateway (GSI) product.

G2 JavaLink defines the mapping from Java types to G2 types and from G2 types
to Java types. It hides the finer details of G2 communications, thus making it
easier and more productive to write bridges.
1

For example, the following Java class connects to a G2 server and sends a message
to its message board:

import com.gensym.jgi.*;

/**
* Simple JavaLink example to send a message to G2.
**/

public class JavaLinkExample {
public static void main(String args[]) {

G2Connection g2_connection = null;
try {

g2_connection =
G2Gateway.getOrMakeConnection("localhost", "1111");

} catch (G2AccessInitiationException e) {
System.out.println("Problem connecting to G2

exception was:" + e.toString());
}
g2_connection.returnMessage("Hi from JavaLink");
System.exit(0);

}
}

Developers can use G2 JavaLink to create small, stand-alone, windowless bridges
or sophisticated clients that can use the increasingly rich set of standard Java
APIs, such as RMI, Java Beans, and Java AWT.

Note G2 JavaLink is a connectivity solution; it is not an applet or application
development tool. To create G2 client applets and applications, you can use
Telewindows2 Toolkit.

Summary of Features
This section summarizes the major features of G2 JavaLink.

Mapping Between G2 and Java Types and Classes

G2 JavaLink defines a mapping between G2 and Java data types and classes. The
data conversion between the two environments is automatic and requires no
developer intervention. JavaLink exports G2 classes, providing Java classes that
represent each G2 class that Java accesses externally.

You can pass objects from G2 by copy or by handle. Objects passed by handle do
not retain a local copy of the object’s attribute data but instead automatically refer
to G2 for attribute data, as required. By default, JavaLink sends G2 objects to Java
“by handle” when calling one of its built-in RPCs and for G2 methods called from
2

Summary of Features
Java and their return values. For Java methods called from G2 and their return
values, JavaLink sends G2 objects to Java according to the RPC declaration in G2.

Object-Oriented API

G2 JavaLink exists as a set of standard Java packages, where communication to
G2 is handled by using a connection class.

Multi-Threaded Bridges

G2 JavaLink works within Java’s multi-threaded environment. Therefore,
multiple Java threads can safely call G2 procedures and methods simultaneously.
Additionally, G2 can call Java methods within existing threads or from newly
created threads.

Synchronous RPC Calling

Using G2 Gateway (GSI), it has traditionally been difficult to create a synchronous
RPC call into G2 from a C-based bridge, that is, where the bridge waits for the
result of an RPC call. G2 JavaLink provides synchronous RPC calls as the default
behavior. While a Java thread is waiting for a synchronous RPC, other Java
threads can communicate with G2 without interruption.

Unicode Support

Both Java and G2 use Unicode character sets. G2 JavaLink receives and sends all
strings as Unicode between G2 and Java.

Comprehensive Error Handling

G2 JavaLink provides extensive error handling:

• When G2 calls a Java method and a Java exception is raised, JavaLink reports
the Java exception back to the G2 procedure or method that initiated the call.
You can trap such errors by using the standard G2 on error syntax, or you can
leave them to appear in the G2 Operator Logbook.

• When Java calls a G2 procedure or method and a G2 error occurs, JavaLink
raises a Java exception containing the details of the G2 error that occurred and
reports back to the Java thread that originally called the G2 RPC.

• JavaLink reports all other communication errors as error events to the Java
client.
3

Multiple Connections and Bridge-Initiated
Connections

G2 JavaLink allows many G2 servers to connect to a single Java client, where
JavaLink creates a separate connection object for each connection. You can initiate
connections between a G2 and a Java client from G2 or from Java.

Java Remote Method Invocation (RMI) Support

G2 JavaLink works with the standard Java Remote Method Invocation (RMI) API
that was introduced with Sun’s JDK 1.1. JavaLink provides classes that allow you
to access G2 via RMI.

G2 Support for the JavaBeans Event Model

By using the optional KB modules supplied with G2 JavaLink, javalink.kb and
g2evliss.kb, you can define G2 classes so that external Java classes can listen for
events generated inside G2. This mechanism implements the event listener
specification defined for the JavaBeans event model.

Ease of Migration

Existing G2 bridge developers who have learned Java will find few problems
when migrating to G2 JavaLink.

Components of G2 JavaLink
G2 JavaLink consists of two components:

• Java packages. These packages and their contents provide full javadoc
documentation. The Java packages are contained in the .jar files located in
the classes subdirectory of the javalink directory.

• Supporting G2 KB modules. These modules provide optional KB support
and are not required for JavaLink to function. The .kb files are located in the
kbs subdirectory of the javalink directory.
4

Components of G2 JavaLink
G2 JavaLink Packages

The com.gensym.jgi Package

The com.gensym.jgi package provides Java classes that support communication
between G2 and Java. The most important of these classes is G2Gateway, which
provides a network interface to a gsi-interface object created within a connected
G2.

Package Name Summary

com.gensym.jgi Provides Java support for
communication between G2
and Java.

com.gensym.jgi.download Provides support for creating
Java interfaces and stubs that
represent G2 user classes.

com.gensym.jgi.dataservice Provides JavaLink support to
enable GSI variable data
service in Java.

com.gensym.util Provides various common
utility classes required for the
correct operation of JavaLink
and other Gensym Java
products, such as
Telewindows2 Toolkit.

com.gensym.classes Contains Java classes to
represent every built-in system
class in G2.

com.gensym.classes.modules.* Contain classes that represent
G2 classes found in KBs that
Gensym supplies and user-
defined classes whose
interfaces you download.

com.gensym.jgi.rmi Provides the support classes
that allow communication with
G2, using the Java Remote
Method Invocation API (RMI).
5

The three distinct ways of communicating with G2 through a G2Gateway are:

• Simple messages: You can send messages to G2’s message board by calling
returnMessage, and you can receive messages from G2 by implementing the
g2MessageReceived method in the G2ConnectionListener interface.

• Remote procedure calls: You can register Java methods as callable from G2
with registerJavaMethod. You can call and start G2 procedures and methods
synchronously by calling callRPC and startRPC, respectively.

• Data service: You can enable Java data service to supply data on demand to
GSI variables defined in G2.

JavaLink converts data types in RPC calls between G2 and Java automatically. For
a description of type and class mapping between Java and G2, see How G2
Classes Map to Java Classes.

A G2ConnectionListener can register interest in connection events by calling
addG2ConnectionListener and can remove interest by calling
removeG2ConnectionListener.

G2Gateway allows multiple Java threads to access a G2 connection.

The G2Gateway class implements the interface G2Connection, which is a contract
that ensures that G2Gateway provides all the required interfaces for
communication with G2. Normally, you declare JavaLink methods, such as
G2Gateway.getOrMakeConnection to return a G2Connection, not a G2Gateway.
This allows Java applications to use the contract defined by G2Connection and
not worry about an implementation such as G2Gateway.

You can enable debugging by calling setInterfaceDebugOptions on G2Gateway
at any point in the program execution. However, enabling debugging can
significantly slow execution if it is on all the time. Therefore, we recommend that
you enable it only when you need to debug a problem.

Establishing a Connection with G2

A G2Gateway can communicate with a G2 once a connection has been established.
G2Gateway can create the connection by using one of these two methods:

• initiateConnection

• getOrMakeConnection

G2Gateway can also wait for a G2 server to make the connection. When
establishing a connection to G2, you can make the connection permanent, even
across KB resets.

Any G2 can attempt to make an unsolicited connection to Java, but the connection
must be accepted by an installed G2ConnectionHandlerFactory. The static
method G2Gateway.setG2ConnectionHandlerFactory allows a
G2ConnectionHandlerFactory instance to select or create a G2Connection for any
incoming unsolicited network connections from G2.
6

Components of G2 JavaLink
A G2Gateway can only be connected to one G2 at any one time. If you require
multiple connections within a Java application, you must create multiple
instances of G2Gateway. Alternatively, you may use a ConnectionManager, which
is available by using Telewindows2 Toolkit. For details, see the Telewindows2
Toolkit Java Developer’s Guide: Application Classes.

G2 JavaLink supports secure communication on Windows and Linux platforms,
using SSPI and OpenSSL, respectively. Support for OpenSSL on other UNIX
platforms will be available in a future release. For details, see the description of
G2ConnectionInfo in the Java doc.

To establish a secure listener within G2 JavaLink, use the -secure and -cert
G2 Gateway command-line arguments in G2Gateway.initialize.

Summary of Classes Found in Package com.gensym.jgi

The following table lists and describes commonly used classes in the com.gensym.
jgi package:

Class Description

G2Gateway An implementation of a network
interface to a gsi-interface object
created within a connected G2. It
implements the G2Connection
interface.

G2ConnectionInfo An object that contains all the
information necessary to get a
handle on a specific instance of a
G2Connection.

G2ConnectionEvent An event object that encapsulates
information fired during a G2
connection event.

G2CommunicationErrorEvent An event raised when an
asynchronous G2 communication
error has occurred.

G2ConnectionAdapter An empty implementation of
G2ConnectionListener, provided
as a convenience for creating a
connection listener by extending
the class and overriding only the
methods of interest.
7

The following table lists and describes commonly used interfaces in the com.
gensym.jgi package:

.

G2Connector A visual component provided as a
Java Bean that provides the event
and method interfaces of a
G2Connection. You use this bean
in builder environments where the
static getOrMakeConnection
method on G2Gateway cannot be
called.

G2ConnectorBeanInfo A Java Bean Info for G2Connector.

Class Description

Interface Name Description

G2Connection Defines access to and from a G2
network connection. A
G2Gateway implements a
G2Connection. G2Connection
itself is defined by implementing
the outbound interface,
G2Access, and the inbound
G2Callbacks.

G2Access Provides outbound methods for
accessing a connected G2.

G2ConnectionHandlerFactory Defines a handler for incoming
unsolicited calls initiated by G2.

G2ConnectionListener Informed when any G2
connection event occurs, such as
when the connected G2 is being
paused.
8

Components of G2 JavaLink
The following table lists and describes the exceptions and errors in the com.
gensym.jgi package:

Exceptions/Errors Description

ConnectionTimedOutException A time-out has occurred when
attempting to connect to G2.

TimeoutException A time-out has occurred during
an interface operation, such as a
remote procedure call.

G2AccessException A problem has occurred while
accessing G2.

ConnectionNotAliveException A problem has occurred while
attempting to access G2 via a
G2Connection that is not alive.

ConnectionNotAvailableException An attempt has been made to
access a G2 connection that is not
available or has not been created.

G2CommunicationException A G2 communication problem
has occurred.

G2ItemDeletedException A deleted item has been passed
to G2 as an argument of an RPC
call.

G2SecurityException The requested access to G2 is not
valid from this class of access.
9

The com.gensym.jgi.download Package

The com.gensym.jgi.download package supports the creation and loading of
Java interfaces and classes that represent G2 classes.

The following table lists and describes public classes and exceptions in this
package:

The com.gensym.jgi.dataservice Package

The com.gensym.jgi.dataservice package supports the ability to implement
Java data service that services data requests from GSI variables created within G2.

For more information about configuring GSI variables in G2, please refer to
“Configuring GSI Variables in the Knowledge Base” in Chapter 2 of the
G2 Gateway Bridge Developer’s Guide.

The following table lists and describes public classes and interfaces in this
package:

Class Description

DownloadInterfaces A utility class that allows JavaLink
developers to pre-export user-
defined classes from G2 to Java.

G2StubCreationException An exception that is raised when
G2 stub creation has failed.

StubCreationException An exception that is raised at run
time when stub creation has failed.

Class Description

DataService Provides a JavaLink connection
with G2 variable data service
capabilities.

DataServiceListener Informed of DataService events
from a G2 connection.

DataServiceEvent Contains data detailing a
DataServiceListener event.
10

Components of G2 JavaLink
The com.gensym.util Package

The com.gensym.util package contains various common utility classes required
for the correct operation of JavaLink and other Gensym Java products.

The following table lists and describes classes, interfaces, and exceptions in this
package important to G2 JavaLink:

Class Description

Sequence Maps to the G2 sequence data
type.

Structure Maps to the G2 structure data type.

Symbol Maps to the G2 symbol data type.

ItemListener Informed of events regarding
changes to G2 items.

ItemEvent Encapsulates information that
represents changes to a G2 item.

VariableValueListener Receives notification when the
value of a G2 variable or
parameter changes.

Note: An ItemListener does not
receive such events.

VariableValueEvent Encapsulates information that
represents changes to the value of
a G2 variable or parameter.

JavaClassCompilerException Raised when JavaLink fails to
compile a Java source file, for
example, when creating a Java
class to represent a G2 user-
defined class.

NoSuchAttributeException Signals an attempt to access a non-
existent attribute in a G2 structure.
11

The G2 Javalink Module

The G2 side of G2 JavaLink consists of an optional G2 module named javalink,
which exists when you load javalink.kb. The javalink module provides:

• JavaLink class definitions.

• Procedures for creating Java types.

• Support for exporting Java Bean events from correctly configured G2 classes.

The javalink module is not required for JavaLink to function; it provides G2 classes
that enable G2 to map to basic Java types that are not directly available in G2.
12

2

Mapping between
G2 and Java
Describes how JavaLink maps data types and classes between G2 and Java.

Introduction 13

How JavaLink Maps Data Types 13

How G2 Classes Map to Java Classes 18

Introduction
G2 JavaLink (JavaLink) defines a mapping between G2 and Java data types and
classes. The data conversion between the two environments is automatic and
requires no developer intervention. JavaLink exports G2 classes at run time by
providing Java classes that represent each G2 class that Java accesses externally. It
does this by performing a “thin download,” which uses existing JavaLink classes
or pseudo classes to represent the G2 class. If you need to access the attributes
and/or methods of user-defined G2 classes, you can also explicitly download G2
classes to make them available at compile time.

How JavaLink Maps Data Types
This section describes how JavaLink:

• Automatically maps data types in RPC calls and exported methods.

• Supports G2 symbols in Java.

• Supports Java built-in types.
13

Automatic Conversion of Data Types

The following table lists Java data types and the G2 items or values into which
they are converted when they are passed to G2 as arguments of remote procedure
calls (RPCs). JavaLink performs these conversions even when the Java data types
are embedded as attributes of other objects.

Type Conversion in RPC Calls by G2 JavaLink to G2

An argument
of this Java data type...

Is converted to this G2
data type when passed to G2...

java.lang.Integer integer

java.lang.String text

java.lang.Boolean truth-value

java.lang.Double float

java.lang.Character text (of one character)

java.lang.Float float

java.lang.Byte integer

java.lang.Short integer

java.lang.Long java.lang.type.long

Note: This class is defined in the
optional G2 KB javalink.kb.

com.gensym.util.Symbol symbol

com.gensym.util.Sequence sequence

com.gensym.util.Structure structure

java.lang.Object[] g2-array

boolean[] truth-value-array

com.gensym.util.Symbol[] symbol-array

java.lang.String[] text-array

java.lang.Number[] quantity-array

double[] float-array

int[] integer-array
14

How JavaLink Maps Data Types
Additionally, the following table lists the Java data types and the G2 values into
which they are converted when they are passed to G2 as arguments of methods
found in exported Java classes that represent G2 classes:

The following table lists G2 data types and the Java data types into which they are
converted when passed as arguments in remote procedure calls (RPCs) from G2.

Note When data types are embedded within other objects, such as attributes, array
elements, or sequence elements, JavaLink converts them to their appropriate
object-wrapped class, for example, double becomes java.lang.Double.

Additional Type Conversion for Exported Methods to G2

An argument of this
Java data type...

Is converted to this G2 data
type when passed to G2...

int integer

boolean truth-value

double float

Type Conversion in RPC Calls by G2 to Java Methods

An argument of this
G2 data type...

Is converted to this Java data type
when passed to a Java method...

text String

truth-value boolean or java.lang.Boolean

float double or java.lang.Double

symbol com.gensym.util.Symbol

sequence com.gensym.util.Sequence

structure com.gensym.util.Structure

integer int or java.lang.Integer
15

Supporting G2 Symbols in Java

JavaLink represents G2 symbol data types by using the com.gensym.util.Symbol
class, which has no public constructors. Thus, you must create all Java symbols by
using this method:

public static Symbol intern(String symbolText)

The intern method takes as its argument the text representing the G2 symbol
value and returns a Symbol object. Symbol objects have the following property:

Symbol.intern(String s1).equals(Symbol.intern(String s2)
if s1.equals(s2)

Similar to G2, JavaLink caches symbols; therefore, symbol objects for equivalent
strings normally return the same object. However, you should always use the
equals method to check if two symbols are == because symbol objects created
during deserialisation, for example, from a Java RMI call, might not be equivalent.
Also note that every symbol object that JavaLink creates uses heap space, which
cannot be freed.

You can create mixed-case symbols in G2 by appending the @ character to each
character, for example, @a@b@cabc == abcABC. However, because G2 by default
assumes symbol text is uppercase, you must provide symbol text in uppercase in
Java before creating a symbol object, by calling intern.

By convention, the variable used to hold the symbol in Java should be upper case
and end with an underscore.

For example, to pass the symbol a-handy-symbol to G2, you would create the
symbol in Java as follows:

Symbol A_HANDY_SYMBOL_ = Symbol.intern("A-HANDY-SYMBOL");

However, if you pass the symbol as lowercase text, as follows, G2 would receive
the symbol @a-@h@a@n@d@y-@s@y@m@b@o@l:

Symbol A_HANDY_SYMBOL_ = Symbol.intern("a-handy-symbol");

Supporting Java Built-in Types

Some Java types have no corresponding G2 type. To pass values of these Java
types from G2 to Java, you can use classes and procedures provided in the
optional javalink KB module. You can then pass these objects to G2 JavaLink
through remote procedure calls (RPCs).
16

How JavaLink Maps Data Types
The following table describes the G2 classes in the javalink module that convert
directly to Java data types:

Note When data types are embedded within other objects, such as attributes, array
elements, or sequence elements, JavaLink converts them to their appropriate
object wrapped class, for example, int becomes java.lang.Integer.

Java Type Creation Procedures

All the above Java type classes subclass jgi-java-type. To create instances of these
classes, you must use the new method, which ensures that the relevant attributes
get initialized correctly. The new method signature is:

new(g2-type-class: class jgi-java-type-definition,
reserved: item-or-value,

 val: item-or-value) = (class jgi-java-type)

For example, to create a java.lang.long.type:

long = call new(java.lang.long.type,
the symbol none,
"1234567890");

G2 Classes in the JAVALINK Module that Convert Directly to Java Types

An argument of
this G2 data type...

Converts to this Java data type
when passed to a Java method...

java.lang.long.type long or java.lang.Long

java.lang.byte.type byte or java.lang.Byte

java.lang.short.type short or java.lang.Short

java.lang.integer.type int or java.lang.Integer

Note: Use this class when you need
to send the full 32 bits of a Java int
to Java. Normally, you would use
the G2 integer type, which is 30 bits.

java.lang.character.type character or java.lang.
Character

java.lang.float.type float or java.lang.Float
17

How G2 Classes Map to Java Classes
When a JavaLink client refers to the attributes or methods of a G2 class, JavaLink
performs what is called a “thin download,” which uses existing Java classes or
pseudo classes to represent the G2 item. By using a “thin download,” JavaLink
avoids the proliferation of unwanted Java classes on the client, particularly when
the G2 class uses multiple inheritance.

Because no corresponding Java classes exist for user-defined classes, JavaLink
allows you to create a Java interface class and a Java implementation of that
interface, called a stub, which represent a G2 class. To do this, you use the G2
DownloadInterfaces feature of G2 JavaLink, which creates property accessor
methods for each G2 class-specific attribute and class methods for each declared
method. Once these classes exist, you can import them into your Java code to get
and set user-defined attributes, and call user-defined methods of G2 items.

Naming Conventions

Java identifiers follow a convention that differs from G2:

• Java identifiers are case sensitive; G2 identifiers are not.

• Java identifiers do not accept certain characters, such as hyphens (-); whereas,
you often use hyphens to separate words within G2 identifiers, for example,
this-is-a-g2-class-name.

JavaLink, therefore, converts G2 identifiers to Java identifiers, using the following
rules:

1 First, all characters are made lowercase.

2 Any “-” or “/” character is removed and each character before the “-” or “/”
is capitalized.

3 Any !@#%^&*()[].,<>+|=`~\"' characters are replaced by a “_” character.

4 Any “$” character causes the next character to be capitalized.

5 If the Java identifier is a class name, the first character is capitalized.

For example:

G2 Identifier Java Identifier

this-is-a-g2-class-name ThisIsAG2ClassName

a-g2-method-name aG2MethodName

a-funny&*attribute-name aFunny__AttributeName

a-g2-procedure-$x aG2ProcedureX
18

How G2 Classes Map to Java Classes
Attributes Accessors

The downloaded JavaLink class provides two categories of methods for accessing
attributes of the G2 class:

• Getters, which allow you to obtain values for any attribute defined by the
class.

• Setters, which allow you to modify the value of any attribute of the class.

These methods follow the Java Bean specification for “Property Accessors.”

For example, suppose you have a G2 class named tank, with an attribute level
defined as:

Level is a float, initially is 0.0;

The Java interface exported for the tank class would have:

• A getter called getLevel, which returns the current value of the level attribute
of a tank. The method would have the following Java signature:

public float getLevel();

• A setter called setLevel, which sets the current value of the level attribute of a
tank. The method would have the following Java signature:

public void setLevel(double level);

Class Methods

JavaLink exports the signatures for any methods that are defined for a G2 class,
which you can call from Java. For example, suppose the G2 tank class defines a
method with this signature:

fill-tank(this: class tank) = ()

The exported Java interface for tank would provide a method with the following
signature:

public void fillTank();

Exported method signatures automatically take into account any data type or
class mapping defined by JavaLink. Additionally, the exported stubs attempt to
convert to and from object-wrapped types, for convenience, for example, double
becomes Double. For example, suppose the tank class defined another method
with this signature:

set-pump-status(this: class tank,
the-pump: class pump,
status: symbol,
reason: text,
time: float) = (truth-value)
19

The exported Java method signature would be:

public boolean setPumpStatus(Pump the-pump,
Symbol status,
String reason,
double time);

During export of the tank class, JavaLink automatically exports any superior
classes to tank, as well as any classes that are used when defining attributes or
method arguments. In the above example, JavaLink would automatically export
the interface for the pump class, because it is used by one of the tank class’s
methods.

Class Mapping and Multiple Inheritance

The Java class model does not support multiple inheritance, whereas G2 does.
JavaLink circumvents this by mapping G2 classes as Java interfaces, which do
support multiple inheritance. Exported Java classes are therefore free to inherit
from multiple G2 parents, thus mapping G2’s multiple inheritance to the Java
object environment.

When a G2 class is exported to Java, JavaLink always generates a Java interface
that defines the signatures for all the attributes and methods that belong to that
class. Any inherited attributes and methods are defined by extending the interface
for each direct superior class. JavaLink automatically exports any superior class
interfaces, as required. When JavaLink returns a G2 object from, say a G2
procedure call, it is guaranteed to implement the corresponding Java interface for
the G2 class returned.

Local or Remote Access

You can use exported G2 classes locally or as a proxy to access a remote G2 object.

When passing a G2 object “by handle” from G2 to JavaLink, JavaLink
automatically routes any calls to methods or property accessors to the appropriate
method or attribute on the original G2 object.

Java applications can also instantiate exported G2 classes and call property
accessors directly. In this case, JavaLink makes any property (attribute) changes
locally in Java, which does not affect the corresponding G2 object, if there is one. If
you then send the same Java object to G2 via JavaLink, G2 creates a G2 object
corresponding to the Java class, updating any attributes that differ from the
default. In this case, the Java object is said to have been passed “by copy” to G2.

When calling one of the built-in RPCs that pass objects from G2 to Java, such as
getUniqueNamedItem, JavaLink passes objects “by handle,” by default. It also
passes values and return values of an RPC call from Java to a G2 method “by
handle,” by default. However, when calling a Java method from G2, JavaLink
passes the target object and return values “by copy,” by default, unless
20

How G2 Classes Map to Java Classes
specifically indicated in the RPC declaration in G2 that it should be sent “by
handle.”

For information on how to pass an object “by copy,” see Creating a Local G2
Object in the Java Client and Accessing G2 Objects by Handle or by Copy.

How JavaLink Resolves a G2 Class to a Java Class

When G2 sends any reference of a G2 class instance to JavaLink, JavaLink must
resolve the reference into an applicable Java object that represents the G2 item
within Java. Normally, JavaLink attempts to find the best applicable class that
was previously exported to Java from G2, using JavaLink. Because JavaLink has
already exported all built-in G2 classes to the Java package com.gensym.classes,
JavaLink normally resolves a G2 class to a Java class by representing it as a built-
in G2 class. These classes obviously do not contain any user-defined method or
attribute signatures.

To force JavaLink to resolve a user-defined G2 class to an appropriate Java class
that contains the corresponding user-defined method signatures and property
accessors, you must first export the user-defined G2 class to Java, using the G2
DownloadInterfaces facility. For information on how to do this, see How to
Export a G2 Class as a Java Class.

JavaLink uses the following algorithm to determine how to resolve G2 classes to
Java classes:

1 JavaLink refers to a client-specific, cached lookup table, which contains
previously resolved G2 class names to Java class definitions. If a Java class is
already associated with the G2 class name, JavaLink uses this class to create a
Java object that represents the G2 instance in Java. If the cache lookup fails,
JavaLink proceeds to step 2.

2 JavaLink reads the class hierarchy for the referenced G2 class from G2.

3 JavaLink then moves up recursively through this hierarchy, ensuring that the
Java interfaces that represent each G2 class in the hierarchy are also loaded.
JavaLink uses this algorithm recursively during this step to ensure that any
superior G2 classes that do not have directly corresponding Java interfaces are
also resolved to their nearest superior interface.

4 JavaLink constructs a fully qualified Java interface name by using the G2 class
and module name. For information on how JavaLink determines the fully
qualified name, see Location and Package Name of an Exported G2 Class.
JavaLink then attempts to load this interface into the Java Virtual Machine
(VM).

5 If JavaLink cannot find this interface, it attempts to select the interface
corresponding to its direct superior G2 class, which is guaranteed to have
been previously loaded in step 3. If the G2 class directly inherits from multiple
G2 classes, JavaLink automatically constructs a Java “pseudo class,” which is
21

an interface that inherits from the interface created for the direct superior class
in G2, thus preserving multiple inheritance. JavaLink has now associated a
Java interface with a G2 class and module name.

6 JavaLink now attempts to load an implementation of the selected Java
interface. If JavaLink cannot load the implementation class from the current
CLASSPATH, it automatically constructs an implementation for the selected
interface. JavaLink caches the implementation and uses it to create an instance
for any future references to the G2 class in the Java VM, as in step 1.

How to Export a G2 Class as a Java Class

If you write a Java class that references an interface corresponding to a particular
user-defined G2 class, the Java interface must be available before you can compile
the Java source file.

JavaLink supplies a Java utility called G2 DownloadInterfaces that connects to a
specified G2, and downloads the appropriate Java interfaces and
implementations (stubs) corresponding to specified G2 classes and their
respective hierarchies.

G2 DownloadInterfaces provides an easy-to-use, graphical user interface (GUI) to
this utility. To start G2 DownloadInterfaces with the GUI, enter this command:

java com.gensym.beanbuilder.G2DownloadInterfaces

On Windows platforms, you can run it from the Start menu by choosing
Download Interfaces from the G2 JavaLink submenu of you Gensym G2 program
group.

For more information, see the G2 DownloadInterfaces User’s Guide.

DownloadInterfaces Synopsis

java com.gensym.jgi.download.DownloadInterfaces
[-host hostname]
[-port portnumber]
-classes g2classname[,g2classname...]
[-force]
[-stubs]
[+g]
[+t]
[+v]
22

How G2 Classes Map to Java Classes
Options

Option Name Description

-host (Optional) Specifies the host
machine name or the IP address of
the G2 from which to download.
Default is localhost.

-port (Optional) Specifies the port
number of the G2 host machine
from which to download. Default
is 1111.

-class or -classes Specifies the G2 class name or a
space-separated list of G2 class
names to be downloaded.

-force (Optional) Download even if a G2
user-defined class has been
previously downloaded.

-stubs (Optional) Generate the
implementations for every Java
interface created, even if the G2
user-defined class has been
previously downloaded.

+g Switches on the graphical user
interface. If you use this switch
when launching the utility with
the -class or -classes option, the
wizard is invoked. Otherwise, the
wizard is invoked, by default.

+t Sets the trace output for the
G2 DownloadInterfaces utility to
true. By default, tracing is not
enabled.

+v Runs the G2 DownloadInterfaces
verification test. By default, the
verification test is not run when
you launch the utility.
23

Example

This example connects to a G2 on the machine named localhost at TCP/IP
port 1111 and downloads the G2 class named a-g2-class. Because the -force and
-stubs options are specified, JavaLink downloads interfaces and generates
implementations, even if the classes have been previously downloaded.

java com.gensym.jgi.download.DownloadInterfaces
-host localhost -port 1111 -class A-G2-CLASS -force -stubs

Notes

In general, you should not change the class inheritance path in the G2 server of a
class that inherits from G2 classes whose interfaces you have downloaded. In
particular, if your Java code gets a handle to instances of such classes, those
instances will be represented by the wrong Java class of stub.

If you do change the G2 inheritance path of a class that you have previously
downloaded, you should download the class again, using the -force and -stubs
options.

G2 DownloadInterfaces generates an error if the G2 class uses an attribute or
method name that is already implemented in G2 JavaLink and is, therefore,
reserved. Your classes must use unique names.

How JavaLink Creates an Exported Java Class

When JavaLink exports a G2 class, it performs the following steps:

1 Downloads class information for the specified class from G2, starting at the
most superior class.

2 Recursively executes step 1 for any G2 class referenced in attribute and
method parameter definitions.

3 Creates and compiles a Java interface that contains signatures for all attributes
and methods. This interface extends any interfaces created for superior
classes, thus maintaining the G2 class’s inheritance structure. If the -stubs
option is specified, it also creates and compiles the Java stub class that
implements this interface.

4 Repeats step 3 for each superior class in order, then executes step 3 for the
actual class.

5 Creates a stub class that implements the interface created in steps 3 and 4.

If you change the definition of a class in the G2 server, JavaLink correctly handles
updates to existing instances of that class in the client. The exception is the case
when you edit the inheritance path of a G2 class that inherits from one or more
classes whose interfaces you have explicitly downloaded. In this case, JavaLink
does not update existing instances of that class in the client.
24

How G2 Classes Map to Java Classes
When JavaLink downloads class information, it saves the information in a
.ser file, whose name corresponds to the Java class name. The .ser file is only
required when using G2 DownloadInterfaces and during runtime when JavaLink
cannot use an existing downloaded class due to G2 multi-inheritance. When
required, they need to be present in the downloaded package, even if the package is
placed in a JAR file. The .ser file is not needed once G2 user-defined classes have
been downloaded, and if during runtime JavaLink does not need to generate a Java
stub.

Location and Package Name of an Exported G2 Class

JavaLink has downloaded all built-in G2 system classes for you. These classes are
located in this JavaLink package:

com.gensym.classes

However, you must tell JavaLink of the physical location and package name for any
user-defined G2 classes that you have downloaded. By default, user-defined classes
exported for Gensym KBs are exported to:

com.gensym.classes.modules.<module-name-of-class>

JavaLink uses the following system properties when exporting G2 classes:

Property Name Description

com.gensym.class.user.repository The physical location of the root
directory to which JavaLink should
export user-defined classes. This
directory should also be listed in your
system’s CLASSPATH. The default
location is:

Windows: \javalink\classes

UNIX: /javalink/classes

com.gensym.class.g2.package The default package root for G2 classes.
The default package is:

com.gensym.classes
25

JavaLink loads these properties from the JavaLink properties file named:

.com.gensym.properties

This file must exist in a directory defined by the HOME environment variable.
When JavaLink is being used in processes where the HOME environment variable
cannot be retrieved, the file must also exist in the directory defined by
/javalink/classes in your G2 installation directory. The properties file in the
HOME directory takes precedence. The properties file in the /classes directory is
used as a fallback when the other properties file cannot be found.

JavaLink places the .com.gensym.properties file in the correct directory for your
system during the JavaLink installation process.

You can use the following command-line argument to load the properties file
when running an application:

java -Dcom.gensym.properties.url
file://mydir/.com.gensym.properties

In general, the .com.gensym.properties is not required at runtime. It is only
required at runtime if you have downloaded user-defined classes, using G2
DownloadInterfaces or G2 Bean Builder.

For more information on this properties file, see the readme-javalink.html file.

When JavaLink Exports a G2 Class

JavaLink exports a G2 class when:

• A Java interface cannot be found for a corresponding multiply inherited G2
class that is being passed between G2 and Java.

• A Java implementation cannot be found for a corresponding G2 class that is
being passed between G2 and Java, whose previously exported Java interface
was found.

com.gensym.class.user.package The default package root for user-
defined classes. The default package is:

com.gensym.classes.modules

com.gensym.class.user.pkgs A list of package names of previously
downloaded user-defined class
packages that JavaLink searches
through when locating a class not found
by the system. For example:

com.gensym.classes.modules
com.acme.kbapp.modules

Property Name Description
26

How G2 Classes Map to Java Classes
• JavaLink has been forced to download a G2 class with the -force options on
G2 DownloadInterfaces. In this case, the existing version of the downloaded
interface, and implementation if the -stubs option is also set, is overwritten.

JavaLink uses the following steps to ascertain the package name and location
when creating any Java class or interface to represent a G2 class definition:

1 If the G2 class definition belongs to a module that defines the module-
annotation attribute in the Module Information system table by specifying the
attribute java-package-for-export, JavaLink uses the specified Java package
name for the exported Java files. For example:

java-package-for-export is "com.gensym.classes.modules.uilroot"

2 If no java-package-for-export is specified, JavaLink reads the class definition’s
module name, converts it to a Java identifier, using all lowercase, and
appends this module name to the Java package name specified in the com.
gensym.class.user.package property. If the class does not belong to any
module, JavaLink uses the module named unspecified.

3 JavaLink reads the directory name from the property com.gensym.classes.
user.repository and uses it as the root directory to which JavaLink should
export user-defined classes. If the package’s directory does not exist, JavaLink
automatically creates it.

Examples

Suppose you have a G2 class definition named computer-supplier that has no
module and resides in a G2 running on host "london" on port 1111. And suppose
you are running on a Windows platform, using the default com.gensym.class.
user.package and com.gensym.class.user.repository properties, described
earlier.

You use the JavaLink G2 DownloadInterfaces utility as follows:

java com.gensym.jgi.download.DownloadInterfaces
-force -stubs -host london -port 1111
-class COMPUTER-SUPPLIER

Because computer-supplier is not assigned to any module, JavaLink exports the
class to this directory and assigns the class to this package in your G2 installation
directory (Windows style):

\javalink\classes\com\gensym\classes\modules\unspecified

com.gensym.classes.modules.unspecified

Now, suppose you move the class definition for computer-supplier to the module
named suppliers and download again. This time, JavaLink exports the class to this
directory and assigns it to this package in your G2 installation directory:

\javalink\classes\com\gensym\classes\modules\suppliers

com.gensym.classes.modules.suppliers
27

Suppose you now add the following as the value of the module-annotation
attribute of the supplier module’s Module Information system table:

java-package-for-export is “com.acme.classes.modules.suppliers”

JavaLink exports the class to this directory and assigns it to this package in your
G2 installation directory (Windows style):

\javalink\classes\com\acme\classes\modules\suppliers

com.acme.classes.modules.suppliers

Tip Gensym recommends that you specify a java-package-for-export for every KB
module for which you wish to download classes. That way, the G2 module
determines the Java package name that JavaLink uses when it downloads classes.
This is important because developers might develop Java applications that rely on
exported G2 classes being located in certain packages.

How JavaLink Finds a Previously Exported Class at
Run Time

At run time, G2 might send a JavaLink client a G2 object reference or copy.
JavaLink must then find a Java interface and implementation corresponding to
the G2 class being sent.

JavaLink uses the following steps to ascertain the correct package name for the
Java interface and implementation:

1 If the G2 class definition belongs to a module that defines a module-annotation
specifying the attribute java-package-for-export, this will define the Java
package name for the exported Java files. For example:

java-package-for-export is "com.gensym.classes.modules.uilroot"

2 If no java-package-for-export is specified, JavaLink reads the class definition
module name, converts it to a Java identifier, using all lowercase, and
appends this name to the Java package name specified in the property com.
gensym.class.user.package. If the class does not belong to any module,
JavaLink uses the module named unspecified.

Examples

Suppose you have a class definition for a G2 class named engine-supplier that has
no module and resides in a G2 running on host "london" on port 1111. And
suppose you are running on a Windows platform, using the default com.gensym.
class.user.package and com.gensym.class.user.repository properties,
described earlier.

Now, suppose a Java client needs to access an instance of the engine-supplier
named mikes-engines.
28

How G2 Classes Map to Java Classes
JavaLink provides a convenience method, getUniqueNamedItem, which allows
you to access a G2 object by name. Because engine-supplier has no module
assignment, you would access the named item as follows:

import com.gensym.jgi.*;
import com.gensym.util.Symbol;

//Import the user class
import com.gensym.classes.modules.unspecified.EngineSupplier;

public class AccessEngineSupplier {

public static void main(String args[]) {

try {

G2Connection connection =
G2Gateway.getOrMakeConnection("london", "1111");

EngineSupplier supplier =
(EngineSupplier)getUniqueNamedItem

(Symbol.intern("ENGINE-SUPPLIER"),
Symbol.intern("MIKES-ENGINES"));

//Do something

} catch (G2AccessException e) {
//Do some recover action

}

}

Note For more information on the getUniqueNamedItem method and how to access
G2, see Remote Procedure Calls.

Now, suppose the class definition for engine-supplier is defined in the module
named suppliers. You would need to change the import statement in the above
example to:

// Import the user class
import com.gensym.classes.modules.suppliers.EngineSupplier;

Suppose you specify the module-annotation of the suppliers module as:

java-package-for-export is “com.acme.classes.modules.suppliers”

You would need change the import statement in the above example to:

// Import the user class
import com.acme.classes.modules.suppliers.EngineSupplier;

You would also need to make sure this package directory is in your system’s Java
CLASSPATH.
29

When a G2 Class Has Not Been Exported and is Passed at Run Time

JavaLink recursively attempts to select a Java interface and implementation from
the G2 classes inheritance path.

For information on this process, see How JavaLink Resolves a G2 Class to a Java
Class.

Note If a JavaLink client seems to hang, it might be automatically creating:

- A Java interface and implementation for a multiply inherited G2 class that has
not previously been exported, or

- A Java implementation for a G2 class whose Java interface could be found but
whose implementation has not previously been exported.

However, JavaLink creates an interface or implementation only once; subsequent
access to the same G2 class causes little delay.

Creating a Local G2 Object in the Java Client

To create a local instance of a G2 class in Java, that is, an instance with no
association to an existing G2 KB item, you use the following class:

com.gensym.jgi.download.G2StubResolver

To create the local instance, you call the following static method:

public static com.gensym.classes.Item
createStubForG2Interface (Class g2InterfaceClass)

throws G2StubCreationException;

For example, to create a local instance of a G2 integer-array, pass in the equivalent
JavaLink interface, com.gensym.classes.IntegerArray, as follows:

import com.gensym.classes.IntegerArray;

public class Foo {
public IntegerArray createG2LocalArray() {

 try {
 IntegerArray array = (IntegerArray)

G2StubResolver.createStubForG2Interface
(IntegerArray.class);

 // Setup array
 return array;

 } catch (G2StubCreationException e) {
 // Failure to create stub
 }
}

}

30

3

Remote
Procedure Calls
Describes how to make remote procedure calls between G2 JavaLink and G2.

Introduction 31

Accessing G2 Procedures and Methods from Java 32

Accessing Java Methods from G2 40

Using Multiple Java Threads to Access G2 45

Introduction
G2 JavaLink (JavaLink) and G2 can communicate with each other through remote
procedure calls (RPCs) in one of two ways:

• JavaLink can invoke G2 procedures or methods.

• G2 can invoke Java methods.

You make remote procedure calls between JavaLink and G2 by using methods in
the G2Connection interface in the com.gensym.jgi package. You can access an
active G2Connection by calling the G2Gateway.getOrMakeConnection static
method.

A number of the examples in this chapter require that you have the jgidemo.kb
loaded. The jgidemo.kb requires certain utility KBs, located in the
\g2\kbs\utils\ directory (on Windows) and the /g2/kbs/utils/ directory (on
UNIX) of your G2 installation directory. One solution is to use the -module-
search-path command-line argument when launching G2 and have it point to
the location of the utilities that match the version of G2 that you are running.
31

For example, on Windows, you might launch G2 as follows, where g2-install-dir
is your G2 installation directory:

g2.exe -module-search-path g2-install-dir\g2\kbs\utils\
-kb g2-install-dir\kbs\jgidemo.kb

Accessing G2 Procedures and Methods from
Java

The G2Connection interface provides the following methods to support remote
procedure calls from Java to G2:

• callRPC

• startRPC

• setRemoteRPCReturnKind

callRPC()

Calls a G2 procedure or method synchronously; this means it waits until the call
has finished executing or a time-out occurs before allowing the current thread,
which is waiting for the return value of the RPC, to continue.

Synopsis

public Object callRPC(Symbol g2_procedure_name,
Object args[],
int timeout)

throws G2AccessException

Parameters

• g2_procedure_name is a com.gensym.util.Symbol that names the G2
procedure or method to be called.

• args[] is an Object array that contains the arguments to pass to the G2
procedure or method. Thus, all parameters passed to G2 must be object-
wrapped. For example, if a G2 procedure defined a parameter to be of type
integer, then callRPC would expect a java.lang.Integer for that parameter.

• timeout is the time in milliseconds to wait for the return, 0 for indefinite.

Exceptions

• G2AccessException is thrown when a problem occurs as a result of calling the
G2 RPC.

• TimeoutException is thrown when the RPC takes longer than the timeout
period.
32

Accessing G2 Procedures and Methods from Java
Note There is a version of callRPC that does not take a timeout argument, in which
case, the defaultCommunicationTimeout is used to create an RPC declaration,
which is 20 seconds. Changes to defaultCommunicationTimeout do not affect the
timeout on previously defined RPCs.

startRPC()

Starts a G2 procedure or method, ignoring any value that G2 attempts to return.
This method is functionally identical to callRPC except that it does not return any
value and it does not wait for the G2 procedure or method to complete before
allowing another RPC call.

Synopsis

public void startRPC(Symbol g2_procedure_name, Object args[])

Parameters

• g2_procedure_name is a com.gensym.util.Symbol that names the G2
procedure or method to be started.

• args[] is an Object array that contains the arguments to pass to the G2
procedure or method. Thus, all parameters passed to G2 must be object-
wrapped. For example, if a G2 procedure defined a parameter to be of type
integer, then startRPC would expect a java.lang.Integer for that
parameter.

Exceptions

This procedure does not throw any exceptions. Instead, if a communication
problem occurs as a result of starting the G2 RPC, startRPC calls the user's
G2ConnectionListener.communicationError listener, if it exists.

setRemoteRPCReturnKind()

Determines how G2 passes the return value of a remote procedure call (RPC). By
default, the return value of an RPC call from Java to G2 is passed “by handle.” By
using this method, you can force a named G2 procedure or method to return a G2
object “by copy” such that references to the G2 object are local within Java.

For information on the difference between passing objects by handle and by copy,
see Accessing G2 Objects by Handle or by Copy.
33

Synopsis

public void setRemoteRPCReturnKind (Symbol g2_procedure_name,
int return_value_type)

Parameters

• g2_procedure_name is the Symbol that names the G2 procedure or method to
be started.

• return_value_type is either G2Gateway.PASS_BY_COPY or G2Gateway.PASS_
BY_HANDLE.

Reporting G2 Runtime Errors to Java

If during a callRPC, G2 fails to execute the specified procedure or method,
JavaLink throws a G2AccessException to the waiting thread. The
G2AccessException contains the text of the G2 error message that was reported.

Asynchronous errors are reported to Java as connection events. For more
information, see Connection Events.

Setting the Maximum Number of Contexts

You can specify the maximum number of G2 Gateway (GSI) contexts allowed in
the Java client, using a static method on the G2Gateway class. You can call the
method at any time, either during startup or after connections have been made.
The default value is 50, which is inherited from G2 Gateway. The syntax for the
method is:

public void setGSIContextLimit(Int limit)

Calling a G2 Procedure From Java

The following Java class demonstrates how you can call a G2 procedure from
Java.

The example calls the following G2 procedure:

A-G2-PROCEDURE(i: INTEGER, txt: TEXT, flt: FLOAT, sym: SYMBOL) =
(FLOAT)

Here is the Java source for the class:

package com.gensym.demos.jgi;

import com.gensym.jgi.*;
import com.gensym.util.Symbol;

public class JavaCallingG2Procedure {
34

Accessing G2 Procedures and Methods from Java
// This variable holds the connection to G2
private G2Connection g2Connection = null;

/** Constructor */
public JavaCallingG2Procedure(G2Connection connection) {

this.g2Connection = connection;
}

/* The method aG2Procedure uses callRPC to call a-g2-procedure across
g2Connection. Because the argument and return types for a-g2-procedure are
known, the JavaLink mapping from G2 types to Java types uses these
mappings:

integer becomes Integer
text becomes String
float becomes Double
symbol becomes Symbol

callRPC accepts only object-wrapped types; however, this method
conveniently accepts normal Java types, int and double, in this case, and
object-wraps them internally. */

public double aG2Procedure(int i,
String txt,
double dbl,
Symbol sym)

throws G2AccessException {
Double ret = (Double)g2Connection.callRPC(

Symbol.intern("A-G2-PROCEDURE"),
new Object[] {new Integer(i),

txt,
new Double(dbl),
sym},
10000); // 10 seconds timeout

return ret.doubleValue();
}

/* The example class needs to create an active G2Connection so it can use
callRPC. We, therefore, define the class’s main method, first, to connect to a
G2, next, to create an instance of the example class, then, to call
aG2Procedure. */

public static void main(String args[]) {

// Initiate a connection to a G2 server from
// Java by calling G2Gateway.getOrMakeConnection

try {

// Attempt to connect to G2, and wait until
// successful or timeout
G2Connection g2_connection =

G2Gateway.getOrMakeConnection("localhost", "1111");
35

} catch (G2AccessException e) {
System.out.println("Could not connect to G2, error

was " + e.toString());
System.exit(0);

}

// Once connected, create a new JavaCallingG2Procedure
JavaCallingG2Procedure G2procCall = new

JavaCallingG2Procedure(g2_connection);

try {

// Call the G2 procedure
double retval =

G2procCall.aG2Procedure(4, "Hi there from Java",
100.34, Symbol.intern("JAVALINK"));

System.out.println("Return val is " + retval);

} catch (G2AccessException e) {
System.out.println("Error occurred while calling G2

Procedure, error was " + e.toString());

}

To compile the example, enter this command:

javac JavaCallingG2Procedure.java

To run the example, enter this command:

java com.gensym.demos.jgi.JavaCallingG2Procedure

You can find an extended version of this example in the JavaLink package com.
gensym.demos.jgi. The example needs the G2 host and/or port to be specified.
To run the example, issue the following command:

java com.gensym.demos.jgi.JavaCallingG2Procedure
-g2host <hostname> [-g2port <portnumber>]

This example assumes you have a G2 running on localhost on port 1111, which
has jgidemo.kb loaded.

Calling G2 Methods From Java

To call a method on an existing G2 object, JavaLink must obtain a reference to a
Java object that acts as a proxy for the G2 object.

Accessing G2 Objects by Handle or by Copy

By default, G2 passes the return value of an RPC call from Java to G2 “by handle,”
which means G2 sends a reference, or “handle” to that object to JavaLink.
JavaLink then creates a Java stub class representing the original class containing
the G2 object reference. Once the class exists, Java can access any attributes or
methods defined on the G2 object via the property accessors and methods
36

Accessing G2 Procedures and Methods from Java
available within the Java stub object. Access to the original G2 object via the Java
stub object is valid as long as the G2Connection that created the Java stub is
actively connected to G2, and the original G2 object exists and is active.

When G2 sends an object from G2 to Java “by copy,” JavaLink sends the current
object’s attribute values from G2 to Java. JavaLink then creates a Java class
representing the original G2 class and sets the current G2 attribute values set
within the class. Any access to this class refers to local property values and does
not affect the original G2 object. You can arrange to send objects and their return
values from G2 to Java “by handle” in the remote procedure declaration in G2. By
default, these objects are sent “by copy.”

The method setRemoteRPCReturnKind on G2Connection enables a Java
application to specify how G2 should return objects from callRPC. For example,
the following Java source code instructs G2 to send any results from calling the
G2 procedure another-g2-procedure “by copy:”

setRemoteRPCReturnKind(
Symbol.intern("ANOTHER-G2-PROCEDURE"),
G2Gateway.PASS_BY_COPY);

Example

The following class shows how to call a G2 procedure with this signature:

get-employee() = (class generic-r-employee)

JavaLink passes the return object to Java “by handle.” The example shows how to
call a method and set an attribute of the returned G2 object remotely from Java.

Because the example accesses the G2 class generic-r-employee from Java, you
must first use JavaLink’s G2 DownloadInterfaces utility to export a Java class that
represents the definition of this class. This command creates the relevant Java
class required to access this G2 class:

java com.gensym.jgi.download.DownloadInterfaces
-host localhost -port 1111 -class GENERIC-R-EMPLOYEE

This command assumes that the G2 running on the machine localhost on port
1111 has a KB loaded that contains a class definition for generic-r-employee.

As detailed in Mapping between G2 and Java, JavaLink generates an interface for
generic-r-employee named GenericREmployee. Assume that generic-r-employee
is defined in the jgidemo module and is, therefore, exported to the com.gensym.
classes.modules.jgidemo package.

Here is the Java class that calls the G2 procedure:

package com.gensym.demos.jgi;

import com.gensym.jgi.*;
import com.gensym.util.Symbol;
37

import com.gensym.classes.modules.jgidemo.GenericREmployee;

public class JavaCallingG2Methods {

// This variable holds the connection to G2
private G2Connection g2Connection = null;

// It’s good practice to lookup symbols that will be
// used often
private static Symbol getEmployeeSymbol =

Symbol.intern("GET-EMPLOYEE");

/** Constructor */
public JavaCallingG2Methods(G2Connection connection) {

this.g2Connection = connection;

}

/* This method calls the G2 procedure GET-EMPLOYEE across
g2Connection. Notice that the return value of the RPC
call is cast to a GenericREmployee. */

public GenericREmployee getEmployee()
throws G2AccessException {

// By default, the retured object is passed by handle
return(GenericREmployee)g2Connection.callRPC(

getEmployeeSymbol,
new Object[0],
10000); // 10 second timeout

}

/* Assuming the example creates an active G2Connection,
the class’s main method first calls getEmployee to get a
reference to a GENERIC-R-EMPLOYEE, then calls its G2
method RECORD-COURSE-TAKEN, then sets its Title
attribute. */

JavaCallingG2Methods G2ProcCaller = new
JavaCallingG2Methods(g2_connection);

// Get the employee
GenericREmployee employee = G2ProcCaller.getEmployee();

boolean ok = employee.recordCourseTaken("G2 Javalink");

// Set the employee's new Title
employee.setTitle("G2 Java Software Developer");
38

Accessing G2 Procedures and Methods from Java
When JavaLink exports the Java interface GenericREmployee, it automatically
reads any current generic-r-employee attribute and method definitions and
creates the relevant Java signatures, as follows:

Referring to G2 Objects by Name

For convenience, G2Connection also defines this method, which returns a G2
object of a given class and name:

public com.gensym.classes.Item getUniqueNamedItem(
Symbol className,
Symbol itemName)

For example:

// Get a reference to a GENERIC-R-EMPLOYEE called
// MICHAEL

GenericREmployee employee = (GenericREmployee)
g2_connection.getUniqueNamedItem(

Symbol.intern("GENERIC-R-EMPLOYEE"),
Symbol.intern("MICHAEL"));

// Set Michael's new Title
employee.setTitle("Java Software Developer");

You can find an extended version of the examples given in this section in the
JavaLink package com.gensym.demos.jgi. The example needs the G2 host
and/or port to be specified. To run the example, enter this command:

java com.gensym.demos.jgi.JavaCallingG2Methods
-g2host <hostname> [-g2port <portnumber>]

This example assumes you have a G2 running on host localhost on port 1111,
which has jgidemo.kb loaded.

Using callRPC() to Call a G2 Method

If the first element of the args[] array passed as a parameter to callRPC is a Java
Object, G2 attempts to call a method on the Object. The Object represents a G2
object exported to Java by JavaLink, such as GenericREmployee, in the following
example.

G2 Method and Attribute Java Method and Attributes

RECORD-COURSE-TAKEN
(course-title: TEXT) =
(TRUTH-VALUE)

public boolean recordCourseTaken
(String title);

Title as Text, initial value "Engineer" public void setTitle(String Txt);

public String getTitle();
39

This Java code calls the method record-course-taken on the generic-r-employee
referred to by employee:

Boolean ok = g2_connection.callRPC(
Symbol.intern("RECORD-COURSE-TAKEN"),
new Object[] {employee, "G2 Part 1"},
10000);

Calling G2 Methods with Variable Arguments

You can define G2 methods with the same name and object class (first argument),
but with a differing number of arguments. When calling a G2 method by using
callRPC, JavaLink calls the appropriate method depending on the number of
arguments passed.

For example, the following method calls the version of a-method with one
argument, where the argument is the employee:

callRPC(Symbol.intern("A-METHOD"), new Object[] {employee});

However, this method calls the version of a-method that takes three arguments:

callRPC(Symbol.intern("A-METHOD"),
new Object[] {employee, 1, "information"});

Accessing Java Methods from G2
JavaLink can register any public method on a public class as callable by G2.

Registering a Java Method as Callable from G2

You use the G2Connection method registerJavaMethod to register a Java
method as callable by G2 via a G2 remote procedure call. The two variants of this
method allow you to register Java methods with:

• A variable number of arguments, which uses a dynamic lookup to find the
registered method.

• A specific signature, which uses a pre-looked declaration.

Note For the most optimal performance, we recommend that you register specific
methods by using the second variation of registerJavaMethod, which takes a
java.lang.reflect.Method instead of a java.lang.String as the method name
argument. Registering a specific method saves significant time, because JavaLink
does not need to look up the registered method each time. On the other hand,
registering a method by using a String allows JavaLink to dispatch a method call
dynamically based on the method name and the arguments sent from G2.
40

Accessing Java Methods from G2
When calling a Java method from G2, JavaLink passes the Object argument from
G2 to Java according to the RPC declaration in G2. Unless the RPC declaration
specifically declares to send objects as handle, by default, JavaLink sends objects
and return values “by copy.”

Variable Argument Declaration

In this version of registerJavaMethod, G2 can call any Java method of a given
name found on a target object. This version of the method causes the RPC call
from G2 to use a “dynamic” lookup to find a method with the registered name
that best matches the RPC parameters sent by G2.

Synopsis

public void registerJavaMethod(Object target,
String method_name,
Symbol g2_RPD_name);

Parameters

• target is the Java Object instance on which the method will be called.

• method_name is the Java method name that is to be called on the target.

• g2_RPD_name is the value of the name-in-remote-system attribute of the G2
remote-procedure-declaration to be associated with any method named by
method_name found on target.

When G2 attempts to call or start the specified remote-procedure-declaration (RPD)
across a gsi-interface, JavaLink attempts to call a method with this signature:

[<target>].<method_name>(params_from_G2_call...)

JavaLink calls method_name with the number and type of parameters sent from
G2 during the G2 RPC call. If target is given and does not have the
corresponding method_name with the correct parameter signature, JavaLink raises
a java.lang.NoSuchMethodException.

Note JavaLink dynamically dispatches methods by using the same “best method match
algorithm” as used by Java, which is best described in The Java Language
Specification by James Gosling, Bill Joy, and Guy Steele.
41

For example, suppose you have a Java class named Stock with a method named
getStockPrice, which has multiple definitions defined with several signatures
and a setup method that registers getStockPrice as visible to G2:

public class Stock {

public double getStockPrice(Symbol stock_sym_name) {...}

public double getStockPrice(String stock_long_name) {...}

public double getStockPrice(int stock_number) {...}

public double getStockPrice(StockObject stock_object) {...}

public void setup(G2Connection g2_connection) {
Symbol g2RPDName = Symbol.intern("GET-STOCK-PRICE");
g2_connection.registerJavaMethod(this,

"getStockPrice",
g2RPDName);

}

}

In G2, suppose you declare a remote-procedure-declaration as follows:

declare remote get-stock-price(all remaining item-or-value) = (float)

You can then call the Java method from a G2 procedure, method, or action, as
follows:

get-gensym-stock-price(javalink-interface: class
gsi-interface) = (float)

price: float;

begin

price = call get-stock-price(the symbol gnsm)
across javalink-interface;

return price;

end;

As a symbol is being passed to get-stock-price in the above G2 procedure,
JavaLink calls this version of the getStockPrice method on the Stock class:

public double getStockPrice(Symbol stock_sym_name) {...}
42

Accessing Java Methods from G2
This table describes which getStockPrice method G2 would call for different
parameter types sent from G2:

Pre-Looked Up Declaration

This version of registerJavaMethod registers a specific Java method of a target
object as callable by G2. In this case, the arguments sent by G2, when converted to
Java types, must match the signature of the registered Java method.

Synopsis

public void registerJavaMethod(Object target,
Method java_method,
Symbol g2_RPD_name,
boolean call_in_new_thread);

Parameters

• target is the Java Object instance on which the method will be called.

• java_method is a java.lang.reflect.Method object for the Java method to be
registered.

• g2_RPD_name is the name of the G2 remote-procedure-declaration to be
associated with java_method.

• call_in_new_thread, when set to True, instructs JavaLink to create a new
Java thread especially for the execution of the Java method. By default,
JavaLink queues a G2 RPC call to Java with all other method call requests over
a particular G2Connection. If a Java method is known to take a significant
amount of time to execute, you might want to ask JavaLink to create a new
thread for its execution, so as not to hold up the execution of any other RPC
call requests waiting on the G2Connection RPC call queue.

This call from G2... Calls this method in Java...

get-stock-price
(the symbol gnsm)

getStockPrice
(Symbol stock_sym_name)

get-stock-price
("gensym corporation")

getStockPrice
(String stock_long_name)

get-stock-price
(3)

getStockPrice
(int stock_number)

get-stock-price
(stock-object)

getStockPrice
(StockObject stock_object)

Note: StockObject must be
exported from G2.
43

When G2 attempts to call or start the specified remote-procedure-declaration
(RPD) across a gsi-interface, connected using JavaLink, JavaLink attempts to call a
method with this signature:

[<target>].<java_method>(params...)

JavaLink calls java_method with the number and type of parameters sent from
G2 during the G2 RPC call. If java_method does not have the correct parameter
signature, JavaLink raises a java.lang.NoSuchMethodException.

This example shows the Stock class using this variant of registerJavaMethod:

public class Stock {

public double getStockPrice(Symbol stock_sym_name) {...}

public double getStockPrice(String stock_long_name) {...}

public double getStockPrice(int stock_number) {...}

public double getStockPrice(StockObject stock_object) {...}

public void setup(G2Connection g2_connection) {
try {

java.lang.reflect.Method method =
this.getClass().getDeclaredMethod(

"getStockPrice",
new Class[] {Symbol.class});

g2_connection.registerJavaMethod(
this,
method,
Symbol.intern("GET-STOCK-PRICE"),
false);

} catch (NoSuchMethodException e) {

System.err.println("Could not find Method
getStockPrice"); }

}

}

In this case, G2 can only call getStockPrice(Symbol). All other variants of
getStockPrice are inaccessible to G2. However, because JavaLink does not need
to search for getStockPrice at run time, JavaLink can call getStockPrice
significantly faster than when it is registered using the variable argument
method.

You can find another example of G2 calling Java in the JavaLink package com.
gensym.demos.jgi. To run the example, enter the following command:

java com.gensym.demos.jgi.G2CallingJavaMethod

This example assumes you have a G2 running, which has jgidemo.kb loaded.
You then connect from G2 to this Java process.
44

Using Multiple Java Threads to Access G2
Reporting Java Exceptions to G2

Any Java exceptions that occur when a G2 procedure calls a Java method are
reported to the current procedures error handler. You can trap these errors by
using the G2 on error statement. The error text sent to the on error branch contains
the message and trace of the Java exception generated.

At all other times, any exceptions raised as a result of G2 calling into Java are
reported to G2’s Operator Logbook.

Using Multiple Java Threads to Access G2
JavaLink is thread-safe, which means that multiple Java threads can access the
same G2Connection. This means that different threads can call and start the same
or different G2 procedure or method at any time.

Note In the current version of JavaLink, all network communication from Java to G2 is
via a single thread. This thread also handles all data marshalling of data types and
objects. Once data marshalling is completed, other threads handle the execution
of G2 or Java methods and do not prevent further communication.

An execution thread is defined for each active G2Connection. This thread
maintains a queue of all current requests from the G2Connection to execute Java
methods. As each Java method completes execution, the queue is emptied.

You can find an example of multiple Java threads calling a G2 procedure in the
JavaLink package com.gensym.demos.jgi. The example requires that you specify
the G2 host and/or port. To run the example, enter the following command:

java com.gensym.demos.jgi.JavaThreadsCallingG2
-g2host <hostname> [-g2port <portnumber>]

This example assumes you have a G2 running on localhost on port 1111, which
has jgidemo.kb loaded.
45

46

4

Passing Messages
Describes how G2 JavaLink and G2 can exchange messages.

Introduction 47

Sending a Message to the G2 Message Board 48

Sending an Error Message to the G2 Operator Logbook 49

Receiving a Message from G2 49

Introduction
G2 JavaLink (JavaLink) enables you to pass messages through a G2Connection, as
follows:

• Send a message to the G2 Message Board.

• Send an error message to the G2 Operator Logbook.

• Receive a message from G2 via the G2 inform statement.
47

Sending a Message to the G2 Message Board
To send a message to the Message Board of a G2 actively connected to a
G2Connection, use:

public void returnMessage(String message);

Example

import com.gensym.jgi.*;

/**
* Simple JavaLink example to send a message to G2.
**/

public class JavaLinkExample {
public static void main(String args[]) {

G2Connection g2_connection = null;
try {

g2_connection =
G2Gateway.getOrMakeConnection("localhost", "1111");

} catch (G2AccessInitiationException e) {
System.out.println("Problem connecting to G2

exception was:" + e.toString());
}
g2_connection.returnMessage("Hi from JavaLink");
System.exit(0);

}
}

48

Sending an Error Message to the G2 Operator Logbook
Sending an Error Message to the G2 Operator
Logbook

To send an error message to the Operator Logbook of a G2 actively connected to a
G2Connection, you use this method:

public void reportLogBookErrorMessage(Symbol error_symbol,
String error_message)

Example
import com.gensym.jgi.*;
import com.gensym.util.Symbol;

/**
* Simple JavaLink example to send a Logbook error to G2.
**/

public class JavaLinkExample {
public static void main(String args[]) {

G2Connection g2_connection = null;
try {

g2_connection = G2Gateway.getOrMakeConnection
("localhost", "1111");

} catch (G2AccessInitiationException e) {
System.out.println("Problem connecting to G2 exception

was:" + e.toString());
}

g2_connection.reportLogBookErrorMessage(
Symbol.intern("JAVALINK-ERROR"),
"JavaLink reports that an error has occurred --

please investigate");
System.exit(0);

}
}

Receiving a Message from G2
When a G2Connection for a Java class implements the G2ConnectionListener
interface, it receives a g2MessageReceived event from G2 when the G2 inform
statement is used on a GSI message server, whose gsi-interface-name attribute
names the gsi-interface used for the JavaLink connection. For more information,
see Connection Events.

In addition, you must define a GSI message server in G2 whose gsi-interface-
name attribute names the gsi-interface used for the JavaLink connection between
G2 and the Java class that implements the G2ConnectionListener interface. A
GSI message server is a G2 class that inherits from the G2 mixin class gsi-
49

message-service and at least one G2 class from which you can create instances.
For more information on how to do this, see “Creating and Configuring GSI
Message Servers” and “Running an Inform Action on a GSI Message Server” in
the G2 Gateway Bridge Developer’s Guide.
50

5

Listening for
Changes in G2 Items
Describes how G2 JavaLink listens for changes in G2 items.

Introduction 51

The ItemListener Interface 52

The VariableValueListener Interface 56

Introduction
The following G2 JavaLink interfaces provide notification when certain aspects of
a G2 item change:

• com.gensym.util.ItemListener provides notification when an item’s
attribute has changed and when an item is deleted.

• com.gensym.util.VariableValueListener provides notification when there
is a change in the last-recorded-value attribute of a variable-or-parameter or
any subclass.

These interfaces provide a convenient and efficient way of listening for item
changes. JavaLink subscribes to the specified G2 item. G2 then informs JavaLink
when any changes occur. JavaLink does not, therefore, continually poll G2.
51

The ItemListener Interface
Any Java class that implements the com.gensym.util.ItemListener interface
can listen for item changes by adding itself to a G2 item’s listener list.

Every G2 item received from G2 by JavaLink is a subclass of com.gensym.
classes.Item, which defines the following methods:

• public void addItemListener (ItemListener il)
throws G2AccessException

Adds an ItemListener that is notified of modifications to an item. The
listener is notified of the initial state of the item, whenever any of the
attributes of the item change, or when the item is deleted. In G2 5.x, adding
yourself as an item listener downloaded a snapshot of the entire state of an
item, including the current values of all attributes and virtual attributes,
including histories. In G2 6.0, histories are not downloaded.

• public void addItemListener (ItemListener il,
Symbol[] attributeNames)

throws G2AccessException

Adds an ItemListener that is notified of modifications to specific attributes
of an item. The listener is notified of the initial state of the item, whenever any
of the requested attributes of the item change, or when the item is deleted. In
G2 5.x, adding yourself as an item listener downloaded a snapshot of the state
of the specified attributes of the item. In G2 6.0, histories are not downloaded.

• public void removeItemListener (ItemListener il)
throws G2AccessException

Removes an ItemListener from the ItemListener list for an item. The
ItemListener no longer receives ItemListener events.

The ItemListener interface, located in the com.gensym.util package, contains
the following three listener methods:

• public void receivedInitialValues (ItemEvent e)

Invoked when an ItemListener is added by using the addItemListener
method. As soon an ItemListener is added to an item’s listener list, it will be
informed of the item’s current attribute values. The current attribute values
are embedded within the ItemEvent argument to this method. To obtain the
current values of the item, call getNewValue on the ItemEvent, which can be
cast to a com.gensym.util.Structure containing attribute-value pairs for
each attribute and virtual attribute of the G2 item.
52

The ItemListener Interface
• public void itemModified (ItemEvent e)

Invoked when an item’s attributes are modified. The ItemEvent argument to
this method contains a com.gensym.util.Sequence containing an attribute-
value pair describing the attribute that has changed, which is called a
denotation, and the attribute’s new value.

For example, assume a G2 class test-class has an attribute called an-attribute
and a Java ItemListener is listening for changes to an instance of test-class. If
the value of an-attribute is changed to the text "London Bridge," the
itemModified method of the ItemListener would be called.

The following code shows ItemListener’s implementation of the
itemModified listener method:

public void itemModifed (ItemEvent e) {

System.out.println("Received an itemModified Event");

Sequence denotation = e.getDenotation();
System.out.println("Denotation:" + denotation.toString());
Structure newValue = (Structure)e.getNewValue();
System.out.println("The New Value is: " +

newValue.toString());

}

When the event occurs, the following text appears in a command window:

Received an itemModified Event
Denotation: Structure {TYPE:ATTRIBUTE, NAME:AN-ATTRIBUTE}
The New Value is: London Bridge

• public void itemDeleted (ItemEvent e)

Invoked when the item has been deleted in G2.

Example

The following Java class connects to a G2, obtains a G2 item, then adds an
ItemListener as a listener to item changes:

package com.gensym.demos.jgi;

import com.gensym.jgi.G2Access;
import com.gensym.jgi.G2Gateway;
import com.gensym.util.ItemEvent;
import com.gensym.util.ItemListener;
import com.gensym.util.Sequence;
import com.gensym.util.Symbol;
import com.gensym.core.CmdLineArgHandler;
import com.gensym.classes.Item;
53

public class SimpleSubscription {

// The correct way to make a Symbol
public static final Symbol ITEM_ =

Symbol.intern ("ITEM");

public static final Symbol A_TEST_CLASS_INSTANCE_ =
Symbol.intern ("A-TEST-CLASS-INSTANCE");

public static void main(String[] args) {

// Read command-line
CmdLineArgHandler cmdLine =

new CmdLineArgHandler (args);

// Information for connecting to G2
String url = cmdLine.getOptionValue ("-url");
String host = cmdLine.getOptionValue ("-g2host");
host = (host == null ? "localhost" : host);
String port = cmdLine.getOptionValue ("-g2port");
port = (port == null ? "1111" : port);

// Information to find a unique named item in G2
String classString = cmdLine.getOptionValue

("-class");
String nameString = cmdLine.getOptionValue ("-name");

// Convert the strings to symbols
Symbol clazz = (classString == null ? ITEM_ :

Symbol.intern(classString.toUpperCase()));
Symbol name = (nameString == null ?

A_TEST_CLASS_INSTANCE_ :
Symbol.intern(nameString.toUpperCase()));

// Do actual work

try {

// Connect to G2
G2Access connection =

G2Gateway.getOrMakeConnection(url, host, port);

// Obtain a Java object that represents a G2 item
Item item =

connection.getUniqueNamedItem(clazz, name);
// Define a simple implementation of the
// ItemListener interface
ItemListener il = new ItemListener() {

public void itemModified(ItemEvent e) {

 System.out.println("itemModified: " + e);

}

54

The ItemListener Interface
public void itemDeleted(ItemEvent e) {

 System.out.println("itemDeleted: " + e);

}

public void receivedInitialValues(ItemEvent e) {

 System.out.println("InitialValues:" + e);

}

}

// Initiate the subscription
item.addItemListener(il);

} catch (Exception ex) {

System.out.println(ex.getMessage());
ex.printStackTrace();

}

}

}

To compile the code, enter this command:

javac SimpleSubscription.java

To test the example, enter the following command:

java com.gensym.demos.jgi.SimpleSubscription
-name A-TEST-CLASS-INSTANCE

Assuming a G2 item called a-test-class-instance exists within the G2 server on
localhost on port 1111, the Java client outputs messages to the Java console
when a-test-class-instance’s attributes change.

You can find this example, SimpleSubscription.java, in the JavaLink package
com.gensym.demos.jgi.
55

The VariableValueListener Interface
Any Java class that implements the com.gensym.util.VariableValueListener
interface is notified that there is a change in the last-recored-value attribute of a
specified variable-or-parameter or any subclass.

Note An ItemListener is not notified when the attribute last-recorded-value is
changed in an instance of variable-or-parameter or a subclass.

Every variable-or-parameter received from G2 by JavaLink is a subclass of com.
gensym.classes.VariableOrParameter, which defines the following methods:

• public void addVariableValueListener (VariableValueListener il)
throws G2AccessException

Adds a VariableValueListener, which is notified when the last-recorded-
value attribute of the variable-or-parameter changes.

• public void removeVariableValueListener (VariableValueListener il)
throws G2AccessException

Removes the VariableValueListener from the VariableOrParameter’s
listener list. The VariableValueListener no longer receives notification of
VariableValueEvents.

The VariableValueListener interface, located in the com.gensym.util package
contains the following two listener methods:

• public void receivedInitialValue (VariableValueEvent e)

Invoked when a VariableValueListener is added by calling the
addVariableValueListener method. As soon a VariableValueListener is
added to a VariableOrParameter’s listener list, it is informed of the current
value of the last-recorded-value attribute. You can obtain the current value of
the last-recorded-value attribute by calling getNewValue on the
VariableValueEvent argument to this method.

• public void valueChanged(VariableValueEvent e)

Invoked when the last-recorded-value attribute of the VariableOrParameter
changes. You can obtain the current value of the last-recorded-value attribute
by calling getNewValue on the VariableValueEvent argument to this method.

You can find an example of a VariableValueListener in the class
SimpleVariableSubcription.java in the JavaLink package com.gensym.demos.
jgi.
56

6

Connection Events
Describes how G2 JavaLink responds to connection events.

Introduction 57

Connection Events 57

Registering a G2ConnectionListener 59

Introduction
Any Java class can register interest in listening for predefined connection events,
which can occur while using a G2 JavaLink (JavaLink) G2Connection. The com.
gensym.jgi.G2ConnectionListener interface defines listener methods for each
defined event.

Connection Events
The following sections describe each event and the corresponding method in
G2ConnectionListener that the G2Connection calls to notify the listening Java
class that the event has occurred.
57

Communication Error Has Occurred

This event occurs when an asynchronous error has occurred in the G2
communications interface for the G2Connection. The following listener method in
G2ConnectionListener is called to inform the listener of this event.

public void
communicationError(G2CommunicationErrorEvent)

The G2CommunicationErrorEvent describes the error that occurred.

The Connection Between G2 and JavaLink has
Closed

When Java terminates or G2 closes an active connection, the closed event occurs.
The following listener method in G2ConnectionListener is called to inform the
listener of this event.

public void g2ConnectionClosed(G2ConnectionEvent)

The Connection Has Been Made With a G2 Server

This event occurs when a connection is established between a G2Connection and
a G2, regardless of whether G2 or Java initiated the connection. The following
listener method in G2ConnectionListener is called to inform the listener of this
event.

public void g2ConnectionInitialized(G2ConnectionEvent)

The Connected G2 Has Paused

This event occurs when the connected G2 is paused. The following listener
method in G2ConnectionListener is called to inform the listener of this event.

public void g2IsPaused(G2ConnectionEvent)

The Connected G2 Has Resumed

This event occurs when the connected G2 resumes after a pause event. The
following listener method in G2ConnectionListener is called to inform the
listener of this event.

public void g2IsResumed(G2ConnectionEvent)
58

Registering a G2ConnectionListener
The Connected G2 Has Been Reset

This event occurs when the connected G2 has been reset. The following listener
method in G2ConnectionListener is called to inform the listener of this event.

public void g2IsReset(G2ConnectionEvent)

The Connected G2 Has Been Started

This event occurs when the connected G2 is started. The following listener
method in G2ConnectionListener is called to inform the listener of this event.

public void g2IsStarted(G2ConnectionEvent)

The Connected G2 Has Sent a Message

This event occurs when the connected G2 sends a message via an inform
statement. The following listener method in G2ConnectionListener is called to
inform the listener of this event.

public void g2MessageReceived(G2ConnectionEvent)

A Read Blockage Event Occurred

This event occurs when the network cannot deliver data that Java is attempting to
write to G2. The following listener method in G2ConnectionListener is called to
inform the listener of this event.

public void readBlockage(G2ConnectionEvent)

A Write Blockage Event Occurred

This event occurs when the network cannot deliver data that G2 is attempting to
write to Java. The following listener method in G2ConnectionListener is called
to inform the listener of this event.

public void writeBlockage(G2ConnectionEvent)

Registering a G2ConnectionListener
Any Java class that implements G2ConnectionListener can register itself to listen
for these events by using the G2Connection method addG2ConnectionListener.

A G2ConnectionListener can remove interest by calling
removeG2ConnectionListener.
59

Example
import com.gensym.jgi.*;
import com.gensym.util.*;

public class ConnectionEventListener implements
G2ConnectionListener {

// This variable holds the connection to G2
private G2Connection g2Connection = null;

/** Constructor */
public ConnectionEventListener(G2Connection connection) {

this.g2Connection = connection;

// Register to listen to any connection events
// (G2 Pause, Resume, etc...)
connection.addG2ConnectionListener(this);

}

// G2ConnectionListener implementations
/** Called when the G2 connection has been paused.
*/
public void g2IsPaused(G2ConnectionEvent e) {

System.out.println("G2 has been paused");
}

/** Called when the G2 connection has been resumed.
*/
public void g2IsResumed(G2ConnectionEvent e) {

System.out.println("G2 has been resumed");
}

/** Called when the G2 connection has been reset.
*/
public void g2IsReset(G2ConnectionEvent e) {

System.out.println("G2 has been reset");
}

/** Called when the G2 connection has been started.
*/
public void g2IsStarted(G2ConnectionEvent e) {

System.out.println("G2 has been started");
}

/** Called when G2 sends a message to the G2Connection.
*/
public void g2MessageReceived(G2ConnectionEvent e) {

System.out.println("Message received from G2 was: " +
e.getMessage());

}

60

Registering a G2ConnectionListener
/** Called when the network cannot deliver data that
* Java is attempting to write to G2.
*/
public void readBlockage(G2ConnectionEvent event) {

System.out.println("Network read Blockage event,
state" + e.getState());

}

/** Called when the network cannot deliver data that
* G2 is attempting to write to Java.
*/
public void writeBlockage(G2ConnectionEvent event) {

System.out.println("Network write Blockage event,
state" + e.getState());

}

/** Called when an asynchronous error has occurred in
* the G2 communications interface for the G2Connection.
/
public void communicationError(G2CommunicationErrorEvent

error_event) {
System.out.println(error_event.getMessage());

}

/** This method is called when the G2 connection has
* been shutdown.
*/
public void g2ConnectionClosed(G2ConnectionEvent e) {

System.out.println("G2 connection has closed");
}

/** A connection has been established between this
* connection and a G2 GSI-INTERFACE.
*/
public void g2ConnectionInitialized(G2ConnectionEvent e) {

String remote_process_string = e.getMessage();

// Send a "hi" message to G2's Message Board
g2Connection.returnMessage(

"You have Connected to ConnectionEventListener
(rpis = " + remote_process_string + ")\n
Hi There from Java VM, how are you G2?");

}

61

public static void main(String args[]) {
// A connection to a G2 server can be initiated from
// Java using G2Gateway.getOrMakeConnection.

try {

// Attempt to connect to G2, and wait until
// successful or timeout.

 G2Connection g2_connection =
G2Gateway.getOrMakeConnection("localhost",

"1111");
} catch (G2AccessException e) {

System.out.println("Could not connect to G2, error
was " + e.toString());

}

// Connected OK, create a ConnectionEventListener.
ConnectionEventListener listener = new

ConnectionEventListener(g2_connection);

// The main thread will terminate here, but the
// G2Connection thread is still alive, so we will
//receive G2ConnectionListener events.

}

}

62

7

Using Java RMI to
Communicate with G2
Describes how G2 JavaLink communicates with G2, using Java RMI.

Introduction 63

Starting an RMI Registry 64

Starting an RMI Server 64

Connecting to G2 as an RMI Client 65

Example of Calling a G2 Method Over RMI 66

Detecting Middle Tier Connection Closed Events 67

Using an Applet to Connect to G2 68

Introduction
Remote Method Invocation (RMI) enables a programmer to create distributed
Java-to-Java applications, in which other Java virtual machines, possibly on
different hosts, can invoke the methods of remote Java objects. Once it obtains a
reference to the remote object, a Java program can make a call on a remote object.
You can obtain object references by either:

• Looking up the remote object in the bootstrap naming service provided by
RMI.

• Receiving the reference as an argument or a return value.

A client can call a remote object in a server, and that server can also be a client of
other remote objects. RMI uses object serialization to marshal and unmarshal
63

parameters, and it does not truncate types, supporting true object-oriented
polymorphism.

Note For more information about Java RMI, visit
http://www.javasoft.com/products/jdk/rmi/index.html.

G2 JavaLink (JavaLink) provides a set of classes that allow access to G2 via Java
RMI. These classes reside in the com.gensym.jgi.rmi package.

Before attempting to connect a Java client, you must set up a three-tier
communication link with G2.

To set up a three-tier communication link:

1 Start an RMI registry, which is the naming service.

2 Start an RMI server, the second tier, which connects to G2(s), the first tier.

3 Start the RMI client, the third tier, which connects to the RMI server running
on the second tier.

The following steps explain each of these steps in more detail.

Starting an RMI Registry
The RMI registry is a naming service. RMI servers use the registry to bind remote
objects to names. Clients can look up remote objects and make remote method
invocations.

The rmiregistry command creates and starts a remote object registry on the
current host.

To start an RMI registry on your machine:

 Execute the following command in a command window or shell:

rmiregistry

Starting an RMI Server
JavaLink defines an RMI server interface:

com.gensym.jgi.rmi.G2RMIAccessBroker

This interface allows you to create G2Connections between G2 servers and Java
RMI clients. Use the default implementation supplied with JavaLink,
G2RMIAccessBrokerImpl, to connect to G2 via RMI. After parsing the command
line, this RMI server, or connection broker, exports itself and waits for connection
requests. The G2RMIAccessBroker normally shares connections between Java
64

Connecting to G2 as an RMI Client
clients. It also caches Java stubs for G2 objects that have been previously passed
between G2 and third-tier clients.

Note The Java stubs that JavaLink creates to represent G2 objects have been designed
so you can pass them efficiently between Java clients, using RMI.

The RMI server, or middle tier, needs to be able to find the class definition for the
classes that it will create. To do this, if you do not already have the CLASSPATH
environment variable set up, use the -classpath argument in the command that
starts the RMI server. It also needs to be able to locate the JgiInterface shared
library by including this library on the Path.

To start the JavaLink RMI server:

 Execute the following command in a command window or shell:

java com.gensym.jgi.rmi.G2RMIAccessBrokerImpl
-tsName <rmiservername>

The default name of the RMI server is its full class name, com.gensym.jgi.rmi.
G2RMIAccessBrokerImpl. Because you must specify the RMI server when making
a connection, the -tsName option enables you to provide a simple alias name. For
example:

java -classpath g2-install-dir\javalink\classes\javalink.jar;
g2-install-dir\javalink\myclasses.jar
com.gensym.jgi.rmi.G2RMIAccessBrokerImpl
-tsName demoserver

The host name of the machine that the RMI server is running on and the
rmiservername specify the connection broker’s URL. G2RMIAccessBrokerImpl
automatically registers itself in the RMI registry on startup. If successful, a
message similar to the following appears in the command window or shell:

rmi://boston/demoserver bound in registry

Note Registration of G2RMIAccessBroker in the RMI registry might take more than one
minute on platforms running Windows, if Windows cannot find a naming service
such as DNS to resolve the host name.

Connecting to G2 as an RMI Client
Once the RMI registry and G2RMIAccessBroker have been started, you can then
create G2 connections from an RMI client.

To do this, you call a version of G2Gateway.getOrMakeConnection that takes
three arguments:
65

public static G2Connection getOrMakeConnection(String URL,
String g2Host,
String g2Port)

The first argument can take null or an RMI URL that specifies a path to a
G2RMIAccessBroker bound in an RMI registry. The URL takes the following form,
where hostname is the host name where an RMI registry is running and
rmiservername is the name of a G2RMIAccessBroker previously registered:

rmi://hostname/rmiservername

For example:

rmi://boston/demoserver

Tip This is the same URL that the G2RMIAccessBroker prints when it is bound to the
RMI registry, as described in the previous section.

Note You can omit the rmi: in the command because it is assumed.

Assuming that a G2RMIAccessBroker has been registered in the RMI registry on
machine london with the alias name ukserver, the following call to
getOrMakeConnection attempts to return a G2Connection to a G2 running on
machine manchester on port 1111 from ukserver’s G2RMIAccessBroker:

G2Connection connection =
G2Gateway.getOrMakeConnection("//london/ukserver",

 "manchester",
 "1111");

Example of Calling a G2 Method Over RMI
You can call G2 methods by using RMI to find a G2Connection. For this example,
assume that G2 and the RMI registry are running on the host named boston.

To call a G2 method over RMI:

1 In a command window or shell on host boston, start up the RMI registry for
machine boston:

rmiregistry

2 From another command window or shell on boston, start up the JavaLink
second tier:

java com.gensym.jgi.rmi.G2RMIAccessBrokerImpl
-tsName mitserver
66

Detecting Middle Tier Connection Closed Events
3 Wait for the G2RMIAccessBrokerImpl to print the following:

rmi://boston/mitserver bound in registry

Note Registration of G2RMIAccessBroker in the RMI registry might take more than
one minute on platforms running Windows, if Windows cannot find a naming
service such as DNS to resolve the host name.

4 From a third command window or shell prompt, which can be on another
machine, as long as the Javalink.jar is on the CLASSPATH, enter:

java com.gensym.demos.jgi.JavaCallingG2Methods
-g2host boston
-g2port 1111
-tsName //boston/mitserver

Note In steps 2 and 4, the argument is case-sensitive: -tsName is correct.

The Java client connects to the G2 running on boston via a G2Connection created
by the G2RMIAccessBroker and sent to the Java client using RMI, rather than
using JavaLink’s native G2 interface.

The connection to the RMI server might take more than a minute on platforms
running Windows, if a naming service such as DNS cannot be found to resolve
the host name.

Note The method registerJavaMethod on G2Connection is not currently supported
when called from an RMI Java client.

Detecting Middle Tier Connection Closed
Events

A G2 JavaLink three-tier client can generate a G2ConnectionClosed event if the
middle tier shuts down unexpectedly. By default, the client does not generate this
event. To cause the event to be generated, when you start the middle tier by using
com.gensym.jgi.rmi.G2RMIAccessBrokerImpl, provide the -ping command-
line option followed by a poll interval, in seconds. Clients that connect through
that middle tier now poll the middle tier at the specified interval and generate a
connection closed event if the middle tier shuts down unexpectedly. If the -ping
option is not specified, the appropriate Java exception is generated when any
function is called across the middle tier.

In the following example, clients will poll the middle tier once a minute:

java com.gensym.jgi.rmi.G2RMIAccessBrokerImpl -tsName myserver -ping 60
67

Using an Applet to Connect to G2
You can create Java applets that use the JavaLink API to connect to G2, using Java
RMI. The Java applet client and G2 must deliver the page contents. To ensure
complete compatibility between Sun’s implementation of Java and Netscape’s
implementation, you need to use the Java Plug-in from Sun. The Java Plug-in
includes a free Java Plug-in HTML-converter that makes it easy to modify HTML
pages to specify the use of the Java Plug-in, rather than using the browser’s
default Java runtime. The readme-javalink.html file lists compatibility versions
between JDK and the Java Plug-in. The communication will be over RMI, not
HTTP, so security restrictions apply.

Note At this time, due to Bug HQ-3186311, when using a Java applet with the Java
Plug-In to connect to G2, you must use Java RMI; otherwise, the applet fails to
reconnect to G2 when you go to another page and return to the applet. For an
update on the status of this Bug, please query HelpLink or contact Gensym
Customer Support.
68

8

Adding JavaBeans
Events to G2 Classes
Describes how G2 JavaLink uses the JavaBeans event model with G2 classes.

Introduction 69

The JavaBeans Event Model 70

JavaBeans Event Model Naming Conventions 71

Implementing the JavaBeans Event Model in G2 72

How JavaLink Exports G2 Event Listener Interfaces to Java 77

Introduction
Most G2 JavaLink (JavaLink) clients require a G2 server to pass unsolicited
information periodically to Java, for example, for variable updates and status
changes. To implement this behavior, a JavaLink developer can register Java
methods as callable by G2, as described in Remote Procedure Calls. While this
method is easy to implement for small applications, it does not scale well as the
application becomes more complex.

Therefore, JavaLink allows G2 developers to take advantage of the event-passing
mechanism developed for Java Beans, where Java objects can register interest and
listen for events generated by G2 objects.
69

The JavaBeans Event Model
The JavaBeans event model is based on the concept of an “event listener.” An
object interested in receiving events is an event listener, and an object that
generates events is an event source.

Event Source

An event source maintains a list of listeners interested in being notified when
events occur. An event source also provides methods that allow listeners to add
and remove themselves from the list of interested objects. When the event source
generates an event or when a user-input event occurs on the event source, the
event source notifies all the registered event listeners that the event has occurred.

An event source notifies an event listener by invoking a method on the listener,
passing an event object as the method’s argument. The event object is an instance
of a subclass of java.util.EventObject.

Event Listener

For an event source to invoke a method on an event listener, the listener must
implement the required method. Java ensures the required method is
implemented by requiring that all event listeners for a particular type of event
implement the corresponding interface. For example, event listeners for
ActionEvent objects must implement the ActionListener interface. All event
listener interfaces themselves extend java.util.EventListener. This interface
does not define any methods, but instead acts as a marker interface, clearly
identifying all event listeners as such.

An event listener interface may define more than one method. For example,
G2ConnectionEvent represents several different types of G2Connection event
types, such as G2 pausing and the G2 connection being closed. These different
event types cause different methods in the corresponding event listener to be
invoked. By convention, the methods of an event listener are passed a single
argument, which is an event object of the type that corresponds to the listener.
This event object should contain all the information a program needs to respond
to the event.

JavaLink uses the Java Bean event model to allow Java objects to listen for G2
connection events, as described in Connection Events. In the case of G2
connection events, G2ConnectionListener defines the listener interface and
G2ConnectionEvent passes the event information to each of the event methods
within the listener interface.
70

JavaBeans Event Model Naming Conventions
JavaBeans Event Model Naming Conventions
The JavaBeans specification defines strict guidelines of how to add a listener
interface to a Java class:

• Any listener interface name must end in the word Listener, for example,
G2ConnectionListener. The event listener’s name is G2Connection.

• Any event objects passed to methods defined in a listener interface must end
in the word Event, for example, G2ConnectionEvent.

• The Java class generating the events must supply add and remove listener
interface methods for registering and removing registration for the listener,
for example, addG2ConnectionListener and removeG2ConnectionListener.

The Add Listener Method

The event source must define a method with this signature for registering
listeners to receive notification of events:

public void add<listener-name>Listener
(<listener-name>Listener a-listener);

This method registers a listener with an event generator. Any registered listeners
will be informed of a listener event when it occurs. The event source normally
holds a reference to the registered listener.

For example, G2Connection defines the following method for registering
G2ConnectionListeners:

public void addG2ConnectionListener
(G2ConnectionListener a-listener);

The Remove Listener Method

The event source must also define a method with this signature for removing
registration of listeners:

public void remove<listener-name>Listener
(<listener-name>Listener a-listener);

This method informs the event source that a previously registered event listener
should no longer receive any <listener-name> events. All references that the
event source might have held on the listener are removed.

For example, G2Connection defines the following method for removing
G2ConnectionListeners:

public void removeG2ConnectionListener
(G2ConnectionListener a-listener);
71

Implementing the JavaBeans Event Model
in G2

The G2 event support module (g2evliss), which you access by loading the
g2evliss.kb that ships with JavaLink, provides basic support to allow a G2 class
to implement one or more listener interfaces and corresponding event objects.

When JavaLink exports a G2 class that uses these event listener classes, JavaLink
automatically generates the corresponding Java listener and event classes such
that external Java classes can register themselves as interested in events fired from
G2.

The G2 event support module provides the following classes:

Adding a G2 Event Listener Interface to a G2 Class

To add a G2 event listener interface to a G2 class:

1 Create a G2 event listener class that inherits from g2-event-listener.

The class name must have the form: listener-name-listener. This class should
include methods for each event to be reported by the listener interface.

2 Create a G2 event class that inherits from g2-event-object.

The class name must have the form: listener-name-event. This class should
contain attributes that allow you to report event data for each possible event
in the G2 event listener class created above.

3 Define the listener registration methods for the G2 class that will generate the
events.

G2 Class Name Description

g2-event-listener The superior of all G2 event
listener classes.

g2-event-object The superior of all G2 event
classes.

g2-event-listener-support Basic support for G2 classes that
would like to implement a G2
event listener interface.
72

Implementing the JavaBeans Event Model in G2
These must have the following signatures:

add-listener-name-listener
(self: class event-source, a-listener: class listener-name-listener) = ()

remove-listener-name-listener
(self: class event-source, a-listener: class listener-name-listener) = ()

Example

Suppose you want to add an event listener interface to a G2 class named
company-stock. An instance of company-stock contains information about a
particular company’s stock and has a live feed to the stock-market so its
information is constantly updated. By adding an event interface to the company-
stock class, you can allow third-party systems to listen for live company-stock
events.

For example, the class might generate these two events:

• stock-price-change, which informs listeners of a change in a company’s stock
price.

• stock-press-release, which informs listeners when a company has released a
new press release.

To create this interface to the listener:

1 Decide on the listener interface name.

For this example, the listener name is stock-update.

2 Create the listener class.

Following the guidelines, the listener class must be called stock-update-
listener and must inherit from g2-event-listener.

3 Create an event class that contains the information generated by each event.

Following the guidelines, the event class must be called stock-update-event
and must inherit from g2-event-object.

4 Define attributes on the event class to hold information about the event.

For example, the stock-update-event might define the following attributes to
hold stock information:

message is a text, initially is "";
price is a float, initially is 0.0
73

5 Add method declarations and methods to the listener class that define each
possible event that might occur.

As dictated by the JavaBeans event model, the first argument to the method is
self, which is an instance of the g2-event-listener class, and the second
argument is the event class.

For example, the stock-update-listener might define these methods
corresponding to events that might occur:

stock-price-change(self: class stock-update-listener,
event: class stock-update-event) = ()

begin
end

stock-press-release(self: class stock-update-listener,
event: class stock-update-event) = ()

begin
end

As you can see, these methods do not implement any code; listeners will
override them to perform specific actions.

6 Finally, add listener registration methods to the event source and provide new
code that informs any registered listeners when an event occurs.

The following two headings describe this last step in detail and provide examples.

Registration Methods

When adding the listener registration methods to company-stock, you can use the
g2-event-listener-support class supplied with the G2 event support module KB
(g2evliss.kb). This class defines generic add and remove methods that you can
use to implement your registration methods.

First, you must add g2-event-listener-support to your event source’s class
inheritance path, then you can define your registration methods.

Note The registration method names must also follow the event listener naming
conventions.

When a Java class adds itself as a listener to a G2 event source, G2 creates a
listener stub for passing listener events from G2 to Java. Removing yourself as a
listener does not delete the listener stub in G2; it simply removes the listener from
the listener list in Java. Each time a new event is generated in G2, each connected
listener uses the same listener stub that was created when it was added as a
listener. If the G2 listener stub no longer exists and a new event is generated,
JavaLink automatically creates a new listener stub in G2.

Normally, it is not necessary to delete the listener stub explicitly in G2, because
JavaLink handles that for you by deleting the listener stub when a G2 event is
74

Implementing the JavaBeans Event Model in G2
generated and the listener is no longer connected. However, if different clients are
adding and removing themselves as listeners, G2 creates a new listener stub each
time a new client adds itself as a listener, which can result in many listener stubs
being created. To avoid excessive listeners being created in G2, the registration
method that removes the listener can add a delete statement to delete the listener
stub. However, due to the asynchronous nature of communications between G2
and JavaLink, repeatedly adding and removing listeners from a single client can
cause an exception if the delete notification occurs after the add notification. To
avoid this problem, insert a sleep statement after each remove statement that is
followed by another add statement.

Here are the registration methods for the company-stock event source:

add-stock-update-listener(
self: class company-stock,
listener: class stock-update-listener) = ()

begin
{ call support method defined in g2-event-listener-support }
call add-g2-event-listener(self, listener);

end

remove-stock-update-listener(
self: class company-stock,
listener: class stock-update-listener) = ()

begin
{ call support method defined in g2-event-listener-support }
call remove-g2-event-listener(self, listener);

end

Event-Firing Code

Now you must provide code that hooks in to the company-stock’s update
mechanism so it can fire events. To do this, you write event-firing methods for
each event that you have defined and call them from company-stock’s update
mechanism:

fire-stock-price-change-event
(self: class company-stock, new-price: float) = ()

listener-list: class item-list;
listener: class stock-update-listener;
event: class stock-update-event;
error-sym: symbol;
error-text: text;
75

begin

{ use g2-event-support-listener method to get our listener list}
listener-list = call get-event-listener-list(self);

{ use support method defined in g2-event-listener-support
method to create an event}
event = call g2-event-create-event(stock-update-event, self);
conclude that the price of event = new-price;
for listener = each stock-update-listener in listener-list do

begin
call stock-price-change(listener, event);

end on error(error-sym, error-text)
{ obviously listener it is not behaving, so remove it from listener list}
inform the operator that "problem with listener, removing..[error-text]";
call remove-g2-event-listener(self, listener);
end;

end;
delete event;

end

fire-stock-press-release-event
(self: class company-stock, news: text) = ()

listener-list: class item-list;
listener: class stock-update-listener;
event: class stock-update-event;
error-sym: symbol;
error-text: text;

begin
{ use g2-event-support-listener method to get our listener list}
listener-list = call get-event-listener-list(self);

{ use support method defined in g2-event-listener-support
method to create an event}

event = call g2-event-create-event(stock-update-event, self);
conclude that the message of event = news;
conclude that the price of event = the price of self;
for listener = each stock-update-listener in listener-list do

begin
call stock-press-release(listener, event);

end on error(error-sym, error-text)
{ obviously listener it is not behaving, so remove it from listener list}
inform the operator that "problem with listener, removing..[error-text]";
call remove-g2-event-listener(self, listener);
end;

end;
delete event;

end
76

How JavaLink Exports G2 Event Listener Interfaces to Java
How JavaLink Exports G2 Event Listener
Interfaces to Java

When JavaLink exports a G2 class to Java by using the G2 DownloadInterfaces
utility as described in How to Export a G2 Class as a Java Class, it checks for any
JavaBeans-compliant event interfaces. If it finds any, it exports the following
classes and methods so that any Java class can listen for G2 events:

• For any G2 event listener interface found, a JavaBeans-compliant event
listener interface named G2_<listener-name>Listener is created, which
correctly implements java.util.EventListener.

For example, the G2 event listener class for stock-update-listener would be
G2_StockUpdateListener. This interface contains the signatures for each
event method found in the G2 event listener interface.

For example, the following interface would be exported for stock-update-
listener:

public interface G2_StockUpdateListener extends
java.util.EventListener {

public void stockPriceChange(G2_StockUpdateEvent event);
public void stockPressRelease(G2_StockUpdateEvent event);
}

• JavaBeans-compliant event classes required for the listener interfaces named
G2_<listener-name>Event are also created, which correctly extend com.
gensym.classes.G2_ExternalEventObjectRoot. For example, g2-stock-
update-event is exported as G2_StockUpdateEvent. This exported event class
contains getters for any attributes defined by the G2 class:

public class G2_StockUpdateEvent
extends com.gensym.classes.G2_ExternalEventObjectRoot {

//

public String getMessage() {...};
public double getPrice() {...};

}

77

Using G2 Event Listener Interfaces From Java

When a Java class wishes to listen for G2 events, it simply needs to implement the
interfaces exported by JavaLink and register itself as a listener on the G2 object by
calling the object’s add listener method from Java.

For the stock example, if you export company-stock to Java, JavaLink
automatically create these Java classes:

To listen for G2 events in Java:

1 The Java class should implement the G2 event listener interface, for example,
StockUpdateListener.

2 Override the listener’s methods, for example, stockPriceChange and
stockPressRelease.

Java Class Description

CompanyStock The Java interface for the G2 class
company-stock.

StockUpdateListener The Java interface for the G2 class
stock-update-listener.

G2_StockUpdateListener The JavaBeans-compliant event
listener interface for stock-update-
listener.

StockUpdateEvent The Java interface for the G2 class
stock-update-event.

G2_StockUpdateEvent The JavaBeans-compliant event
class for stock-update-event.
78

How JavaLink Exports G2 Event Listener Interfaces to Java
The following example shows how a Java class can listen for StockUpdateEvents
fired from a company-stock object in a connected G2:

public class Trader implements G2_StockUpdateListener{

// Constructor
public Trader(CompanyStock stock) {

try {
stock.addG2_StockUpdateListener(this);

} catch (G2AccessException e) {
// Handle problem with G2 object

}
}

public void stockPriceChange(G2_StockUpdateEvent arg1)
throws G2AccessException

{
// Sell or buy

}

public stockPressRelease(G2_StockUpdateEvent arg1)
throws G2AccessException

{
// Panic or drink champagne

}

}

79

80

Index
 @ A B C D E F G H I J K L M
 # N O P Q R S T U V W X Y Z
Symbols
@ character

creating mixed-cased symbols, using
- character

converting G2 identifiers with
/ character

converting G2 identifiers with

A
Abstract Windowing Toolkit (AWT), Java
access

local
remote

accessing objects
by copy
by handle

accessors
G2 attribute
Java property

ActionListener interface
JavaBeans event model

add<listener-name>Listener method
JavaBeans event model

addG2ConnectionListener method
on G2Connection

adding listeners
JavaBeans event model

addItemListener method
on Item

addVariableValueListener method
on VariableOrParameter

applets
connecting to G2, using

application programmer? interface (API)
object-oriented

attributes
accessing G2, from Java
exporting classes used to define G2
listening for changes to G2
modifying values of G2
obtaining values of G2
B
bridges

Java
multi-threaded

C
calling

G2 methods
from Java
using RMI

G2 procedures
callRPC method

on G2Connection
case sensitivity

Java identifiers
class methods

exporting G2
classes

accessing G2
locally
remotely

adding JavaBeans events to G2
controlling package for exported G2
creating local instances of G2, in Java
example of exporting G2
example of finding previously exported

G2
exporting G2 to Java
how JavaLink exports G2
how JavaLink finds exported G2, at run

time
in com.gensym.jgi package
in com.gensym.jgi.dataservice package
in com.gensym.jgi.download package
in com.gensym.util package
in g2evliss module
in javalink module
instantiating exported G2
location and package name of exported G2

system-defined
user-defined
81

passing unexported G2 classes at run time
pseudo
when JavaLink exports G2

clients
JavaLink
RMI

com.gensym.classes package
com.gensym.classes.modules.* package
com.gensym.classes.user.package property

description
determining package name of exported G2

classes, using
com.gensym.classes.user.pkgs property
com.gensym.classes.user.repository property

description
determining directory name of exported

G2 classes, using
com.gensym.jgi package

communicating between G2 and Java,
using

description
summary of classes

com.gensym.jgi.dataservice package
description
summary of classes

com.gensym.jgi.download package
description
summary of classes

com.gensym.jgi.rmi package
.com.gensym.properties file
com.gensym.util package

description
summary of classes

communicating with G2
through G2Gateway
using RMI
using third tier

communicationError event
on G2ConnectionListener

connecting to G2
as RMI client
using G2Gateway

connection events
See also events

ConnectionNotAliveException class
ConnectionNotAvailableException class
connections

bridge-initiated
establishing with G2

through RMI
using G2Connection
82
multiple
ConnectionTimedOutException class
contexts

setting maximum in G2 JavaLink
conventions

naming
Java identifiers
JavaBeans event model

converting
See also data conversion
data, between G2 and Java
G2 identifiers to Java identifiers

copy
accessing objects by
passing object by
setting RPC return kind as

customer support services

D
data conversion

between G2 and Java
mapping

G2 classes to Java classes
G2 symbols in Java
Java built-in types in G2
types between G2 and Java

data marshalling
using a single thread

data services
communicating between G2 and Java,

using
data types

automatic conversion of
creating Java types in G2
embedded
supporting Java types with no

corresponding G2 type
symbolic

DataService class
DataServiceEvent class
DataServiceListener interface
debugging
denotations
downloading, thin
DownloadInterfaces

class
utility

example
exporting G2 classes, using
options

synopsis
dynamic method lookup

E
embedded data types

data type conversion of
errors

communication
handling
reporting G2 runtime, to Java
reporting to Operator Logbook

event listeners
JavaBeans event model

event objects
JavaBeans event model

event sources
JavaBeans event model

events
See also listeners
adding listener interfaces to G2 classes
connection

communication error
connection closed
connection established
G2 has sent a message
G2 paused
G2 reset
G2 resumed
G2 started
introduction
read blockage
write blockage

G2
creating
example
firing

how JavaLink exports G2 to Java
item

item deleted
item modified
received initial values

JavaBeans event model
naming conventions for G2
support module for creating G2
variable value

received initial contents
value changed

exceptions
in com.gensym.jgi package
in com.gensym.jgi.download package
in com.gensym.util package
reporting G2 runtime, to Java
reporting Java, to G2

exporting
G2 classes to Java
G2 events to Java
G2 listeners to Java
when JavaLink exports G2 classes

G
G2

bridges
classes

exporting
in g2evliss module
in javalink module
location and package name of

exported
communicating with, using RMI
establishing connections with
event support module
events

creating
example
exporting
message
paused
reset
resumed
started

firing events from
identifiers
items, listening for changes to
JavaLink modules
listener registration methods

creating
example

listeners
example
exporting

Message Board
Operator Logbook

reporting Java exceptions to
sending error messages to

servers
connected to single Java client
sending messages to

G2 DownloadInterfaces wizard
83

G2 JavaLink
See JavaLink

G2_<listener-name>Event class
G2_<listener-name>Listener interface
G2Access interface
G2AccessException class

description
reporting at run time

G2CommunicationErrorEvent class
G2CommunicationException class
G2Connection interface

connection events for
description
making remote procedure calls, using
passing messages, using

G2ConnectionAdapter class
g2ConnectionClosed event

on G2ConnectionListener
G2ConnectionEvent class
G2ConnectionHandlerFactory interface

description
establishing unsolicited G2 connections,

using
G2ConnectionInfo class
g2ConnectionInitialized event

on G2ConnectionListener
G2ConnectionListener interface

description
listener methods in
listening for connection events, using
registering

G2Connector class
G2ConnectorBeanInfo class
g2-event-listener class
g2-event-listener-support class
g2-event-object class
g2evliss module
g2evliss.kb file
G2Gateway class

communicating between G2 and Java,
using

description
g2IsPaused event

on G2ConnectionListener
g2IsReset event

on G2ConnectionListener
g2IsResumed event

on G2ConnectionListener
g2IsStarted event

on G2ConnectionListener
G2ItemDeletedException class
84
g2MessageReceived event
on G2ConnectionListener

G2RMIAccessBroker interface
G2RMIAccessBrokerImpl class
G2SecurityException class
G2StubCreationException class
G2StubResolver class
getNewValue method

on Item
getOrMakeConnection method

connecting to G2 as an RMI client, using
establishing G2 connections, using

getters
getUniqueNamedItem method

on G2Connection
gsi-interface class

providing network interface to instances
of

H
handle

accessing objects by
passing object by
setting RPC return kind as

I
identifiers

examples of converting
naming conventions for Java

implementations
creating from G2 classes

inform statement
G2 event generated via

inheritance, multiple
mapping G2 classes that use

initiateConnection method
establishing G2 connections, using

instantiating
exported G2 classes

interfaces
See also listeners
creating from G2 classes
in com.gensym.jgi package
in com.gensym.jgi.dataservice package
in com.gensym.util package
mapping G2 classes that use multiple

inheritance as
intern method

on Symbol
Item class

registering as an ItemListener
itemDeleted event

on ItemListener
ItemEvent class

argument to ItemListener methods
description

ItemListener interface
description
listening for item changes

example
using

not notified of changes in variables and
parameters

itemModified event
on ItemListener

items
listening for changes to G2

introduction
item modified and deleted
variables and parameters

J
JAR files

placing downloaded G2 classes in
Java

Abstract Windowing Toolkit (AWT)
identifiers
Remote Method Invocation (RMI)

JavaBeans
adding event listeners to G2 classes
event model

description
event listener
event objects
event source
naming conventions
support for

using with JavaLink
JavaClassCompilerException class
JavaLink

components of
feature summary
modules
packages
properties file
system properties

javalink module
description
supporting Java data types with no

corresponding G2 type, using
javalink.kb file
Java-package-for-export attribute

finding previously exported G2 classes at
run time, using

recommendation for using
java-package-for-export attribute

determining package name of exported G2
classes, using

jgi-java-type class

L
last-recorded-value attribute

listening for changes in, for variables and
parameters

listeners
See also interfaces
adding
G2

adding to classes
example of creating
example of registering
registering

how JavaLink exports G2 to Java
implementing G2, in Java
JavaBeans event model
naming conventions for G2
registering
removing

listening
for changes to G2 items
for changes to G2 variables and

parameters
for G2 connection events
for G2 events

local access
creating local G2 objects in Java
of G2 classes
setting RPC return kind for

M
mapping

See also data conversion
between G2 and Java

details
summary
85

Message Board, G2
sending messages to

messages
communicating between G2 and Java,

using
events
passing
receiving from G2, via inform statement
sending to

G2 Message Board
G2 Operator Logbook

methods
accessing

G2 from Java
G2, using multiple threads
Java from G2

calling G2
example
from Java
using callRPC
using RMI
using startRPC
with variable arguments

data type conversion
of exported Java
of RPCs from G2 to Java
of RPCs from Java to G2

exporting
classes used to define G2
signatures for G2

G2 class
G2 listener registration

example
naming conventions for

registering Java
as callable from G2
variable argument
with specific signature

Module Information system table
Module-annotation attribute

finding previously exported G2 classes at
run time, using

module-annotation attribute
determining package name of exported G2

classes, using
modules

for implementing G2 events
for supporting Java built-in types
G2 JavaLink
g2evliss
javalink
86
multiple connections
establishing
JavaLink feature

multiple inheritance
mapping G2 classes that use

multiple threads
multi-threaded bridges

N
name

referring to G2 objects by
naming conventions

for Java identifiers
for JavaBeans event model

network communications
using a single thread

new method
creating Java types in G2, using

NoSuchAttributeException class

O
object serialization

using RMI
object-oriented API
objects

See also items
passing by copy or handle
referring to G2, by name

object-wrapped classes
Operator Logbook

reporting Java errors to
sending error messages to

P
packages

for exported G2 classes
controlling
determining

of exported G2 classes
summary of JavaLink

parameters
See also attributes
listening for changes to G2
marshalling and unmarshalling Java,

using RMI
passing

messages

objects
by copy
by handle

polymorphism
procedures

accessing G2
from Java
using multiple threads

calling G2 from Java
in javalink module

properties file, JavaLink
properties, JavaLink system
property accessors, JavaBeans
proxy

accessing G2 classes by
pseudo classes

R
readBlockage event

on G2ConnectionListener
receivedInitialValue event

on VariableOrParameter
receivedInitialValues event

on ItemListener
receiving messages

from G2, via inform statement
references

obtaining for G2 objects
registering

G2 event listeners
G2ConnectionListener
ItemListener

Java methods as callable from G2
VariableValueListener

registerJavaMethod method
not available with RMI
registering

specific Java methods, using
variable argument methods, using

registry, RMI
starting

remote G2 objects
accessing

Remote Method Invocation (RMI)
calling G2 methods, using
client
communicating with G2, using
detecting middle tier connection closed

events
Java
registry
server
support for

remote procedure calls (RPCs)
asynchronous
communicating

between G2 and Java, using
with G2, using G2Gateway, using

determining how JavaLink passes return
values of

examples
calling G2 methods from Java
calling G2 procedure from Java

synchronous
description
making, using callRPC

type conversion
by G2 to Java
by JavaLink to G2

remove<listener-name>Listener method
JavaBeans event model

removeG2ConnectionListener method
on G2Connection

removeItemListener method
on Item

removeVariableValueListener method
on VariableOrParameter

removing listeners
reportLogBookErrorMessage method

on G2Connection
resolving G2 classes to Java classes
returnMessage method

on G2Connection
RMI

See remote method invocation
rmiregistry command
run time

how JavaLink finds exported G2 classes at
reporting G2 errors to Java at

S
sending messages

to G2 Message Board
to G2 Operator Logbook

separators
how JavaLink maps, in identifiers

Sequence class
servers

G2
87

RMI, starting
setRemoteRPCReturnKind method

on G2Connection
setters
signatures

exporting for G2 methods
startRPC method

on G2Connection
Structure class
StubCreationException class
stubs

converting object-wrapped types in
definition

superior classes
exporting
when JavaLink exports

Symbol class
description
mapping G2 symbols to Java, using

symbols
representing in Java

synchronous
remote procedure calls (RPCs)
RPCs, from Java

system properties, JavaLink

T
thin downloading
threads

executing Java methods in new
multiple
single

three-tier communication
TimeoutException class
tracing

command line option for
-tsName option
type conversion

in RPC calls
by G2 to Java
by JavaLink to G2

of embedded data types
of exported methods to G2

U
Unicode character set
unsolicited connections
unspecified module
88
determining package name of exported G2
classes in

finding previously exported G2 classes in

V
valueChanged event

of VariableOrParameter
VariableOrParameter class
variables

listening for changes to G2
VariableValueEvent class
VariableValueListener interface

description
listening for variable or parameter

changes, using

W
writeBlockage event

on G2ConnectionListener

	Contents
	Preface
	About this Guide
	Software Requirements
	Audience
	Conventions
	Related Documentation
	Customer Support Services

	Introduction
	Introduction
	Summary of Features
	Mapping Between G2 and Java Types and Classes
	Object-Oriented API
	Multi-Threaded Bridges
	Synchronous RPC Calling
	Unicode Support
	Comprehensive Error Handling
	Multiple Connections and Bridge-Initiated Connections
	Java Remote Method Invocation (RMI) Support
	G2 Support for the JavaBeans Event Model
	Ease of Migration

	Components of G2 JavaLink
	G2 JavaLink Packages
	The G2 Javalink Module

	Mapping between G2 and Java
	Introduction
	How JavaLink Maps Data Types
	Automatic Conversion of Data Types
	Supporting G2 Symbols in Java
	Supporting Java Built-in Types

	How G2 Classes Map to Java Classes
	Naming Conventions
	Attributes Accessors
	Class Methods
	Class Mapping and Multiple Inheritance
	Local or Remote Access
	How JavaLink Resolves a G2 Class to a Java Class
	How to Export a G2 Class as a Java Class
	How JavaLink Creates an Exported Java Class
	Location and Package Name of an Exported G2 Class
	When JavaLink Exports a G2 Class
	How JavaLink Finds a Previously Exported Class at Run Time
	Creating a Local G2 Object in the Java Client

	Remote Procedure Calls
	Introduction
	Accessing G2 Procedures and Methods from Java
	callRPC()
	startRPC()
	setRemoteRPCReturnKind()
	Reporting G2 Runtime Errors to Java
	Setting the Maximum Number of Contexts
	Calling a G2 Procedure From Java
	Calling G2 Methods From Java

	Accessing Java Methods from G2
	Registering a Java Method as Callable from G2

	Using Multiple Java Threads to Access G2

	Passing Messages
	Introduction
	Sending a Message to the G2 Message Board
	Example

	Sending an Error Message to the G2 Operator Logbook
	Example

	Receiving a Message from G2

	Listening for Changes in G2 Items
	Introduction
	The ItemListener Interface
	Example

	The VariableValueListener Interface

	Connection Events
	Introduction
	Connection Events
	Communication Error Has Occurred
	The Connection Between G2 and JavaLink has Closed
	The Connection Has Been Made With a G2 Server
	The Connected G2 Has Paused
	The Connected G2 Has Resumed
	The Connected G2 Has Been Reset
	The Connected G2 Has Been Started
	The Connected G2 Has Sent a Message
	A Read Blockage Event Occurred
	A Write Blockage Event Occurred

	Registering a G2ConnectionListener
	Example

	Using Java RMI to Communicate with G2
	Introduction
	Starting an RMI Registry
	Starting an RMI Server
	Connecting to G2 as an RMI Client
	Example of Calling a G2 Method Over RMI
	Detecting Middle Tier Connection Closed Events
	Using an Applet to Connect to G2

	Adding JavaBeans Events to G2 Classes
	Introduction
	The JavaBeans Event Model
	Event Source
	Event Listener

	JavaBeans Event Model Naming Conventions
	The Add Listener Method
	The Remove Listener Method

	Implementing the JavaBeans Event Model in G2
	Adding a G2 Event Listener Interface to a G2 Class
	Example

	How JavaLink Exports G2 Event Listener Interfaces to Java
	Using G2 Event Listener Interfaces From Java

	Index
	Symbols
	A
	B
	C
	D
	E
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

