
G2-Database Bridge

User’s Guide
Version 12.0 Rev. 1

G2-Database Bridge User’s Guide, Version 12.0 Rev. 1

June 2020

The information in this publication is subject to change without notice and does not represent a
commitment by Gensym Corporation.

Although this software has been extensively tested, Gensym cannot guarantee error-free
performance in all applications. Accordingly, use of the software is at the customer’s sole risk.

Copyright © 1985-2020 Gensym Corporation

All rights reserved. No part of this document may be reproduced, stored in a retrieval system,
translated, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of Gensym Corporation.

Gensym®, G2®, Optegrity®, and ReThink® are registered trademarks of Gensym Corporation.

NeurOn-Line™, Dynamic Scheduling™ G2 Real-Time Expert System™, G2 ActiveXLink™, G2
BeanBuilder™, G2 CORBALink™, G2 Diagnostic Assistant™, G2 Gateway™, G2 GUIDE™,
G2GL™, G2 JavaLink™, G2 ProTools™, GDA™, GFI™, GSI™, ICP™, Integrity™, and SymCure™
are trademarks of Gensym Corporation.

Telewindows is a trademark or registered trademark of Microsoft Corporation in the United States
and/or other countries. Telewindows is used by Gensym Corporation under license from owner.

This software is based in part on the work of the Independent JPEG Group.

Copyright © 1998-2002 Daniel Veillard. All Rights Reserved.

SCOR® is a registered trademark of PRTM.

License for Scintilla and SciTE, Copyright 1998-2003 by Neil Hodgson, All Rights Reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/).

All other products or services mentioned in this document are identified by the trademarks or
service marks of their respective companies or organizations, and Gensym Corporation disclaims
any responsibility for specifying which marks are owned by which companies or organizations.

Ignite Technologies, Inc.
401 Congress Ave., Suite 2650
Austin, TX 78701 USA
Telephone: +1-800-248-0027
Email: success@ignitetech.com Part Number: DOC047-1200

Contents
Preface ix

About this Guide ix

Version Information ix

Audience ix

A Note About the API x

A Note About Release Notes x

Conventions x

Related Documentation xii

Customer Support Services xiv

 xv

Chapter 1 Introduction 1

Introduction 1

Capabilities of G2-Database Bridges 2
Performing Database Operations 2
Event Messages and Message Handling 2

Preparing Your Application to Use a G2-Database Bridge 3

Getting Started 3

Chapter 2 Preparing Your KB for Using the Bridge 5

Introduction 5

Installing the G2-Database Bridge 6

Merging the Database Bridge KB into Your G2 Application 6

Updating Your G2 Application with a New Database Bridge 6
Updating a Modularized Knowledge Base 7
Resolving KB Conflicts 7

Chapter 3 Using the G2-Database Bridge Workspaces 9

User Modes 9
iii

Keyboard Shortcuts 10

Standard Workspaces of G2-Database Bridges 10
G2-Database Connection Configuration Workspace 12
G2-Database SQL Object Classes Workspace 13
G2-Database Procedures Workspace 15

Chapter 4 Running the Bridge 17

Introduction 17

Command-Line Options 18

Initial Bridge Memory Requirements 20

Text Conversion Styles 20

Starting the Bridge Process 22
On UNIX Systems 22
On Windows Systems 22

Bridge Process Output 23

Establishing a Connection between the Bridge and G2 24

Running a Bridge with Multiple Connections to G2 25

Running Multiple Copies of a Bridge 25

Chapter 5 Configuring Connections 27

Introduction 27

Creating G2-Database-Interface-Objects 28

Attributes of G2-Database-Interface Objects 28
Using the Set Null Attributes 40

Inserting Values into a Table 40
The Set-Null Attributes of g2-database-interface 41
Using db-execute-immediate to Insert Null 41
Using db-exec-sql to Insert Null 41
Using db-exec-sql-obj to Insert Null 43

Sending Connection Configuration Information to the Bridge 44

Resetting the Interface Connection 45

Displaying the Connection Status 45
Changing Icon Colors 47

Chapter 6 DML Database Operations 49

Introduction 49
iv

Components of a DML Database Operation 50

Bind Variables in SQL Statements 50

Procedures for DML Database Operations 51

Database Operations Using Simple Values 52

Database Operations Using Objects 53

Database Operations without Bind Variables 54

Chapter 7 Querying the Database 57

Introduction 57

Bind Variables in Database Queries 58

Returning Query Data to G2 58

Creating a Cursor Object 59

Returning Query Data in Query Items 60

Returning Query Data to Existing G2 Items 61
Returning Query Data to a User-Defined Object 61
Returning Query Data to Query Objects 62

Returning Query Data in Structures 62

Copying Query Item Attribute Values 62

Deleting Query Items 63

Using Smart Fetch 63

Chapter 8 Query Objects 65

Introduction 65

Creating a Query Object Class Definition 66
Specifying Direct Superior Classes 68
Specifying Column Attributes 69

Defining a Simple Attribute 69
Defining Attributes as Parameters 70
Defining an Attribute as a List 70

Creating a Query Object 71

Creating a Cursor Object 75

Performing the Query 75

Chapter 9 Bridge Procedures 77

Introduction 78
v

Summary of G2-Database Bridge Procedures 78
Connection and Initialization 79
SQL Operations 79
Query Operations 81
Error and Message Handling 82
Methods and Utilities 82

Invoking G2-Database Bridge Procedures 83
Invoking a Bridge Procedure from within a G2 Procedure 83

Status Values Returned by G2-Database Bridge Procedures 84
Omitting Return Arguments from Calls to G2-Database Bridge

Procedures 84
Invoking a Bridge Procedure from a Rule, Action-Button, or User-Menu-

Choice 85

Procedure Descriptions 86
db-commit 87
db-configuration 89
db-connect 91
db-context-event-msg 93
db-define-cursor 95
db-define-sql 99
db-define-sql-obj 102
db-disable-all-triggers 104
db-disconnect 105
db-exec-sql 107
db-exec-sql-obj 109
db-exec-stored-proc 111
db-exec-stored-proc-return 113
db-execute-immediate 117
db-fetch-object 119
db-fetch-query-item 124
db-fetch-records 128
db-fetch-structure 131
db-get-triggers 134
db-io-status 136
db-kill-bridge 137
db-logfile 138
db-ping 141
db-redirect-callback 142
db-refresh-cursor 145
db-rollback 147
db-set-connection-status 149
db-set-cursor 150
db-set-sql 152
db-set-sql-obj 154
db-set-trigger 157
db-sql-function 159
vi

db-startup 162
db-text-to-text-list 163
db-trigger-event 164
db-update-object 166
db-update-query-item 170

Chapter 10 Message Handling 173

Introduction 173

Handling Messages 174
Enabling and Disabling Message Reporting 174
Editing Messages 175

Trigger Events 176
Returning Trigger Messages to a G2 Procedure 177
Returning Trigger Messages to a Trigger Object 177

Redirecting Messages 178

Saving Messages in Log Files 178
Opening and Closing Log Files 178
Accessing the Log File 179
Filtering Log File Entries 179

Chapter 11 Troubleshooting 181

Introduction 181

You Cannot Make Connections 182

Query Does Not Return Expected Values 183

Deadlocks - Hung or Not Responding Bridge 185

Other Unexpected Behaviors 187

Debugging Facility 187

Chapter 12 Performance 189

Introduction 189

Complicated Queries 190

Data Service Priority 190

Distribution of Bridge Load 190

Network Considerations 191

Object Passing 191

Bind Variables 191
vii

Appendix A Bridge Data Types 193

Introduction 193

Appendix B Status Values 197

Introduction 197

Glossary 201

Index 207
viii

Preface
Describes this guide and the conventions that it uses.

About this Guide ix

Version Information ix

Audience ix

A Note About the API x

A Note About Release Notes x

Conventions x

Related Documentation xii

Customer Support Services xiv

About this Guide
This guide explains how to install and use your G2-Database bridge.

Release Notes provided with each G2-Database bridge contain bridge-specific
information that you need to supplement this guide, as well as information
specific to each particular release.

Version Information
The G2-Database Bridge is compatible with G2 8.0 Rev. 0 or later.

Audience
To use this guide, you must have at least a limited knowledge of G2, and a
thorough understanding of the database system that you want to connect to G2.
ix

A Note About the API
The G2-Database bridge API is not expected to change significantly in future
releases, but exceptions may occur. A detailed description of any changes will
accompany the G2-Database bridge release that includes them.

The techniques by which G2-Database bridges implement their capabilities,
however, are subject to change at any time without notice or explanation, and are
expected to change as the family of G2-Database bridges evolves. These
techniques will not be described in any G2-Database bridge documentation.

Therefore, it is essential that you use your G2-Database bridge exclusively
through its API, as described in this G2 Database Bridge User’s Guide. If you bypass
the API, you cannot rely on your code to work in the future, since the G2-
Database bridge may change, or in the present, because the code may not
correctly manage the internal operations of the G2-Database bridge.

A Note About Release Notes
Release notes contain important information about new features, bug fixes, and
anomalies. In addition, the release notes contain detailed, database specific
information about establishing connections to the database and communicating
with the database. The release notes supplement this user’s guide and provide
database specific information that is not included in this document.

Conventions
This guide uses the following typographic conventions and conventions for
defining system procedures.

Typographic

Convention Examples Description

g2-window, g2-window-1,
ws-top-level, sys-mod

User-defined and system-defined
G2 class names, instance names,
workspace names, and
module names

history-keeping-spec, temperature User-defined and system-defined
G2 attribute names

true, 1.234, ok, “Burlington, MA” G2 attribute values and values
specified or viewed through
dialogs
x

Conventions
Note Syntax conventions are fully described in the G2 Reference Manual.

Main Menu > Start

KB Workspace > New Object

create subworkspace

Start Procedure

G2 menu choices and button labels

conclude that the x of y ... Text of G2 procedures, methods,
functions, formulas, and
expressions

new-argument User-specified values in
syntax descriptions

text-string Return values of G2 procedures
and methods in syntax
descriptions

File Name, OK, Apply, Cancel,
General, Edit Scroll Area

GUIDE and native dialog fields,
button labels, tabs, and titles

File > Save

Properties

GMS and native menu choices

workspace Glossary terms

c:\Program Files\Gensym\ Windows pathnames

/usr/gensym/g2/kbs UNIX pathnames

spreadsh.kb File names

g2 -kb top.kb Operating system commands

public void main()
gsi_start

Java, C and all other external code

Convention Examples Description
xi

Procedure Signatures

A procedure signature is a complete syntactic summary of a procedure or
method. A procedure signature shows values supplied by the user in italics, and
the value (if any) returned by the procedure underlined. Each value is followed by
its type:

g2-clone-and-transfer-objects
(list: class item-list, to-workspace: class kb-workspace,
 delta-x: integer, delta-y: integer)
-> transferred-items: g2-list

Related Documentation

G2 Core Technology

• G2 Bundle Release Notes

• Getting Started with G2 Tutorials

• G2 Reference Manual

• G2 Language Reference Card

• G2 Developer’s Guide

• G2 System Procedures Reference Manual

• G2 System Procedures Reference Card

• G2 Class Reference Manual

• Telewindows User’s Guide

• G2 Gateway Bridge Developer’s Guide

G2 Utilities

• G2 ProTools User’s Guide

• G2 Foundation Resources User’s Guide

• G2 Menu System User’s Guide

• G2 XL Spreadsheet User’s Guide

• G2 Dynamic Displays User’s Guide

• G2 Developer’s Interface User’s Guide

• G2 OnLine Documentation Developer’s Guide

• G2 OnLine Documentation User’s Guide
xii

Related Documentation
• G2 GUIDE User’s Guide

• G2 GUIDE/UIL Procedures Reference Manual

G2 Developers’ Utilities

• Business Process Management System Users’ Guide

• Business Rules Management System User’s Guide

• G2 Reporting Engine User’s Guide

• G2 Web User’s Guide

• G2 Event and Data Processing User’s Guide

• G2 Run-Time Library User’s Guide

• G2 Event Manager User’s Guide

• G2 Dialog Utility User’s Guide

• G2 Data Source Manager User’s Guide

• G2 Data Point Manager User’s Guide

• G2 Engineering Unit Conversion User’s Guide

• G2 Error Handling Foundation User’s Guide

• G2 Relation Browser User’s Guide

Bridges and External Systems

• G2 ActiveXLink User’s Guide

• G2 CORBALink User’s Guide

• G2 Database Bridge User’s Guide

• G2-ODBC Bridge Release Notes

• G2-Oracle Bridge Release Notes

• G2-Sybase Bridge Release Notes

• G2 JMail Bridge User’s Guide

• G2 Java Socket Manager User’s Guide

• G2 JMSLink User’s Guide

• G2 OPCLink User’s Guide

• G2 PI Bridge User’s Guide

• G2-SNMP Bridge User’s Guide
xiii

• G2 CORBALink User’s Guide

• G2 WebLink User’s Guide

G2 JavaLink

• G2 JavaLink User’s Guide

• G2 DownloadInterfaces User’s Guide

• G2 Bean Builder User’s Guide

G2 Diagnostic Assistant

• GDA User’s Guide

• GDA Reference Manual

• GDA API Reference

Customer Support Services
You can obtain help with this or any Gensym product from Gensym Customer
Support. Help is available online, by telephone and by email.

To obtain customer support online:

 Access Ignite Support Portal at https://support.ignitetech.com.

You will be asked to log in to an existing account or create a new account if
necessary. Ignite Support Portal allows you to:

• Register your question with Customer Support by creating an Issue.

• Query, link to, and review existing issues.

• Share issues with other users in your group.

• Query for Bugs, Suggestions, and Resolutions.

To obtain customer support by telephone or email:

 Use the following numbers and addresses:

United States Toll-Free

United States Toll

Email

+1-855-453-8174

+1-512-861-2859

support@ignitetech.com
xiv

xv

xvi

1

Introduction
Describes the capabilities and important features of the G2-Database Bridge
products.

Introduction 1

Capabilities of G2-Database Bridges 2

Preparing Your Application to Use a G2-Database Bridge 3

Getting Started 3

Introduction
Gensym provides a family of G2-Database bridges that enable your G2
knowledge bases to communicate with a variety of different databases:

• Some G2-Database bridges are designed for use with a particular database,
such as Sybase and Oracle.

• The Open Database Connectivity Bridge can communicate with any relational
database for which there is an Open Database Connectivity (ODBC) driver.
1

A G2-Database bridge can run with connections to more than one G2 knowledge
base (KB) and database. The following figure illustrates a G2-Database bridge
with several connections to G2 KBs and databases:

G2 KB

G2 KB

G2
Database

Bridge

Database

Database
G

2
G

at
ew

ay

Capabilities of G2-Database Bridges
G2-Database bridges provide procedures that support standard database
operations. They return messages that report errors and other events occurring
during the operation of the bridge.

Performing Database Operations

From within G2, you can use familiar SQL Data Definition Language (DDL) and
SQL Data Manipulation Language (DML) statements to insert, delete, modify,
and query data. All G2-Database bridges are fully compatible with the ANSI
Structured Query Language (SQL) standards.

You can use the intelligent reasoning capability of G2 to update data within your
G2 knowledge base before you change the corresponding data in your database.

Event Messages and Message Handling

All G2-Database bridges provide a procedure, db-context-event-msg, that you can
modify to specify how G2 handles messages reported by the bridge. In addition,
you can instruct the bridge to return messages to any G2 procedure that conforms
to the procedure signature of db-context-event-msg.

The bridge returns the completion status of database operations. It can also return
the number of rows processed by an operation, enabling you to verify that the
operation completed as you expected.
2

Preparing Your Application to Use a G2-Database Bridge
Preparing Your Application to Use a
G2-Database Bridge

All G2-Database bridges provide resources for configuring the bridge and
monitoring its operation.

These resources are provided in the bridge knowledge base g2-database.kb,
which is shipped with the G2-Database bridge software. This knowledge base
includes:

• A predefined class for configuring connections. You create g2-database-
interface objects as instances of this class and then set attributes of each G2-
Database interface object to configure one connection between the G2
knowledge base and the G2-Database bridge.

• Local G2 procedures and remote procedure definitions. Your G2 knowledge
base uses the local procedures as an API to the bridge, to fetch, insert, delete,
or modify data in your database.

• Methods for manipulating data and data objects.

You access these resources from the g2-database workspace of the g2-database
module.

You can merge the G2-Database bridge knowledge base, g2-database.kb, into an
existing modularized G2 application, include it as a module of that application, or
use it as the foundation for building a new knowledge base. For information
about how to manage your G2-Database bridge knowledge base, see Preparing
Your KB for Using the Bridge, and the Release Notes for your particular bridge.

Note We recommend that you do not directly edit any components of the
g2-database.kb. Doing so may interfere with future upgrades.

Getting Started
To enable data service between G2 and your database:

1 Install the G2-Database bridge as part of your G2 installation.

Note The G2 Database Bridge requires sys-mod.kb and uilroot.kb.

2 Merge the bridge knowledge base into your G2 application.

3 Create one or more G2-Database interface objects.

4 Set the attributes of the G2-Database interface objects.
3

5 Start the bridge.

6 Start or reset G2.

This guide is arranged to lead you through these steps. To begin, see Preparing
Your KB for Using the Bridge.
4

2

Preparing Your KB
for Using the Bridge
Describes how to merge the G2-Database Bridge into your application.

Introduction 5

Installing the G2-Database Bridge 6

Merging the Database Bridge KB into Your G2 Application 6

Updating Your G2 Application with a New Database Bridge 6

Introduction
Before you install a G2-Database bridge:

• Make sure that there is either a terminal connected to a console port or a
remote window available through the network.

• Determine that there is a device capable of reading your distribution medium,
then load the medium onto the device.

• Make sure that your database environment has been properly configured and
is available to the bridge.

Note The environment includes environment variables, path, configuration files,
and so on.

• Read the Release Notes for the G2-Database bridge that you will use.
5

Installing the G2-Database Bridge
You install the G2-Database bridge as part of the G2 Bundle installation. Your G2
Bundle license allows you to install two of the available bridges. You can install
these bridges on any licensed machine. The installation process takes care of the
authorization for you.

Merging the Database Bridge KB into Your
G2 Application

To merge a database bridge into a G2 application for the first time:

1 Choose Main Menu > Merge KB.

2 Navigate to the specific version of the g2-database.kb file to merge,
depending on the database bridge you have installed.

The database bridge directories are:

• odbc

• oracle

• sybase

3 Choose the merge option, automatically resolve all conflicts.

Note The G2 Database Bridge requires sys-mod.kb and uilroot.kb.

4 Choose Save KB to save the resulting knowledge base.

Updating Your G2 Application with a New
Database Bridge

If your G2 application already uses a G2-Database bridge and you want to update
it with a newer version of the bridge, you can load your new g2-database.kb
into a modularized knowledge base, or merge it into an unmodularized
knowledge base.

For information on updating your G2 application with a particular G2-Database
bridge, see the Release Notes for that bridge.
6

Updating Your G2 Application with a New Database Bridge
Updating a Modularized Knowledge Base

It is recommended practice to modularize any G2 application that uses a
G2-Database bridge or bridge knowledge base.

To modularize an existing KB before merging the database bridge KB:

1 Create a module named g2-database.

To do this, choose Main Menu > Miscellany > Create New Module, then
specify g2-database as the new module.

2 Specify a top-level module for the knowledge base.

To do this, choose Main Menu > System Tables > Module Information and
specify a name for the top-level module of your knowledge base.

3 Also, specify g2-database as a directly required module of the top-level
module of the knowledge base.

4 Save your knowledge base.

You can then reload your knowledge base into G2. G2 automatically merges the
module g2-database into the modularized knowledge base.

Each time you load the modularized knowledge base, the g2-database module is
also loaded as a required module of that knowledge base. For information about
knowledge base modules, see the G2 Reference Manual.

Resolving KB Conflicts

When you load a knowledge base that may have definitions that conflict with a
previous version of the knowledge base, it can be helpful to specify the load
option automatically resolve conflicts. If you specify this option, G2 upgrades any
existing objects or classes that have the same names but different definitions from
objects that you are loading. G2 gives a full report about all objects that it
upgrades to the new definitions.
7

8

3

Using the G2-Database
Bridge Workspaces
Describes the contents of the standard workspaces provided with each
G2-Database Bridge, and describes techniques for editing the objects and
definitions that these workspaces contain.

Introduction 9

User Modes 9

Keyboard Shortcuts 10

Standard Workspaces of G2-Database Bridges 10

The g2-database.kb is the knowledge base provided with your bridge. It has
been designed to be merged into an existing modularized knowledge base or to
be used as a foundation for building a new knowledge base. The KB contains only
the essential components necessary for using the bridge, such as object
definitions, RPC declarations, and procedures. It does not contain examples or
tutorials.

The KB is organized as one top-level workspace, g2-database with several sub-
workspaces on which database-specific support items are located.

User Modes
The G2-Database bridge KB is designed to be used in developer mode. Each
workspace contains features that are configured to be accessible in developer
mode. These features include shortcuts for entering the editor, viewing item
tables, cloning items, creating instances, and moving workspaces. These shortcut
features are actually available in any mode except administrator mode. This
9

means that if you have created your own user mode, it may be used instead of
developer mode.

Keyboard Shortcuts
The following table summarizes the keystroke combinations that you can use to
open attribute tables and editors for class definitions, objects, and procedures:

Object Shift + Click Ctrl + Click Ctrl + Alt + Click

Additionally, you can:

• Move a workspace by clicking and dragging it.

• Hide a G2-Database workspace by clicking on the title bar.

Some shortcuts are invoked by simply clicking on the item. These items are
usually designated by a red label. For example, clicking on the g2-database-
interface class definition displays a menu with the create instance menu choice,
while clicking on an instance of that class displays a menu with the clone menu
choice.

Standard Workspaces of G2-Database Bridges
Every G2-Database bridge provides a set of standard workspaces that contain
definitions of the object classes and procedures that you use to construct your G2-
Database bridge application. The g2-database workspace is the top level
workspace and provides access to the following workspaces:

• The G2-Database Connection Configuration workspace

• The G2-Database SQL Object Classes workspace

• The G2-Database Procedures workspace

• The G2-Database Remote Procedures Definitions workspace

Class definition Opens attribute
table

No effect No effect

Procedure
definition

Opens attribute
table

Opens editor for
editing procedure

No effect

Object instance Opens attribute
table

No effect No effect

g2-database-
interface object

No effect No effect Reset connection
10

Standard Workspaces of G2-Database Bridges
• The G2-Database Notes & Information workspace

To open the top-level workspace of your G2-Database bridge:

 Select Main Menu > Get Workspace > g2-database.

The g2-database workspace contains buttons that you can click to open
workspaces containing the definitions that you use to create your G2-Database
bridge. The following table lists the workspaces opened by each button:

Click this button... To display a workspace that contains...

Interface Objects

The class definition of g2-database interface and a
sample instance.

SQL Object Classes

Class definitions of SQL objects that a G2-Database
bridge uses to:

• Perform SQL operations.

• Support message reporting.

• Display the current status of connections.

• Set the debug option.
11

G2-Database Connection Configuration Workspace

The G2-Database Connection Configuration workspace contains the class
definition for G2-Database Interface objects, and a sample instance that you can
clone to create an interface object for your application:

Procedures

Definitions of all the standard G2-Database bridge API
procedures and callbacks.

RPC Definitions

Definitions of all remote procedure calls used internally
by G2-Database bridges.

The remote procedures are not designed to be directly
called by end users.

Notes & Information

General notes and information on using the G2-
Database KB.

Click this button... To display a workspace that contains...
12

Standard Workspaces of G2-Database Bridges
G2-Database SQL Object Classes Workspace

The G2-Database SQL Object Classes workspace contains the class definitions that
you use to perform database operations through a G2-Database bridge:
13

These definitions include:

• db-query-object, db-qo-record, and db-qo-table, which you use to perform
queries using query objects. For information about how to use these
definitions, see Query Objects.

Note db-query-objects are provided for backward compatibility to applications
developed with earlier versions of g2-database. Developers are no longer
restricted to using db-query-objects to fetch data and may now use any G2
object as a receptacle for database data.

• db-query-item, db-query-item-list, db-query-item-array, and db-cursor-object,
which you use to perform queries on lists or arrays of items. For information
about how to use these definitions, see Querying the Database.

• db-sql-object, which you use to perform DML operations. For information
about how to use this definition, see DML Database Operations.

• db-trigger-object, which you can use to report database trigger events to G2.
For information about using this definition, see Message Handling.

• db-colors-object, which you can use to display the current status of the
connection between G2 and the G2-Database bridge and of various objects on
the workspace. For information on using this definition, see Displaying the
Connection Status.

• db-debug-object, which you use to specify whether you want status
information for each G2-Database procedure displayed on the G2 message
board.
14

Standard Workspaces of G2-Database Bridges
G2-Database Procedures Workspace

The G2-Database Procedures workspace contains definitions for the standard API
procedures and callbacks provided with each G2-Database bridge:

The procedures are grouped by function. Clicking a button on the G2-Database
Procedures workspace displays a workspace of API procedures related to that
function. Each procedure is displayed with text indicating the arguments that are
required to call the procedure, as well as any returned values.

Any procedure that is displayed with a white border may be edited and modified.
However, when upgrading your application with a new version of the G2-
Database KB, you will lose all of your customizations. Therefore, we recommend
that you create your own procedures that call the G2-Database procedures.

For information about these procedures, see Bridge Procedures.
15

16

4

Running the Bridge
Describes how to start the bridge process, run a bridge with more than one
connection to a G2 process, and run multiple copies of a bridge to improve
performance.

Introduction 17

Command-Line Options 18

Initial Bridge Memory Requirements 20

Text Conversion Styles 20

Starting the Bridge Process 22

Bridge Process Output 23

Establishing a Connection between the Bridge and G2 24

Running a Bridge with Multiple Connections to G2 25

Running Multiple Copies of a Bridge 25

Introduction
This chapter describes how to:

• Set command-line options that specify how the bridge will process data sets
and perform character set conversions.

• Start G2-Database bridges on different platforms. The examples use the
default command-line prompt # (for UNIX).
17

• Run a bridge with more than one connection to a G2.

• Run more than one copy of the same bridge.

Command-Line Options
Command-line options are used to establish bridge configuration boundaries and
behavior, such as character set translation. These options have a global effect on
the bridge in that they influence every bridge context. Command-line options are
typically specified as option-value pairs, where the option contains a prepended
hyphen “-”.

For example:

-maxrows 1000

The following table summarizes bridge command-line options and default
values:

Option Description

-maxrows The maximum number of database rows that the G2-
Database bridge can return to G2 in a single transaction.

The default maximum number of rows is 200.

You specify the number of records to fetch in the rcds-to-
fetch argument of db-fetch-object, db-fetch-query-item,
and db-fetch-records. For information about these
procedures, see Bridge Procedures.

If you attempt to perform a query on a greater number of
rows than the current value of MAXROWS, the G2-Database
bridge returns a warning message, and the transaction
ends when the bridge has returned the number of rows
specified by MAXROWS. To obtain all of the rows associated
with a query, the query operation must be repeated until
an end-of-cursor status is obtained.

This option directly affects the initial memory
requirements of the bridge. For information on memory
implications of this option, see Initial Bridge Memory
Requirements.
18

Command-Line Options
-maxcols The maximum number of database columns that the G2-
Database bridge can return to G2 in a single transaction.

The default maximum number of columns is 30.

You specify which columns are included in a query via
an SQL statement. The SQL statement is contained within
a cursor object. For information on how to create cursor
objects, see Creating a Cursor Object.

If you attempt to perform a query on a greater number of
columns than the current value of MAXCOLS, the
transaction is terminated and no data is returned. The
G2-Database bridge returns a message indicating that the
query has attempted to return data from more columns
than the number of columns specified by MAXCOLS.

This option directly affects the initial memory
requirements of the bridge. For information on memory
implications of this option, seeInitial Bridge Memory
Requirements.

-charset The text conversion style that the bridge will use to
convert between database character sets and G2 character
sets.

The default text conversion style is Latin-1 (ISO-8859-1)

If the database character set is not included within the
default character set, then you must set the appropriate
text conversion style. This is true for both reading from
and writing to the database.

For information on supported text conversion styles,
seeText Conversion Styles.

-shutdown_on_
disconnect

Normally, a database bridge should not shut down when
it unexpectedly loses its connection to G2. However,
there are systems where the bridge is started and shut
down by G2. If G2 is aborted, the bridge must be shut
down manually. To stop the bridge when the last
connection to it is broken, use the
-shutdown_on_disconnect command-line option when
starting the bridge.

-help Displays valid command-line options for your G2-
Database bridge.

Option Description
19

Initial Bridge Memory Requirements
You can set the maximum number of rows and columns that the G2-Database
bridge can return to G2 in a single transaction, using the command-line options
MAXROWS and MAXCOLS.

These options determine the amount of memory that the bridge allocates for the
results of database queries performed through a G2-Database bridge. If you do
not specify values for MAXROWS or MAXCOLS when you start a G2-Database bridge,
the bridge uses default values for the maximum number of rows and columns.

Most of the memory that the bridge process uses is allocated when the bridge is
initially started. The amount of memory that is allocated is directly related to the
MAXROWS and MAXCOLS settings. The greater the value of the settings, the greater
the amount of memory that is allocated. In addition, as more memory is allocated,
fewer transactions are required to return data to G2.

For example, to launch a G2-Database bridge, such that its initial memory
allocation accommodates up to 1000 rows and 25 columns you would use the
following command:

g2-database -MAXROWS 1000 -MAXCOLS 25

where:

g2-database is the name of the database bridge

Text Conversion Styles
The bridge will translate character sets between G2 and a database based on the
command-line option CHARSET. This functionality is achieved via translator
routines that convert G2 internal character sets into character sets that are utilized
by database vendors.

For example, if you want the bridge to translate the G2 Japanese language
character set into the SHIFT-JIS-X-208 character set, you would use the following
command to start the bridge:

g2-database -CHARSET SHIFT-JIS-OR-KANJI

where:

g2-database is the name of the database bridge.
20

Text Conversion Styles
The following table describes the supported values for the CHARSET command-
line option.

Conversion Style Character Set Description

LATIN-1 ISO-8859-1 8-Bit Single Byte

LATIN-2 ISO-8859-2 8-Bit Single Byte

LATIN-3 ISO-8859-3 8-Bit Single Byte

LATIN-4 ISO-8859-4 8-Bit Single Byte

CYRILLIC ISO-8859-5 8-Bit Single Byte

ARABIC ISO-8859-6 8-Bit Single Byte

GREEK ISO-8859-7 8-Bit Single Byte

HEBREW ISO-8859-8 8-Bit Single Byte

LATIN-5 ISO-8859-9 8-Bit Single Byte

LATIN-6 ISO-8859-10 8-Bit Single Byte

US-ASCII ISO-646-IRV 7-Bit Single Byte

JIS-X-208 JIS-X-208 7-Bit, JIS X 0208
(Japanese)

JIS-X-208-EUC JIS-X-208-EUC 8-Bit, JIS X 0208

SHIFT-JIS-OR-KANJI SHIFT-JIS-X-208
MS-KANJI

Shift JIS Encoded JIS X
0208

KSC-5601 KS-C-5601 7-Bit, KS C 5601 (Korean)

KSC-5601-EUC KS-C-5601-EUC 8-Bit, KS C 5601

UNICODE-UTF-7 UNICODE-UTF-7 7-Bit Unicode

UNICODE-UTF-8 UNICODE-UTF-8 8-Bit Unicode

ISO-2022 ISO-2022 X compound text with
subset of ISO 2022
escapes
21

Starting the Bridge Process
This section describes the steps to start the bridge process on each of the
supported platforms.

On UNIX Systems

To start the bridge on a UNIX system:

 Use a command of the following form:

g2-database port-number

where:

g2-database is the name of the database bridge
port-number is the number of the TCP/IP port.

Defining a port number is not required. If you do not name one, the bridge will
select and display a port number. However, it is recommended that you start
your bridge on a known port number. When the bridge is started, it will try to use
the default port number. If this port number is in use, the bridge will try to use the
next sequential port number. The bridge will continue to look for port numbers
until it finds one that is not in use. Unfortunately, this approach to selecting port
numbers may result in your application not knowing the bridge port number.

The port number must be an integer that is not being used by any other network
process on the host machine. Standard services generally use numbers below
3000, so numbers greater than 3000 are probably free. For example, to launch an
Oracle bridge for Oracle 9.2, using 22033 as the port number, use the following
command:

g2-ora92 22033

If you do not know which port number to use, see your system administrator.

Note To run several copies of the same bridge simultaneously, launch the bridge using
a different TCP/IP port number in each command to start the bridge.

On Windows Systems

To start a database bridge on Windows:

 Choose Start > Programs > Gensym G2 2015 > Bridges, then choose a bridge
from the submenu.
22

Bridge Process Output
Note The G2-Oracle Bridge and G2-Sybase Bridge require certain database libraries to
be installed before you can launch the bridge.

When the bridge is started, it will try to use the default port number. If this port
number is in use, the bridge will try to use the next sequential port number. The
bridge will continue to look for port numbers until it finds one that is not in use.
Unfortunately, this approach to selecting port numbers may result in your
application not knowing the bridge port number. To avoid this problem, it is
recommended that you start your bridge on a known port number. This port
number can be incorporated directly into an Windows shortcut or can be
specified on the command line. The following steps use Windows as an example.

To change or examine the port number of a bridge from its shortcut:

1 Start Explorer.

2 Right-click on the bridge shortcut.

3 Choose Properties from the menu.

4 Click the Shortcut tab.

5 Examine the command-line argument by clicking in the Target field, using the
arrow keys to move left and right.

6 To change the port number, edit the command line by adding a port number
to the end of the Target string and click on OK when you are finished.

If you make a mistake, click Cancel to preserve the original setting. For example:

"c:\Program Files\Gensym\g2-2015\oracle\g2-oracle.exe 22055"

To start the bridge manually from a command window:

 Type the fully qualified path and file name, for example:

c:\Program Files\Gensym\g2-2015\oracle\g2-oracle

Running the bridge from within an MSDOS window is very useful if a bridge
does not seem to be starting properly—possibly because of problems with
authorization, data files, environment configuration, or missing DLLs.

Bridge Process Output
When you start the bridge, the window where you start it should display
information similar to the following:

Starting G2-ODBC Bridge Version 8.3 Rev 0 (II05-8.3-3)
 for Windows

23

[28 Sep 2006 11:39:52]
GSI Version 8.3 Rev. 0 Intel NT (II04)
Allocating 200 x 30 data array for object passing...Done
2006-09-28 11:39:52 Waiting to accept a connection on:
2006-09-28 11:39:52 TCP_IP:NORWALK-N800C-2:22041

If you get a message similar to:

GSI Authorization failed -- GSI_ROOT environment variable not
set.

check to make sure your GSI_ROOT environment variable is set to the directory
containing your gsi.ok file.

If you get a message similar to:

GSI Authorization -- Could not find valid entry in gsi.ok file
for machine_id=XXXXXXXXXXXX product=G2-DATABASE version=XXXX

check to make sure that the gsi.ok file correctly authorizes your bridge.

If you get a message similar to:

GSI failed -- Authorization codes are not correct in gsi.ok

check to make sure that the gsi.ok file correctly authorizes your bridge.

The installation process sets the GSI_ROOT environment variable and authorizes
your computer to run the G2-Database Bridge. If you receive any of these errors,
the installation process failed in some way; reinstall the bridge and try running
the bridge process again.

Establishing a Connection between the Bridge
and G2

After you start the bridge process, you must establish a connection between the
bridge process and G2. To do this, you enable a g2-database-interface object that
contains information for configuring the connection that you want to establish.
The network information that you specify in the gsi-connection-configuration
attribute of the interface object must apply to the bridge process that you started.

For more information about interface objects, see Configuring Connections.
24

Running a Bridge with Multiple Connections to G2
Running a Bridge with Multiple Connections
to G2

You can run a G2-Database bridge with connections to several different G2
knowledge bases. You can also run a G2-Database bridge with several different
connections to the same G2 knowledge base.

Each connection between a G2 knowledge base and a bridge is configured by a
separate g2-database-interface object. When you start G2, it establishes a
connection to a running bridge for each interface object that is defined and
enabled. Each connection between G2 and the bridge is called a context.

You can use different contexts to perform different kinds of transactions. For
example, you can perform queries through one context, and perform inserts in
another context.

You can specify a name for a context in the context-name attribute of the g2-
database-interface object that configures that context. This context name is
included in messages that report events occurring in that context, including
messages that are reported to log files.

You can also run a G2-Database bridge with connections to more than one
database. Each interface object includes configuration information that the bridge
uses to establish a connection with a database.

Some database bridges enable you to change the database to which a context is
connected by specifying the alias of the database in SQL statements. To find out
whether your database bridge enables you to do this, see the Release Notes for
your database bridge.

Running Multiple Copies of a Bridge
To increase processing speed, you can run multiple copies of the same
G2-Database bridge. Running multiple copies can increase efficiency if the G2
knowledge base is processing a large volume of transactions, or if several G2
knowledge bases need connections to the database.

A single running copy of the bridge can process only one database operation at a
time. Thus, if all database operations are using one bridge, a large query can cause
delays in the execution of other operations. If you run several copies of a bridge,
one copy can process one request while another copy is processing another
request.

You must create and configure at least one g2-database-interface object for each
copy of a G2-Database bridge that you run.
25

26

5

Configuring
Connections
Explains how to create and define a g2-database-Interface object to configure a
connection between your G2 application and a G2-Database Bridge.

Introduction 27

Creating G2-Database-Interface-Objects 28

Attributes of G2-Database-Interface Objects 28

Sending Connection Configuration Information to the Bridge 44

Resetting the Interface Connection 45

Displaying the Connection Status 45

Introduction
Each g2-database-interface object configures one connection between your G2
application and the bridge. It also includes information that the bridge uses to
establish a connection to a database. Therefore, each g2-database-interface object
represents a connection (or login) to the database.
27

Creating G2-Database-Interface-Objects
To create a g2-database-interface object:

1 Open the g2-database connection configuration workspace by clicking the
Interface Objects button on the g2-database workspace.

This workspace contains the class definition of the g2-database-interface and
an instance of the class called example-interface:

2 Click on the example-interface and choose clone, or choose create instance
from the g2-database-interface class definition.

A cloned instance of the interface object appears attached to your mouse.

3 Transfer the cloned interface object to a workspace in your application, other
than a G2-Database KB workspace, clicking the mouse to release the object.

4 If you chose to clone the example-interface, then the cloned interface object is
disabled by default.

You must enable the cloned G2-Database interface object by selecting enable
from its property table.

5 Edit the attributes of the g2-database-interface object, as explained in the
following section.

Attributes of G2-Database-Interface Objects
You must specify values for attributes of a g2-database-interface object in order
to configure a connection between G2 and the bridge and to enable the bridge to
establish a connection to a database.

To set the attributes of a g2-database-interface object:

 Select table in the menu for the g2-database-interface object that you created.
28

Attributes of G2-Database-Interface Objects
The following table is displayed:
29

You can set the attributes of g2-database-interface objects as follows:

Attribute Description

names Specifies a unique name for this g2-database-interface object.

Allowable values: Any symbol

Default value: none

Notes: You specify this name as an argument of G2-Database bridge
procedures that perform queries or other database operations.

You also specify this name as the gsi-interface-name attribute of a
Query Object.

interface-warning-
message-level

The severity level of error and warning messages about which G2
provides information.

Allowable values: default to warning message level
0 (no messages)
1 (serious error messages only)
2 (all error messages)
3 (all error and warning messages)

Default value: default to warning message level

Notes: Use this setting to control whether failure to connect or
connection broken error messages are displayed.

disable-interleaving-
of-large-messages

Controls whether the bridge interleaves (changes the
transmission order of) message packets.

Allowable values: yes: Transmits messages without interleaving, preserving their
transmission order. With this setting, overall performance can
suffer when the messages have very different lengths, because
many short messages may have to wait for one long message to
complete.

no: Transmits messages with interleaving, which reorders the
message packets so that large messages do not lock out smaller
messages during large message transmission.

Default value: no
30

Attributes of G2-Database-Interface Objects
interface-timeout-
period

Specifies how long G2 waits for a response to any request that it
makes of the bridge.

Allowable values: Time interval from 1 second to G2’s maximum allowable time
interval. Specify the time interval in the form:

integer {second[s] | minute[s] | hour[s] | day[s] | week[s] }

Default value: use default (equivalent to 30 seconds)

Notes: Set this attribute to an appropriate amount of time for G2 to wait
for a response to any request that it makes of the bridge. For
example, if it typically takes 30 seconds for G2 to make a
connection to the database, set the Interface-timeout-period to
some time period greater than 30 seconds.

If a connection is not established within the amount of time that
you specify, G2 assumes that the connection is timed-out and
stops sending requests to the bridge over the connection
configured by this g2-database-interface object. G2 then sets the
gsi-interface-status attribute to -1.

Attribute Description
31

interface-
initialization-
timeout-period

Specifies how long G2 waits to initialize a connection using
Gensym (ICP) protocols.

The following three timeout intervals apply to G2-Database
interfaces:

1 Establish a connection.

2 Initialize the connection.

3 Wait for a response.

This attribute applies to the second interval. The interface-
timeout-period attribute specifies the timeout period for the first
and third intervals.

Allowable values: Possible values are:

• An integer specifying some number of seconds

• unlimited: the initialization interval never times out

• use default: the interface-initialization-timeout-period is the
same as the interface-timeout-period

Default value: unlimited, which specifies that the initialization interval never
times out

gsi-connection-
configuration

Specifies the network protocol that G2 uses to communicate with
the bridge.

Allowable values: tcp-ip host "hostname" port-number tcp-ip-port-number

Default value: none

Notes: For the TCP/IP network protocol, you must specify the host
name of the machine that is running the bridge, and the socket
that can be used to identify the bridge process. For example:

tcp-ip host “xyz” port-number 22033

Attribute Description
32

Attributes of G2-Database-Interface Objects
remote-process-
initialization-string

Used to configure this interface object’s connection to the
database. Features are configured by putting a minus sign
followed by a letter code followed, possibly, by a value. For
example, if the string is "-A -b60 -F", the -A enables auto-commit,
-b60 sets the maximum number of bind variables in a query to 60,
and -F turns on smart fetch.

The letter codes are case-sensitive, e.g., -F does not have the same
meaning as -f.

Allowable values: -A = auto-commit ON

-b = maximum number bind variables

-f = logfile filter

-F = smart fetch

-n = max bind name length

-c, -C, -o = disable output to console

-p = poll interval (in sec) for trigger checking

-r = maximum number of registered items

-t = turn logfile time-stamping OFF

-T = turn iomsg time-stamping OFF

-d = debugging flags

Default value: "" (empty string). Auto-commit off, enables the display of error
and warning messages on the console and does not use “smart
fetch.”

Notes: The bridge always displays startup messages that include
information such as the context, configuration settings, and the
status of the connection to the database. You cannot disable the
display of these messages.

The -c parameter does not disable the writing of bridge messages
to log files, or prevent GSI messages from being printed on the
screen when you start the bridge.

For information on the “smart fetch” option, see Using Smart
Fetch.

For information on the “debugging flags” option, see Debugging
Facility.

Attribute Description
33

gsi-application-
name

The name of the G2-Database Bridge application.

Allowable values: symbol

Default value: default

gsi-interface-status A value displayed by the bridge to indicate the current status of
the connection between the bridge and the G2 application.

Allowable values: 2 (OK): The connection has been made and is active.

1 (Initializing): The external system is being initialized. When G2
receives this code, it refrains from sending messages to the bridge
until it receives the OK code (2).

0 (Inactive): The connection is disabled or inactive.

-1 (Timeout): The connection has been timed out because G2 has
not heard from the bridge within the time specified by the
Interface-timeout-period attribute.

-2 (Error): An error has occurred, and the connection is broken.

Default value: 0

Notes: See the G2 Gateway Bridge Developer’s Guide for more information.

interval-to-poll-
external-system

Controls the polling interval when the poll-external-system-for-
data attribute is set to yes.

Allowable values: Time interval from 1 second to G2’s maximum allowable time
interval

Specify the time interval in the form:

integer {second[s] | minute[s] | hour[s] | day[s] | week[s] }

use default (equivalent to 1 second)

Default value: use default

Attribute Description
34

Attributes of G2-Database-Interface Objects
maximum-definable-
cursors

Defines the maximum number of open cursors allowed for the
context defined by this g2-database-interface object.

Allowable values: Any integer less than 201

Default value: 10

Notes: Some databases also have a maximum number of cursors value.
Make sure that the total number of bridge cursors and cursors
required by other database clients does not exceed the maximum
number configured for the database. This attribute is for
application control and does not affect the bridge. See the
database-specific Release Notes and your System Administrator
for more information.

null-string Specifies the return value for queries when NULL text values are
returned to G2 from a database.

Allowable values: Any text string

Default value: ""

null-number Specifies the return value for queries when NULL numeric values
are returned to G2 from a database.

Allowable values: Any integer or floating point number

Default value: 0 (0.0 for float values)

set-null-string Defines the textual bind value that represents NULL.

Allowable values: text

Default value: ""

Notes: See Using the Set Null Attributes.

set-null-number Defines the numeric bind value that represents NULL.

Allowable values: integer

Attribute Description
35

Default value: 0

Notes: See Using the Set Null Attributes.

set-null-option Determines whether the prior two attributes are used and also
whether a textual bind value of "NULL" represents NULL. A non-
zero value in the ones digit means "use set-null-number". A non-
zero value in the tens digit means "use set-null-string". A non-zero
value in the hundreds digit means "NULL" represents NULL.

Allowable values: See description

Default value: 100

Notes: See Using the Set Null Attributes.

enable-messaging Specifies whether bridge messages are sent to G2.

Allowable values: true (messaging enabled)
false (messaging disabled)

Default value: false

Notes: If this attribute is set to true, the bridge sends error information,
and warning messages to G2 by calling db-context-event-msg.
You can also indicate which G2 procedure receives messages by
calling the procedure db-redirect-callback.

Attribute Description
36

Attributes of G2-Database-Interface Objects
log-file Enables logging of information and error messages for the context
configured by this g2-database-interface object.

Allowable values: A text string containing the pathname of the file where messages
are logged or the empty string ("")

Default value: ""(disables logging of messages)

Notes: Enter, in quotation marks, the full path and name of the file where
you want errors logged. Entering a log file name enables logging
of information and error messages.

After the log file name, you can specify a message filter by listing
the categories of messages (fatal, error, warn, or info) that you
want to be logged in the log file.

You can separate the log file name and filters with spaces or
commas.

To specify a log file name with spaces, surround the name with
double quotes, preceded by the @ character, in addition to the
double quotes.

Windows example (assumes the C: drive):

"C:\usr\test\test.log, ERROR, WARN"

UNIX example:

"/usr/test/test.log, ERROR,WARN"

Here is a Windows example using a file name that has a space:

"@"C:\usr\test\log file.log@", ERROR, WARN"

If you do not specify any categories, messages of all categories are
logged.

The bridge opens the log file when the connection between the
bridge and G2 is established. You can subsequently open and
close the log file or change the filters specified for it by calling db-
logfile.

Attribute Description
37

context-name Specifies a name to identify the connection configured by this g2-
database-interface object.

Allowable values: Any text string not exceeding 15 characters

Default value: ""

Notes: All messages sent by db-context-event-msg to G2 or to a log file
include this context name.

If you do not specify a name for context-name, the bridge
automatically creates and assigns a context name in the format
context-n, where n is an integer. The first connection established
from G2 to the bridge is context-0, the second is context-1, and so
on.

database-
connection-status

Indicates the current status of the connection between the G2-
Database bridge and the database.

Allowable values: connected or disconnected.

Default value: disconnected

Notes: This value is updated after every transaction, including both
transactions initiated by the user and database triggers.

Attribute Description
38

Attributes of G2-Database-Interface Objects
auto-database-
reconnect

Determines whether to attempt to reestablish a connection to the
database if that connection is broken.

If true, the bridge attempts to reestablish a connection to the
database if that connection is broken. If false, the bridge does not
attempt to reestablish the connection.

Allowable values: true (attempt to reconnect)
false (do not attempt to reconnect)

Default value: false

Notes: The bridge determines that the connection has been broken when
it receives a disconnected error code after a failed database
operation.

If the bridge fails to reestablish the connection, it sends an
information message to the db-context-event-msg procedure (if it
is enabled) and to the log file (if one exists).

Following a reconnect, the user must resubmit the last
transaction.

database-user Specifies the database user name, which the bridge uses when it
establishes a connection to the database.

Allowable values: Any text string

Default value: ""

Notes: See the Release Notes for your particular G2-Database bridge for
information about how to specify user names.

database-password Specifies the database user password, which the bridge uses
when it establishes a connection to the database.

Allowable values: Any text string

Default value: ""

Notes: See the Release Notes for your particular G2-Database bridge for
information about how to specify user passwords.

Attribute Description
39

Using the Set Null Attributes

The null-number and null-string attributes of the g2-database-interface class
determine how NULLs that are fetched from database tables are presented to G2.
However, they do not provide you with a way of inserting NULL into a table.

G2 provides a way of inserting NULLs into tables that is consistent for all the
database bridges.

Inserting Values into a Table

There are three common methods of inserting values into a table from G2:

• db-execute-immediate

This procedure directly executes a single SQL command just as if you
submitted it to your database's SQL execution program. For example, you
could execute the command:

INSERT INTO abts_emp VALUES('Smith',554,NULL)

• db-exec-sql

This is similar to db-execute-immediate in that it processes a single command
at a time. However, unlike, db-execute-immediate, the single command may
include bind variables. The most time-consuming portion of the procedure
occurs when db-define-sql creates a db-sql-object. Values are attached to the
bind variables either as part of the db-define-sql procedure or with the db-set-
sql procedure. The values are actually inserted into the table when the
procedure db-exec-sql is called.

• db-exec-sql-obj

Like db-exec-sql, the SQL statement that is executed by db-exec-sql-obj may
contain bind variables. And like db-exec-sql, the entire procedure consists of
three parts (db-define-sql-obj, db-set-sql-obj, and db-exec-sql-obj). However,
unlike db-exec-sql, the bind values may come from a list or an array, and, as a

database-connect-
string

Specifies the database connection information that the bridge uses
to build the complete database connection string to establish a
connection to the database.

Allowable values: Any text string

Default value: ""

Notes: See the Release Notes for your particular G2-Database bridge for
information about how to specify this information.

Attribute Description
40

Attributes of G2-Database-Interface Objects
result, a single call to db-exec-sql-obj can result in the single SQL statement
being executed numerous times instead of just once.

The Set-Null Attributes of g2-database-interface

The g2-database-interface class provides these attributes:

• set-null-string — Defines the textual bind value that represents NULL.

• set-null-number — Defines the numeric bind value that represents NULL.

• set-null-options — Determines whether the prior two attributes are used and
also whether a textual bind value of "NULL" represents NULL. A non-zero
value in the ones digit means "use set-null-number". A non-zero value in the
tens digit means "use set-null-string". A non-zero value in the hundreds digit
means "NULL" represents NULL.

The database bridge reads the settings of these attributes when G2 first connects
to the bridge. If you change the settings of the attributes, you must reset the
interface object before the bridge will use the new values.

The following examples show how to use the new attributes with the three
insertion methods to insert NULL into a table.

Using db-execute-immediate to Insert Null

Since SQL statements used with db-execute-immediate do not use bind variables,
there has been no change to the behavior of this procedure. It is possible to insert
NULL with db-execute-immediate by executing the same SQL statement you
would use to insert NULL with your database’s SQL execution program, for
example, SQL*Plus or isql. For example, if the statement to execute is:

INSERT INTO abts_emp VALUES('Smith',554,NULL)

NULL is inserted into the third column.

Using db-exec-sql to Insert Null

db-exec-sql can work with bind variables. If you sometimes want to insert NULLs
into the columns associated with a bind variables and other times want to insert
non-NULL values, you will use the set-null-options attribute and possibly the set-
null-string.

An unusual aspect of working with this form of insertion is that values that are
associated with bind variables are always text even when the bind value will be
inserted into a numeric field. As a result, when working with this insertion
method, we always use "NULL" or the value in the set-null-string attribute to insert
a NULL, never the value of the set-null-number attribute. This is true even when
we want to insert a NULL in a numeric field.
41

For example:

The table abts_emp has 3 columns: name, employee ID, and supervisor's ID.
The name column holds text and the two ID columns hold numbers.

Suppose the value of set-null-string is "Stockholders", the value of set-null-number
is 999, and the value of set-null-options is 111 (all options enabled). Suppose you
execute the following statements with the ODBC bridge, where ? represents bind
variables:

db-define-sql (the symbol SOX, "INSERT INTO abts_emp
VALUES(?, ?, ?)","", dbio) ;

db-set-sql (SOX, "Smith,999,200",dbio) ;

db-exec-sql(SOX, true, dbio) ;

db-set-sql (SOX, "Jones,1000,Stockholders") ;

db-exec-sql(SOX, true, dbio) ;

db-set-sql (SOX, "Null",1001,1000) ;

db-exec-sql(SOX, true, dbio) ;

The following three rows would be added to the table:

"Smith" 999 200

"Jones" 1000 NULL

NULL 1001 1000

There are three points to notice about this example:

• In every case, the db-set-sql statement provides the values to be bound as part
of a string. For example the bind values in the first db-set-sql statement are
"Smith,999,200". Although db-set-sql eventually breaks this string into three
parts and converts the 999 and 200 to numbers, the values are originally
provided as part of a string. This is the reason set-null-string is used instead of
set-null-number when working with db-exec-sql. This is the reason that 999
was inserted into the Employee ID field of the Smith record even though the
setting of the set-null-number is 999.

• A NULL was inserted into the Supervisor ID field of the Jones record because
the bind value, "Stockholders", was the same the value of the set-null-string
and the tens digit of set-null-options was non-zero.

• The example inserted a database NULL instead of the text "Null" into the
employee name column of the third row. This is probably not what you
intended. If you want to insert Mr. Null's name into the table, you should
have set the hundreds digit of set-null-options to zero. If set-null-options had
been set to 11, the result would be the following, as expected:

"Null" 1001 1000
42

Attributes of G2-Database-Interface Objects
If set-null-options had been set to 0, you would get an error when you tried to
execute the second db-set-sql command, because it is not possible to insert the
text "Stockholders" into the numeric supervisor’s ID field.

Using db-exec-sql-obj to Insert Null

From the standpoint of inserting NULLs, the difference between db-exec-sql and
db-exec-sql-obj is that db-exec-sql-obj uses the set-null-number attribute for
determining whether or not to insert NULLs into numeric fields.

This example uses db-exec-sql-obj to insert values into abts_emp, the table from
the previous example.

First, define a class that will be used to hold the values to be inserted.

Next, create an instance of the class. In our example, we name the instance src-obj.

Now, set the set-null- attributes of the g2-database-interface to the same values
they had in the prior example: set-null-string is "Stockholders", set-null-number is
999, and set-null-options is 111 (all options enabled).

Suppose you execute this procedure:

set-null-example()
s: symbol ; c : integer ; m : text ;
sox : class db-sql-obj ;
begin

conclude that the g2-list-sequence of the employee-name of
src-obj = sequence("Smith","Jones","Null");

conclude that the g2-list-sequence of the employee-id of
src-obj = sequence(999, 1000, 1001) ;

conclude that the g2-list-sequence of the supervisor-id of
src-obj = sequence(200, 999, 1000)

sox, s, c, m = call db-define-sql-obj(the symbol SOX,
"INSERT INTO abts_emp VALUES (:1, :2, :3)",dbio);

s, c, m = call db-set-seq-obj(sox, "employee-name, employee-id,
supervisor-id", src-obj, dbio) ;

s, c, m = call db-exec-sql-obj(sox, true, dbio)
end

The result would be that the following three rows would be added to the table:

"Smith" NULL 200

"Jones" 1000 NULL

NULL 1001 1000
43

Things to note about this example are:

• We are using Oracle-style bind variables in this example, i.e., :1, :2, and :3.

• The results were different from the previous example. The employee ID of
"Smith" was set to NULL in this case. The reason is that this form of insertion
uses set-null-number to determine whether NULL should be inserted into
numeric fields. The prior example used set-null-string for all cases.

• Whereas in the prior example we bound "Stockholders" to the bind variable
for supervisor ID, that was not possible in this case. If the third conclude
statement had been:

conclude that the g2-list-sequence of the supervisor-id of
src-obj = sequence(200, "Stockholders", 1000)

a runtime error would have occurred when we tried to execute it, because it is
not possible to store text in an integer-list.

• Once again, we inserted NULL in the name field of the third row. The same
solution would work in this case: change the setting of set-null-options to 11.

Sending Connection Configuration Information
to the Bridge

The configuration information that you specify when you define a g2-database-
interface object is sent to the bridge by a required rule on the subworkspace of the
g2-database-interface class.

This rule sends configuration information to the bridge for every active
connection. To determine which connections are active, the rule examines the
gsi-interface-status attribute (2 = active) of each g2-database-interface object.

For each active connection, the rule calls the bridge procedure db-startup. This
procedure then calls the db-configuration procedure to send configuration
information to the bridge. If db-configuration is successful, db-startup then calls
db-connect to establish the connection between the bridge and the database. For
information about these procedures, see Bridge Procedures.

We recommend that you allow this rule to send all the connection configuration
information to the bridge.

To change the configuration for a connection:

1 Disable the g2-database-interface object that configures the connection.

2 Change the attributes of the g2-database-interface object to provide the new
configuration values.

3 Reenable the g2-database-interface object.
44

Resetting the Interface Connection
Resetting the Interface Connection
Sometimes, it might be necessary to reset the connection of the g2-database-
interface object from G2 to the bridge. You can reset the connection in any user
mode other than administrator.

To reset the connection:

 Choose reset interface on the g2-database-interface object.

or

 Press Control + Alt + Click on the g2-database-interface object.

Displaying the Connection Status
You can cause regions of a g2-database-interface icon to change color when there
is a change in the status of the connection that the g2-database-interface
configures. The changing color provides an ongoing visual indication of changes
to the status of the connection.

To display the status of a connection on the g2-database-interface icon:

1 Click the SQL Object Classes button on the g2-database workspace.

2 Click the check box next to the db-colors-object on the G2-Database SQL
Object Classes workspace to enable color changing of the g2-database-
interface icon. For example:

3 Click the Interface Objects button on the g2-database workspace.
45

4 Choose edit icon from the g2-database-interface object definition menu on the
G2-Database Connection Configuration workspace to display the regions of
the g2-database-interface icon. For example:

Note the name of each region. For information about how to use the G2 Icon
Editor, see the G2 Reference Manual.

5 Choose table from the db-colors object menu on the G2-Database SQL Object
Classes workspace to display its attributes.

6 Specify colors for each icon region.

The following table describes the color attributes of the db-colors object:

Attribute Description

default-color Specifies the default color.

not-connected-body-color Specifies the database region color of the
icon when the G2-Database Bridge and the
database are not connected.

not-connected-top-color Specifies the top region color of the icon
when the G2-Database Bridge and the
database are not connected.

connected-body-color Specifies the database region color of the
icon when the G2-Database Bridge and the
database are connected.

connected-top-color Specifies the top region color of the icon
when the G2-Database Bridge and the
database are connected.
46

Displaying the Connection Status
Changing Icon Colors

If you wish to modify the way in which colors are set for g2-database-interface
objects, you can edit the db-io-status method. This method allows you to set
regions of the g2-database-interface icon to different colors whenever the value of
the gsi-interface-status attribute of a g2-database-interface object changes.

To change icon colors to reflect the connection status of the interface object:

1 Click the Procedures button on the g2-database workspace.

2 Click the Methods & Utilities button on the G2-Database Procedures
workspace.

error-color Specifies the color of one or more icon
regions when an error has occurred and the
connection between the bridge and G2 is
broken or the connection is inactive [i.e.,
when the gsi-interface-status attribute
changes to -2 (error) or 0 (inactive)].

You specify the region or regions to which
this change applies, using the db-io-status
method.

warning-color Specifies the color of one or more icon
regions when the external system is being
initialized or the connection between the
bridge and the G2 has timed out [i.e., when
the gsi-interface-status attribute changes to 1
(Initializing) or -1 (Timeout)].

You specify the region or regions to which
this change applies, using the db-io-status
method.

success-color Specifies the color of one or more icon
regions when the connection between the
bridge and the G2 has been made and is
active [(i.e., when the gsi-interface-status
attribute changes to 2 (OK)].

You specify the region or regions to which
this change applies, using the db-io-status
method.

Attribute Description
47

3 Edit the db-io-status procedure to specify color changes to regions of the
g2-database-interface icon.

Through db-io-status, you can also change the color of the status region of cursor
objects, SQL objects, trigger objects, query items, and query objects.
48

6

DML Database
Operations
Describes how to perform DML (non-query) database operations through a G2-
Database bridge.

Introduction 49

Components of a DML Database Operation 50

Bind Variables in SQL Statements 50

Procedures for DML Database Operations 51

Database Operations Using Simple Values 52

Database Operations Using Objects 53

Database Operations without Bind Variables 54

Introduction
Through a G2-Database bridge, a G2 application can perform inserts, deletes,
updates, and other SQL DDL or DML operations (non-query) on values in a
database.

The G2 application can perform the SQL operations on individual values, or on
lists or arrays of values.
49

Components of a DML Database Operation
Each G2-Database bridge provides a set of procedures that your G2 application
can invoke to define and execute SQL operations.

If you want to execute an SQL statement that does not contain bind variables or
that you do not intend to execute again in the future, then you can call db-
execute-immediate.

If you want to use bind variables or want to save an SQL operation for future
execution, then you must define an SQL object for each particular database
operation that you want to perform. An SQL object is a G2 object that contains an
SQL statement that defines the database operation. You define SQL objects by
calling db-define-sql.

Your G2 application can use an SQL object any number of times to repeat a
particular database operation. You can change the values of bind variables in an
SQL statement or in an existing db-sql-object by calling db-set-sql or db-set-sql-
obj. These procedures are described in Bridge Procedures.

Note You should not attempt to manually create or clone SQL objects. If you want to
create a new SQL object then you should use the G2-Database API procedure db-
define-sql.

Bind Variables in SQL Statements
To increase the flexibility and efficiency of database operations, you can use bind
variables in SQL statements. You assign values to the bind variables to specify the
data that you want to insert, delete, or update.

You can change the values of bind variables in a previously-defined SQL
statement without forcing the database to generate a new execution plan for the
SQL statement when you define it again. However, if you make changes to a
defined SQL statement itself, that is, if you change the sequence of characters,
case, spaces, or punctuation in the statement, you force the database to generate a
new execution plan for the SQL statement resulting in additional database
processing and overhead.

You must include bind variables in SQL objects that you use to perform database
operations on lists or arrays of values. For information about how to do this, see
Database Operations Using Objects.

The syntax that you must use to identify bind variables in SQL statements is
specific to each database. For information about the syntax, see the
documentation for your database or the Release Notes for your G2-Database
bridge.
50

Procedures for DML Database Operations
The following example illustrates an SQL statement for an Oracle database, which
uses preceding colons to identify bind variables (in this example, :empvariable).

insert into employees values (:empvariable)

You can assign values to bind variables when you create db-sql-objects and also
change the values of bind variables in existing SQL objects. For information on
assigning values to bind variables, see the next section.

Procedures for DML Database Operations
G2-Database bridges enable G2 applications to perform DML operations, using
both simple values and objects (whose attributes are lists or arrays of values). The
bridges provide one set of procedures for performing DML operations with
simple values, and another set of procedures for performing DML operations
using objects.

The following table lists the G2-Database bridge procedures that you can use to
perform database operations on simple values or on objects:

Operation

For Operations on
Simple Values

For Operations
on Objects

Execute an SQL
statement

db-execute-immediate

Sends the bridge an SQL
statement that is
immediately executed by
the database.

Not Applicable.

Create an SQL object. db-define-sql

Defines an SQL
statement, within the
database, that can contain
bind variables and bind
variable values.

db-define-sql-obj

Defines an SQL
statement, within the
database, that must
contain bind variables.

Values for these bind
variables must be
provided by a user-
defined G2 object.
51

For detailed descriptions of these procedures and examples of how to use them,
see Bridge Procedures.

Database Operations Using Simple Values
You can perform operations with simple values in a database. Each operation is
performed within a separate database transaction.

To create an SQL object:

 Call db-define-sql.

Set values of bind
variables in an SQL
object.

db-set-sql

Sets the values of bind
variables within a
previously defined SQL
statement.

db-set-sql-obj

Sets the values of bind
variables within a
previously defined SQL
statement.

The values for the bind
variables are provided
by a user-defined G2
object.

Perform the database
operation defined by the
SQL object.

db-exec-sql-obj

Executes a previously
defined SQL statement
within the database.

db-exec-sql-obj

Executes a previously
defined SQL statement
within the database.

A user-defined G2
object contains values
for the bind variables.

Operation

For Operations on
Simple Values

For Operations
on Objects
52

Database Operations Using Objects
The following example creates an SQL object named sql-obj and specifies values
for its sql-stmt and bind-vars attributes, where myIO is the interface object used to
connect G2 to the bridge:

CreateSQLobj()
sql-stmt: text = “insert into emp (empno, ename) values (:nr,:name)”;
bind-vars: text = “7250, Smith”;
sobX: class db-spl-object;
s: symbol; c: integer; m: text;

begin
sobX, s, c, m = call db-define-sql

(the symbol sql-obj-name, spl-stmt, bind-vars, myIO);
transfer sobX to this workspace

end

For additional information on using this procedure, see db-define-sql.

To change the values of bind variables in an existing SQL object:

 Call the procedure db-set-sql.

The following command binds 7267 to :nr and binds Jones to :name in the SQL
object sql-obj-name, which was created in the prior example to create an SQL
object:

s, c, m = call db-set-sql(SQL-OBJ-NAME, “7267,Jones”, myIO)

For additional information on using this procedure, see db-set-sql.

To execute the database operation defined in the SQL object.

 Call the procedure db-exec-sql.

The following command executes the SQL statement defined in the SQL object
sql-obj-name, which was created in the prior example to create an SQL object:

s, c, m, nrows = db-exec-sql(SQL-OBJ-NAME, auto-commit, myIO)

For additional information on using this procedure, see db-exec-sql.

Database Operations Using Objects
To reduce the number of procedure calls required for your database operations,
you can use objects. If the attributes of an object are either lists or arrays of values,
only one G2 procedure call is required to perform numerous database operations.

You must use bind variables in your SQL statements if you wish to perform
multiple operations in a single step using lists or arrays values.

To create an SQL object:

 Call db-define-sql-obj.
53

For example, the following call creates an SQL object named my-sql-obj:

sql-obj-name: symbol = the symbol MY-SQL-OBJ;
sql-obj: class db-sql-object;
sql-stmt: text = “insert into emp (ename,age) values (:ename,:age)”;

sql-obj,status,code,msg, = call db-define-sql-obj(sql-obj-name, sql-stmt,

 myIO);

For additional information on using this procedure see db-define-sql-obj.

To associate a user-defined G2 object with the SQL object, and map attributes
of the G2 object to bind variables in the SQL statement:

 Call db-set-sql-obj.

For example:

status,code,msg, = call db-set-sql-obj(sql-obj, bind-var-names,
myOBJ, myIO);

For additional information on using this procedure see db-set-sql-obj.

To execute the SQL operation defined in the SQL object:

 Call db-exec-sql-obj.

This procedure passes to the bridge an SQL statement that includes bind
variables, and a user-defined G2 object that contains values for the bind variables.
The bridge extracts values from attributes of the G2 object and assigns them to the
bind variables.

For example, the following call executes the SQL operation defined in the SQL
object sql-obj:

status, code, msg, nrows = call db-exec-sql-obj(sql-obj, auto-commit,
myIO) ;

For additional information on using this procedure see db-exec-sql-obj.

Database Operations without Bind Variables
You can execute SQL operations that do not contain bind variables by calling the
db-execute-immediate procedure. The SQL statement that it executes is not saved
in the KB, and the database must devise an execution plan each time this
procedure is executed. In addition, a SQL object is not created.

For example, the following statement executes the SQL statement assigned to
sql-stmt across the interface object named myIO:

status: symbol;
code: integer;
msg: text;
nrows: integer;
54

Database Operations without Bind Variables
sql-stmt: text = “insert into emp (ename) values (‘Smith’)”;
auto-commit: truth-value = TRUE;

status, code, msg, nrows = call db-execute-immediate(sql-stmt,

auto-commit, myIO);

You can also execute SQL operations that do not contain bind variables by calling
db-exec-sql, also described in Database Operations Using Simple Values. This
approach is useful if you wish to repeatedly execute the same SQL statement.
55

56

7

Querying
the Database
Provides an overview of the basic methods of querying a database.

Introduction 57

Bind Variables in Database Queries 58

Returning Query Data to G2 58

Creating a Cursor Object 59

Returning Query Data in Query Items 60

Returning Query Data to Existing G2 Items 61

Returning Query Data in Structures 62

Copying Query Item Attribute Values 62

Deleting Query Items 63

Using “Smart Fetch” 63

Introduction
Through a G2-Database bridge, your G2 application can query databases for
individual values or for lists, arrays or sequences of values. To perform a query
through a G2-Database bridge, your G2 KB must invoke one of the G2-Database
bridge API procedures for performing database queries.

Every G2-Database Bridge procedure that performs a database query must
reference an existing cursor object. You must create a G2 object known as a cursor
57

object for each query that you want to perform. You create cursor objects by
calling the procedure db-define-cursor.

The cursor object contains an SQL statement that defines the query. The cursor
object also provides a reference to the database cursor for the query. A database
cursor is a table that the database maintains internally to identify the rows and
columns included in the query.

Bind Variables in Database Queries
To increase the flexibility and efficiency of database queries, you can use bind
variables in SQL statements. You assign values to bind variables in order to
specify the data for which you want to query.

You can change the values of bind variables in a previously-defined SQL
statement without forcing the database to generate a new execution plan for the
SQL statement when you define it again. However, if you make changes to a
defined SQL statement itself, that is, if you change the sequence of characters,
case, spaces, or punctuation in the statement, you force the database to generate a
new execution plan for the SQL statement, resulting in additional database
processing and overhead.

The syntax that you must use to identify bind variables in SQL statements is
specific to each database. For information about the syntax, see the
documentation for your database or the release notes for your G2-Database
bridge. The following example illustrates an SQL statement for an Oracle
database, which uses preceding colons to identify bind variables (in this example,
:id):

select * from employees where empid = :id

You assign values to bind variables when you create cursor objects. You can also
change the values of bind variables in existing cursor objects. For information
about how to assign values to bind variables, see Creating a Cursor Object.

Returning Query Data to G2
G2-Database bridges can return query data to G2 by:

• Passing the query data back to G2 in query items that the bridge generates
dynamically. The database bridge creates these item, fills them with the
results of your query, and sends them to G2 through object-passing.

When G2 receives the query data, it generates an item of the class db-query-
item-array or db-query-item-list. G2 writes the query data to attributes of these
items.

• Returning a user-defined object or a list of objects to G2.
58

Creating a Cursor Object
• Returning a G2 structure where the elements of the structure contain
name/sequence pairs.

• Returning query data to attributes of an existing user-defined G2 object.

• Returning query data to attributes of an existing predefined G2 object, known
as a query object. For information on creating and using query objects, see
Query Objects.

• Returning a single text or quantity value as a result of a remote procedure call
return value.

To...

And return data to an
existing G2 object, call...

And return data within a
new or dynamically
created object, call...

The following table summarizes the G2-Database Bridge procedures that you can
use to perform queries on a database.

For detailed descriptions of these procedures and examples of how to use them,
see Bridge Procedures.

Creating a Cursor Object
Your G2 application can use a cursor object any number of times to perform a
particular query repeatedly. You can create a new cursor object or change the SQL
statement in an existing cursor object by calling the procedure db-define-cursor.

Caution Do not attempt to create a cursor object by cloning, or to modify a cursor object
directly by editing values in its attribute table. If you need to create or modify a
cursor object, call db-define-cursor or db-set-cursor respectively.

To create a cursor object:

 Call db-define-cursor.

Create a Cursor object db-define-cursor db-define-cursor

Set values of bind
variables in a cursor
object

db-set-cursor db-set-cursor

Perform the database
operation defined by
the cursor object

db-fetch-records
db-update-object

db-fetch-query-item
db-update-query-item
db-fetch-object
db-fetch-structure
59

This procedure creates a cursor object and specifies values for its sql-stmt and
bind-vars attributes. For example:

cursor-obj,status,code,msg = call db-define-cursor(cursor-obj-name,
sql-stmt, bind-vars, myIO);

For complete details on using this procedure, see db-define-cursor.

To change the values of bind variables in the SQL statement associated with an
existing cursor object:

 Call db-set-cursor.

This procedure sets the value of the bind-vars attribute of the cursor object. For
example:

status,code,msg, = call db-set-cursor(cursor-obj, bind-vars, myIO);

For complete details on using this procedure, see db-set-cursor.

Returning Query Data in Query Items
G2-Database bridges enable G2 applications to perform queries that return results
by creating a new query item or updating an existing query item. G2 writes the
query data to attributes of these query items, which are instances of the class
db-query-item-array or db-query-item-list. An advantage of using query items is
that they provide a means for obtaining database data without building database
schema information into your application. In other words, attributes of query
items are not required to be mapped to column names of database tables.

To query a database and return the data to G2 in a new query item:

 Call db-fetch-query-item.

This procedure references an existing cursor object and executes the query
defined by that cursor object, and then returns the resulting data within a newly
created query item object. For example:

query-item,status,code,msg,nrows,cursor-pos =
call db-fetch-query-item(cursor-obj, return-format, batch-size, myIO);

For complete details on using this procedure see db-fetch-query-item.

To query a database and update an existing query item in G2:

 Call db-update-query-item.

This procedure references an existing cursor object and executes the query
defined by that cursor object, and then updates the data within an existing query
item with the results from the query. For example:

status,code,msg,nrows,cursor-pos =
call db-update-query-item(cursor-obj, query-item, update-action,

batch-size, myIO);
60

Returning Query Data to Existing G2 Items
For complete details on using this procedure, see db-update-query-item.

Returning Query Data to Existing G2 Items
G2-Database bridges enable G2 applications to perform queries that return results
to G2 items. These items can be instances of virtually any user-defined G2 class.

Returning Query Data to a User-Defined Object

To query a database, returning the data to G2 in a new user-defined G2 item:

1 Define the G2 item to which you want to return the query data. The attributes
of the item must map to the column names of the database table(s) from which
you will be querying.

For example, if you want to fetch from a database table that contains a column
named last_name and defined as a varchar(30), then you must define an
attribute in your G2 item named last_name of type text. Information for
mapping G2 data types to database data types can be found in Appendix A,
Bridge Data Types.

2 Define a cursor object for the query as described in Creating a Cursor Object.

3 Call db-fetch-object.

This procedure queries the database and returns the query data within a user-
defined G2 item of the type that you specify. For example:

myItem,status,code,msg,nrows,cursor-pos
= call db-fetch-object(cursor-obj, myOBJ, return-format,

batch-size, myIO);

For complete details on using this procedure see db-fetch-object.

To query a database, updating an existing user-defined G2 item:

1 Define a cursor object for the query as described in Creating a Cursor Object.

2 Call db-update-object.

This procedure queries the database and updates the query data in an existing
user-defined G2 item that you specify. For example:

myItem,status,code,msg,nrows,cursor-pos
= call db-update-object(cursor-obj, myOBJ, update-action, batch-size,

myIO);

For complete details on using this procedure, see db-update-object.
61

Returning Query Data to Query Objects

You can perform queries that return query data to instances of predefined G2
query object classes. This feature is provided for backward compatibility for
applications built with earlier versions of G2-Database. For information on
creating and using query objects to perform database queries, see Query Objects.

Returning Query Data in Structures
You can perform queries that return query data within a G2 structure. G2
structures are considered composite value types. Composite types are those that
are composed of one or more values of any general, specific, or composite type.

Structures consist of one or more pairs of names and values. The G2-Database
bridge returns structures to G2 such that the names in the structure represent
database column names and the values in the structure represent the values or
data for the database column. Values are represented as G2 sequences which are
themselves composite types. A sequence is a list-like value that can contain any
value of any data type.

Since structures are represented as values in G2, there is no need to worry about
memory leaks. If you query information from a database within a structure, you
do not need to delete the structure. G2 will automatically reclaim any memory
associated with the structure when it is no longer needed.

Copying Query Item Attribute Values
You can copy attribute values of a query item array or list object to a specified G2
object, using the db-copy method. The db-copy method copies all attribute values
of the query item array or list object to a target object. The method compares the
attributes of the target object with the query item and only copies values for
attributes that exist in the target object.

The syntax of this method is:

db-copy(source:class db-query-item-array, target:class object)

or

db-copy(source:class db-query-item-list, target:class object)
62

Deleting Query Items
Argument Description

source

target

Deleting Query Items
To delete a query item array or list object, always use the delete-query-item user
menu choice of the object. This user menu choice invokes the db-delete method,
which deletes not only the object, but also all items contained in attributes of the
object. You can also invoke this method programmatically.

Caution If you use some way other than the user menu choice or delete-query-item to
delete a query item array or list object, the items contained in attributes of the
object may remain in your G2 KB after you delete the object. This will result in a
memory leak.

Using Smart Fetch
By default, to avoid G2 integer overflow problems when the retrieved value is too
large, the database bridge “fetch” procedures return floats under these
conditions:

• When fetching DECIMAL types when:

– The precision is 9 or greater.

– The precision is 0.

– The scale is non-zero.

• When any of the returned INTEGER values would cause integer overflow
in G2.

Note that in Oracle, the INTEGER type is defined as DECIMAL(38,0); thus, the
Oracle INTEGER type always returns a float, by default.

You can use the “smart fetch” feature to better handle the case when fetching
INTEGER or DECIMAL types might cause integer overflow in G2.

To use smart fetch, add –F to the initialization string of any interface object that
should use the smart fetch behavior. For details, see remote-process-initialization-
string in Attributes of G2-Database-Interface Objects.

The db-query-item-array or db-query-item-list
whose attributes you want to copy.

The G2 object to which you copy the db-query-item-
array or the db-query-item-list attribute values.
63

When smart fetch is enabled and when retrieving INTEGER or DECIMAL types
from the database, in general, the fetch procedures return values as integers, or as
floats if returning them as an integer would cause G2 integer overflow. For
details, see the description of each of the following fetch procedures:

• db-fetch-object

• db-fetch-query-item

• db-fetch-records

• db-fetch-structure

• db-update-object

• db-update-query-item
64

8

Query Objects
Describes how to use query objects to query a database.

Introduction 65

Creating a Query Object Class Definition 66

Creating a Query Object 71

Creating a Cursor Object 75

Performing the Query 75

Introduction
To remain compatible with earlier versions of database bridges, the G2-Database
Bridge software supports the use of query objects for performing database
queries. In general, any operation that can be performed on a query object can be
performed on any user defined item.

To perform database queries:

1 Create a class definition for the query object.

2 Create an instance of the query object.

3 Create a cursor object that defines the query.

4 Perform the query.

This procedure executes the query defined by the cursor object and returns
the query data directly to the attributes of the query object.
65

Creating a Query Object Class Definition
You create a query object by defining a subclass of one of the following classes:

• db-query-object

• db-qo-record

• db-qo-table

• Any G2 variable class

The class definitions are on the G2 Database SQL Object Classes workspace.

The subclasses that you define inherit the icons from their parent classes (db-qo-
table or db-qo-record). You can edit these icons or create new ones. For
information on editing and creating icons, see the G2 Reference Manual.

To create a new subclass of query objects:

1 Create an object definition on your workspace by selecting:

KB Workspace > New Definition > class-definition > object-definition

A triangular icon representing the object definition appears on the workspace.

2 Choose table from the object definition menu to display its table.

For example:
66

Creating a Query Object Class Definition
The following table summarizes the attributes that you need to complete:

Attribute Description

class-name The name of this class of query object.

Allowable values: A symbol

Default value: none

Notes: For example, employee-record might name a query
object that stores a record of data relating to a
particular employee.

direct-superior-
classes

The name of one or more direct superior classes.

Allowable values: db-query-object

db-qo-record

db-qo-table

gsi-data-service and a G2 class that inherits from the
g2-variable class

Default value: none

Notes: See Specifying Direct Superior Classes.

class-specific-
attributes

The column attributes that correspond to columns in
the database.

Allowable values: Any symbol that is not the name of a system-defined
attribute

Default value: none

Notes: A query cannot return a column of data to a query
object that has no attribute corresponding to the
column. However, not all column attributes need to
receive data from a particular query.

See Specifying Column Attributes.
67

The values of all other attributes are provided by G2. For information about these
attributes, see the G2 Reference Manual.

Specifying Direct Superior Classes

For the direct-superior-classes attribute, you can specify either of the following:

• One of the predefined object classes db-query-object, db-qo-record, or
db-qo-table.

– If you intend to query the database for single records, specify db-qo-
record.

– If you intend to query the database for records in lists, specify db-qo-table.

• The G2 mixin class gsi-data-service and one of the G2 classes that inherit from
the g2-variable class, such as text-variable or symbolic-variable.

If you specify gsi-data-service and a g2-variable class as the direct superior
classes, you must also specify the following values for the attribute-
initializations attribute:

– An initial value for the variable

– indefinite for validity interval

– none for default update interval

attribute-
initializations

Sets the initial values for user-defined attributes and
certain system-defined variable attributes.

Allowable values: If you create the query object class definition as a
g2-variable class, you must specify an initial value for
the G2-variable, based on its type.

Default value: none

Notes: For example, if the class definition inherits from the
symbolic-variable class, you might specify the initial
value as:

initial value for symbolic variable: OK

If you do not specify an attribute initialization value
for a g2-variable class, G2 schedules the query object
for an update at a fixed interval, resulting in
unnecessary network traffic.

Attribute Description
68

Creating a Query Object Class Definition
For example, assuming the direct-superior-classes attribute equals:

symbolic-variable, gsi-data-service

you could set the attribute-initializations attribute to:

initial value for symbolic-variable:GSI;
validity interval:indefinite;
default update interval:none

Specifying Column Attributes

In each class definition, you define column attributes that correspond to the
database columns from which you want to fetch data, using the class-specific-
attributes attribute. A query object created from the object definition:

• Queries the database for the data in those columns.

• Stores the returned values in the attributes that correspond to the columns.

Each attribute must have the same name as the corresponding column in the
database. If the database supports column-name aliases in SQL Select statements,
you can use aliases as names of column attributes.

Note You must use an alias for any column name that is the same as a G2 reserved
symbol. For a list of G2 reserved symbols, see the G2 Reference Manual.

You can define a column attribute as:

• A simple attribute.

• A g2-parameter.

• A g2-list.

Defining a Simple Attribute

A simple column attribute holds a single value. Each new record fetched into the
attribute replaces the previous record.

When defining simple attributes, consider the following:

• The query object should be a subclass of db-qo-record.

• Simple column attributes retain their values even if you reset G2 or disable the
query object.

• A simple column attribute has no type specification, and G2 does not perform
type checking on it.
69

Here is an example of class-specific-attributes for a query object named
employee-record that uses simple attributes:

empname;
empid;
deptname;
salary

Defining Attributes as Parameters

A column attribute defined as a parameter holds a single value. The column data
from each newly fetched record replaces the previous content of the parameter.
The value of a parameter column attribute is lost if you disable the query object or
reset G2.

When defining attributes as parameters, consider the following:

• The query object should be a subclass of db-qo-record.

• You must specify a bridge data type for each parameter column attribute. See
Appendix A, Bridge Data Types for a list of database data types and the
corresponding bridge data types that you must use.

For example, if the database stores employee names as varchar values in a
column named empname, you can configure this column as a text-parameter,
because text is the bridge data type that corresponds to varchar:

empname is given by a text-parameter

Here is an example of class-specific-attributes for a query object named
employee-record that uses parameters:

empname is given by a text-parameter,
initially is given by a text-parameter;

empid is given by ann integer-parameter,
initially is given by an integer-parameter;

deptname is given by a text-parameter,
initially is given by a text-parameter;

salary is given by a float-parameter,
initially is given by a float-parameter

Notice that a semi-colon separates the column attributes.

Defining an Attribute as a List

A column attribute defined as a list can contain more than one value. The column
data from each newly fetched record is appended to the end of each
corresponding attribute list.
70

Creating a Query Object
If you are defining an attribute as a list, consider the following:

• The query object should be a subclass of db-qo-table.

• Use a g2-list of the type text-list, integer-list, float-list, or quantity-list.

• You must specify a bridge data type for each list column attribute. See
Appendix A, Bridge Data Types for a list of database data types and the
corresponding bridge data types that you must use.

For example, if the database stores employee names as varchar and you want to
store employee names in a list, you can configure the column attribute as a
text-list:

empname is an instance of a text-list

Creating a Query Object
When you complete the object definition for your query objects, you can create
instances of query object that are based on that definition.

To create an instance of a query object definition:

1 Choose create instance from the query object definition menu.

An icon representing the new query object appears on top of the object
definition.

2 Choose table from query object menu to display the attribute table.
71

For example:

The following table describes the attributes of the query object, whose values you
set, or the G2-Database bridge sets to indicate the result of the query:

Attribute Description

names The name of the query object.

Allowable values: A symbol

Default value: none

Notes: These names are referenced by procedures that access
the query object.

For information about these procedures, see Bridge
Procedures.
72

Creating a Query Object
gsi-interface-name The g2-database-interface object through which this
query object communicates with the database.

Allowable values: The name in the names attribute of the interface object

Default value: none

db-cursor-position Displays the relative position within the database
cursor.

Allowable values: An integer

Default value: 0

db-status Specifies the status of the result of the transaction.

Allowable values: success: The last operation performed on this query
object was completed successfully

error: A database, SQL, or bridge error

warning: Warnings from database or bridge

info: Informational messages from bridge

eocursor: The last row of a cursor has been fetched. To
fetch again, call db-refresh-cursor.

fatal: Non-recoverable error; connection is broken

Default value: g2

db-code A number that corresponds to the values returned to
db-status by the database or the G2-Database Bridge.

Allowable values: An integer

Default value: 0

Notes: For information about the status codes, see
Appendix B, Status Values.

Attribute Description
73

The column attributes are the attributes that you specified under class-specific-
attributes when you created the object definition from which you created this
query object. In the example, the column attributes are empname, empid,
deptname, and salary.

Note The G2-Database bridge sets the db-status, db-code, db-message, and db-rows-
processed attributes to the values returned by the database procedure db-fetch-
records.

db-message Displays error, warning, or information messages
resulting from a query.

Allowable values: A text string

Default value: ""

Notes: An error message is reported when the query did not
complete successfully.

A warning message means the query completed
successfully, but there is additional information. For
example, the last record in the cursor has been fetched,
or a column was truncated. If there is more than one
warning message, the messages are combined into one
text message. For information about the status codes,
see Appendix B, Status Values.

db-rows-processed Displays the number of rows processed by the query
as reported by the database during the fetch operation.

Allowable values: An integer

Default value: 0

Attribute Description
74

Creating a Cursor Object
Creating a Cursor Object
You must create a cursor object to define the query that you want to perform
using the query object. For information on creating and using cursor objects, see
Creating a Cursor Object.

Performing the Query
To query data using query objects:

 Call db-fetch-records to fetch a specified number of rows (records) from a
database cursor and return them to a specified query object in G2.

It can be useful for your G2 application to fetch the records in several small
batches, rather than all at once. For example, if there are 2000 rows of data in a
result cursor, you can choose to call db-fetch-records repeatedly, fetching only 100
at a time. The rcds-to-fetch argument of db-fetch-records specifies the number of
records (rows) that a single execution of the procedure fetches from the database
cursor.

For more information on using this procedure, see db-fetch-records.

To set the pointer in a database cursor back to the beginning of the cursor.

 Call db-refresh-cursor.

You can then call db-fetch-records to start fetching data from the beginning of the
cursor.

For information on using db-refresh-cursor, see db-refresh-cursor.
75

76

9

Bridge Procedures
Describes how to invoke the API procedures and provides a detailed description of
each procedure, its arguments, and usage.

Introduction 78

Summary of G2-Database Bridge Procedures 78

Invoking G2-Database Bridge Procedures 83

Procedure Descriptions 85
db-commit 86
db-configuration 88
db-connect 90
db-context-event-msg 92
db-define-cursor 94
db-define-sql 98
db-define-sql-obj 101
db-disable-all-triggers 104
db-disconnect 106
db-exec-sql 108
db-exec-sql-obj 110
db-exec-stored-proc 112
db-exec-stored-proc-return 114
db-execute-immediate 118
db-fetch-object 120
db-fetch-query-item 125
db-fetch-records 129
db-fetch-structure 132
db-get-triggers 135
db-io-status 137
db-kill-bridge 138
db-logfile 139
db-ping 142
db-redirect-callback 143
db-refresh-cursor 146
db-rollback 148
77

db-set-connection-status 150
db-set-cursor 151
db-set-sql 153
db-set-sql-obj 155
db-set-trigger 158
db-sql-function 160
db-startup 163
db-text-to-text-list 164
db-trigger-event 165
db-update-object 167
db-update-query-item 171

Introduction
Each G2-Database bridge provides a set of procedures that your G2 KB can
invoke to perform database transactions. The database bridge procedures can
execute SQL statements and perform other operations.

Summary of G2-Database Bridge Procedures
The following tables summarize the G2-Database bridge procedures.

Note To permit future upgrades and patches, we do not recommend that you modify
any components of the g2-database.kb. See the procedure descriptions for
details.
78

Summary of G2-Database Bridge Procedures
Connection and Initialization

Procedure Description

db-disconnect

db-kill-bridge

db-ping

db-startup

SQL Operations

db-configuration Called by db-startup to send configuration
information for a specified context to the
bridge.

db-connect Establishes a connection between a bridge
and a database for use by a specified
context.

Disconnects a bridge context from a
currently connected database.

Terminates the bridge process.

Returns the status of the connection
between a specified bridge context and the
database.

Calls db-configuration and db-connect to
configure and establish a connection
between G2 and a G2-Database bridge.

Procedure Description

db-commit Commits (makes permanent) all changes
made since the last commit to your
database.

db-define-sql Creates a re-usable SQL object for use in
non-query database operations. The object
specifies an SQL statement that can
include bind variables. See also db-set-sql
and db-exec-sql.

db-define-sql-obj Creates a re-usable SQL object for use in
non-query database operations. The object
specifies an SQL statement that must
include bind variables. Values for these
bind variables must be provided by
attributes of a user-defined G2 object. See
also db-set-sql-obj and db-exec-sql-obj.
79

db-exec-sql Executes a non-query SQL operation,
using an SQL object created by db-define-
sql. Sends to the bridge an SQL statement
that can include bind variables and their
values.

db-exec-sql-obj Executes a non-query SQL operation,
using an SQL object created by db-define-
sql-obj. Passes to the bridge an SQL
statement that includes bind variables,
and a user-defined G2 object that contains
values for the bind variables.

db-exec-stored-proc Executes a procedure stored in the
database.

db-exec-stored-proc-return Executes a procedure stored in the
database that has a return value.

db-execute-immediate Executes a non-query SQL statement that
neither contains bind variables nor uses an
SQL object.

db-rollback Cancels (undoes) all changes made in a
specified context since the last commit
(save) to your database.

db-set-sql Sets or changes the values of bind
variables in an SQL object created by
db-define-sql.

db-set-sql-obj Specifies names of bind variables in an
SQL object created by db-define-sql-obj
and provides a user-defined G2 object
whose attributes contain values for these
bind variables.

db-sql-function Used with a select statement to return a
single value result from a query or SQL
function, such as SUM, MAX, MIN, AVG, or
COUNT.

Procedure Description
80

Summary of G2-Database Bridge Procedures
Query Operations

Procedure Description

db-define-cursor

db-fetch-object

db-fetch-query-item

db-fetch-records

db-fetch-structure

db-refresh-cursor

db-set-cursor

db-update-object

db-update-query-item

Creates a reusable cursor object that
defines a query and provides a reference
to the database cursor for that query.

Performs a query and returns the result to
G2 in a user-defined G2 object.

Performs a query and returns the result to
G2 in a query item.

Fetches a specified number of rows
(records) from a database cursor and
returns them to a specified Query Object
in G2.

Performs a query and returns the result to
G2 in a structure.

Refreshes the cursor data and repositions
the cursor pointer to the first record in the
database cursor.

Sets or changes the values of bind
variables in an existing cursor object.

Performs a query and updates an existing
G2 object with the results. The update can
either replace the values within the G2
object or append to the values within a G2
object.

Performs a query and updates an existing
query item with the results. The update
can either replace the values within the
query item or append to the values within
a query item.
81

Error and Message Handling

Procedure Description

db-context-event-msg

db-disable-all-triggers

db-get-triggers

db-logfile

db-redirect-callback

db-set-trigger

db-trigger-event

Methods and Utilities

Receives messages from the bridge about
events that occur during bridge operation.
You can modify this procedure to perform
customized message handling. See
Message Handling.

Disables every trigger watch for every
context.

Returns a list of currently active trigger
watches for every context.

Opens, closes, or reopens a log file, or
modifies logfile filters. See Saving
Messages in Log Files.

Allows you to redirect messages that
would normally be sent to db-context-
event-msg and db-trigger-event to any G2
procedure.

Enables or disables a trigger watch on a
specified trigger name.

Called by the bridge when a trigger event
specified by db-set-trigger occurs in the
database. Sends a trigger message to G2.

Procedure Description

db-copy Copies a db-query-item object and all
items contained in the object. For
information about this method, see
Copying Query Item Attribute Values.

db-delete Deletes a db-query-item object and all
items contained in attributes of that object.
For information about this method, see
Deleting Query Items.
82

Invoking G2-Database Bridge Procedures
Invoking G2-Database Bridge Procedures
You can call G2-Database bridge procedures from within G2 procedures, or start
them using G2 rules, action buttons, or user-menu choices:

• Within user-defined G2 procedures, you invoke G2-Database bridge
procedures using the call procedure statement. API functions invoked
through call procedure statements can return values to the G2 procedures.

• Within G2 rules, action buttons, or user menu choices, you invoke API
functions using the G2 start action. API functions invoked through a start
action do not return values.

Invoking a Bridge Procedure from within a
G2 Procedure

To invoke a G2-Database bridge procedure from within a user-defined G2
procedure, you must use the call procedure statement, with this syntax:

return-argument [, return-argument] . . . = call procedure-name(arg1, arg2,...);

Most G2-Database bridge procedures are defined to return values to the status
arguments status, code, and message. Some G2-Database bridge procedures return
other values, or objects.

db-io-status Changes the colors of different regions of
the G2-Database Interface icon when the
status of the connection between G2 and
the G2-Database bridge changes. For
information about how to modify this
procedure, see Displaying the Connection
Status.

db-set-connection-status Sets the icon colors and db-connection-
status attribute for g2-database-interface
objects. This procedure is called from most
G2-Database procedures upon returning
from a transaction.

db-text-to-text-list Converts a comma delimited text string to
a text-list.

Procedure Description
83

Status Values Returned by G2-Database Bridge Procedures

Argument Type Description

status symbol

SUCCESS
ERROR,
WARNING
INFO
DISCONNECTED
FATAL
EOCURSOR

code integer

message text

The following table describes the status, code, and message values returned by
most G2-Database bridge procedures.

Omitting Return Arguments from Calls to G2-Database Bridge
Procedures

You can omit return arguments from a call to a G2-Database bridge procedure, if
you preserve the order of the return arguments as shown in the procedure
descriptions. G2-Database bridges return values to the return arguments in the
order shown in the descriptions.

For example, the following examples of syntax are all valid, because the return
arguments are listed in the order shown in the procedure descriptions (status,
code, message):

status, code, message = call procedure-name(arg1, arg2,...);
status, code = call procedure-name(arg1, arg2,...);
status = call procedure-name(arg1, arg2,...);

However, a procedure call using the following syntax fails, because the bridge
attempts to return a symbol (the status value) to the first and only return
argument, which is a text variable (message):

message = call procedure-name(arg1, arg2,...);

The status of the operation performed by the
API function. The possible values are:

The error or information code.

The text of the message associated with the
code value.
84

Invoking G2-Database Bridge Procedures
Invoking a Bridge Procedure from a Rule, Action-
Button, or User-Menu-Choice

To invoke a bridge G2-Database bridge procedure from within a G2 rule, action-
button, or user-menu-choice, you must use the G2 start action. For example:

start procedure-name (arg1, arg2, ...);

G2 does not return values to procedures invoked by the start action.
85

Procedure Descriptions
The rest of this chapter provides detailed a description of each G2-Database
bridge procedure. The descriptions are presented in alphabetical order.

db-commit
db-configuration
db-connect
db-context-event-msg
db-define-cursor
db-define-sql
db-define-sql-obj
db-disable-all-triggers
db-disconnect
db-exec-sql
db-exec-sql-obj
db-exec-stored-proc
db-exec-stored-proc-return
db-execute-immediate
db-fetch-object
db-fetch-query-item
db-fetch-records
db-fetch-structure
db-get-triggers
db-io-status
db-kill-bridge
db-logfile
db-ping
db-redirect-callback
db-refresh-cursor
db-rollback
db-set-connection-status
db-set-cursor
db-set-sql
db-set-sql-obj
db-set-trigger
db-sql-function
db-startup
db-text-to-text-list
db-trigger-event
db-update-object
db-update-query-item
86

db-commit
db-commit
Commits all changes made since the last commit (save) to your database.

Synopsis

db-commit
(interface:class g2-database-interface)
-> status, code, message

Argument Description

interface

Return Value Description

status, code, message

Description

Use db-commit to send a commit (save) statement to the database. When the
commit is issued, all transactions, such as inserts, deletes, updates, performed on
the database through this context since the last commit, are saved and all
transactions are ended.

Committing changes to the database makes the changes permanent. Until
outstanding changes are committed, other users or contexts may not be able to
access the changed data. In addition, resources allocated by the database may be
in a locked state as a result of your transaction. The commit will release and unlock
these resources.

The commit statement is issued for the context identified by the G2-Database
interface object that you specify in the interface argument.

Related Procedures

db-rollback

The G2-Database interface object that configures
this connection to the database bridge. Specify the
name of an existing G2-Database interface object.

For information about these return arguments, see
Invoking G2-Database Bridge Procedures.

Cancels (or undoes) all changes made in a
specified context since the last commit to your
database.
87

Note The actual behavior of db-commit may vary depending upon the database being
used. Consult the Release Notes and the database specific documentation for
details on using db-commit.

Example

The following call to db-commit sends a commit statement to the bridge for the
context configured by the G2-Database interface object db1-interface.

status: symbol;
code: integer;
msg: text;

status, code, msg = call db-commit(DB1-INTERFACE);

The following call to db-commit makes the transaction submitted by db-execute-
immediate permanent in the database. db-execute-immediate is called with
auto-commit set to false, and thus does not itself perform a commit.

status: symbol;
code: integer;
msg: text;
rows-processed: integer;
sql-stmt: text = “insert into emp (ename) values (‘Smith’)”;
auto-commit: truth-value = FALSE;
. . .
status,code,msg,rows-processed = call db-execute-immediate(sql-stmt,

auto-commit, DB1-INTERFACE);
status,code,msg = call db-commit(DB1-INTERFACE);
88

db-configuration
db-configuration
Called by db-startup to send configuration information for a specified context to
the bridge.

Synopsis

db-configuration
(interface: class g2-database-interface)
-> status, code, message

Argument Description

interface

Return Value Description

status, code, message

Description

The procedure db-configuration sends configuration information to the bridge.
The configuration information applies only to the context identified by the G2-
Database interface object specified in the interface argument.

Do not attempt to execute this procedure after a connection has been established
between G2 and the bridge. Attempting to do so results in an error, and the
bridge displays the message: Context has already been configured. In order to
change the configuration of a connection, you must disable and then enable a G2-
Database interface object, or restart your G2 knowledge base.

Note Recommended practice is to call db-configuration from within db-startup. This is
done automatically by a rule located on the subworkspace of the g2-database-
interface class definition. db-configuration must only be called once while G2 is
connected to the bridge through a given context.

The configuration information that this procedure sends is contained in attributes
of the G2-Database interface object specified in the interface argument. For
information about these attributes, see Attributes of G2-Database-Interface
Objects.

The G2-Database interface object that configures
this connection to the database bridge. Specify the
name of an existing G2-Database interface object.

For information about these return arguments, see
Invoking G2-Database Bridge Procedures.
89

Note Before you call db-configuration, you must create and set the attributes of the G2-
Database interface object that you specify in the interface argument.
90

db-connect
db-connect
Establishes a connection between a bridge and a database for use by a specified
context.

Synopsis

db-connect
(interface: class g2-database-interface)
-> status, code, message

Argument Description

interface

Return Value Description

status, code, message

Description

This procedure sends database connection information to the bridge and
establishes a connection between the bridge and the database. The connection
between the bridge and G2 must be established and configured.

You can call this procedure at any time while G2 is connected to the bridge to
establish a new connection to a database, or to re-establish a connection that has
been broken or disconnected.

If a connection already exists between the bridge and the database when you call
db-connect, the procedure returns the warning connection already established.

The information that this procedure sends to the bridge is contained in attributes
of the G2-Database interface object specified in the interface argument. These
attributes are:

• database-user

• database-password

• database-connect-string

See Attributes of G2-Database-Interface Objects for information about these
attributes.

The G2-Database interface object that configures
this connection to the database bridge. Specify the
name of an existing G2-Database interface object.

For information about these return arguments, see
Invoking G2-Database Bridge Procedures.
91

Related Procedures

db-disconnect

Example

The following call to db-connect establishes a connection between the bridge and
the database for the context configured by the G2-Database interface object
db1-interface:

status:symbol;
code:integer;
msg:text;

status, code, msg = call db-connect(db1-interface);

Disconnects a bridge context from a currently
connected database.
92

db-context-event-msg
db-context-event-msg
Reports the occurrence of significant events during the execution of the G2-
Database bridge. This procedure may be used as a foundation procedure for
developing a custom message handler.

Synopsis

db-context-event-msg
(status:symbol, code:integer, message:text, facility:symbol, timestamp:text)

Argument Description

Description

If enabled, by setting the enable-messaging attribute of your g2-database-
interface object to true, db-context-event-msg is called by the bridge to report the
occurrence of significant events during the execution of the G2-Database bridge.
When the bridge calls db-context-event-msg, it provides the procedure with
values for all its arguments.

status The category of the message. The possible values
are: FATAL, ERROR, WARNING, and INFO.

code The message code. This is an integer greater than
9000 for WARNING and INFO messages, or an
integer less than -9000 for bridge error messages. It
can also be a database-specific error code.

message The message associated with the message code that
db-context-event-msg reports. The format of
messages is described in the Description section
below.

facility The facility from which the message originates.
Possible values:

INTERNAL: The message originates from the
bridge.

EXTERNAL: The message originates in the database
or another external system.

timestamp The date and time when the reported event
occurred.
93

You must edit the definition of db-context-event-msg to enable it to manage event
messages within your G2 knowledge base. You can do this by including calls to
other procedures in the definition or adding other code to it.

The messages in the message argument have the following format:

bridge-name : context-name : status : message-body

Message Field Description

bridge-name

context-name

status

message-body

The following table describes these fields:

Messages can be up to 512 bytes in length.

Recommended Approach

Alternatively, you can instruct the bridge to send messages to any user defined
G2 procedure by calling db-redirect-callback. This is the recommended approach
as it does not require you to modify db-context-event-msg. For information about
db-redirect-callback see db-redirect-callback.

Related Procedures

db-redirect-callback

The name of the G2-Database bridge,
such as G2-Oracle or G2-Sybase.

The name specified in the context-
name attribute of the G2-Database
interface object. This name identifies
the connection for which the message
is reported.

A status value for the event reported.
For information about the possible
status values, see Appendix B, Status
Values.

The text of the message, describing the
event for which the message is
reported.

Allows you to redirect messages that would
normally be sent to db-context-event-msg to
any G2 procedure.
94

db-define-cursor
db-define-cursor
Creates a re-usable cursor object that defines a query and provides a reference to
the database cursor for that query.

Synopsis

db-define-cursor
(cursor-object-name:symbol, sql-statement:text,
bind-variables:text-list or text, interface: class g2-database-interface)
-> cursor-object:class db-cursor-object, status, code, message

Argument Description

cursor-object-name

sql-statement

bind-variables

interface

The name of a cursor object. If you specify the name
of an existing cursor object, this procedure
redefines that object. If no cursor object named
cursor-object-name exists, this procedure creates a
cursor object with that name.

The SQL query statement. The SQL statement can
contain bind variables.

The syntax of the SQL statement is specific to the
database. For information about the syntax to use,
see the release notes for your G2-Database bridge or
the documentation for the database.

Values for the bind variables in the query SQL
statement. Bind variables must be supplied as a
text-list. If you prefer, you can specify bind values
as a text string with each value separated by a
comma. Note: This approach is not as efficient as
providing a text-list.

If you do not want to assign a value to a bind
variable from this call to db-define-cursor, specify ""
for bind-variables. You must then call db-set-cursor
to specify a value(s) for the bind variable(s).

The G2-Database interface object that configures
this connection to the database bridge. Specify the
name of an existing G2-Database interface object.
95

Return Value Description

cursor-object

status, code, message

Description

Creates a cursor object that:

• Contains an SQL statement that defines a query.

• Contains a list of the bind variables set.

• Provides a reference to a cursor in the database.

The procedure db-define-cursor does not perform queries. To perform the query
defined in the SQL statement, you pass the cursor object to db-fetch-query-item,
db-fetch-records, db-fetch-object, db-update-query-item, db-update-object, or
db-fetch-structure. You can use the same cursor object to perform any number of
different queries. The cursor object may be reused.

To change the SQL statement or bind variables in an existing cursor object, you
can call db-define-cursor, using the name of the existing object as the cursor-
object-name argument and specifying a new sql-statement or bind-variables
argument.

To assign new values to bind variables in the SQL statement of a cursor object, call
db-set-cursor.

The database cursor that is created by this procedure will not be deleted until the
connection to the database has been terminated.

Related Procedures

The cursor object created or redefined by this
procedure.

For information about these return arguments, see
Invoking G2-Database Bridge Procedures.

db-set-cursor Sets or changes the values of bind variables in
an existing cursor object.

db-fetch-query-item Performs a query and returns the result to G2
in a query item.

db-fetch-records Fetches a specified number of rows (records)
from a database cursor and returns them
directly to the attributes of an object in G2.
96

db-define-cursor
Example

The following call to db-define-cursor creates a new cursor object or modifies an
existing one. This example does not provide values for the bind variables (:id and
:j). For this reason, the call does not process the bind variables. Your G2
application must call db-set-cursor to set the bind variables before it can perform
the query defined by the cursor object.

status: symbol;
code: integer;
msg: text;
cursor-obj-name: symbol = the symbol MY-CURSOR-OBJ;
cursor-obj: class db-cursor-object;
sql-stmt: text = “select ename from emp where empid = :id and job = :j”;
bind-vars: text = “”;

cursor-obj,status,code,msg = call db-define-cursor(cursor-obj-name, sql-stmt,

bind-vars, myIO);

db-fetch-object Performs a query and returns the result to G2
in a user-defined G2 object.

db-fetch-structure Performs a query and returns the results within
a structure where each element of the structure
is a name/sequence pair containing one
column of database data.

db-update-query-item Returns data associated with a database cursor
to an existing query item in G2. The data within
the query item may be either replaced or
appended.

db-update-object Returns data associated with a database cursor
to an existing object in G2. The data within the
object may be either replaced or appended.
97

The following example assigns values to the bind variables. Thus, the call to
db-define-cursor can process the bind variables, and your G2 application does not
need to call db-set-cursor unless you want to change the values of the bind
variables.

status: symbol;
code: integer;
msg: text;
cursor-obj-name: symbol = the symbol MY-CURSOR-OBJ;
cursor-obj: class cursor-object;
sql-stmt: text = “select ename from emp where empid = :id and job = :j”;
bind-vars: text-list;

insert “557” at the end of bind-vars;
insert “Salesman” at the end of bind-vars;
cursor-obj,status,code,msg = call db-define-cursor(cursor-obj-name, sql-stmt,

bind-vars, myIO);

The bind-var list must contain values in the same order as the corresponding bind
variables in the sql-stmt. Thus, the first value (557) is assigned to the first bind
variable (:id) and the second value (salesman) is assigned to the second bind
variable (:j).

In the example above, you could also have assigned the bind variables to a text as
indicated below. However, this is much less efficient:

bind-vars: text = “557,Salesman”;
98

db-define-sql
db-define-sql
Creates an SQL object for use in DML (non-query) database operations where
bind variables are represented as simple values.

Synopsis

db-define-sql
(sql-object-name:symbol, sql-statement:text,
bind-variables:text-list or text, interface: class g2-database-interface)
-> sql-object:class sql-object, status, code, message

Argument Description

sql-object-name

sql-statement

bind-variables

interface

Return Value Description

sql-object

status, code, message

The name of an SQL object. If you specify the name
of an existing SQL object, this procedure redefines
that object. If no SQL object named sql-object-name
exists, this procedure creates an SQL object with
that name.

The query SQL statement.

Values for the bind variables in the query SQL
statement. Bind variables must be supplied as a
text-list. If you prefer, you can specify bind values
as a text string with each value separated by a
comma. Note: This approach is not as efficient as
providing a text-list.

The G2-Database interface object that configures
this connection to the database bridge. Specify the
name of an existing G2-Database interface object.

The SQL object that this procedure creates or
redefines.

For information about these return arguments, see
Invoking G2-Database Bridge Procedures.
99

Description

Enables you to perform DML operations involving simple values. It creates an
SQL object containing an SQL statement that defines a non-query operation, such
as: insert, delete, or update.

To perform the operation defined in the SQL statement, you pass the SQL object
to db-exec-sql. You can use the same SQL object to perform any number of
different SQL operations. You can also reuse the SQL object.

To change the SQL statement in an existing SQL object, you can call db-define-sql,
specifying the name of the existing SQL object as the sql-object-name argument. In
the call to db-define-sql, you specify the new SQL statement that you want to
associate with the SQL object.

To assign new values to bind variables in the SQL statement, you can call db-set-
sql.

The database cursor that is created by this procedure will not be deleted until the
connection to the database has been terminated.

Related Procedures

db-set-sql

db-exec-sql

Examples

Example 1: The following call to db-define-sql creates an SQL object or modifies
an existing one. This example does not provide values for the bind variables (:n
and :a). You must call db-set-sql to set the values of the bind variables before you
can use this SQL object to perform the database operation defined by the SQL
object.

status: symbol;
code: integer;
msg: text;
sql-obj-name: symbol = the symbol MY-SQL-OBJ;
sql-obj: class db-sql-object;
sql-stmt: text = “insert into emp (ename,age) values (:n,:a)”;
bind-vars: text = “”;
. . .
sql-obj,status,code,msg = call db-define-sql(sql-obj-name, sql-stmt,

bind-vars, myIO);

Sets or changes the values of bind variables in
an SQL object created by db-define-sql.

Executes a non-query database operation using
an SQL object created by db-define-sql.
100

db-define-sql
Example 2: The following call to db-define-sql creates an SQL object and assigns
values to the bind variables. You do not need to call db-set-sql unless you want to
change the values of the bind variables.

status: symbol;
code: integer;
msg: text;
sql-obj-name: symbol = the symbol MY-SQL-OBJ;
sql-obj: class db-sql-object;
sql-stmt: text = “insert into emp (ename,age) values (:n,:a)”;
bind-vars: text-list;

insert “Smith” at the end of bind-vars;
insert “37” at the end of bind-vars;
sql-obj,status,code,msg = call db-define-sql(sql-obj-name, sql-stmt,

bind-vars, myIO);

The bind-var list must contain values in the same order as the corresponding bind
variables in the sql-stmt. Thus, the first value (Smith) is assigned to the first bind
variable (:n) and the second value (37) is assigned to the second bind variable (:a).

In the example above, you could also have assigned the bind variables to a text as
indicated below. However, this is much less efficient:

bind-vars: text = “Smith,37”;
101

db-define-sql-obj
Creates an SQL object for use in DML (non-query) database operations where
bind variables will be supplied within an object.

Synopsis

db-define-sql-obj
(sql-object-name:symbol, sql-statement:text,
interface:class g2-database-interface)
-> sql-object:class db-sql-object, status, code, message

Argument Return Value

sql-object-name

sql-statement

interface

Return Value Description

sql-object

status, code, message

Description

This procedure enables you to perform DML operations on numerous database
rows by specifying bind variables within a G2 object. It creates an SQL object
containing an SQL statement that defines a non-query operation, such as insert,
delete, or update.

Note that db-define-sql-obj does not assign values to bind variables in the SQL
statement. To assign values to the bind variables, you must call db-set-sql-obj,
which obtains values for the bind variables from attributes of a user-defined G2
object. The bind variable names must match the names of the attributes of the
user-defined G2 object from which db-set-sql-obj extracts bind variable values.

It also does not execute the SQL statement defined in the SQL object.

Specify a name for the SQL object that this
procedure creates. If you specify the name of an
existing SQL object, it is redefined.

The SQL statement that contains bind variables.

The G2-Database interface object that configures
this connection to the database bridge. Specify the
name of an existing G2-Database interface object.

The SQL object that this procedure creates or
redefines.

For information about these return arguments, see
Invoking G2-Database Bridge Procedures.
102

db-define-sql-obj
To perform the database operation defined in the SQL statement, you pass the
SQL object to db-exec-sql-obj. You can use the same SQL object for any number of
separate database operations.

To change the SQL statement in an existing SQL object, you can call db-define-sql-
obj, specifying the name of the existing SQL object as the sql-object-name
argument. In the call to db-define-sql-obj, you specify the new SQL statement that
you want to associate with the SQL object.

Related Procedures

db-set-sql-obj

db-exec-sql-obj

Example

The following call to db-define-sql-obj creates an SQL object named my-sql-obj or
modifies an existing SQL object named my-sql-obj:

status: symbol;
code: integer;
msg: text;
sql-obj-name: symbol = the symbol MY-SQL-OBJ;
sql-obj: class sql-object;
sql-stmt: text = “insert into emp (ename,age) values (:n,:a)”;

sql-obj,status,code,msg, = call db-define-sql-obj(sql-obj-name, sql-stmt,

myIO);

Bind
Variable

Corresponding
Object Attribute
Name

Data Type of
Attribute

:n ename text-list

:a age integer-list

The SQL statement sql-stmt contains two bind variables, :n and :a, and associates
these bind variables with the G2 object attribute names ename and age,
respectively:

To assign values to the bind variables, your G2 application must call db-set-sql-
obj, which must reference a user-defined G2 object that has attributes named
ename and age.

Sets or changes the values of bind variables in
an SQL object, by using attributes of a user-
defined G2 object.

Executes a non-query database operation on
lists or arrays of values.
103

db-disable-all-triggers
Disables all enabled trigger watches.

Synopsis

db-disable-all-triggers
(interface: class g2-database-interface)
-> status, code, message

Argument Description

interface

Return Value Description

status, code, message

Description

Disables every trigger watch for a bridge that was enabled by calling
db-set-trigger. This procedure disables every trigger watch regardless of the
context in which the trigger was set.

Note The procedure db-disable-all-triggers does not affect triggers within the database
or within other bridges. It does cause the bridge to ignore any triggers that fire
within the database.

If the connection between the bridge and the database is broken then all trigger
watches defined in that bridge are automatically disabled.

See the Release Notes for your G2-Database bridge for more information about
disabling and enabling triggers.

Related Procedures

db-set-trigger

db-get-triggers

The G2-Database interface object that configures
the connection to the database bridge. Specify the
name of an existing G2-Database interface object.

For information about these return arguments, see
Invoking G2-Database Bridge Procedures.

Enables or disables a trigger watch.

Returns a list of currently active trigger
watches
104

db-disconnect
db-disconnect
Disconnects a bridge context from a database.

Synopsis

db-disconnect
(interface: class g2-database-interface)
-> status, code, message

Argument Description

interface

Return Value Description

status, code, message

Description

The procedure db-disconnect removes the connection between a bridge context
and the database that was established by a call to db-connect. It does not break
connections configured by other G2-Database Interface objects, or disconnect the
bridge from G2.

It also cleans-up and frees all resources associated with the database connection of
the context specified by interface.

You can disconnect your database from the bridge at any time. However, until the
connection to the database is re-established, G2 cannot issue any requests to the
database over that connection.

See the Release Notes for your G2-Database bridge for more information about
connecting and disconnecting the bridge.

Related Procedures

db-connect

The G2-Database interface object that configures
the connection to the database bridge. Specify the
name of an existing G2-Database interface object.

For information about these return arguments, see
Invoking G2-Database Bridge Procedures.

Establishes a connection between a bridge and
a database for use by a specified context.
105

Example

The following code calls db-disconnect to break the connection between a bridge
context and the database that is configured by the G2-Database interface object
db1-interface.

status: symbol;
code: integer;
msg: text;
. . .
status, code, msg = call db-disconnect (db1-interface);
106

db-exec-sql
db-exec-sql
Executes a DML (non-query) database operation defined by db-define-sql.

Synopsis

db-exec-sql
(sql-object:class db-sql-object, auto-commit:truth-value,
interface: class g2-database-interface)
-> status, code, message, rows-processed:integer

Argument Description

sql-object

auto-commit

interface

Return Value Description

status, code, message

rows-processed

Description

Executes a DML statement contained in the SQL object sql-object.

An existing SQL object that was created by a call to
db-define-sql.

Specify true to cause the transaction to be
committed automatically if the operation completes
successfully.

Specify false to disable automatic committing. In
this case, you must commit or rollback the
transaction manually.

The G2-Database interface object that configures
this connection to the database bridge. Specify the
name of an existing G2-Database interface object.

For information about these return arguments, see
Invoking G2-Database Bridge Procedures.

The number of rows effected in this transaction.
107

Related Procedures

db-commit

db-define-sql

db-rollback

db-set-sql

Example

The following call to db-exec-sql executes the SQL statement associated with the
sql-object named my-sql-obj.

status: symbol;
code: integer;
msg: text;
rows-processed: integer;
sql-obj: class sql-object = my-sql-obj; {created by db-define-sql};
auto-commit: truth-value = true;
. . .
status,code,msg,rows-processed = call db-exec-sql(sql-obj, auto-commit, myIO);

Commits all changes made since the last
commit (save) to your database.

Creates an SQL object for use in DML database
operations on individual values.

Cancels all changes made in a specified context
since the last commit (save) to your database.

Sets or changes the values of bind variables in
an SQL object used for operations on
individual values.
108

db-exec-sql-obj
db-exec-sql-obj
Executes a DML (non-query) database operation defined by db-define-sql-obj.

Synopsis

db-exec-sql-obj
(sql-object:class db-sql-object, auto-commit:truth-value,
interface: class g2-database-interface)
-> status, code, message, rows-processed: integer

Argument Description

sql-object

auto-commit

interface

Return Value Description

status, code, message

rows-processed

Description

The procedure db-exec-sql-obj performs DML database operations and uses a
user-defined G2 object to supply values for bind variables. This lets you perform
several database operations (such as a multi-row insert) in one transaction. It
executes an SQL statement (specified in the SQL object) that includes bind
variables which represent attributes of a user-defined G2 object.

To create an SQL object, call db-define-sql-obj.

An existing SQL object that was created by a call to
db-define-sql-obj.

Specify true to cause the transaction to be
committed automatically if the operation completes
successfully.

Specify false to disable automatic committing. In
this case, you must commit or rollback the
transaction manually.

The G2-Database interface object that configures
this connection to the database bridge. Specify the
name of an existing G2-Database interface object.

For information about these return arguments, see
Invoking G2-Database Bridge Procedures.

The number of rows effected in this transaction.
109

To assign values to the bind variables in the SQL object, call db-set-sql-obj. This
procedure sets the bind variables to the values of attributes in an existing user-
defined G2 object.

Related Procedures

db-define-sql-objj

db-set-sql-obj

Example

The following call to db-exec-sql-object executes an SQL operation defined in the
SQL object named my-sql-obj.

status: symbol;
code: integer;
msg: text;
rows-processed: integer;
sql-obj: class sql-object = my-sql-obj; {created by db-define-sql};
auto-commit: truth-value = true;

begin
{ create my-sql-obj with db-define-sql }
. . .
{ bind the bind variables in the SQL statement in my-sql-obj }
{ to the attributes of a user defined object with db-set-sql-obj }
. . .
status, code, msg, rows-processed =

call db-exec-sql-obj(my-sql-obj, auto-commit, myIO);

Creates or redefines an SQL object for use in
non-query database operations that uses a G2
object to supply values for bind variables.

Sets or changes the values of bind variables in
an SQL object that uses a G2 object to supply
values for bind variables.
110

db-exec-stored-proc
db-exec-stored-proc
Executes a procedure stored in the database. Returns no data.

Synopsis

db-exec-stored-proc
(sql-stmt:text, interface: class g2-database-interface)
-> status, code, msg, rows-processed:integer

Argument Description

sql-stmt

interface

Return Value Description

status, code, msg

rows-processed

Description

The procedure db-exec-stored-proc accepts any valid SQL call, to a database-
stored procedure, as an argument, and sends the statement to the bridge for
processing.

The stored database procedure must not attempt to return values. Consequently,
db-exec-stored-proc returns no data, only status information.

For information on executing stored procedures with return values, see db-exec-
stored-proc-return.

Valid stored procedure call to a database-stored
procedure, which does not return any values.

The syntax that you must use in the sql-stmt is
specific to the database. For information about the
syntax, see the release notes for your G2-Database
bridge or the manual for your database.

The G2-Database interface object that configures
this connection to the database bridge. Specify the
name of an existing G2-Database interface object.

For information about these return arguments, see
Invoking G2-Database Bridge Procedures.

Not used.
111

Example

The following call to db-exec-stored-proc executes the database stored procedure
add_name across the interface object named myIO, with the single argument
“Gensym”:

status: symbol;
code: integer;
msg: text;
sql-stmt: text = “add_name (‘Gensym’)”;

status,code,msg = call db-exec-stored-proc(sql-stmt, myIO);
112

db-exec-stored-proc-return
db-exec-stored-proc-return
Calls a stored function via the user-defined stored procedure named sp_handler.

Synopsis

db-exec-stored-proc-return
(proc-name: text, args: text, interface: class g2-database-interface)
-> return-value: text, status, code, message

Argument Description

proc-name

args

interface

Return Value Description

status, code, msg

A command to sp_handler. Typically, the
proc-name is the name of the stored function
that sp_handler should call. However, since
you write the sp_handler stored procedure,
you can use the proc-name argument as any
type of command to sp_handler. For details,
see the example below.

The arguments to the stored function as a
text string. The text string can have a
maximum length of 4,000 characters. The
string contains one or more arguments to
the stored function. The parsing and
interpretation of this string is the
responsibility of the stored procedure
sp_handler.

The G2-Database interface object that
configures this connection to the database
bridge. Specify the name of an existing
G2-Database interface object.

return-values The value returned by the stored function,
which can include up to 4,000 characters.

For information about these return
arguments, see Invoking G2-Database
Bridge Procedures.
113

Description

To use this procedure, you must:

• Call db-exec-stored-proc-return from your G2 program, passing to it the name
of the stored function to execute and the arguments to the stored function.

• Write a stored procedure called sp_handler.

The syntax of sp_handler is:

sp_handler(proc-name IN VARCHAR2, args IN VARCHAR2,
 return-value OUT VARCHAR2).

sp_handler uses proc-name to determine which stored function to call, performs
any necessary decoding and data-type conversion of args, calls the requested
stored function, converts the returned values to text, and stores the results in
return-value before returning to G2.

Note The db-exec-stored-proc-return procedure does not work in the G2-Sybase
Bridge. See the G2-Sybase Bridge Release Notes for details.

Example

The following example uses the demo tables that are normally installed when you
create a new database. This example shows how to:

• Define 2 stored functions:

– Lup, which takes a department name as input and returns the associated
department number and the city where it is located.

– CtSal, which returns the number of employees who have a monthly salary
equal to or greater than a specified number.

• Define sp_handler to use these functions.

• Call the stored functions from G2.

In your database, you might declare the stored functions named Lup and CtSal, as
follows:

-- Return the department number and location of the named department
-- ===
CREATE OR REPLACE FUNCTION Lup (DeptName IN VARCHAR2) RETURN VARCHAR2
IS
 nrDept NUMBER(2) ;
 VcLoc VARCHAR2(13) ;
BEGIN
 SELECT DeptNo, Loc INTO nrDept, vcLoc FROM Dept WHERE DName =
 UPPER (DeptName);
 RETURN TO_CHAR(nrDept) ||’,’|| vcLoc ;
114

db-exec-stored-proc-return
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN ‘X’ ;
 WHEN TOO_MANY_ROWS THEN
 RETURN ‘>’ ;
 WHEN OTHERS THEN
 RETURN ‘E’ ;
END Lup;
/

-- Return the number of employees who have a salary of TargSal or greater
-- ==
CREATE OR REPLACE FUNCTION CtSal (TargSal IN NUMBER) RETURN INTEGER
IS
 inRet INTEGER ;
BEGIN
 SELECT count(*) INTO inRet FROM Emp WHERE Sal >= TargSal ;
 RETURN inRet ;
EXCEPTION
 WHEN OTHERS THEN
 RETURN -1 ;
END CtSal;
/

In addition to declaring the stored functions, you must declare the sp_handler
procedure to call the correct stored function and convert data types of return
values and arguments, as follows:

-- Dispatch a call from db-exec-stored-proc-return to the correct
-- function
-- ===
CREATE OR REPLACE PROCEDURE sp_handler (FuncName IN VARCHAR2, Args IN
VARCHAR2, RetVal OUT VARCHAR2) IS

BEGIN
 IF LOWER(FuncName) = ‘lup’ THEN
 RetVal := Lup(Args) ;
 ELSE IF LOWER(FuncName) = ‘ctsal’ THEN
 RetVal := TO_CHAR(CtSal(TO_NUMBER(Args))) ;
 ELSE
 RetVal := ‘?’ ;
 END IF ;
 END IF ;
EXCEPTION
 WHEN OTHERS THEN
 RetVal := ‘X’ ;
END ;
/

115

The following call to db-exec-stored-proc-return in G2 executes the database
stored function named Lup across the interface object named myIO, with the
single argument "Accounting". The procedure returns the department number
and location of the named department as a text string, which is "10,New York".

status: symbol;
code: integer;
msg: text;
return-value: text;

return-value,status,code,msg = call db-exec-stored-proc-return(“Lup”, "Accounting",
myIO);

The following call in G2 executes the database stored function named CtSal
across the interface object named myIO, with the single argument "2000". The
procedure returns the number of employees who have a monthly salary of the
named salary or greater, as a text string, which is "6".

status: symbol;
code: integer;
msg: text;
return-value: text;

return-value,status,code,msg = call db-exec-stored-proc-return(“CtSal”, "2000",

myIO);
116

db-execute-immediate
db-execute-immediate
Executes any SQL statement that does not contain bind variables or use an SQL
object. Returns no data.

Synopsis

db-execute-immediate
(sql-stmt:text, auto-commit:truth-value,
interface: class g2-database-interface)
-> status, code, message, rows-processed:integer

Argument Description

sql-stmt

auto-commit

interface

Return Value Description

status, code, message

rows-processed

Description

The procedure db-execute-immediate takes any SQL Data Definition Language
(DDL) or SQL Data Manipulation Language (DML) statement as an argument,
sends the statement to the bridge for processing, and returns status information.

Specify any valid SQL statement.

Specify true to cause the transaction to be
committed automatically if the operation completes
successfully.

Specify false to disable automatic committing. In
this case, you must commit or rollback the
transaction manually.

The G2-Database interface object that configures
this connection to the database bridge. Specify the
name of an existing G2-Database interface object.

This procedure references no attributes in the G2-
Database interface object.

For information about these return arguments, see
Invoking G2-Database Bridge Procedures.

The number of database rows effected by the
transaction.
117

db-execute-immediate is useful for executing SQL statements that you do not
intend to execute repeatedly. This procedure does not declare database cursors.
The SQL statement that it executes is not saved in the KB, and the database must
devise an execution plan each time this procedure is executed.

Although db-execute-immediate does not return data, you can execute a select
statement to test a database schema structure. For example, if you issue the SQL
statement through a call to db-execute-immediate:

select invalid_column_name from emp

where invalid_column_name is in fact an invalid column name, the call to
db-execute-immediate returns, indicating that the column name is invalid.

Example

The following call to db-execute-immediate inserts the values 345.6, Gensym, and
1994 into three columns (col_a, col_b, and col_c) of a table named table_b, in
an Oracle database:

status: symbol;
code: integer;
msg: text;
rows-processed: integer;
sql-stmt: text;
. . .
sql-stmt = “insert into table_b (col_a, col_b, col_c) values

(345.6, ‘Gensym’, 1994)”;
status, code, msg, rows-processed = call db-execute-immediate

(sql-stmt, true, db1-interface);
118

db-fetch-object
db-fetch-object
Performs a query and returns the results within either a user-defined G2 object or
within a G2 item-list where each element in the item list is a user-defined G2
object containing one row of data.

Synopsis

db-fetch-object
(cursor-object:class db-cursor-object, user-object:class item,
return-format:symbol, rcds-to-fetch:integer,
interface: class g2-database-interface)
-> item:class item, status, code, message, num-rows:integer,

cursor-position: integer

Argument Description

cursor-object The cursor object that defines this query. For
information about how to create cursor objects, see
Creating a Cursor Object.

user-object An instance of a user-defined G2 class. The
procedure db-fetch-object returns the result of the
query in an object or objects of the same class as
user-object. The G2-Database bridge generates the
object or objects, populates them with the results of
the query, and passes them to G2. The object
specified by user-object is not modified by this
procedure.

return-format Specify single or list.

Specifying single causes the G2-Database bridge to
return all query data in a single object, of the same
class as the object that you specify for user-object. If
you specify single, the attributes of user-object must
be lists, arrays, or sequences.

Specifying list causes the G2-Database bridge to
return query data in an item-list. Each element of
the item-list is an object containing data from one
row of the query. The objects in item-list are of the
same class as the object that you specify for user-
object.
119

rcds-to-fetch The maximum number of records (rows) to fetch
from the database cursor in this execution of
db-fetch-object.

If you specify 0 for rcds-to-fetch, the call to db-fetch-
object returns all the rows in the database cursor.

Note: The MAXROWS bridge startup option specifies
the default maximum number of database rows
that a single transaction can return. If rcds-to-fetch
specifies a value greater than the value of MAXROWS,
the G2-Database bridge returns a warning and the
transaction ends after the bridge returns the
number of rows specified by MAXROWS. To get the
remainder of rows in the cursor, execute db-fetch-
object repeatedly until the bridge returns eocursor.
For information about the MAXROWS option, see
Initial Bridge Memory Requirements.

interface

Return Value Description

item

• If you specify single for return-format, item is a
single object of the same class as user-object.

• If you specify list for return-format, item is an
item-list of objects of the same class as user-
object.

status, code, message

num-rows

cursor-position

The G2-Database interface object that configures
this connection to the database bridge. Specify the
name of an existing G2-Database interface object.

An item or an item-list of objects containing the
result of the query:

For information about these return arguments, see
Invoking G2-Database Bridge Procedures.

The number of database rows effected by the
transaction.

The number of the last row returned from the
database cursor.

Argument Description
120

db-fetch-object
Description

The procedure db-fetch-object performs the database query defined by a specified
cursor-object. Depending on the value that you specify for return-format, the
bridge returns the data in a G2 object or in an item-list of G2 objects. The object or
objects all are of the same user-defined class as the object that you specify for user-
object.

If your query contains bind variables, you must set values for the bind variables
in the SQL statement defined in that cursor-object before you can call db-fetch-
object to execute the query. You can set values for the bind variables by calling
either db-set-cursor or db-define-cursor.

The attributes of the user-defined object must map to the column names and data
types of the database table(s) from which the query data is being fetched. For
information on mapping G2 data types to database data types see, Appendix A,
Bridge Data Types.

When retrieving INTEGER or DECIMAL types and “smart fetch” is enabled:

• When an attribute of user-object is an integer, this procedure returns the
corresponding value as an integer, or it returns the maximum or minimum G2
integer (which have values 536,870,911 and -536,870,912, respectively) and
generates an error if the actual value would have caused an overflow.

• When an attribute of user-object is a float, this procedure returns the
corresponding value as a float.

• When an attribute of user-object is a quantity or value, this procedure returns
the corresponding value as an integer, or as a float if returning it as an integer
would have caused an overflow.

For more information, see Using Smart Fetch.

When retrieving INTEGERs or DECIMALs, this procedure detects incompatible
types and reports an error.

User-Defined Object Data Types

When you define objects in G2, certain data types for attributes may not be fully
supported for population with database data. The following table summarizes G2
data types for object attributes and the corresponding bridge support level:

Data Type Support Level

Simple values (text, integer,
float, etc.)

Full support.

Compound values
(sequences, structures)

Support for sequences only.
121

Related Procedures

db-define-cursor

db-set-cursor

db-fetch-records

db-refresh-cursor

Example

Example 1: Execute a query and return results within a user-defined object.

The following call to db-fetch-object executes a query associated with a cursor-
object named my-cursor-obj and returns the query data within a single object
designated by myOBJ.

status: symbol;
code: integer;
msg: text;
rows-processed: integer;
cursor-pos: integer;
batch-size: integer = 0;
return-format: symbol = the symbol SINGLE;
cusor-obj: class db-cursor-object = my-cursor-obj;

{created by db-define-cursor};
myItem: class item;

myItem,status,code,msg,rows-processed,cursor-pos =

call db-fetch-object(cursor-obj, myOBJ, return-format, batch-size, myIO);

Lists and arrays Full support.

Variables and parameters Full support.

User-defined objects Not supported.

Data Type Support Level

Creates a re-usable cursor object that defines or
redefines a query and provides a reference to
the database cursor for that query.

Sets or changes the values of bind variables in
an existing cursor object.

Fetches a specified number of rows (records)
from a database cursor and returns them to the
attributes of a G2 object.

Refreshes the cursor data and repositions the
pointer to the first record in the database
cursor.
122

db-fetch-object
This call to db-fetch-object returns the result of the query within a single object of
the same class as the user-defined G2 object myOBJ. Because batch-size is set to 0,
all of the rows from the query are returned to G2.

If you call db-fetch-object as in the example above, changing the return-format
value to list, the bridge returns an item-list of myOBJ objects. Each object in this
item-list contains one row of data from the database.

Example 2: Execute a query and return the results within a G2 item-list where
the elements of the item-list are user-defined objects.

The following call to db-fetch-object executes a query associated with a cursor-
object named my-cursor-obj and returns the query data within a G2 item-list. Each
element of the item-list contains a user-defined object as specified by myOBJ.
Each user-defined object contains one row of data from the query.

status: symbol;
code: integer;
msg: text;
rows-processed: integer;
cursor-pos: integer;
batch-size: integer = 0;
return-format: symbol = the symbol LIST;
cusor-obj: class db-cursor-object = my-cursor-obj;

{created by db-define-cursor};
myItem: class item;

myItem,status,code,msg,rows-processed,cursor-pos =

call db-fetch-object(cursor-obj, myOBJ, return-format, batch-size, myIO);
123

db-fetch-query-item
Returns data associated with a database cursor to G2 in a query item.

Synopsis

db-fetch-query-item
(cursor-object:class db-cursor-object, return-format:symbol,
rcds-to-fetch:integer, interface:class g2-database-interface)
-> query-item:class db-query-item, status, code, message,

num-rows:integer, cursor-position:integer

Argument Description

cursor-object The cursor object that defines this query. For
information about how to create and define cursor
objects, see Creating a Cursor Object.

return-format Specify ARRAYS to cause the database bridge to
return data in a query item of the class db-query-
item-array. The data returned is contained in
attributes of the db-query-item-array that are arrays.

Specify LISTS to cause the database bridge to
return data in a query item of the class db-query-
item-list. The data is contained in attributes of the
db-query-item-list that are lists.

rcds-to-fetch The maximum number of records (rows) to fetch
from the database cursor in this execution of
db-fetch-query-item.

If you specify 0 for rcds-to-fetch, the call to db-fetch-
query-item returns all the rows in the database
cursor.

Note: The MAXROWS bridge startup option specifies
the default maximum number of database rows
that a single transaction can return. If rcds-to-fetch
specifies a value greater than the value of MAXROWS,
the G2-Database bridge returns a warning and the
transaction ends after the bridge returns the
number of rows specified by MAXROWS. To get the
remainder of rows in the cursor, execute db-fetch-
query-item repeatedly until the bridge returns
eocursor. For information about the MAXROWS
option, see Initial Bridge Memory Requirements.
124

db-fetch-query-item
Description

The procedure db-fetch-query-item performs the database query defined by a
specified cursor-object. Depending on the value that you specify for data-format,
the bridge returns the data to a G2 object of the class db-query-item-array or
db-query-item-list.

The bridge returns the results of the query in the db-col-names and db-col-values
attributes of a db-query-item-array or db-query-item-list object:

• db-col-names lists the names of the columns in the database cursor. In a db-
query-item-array object, this attribute is a symbol-array. In a db-query-item-list
object, this attribute is a symbol-list.

• db-col-values contains the values in each column in the database cursor. In a
db-query-item-array object, this attribute is an item-array. In a db-query-item-
list object, this attribute is an item-list.

Each element of the item-array or item-list is an array or list of the values in
one column in the database cursor.

Each element of the array or list in db-col-names corresponds to the same element
in the array or list in db-col-values. Thus, the first element in db-col-names
contains the name of a column, and the first element in db-col-values contains a
list or array of the values in that column, and so on.

For example, the following figure illustrates the contents of the db-col-names and
db-col-values attributes of a db-query-item-list:

interface

Return Value Description

query-item

status, code, message

num-rows

cursor-position

The G2-Database interface object that configures
this connection to the database bridge. Specify the
name of an existing G2-Database interface object.

An instance of db-query-item-array or db-query-
item-list returned by this procedure.

For information about these return arguments, see
Invoking G2-Database Bridge Procedures.

The number of database rows effected by the
transaction.

The number of the last row returned from the
database cursor.

Argument Description
125

db col names

db col values

a symbol-list

an item-list

a db-query-item-list
name age

integer-listtext-list

“Smith”

“Brown”

“Fields”

“Lewis”

“Jones”

50

35

42

61

24

0 1

0 1

Caution To delete a db-query-item-array or db-query-item-list, always use the delete user
menu choice on that object. The user menu choice starts the method db-delete,
which deletes not only the db-query-item-array or db-query-item-list itself, but also
the lists or arrays in the db-col-values attribute. Other ways of deleting a
db-query-item-array or db-query-item-list do not delete the lists or arrays in the
db-col-values attribute and for this reason can cause a memory leak.

When retrieving INTEGER or DECIMAL types and “smart fetch” is enabled, this
procedure returns the corresponding values as an array or list of quantities,
where individual values are returned as integers, or as floats if returning them as
integers would have caused an overflow. For more information, see Using Smart
Fetch.

Related Procedures

db-define-cursor

db-set-cursor

db-fetch-records

Creates a re-usable cursor object that defines or
redefines a query and provides a reference to
the database cursor for that query.

Sets or changes the values of bind variables in
an existing cursor object.

Fetches a specified number of rows (records)
from a database cursor and returns them to a
specified G2 object.
126

db-fetch-query-item
Example

The following call to db-fetch-query-item performs the query defined by a cursor
object named my-cursor-obj and returns the results of the query to a db-query-
item-list named q-item.

status: symbol;
code: integer;
msg: text;
rows-processed: integer;
cursor-pos: integer;
batch-size: integer = 0;
return-format: symbol = the symbol LISTS;
cusor-obj: class db-cursor-object = my-cursor-obj;

{created by db-define-cursor};
q-item: class db-query-item; {For stricter type-checking, you can declare

this local variable as either db-query-item-list or db-query-item-array,
depending on the value that you specify for return-format.}

q-item,status,code,msg,rows-processed,cursor-pos

= call db-fetch-query-item(cursor-obj, return-format, batch-size, myIO);
127

db-fetch-records
Fetches a specified number of rows (records) from a database cursor and returns
them directly to the attributes of a specified object in G2.

Synopsis

db-fetch-records
(cursor-obj:class db-cursor-object, item:class item, rcds-to-fetch:integer,
interface: class g2-database-interface)
-> status, code, message, rows-processed:integer, cursor-position:integer

Argument Description

cursor-obj

item

rcds-to-fetch

interface

The following values are returned to the db-status, db-code, db-message, db-
rows-processed, and db-cursor-position attributes in the Query Object.

Return Value Description

status, code, message

rows-processed

cursor-position

A cursor object, created by a call to db-define-
cursor. For information about how to create and
define cursor objects, see Creating a Cursor Object.

An instance of a G2 class. The procedure db-fetch-
records returns the result of the query directly to
the attributes of item.

The number of records (rows) that you want to
fetch from the database cursor into the Query
Object in a single execution of db-fetch-records.

If you specify 0 for rcds-to-fetch, the call to db-fetch-
records returns all the rows in the database cursor.

The G2-Database interface object that configures
this connection to the database bridge. Specify the
name of an existing G2-Database interface object.

This procedure references no attributes in the G2-
Database interface object.

For information about these return arguments, see
Invoking G2-Database Bridge Procedures.

The number of database rows processed by this
transaction.

The last row returned from the database cursor.
128

db-fetch-records
Description

This procedure fetches any number of rows (records) that you specify from a
database cursor. The rows are inserted into column attributes of an object that
correspond to database column or alias names. For information on mapping G2
data types to database data types see, Appendix A, Bridge Data Types.

If you set rcds-to-fetch to a number other than 0, db-fetch-records returns that
number of records to the specified Query Object. To fetch all the available records,
call db-fetch-records repeatedly until the end of cursor (eocursor) is reached, or
set rcds-to-fetch to 0.

If you want to retrieve more than one record at a time and store all records in one
object, define your object column attributes as lists.

For information about how to perform queries using Query Objects, see Query
Objects.

When retrieving INTEGER or DECIMAL types and “smart fetch” is enabled:

• When an attribute of user-object is an integer, the corresponding value is
returned as an integer, or, if returning it as an integer would cause G2 integer
overflow, the maximum or minimum valid G2 integer (which have values
536,870,911 and -536,870,912, respectively) is stored in the object and an error
is returned by the procedure call.

• When an attribute of user-object is a float, the corresponding value is stored as
a float.

• When an attribute of user-object is a quantity, the value is stored as an integer
or, if it will not fit in a G2 integer, as a float.

For more information, see Using Smart Fetch.

When “smart fetch” is not enabled:

• When the attribute of user-object is an integer, an error is generated if the
value would cause G2 integer overflow.

• When the attribute type of user-object is incompatible with the value being
returned, an error is generated.

When retrieving INTEGERs or DECIMALs, this procedure detects incompatible
types and reports an error.
129

Related Procedure

db-define-cursor

db-set-cursor

db-fetch-query-item

db-refresh-cursor

Example

The following call to db-fetch-records executes the query associated with a
cursor-object named my-cursor-obj. The bridge returns the results of the query to
attributes of the G2 object myObj.

status: symbol;
code: integer;
msg: text;
rows-processed: integer;
cursor-pos: integer;
batch-size: integer = 0;
myObj: class object;
cusor-obj: class db-cursor-object

= my-cursor-obj; {created by db-define-cursor}
. . .
create an instance of the class named by myObj;
change the gsi-interface-name of myObj to the name of myIO;
. . .
status,code,msg,rows-processed,cursor-pos

= call db-fetch-records(cursor-obj, myObj, batch-size, myIO);

Creates a re-usable cursor object that defines or
redefines a query and provides a reference to
the database cursor for that query.

Sets or changes the values of bind variables in
an existing cursor object.

Performs a query and returns the result to G2
in a query item.

Refreshes the cursor data and repositions the
pointer to the first record in the database
cursor.
130

db-fetch-structure
db-fetch-structure
Performs a query and returns the results within a structure where each element of
the structure is a name/sequence pair containing one column of database data.

Synopsis

db-fetch-structure
(cursor-object:class db-cursor-object, rcds-to-fetch:integer,
interface: class g2-database-interface)
-> struct:structure, status, code, message, num-rows:integer,

cursor-position: integer

Argument Description

cursor-object

rcds-to-fetch

interface

The cursor object that defines this query. For
information about how to create cursor objects, see
Creating a Cursor Object.

The maximum number of records (rows) to fetch
from the database cursor in this execution of
db-fetch-structure.

If you specify 0 for rcds-to-fetch, the call to db-fetch-
structure returns all the rows in the database cursor.

Note: The MAXROWS bridge startup option specifies
the default maximum number of database rows
that a single transaction can return. If rcds-to-fetch
specifies a value greater than the value of MAXROWS,
the G2-Database bridge returns a warning and the
transaction ends after the bridge returns the
number of rows specified by MAXROWS. To get the
remainder of rows in the cursor, execute db-fetch-
structure repeatedly until the bridge returns
eocursor. For information about the MAXROWS
option, see Initial Bridge Memory Requirements.

The G2-Database interface object that configures
this connection to the database bridge. Specify the
name of an existing G2-Database interface object.
131

Return Value Description

struct

status, code, message

num-rows

cursor-position

Description

The procedure db-fetch-structure performs the database query defined by a
specified cursor-object. The bridge returns the data in a G2 structure.

• If the number of rows fetched by a query equals 0, a structure containing no
elements will be returned to G2.

• If the number of rows fetched by a query is greater than 0, a structure will be
returned to G2 where the elements of the structure consist of name/sequence
pairs. Each of the name/sequence pairs represents a database column. The
sequences contain all of the rows of data generated by the query.

If your query contains bind variables, you must set values for the bind variables
in the SQL statement defined in that cursor-object before you can call db-fetch-
structure to execute the query. You can set values for the bind variables by calling
either db-set-cursor or db-define-cursor.

Because db-fetch-structure uses sequences and structures to return data to G2,
there are several advantages to using this approach to fetch data.

• While structures and sequences offer similar functionality to objects and lists,
respectively, they consume significantly less memory.

• The memory used by structures and sequences is managed automatically by
G2. This means that you do not have to worry about deleting them.

• Structures and sequences can be transmitted much faster between G2 and a
bridge process (under most conditions). This means that you should see better
performance when fetching structures than when fetching G2 objects.

When retrieving INTEGER or DECIMAL types from the database and “smart
fetch” is enabled, this procedure returns values as integers, or as floats if

A structure that contains a sequence for each
database column resulting from the query. The
sequences contain all of the rows of data resulting
from the query.

For information about these return arguments, see
Invoking G2-Database Bridge Procedures.

The number of database rows effected by the
transaction.

The number of the last row returned from the
database cursor.
132

db-fetch-structure
returning them as integers would cause G2 integer overflow. For details, see
Using Smart Fetch.

Related Procedures

db-define-cursor

db-set-cursor

db-fetch-query-item

db-refresh-cursor

Example

The following call to db-fetch-structure executes a query associated with a cursor-
object named my-cursor-obj and returns the query data within a G2 structure:

status: symbol;
code: integer;
msg: text;
rows-processed: integer;
cursor-pos: integer;
batch-size: integer = 0;
struct: structure;

struct,status,code,msg,rows-processed,cursor-pos =

call db-fetch-structure(cursor-obj, batch-size, myIO);

Creates a re-usable cursor object that defines or
redefines a query and provides a reference to
the database cursor for that query.

Sets or changes the values of bind variables in
an existing cursor object.

Performs a query and returns the result to G2
in a query item.

Refreshes the cursor data and repositions the
pointer to the first record in the database
cursor.
133

db-get-triggers
Returns a list of currently active trigger watches.

Synopsis

db-get-triggers
(interface: class g2-database-interface)
-> trigger-list: symbol-list, trigger-count:integer, status, code, message

Argument Description

interface

Return Value Description

trigger-list

trigger-count

status, code, message

Description

Returns a list of currently active trigger watches for a bridge process and the total
number of all such trigger watches.

Related Procedures

db-set-trigger

The G2-Database interface object that configures
this connection to the database bridge. Specify the
name of an existing G2-Database interface object.

A list of the names of the currently active trigger
watches.

The number of currently active trigger watches.

For information about these return arguments, see
Invoking G2-Database Bridge Procedures.

Enables or disables a trigger watch.
134

db-get-triggers
Example

The following call to db-get-triggers returns the names and total number of the
currently active trigger watches:

status: symbol;
code: integer;
msg: text;
trigger-names: class symbol-list;
trigger-count: integer;

trigger-names, trigger-count, status,code,msg = call db-get-triggers(myIO);
135

db-io-status
Changes display (colors) of the G2-Database Interface icon to reflect changes to
the status of the connection between the G2-Database bridge and the database.

Synopsis

db-io-status
(interface: class g2-database-interface)

Argument Description

interface

Description

The procedure db-io-status set regions of the G2-Database Interface icon to
different colors whenever the value of the gsi-interface-status attribute of the
g2-database interface object changes.

You can also use db-io-status to set the color of the status region of SQL objects,
cursor objects, trigger objects, and query objects.

This procedure is automatically called when db-colors is set to true.

For information about how to use db-io-status to provide an ongoing visual
indication of changes to the status of a connection between G2 and a G2-Database
bridge, see Displaying the Connection Status.

Note This procedure is not intended for use by end users.

The G2-Database interface object that configures
this connection to the database bridge. Specify the
name of an existing G2-Database interface object.
136

db-kill-bridge
db-kill-bridge
Kills a specified G2-Database bridge process.

Synopsis

db-kill-bridge
(interface: class g2-database-interface)

Argument Description

interface

Description

The procedure db-kill-bridge kills a specified G2-Database bridge process. All
connections from the bridge to the database(s) are closed for all contexts, and all
resources that were used by the connection(s) are freed.

This procedure affects all connections and contexts associated with the specified
G2-Database bridge process.

Note Because this procedure returns no values, you must invoke it by using a start
action, rather than a call procedure statement. See Invoking a Bridge Procedure
from a Rule, Action-Button, or User-Menu-Choice.

To start the bridge on the local machine, use the G2 system procedure g2-spawn-
process-with-arguments, or the start the bridge on a remote machine with a
Telewindows client, use g2-spawn-remote-process-with-arguments. You can also
use telnet and batch file or script to start the bridge remotely.

Example

The following call to db-kill-bridge kills the bridge process that is running on a
connection configured by the G2-Database interface object named db1-interface.

start db-kill-bridge(db1-interface);

The G2-Database interface object that configures
this connection to the database bridge. Specify the
name of an existing G2-Database interface object.
137

db-logfile
Creates, opens, and closes log files and modifies log file filter settings.

Synopsis

db-logfile
(mode:symbol, filter:text, interface:class g2-database-interface)
-> status, code, message

Argument Description

mode Specify open or close, to open or close the log file. If
the logfile does not exist, the procedure creates one.

This argument must be specified as a symbol.

Example: the symbol CLOSE

filter Specifies the category or categories of messages that
can be written to the log file. Possible values are:
ALL, FATAL, ERROR, WARN or WARNING, and
INFO. Only messages of the category specified by
filter are written to the log file. If you enter more
than one value for filter, separate the values by
commas or spaces.

For more information about how to filter messages
written to the log file, see Saving Messages in Log
Files.

interface The G2-Database interface object that configures
the connection for which you are logging messages.
Specify the name of the G2-Database interface
object.

db-logfile uses the log file specified in the log-file
attribute of this G2-Database interface object. If no
log file is specified in the log-file attribute, logging
of messages is disabled.
138

db-logfile
Return Value Description

Description

The procedure db-logfile opens a new log file, closes an open log file, or reopens a
closed log file.

Messages logged to a reopened log file are appended to any existing messages in
that log file.

Each context can have one logfile. For information about contexts, see Running a
Bridge with Multiple Connections to G2.

Examples

Example 1: The following call to db-logfile opens the log file specified in the log-
file attribute of an G2-Database interface object named db1-interface. The call
specifies that only error and warning messages are to be logged.

status:symbol;
code: integer;
msg: text;
. . .
status, code, msg =
 call db-logfile(the symbol OPEN, “ERROR, WARNING”, DB1-INTERFACE);

Example 2: The following call to db-logfile manages the logfile associated with a
G2-Database interface object. This procedure allows you to open, close or change
the logfile filters for a logfile.

status: symbol;
code: integer;
msg: text;
mode: symbol = the symbol OPEN; {or CLOSE}
filter: text = “ERROR,WARN”; {or INFO,FATAL,ALL}

status,code,msg = call db-logfile(mode, filter, myIO);

status One of the following symbols: SUCCESS, ERROR,
WARNING, INFO, or DISCONNECTED.

code The error or information code as an integer.

message The associated message text.

The log message has the same fields as messages
returned by the procedure db-context-event-msg,
with a timestamp prefixed
139

Example 3: This procedure opens the logfile associated with myIO (if it is not
already open) and set the logfile filter to error and warning messages. All other
messages will not be logged. Multiple filter arguments may be specified by
separating arguments with commas. If full logging is required then specify ALL.
Note, the logfile is closed when the KB is paused and re-opened upon a resume.

mode: symbol = the symbol CLOSE;
filter: text = “”;

status,code,msg = call db-logfile(mode, filter, myIO);
140

db-ping
db-ping
Returns the status of the connection between the G2-Database bridge and the
database.

Synopsis

db-ping
(interface: class g2-database-interface)
-> status, code, message

Argument Description

interface

Return Value Description

status, code, message

Description

This procedure determines the status of the connection between the G2-Database
bridge and the database and returns this information in the status, code, and
message values.

If the connection exists, db-ping returns success to status. If a connection does not
exist, it returns error to status, as well as any error information provided by the
database to code and message.

Example

The following call to db-ping returns the status of the connection configured by
the G2-Database interface object named myIO.

status: symbol;
code: integer;
msg: text;
. . .
status, code, msg = call db-ping(myIO);

The G2-Database interface object that configures
this connection to the database bridge. Specify the
name of an existing G2-Database interface object.

For information about these return arguments, see
Invoking G2-Database Bridge Procedures.
141

db-redirect-callback
Redirects messages initially intended for either db-context-event-msg or
db-trigger-event to any user defined G2 procedure.

Synopsis

db-redirect-callback
(old-callback: symbol, new-callback: symbol)
-> status, code, message

Argument Description

old-callback

new-callback

interface

Return Value Description

status, code, message

Specify db-context-event-msg or db-trigger-event.

Specifying db-context-event-msg causes the G2-
Database bridge to return messages intended for
the db-context-event-msg procedure to the
procedure designated by new-callback.

Specifying db-trigger-event causes the G2-Database
bridge to return trigger messages intended for the
db-trigger-event procedure to the procedure
designated by new-callback.

The name of the G2 procedure that will receive
messages that were initially intended for the
procedure named by old-callback.

The G2-Database interface object that configures
this connection to the database bridge. Specify the
name of an existing G2-Database interface object.

This procedure references no attributes in the G2-
Database interface object.

For information about these return arguments, see
Invoking G2-Database Bridge Procedures.
142

db-redirect-callback
Description

This procedure instructs the bridge to return messages that were initially
intended for db-context-event-msg or db-trigger-event, to some other G2
procedure.

The signature of the user defined procedure that will be receiving messages must
match the signature of the procedure that it is replacing. If the signature does not
match, then a G2 error will occur when the bridge attempts to return a message to
the procedure.

Note When you call db-redirect-callback, messages are only redirected for the context
(g2-database-interface object) across which the db-redirect-callback procedure
was called. If you want to redirect messages for every context, then you must call
db-redirect-callback across each g2-database-interface object.

If you want to restore messaging to the original procedures, then you would
simply call db-redirect-callback with the name of the G2-Database procedure in
both the old-callback and new-callback arguments.

If you want to redirect messages from db-context-event-msg to your own
procedure, then your procedure must have the same arguments as db-context-
event-msg. The arguments must match both in order and in data type.

The procedure allows messages of up to approximately 4000 bytes to be
transferred from Oracle to G2.

Related Procedures

db-context-event-msg

db-trigger-event

Example

Example 1: Redirecting messages to a user defined procedure.
The following example illustrates how you might redirect messages from
db-context-event-msg to a procedure named my-event-msgs.

status: symbol;
code: integer;
msg: text;
. . .
status, code, msg = call db-redirect-callback(the symbol db-context-event-msg,

the symbol my-event-msgs);

Reports the occurrence of significant events
during the execution of the G2-Database bridge

Reports the occurrence of trigger messages to
G2
143

This assumes that your procedure has a signature similar to the following:

my-event-msgs (
status: symbol,
code: integer,
message: text,
facility: symbol,
timestamp: text) = ()

begin

{ Code your message handler here}

end

Example 2: Restoring messaging to db-context-event-msg.
The following example illustrates how you would restore messaging from a user
defined procedure back to db-context-event-msg.

status: symbol;
code: integer;
msg: text;
. . .
status, code, msg = call db-redirect-callback(the symbol db-context-event-msg,

the symbol db-context-event-msg);
144

db-refresh-cursor
db-refresh-cursor
Refreshes the cursor data and repositions the cursor pointer to the first record in
the database cursor.

Synopsis

db-refresh-cursor
(cursor-obj:class db-cursor-object, interface: class g2-database-interface)
-> status, code, message

Argument Description

cursor-obj

interface

The following values are returned to the db-status, db-code, and
db-messages attributes in the Query Object.

Return Value Description

status, code, message

Description

Refreshes the cursor and repositions the cursor pointer to the first record. You
must call this procedure if you want to fetch from a cursor again after fetching the
last record in the cursor (status = eocursor), or if you want to begin fetching from
the beginning of the cursor.

This procedure does not cause any data to be fetched.

The name of a Cursor Object that has been defined
by db-define-cursor and associated with an SQL
Select statement.

The G2-Database interface object that configures
this connection to the database bridge. Specify the
name of an existing G2-Database interface object.

This procedure references no attributes in the G2-
Database interface object.

For information about these return arguments, see
Invoking G2-Database Bridge Procedures.
145

Related Procedures

db-define-cursor

db-set-cursor

db-fetch-object

db-fetch-query-item

db-fetch-records

Example

The following call to db-refresh-cursor resets the cursor pointer to the beginning
of the database cursor (first row of query).

status: symbol;
code: integer;
msg: text;
cursor-obj: class db-cursor-object;
. . .
status,code,msg = call db-refresh-cursor(cursor-obj, myIO);

Creates a re-usable cursor object that defines a
query and provides a reference to the database
cursor for that query.

Sets or changes the values of bind variables in
an existing cursor object

Performs a query and returns the result to a
user-defined G2 object.

Returns data associated with a database cursor
to G2 in a query item.

Fetches a specified number of rows (records)
from a database cursor and returns them to the
attributes of a G2 object.
146

db-rollback
db-rollback
Cancels (undoes) all changes made in a specified context since the last commit
(save) to your database.

Synopsis

db-rollback
(interface: class g2-database-interface)
-> status, code, message

Argument Description

interface

Return Value Description

status, code, message

Description

The procedure db-rollback cancels (undoes) all changes since the last commit
(save) to your database. This procedure:

• Undoes all changes made to the database during the current transaction.

• Ends the transaction.

• Releases all row and table locks.

You cannot roll back a transaction after it has been committed.

Related Procedures

db-execute-immediate

db-commit

The G2-Database interface object that configures
this connection to the database bridge. Specify the
name of an existing G2-Database interface object.

This procedure references no attributes in the G2-
Database interface object.

For information about these return arguments, see
Invoking G2-Database Bridge Procedures.

Executes a non-query SQL statement that does
not contain bind variables or use an SQL object.

Commits all changes made since your last
commit (save) to your database.
147

Note The actual behavior of db-rollback may vary depending upon the database being
used. Consult the Release Notes and the database specific documentation for
details on using db-rollback.

Example

The following call to db-rollback undoes all changes made since the last commit
on the connection configured by the G2-Database interface object named
db1-interface.

status: symbol;
code: integer;
msg: text;
. . .
status, code, msg = call db-rollback(db1-interface);

The following call to db-rollback aborts the transaction submitted to the database
by db-execute-immediate:

status: symbol;
code: integer;
msg: text;
rows-processed: integer;
sql-stmt: text = “insert into emp (ename) values (‘Smith’)”;
auto-commit: truth-value = FALSE;

status,code,msg,rows-processed = call db-execute-immediate(sql-stmt,

auto-commit, myIO);
status,code,msg = call db-rollback(myIO);
148

db-set-connection-status
db-set-connection-status
Called by G2-Database procedures to set the database-connection-status attribute
of a G2-Database interface object and to set the icon color to reflect the status of
the connection between the bridge and the database.

Synopsis

db-set-connection-status
(status: symbol, code: integer interface: class g2-database-interface)

Argument Description

status

code

interface

Description

The procedure db-set-connection-status is used by system procedures to set the
database-connection-status attribute of G2-Database interface objects. This
procedure is called by g2-Database procedures following a transaction that does
not result in a status of success. This procedure also sets the icon colors for the
database portion of the g2-Database interface object icon.

Note This procedure is not intended for use by end users.

The return status from a call to a database.

The error code.

The G2-Database interface object that configures
this connection to the database bridge.
149

db-set-cursor
Sets or changes the values of bind variables in an existing cursor object.

Synopsis

db-set-cursor
(cursor-object:class db-cursor-object, bind-variables:text-list or text,
interface: class g2-database-interface)
-> status, code, message

Argument Description

cursor-object

bind-variables

interface

Return Value Description

status, code, message

Description

This procedure sets the values of bind variables in the SQL statement in a
specified cursor object.

If you call db-define-cursor to create a cursor object without specifying values for
bind variables, you must call db-set-cursor to set the values of the bind variables
in the cursor object before you can perform a query using that cursor object.

db-set-cursor changes the values of bind variables without reprocessing the SQL
statement or requiring the database to generate a new database cursor. Thus, this
procedure enables you to change the values of the bind variables without
significant processing overhead either in the bridge or in the database.

An existing cursor object.

The bind variable(s) in the SQL statement that this
call to db-set-cursor sets or changes. Bind variables
must be supplied as a text-list. If you prefer, you
can specify bind values as a text string with each
value separated by a comma. Note: This approach
is not as efficient as providing a text-list.

The G2-Database interface object that configures
this connection to the database bridge. Specify the
name of an existing G2-Database interface object.

For information about these return arguments, see
Invoking G2-Database Bridge Procedures.
150

db-set-cursor
Related Procedures

db-define-cursor

Example

The following call to db-set-cursor modifies the bind variables of the SQL
statement in the cursor object my-cursor-obj. The procedure modifies the bind
variable that was initially set to 557 to 778.

status: symbol;
code: integer;
msg: text;
cursor-obj-name: symbol = the symbol MY-CURSOR-OBJ;
cursor-obj: class db-cursor-object;
sql-stmt: text = “select ename from emp where empid = :n”;
bind-vars1, bind-vars2: text-list;

insert “557” at the end of bind-vars1;
sql-obj,status,code,msg, = call db-define-cursor(cursor-obj-name, sql-stmt,

bind-vars1, myIO);
insert “778” at the end of bind-vars2;
status,code,msg, = call db-set-cursor(cursor-obj, bind-vars2, myIO);

Creates a re-usable cursor object that defines a
query and provides a reference to the database
cursor for that query.
151

db-set-sql
Sets or changes the values of bind variables in an SQL object where bind variables
are represented as simple values.

Synopsis

db-set-sql
(sql-object:class db-sql-object, bind-variables:text-list or text,
interface: class g2-database-interface)
-> status, code, message

Argument Description

sql-object

bind-variables

interface

Return Value Description

status, code, message

Description

The procedure db-set-sql modifies the bind variables of a non-query SQL
statement declared by db-define-sql.

If you call db-define-sql to create an SQL object without specifying values for bind
variables, you must call db-set-sql to set the values of the bind variables in the
SQL object before you can perform a database operation using that SQL object.

The procedure db-set-sql changes the values of bind variables without
reprocessing the SQL statement or requiring the database to generate a new
database cursor. Thus, this procedure enables you to change the values of the
bind variables without significant processing overhead either in the bridge or in
the database.

An existing SQL object.

The values to which the bind variables in the SQL
statement in SQL object will be set. These values
should be provided as either a text-list or as a text
string with values separated by commas. It is more
efficient to use a text-list.

The G2-Database interface object that configures
this connection to the database bridge. Specify the
name of an existing G2-Database interface object.

For information about these return arguments, see
Invoking G2-Database Bridge Procedures.
152

db-set-sql
Related Procedures

db-define-sql

Example

The following call to db-set-sql changes the values of the bind variables in a
cursor object named my-sql-obj from “Smith, 50” to “Jones, 30”.

status: symbol;
code: integer;
msg: text;
sql-obj-name: symbol = the symbol my-sql-obj;
sql-obj: class sql-object;
sql-stmt: text = “insert into emp (ename,age) values (:n,:2)”;
bind-vars1, bind-vars2: class text-list;

create a text-list bind-vars1;
create a text-list bind-vars-2;
insert “Smith” at the end of bind-vars1;
insert “50” at the end of bind-vars1;
sql-obj,status,code,msg, = call db-define-sql(sql-obj-name, sql-stmt,

bind-vars1, myIO);
insert “Jones” at the end of bind-vars2;
insert “30” at the end of bind-vars2;
status,code,msg, = call db-set-sql(sql-obj, bind-vars2, myIO);

Creates an SQL object for use in non-query
database operations on individual values.
153

db-set-sql-obj
Sets or changes the values of bind variables in an SQL statement with the values
that are stored in attributes of a user-defined G2 object.

Synopsis

db-set-sql-obj
(sql-object:class db-sql-object, bind-variable-names:text,
user-object:class object, interface:class g2-database-interface)
-> status, code, message

Argument Description

sql-object

bind-variable-names

user-object

interface

Return Value Description

status, code, message

An existing SQL object.

Represents the names of the attributes of user-object
that correspond to the bind variables in the SQL
statement defined by db-define-sql-obj. The values
of the attributes of user-object will be associated
with the SQL statement defined in db-define-sql-obj
in the order in which they appear.

If you specify two or more bind variable names,
separate them using commas.

Specify values for bind-variable-names in an order
that corresponds to the order of the bind variables
in the SQL object sql-object.

A G2 object of a user-defined class. The bind
variable names that you specify for bind-variable-
names must match the names of attributes of this
object.

The G2-Database interface object that configures
this connection to the database bridge. Specify the
name of an existing G2-Database interface object.

For information about these return arguments, see
Invoking G2-Database Bridge Procedures.
154

db-set-sql-obj
Description

The procedure db-set-sql-object sets the values of bind variables in an SQL object,
using values stored in attributes of a user-defined G2 object. The bind variable
names specified in the bind-variable-names argument must match the names of
attributes of the user-defined G2 object specified in the user-object argument.

The procedure db-define-sql-obj, that creates SQL objects, cannot set the values of
bind variables in the SQL objects. Thus, you must call db-set-sql-object to set the
values of bind variables in an SQL object before you can use that SQL object to
perform a database operation.

Note The order in which you specify the bind variable names is important as the bind
variable names are paired to the bind variables within the SQL statement in the
order in which they appear. For example, the first bind variable name is paired
with the first occurrence of a bind variable in the SQL statement.

Related Procedures

db-define-sql-obj

Example

The following example illustrates:

• How db-define-sql-obj creates an SQL object.

• How db-set-sql-obj set values of bind variables in that SQL object.

The following call to db-define-sql-obj creates an SQL object named my-sql-obj,
which contains two bind variables, :n and :a.

status: symbol;
code: integer;
msg: text;
sql-obj-name: symbol = the symbol MY-SQL-OBJ;
my-sql-obj: class db-sql-object;
sql-stmt: text = “insert into emp (ename,age) values (:n, :a)”;

my-sql-obj,status,code,msg = call db-define-sql-obj(sql-obj-name,

sql-stmt, myIO);

Creates an SQL object for use in non-query
database operations where the bind variable
values will be supplied in a G2 object.
155

Assume that a user defined G2 object, myObj, has the following attributes:

ename is an instance of a text-list;

age is an instance of an integer-list;

The following call to db-set-sql-obj uses the values of the attributes in myObj to
set the values of the two bind variables :n and :a.

bind-var-names: text = “ename,age”;
status,code,msg = call db-set-sql-obj(sql-obj, bind-var-names, myObj, myIO);

db-set-sql-object sends the object associated with myOBJ to the bridge. The
bridge then:

1 Matches a bind variable name specified in bind-var-names to the name of an
attribute within the object myObj (e.g., ename must exist in myObj).

2 Matches the bind variable value(s) of this attribute with the bind variable
name specified during db-define-sql-obj (e.g., the values located within the
ename attribute of myObj are associated with bind variable :n, etc.).

3 Repeats this procedure for each bind variable.
156

db-set-trigger
db-set-trigger
Enables or disables a trigger watch of a specified trigger name.

Synopsis

db-set-trigger
(trigger:class db-trigger-object or symbol, trigger-state:truth-value,
interface: class g2-database-interface)
-> status, code, message

Argument Description

trigger

trigger-state

interface

Return Value Description

status, code, message

Description

This procedure sets a trigger watch, with the result that when a trigger event
occurs in the database, the G2-Database bridge does one of two things:

• If you specify a G2 trigger object for the trigger argument, it sends
information about the trigger directly to the last-recorded-value attribute of
that trigger object, and it sends a time stamp to the time-stamp attribute.

• If you specify the name of a trigger for the trigger argument, it sends
information about the trigger event to the G2 procedure db-trigger-event.

You can set a maximum of 50 trigger watches for each G2-Database bridge
process.

Specify the name of a database trigger (a symbol),
or a named trigger object (db-trigger-object).

Set to true to enable the trigger watch for this
bridge, or to false to disable the trigger.

The value of trigger-state does not affect the trigger
in the database.

The G2-Database interface object that configures
this connection to the database bridge. Specify the
name of an existing G2-Database interface object.

For information about these return arguments, see
Invoking G2-Database Bridge Procedures.
157

The procedure allows messages of up to approximately 4000 bytes to be
transferred from Oracle to G2.

Related Procedures

db-get-triggers

db-trigger-event

db-redirect-callback

Examples

Example 1: The following call to db-set-trigger enables a trigger watch on a trigger
named my-trigger-object (which must also be the name of the db-trigger-object in
G2). If a trigger event occurs in the database for this trigger, the bridge sends a
text message directly to the trigger object.

status: symbol;
code: integer;
msg: text;
activate-trigger: truth-value = true;
trigger-obj: class db-trigger-object = my-trigger-object;
. . .
status,code,msg = call db-set-trigger(trigger-obj, activate-trigger, myIO);

Since a trigger-object was supplied as the first argument to this procedure, a
trigger watch is established to watch for a trigger event in the database named
my-trigger-object. If the trigger occurs, then a message is sent directly to the
trigger object named my-trigger-object.

Example 2: In the following call to db-set-trigger, the name of a trigger (rather
than the name of a trigger object) is the first argument. The call enables a trigger
watch on a trigger named my-trigger. If a trigger event occurs in the database for
this trigger, the bridge sends a text message to the G2-Database procedure
db-trigger-event.

trigger-name: symbol = the symbol MY-TRIGGER-OBJECT;
activate-trigger: truth-value = true;
. . .
status,code,msg = call db-set-trigger(trigger-name, activate-trigger, myIO);

By setting the activate-trigger argument to false, the trigger watch is disabled.
This trigger watch can be disabled by calling db-set-trigger with activate-trigger
set to FALSE instead of TRUE. When a trigger watch is disabled, the bridge does
not report database trigger events for that trigger to G2.

Returns a list of currently active trigger
watches.

Called when a trigger event specified by db-
set-trigger occurs in the database.

Designate an alternate G2 procedure that will
receive trigger event messages.
158

db-sql-function
db-sql-function
Returns a single text or float value resulting from a query.

Synopsis

db-sql-function
(sql-stmt:text, interface: class g2-database-interface)
-> num-val:float, text-val:text, status, code, message

Argument Description

sql-stmt

interface

Return Value Description

num-val

text-val

status, code, message

Description

The procedure db-sql-function can use any SQL select statement to return a single
value. If the select statement returns more than one value, db-sql-function returns
only the first of these values. The select statement can invoke SQL functions such
as SUM, MAX, MIN, AVG, and COUNT, which return single values. Each call to db-sql-
function can execute only one function.

If the result data is numeric, it is converted to a float and returned to num-val. The
text-val argument is set to the null value that you specified in the null-string
attribute of the G2-Database interface object.

Any valid SQL select statement.

The G2-Database interface object that configures
this connection to the database bridge. Specify the
name of an existing G2-Database interface object.

This procedure references no attributes in the G2-
Database interface object.

The single value result (numeric) of the SQL
function. Set to a null value if a text value is
returned to the text-val argument.

The single value result (text) of the SQL function.
Set to a null value if a float value is returned to the
num-val argument.

For information about these return arguments, see
Invoking G2-Database Bridge Procedures.
159

If the result data is text, it is returned to the text-val argument, and the num-val
argument is set to the null value that you specified in the null-number attribute of
the G2-Database interface object.

If the select statement returns 0 rows, both text-val and num-val are set to null
values.

Note db-sql-function does not return values to objects.

Examples

Example 1: The following call to db-sql-function calls select to select names from a
database table named emp:

status: symbol;
code: integer;
msg: text;
sql-stmt: text;
num-result: float;
txt-result:text;
. . .
sql-stmt = “select ename from emp”;

num-result, txt-result, status, code, msg =
 call db-sql-function(sql-stmt, db1-interface);

if status is SUCCESS then
 inform the operator that “The name = [txt-result]”;

Assume the following database table emp:

ename age

In this example, the values returned by db-sql-function include:

num-result = 0 or the value of null-number in your G2-Database interface
object.

txt-result = “John”

John 10

Bill 12

Judy 20

Tony 55
160

db-sql-function
Example 2: The following call to db-sql-function executes a query and returns row
#1, column #1 of the query. This procedure is useful for performing queries
where 1 value is desired (such as count, avg, sum and other functions). This
procedure returns either a text or float value, depending upon the result.

status: symbol;
code: integer;
msg: text;
sql-stmt: text = “select count(*) from emp”;
float-val: float;
text-val: text;

float-val,text-val,status,code,msg = call db-sql-function(sql-stmt, myIO);

In this example, since the value for count is an integer, the value will be returned
to the local float-val variable. If the result of the operation generated a text value,
then the value would have been returned in the text-val variable. If there is no
value for float-val or text-val, float-val or text-val is set to the null value specified in
the G2-Database interface object.
161

db-startup
A procedure that calls db-configuration and db-connect to configure and establish
a connection between G2 and a G2-Database bridge.

Synopsis

db-startup
(interface: class g2-database-interface)
-> status, code, message

Argument Description

interface

Return Value Description

status, code, message

Description

The procedure db-startup is called automatically by a rule on the subworkspace of
the g2-database-interface class definition when a connection is established
between G2 and a bridge to configure and establish a database connection. The
recommended practice is to invoke db-startup only through this rule. For
information about this rule, see Sending Connection Configuration Information to
the Bridge.

The procedure db-startup calls db-configuration, which sends configuration
information provided by a G2-Database interface object to the bridge after G2 has
established an active connection to the bridge.

When db-configuration successfully completes execution, db-startup then attempts to
establish a connection between the bridge and the database by calling db-connect.

Note This procedure is not intended for use by end users.

The G2-Database interface object that configures
this connection to the database bridge. Specify the
name of an existing G2-Database interface object.

This procedure references no attributes in the G2-
Database interface object.

For information about these return arguments, see
Invoking G2-Database Bridge Procedures.
162

db-text-to-text-list
db-text-to-text-list
Converts a text string that contains values separated by commas into a text-list.

Synopsis

db-text-to-text-list
(text-string:text)
-> text-list

Argument Description

text-string

Return Value Description

text-list

Description

The procedure db-text-to-text-list converts a text string that contains values
separated by commas into a text-list. This procedure is called by G2-Database
procedures that need to convert their bind variable arguments into a text-list.
Many G2-Database procedures accept either a text-list or a text as a value for their
bind variable argument. However, in order to use the bind variables, they must
be converted into a text list.

Example

The following example shows how to convert a text string into a text-list.

text-string: text = “Jones,Smith,Reynolds,Jackson”;
text-list: class text-list;

text-list = call db-text-to-text-list(text-string);

Note This procedure is not intended for use by end users.

Comma delimited text string of bind values.

A text-list where the elements of the text list
represent the values from the comma delimited text
string text-string.
163

db-trigger-event
A user-modifiable procedure that the bridge calls to send trigger messages to G2.
This procedure may be used as a foundation procedure for developing a customer
event handler.

Synopsis

db-trigger-event
(trigger-name:symbol, message:text, timestamp:text)

Argument Description

trigger-name

message

timestamp

Description

The procedure db-trigger-event is a user-modifiable procedure that G2 calls when
a trigger event specified by db-set-trigger occurs in the database.

You complete the code of db-trigger-event to specify how your G2 application
responds to the trigger event.

Recommended Approach

Alternatively, you can instruct the bridge to send messages to any user defined
G2 procedure by calling db-redirect-callback. This is the recommended approach
as it does not require you to modify db-trigger-event. For information about
db-redirect-callback see db-redirect-callback.

The name of a trigger event specified by a call to
db-set-trigger.

The message associated with the database trigger
event.

The timestamp provided with the trigger event
message.
164

db-trigger-event
Related Procedures

db-get-triggers Returns a list of currently active trigger
watches.

db-set-trigger Enables or disables a trigger watch on a
specified trigger name.

db-redirect-callback Allows you to redirect event messages, that
would normally be sent to db-trigger-event, to
some other G2 procedure.
165

db-update-object
Returns data associated with a database cursor to an existing object in G2. The
data within the object may be either replaced or appended.

Synopsis

db-update-object
(cursor-object:class db-cursor-object, user-object:class object,
update-action:symbol, rcds-to-fetch:integer,
interface: class g2-database-interface)
-> status, code, message, rows-processed:integer,

cursor-position: integer

Argument Description

cursor-object The cursor object that defines this query. For
information about how to create cursor objects, see
Creating a Cursor Object.

user-object A user-defined object that currently exists in G2.

update-action Specify REPLACE to cause the database bridge to
replace the data in the specified object with the data
resulting from the query.

Specify APPEND to cause the database bridge to
append to the attribute in the specified object, the
data resulting from the query. If APPEND is used,
the attribute being appended must be a list or an
array.
166

db-update-object
Description

The procedure db-update-object performs the database query defined by a
specified cursor-object. Depending on the value that you specify for update-action,
the bridge will either replace or append the data within an existing object. For
example, if the attributes of the object are lists and you specify replace as the
update-action, then the values within the list attributes in the object are replaced
with new values from the query. If you specify append as the update-action, then
the values from the query will be appended to the end of the list attributes of the
object. The original values will not be modified.

rcds-to-fetch The maximum number of records (rows) to fetch
from the database cursor in this execution of
db-update-object.

If you specify 0 for rcds-to-fetch, the call to
db-update-object returns all the rows in the
database cursor.

Note: The MAXROWS bridge startup option specifies
the default maximum number of database rows
that a single transaction can return. If rcds-to-fetch
specifies a value greater than the value of MAXROWS,
the G2-Database bridge returns a warning and the
transaction ends after the bridge returns the
number of rows specified by MAXROWS. To get the
remainder of rows in the cursor, execute db-fetch-
object repeatedly until the bridge returns eocursor.
For information about the MAXROWS option, see
Initial Bridge Memory Requirements.

interface

Return Value Description

status, code, message

rows-processed

cursor-position

The G2-Database interface object that configures
this connection to the database bridge. Specify the
name of an existing G2-Database interface object.

For information about these return arguments, see
Invoking G2-Database Bridge Procedures.

The number of database rows processed by the
transaction.

The number of the last row returned from the
database cursor.

Argument Description
167

Note If you change your query and the query references new database columns, only
the values from the columns of the query will be updated in the object. Values
from any other columns will not be modified.

Before you can call db-update-object to execute the query defined by cursor-
object, you must set values for the bind variables in the SQL statement defined in
that cursor-object. You can set values for the bind variables by calling either
db-set-cursor or db-define-cursor.

When retrieving INTEGER or DECIMAL types and “smart fetch” is enabled:

• When an attribute of user-object is an integer, the corresponding values are
returned as integers. If any value is too large or small to fit in a G2 integer (the
upper and lower limits are 536,870,911 and -536,870,912, respectively), the
procedure call returns an error.

• When an attribute of user-object is a float, the value is returned as a float.

• When an attribute of user-object is a quantity, the corresponding values that
will fit in a G2 integer are returned as integers; those that will not are returned
as floats.

For more information, see Using Smart Fetch.

When “smart fetch” is not enabled, when attribute of user-object is an integer, an
error is generated if any value would cause G2 integer overflow.

When no records are added to the user-object due to an error, the rows-processed
return value is 0 and the cursor-position return value is not updated.

User-Defined Object Data Types

Data Type Support Level

When you define objects in G2, certain data types for attributes may not be fully
supported for population with database data. The following table summarizes G2
data types for object attributes and the corresponding bridge support level.

Simple values (text, integer,
float, etc.)

Full support.

Compound values
(sequences, structures)

Support for sequences only. In
addition, only the replace update-
action is supported.

Lists and arrays Full support.

Variables and parameters Full support.

User-defined objects No support.
168

db-update-object
Related Procedures

db-define-cursor

db-set-cursor

db-fetch-object

Creates a re-usable cursor object that defines or
redefines a query and provides a reference to
the database cursor for that query.

Sets or changes the values of bind variables in
an existing cursor object.

Performs a query and returns the results to G2
within a user specified object.
169

db-update-query-item
Returns data associated with a database cursor to an existing query item in G2.
The data within the query item may be either replaced or appended.

Synopsis

db-update-query-item
(cursor-object:class db-cursor-object,
query-item:class db-query-item, update-action:symbol,
rcds-to-fetch:integer, interface:class g2-database-interface)
-> status, code, message,

rows-processed:integer, cursor-position:integer

Argument Description

cursor-object The cursor object that defines this query. For
information about how to create and define cursor
objects, see Creating a Cursor Object.

query-item A db-query-item that currently exists in G2.

update-action Specify REPLACE to cause the database bridge to
replace the data in the specified query item with the
data resulting from the query.

Specify APPEND to cause the database bridge to
append to the attribute in the specified object, the
data resulting from the query. If APPEND is used,
the attribute being appended must be a list or an
array.
170

db-update-query-item
Description

The procedure db-update-query-item performs the database query defined by a
specified cursor-object. Depending on the value that you specify for update-action,
the bridge will either replace or append the data within an existing query item.
For example, if the query item is a db-query-item-list and you specify replace as
the update-action, then the values within the list attributes in the query item are
replaced with new values from the query. If you specify append as the update-
action, then the values from the query will be appended to the end of the list
attributes of the query item. The original values will not be modified.

rcds-to-fetch The maximum number of records (rows) to fetch
from the database cursor in this execution of
db-fetch-query-item.

If you specify 0 for rcds-to-fetch, the call to db-fetch-
query-item returns all the rows in the database
cursor.

Note: The MAXROWS bridge startup option specifies
the default maximum number of database rows
that a single transaction can return. If rcds-to-fetch
specifies a value greater than the value of MAXROWS,
the G2-Database bridge returns a warning and the
transaction ends after the bridge returns the
number of rows specified by MAXROWS. To get the
remainder of rows in the cursor, execute db-fetch-
query-item repeatedly until the bridge returns
eocursor. For information about the MAXROWS
option, see Initial Bridge Memory Requirements.

interface

Return Value Description

status, code, message

rows-processed

cursor-position

The G2-Database interface object that configures
this connection to the database bridge. Specify the
name of an existing G2-Database interface object.

For information about these return arguments, see
Invoking G2-Database Bridge Procedures.

The number of database rows processed by the
transaction.

The number of the last row returned from the
database cursor.

Argument Description
171

Note If you change your query and the query references new database columns, then
only the values from the columns of the query will be updated in the query item.
Values from any other columns will not be modified.

When retrieving INTEGER or DECIMAL types:

• When update-action = replace, the values are returned as an array or list of
quantities, where individual values are returned as integers, or as floats if they
would cause G2 integer overflow.

• When update-action = append

– When an attribute of the query-item is an integer, the corresponding
values are returned as integers. If any value is too large or small to fit in a
G2 integer, that value is returned as the maximum or minimum valid G2
integer (which have values 536,870,911 and -536,870,912, respectively) and
an error is returned by the procedure call.

– When an attribute of the query-item is a float, the values are returned as
floats.

– When attribute of query-item is a quantity, values that will fit in a G2
integer are returned as integers; those that will not are returned as floats.

For more information, see Using Smart Fetch.

This procedure:

• Requires the query-item to have the same number of columns as the query in
the cursor and the column names to match and be in the same order.

• Generates an error if there is an incompatibility between a value returned by
the query and the type of the array or list that should hold it.

Related Procedures

db-fetch-query-item Performs a database query and returns the
results to G2 within a query item.
172

10
Message Handling
Describes the G2-Database bridge error and message handling facility.

Introduction 173

Handling Messages 174

Trigger Events 176

Redirecting Messages 178

Saving Messages in Log Files 178

Introduction
All G2-Database bridges return information about errors and other events that
result from the execution of SQL statements or bridge operations. G2-Database
bridges also provide an error and message handling facility to help you identify
and respond to the reported events.

G2-Database bridges can report messages in the following ways:

• All bridge procedures pass information to return values (G2 variables) of the
procedure call. This information includes the status value, code, and message
text. Some procedures return the number of rows processed by the database,
the cursor position, and other values.

• SQL Select statements that use Query Objects return information to the
following attributes of the Query Objects associated with the event for which
the error is reported: db-cursor-position, db-status, db-code, db-message, and
db-rows-processed. The information in these attributes duplicates the
information returned by the procedure called.
173

• Bridge messages are sent to a log file if you specify a file name in the log-file
attribute of your G2-Database interface object before the bridge is connected
or before you call db-configuration. You can open a log file at any time while
your bridge is connected by calling db-logfile. You can specify that only
certain kinds of messages be reported to the log file. You can add time stamps
to messages reported to the log file.

• The bridge calls the procedure db-context-event-msg to report messages to G2
if the enable-messaging attribute of the G2-Database interface object is set to
true. You can edit the definition of this procedure to modify how messages are
handled within your G2 knowledge base or you can specify a user-defined
procedure that will receive messages.

• The bridge calls the procedure db-trigger-event to report events that occur
within the database if a previous trigger watch has been defined. You can edit
the definition of this procedure to modify how events are handled within
your G2 knowledge base or you can specify a user-defined procedure that will
receive trigger event messages.

Handling Messages
G2 receives unsolicited reports of certain events that occur in the bridge or
database. The reports include status information and messages that describe the
events. Each report refers to an event within a particular context, which is
identified in the report.

Within G2, reports of events are received by the procedure db-context-event-msg.
The elements of each report — such as the status value, code, and message text —
are stored in separate arguments of db-context-event-msg. These elements of the
report can be accessed by your G2 application.

You must edit the procedure db-context-event-msg to specify how the procedure
handles events. For more information see the description of db-context-event-
msg.

Enabling and Disabling Message Reporting

Message reporting by db-context-event-msg is initially enabled or disabled for a
connection when the connection becomes active and the configuration
information in the G2-Database interface object for that connection is sent to the
bridge.

After the connection becomes active, you can enable or disable message reporting
through db-context-event-msg.
174

Handling Messages
To enable or disable messages on an active connection:

1 Disable the G2-Database interface object.

2 Change the enable-messaging attribute of the G2-Database interface object to
true (enable) or false (disable).

3 Re-enable the G2-Database interface object or reset your G2 KB.

If you disable db-context-event-msg or modify it, the bridge still sets the four
status attributes of Query Objects and still returns the results of procedure calls.

Note Do not attempt to use the db-configuration procedure during a query to enable or
disable message reporting by db-context-event-msg. The G2-Database bridge will
reject your attempt to reconfigure the context and return a warning message.

Editing Messages

You must edit the default definition of db-context-event-msg to specify how
messages are handled. If you do not edit the default definition, the procedure is
called but the message is ignored.

To edit messages:

1 Click the Procedures button on the g2-database workspace.

2 Click the Error & Message Handling button on the G2-Database Procedures
workspace.

3 Ctrl-click the db-context-event-msg procedure icon to display the definition.
175

For example:

Comment line

4 Replace the following comment line with code that specifies how you want
db-context-event-msg to handle messages.

{enter call to your message handling procedure here}

For example, to display on the Message Board the values sent by the bridge to the
status, facility, and code arguments, replace the comment line with the following
line:

inform the operator that “db-context-event-msg status = [status],
facility = [facility], code = [code]”;

If you have a message management facility, you can call it here. You can reference
the G2 date-time string in db-context-event-msg to add a time stamp to messages.

Trigger Events
Through a G2-Database Bridge, G2 can receive messages from database triggers.
The database administrator can define events that affect specific objects, such as
tables, as database triggers.

A text message and timestamp are associated with each trigger. You can cause the
trigger messages and timestamps to be returned to G2 procedures or to G2 trigger
objects.
176

Trigger Events
Returning Trigger Messages to a G2 Procedure

To return trigger messages to a G2 procedure:

1 Specify the name of a database-defined trigger that G2-Database Bridge will
watch for trigger messages, using the procedure db-set-trigger.

2 Edit the db-trigger-event procedure to specify how G2 responds to the trigger
message.

This procedure can pass the text and timestamp of trigger messages to G2
procedures that process the information in the messages as required by your
application. For example:

db-trigger-event(trigger-name, trigger-msg, trigger-time)

Returning Trigger Messages to a Trigger Object

To return trigger messages to a G2 trigger object you must:

• Create a G2 trigger object that will receive the message of a specified trigger.

• Specify the trigger object to which you want the G2-Database Bridge to return
the trigger message.

To create a trigger object:

1 Click the SQL Object Classes button on the G2-DATABASE workspace to
display the G2-Database SQL Object Classes workspace.

2 Choose create instance from the object definition menu of the db-trigger-
object, and place it on your workspace.

3 Choose table from the trigger object menu to display the attributes.

4 Specify a name for the trigger object in the names attribute.

5 Specify the name of a G2-Database interface object in the gsi-interface-names
attribute.

The interface object that you specify must be the one that configures a
connection between the G2-Database Bridge and G2.

To specify the trigger object to which the G2-Database Bridge returns the
trigger message:

 Call db-set-trigger.

For example:

db-set-trigger(my-trigger-object, true, my-db-interface)
= status, code, message

where my-trigger-object is the name of the trigger object.
177

For information about db-set-trigger, db-get-triggers, and db-trigger-event, see
Bridge Procedures.

Redirecting Messages
Messages or events intended for either db-context-event-msg or db-trigger-event
can be redirected to user-defined procedures in G2 by calling db-redirect-callback.
db-redirect-callback allows you to indicate which G2 procedure will receive
messages initially intended for db-context-event-msg and which procedure will
receive messages initially intended for db-trigger-event. Redirecting messages to
your own procedures is the recommended approach since you will not have to
modify the procedures provided with g2-database.kb in order to develop your
own message handler routines. For information about db-redirect-callback, see
db-redirect-callback.

Saving Messages in Log Files
You can create a log file to store messages reported during execution of the G2-
Database bridge. The log file stores messages reported for the connection that is
configured by this G2-Database interface object.

You can create, open, and close log files automatically, or through calls to the
bridge procedure db-logfile. For information opening log files automatically, see
the discussion of the log-file attribute in Attributes of G2-Database-Interface
Objects.

Each time a log file opens, the bridge writes a header to it. The header contains the
name of the bridge from which the messages originate and a timestamp. When a
logfile closes, the bridge writes a footer to the logfile with a timestamp.

Logfile entries are of the following form:

date time | bridge-name: context-name: status: message

For example:

12-dec-96 16:00:00 | g2-oracle: my-interface: ERROR:
Could not allocate memory

Opening and Closing Log Files

You can cause a log file to be opened automatically when G2 establishes a
connection to the G2-Database bridge.

To open a log file automatically:

 Specify a full pathname for the file in the log-file attribute of your G2-Database
interface object.
178

Saving Messages in Log Files
The bridge opens a log file by this name when the connection is established. If a
log file by this name does not exist, the bridge creates one. For information about
the log-file attribute, see Attributes of G2-Database-Interface Objects.

When you call db-logfile to open a log file that is already open, the procedure first
closes the log file and then reopens it. If messaging is enabled, an information
message is sent to G2 and to the log file, noting that you reopened an already
open log file.

Only one log file can be open in a context at a given time.

A log file closes automatically when you:

• Reset the knowledge base.

• Disable the interface object that uses the log file.

• Kill the bridge process by calling the db-kill-bridge procedure.

The log file also closes when you pause the knowledge base. Resuming the
knowledge base reopens the log file.

Accessing the Log File

You must close a logfile during a bridge operation before you can read, edit, or
print it. You can do this by pausing the knowledge base, or by calling the
db-logfile procedure with the close option.

Filtering Log File Entries

You can specify default filters for log file entries as part of the log-file attribute of
the G2-Database interface object. See Attributes of G2-Database-Interface Objects.

If you need to override the default filters at any time during execution of the
bridge, you can call the db-logfile procedure to open the log file with new filters.
When db-logfile is called to reopen a log file, the filter specified in the call to db-
logfile supersedes any filter specified in the log-file attribute of the G2-Database
interface object or in any previous call to db-logfile.

If you call db-logfile without specifying filters in the call, the default filters
specified by the G2-Database interface object are used.

If you do not specify filters either in the log-file attribute of the G2-Database
interface object or in a call to db-logfile, messages in all categories are logged.
179

180

11
Troubleshooting
Describes common problems that you may encounter when you run a
G2-Database bridge, and describes solutions for each problem.

Introduction 181

You Cannot Make Connections 182

Query Does Not Return Expected Values 183

Deadlocks - Hung or Not Responding Bridge 185

Other Unexpected Behaviors 187

Debugging Facility 187

Introduction
The following sections describe categories of common problems and the
recommended solutions or workarounds for each problem.
181

You Cannot Make Connections

• Make sure that your bridge is connected to G2. If the
bridge is connected, the gsi-interface-status attribute
of the G2-Database interface object is set to 2.

• Make sure that you have set the db-user,
db-password, and db-connect-string attributes of the
G2-Database interface object to valid values. See the
Release Notes for your particular G2-Database
bridge.

• Make sure that you have not exceeded the maximum
number of connections allowed to a single copy of a
bridge (50).

• Your database may require additional time to
establish the connection.

–

• You enabled your G2-Database interface object before
the bridge was running. Start your bridge before you
enable your G2-Database interface object.

• Your request to make a connection is taking longer
than the specified timeout period. Increase the value
specified for the interface-timeout-period attribute of
your G2-Database interface object.

• The gsi-connection-configuration attribute of your
G2-Database interface object does not specify the
same TCP/IP port number that you used in the
command to start the bridge. Note that if you failed
to specify either a TCP/IP port number in the start
command, the bridge uses default values for these
parameters.

Problem You cannot make a successful connection to the database.

Solution

Problem You cannot make a successful connection to your bridge
from G2.

Solution
182

Query Does Not Return Expected Values
Query Does Not Return Expected Values

• The data type of a column attribute may not
correspond to the column attribute type. For
example, you query a float value and the
corresponding column attribute is defined as a text-
parameter.

• A column attribute does not exist in the query object.

• A column attribute is incorrectly named in the query
object.

• The data value was NULL.

Problem Query does not return data for all columns selected.

Solution

Problem The column attribute is defined as an integer, but the
database returned a float value.

Solution Try redefining the column attribute as a quantity.

Problem db-fetch-records receives EOCURSOR status but no
data.

Solution Your query resulted in 0 records or you have already
fetched all records in the cursor. Call db-refresh-cursor
before you call db-fetch-records again.

Problem db-sql-function does not receive a value.

Solution Check both return values of db-sql-function, num-val and
text-val. The num-val argument receives a value if the
result is numeric. The text-val argument receives a value
if the result is text.

Problem db-sql-function does not receive all columns selected or
all rows.

Solution This procedure is designed to use SQL functions to
return a single value.
183

Problem When querying data that you think is of type integer, you
receive the data as float or quantity type data.

Solution Your database may support scaled integers or number
data types with precision and scale. Neither the bridge
nor G2 supports scaled integers, and they convert scaled
integers to float.

Problem Blank, padded textual data is not being returned
properly.

Solution Blanks will only be returned as a part of textual data for
certain database types. This rule varies from one
database to another. Refer to your database reference
manual for detailed information about text data types.

Problem After querying from your database while doing a join
with multiple tables, certain column attributes have twice
or more than twice the number of values in other column
attributes that were fetched by the same query.

Solution You may have queried two columns from different tables
which have the same name. Since G2 places data into
column attributes by column name, more than one
column of data with the same name may be appended to
your column attribute list.

You can avoid this problem by carefully constructing join
queries, using column aliases in your SQL Select
statement. For example: select proc1.parts, proc2.
parts from proc1, proc2; will produce two columns
in the cursor named parts. Both columns of data will be
appended to the column attribute named parts. If you
use column aliases, for example: select proc1.parts
‘parts1’, proc2.parts ‘parts2’ from proc1,
proc2; the resulting data will be in two columns, parts1
and parts2, and column attributes named parts1 and
parts2 will each receive the corresponding column of
data.
184

Deadlocks - Hung or Not Responding Bridge
Deadlocks - Hung or Not Responding Bridge
An attempt to access database data which is locked (i.e. via row locks, table locks,
etc.) may result in a deadlock condition. A symptom of this condition is a hanging
of the bridge process, expressed as an inability to perform any transaction across
any database connection. Due to the single-threadedness of GSI, transactions
across all contexts (i.e. database connections) are processed sequentially.

If your application supports multiple contexts, that attempt to access the same
data simultaneously, it is at risk of generating a deadlock because access to locked
data may be attempted before the lock is released via a commit or rollback. To
avoid deadlocks use one of the following approaches when using multiple
contexts (multiple interface objects connecting to the same bridge).

• Use the for update nowait SQL syntax.

It is recommended that all for update query operations contain the SQL syntax
for update nowait or similar syntax that prevents a transaction from waiting for
a locked resource to become available. This will result in the query being
rejected and an error message being returned to G2 if access to locked data is
attempted. Users may then be notified and the transaction may be
resubmitted at some predetermined time interval.

The following example illustrates a query that will abort if the data being
accessed is locked:

select * from emp for update nowait;

See "SELECT" in the Oracle7 Server SQL Language Reference Manual.

• Provide a separate bridge process for each interface object.

Another, more costly approach is to use a separate bridge process for each
database connection (i.e. a 1-to-1 correspondence between interface object and
bridge process). This approach implies that each bridge/interface object is
associated with only 1 database connection. It helps to have G2 start-up the
185

bridge processes automatically as users login to G2 or as additional interface
objects are needed.

• Provide transaction management from within the KB.

The KB may be designed to keep track of certain operations that may result in
database data locks. You can manage user transactions from within the KB so
that transactions that could result in a deadlock will either be rejected or
placed on hold until the lock potential no longer exists. Do this by setting flags
in the interface object that are checked before allowing certain transactions.

Warning: If a bridge deadlock occurs, there is no way to release the deadlock
from G2 or the bridge. The bridge process must be stopped and the bridge
must be restarted.

• Utilize auto-commits with DML SQL transactions.

If you take advantage of the auto-commit feature provided with various G2-
database KB procedures, you can significantly reduce the incidence of bridge
deadlocks. The auto-commit feature will automatically commit after it
executes. This removes the requirement to manually invoke the db-commit
procedure to commit the transaction, and has the added advantage of
reducing the number of database transactions by ½.

• Embed commit within SQL statement.

You can embed a commit statement within your SQL transaction. This will
have the same effect as if you utilized the auto-commit feature described
above. By embedding the commit within your SQL transaction, the
transaction will automatically commit following successful execution. This
removes the requirement to manually invoke the db-commit procedure to
commit the transaction, and has the added advantage of reducing the number
of database transactions by ½.
186

Other Unexpected Behaviors
Other Unexpected Behaviors

Debugging Facility
It’s possible to set -d option in remote-process-initialization-string attribute of
g2-database-interface objects to make all G2-Database bridges printing
debug informations. Following flags are supported:

Problem The db-fetch-record procedure returns a status value
(such as SUCCESS) before it returns all of your data
records.

Solution You have a G2 priority problem. In general, to ensure
that all records are returned to your query object before
the completion status is returned from db-fetch-records,
set the priority of the data server parameter higher (that
is, numerically lower) than the priority of db-fetch-
records and any procedure that calls it.

To set the priority of the data server, choose Main Menu >
System Tables > Data Server Parameters and specify a
priority value in the priority-of-data-service field of the
Data Server Parameters table.

To set the priority of a procedure, open the table for the
procedure and specify a priority value in the default-
procedure-priority attribute.

Problem When querying either by calling db-fetch-records or
using automatic updates by G2, you receive the
following error: ‘SQL statement has not been processed.’

Solution You may be trying to fetch data into a query object or
query object attributes that have been disabled.

Problem G2 aborts after a call to db-fetch-records.

Solution You may be trying to fetch data into a query object or
query object attributes that have been disabled.
187

Note Use of these debugging flags may slow down the performance of bridges.

Flag Debug output

DBG0 no debug

DBG1 function names.

DBG2 info

DBG3 errors

DBG4 warnings

DBG5 results

DBG6 info detail (SQL statements)

DBG7 debug tools & handles

DBG8 config & setup

DBG9 memory

DBGM fatal

DBGC gsi callback functions

DBGALL DBG1->DBGC

DBGX disable GSI error handler

DBG10 descriptor dump

DBG11 memory leak

DBG12 reserved

DBG13 reserved
188

12
Performance
Describes several ways to improve the performance of your G2-Database Bridge
application.

Introduction 189

Complicated Queries 190

Data Service Priority 190

Distribution of Bridge Load 190

Network Considerations 191

Object Passing 191

Bind Variables 191

Introduction
You can improve the performance of the bridge and your G2 knowledge base by
tuning your database for best performance. See you database administrator and
database reference manual for information about how to tune your database.
189

Complicated Queries
For complicated or cross-join queries, especially those you use repeatedly:

• Try a database view.

This will greatly reduce database processing at run-time.

• Reuse existing query objects.

The database caches cursors and reuses existing cursors before it prepares
new queries. Use db-refresh-cursor to reuse an existing cursor.

Strings may use more resources and therefore take more time to query.

• Select only the columns and data that you need.

Data Service Priority
You may increase the G2 system parameter for priority of data service in order to
provide a higher (lower-numbered) priority. (The default priority is 4.) However,
doing this may affect the overall performance of your G2 application. Experiment
to find out which priority is best for your application.

Distribution of Bridge Load
A single running copy of the G2-Database bridge can process only one G2 request
at a time. Thus, if all database operations are using one bridge, a large query can
cause delays in the execution of other operations.

To increase processing speed, you can run multiple copies of a G2-Database
bridge and distribute requests from G2 among the different copies. When you run
several copies of a bridge, one copy can process one request while another copy is
processing another request.

For example, you can distribute the load on the bridges by performing large, slow
queries on one bridge and performing quicker, more urgent queries on another
bridge. Or, you can use one bridge for querying and reading, and another bridge
for inserting, modifying, and writing.

Running multiple copies of a bridge can increase efficiency in cases where the G2
knowledge base is processing a large volume of transactions, or where several G2
knowledge bases are using the bridge for connections to the database. However,
the performance of G2 may be affected if it cannot keep up with the data being
returned by several different bridges.

For information on starting multiple copies of a G2-Database bridge, see Running
Multiple Copies of a Bridge.
190

Network Considerations
Network Considerations
A system running G2, the database bridge, and a database can become
overloaded because of inadequate memory or speed. In this case, you can
improve performance by running the database and the bridge remotely from G2.
The performance loss that results from remote operation may be significantly
offset by the performance gain of distributing your processes.

Object Passing
G2-Database bridges can use G2’s object-passing ability to increase the efficiency
and throughput of your G2 application’s database transactions. Your G2
application can pass multiple values to the G2-Database bridge in a single
transaction, by passing the values to the bridge in attributes of a single G2 object.

Your G2 can use object-passing in both non-query and query SQL operations:

• Your G2 application can perform a non-query SQL operation on multiple
values by passing to the bridge a single G2 object that contains these values in
a list or an array. For information about how to do this, see Database
Operations Using Objects.

• Your G2 application can perform a query for multiple values and receive the
results in a single G2 object that contains the queried values in lists or arrays.
For information about how to perform queries, see Querying the Database.

Bind Variables
To increase the flexibility and efficiency of the database operations, you can use
bind variables in SQL statements. You assign values to the bind variables to
specify the data that you want to insert, delete, or update.

You can change the values of bind variables in a previously-executed SQL
statement without forcing the database to generate a new execution plan for the
SQL statement when you execute it again. However, if you make changes to a
SQL statement itself (that is, if you change the sequence of characters, case,
spaces, or punctuation in the statement) before you execute it again, you force the
database to generate a new execution plan for the SQL statement and incur other
overhead.
191

192

A

Bridge Data Types
Lists common database data types and the G2 data types to which they correspond.

Introduction 193

Introduction
The following table lists common database data types and the types of the
corresponding values that the G2-Database bridge returns to your G2 application.

Use the bridge data types, rather than the database data types, when you define
column attributes in the attributes-specific-to-class attribute of an object
definition for query objects.

Database Data Type G2 Data Type

asciz text

bigint (64 bits) float or quantity

binary (n) Not supported.

bit integer or quantity

bit (n) Not supported.

bit varying (n) Not supported.

byte Not supported.

char text
193

date text

date ansi text

datetime text

decimal integer or quantity

decimal (p) integer or float

decimal (p,s) integer or float

double precision float or quantity

float (p) float or quantity

integer integer or quantity

interval text

money quantity or float

nationalchar, nchar text

national varchar text

number integer or quantity

number (p) integer or float

number (p,s) integer or float

number (0,0) float or quantity

numeric (p) integer or quantity

numeric (p,s) float or quantity

quadword integer or quantity

real float or quantity

serial integer

smallfloat float or quantity

smalldatetime text

smallint integer or quantity

Database Data Type G2 Data Type
194

Introduction
Your database may not support all of these data types. See your database
documentation for a list of supported data types.

If a database function (such as max, min, sum) is performed on a number(p,s) or
decimal(p,s) column, the result is a G2 float if either the scale is non-zero or the
precision is 9 or greater. The query object attribute must then be of type float or
quantity or, if the scale is 0, “smart fetch” must be enabled. If the precision is 8 or
less and the scale is 0, the bridge returns a G2 integer.

For Oracle, the default precision and scale for the INTEGER data type is (38,0);
therefore, the result is a float.

Any integer greater than 536,870,911 or less than -536,870,912 (that is, 29 bits) will
be converted to a float by the bridge and thus must have its column attribute
defined as quantity.

All 64-bit integers will be converted to floats by the bridge and thus must have
their column attributes defined as float or quantity.

small-money quantity or float

string text

text text

time text

timestamp text

tinyint integer or quantity

varbinary (n) Not supported.

varchar text

varchar2 text

Database Data Type G2 Data Type
195

196

B

Status Values
Lists the status values returned by G2-Database Bridges.

Introduction 197

Introduction
The following table summarizes the status values that can be returned by G2-
Database bridges. These status values may be returned following calls to G2-
Database KB API procedures.

Status Value Returned To Code/Description

SUCCESS Procedures,
query objects

Code = 0

The database transaction completed
successfully.

WARNING Procedures,
query objects

Code for bridge errors: 9000 to 9999.
A database-specific SQL warning
code may also be reported. All codes
are positive.

A transaction completed successfully,
but there was a database-specific
warning message.
197

INFO Procedures,
query objects

Code: 9000 to 9999 (positive values)

For bridge errors only

The transaction completed
successfully, but the bridge reports
additional, useful bridge-specific
information.

EOCURSOR Procedures,
query objects

Code = 9001

Code is specific to the database.

All records (rows) have been fetched,
or the query returned no records.

CONNECTED Procedure/
g2-database-
interface object

Indicates that there is a connection
between the bridge and database. In
addition, this value is set into the
database-connection-status attribute
of g2-database-interface objects.

DISCONNECTED Procedures/
g2-database-
interface object

Code is specific to the database.

An attempt to establish a connection
failed. Reconnect to the database
before you perform any more
database transactions.

In addition, this value is set into the
database-connection-status attribute
of g2-database-interface objects.

Note: You can instruct the bridge to
automatically attempt to reconnect
when this status is reported. See the
description of Auto-database-
reconnect in Attributes of G2-
Database-Interface Objects.

Status Value Returned To Code/Description
198

Introduction
ERROR Procedures,
query objects

Code for bridge errors: -9000 to -9999.
Codes for database errors are specific
to the database. All codes are
negative.

A transaction did not complete
successfully.

FATAL Procedures,
query objects

A non-recoverable error occurred. It
may not be possible to continue to
run the bridge.

Status Value Returned To Code/Description
199

200

Glossary
 A B C D E F G H I J K L M
 N O P Q R S T U V W X Y Z
A

auto-database-reconnect: An attribute of Interface Objects. Specifies whether the
bridge automatically attempts to reestablish a connection to the database if the
connection is broken.

B

bind variable: A variable in a SQL statement that identifies an item of data on
which the transaction defined by the SQL statement is to be performed. You can
change the values of bind variables in a previously-executed SQL statement
without forcing the database to generate a new execution plan for the SQL
statement when you re-execute it. Bind variables are required in SQL statements
that define database operations on lists or arrays of values. The syntax that you
must use to identify bind variables in SQL statements is specific to each database.

C

class-name attribute: An attribute of object definitions. For Query Objects, this
attribute should describe the kind of data for which Query Objects created from
this object definition will query.

class-specific-attributes: An attribute of object definitions. For Query Objects,
this attribute specifies the database columns that can be queried for data by Query
Objects created from this object definition.

column alias: An alternate name for a database column. Column aliases can be
used in the class-specific-attributes of object definitions for Query Objects. See
your bridge-specific Release Notes for details.

column attributes: Attributes of Query Objects. The column attributes represent
the names (or aliases) of the database columns that are queried by the Query
Objects. Column attributes are defined in the class-specific-attributes attribute of
the object definition of the Query Objects.

context: A connection between the bridge and a G2 application. A single bridge
instance (process) can support more than one context. All requests that G2 makes
of the bridge are processed within a context. You specify a name for each context
in the context name parameter of the Interface Object that configures the
connection. The db-context-event-msg procedure includes the context name in
messages that it sends to G2 or to a log file.
201

cursor: A temporary relation or result table from a database query that can be
accessed by a program. Since SQL operates on relations (sets of records or tables)
and programs operate on records, this mechanism provides access to the result
data from a query, one record at a time. A cursor must be opened before it can be
dynamically accessed. The bridge creates and manages cursors.

cursor object: A G2 object that contains a SQL statement defining a database
query. The cursor object provides a reference to the database cursor that the
database generates when you execute the query. You create cursor objects by
using the procedure db-define-cursor. Cursor objects are referenced by the
procedures db-fetch-object, db-fetch-query-item, db-fetch-records, db-set-cursor,
db-refresh-cursor, db-fetch-structure, db-update-query-item, and db-update-
object.

D

Data Definition Language (DDL): SQL statements used to define the data
dictionary or schema. Included in ANSI standard SQL.

Data Manipulation Language (DML): SQL statements used to manage data, such
as Select, Insert, Update, and Delete. Included in ANSI standard SQL.

database-connect-string: An attribute of Interface Objects. This attribute specifies
the connect string for a particular database. See your bridge-specific Release
Notes for details.

database cursor: An internal table generated by a database that lists the rows and
columns included in a query or other SQL operation. G2 references database
cursors using cursor objects (for queries) and SQL objects (for non-query database
operations).

database-password: An attribute of Interface Objects. The database user
password that the bridge uses to build the complete database connection string.
The bridge uses this string to establish a connection to the database.

database-user: An attribute of Interface Objects. The database user name that the
bridge uses to build the complete database connection string. The bridge uses this
string to establish a connection to the database.

db-code: An attribute of Query Objects. The bridge uses this attribute to return
the result code generated by the database from the SQL query you write, or to
display a bridge error code.

db-message: An attribute of Query Objects. The bridge uses this attribute to
display messages associated with the value in db-code.

db-record-count: An attribute of Query Objects. The bridge uses this attribute to
display the row number of the records fetched into the Query Object. If the Query
Object contains only 1 record (row), this attribute represents the row ID. If the
Query Object contains more than one record (in lists), this attribute represents the
total number of rows fetched and placed in the Query Object.
202

db-rows-processed: An attribute of Query Objects. The bridge uses this attribute
to display the number of rows processed by the query.

db-status: An attribute of Query Objects. The bridge uses this attribute to display
the status of the result of a query or SQL statement execution.

default-update-interval: An attribute of Query Objects. This attribute specifies an
update interval the bridge can use in conjunction with the value in external-
system-has-a-scheduler (in the Interface Object) to determine how often data is
fetched into the Query Object.

direct-superior-classes: An attribute of object definitions. For Query Objects, use
this attribute to specify the superior class of the Query Object you are defining.

E

enable-messaging: An attribute of Interface Objects. Enables or disables the
reporting of error, information, and warning messages by the bridge to G2.

external-system-has-a-scheduler: An attribute of Interface Objects. Enter an
attribute value to use in conjunction with the value in default-update-interval
attribute (in the Query Object) to specify how often you will be fetching data into
the Query Object.

G

grouping-specification: An attribute of Interface Objects. This attribute is not
used.

gsi-connection-configuration: An attribute of Interface Objects. This attribute
specifies: (1) which network protocol will be used to communicate with the
bridge, (2) the host name of the machine running the bridge, and (3) which
TCP/IP port can be used to identify the bridge process.

gsi-interface-status: An attribute of Interface Objects. The bridge uses this
attribute to display a code that represents the status of the connection between G2
and the bridge.

gsi-interface-object: An attribute of Query Objects. This attribute specifies the
name of the Interface Object used by this Query Object to communicate with the
bridge.

I

identifying-attributes: An attribute of Interface Objects. You must always set this
attribute to names.

interface object: A GSI interface object that you create and define to supply
network routing and miscellaneous information needed by the bridge to control
data exchanges between G2, the bridge, and the database over one connection.
203

interface-timeout-period: An attribute of Interface Objects. If a connection is not
established within the amount of time specified by this attribute, G2 assumes that
the connection is timed-out and stops sending requests to the bridge over the
connection configured by the Interface Object.

M

maximum-definable-cursors: An attribute of Interface Objects. Defines the
maximum number of open cursors allowed for the context defined by this
Interface Object. See your bridge-specific Release Notes for details.

N

names: An attribute of most objects. For Interface Objects, this attribute specifies
an identifying attribute for the Interface Object. You use this name as the
gsi-interface-name attribute of Query Objects to indicate that the Query Objects
will exchange data with the database through this Interface Object.

O

object-handle: An attribute of all objects. For Query Objects, this attribute is used
internally by the bridge to associate a cursor and its data with a Query Object.

P

poll-external-system-for-data: An attribute of Interface Objects. This attribute
specifies whether or not G2 should poll the bridge once per cycle to check for a
successful connection.

Q

query: An SQL Select statement.

query object: A G2-Database bridge object that is mapped to a database cursor,
and ultimately receives the result record(s) of data from a database cursor.

R

record: One row of data (in one or more columns). A cursor contains records that
result from a query. Records are fetched into one or more column attributes of a
Query Object.

remote-process-initialization-string: An attribute of Interface Objects. Turns on
or off the reporting of bridge initialization messages on the console window
where you start the bridge process.
204

result table: A set of records generated as a result of a database query. A cursor is
a result table stored in memory and accessible by programs.

S

SQL: Structured Query Language. A computer language that is used by most
database vendors to define, manipulate, and extract data from databases.
Commands are usually classified as being either Data Definition Language (DDL)
commands or Data Manipulation Language (DML) commands.

sql-query: An attribute of Query Objects.

SQL SELECT: An SQL statement that returns a table of records. The statement
performs a query.

T

trigger: A procedure that is stored in a database and executed automatically when
specific events as defined by the database administrator occur. A text message
and timestamp are associated with each trigger. You can cause the trigger
messages and timestamps to be returned to G2 procedures or to G2 trigger
objects.

trigger object: A G2 object that receives a message from a G2-Database bridge
when a database trigger occurs.
205

206

Index
 @ A B C D E F G H I J K L M
 # N O P Q R S T U V W X Y Z
A
attribute definition

list
parameter
simple

attributes
column

specifying
query item

copying
query object class definition

B
bind variables

defined
effect on performance
in non-query SQL operations
in queries
performing SQL operations without using

bridge process
and G2

establishing a connection
running multiple connections

changing the port number
command line options

MAXCOLS
MAXROWS

killing
starting

C
column attributes

defined as list
defined as parameter
simple
specifying

connections
changing configuration of
displaying status of
resetting
troubleshooting
cursor objects

creating
defined

customer support services

D
data service priority
data types

in database and in G2
database cursor

resetting
database operations

DML
objects, using
on individual values

database query
bind variables

using
components of
cursor objects

creating
performing
results

returned in G2 structures
returned in query items
returned to G2-objects

database triggers
redirecting messages

db-colors-object
attributes

db-commit procedure
db-configuration procedure
db-connect procedure
db-context-event-msg procedure

editing
enabling and disabling
used to handle messages

db-define-cursor procedure
db-define-sql procedure
db-define-sql-obj procedure
db-disable-all-triggers procedure
207

db-disconnect procedure
db-exec-sql procedure
db-exec-sql-obj procedure
db-exec-stored-proc procedure
db-exec-stored-proc-return procedure
db-execute-immediate procedure
db-fetch-object procedure
db-fetch-query-item procedure
db-fetch-records procedure
db-fetch-structure procedure
db-get-triggers procedure
db-io-status procedure
db-kill-bridge procedure
db-logfile procedure
db-ping procedure
db-qo-record, class
db-qo-table, class
db-query-object, class
db-redirect-callback procedure
db-refresh-cursor procedure
db-rollback procedure
db-set-connection-status procedure
db-set-cursor procedure
db-set-sql procedure
db-set-sql-obj procedure
db-set-trigger procedure
db-sql-function procedure
db-startup procedure
db-text-to-text-list procedure
db-trigger-event procedure
db-update-object procedure
db-update-query-item procedure
deadlocks

troubleshooting
DML database operations

bind variables
objects, using
performing SQL operations without using
procedures
simple values

E
events

trigger

F
files

log
208
accessing
format
opening and closing

G
G2

and bridge process
establishing a connection
running multiple connections

G2 object-passing
and performance

G2-Database bridge
improving performance
memory requirements
running multiple copies of
starting the process
text conversion styles
user modes

G2-Database Connection Configuration
workspace

G2-Database interface object
attributes

auto-database-reconnect
context-name
database-connection-status
database-connect-string
database-password
database-user
disable-interleaving-of-large-

messages
enable-messaging
gsi-application-name
gsi-connection-configuration
gsi-interface-status
interface-initialization-timeout-period
interface-timeout-period
interface-warning-message-level
interval-to-poll-external-system
log-file
maximum-definable-cursors
null-number
null-string
remote-process-initialization-string
set-null-number
set-null-options
set-null-string

connection configuration
changing

connection status

displaying
creating
icon colors

changing with db-io-status
icon regions

example
introduction to

G2-Database Notes & Information workspace
G2-Database Procedures workspace
G2-Database SQL Object Classes workspace
g2-database workspace
g2-database.kb

I
invoking bridge procedures

K
KB conflicts

resolving
keyboard shortcuts

L
list

defined as column attribute
log file

accessing
filtering entries to
format
opening and closing
saving messages to

M
MAXCOLS command line option
MAXROWS command line option
messages

code for handling
from trigger events

redirecting
returned to G2 procedure
returned to trigger object

handling with db-context-event-msg
enable and disable

saving in log files
techniques for reporting

multiple connections
P
parameter

defined as column attribute
performance

data service priority and
improving

by running bridge remotely
cross-join queries
data service priority
with bind variables
with multiple copies of a G2-Database

bridge
with object passing

tuning a database for
procedures

db-commit
db-configuration
db-connect
db-context-event-msg
db-define-cursor
db-define-sql
db-define-sql-obj
db-disable-all-triggers
db-disconnect
db-exec-sql
db-exec-sql-obj
db-exec-stored-proc
db-exec-stored-proc-return
db-execute-immediate
db-fetch-object
db-fetch-query-item
db-fetch-records
db-fetch-structure
db-get-triggers
db-io-status
db-kill-bridge
db-logfile
db-ping
db-redirect-callback
db-refresh-cursor
db-rollback
db-set-connection-status
db-set-cursor
db-set-sql
db-set-sql-obj
db-set-trigger
db-sql-function
db-startup
db-text-to-text-list
db-trigger-event
209

db-update-object
db-update-query-item
invoking
return values of
summary

Q
queries

bind variables used in
components of
creating cursor objects for
cross-join

improving performance
returning data to G2 from
troubleshooting

query items
copying attribute values
deleting

query objects
attributes

db-code
db-cursor-position
db-message
db-rows-processed
db-status
gsi-interface-name

class definition
creating

class definition attributes
Attribute-initializations
class-name
class-specific-attributes
column
direct-superior-classes

creating
cursor objects

creating
db-qo-record
db-qo-table
db-query-object
direct superior classes

specifying
introduction to
performing a query

R
reset interface menu choice
return values of bridge procedures
210
S
shortcuts

keyboard
SQL statements

setting in a cursor object
using db-define-cursor

setting in a SQL object
using db-define-sql
using db-define-sql-obj

starting bridge process
status values

returned by bridge procedures
stored procedures, executing with return

values

T
trigger events
trigger objects

creating
troubleshooting

connections
deadlocks
queries
unexpected behaviors

U
UNIX

starting bridge process
user modes

W
Windows

bridge process
starting

workspaces
g2-database
G2-Database Connection Configuration
G2-Database Notes & Information
G2-Database Procedures
G2-Database SQL Object Classes

	Contents
	Preface
	About this Guide
	Version Information
	Audience
	A Note About the API
	A Note About Release Notes
	Conventions
	Related Documentation
	Customer Support Services

	Introduction
	Introduction
	Capabilities of G2-Database Bridges
	Performing Database Operations
	Event Messages and Message Handling

	Preparing Your Application to Use a G2-Database Bridge
	Getting Started

	Preparing Your KB for Using the Bridge
	Introduction
	Installing the G2-Database Bridge
	Merging the Database Bridge KB into Your G2 Application
	Updating Your G2 Application with a New Database Bridge
	Updating a Modularized Knowledge Base
	Resolving KB Conflicts

	Using the G2-Database Bridge Workspaces
	User Modes
	Keyboard Shortcuts
	Standard Workspaces of G2-Database Bridges
	G2-Database Connection Configuration Workspace
	G2-Database SQL Object Classes Workspace
	G2-Database Procedures Workspace

	Running the Bridge
	Introduction
	Command-Line Options
	Initial Bridge Memory Requirements
	Text Conversion Styles
	Starting the Bridge Process
	On UNIX Systems
	On Windows Systems

	Bridge Process Output
	Establishing a Connection between the Bridge and G2
	Running a Bridge with Multiple Connections to G2
	Running Multiple Copies of a Bridge

	Configuring Connections
	Introduction
	Creating G2-Database-Interface-Objects
	Attributes of G2-Database-Interface Objects
	Using the Set Null Attributes

	Sending Connection Configuration Information to the Bridge
	Resetting the Interface Connection
	Displaying the Connection Status
	Changing Icon Colors

	DML Database Operations
	Introduction
	Components of a DML Database Operation
	Bind Variables in SQL Statements
	Procedures for DML Database Operations
	Database Operations Using Simple Values
	Database Operations Using Objects
	Database Operations without Bind Variables

	Querying the Database
	Introduction
	Bind Variables in Database Queries
	Returning Query Data to G2
	Creating a Cursor Object
	Returning Query Data in Query Items
	Returning Query Data to Existing G2 Items
	Returning Query Data to a User-Defined Object
	Returning Query Data to Query Objects

	Returning Query Data in Structures
	Copying Query Item Attribute Values
	Deleting Query Items
	Using Smart Fetch

	Query Objects
	Introduction
	Creating a Query Object Class Definition
	Specifying Direct Superior Classes
	Specifying Column Attributes

	Creating a Query Object
	Creating a Cursor Object
	Performing the Query

	Bridge Procedures
	Introduction
	Summary of G2-Database Bridge Procedures
	Connection and Initialization
	SQL Operations
	Query Operations
	Error and Message Handling
	Methods and Utilities

	Invoking G2-Database Bridge Procedures
	Invoking a Bridge Procedure from within a G2 Procedure
	Invoking a Bridge Procedure from a Rule, Action- Button, or User-Menu-Choice

	Procedure Descriptions
	db-commit
	db-configuration
	db-connect
	db-context-event-msg
	db-define-cursor
	db-define-sql
	db-define-sql-obj
	db-disable-all-triggers
	db-disconnect
	db-exec-sql
	db-exec-sql-obj
	db-exec-stored-proc
	db-exec-stored-proc-return
	db-execute-immediate
	db-fetch-object
	db-fetch-query-item
	db-fetch-records
	db-fetch-structure
	db-get-triggers
	db-io-status
	db-kill-bridge
	db-logfile
	db-ping
	db-redirect-callback
	db-refresh-cursor
	db-rollback
	db-set-connection-status
	db-set-cursor
	db-set-sql
	db-set-sql-obj
	db-set-trigger
	db-sql-function
	db-startup
	db-text-to-text-list
	db-trigger-event
	db-update-object
	db-update-query-item

	Message Handling
	Introduction
	Handling Messages
	Enabling and Disabling Message Reporting
	Editing Messages

	Trigger Events
	Returning Trigger Messages to a G2 Procedure
	Returning Trigger Messages to a Trigger Object

	Redirecting Messages
	Saving Messages in Log Files
	Opening and Closing Log Files
	Accessing the Log File
	Filtering Log File Entries

	Troubleshooting
	Introduction
	You Cannot Make Connections
	Query Does Not Return Expected Values
	Deadlocks - Hung or Not Responding Bridge
	Other Unexpected Behaviors
	Debugging Facility

	Performance
	Introduction
	Complicated Queries
	Data Service Priority
	Distribution of Bridge Load
	Network Considerations
	Object Passing
	Bind Variables

	Bridge Data Types
	Introduction

	Status Values
	Introduction

	Glossary
	A
	B
	C
	D
	E
	G
	I
	M
	N
	O
	P
	Q
	R
	S
	T

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	K
	L
	M
	P
	Q
	R
	S
	T
	U
	W

