
G2 ActiveXLink

User’s Guide
Version 2020

G2 ActiveXLink User’s Guide, Version 2020

June 2020

The information in this publication is subject to change without notice and does not represent a
commitment by Gensym Corporation.

Although this software has been extensively tested, Gensym cannot guarantee error-free
performance in all applications. Accordingly, use of the software is at the customer’s sole risk.

Copyright © 1985-2020 Gensym Corporation

All rights reserved. No part of this document may be reproduced, stored in a retrieval system,
translated, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of Gensym Corporation.

Gensym®, G2®, Optegrity®, and ReThink® are registered trademarks of Gensym Corporation.

NeurOn-Line™, Dynamic Scheduling™ G2 Real-Time Expert System™, G2 ActiveXLink™, G2
BeanBuilder™, G2 CORBALink™, G2 Diagnostic Assistant™, G2 Gateway™, G2 GUIDE™,
G2GL™, G2 JavaLink™, G2 ProTools™, GDA™, GFI™, GSI™, ICP™, Integrity™, and SymCure™
are trademarks of Gensym Corporation.

Telewindows is a trademark or registered trademark of Microsoft Corporation in the United States
and/or other countries. Telewindows is used by Gensym Corporation under license from owner.

This software is based in part on the work of the Independent JPEG Group.

Copyright © 1998-2002 Daniel Veillard. All Rights Reserved.

SCOR® is a registered trademark of PRTM.

License for Scintilla and SciTE, Copyright 1998-2003 by Neil Hodgson, All Rights Reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/).

All other products or services mentioned in this document are identified by the trademarks or
service marks of their respective companies or organizations, and Gensym Corporation disclaims
any responsibility for specifying which marks are owned by which companies or organizations.

Ignite Technologies, Inc.
401 Congress Ave., Suite 2650
Austin, TX 78701 USA
Telephone: +1-800-248-0027
Email: success@ignitetech.com Part Number: DOC034-1200

Contents
Preface ix

About this Guide ix

Version Information ix

Audience x

Conventions x

Related Documentation xii

Customer Support Services xiv

Chapter 1 Introduction 1

Introduction 1

What is an ActiveX Control? 1

What Does G2 ActiveXLink Do? 2

How Does G2 ActiveXLink Manage G2 Items? 3

Chapter 2 Creating a Link with G2 ActiveXLink 5

Introduction 5

Setting Up G2 for Authorization 7
Running Your G2 Applications with G2 ActiveXLink 7
Running the Example Programs 7

Using G2 ActiveXLink with Microsoft Visual Basic 7
Adding the G2 ActiveXLink Control to the Toolbox 8
Setting the Properties of the Control 11
Building Your Connection Form 13
Making a Connection to G2 14
How to Communicate with G2 14

Using G2 ActiveXLink with Visual Basic .NET 20
Visual Basic .NET Terminology 20
Using ActiveXLink with Visual Basic .NET 21
Programs that use AxG2Gateways 26
The Program 28
The PostMessage Demo 28
The Call Demo 28
iii

The Traffic Light Demo 29

Using G2 ActiveXLink with Microsoft Excel 29
Making a Connection to G2 30
Setting the Properties of the Control 31
Calling a Procedure in G2 and Excel 33

Using G2 ActiveXLink with Microsoft Internet Explorer 35
Adding the G2 ActiveXLink Control to an HTML File 35
Connecting with G2 on Startup 35
Sending a Message to G2 from Internet Explorer 37

Using G2 ActiveXLink with C++ 37

Chapter 3 Data Types 43

Introduction 43

Mapping Data Types 44

Overriding the Mapping of Simple Data Types 45

Mapping Date and Time 46

Mapping Currency 47

Mapping Multidimensional Arrays 47
Example: One-Dimensional Array 49
Example: Two-Dimensional Array 49
Example: Multidimensional Array 49

Chapter 4 Using G2Gateway 51

Introduction 52

Properties 52

Methods 56
Call() 57
Start() 59
CallDeferred() 61
Connect() 63
Disconnect() 64
PostMessage() 65

Events 66
g2com-call 67
g2com-start 68
g2com-start-over-interface 69
RpcCalled() 71
RpcStarted() 74
G2Connected 76
iv

G2Disconnected 77
RpcReturned() 78
G2Paused 79
G2Resumed 80
G2Reset 81
G2Started 82
G2RunStateKnown 83
AttributeModified() 84
CustomEvent() 85
IconColorChanged() 86
ItemAdded() 87
ItemDeleted() 88
ItemRemoved() 89
ItemSelected() 90
ValueChanged() 91
Error 92

Chapter 5 Custom Classes 95

Introduction 95

Using G2Symbol 96

Using G2Structure 97
Creating a Variable to Represent a G2Structure 97
Example: Reading the Value of a Structure Property 99
Example: Setting the Value of a Structure Property 99
Example: Determining the Number of Name/Value Pairs 99
Example: Obtaining Lists of Property Names or Values 100
Example: Removing a Name/Value Pair from a G2Structure 100
Example: Iterating over Name/Value Pairs 100

Using G2Item 101
Specifying the G2 Class 101
Setting the G2Item Name 102
Determining the Number of User-Defined Attributes 102
Getting and Setting Attribute Values 102
Getting Attribute Names, Values, and Types 104
Creating G2Items 105
Creating Symbolic Attributes 106
Removing Attributes 106
Iterating Over the Attributes of a G2Item 107
Using G2Item Value and Type 108

Using G2List and G2Array 108
Determining the Number of Elements 109
Getting and Setting Element Values 109
Determining the Type 109
Inserting, Appending, and Adding Elements to the List or Array 109
v

Removing Elements from a List or Array 110
Iterating Over Elements of a List or Array 110
Sending Lists and Arrays to G2 110

Using G2Workspace 112
Subscribing to Workspace Events 112

Using G2Window 113
Getting the G2 User Mode of a Window 113
Subscribing to Window Events 114

G2 Type Names 114

Subscription Types 115

Chapter 6 Item References 117

Introduction 117

Creating and Linking a G2Item 118

Getting the Icon for a G2Item 121

Deleting a G2Item 122

Updating the Item in G2 122

Refreshing a G2Item 124

Verifying Linked Items 124

Unlinking a G2Item 124

Getting G2Item Attribute Names, Values, and Types 125

Using Linked Items as Parameters to RPCs 126

Subscribing to Item Events 127
Subscribing to Attribute Changes 128
Subscribing to Item Deletions 129
Subscribing to Icon Color Changes 129
Subscribing to Variable and Parameter Value Changes 129
Subscribing to Custom Events 130
Unsubscribing from Attribute Changes 130
Unsubscribing from Item Deletions 130
Unsubscribing from Icon Color Changes 130
Unsubscribing from Custom Events 130
Unsubscribing from Variable and Parameter Value Changes 131
Unsubscribing from All Event Notification 131
Getting Information about Subscriptions 131

Appendix A Example Code 135

Introduction 135
vi

Using G2 ActiveXLink in Microsoft Visual Basic 135

Using G2 ActiveXLink in Microsoft Excel 137

Index 139
vii

viii

Preface
The preface describes this document and the conventions that it uses.

About this Guide ix

Version Information ix

Audience x

Conventions x

Related Documentation xii

Customer Support Services xiv

About this Guide
This guide introduces the G2 ActiveX Link control, its capabilities, and how you,
the developer, can use it to create a link with G2 and pass data between G2 and a
container application such as Microsoft Visual Basic.

Version Information
The G2 ActiveXLink control works on Windows 7, 8.1 or 10, Windows Server
2008/2008 R2 or 2012 R2.

G2 ActiveXLink operates in any Microsoft COM-compatible container or
development environment that supports Microsoft COM, including:

• Microsoft Office, including Word, Excel, and PowerPoint

• Microsoft Internet Explorer
ix

• Microsoft Visual Basic and Visual Basic .NET

• Microsoft Visual C++

• Active Server Page (ASP)

Audience
You should be familiar with ActiveX and how ActiveX controls are used in the
Windows development environment. You should also be familiar with Microsoft
Visual Basic or Microsoft Visual Basic for Applications in Microsoft Office.

This guide assumes that you are already an experienced user of G2.

Conventions
This guide uses the following typographic conventions and conventions for
defining system procedures.

Typographic

Convention Examples Description

g2-window, g2-window-1,
ws-top-level, sys-mod

User-defined and system-defined
G2 class names, instance names,
workspace names, and
module names

history-keeping-spec, temperature User-defined and system-defined
G2 attribute names

true, 1.234, ok, “Burlington, MA” G2 attribute values and values
specified or viewed through
dialogs

Main Menu > Start

KB Workspace > New Object

create subworkspace

Start Procedure

G2 menu choices and button labels

conclude that the x of y ... Text of G2 procedures, methods,
functions, formulas, and
expressions
x

Conventions
Note Syntax conventions are fully described in the G2 Reference Manual.

Procedure Signatures

A procedure signature is a complete syntactic summary of a procedure or
method. A procedure signature shows values supplied by the user in italics, and
the value (if any) returned by the procedure underlined. Each value is followed by
its type:

g2-clone-and-transfer-objects 
(list: class item-list, to-workspace: class kb-workspace, 
 delta-x: integer, delta-y: integer) 
 transferred-items: g2-list

new-argument User-specified values in
syntax descriptions

text-string Return values of G2 procedures
and methods in syntax
descriptions

File Name, OK, Apply, Cancel, 
General, Edit Scroll Area

GUIDE and native dialog fields,
button labels, tabs, and titles

File > Save

Properties

GMS and native menu choices

workspace Glossary terms

c:\Program Files\Gensym\ Windows pathnames

/usr/gensym/g2/kbs UNIX pathnames

spreadsh.kb File names

g2 -kb top.kb Operating system commands

public void main()
gsi_start

Java, C and all other external code

Convention Examples Description
xi

Related Documentation

G2 Core Technology

• G2 Bundle Release Notes

• Getting Started with G2 Tutorials

• G2 Reference Manual

• G2 Language Reference Card

• G2 Developer’s Guide

• G2 System Procedures Reference Manual

• G2 System Procedures Reference Card

• G2 Class Reference Manual

• Telewindows User’s Guide

• G2 Gateway Bridge Developer’s Guide

G2 Utilities

• G2 ProTools User’s Guide

• G2 Foundation Resources User’s Guide

• G2 Menu System User’s Guide

• G2 XL Spreadsheet User’s Guide

• G2 Dynamic Displays User’s Guide

• G2 Developer’s Interface User’s Guide

• G2 OnLine Documentation Developer’s Guide

• G2 OnLine Documentation User’s Guide

• G2 GUIDE User’s Guide

• G2 GUIDE/UIL Procedures Reference Manual

G2 Developers’ Utilities

• Business Process Management System Users’ Guide

• Business Rules Management System User’s Guide

• G2 Reporting Engine User’s Guide

• G2 Web User’s Guide

• G2 Event and Data Processing User’s Guide
xii

Related Documentation
• G2 Run-Time Library User’s Guide

• G2 Event Manager User’s Guide

• G2 Dialog Utility User’s Guide

• G2 Data Source Manager User’s Guide

• G2 Data Point Manager User’s Guide

• G2 Engineering Unit Conversion User’s Guide

• G2 Error Handling Foundation User’s Guide

• G2 Relation Browser User’s Guide

Bridges and External Systems

• G2 ActiveXLink User’s Guide

• G2 CORBALink User’s Guide

• G2 Database Bridge User’s Guide

• G2-ODBC Bridge Release Notes

• G2-Oracle Bridge Release Notes

• G2-Sybase Bridge Release Notes

• G2 JMail Bridge User’s Guide

• G2 Java Socket Manager User’s Guide

• G2 JMSLink User’s Guide

• G2 OPCLink User’s Guide

• G2 PI Bridge User’s Guide

• G2-SNMP Bridge User’s Guide

• G2 CORBALink User’s Guide

• G2 WebLink User’s Guide

G2 JavaLink

• G2 JavaLink User’s Guide

• G2 DownloadInterfaces User’s Guide

• G2 Bean Builder User’s Guide
xiii

G2 Diagnostic Assistant

• GDA User’s Guide

• GDA Reference Manual

• GDA API Reference

Customer Support Services
You can obtain help with this or any Gensym product from Gensym Customer
Support. Help is available online, by telephone and by email.

To obtain customer support online:

 Access Ignite Support Portal at https://support.ignitetech.com.

You will be asked to log in to an existing account or create a new account if
necessary. Ignite Support Portal allows you to:

• Register your question with Customer Support by creating an Issue.

• Query, link to, and review existing issues.

• Share issues with other users in your group.

• Query for Bugs, Suggestions, and Resolutions.

To obtain customer support by telephone or email:

 Use the following numbers and addresses:

United States Toll-Free +1-855-453-8174

United States Toll +1-512-861-2859

Email support@ignitetech.com

xiv

1

Introduction
Introduces G2 ActiveXLink and the containers in which it operates.

Introduction 1

What is an ActiveX Control? 1

What Does G2 ActiveXLink Do? 2

How Does G2 ActiveXLink Manage G2 Items? 3

Introduction
G2 ActiveXLink enables you to establish communications between G2 and a
COM-compliant application running under Windows 7, 8.1 or 10, Windows
Server 2008/2008 R2 or 2012 R2. This chapter discusses ActiveX controls in
general and the G2 ActiveXLink control in particular.

What is an ActiveX Control?
ActiveX controls provide object-oriented programming and reusable software
components that conform to the Component Object Model (COM). They can
interact with your application to perform a set of functionality. You can use an
ActiveX control as if it were part of your application.

ActiveX is an extension of Object Linking and Embedding (OLE). OLE enables
programs to share data. Both ActiveX and OLE are layered on top of COM, an
industry standard object model that defines the rules by which objects are
structured and the rules by which objects communicate and expose their
functionality.
1

Because ActiveX controls use a standard interface specification, your application
can access the features of an ActiveX control with a few lines of code. Your
application becomes the container for the control. Any application or language
that supports Microsoft COM can use G2 ActiveXLink.

ActiveX controls define a set of properties and communicate with the container
application by using methods and events.

• Properties – An ActiveX control provides a set of values or characteristics,
such as network address of the G2 server, that can be set and read, or only
read.

• Methods – The container application can use the features of an ActiveX
control by invoking its methods, such as a method that invokes a procedure
in G2.

• Events – To the container application, an ActiveX control raises events, such
as notification that a connection has been established with G2, to which the
container application responds.

What Does G2 ActiveXLink Do?
G2 ActiveXLink enables container applications and languages that support
Microsoft COM, such as Microsoft Office, Microsoft Visual Basic, Visual C++,
Microsoft Internet Explorer, and Active Server Page (ASP) to communicate with
G2. G2 ActiveXLink provides the G2Gateway control, which does the following:

• Enables users to invoke procedures in a G2 server, passing any number of
arguments and returning any number of arguments with as little as a single
line of code.

• Automatically maps data types.

• Supports both synchronous (blocking) and nonblocking calls.

• Can be used safely in multi-threaded applications because G2 ActiveXLink is
thread-safe.

• Creates connections to multiple G2 servers at the same time.

• Automatically manages connections to the G2 server.

• Stores configuration information, such as the G2 server location as a visually
configurable property.

Additionally, the G2 server can invoke logic in the COM-compliant container
application with or without return arguments. Clients, the container applications,
can post messages on the G2 Message Board.
2

How Does G2 ActiveXLink Manage G2 Items?
The following Visual Basic code fragment shows how compact and powerful calls
to G2Gateway can be:

Private Sub Form_Load()
Call G2Gateway1.PostMessage("Hello from Visual Basic!")
Call G2Gateway1.Call("My-Procedure",1,123,3.1415,True)

End Sub

The Form_Load() function automatically:

• Creates a connection to a G2 server.

• Posts a message to the G2 Message Board.

• Calls the G2 procedure my-procedure with four arguments.

The G2 server resides at the TCP/IP address specified in the G2Location property
of the G2Gateway1 object inserted in the Visual Basic form. The G2Gateway1 object
is an instance of the G2Gateway class in G2 ActiveXLink.

For details, see:

• Chapter 2, Creating a Link with G2 ActiveXLink on page 5.

• Chapter 3, Data Types on page 43.

• Chapter 4, Using G2Gateway on page 51.

How Does G2 ActiveXLink Manage G2 Items?
G2Gateway is a control that you normally place on a form at design time, although
it is not visible at run time. G2 ActiveXLink also defines a number of classes,
which are not controls so they are not visible and are, therefore, only available at
run time. These classes include:

• G2Symbol

• G2Structure

• G2Item

• G2List and G2Array

• G2Workspace

• G2Window

You use these classes to represent G2 items in you COM application. By default, a
G2Item is a static copy of the item in G2. You can also create a G2Item so that is
linked to the item in G2, which means the item updates automatically in both
directions when changes occurs.

G2Item defines a number of methods for subscribing to various events on the
item. These events occur on the G2Gateway to which the G2Item is linked.
3

G2Gateway provides notification for these events: attribute changes, item
deletions, icon color changes, variable or parameter value changes, and custom
events.

For details, see:

• Chapter 5, Custom Classes on page 95.

• Chapter 6, Item References on page 117.
4

2

Creating a Link with
G2 ActiveXLink
This chapter describes the steps for creating and sending information across the
link.

Introduction 5

Setting Up G2 for Authorization 7

Using G2 ActiveXLink with Microsoft Visual Basic 7

Using G2 ActiveXLink with Visual Basic .NET 20

Using G2 ActiveXLink with Microsoft Excel 29

Using G2 ActiveXLink with Microsoft Internet Explorer 35

Using G2 ActiveXLink with C++ 37

Introduction
This chapter describes how to use the G2 ActiveXLink control with the popular
ActiveX control containers Microsoft Visual Basic, Microsoft Visual Basic .NET,
Microsoft Excel, and Microsoft Internet Explorer. You can also use
G2 ActiveXLink with any application that supports ActiveX controls, such as
Active Server Page (ASP).

The chapter explains the steps for establishing a connection with G2 using
G2 ActiveXLink. Over this connection, data is transmitted to G2 and data is
returned from G2 to the container application. The container application can start
a procedure in G2, and G2 can start a procedure in the container application.
5

Note G2 ActiveXLink is a COM component. The descriptions in this guide are
generally for non-.NET products. Users of .NET need to wrap the ActiveXLink
control and modify the instructions in a manner similar to that described in Using
G2 ActiveXLink with Visual Basic .NET on page 20.

The example programs used in this chapter show you how the properties,
methods, and events in the G2 ActiveXLink control are used to establish a
connection with G2 and to send and receive data. Use these example programs as
guides for creating your own programs.

In most applications, one or more G2Gateways will be added to the program
when it is being designed. Rarely, an application’s code will create a G2Gateway
at runtime. In this case, the G2Gateway is said to have been created dynamically.

When you create a G2Gateway dynamically, you must call the OnEndPage method
before deleting the G2Gateway to cause it to shut down its event thread. You
should also call the OnEndPage method in the error event handler when an
attempt to connect with a new, dynamically created G2Gateway fails.

For most applications, G2 ActiveXLink provides excellent throughput. However
in extreme cases, you might wish to increase the number of calls from G2 it can
process. This is possible by enabling the high-throughput option. Typically
G2 ActiveXLink will be able to process more than 50 times as many calls from G2
per second as would be possible with the high-throughput option disabled.

To do this, you create a G2ComConfigurator object and set its HighThroughput
property to True. You can then delete the G2ComConfigurator object. The
following Visual Basic 6 code accomplishes this:

Dim axlCfg as New G2ComConfigurator
axlCfg.HighThroughput = True
Set axlCfg = Nothing

Enabling the HighThroughput option causes G2 ActiveXLink to take 100% of the
available processor time. It will appear that the processor is overloaded.
However, as long as your application does not push the processor to its limit, the
responsiveness of the computer will still be good; generally, G2 ActiveXLink will
immediately release the processor if any other process needs it.

You should use the g2com.kb and gsi.dll that come with the g2com.dll
(ActiveXLink) that you are using. In general, you should use compatible versions
of G2 and G2 ActiveXLink (g2com.kb). However, if no substantive changes have
been made to g2com.kb and you do not wish to upgrade versions of G2, you can
sometimes use newer versions of G2 ActiveXLink (g2com.kb) with older versions
of G2. Refer to the G2 Bundle Release Notes for version compatibility.
6

Setting Up G2 for Authorization
Setting Up G2 for Authorization
Before you can communicate with G2, merge the g2com.kb file into your G2 KB
application. The g2com.kb contains declarations that are required to enable G2 to
use G2 ActiveXLink. The default location is \g2\kbs\utils\g2com.kb in your
G2 Bundle installation directory.

The g2com.kb file also contains authorization information that enables
G2 ActiveXLink to run.

Running Your G2 Applications with G2 ActiveXLink

To run your G2 application KB with G2 ActiveXLink, load your KB into G2 and
merge g2com.kb into it.

To set up G2 to communicate with G2 ActiveXLink:

1 Load your G2 application into G2.

2 Merge g2com.kb into your application.

3 Start G2.

Running the Example Programs

To run the example programs, load the demonstration KB axldemo.kb into G2.
The g2com.kb is already merged into the demonstration KB. G2 starts
automatically.

The default location is \g2\kbs\demos\axldemo.kb.

To set up G2 to communicate with the example programs:

 Load axldemo.kb into G2.

Using G2 ActiveXLink with Microsoft
Visual Basic

The following examples of using G2 ActiveXLink with Visual Basic walk you
through placing the G2 ActiveXLink control on a form, calling and starting
procedures in G2, and raising an RPC event from G2.

The examples in this section are drawn from the demonstration Visual Basic
project shipped with G2 ActiveXLink. The default location is
\activexlink\demos\vbdemo\VBDemo.vbp.
7

You can also run this example from the Start menu by choosing:

Start > Programs > Gensym G2 2011 > Examples > ActiveXLink >
VB Demo Project and VB Demo

The following instructions are for non-.NET versions of Visual Basic. Users of VB
.NET should refer to Using G2 ActiveXLink with Visual Basic .NET on page 20.

Adding the G2 ActiveXLink Control to the Toolbox

To give your Visual Basic form the ability to connect to G2, you must place the
G2 ActiveXLink control on a form. Before you can place the control, you must add
the control to the Visual Basic toolbox.

To add the G2 ActiveXLink control to the toolbox:

1 Create or open a project in Microsoft Visual Basic.

Tip You can open the demonstration Visual Basic project and observe how the
G2 ActiveXLink is used as you follow these examples.

2 Choose the Components option in the Project menu in Visual Basic to display
the Components dialog, as shown in the following figure:

3 Locate the “Gensym G2 Gateway” in the list on the Controls page and click
the box to select the control, as shown.

4 Click OK on the Components dialog.
8

Using G2 ActiveXLink with Microsoft Visual Basic
In the toolbox, you see a new icon for the G2 ActiveXLink control. The name of
the class is “G2Gateway,” as shown in the following figure:

Using the Control in Your Form

You can place the control directly on your form or you can create an instance of
the control programmatically in Visual Basic code.

When placed on a form, an instance of the G2Gateway class appears in the
Properties window as “G2Gateway1”, as shown in the following figure:

If you have more than one G2 ActiveXLink G2Gateway object in your project, the
number for each of the subsequent controls automatically increments; for
example, G2Gateway2, G2Gateway3, G2Gatewayn. You can, however, rename
the instances to whatever you want.

Each G2Gateway object can connect to the same G2 server or to a different
G2 server, if it is authorized to run G2 ActiveXLink. For example, you could
connect to more than one G2 server by using a different instance of the
G2Gateway class for different G2 servers.

To place the G2 ActiveXLink directly on your form:

1 Click the G2 Gateway icon in the Visual Basic toolbox.

2 Place the cursor over the form in the form designer.

3 Press and hold the mouse button and drag the plus cursor down and to the
right over the area of the form where you want to place the control.
9

4 Release the mouse button and the control appears with the words “G2-AXL:”

When you run your form, the control is invisible and it may be located under
other controls on the form.

Note To place the control directly on the form, double click on the icon. Visual Basic
places it in the middle of the form. For more information on building your form,
see Building Your Connection Form on page 13.

You can complete the form as you would any other Visual Basic form.

Creating the Control Programmatically

You can use the G2 ActiveXLink control programmatically by referencing it in
your code. The following code fragment shows how you can create and define a
variable for the G2 ActiveXLink control, create an instance of the control, and use
it to start a G2 procedure in a running G2.

Dim myCTL As G2Gateway
Set myCTL = New G2Gateway
myCTL.Start "G2PROC-ONE", StartItem.Text

Note Make sure that Gensym G2 Gateway is referenced by Visual Basic. To bring up the
Available References dialog, click References in the Project menu.
10

Using G2 ActiveXLink with Microsoft Visual Basic
Setting the Properties of the Control

Like other controls in Visual Basic, the G2 ActiveXLink control has properties you
can set. You can set them by clicking on the control in the form to display the
Properties window, as shown in the following figure:

You can set properties by typing values in the text boxes in the Properties
window.

Setting the Basic Properties

The basic properties for the G2 ActiveXLink control set values for the location of
the G2 process, the interface class for the connection, the name you give the
connection, and the timeout for a response from G2.

For the four basic properties, a button with three dots appears when you click in
its text box. Click the button shown in the following figure to display the Property
Pages dialog for the control:
11

The following figure shows the Property Pages dialog with the properties you can
set for the G2 ActiveXLink control:

G2Location

InterfaceClass

RemoteInitializationString

CallTimeout
DisconnectOnReset
G2Symbols

The basic properties are:

• G2Location – The host machine name and port number for the machine
running G2. The name and port number are separated by a colon. The default
is localhost:1111 and the Visual Basic data type is String. In G2, the data
type is text.

• InterfaceClass – The G2 class that defines the connection in G2. The default
is g2com-interface (vbdemo-interface in this example), and the Visual Basic
data type is String. In G2, the data type is symbol.

• RemoteInitializationString – A descriptive identifier for the connection
that G2 uses. There is no default. The Visual Basic data type is String. In G2,
the data type is text.

• DisconnectOnReset — Allows you to choose the reset behavior that your
application requires. When set to False, the default, the connection between
G2 ActiveXLink and G2 is maintained when G2 is reset. When set to True, the
connection between G2 ActiveXLink and G2 is broken when G2 is reset

• G2Symbols — Allows you to choose the behavior when sending symbols
from G2. When set to True, the default, simple symbols are stored as instances
of G2Symbol. When set to False, symbols are stored as String types.

• CallTimeout – The maximum amount of time for the application containing
the G2 ActiveXLink control to wait for G2 to respond. The default is 30
seconds and the Visual Basic data type is Long. In G2, the data type is integer.

For more information on these and other G2 ActiveXLink properties, see
Properties on page 52.
12

Using G2 ActiveXLink with Microsoft Visual Basic
Setting Properties Programmatically

Instead of using a form, you can set the value of a property programmatically in
your Visual Basic code.

To set a property programmatically

 Type the name of a property and the value you want to give it, as shown:

G2Gateway1.G2Location = "pc1:1122"

For example, you could programmatically set the G2Location property by
prompting the user for a value in a text box. With the ability to set the G2Location
property in a text box, you could link to a different G2.

Building Your Connection Form

You can build a form in Visual Basic quickly. Just as you did with the
G2 ActiveXLink control, you can create instances of buttons, text boxes, and other
controls on the form. The following figure shows the working version of the form
from the demonstration project shipped with G2 ActiveXLink. The
G2 ActiveXLink control is selected.

The next sections on connecting and transmitting data use this example to
illustrate how you can work with the G2 ActiveXLink control. The form calls
procedures in G2 and displays values returned by G2.

For more information on building a form in Visual Basic, refer to the
documentation on Visual Basic or one of the numerous books on learning and
using Visual Basic.
13

Making a Connection to G2

Making a connection to G2 (or “G2 server”) is automatic when you open a Visual
Basic program and transmit data to G2 by using the Start(), Call(), or
CallDeferred() methods. You can connect to any G2 server running anywhere
in your TCP/IP network.

You can also explicitly call the Connect() method to establish a connection.

If it is not already connected, G2 by itself cannot connect with a container
application by using G2 ActiveXLink.

When G2 responds to the G2 ActiveXLink connection request, the control raises
the G2Connected event to Visual Basic, which you can program to respond
appropriately.

Connecting with G2 on Startup

You can connect to G2 as soon as you run the Visual Basic form. This way of
connecting saves time when you click a button to make your first remote
procedure call.

You can program an application to establish a connection on startup by placing
the Connect() method in the application’s startup procedure. For example, the
following procedure in Visual Basic attempts to make a connection to G2 when
the form loads:

Private Sub Form_Load()
Call G2Gateway1.Connect(false)

End Sub

When you load the Visual Basic form, the Form_Load() function executes:

• The Connect(false) call creates a connection to G2, but the system does not
wait for the connection to complete before displaying the Visual Basic form.

• The Connect(true) call also creates a connection to G2, but the system waits
for the connection to complete before displaying the form.

For a description of the Connect() method, see Connect() on page 63.

Note To explicitly disconnect from G2 when you close a Visual Basic form, you can
place the Disconnect() call in the Form_Unload() function.

How to Communicate with G2

You can transmit data to G2, invoke a procedure in G2, and return data to Visual
Basic. The following three sections reference the example form and describe each
of the form’s three buttons that you use to perform operations. Each section
includes the relevant Visual Basic code and G2 procedures.
14

Using G2 ActiveXLink with Microsoft Visual Basic
Note To display the Visual Basic example form, run VBDemo.exe. Its default location is
\activexlink\demos\vbdemo\VBDemo.exe.

Posting a Message on the G2 Message Board

The button labeled “PostMessage” on the example form enables you to send any
data to G2 for display on the Message Board.

For example, when you click the PostMessage button on the Visual Basic example
form, the message “Hello G2!” appears on the G2 Message Board, as shown in the
following figure:

Clicking the PostMessage button invokes the PostMessage G2 ActiveXLink
method, which passes the string in the text box StartItem to the G2 Message
Board. The following Visual Basic code fragment specifies that the PostMessage
method is invoked when you click the PostMessage button:

Private Sub StartRPC_Click()
G2Gateway1.PostMessage StartItem.Text

End Sub

For more information on the PostMessage method, see PostMessage() on page 65.
15

Calling a Procedure in G2

The button labeled “Call” on the example form enables you to invoke a random
number generator procedure in G2 and display the result on the Visual Basic
form. The result appears in the “Result” text box, as shown in the following
figure:

When you click the Call button on the Visual Basic example form, the Call
method invokes a procedure named G2RandomGenerator in G2 and passes the
string in the “Input” text box CallItem. The result of the call is assigned to the
rannum variable, which is assigned to the “Result” text box CallItemRetVal. The
following Visual Basic code fragment specifies that the Call method is invoked
when you click the Call button:

Private Sub CallRPC_Click()
rannum = G2Gateway1.Call("G2RANDOMGENERATOR",

Val(CallItem.Text))
CallItemRetVal = Str(rannum)

End Sub

For more information on the Call method, see Call() on page 57.

The G2RandomGenerator procedure uses the value received from Visual Basic as
the value from which to generate a random number and returns the generated
number to Visual Basic, as shown in the following G2 code fragment:

G2RandomGenerator(max: quantity) = (value)
retval: quantity;

begin

retval = random(max);
return retval;

end
16

Using G2 ActiveXLink with Microsoft Visual Basic
Calling a Procedure in G2 and Visual Basic

The button labeled “Cycle Lights” on the Visual Basic example form enables you
to cycle through the lights in the traffic signal icon. Clicking on the Cycle Lights
button causes the traffic signal to change color on both the Visual Basic form and
the G2 workspace, as shown in the following figures.

Visual Basic

G2

Note For a complete listing of the Visual Basic code for the Cycle Lights program, see
Using G2 ActiveXLink in Microsoft Visual Basic on page 135.
17

Clicking the Cycle Lights Button in Visual Basic

When you click the Cycle Lights button on the Visual Basic example form, the
CycleLights_Click() function uses the Start() method to invoke the G2
procedure change-signal. The change-signal procedure uses the traffic light mode
value passed from Visual Basic to change the traffic light in G2. G2 returns the
new mode to Visual Basic to set the traffic light in the example form to the same
mode.

The following Visual Basic code fragment specifies that the Start() method is
invoked when you click the Cycle Lights button:

Private Sub CycleLights_Click()
Call G2Gateway1.Start("CHANGE-SIGNAL", NextMode)
If NextMode = "stop" Then

NextMode = "slow"
ElseIf NextMode = "slow" Then

NextMode = "proceed"
Else

NextMode = "stop"
End If

End Sub

The CycleLights_Click function also sets the value of NextMode for the next time
the Cycle Lights button is pressed.

For more information on the Start method, see Start() on page 59.

In G2, the change-signal procedure sets the traffic signal icon TS (of the class
traffic-signal) to the mode specified by the NextMode variable in Visual Basic, as
shown in the following code fragment:

change-signal(mode: text)

begin
case(mode) of
"stop":

begin
change the green-region icon-color of TS to black;
change the yellow-region icon-color of TS to black;
change the red-region icon-color of TS to red;
conclude that the mode of TS is stop;

end;
"slow";

begin
change the green-region icon-color of TS to black;
change the yellow-region icon-color of TS to yellow;
change the red-region icon-color of TS to black;
conclude that the mode of TS is slow;

end;
otherwise;
18

Using G2 ActiveXLink with Microsoft Visual Basic
begin
change the green-region icon-color of TS to green;
change the yellow-region icon-color of TS to black;
change the red-region icon-color of TS to black;
conclude that the mode of TS is proceed;

end;

call g2com-start-over-interface("CYCLELIGHTS", the mode of TS,

the symbol of vbdemo-interface);
end

When the change-signal G2 procedure executes, it fires an RpcStarted event in
Visual Basic by using the g2com-start-over-interface G2 procedure. For more
information on the g2com-start-over-interface G2 procedure, see g2com-start-
over-interface on page 69.

Visual Basic responds to the RpcStarted event by calling the Update_Light()
function, as shown in the following Visual Basic code fragment:

Private Sub G2Gateway1_RpcStarted(ByVal Name As String,
InArgs As Variant)

Dim str As String
str = InArgs
If Name = "CYCLELIGHTS" Then Call Update_Light(str)

End Sub

For more information on the RpcStarted event, see RpcStarted() on page 74.

The Update_Light() function changes the traffic light icon to match the current
mode, as shown in the following Visual Basic code fragment:

Private Sub Update_Light(Mode As String)
If Mode = "PROCEED" Then

Redlight.FillColor = RedOff
Yellowlight.FillColor = YellowOff
Greenlight.FillColor = GreenOn

ElseIf Mode = "STOP" Then
Redlight.FillColor = RedOn
Yellowlight.FillColor = YellowOff
Greenlight.FillColor = GreenOff

Else
Redlight.FillColor = RedOff
Yellowlight.FillColor = YellowOn
Greenlight.FillColor = GreenOff

End If
End Sub
19

Clicking the Cycle Lights Button in G2

When you click the Cycle Lights button in G2, you invoke the advance-signal
procedure, as shown in the following code fragment:

advance-signal()

begin
case(the mode of TS) of

stop: call change-signal(“proceed”);
slow: call change-signal(“stop”);
proceed: call change-signal(“slow”);

end;
end

The advance-signal procedure determines the traffic signal mode and calls the
change-signal procedure with the new mode.

Using G2 ActiveXLink with Visual Basic .NET
The examples in this section are drawn from the demonstration Visual Basic .NET
project shipped with G2 ActiveXLink. The default location is
\activexlink\demos\vbnetdemo\bin\VBNetDemo.exe.

You can also run this example from the Start menu by choosing:

Start > Programs > Gensym G2 2011 > Examples > ActiveXLink > 
VB .NET Project and VB .NET Demo

The examples described in this section apply only if you are using VB .NET.

Visual Basic .NET Terminology

G2 ActiveXLink provides a sample program for Visual Basic .NET (VB.NET).
When discussing the use of G2 ActiveXLink with VB.NET, we use Microsoft’s
terminology for .NET. First, we will explain that terminology.

Before you can run a program built with .NET technology, the .NET Framework
must be installed on your computer. The .NET Framework consists primarily of
two parts: the Common Language Runtime (CLR) and the framework class
library.

The part of the Framework of interest to us is the Common Language Runtime.
This can be thought of as a layer of software that sits between the operating
system and .NET applications. It provides numerous fundamental services to 
.NET applications such as memory management, thread control, and security.

Generally, Visual Studio .NET is used to build managed code, that is, code that
runs using the Common Language Runtime. It is called managed code because it
uses CLR to manage object lifetime, memory management, bound checking, etc.
20

Using G2 ActiveXLink with Visual Basic .NET
G2 ActiveXLink is a COM object. COM is the acronym for Component Object
Model. It is a specification for designing, developing, supporting, and using
software components. In some respects, COM was Microsoft's predecessor to 
.NET.

The .NET equivalent to a COM object is a .NET assembly. They are similar in
terms of the functionality they provide, but internally they are very different.
They are not directly compatible.

To use a COM object with .NET, you need a .NET assembly that provides the
interop layer, Microsoft’s terminology for software that translates between COM
and .NET. Fortunately, when you use COM objects with Visual Basic .NET, it can
automatically build the required interop assembly for you. The assembly that 
VB.NET builds for you provides a runtime callable wrapper (RCW).

With this background, let’s examine how we could build a .NET version of the
G2 ActiveXLink demo.

Using ActiveXLink with Visual Basic .NET

VBNetDemo combines three separate demonstrations on a single form: posting a
message to G2, calling a G2 procedure and displaying the returned value, and the
traffic light demonstration. Each of these demonstrations uses a G2Gateway to
communicate with G2.

To add G2 ActiveXLink to a VB.NET project:

1 After installing G2 ActiveXLink on your system and opening your VB.NET
project, right click on the References folder in the Solution Explorer Window.

If the Solution Explorer is not open, you can open it from the View menu. If it
is open but you cannot see the References folder, then you probably need to
click the Solution Explorer tab at the bottom of the window (VB.NET 2001 and
VB.NET 2003) or the Show All Files icon at the top of the window (VB.NET
2005).

2 Click Add Reference.

The Add Reference dialog appears.
21

3 Click the COM tab at the top of the dialog.

It may take several seconds for the program to build the list of COM
components:
22

Using G2 ActiveXLink with Visual Basic .NET
4 Scroll down the list to the component named Gensym G2 Gateway, click to
select it, then click the Select button.

If there is more than one, select the one with TypeLib Version 2.0. Gensym
G2 Gateway appears in the list of Selected Components at the bottom of the
dialog box.
23

5 Click the OK button.

A new entry, GensymAxl, appears under the References icon in the Solution
Explorer. This represents a .NET assembly that VB.NET just built for you. This
assembly contains the Runtime Callable Wrapper for G2 ActiveXLink. Your
program will work with GensymAxl, which will, in turn, work with
G2 ActiveXLink.

The .NET representation of a G2Gateway is an AxG2Gateway. To add an
AxG2Gateway to a form, you must first add it to the toolbox. You use one of
the Tools menu commands to do this. The name varies with each version of
24

Using G2 ActiveXLink with Visual Basic .NET
Visual Studio .NET but the choice should be clear. For example, this
command is called Choose Toolbox Items in Visual Studio .NET 2005.

6 Click the COM Components tab, scroll down to Gensym G2 Gateway, click its
associated check box, then click OK.

7 Open the toolbox to see the icon for AxG2Gateway:

8 Add the component that is labeled G2Gateway to a form and fill in its
properties just as you would with any other control.
25

Programs that use AxG2Gateways

Your program will not work directly with a G2Gateway. It will work with the 
.NET assembly that VB.NET built for you, an AxG2Gateway. The parameters to
AxG2Gateway methods are packaged differently than those to a G2Gateway.
Likewise, AxG2Gateway packages return parameters from events differently than
G2Gateway does.

Suppose you want to call a G2 procedure named consumer, which accepts a
string, an integer, and a floating point number and which returns an integer. To
do this with a G2Gateway and Visual Basic 6 (VB6), your command would have
looked something like:

Dim X As Integer
X = G2Gateway1.Call("Consumer", "XYZ", 3, 3.34)

Since the G2 procedure expects three parameters, you provided three parameters
after the procedure name in the Call invocation.

As C++ programmers know, Visual Basic actually built a SafeArray of Variants
from these three parameters and sent the SafeArray to ActiveXLink. Visual Basic
hid this complexity from you.

Visual Basic .NET no longer has the Variant type. Instead, it uses the Object
type. Unlike VB6, it does not hide the complexity from you. Instead of sending the
three individual parameters to AxG2Gateway, you must create an array of Object
types, fill it in with the parameters, then send the array to the AxG2Gateway. The
one exception to this rule is when you are passing zero or one parameters, in
which case, Visual Basic .NET will cast your input to an array of Object types.

Thus, in Visual Basic .NET, you would rewrite the prior example as:

Dim X As Integer
Dim ParamOut(2) As Object
ParamOut(0) = "XYZ"
ParamOut(1) = 3
ParamOut(2) = 3.34
X = G2Gateway1.Call("Consumer",ParamOut)

Visual Basic .NET event handlers are significantly different from those of VB6.
There are three differences to note:

• Instead of using the name of the procedure to determine which procedure
handles which event, the keyword HANDLES is used to tie a procedure to an
event. For example, in VB6, the procedure with the signature:

Private Sub StartRPC_Click()
26

Using G2 ActiveXLink with Visual Basic .NET
handles the Click event for the button named StartRPC. With VB.NET the
signature of this event handler is:

Private Sub StartRPC_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles StartRPC.Click.

Although this procedure has the same name as the VB6 handler, it is the
Handles StartRPC.Click statement that makes this the event handler, not
the name of the procedure. The procedure could be renamed at it would still
handle the Click event of the button named StartRPC.

• The first parameter received by a VB.NET event handler is a reference to the
object that caused the event.

In the above example, the VB6 event handler did not receive any parameters.
However, the Visual Basic .NET event handler received two parameters.

The first of these parameters is the reference to the object that caused the
event, i.e., the button named StartRPC. Executing:

MsgBox (TypeName(sender) & " named " & sender.Name)

in the event handler would cause the text Button named StartRPC to be
displayed in a message box.

• Whereas the number of parameters an event handler would receive in a VB6
program depended upon the event type, the number is always two with 
VB.Net. As explained above, the first is the reference to the object that caused
the event. The second is a single structure that contains all the parameters that
would have been delivered to a VB6 event handler.

In the example above, the VB6 event handler did not receive any parameters.
As a result the parameter named e in the VB.NET event handler is an empty
structure.

To provide another example, in the VB6 version of VBDemo, the procedure that
handles error events is:

Private Sub G2Gateway1_Error(ByVal ErrorMessage As
String, ByVal ErrorCode As Long,
DeferredCallIdentifier As Variant)

MsgBox ErrorMessage
End Sub

The equivalent VB.NET event handler is:

Private Sub G2Gateway1_Error(ByVal eventSender As
System.Object, ByVal eventArgs As
AxGensymAxl._G2Events_ErrorEvent)

Handles G2Gateway1.Error
MsgBox(eventArgs.errorMessage)

End Sub
27

Notice the use of the dot notation to access the error message in the MsgBox
command.

The Program

All three parts of the demo program use an AxG2Gateway to communicate with
G2. Add the AxG2Gateway to your form as explained earlier. In the VB.NET
demo, the name is G2Gateway1.

The PostMessage Demo

The VB.NET code to post a message to the G2 Message Board appears almost
identical to the equivalent VB code. The only difference is the use of the
parentheses with VB.NET.

The VB.NET code is:

G2Gateway1.PostMessage(MsgToPost.Text)

It is not necessary to place MsgToPost.Text in an array of Objects because
PostMessage only passes a single parameter to G2 ActiveXLink.

The Call Demo

The Call method requires two parameters. The first is the name of the procedure
to be called. The second is the array of Objects containing all the parameters
required by the G2 procedure. The VB6 version would have passed each of the
parameters individually to the Call statement. In other words, the VB6 code:

rannum = G2Gateway1.Call("G2RANDOMGENERATOR", Val(MaxVal.Text))
CallItemRetVal = str(rannum)

is equivalent to the following VB.NET code:

Dim InArgs(0) As Object
Dim rannum As Double

InArgs(0) = Val(MaxVal.Text)
rannum = G2Gateway1.Call("G2RANDOMGENERATOR", InArgs)
CallItemRetVal.Text = CStr(retVal) .

In the actual VBNetDemo program, the Try/Catch construct has been added to
provide error handling.
28

Using G2 ActiveXLink with Microsoft Excel
The Traffic Light Demo

In the VB6 Traffic Light Demo, the procedure Update_Light uses the FillColor
attribute of the Shape objects representing the lights to turn them on or off.

VB.NET graphics are not as easy to use as those of VB6. Shape objects are no
longer available. Instead, it is necessary to use low-level Windows objects such as
Graphics, BitMaps, and Brushes to display the traffic light.

The complexity of VB.NET traffic light demo is encapsulated entirely within the
TrafficLight class. For details, look at the class definition in TrafficLight.vb.

An instance of TrafficLight is placed on the main form by defining it as a
member variable of the form. The button to change its state simply sets the
CurrentState attribute to the correct new state. The definition of Set in the class
definition is responsible for updating the display.

After setting the CurrentState, the button’s click event then Starts a G2
procedure to tell G2 to update the state of the G2 traffic light.

When G2 changes the state of the light, it uses G2Com-Start to inform the VB.NET
program. The event handler in the VB.NET program simply changes
CurrentState of the TrafficLight object on the form. The class definition takes
care of updating the display.

Using G2 ActiveXLink with Microsoft Excel
In Excel, you can use the G2 ActiveXLink to call or start a procedure in G2. The
link between G2 and Excel enables you to retrieve data from G2 for display in a
spreadsheet. You can send data to occupy a single cell or send data that fills a
block of cells.

The examples in this section are drawn from the demonstration spreadsheet
shipped with G2 ActiveXLink. The default location is
\activexlink\demos\exceldemo\Gateway.xls.

You can also run this example from the Start menu by choosing:

Start > Programs > Gensym G2 2011 > Examples > ActiveXLink > Excel Demo

Note The ActiveXLink Excel demo only works with Excel 2000 or later. The demo is
located in the \activexlink\demos\exceldemo directory of your G2 product
directory.
29

Making a Connection to G2

You can use the G2 ActiveXLink control on an Excel spreadsheet to send and
receive data over the connection with G2. You must have G2 running and not
paused to make the connection from Excel. You can connect to any G2 running
anywhere in your TCP/IP network.

Placing the Control in Your Spreadsheet

You can place the control in your spreadsheet by getting the control from the
Control Toolbox, as shown in the following figure:

The Control Toolbox contains three icons for handling controls and their
properties and code, as shown in the following figure:

Properties

Code ViewDesign Mode

To add the control from the Toolbox:

1 Enter Design Mode by clicking on the Design Mode icon in the Control
Toolbox.

2 Click on the More Controls icon in the Control Toolbox, as shown in the
following figure:

3 Click on Gensym G2 Gateway in the list of controls.
30

Using G2 ActiveXLink with Microsoft Excel
Excel adds the control to the spreadsheet. It appears as a white box, outlined with
handles when you select it. The control disappears when you exit Design Mode.

Setting the Properties of the Control

Like other controls in Excel, the G2 ActiveXLink control has properties you
can set.

Using the Properties Window

You can set properties by clicking on the Properties icon in the Control Toolbox to
display the Properties Window, as shown in the following figure:
31

Select the G2 ActiveXLink control in the dropdown listbox, as shown in the
following figure:

You can set properties by typing values in the text boxes in the Properties
Window. If you are modifying the four basic G2 ActiveXLink properties, use the
Properties dialog, described in the next section.

Using the Properties Dialog

The Properties dialog enables you to set these four basic properties:

• CallTimeout

• G2Location

• InterfaceClass

• RemoteInitializationString

When you click in the text box for one of these properties, the following button
with three dots appears:

To display Properties dialog for the G2 ActiveXLink control, click this button.
32

Using G2 ActiveXLink with Microsoft Excel
The following figure shows the Properties dialog with the properties you can set
for the G2 ActiveXLink control:

G2Location

InterfaceClass

RemoteInitializationString

CallTimeout
DisconnectOnReset
G2Symbols

For more information on setting properties, see Setting the Basic Properties on
page 11 and Setting Properties Programmatically on page 13.

Calling a Procedure in G2 and Excel

Using the G2 ActiveXLink, you can call a procedure in G2 and use the return
values to populate cells in an Excel spreadsheet. The following example uses a
command button to call a G2 procedure that generates random numbers, which
are returned to specified cells in Excel. A chart uses the data in the cells to update
the display for each cell.
33

The following figure shows a chart in which a three-dimensional display is
mapped to the values in the cells to its left. Each time the button named “Get
Vector of Data from G2” is pressed, the display updates with data from G2.

The “Get Vector of Data from G2” button uses the Call() method to invoke the
G2ChartGenerator G2 procedure, which includes a value for generating a random
number. The vector returned from G2 contains five values, which are returned to
the three columns of cells in Excel, as shown in the following code fragment:

Private Sub CommandButton3_Click()
Range("A19:C24") = G2Gateway1.Call("G2ChartGenerator",

100) ' Get values from G2
End Sub
34

Using G2 ActiveXLink with Microsoft Internet Explorer
The G2ChartGenerator G2 procedure calculates three columns of five values
between 0 and 100 and retains the values, which are returned to Excel as a G2
structure data type, as shown in the following code fragment:

G2ChartGenerator(max: quantity) = (structure)

Titles: sequence = sequence("Set 1", "G.D.P.", "profits", "R.O.I.", "Stock Price",

"Yield", "Level");
Set1: sequence = sequence(Titles[random(6)], random(max), random(max),

random(max), random(max), random(max),
Set2: sequence = sequence(Titles[random(6)], random(max), random(max),

random(max), random(max), random(max),
Set3: sequence = sequence(Titles[random(6)], random(max), random(max),

random(max), random(max), random(max),

begin

return structure(com-dimensions: sequence(6,3), com-lower-bounds: 1, 
com-elements: concatenate(Set1, Set2, Set3));

end

G2 ActiveXLink converts the returned G2 structure to a two-dimensional array of
values. These values are placed in the Excel spreadsheet cells by using the
Range() function of Excel.

Using G2 ActiveXLink with Microsoft Internet
Explorer

You can use the G2 ActiveXLink in Microsoft Internet Explorer to call or start a
procedure in G2. The link between G2 and Internet Explorer enables you to
retrieve data from G2 for display in a browser.

Adding the G2 ActiveXLink Control to an HTML File

You can specify a connection to G2 in an HTML file by using standard HTML
markup and the G2 ActiveXLink control. You can add G2 ActiveXLink by using
the HTML object tag, as shown in the following HTML fragment:

<p><object id="G2Gateway"
classid="CLSID:AC4C85D0-B16C-11D1-A718-006008C5F933"
align="baseline" border="0" width="163" height="33" <></object>

The attribute classid identifies G2 ActiveXLink as a registered ActiveX control.

Connecting with G2 on Startup

When you open a page with G2 ActiveXLink control in Internet Explorer, the
browser displays an Explorer User Prompt dialog to get information on the
running and started G2 to which you want to connect.
35

The default text is localhost:1111, as shown in the following figure:

The connection is specified in VBScript, which is embedded in HTML. The
following VBScript specifies the connection with a G2 server:

Sub window_onLoad()
myNumber = 100
msg = "Enter the G2 host:port:"
initialTxt = G2Gateway.G2Location
G2Gateway.G2Location = window.prompt(msg, initialTxt)

G2Gateway.RemoteInitializationString = window.navigator.appName
' Make connection -- connect happens upon first method call.
lResult = G2Gateway.Connect(TRUE)
end sub

When the connection is established, the following messages appear in Internet
Explorer and the Message Board in G2:

The following Visual Basic code fragment specifies the response to the
G2Connected event. The code specifies the message displayed by Internet
Explorer. The code uses the PostMessage() method to display the message in the
G2 Message Board.

Sub G2Gateway_G2Connected()
msg = "Connected to G2 at " + G2Gateway.G2Location
call window.alert(msg)
call G2Gateway.PostMessage("Hello from Internet Explorer")
end sub
36

Using G2 ActiveXLink with C++
Sending a Message to G2 from Internet Explorer

In Internet Explorer, you can send a message to G2 by clicking a button after you
specify the text with another button.

The following HTML code specifies the Post Above Message to G2
(CommandButton2) button. Various parameters (param) specify its properties:

<p><object id="CommandButton2" name="CommandButton2"
classid="clsid:D7053240-CE69-11CD-A777-00DD01143C57"
align="baseline" border="0" width="203" height="32">

<param name="Caption" value="Post Above Message to G2">
<param name="Size" value="5362;847"><param name="FontHeight"

value="200">
<param name="FontCharSet" value="0"> 
<param name="FontPitchAndFamily" value="2">
<param name="ParagraphAlign" value="3">

</object></p>

The following VBScript specifies that, when the Post Above Message to G2 button
is clicked, the text in the text box, TextBox1, is displayed in G2 Message Board:

Sub CommandButton2_Click()
Call G2Gateway.PostMessage(Form1.TextBox1.Text)
end sub

The text in the text box in Internet Explorer appears on the Message Board in G2,
as shown in the following figure:

Using G2 ActiveXLink with C++
G2 ActiveXLink includes an example of using ActiveXLink with C++. The
example in this section is drawn from the demonstration file shipped with
G2 ActiveXLink. The location is \activexlink\demos\vcppdemo\VCppDemo.

You can also run this example from the Start menu by choosing:

Start > Programs > Gensym G2 2011 > Examples > ActiveXLink > C++ Demo
and C++ Project
37

G2 ActiveXLink, like all ActiveX objects, is based upon the Component Object
Model (COM). Languages such Visual Basic hide the complexity of using COM
objects. C++ does not.

A recent search of the web site of a popular bookseller showed there to be 125
books about the Component Object Model. There are so many books on the
subject because there is so much to know about it. The moment you decide to use
a COM object in C++, you will be faced with numerous decisions such as:

• Will you create objects by dropping the class into a Windows form, or will
you dynamically instantiate instances of it?

• If you choose dynamic instantiation, will you use CoCreateInstance, will you
create a class factory and then use it to create one or more instances of your
class, or will you use some other technique?

• Will you use the #import extension of Microsoft Visual Studio to create smart
pointers to your objects, or will you manage object life will calls to AddRef and
Release.

• How are you going to add the GUIDs (Globally Unique Identifiers) for the
COM elements to your program? With #import? By letting MFC generate a
wrapper class? Manually?

• Are you going to use the fundamental COM data types such as VARIANT and
BSTR, are you going to use the Visual Studio extensions such as _bstr_t and 
_variant_t, or are you perhaps going to use the smart ATL classes such as
CComBSTR and CComVariant.

Furthermore, you will need to work with new data types such as BSTR, HRESULT,
SAFEARRAY and VARIANT. You will also need to manage them carefully to avoid
memory leaks.

Thus, even if you are an experienced C++ programmer, you need to understand
COM to program with G2 ActiveXLink.

To facilitate programming with G2 ActiveXLink in C++, this example provides a
console application that writes "Hello, G2." to the G2 Message Board. It uses the
Visual Studio #import extension, which creates the IG2GatewayPtr class. It then
uses this class to both create an instance of a G2Gateway and to access its methods.

// ===
//
// An Example of the Use of ActiveXLink in a C++ Program
// This program send the message "Hello, G2." to the G2 Message Board.
//
// ===
#include <iostream.h>

// Use Visual Studio extensions to simplify the task
// ---
#import "c:\zd\bt\dw\activex\g2com\release\g2com.dll" no_namespace
38

Using G2 ActiveXLink with C++
named_guids

// Prototype:
// ----------
int demoError(int errorCode, HRESULT hr) ;

int main()
{
 HRESULT hr ;
 IG2GatewayPtr pAxl ;

 // Initialize COM
 // --------------
 hr = ::CoInitialize(NULL) ;
 if (FAILED(hr)) 
 return demoError(0, hr) ;




 // Create an instance of G2Gateway
 // -------------------------------
 hr = pAxl.CreateInstance(CLSID_G2Gateway, NULL) ;
 if (FAILED(hr)) 
 return demoError(1, hr) ;

 // Specify location of G2
 // ----------------------
 BSTR g2Loc = ::SysAllocString(L"Porangatu:1111") ;

 hr = pAxl->put_G2Location(g2Loc) ;
 ::SysFreeString(g2Loc) ;
 if (FAILED(hr))
 return demoError(2, hr) ;

 // Specify how long we should wait for a response from G2
 // --
 hr = pAxl->put_CallTimeout(15L) ;
 if (FAILED(hr))
 return demoError(3, hr) ;

 // Connect to G2, waiting for the connection.
 // --
 hr = pAxl->Connect(VARIANT_TRUE) ;
 if (FAILED(hr))
 return demoError(4, hr) ;

 // Say hello to G2
 // ---------------
 VARIANT Msg ;
 VariantInit(&Msg) ;
39

 Msg.vt = VT_BSTR ;
 Msg.bstrVal = ::SysAllocString(L"Hello, G2.") ;

 hr = pAxl->PostMessage(&Msg) ;
 VariantClear(&Msg) ;
 if (FAILED(hr))
 return demoError(5, hr) ;
 // Disconnect from G2
 // ------------------
 hr = pAxl->Disconnect() ; 
 if (FAILED(hr))
 return demoError(6, hr) ;

 // Release the COM resources
 // -------------------------
 ::CoUninitialize() ;
 return 0 ;
}


// There was an error. Report the error to cerr and tell
// the COM system that we are done with it.
// ==
 char* errMsg[] = { "Unable to initialize COM.",
 "Unable to create an instance of G2Gateway.",
 "Failed to specify location of G2.",
 "Failed to set timeout.",
 "Failed to connect to G2",
 "Failed to send message to message board.",
 "Disconnect from G2 failed."} ;
 const int NR_ERR_CODES = sizeof(errMsg)/sizeof(char*) ;

int demoError(int errorCode, HRESULT hr)
{
 int retCode = -errorCode ;

 if (errorCode >= 0 && errorCode < NR_ERR_CODES)
 cerr << errMsg[errorCode] ;
 else
 {
 cerr << "Unknown error code (" << errorCode << ")." ;
 retCode = -NR_ERR_CODES ;
 }
 cerr << " (" << hex << hr << dec << ")." << endl ;
 if (errorCode > 0)
 ::CoUninitialize() ;
 return retCode ;
}

40

Using G2 ActiveXLink with C++
Another way to use G2 ActiveXLink in C++ is with MFC (Microsoft Foundation
Classes). This technique inserts a “wrapper class” for you when you insert
ActiveXLink into a form. You can then use the Class Wizard to associate a
member variable with the G2Gateway (ActiveXLink) object. You can use this
variable to call ActiveXLink methods in much the same way you would in
Visual Basic. The Class Wizard also makes it very easy to add functions to handle
ActiveXLink events.

Unfortunately, MFC does not wrap the methods that take a SAFEARRAY of VARIANT
values as parameters. Because COM requires that procedures that can accept a
variable number of parameters pass them in a SAFEARRAY of VARIANT values, MFC
does not help you with some of the commonly used ActiveXLink Methods such
as Call and Start.
41

42

3

Data Types
The chapter describes the G2 ActiveXLink data types.

Introduction 43

Mapping Data Types 44

Overriding the Mapping of Simple Data Types 45

Mapping Date and Time 46

Mapping Currency 47

Mapping Multidimensional Arrays 47

Introduction
ActiveX controls are designed to work with various development languages such
as COM, Visual Basic, or G2’s natural language. Each language has its own data
types. G2 ActiveXLink automatically maps data types between a container
application and a G2 server.
43

Mapping Data Types
The following table describes the corresponding COM automation, Visual Basic,
and G2 data types, starting with COM automation types:

COM Automation Type Visual Basic Type G2 Type

VARIANT_BOOL Boolean truth-value

long Long integer

short Integer integer

double Double float

date Date structure

currency Currency structure

byte Byte structure

BSTR String text

VARIANT Variant item-or-value

SAFEARRAY (VARIANT) MyData() As Variant sequence

null Null the symbol null

The following table describes the corresponding COM automation, Visual Basic,
and G2 data types, starting with G2 data types:

G2 Type COM Automation Type Visual Basic Type

truth-value VARIANT_BOOL Boolean

quantity VARIANT Variant

integer long Long

float double Double

symbol BSTR or null String or Null

text BSTR String

item-or-value VARIANT Variant

value VARIANT Variant
44

Overriding the Mapping of Simple Data Types
G2 ActiveXLink supports 16-bit characters, which means it correctly represents
Unicode characters, as well as any character in any of the extended G2 character
sets.

Note The range of an integer in G2 is –229 to (229 – 1). The range of a long in Visual
Basic is–2,147,483,648 to 2,147,483,647. The range of a float in G2 is ±1.79 x 10308 to
±2.22 to 10-308. The range of a double in Visual Basic is ±1.79769313486231308 to ±4.
94065645841247–324.

Overriding the Mapping of Simple Data Types
By using a G2 structure, you can override the default mapping of some G2 data
types to Visual Basic data types. You can use the Visual Basic data types Single,
Double, Integer, and Long by populating a G2 structure.

Visual Basic Data Type G2 Structure Member G2 Data Type

Single com-single float

Double com-double float

Byte com-byte integer

Integer com-integer integer

Long com-long integer

For example, to pass 56.249 as a Single to the container application, type in G2:

structure(com-single: 56.249)

structure IDispatch G2Structure

sequence SAFEARRAY (VARIANT) MyData() As Variant

the symbol null null Null

simple data types single, double,
integer, long

Single, Double,
Integer, Long

date structure date Date

currency structure currency Currency

G2 Type COM Automation Type Visual Basic Type
45

Note Loss of precision may result when translating from one data type to another.

Mapping Date and Time
Date and time are mapped to a structure in G2. The structure can be composed of
the following members:

G2 Structure Member G2 Data Type Range

com-year integer (any integer)

com-month integer 1-12

com-day integer 1-31

com-hour integer 0-23

com-minute integer 0-59

com-second integer 0-59

com-day-of-week integer 0-6
Sunday = 0

Because these members are also keywords in G2, the prefix “com” identifies them
to G2 ActiveXLink.

For example, to pass the date March 15, 1998 to a container application, type
in G2:

structure(com-month: 3, com-day: 15, com-year: 1998)

When a COM-compliant container passes a date to G2, G2 creates a com-day-of-
week member for the date’s structure. When G2 passes a date structure to a
container, the container ignores the com-day-of-week member.

The com-hour, com-minute, and com-second members are optional when G2
passes a date structure to a container. If not present in the structure, the values of
these members are zero.
46

Mapping Currency
Mapping Currency
The members of a structure for currency in G2 use the float data type.

G2 Structure Member G2 Data Type

com-currency float

For example, to pass an amount of $10.51 to a container application, type in G2:

structure(com-currency: 10.51)

Note Loss of precision may result when translating from one data type to another.

Mapping Multidimensional Arrays
You can map multidimensional arrays to a structure in G2 by mapping to a G2
sequence of values as defined in the following table:

G2 Structure Member G2 Data Type

com-dimensions sequence

com-lower-bounds sequence

com-elements sequence

com-array-type symbol
47

The following table describes the G2 structure members of a mapped
multidimensional array:

Member Description

com-dimensions Dimensions of the multidimensional array, for example,
(2,3). If you omit the com-dimensions member, the array
becomes a one-dimensional array equal to the number of
members passed.

com-lower-
bounds

Location of the first element in the array, for example, (1,1),
(5,1), or (0,6).

When Visual Basic passes a multidimensional array to G2,
G2 ActiveXLink creates the com-lower-bounds member.

When G2 passes a multidimensional array with the
com-lower-bounds member omitted, G2 ActiveXLink sets
the com-lower-bounds member to zero.

You can use a single integer for the com-lower-bounds
member if all the dimensions of the multidimensional
array have the same lower bound, usually zero or 1. For
example:

com-lower-bounds: sequence(1)

com-elements Values for each element of the array.

com-array-type Data type for all elements of the array. Default is
com-variant. You can use one of these data types:

• com-boolean

• com-byte

• com-currency

• com-date

• com-double

• com-float

• com-integer

• com-long

• com-scode (for arrays of error codes)

• com-string

• com-variant
48

Mapping Multidimensional Arrays
Example: One-Dimensional Array

The following G2 structure passes or receives the array:

structure(
com-lower-bounds: 1,
com-elements: sequence(“some”,”thing”,5),
com-array-type: the symbol com-variant

)

The following Visual Basic code fragment passes or receives the array:

Dim Arr(1 to 3) as Variant

Example: Two-Dimensional Array

The following G2 structure passes or receives the array:

structure(
com-dimensions: sequence(2,2),
com-elements: sequence(“some”,”thing”,3,4),
com-array-type: the symbol com-variant

)

The following Visual Basic code fragment passes or receives the array:

Dim Arr(0 to 1,0 to 1) as Variant

Example: Multidimensional Array

Suppose you pass the following 4 x 3 multidimensional array:

1 2 3 4

5 6 7 8

9 10 11 12

The following G2 structure passes or receives the array:

structure(
com-dimensions: sequence(4,3),
com-lower-bounds: sequence(1,1),
com-elements: sequence(1,2,3,4,5,6,7,8,9,10,11,12),
com-array-type: the symbol com-integer

)

The following Visual Basic code fragment passes or receives the array:

Dim Arr(1 to 4, 1 to 3) as Integer
Element Arr(4,2) is 8
49

50

4

Using G2Gateway
The chapter describes the G2Gateway properties, events, and methods.

Introduction 52

Properties 52

Methods 56
Call() 57
Start() 59
CallDeferred() 61
Connect() 63
Disconnect() 64
PostMessage() 65

Events 66
g2com-call 67
g2com-start 68
g2com-start-over-interface 69
RpcCalled() 71
RpcStarted() 74
G2Connected 76
G2Disconnected 77
RpcReturned() 78
G2Paused 79
G2Resumed 80
G2Reset 81
G2Started 82
G2RunStateKnown 83
AttributeModified() 84
CustomEvent() 85
IconColorChanged() 86
ItemAdded() 87
ItemDeleted() 88
ItemRemoved() 89
ItemSelected() 90
ValueChanged() 91
51

Error 92

Introduction
G2Gateway provides properties, events, and methods for managing connections
between G2 ActiveXLink and G2.

Properties
G2Gateway has the following properties, which you can set in a container
application. Properties configure the behavior of the G2 ActiveXLink and indicate
its status. Most container applications save the state of the properties in your
document and restore them when you load the document.

The properties can be modified either by using the Property Page provided by the
G2 ActiveXLink, the container’s Property window, or programmatically. For a
description of setting properties, see Setting the Properties of the Control on
page 11.
52

Properties
Property Description

G2Location As String Sets the host machine name and port number
of the G2 server to which G2 ActiveXLink
connects. The format is “hostname:port_
number” and the default is “localhost:1111,”
which is the network address of a G2 server
running on the same system as
G2 ActiveXLink at port 1111, the default G2
address.

G2Symbols As Boolean Allows you to choose the behavior when
sending symbols from G2.

When set to True, the default, simple symbols
are stored as instances of G2Symbol.

When set to False, symbols are stored as
String types.

The exceptions to this rule are item attribute
names and structure property names, which
are always returned as String types. In both
of these cases, you know that the original
value in G2 was a symbol.

G2Item instances store data in an internal
format that is neither a String nor a
G2Symbol. When you retrieve an item value or
an attribute value that is a symbol from a
G2Item, it is always returned as a G2Symbol,
regardless of the value of the G2Symbols
property of any G2Gateway.

Lists and arrays are also items. The same rule
applies to G2ListOrArray.

InterfaceClass As String Specifies the interface class in G2. G2 creates
an instance of this class when G2 ActiveXLink
connects with G2. The instance represents the
connection. The default is g2com-interface.

This property must name a class that is
defined in G2 and is a subclass of g2com-
interface. You can add attributes to the
subclass of g2com-interface or write rules or
procedures that act on the subclass rather
than the g2com-interface class.
53

RemoteInitializationString
As String

Identifies the connection and is stored in the
remote-process-initialization-string attribute of
the G2 Gateway interface object, created in G2
when G2 ActiveXLink connects with it. G2
applications use this string to identify the
interface, especially when there is more than
one client connection to G2.

You can also use the g2-current-remote-
interface() system procedure to identify a
specific interface object that launched an RPC
call into G2. For more information, see the
G2 System Procedures Reference Manual.

IsG2Connected As Boolean Returns the connection status as true if
connected or false if not.

The IsG2Connected property is read only.

CallTimeout As Long Sets the maximum amount of time for the
G2 ActiveXLink to wait for G2 to respond.
The default is 30 seconds.

G2 ActiveXLink waits this length of time for a
blocking call before aborting the call for both
blocking connections to G2 and blocking RPC
calls.

Property Description
54

Properties
G2RunState As Boolean Returns the G2 run state as one of the
following: g2UnknownState, g2Reset,
g2Paused, and g2Running. The value is
initially set to g2UnknownState until G2
reports its run state to ActiveXLink.

DisconnectOnReset
As Boolean

Allows you to choose the reset behavior that
your application requires, as follows:

• When set to False, the default, the
connection between G2 ActiveXLink and
G2 is maintained when G2 is reset.
However, once you make a connection,
you must delete your interface objects
without permanence checks before you
can save your KB.

• When set to True, the connection between
G2 ActiveXLink and G2 is broken when
G2 is reset, and the interface objects are
automatically deleted.

Property Description
55

Methods
Using methods, the container application makes requests of the G2Gateway
G2 ActiveXLink control. The methods enable you to manage the connection and
invoke G2 procedures.

Note Methods that require a connection to G2, such as Call(), Start(), and
CallDeferred(), automatically create a blocking connection to G2 if none already
exists. Normally, you do not need to explicitly call the Connect() method.

Refer to Chapter 4, Using G2Gateway for a description of the use of some method
handlers.
56

Call()
Call()
The Call method calls a procedure in G2 and waits for the G2 procedure to
complete.

Visual Basic Syntax

Call(ProcedureName As String,
[ParamArray InputArguments() As Variant]) 
ReturnArguments As Variant

Microsoft Interface Description Language Syntax

HRESULT Call([in] BSTR ProcedureName,
 [in] SAFEARRAY(VARIANT) *InputArguments,
 [out, retval] VARIANT *ReturnArguments)

Arguments Description

ProcedureName As
String

The name of the G2 procedure you are
calling.

ParamArray
InputArguments()
As Variant

Any of zero or more arguments to be passed
to the G2 procedure.

Return Values Description

ReturnArguments As
Variant

Any of zero or more arguments to be
returned from the G2 procedure. If a G2
procedure returns more than one value,
Visual Basic can access the return values by
using array subscripting, such as Ret(1),
Ret(2), and so on. If only one value is
returned, the array subscript is not
necessary.

Description

The Call method is a “blocking call,” in which the caller waits until the G2
procedure completes and returns values before executing the next statement
following the call.

The Call method only works with G2 procedures; it does not work with G2
methods.
57

Note The container application can pass any number of arguments to G2 and G2 can
return any number of arguments.

G2 ActiveXLink returns an exception to the caller under one of the following
conditions:

• If G2 does not respond within the time specified by the CallTimeout
property.

• If an error with the call is detected by G2 ActiveXLink.

• If the G2 procedure signals an error.

Example

Visual Basic calls the G2 procedure and passes three values: an Integer, a String,
and a Boolean. The call waits for a return value. G2 displays these values on the
Message Board and returns a String to Visual Basic.

Visual Basic

Private Sub Form_Load()
Ret = G2Gateway1.Call("my-proc", 1, "Hello G2", True)
MsgBox Ret

End Sub

G2
my-proc(arg1: value, arg2: value, arg3: value) = value

begin
inform the operator that "Value1:[arg1], Value2:[arg2], Value3:[arg3]";
return "Hello COM";

end
58

Start()
Start()
The Start() method starts a procedure in G2.

Visual Basic Syntax

Start(ProcedureName As String,
[ParamArray Arguments() As Variant])

Microsoft Interface Description Language Syntax
HRESULT Start([in] BSTR ProcedureName, 

[in, optional] SAFEARRAY(VARIANT) *InputArguments)

Arguments Description

ProcedureName As
String

The name of the G2 procedure you are
starting.

ParamArray
Arguments() As
Variant

Any of the arguments to be sent to G2. This
array is a Variant and is constructed
automatically for all remaining arguments.
The array can contain one or more values.

Description

The started G2 procedure cannot return values to the container application. If
G2 ActiveXLink is not already connected with G2, the Start() method makes the
connection.

Note The container application can pass any number of arguments to G2.

Example

Visual Basic starts a G2 procedure and passes a string to it.

Visual Basic

Private Sub Form_Load()
Call G2Gateway1.Start("my-started-proc", 

"my message to you")
End Sub
59

G2
my-started-proc(arg1: value)

begin
inform the operator that "Message from COM:[arg1]";

end
60

CallDeferred()
CallDeferred()
The CallDeferred() method calls a procedure in G2, but it does not wait for the
G2 procedure to complete.

Visual Basic Syntax

CallDeferred(ProcedureName As String, 
DeferredCallIdentifier As Variant, 
ParamArray InputArguments() As Variant)

Microsoft Interface Description Language Syntax
HRESULT CallDeferred([in] BSTR ProcedureName, 

[in] VARIANT DeferredCallIdentifier 
[in] SAFEARRAY(VARIANT) *InputArguments)

Argument Description

ProcedureName As
String

The name of the G2 procedure you are
calling.

DeferredCall
Identifier As
Variant

An identifier used to match a
RpcReturned() or Error event to a specific
CallDeferred() call.

ParamArray
InputArguments()
As Variant

Any of the arguments to be sent to G2. This
array is a Variant and is constructed
automatically for all remaining arguments.
The array can contain one or more values.

Description

If G2 ActiveXLink is not already connected with G2, the CallDeferred() method
makes the connection.

You can specify a unique identifier (DeferredCallIdentifier) for the call. The
RpcReturned() event uses this identifier to match the return values with the
original call.

When the called G2 procedure completes, the RpcReturned() event fires, which
receives the name of the G2 procedure that was called by CallDeferred(), the
DeferredCallIdentifier argument, and the return arguments, if any.

Note The container application can pass any number of arguments to G2.
61

Use the CallDeferred() method when you want to send information to the G2
server, but you do not want to wait for the results of your call. The calling thread
does not block and can continue to perform other processing while waiting for
results.

Example

Visual Basic starts the G2 procedure my-proc and passes three values: an Integer,
a String, and a Boolean. The call does not wait for a return value. G2 displays
these values on the Message Board and returns a String to Visual Basic. Visual
Basic displays the return value it is received.

Visual Basic

Private Sub Form_Load()
Call G2Gateway1.CallDeferred("my-proc", IDhello, 1,

"Hello G2", True)
End Sub

Private Sub G2Gateway1_RpcReturned(ByVal Name As String,
RetArgs As Variant, 
ByVal DeferredCallIdentifier As Variant)

MsgBox RetArgs
End Sub

G2
my-proc(arg1: value, arg2: value, arg3: value) = value

begin
inform the operator that "Value1:[arg1], Value2:[arg2], Value3:[arg3]";
return "Hello COM";

end
62

Connect()
Connect()
The Connect method establishes a connection to G2 at the network address
specified by the G2Location property.

Visual Basic Syntax

Connect(WaitFlag As Boolean)

Microsoft Interface Description Language Syntax
HRESULT Connect([in] VARIANT_BOOL WaitFlag)

Argument Description

WaitFlag As Boolean Connect(true) waits for the connection to
complete (a blocking connection).
Connect(false) does not wait (a
nonblocking connection). In either case,
G2 ActiveXLink fires a Connected event
when the connection completes.

Description

You can safely make a Connect() call at any time, even if a previous nonblocking
connection has not completed. If you make a Connect() call to a G2 ActiveXLink
object in G2 that is already connected, the call returns with no error.

If you call Call(), Start(), or CallDeferred() and G2 ActiveXLink is not
already connected, G2 ActiveXLink automatically creates a blocking connection.
Normally, Connect(true) does not have to be called by the container application.

Several seconds can elapse before G2 ActiveXLink returns the host name lookup
and connects to the G2 server, especially if the network is slow. You can avoid this
delay by calling Connect(false) when the application starts. You can query the
current connection status of G2 ActiveXLink by using the IsG2Connected
property.
63

Disconnect()
The Disconnect method breaks the connection with G2.

Visual Basic Syntax
Disconnect()

Microsoft Interface Description Language Syntax
HRESULT Disconnect()

Description

You can use the Call(), Start(), and CallDeferred() methods to establish
transient connections to G2 and use Disconnect() to explicitly disconnect these
connections when not in use. The next time you invoke the Call(), Start(), and
CallDeferred() methods G2 ActiveXLink reestablishes the connection with G2.
64

PostMessage()
PostMessage()
The PostMessage() method displays text or values in G2’s Message Board.

Visual Basic Syntax

PostMessage(Message As Variant)

Microsoft Interface Description Language Syntax

HRESULT PostMessage([in] Variant Message)

Argument Description

Message As Variant The data or text that appears in the G2
Message Board. You can send any
supported COM automation data type to
the G2 Message Board by using
PostMessage().
65

Events
The G2 ActiveXLink can raise the events described in this section. The events
concern the connection with G2 and the sending of return values from G2 to the
container application.

In your containing application, you can specify logic to respond to these events.
You do not need to write handlers for events that are not needed by your
container application.

The event handler for a specific event can freely call other methods of
G2 ActiveXLink and procedures in G2. The exact sequence of event handling is
dependent on the container application.

Refer to Chapter 4, Using G2Gateway for a description of some event handlers.

You can fire events in the container application by using the g2com-call,
g2com-start, or g2com-start-over-interface procedures. These procedures raise
specific events in the container application, specify the name of the method to
invoke, and pass and receive the necessary arguments.
66

g2com-call
g2com-call
To call a method from G2, use the g2com-call remote procedure. Using
g2com-call, the container application can return any number of arguments to G2.
Invoke it by using the call procedure action. Calling g2com-call generates an
RpcCalled event in the container application.

Syntax

g2com-call (ProcedureName: text, InputArguments: all remaining item-or-value)
 across InterfaceObject: class g2com-interface
ReturnArguments: all remaining item-or-value

Arguments Description

ProcedureName The name indicates procedure logic to be
executed by the container application.

InputArguments The arguments to the method being called.
G2 can pass any number of arguments,
separated by commas.

InterfaceObject The g2com-interface object created by the
client when it connects to G2. For more
information, see Finding the Interface Object
on page 69.

Return Values Description

ReturnArguments The arguments to be returned to G2. The
container application can return any
number of arguments, separated by
commas.

Example
return = call g2com-call(“LightProcedure”, “red”, “blue”) across interface;
67

g2com-start
To start a method from G2, use the g2com-start remote procedure. Using g2com-
start, G2 does not receive any return values. Invoke it using the start procedure
action. Calling g2com-start generates an RpcStarted event in the container
application.

Syntax

g2com-start(ProcedureName: text, InputArguments: all remaining item-or-value)
 across InterfaceObject: class g2com-interface

Arguments Description

ProcedureName The name indicates procedure logic to be
executed by the container application.

InputArguments The arguments to the method being called.
G2 can pass any number of arguments,
separated by commas.

InterfaceObject The g2com-interface object created by the
client when it connects to G2. For more
information, see Finding the Interface Object
on page 69.

Example
start g2com-start(“LightProcedure”, “green”, “white”) across interface;
68

g2com-start-over-interface
g2com-start-over-interface
To start a method from G2 for all interface objects of a given class, use the g2com-
start-over-interface KB procedure.

Syntax

g2com-start-over-interface
(ProcedureName: text, InputArguments: item-or-value, InterfaceClass: symbol)

Arguments Description

ProcedureName The name indicates procedure logic to be
executed by the container application.

InputArguments The arguments to the method being called.
The arguments can be comprised of a single
value or a G2 sequence of values.

InterfaceClass The g2com-interface class or the name of a
subclass of g2com-interface. The interface
object class is specified by the
InterfaceClass property of
G2 ActiveXLink.

Description

The g2com-start-over-interface procedure does not require that the user find
interface objects. By using this single G2 procedure, you can fire an event on all
connected clients. Using g2com-start-over-interface eliminates the need to find
the g2com-interface object for a given class.

The g2com-start-over-interface procedure calls g2com-start over each g2com-
interface object of a specified class. You can use the g2com-start-over-interface
procedure if a procedure is started, rather than called.

Finding the Interface Object

G2 creates an interface object for each G2 ActiveXLink client that connects to G2.
The g2com-call and g2com-start remote procedure calls require this interface
object to fire events in a COM client application.
69

To use g2com-call and g2com-start, G2 must find the interface object. There are
two ways of finding the interface object by using:

• The system procedure g2-current-remote-interface() within a G2 procedure
that was called or started by a G2 ActiveXLink client.

• The InterfaceClass and RemoteInitializationString properties of
G2 ActiveXLink. These properties specify the interface object and the value of
the attribute of the object. You can use these properties to find the interface
object even if no G2 procedure is invoked from the G2 ActiveXLink client.

For example, if G2 ActiveXLink has an InterfaceClass property of VBDEMO-
INTERFACE and a RemoteInitializationString property of “I love New York,”
then the following code fragment finds the interface object and calls a procedure
across it.

if there exists a vbdemo-interface INT such that 
(the remote-process-initialzation-string of INT = “I love New York”) then 
Return-Value = call g2com-call(“Some procedure Id”, “Argument 1”, “Argument 2”)
across INT;

end;

The following code fragment shows how to invoke a procedure over each
connected client. If more than one interface is connected that matches the
interface class and remote initialization string, then one of the interfaces is picked.
The interface object is found even if no client is connected; thus, you should verify
connection status by checking that the gsi-interface-status of the interface object =
2 (ok).

INT: class vbdemo-interface;

for INT = each vbdemo-interface do
if the remote-process-initialization-string of INT = “I love New York” then 

start g2com-start(“Some Procedure”, “Argument 1”, “Argument2”) across INT;
end;

Note If you use the g2com-start-over-interface KB procedure, you do not need to find
the interface object.
70

RpcCalled()
RpcCalled()
The RpcCalled() event signals that a procedure in G2 has called a procedure in
the container application and passed arguments to it. G2 can receive return
values.

Visual Basic Syntax

RpcCalled(ProcedureName As String, 
InputArguments() As Variant, 
ReturnArguments As Variant)

Microsoft Interface Description Language Syntax
void RpcCalled([in] BSTR ProcedureName, 

[in] VARIANT *InputArguments, 
[out] VARIANT *ReturnArguments)

Arguments Description

ProcedureName As
String

The name indicates procedure logic to be
executed by the container application.

InputArguments As
Variant

The arguments to the method being called.

Return Values Description

ReturnArguments As
Variant

The arguments to be returned to G2.

Description

The input arguments are passed as a Variant. If only one value is passed, the
Variant holds the value. If more than one value is passed, the Variant holds an
array of values.

The output arguments can receive values. This may be a single value or an array
of values. If an array of values is returned, it is returned as separate return values
to G2, unless the first element is made an array, in which case it is sent as a single
value that is a sequence.

Note G2 can pass any number of arguments to the container application and the
container application can return any number of arguments to G2.
71

Example

The G2 procedure calls the procedure named g2com-call() to fire the
RpcCalled() event.

In Visual Basic, the Form_Load() function calls Connect() to insure that the
container application is connected and able to receive events from G2.

The G2 procedure makes two calls to the example Visual Basic program. The first
call returns a single value and the second returns an array of three values. These
are displayed on the G2 Message Board as a text and a sequence of text values.

G2
get-return-values()
G: class g2com-interface;
VAL: value;
VAL1, VAL2, VAL3: value;
SEQ: sequence;

begin
if there exists a g2com-interface G then begin

VAL = call g2com-call("Get") across G;
inform the operator that "Got return value: [VAL]";


VAL1, VAL2, VAL3 = call g2com-call("Get Many") across G;
inform the operator that "Got return values: [VAL1] [VAL2] [VAL3]";


SEQ = call g2com-call("Get Sequence") across G;
inform the operator that "Got return values: [SEQ]";

end;
end
72

RpcCalled()
Visual Basic
Private Sub G2Gateway1_RpcCalled(ByVal ProcedureName As String,

InputArguments As Variant, ReturnArguments As Variant)
If ProcedureName = "Get" Then

ReturnArguments = "A Single Value"
Else

Dim Ret(2) As Variant
Ret(0) = "hello"
Ret(1) = 1
Ret(2) = True
If ProcedureName = "Get Many" Then

ReturnArguments = Ret
Else

ReturnArguments = Array(Ret)
End If

End If 
End Sub

Private Sub Form_Load()
Call G2Gateway1.Connect(True)

End Sub
73

RpcStarted()
The RpcStarted() event signals that a procedure in G2 has started a procedure in
the container application and passed arguments to it. G2 does not receive return
values.

Visual Basic Syntax

RpcStarted(ProcedureName As String, InputArguments() 
As Variant)

Microsoft Interface Description Language Syntax
void RpcStarted([in] BSTR Name, [in] VARIANT *InputArguments)

Arguments Description

ProcedureName As
String

The name of the procedure in the container
application being started.

InputArguments As
Variant

The arguments to the procedure being
started.

Description

The input arguments are passed as a Variant. If only one value is passed, the
Variant holds the value. If more than one value is passed, the Variant holds an
array of values.

Note G2 can pass any number of arguments to the container application.

Example

The G2 procedure calls the procedure named g2com-start() to fire the
RpcStarted() event.
74

RpcStarted()
G2
Start-it()

G: class g2com-interface;

begin
if there exists a g2com-interface G then begin

start g2com-start("Hello", 1, 2, 3) across G;
end

end

Visual Basic

Private Sub G2Gateway1_RpcStarted(ByVal ProdedureName As String,
InputArgs As Variant)

MsgBox InputArgs(1)
MsgBox InputArgs(2)
MsgBox InputArgs(3)

End Sub

Using the RpcCalled() and RpcStarted() Events

COM uses a publish/subscribe mechanism to distribute events. In some cases,
more than one subscriber can receive events. If more than one subscriber receives
an event, COM calls each subscriber one after the other and in no particular order.
COM passes each subscriber the InputArguments and ReturnArguments values.
After COM calls the last subscriber, it returns the final state of ReturnArguments
to G2.

Use the RpcCalled() event only when you expect exactly one subscriber to
receive it. If you expect more than one subscriber to receive this event, you may
find the RpcStarted() event more appropriate because information can be
returned to G2 by using a separate Start() call to G2.

However, a typical application using G2 ActiveXLink does not have more than
one subscriber to the RpcCalled() event and using the RpcStarted() event does
not apply unless your applet has specific requirements.
75

G2Connected
The G2Connected event signals that G2 ActiveXLink established a connection
with G2.

Visual Basic Syntax

G2Connected()

Microsoft Interface Description Language Syntax
void G2Connected()
76

G2Disconnected
G2Disconnected
The G2Disconnected event signals when G2 ActiveX link has lost its connection
with G2.

Visual Basic Syntax

G2Disconnected()

Microsoft Interface Description Language Syntax
void G2Disconnected()
77

RpcReturned()
The RpcReturned() event returns data from the results of a CallDeferred() call.
For an example, see CallDeferred() on page 61.

Note G2 can return any number of arguments to the container application.

Visual Basic Syntax

RpcReturned(ProcedureName As String, 
ReturnArguments As Variant, 
DeferredCallIdentifier As Variant)

Microsoft Interface Description Language Syntax
void RpcReturned([in] BSTR ProcedureName, 

[in] VARIANT *ReturnArguments,
[in] VARIANT DeferredCallIdentifier)

Argument Description

ProcedureName As
String

The name of the G2 procedure that was
called by CallDeferred().

DeferredCall
Identifier As
Variant

An identifier matching the identifier
specified in the relevant CallDeferred()
call. G2 ActiveXLink uses
DeferredCallIdentifier to match specific
return values with the call to
CallDeferred() that produced them. The
identifier can be any application-specific
value or object that plainly identifies your
application.

Return Values Description

ReturnArguments
As Variant

The return arguments from the method that
was called. There can be a single return
value, an array of return values, or no return
values.
78

G2Paused
G2Paused
The G2Paused event signals that G2 has paused.

Visual Basic Syntax

G2Paused()

Microsoft Interface Description Language Syntax
void G2Paused()
79

G2Resumed
The G2Resumed event signals that G2 has resumed after it has been paused.

Visual Basic Syntax

G2Resumed()

Microsoft Interface Description Language Syntax
void G2Resumed()
80

G2Reset
G2Reset
The G2Reset event signals that G2 has been reset.

The G2Paused, G2Resumed, G2Reset, and G2Started events all update the
G2RunState property appropriately. The G2Disconnected event causes
G2RunState to be set back to g2RunStateUnknown.

G2 ActiveX Link maintains its connection to G2 when G2 is reset.

If you require G2 ActiveXLink to disconnect from G2 on reset, call the Disconnect
method from the event handler for the G2Reset event. For example, if you have a
Visual Basic program with a G2Gateway object named Axl1, the following code
causes axl1 to disconnect from G2 on reset:

Private Sub Axl1_G2Reset()
Axl1.Disconnect

End Sub

Visual Basic Syntax

G2Reset()

Microsoft Interface Description Language Syntax
void G2Reset()
81

G2Started
The G2Started event signals that G2 has been started.

The G2Paused, G2Resumed, G2Reset, and G2Started events all update the
G2RunState property appropriately. The G2Disconnected event causes
G2RunState to be set back to g2RunStateUnknown.

Visual Basic Syntax

G2Started()

Microsoft Interface Description Language Syntax
void G2Started()
82

G2RunStateKnown
G2RunStateKnown
The G2RunStateKnown event signals when G2 reports its run state to G2
ActiveXLink. You should place any initialization that depend on the run state in
the handler for this event, instead of in the G2Connected handler.

Visual Basic Syntax

G2RunStateKnown()

Microsoft Interface Description Language Syntax
void G2RunStateKnown()
83

AttributeModified()
An attribute of a G2Item connected through this G2Gateway has been modified.

Visual Basic Syntax

AttributeModified (G2Item item, VARIANT attrName, VARIANT newVal,
long subscriptionHdl, VARIANT userData)

Microsoft Interface Description Language Syntax

void AttributeModified([in]G2Item **localItem, [in] BSTR
attributeName, [in] VARIANT newValue, [in] long
subscriptionHndl, [in] VARIANT userData) ;

Description

For information on subscribing to this event, see Subscribing to Attribute
Changes on page 128.
84

CustomEvent()
CustomEvent()
A custom event on a G2Item connected through this G2Gateway has been sent.

Visual Basic Syntax

CustomEvent (G2Item item, VARIANT evName, VARIANT newVal, 
long subscriptionHdl, VARIANT userData)

Microsoft Interface Description Language Syntax

void CustomEvent([in]G2Item **localItem, [in] BSTR EventName, 
[in] VARIANT newValue, [in] long subscriptionHndl, 
[in] VARIANT userData) ;

Description

For information on subscribing to this event, see Subscribing to Custom Events on
page 130.
85

IconColorChanged()
The icon color of a G2Item connected through this G2Gateway has been modified.

Visual Basic Syntax

IconColorChanged (G2Item item, long subscriptionHdl, 
G2Structure chgStruct, VARIANT userData)

Microsoft Interface Description Language Syntax

void IconColorChanged([in]G2Item **localItem, [in] long
subscriptionHndl, [in] LPDISPATCH chgStruct, 
[in] VARIANT userData) ;

Description

For information on subscribing to this event, see Subscribing to Icon Color
Changes on page 129.

When you create an IconColorChanged event handler, chgStruct is a
G2Structure, where each key-value pair consists of the name of a region of the
icon and the name of a color. For example:

Private Sub AxL1_IconColorChanged(localItem As GensymAxlCtl.G2Item,
ByVal subscriptionHndl As Long, ByVal 
chgStruct As Object, ByVal userData As Variant)

Dim stru As G2Structure
Dim n As Integer, i As Integer
Dim atNames As Variant, atVals As Variant
Debug.Print "Color of Icon Changed"
Debug.Print TypeName(chgStruct) ‘ Prints “IG2Structure” 
Set stru = chgStruct
n = stru.Count
atNames = stru.Names
atVals = stru.Values
For i = 0 To n - 1
Debug.Print atNames(i) & " : " & stru(i)
Next i

End Sub

This example prints:

Color of Icon Changed
IG2Structure
ALARM : RED
86

ItemAdded()
ItemAdded()
An item has been added to a G2Workspace connected through this G2Gateway.

Visual Basic Syntax

ItemAdded(G2Workspace localWkspc, long subscriptionHdl, 
VARIANT userData)

Microsoft Interface Description Language Syntax

void ItemAdded([in]G2Workspace **localItem, 
[in] long subscriptionHndl, [in] VARIANT userData) ;

Description

For information on subscribing to this event, see Subscribing to Workspace
Events on page 112.
87

ItemDeleted()
A G2Item connected through this G2Gateway has been deleted.

Visual Basic Syntax

ItemDeleted (G2Item item, long subscriptionHdl, VARIANT userData)

Microsoft Interface Description Language Syntax

void ItemDeleted([in]G2Item **localItem, [in] long subscriptionHndl, 
[in] VARIANT userData) ;

Description

For information on subscribing to this event, see Subscribing to Item Deletions on
page 129.
88

ItemRemoved()
ItemRemoved()
An item has been removed from a G2Workspace connected through this
G2Gateway.

Visual Basic Syntax

ItemRemoved(G2Workspace localWkspc, long subscriptionHdl, 
VARIANT userData)

Microsoft Interface Description Language Syntax

void ItemRemoved([in]G2Workspace **localItem, 
[in] long subscriptionHndl, [in] VARIANT userData) ;

Description

For information on subscribing to this event, see Subscribing to Workspace
Events on page 112.
89

ItemSelected()
An item has been selected in a G2Window connected through this G2Gateway.

Visual Basic Syntax

ItemSelected(G2Window localWin, long subscriptionHdl, 
VARIANT userData)

Microsoft Interface Description Language Syntax

void ItemSelected([in]G2Window **localWindow, 
[in] long subscriptionHandle, [in] VARIANT userData);

Description

For information on subscribing to this event, see Subscribing to Window Events
on page 114.
90

ValueChanged()
ValueChanged()
The value of a G2Item that is a variable or parameter and that is connected
through this G2Gateway has changed.

Visual Basic Syntax

ValueChanged (G2Item item, VARIANT newVal, long subscriptionHdl,
VARIANT userData)

Microsoft Interface Description Language Syntax

void ValueChanged([in]G2Item **localItem, [in] VARIANT newValue,
[in] long subscriptionHndl, [in] VARIANT userData);

Description

For information on subscribing to this event, see Subscribing to Variable and
Parameter Value Changes on page 129.
91

Error
The Error event signals that an error has occurred. If an error occurs during a
G2 ActiveXLink method call, the error is returned to the application, along with a
description of the error.

Visual Basic Syntax

Error(ErrorMessage As String, 
ErrorCode As Long, 
DeferredCallIdentifier As Variant)

Microsoft Interface Description Language Syntax
void Error([in] BSTR ErrorMessage, 

[in] long ErrorCode
[in] VARIANT DeferredCallIdentifier)

Argument Description

ErrorMessage The text of the error message.

ErrorCode A numeric representation of the error that
can be used to identify the specific error.

DeferredCall
Identifier As
Variant

An identifier for errors for nonblocking calls
so that they can be associated with the
original nonblocking call. The value is
empty for errors not associated with a
nonblocking call.

Description

Most container applications, including Visual Basic and Visual Basic for
Applications, allow an error to be intercepted by the application so that it can
handle the error. Most containers display the error with a description and abort
the operation. For more information on handling exceptions, see the
documentation for the container application.

If G2 ActiveXLink calls a G2 procedure by using Call() or CallDeferred(), the
invoked G2 procedure can indicate an exception with the signal action. The
exception is returned to the container application, along with a description.
92

Error
For example, the following G2 procedure returns an exception:

begin
signal the symbol error, “This description will be returned with the exception”;

end

Errors that are not associated with a blocking method call are reported with the
Error event.
93

94

5

Custom Classes
The chapter describes the G2 ActiveXLink custom classes.

Introduction 95

Using G2Symbol 96

Using G2Structure 97

Using G2Item 101

Using G2List and G2Array 108

Using G2Workspace 112

Using G2Window 113

G2 Type Names 114

Subscription Types 115

Introduction
G2 ActiveXLink defines a number of classes that map directly to G2 classes:

• G2Symbol

• G2Structure

• G2Item

• G2List and G2Array
95

• G2Workspace

• G2Window

Using G2Symbol
G2 ActiveXLink provides support for passing G2 symbols from G2 to Visual Basic
and from VB to G2 by providing the G2Symbol class.

G2Gateway also defines the G2Symbols property, which controls the behavior
when sending symbols from G2 to VB. For details, see the description of
G2Symbols in Properties on page 52.

To send a symbol from Visual Basic to G2, set a parameter to a G2Symbol. You
should always set the name of a property or structure element to a String.

To send symbolic elements such as symbolic attribute values, and symbolic
elements of lists and arrays, set the element type to be a G2Symbol. You should
always set the element name to be a String.

G2 usually stores symbols as uppercase characters. However, this is not always
obvious since G2 sometimes changes the case for display purposes. To force a
character in a symbol to lowercase in G2, you precede the character with an at
sign (@).

In general, when sending a symbol to G2, you want it to be in uppercase. Thus,
the G2Symbol class provides the UpperCase property. When set to True, the text in
the symbol is treated as uppercase. When set to False, the true case is shown.

When you receive a G2Symbol from G2, UpperCase is set to False so you can see
the true case of the symbols. However, when you create a new G2Symbol as
shown in the example below, UpperCase is set to True to conform with what G2
normally expects.
96

Using G2Structure
The following commented Visual Basic example shows how to send a G2Symbol
to G2:

' Create a G2Symbol
' -----------------
Dim symX as New G2Symbol

' Set its text
' ------------
symX = "Example"

' Display its text
' ----------------
Debug.Print symX ' Displays EXAMPLE

' Send it as a parameter to a G2 procedure
' -------------------------------------
G2Gateway.Start "EatAVar", symX 'G2 gets the symbol EXAMPLE

' Stop forcing uppercase
' ----------------------
symX.UpperCase = False

' Display its text
' ----------------
Debug.Print symX ' Displays Example

' Send it as a parameter to a G2 procedure
' -------------------------------------
G2Gateway.Start "EatAVar", symX 'G2 gets the symbol E@x@a@m@p@l@e

Using G2Structure
G2 ActiveXLink provides support for G2 structures, using the COM (Visual Basic)
object type, G2Structure. The following section uses Visual Basic to show the
capabilities of the G2Structure object type.

Creating a Variable to Represent a G2Structure

There are two ways to create a G2Structure:

• Declare storage for it, create it with New, then fill in the details with the
Add method:

Dim g2struct As G2Structure

Set g2struct = New G2Structure
g2struct.Add "Line","Conn-Rod"
g2struct.Add "Machine", 5
g2struct.Add "Speed",240.6
97

If at this point you were to use the Call or Start methods to send g2struct to
G2, for example, G2Gateway1.Start("MyG2Procedure",g2struct), G2
would interpret it as:

structure(line:”Conn-Rod”, machine: 5, speed: 24.6)

• Use MakeG2ComVariable, a new method of the G2Gateway object.

The first parameter to this method is G2StructureType, a constant that is
defined once you add a reference to G2 ActiveXLink to your Visual Basic
project. In the future, this method might be expanded so it can create other
object types. Currently, MakeG2ComVariable can only be used to create
instances of G2Structure.

To provide flexibility, you can use one of several techniques to pass the structure
details to MakeG2ComVariable. If you just want to make one short structure object,
then it might be easiest just to pass in the names and properties to
MakeG2ComVariable in alternate positions of the parameter list. On the other
hand, if you are creating numerous structure objects, all with the same property
names but with different values, then it would be easier to put the property
names in an array and then pass the array to MakeG2ComVariable in the multiple
calls you would make to create multiple structure objects. The values could be
passed from a second array or directly from the parameter list.

• Method 1: Names and values from a parameter list.

Dim g2Struct As G2Structure

Set g2Struct = G2Gateway1.MakeG2ComVariable(G2StructureType, _
"Line","Conn-Rod","Machine",5,"Speed",240.6)

Call G2Gateway1.Start("MyG2Proc",g2Struct)

• Method 2: Names and values from a single array.

Dim g2Struct As G2Structure
Dim X

X = Array("Line","Conn-Rod","Machine",5,"Speed",240.6)
Set g2Struct = G2Gateway1.MakeG2ComVariable(G2StructureType,X)
Call G2Gateway1.Start("MyG2Proc",g2Struct)

• Method 3: Names from an array, values from a parameter list.

Dim g2Struct As G2Structure
Dim X

X = Array("Line","Machine","Speed")
Set g2Struct = G2Gateway1.MakeG2ComVariable(G2StructureType, _ 
X, "Conn-Rod", 5, 240.6)
Call G2Gateway1.Start("MyG2Proc",g2Struct)
98

Using G2Structure
• Method 4: Names from an array, values from a second array.

Dim g2Struct As G2Structure
Dim X, Y

X = Array("Line","Machine","Speed")
Y = Array("Conn-Rod", 5, 240.6)
Set g2Struct = G2Gateway1.MakeG2ComVariable(G2StructureType,X,Y)
Call G2Gateway1.Start("MyG2Proc",g2Struct)

Example: Reading the Value of a Structure Property

The normal way to access the value of a structure’s property is to use the
property’s name as an index, for example:

Print g2Struct("Speed")

Assuming that g2Struct has been initialized with any of the examples shown in
the previous section, 240.6 would be printed.

For two less commonly used methods of reading the value of a structure
property, see Example: Iterating over Name/Value Pairs on page 100.

Example: Setting the Value of a Structure Property

You use the same method of specifying the property to set as when you read it.
The normal technique is to use the property name as an index. For example, the
following code changes the value of the property named Speed to 305.0:

g2Struct("Speed") =305.0

Example: Determining the Number of Name/Value
Pairs

A G2Structure has a Count property that specifies the number of name/value
pairs it contains.

Given the examples shown above, adding the following after the initialization
of g2Struct:

Print g2Struct.Count

would print 3, because there are three name value pairs: ("Line"/"Conn-Rod",
"Machine"/5, "Speed"/240.6).
99

Example: Obtaining Lists of Property Names or
Values

The Names method of the G2Structure object returns an array containing the
names of the contained name/property pairs. For an example, see Example:
Iterating over Name/Value Pairs on page 100.

The Values method works in a similar manner. It returns an array containing the
values of the contained name/value pairs.

Example: Removing a Name/Value Pair from a
G2Structure

The Remove method of a G2Structure removes a name/value pair. You pass the
name of the pair to remove, for example:

g2Struct.Remove("Machine")

Example: Iterating over Name/Value Pairs

A G2Structure object is actually a collection of name/value pairs. It has a
property named Count that specifies how many name/value pairs the structure
contains.

There are two ways to iterate over the pairs:

• Iterating with For Each

G2Structure support the For Each construction, for example:

Dim NameVal

For Each NameVal In g2Struct
Print NameVal.Name; " : "; NameVal.Value

Next

The results that would be printed are:

Line : Conn-Rod
Machine : 5
Speed : 240.6

• Iterating with a numeric index

Although it is normal to reference the value of a name/value pair by indexing
the structure with the name, for example, g2Struct("Line"), it is also
possible to reference it, using a numeric index. Referencing values by index is
generally not advisable, because it means you need to know the position of
the name/value pair in the structure. The one time it might be useful is when
100

Using G2Item
you are iterating though the name/value pairs with a numeric index. The
following example prints the same results as the previous example:

Dim i As Integer
Dim arX As Variant
Dim g2Struct As New G2Structure

g2Struct.Add "Line","Conn-Rod"
g2Struct.Add "Machine", 5
g2Struct.Add "Speed",240.6

arX = g2Struct.Names

For i = 0 to g2Struct.Count-1

Print arX(i); " : "; g2Struct(i)

Next i

Using G2Item
G2 ActiveXLink provides the G2Item class for representing G2 items in Visual
Basic. You use this class to:

• Get and set user-defined attributes of items.

• Read lists or arrays that were sent to ActiveXLink from G2.

• For items of classes that have values, set the value. The value can be an
elementary type such as g2String or g2Integer or a more complex type such
as a list or an array.

• Create instances of existing classes in G2.

G2Item defines a number of additional methods and events for linked items. For
details, see Chapter 6, Item References on page 117.

Specifying the G2 Class

To create an instance of an existing G2 class, you create a G2Item and set its
ClassName property to determine the attributes, their types, and the item value
type, if any. You should set the ClassName to the name of a known class, which
could be a user-defined class or a system-defined class such as integer-parameter.

If you send a G2Item without first setting its ClassName property, G2 reports that
it has received a bad value, which will cause an error in your ActiveXLink
program. In Visual Basic, you can use the On Error clause to detect and process
this error.

If you send a G2Item with the ClassName property set to an unknown class, G2
reports that the class name does not exist. If you use the Call method on
G2Gateway to send the item, your program receives a timeout error.
101

If you define a G2Item with attributes that do not exist in G2’s definition for the
class, the extraneous attributes are ignored.

If you send an attribute value to G2 that does not match the type defined in the
class definition, G2 reports that it cannot conclude the value into the attribute.

Setting the G2Item Name

You use the Name property to specify the name of the item you are creating.

Note G2 ActiveXLink uses G2 Gateway to communicate with G2. Due to a limitation in
the current version G2 Gateway, the Name attribute is not included in the
GsiItems that are created by the transmission of an item from G2 to your
program. If you require the name, you should send it as a separate parameter.

Determining the Number of User-Defined Attributes

You use the read-only Count property to determine the number of user-defined
attributes the G2Item defines.

Getting and Setting Attribute Values

To get and set values of user-defined attributes, you refer to the index of the
attribute. The index can be either a number (0-based) or an attribute name.

For example, suppose you have a G2 class definition named example-class,
whose direct-superior-class is object and whose class-specific-attributes are
defined as follows:
102

Using G2Item
Here is the table for an item of type example-class named example-item:

This is the G2 procedure that G2 ActiveXLink calls to read the item:
103

Here is Visual Basic code that gets the values of the attributes of example-item. As
the example shows, when you use the attribute name as the index, it is not case-
sensitive.

Dim g2iX As G2Item
Dim iX As Integer


' Assume that ReadAnItem sends Example-item
' --
Set g2iX = G2Gateway1.Call("ReadAnItem")


' Index by position. Prints:
' 57
' Santos
' SUPERIOR
' 9.7
' --------------------------
For iX = 0 To g2iX.Count-1
 Debug.Print g2iX(iX)
Next ix


' Index by attribute name. Prints the same results as above.
' ---
Debug.Print g2iX("deptno")
Debug.Print g2iX("Manager")
Debug.Print g2iX("RaTiNg")
Debug.Print g2iX("PERFORMANCE")

Getting Attribute Names, Values, and Types

You use the AttrNames, AttrValues, AttrTypes properties to get an array of
attribute names, values, and types of a G2Item.

In the example above, instead of referring to the attributes by name, you could
access them by referring to the AttrNames properties, as follows:

Dim atNames


atNames = g2iX.AttrNames
For iX = 0 to g2iX.Count-1
 Debug.Print g2iX(atNames(iX))
Next iX
104

Using G2Item
The following example uses all three properties to access the attribute names,
values, and types:

Dim vn, vv, vt
Dim i As Integer

If Not G2iX Is Nothing Then

vn = G2iX.AttrNames
vv = G2iX.AttrValues
vt = G2iX.AttrTypes
For i = 0 To G2iX.Count - 1

Debug.Print vn(i)& " " & CStr(vv(i)) & " " & CStr(vt(i)))
Next i

Else
Debug.Print "G2iX not initialized."

End If

This example prints as follows:

DEPTNO 57 1
MANAGER Santos 4
RATING SUPERIOR 3
PERFORMANCE 9.7 6

Creating G2Items

To create a new item in G2, first, you create a new G2Item, then you use the Add
method to add attributes to the item.

The Add method takes two parameters: the attribute name and its value. The
attribute’s type is set based on the value you provide.

This example creates a new item named example-item of type example-class in
G2. The UseAnItem procedure in G2 receives a transient object of type example-
class and transfers it to a workspace. Notice that to create a symbolic attribute,
first, you create a G2Symbol and set its value, then you use it as a parameter to the
Add method.

Dim newEC As New G2Item
Dim symX As New G2Symbol

newEC.ClassName = "Example-Class"
newEC.Add "DeptNo", 58
newEC.Add "Manager", "Oiltree"
symX = "miserable"
newEC.Add "Rating", symX
NewEC.Add "Performance", 0.3
G2Gateway.Start "UseAnItem", newEC
105

Creating Symbolic Attributes

Rather than creating a G2Symbol and using it as a parameter to the Add method,
you can use the Symbolize command to create symbolic attributes, as follows:

G2ItemName.Symbolize index as Variant, convert-to-symbol
as Boolean

As with indexed access, index can be either a number or a string containing the
name of an attribute.

Set convert-to-symbol to True to convert a text attribute to a symbol. Set it to
False to convert a symbol to text. If the attribute is neither a text nor symbol, the
argument is ignored.

Unlike with G2Symbol, Symbolize does not automatically convert the value to
upper case.

For example, suppose you create an attribute as follows:

g2iX("Msg") = "Hello""

g2iX.Symbolize "Msg", True

When the attribute is sent to G2, its value would be H@e@l@l@o. Thus, when
using Symbolize, you are responsible for entering the text in uppercase.

To rewrite the previous example, using Symbolize instead of G2Symbol:

Dim newEC As New G2Item
Dim symX As New G2Symbol

newEC.ClassName = "Example-Class"
newEC.Add "DeptNo", 58
newEC.Add "Manager", "Oiltree"
newEC.Add "Rating", "MISERABLE" ' Uses uppercase
newEC.Symbolize("Rating")
NewEC.Add "Performance", 0.3
G2Gateway.Start "UseAnItem", newEC

Removing Attributes

If, for some reason, you want to remove an attribute from a G2Item, you can use
the Remove method.

G2ItemName.Remove (index as Variant)

As with indexed access, index can be either a number or a string containing the
name of an attribute.
106

Using G2Item
Iterating Over the Attributes of a G2Item

G2Item supports Visual Basic’s special For Each x In G2Item syntax, which
enables iteration over the attributes of a G2Item without specifying an index.

The element stored in x is an object of type G2Attribute, which is a class defined
for use in this one special case. This class supports the following properties:

• Name — The name of the attribute, which is read-only.

• Value — The value of the attribute.

• Type — The g2Types enumeration code of the attribute. In most cases, it is
read-only and depends upon the value type. However, you can set it to
g2String or g2SymbolType if the value contains text. Converting from type
g2String to g2SymbolType causes the text to be converted to uppercase.

This example shows how to iterate over the attributes of the G2 item named
example-item. Note that when you set an attribute of type G2SymbolType (3) to a
text string, the attribute type is not changed; it continues to be a symbol and the
text is converted to uppercase. If you want a symbol with lowercase characters,
you must set the attribute value to a G2SymbolType with UpperCase set to False.

Dim g2iX As G2Item
Dim x

' Assume that ReadAnItem sends Example-item
' --
Set g2iX = G2Gateway1.Call("ReadAnItem")

' Index by position. Prints:
' DEPTNO 57 1
' MANAGER Santos 4
' RATING SUPERIOR 3
' PERFORMANCE 9.7 6
' ---------------------------

For Each x in g2iX

Debug.Print x.Name & " " & CStr(x.Value) & " " & CStr(x.Type)
If x.Type = 1 Then

x.Value = 59
ElseIf x.Type = 4 Then

x.Value = "Martin"
ElseIf x.Type = 3 Then

x.Value = "average"
Else

x.Value = 5.8
End If

Next
107


'prints

'DEPTNO 59 1
'MANAGER Martin 4
'RATING AVERAGE 3
'PERFORMANCE 5.8 6

' ---------------------
For Each x in g2iX

Debug.Print x.Name & " " & CStr(x.Value) & " " & CStr(x.Type)
Next

Using G2Item Value and Type

Commonly, G2 items do not have an associated value. For example, example-
class, the class used in the examples above, has a direct superior class of object.
Because the object class does not have an associated Value property, neither does
example-class.

On the other hand, classes derived from parameter or variables do have a value of
a type that matches the superior class. A class derived from integer-parameter or
integer-variable has a value of type g2Integer (1), a class derived from symbolic-
variable or symbolic-parameter has a value of type g2SymbolType (3), and so on.

However, currently, there is the same restriction reading the value of an item as
there is with reading its name. With the exception of lists and arrays, G2 Gateway
does not reliably transmit values from G2 to G2 ActiveXLink. Furthermore, if you
try to read the value of an item that does not have a value or the value of
unsupported data types (value, handle, quantity, short vector), an error occurs in
your program. You should make sure to add error processing code if you are
dealing with item values.

You use the Value and Type properties primarily for setting the value of an item
that you want to send to G2 and for reviewing the resulting type. You can also use
the Type property to change a string type to symbol or vice versa.

Using G2List and G2Array
G2 lists and arrays are both items. As a result, when G2 receives a G2 array or list,
G2 ActiveXLink returns is as a G2Item.

To access the element values of the list or array, read the Value property of the
G2Item. G2 ActiveXLink returns an object of type G2ListOrArray.
108

Using G2List and G2Array
Determining the Number of Elements

You use the read-only Count property to determine the number of elements in the
G2ListOrArray.

Getting and Setting Element Values

To refer to a specific element of a list or array, follow the name of the variable
holding the G2ListOrArray with a numeric index contained within parentheses.
The index should be a number between 0 and Count-1. You use indexed access to
both get and set elements of a G2ListOrArray.

For example, suppose a call to the procedure GetArray returns an integer array
containing the value 7,5,3,1, and -1. The following code sets the values of iar to 
-1, 7, 5, 3, and 1.

Dim iar As G2ListOrArray
Dim i As Integer
Dim Hold As Integer

Set iar = G2Gateway1.Call("GetArray")
If iar.Count > 0 Then Hold = iar(iar.Count-1)
For i = iar.Count-2 To 0 Step -1

iar(i+1) = iar(i)
Next i
If iar.Count > 0 Then iar(0) = Hold

Determining the Type

You use the Type property to determine whether a G2ListOrArray contains a list
or array, and the type of its elements.

You can also use it to set the list or array, and the element type when you create a
new G2ListOrArray that you want to send to G2.

Caution Setting the Type of a G2ListOrArray causes all data that was previously stored to
be lost.

Inserting, Appending, and Adding Elements to the
List or Array

You use the following methods on G2ListOrArray:

G2ListOrArray.Insert index, value

Inserts value before the element at position index.
109

G2ListOrArray.Append index, value

Inserts value into the list or array after the element at position index.

G2ListOrArray.Add value

Inserts value at the end of the list or array.

Removing Elements from a List or Array

You use the following method to remove elements from local copies of a list
or array:

G2ListOrArray.Remove index

Removes the element at position index from the list or array.

Iterating Over Elements of a List or Array

G2 ActiveXLink supports the For Each x In syntax for iterating over elements
of a G2ListOrArray. The value stored in x is an item of the G2LAElement class,
which is a class defined for use in this one special case.

G2LAElement supports the Value property for getting and setting the value of an
element. It also supports getting the value of an element directly through the
variable, without specifying a property, but not setting it.

To avoid the ambiguity that would occur in the following situation, setting the
value directly through the variable is not allowed. This example repeatedly sets
the variable x to 4, which is probably not what you want.

Dim x As Variant

For Each x In MyG2ListOrArray

x = 4
Next

To set each element to 4, you must use this code:

Dim x As Variant

For Each x In MyG2ListOrArray

x.Value = 4
Next

Sending Lists and Arrays to G2

Because G2 lists and arrays are objects, you can create subclasses. Thus, you can
have an item that is a G2 list or array that also has attributes. As a result, you use
one of two techniques to send lists and arrays to G2, depending on whether it is a
simple list or array, or a subclass.
110

Using G2List and G2Array
To send a simple list or array to G2:

1 Create a new G2ListOrArray.

2 Set its Type.

3 Fill in the elements by using the Add method of the G2Item.

4 Send it to G2.

For example:

Dim g2ValList as New G2ListOrArray

g2ValList.Type = g2ValueList
g2ValList.Add 2
g2ValList.Add "Oi"
g2ValList.Add 29.8

G2Gateway1.Start "Consume", g2ValList

To send a subclass of a G2 list or array to G2:

1 Follow steps 1 - 3 above.

2 Create a new G2Item.

3 Set the class name of the G2Item to the name of a class defined in G2 as a
subclass of a G2 list or array.

4 Set the Value property of the G2Item to the G2ListOrArray you created in
step 1.

5 Optionally, specify the G2Item name.

6 Set any desired attributes by using the Add method of the G2Item.

7 Send the G2Item to G2.

For example:

Dim itemX As New G2Item
Dim arrayX as New G2ListOrArray

arrayX.Type = g2SymbolArray
arrayX.Add "unacceptable"
arrayX.Add "poor"
arrayX.Add "fair"
arrayX.Add "good"
arrayX.Add "excellent"

itemX.ClassName = "symarsub"
itemX.Name = "Grades"
set itemX.Value = arrayX
111

itemX.Add "Language","English"
itemX.Add "Group",1
G2Gateway1.Start "Consume",itemX

Using G2Workspace
A G2Workspace is a specialized form of a G2Item. You have access to all
properties, events, and methods on G2Item. However, to access the properties and
methods of G2Item, you must cast the G2Workspace to a G2Item.

For example:

Dim g2Wkspc As New G2Workspace
Dim g2Itm As G2Item

Set g2Itm = g2Wkspc
g2Itm.Name = "Made-by-AxL"
g2Itm.Create (G2Gateway1)

Subscribing to Workspace Events

G2Workspace provides event notification for these G2Gateway events:

• ItemAdded(G2Workspace localWkspc, long subscriptionHdl, 
VARIANT userData)

• ItemRemoved(G2Workspace localWkspc, long subscriptionHdl, 
VARIANT userData)

Subscribing to Workspace Additions

This method requests notification by the G2Workspace via the ItemAdded event
when an item is added to a workspace in G2.

SubscribeToItemAddition(VARIANT userData) As VARIANT

The method returns a subscription handle or an error message.

Subscribing to Workspace Removals

This method requests notification by the G2Workspace via the ItemRemoved event
when an item is removed to a workspace in G2.

SubscribeToItemRemoval(VARIANT userData) As VARIANT

The method returns a subscription handle or an error message.
112

Using G2Window
Unsubscribing from Workspace Additions

This method cancels requests for notification when an item is added to a
workspace:

UnsubscribeFromItemAddition()

Unsubscribing from Workspace Removals

This method cancels requests for notification when an item is removed from a
workspace:

UnsubscribeFromItemRemoval()

Using G2Window
A G2Window is a specialized form of a G2Item with one custom property,
g2UserMode. You have access to all properties, events, and methods on G2Item.
However, to access the properties and methods of G2Item, you must cast the
G2Window to a G2Item.

For example:

Dim g2Win As G2Window
Dim g2Itm As G2Item

' read g2Win from G2
' ------------------
Set g2Win = G2Gateway.Call("SendAWindow")
Set g2Itm = g2Win
g2Itm.Name = "Made-by-AxL"
g2Itm.Update

Getting the G2 User Mode of a Window

g2UserMode contains a string specifying the g2-user-mode of the associated
g2-window in G2.

To change the user mode of the g2-window, set the g2UserMode property, then
execute the G2Item.Update() method.

For example:

g2Win.g2UserMode = "developer"
Set g2Itm = g2Win
g2Itm.Update
113

Subscribing to Window Events

G2Window provides event notification for this G2Gateway event:

ItemSelected(G2Window localWin, long subscriptionHdl, 
VARIANT userData)

Subscribing to Selection Events

This method requests notification by the G2Window via the ItemSelected event
when an item is selected in the window:

SubscribeToSelection(VARIANT userData) As VARIANT

The method returns a subscription handle.

Unsubscribing from Selection Events

This method cancels requests for notification when an item is selected in a
window:

UnsubscribeFromSelection()

G2 Type Names
The following table defines the COM types for each of the G2 types:

G2 Type COM Type

G2Item IG2Item4

G2Workspace IG2Workspace

G2Window IG2Window

You can use these names with Visual Basic's TypeName function to determine the
type of item you received from G2. Note that with each new version of
G2 ActiveXLink, the strings used to identify the COM types will change. For
example, in the next version, the default interface will be G2Item is IG2Item5.

Note To avoid having to change your code each time the default interface changes, we
recommend that you compare the first 7 characters with IG2Item, which will
remain consistent from release to release.
114

Subscription Types
Subscription Types
This table summarizes the Visual Basic codes for subscription types:

Code Subscription Type

1 Modify attribute

2 Delete item

3 Icon color change

4 Custom event

5 Value change

6 Add item to workspace

7 Remove item from workspace

8 Item selection
115

116

6

Item References
The chapter describes the G2 ActiveXLink data types.

Introduction 117

Creating and Linking a G2Item 118

Getting the Icon for a G2Item 121

Deleting a G2Item 122

Updating the Item in G2 122

Refreshing a G2Item 124

Verifying Linked Items 124

Unlinking a G2Item 124

Getting G2Item Attribute Names, Values, and Types 125

Using Linked Items as Parameters to RPCs 126

Subscribing to Item Events 127

Introduction
If your COM program uses a G2Gateway to call a procedure in G2 and G2 returns
an item, G2 ActiveXLink creates a G2Item that automatically contains an internal
reference to the item in G2. One part of the reference tracks the G2Gateway
through which this item was received. As will be explained later, there are cases
where you may want to send a reference to G2 as a parameter to a Call, Start, or
117

CallDeferred method. In these cases, the transmission must occur across the
same G2Gateway through which it was originally received.

You can use these methods to verify and remove references:

• The Linked method verifies that the reference exists. This method returns
True when the item contains a reference.

• The Unlink method removes the reference from a G2Item.

Caution A reference consists of a UUID and information about the G2Gateway over which
the item was transmitted. This reference may change in a future version of
G2 ActiveXLink. 

G2 normally tags each item with a unique identifier known as its UUID.
However, as the G2 Reference Manual explains, there are things you can do in G2
that will set the UUID of more than one item to the same value. 

If more than one item in G2 has the same UUID, the new methods of G2Item may
fail or produce unexpected results. You should ensure that each G2 item has a
unique UUID. Furthermore, if your G2 ActiveXLink program has a linked
G2Item, you should not perform actions in G2 that would interfere with the
linkage, such as loading a different knowledge base.

Creating and Linking a G2Item
This method creates an item in G2 and links it to the local G2Item. The local item
must be unlinked when you call this method.

G2Item.Create(G2Gateway)

You can specify a G2 procedure customize the behavior of the Create method. To
do this:

1 Define in G2 a class that is a subclass of g2com-interface with a symbolic
attribute named create-handler, and set its initial value to the name of the
procedure to call.

2 In G2, write the procedure to process the item.

3 In your COM program, configure the G2Gateway to use the new class as the
interface class.

When you use the Create method to create a new item, the specified procedure is
called and the new item is passed as its only parameter.
118

Creating and Linking a G2Item
The following example creates a new G2Item. Because the example is creating a
new item, rather than reading the item from G2, you are assured that it is initially
unlinked.

Dim g2it As New G2Item

‘ Create a new G2Item
‘ -------------------
g2it.ClassName = “UDC”
g2it.Name = “VBC01”
g2it.Add(“TxtAt”,”Created with ActiveXLink”)
g2it.Add(“IntAt”, 22)

‘ Create an item in the G2 referenced by the
‘ G2Gateway with the name AXL1.
‘ ---
On Error GoTo CreateFailed
g2it.Create(AXL1)

‘ If we get here, we succeeded
‘ ----------------------------
Debug.Print “Success”

‘ Bypass the next section of code in whatever manner
‘ is appropriate (Exit Sub, Exit Function, GoTo, etc.)
‘ --

: : :

‘ Report Error
‘ ------------
CreateFailed:

Debug.Print “Create Failed. Error Code=” & _
 CStr(Err.Number) & “ : “ & Err.Description

The G2 referenced by AXL1 should contain a definition for a class named UDC,
which should define attributes TxtAt and IntAt, as follows:
119

Once the new item is created, G2 checks if the g2com-interface object has an
attribute named create-handler. If it does, it calls the procedure specified by that
attribute. Here is the subclass of g2com-interface that defines the create-handler
procedure, whose initial value is procnewitem:

Here is procnewitem procedure that gets called when the item is created in your
COM program:

In the example COM program, AXL1 is specified as the G2Gateway that will be
used as the bridge to G2. The InterfaceClass attribute of AXL1 is set to
G2COM-11-INTERFACE.
120

Getting the Icon for a G2Item
Getting the Icon for a G2Item
If a G2Item is linked to an item in G2, the Icon method returns a Picture object
that contains a picture of the icon that G2 uses for the linked item. If the item does
not have an icon, calling this method throws an exception.

G2Item.Icon(Long backgroundColor)

Note that each call to the Icon method returns a new Picture object,
downloading a new bitmap from the G2 server. Since a bitmap can be quite large,
this can result in a perceptible delay. If you need to work with the same icon more
than once in the same program, you can improve performance by only calling the
Icon method once, then working with the local image. In many cases, the
ImageList control is ideal for storage of the local image.

You must provide a Visual Basic-style background color to the Icon method. If
the icon is not rectangular, any areas that that are not defined for the icon in G2
are displayed in the background color that you specify.

A Visual Basic-style color is a Long that is either a code for a type of data
displayed for Windows, for example, button face or active title bar, or a
combination of three numbers with values between 0 and 255 that represent the
intensity of the red, green, and blue components of the color.

The easiest way to set the color is to set it to the BackColor property of a control
that uses the background color you want to apply to the icon. Visual Basic
provides numerous constants that you can use for the background color,
including: vbBlack, vbRed, vbGreen, vbYellow, vbBlue, vbMagenta, vbCyan,
vbWhite, as well as system colors such as vbDesktop and vbButtonFace. Search
for “Color Constants” in Visual Basic help to get a complete list of the symbolic
constants that you can use.

The size of the Picture object depends on the size of the icon in G2. You can force
the display of the Picture to be a specific size by storing it in an Image Control
of the desired size and setting the Stretch attribute of the Image Control to True.

This example shows how to use an Image control, Image1, and a PictureBox
control, Picture1 to display a G2 icon in a program that uses G2 ActiveXLink.
The Stretch property of the Image control is set to True.

If you have a G2Item named g2itX that is linked to an item with an icon in G2,
then the code below displays the icon in both Image1 and Picture1.

Dim px As Picture
Set px = g2itX.Icon(Picture1.BackColor)
Set Image1.Picture = px
Set Picture1.Picture = px
121

The icon always fills the Image control. However, the size of the icon in the
PictureBox control depends on its size in G2. You can see this by using the
Change Size command on the icon in G2 and then re-executing the above code.

Deleting a G2Item
This method deletes in G2 the item referenced by a G2Item, then it removes the
reference from the G2Item:

G2Item.Delete()

After running the example shown for the Create method, if your program
executes the following command, the item named VBC01 that was created in G2
by the Create method would be deleted:

g2it.Delete

Afterward, the following method would print False:

Debug.Print g2it.Linked

Updating the Item in G2
This method refreshes the referenced item in G2 with the current state of the
G2Item in your COM program:

G2Item.Update()
122

Updating the Item in G2
After the example for the Create method, the table for the new item would
appear as follows:

Now, suppose you execute the following code:

g2it("TxtAt") = "Update Example"
g2it("IntAt") = 33
g2it.Value = 15
g2it.Update

As soon as you execute the g2it.Update command, the table changes to:
123

Refreshing a G2Item
This method modifies a G2Item to match the data in the referenced item in G2:

G2Item.Refresh()

Suppose the following call returns an integer-parameter with value 101:

Set g2it = AXL1.Call(“EmitItem”)

The value of g2it.Value would be 101.

Now, suppose the value of the item in G2 changes to 112. In the following
segment of code, the first print statement would print 101, and the second print
statement would print 112:

Debug.Print g2it.Value ‘ Prints 101
g2it.Refresh
Debug.Print g2it.Value ‘ Prints 112

This behavior applies to attributes and the item name, and to their values.

Verifying Linked Items
This method returns TRUE or FALSE indicating whether the G2Item references an
item in G2:

G2Item.Linked()

This method is important because some methods such as Delete only work with
linked items, whereas others such as Create only work with a G2Item that does
not contain a remote reference.

Unlinking a G2Item
This method removes the reference to an item in G2 from a G2Item:

G2Item.Unlink()

For example, you would use this method when creating a new G2Item from an
existing item in G2.

This example unlinks an item before creating a new item:

Set g2it = AXL1.Call(“EmitItem”)
Debug.Print g2it.Linked ‘ Prints True
g2it.Unlink
Debug.Print g2it.Linked ‘ Prints False
g2it.Name = “VBC02”
g2it.Create(AXL1) ‘ Creates item in G2 named VBC02
Debug.Print g2it.Linked ‘ Prints True
124

Getting G2Item Attribute Names, Values, and Types
Getting G2Item Attribute Names, Values, and
Types

You use the AttrNames, AttrValues, AttrTypes properties to get an array of
attribute names, values, and types of a G2Item. You can also use the AttrType
property to get the type of a particular attribute.

You can access attributes by referring to the AttrNames properties, as follows:

Dim atNames


atNames = g2iX.AttrNames
For iX = 0 to g2iX.Count-1
 Debug.Print g2iX(atNames(iX))
Next iX

The following example uses all four properties to access the attribute names,
values, and types:

Dim vn, vv, vt
Dim i As Integer

If Not G2iX Is Nothing Then

vn = G2iX.AttrNames
vv = G2iX.AttrValues
vt = G2iX.AttrTypes
For i = 0 To G2iX.Count - 1

Debug.Print vn(i)& " " & CStr(vv(i)) & " " & CStr(vt(i)))
Next i

Else
Debug.Print "G2iX not initialized."

End If

This example prints as follows:

DEPTNO 57 1
MANAGER Santos 4
RATING SUPERIOR 3
PERFORMANCE 9.7 6

Alternatively, you can access attribute types by using AttrType as follows:

Debug.Print vn(i) & " " & CStr(vv(i)) & " " & G2iX.AttrType(i)

or

Debug.Print vn(i) & " " & CStr(vv(i)) & " " & G2iX.AttrType(vn(i))
125

Using Linked Items as Parameters to RPCs
If you send a linked G2Item to G2 by passing it, for example, as a parameter to
Call or by returning it to a g2com-call, you create a new item that is distinct from
the item to which the G2Item is linked.

To use the linked item to which a G2Item refers, you must:

• Pass G2Item.Reference to G2.

• Define the corresponding parameter in the G2 procedure to be of a compatible
class type. It will not work if you define the parameter to be of type item-or-
value.

For example, suppose the following procedure is defined in G2:

send-window()=()
g2cX : class g2com-interface;
winX : class g2-window ;

begin
if there exists a g2com-interface g2cX such that 
(the remote-process-initialization-string of g2cX = "DemoProg")
and there exists a g2-window winX such that 
(the g2-window-remote-host-name of winX = "BELEM") then

start g2com-start("ConsumeWindow", winX, audc) across g2cX
end

If you start this procedure and it finds there is a Telewindows connection from a
machine named belem and there is a G2 ActiveXLink connection that uses a
RemoteInitializationString set to DemoProgram, then the procedure uses
g2com-start to send the g2-window and an item named audc to your COM
application.

Further, suppose that the RpcStarted event processor in your program includes
the code:

Dim winX As G2Window
Dim gitX as G2Item

If ProcedureName = "ConsumeWindow" then
Set winX = InputArguments(1)
Set gitX = InputArguments(2)

EndIf
126

Subscribing to Item Events
You can use the system procedure g2-ui-select to select a specific item in a specific
window. You might think that you could directly use the Start method of a
G2Gateway to select audc in the window winX as follows:

Dim winAsGit As G2Item

' Note: this code segment will NOT work
' -------------------------------------

Set winAsGit = winX
G2Gateway.Start("g2-ui-select", winAsGit.Reference, gitX.
Reference)

However, this code does not work because both of the parameters to g2-ui-select
are defined as item-or-value. The received values are treated as text, not the items
to which you want to refer.

The solution is to add an intermediate procedure to G2, as follows:

procedure xlator(theItem:class item, theWindow:class g2-window)
begin

call g2-ui-select(theItem, theWindow)
end

With this procedure defined, you would then replace the above Visual Basic code
with this code:

Dim winAsGit As G2Item
' Note: this code segment WILL work
' ---------------------------------

Set winAsGit = winX
G2Gateway.Start("Xlator", winAsGit.Reference, gitX.Reference)

This code works because the parameters to xlator are defined to be of types of
specific classes. G2Item.References passed to these parameters are interpreted as
the items to which the references refer.

Subscribing to Item Events
You can use various subscription methods to request notification when various
events occur on an item. You use various unsubscribe methods to cancel one or
more of your notification requests. You use the Subscriptions method to return
a list of active notification requests.

G2Item provides event notification for these G2Gateway events:

• AttributeModified (item, attrName, newVal, hndl, userData)

• ItemDeleted (item, hndl, userData)

• IconColorChanged (item, hndl, chgStruct, userData)
127

• CustomEvent (item, evName, newVal, hndl, userData)

• ValueChanged (item, newVal, Hndl, userData)

To provide maximum flexibility, notification of changes to the value of an
attribute in G2 does not automatically update the value in the G2Item.

Subscribing to Attribute Changes

This method requests notification by the G2Item via the AttributeModified
event when a specified attribute or attributes of the linked item are modified or
when the item is deleted:

G2Item.SubscribeToAttributeModification(VARIANT ToWhat, 
VARIANT UserData) As VARIANT

The ToWhat parameter can be either a String (BSTR in COM terminology) or an
array of Strings, where each String can be:

• The name of an attribute to receive notification when the value of the specified
attribute changes in G2.

• "All" to receive notification when any attribute value of the item changes
in G2.

The UserData parameter is any user-defined data that you want to attach to the
subscription request. When the event is triggered, UserData is returned to the
event procedure. You can use this data to help distinguish the event that was
triggered, which can greatly simplify event processing, depending upon your
application.

The return value from this method is either a subscription handle or an array of
subscription handles. A subscription handle is an integer assigned by G2 to the
notification request. You can use this handle to identify the request that triggered
an event. You can also use it to cancel the request for notification.

If the ToWhat parameter is a String, the value returned from this method is a
single subscription handle. If ToWhat is an array of strings, the return value is an
array of subscription handles, one for each subscription request.

Caution You should avoid subscribing to the same event more than once. Each time you
subscribe to an event, G2 assigns a new subscription handle to that event. If you
have subscribed multiple times to the same event, the event procedure will be
called multiple times when that event occurs.
128

Subscribing to Item Events
Subscribing to Item Deletions

This method requests notification by the G2Item via the ItemDeleted event when
the item is deleted:

G2Item.SubscribeToDeletion(VARIANT UserData) As VARIANT

The method returns a subscription handle or an error message. When the item is
deleted, the G2Item is also unlinked.

Note Deleting an item causes its attributes to be changed before the deletion is
completed. Thus, subscribing to both attribute modifications and item deletion
causes the G2ItemModified event to be triggered for each attribute to which you
have subscribed before the G2ItemDeleted event is triggered. In addition,
subscribing to "all" causes the G2ItemModified event to be triggered for several
system attributes such as item-active when the item is deleted.

See Subscribing to Attribute Changes on page 128 for a description of the
UserData argument, the return value, and a caution.

Subscribing to Icon Color Changes

This method requests notification by the G2Item via the IconColorChange event
when any region of the icon associated with the item changes color:

G2Item.SubscribeToIconColorChange(VARIANT UserData) As VARIANT

The method returns a subscription handle or an error message.

See Subscribing to Attribute Changes on page 128 for a description of the
UserData argument, the return value, and a caution.

Subscribing to Variable and Parameter Value
Changes

This method requests notification by the G2Item via the ValueChanged event
when the value of a variable or parameter changes:

G2Item.SubscribeToValueChange(VARIANT UserData) As VARIANT

The method returns a subscription handle or an error message.

The event is triggered only when the value changes from its previous value, or
when the value of a variable expires and the variable receives a new value. If the
item is not a variable or parameter, an exception is thrown.

See Subscribing to Attribute Changes on page 128 for a description of the
UserData argument, the return value, and a caution.
129

Subscribing to Custom Events

This method requests notification by the G2Item via the CustomEvent event when
a custom event occurs on the item:

G2Item.SubscribeToCustomEvent(STRING EventName, VARIANT ToWhat, 
VARIANT UserData) As VARIANT

The method returns a subscription handle or an error message.

To trigger the custom event, call g2-send-notification-for-item with the specified
event name for the item.

See Subscribing to Attribute Changes on page 128 for a description of the
UserData argument, the return value, and a caution.

Unsubscribing from Attribute Changes

This method cancels requests for notification when attribute values change:

G2Item.UnsubscribeFromAttributeModification(VARIANT FromWhat)

The FromWhat parameter can be:

• The name of an attribute to which you have subscribed to cancel modification
notification requests for that attribute.

• A subscription handle to cancel a specific notification request.

• An array containing any combination of the above types.

Unsubscribing from Item Deletions

This method cancels requests for notification when an item is deleted:

G2Item.UnsubscribeFromDeletion()

Unsubscribing from Icon Color Changes

This method cancels requests for notification when any region of the icon
associated with an item changes:

G2Item.UnsubscribeFromIconColorChange()

Unsubscribing from Custom Events

This method cancels requests for notification when a custom event occurs on an
item:

G2Item.UnsubscribeFromCustomEvent(VARIANT EventNames)
130

Subscribing to Item Events
The EventNames parameter can be the name of a custom event or an array
containing the names of several events.

Unsubscribing from Variable and Parameter Value
Changes

This method cancels requests for notification when a variable or parameter value
changes:

G2Item.UnsubscribeFromValueChange()

Unsubscribing from All Event Notification

This method cancels requests for notification of all events associated with an item,
including G2Workspace and G2Window items:

G2Item.UnsubscribeFromAll()

Note UnsubscribeFromAll is a method on a particular G2Item, which unsubscribes
from all subscriptions created by calls to methods on that G2Item. It does not
unsubscribe from events on other G2Item instances, or from events that were
requested by some other means.

Note Calling g2-deregister-subscription in G2 cancels the active G2 ActiveXLink
subscription to the event in that G2; however, G2 ActiveXLink is not notified of
the cancellation. If you then try to unsubscribe in G2 ActiveXLink, G2 reports an
error and G2 ActiveXLink throws an exception. You should not subscribe to
events in G2 ActiveXLink and unsubscribe from the event in G2. For more
information, see the description of g2-deregister-subscription in Chapter 26
“Publish/Subscribe Operations” in the G2 System Procedures Reference Manual.

Getting Information about Subscriptions

This method returns a three-column array containing information about the
active requests for notification:

G2Item.Subscriptions()

The first column contains subscription handle values, and the second column
contains codes indicating the type of subscription (1 for modify, 2 for delete, etc.).
For subscriptions of type 1, the third column contains the name of the attribute
being monitored or "all"; for subscriptions of type 4 (custom event), the third
column contains the name of the custom event; otherwise, for subscriptions of
type 2, the third column contains "".
131

The following Visual Basic code segment prints out, among other things,
information about which subscriptions are active for g2it, a G2Item:

Dim i As Integer, n As Integer
 Dim atNames As Variant, vX as Variant

 If g2it Is Nothing Then
 Debug.Print "Item has not been read or created"
 Else

 ‘ Display the available system attributes
 ‘ ---------------------------------------
 Debug.Print "Class Name: " & g2it.ClassName
 Debug.Print "Name: " & g2it.Name
 Debug.Print "Value: " & CStr(g2it.Value)
 
 ‘ Display the user defined attributes
 ‘ This will only work with simple attribute types
 ‘ ---
 n = g2it.Count
 atNames = g2it.AttrNames
 For i = 0 To n - 1
 Debug.Print CStr(i + 1) & ": " & atNames(i) & _
 ": " & CStr(g2it(i))
 Next i
 
 ‘ Display whether or not g2it references an
 ‘ an item in G2
 ‘ ---
 If g2it.Linked Then
 Debug.Print "Linked to an item in G2"
 Else
 Debug.Print "Not linked to an item in G2"
 End If

 ‘ Print the list of active subscriptions
 ‘ --------------------------------------
 Debug.Print "================================")

Debug.Print "Subscriptions:"
vx = git.Subscriptions()
For i = LBound(vx) To UBound(vx)

 Debug.Print i ;
 If vx(i, 1) = 1 Then
 Debug.Print " : Modify : " & vx(i, 2)
 ElseIf vx(i, 1) = 2 Then
 Debug.Print " : Delete"
 ElseIf vx(i, 1) = 3 Then
 Debug.Print " : Color Change"
 ElseIf vx(i, 1) = 4 Then
 Debug.Print " : Custom : " & vx(i, 2)
132

Subscribing to Item Events
 ElseIf vx(i, 1) = 5 Then
 Debug.Print " : Value change"
 ElseIf vx(i, 1) = 6 Then
 Debug.Print " : Add Item to Workspace"
 ElseIf vx(i, 1) = 7 Then
 Debug.Print " : Remove Item From Workspace"
 ElseIf vx(i, 1) = 8 Then
 Debug.Print " : Select Item in Window"
 Else
 Debug.Print " : Update this program"
 End If
 Next i
 Debug.Print "================================"
End If
133

134

A

Example Code
This appendix presents some of the sample code that accompanies the

Introduction 135

Using G2 ActiveXLink in Microsoft Visual Basic 135

Using G2 ActiveXLink in Microsoft Excel 137

Introduction
The appendix contains the complete code, HTML markup, and VBScript for the
examples in this guide.

Using G2 ActiveXLink in Microsoft Visual Basic
The Cycle Lights program enables you to communicate with G2 by using
G2 ActiveXLink. You can click the action button Cycle Lights in G2 to change the
traffic light settings in G2 and Visual Basic. In Visual Basic, you can click the Cycle
Lights buttons to change the traffic light settings in Visual Basic and G2.

For more information on the Cycle Lights program, see How to Communicate
with G2 on page 14.

The following example is for non-.NET versions of Visual Basic. Users of VB .NET
should refer to Using G2 ActiveXLink with Visual Basic .NET on page 20.
135

To run the demonstration program:

1 Load axldemo.kb into G2.

The KB is located in the demos subdirectory of the activexlink directory of
your G2 product directory.

2 Start G2.

3 Run VBDemo.exe.

The program is located in the vbdemo subdirectory of the demos subdirectory.

The following code specifies the connection in Visual Basic:

Dim NextMode As String
Dim RedOn, RedOff, YellowOn, YellowOff, GreenOn, 

GreenOff As Long

Private Sub CallRPC_Click()
rannum = G2Gateway1.Call("G2RANDOMGENERATOR",

Val(CallItem.Text))
CallItemRetVal = str(rannum)

End Sub

Private Sub Update_Light(Mode As String)
If Mode = "PROCEED" Then

Redlight.FillColor = RedOff
Yellowlight.FillColor = YellowOff
Greenlight.FillColor = GreenOn

ElseIf Mode = "STOP" Then
Redlight.FillColor = RedOn
Yellowlight.FillColor = YellowOff
Greenlight.FillColor = GreenOff

Else
Redlight.FillColor = RedOff
Yellowlight.FillColor = YellowOn
Greenlight.FillColor = GreenOff

End If
End Sub

Private Sub CycleLights_Click()
Call G2Gateway1.Start("CHANGE-SIGNAL", NextMode)
If NextMode = "stop" Then

NextMode = "slow"
ElseIf NextMode = "slow" Then

NextMode = "proceed"
Else

NextMode = "stop"
End If

End Sub
136

Using G2 ActiveXLink in Microsoft Excel
Private Sub Form_Load()
RedOn = &HFF&
RedOff = &H40&
YellowOn = &HFFFF&
YellowOff = &H4040&
GreenOn = &HFF00&
GreenOff = &H4000&

NextMode = "slow"
Redlight.FillColor = RedOn
Yellowlight.FillColor = YellowOff
Greenlight.FillColor = GreenOff

End Sub

Private Sub G2Gateway1_Error(ByVal ErrorMessage As String,
ByVal ErrorCode As Long, 
DeferredCallIdentifier As Variant)

MsgBox ErrorMessage
End Sub

Private Sub G2Gateway1_RpcStarted(ByVal Name As String,
InArgs As Variant)

Dim str As String
str = InArgs
If Name = "CYCLELIGHTS" Then Call Update_Light(str)

End Sub

Private Sub StartRPC_Click()
G2Gateway1.PostMessage StartItem.Text

End Sub

Using G2 ActiveXLink in Microsoft Excel
The Excel demonstration program enables you to update a graph from data
supplied by the G2 server.

For more information on the demonstration program, see Calling a Procedure in
G2 and Excel on page 33.

To run the demonstration program:

1 Load axldemo.kb into G2.

The KB is located in the demos subdirectory of the activexlink directory of
your G2 product directory.

2 Open Gateway.xls.

The file is located in the exceldemo subdirectory of the demos subdirectory.
137

The following code specifies the connection between G2 and Excel in Visual Basic
for Applications:

Private Sub CommandButton1_Click()
Ret = Range("myString")
Call G2Gateway1.PostMessage(Ret)

End Sub

Private Sub CommandButton2_Click()
Range("myString") = G2Gateway1.Call("G2StringGenerator")

End Sub

Private Sub CommandButton3_Click()
Range("A19:C24") = G2Gateway1.Call("G2ChartGenerator",

100) ' Get values from G2
End Sub

Private Sub G2Gateway1_Error(ByVal ErrorMessage As String,
ByVal ErrorCode As Long, 
DeferredCallIdentifier As Variant)

MsgBox ErrorMessage
End Sub

Private Sub G2Gateway1_G2Paused()
MsgBox ("G2 Paused.")

End Sub

Private Sub G2Gateway1_G2Resumed()
MsgBox ("G2 Resumed.")

End Sub

Private Sub Worksheet_SelectionChange(ByVal Target 
As Excel.Range)

End Sub
138

Index
 @ A B C D E F G H I J K L M
 # N O P Q R S T U V W X Y Z
A
ActiveX control 1
adding G2 ActiveXLink from Control Toolbox

in Excel 30
array 76
arrays, using in G2 ActiveXLink 110
authorizing G2 ActiveXLink with g2com.kb 7
Available References dialog 10
AxG2Gateway 26

adding 24
programs that use 26

axldemo.kb 7

B
blocking call

call method 59
CallTimeout property 56

blocking connection
automatically created 58
creating with Connect() 65

blocking RPC calls 56
Boolean data type 46
BSTR data type 46
Byte data type 46

C
C++, using G2 ActiveXLink with 40
Call method 59

using in Excel 34
CallDeferred() method 63
calling thread 64
CallTimeout

basic property 12
property 56

cells 33
change-signal G2 procedure 18
chart in Excel 33
client connection to G2 56
Clients 2
COM automation data type
BSTR 46
byte 46
currency 47
date 47
double 46
long 46
null 47
SAFEARRAY 46
short 46
VARIANT 46
VARIANT_BOOL 46

com-array-type member 49
com-byte member 47
COM-compliant container application 2
com-currency member 49
com-day member 48
com-day-of-week member 48
com-dimensions member 49
com-double member 47
com-elements member 49
com-hour member 48
com-integer member 47
com-long member 47
com-lower-bounds member 49
com-minute member 48
com-month member 48
Component Object Model (COM)

and ActiveX and OLE 1
and development languages 45
distributing events 77

components 1
Components option

Visual Basic 8
Visual Basic .NET 25

com-second member 48
com-single member 47
com-year member 48
configuration information 2
Connect method

definition of 65
using 14
139

connecting to G2 14
connection

identifying 56
status 56

container 2
Control Toolbox in Excel 30
currency

mapping 49
type 47

currency data type 46
customer support services xiv
Cycle Lights program

complete code 137
running 17

CycleLights_Click() Visual Basic function 18

D
data types

introduction to 45
mapping 46

date and time, mapping 48
date data type 47
Design Mode in Excel 30
Disconnect method 66
disconnect, explicitly 14
DisconnectOnReset basic property 12
DisconnectOnReset property 57
displaying text and data on G2? Message

Board 67
double data type 46

E
error

message text 94
nonblocking calls 94
numeric representation 94

Error event 94
event handlers 68
events 2

Error 94
G2Connected 78
G2Disconnected 79
G2Paused 81
G2Resumed 82
RpcCalled 73
RpcReturned 80
RpcStarted 76
140
example form 13
example programs, running 7
example projects 6
Excel demonstration program

complete code 139
Excel, using G2 ActiveXLink with 29
exceptions 60

F
form

building 13
example 13
placing control on

Visual Basic 8
Form_Load() function 3

G
G2 ActiveXLink

creating
G2Item 120
G2Window 115
G2Workspace 114

deleting a G2Item 124
example, using C++ 40
G2 type names 116
getting attribute names, values, and

types 127
getting information about

subscriptions 133
getting the icon for a G2Item 123
refreshing a G2Item 126
subscribing to item events

attribute changes 130
custom events 132
icon color changes 131
introduction to 129
item deletion 131
variable and parameter value

changes 131
subscribing to window events 116
subscribing to workspace events 114
subscription types 117
unlinking items 126
unsubscribing from item events

all 133
attribute changes 132
custom events 132

icon color changes 132
item deletions 132
variable and parameter value

changes 133
updating an item in G2 124
using item references 119
using linked items as parameters to

RPCs 128
using symbols 98
using the G2Item class 103
using the G2ListOrArray class 110
verifying linked items 126

G2 ActiveXLink control
calling by reference 10
dropping on Visual Basic form 9
inserting in Visual Basic 8
setting properties 11

G2 data type
integer 46
item-or-value 46
sequence 47
text 46
truth-value 46

G2 Gateway interface object 56
G2 remote procedures

g2com-call 69
g2com-start 70
g2com-start-over-interface 71

G2 servers
connecting to 14
linking to more than one 13
multiple 9

g2com.kb module 7
g2com-call remote procedure 69
g2com-interface class 55
g2com-start remote procedure 70
g2com-start-over-interface remote

procedure 71
G2Connected event 78
g2-current-remote-interface() system

procedure
finding interface object 72
using 56

G2Disconnected event 79
G2Gateway

class 9
instances 9
object 9

G2Gateway1 9
G2Item

creating in G2 ActiveXLink 120
deleting in G2 ActiveXLink 124
getting the icon for 123
refreshing in G2 ActiveXLink 126
subscribing to item events 129
unlinking in G2 ActiveXLink 126
updating G2 items from G2

ActiveXLink 124
using in G2 ActiveXLink 103
verifying linkage in G2 ActiveXLink 126

G2Location

basic property 12
property defined 55

G2Paused event 81
G2Reset event 83
G2Resumed event 82
G2RunState property 57
G2RunStateKnown event 85
G2Started event 84
G2Structure Visual Basic object type 47
G2Symbols

property defined 55
G2Symbols basic property 12
G2Window

creating in G2 ActiveXLink 115
getting the G2 user mode 115
subscribing to window events 116

G2Workspace

creating in G2 ActiveXLink 114
subscribing to workspace events 114

Gensym G2 Gateway
Visual Basic 8
Visual Basic .NET 23

GensymAxl 24

H
host machine name 12
HTML

complete markup for demonstration
program 141

I
identifiers

for errors from deferred calls 94
for return arguments from a deferred

call 80
141

to identify a deferred call 63
integer data type 46
interface object, finding 71
InterfaceClass

basic property 12
property defined 55

Internet Explorer, using G2 ActiveXLink
with 35

IsG2Connected property 56
item-or-value G2 data type 46

L
lists, using in G2 ActiveXLink 110
long data type 46

M
mapping

currency 49
date and time 48
multidimensional arrays 49
simple data types 47
structures 99

matching the return values with the original
call 63

members
com-array-type 49
com-byte 47
com-currency 49
com-day 48
com-day-of-week 48
com-dimensions 49
com-double 47
com-elements 49
com-hour 48
com-integer 47
com-long 47
com-lower-bounds 49
com-minute 48
com-month 48
com-second 48
com-single 47
com-year 48

merging g2com.kb 7
Message Board

displaying text and values in 67
posting to 15

methods
142
Call() 59
CallDeferred() 63
Connect() 65
Disconnect 66
introduction to 2
Start() 61

multidimensional arrays 50
multi-threaded applications 2

N
natural language 45
.NET

See Visual Basic .NET
.NET, using G2 ActiveXLink with 20
network address of a G2 server 55
nonblocking calls, errors 94
nonblocking connection 65
null data type 47

O
Object Linking and Embedding (OLE) 1
objects, communication using 1
one-dimensional arrays 50

P
populating cells 33
port number 12
PostMessage() method 67
procedures

calling 2
example of calling 16

properties 2
basic G2 ActiveXLink 11
CallTimeout 56
defined 54
DisconnectOnReset 57
G2Location 55
G2RunState 57
G2Symbols 55
InterfaceClass 55
IsG2Connected 56
modifying 54
RemoteInitializationString 56
setting programmatically 13

Properties Window
in Excel 31

setting properties in 11
Property Pages, displaying 11
publish/subscribe mechanism 77

R
random numbers, generating 16
references in Visual Basic 10
RemoteInitializationString

basic property 12
property defined 56

return values
and started G2 procedure 61
from G2 68

RpcCalled event
and subscribers 77
definition of 73

RpcReturned event
and CallDeferred() method 63
definition of 80

RPCs, passing linked items, using 128
RpcStarted event

and subscribers 77
definition of 76

S
SAFEARRAY 46
sequence G2 data type 47
sequence of event handling 68
sequence of values 73
setting properties programmatically 13
short data type 46
single data type 47
spreadsheet 29
Start() method 61
string data type 46
structure G2 data type 47
structures, mapping 99
subscriber 77
symbols, using in G2 ActiveXLink 98

T
TCP/IP network 14
text data type 46
toolbox

adding a control
Visual Basic 8
Visual Basic .NET 25

traffic signal 18
truth-value data type 46

U
unique identifier 63
Update_Light() Visual Basic function 19

V
Variant data type 46
VARIANT_BOOL 46
VBScript, complete code for demonstration

program 141
Visual Basic .NET, using G2 ActiveXLink

with 20
Visual Basic data type

Boolean 46
byte 46
currency 46
date 47
Double 46
Integer 46
Long 46
Null 47
single 47
String 46
Variant 46

Visual Basic, using G2 ActiveXLink with 7
143

144

	Preface
	About this Guide
	Version Information
	Audience
	Conventions
	Related Documentation
	Customer Support Services

	Introduction
	Introduction
	What is an ActiveX Control?
	What Does G2 ActiveXLink Do?
	How Does G2 ActiveXLink Manage G2 Items?

	Creating a Link with G2 ActiveXLink
	Introduction
	Setting Up G2 for Authorization
	Running Your G2 Applications with G2 ActiveXLink
	Running the Example Programs

	Using G2 ActiveXLink with Microsoft Visual Basic
	Adding the G2 ActiveXLink Control to the Toolbox
	Setting the Properties of the Control
	Building Your Connection Form
	Making a Connection to G2
	How to Communicate with G2

	Using G2 ActiveXLink with Visual Basic .NET
	Visual Basic .NET Terminology
	Using ActiveXLink with Visual Basic .NET
	Programs that use AxG2Gateways
	The Program
	The PostMessage Demo
	The Call Demo
	The Traffic Light Demo

	Using G2 ActiveXLink with Microsoft Excel
	Making a Connection to G2
	Setting the Properties of the Control
	Calling a Procedure in G2 and Excel

	Using G2 ActiveXLink with Microsoft Internet Explorer
	Adding the G2 ActiveXLink Control to an HTML File
	Connecting with G2 on Startup
	Sending a Message to G2 from Internet Explorer

	Using G2 ActiveXLink with C++

	Data Types
	Introduction
	Mapping Data Types
	Overriding the Mapping of Simple Data Types
	Mapping Date and Time
	Mapping Currency
	Mapping Multidimensional Arrays
	Example: One-Dimensional Array
	Example: Two-Dimensional Array
	Example: Multidimensional Array

	Using G2Gateway
	Introduction
	Properties
	Methods
	Call()
	Start()
	CallDeferred()
	Connect()
	Disconnect()
	PostMessage()

	Events
	g2com-call
	g2com-start
	g2com-start-over-interface
	RpcCalled()
	RpcStarted()
	G2Connected
	G2Disconnected
	RpcReturned()
	G2Paused
	G2Resumed
	G2Reset
	G2Started
	G2RunStateKnown
	AttributeModified()
	CustomEvent()
	IconColorChanged()
	ItemAdded()
	ItemDeleted()
	ItemRemoved()
	ItemSelected()
	ValueChanged()
	Error

	Custom Classes
	Introduction
	Using G2Symbol
	Using G2Structure
	Creating a Variable to Represent a G2Structure
	Example: Reading the Value of a Structure Property
	Example: Setting the Value of a Structure Property
	Example: Determining the Number of Name/Value Pairs
	Example: Obtaining Lists of Property Names or Values
	Example: Removing a Name/Value Pair from a G2Structure
	Example: Iterating over Name/Value Pairs

	Using G2Item
	Specifying the G2 Class
	Setting the G2Item Name
	Determining the Number of User-Defined Attributes
	Getting and Setting Attribute Values
	Getting Attribute Names, Values, and Types
	Creating G2Items
	Creating Symbolic Attributes
	Removing Attributes
	Iterating Over the Attributes of a G2Item
	Using G2Item Value and Type

	Using G2List and G2Array
	Determining the Number of Elements
	Getting and Setting Element Values
	Determining the Type
	Inserting, Appending, and Adding Elements to the List or Array
	Removing Elements from a List or Array
	Iterating Over Elements of a List or Array
	Sending Lists and Arrays to G2

	Using G2Workspace
	Subscribing to Workspace Events

	Using G2Window
	Getting the G2 User Mode of a Window
	Subscribing to Window Events

	G2 Type Names
	Subscription Types

	Item References
	Introduction
	Creating and Linking a G2Item
	Getting the Icon for a G2Item
	Deleting a G2Item
	Updating the Item in G2
	Refreshing a G2Item
	Verifying Linked Items
	Unlinking a G2Item
	Getting G2Item Attribute Names, Values, and Types
	Using Linked Items as Parameters to RPCs
	Subscribing to Item Events
	Subscribing to Attribute Changes
	Subscribing to Item Deletions
	Subscribing to Icon Color Changes
	Subscribing to Variable and Parameter Value Changes
	Subscribing to Custom Events
	Unsubscribing from Attribute Changes
	Unsubscribing from Item Deletions
	Unsubscribing from Icon Color Changes
	Unsubscribing from Custom Events
	Unsubscribing from Variable and Parameter Value Changes
	Unsubscribing from All Event Notification
	Getting Information about Subscriptions

	Example Code
	Introduction
	Using G2 ActiveXLink in Microsoft Visual Basic
	Using G2 ActiveXLink in Microsoft Excel

	Index

