
G2 Bean Builder

User’s Guide
Version 2020

G2 Bean Builder User’s Guide, Version 2020

June 2020

The information in this publication is subject to change without notice and does not represent a
commitment by Gensym Corporation.

Although this software has been extensively tested, Gensym cannot guarantee error-free
performance in all applications. Accordingly, use of the software is at the customer’s sole risk.

Copyright © 1985-2020 Gensym Corporation

All rights reserved. No part of this document may be reproduced, stored in a retrieval system,
translated, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of Gensym Corporation.

Gensym®, G2®, Optegrity®, and ReThink® are registered trademarks of Gensym Corporation.

NeurOn-Line™, Dynamic Scheduling™ G2 Real-Time Expert System™, G2 ActiveXLink™, G2
BeanBuilder™, G2 CORBALink™, G2 Diagnostic Assistant™, G2 Gateway™, G2 GUIDE™,
G2GL™, G2 JavaLink™, G2 ProTools™, GDA™, GFI™, GSI™, ICP™, Integrity™, and SymCure™
are trademarks of Gensym Corporation.

Telewindows is a trademark or registered trademark of Microsoft Corporation in the United States
and/or other countries. Telewindows is used by Gensym Corporation under license from owner.

This software is based in part on the work of the Independent JPEG Group.

Copyright © 1998-2002 Daniel Veillard. All Rights Reserved.

SCOR® is a registered trademark of PRTM.

License for Scintilla and SciTE, Copyright 1998-2003 by Neil Hodgson, All Rights Reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/).

All other products or services mentioned in this document are identified by the trademarks or
service marks of their respective companies or organizations, and Gensym Corporation disclaims
any responsibility for specifying which marks are owned by which companies or organizations.

Ignite Technologies, Inc.
401 Congress Ave., Suite 2650
Austin, TX 78701 USA
Telephone: +1-800-248-0027
Email: success@ignitetech.com Part Number: DOC056-1200

Contents
Preface vii

About this Guide vii

Software Requirements vii

Audience vii

Conventions viii

Related Documentation ix

Customer Support Services xii

Chapter 1 Introduction 1

Introduction 1

Java Beans 2

G2 Java Beans 2

Differences between G2 and Java 3
Inheritance Model 3
Accessing Attributes 3
Events 4

Chapter 2 Installing the G2 Bean Builder 5

Introduction 5

Software Requirements 5

Installing the Files 6

Checking the Installation 6

Minimum Requirement for Distributing Java Beans 6
File Locations 6

Troubleshooting 7
Running the Beans Development Kit (BDK) 7
Using the ActiveX Packager 8

Chapter 3 Running the Wizard 11

Introduction 11
iii

Running the G2 Bean Builder 12

Viewing the Welcome Panel 13

Configuring the G2 Connection Details 14
Specifying the Host 15
Specifying the Port 15

Configuring the G2 Class Name 16
Entering the G2 Class 17
Forcing an Interface Download 17

Configuring the Iconic Representation 18
Entering the File Name 19
Using the G2 Icon for the Bean 19

Configuring the JAR File 20
Entering the Directory and File Name 20

ActiveX Generation Panel 21
Creating an ActiveX Component from the Bean 22
Unregistering Existing Class 22

Summary Panel 23

Progress of Bean Building Panel 24
Connecting to G2 25
Downloading Class Data 25
Building the Bean 25
Jar File Creation 25
Building the ActiveX Control 25

Finished Panel 26

Chapter 4 Using the Command-Line Options 29

Introduction 30

-host 30

-port 31

-class 31

-force 32

-iconfile 32

-notg2icon 32

-dir 33

-jarfile 33

-activex 33
iv

-unreg 34

+g 34

+t 34

+v 34

Chapter 5 Using G2 Bean Builder Beans 35

Introduction 35

Creating the G2 Class 36

Creating the Bean 36

Using the Bean in the Beans Development Kit (BDK) 37
Viewing the Bean in the Bean Box 39
Creating an Instance of the Bean 41
Configuring the Bean 42
Interacting with Other Beans 46

Using the Bean as an ActiveX Control in Visual Basic 48
Importing Beans into Visual Basic 48
Creating an Instance of the ActiveX Control 49

Index 53
v

vi

Preface
Describes this guide and the conventions that it uses.

About this Guide vii

Software Requirements vii

Audience vii

A Note About the API viii

Conventions viii

Related Documentation x

Customer Support Services xi

About this Guide
This guide describes the basic features of G2 Bean Builder and explains how you
can use these features to create applications.

Software Requirements
For information about the software requirements and installation of this version
of G2 Bean Builder, refer to the readme.html file supplied with G2 JavaLink,
which includes this and other important instructions.

Audience
This document assumes that you are familiar with the features and syntax of the
Java programming language, and that you know how to develop Java
applications. It also assumes that you are familiar with the syntax of G2.
vii

Conventions
This guide uses the following typographic conventions and conventions for
defining system procedures.

Typographic

Convention Examples Description

g2-window, g2-window-1,
ws-top-level, sys-mod

User-defined and system-defined
G2 class names, instance names,
workspace names, and
module names

history-keeping-spec, temperature User-defined and system-defined
G2 attribute names

true, 1.234, ok, “Burlington, MA” G2 attribute values and values
specified or viewed through
dialogs

Main Menu > Start

KB Workspace > New Object

create subworkspace

Start Procedure

G2 menu choices and button labels

conclude that the x of y ... Text of G2 procedures, methods,
functions, formulas, and
expressions

new-argument User-specified values in
syntax descriptions

text-string Return values of G2 procedures
and methods in syntax
descriptions

File Name, OK, Apply, Cancel,
General, Edit Scroll Area

GUIDE and native dialog fields,
button labels, tabs, and titles

File > Save

Properties

GMS and native menu choices

workspace Glossary terms
viii

Related Documentation
Note Syntax conventions are fully described in the G2 Reference Manual.

Procedure Signatures

A procedure signature is a complete syntactic summary of a procedure or
method. A procedure signature shows values supplied by the user in italics, and
the value (if any) returned by the procedure underlined. Each value is followed by
its type:

g2-clone-and-transfer-objects
(list: class item-list, to-workspace: class kb-workspace,
 delta-x: integer, delta-y: integer)
-> transferred-items: g2-list

Related Documentation

G2 Core Technology

• G2 Bundle Release Notes

• Getting Started with G2 Tutorials

• G2 Reference Manual

• G2 Language Reference Card

• G2 Developer’s Guide

• G2 System Procedures Reference Manual

c:\Program Files\Gensym\ Windows pathnames

/usr/gensym/g2/kbs UNIX pathnames

spreadsh.kb File names

g2 -kb top.kb Operating system commands

public void main()
gsi_start

Java, C and all other external code

Convention Examples Description
ix

• G2 System Procedures Reference Card

• G2 Class Reference Manual

• Telewindows User’s Guide

• G2 Gateway Bridge Developer’s Guide

G2 Utilities

• G2 ProTools User’s Guide

• G2 Foundation Resources User’s Guide

• G2 Menu System User’s Guide

• G2 XL Spreadsheet User’s Guide

• G2 Dynamic Displays User’s Guide

• G2 Developer’s Interface User’s Guide

• G2 OnLine Documentation Developer’s Guide

• G2 OnLine Documentation User’s Guide

• G2 GUIDE User’s Guide

• G2 GUIDE/UIL Procedures Reference Manual

G2 Developers’ Utilities

• Business Process Management System Users’ Guide

• Business Rules Management System User’s Guide

• G2 Reporting Engine User’s Guide

• G2 Web User’s Guide

• G2 Event and Data Processing User’s Guide

• G2 Run-Time Library User’s Guide

• G2 Event Manager User’s Guide

• G2 Dialog Utility User’s Guide

• G2 Data Source Manager User’s Guide

• G2 Data Point Manager User’s Guide

• G2 Engineering Unit Conversion User’s Guide

• G2 Error Handling Foundation User’s Guide

• G2 Relation Browser User’s Guide
x

Related Documentation
Bridges and External Systems

• G2 ActiveXLink User’s Guide

• G2 CORBALink User’s Guide

• G2 Database Bridge User’s Guide

• G2-ODBC Bridge Release Notes

• G2-Oracle Bridge Release Notes

• G2-Sybase Bridge Release Notes

• G2 JMail Bridge User’s Guide

• G2 Java Socket Manager User’s Guide

• G2 JMSLink User’s Guide

• G2 OPCLink User’s Guide

• G2 PI Bridge User’s Guide

• G2-SNMP Bridge User’s Guide

• G2 CORBALink User’s Guide

• G2 WebLink User’s Guide

G2 JavaLink

• G2 JavaLink User’s Guide

• G2 DownloadInterfaces User’s Guide

• G2 Bean Builder User’s Guide

G2 Diagnostic Assistant

• GDA User’s Guide

• GDA Reference Manual

• GDA API Reference
xi

Customer Support Services
You can obtain help with this or any Gensym product from Gensym Customer
Support. Help is available online, by telephone and by email.

To obtain customer support online:

 Access Ignite Support Portal at https://support.ignitetech.com.

You will be asked to log in to an existing account or create a new account if
necessary. Ignite Support Portal allows you to:

• Register your question with Customer Support by creating an Issue.

• Query, link to, and review existing issues.

• Share issues with other users in your group.

• Query for Bugs, Suggestions, and Resolutions.

To obtain customer support by telephone or email:

 Use the following numbers and addresses:

United States Toll-Free

United States Toll

Email

+1-855-453-8174

+1-512-861-2859

support@ignitetech.com
xii

1

Introduction
Introduces the G2 Bean Builder.

Introduction 1

Java Beans 2

G2 Java Beans 2

Differences between G2 and Java 3

Introduction
The G2 Bean Builder is a Java-based wizard that uses G2 JavaLink to create a Java
Bean from a G2 class.

You use the G2 Bean Builder to build a Java Bean in its own JAR file by either:

• Providing the data through the wizard.

• Entering the data as command-line options.

Please refer to the G2 JavaLink User’s Guide for further in-depth information on
G2-Java communication and the mapping of G2 types and classes to Java.

On the Windows platform, the G2 Bean Builder can package Java Beans as
ActiveX controls for use with third-party ActiveX development environments,
such as Visual Basic. Note that platform restrictions may apply.

This feature uses an ActiveX packager from Sun Microsystems that creates OLE
type library information and win32 registry information for a selected Java Bean,
which allows OLE/COM containers to correctly analyze and present a Bean. For
1

example, a Bean's properties are correctly presented in a Visual Basic property
sheet.

The two sources of the ActiveX packager available from Sun Microsystems are:

• Java Bean to ActiveX Bridge

• Java Plug-in

Previous versions of the G2 Bean Builder have used the packager distributed with
Sun Microsystems’ Java Bean to ActiveX Bridge. However, the G2 Bean Builder
now uses the packager included with Sun’s Java Plug-in, which is included with
JDK.

Java Beans
A Java Bean is:

“... a reusable platform-neutral software component that can be visually manipulated in a
software development tool “- Java Beans Specification 1.0

Java Bean components are called Beans. Beans may be thought of as segments of
code, which, in addition to their designed function, can also “plug-and-play” with
other Beans.

Adopting Beans as the unit of software allows the Bean developer to create the
basic functional units. The user then assembles these units, using a visual Bean-
editing environment to create the final application.

G2 Java Beans
A G2 Java Bean/ActiveX control created by the G2 Bean Builder for a specific G2
class is a reusable visual component that you can use within a Java Beans- or
ActiveX-compliant development environment. The resulting Bean also exposes
the interfaces of the original G2 class so that third-party development
environments such as Visual Basic or Visual Café can present methods and
attributes of the original G2 class at development time. For the Bean to be useful,
it must be configured to access an instance of the original G2 class within a G2
server running on the network.

Once the Bean is connected to a G2 object:

• Its attribute values are synchronized with the current values of the G2 object.

• Any changes to attributes made to the Bean are reflected as attribute changes
on the G2 object.

• Any changes to attributes made to the G2 object are reflected as attribute
changes on the Bean.
2

Differences between G2 and Java
• Any method that is exported from the original G2 class and called on the Bean
results in a synchronous method call on the appropriate G2 method. Any G2
type or class can be returned from a G2 method call to the Bean.

Note Any events defined on the G2 object are also reported to the Bean. Exposed
events must be defined by using the G2 Event Listener Support Module. For
more information, see the G2 JavaLink User’s Guide.

• If Gensym's Telewindows2 Toolkit is installed and the bean has been
configured to use the G2 icon, then the generated Bean displays the current
icon of the connected G2 object.

Differences between G2 and Java
There are differences as well as similarities between Java and G2. The following
sections describe a number of these differences and how to overcome them.

Inheritance Model

The Java class inheritance model does not support multiple inheritance, whereas
G2 does. To circumvent this difference, G2 JavaLink maps G2 classes to Java
interfaces, which do support multiple inheritance. JavaLink creates Java
implementation classes from the original G2 class to implement multiple interfaces,
thereby mapping G2’s multiple inheritance in the Java environment.

Accessing Attributes

Using Java Beans, you obtain attribute values by using methods known as getters,
and you modify attributes by using methods known as setters.

For example, suppose you have a G2 class named tank with a temperature
attribute. The resulting Bean would have a getter called getTemperature, which
returns the temperature attribute value for a given tank, whose definition would
look like this:

public int getTemperature(){
return temperature;

}

For example, you could use this getter like this:

 if(tank1.getTemperature() > 10)....
3

You use a similar mechanism for setting the value of the attribute like this:

public void setTemperature(int temp){
if((temp > 0) && (temp < 100)){

temperture = temp;
}else ...

}

Notice that the setter performs bounds checking for the attribute. That way, all the
calling code has to be concerned with is setting the attribute value; the setter takes
care of error checking and so on.

Events

An event is an asynchronous signal that a source object sends to a target object to
notify the target that some specific behavior has occurred.

In the Java event model, a “source” can send a single event to any number of
“listeners.” A source is an object that generates events, and a Listener is an object
that implements the appropriate listener interface so it can receive events. Sources
implement standard methods so that listeners can request notification of events.
After a listener registers with a source, it gets called any time an event of the
requested type occurs.

For example, when an attribute value of a G2 object changes, the
propertyChangeEvent is generated for all objects that implement the
ItemListener interface.

To export events to external Java Beans or ActiveX controls, you must use the
G2 Event Listener Support Module (g2evlis.kb), as described in the G2 JavaLink
User’s Guide.
4

2

Installing the
G2 Bean Builder
Describes installation and distribution of the G2 Bean Builder.

Introduction 5

Software Requirements 5

Installing the Files 6

Checking the Installation 6

Minimum Requirement for Distributing Java Beans 6

Troubleshooting 7

Introduction
This chapter describes how to check the installation of the G2 Bean Builder and
troubleshoot the installation. It also describes what you need to do when
distributing Java Beans and ActiveX controls that the G2 Bean Builder has
created.

Software Requirements
For information about the software requirements for this version of G2 Bean
Builder, see the readme-javalink.html file supplied with G2 JavaLink.
5

Installing the Files
For information about installation, refer to the readme-javalink.html file,
supplied with G2 JavaLink, which includes installation and other important
instructions.

Checking the Installation
To verify the G2 Bean Builder installation, enter the following command on a
command line:

java com.gensym.beanbuilder.G2BeanBuilder +v

This command provides a simple though not exhaustive self-test facility. The
application should display a message that shows the result of the self test and the
version of G2 Bean Builder. For example:

Gensym G2 Bean Builder Version 1.2 Rev. 5

Self Test Passed

Minimum Requirement for Distributing Java
Beans

When you distribute a packaged Java Bean that you created with the G2 Bean
Builder, the following requirement must be met for the packaged Java Bean to
work:

Java Development Kit (JDK) 1.3, which includes the Java Plug-in 1.3, or Java
Runtime Environment (JRE) 1.3.

Note For the latest software requirements, see the readme-javalink.html file
included with G2 JavaLink.

File Locations

The G2 Bean Builder uses the property named com.gensym.class.user.
repository, which is defined in the JavaLink properties file .com.gensym.
properties, to indicate where to create JAR files.

For example, the property might be defined as follows, where g2-install-dir is
your G2 installation directory:

com.gensym.class.user.repository=g2-install-dir\javalink\classes
6

Troubleshooting
When the G2 Bean Builder creates the JAR file, it appends \jars to the specified
path and uses the resulting path as the destination directory for its JAR files. In
the example above, it would create JAR files in this directory of your G2
installation directory:

\javalink\classes\jars

You can also specify the JAR file location by using the:

• G2 Bean Builder Dir type-in box.

• -dir command-line option.

If you use either of these options, the G2 Bean Builder creates JAR files in the
specified directory.

The G2 Bean Builder automatically creates ActiveX controls in the activex
directory within the JAR directory, for example:

\javalink\classes\jars\activex

In order for the ActiveX components to function in environments such as Visual
Basic, you must copy the beans.ocx file located in the JavaPlugin\bin directory
to this activex directory.

For further information about the properties file and the JavaLink file location, see
the G2 JavaLink User’s Guide.

Troubleshooting
This section provides help troubleshooting the installation.

Running the Beans Development Kit (BDK)

You use Sun’s Beans Development Kit (BDK) V1.1 to test Java Beans created from
G2 Bean Builder. You run BDK from the following batch file:

../BDK/beanbox/run.bat

The batch files look like this on each platform:

• Windows:

if "%OS%" == "Windows_NT" setlocal
set CLASSPATH=classes;..\lib\methodtracer.jar;..\infobus.jar
java sun.beanbox.BeanBoxFrame

• UNIX:

#!/bin/sh
export CLASSPATH
CLASSPATH=classes
java sun.beanbox.BeanBoxFrame
7

Unfortunately, the batch file overrides the CLASSPATH so that JavaLink classes are
not visible to the Bean Box application. Assuming you attempt to load
ATestClassBean from C:\bt\mg\java\jars\ATestClassBean.jar, the Bean Box
prints in its console window the following exception message:

WARNING: Could not instantiate bean "com.gensym.classes.modules.
jgidemo.ATestClassBean" from JAR "C:\bt\mg\java\jars\ATestClassBean.
jar" BeanBox caught exception java.lang.SecurityException: No access
through getResource() to .class in 1.1 while processing: LoadJar msg:
No access through getResource() to .class in 1.1

You can resolve this problem by editing the run.bat file to ensure that all
required JavaLink classes are on the Bean Box’s CLASSPATH. Because the JavaLink
installation ensures that the default CLASSPATH points to the correct JavaLink
classes, the following change to line 2 normally solves the problem:

• Windows:

if "%OS%" == "Windows_NT" setlocal
set CLASSPATH=%CLASSPATH%;classes..\lib\methodtracer.jar;

..\infobus.jar
java sun.beanbox.BeanBoxFrame

• UNIX:

#!/bin/sh
export CLASSPATH
CLASSPATH=$CLASSPATH;classes
java sun.beanbox.BeanBoxFrame

Using the ActiveX Packager

The G2 Bean Builder uses the packager supplied with Sun's Java Plug-in to create
ActiveX controls from Java Beans that have been created for G2 objects. When the
G2 Bean Builder starts up, it searches for the ActiveX Packager Java startup class,
sun.beans.ole.Packager, from the current CLASSPATH. If the Packager
cannot be found, the G2 Bean Builder does not give the user the option of creating
an ActiveX control. To ensure the Packager can be found, you should install it
correctly along with Sun's Bean Development Kit.

This release of JavaLink uses the packager supplied with Sun's Java Plug-in 1.3,
which is included with JDK 1.3.

To ensure that the G2 Bean Builder can find the Packager, you need to add the
Java Plug-in’s Java classes directory to the CLASSPATH as follows, assuming the
Java Plug-in has been installed at c:\Program Files\JavaSoft\JRE\1.3:

set CLASSPATH=%CLASSPATH%;c:\Program Files\JavaSoft\JRE
\1.3\lib\jaws.jar
8

Troubleshooting
In addition, you need to add the Java Plug-in’s Java bin directory to the PATH as
follows:

set PATH=%PATH%;c:\Program Files\JavaSoft\JRE\1.3\bin

The G2 Bean Builder places ActiveX registration (.reg) and type library (.tlb)
files generated for the G2 Bean in a directory called activex, which is
automatically created below the Java Bean JAR directory specified while building
the Bean.

For example, assume the JAR is generated in this directory of your G2 installation
directory:

\javalink\classes\jars

The ActiveX control files would be created in:

\javalink\classes\jars\activex

Packager Notes

• The registration file created contains absolute references to the location of the
Java Bean JAR and other files. If you move any of these files, you must edit the
registration file appropriately. To edit a .reg file entered into the Windows
registry, double-click the file from a file view or use regedit from a DOS
prompt.

• If you use the Packager to re-create the same ActiveX control, the .reg and
.tlb files are overwritten. Any edits you have made to these files must be
reentered.

• If an ActiveX control is previously registered and you rerun the Packager to
re-create the same ActiveX Control, the Packager maintains the same GUID
for the ActiveX control.

• The Packager uses a common control file called beans.ocx that is normally
placed in c:\Program Files\JavaSoft\JRE\1.3\bin, assuming the
Packager is installed in c:\Program Files\JavaSoft\JRE\1.3\bin. You
must copy this file to any activex directory that the G2 Bean Builder creates,
or the generated ActiveX controls will not work. For example, if beans.ocx is
not found, Visual Basic would report that the generated G2 ActiveX Bean
control has not been registered, when a user attempts to draw the control on a
VB form.

• When switching to a new version of the Packager, you must re-create your G2
beans, using the G2 Bean Builder. If you have copies of the beans.ocx file
from the previous version of the Packager, you must replace these with the
newer version of the beans.ocx file supplied with Sun’s Plug-in, which is
found in the \bin directory in the Plug-in’s installation directory.
9

10

3

Running the Wizard
Describes how to use the G2 Bean Builder wizard.

Introduction 11

Running the G2 Bean Builder 12

Viewing the Welcome Panel 13

Configuring the G2 Connection Details 14

Configuring the G2 Class Name 16

Configuring the Iconic Representation 18

Configuring the JAR File 20

ActiveX Generation Panel 21

Summary Panel 23

Progress of Bean Building Panel 24

Finished Panel 26

Introduction
You use the G2 Bean Builder utility by running a wizard, which provides a
graphical user interface (GUI) to the utility. Alternatively, you can run the utility
without the wizard.
11

Running the G2 Bean Builder
Before running the G2 Bean Builder, you must:

• Launch G2.

• Load the KB containing the classes for which you require Java interfaces.

You can run the G2 Bean Builder with or without a graphical user interface.

To run the G2 Bean Builder with a GUI:

 From a command window, execute this command:

java com.gensym.beanbuilder.G2BeanBuilder

or

 Launch the utility from the Start menu, by choosing the following from your
Gensym G2 program group:

G2 JavaLink > G2 Bean Builder

To run G2 Bean Builder without a GUI:

 From a command window, execute this command:

java com.gensym.beanbuilder.G2DownloadInterfaces
-class MY-CLASS

This command runs G2 DownloadInterfaces on MY-CLASS without a GUI.

The remaining instructions assume you have started the G2 Bean Builder with a
GUI.

For information on running the G2 Bean Builder without a GUI, see Using the
Command-Line Options.
12

Viewing the Welcome Panel
Viewing the Welcome Panel
Once you start the G2 Bean Builder, the Welcome panel appears:

This panel displays the version of G2 Bean Builder currently running and
provides these buttons:

Clicking this button: Does this:

About Displays the About screen that shows the
current version of G2 JavaLink.

Back Displays the previous panel. This button is
initially inactive, because the Welcome panel is
the first panel.

Next Displays the next panel. Some panels cause this
button to be inactive until you enter all of the
information on that panel.
13

The four navigation buttons and the Help button are common to all of the
G2 Bean Builder panels.

Click Next to advance to the G2 Connection Details panel.

Configuring the G2 Connection Details
The G2 Connection Details panel configures the connection between the G2 Bean
Builder and a G2 host:

Restart Aborts the current build and restarts the
session.

Exit Presents a confirmation dialog asking you to
confirm exiting from the G2 Bean Builder.

Clicking this button: Does this:
14

Configuring the G2 Connection Details
This panel has two specific controls:

• Host field

• Port field

Configure the Host and Port, then click Next to advance to the G2 Class Name
panel.

Specifying the Host

The Host field holds the name or IP address of the machine running the target G2.

By default, the default Host is localhost, unless you started the G2 Bean Builder
with the -host command-line option, as described in Using the Command-Line
Options.

Specifying the Port

The Port field holds the TCP/IP port number at which G2 is running on the target
machine.

By default, the default Port is 1111, unless you started the G2 Bean Builder with
the -port command-line option, as described in Using the Command-Line
Options.
15

Configuring the G2 Class Name
The G2 Class Name panel lets you specify the G2 class for which to create a Java
Bean:

This panel contains two specific controls:

• Class field

• Force download checkbox

Configure these controls, then click Next to advance to the Iconic Representation
panel.
16

Configuring the G2 Class Name
Entering the G2 Class

The Class field holds the G2 class for which you want to build a Java Bean. When
entering the G2 class through the GUI, case does not matter but you must use
hyphens if they appear in the G2 class name.

By default, the Class field is blank, unless you started the G2 Bean Builder with
the -class command-line option, as described in Using the Command-Line
Options.

The Next button is disabled unless this field has a value.

Forcing an Interface Download

The force download checkbox allows interfaces to be created during development
so that they pre-exist at deployment time. You should use this option when a G2
class or its methods have changed in some way. Forcing the download guarantees
that the Java interface classes are up-to-date.

When the option is not checked, JavaLink only creates the interfaces that it
requires, reusing any that were previously downloaded.

You use this feature when using the G2 Bean Builder to “repackage” previously
packaged G2 classes, perhaps for creating a JAR file with a new file name or for
changing the graphics of the icon.

By default, the force download checkbox is true. You can disable the force
download option by unchecking the checkbox.
17

Configuring the Iconic Representation
The Iconic Representation panel allows you to select an image to use as the iconic
representation for the Bean:

Typically, a Java Bean has associated with it 4 icon files, one each of size 16x16
and 32x32 pixels, both in monochrome and in color. These files are stored within
the JAR file. The Bean’s beaninfo file returns the relevant icon when prompted.

By contrast, the G2 Bean Builder stores one 32x32 image as raw data within the
beaninfo file. You can use a wide range of graphics file types to specify this
image. The source graphics file need not be 32x32, because the G2 Bean Builder
automatically scales and stores the image at this resolution. The IDE
automatically dithers monochrome images, so there is no need to explicitly store
them.

This panel has two specific controls:

• File name field

• Use G2 icon for bean checkbox

Configure these controls, then click the Next button to advance to the Bean Build
Information panel.
18

Configuring the Iconic Representation
Entering the File Name

The File name field holds the name of a valid graphics file from which to create an
icon for the Bean.

By default, the File name field defaults to I32.gif, which is located in the images
directory of the G2 Bean Builder product directory. If you started the G2 Bean
Builder with the -iconfile command-line option, as described in Using the
Command-Line Options, the File name field defaults to the file name you
specified in the command-line argument.

To specify a new file name, click the button next to the field to display a file dialog
from which to choose the source image for the Bean’s icon.

The File name field is disabled if the Use G2 icon for bean checkbox is true.

Using the G2 Icon for the Bean

The Use G2 icon for bean checkbox, when checked, causes the G2 Bean Builder to
use the G2 icon of the specified class as the image for the Bean. The image is
automatically rescaled.

By default, this checkbox is true, unless you started the G2 Bean Builder with the
-notg2icon command-line option, as described in Using the
Command-Line Options.
19

Configuring the JAR File
The Bean Build Information panel allows you to specify the name and location of
the JAR file to create:

Configure the JAR file name and directory, then click the Next button to advance
to the next panel. Clicking Next displays one of two panels:

• When running on a Windows platform with Sun’s Java Plug-in installed,
clicking the Next button advances to the ActiveX generation panel.

• Otherwise, clicking the Next button advances to the Summary panel.

Entering the Directory and File Name

The Dir field holds the name and location of the JAR file to create.

The path component of this field defaults to the path indicated by the value of the
com.gensym.class.user.repository property with \jars appended. This
property is defined in the JavaLink properties file, .com.gensym.properties. If
you started the G2 Bean Builder with the -dir command-line option, as described
20

ActiveX Generation Panel
in Using the Command-Line Options, the path component of the Dir field
defaults to the JAR file directory you specified in the command-line option.

The file name component of this field defaults to the name of the G2 class with
Bean.jar appended to the name. If you specified the -jarfile command-line
option, the file name component of the Dir field defaults to the file name you
specified in the command-line option.

To specify a new file name, click the button next to the text field to display a file
dialog from which to choose the directory location of the JAR file to create.

ActiveX Generation Panel
The Active X Generation panel allows you to generate an ActiveX control from
the Bean, in addition to creating the JAR file:

This panel has two specific controls:

• Create ActiveX component from the bean? checkbox

• Unreg existing class checkbox
21

Configure these options, then click the Next button to advance to the Summary
panel.

Creating an ActiveX Component from the Bean

This checkbox, if checked, causes the G2 Bean Builder to generate an ActiveX
component from the Bean.

This option defaults to false, unless you started the G2 Bean Builder with the
-activex command-line option, as described in Using the
Command-Line Options.

Unregistering Existing Class

This checkbox, if checked, determines how the G2 Bean Builder deals with the
existence of duplicate ActiveX controls:

• If an ActiveX component of the same name as currently registered exists, then
the G2 Bean Builder unregisters it first.

• If an ActiveX component of the same name has been registered previously,
Sun’s ActiveX Packager uses the existing GUID of the previous registration.

For the location of the ActiveX files, see Installing the G2 Bean Builder.

This option defaults to false, unless you started the G2 Bean Builder with the
-unreg command-line option, as described in Using the Command-Line Options.
22

Summary Panel
Summary Panel
The Summary panel displays all of the values you entered in each of the previous
panels:

At this point, you do not need to configure any more information for the utility to
begin building the requested Java Bean. To change any of the values you entered,
click Back.

Clicking the Back button at this panel returns to one of two previous panels:

• If the GUI is being run on a Windows platform with Sun’s Java Plug-in
installed, clicking Back returns to the ActiveX Generation panel.

• Otherwise, clicking the Back button returns to the Bean Build Information
panel.

Verify the current settings, then click Next to advance to the Progress of Bean
Building panel where the G2 Bean Builder immediately starts creating the Bean.
23

Note The summary information pertaining to ActiveX is only visible if the G2 Bean
Builder is running on a Windows platform with Sun’s Java Plug-in installed and
you selected the option to create an ActiveX component on the ActiveX
Generation panel.

Progress of Bean Building Panel
The Progress of Bean Building panel displays progress as the bean is created:

This panel has the following specific controls, which indicate the progress of each
stage of building the Bean:

• Connecting to G2

• Downloading Class data

• Building bean

• Jar File Creation

• Building Active X control
24

Progress of Bean Building Panel
As each stage begins, the color of the checkbox label changes and the status bar at
the bottom updates. As each stage is completed, the color changes again and the
checkbox representing that stage is checked, if it completed successfully. The
example above indicates that the G2 Bean Builder successfully connected to G2
and that it is currently downloading class data, as indicated by the marker.

During the bean building process, both the Back and Next navigation buttons are
disabled.

When the download process is complete, the system automatically advances to
the Finished panel.

Connecting to G2

During this stage, the G2 Bean Builder attempts to establish a connection with the
specified G2. If the connection attempt fails, the error is reported to the wizard
and no further building takes place.

Downloading Class Data

Once a connection has been established, the G2 Bean Builder attempts to extract
information regarding the target G2 class.

If the specified class is not found, the application informs the user and
downloading stops. Otherwise, all of the relevant data is obtained from the target
G2 for G2 Bean Builder to complete its task.

Building the Bean

During this stage, the G2 Bean Builder creates and compiles a number of Java files
to create the Bean. When the Bean is used in an IDE, the object has an appearance.
The G2 Bean Builder either automatically extracts the G2 iconic representation for
the object class and uses it for the Java Beans representation or uses the specified
icon. You can see a preview of the Bean’s icon in the icon preview next to the
checkbox associated with this stage.

Jar File Creation

During this stage, the G2 Bean Builder creates all the relevant files and places
them in a JAR file.

Building the ActiveX Control

During this phase, the G2 Bean Builder creates an ActiveX control from the Bean.
This process leaves the Bean untouched; however, it adds a number of OLE Java
bridge files to the JAR file.
25

This phase places the .reg and .tlb files in the following location:

jar-directory\activex

For example:

g2-install-dir\javalink\classes\jars\activex

Note The creation of an ActiveX control is only visible if the G2 Bean Builder is running
on an Windows platform with Sun’s Java Plug-in installed and you selected the
option to create an ActiveX component on the ActiveX Generation panel.

Finished Panel
The Finished panel displays a report of the build, detailing the results of the build:
26

Finished Panel
Note The result of making an ActiveX Component is only visible if the G2 Bean Builder
is running on a Windows platform with Sun’s Java Plug-in installed and you
selected the option to create an ActiveX component on the ActiveX Generation
panel.
27

28

4

Using the
Command-Line Options
Describes how to use the G2 Bean Builder wizard.

Introduction 30

-host 30

-port 31

-class 31

-force 32

-iconfile 32

-notg2icon 32

-dir 33

-jarfile 33

-activex 33

-unreg 34

+g 34

+t 34

+v 34

29

Introduction
You can start the G2 Bean Builder by using one or more of the following
command-line options:

• -host

• -port

• -class

• -force

• -iconfile

• -notg2icon

• -dir

• -jarfile

• -activex

• -unreg

• +g

• +t

• +v

-host
Specifies the name or IP address of the machine on which the target G2 is
running. If you do not use this command-line option, the utility uses localhost as
the default value.

To use the -host option:

 java com.gensym.beanbuilder.G2BeanBuilder
-host [machine-name | IP-address]

where machine-name and IP-address can be a machine name or an IP address. For
example:

java com.gensym.beanbuilder.G2BeanBuilder
-host mc1

or

java com.gensym.beanbuilder.G2DownloadInterfaces
-host 1.2.3.4
30

-port
If you use this command-line option when using the wizard, then the host you
enter appears automatically in the G2 Connection Details panel, as described in
Specifying the Host.

-port
Specifies the port number of the machine on which the G2 process is running. If
you do not use this command-line option, the utility uses port 1111 as the default
value.

To use the -port option:

 java com.gensym.beanbuilder.G2BeanBuilder
-port port-number

where port-number is the G2 port number. For example:

java com.gensym.beanbuilder.G2BeanBuilder
-port 1112

If you use this command-line option when using the wizard, then the port
number you enter appears automatically in the G2 Connection Details panel, as
described in Specifying the Port.

-class
Specifies the class for which you wish to create a Bean.

To use the -class option:

 java com.gensym.beanbuilder.G2BeanBuilder
-class classname

where classname is the class from which to create a Bean. When specifying
classname and not using the GUI, you must use all capital letters and include
hyphens, unless the G2 class explicitly contains lower-case letters. When
specifying the -classes command-line option, separate the class names with
spaces. For example:

java com.gensym.beanbuilder.G2BeanBuilder
-class MY-CLASS

If you use this command-line option when using the wizard, then the class name
you enter appears automatically in the G2 Class Name panel, as described in
Entering the G2 Class.

If you are not using the graphical user interface, this option is required when
launching the G2 Bean Builder, so that the utility knows which class to use to
create the Bean.
31

-force
Specifies whether to force an interface download. The default for this option is
false.

To use the -force option:

 java com.gensym.beanbuilder.G2BeanBuilder
-force

If you use this command-line option when using the wizard, then the force
download checkbox is checked automatically when the G2 Class Name panel
appears, as described in Forcing an Interface Download.

-iconfile
Specifies a 32x32 color image to represent the Bean when viewing it in an IDE.
The default for this flag is I32.gif, which is located in the G2 JavaLink
beanbuilder.jar file.

To use the -iconfile option:

 java com.gensym.beanbuilder.G2BeanBuilder
-iconfile filename

where filename is the name of the image file to use for the Bean’s icon. For
example:

java com.gensym.beanbuilder.G2BeanBuilder
-iconfile c:\images\myimage.gif

If you use this command-line option when using the wizard, then the file name
you specify appears automatically in the Iconic Representation panel, as
described in Entering the File Name.

-notg2icon
Specifies that the default icon to use to represent the Bean is I32.gif, located in
the G2 JavaLink beanbuilder.jar file, or the image file specified by the
-iconfile command-line option.

To use the -notg2icon option:

 java com.gensym.beanbuilder.G2BeanBuilder
-notg2icon

If you use this command-line option when using the wizard, then the Use G2 icon
for bean checkbox is set to false in the Iconic Representation panel, as described in
Entering the File Name.
32

-dir
-dir
Specifies the JAR file home directory to use when generating the Bean. The
default value is the path indicated by the value of the com.gensym.class.user.
repository property with \jars appended. This property is defined in the
JavaLink properties file, .com.gensym.properties.

To use the -dir option:

 java com.gensym.beanbuilder.G2BeanBuilder
-dir directory

where directory is the path name to use for the JAR file. For example:

java com.gensym.beanbuilder.G2BeanBuilder
-dir c:\jars\

If you use this command-line option when using the wizard, then the directory
you specify appears automatically in the Bean Build Information panel, as
described in Entering the File Name.

-jarfile
Specifies the JAR file name to use when generating the Bean. The default value is
the name of the G2 class with Bean.jar appended to the name.

To use the -jarfile option:

 java com.gensym.beanbuilder.G2BeanBuilder
-jarfile filename

where filename is the file name to use for the JAR file. For example:

java com.gensym.beanbuilder.G2BeanBuilder
-jarfile MyBean.jar

If you use this command-line option when using the wizard, then the directory
you specify appears automatically when the Bean Build Information panel
appears, as described in Entering the File Name.

-activex
On Windows platforms only, specifies whether to generate an ActiveX
component from the Bean. The default value is false.

To use the -activex option:

 java com.gensym.beanbuilder.G2BeanBuilder
-activex
33

If you use this command-line option when using the wizard, then the Create
ActiveX component from the bean? checkbox is checked automatically in the
Active X Generation panel, as described in Creating an ActiveX Component from
the Bean.

-unreg
On Windows platforms only, specifies whether to unregister an existing ActiveX
control if it is already registered. The default value is false.

To use the -unreg option:

 java com.gensym.beanbuilder.G2BeanBuilder
-activex -unreg

If you use this command-line option when using the wizard, then the Unreg
existing class checkbox is checked automatically in the Active X Generation panel,
as described in Creating an ActiveX Component from the Bean.

+g
Launches G2 Bean Builder with the graphical user interface wizard. When you
launch G2 Bean Builder with no command-line option, you get the GUI, by
default. When you launch it with the -class command-line option, you do not
get the GUI, unless you use the +g command-line option.

+t
Sets the trace output for the G2 Bean Builder utility to true. By default, tracing is
not enabled. The trace output can provide information about problems
encountered while downloading G2 classes.

+v
Runs the G2 Bean Builder verification test. By default, the verification test is not
run when you launch the utility. For more information, see Checking the
Installation.
34

5

Using G2 Bean
Builder Beans
Describes how to use G2 Bean Builder beans as Java Beans and as ActiveX
controls.

Introduction 35

Creating the G2 Class 36

Creating the Bean 36

Using the Bean in the Beans Development Kit (BDK) 37

Using the Bean as an ActiveX Control in Visual Basic 48

Introduction
The G2 Bean Builder is a tool for extracting Java Beans from existing G2 class
objects as JAR files and ActiveX controls.

This chapter illustrates the use of the JAR file by using Sun Microsystem’s
Beanbox, while it illustrates the use of the ActiveX control by using Microsoft’s
Visual Basic.

Neither of these examples is intended to be an in-depth guide to using third-party
software. For full details on their use, please refer to the relevant product
documentation.
35

Creating the G2 Class
To illustrate the use of the G2 Bean Builder, first you must create a G2 object from
which to generate the Bean. This example uses the test class detailed below
because it has a variety of attribute types.

To create a test G2 class:

1 In G2, create an object definition for the class a-test-class with the following
class-specific attributes:

a-int is an integer, initially is 34;
a-float is a float, initially is 3.4e6;
a-text is a text, initially is "A TEST STRING";
a-symbol is a symbol, initially is hi-there;
a-truth-value is a truth-value, initially is false;
a-sequence is a sequence, initially is sequence (1, 2.3, the symbol fred,

"This text belongs to this sequence",
structure (fred: 1, ethal: "ethals structure text"));
a-structure is a structure, initially is structure (attone: the symbol hi-there,
atttwo: "A Very complex object is this")

2 Create an instance of a-test-class.

3 Name that instance a-test-class-instance.

Creating the Bean
The following instructions assume that the G2 Bean Builder is running on a
Windows platform with Sun’s Java Plug-in installed. The G2 Bean Builder
automatically reconfigures itself on systems where ActiveX is not available so that
ActiveX-related functions are not visible.

To create the test Bean:

1 Start the G2 Bean Builder, using one of the following techniques:

 Enter the following command at the command line:

java com.gensym.beanbuilder.G2BeanBuilder

 From the Start menu, choose the following from your Gensym G2
program group:

G2 JavaLink > G2 Bean Builder

2 Configure the G2 Bean Builder to connect to your G2.

For details, see Configuring the G2 Connection Details.

3 Configure the class to download to be A-TEST-CLASS.
36

Using the Bean in the Beans Development Kit (BDK)
4 Accept the default icon representation.

5 Accept the default JAR file location.

6 Instruct the G2 Bean Builder to create an ActiveX component, as needed.

7 Continue with the G2 Bean Builder prompt to create the Bean.

The G2 Bean Builder creates a Java Bean called ATestClassBean found in
ATestClassBean.jar. If an ActiveX component was created, it is registered as
“ATestClassBean Bean Control.“

Using the Bean in the Beans Development Kit
(BDK)

Sun Microsystem’s Beans Development Kit (BDK) is a pure Java application,
whose only dependency is the Java Development Kit (JDK) 1.2.1 or later. The BDK
provides:

• Support for the JavaBeans APIs.

• A test container, called the “BeanBox,” used to test Bean behavior.

• Sample Beans complete with their source code.

• The JavaBeans Specification.

• A tutorial.
37

This figure shows the BDK:

The above figure shows, from left to right:

• The ToolBox, a palette of beans.

• The BeanBox, an area for positioning beans and configuring their events.

• The property sheet, an area for configuring the properties of beans.
38

Using the Bean in the Beans Development Kit (BDK)
Viewing the Bean in the Bean Box

To view the Bean in the Bean Box, you must load its associated JAR file.

To view the Bean in the Bean Box:

1 In a command window, change to the BDK BeanBox product directory and
enter this command:

run

The BDK BeanBox appears:
39

2 Choose LoadJar from the File menu on the main BeanBox composition
window:

3 Use the dialog box to select and load ATestClassBean.jar.

When loaded, the Bean is visible at the end of the ToolBox palette:
40

Using the Bean in the Beans Development Kit (BDK)
Creating an Instance of the Bean

To create an instance of the Bean:

1 Click the ATestClassBean icon on the ToolBox palette.

The cursor changes to a +.

2 Click anywhere in the BeanBox composition window to create the Bean.

This figure shows the two steps required to create an instance of the Bean:
41

In this figure, the ATestClassBean is surrounded by a box indicating that it is
currently selected:

Configuring the Bean

This figure shows the property sheet for ATestClassBean, which includes the
SourceURL and G2ItemFetched properties, described below:
42

Using the Bean in the Beans Development Kit (BDK)
The SourceURL Property

The SourceURL property specifies the G2 object that the selected Bean represents.

The URL references an existing G2 object resident in a G2 running on the
indicated port of a specified machine. It takes the form:

g2://<host>:<portnumber>/<G2objectname>

For example:

g2://localhost:1111/A-TEST-CLASS-INSTANCE

The G2ItemFetched Property

The G2ItemFetched property is a boolean flag to indicate that the Bean is to fetch
the item specified by the SourceURL.

Assuming the SourceURL is set to a valid G2 object, setting the flag to true causes
the Bean to connect to the specified G2 and probe the indicated object to obtain all
of its properties, which are defined in the class-specific attributes of the object
class definition.

Note G2 must be running for the item to be fetched.

The property sheet displays only properties of certain types, for example, String,
int, float. For more information, see the BDK user documentation from Sun.

For this reason, the definition of the G2 attributes determines whether or not the
corresponding Bean property appears in the property sheet. You must define the
G2 attribute properly for it to appear in the property sheet.

For example, the following G2 attribute definition makes the property accessible
from the BDK’s BeanBox property sheet as a boolean:

g2-item-fetched is a truth-value, initially is false

The following G2 attribute definition, exported as an object because this G2
attribute accepts any type or item, creates a Java Object rather than a native type,
so it does not appear in the property sheet:

x-offset initially is 23

To access this property via the property sheet, it should be redefined to be
“strongly” typed as an integer. G2 can then export the definition for this attribute
as a Java int rather than as a generic object.

For example:

x-offset is an integer, initially is 23
43

Note When a G2 class definition is changed, it should be reexported to Java, using the
G2 Bean Builder or G2 DownloadInterfaces utilities, to ensure that the new
definition is available to Java.

Once a correct SourceURL is specified and G2ItemFetched is set to true, then the
exported Bean connects to a-test-class-instance in the G2 at localhost:1111.
Reselecting ATestClassBean in the BeanBox automatically displays the current
values of the exported attributes of a-test-class-instance, as follows:
44

Using the Bean in the Beans Development Kit (BDK)
At this point the Bean is “aware” of its specified G2 object and vice versa, as this
figure shows:

If you change an attribute value of the G2 object, the change appears in the
property sheet of the Bean and vice versa.

Note It is necessary to reselect ATestClassBean in the BeanBox window for the
property sheet to be updated when attributes are changed in G2.

The EnableUIForMessages Property

The EnableUIForMessage boolean property controls whether or not the Bean
reports exceptions to the user via a GUI dialog box. Some IDE’s such as Visual
Basic do not catch and report exceptions. In such environments, an exception may
at best go unreported, or in the worst case hang the system. Java IDE’s tend to
catch and report exceptions. If this property is set to true and the IDE supports it,
then the Bean causes the display of a dialog box containing the exception
message, as well as throwing the exception.

The UseG2Icon Property

The UseG2Icon boolean property controls whether or not the icon displayed by
the Bean is the same as the G2 icon for the item specified by SourceURL or is the
image that was specified as the Beans icon during the construction of the Bean.
45

The ScaleImageToFit Property

The ScaleImageToFit boolean property controls whether or not the icon image for
the Bean, as controlled by the UseG2Icon property, is scaled to fit within the
bounds of the Bean. If set to true, the image is scaled in size so it fits within the
bounds of the Bean. If set to false and the UseG2Icon property is true, then the
image is displayed within the bounds of the Bean starting at 0,0 (top left). If the
UseG2Icon property is set false, the image is displayed centrally within the
bounds of the Bean. If the image is larger than the bounds of the Bean, it is
cropped.

The ShowIconUpdates Property

The ShowIconUpdates boolean property controls whether or not the icon of the
Bean reflects changes that take place in the G2 icon for the specified item.

Note This property is applicable only if the UseG2Icon property has been set to true
and Telewindows2 Toolkit has been installed.

Interacting with Other Beans

The following figure shows the BeanBox composition window with a BlueButton
added from the Toolbox palette and the actionPerformed button push event has
been selected from the Edit menu:
46

Using the Bean in the Beans Development Kit (BDK)
Here the action is being “tied to” the test Bean:

When the two Beans are connected, the EventTargetDialog window appears and
displays the available methods of the test Bean:

Events for the object defined in G2 are also available in Java and so appear in this
list. For more information, see the chapter on writing G2 Bean events in the
G2 JavaLink User’s Guide.

Selecting one of these events causes the selected method to be called when the
button is pressed.

For a detailed example, see the BDK tutorial supplied with BDK1.1.
47

Using the Bean as an ActiveX Control in Visual
Basic

The following figure shows a Visual Basic 5.0 project:

The palette on the left holds a number of standard Visual Basic controls.

Importing Beans into Visual Basic

To use the Bean as an ActiveX control, you import the Bean as a custom control
into Visual Basic.

To import the Bean as an ActiveX control into Visual Basic:

1 From Visual Basic, choose Components from the Project menu:

2 Select ATestClassBean Bean Control.

3 Accept the dialog.
48

Using the Bean as an ActiveX Control in Visual Basic
After importing the component, ATestClassBean appears on the Toolbox, as
follows:

You can work with the imported Bean in the same way as you would with any
other ActiveX component.

Creating an Instance of the ActiveX Control

To create an instance of the ActiveX control:

1 Click the ATestClassBean icon in the Toolbox.

The cursor changes to a + when positioned over the form.

2 Draw a box on the Form to create an instances of the control.
49

This figure shows the two steps required to create an instance of the control:

If Visual Basic reports that the generated G2 ActiveX Bean control has not been
registered, when a user attempts to create and draw the control on a VB form, the
most likely cause is that the file beans.ocx is not found.

Note The Packager uses a common control file called beans.ocx that is normally placed
in c:\Program Files\JavaSoft\JRE\1.3\bin\ , assuming the Java Plug-in is
installed at c:\Program Files\JavaSoft\JRE\1.3\. This file must be copied to
any ActiveX directory created by the G2 Bean Builder, or the generated ActiveX
controls fail to function.
50

Using the Bean as an ActiveX Control in Visual Basic
This figure shows A-TEST-CLASS Bean on the Form and its properties as
displayed in the Properties window:

For information about configuring the properties of the Bean, see Configuring the
Bean.
51

52

Index
 @ A B C D E F G H I J K L M
 # N O P Q R S T U V W X Y Z
A
About button
Active X Generation panel
ActiveX

See Also ActiveX controls
Packager

-activex command-line option
ActiveX controls

building from Java Beans
configuring properties of
creating instances of in Visual Basic
generating

using command-line option
using wizard

location of
unregistering

using command-line option
using wizard

viewing Java Beans in Visual Basic
asynchronous signals
attributes

accessing for Java Beans
defining G2 class-specific
strongly typed

B
Back button
Bean Build Information panel
beaninfo file
Beans

See Java Beans
Beans Development Kit (BDK)

troubleshooting, using
using

beans.ocx file
copying to activex directory
using with Packager

bounds checking
buttons

About
Back
Exit
Next
Restart

C
-class command-line option
Class field
classes

creating G2
downloading data for
specifying G2

using command-line option
using wizard

CLASSPATH environment variable
using with BDK
using with Java Plug-in

class-specific attributes, defining G2
color images
.com.gensym.properties file
command for running G2 Bean Builder

with a GUI
command-line options

+g
+t
+v
-activex
-class
-dir
-force
-host
-iconfile

introduction to
-jarfile
-notg2icon
-port
-unreg

commands
for running G2 DownloadInterfaces

without a GUI
connecting to G2
connection to G2, configuring

using command-line option
using wizard
53

Create ActiveX component from the bean?
checkbox

customer support services

D
-dir command-line option
Dir field
directory, configuring for JAR files
distributing Java Beans
downloading

class data
interfaces

configuring G2 class
forcing

E
EnableUIForMessages property
events, definition of
Exit button

F
File name field
files

configuring
for image files
for JAR files

location of generated
Finished panel
-force command-line option
forcing interface download

using command-line option
using wizard

G
+g command-line option
G2

class
creating
specifying

configuring connection to
connecting to
differences with Java
host
icons
Java Beans
54
mapping classes to Java interfaces
port

G2 Bean Builder
command-line options for
installing
introduction to
running

requirements for
with GUI
wizard

using Beans created from
G2 Class Name panel
G2 Connection Details panel
G2 DownloadInterfaces

running
without GUI

g2evlis.kb file
G2ItemFetched property
getters
graphics

See icons
GUI

command-line option for launching
without

running G2 Bean Builder
with

running G2 DownloadInterfaces
without

H
-host command-line option
Host field
host, specifying

using command-line option
using wizard

I
-iconfile command-line option
Iconic Representation panel
icons

specifying
not to use G2
using command-line option
using G2 icon
using image files

IDEs
dithering images in
reporting exceptions in

viewing Beans in
images

See icons
installation

checking
G2 Bean Builder
software requirements for
troubleshooting

J
JAR files

creating
specifying

using command-line option
using wizard

specifying directory
using command-line option
using wizard

-jarfile command-line option
Java

differences with G2
event model
inheritance model
interfaces, mapping G2 classes to

Java Beans
accessing attributes of
building
configuring properties of

in Bean Box
in Visual Basic

creating instances of
in Bean Box
in Visual Basic

creating sample
definition of
distributing, requirements for
events
G2
interacting with other Beans
using
viewing

in Bean Box
in Visual Basic

Java Development Kit (JDK)
Java Plug-in

Packager
Java Runtime Environment (JRE)
L
listeners

M
monochrome images
multiple inheritance

N
Next button
-notg2icon command-line option

P
Packager, ActiveX
plug-and-play
-port command-line option
Port field
port, specifying

using command-line option
using wizard

Progress of Bean Building panel
property sheet

viewing
in Bean Box

R
readme file
REG files

editing
registry files

See REG files
requirements, software
Restart button

S
ScaleImageToFit property
setters
ShowIconUpdates property
software requirements
source objects
SourceURL property
strongly typed attributes
Summary panel
55

T
+t command-line option
target objects
TCP/IP port
tracing, command-line option for

U
-unreg command-line option
Unreg existing class checkbox
Use G2 icon for bean checkbox
UseG2Icon property

V
+v command-line option

checking installation, using
using

Visual Basic
importing Beans into
viewing Java Beans as ActiveX controls in

W
Welcome panel
wizard, running
56

	Contents
	Preface
	About this Guide
	Software Requirements
	Audience
	Conventions
	Related Documentation
	Customer Support Services

	Introduction
	Introduction
	Java Beans
	G2 Java Beans
	Differences between G2 and Java
	Inheritance Model
	Accessing Attributes
	Events

	Installing the G2 Bean Builder
	Introduction
	Software Requirements
	Installing the Files
	Checking the Installation
	Minimum Requirement for Distributing Java Beans
	File Locations

	Troubleshooting
	Running the Beans Development Kit (BDK)
	Using the ActiveX Packager

	Running the Wizard
	Introduction
	Running the G2 Bean Builder
	Viewing the Welcome Panel
	Configuring the G2 Connection Details
	Specifying the Host
	Specifying the Port

	Configuring the G2 Class Name
	Entering the G2 Class
	Forcing an Interface Download

	Configuring the Iconic Representation
	Entering the File Name
	Using the G2 Icon for the Bean

	Configuring the JAR File
	Entering the Directory and File Name

	ActiveX Generation Panel
	Creating an ActiveX Component from the Bean
	Unregistering Existing Class

	Summary Panel
	Progress of Bean Building Panel
	Connecting to G2
	Downloading Class Data
	Building the Bean
	Jar File Creation
	Building the ActiveX Control

	Finished Panel

	Using the Command-Line Options
	Introduction
	-host
	-port
	-class
	-force
	-iconfile
	-notg2icon
	-dir
	-jarfile
	-activex
	-unreg
	+g
	+t
	+v

	Using G2 Bean Builder Beans
	Introduction
	Creating the G2 Class
	Creating the Bean
	Using the Bean in the Beans Development Kit (BDK)
	Viewing the Bean in the Bean Box
	Creating an Instance of the Bean
	Configuring the Bean
	Interacting with Other Beans

	Using the Bean as an ActiveX Control in Visual Basic
	Importing Beans into Visual Basic
	Creating an Instance of the ActiveX Control

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	P
	R
	S
	T
	U
	V
	W

