
G2 CORBALink

User’s Guide
Version 2020

G2 CORBALink User’s Guide, Version 2020

June 2020

The information in this publication is subject to change without notice and does not represent a
commitment by Gensym Corporation.

Although this software has been extensively tested, Gensym cannot guarantee error-free
performance in all applications. Accordingly, use of the software is at the customer’s sole risk.

Copyright © 1985-2020 Gensym Corporation

All rights reserved. No part of this document may be reproduced, stored in a retrieval system,
translated, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of Gensym Corporation.

Gensym®, G2®, Optegrity®, and ReThink® are registered trademarks of Gensym Corporation.

NeurOn-Line™, Dynamic Scheduling™ G2 Real-Time Expert System™, G2 ActiveXLink™, G2
BeanBuilder™, G2 CORBALink™, G2 Diagnostic Assistant™, G2 Gateway™, G2 GUIDE™,
G2GL™, G2 JavaLink™, G2 ProTools™, GDA™, GFI™, GSI™, ICP™, Integrity™, and SymCure™
are trademarks of Gensym Corporation.

Telewindows is a trademark or registered trademark of Microsoft Corporation in the United States
and/or other countries. Telewindows is used by Gensym Corporation under license from owner.

This software is based in part on the work of the Independent JPEG Group.

Copyright © 1998-2002 Daniel Veillard. All Rights Reserved.

SCOR® is a registered trademark of PRTM.

License for Scintilla and SciTE, Copyright 1998-2003 by Neil Hodgson, All Rights Reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/).

All other products or services mentioned in this document are identified by the trademarks or
service marks of their respective companies or organizations, and Gensym Corporation disclaims
any responsibility for specifying which marks are owned by which companies or organizations.

Ignite Technologies, Inc.
401 Congress Ave., Suite 2650
Austin, TX 78701 USA
Telephone: +1-800-248-0027
Email: success@ignitetech.com Part Number: DOC066-1200

Contents
Preface vii

About this Guide vii

Version Information vii

Audience vii

A Note About the API viii

Conventions viii

Related Documentation x

Customer Support Services xii

Chapter 1 Introduction 1

Introduction 1

Features of G2 CORBALink 2

Common CORBA Terms 3

Building an Application 4

Chapter 2 Getting Started 5

Introduction 5

Installing G2 CORBALink on HP-UX 5

Using G2 CORBALink 6
Merging G2 CORBALink into G2 6
Making the G2 CORBALink Modules Required 7

Starting the ORB 8

Chapter 3 Compiling the CORBA IDL 9

Introduction 9

The grid.idl File 10

IDL Preprocessor 10

The G2 CORBALink IDL Compiler Workspace 10
iii

Creating a g2orb-orb Object 12
Specifying the Gsi-Connection-Configuration Attribute 13

Setting Up the CORBA IDL File 14

Compiling the IDL 15

Updating IDL 16

Chapter 4 Building a CORBA Server Application 19

Introduction 19

Registering Objects 19

Exceptions 20

Return Values 20

Server Classes 20

Chapter 5 Building a CORBA Client Application 23

Introduction 23

Specifying an Object Location 24

Co-Residence of Servers and Clients 24

Exceptions 24

Chapter 6 CORBA Objects and Data Structures 27

Introduction 27

Proxy Class 29

Server Class 30

Interface Class 31

g2orb-irobject 31

g2orb-interface-parms 31

g2orb-orb 32

g2orb-file 36

Chapter 7 Advanced Topics 37

Introduction 37

Smart Proxies 37

Object Loaders and Locators 38
iv

Private Objects 39

Chapter 8 API Reference 41

Introduction 42

Initialization 43
g2idl-compile 44
g2orb-download-ir 45
g2orb-init-bridge 46
g2orb-init-orb 47

Object Registration 48
g2orb-deregister 49
g2orb-register 50
g2orb-register-objects 51
g2orb-register-private 52
g2orb-release 53

Exception Management 54
g2orb-throw-exception 55

Object Reference Manipulation 56
g2orb-decode-user-ref 57
g2orb-object-to-string 58
g2orb-objref-to-obj 59
g2orb-obj-to-objref 61
g2orb-ping 62
g2orb-string-to-object 63

Chapter 9 Language Mapping 65

Introduction 65

IDL Primitive Types 66
Representing Long Long Data Types 67

Interfaces 70

Operations 72

Attributes 73

Object References 73

IDL Type to G2 Language Mapping 74
Enumerated Types 74
Structures 74
Sequences 74
Arrays 74
Unions 74
Any 75
v

Chapter 10 Sample G2 CORBALink Application 77

Introduction 77
Starting G2 CORBALink 78
Merging the g2idl KB into the Application 78
Setting Up and Compiling the IDL 79
Creating a Server Object 80
Creating a Proxy Object 82
Creating a Client Procedure 82
Starting Your G2 CORBALink Application 83

Appendix A Interfacing G2 CORBALink with Other CORBA Servers 85

Introduction 85

Iona's Orbix 87

Index 89
vi

Preface
Describes this document and the conventions that it uses.

About this Guide vii

Version Information vii

Audience vii

A Note About the API viii

Conventions viii

Related Documentation x

Customer Support Services xi

About this Guide
This guide describes the basic features and functions of G2 CORBALink and
explains how to build CORBA-based applications, using G2 and G2 CORBALink.

Version Information
You must run G2 Gateway with the same version of G2 or with a higher version.
You cannot run G2 Gateway with an older version of G2.

Audience
This guide is intended for developers of G2 CORBALink bridge applications. It
provides the needed information to interface G2 to a CORBA-based system, using
G2 CORBALink. It assumes that the reader is familiar with G2 and CORBA
technology.
vii

A Note About the API
The G2 CORBALink API, as described in this guide, is not expected to change
significantly in future releases, but exceptions may occur. A detailed description
of any changes will accompany the G2 CORBALink release that includes them.

Therefore, it is essential that you use G2 CORBALink exclusively through its API,
as described in this guide. If you bypass the API, you cannot rely on your code to
work in the future, since G2 CORBALink may change, or in the present, because
the code may not correctly manage the internal operations of G2 CORBALink.

If G2 CORBALink does not seem to provide the capabilities that you need, contact
Gensym Customer Support as described under Customer Support Services for
further information.

Conventions
This guide uses the following typographic conventions and conventions for
defining system procedures.

Typographic

Convention Examples Description

g2-window, g2-window-1,
ws-top-level, sys-mod

User-defined and system-defined
G2 class names, instance names,
workspace names, and
module names

history-keeping-spec, temperature User-defined and system-defined
G2 attribute names

true, 1.234, ok, “Burlington, MA” G2 attribute values and values
specified or viewed through
dialogs

Main Menu > Start

KB Workspace > New Object

create subworkspace

Start Procedure

G2 menu choices and button labels

conclude that the x of y ... Text of G2 procedures, methods,
functions, formulas, and
expressions
viii

Conventions
Note Syntax conventions are fully described in the G2 Reference Manual.

Procedure Signatures

A procedure signature is a complete syntactic summary of a procedure or
method. A procedure signature shows values supplied by the user in italics, and
the value (if any) returned by the procedure underlined. Each value is followed by
its type:

g2-clone-and-transfer-objects
(list: class item-list, to-workspace: class kb-workspace,
 delta-x: integer, delta-y: integer)
-> transferred-items: g2-list

new-argument User-specified values in
syntax descriptions

text-string Return values of G2 procedures
and methods in syntax
descriptions

File Name, OK, Apply, Cancel,
General, Edit Scroll Area

GUIDE and native dialog fields,
button labels, tabs, and titles

File > Save

Properties

GMS and native menu choices

workspace Glossary terms

c:\Program Files\Gensym\ Windows pathnames

/usr/gensym/g2/kbs UNIX pathnames

spreadsh.kb File names

g2 -kb top.kb Operating system commands

public void main()
gsi_start

Java, C and all other external code

Convention Examples Description
ix

Related Documentation

G2 Core Technology

• G2 Bundle Release Notes

• Getting Started with G2 Tutorials

• G2 Reference Manual

• G2 Language Reference Card

• G2 Developer’s Guide

• G2 System Procedures Reference Manual

• G2 System Procedures Reference Card

• G2 Class Reference Manual

• Telewindows User’s Guide

• G2 Gateway Bridge Developer’s Guide

G2 Utilities

• G2 ProTools User’s Guide

• G2 Foundation Resources User’s Guide

• G2 Menu System User’s Guide

• G2 XL Spreadsheet User’s Guide

• G2 Dynamic Displays User’s Guide

• G2 Developer’s Interface User’s Guide

• G2 OnLine Documentation Developer’s Guide

• G2 OnLine Documentation User’s Guide

• G2 GUIDE User’s Guide

• G2 GUIDE/UIL Procedures Reference Manual

G2 Developers’ Utilities

• Business Process Management System Users’ Guide

• Business Rules Management System User’s Guide

• G2 Reporting Engine User’s Guide

• G2 Web User’s Guide

• G2 Event and Data Processing User’s Guide
x

Related Documentation
• G2 Run-Time Library User’s Guide

• G2 Event Manager User’s Guide

• G2 Dialog Utility User’s Guide

• G2 Data Source Manager User’s Guide

• G2 Data Point Manager User’s Guide

• G2 Engineering Unit Conversion User’s Guide

• G2 Error Handling Foundation User’s Guide

• G2 Relation Browser User’s Guide

Bridges and External Systems

• G2 ActiveXLink User’s Guide

• G2 CORBALink User’s Guide

• G2 Database Bridge User’s Guide

• G2-ODBC Bridge Release Notes

• G2-Oracle Bridge Release Notes

• G2-Sybase Bridge Release Notes

• G2 JMail Bridge User’s Guide

• G2 Java Socket Manager User’s Guide

• G2 JMSLink User’s Guide

• G2 OPCLink User’s Guide

• G2 PI Bridge User’s Guide

• G2-SNMP Bridge User’s Guide

• G2 CORBALink User’s Guide

• G2 WebLink User’s Guide

G2 JavaLink

• G2 JavaLink User’s Guide

• G2 DownloadInterfaces User’s Guide

• G2 Bean Builder User’s Guide
xi

G2 Diagnostic Assistant

• GDA User’s Guide

• GDA Reference Manual

• GDA API Reference

Customer Support Services
You can obtain help with this or any Gensym product from Gensym Customer
Support. Help is available online, by telephone and by email.

To obtain customer support online:

 Access Ignite Support Portal at https://support.ignitetech.com.

You will be asked to log in to an existing account or create a new account if
necessary. Ignite Support Portal allows you to:

• Register your question with Customer Support by creating an Issue.

• Query, link to, and review existing issues.

• Share issues with other users in your group.

• Query for Bugs, Suggestions, and Resolutions.

To obtain customer support by telephone or email:

 Use the following numbers and addresses:

United States Toll-Free

United States Toll

Email

+1-855-453-8174

+1-512-861-2859

support@ignitetech.com
xii

1

Introduction
Describes the features and functions of G2 CORBALink.

Introduction 1

Features of G2 CORBALink 2

Common CORBA Terms 3

Building an Application 4

Introduction
CORBA, an acronym for Common Object Request Broker Architecture, is an
industry standard for a distributed object architecture. It is designed to be
language, platform, and location independent.

Using CORBA, an application developer may access objects, including attributes
and methods that do not reside in the same address space. Different objects of an
object-oriented application may reside in different physical locations or may be
implemented, using different languages. CORBA extends the client/server
paradigm by making each CORBA object a server.

CORBA allows object references to be freely passed as arguments in CORBA
operation requests. Object references are like pointers in a language, such as C++,
but are language independent and may cross address spaces from one system to
another.

To use CORBA, you need an Object Request Broker (ORB) for the language in
which you are working. Object Request Brokers are available for all of the major
object-oriented languages, including C++, Smalltalk, Java, and G2. G2
CORBALink is the ORB for G2.
1

CORBA separates the concept of an object interface from the implementation. You
can specify the ways that a remote client may access an object, using a language
independent representation called Interface Description Language (IDL). Once
the IDL is specified, it may be compiled into each target language, using an IDL
compiler. G2 CORBALink provides an IDL compiler for G2. The G2 Language
mapping is described later in this document.

For a full description of IDL and CORBA, see this Web site:

http://www.omg.org

Features of G2 CORBALink
G2 CORBALink has the following features:

• Compatible with other CORBA 2.0 Object Request Brokers using the Internet
Inter-ORB Protocol (IIOP).

• Compatible with G2 Version 5.0 Rev. 3 and later.

• Any number of requests may be outstanding either as a Client or as a Server
and the requests may return out of order.

• Objects can reside anywhere. Clients and servers can be co-resident within the
same process.

• Object Loader support. Object state information may be kept in a persistent
storage such as a database and brought into G2 as needed.

• Object Locator support. During an object’s life, it may migrate from location to
location.
2

Common CORBA Terms
Common CORBA Terms
The following terms are used in this document but may not be familiar to a G2
developer. To prevent confusion, they are defined here:

Term Description

operation An operation is similar to a method. In
fact, in G2 and most other object-oriented
languages, a CORBA operation is a
method.

interface An object is a CORBA object if it
implements a CORBA interface. This
means that it provides a way to execute
each operation specified by the interface.
The interface is just a set of operations that
may be invoked. An object may
implement more than one interface at a
time, and interfaces themselves may be
combined through inheritance, including
multiple-inheritance.

operation request A client can request that a server execute
an operation. This is known as an
operation request. An operation request is
invoked just by calling a method on a
CORBA proxy object.

ORB This stands for Object Request Broker.
This is the piece of software that redirects
the operation request from a client to a
server. ORBs can talk to each other using
IIOP

IIOP Internet Inter Orb Protocol. This is a
simple protocol based on TCP/IP that
specifies how requests are made from one
ORB to another. G2 CORBALink
generates and interprets IIOP messages.
3

Building an Application
To build a CORBA application with G2:

1 Create one or more CORBA IDL files to describe the CORBA interfaces
needed by the application.

For a description of the default IDL file provided by G2 CORBALink, see The
grid.idl File.

2 Compile the CORBA IDL files into G2 object definitions and methods, using
the G2 CORBALink compiler.

For instructions on setting up and compiling the CORBA IDL, see Compiling
the CORBA IDL.

3 Write the client and server application logic.

For information related to client applications, see Building a CORBA Client
Application. For information related to server applications, see Building a
CORBA Server Application.

implementation object A G2 object representing a remote CORBA
object, implemented at some location,
using some tool. An instance of an
implementation object in G2 is a normal
G2 object, with normal G2 methods. The
methods control the behavior of the object.
Remote CORBA clients can invoked the
methods of implementation objects, which
thus act as servers for the CORBA clients.

proxy object A G2 object representing a remote CORBA
object. Calling a method on a CORBA
proxy object results in the operation
request being redirected across the
network to the implementation object
where it will be executed.

Term Description
4

2

Getting Started
Describes how to start the ORB executable and create and configure the g2orb-orb
object.

Introduction 5

Installing G2 CORBALink on HP-UX 5

Using G2 CORBALink 6

Starting the ORB 8

Introduction
G2 CORBALink provides a setup program that copies the G2 CORBALink file
from the distribution media to your local files system. The installed files include
examples in C++, Java, and G2, as well as a number of example KBs.

Installing G2 CORBALink on HP-UX
The libstdc++.sl shared library, which is required to run G2 CORBALink, is not
included as part of HP-UX 11 or AIX 5L V5.2. It is installed with the GNU C++
compiler. The GNU C++ compiler is in the public domain. You can find sites
where it available for downloading by searching for “GNU C++ HPUX” or
“GNU C++ AIX” with a search engine such as Google. At the time of this writing,
it is available for HP-UX at: http://hpux.cs.utah.edu/hppd/hpux/Gnu/.
5

Using G2 CORBALink
G2 CORBALink includes two G2 modules. They are:

Module Description

g2orb

g2idl

You integrate G2 CORBALink by:

• Merging the developer’s knowledge base (KB) module, named g2idl, into
your G2 application. This module includes g2orb.

• Making the g2idl and g2orb modules required modules of your application.

Merging G2 CORBALink into G2

A G2 CORBALink application must be modularized. The filename of the G2
CORBALink development module is g2idl.kb. This file should be merged with
your user application.

To merge G2 CORBALink into your application:

1 Pause or reset your KB.

2 Choose Merge KB from the Main Menu to display the Load KB workspace.

The merge in this KB option is enabled on the workspace.

3 Specify the location of the g2idl.kb file and click End.

This KB is located in the kbs subdirectory in the corbalink, which is located in
your G2 product directory.

Tip When merging G2 CORBALink, let G2 resolve conflicts by enabling the
automatically resolve conflicts option.

Provides runtime support for G2 CORBALink.

Contains the IDL compiler.

This module is only needed during development.
6

Using G2 CORBALink
G2 CORBALink Modules

When you merge the g2idl.kb, its required modules are automatically loaded into
G2. The following table describes these modules:

Module File Name Contents

g2idl g2idl.kb

g2orb g2orb.kb

gfr gfr.kb

sys-mod sys-mod.kb

uilroot uilroot.kb

This is the module hierarchy of g2idl:

Making the G2 CORBALink Modules Required

When you merge G2 CORBALink into your KB, it is not a required module unless
it is specified in the Module Information table of your KB. Gensym recommends

Definitions, API support and compiler
for G2 CORBALink.

This module may be deleted from the
deployed application.

Definitions and API support for the G2
CORBALink bridge.

Definitions and API support for the G2
Foundation Resources (GFR) utility.

This module is required only by g2idl.

The library of G2 system procedures.

Definitions and API support for
navigation buttons.
7

that you make g2idl and g2orb required modules of the top-level module of your
user application.

To make G2 CORBALink a required module:

1 Choose Main Menu > System Tables > Module Information.

2 Specify g2orb and g2idl as a directly required modules of the top-level module
of your KB.

For more information on merging KBs and making a KB a required module, see
the G2 Reference Manual.

Starting the ORB
The g2-corba executable implements the CORBA IIOP protocol and allows G2 to
communicate with third-party Object Request Brokers.

You specify two port numbers: one used by G2 to communicate with the ORB and
the other used by the ORB to communicate with IIOP clients.

To start the ORB:

 Execute the following command:

g2-corba gsi-port iiop-port

where:

gsi-port is the TCP/IP port through which G2 communicates with the
ORB.

iiop-port is the port through which the ORB communicates with IIOP
clients.

For example:

g2-corba 22041 5998

Note The gsi-port number must match the tcp-ip port number specified in the Gsi-
connection-configuration attribute of the g2orb-orb object in your application.

Once the ORB is running, you are ready to set up and compile the IDL for your
application. For instructions, see Compiling the CORBA IDL.
8

3

Compiling the
CORBA IDL
Describes how to compile CORBA IDL, using the G2 CORBALink compiler.

Introduction 9

The grid.idl File 10

IDL Preprocessor 10

The G2 CORBALink IDL Compiler Workspace 10

Creating a g2orb-orb Object 12

Setting Up the CORBA IDL File 14

Compiling the IDL 15

Updating IDL 16

Introduction
Before you can write a CORBA client or server application, you must compile the
CORBA Interface Description Language (IDL) into G2 object definitions and
methods. CORBA IDL files describe the CORBA interfaces needed by your
application. The G2 CORBALink compiler needs to know the location of these
files.
9

The grid.idl File
G2 CORBALink provides an example IDL file, grid.idl, which defines an
interface named grid that has two read-only attributes, width and height, and an
operation named fetch().

interface grid {
readonly attribute short height; // height of the grid
readonly attribute short width; // width of the grid

// IDL operation

// return element [n,m] of the grid;
long fetch(in short n, in short m);

};

The interfaces specified in IDL depend on the requirements of the application,
which can be much more complex than the example shown here.

IDL Preprocessor
Preprocessors are mostly used with IDL to refer to definitions found in other IDL
files. The preprocessor directives found in most CORBA IDL are #include and
“Include guards” to ensure that files are only included once.

The G2 CORBALink compiler provides limited preprocessor support. G2
CORBALink honors CORBA #include directives and automatically ensures that
files are only included once. If other preprocessor directives are needed, you
should first pass the IDL file through an external preprocessor and then compile
the pre-processed IDL file with G2 CORBALink.

The G2 CORBALink IDL Compiler Workspace
The g2idl module contains the G2 CORBALink IDL Compiler Workspace. This
workspace includes a palette of objects for setting up and compiling CORBA
Interface Description Language (IDL) into G2 object definitions and methods for
your application.
10

The G2 CORBALink IDL Compiler Workspace
To display the IDL compiler workspace:

 Choose Main Menu > Get Workspace > g2-idl-top-level.

2

The objects on this workspace are:

Object Description

The CORBA ORB icon represents a g2orb-orb object. An
Instance of this object creates a link to the CORBA
interface. The attributes of g2orb-orb contain values that
control how the IDL is compiled, as well as the run time
characteristics of the ORB, such as time-out values.

The IDL FILE icon represents a g2orb-file object. An
instance of this object specifies the location of a CORBA
IDL file that contains IDL definitions to be compiled by
the G2 CORBALink compiler. The IDL file has a
connection stub, which is used to connect it to a
g2orb-orb object.
11

The following steps summarize setting up and compiling the CORBA IDL for
your application:

Steps
For details,
see...

1 Clone and configure a g2orb-orb object.

2 Clone and configure one or more g2orb-file objects.

3 Connect IDL file objects to the ORB object and
compile the IDL.

Creating a g2orb-orb Object
Before you can use the ORB, you must create and configure a g2orb-orb object in
your KB.

To create a g2orb-orb object:

1 Create a new workspace to contain the objects needed to support your
application.

2 Choose Main Menu > Get Workspace > g2idl-top-level to display the G2
CORBALink IDL Compiler workspace.

3 Clone a CORBA ORB object from the palette onto the workspace.

For example:

12

Creating a g2orb-orb Object
4 Display the attribute table of the Orb and enter values for the following
attributes:

Attribute Value

names

gsi-connection-
configuration

Specifying the Gsi-Connection-Configuration
Attribute

In the gsi-connection-configuration attribute of the g2orb-orb object, you must
specify the communications protocol and location of the G2 CORBALink process.
This attribute contains an expression that identifies a running G2 CORBALink.
You can specify this attribute in the following format:

tcp-ip host "hostname" port-number tcp-ip-port-number

where:

hostname is the name of the machine on which the g2-corba executable is
running.

tcp-ip-port-number is the port number on which the g2-corba executable is
running.

For example, the following expression specifies a G2 CORBALink process
running on port number 22041 of the local computer (the computer on which G2
is running) and to which this G2 connects through a network connection over the
TCP/IP protocol:

tcp-ip host "localhost" port-number 22041

A unique symbolic name for this Orb.

Note: The Orb must be named or G2 will not
activate a connection.

The network protocol that G2 uses to
communicate with the G2 CORBALink
bridge, specified as:

tcp-ip host "hostname" port-number tcp-ip-
port-number

The tcp-ip-port-number must match the first
port number that was specified to start the
g2-corba executable.

For more information, see Specifying the
Gsi-Connection-Configuration Attribute.
13

In order for G2 to establish a connection to the specified G2 CORBALink, the
gsi-connection-configuration attribute must match:

• The name of the machine that runs G2 CORBALink, or

• The IP address of the machine that runs G2 CORBALink, or

• localhost, a special hostname that represents the local machine, and

• The TCP/IP port number displayed by G2 CORBALink on the command line
when the bridge is started.

Note Be sure to use the ICP TCP/IP port number of the ORB, which is the first
argument in the command line.

Setting Up the CORBA IDL File
The IDL file defines the interfaces and operations for your application that are
used by G2 CORBALink. You create the IDL file of definitions specific to your
application.

G2 CORBALink provides a default IDL file, named grid.idl. For a description of
this file, seeThe grid.idl File.

To set up a CORBA IDL file:

1 Clone an IDL file object from the palette onto the workspace.

For example:

2 Display the attribute table of the IDL file object and specify the value of the
G2orb-file-path attribute as a string containing the full pathname of the IDL
file you want to compile.
14

Compiling the IDL
For example:

Compiling the IDL
Before you compile the IDL, you must connect the IDL file object to the ORB
object on your workspace.

To connect the IDL file to the ORB:

1 Click the connection stub attached to the IDL file.

When you move the mouse, the connection stub follows the cursor.

2 Position the stub directly over the ORB object and click to complete the
connection between the two objects:

For example:

To compile the IDL:

 Choose compile idl from the menu of the Orb object.

The G2 CORBALink compiler begins processing the IDL and creates sample
implementation objects and methods.
15

Log book messages may appear during the compilation process, because the
compiler sometimes creates references to definitions before the actual definitions
are created. You can ignore these messages.

When the compilation is complete, a workspace appears, containing the results.
For example:

This workspace contains:

• The objects that describe the interfaces from the IDL source file, which are
downloaded into the CORBA ORB, enabling it to send and receive requests.

• G2 objects that map the interfaces defined in the CORBA IDL into the G2
object system. Instances of these objects are created to represent CORBA
objects and proxies.

When compilation is complete, a working CORBA server will have been created.
However, it will not do much until you provide the application. For information
see Building a CORBA Server Application.

After the IDL is compiled, you can remove the g2idl module from the list of
required modules of your KB.

Updating IDL
In an ideal world, all interfaces would be specified at the beginning of the project,
carved in stone and never change. Alas, this is not the world that we live in.
Interfaces do sometimes change.

The CORBA IDL may be recompiled. Existing object definitions will be updated
and the changes downloaded into the CORBA interface. G2 does not need to be
reset. When the IDL is recompiled, neither client or server object instances are
lost, nor is the application server or client logic removed.

Since you may modify the implementation class and methods, the compiler will
not modify them once they are created. If these definitions are deleted, the
compiler will re-create default versions.
16

Updating IDL
Interfaces that are no longer defined by the IDL are automatically removed, if
there are no instances of these class definitions. If instances exist, then they are
placed in an area by themselves, away from the other class definitions. When this
occurs, a message appears on the Message Board.
17

18

4

Building a CORBA
Server Application
Describes how to build a CORBA server application.

Introduction 19

Registering Objects 19

Exceptions 20

Return Values 20

Server Classes 20

Introduction
Most of the work involved with creating a CORBA server is done for you by G2
CORBALink. The G2 CORBALink compiler automatically generates default
implementation classes and methods for the CORBA interface and operation.

The default methods are empty, but contain an inform the operator statement that
will show up on the G2 Message Board. Clicking on the message sends you
directly to the operation method.

You must provide the application logic for the operation method and modify the
method as needed. Be careful not to modify the signature of the method.

Registering Objects
Before requests may be invoked on an object, the object must be registered with
the CORBA ORB. This may be done automatically at startup, or done
programmatically with the g2orb-register method.
19

Before registering the object, the g2orb-object-name attribute of the object must be
assigned a unique value. The value must be unique over all objects that share the
same G2 CORBALink interface process.

One G2 CORBALink interface process may be used simultaneously with more
than one G2. G2 CORBALink tracks the location of each registered object and
ensures that no two objects have the same object name.

Exceptions
The server application may throw a user exception by creating an instance of the
exception object and calling the g2orb-throw-exception procedure. The exception
object definition is automatically created by the G2 CORBALink compiler.

Return Values
To prevent memory leaks in CORBA servers, all transient items that are returned
to clients are automatically deleted. Permanent items are not deleted.

Server Classes
A Server or Implementation class implements the behavior of a object that may be
accessed either locally or from a remote system. Methods on a server object are
executed when a remote client calls the corresponding method on a object proxy.
Methods may have parameters that are input, output, or both in and outputs.
Attributes defined in the IDL are also included in server objects.

The compiler generates a default server class. The name of the default server class
is the name of the interface with the suffix -server. This class includes each IDL
attribute and method. The methods are “stubs.” Each method includes:

• The correct signature.

• An “inform the operator” statement.

• A comment that reads “TODO: Put your logic here”.

The developer may modify these methods as needed to implement the logic of the
application.

If the developer needs to add additional attributes to the server object or inherit
from other classes, then a new server class should be created that subclasses from
the class generated by the compiler. This prevents the class from being
overwritten the next time the IDL compiler is run.

It is safe to modify the server methods and re-run the IDL compiler. Delete a
server method to allow the IDL compiler to re-create the default method.
20

Server Classes
Hint An easy way to find the default server method is to click on the logbook message
generated by the default server method and choose go to message origin from the
menu.
21

22

5

Building a CORBA
Client Application
Describes how to build a CORBA client application.

Introduction 23

Specifying an Object Location 24

Co-Residence of Servers and Clients 24

Exceptions 24

Introduction
When you develop a G2 CORBALink application, you use the standard G2
procedure language. Proxy objects are created when needed to represent remote
objects. You may treat these proxy objects as normal objects.

Proxy objects are automatically created when a remote object reference enters G2
as an operation parameter. If an object reference for a local object enters G2, G2
automatically returns a normal G2 object reference for the actual object rather
than create an object proxy.

If a proxy object is created, then a proxy of the proper type will be created. For
example, an application has two interfaces, one called Account and one called
currentAccount, and currentAccount is a subclass of Account. If an operation
returns an object reference of type Account and a currentAccount is actually
returned then, a currentAccount proxy will be created and returned as the result
of the operation. Because a currentAccount is an Account, G2 considers this to be a
valid return type.

When a client application is finished with a proxy, the g2orb-release method
should be called to discard the proxy.
23

Specifying an Object Location
Object locations can be specified by either a Uniform Resource Locator (URL)
format or an Inter-operable Object Reference (IOR) generated by a CORBA ORB.
URLs are a simple way to specify the location of an object. IORs may always be
used, but are not as convenient.

Either a URL or IOR may be entered into the g2-orb-user-ref attribute of a proxy
object. For example, a URL format object location can be specified in the g2-orb-
user-ref attribute of a proxy object as:

“\\ftp.gensym.com:1999\my object”

This refers to an object managed by an Object Request Broker with a IIOP port at
TCP/IP port number 1999 on the system named ftp.gensym.com. The object has
an object key represented by the string “my object”.

Not all CORBA ORBs use a string for object keys. However, G2 CORBALink and
several other popular ORBs do.

After updating the g2-orb-user-ref attribute, either the g2orb-decode-user-ref
method or the parse user ref menu choice must be used before the change is
recognized by G2 CORBALink.

In addition, Object References can be passed from system to system or stored in a
CORBA Name Service.

Co-Residence of Servers and Clients
CORBA hides the location of an object from the application developer. In
addition, G2 CORBALink supports co-residence. If the implementation of a server
object happens to reside in the same G2 as a client, then they are considered to be
co-resident. Normal G2 method calls are used for co-resident operation requests
and the overhead of a remote request over the network is avoided.

This is accomplished by using the actual implementation object rather than an
object proxy for object references that refer to local objects.

Exceptions
If a method call on a remote CORBA object returns or throws an exception, G2
CORBALink converts this exception to a G2-error object. The G2 application may
catch the error object with a “on error” statement, or it may allow the default error
handler to display a message on the operator log book.
24

Exceptions
There are two types of exceptions:

• System exceptions

• User exceptions

System Exceptions are defined in the CORBA standard and are generated by G2
CORBALink or the remote ORB.

User Exceptions are defined in IDL. The G2 CORBALink compiler will generate a
G2 error class definition for each User Exception defined in the IDL.

CORBA servers written in G2 may return a User Exception to a caller by creating
an instance of a User Exception object and calling the g2orb-throw-exception
method.
25

26

6

CORBA Objects and
Data Structures
Describes G2 CORBALink objects and data structures.

Introduction 27

Proxy Class 29

Server Class 30

Interface Class 31

g2orb-irobject 31

g2orb-interface-parms 31

g2orb-orb 32

g2orb-file 36

Introduction
G2 CORBALink provides predefined classes that G2 can use to represent remote
objects and encapsulate information that G2 needs to communicate with remote
clients and servers. The sections in this chapter describe each of the classes and
their attributes.
27

The following table summarizes these classes:

Class Description

proxy

server

interface

g2orb-irobject

g2orb-interface-parms

g2orb-orb

g2orb-file

The IDL Compiler creates a proxy class for each
interface defined in IDL. Methods are defined for
each IDL operation. Instances of these objects are
proxies to remote server objects.

The IDL Compiler creates a server class for each
interface defined in IDL. The compiler generates
default methods for each IDL operation, which you
may override.

The IDL compiler creates a interface class for each
interface defined in IDL. This class is abstract and no
instances of this class may be created. However, both
the proxy class and the server class are derived from
it.

The G2 CORBALink compiler creates a set of g2orb-
irobject object instances to represent application
interfaces.

An instance of a g2orb-interface-parms object is
created by the G2 CORBALink compiler for each
interface defined by the IDL. This object holds
information about the interface.

The g2orb-orb object represents a CORBA ORB. It
holds configuration parameters for the Object
Request Broker.

The g2orb-file object represents a CORBA IDL file. It
hold the location of the IDL file that is compiled for
your CORBA application.
28

Proxy Class
Proxy Class
G2 CORBALink client applications use instances of the g2orb-proxy class to
represent remote objects. The proxy class definition is automatically created by
the CORBA compiler. Methods on this class are created for each IDL operation.
These methods redirect the operation over the network to the CORBA object.

You may create a subclass of the proxy class created by the compiler and override
the logic used to redirect operation calls.

You may specify the location of the object that will be the target of operation
requests as either a CORBA IOR or a URL.

The name of the proxy class is the interface name with -proxy appended.

This is the attribute of g2orb-proxy:

Attribute Description

g2orb-user-ref

Allowable values:

These are the user menu choices for instances of g2orb-proxy:

Menu Choice Description

deregister

register

ping

show-ior

Specifies an object location, using either an
IOR or a URL.

For more information, see Specifying an
Object Location.

Text string

Calls g2orb-deregister to unregister the proxy
object with the ORB.

Calls g2orb-register to register the proxy
object with the ORB.

Calls g2orb-ping to verify the existence of the
remote object.

Generates an Interoperable Object Reference
(IOR) for the object. This may be used in a
remote proxy or by another CORBA ORB.
29

Server Class
The IDL compiler creates a server class for each interface defined in IDL.
Instances of this class are “servers” that may be accessed by remote object proxies.

The IDL compiler creates default methods for each IDL operation. These methods
should be modified as needed. You can also create subclasses to add additional
non-IDL attributes.

The name of the Server Class is the name of the interface class with -server
appended.

This is the attribute of a server object:

Attribute Description

 g2orb-object-name

Allowable values:

Notes

These are the user menu choices of a Server object:

Menu Choice Description

deregister

register

show-ior

Name of the server object, which must be
unique.

Text string

This text value is referred to by the g2orb-
user-ref attribute of the proxy object.

Calls g2orb-deregister to unregister the object
with the ORB. This is not normally needed.

Calls g2orb-register to register the object with
the ORB.

Generates an Interoperable Object Reference
(IOR) for the object. This may be used in a
remote proxy or by another CORBA ORB.
30

Interface Class
Interface Class
The Interface class is a abstract class that is generated by the IDL compiler for
each interface defined in IDL. All objects, either clients or servers that implement
the given IDL interface are subclasses of this class. User applications may use the
interface class in method signatures to refer to a object that provides the needed
interface without caring if the object is local or remote.

The name of the interface class is derived from the name of the g2orb-orb object
and the interface name.

g2orb-irobject
The G2 CORBALink compiler creates a set of g2orb-irobject object instances to
represent application interfaces. This data structure is then compiled into G2
language definitions and is also downloaded into the Object Request Broker. This
data structure is based on the Interface Repository data structure defined in the
CORBA specification. However, G2 CORBALink 1.0 does not expose the interface
repository to user applications.

g2orb-interface-parms
The G2 CORBALink compiler creates an instance of a g2orb-interface-parms
object for each interface defined by the IDL. The attributes of this object contain
information about the compiler-generated interface.

These are the attributes of a g2orb-interface-parms object:

Attribute Description

g2orb-interface Name of the interface definition class.

Allowable values: Symbolic class name

g2orb-proxy-class Name of the proxy class associated with this
interface.

You may define a subclass of this class and
enter that class name here.

Allowable values: Symbolic class name
31

g2orb-orb
The g2orb-orb object represents a CORBA ORB. It holds configuration parameters
for the Object Request Broker.

These are the attributes of a g2orb-orb object:

g2orb-abs-name The Interface Repository ID as specified by
CORBA. It includes the interface name and
version.

Allowable values: Text string

g2orb-repository-id Identification information used internally by
G2CORBA-Link.

Notes Do not modify this value.

Attribute Description

Attribute Description

names Unique name of the g2orb-orb object.

Allowable values: Symbolic object name

Notes: The Orb must be named or G2 will not
activate a connection.

gsi-connection-
configuration

Specifies the network protocol that G2 uses
to communicate with the bridge. The CORBA
interface can reside on a different system. For
more information, see Specifying the Gsi-
Connection-Configuration Attribute.

Allowable values: tcp-ip host "hostname" port-number tcp-ip-
port-number

Default value: none
32

g2orb-orb
gsi-interface-status A value displayed by the bridge to indicate
the current status of the connection between
the bridge and the G2 application.

Allowable values: 2 (OK) - The connection has been made and
is active.

1 (Initializing) - The external system is being
initialized. When G2 receives this code, it
refrains from sending messages to the bridge
until it receives the OK code (2).

0 (Inactive) - The connection is disabled or
inactive.

-1 (Timeout) - The connection has been timed
out because G2 has not heard from the bridge
within the time specified by the Interface-
timeout-period attribute.

-2 (Error) - An error has occurred, and the
connection is broken.

Notes: This read-only attribute is automatically
updated by G2 after each transmission
between G2 and G2 CORBALink.

g2orb-include-search-
path

A list of the directories that the pre-processor
should search when it encounters a #include
file command.

Allowable values: A text string containing any valid directory
or directories, or a null list (““). Multiple
directories must be separated by commas.

Attribute Description
33

g2orb-idl-connection-
timeout

A number of seconds after which the ORB
drops IIOP connections on which there has
been no activity.

The ORB automatically reestablishes a
dropped connection when it is needed for an
operation request.

Allowable values: 0 (prevents the ORB from dropping idle
connections), or any other positive value

Default value: 300 seconds

g2orb-connect-
timeout

The number of seconds the ORB waits before
aborting an attempt to establish a connection.

Allowable values: Any positive value

Default value: 15 seconds

g2orb-client-request-
timeout

The number of seconds that the ORB waits
before aborting a remote request before
returning a system exception.

Allowable values: 0 (causes the ORB to wait indefinitely), or
any other positive value

Default value: 120 seconds

g2orb-server-request-
timeout

The number of seconds that the ORB waits
for G2 to finish a request from a remote
system before returning a system exception.

Allowable values: 0 (Causes the ORB to wait indefinitely)

Any other positive value

Default value: 60 seconds

Attribute Description
34

g2orb-orb
g2orb-register-
objects-on-startup

If set to true, g2orb-register-objects is called
by g2orb-init-orb when a connection is
established with the CORBA interface. This
automatically registers all CORBA objects in
the KB with the interface.

Allowable values: true or false

Default value: true

g2orb-prefix Specifies a prefix that the CORBA compiler
prefixes to all global objects generated by the
CORBA compiler to prevent name collisions.

Allowable values: Any text string

Default value: “INT”

g2orb-init-procedure Specifies the procedure called when G2
establishes a connection with the CORBA
interface.

Allowable values: The name of a G2 procedure (symbol)

Default value: g2orb-init-orb

g2orb-object-loader The name of a user-provided procedure that
handles requests on unknown objects.

Allowable values: The symbolic name of any user-provided G2
procedure

Default value: none

g2orb-principal Specifies a user name when an external ORB
is communicating with a secured application.

Allowable values: Any text string

Attribute Description
35

The following table lists the user menu choice of g2orb-orb objects:

Menu Choice Description

compile idl

g2orb-file
A g2orb-file object represents the IDL file that you compile to create your CORBA
application. You create a g2orb-file object by cloning the CORBA IDL file object,
which is on the G2 CORBALink IDL Compiler workspace.

This is attribute of g2orb-proxy whose value you must provide:

Attribute Name Description

g2orb-file-path

• The full, absolute pathname of the file, or

• The filename.

You connect this object to the g2orb-orb object, using the connection stub.

For instructions on connecting and compiling the IDL file, see Compiling the
CORBA IDL.

Compiles the user IDL code in the CORBA
IDL file object (g2orb-file) connected to the
g2orb-orb object.

The location of the IDL file as a text string.

The default is an empty string (““).

You can specify either:

If you specify only the filename, G2
CORBALink looks for a file with this name in
the directories that you specify in the G2orb-
include-search-path attribute of the g2orb-orb
object.
36

7

Advanced Topics
Describes advanced techniques for using G2 CORBALink.

Introduction 37

Smart Proxies 37

Object Loaders and Locators 38

Private Objects 39

Introduction
This chapter describes the following advanced topics:

• Smart Proxies

• Object Loaders and Locators

• Private Objects

Smart Proxies
For some applications, it is desirable to satisfy some operations locally rather than
remotely. Improved performance can result from performing some operations
locally, rather than redirecting all operation requests over the network. To do this,
you can use a smart proxy. A smart proxy overrides the behavior of the default
proxy object generated by the compiler.
37

To create a smart proxy:

1 Create a subclass of the default proxy class and override the methods needed
for the application.

2 Include a call next method statement in the method to allow a request to
continue across the network.

3 Indicate to G2 CORBALink that this proxy class should be used instead of the
default proxy class for object references that enter G2 for this interface by
updating the g2orb-proxy-class attribute of the g2orb-interface-parms object
for this interface.

Object Loaders and Locators
If an operation request arrives at a CORBA ORB for an object that is unknown to
it, the ORB may do one of three things:

1 Forward the request to a different location.

2 Create an object and allow the request to continue.

3 Refuse the request and return a system exception to the client

A CORBA server that uses the first option is known as a Locator, or a server that
knows the location of other objects. It is also used to allow objects to migrate from
one location to another.

The second approach calls a user defined function known as an Object Loader.
The Object Loader may retrieve the state of an object from a persistent storage
device, such as a database, and allow the request to continue. As a result, not
every object needs to reside in memory at the same time and very large and
scalable applications may be built.

You may control what is done with attempts to access unknown or unregistered
objects by writing an object loader procedure and specifying the name of the
object loader in the G2orb-object-loader attribute of the g2orb-orb object. If this
value other than the symbol none, then the procedure by this name will be called
for each request on an unknown object.

If more than one G2 shares a G2 CORBALink interface, then the loader for each
G2 is called on a round-robin basis. This allows several G2 servers to cooperate
for building large, scalable applications. With this approach, the processing load
is evenly spread across all available G2 systems and the total throughput of the
system may be increased by adding additional G2 application servers. In
addition, if some G2 servers go off-line, the total capacity of the overall system is
decreased, but the functionality of the system is not necessarily impaired.
38

Private Objects
The signature of the object loader is as follows:

my_object_loader_name
(object-key: text, connection-id: integer)
-> (symbol, ref: text)

The object-key is a text identifier for the unknown object that was included in the
operation request. Since not all object keys are text, binary object keys are
converted to Hex, if they contain any non-printable characters.

The procedure may do one of the following:

• Return the symbol reject. In this case G2 CORBALink rejects the request.

• Return the symbol forward and a new object reference. In this case
G2 CORBALink forwards the request to the new object reference. The client
uses the new object reference for future requests.

• Create, register a new implementation object, register it with g2orb-register(),
and return the symbol new-object. In this case G2 CORBALink continues
processing the operation.

• Create a new implementation object, register it with the g2orb-register-
private() procedure, and return the symbol private-object. In this case, G2
CORBALink continues processing the operation, but the object is only visible
over the connection that generated the request.

Private Objects
Consider the case of an application that has a large number of objects that reside
in a persistent storage, such as a database. As requests come from remote systems,
the objects are pulled from the database. The application may provide commit
and rollback operations that will end a transaction and restore the state of the
object back to the database. However, if the client program aborts without ending
the transaction, the server has no way to know, other than a time-out, that the
client has aborted.

If the object is registered as a private object, then it is only visible to requests that
come over a given connection. If the connection is broken for any reason, the ORB
will reregister all private objects for that connection and call the g2orb-finalize()
method on the object. The default behavior of the g2orb-finalize() method is to
delete the implementation object.

A given implementation object may be registered as private on more than one
connection. In this case, the g2orb-finalize() method will not be called until every
connection that the object is registered on ends. The application may call g2orb-
deregister on a private object to unregister the object on all connections.

G2 CORBALink automatically closes idle connections. The length of time that a
connection remains idle before a connection is closed is controlled by the G2orb-
39

idle-connection-timeout attribute of the g2orb-orb object. Setting this value to 0
will disable idle connection time-outs.
40

8

API Reference
Describes the API of G2 functions provided with G2 CORBALink.

Introduction 42

Initialization 43
g2idl-compile 44
g2orb-download-ir 45
g2orb-init-bridge 46
g2orb-init-orb 47

Object Registration 48
g2orb-deregister 49
g2orb-register 50
g2orb-register-objects 51
g2orb-register-private 52
g2orb-release 53

Exception Management 54
g2orb-throw-exception 55

Object Reference Manipulation 56
g2orb-decode-user-ref 57
g2orb-object-to-string 58
g2orb-objref-to-obj 59
g2orb-obj-to-objref 61
g2orb-ping 62
g2orb-string-to-object 63

41

Introduction
This chapter divides the Application Programmer’s Interface (API) to
G2 CORBALink into the following functional categories:

• Initialization

• Object Registration

• Exception Management

• Object Reference Manipulation
42

Initialization
Initialization
This section describes the API methods and procedures used to programmatically
compile and initialize G2 CORBALink:

• g2idl-compile

• g2orb-download-ir

• g2orb-init-bridge

• g2orb-init-orb
43

g2idl-compile
Compiles a user IDL file.

Synopsis

g2idl-compile
(orb class:g2orb-orb, window: class g2-window)

Argument Description

Description

This procedure compiles the user IDL code in the g2orb-file object connected to
the specified orb.

The compile idl user menu choice of a g2orb-orb object calls this procedure. This
procedure is not called by user code.

orb The g2orb-orb object that is connected to the
g2orb-file object containing the IDL that you
want to compile.

window The G2 window used to display messages.
44

g2orb-download-ir
g2orb-download-ir
Downloads the interface definitions into the ORB.

Synopsis

g2orb-download-ir
(object: class g2orb-orb)

Argument Description

object

Description

Interface definitions must be downloaded into the ORB before objects are
registered, or remote operation requests are received or issued. The definitions
may be updated at any time.

The default initialization routine of the ORB, g2orb-init-orb, calls this procedure.
You do not need to call g2orb-init-orb explicitly, unless you write a customized
initialization routine in place of g2orb-init-orb.

The ORB into which interface definitions are
downloaded.
45

g2orb-init-bridge
Verifies the version of the interface executable and sets interface configuration
options.

Synopsis

g2orb-init-bridge
(orb: class g2orb-orb)

Argument Description

orb

Description

g2orb-init-bridge is called by g2orb-init.

The default initialization routine of the ORB, g2orb-init-orb, calls this procedure. It
is not normally necessary to call this procedure directly from your application.

The ORB being initialized.
46

g2orb-init-orb
g2orb-init-orb
Initializes the CORBA ORB.

Synopsis

g2orb-init-orb
(object: class g2orb-orb)

Argument Description

object

Description

This is the default initialization procedure that is called whenever the g2orb-orb
object establishes a connection with the ORB executable.

g2orb-init-orb calls the following procedures:

• g2orb-init-bridge

• g2orb-download-ir

• g2orb-register-objects

Optionally, you can create a custom initialization procedure to use in place of
g2orb-init-orb and specify it name in the g2orb-init-procedure attribute of the
g2orb-orb object.

Example

The following G2 procedure, my-init-routine, calls g2orb-init-orb and then specifies
additional steps to follow after the ORB in initialized:

my-init-routine(G: class g2orb-orb)
begin

call g2orb-init-orb(G);
{ place additional steps here}

end

The ORB to be initialized.
47

Object Registration
This section describes the API methods and procedures used to programmatically
register and unregister G2 CORBALink objects:

• g2orb-deregister

• g2orb-register

• g2orb-register-objects

• g2orb-register-private

• g2orb-release
48

g2orb-deregister
g2orb-deregister
Unregisters either an object implementation or proxy object.

Synopsis

g2orb-deregister
(object: class g2orb-corba-object)

Argument Description

Description

Before you delete an implementation object, call this method to unregister that
object. If a client tries to access a deleted implementation object that has not be
unregistered, the client receives a system exception.

You can also use g2-orb-deregister to unregister private objects on all connections.
For information about private objects, see Private Objects.

object The object to be unregistered.
49

g2orb-register
Registers either an object implementation or proxy object.

Synopsis

g2orb-register
(object: class g2orb-corba-object)

Argument Description

object

Description

You do not need to invoke this procedure explicitly. A proxy object is
automatically registered the first time an operation is performed on the proxy
object. Implementation (server) objects are automatically registered at startup
time if the g2orb register objects on startup attribute of the g2orb-orb object is set
to true.

The object to be registered.
50

g2orb-register-objects
g2orb-register-objects
Registers all implementation objects for a given ORB.

Synopsis

g2orb-register-objects
(object: class g2orb-orb)

Argument Description

object

Description

This procedure is called by the default orb initialization routine. It is not normally
necessary to include other calls to this function in your application.

If the g2orb-register-object on startup attribute of the g2orb-orb object is set to
true, g2orb-register-objects looks at every implementation object in the KB and
calls g2orb-register to register each object for this ORB.

The ORB whose implementation objects are
to be registered.
51

g2orb-register-private
Registers a private implementation object to be visible to a client on a given
connection.

Synopsis

g2orb-register-private
(object: class g2orb-server, connection-id: integer)

Argument Description

object

connection-id

Description

Private objects are available only for the particular connections on which they are
registered.

The g2orb-register-private procedure is called from an Object Loader. For
information about object loaders, see Object Loaders and Locators.

When all connections associated with a private object are closed, the g2orb-
finalize method is called for the object. The default behavior of this method is to
delete the object.

The private object that is registered.

The ID of the connection on which the
private object is registered.
52

g2orb-release
g2orb-release
Called by a client application when it is finished with an object reference.

Synopsis

g2orb-release
(object: class g2orb-corba-object)

Argument Description

object

Description

This method unregisters and deletes a proxy object. Deleting a proxy object
without first unregistering it can cause a memory leak in your ORB. For this
reason, always call g2orb-release to delete proxy objects.

In the case of a co-resident client and server, the object is an implementation
object and g2orb-release does nothing.

For information about how to build client applications, see Building a CORBA
Client Application.

The object that is released.
53

Exception Management
This section describes the API methods and procedures used to programmatically
manage exceptions:

• g2orb-throw-exception
54

g2orb-throw-exception
g2orb-throw-exception
Provides a way for CORBA servers to return a user exception to the client.

Synopsis

g2orb-throw-exception
(exception: class g2orb-exception)

Argument Description

exception

Description

Applications can create an instance of a user-defined exception class and call the
g2orb-throw-exception method to cause a signal to be thrown. g2orb-throw-
exception does not return to the caller.

An object definition is created by the IDL compiler for each user-defined
exception described in the IDL.

The exception thrown.
55

Object Reference Manipulation
This section describes the API methods and procedures used to programmatically
manipulate G2 CORBALink object references:

• g2orb-decode-user-ref

• g2orb-object-to-string

• g2orb-objref-to-obj

• g2orb-obj-to-objref

• g2orb-ping

• g2orb-string-to-object
56

g2orb-decode-user-ref
g2orb-decode-user-ref
Decodes the g2orb-user-ref attribute of a proxy object.

Synopsis

g2orb-decode-user-ref
(object: class g2orb-proxy)

Argument Description

object

Description

This method decodes the g2orb-user-ref attribute of a proxy object so that
operations may be invoked on the proxy. You must call g2orb-decode-user-ref
whenever the g2orb-user-ref attribute receives a new value.

Note If the G2orb-user-ref attribute of a proxy object is changed manually, g2orb-
decode-user-ref will be called automatically by G2. However, if the attribute
value is changed programmatically by a procedure, g2orb-decode-user-ref must
be called to ensure that the change takes effect.

The proxy object.
57

g2orb-object-to-string
Returns a standard CORBA Inter-operable Object Reference (IOR) for an
implementation object.

Synopsis

g2orb-object-to-string
(object: class g2orb-server)
-> text

Argument Description

object

Return Value Description

text

Description

IORs are part of the CORBA standard. Other CORBA ORBs are able to read the
return value of this method to generate a reference for a G2 CORBA object.

An IOR may be cut and pasted into another program, written to a file, or sent in
an email message.

The implementation object.

The Inter-operable Object Reference (IOR) for
an implementation object.
58

g2orb-objref-to-obj
g2orb-objref-to-obj
Converts a text object reference into a client or server object.

Note This method has two forms: one is a method of g2orb-orb, and the other is a
method of g2orb-interface-parms.

Synopsis

g2orb-objref-to-obj
(orb: class g2orb-orb, id: text)
-> proxy: class g2orb-corba-object

g2orb-objref-to-obj
(params: class g2orb-orb, id: text)
-> proxy: class g2orb-corba-object

Argument Description

orb

params

g2orb-interface-interface-class-name

id

Return Value Description

proxy

A reference to an ORB object.

A reference to a g2orb-interface-parms for
the interface that the object reference is
expected to satisfy. A g2orb-interface-parms
object is created by the G2 CORBALink
compiler for each defined IDL interface. The
g2orb-interface-parms object is given a
name in the form:

The text object reference. This object
reference may be imbedded as an attribute
of a structure or a member of a sequence,
union, or array. g2orb-objref-to-obj is
automatically called for object references
that are arguments of operations.

The proxy object or implementation object.
59

Description

The G2 language mapping for object references takes two forms:

• Item mapping for references that appear in the signature of a IDL operation.

• Value mapping for references that are imbedded in sequences, structures or
unions.

This was done to simplify memory management, since values automatically
reclaim storage when they are no longer needed and items allow methods to be
called.

The g2orb-objref-to-obj and g2orb-ref-to-objref methods provide a way to convert
back and forth between these two forms of language mapping.

An objref is similar to a IOR, but includes additional information that greatly
speeds the conversion between text and item representations of object references.

This method converts a text object reference into a proxy or implementation
object. This must be done before operations may be invoked on an object
reference. If the object is local, the implementation object is returned. Otherwise,
an object proxy is created.

The object reference may implement an interface that is more specific than the one
indicated by the g2orb-interface-parms object. In that case, if the interface is
known to the ORB, then a proxy for that class will be used. If the IDL for the more
specific interface is not available, then the interface specified by the g2orb-
interface-parms object will be used. If the interface specified by the object
reference is known by the ORB and is not a subclass of the interface specified by
the g2orb-interface-parms object, an error is signaled.

Note g2orb-objref-to-obj does not verify the existence of remote objects. Use g2orb-ping
to determine if a remote object is accessible.

This method performs the inverse of the g2orb-obj-to-objref method.
60

g2orb-obj-to-objref
g2orb-obj-to-objref
Converts a reference to a client or server object to a text object reference.

Synopsis

G2orb-obj-to-objref
(object: class g2orb-corba-object)
-> text

Argument Description

object

Return Value Description

text

Description

This is the inverse of the g2orb-objref-to-obj method. See the description of g2orb-
objref-to-obj on for more information

Reference to either a client or a server
CORBA object

A text reference to the object.
61

g2orb-ping
Verifies the existence of a remote object.

Synopsis

g2orb-ping
(object: class g2orb-corba-object)
-> symbol

Argument Description

object

Return Value Description

symbol

Description

This method sends a locate message to the remote object, and returns a value
indicating whether it verified the existence of the object.

g2orb-ping follows location-forwarding messages if the object has been moved to
a new location or if a locator is used.

The remote object whose existence is being
verified.

One of the following values:

SUCCESS, if the object is found.

UNKNOWN OBJECT, if the object is not
found.

COMM-FAILURE, if the server on which the
object resides cannot be found.
62

g2orb-string-to-object
g2orb-string-to-object
Converts a standard CORBA Inter-operable Object Reference (IOR) to a proxy or
implementation object.

Synopsis

g2orb-string-to-object
(orb: class g2orb-orb, ior: text)
-> proxy: class g2orb-corba-object

Argument Description

orb

ior

Return Value Description

proxy

Description

If the object referred to by the IOR is a remote object, then a proxy for the object is
created and returned. If the object is a local object, then the implementation object
is returned.

The g2orb-orb object to which the ior refers.
For information about objects of this class,
see g2orb-orb.

The Inter-Operable Object Reference.

The resulting converted proxy object or
implementation object.
63

64

9

Language Mapping
Describes the mapping between G2 and IDL.

Introduction 65

IDL Primitive Types 66

Interfaces 70

Operations 72

Attributes 73

Object References 73

IDL Type to G2 Language Mapping 74

Introduction
The way that IDL compiler translates IDL into a target language is described by
the language mapping for that language. G2 CORBALink 1.0 takes advantage of
several new language features that are available in G2 version 5.0 and later.

G2 5.0 introduces two new types to the G2 class hierarchy:

• Structures

• Sequences

These language features allow all CORBA IDL types to map into G2 value types
and do not require special efforts to reclaim memory passed as arguments in
CORBA operations. This language mapping has the following characteristics:
65

• Any instance of an object that implements a CORBA interface will satisfy a G2
“is-a” test for the interface.

• Any proxy object will satisfy a G2 “is-a” test for it’s interface.

• User procedures may use “class interface-name” to hold a reference to an
object without knowing if the object is local or remote.

• User procedures may use the “is a g2orb-proxy” to test if an object reference is
remote or “is a g2orb-server” to test if an object reference is local.

• IDL inheritance and multiple-inheritance are supported.

• More than one implementation class may be defined for a given interface.

• Additional implementation attributes that are not defined in the interface may
be added to implementation classes.

• Implementation objects may also subclass from non-CORBA classes in
addition to the skeleton class.

• The work required to implement a CORBA client or server in G2 is
minimized.

The full details of IDL are outside the scope of this document. The full
specification may be found at the following Web site:

http://www.omg.org

IDL Primitive Types
The following table describes the mapping of IDL primitive types to G2:

IDL Type G2 Type

short (16 bit) integer

unsigned short (16 bit) integer

long (32 bit) quantity

long long (64-bit) quantity

unsigned long (32 bit) quantity

float (IEEE single precision) float

double (IEEE double precision) float

char text

octet (8 bit) integer
66

IDL Primitive Types
The G2 type quantity is a super type that includes both G2 integers and G2 floats.
G2 integers are 30 bit values. IDL Long values that fall into the valid range of a G2
integer are represented in G2 as integers. IDL Long values that fall outside this
range are represented in G2 as a G2 float.

Representing Long Long Data Types

Because the resolution of G2 integers is 30 bits and the long long data type
requires 64-bit resolution, the G2 representation of a long long is a sequence of
4 integers with values between 0 and 65,535.

Here are some examples of converting in both directions between long long data
types and sequences of 16-bit integers where each integer has a value between 0
and 65,535. The least-significant 16 bits of the 64-bit long long or unsigned long
long are in the first position of the sequence, the next 16 bits are in the second
position, and so on.

Representing Unsigned Long Long Data Types

To represent unsigned long long and non-negative (signed) long long types:

1 Convert the number to hexadecimal.

2 Break the results into groups of 4 digits.

3 Convert each of the 4-digit hexadecimal numbers to integers.

4 Construct a sequence of these integers with the least-significant integer first.

For example, to represent 5,000,000,000,000,000,000 as a sequence:

1 5,000,000,000,000,000,000 = 0x4563918244F40000

2 The 4 hexadecimal numbers are 4563, 9182, 44F4, and 0000

3 The decimal values of these numbers are 17763, 37250, 17652 and 0

4 The G2 representation of 5,000,000,000,000,000,000 is:

sequence(0, 17652, 37250, 17763)

To represent 87,000,000,000 as a sequence:

1 87,000,000,000 = 0x14419AA600

2 The 4 hexadecimal numbers are 0000, 0014, 419A, A600

3 The decimal values of these numbers are 0, 20, 16794, 42496

string text

boolean truth-value

IDL Type G2 Type
67

4 The G2 representation of 87,000,000,000 is:

sequence(42496, 16794, 20, 0)

Representing Negative Long Long Data Types

To represent negative long long types:

1 Convert the absolute value of the number to hexadecimal.

2 Reverse each bit in the result. This is equivalent to subtracting the result from
FFFFFFFFFFFFFFF or each digit from 15 decimal.

3 Add one to the result.

4 Break the results into groups of 4 digits.

5 Convert each of the 4-digit hexadecimal numbers to integers.

6 Construct a sequence of these integers with the least-significant integer first.

This example shows how to find the G2 representation of a long long -20:

1 The long long hexadecimal representation of positive 20 is
0x0000000000000014

2 0xFFFFFFFFFFFFFFFF - 0x0000000000000014 = 0xFFFFFFFFFFFFFFEB

3 0xFFFFFFFFFFFFFFEB + 1 = 0xFFFFFFFFFFFFFFEC

4 The four hexadecimal numbers are FFFF, FFFF, FFFF, and FFEC

5 The equivalent decimal numbers are 65535, 65535, 65535, and 65516

6 The G2 representation of a long long -20 is:

sequence(65516, 65535, 65535, 65535)

This example shows how to find the G2 representation of a long long
-5,000,000,000,000,000,000

1 The hexadecimal representation of positive 5,000,000,000,000,000,000 is
0x4563918244F40000.

2 FFFFFFFFFFFFFFFF
- 4563918244F40000

BA9C6E7DBB0BFFFF

3 BA9C6E7DBB0BFFFF + 1 = BA9C6E7BBB0C0000

4 The four hexadecimal numbers are BA9C, 6E7B, BB0C, and 0000.

5 The equivalent decimal numbers are 47772, 28285, 47884, and 0.

6 The G2 representation of -5,000,000,000,000,000,000 is:

sequence(0, 47884, 28285, 47772)
68

IDL Primitive Types
Calculating the Value of Unsigned Long Long Data Types

The following algorithm shows, in general terms, how to calculate the value
represented by an unsigned long long returned to G2. Suppose you put the
elements of an unsigned long long sequence in the integer array els[4] and the
data type huge is capable of holding the maximum value of an unsigned
long long.

huge g2ToULongLong(int els[4])

{
huge accumulator = 0 ;
inti ;
for (i = 3 ; i >= 0 ; i--)

{
// Equivalent to shifting the accumulator
// up by 16 bits (accumulator << 16)
// =========================
accumulator = accumulator * 65536 ;
accumulator = accumulator + els[i] ;

}
return accumulator ;
}

For signed long longs, if huge were replaced by long long in the above algorithm,
if long long held 64-bit values, and if negative numbers were represented using
two’s complement, then the above algorithm would correctly translate signed
long longs.

Suppose the huge data type could hold a large value, for example, 128-bit values,
and you wanted to translate a signed long long. Then:

• You would know the array represented a negative number if
els[3] >= 32,768.

• You could find the absolute value of the represented number by following the
above algorithm and subtracting the results from 0x10000000000000000
(2**64).

For example, suppose sequence(0, 47884, 28285, 47772) represents a signed
long long. To determine what number it represents:

1 Since 47772 >= 32768, we know it represents a negative number.

2 Following the algorithm above gives a result equivalent to:

65536 * (65536 * ((65536 * 47772) + 28285) + 47884) + 0 =
13,446,744,073,709,551,616
69

3 2**64 = 18,446,744,073,709,551,616

18,446,744,073,709,551,616
- 13,446,744,073,709,551,616

5,000,000,000,000,000,000

In other words, sequence (0, 47884, 28285, 47772) represents
-5,000,000,000,000,000,000.

Now suppose sequence(0, 47884, 28285, 47772) represents an unsigned long
long. You calculate its value, using the same formula used in step 2, above. The
value is 13,446,744,073,709,551,616.

Interfaces
IDL Interfaces are mapped to the following G2 class definitions:

Class Definition

interface

proxy

server

The interface class is created without attributes. It
is an abstract class that is used in method
signatures to represent an object that implements
the IDL interface. This class is a subclass any base
classes, if any, or g2orb-corba-object if there are
no base classes. The name of the interface class is
the absolute name of the interface.

The proxy object represents a client to an object
that implements the interface. The name of the
default proxy class for an interface is the absolute
name of the interface with -proxy appended.
Method calls on an instance of this object are
redirected over the network to the object
implementation. The proxy class is a subclass of
the interface class and g2orb-proxy.

The server class is used to represent server
objects. The name of the server class is the
absolute name of the interface class with -server
appended. The server class includes attributes
defined in the IDL definition of the interface.
70

Interfaces
For example, the following figure illustrates the class hierarchy of the object
definitions created for the “grid” IDL interface:

g2orb-server

g2orb-corba-object

g2orb-proxy

int.grid

int.grid-proxyint.grid-server

This means that:

• g2orb-corba-object refers to any CORBA object, either client or server.

• g2orb-server refers to any CORBA server object.

• g2orb-proxy refers to any CORBA client object.

• int.grid refers to any grid object, either client or server.

The IDL compiler generates a total of three object definitions for each IDL
interface. For example, the class definitions of the “grid” IDL interface are:

Class Description

int.grid This is a abstract class that allows an
application to refer to any object that
implements the “grid” IDL interface, either
client or server.

Instances of this object class may not be
created.
71

Operations
CORBA Operations are mapped into G2 as methods. Methods are defined for:

• Proxy class

• Server class

Methods on the Proxy class will redirect the operation over the network.
Methods on the Server class will represent the server side functionality of the
operation.

int.grid-server This class is a object that implements the
“grid” server. The compiler will generate
empty stubs for each method defined in the
IDL.

The user may modify these definitions as
needed. Also, the class may be subclassed if:

• The user application needs more than one
object class that implements the given
interface.

• Additional attributes are needed for the
objects that are not in the IDL interface.

int.grid-proxy This class is a client or proxy for a remote
object. The compiler will generate methods
for each method defined in the IDL. These
methods will forward the method call to the
remote object.

This object may be subclassed if there is a
need to add more complex behavior, such as
caching of recently accessed values. This is
known as a CORBA smart proxy.

Class Description
72

Attributes
Attributes
Attributes are implemented as get and set methods. The names of the
methods are:

• get-orb-name

• set-orb-name

where:

name indicates the name of the attribute. Set methods are not created if the
attribute is read-only.

Object References
Mapping object references into G2 depends on whether the object reference
appears in an operation signature. Two mappings are used to minimize the effort
required to avoid memory leaks.

If the object reference appears in an operation signature, then the object reference
is mapped into a G2 object reference, either to an implementation object or a
proxy object. Each time an object reference enters G2 from the Orb, it is checked to
see if the object that it represents resides in this G2 memory space.

• If the object does reside in the memory space, then a reference to the object
implementation is used. In either case, operations may be invoked on the
object by calling the corresponding method.

• If the object implementation resides in the same memory space as the client,
then the operation is invoked with no overhead. Otherwise, the operation will
be redirected over the network.

If the object reference does not appear as a parameter of an operation, then the
object reference is represented as a value. This would occur if the object reference
is passed as a member of a structure, a union, a sequence, or an array element. The
method g2orb-objref-to-obj will convert the value into an implementation or
proxy. This must be done before an operation may be invoked on the object
reference

To delete an object reference that appears in a signature, the g2orb-release
method must be called on the object reference. Object references that do appear in
the operation signature are represented as values and do not require special
memory management. When the object reference goes out of scope, it will be
removed without special action.
73

IDL Type to G2 Language Mapping

Enumerated Types

IDL enumerated types are mapped to G2 symbols.

Structures

Each IDL structure is mapped to a G2 structure. The name of the G2 structure
member is the name of the IDL structure member prefaced with “orb-“. The prefix
ensures that attribute names will not collide with G2 reserved words.

An additional structure member is provided for each G2 structure. It has the
name, g2orb-structure-name, and contains a symbolic name of the structure.

Sequences

Each IDL sequence is mapped to a G2 sequence.

Arrays

Each IDL array is mapped to a G2 sequence.

Unions

Each IDL union is mapped to a structure, whose attributes are:

Attribute Type Description

g2orb-discriminator value

g2orb-value value

Indicates which case of union
holds.

Holds the current value of the
union.
74

IDL Type to G2 Language Mapping
Any

Each IDL any is mapped to a structure, whose attributes are:

Attribute Type Description

g2orb-type text

g2orb-value value

Note G2 CORBALink does not support the Any type.

Indicates the IDL type held by
the any object. This text field is
used internally and is not
readable.

Holds the value of the any
object.
75

76

10
Sample G2 CORBALink
Application
Illustrates the steps that you follow to build a G2 CORBALink application.

Introduction

Steps
For details,
see...

1 Start the G2-CORBALink bridge process.

2 Merge the g2idl.kb into your application.

3 Set up G2-CORBALink to support your application
and compile the IDL.

4 Create an Server object.

5 Create a Proxy object.

6 Create a client procedure.

7 Start the application.

In this example, both the client and the server happen to be implemented in G2
and reside in the same G2. However, the client and sever can also reside in
different G2s or be implemented in a different language.

The following table summarizes the steps for building a simple G2-CORBALink
application:

These steps summarize how to building a simple G2 CORBALink application:

77

1 Start the G2 CORBALink bridge process.

2 Merge the g2idl.kb into your application.

3 Set up G2 CORBALink to support your application and compile the IDL.

4 Create a Server object.

5 Create a Proxy object.

6 Create a client procedure.

7 Start the application.

Starting G2 CORBALink

To start the G2 CORBALink process:

 Execute the following command:

g2-corba gsi-port iiop-port

where:

gsi-port is the port through which G2 communicates with the ORB.

iiop-port is the port through which the ORB communicates with IIOP
clients.

For example:

g2-corba 20000 1594

Merging the g2idl KB into the Application

To merge g2idl into your application:

1 Choose Main Menu > Merge KB to display the Load KB workspace.

The merge in this KB option is enabled on the workspace.

2 Specify the location of the g2idl.kb file and click End.

Tip When merging the module, let G2 resolve conflicts by enabling the automatically
resolve conflicts option.
78

Introduction
Setting Up and Compiling the IDL

To set up G2 CORBALink:

1 Start G2.

2 Chose Main Menu > New Workspace to create a workspace on which to place
the G2 CORBALink objects that support the application

3 Choose Main Menu > Get Workspace > g2idl-top-level to display the G2
CORBALink IDL Compiler workspace

4 Clone a CORBA ORB object and place it on your workspace, and name it
ORB1.

5 Name and configure the Orb by specifying values for these attributes:

Attribute Value

names orb1

gsi-connection-
configuration

tcp-ip host "localhost" port-number 20000

6 Clone a CORBA IDL File object and place it on your workspace, and specify
the pathname of the grid.idl file provided with G2 CORBALink for the
g2orb-file-path attribute.

For example:

7 Connect the corba-orb and corba-idl-file objects.

Note: The Orb must be named or G2 will not
activate a connection.

Note: The tcp-ip-port-number must match
the first port number that was specified to
start the g2-corba executable.
79

For example:

g2orb-file

g2orb-orb

To compile the IDL:

 Chose compile idl from the orb1 object menu.

The compilation process begins. When complete, a workspace appears containing
the results of the compilation, for example:

This workspace contains:

• Objects that describe the interfaces from the IDL source file. These objects are
downloaded into the CORBA ORB to enable it to send and receive requests.

• G2 objects that map the interfaces defined in the CORBA IDL into the G2
object system. Instances of these objects are created to represent CORBA
objects and proxies.

You have successfully compiled the CORBA IDL.

Creating a Server Object

Server objects are concrete objects in CORBA. You create instances of server
objects on your workspace.
80

Introduction
To create an Server object:

1 Choose New Object > int.grid > int.grid-server from your KB Workspace menu.

2 Specify values for the these attributes:

Attribute Value

g2orb-object-name "my grid‘”

orb-width 10

orb-height 20

3 Choose register from the Server menu to register this object with the ORB.

After creating the Server object, you need to edit its method, which was generated
by the IDL compiler.

To edit a method of the Server object:

1 Choose Inspect > go to > int.grid-server::orb-fetch.

This method was generated by the IDL compiler.

2 Choose edit from the method menu to open the editor.

3 Replace the line {TODO: Put your code here} with the following lines:

ret-result =random(5000);
inform the operator that "Server: returning value [ret-result]";

This is the edited version of the example method:

You now have a working CORBA server.
81

Creating a Proxy Object

The proxy object is a client representation of a remote object. You create instances
of proxy objects on your workspace

To create a proxy object:

1 Choose New Object > int.grid > int.grid-proxy from your KB Workspace menu.

2 Specify the location of the object implementation (URL or IOR) that this proxy
uses in the G2orb-user-ref attribute.

For example, the URL location for this example is:

"//localhost:1594/my grid"

This assumes that the ORB is running on the local system with a IIOP port at
1594. The object-name of the object is my grid. For more information, see
Specifying an Object Location.

3 Name this object grid-proxy.

4 Choose ping from the grid-proxy object menu to check the connection.

The Message Board should display the following message, indicating that
G2 CORBALink was able to connect the grid-proxy object to the Server object:

Ping: SUCCESS

Creating a Client Procedure

Create a G2 procedure to be a client of G2 CORBALink. The following example is
a simple client procedure:

For each attribute, the IDL compiler generates a get method of the form get-orb-
attribute name().
82

Introduction
In this example, the procedure retrieves the values of the width and height
attributes of the remote object. The client calls the fetch() method with two
arguments and displays the results on the Message Board.

Starting Your G2 CORBALink Application

To start your G2 CORBALink application:

1 Pause your KB.

2 Create a G2 action button to start the G2 procedure.

For example:

3 Resume your KB and click the Run action button to see the results of running
your application.

The client() procedure posts messages on the Message Board. The first two
messages in the Message Board are posted by inform statements in the orb-fetch
method of the Server object. The third message is posted by the inform statement
in the G2 procedure client().
83

For example:

The first two messages in the Message Board are posted by inform statements in
the orb-fetch method of the Server object. The third message is posted by the
inform statement in the G2 procedure client().

When you complete the preceding steps, you have created a working CORBA
client and server in G2. This simple example includes only a single server object
co-resident with a single client, and has only two attributes and one operation.
This CORBA server is accessible from CORBA clients written in different
languages.

Although real working application will include more objects and have more
complex interfaces that this example, you must follow the same steps to create
them that you followed to create this example.

You should now save your work.

The IDL compiler is no longer needed by the application. The module information
system table can be modified to make the top level module no longer dependent
on the G2 IDL module. The G2ORB module is still needed to run the application.
The modules that are no longer needed can be deleted, along with their
workspaces.

To recompile or modify the CORBA interfaces, the IDL compiler can be merged
with the application.
84

A

Interfacing G2 CORBALink
with Other CORBA Servers
Describes G2 CORBALink interfaces with other CORBA Servers, the problems
and solutions.

Introduction 85

Iona's Orbix 87

Introduction
G2 CORBALink is typically used to interface G2 to CORBA systems that are built
with other Object Request Brokers such as Orbix or Visi-Broker. This is possible
since CORBA Object Request Brokers use the same network protocol, Internet
Inter-ORB Protocol (IIOP). This allows ORBs built by different vendors to
exchange object references, call methods, and access remote object attributes.

However, CORBA is an evolving standard, and there are still a few rough edges.
One problem area is difficulty obtaining initial object references. Let's say that
you are building a distributed object system with lots of objects. In general, these
systems need a way to find object references based on an object's identity,
relationships, or characteristics.
85

Standard, “Common Object Services” are available from several vendors that
obtain object references. These services are part of the CORBA specification, in
which:

• The CORBA Name Service will return an object reference based on a name.

• The CORBA Relationship Service will return object references that participate
in a specific relationship with other objects.

• The CORBA Trading Service will find a reference for an object that has a
specific characteristic.

These Common Object Services are implemented as simple CORBA servers and
are available from several vendors. G2 G2 CORBALink may be used with any of
them. Other services may be created on a ad-hoc basis to meet specific project
requirements and implemented in G2 or some other language such as C++ or
Java. To use one, simply:

1 Compile the service's IDL into G2 objects.

2 Create a proxy object for the remote Service.

3 Call the methods of the proxy object. This proxy object may then obtain
proxies for other objects.

However, how does one create the initial object reference? This is known as the
“bootstrap” problem, since a reference to the Name Service or some similar sever
may be used to “bootstrap” other object references.

Basically, this problem is solved by either:

• Constructing the object reference, using the URL format, or

• Obtaining a Interoperable Object Reference (IOR) from the remote server.

Using a URL format requires knowledge of the remote object's “object key” or
“marker.” The CORBA standard does not specify how this value is generated.
Some ORBs do not provide a way to discover or specify this value. Some ORBs
use a different value each time the server is started or use a binary value,
preventing it from being hard-coded into the G2 application.

The other approach is to use the remote server's object_to_string() API call to get
an IOR from the server. The IOR is a long string of hexadecimal numbers that
starts with “IOR:...” This string may be cut and pasted into the G2orb-user-ref
attribute of a G2 proxy object. If the IOR changes each time the server starts, then
is may be written to a file and read by G2 procedure. Users have reported that this
approach works well with the Visigenic ORB and DIAS.
86

Iona's Orbix
Iona's Orbix
The Object Request Broker with the largest market share is Orbix. Interfacing to
Orbix is a little tricky due to some bugs that exist in Orbix 2.2. The method that we
describe here works with Orbix 2.2 and later.

Orbix objects may be addressed with G2 proxies using the URL format. The URL
for a Orbix object has the following general format, which is not likely to change
for compatibility reasons:

\\[server-host]:[iiop-port]\:\[server-host]:[serverName]:[marker]::IR:[type]

where:

The marker is provided by the programmer. If this field is blank, it will match any
object on the server.

• server-host is the network name of the computer where the server is running.

• iiop-port is the IIOP port of the server.

• serverName and type are usually just the IDL name of the interface.

For example, if the “iiop_grid” example that ships with Orbix is started on port
4592 on system “bill”, the URL for the grid object would be:

\\bill:4592\:\bill:grid:::IR:

The server should be stared and left running. Orbix calls this a “persistent”
server. However, there does not seem to be a reliable way to specify the IIOP port
number. Surprisingly, this is NOT the IIOP port number that is specified in the
Orbix Server Manager. A bug? Orbix will assign a port number at run time, and
there is no obvious way to predict what this port number will be (Version 2.2).

There is a way around this problem. Orbix provides something called a Locator
Daemon. The daemon has an IIOP interface that is defined in IDL. It is possible to
configure the IIOP port of the daemon and thus construct a URL for it.

The URL for the daemon is:

\\[daemon-host]:[daemon-port]\:\[host]:IT_daemon:::IR:IT_daemon

The daemon may also be started with the “-i” option. This will write the daemon's
IOR to a file at startup. The daemon's getIIOPDetails() method will start the
remote server if needed and provide the server's IIOP port number. This port
number may be used to construct a URL for the remote object as described above.

The grid_iiop server that is included as one of the Orbix examples provides a good
way to test these methods.

Note The g2orb-ping operation does not work with Orbix 2.2. It will always respond
with an “object here” reply, regardless of the actual status of the object.
87

To summarize, the steps to use G2 with Orbix are:

1 Compile the Orbix daemon IDL along with your application IDL. Just add
another “IDL file” object to your Orb object in G2 to include this IDL.

2 Generate a proxy for the Orbix daemon using either a URL or an IOR
generated by the daemon with the “-i” option.

3 Call getIIOPDetails() on the locator for the object of interest.

4 Using the provided port number, construct a URL for the needed object. Place
this in the G2orb-user-ref attribute of a proxy object. Remember to call g2orb-
decode-user-ref on the object if you do this from a procedure.

5 Other object references may be freely passed between G2 and Orbix as
method parameters or return values.

Note The g2orb-util.kb file provides an example of how this is done.
88

Index
 @ A B C D E F G H I J K L M
 # N O P Q R S T U V W X Y Z
Numerics
64-bit data types, representing in G2

A
any IDL type
Application Programmer? Interface (API)

exception management
initialization
object reference manipulation
object registration

array IDL type

C
client applications

building
exceptions thrown in
object location specifying for

CORBA
client applications

building
exceptions

system
user

server applications
building

CORBA operations
mapping to G2

CORBA servers
interfacing with G2 CORBALink

co-resident server and client
customer support services

D
data types

64-bit
long long
E
enumerated IDL type
exception management API

g2orb-throw-exception
exceptions in CORBA

F
files

grid.idl

G
G2 CORBALink

interfacing with other CORBA servers
G2 CORBALink classes

g2orb-file
g2orb-interface-parms
g2orb-irobject
g2orb-orb
Interface
proxy
server

G2 CORBALink Compiler
preprocessor support provided by

g2idl.kb compiler module
g2idl-compile
g2orb-decode-user-ref
g2orb-deregister
g2orb-download-ir
g2orb-file object

attributes
g2orb-file-path

g2orb-init-bridge
g2orb-init-orb
g2orb-interface-parms object

attributes
g2orb-abs-name
g2orb-interface
g2orb-proxy-class
g2orb-repository-id

g2orb-irobject object
89

g2orb-object-to-string
g2orb-objref-to-obj
g2orb-obj-to-objref
g2orb-orb object

attributes
g2orb-connect-timeout
g2orb-idl-connection-timeout
g2orb-include-search-path
g2orb-init-procedure
g2orb-object-loader
g2orb-prefix
g2orb-principal
g2orb-register-objects-on-startup
g2orb-server-request-timeout
g2orob-client-request-timeout
gsi-connection-configuration
gsi-interface-status
names

user menu choice
g2orb-orb objects

creating
g2orb-ping
g2orb-proxy object

attributes
g2orb-user-ref

user menu choices
g2orb-register
g2orb-register-objects
g2orb-register-private
g2orb-release
g2orb-server object
g2orb-string-to-object
g2orb-throw-exception
grid.idl file
GSI Interfaces

gsi-connection-configuration attribute of
gsi-connection-configuration attribute of GSI

Interfaces

I
IDL

default file
grid.idl

preprocessor
updating

IDL type
mapping to G2

any
arrays
enumerated types
90
sequences
structures
unions

initialization API
g2idl-compile
g2orb-download-ir
g2orb-init-bridge
g2orb-init-orb

Interface object
attribute

g2orb-object-name
user menu choices

Inter-operable Object References (IOR)
IOR See Inter-operable-Object References

L
language mapping

attributes
CORBA operations
IDL interfaces
IDL primitive types
IDL type
object references

long long data types, representing in G2

O
object locations

specifying
object reference manipulation API

g2orb-decode-user-ref
g2orb-object-to-string
g2orb-objref-to-obj
g2orb-obj-to-objref
g2orb-ping
g2orb-string-to-object

object references
mapping into G2

object registration API
g2orb-deregister
g2orb-register
g2orb-register-objects
g2orb-register-private
g2orb-release

objects loaders and locators
ORB

starting
Orbix

interfacing to

P
preprocessor support for IDL
private objects
procedures

API
exception management
initialization
object reference manipulation
object registration

S
sequence IDL type
server applications

building
exceptions thrown by
implementation classes for
registering objects for

server classes
compiler-generated default

smart proxies
starting the ORB
structure IDL type

U
Uniform Resource Locator (URL)
unions IDL type
updating IDL
91

92

	Contents
	Preface
	About this Guide
	Version Information
	Audience
	A Note About the API
	Conventions
	Related Documentation
	Customer Support Services

	Introduction
	Introduction
	Features of G2 CORBALink
	Common CORBA Terms
	Building an Application

	Getting Started
	Introduction
	Installing G2 CORBALink on HP-UX
	Using G2 CORBALink
	Merging G2 CORBALink into G2
	Making the G2 CORBALink Modules Required

	Starting the ORB

	Compiling the CORBA IDL
	Introduction
	The grid.idl File
	IDL Preprocessor
	The G2 CORBALink IDL Compiler Workspace
	Creating a g2orb-orb Object
	Specifying the Gsi-Connection-Configuration Attribute

	Setting Up the CORBA IDL File
	Compiling the IDL
	Updating IDL

	Building a CORBA Server Application
	Introduction
	Registering Objects
	Exceptions
	Return Values
	Server Classes

	Building a CORBA Client Application
	Introduction
	Specifying an Object Location
	Co-Residence of Servers and Clients
	Exceptions

	CORBA Objects and Data Structures
	Introduction
	Proxy Class
	Server Class
	Interface Class
	g2orb-irobject
	g2orb-interface-parms
	g2orb-orb
	g2orb-file

	Advanced Topics
	Introduction
	Smart Proxies
	Object Loaders and Locators
	Private Objects

	API Reference
	Introduction
	Initialization
	g2idl-compile
	g2orb-download-ir
	g2orb-init-bridge
	g2orb-init-orb

	Object Registration
	g2orb-deregister
	g2orb-register
	g2orb-register-objects
	g2orb-register-private
	g2orb-release

	Exception Management
	g2orb-throw-exception

	Object Reference Manipulation
	g2orb-decode-user-ref
	g2orb-object-to-string
	g2orb-objref-to-obj
	g2orb-obj-to-objref
	g2orb-ping
	g2orb-string-to-object

	Language Mapping
	Introduction
	IDL Primitive Types
	Representing Long Long Data Types

	Interfaces
	Operations
	Attributes
	Object References
	IDL Type to G2 Language Mapping
	Enumerated Types
	Structures
	Sequences
	Arrays
	Unions
	Any

	Sample G2 CORBALink Application
	Introduction
	Starting G2 CORBALink
	Merging the g2idl KB into the Application
	Setting Up and Compiling the IDL
	Creating a Server Object
	Creating a Proxy Object
	Creating a Client Procedure
	Starting Your G2 CORBALink Application

	Interfacing G2 CORBALink with Other CORBA Servers
	Introduction
	Iona's Orbix

	Index
	Numerics
	A
	C
	D
	E
	F
	G
	I
	L
	O
	P
	S
	U

