
G2 JMSLink

User’s Guide
Version 2.3 Rev. 1

G2 JMSLink User’s Guide, Version 2.3 Rev. 1

May 2020

The information in this publication is subject to change without notice and does not represent a
commitment by Gensym Corporation.

Although this software has been extensively tested, Gensym cannot guarantee error-free
performance in all applications. Accordingly, use of the software is at the customer’s sole risk.

Copyright © 1985-2020 Gensym Corporation

All rights reserved. No part of this document may be reproduced, stored in a retrieval system,
translated, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of Gensym Corporation.

Gensym®, G2®, Optegrity®, and ReThink® are registered trademarks of Gensym Corporation.

NeurOn-Line™, Dynamic Scheduling™ G2 Real-Time Expert System™, G2 ActiveXLink™, G2
BeanBuilder™, G2 CORBALink™, G2 Diagnostic Assistant™, G2 Gateway™, G2 GUIDE™,
G2GL™, G2 JavaLink™, G2 ProTools™, GDA™, GFI™, GSI™, ICP™, Integrity™, and SymCure™
are trademarks of Gensym Corporation.

Telewindows is a trademark or registered trademark of Microsoft Corporation in the United States
and/or other countries. Telewindows is used by Gensym Corporation under license from owner.

This software is based in part on the work of the Independent JPEG Group.

Copyright © 1998-2002 Daniel Veillard. All Rights Reserved.

SCOR® is a registered trademark of PRTM.

License for Scintilla and SciTE, Copyright 1998-2003 by Neil Hodgson, All Rights Reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/).

All other products or services mentioned in this document are identified by the trademarks or
service marks of their respective companies or organizations, and Gensym Corporation disclaims
any responsibility for specifying which marks are owned by which companies or organizations.

Ignite Technologies, Inc.
401 Congress Ave., Suite 2650
Austin, TX 78701 USA
Telephone: +1-800-248-0027
Email: success@ignitetech.com Part Number: DOC131-230

Contents
About v

Audience v

Conventions vi

Related Documentation vii

Customer Support Services x

Chapter 1 Introduction 1

Common JMS Terms 3

Features of G2 JMSLink 3
Data Mapping between G2 and JMS Providers 4
Message Types 4
Message Headers 4
Message Properties 5
Message Selectors 5
Durable Subscriptions 5
Asynchronous Messaging Model 5
Guaranteed Messaging 5

Required Software 6
G2 6
G2 JavaLink 6
Java Message Service (JMS) 6
Java/JDK 6

Chapter 2 Getting Started 7

Installing G2 JMSLink and JMS 8

Running G2 JMSLink 8

Using G2 JMSLink 9

Connecting G2 to the Bridge Process 10

Shutting Down G2 JMSLink 10

Chapter 3 API Reference 11

JMS Interface Attributes 13
iii

Connectivity 21
jms-connect 22
jms-disconnect 24
jms-kill-bridge 25

Point-To-Point (PTP) Messaging 26
jms-send-text-message 27
jms-send-map-message 29
jms-send-map-message 31

Publish/Subscribe (Pub/Sub) Messaging 33
jms-publish-text-message 34
jms-publish-map-message 36
jms-publish-map-message 38

Message Handling 40
jms-default-message-handler 41
jms-remove-all-messages 42

Error Handling 43
jms-default-bridge-error-handler 44

Appendix A Message Properties 45

Message Properties 45

Provider Implementations of JMS Message Interfaces 48

Appendix B Message Selectors 49

Message Selectors 50

Null Values 53

Special Notes 54

Index 55
iv

Preface
Describes this guide and the conventions that it uses.

About this Guide v

Audience v

Conventions vi

Related Documentation vii

Customer Support Services x

About this Guide
This guide explains how to use the G2 JMSLink bridge to connect G2 applications
to Java Message Service (JMS). By connecting to JMS, G2 applications can interact
with native message-oriented middleware (MOM) systems, which are designed
especially for enterprise messaging applications.

Audience
To use this manual, you must have at least a limited knowledge of G2 and a
thorough understanding of JMS.
v

Conventions
This guide uses the following typographic conventions and conventions for
defining system procedures.

Typographic

Convention Examples Description

g2-window, g2-window-1,
ws-top-level, sys-mod

User-defined and system-defined
G2 class names, instance names,
workspace names, and
module names

history-keeping-spec, temperature User-defined and system-defined
G2 attribute names

true, 1.234, ok, “Burlington, MA” G2 attribute values and values
specified or viewed through
dialogs

Main Menu > Start

KB Workspace > New Object

create subworkspace

Start Procedure

G2 menu choices and button labels

conclude that the x of y ... Text of G2 procedures, methods,
functions, formulas, and
expressions

new-argument User-specified values in
syntax descriptions

text-string Return values of G2 procedures
and methods in syntax
descriptions

File Name, OK, Apply, Cancel,
General, Edit Scroll Area

GUIDE and native dialog fields,
button labels, tabs, and titles

File > Save

Properties

GMS and native menu choices

workspace Glossary terms
vi

Related Documentation
Note Syntax conventions are fully described in the G2 Reference Manual.

Procedure Signatures

A procedure signature is a complete syntactic summary of a procedure or
method. A procedure signature shows values supplied by the user in italics, and
the value (if any) returned by the procedure underlined. Each value is followed by
its type:

g2-clone-and-transfer-objects
(list: class item-list, to-workspace: class kb-workspace,
 delta-x: integer, delta-y: integer)
-> transferred-items: g2-list

Related Documentation

G2 Core Technology

• G2 Bundle Release Notes

• Getting Started with G2 Tutorials

• G2 Reference Manual

• G2 Language Reference Card

• G2 Developer? Guide

• G2 System Procedures Reference Manual

c:\Program Files\Gensym\ Windows pathnames

/usr/gensym/g2/kbs UNIX pathnames

spreadsh.kb File names

g2 -kb top.kb Operating system commands

public void main()
gsi_start

Java, C and all other external code

Convention Examples Description
vii

• G2 System Procedures Reference Card

• G2 Class Reference Manual

• Telewindows User? Guide

• G2 Gateway Bridge Developer? Guide

G2 Utilities

• G2 ProTools User? Guide

• G2 Foundation Resources User? Guide

• G2 Menu System User? Guide

• G2 XL Spreadsheet User? Guide

• G2 Dynamic Displays User? Guide

• G2 Developer? Interface User? Guide

• G2 OnLine Documentation Developer? Guide

• G2 OnLine Documentation User? Guide

• G2 GUIDE User? Guide

• G2 GUIDE/UIL Procedures Reference Manual

G2 Developers’ Utilities

• Business Process Management System User? Guide

• Business Rules Management System User? Guide

• G2 Reporting Engine User? Guide

• G2 Web User? Guide

• G2 Event and Data Processing User? Guide

• G2 Run-Time Library User? Guide

• G2 Event Manager User? Guide

• G2 Dialog Utility User? Guide

• G2 Data Source Manager User? Guide

• G2 Data Point Manager User? Guide

• G2 Engineering Unit Conversion User? Guide

• G2 Error Handling Foundation User? Guide

• G2 Relation Browser User? Guide
viii

Related Documentation
Bridges and External Systems

• G2 ActiveXLink User? Guide

• G2 CORBALink User? Guide

• G2 Database Bridge User? Guide

• G2-ODBC Bridge Release Notes

• G2-Oracle Bridge Release Notes

• G2-Sybase Bridge Release Notes

• G2 JMail Bridge User? Guide

• G2 Java Socket Manager User? Guide

• G2 JMSLink User? Guide

• G2 OPCLink User? Guide

• G2 PI Bridge User? Guide

• G2-SNMP Bridge User? Guide

• G2 CORBALink User? Guide

• G2 WebLink User? Guide

G2 JavaLink

• G2 JavaLink User? Guide

• G2 DownloadInterfaces User? Guide

• G2 Bean Builder User? Guide

G2 Diagnostic Assistant

• GDA User? Guide

• GDA Reference Manual

• GDA API Reference
ix

Customer Support Services
You can obtain help with this or any Gensym product from Gensym Customer
Support. Help is available online, by telephone and by email.

To obtain customer support online:

 Access Ignite Support Portal at https://support.ignitetech.com.

You will be asked to log in to an existing account or create a new account if
necessary. Ignite Support Portal allows you to:

• Register your question with Customer Support by creating an Issue.

• Query, link to, and review existing issues.

• Share issues with other users in your group.

• Query for Bugs, Suggestions, and Resolutions.

To obtain customer support by telephone or email:

 Use the following numbers and addresses:

United States Toll-Free +1-855-453-8174

United States Toll +1-512-861-2859

Email support@ignitetech.com

x

1

Introduction
Provides a general description of JMS and G2 JMSLink.

Introduction 1

Common JMS Terms 3

Features of G2 JMSLink 3

Required Software 5

Introduction
JMS, an acronym for Java Message Service, is an industry-standard API for Java-
based clients to interact with native message-oriented middleware (MOM)
systems, which are designed especially for enterprise messaging applications.

Some JMS-compliant MOM systems include IBM’s WebSphereMQ, Sun JMQ,
FioranoMQ, BEA Weblogic, and JBoss 3.2.6 on Linux and HP, Open JMS 0.7.6.1 on
Windows, Linux, and HP, Java 2 Platform, Enterprise Edition (J2EE) 1.3.1 on
Linux.

A key concept of enterprise messaging is that messages are delivered
asynchronously from one system to another over a network. A major goal of JMS
is for clients to have a consistent API for creating and working with messages,
which is independent of multiple vendor-specific JMS providers.
1

JMS supports two types of messaging models:

• Point-to-point (PTP) is a one-to-one message delivery system that allows only
two JMS clients to send and receive messages, both synchronously and
asynchronously, via a virtual channel known as a queue.

• Publish-and-subscribe (pub/sub) is a one-to-many message delivery system
in which one JMS client is a message publisher that can send a message to
many JMS clients as message subscribers through a virtual channel known as
a topic.

JMS providers ensure guaranteed messaging, meaning that intended message
consumers eventually receive a message, even if partial failure occurs. A partial
failure can occur, for example, when one of the networked systems might have an
unpredictable failure or need to be shut down at some time during its continuous
operation. The guaranteed messaging offers guaranteed message delivery,
message acknowledgement, message group acknowledgment, and transacted
messages.

The following figure shows an example of a B2B application in which JMS clients
communicate with each other via two individual JMS-compliant messaging
systems: JMS provider 1 and JMS provider 2. JMS client B sends a message to a
queue in JMS provider 1, but only one of the potential receivers, client C, receives
the message. JMS client D publishes a message to a topic in JMS provider 2, and
all subscribers to the topic, JMS client A and JMS client B, receive the message.
2

Common JMS Terms
Common JMS Terms
Here are some commonly used JMS terms that you should be familiar with:

Term Definition

JMS provider A messaging product that implements the JMS
specification.

JMS message A package of business data that carries all of the data
and state needed by the business logic that processes it.
As of JMS Version 1.0.2b, six message interface types
must be supported by JMS providers. The six message
interfaces are: Message, and its five sub-interfaces,
TextMessage, StreamMessage, MapMessage,
ObjectMessage, and BytesMessage.

JMS client A computer program that can produce and/or
consume JMS messages to/from a JMS provider.

JMS destination A message destination object, either a topic or queue,
created within a JMS provider, which are the places
where JMS clients can send and receive JMS messages
to and from the JMS provider.

JMS application A set of applications that define JMS messages and a set
of JMS clients that exchange those messages.

Features of G2 JMSLink
G2 JMSLink provides the following features.

Data Mapping between G2 and JMS Providers

The data mapping for primitive data values between G2 and JMS providers is
based on the data mapping between G2 and G2 JavaLink. For details, see the
G2 JavaLink User? Guide.

Message Types

G2 JMSLink supports two JMS message types: TextMessage and MapMessage. For
an instance of either TextMessage or a subclass of TextMessage, the message
body is mapped to a G2 text value. For an instance of either MapMessage or a
subclass of MapMessage, the message body is mapped to a G2 structure value.
3

G2 JMSLink listens to either a topic or a queue of a JMS provider for any new
TextMessage or MapMessage messages. Upon receiving an instance of either class,
the bridge converts the data according to its type and passes the message to the
G2 server. For the bridge to process a MapMessage, each name-value pair is
converted to a name-value pair in a G2 structure. For primitive data values, the
data conversion is based on the G2 JavaLink data mapping.

Message Headers

Every JMS message has a set of standard headers. The current version of G2
JMSLink supports most of the standard headers except
JMSCorrelationIDAsBytes as a byte array, and JMSDestination and JMSReply,
both of which identify the destination with an administered object, either a Topic
or Queue.

G2 JMSLink supports these message header types:

• JMSDeliveryMode

• JMSMessageID

• JMSTimestamp

• JMSExpiration

• JMSRedelivered

• JMSPriority

• JMSCorrelationID

• JMSType

Message Properties

Properties act like additional headers that can be assigned to a message. They
provide the developer with more information about the message.

The three basic categories of message properties are: application-specific
properties, JMS-defined properties, and provider-specific properties.

The current version of G2 JMSLink supports application-specific properties only.
Property values can be any G2 value type: integer, float, text, symbol, and truth-
value.

JMS-defined properties have the same characteristics as application-specific
properties, except that most of them are set by the JMS provider when the
message is sent. Supported JMS-defined properties vary from vendor to vendor.

For further details on message properties, see Appendix A, Message Properties.
4

Required Software
Message Selectors

G2 JMSLink supports message selectors that allow a JMS consumer to be more
selective about the messages it receives from a particular destination, either a
Topic or Queue. Message selectors use message properties and headers as criteria
in conditional expressions. The conditional expressions use boolean logic to
declare which message should be delivered to a JMS consumer.

For further details on message selectors, see Appendix B, Message Selectors.

Durable Subscriptions

A durable subscription is one that outlasts a client’s connection with a message
server. When a durable subscriber is disconnected from the JMS server, it is the
responsibility of the server to store messages that the subscriber misses. When the
durable subscriber reconnects, the message server sends all the unexpired
messages that have accumulated.

Asynchronous Messaging Model

G2 JMSLink supports two asynchronous messaging models: Point-to-Point (p2p)
and Publish-and-Subscribe (pub/sub). For more information, see the
Introduction.

Guaranteed Messaging

The three main features of guaranteed messaging are message autonomy, store-
and-forward, and the underlying message acknowledgment semantics.

Required Software

G2

The G2 JMSLink knowledge base, jms.kb, is compatible with G2 Version 7.0
Rev. 1 or later on any platform where G2 is supported.

G2 JavaLink

G2 JMSLink is compatible with G2 JavaLink Version 1.2 Rev. 6 or later. Refer to
the G2 JavaLink readme file for software and system requirements.
5

Java Message Service (JMS)

G2 JMSLink is compatible with any JMS providers that implement JMS
specification Version 1.0.2b.

This release has been tested with IBM’s WebSphereMQ Version 5.3.1, JBoss
Version 3.2.1, J2EE 1.3.1 Reference Implementation, FioranoMQ Version 7.0, and
OpenJMS 0.7.6.1.

If you are using a different JMS provider, you need to create a custom batch file to
start the bridge. For more information, see Running G2 JMSLink.

On WebSphere MQ, the function of this SupportPac (MA0C) is incorporated in
WebSphere MQ V5.3 by Fix Pack 8 for the following platforms: Windows, AIX,
Solaris, HP-UX, Linux for Intel. Support for the pubsub function is now supplied
as a Fix Pack on each of these platforms. The Fix Packs can be found by following
the links from http://www.ibm.com/software/integration/mqfamily/
support/summary/

Do not install this SupportPac on systems that already have Fix Pack 8 or later
applied. Also, note that the Fix Packs are cumulative, so you can just install the
latest Fix Pack, which is Version 9 for MQ V5.3.

Java/JDK

G2 JMSLink requires J2SE Version 1.4 or later.
6

2

Getting Started
Describes the basics of how to interact with G2 JMSLink.

Introduction 7

Installing G2 JMSLink and JMS 8

Running G2 JMSLink 8

Using G2 JMSLink 9

Connecting G2 to the Bridge Process 10

Shutting Down G2 JMSLink 10

Introduction
This chapter describes how to install, run, configure, connect, and disconnect
G2 JMSLink.
7

Installing G2 JMSLink and JMS
You install G2 JMSLink as part of the G2 Bundle or as part of any Gensym
application bundle that contains the G2 Bundle.

To run G2 JMSLink, you must have a vendor-specific JMS provider properly
installed and running first. G2 JMSLink has been testing with and provides menu
choices in the Start for the following JMS vendors:

• JMS FioranoMQ

• JMS J2EE

• JMS JBoss

• JMS WebSphereMQ

• OpenJMS

Note If you encounter problems with JMS WebsphereMQ while running the JMS
bridge, refer to HelpLink Resolution HQ-4642733 for information on how to
configure WebSphereMQ to run with the G2 JMSLink bridge.

Running G2 JMSLink
The default TCP port number for G2 JMSLink is 22070. You can use the default
port or specify your own port by providing an argument to the appropriate batch
file. For example, to communicate with G2 JMSLink and IBM WebSphereMQ, you
can connect to port 22077.

The batch files that start the bridge are JMS provider-specific, which means you
might need to edit the file to change the settings for environment variables to use
the correct installation path. See your system administrator for details about the
installation directory of your JMS provider.

To start G2 JMSLink on the default port:

 Choose Start > Programs > G2 8.3r0 > Bridges > JMS and choose the version of
JMS that you are running.

The shortcut is similar for other application bundles except that G2 8.3r0 is
replaced by the name of your installed bundle.

To start G2 JMSLink on a different port:

 Connect to a command prompt and run the appropriate batch file for your
JMS vendor and provide the port number as an argument.
8

Using G2 JMSLink
For example, to start G2 JMSLink on a different TCP port from IBM’s
WebSphere MQ, run this command in a command window:

\jms\bin\StartJmsBridge-WebSphereMQ.bat 22077

Using G2 JMSLink
To use the functionality provided by the G2 JMSLink Bridge in your G2
application, you need to:

• Create a jms-interface object.

• Configure the jms-interface attributes. For a complete description of these
attributes, see JMS Interface Attributes.

• Connect to the bridge. For details, see Connecting G2 to the Bridge Process.

• Call the appropriate APIs for point-to-point or publish/subscribe messaging.
For a description of the available APIs, see API Reference.

The following figure illustrates how a G2 application exchanges JMS messages
with multiple JMS clients by sending and receiving JMS messages to and from a
JMS provider via the G2 JMSLink Bridge.

G2 JMSLink includes the jms-demo.kb located in the kbs directory. This KB
provides a number of sample configurations for various vendor-specific JMS
providers. Refer to this KB for information on configuring G2 JMSLink.
9

We recommend that you merge jms-demo.kb into your G2 application and test
the bridge to communicate with your vendor-specific JMS provider.

To access the example:

 Choose Examples > JMSLink Tutorial from the Start menu of your
bundle installation.

Connecting G2 to the Bridge Process
You connect your G2 application to the G2 JMSLink bridge process through an
instance of jms-interface, either interactively, using a menu choice, or
programmatically, using an API procedure.

For details on the API procedure, see Connectivity.

To connect G2 to G2 JMSLink:

 Choose Connect to JMS from the popup menu for the instance.

or

 Call jms-connect on an instance of jms-interface.

Shutting Down G2 JMSLink
You disconnect the current connection to a bridge and terminate the bridge
process through an instance of jms-interface, either interactively, using a menu
choice, or programmatically, using an API procedure.

Do not shut down the bridge by closing the command window or entering
Ctrl + C in the command window; otherwise, JMS-related resources are not
properly recycled.

For details on the API procedure, see Connectivity.

To shut down G2 JMSLink:

 Choose Kill Bridge to JMS from the popup menu for the instance.

or

 Call jms-kill-bridge on an instance of jms-interface.
10

3

API Reference
Describes the API procedures for communicating with JMS.

Introduction 12

JMS Interface Attributes 13

Connectivity 21
jms-connect 22
jms-disconnect 24
jms-kill-bridge 25

Point-To-Point (PTP) Messaging 26
jms-send-text-message 27
jms-send-map-message 29
jms-send-map-message 31

Publish/Subscribe (Pub/Sub) Messaging 33
jms-publish-text-message 34
jms-publish-map-message 36
jms-publish-map-message 38

Message Handling 40
jms-default-message-handler 41
jms-remove-all-messages 42

Error Handling 43
jms-default-bridge-error-handler 44

11

Introduction
This chapter describes the G2 JMSLink Application Programmer’s Interface (API).
The APIs are divided into these functional categories:

• Connectivity

• Point-To-Point (PTP) Messaging

• Publish / Subscribe (Pub/Sub) Messaging

• Message Handling

• Error Handling

The jms.kb contains the jms-interface class definition and its associated API in the
form of G2 methods and procedures for communicating with JMS provides.
12

JMS Interface Attributes
JMS Interface Attributes
You configure the following attributes of a jms-interface object:

Attribute Description

names A unique name for the jms-interface object.

Allowable values: Any symbol

Default values: none

Notes: You do not have to configure this attribute.

gsi-connection-
configuration

The network protocol that G2 uses to communicate with
the bridge.

Allowable values: tcp-ip host "hostname" port-number tcp-ip-port-number

Default values: none

Notes: TCP/IP is the only protocol that the bridge supports.

remote-process-
initialization-string

A parameter to disable the reporting of messages on the
console window where you started the bridge process.

Allowable values: "-debug"

""

Default value: "" (empty string): Which disables the display of
information messages on the console.

gsi-interface-status A value that indicates the current status of the connection
between the bridge and the G2 application.
13

Allowable values: 2 (OK): The connection has been made and is active.

1 (Initializing): The external system is being initialized.
When G2 receives this code, it refrains from sending
messages to the bridge until it receives the OK code (2).

0 (Inactive): The connection is disabled or inactive.

-2 (Error): An error has occurred, and the connection is
broken.

Default value: 0

Notes: For more information, see the G2 Gateway User? Guide.

The gsi-interface-status is different from the jms-provider-
connection-status described below.

jms-provider The name of a vendor-specific JMS provider to which the
bridge connects.

Allowable values: Any text

Default values: "" (empty string)

Notes: This attribute read only.

jms-initial-context-
factory

The value of the initial_context_factory used by the
naming service for creating an InitialContext object.

Allowable values: Any text

Default values: "unspecified"

Notes: This value differs for each provider. Ask your system
administrator or check the relevant product
documentation for your JMS provider.

jms-provider-url The value of the provider_url used by the naming service
for creating an InitialContext object.

Allowable values: Any text

Default values: "unspecified"

Attribute Description
14

JMS Interface Attributes
Notes: This value differs for each provider. Ask your system
administrator or check the relevant product
documentation for your JMS provider.

jms-topic-connection-
factory

The value used by the naming service to look up for an
instance of TopicConnectionFactory.

Allowable values: Any text

Default values: "unspecified"

Notes: You must create and configure a
TopicConnectionFactory for your vendor-specific JMS
provider for the bridge to connect correctly.

jms-queue-
connection-factory

The value used by the naming service to look up for an
instance of QueueConnectionFactory.

Allowable values: Any text

Default values: "unspecified"

Notes: You must create and configure a
QueueConnectionFactory for your vendor-specific JMS
provider for the bridge to connect correctly.

jms-destination-type A symbol that identifies the type of a JMS destination
object to which the bridge registers as a listener.

Allowable values: topic
queue

Default values: topic

Notes: Values other than topic or queue are invalid.

Attribute Description
15

jms-input-destination-
name

The name of the naming service to look up for the JMS
destination object (topic or queue) to which the bridge
registers for incoming messages.

Allowable values: Any text

Default values: "" (empty string)

Notes: You must create and configure the JMS destination object
of a vendor-specific JMS provider for the bridge to connect
correctly.

jms-input-destination-
selector

A boolean logic that specifies which messages should be
delivered to the bridge by the JMS provider.

Allowable values: Any text

Default values: ""

Notes: See Appendix B, Message Selectors.

jms-durable-topic-
subscription

Whether the subscription to a topic is durable or not.

Allowable values: true
false

Default values: false

jms-durable-
subscription-name

A unique name for the durable subscription.

Allowable values: Any text

Default values: "unspecified"

Notes: The name is provider-specific.

Attribute Description
16

JMS Interface Attributes
jms-input-messages A temporary buffer for storing all received JMS messages.

Allowable values: sequence

Default values: sequence()

Notes: It is your responsibility to clear messages from the
temporary buffer periodically to prevent potential
memory leaks. See jms-remove-all-messages.

jms-input-message-
procedure-callback

The name of a procedure to use as a message handler.

Allowable values: Any symbol

Default values: jms-default-message-handler

Notes: Specify your customized message handler here.

jms-bridge-error-
message-procedure-
callback

The name of a procedure to use as a error handler.

Allowable values: Any symbol

Default values: jms-default-bridge-error-handler

Notes: Specify your customized error handler here.

jms-output-
destination-name

The name of the naming service to look up for the JMS
destination object (topic or queue) to which the bridge
registers for outgoing messages.

Allowable values: Any text

Default values: "" (empty string)

Notes: You must create and configure the JMS destination object
of a vendor-specific JMS provider for the bridge to connect
correctly.

Attribute Description
17

jms-topic-receive-
local-copy

Whether the bridge receives a copy of the message that it
sends to a topic.

Allowable values: true
false

Default values: false

jms-acknowledge-
mode

The acknowledgement mode to use, which can be one of
these symbols:

• auto_acknowledge — Automatically acknowledges
the receipt of a message.

• client_acknowledge — Acknowledges the receipt of a
message conditionally by calling acknowledge
method.

• dups_ok_acknowledge — Allows the delivery of
duplicate messages.

To use the mode client_acknowledge:

• For a “queue” interface object, before connecting to a
JMS bridge, configure the jms-acknowledge-mode to
be the symbol client_acknowledge.

• For a “topic” interface object, before connecting to a
JMS bridge, configure the jms-acknowledge-mode to
be the symbol client_acknowledge and configure the
jms-durable-topic-subscription to be true.

• Customize the end user’s message handler to handle
each incoming message. To acknowledge the receipt of
an incoming message, the handler should return true;
otherwise, the handler should return false.

Allowable values: symbol

Default values: auto_acknowledge

Notes: For a detailed description of these options, see the JMS
specification 1.0.2b.

Attribute Description
18

JMS Interface Attributes
jms-transacted-
delivery

Whether the message is transactional.

Allowable values: true
false

Default values: false

Notes: The current version of the bridge does not support
transactional messaging such as commit and rollback.

jms-persistent-
delivery

Whether the delivered message is persistent.

Allowable values: true
false

Default values: true

Notes: The message persistence is typically overridden by the
message header.

jms-message-priority The message priority that the JMS provider uses to
prioritize the delivery of messages.

Allowable values: 0 – 4: gradations of normal priority

5 – 9: gradations of expedited priority

Default values: 4

Notes: The message priority is typically overridden by the
message header.

jms-message-alive-
time

The expiration time of a message.

Allowable values: Any integer

Default values: 0

Notes: The expiration time is set in milliseconds and is typically
overridden by the message header.

Attribute Description
19

jms-username A user name for logging into the JMS provider.

Allowable values: Any text

Default values: "" (empty string)

Notes: This attribute is optional and depends on how your
vendor-specific JMS provider is configured.

jms-password A password for logging into the JMS provider.

Allowable values: Any text

Default values: "" (empty string)

Notes: This attribute is optional and depends on how your
vendor-specific JMS provider is configured.

jms-client-id The unique identification number for durable topic
subscription.

Allowable values: Any text

Default values: "" (empty string)

Notes: This attribute is optional and depends on whether the
subscription to a topic is a durable subscription.

jms-provider-
connection-status

The connection status between the bridge and the
JMS provider.

Allowable values: connected
disconnected

Default values: disconnected

Notes: See also gsi-connection-status.

Attribute Description
20

Connectivity
Connectivity
This section describes the API methods and procedures used to connect to and
disconnect from a JMS provider from a G2 application:

jms-connect
jms-disconnect
jms-kill-bridge
21

jms-connect
Establishes a connection between G2 and the JMS provider via the G2 JMSLink
Bridge.

Synopsis

jms-connect
(io: class jms-interface, win: class g2-window)
-> (status: symbol, code: integer, message: text)

Argument Description

io A gsi-interface to be connected to a G2
JMSLink Bridge process.

win The G2 window used to display messages.

Return Value Description

status One of the following symbols: success,
error, warning, info, disconnected, fatal

code One of the following codes:

• 1 — operation successful

• 0 — operation failure

message The operation message.

Description

This method of jms-interface initiates a connection to a bridge listening to a
specified TCP port. Once the connection from G2 to the bridge has been
established, the JMS interface configuration is passed to the bridge that initiates
the connection to the specified JMS provider.

For a list of supported JMS providers, see Java Message Service (JMS).

You can call jms-connect to establish a new connection between G2 and the
bridge and a connection between the bridge and a JMS provider. You can also call
it to reestablish a connection that has been broken or disconnected between the
bridge and the JMS provider.
22

jms-connect
If a connection already exists between the bridge and the JMS provider when you
call jms-connect, the method returns this error: "Operation failed. JMS Interface
has been already connected to JMS provider".
23

jms-disconnect
Disconnects the G2 JMSLink Bridge from the JMS provider.

Synopsis

jms-disconnect
(io: jms-interface, win: ui-client-item)

Argument Description

io The jms-interface object used for connecting
to the JMS provider.

win The G2 window used to display messages.

Description

This method of jms-interface removes the connection between the bridge and the
JMS provider that was established by a call to jms-connect. It does not break
connections configured by other jms-interface objects, nor does it disconnect the
bridge from G2.

This method also cleans up and frees all resources associated with the bridge,
such as the JMS connection and session, queue receiver, and topic subscriber.

You can disconnect the bridge from the JMS provider at any time. However, until
the connection to the JMS provider is reestablished, G2 cannot produce or
consume any JMS messages to or from the JMS provider over that jms-interface
object.
24

jms-kill-bridge
jms-kill-bridge
Terminates the G2 JMSLink Bridge that is connected to G2.

Synopsis

jms-kill-bridge
(io: jms-interface, win: ui-client-item)

Argument Description

io The jms-interface object used for connecting
to the JMS provider.

win The G2 window used to display messages.

Description

This method of jms-interface terminates the connected bridge process. Thus, it
terminates the connection from G2 to the bridge.

This method also cleans up and frees all resources associated with the bridge,
such as the JMS connection and session, queue receiver, and topic subscriber.

You can terminate the bridge at any time. However, until a connection to the JMS
provider is reestablished, G2 cannot produce or consume any JMS messages to or
from the JMS provider.
25

Point-To-Point (PTP) Messaging
This section describes the API methods and procedures used for point-to-point
messaging. A G2 application can programmatically send a TextMessage, a
MapMessage, or a serialized G2 object to a JMS provider with the following APIs:

jms-send-text-message
jms-send-map-message
jms-send-map-message
26

jms-send-text-message
jms-send-text-message
Sends a G2 text value to a specified queue of a JMS provider in a TextMessage
format.

Synopsis

jms-send-text-message
(io: jms-interface, msg: text , header: structure,
prop: structure, win: ui-client-item)
-> (status: symbol, code: integer, message: text)

Argument Description

io The jms-interface object used for connecting
to the JMS provider.

msg A G2 text value for the message payload.
Specify "" for no message.

header A G2 structure containing name-value pairs
for the message headers. Specify structure()
for no header.

prop A G2 structure containing name-value pairs
for the message properties. Specify
structure() for no properties.

win The G2 window used to display messages.

Return Value Description

status One of the following symbols: success,
error, warning, info, disconnected, fatal

code One of the following codes:

• 1 — operation successful

• 0 — operation failure

message The operation message.
27

Description

This method of jms-interface sends a G2 text value in the format of a JMS
TextMessage to a queue, a destination object of the JMS provider. The JMS
provider is responsible for delivering the JMS TextMessage asynchronously to a
client that is a message consumer of the queue.

You can call this method at any time provided an established connection exists
between the jms-interface object and the JMS provider. If no connection exists
between G2 and the JMS provider, the method returns this error: "Cannot send
JMS message because JMS provider is not connected".
28

jms-send-map-message
jms-send-map-message
Sends a G2 structure to a specified queue of a JMS provider in a MapMessage
format.

Synopsis

jms-send-map-message
(io: jms-interface, msg: structure, header: structure,
prop: structure, win: ui-client-item)
-> (status: symbol, code: integer, message: text)

Argument Description

io The jms-interface object used for connecting
to the JMS provider.

msg A G2 structure containing name-value pairs
for the message payload. Specify structure()
for an empty message.

header A G2 structure containing name-value pairs
for the message headers. Specify structure()
for no header.

prop A G2 structure containing name-value pairs
for the message properties. Specify
structure() for no properties.

win The G2 window used to display messages.

Return Value Description

status One of the following symbols: success,
error, warning, info, disconnected, fatal

code One of the following codes:

• 1 — operation successful

• 0 — operation failure

message The operation message.
29

Description

This method of jms-interface sends a G2 structure in the format of a JMS
MapMessage to a queue, a destination object of the JMS provider. The JMS
provider is responsible for delivering the JMS MapMessage asynchronously to a
client that is a message consumer of the queue.

You can call this method at any time provided an established connection exists
between the G2 jms-interface object and the JMS provider. If no connection exists
between G2 and the JMS provider, the method returns this error: "Cannot send
JMS message because JMS provider is not connected".
30

jms-send-map-message
jms-send-map-message
Sends an instance of MapMessage represented by two G2 sequences to a specified
queue of a JMS provider.

Synopsis

jms-send-map-message
(io: jms-interface, keys: sequence, keyvalues: sequence,
header: structure, prop: structure, win: ui-client-item)
-> (status: symbol, code: integer, message: text)

Argument Description

io The jms-interface object used for connecting
to the JMS provider.

keys A G2 sequence representing names for the
MapMessage payload. Specify "" for no keys.

keyvalues A G2 sequence representing values for the
names. Specify "" for no keys.

header A G2 structure containing name-value pairs
for the message headers. Specify structure()
for no header.

prop A G2 structure containing name-value pairs
for the message properties. Specify
structure() for no properties.

win The G2 window used to display messages.

Return Value Description

status One of the following symbols: success,
error, warning, info, disconnected, fatal

code One of the following codes:

• 1 — operation successful

• 0 — operation failure

message The operation message.
31

Description

This method of jms-interface sends a JMS MapMessage to a queue, a destination
object of the JMS provider. The JMS MapMessage containing a set of name-value
pairs is represented as two G2 sequences, one containing a list of names and the
other containing a list of values. The JMS provider is responsible for delivering
the JMS MapMessage asynchronously to a client that is a message consumer of the
queue.

You can call this method at any time provided an established connection exists
between the G2 jms-interface object and JMS provider. If no connection exists
between G2 and the JMS provider, the method returns this error: "Cannot send
JMS message because JMS provider is not connected".
32

Publish/Subscribe (Pub/Sub) Messaging
Publish/Subscribe (Pub/Sub) Messaging
This section describes the API methods and procedures used for publish-and-
subscribe messaging. A G2 application can publish a TextMessage, MapMessage
or a serialized G2 object to a JMS provider with the following APIs:

jms-publish-text-message
jms-publish-map-message
jms-publish-map-message
33

jms-publish-text-message
Publishes a G2 text value to a specified topic of a JMS provider in a TextMessage
format.

Synopsis

jms-publish-text-message
(io: jms-interface, msg: text , header: structure,
prop: structure, win: ui-client-item)
-> (status: symbol, code: integer, message: text)

Argument Description

io The jms-interface object used for connecting
to the JMS provider.

msg A G2 text value for the message payload.
Specify "" for no message.

header A G2 structure containing name-value pairs
for the message headers. Specify structure()
for no header.

prop A G2 structure containing name-value pairs
for the message properties. Specify
structure() for no properties.

win The G2 window used to display messages.

Return Value Description

status One of the following symbols: success,
error, warning, info, disconnected, fatal

code One of the following codes:

• 1 — operation successful

• 0 — operation failure

message The operation message.
34

jms-publish-text-message
Description

This method of jms-interface publishes a G2 text value in the format of JMS
TextMessage to a topic, a destination object of the JMS provider. The JMS
provider is responsible for delivering the JMS TextMessage asynchronously to
every client that is a subscriber to the topic.

You can call this method at any time provided an established connection exists
between the jms-interface object and the JMS provider. If no connection exists
between G2 and the JMS provider, the method returns this error: "Cannot send
JMS message because JMS provider is not connected".
35

jms-publish-map-message
Publishes a G2 structure to a specified topic of a JMS provider in a MapMessage
format.

Synopsis

jms-publish-map-message
(io: jms-interface, msg: structure, header: structure, win: ui-client-item)
-> (status: symbol, code: integer, message: text)

Argument Description

io The jms-interface object used for connecting
to the JMS provider.

msg A G2 structure containing name-value pairs
for the message payload. Specify structure()
for an empty message.

header A G2 structure containing name-value pairs
for the message headers. Specify structure()
for no header.

prop A G2 structure containing name-value pairs
for the message properties. Specify
structure() for no properties.

win The G2 window used to display messages.

Return Value Description

status One of the following symbols: success,
error, warning, info, disconnected, fatal

code One of the following codes:

• 1 — operation successful

• 0 — operation failure

message The operation message.
36

jms-publish-map-message
Description

This method of jms-interface publishes a G2 structure in the format of JMS
MapMessage to a topic, a destination object of the JMS provider. The JMS provider
is responsible for delivering the JMS MapMessage asynchronously to every client
that is a subscriber to the topic.

You can call this method at any time provided an established connection exists
between the G2 jms-interface object and the JMS provider. If no connection exists
between G2 and the JMS provider, the method returns this error: "Cannot send
JMS message because JMS provider is not connected".
37

jms-publish-map-message
Publishes an instance of MapMessage represented by two G2 sequences to a
specified topic of a JMS provider.

Synopsis

jms-publish-map-message
(io: jms-interface, keys: sequence, keyvalues: sequence,
header: structure, prop: sequence, win: ui-client-item)
-> (status: symbol, code: integer, message: text)

Argument Description

io The jms-interface object used for connecting
to the JMS provider.

keys A G2 sequence representing names for the
MapMessage payload. Specify "" for no keys.

keyvalues A G2 sequence representing values for the
names. Specify "" for no keys.

header A G2 structure containing name-value pairs
for the message headers. Specify structure()
for no header.

prop A G2 structure containing name-value pairs
for the message properties. Specify
structure() for no properties.

win The G2 window used to display messages.

Return Value Description

status One of the following symbols: success,
error, warning, info, disconnected, fatal

code One of the following codes:

• 1 — operation successful

• 0 — operation failure

message The operation message.
38

jms-publish-map-message
Description

This method of jms-interface publishes a JMS MapMessage to a topic, a destination
object of JMS provider. The JMS MapMessage containing a set of name-value pairs
is represented as two G2 sequences, one containing a list of names and the other
containing a list of values. The JMS provider is responsible for delivering the JMS
MapMessage asynchronously to every client that is a subscriber to the topic.

You can call this method at any time provided an established connection exists
between the G2 jms-interface object and the JMS provider. If no connection exists
between G2 and the JMS provider, the method returns this error: "Cannot send
JMS message because JMS provider is not connected".
39

Message Handling
This section describes the API procedures for managing incoming messages of a
jms-interface:

jms-default-message-handler
jms-remove-all-messages

These procedures can be customized specifically for a G2 application.
40

jms-default-message-handler
jms-default-message-handler
Handles incoming messages.

Synopsis

jms-default-message-handler
(io: jms-interface, msg: value, header: structure, property: structure,
win: ui-client-item)
-> acknowledge-message: truth-value

Argument Description

io The jms-interface object used for connecting
to the JMS provider.

msg A G2 value representing the received JMS
message.

header A G2 structure value representing the JMS
message's header.

property A G2 structure value representing the JMS
message’s property.

win The G2 window used to display messages.

Return Value Description

acknowledge-message Returns true if the message is to be
acknowledged in client_acknowledge mode;
otherwise, returns false. See the description
of jms-acknowledge-mode in jms-default-
message-handler.

Description

This method of jms-interface handles all incoming JMS messages from the bridge.
It can be customized for a specific G2 application.
41

jms-remove-all-messages
Removes all incoming messages from a buffer in the JMS interface object.

Synopsis

Argument Description

io The jms-interface object used for connecting
to the JMS provider.

win The G2 window used to display messages.

jms-remove-all-messages
(io: jms-interface, win: g2-window)

Description

This method of jms-interface removes all incoming messages from a buffer of the
JMS interface object.

The buffer is implemented as an attribute of the jms-interface object, jms-input-
messages, whose value type is a G2 sequence. For details, see JMS Interface
Attributes.
42

Error Handling
Error Handling
This section describes the procedure for responding to error conditions that occur
in the G2 JMSLink bridge:

jms-default-bridge-error-handler

This procedure can be customized specifically for a G2 application.
43

jms-default-bridge-error-handler
Handles error conditions from the bridge.

Synopsis

jms-default-bridge-error-handler
(io: jms-interface, msg: value, win: ui-client-item)

Argument Description

io The jms-interface object used for connecting
to the JMS provider.

msg A G2 value representing the received JMS
message.

win The G2 window used to display messages.

Description

This method of jms-interface handles all error conditions reported from the
bridge. It can be customized for a specific G2 application.
44

A

Message Properties
Describes how to use message properties to provide additional information about
a message.

Introduction 45

Message Properties 45

Provider Implementations of JMS Message Interfaces 48

Introduction
This appendix describes how to use message properties for to provide more
information about a message.

Message Properties
A Message object contains a built-in facility for supporting application-defined
property values. This feature provides a mechanism for adding application-
specific header fields to a message.

Properties allow an application, via message selectors, to have a JMS provider
select or filter messages on its behalf, using application-specific criteria.

Property names must obey the rules for a message selector identifier.

Property values can be boolean, byte, short, int, long, float, double,
and String.

Property values are set prior to sending a message. When a client receives a
message, its properties are in read-only mode. If a client attempts to set properties
45

g

at this point, a MessageNotWriteableException is thrown. When
clearProperties is called, the properties can be both read and written. Note that
header fields are distinct from properties; header fields are never in read-only
mode.

A property value might or might not duplicate a value in a message body.
Although JMS does not define a policy for what should or should not be a
property, application developers should note that JMS providers typically handle
data in the message body more efficiently than it handles data in the message
properties. For best performance, applications should use message properties
only when they need to customize the message header. The primary reason for
customizing the message header is to support customized message selection.

Message properties support the following conversion table. The specified types
must be supported. The unmarked types must throw a JMSException. The
conversions from String to primitive throws a runtime exception if the primitive’s
valueOf method does not accept the String as a valid representation of the
primitive.

A value written as the row type can be read as the column type.

boolean byte short int long float double Strin

boolean

byte

short

int

long

float

double

String

In addition to the type-specific set/get methods for properties, JMS provides the
setObjectProperty and getObjectProperty methods. These methods support
the same set of property types, using primitive values as objects. Their purpose is
to allow the decision of property type to be made at execution time rather than at
compile time. These methods support the same property value conversions as
described in the table above.

The setObjectProperty method accepts values of class Boolean, Byte, Short,
Integer, Long, Float, Double, and String. An attempt to use any other class
must throw a JMSException.
46

Message Properties
The getObjectProperty method only returns values of class Boolean, Byte,
Short, Integer, Long, Float, Double, and String.

The order of property values is not defined. To iterate through the property
values of a message, use getPropertyNames to retrieve a property name
enumeration, then use the various property get methods to retrieve their values.

To delete the properties of a message, use the clearProperties method. This
method leaves the message with an empty set of properties.

Getting a property value for a name that has not been set returns a null value.
Only the getStringProperty and getObjectProperty methods can return a null
value. Attempting to read a null value as a primitive type must be treated as
calling the primitive’s corresponding valueOf(String) conversion method with a
null value.

The JMS API reserves the JMSX property name prefix for JMS-defined properties.
The full set of these properties is defined in the Java Message Service
specification. New JMS-defined properties might be added in later versions of the
JMS API. Support for these properties is optional. The String[]
ConnectionMetaData.getJMSXPropertyNames method returns the names of the
JMSX properties supported by a connection.

A message selector can reference JMSX properties whether or not they are
supported by a connection. If they are not present in a message, they are treated
like any other absent property.

JMSX properties defined in the specification as “set by provider on send” are
available to both the producer and the consumers of the message. JMSX
properties defined in the specification as “set by provider on receive” are
available only to the consumers.

JMSXGroupID and JMSXGroupSeq are standard properties that clients can use to
group messages. All providers must support them. Unless specifically noted, the
values and semantics of the JMSX properties are undefined.

The JMS API reserves the JMS_vendor_name property name prefix for provider-
specific properties. Each provider defines its own value for vendor_name. A JMS
provider uses this property to make its services available to a JMS client message.

The purpose of provider-specific properties is to provide special features needed
to integrate JMS clients with provider-native clients in a single JMS application.
They should not be used for messaging between JMS clients.
47

Provider Implementations of JMS Message
Interfaces

The JMS API provides a set of message interfaces that define the JMS message
model. It does not provide implementations of these interfaces.

Each JMS provider supplies a set of message factories with its Session object for
creating instances of messages. This feature allows a provider to use message
implementations tailored to its specific needs.

A provider must be prepared to accept message implementations that are not its
own. They may not be handled as efficiently as its own implementation; however,
they must be handled.

Note the following exceptions when a provider is handling a foreign message
implementation. If the foreign message implementation contains a JMSReplyTo
header field that is set to a foreign destination implementation, the provider is not
required to handle or preserve the value of this header field.
48

B

Message Selectors
Describes how to use message selectors filter messages received from a topic
or queue.

Introduction 49

Message Selectors 50

Null Values 53

Special Notes 54

Introduction
A JMS message selector allows a client to specify the messages it is interested in
by using header field and property references. Only messages whose header and
property values match the selector are delivered. The MessageConsumer
determines what it means for a message not to be delivered.

Message selectors cannot reference message body values.

A message selector matches a message if the selector evaluates to true when the
message header field values and property values are substituted for their
corresponding identifiers in the selector.

A message selector is a String whose syntax is based on a subset of the SQL92
conditional expression syntax. If the value of a message selector is an empty
string, the value is treated as null and indicates that there is no message selector
for the message consumer.

The order of evaluation of a message selector is from left to right within
precedence level. Use parentheses to change this order.
49

Predefined selector literals and operator names appear below in uppercase;
however, they are case insensitive.

Message Selectors
A selector can contain:

• Literals:

– A string literal is enclosed in single quotes, with a single quote
represented by doubled single quote, for example, 'literal' and
'literal''s'. Like string literals in the Java programming language,
these use the Unicode character encoding.

– An exact numeric literal is a numeric value without a decimal point, such
as 57, -957, and +62; numbers in the range of long are supported. Exact
numeric literals use the integer literal syntax of the Java programming
language.

– An approximate numeric literal is a numeric value in scientific notation,
such as 7E3 and -57.9E2, or a numeric value with a decimal, such as 7.,
-95.7, and +6.2; numbers in the range of double are supported.
Approximate literals use the floating-point literal syntax of the Java
programming language.

– The boolean literals TRUE and FALSE.

• Identifiers:

– An identifier is an unlimited-length sequence of letters and digits, the first
of which must be a letter. A letter is any character for which the method
Character.isJavaLetter returns true. This includes '_' and '$'. A
letter or digit is any character for which the method
Character.isJavaLetterOrDigit returns true.

– Identifiers cannot be the names NULL, TRUE, and FALSE.

– Identifiers cannot be NOT, AND, OR, BETWEEN, LIKE, IN, IS, or ESCAPE.

– Identifiers are either header field references or property references. The
type of a property value in a message selector corresponds to the type
used to set the property. If a property that does not exist in a message is
referenced, its value is NULL.

– The conversions that apply to the get methods for properties do not apply
when a property is used in a message selector expression. For example,
suppose you set a property as a string value, as in the following:

myMessage.setStringProperty("NumberOfOrders", "2");
50

Message Selectors
The following expression in a message selector would evaluate to false,
because a string cannot be used in an arithmetic expression:

"NumberOfOrders > 1"

– Identifiers are case-sensitive.

– Message header field references are restricted to JMSDeliveryMode,
JMSPriority, JMSMessageID, JMSTimestamp, JMSCorrelationID, and
JMSType. JMSMessageID, JMSCorrelationID, and JMSType values may be
null and if so are treated as a NULL value.

– Any name beginning with 'JMSX' is a JMS-defined property name.

– Any name beginning with 'JMS_' is a provider-specific property name.

– Any name that does not begin with 'JMS' is an application-specific
property name.

• White space is the same as that defined for the Java programming language:
space, horizontal tab, form feed, and line terminator.

• Expressions:

– A selector is a conditional expression. A selector that evaluates to true
matches. A selector that evaluates to false or unknown does not match.

– Arithmetic expressions are composed of themselves, arithmetic
operations, identifiers (whose value is treated as a numeric literal), and
numeric literals.

– Conditional expressions are composed of themselves, comparison
operations, and logical operations.

• Standard bracketing () for ordering expression evaluation is supported.

• Logical operators in precedence order: NOT, AND, OR

• Comparison operators: =, >, >=, <, <=, <> (not equal)

– Only like type values can be compared. One exception is that it is valid to
compare exact numeric values and approximate numeric values. The type
conversion required is defined by the rules of numeric promotion in the
Java programming language. If the comparison of non-like type values is
attempted, the value of the operation is false. If either of the type values
evaluates to NULL, the value of the expression is unknown.

– String and boolean comparison is restricted to = and <>. Two strings are
equal if and only if they contain the same sequence of characters.
51

• Arithmetic operators in precedence order:

– +, - (unary)

– *, / (multiplication and division)

– +, - (addition and subtraction)

– Arithmetic operations must use numeric promotion in the Java
programming language.

• arithmetic-expr1 [NOT] BETWEEN arithmetic-expr2 AND arithmetic-expr3
(comparison operator)

– "age BETWEEN 15 AND 19" is equivalent to "age >= 15 AND age <= 19"

– "age NOT BETWEEN 15 AND 19" is equivalent to
"age < 15 OR age > 19"

• identifier [NOT] IN (string-literal1, string-literal2,...)
(comparison operator where identifier has a String or NULL value)

– "Country IN (' UK', 'US', 'France')" is true for 'UK' and false for
'Peru'. It is equivalent to the expression
"(Country = ' UK') OR (Country = ' US') OR
(Country = ' France')"

– "Country NOT IN (' UK', 'US', 'France')" is false for 'UK' and true
for 'Peru'; it is equivalent to the expression
"NOT ((Country = ' UK') OR (Country = ' US') OR
(Country = ' France'))"

– If identifier of an IN or NOT IN operation is NULL, the value of the operation
is unknown.

• identifier [NOT] LIKE pattern-value [ESCAPE escape-character]
(comparison operator, where identifier has a String value; pattern-value is a
string literal where '_' stands for any single character; '%' stands for any
sequence of characters, including the empty sequence; and all other characters
stand for themselves. The optional escape-character is a single-character string
literal whose character is used to escape the special meaning of the '_' and
'%' in pattern-value)

– "phone LIKE '12%3'" is true for '123' or '12993' and false for '1234'

– "word LIKE 'l_se'" is true for 'lose' and false for 'loose'

– "underscored LIKE '_%' ESCAPE '\'" is true for '_foo' and false for
'bar'

– "phone NOT LIKE '12%3'" is false for '123' or '12993' and true for
'1234'

– If identifier of a LIKE or NOT LIKE operation is NULL, the value of the
operation is unknown.
52

Null Values
• identifier IS NULL (comparison operator that tests for a null header field
value or a missing property value)

– "prop_name IS NULL"

• identifier IS NOT NULL (comparison operator that tests for the existence of
a non-null header field value or a property value)

– "prop_name IS NOT NULL"

JMS providers are required to verify the syntactic correctness of a message
selector at the time it is presented. A method that provides a syntactically
incorrect selector must result in a JMSException.

The following message selector selects messages with a message type of car and
color of blue and weight greater than 2500 pounds:

"JMSType = 'car' AND color = 'blue' AND weight > 2500"

Null Values
As noted above, property values may be NULL. The evaluation of selector
expressions containing NULL values is defined by SQL92 NULL semantics. A brief
description of these semantics is provided here.

SQL treats a NULL value as unknown. Comparison or arithmetic with an unknown
value always yields an unknown value.

The IS NULL and IS NOT NULL operators convert an unknown value into the
respective TRUE and FALSE values.

The boolean operators use three-valued logic as defined by the following tables.

The definition of the AND operator:

AND T F U

T T F U

F F F F

U U F U
53

The definition of the OR operator:

OR T F U

T T T T

F T F U

U T U U

The definition of the NOT operator:

OR

T F

F T

U T

Special Notes
When used in a message selector, the JMSDeliveryMode header field is treated as
having the values 'PERSISTENT' and 'NON_PERSISTENT'.

Date and time values should use the standard long millisecond value. When a
date or time literal is included in a message selector, it should be an integer literal
for a millisecond value. The standard way to produce millisecond values is to use
java.util.Calendar.

Although SQL supports fixed decimal comparison and arithmetic, JMS message
selectors do not. This is the reason for restricting exact numeric literals to those
without a decimal (and the addition of numerics with a decimal as an alternate
representation for approximate numeric values).

SQL comments are not supported.
54

Index
 @ A B C D E F G H I J K L M
 # N O P Q R S T U V W X Y Z
A
API

connectivity
error handling
introduction to
message handling
point-to-point (ptp) messaging
publish/subscribe (pub/sub) messaging

asynchronous messaging model

B
batch files

C
connectivity
customer support services

D
data mapping
durable subscriptions

E
error handling

G
G2 JMSLink

API
configuring
connecting G2 to
features
getting started
installing
introduction to
running
shutting down

G2, connecting to G2 JMSLink
guaranteed messaging

I
installing G2 JMSLink

J
J2EE, support for G2 JMSLink
Java Message Service (JMS)

installing
introduction to
terminology

JBoss, support for G2 JMSLink
JMS FioranoMQ
JMS I2EE
JMS JBoss
JMS WebSphereMQ
jms.kb

jms-connect
jms-default-bridge-error-handler
jms-default-message-handler
jms-demo.kb

jms-disconnect
jms-interface attributes
jms-interface interface
jms-kill-bridge
jms-publish-map-message
jms-publish-text-message
jms-remove-all-messages
jms-send-map-message
jms-send-text-message

M
message

handling
headers
properties
selectors
types
55

O
Open JMS, support for G2 JMSLink

P
point-to-point (ptp) messaging
publish/subscribe (pub/sub) messaging

S
StartJmsBridge-WebSphereMQ.bat file
56

	Contents
	Preface
	About this Guide
	Audience
	Conventions
	Related Documentation
	Customer Support Services

	Introduction
	Introduction
	Common JMS Terms
	Features of G2 JMSLink
	Data Mapping between G2 and JMS Providers
	Message Types
	Message Headers
	Message Properties
	Message Selectors
	Durable Subscriptions
	Asynchronous Messaging Model
	Guaranteed Messaging

	Required Software
	G2
	G2 JavaLink
	Java Message Service (JMS)
	Java/JDK

	Getting Started
	Introduction
	Installing G2 JMSLink and JMS
	Running G2 JMSLink
	Using G2 JMSLink
	Connecting G2 to the Bridge Process
	Shutting Down G2 JMSLink

	API Reference
	Introduction
	JMS Interface Attributes
	Connectivity
	jms-connect
	jms-disconnect
	jms-kill-bridge

	Point-To-Point (PTP) Messaging
	jms-send-text-message
	jms-send-map-message
	jms-send-map-message

	Publish/Subscribe (Pub/Sub) Messaging
	jms-publish-text-message
	jms-publish-map-message
	jms-publish-map-message

	Message Handling
	jms-default-message-handler
	jms-remove-all-messages

	Error Handling
	jms-default-bridge-error-handler

	Message Properties
	Introduction
	Message Properties
	Provider Implementations of JMS Message Interfaces

	Message Selectors
	Introduction
	Message Selectors
	Null Values
	Special Notes

	Index
	A
	B
	C
	D
	E
	G
	I
	J
	M
	O
	P
	S

