G2 Gateway

Bridge Developer’s Guide
Version 2015

G2 PLATFORM

G2 Gateway Bridge Developer’s Guide, Version 2015
January 2016

The information in this publication is subject to change without notice and does not represent a
commitment by Gensym Corporation.

Although this software has been extensively tested, Gensym cannot guarantee error-free
performance in all applications. Accordingly, use of the software is at the customer’s sole risk.

Copyright (c) 1985-2016 Gensym Corporation

All rights reserved. No part of this document may be reproduced, stored in a retrieval system,
translated, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of Gensym Corporation.

Gensym®, G2®, Optegrity®, and ReThink® are registered trademarks of Gensym Corporation.

NeurOn-Line™, Dynamic Scheduling™ G2 Real-Time Expert System™, G2 ActiveXLink™, G2
BeanBuilder™, G2 CORBALink™, G2 Diagnostic Assistant™, G2 Gateway™, G2 GUIDE™,
G2GL™, G2 JavaLink™, G2 ProTools™, GDA™, GFI™, GSI™, ICP™, Integrity™, and SymCure™
are trademarks of Gensym Corporation.

Telewindows is a trademark or registered trademark of Microsoft Corporation in the United States
and/ or other countries. Telewindows is used by Gensym Corporation under license from owner.

This software is based in part on the work of the Independent JPEG Group.

Copyright (c) 1998-2002 Daniel Veillard. All Rights Reserved.

SCOR® is a registered trademark of PRTM.

License for Scintilla and SciTE, Copyright 1998-2003 by Neil Hodgson, All Rights Reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/).

All other products or services mentioned in this document are identified by the trademarks or
service marks of their respective companies or organizations, and Gensym Corporation disclaims
any responsibility for specifying which marks are owned by which companies or organizations.

Gensym Corporation

52 Second Avenue

Burlington, MA 01803 USA

Telephone: (781) 265-7100

Fax: (781) 265-7101 Part Number: DOC016-1200

Contents Summary

Part |

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5

Chapter 6

Part Il
Chapter 7
Chapter 8
Chapter 9
Chapter 10

Chapter 11

Part Il

Appendix A

Appendix B

Preface xix

User’s Guide 1

G2 Gateway Solutions for Connectivity Problems 3

Configuring the G2 Knowledge Base 17
Preparing the Bridge User Code 51
Remote Procedure Calls 89

Error Handling 127

Troubleshooting Guidelines 135

Reference 143

G2 Gateway Data Structures 145

Callback Functions 183

API Functions 249

Preprocessor Flags and Runtime Options 515

Building and Running a G2 Gateway Bridge 525

Appendixes 555
Functions by Argument and Return Type 557

Constants 581

Appendix C
Appendix D
Appendix E
Appendix F

Appendix G

G2 Gateway Error Messages 585

G2 Gateway Data Types 595

Limits and Ranges 609

How G2 and G2 Gateway Exchange Data 615

Upgrading G2 Gateway Applications 623

Glossary 631

Index 641

Contents

Part |

Chapter 1

Preface xix
About this Guide xix

Product Name xix
Audience xx

Organization xx

A Note About the APl xxii
Conventions xxii

Related Documentation xxiv

Customer Support Services xxvi

User’s Guide 1

G2 Gateway Solutions for Connectivity Problems 3

Introduction 3

Capabilities of G2 Gateway Bridges 4
Providing Data Service for G2 Variables 4
Invoking Remote Procedures 5
Passing Objects 5
Other Support for Dynamic Real-Time Processing 5

Developing G2 Gateway Applications 6
Steps for Developing a G2 Gateway Application 6
Preparing a G2 KB to Communicate with a G2 Gateway Bridge 7
Building a G2 Gateway Bridge Executable 9

Deploying G2 Gateway Bridges 12
Starting G2 Gateway Bridge Processes 13

How a G2 Gateway Bridge Works 13
Procedural Flow of a G2 Gateway Bridge Process 13
Run-Time Modes of Bridge Operation 14
Providing Data Service for GSI Variables ina G2 KB 14
Setting Data Values in an External System 15
Sending Text Values to and from the G2 Gateway Bridge 16

Making and Receiving Remote Procedure Calls 16

Chapter2 Configuring the G2 Knowledge Base 17
Introduction 17

Configuring Connections between G2 and G2 Gateway 18
Number of GSI Interfaces Required 18
Creating a GSlI Interface 19
Setting Attributes of a GSI Interface 19
Updating GSI Interface Attributes While the KB is Running 38
Activating and Deactivating a GSI Interface 38

Configuring GSI Variables in the KB 40
Defining GSI Variable Classes 40
Attributes of GSI Variables 41
Defining Identifying Attributes 44
Identifying the Status of the GSI Variable 45
Specifying Initial Values for GSI Variables 46

Creating and Configuring GSI Message Servers 46
Attributes of a GSI Message Server 48
Running an Inform Action on a GSI Message Server 49

Chapter3 Preparing the Bridge User Code 51

Introduction 52
Components of G2 Gateway User Code 52

Structure of G2 Gateway User Code 53
Contents of the main() Function 53
Sample main() Function 57

Using gsi_start() 57
Performing Once-Only Operations through gsi_set up() 58
Specifying a Default TCP/IP Port Number 59

Managing a Connection between G2 and a G2 Gateway Bridge 60
Initializing a Connection 60
Pausing a Connection 60
Resuming a Connection After a Pause 61
Shutting Down a Connection 61

Processing Events through gsi_run_loop() 62
Behavior of gsi_run_loop() in Continuous and One-Cycle Modes 62
Interruptible Sleep 65
Handling Interrupts 67

Implementing Data Service in G2 Gateway 67
Solicited and Unsolicited Data Transfers 68

Vi

Chapter 4

Returning Solicited Data to G2 69
Sending Unsolicited Data to G2 72
Setting Values in the External Application 74

Message Passing 76
Sending Messages from G2 to the External System 76
Returning Text Messages to G2 76

Iltem Passing 76

Registering and Deregistering Items 77
Kinds of Items Registered by G2 77
Registering Items Automatically 77
Registering Items Explicitly 78
What G2 Gateway Does When G2 Registers an Item 78
How G2 Gateway Stores Information Associated with Registered
ltems 79
Associating User Data with a Registered Item 80
Deregistering Items Automatically 81
Deregistering Items Explicitly 82

Context Control 82
Remote Procedure Calls within a Context 82

User Watchdog Functions 83

Memory Management Responsibilities of G2 Gateway User Code 85
Managing Data Structures 85
Managing Arrays and Lists 86
Reclaiming Memory 87

Write Buffer Management 87
Using and Disabling Abbreviated Function Name Aliases 87

Using and Disabling ANSI C Prototypes for API Functions 88

Remote Procedure Calls 89

Introduction 89

Making Remote Procedure Calls from G2 to the G2 Gateway Bridge 91

Writing a G2 Gateway Local Function to be Called by G2 93
Declaring the Local Function in Your G2 Gateway User Code 96
Declaring the G2 Gateway Local Function in G2 97

Grammar for G2 Remote Procedure Argument Declarations 99
Invoking the G2 Gateway Local Function from G2 103

Passing a Varying Number of Arguments to the Same G2 Gateway Local

Function 105

How a Local Function Can Process Argument Arrays Received from

G2 106

Vii

Making Remote Procedure Calls from a G2 Gateway Bridge to G2 107
Writing the G2 Procedure or Method to be Invoked by G2 Gateway 110
Declaring the Remote Procedure in the Bridge 110
Defining a Function to Receive Values Returned by G2 113
Defining a Function to Receive Error Values Returned by G2 114
Invoking the Remote G2 Procedure 115
Passing Items from a G2 Gateway Bridge to G2 116
Returning G2 ltems from G2 Gateway Back to G2 117
Passing Network Handles as the Class in RPCs 118
Passing UUIDs Referring to Items in RPCs 120

Developing a Bridge Using Only Remote Procedure Calls 122

Call Identifiers and Procedure User Data 123
Procedure User Data for Remote Procedure Calls 123
Call Identifiers for Remote Procedure Calls 125

Chapter 5 Error Handling 127
Introduction 127
Default Error Handling 128

Sending Error Information to Standard Output 128
Shutting Down the Context Where the Error Occurred 129

Customized Error Handling 129
Signalling Customized Error Conditions 129
Writing a Customized Error Handler 130
Installing a Customized Error Handler 130
Checking the Global Error Flag 130

Error Handling in Continuous and One-Cycle Modes 131
Errors that Shut Down a Context 133
Chapter6 Troubleshooting Guidelines 135
Introduction 135
Connectivity 136
Data Collection and Transmission 138
Iltem Registration 141
Remote Procedure Calls (G2-to-G2 Gateway) 141
Reporting Problems to Gensym 142

viii

Part Il

Chapter 7

Reference 143

G2 Gateway Data Structures 145

Introduction 146

Summary of G2 Gateway Data Structures 146

Using Get and Set Functions for Data Structures 149
Referencing Data Structures in Your User Code 150
Accessing Data Structures through Other Data Structures 150

Type Tags of G2 Gateway Data Structures 152
Setting Type Tags 152
Setting the Type to Null 152

G2 Gateway Data Structures and Functions for Data Transfer Operations 153
Setting the Value of an External Data Point 154
Updating the Value of a GSI Variable 154
Receiving Unsolicited Updates of GSI Variables 155
Passing Objects through Remote Procedure Calls 156
Passing Iltems as Handles 157

Allocating and Reclaiming G2 Gateway Data Structures 158

gsi_registration Data Structures 159
Registering a GSI Variable or Item Handle 159
Getting a gsi_registration Structure 159
Accessing Components of a gsi_registration Structure 160

gsi_registered_item Data Structures 163
Returning Values to a GSI Variable 164
Setting Arguments of GSI| Variables 164
Callbacks that Access gsi_registered_item Structures 164
Allocating and Reclaiming gsi_registered_item Structures 164
Accessing Components of a gsi_registered_item Structure 165

gsi_item Structures 167
Verifying that an Item is an Item 167
gsi_item Structures as Arguments of Remote Procedure Calls 168
Copying Contents of a gsi_item Structure 168
API Functions that Return gsi_item Structures 168
API Functions that Allocate and Reclaim gsi_item Structures 168
Returning gsi_item Values and Attributes to G2 168
Components of a gsi_item Structure 169

gsi_attr Structures 177
API Functions that Return gsi_attr Structures 177
API Functions that Allocate and Reclaim gsi_attr Structures 178
Components of a gsi_attr Structure 178

Chapter 8

gsi_symbol Structures 179
API Functions that Return gsi_symbol Structures 180
An API Function that Allocates a gsi_symbol Structure 180
Accessing Components of a gsi_symbol Structure 180

Callback Functions 183

Introduction 184
Standard Callback Functions 185

Using Standard Callback Functions 185
Using GSI 4.1 Callbacks with G2 Gateway Linked Statically 185
Using GSI 4.1 Callbacks with G2 Gateway Linked Dynamically 186
Using Stub Versions of GSI 4.1 Callbacks 186
Using G2 Gateway 5.0 Callbacks with G2 Linked Statically or
Dynamically 187
Using Stub Versions of G2 Gateway 5.0 Callbacks 188

Calling Other Functions from Callbacks 188
Values Returned by Callback Functions 189

Groups of Functionally Related Callback Functions 189
Application Initialization 189
Connection Management 189
Flow Control 189
Item Registration and Deregistration 190
Data Service 190
Error Handling 190
Message Passing 190
Run State Change 191

Standard Callbacks 192
gsi_close fd 193
gsi_error_handler 194
gsi_g2_poll 195
gsi_get data 198
gsi_get_tcp_port 201
gsi_initialize_context 203
gsi_missing_procedure_handler 208
gsi_not_writing_fd 209
gsi_open_fd 210
gsi_pause_context 211
gsi_read_callback 213
gsi_receive_deregistrations 214
gsi_receive_message 216
gsi_receive_registration 218
gsi_reset_context 221
gsi_resume_context 222

gsi_run_state change 223
gsi_set data 225
gsi_set up 228
gsi_shutdown_context 230
gsi_start_context 232
gsi_write_callback 233
gsi_writing_fd 234

RPC Support Callback Functions 236
local functions 237
receiver functions 239
error receiver functions 241
watchdog functions 243

Using the Select Function in G2 Gateway 244
Supplying Arguments to the Select Function 244

Chapter9 API Functions 249

Introduction 253

Groups of Functionally Related API Functions 254
G2 Gateway Entry Points 254
Initialization and Run State 254
Context Management 254
Data Structure Access 255
Data Service 256
Data Structure Allocation and Deallocation 257
Error Handling 257
File Descriptor Management 257
Interruptible Sleep 257
Message Passing 257
Missing Callback Declarations 257
Remote Procedure Support 258
Runtime Options 258
String Conversion 258
Symbol Access 258
User Data 259
Watchdog Function 259

Required Header File 259
Specifying Symbolic Values in APl Function Calls 259

API Function Descriptions 260
gsi_attr_by name 261
gsi_attr _count_of 262
gsi_attr_is_transient 263
gsi_attr_name_is_qualified 264
gsi_attr name_of 266

Xi

Xii

gsi_attrs_of 268

gsi_class_name_of 270
gsi_class_qualifier_of 272
gsi_class_type_of 274

gsi_clear_item 276

gsi_clear_last_error 277
gsi_close_listeners 278
gsi_context_is_secure 279
gsi_context_received_data 280
gsi_context_remote_host 281
gsi_context_remote_listener_port 282
gsi_context_remote_process_start_time 283
gsi_context_socket 284
gsi_context_user _data 285
gsi_convert_string_to_unicode 286
gsi_convert_unicode_to_string 287
gsi_convert_unicode_to_wide_string 288
gsi_convert_wide_string_to_unicode 289
gsi_current_context 290
gsi_current_context_is_secure 291
gsi_decode_timestamp 292
gsi_element_count_of 293
gsi_elements_of 294
gsi_encode_timestamp 296
gsi_error_message 298
gsi_establish_listener 299
gsi_establish_secure_listener 301
gsi_extract_history 303
gsi_extract_history_spec 305
gsi_flt_array of 307

gsi_flt list of 308

gsi_flt of 310

gsi_flush 311

gsi_handle_of 312
gsi_history_count_of 313
gsi_history type of 315
gsi_identifying_attr_of 316
gsi_initialize_callbacks 317
gsi_initialize_error_variable 318
gsi_initialize_for_win32 319
gsi_initiate_connection 320
gsi_initiate_connection_with_user_data 323
gsi_initiate_secure_connection 326
gsi_initiate_secure_connection_with_user_data 328
gsi_install_error_handler 330
gsi_int_array_of 331

gsi_int_list_of 332

gsi_int_of 333

gsi_interval_of 334

gsi_is_item 335
gsi_item_of_attr 336
gsi_item_of attr_by name 337
gsi_item_of_identifying_attr_of 339
gsi_item_of registered_item 340
gsi_kill_context 341

gsi_last _error 342
gsi_last_error_call_handle 343
gsi_last_error_message 344
gsi_listener_socket 345
gsi_log_array_of 346
gsi_log_list of 347

gsi_log_of 349

gsi_long_of 350
gsi_make_array 351
gsi_make_attrs 352
gsi_make_attrs_with_items 353
gsi_make_item 354
gsi_make_items 355
gsi_make_registered_items 356
gsi_make_symbol 357
gsi_name_of 358
gsi_option_is_set 360
gsi_owner_of 362

gsi_pause 364
gsi_print_backtrace 366
gsi_reclaim_array 367
gsi_reclaim_attrs 368
gsi_reclaim_attrs_with_items 369
gsi_reclaim_item 370
gsi_reclaim_items 371
gsi_reclaim_registered_items 372
gsi_registration_of _handle 373
gsi_registration_of item 374
gsi_reset_option 375
gsi_return_attrs 377
gsi_return_message 378
gsi_return_timed_attrs 379
gsi_return_timed_values 380
gsi_return_values 381
gsi_rpc_call 382
gsi_rpc_call_with_count 384
gsi_rpc_declare_local 386
gsi_rpc_declare_remote 387

gsi_rpc_declare_remote_with_error_handler_and_user_data 390

xiii

gsi_rpc_return_error_values 393
gsi_rpc_return_values 395
gsi_rpc_start 397
gsi_rpc_start_with_count 398
gsi_run_loop 399
gsi_set_attr_by name 401
gsi_set_attr_count 402
gsi_set_attr_is_transient 404
gsi_set_attr name 405
gsi_set_attrs 407
gsi_set_class_name 409
gsi_set_class_qualifier 410
gsi_set _class_type 412

gsi_set _context limit 414

gsi_set context user _data 415
gsi_set_element_count 416
gsi_set_elements 417

gsi_set flt 420

gsi_set flt_array 421

gsi_set flt_list 423
gsi_set_handle 425
gsi_set_history 427
gsi_set_include_file_version 429
gsi_set int 430

gsi_set_int_array 431

gsi_set int_list 433
gsi_set_interval 434
gsi_set_item_append_flag 435
gsi_set_item_of attr 436

gsi_set item_of attr by name 437
gsi_set log 439

gsi_set log array 440
gsi_set_log_list 442

gsi_set_long 444

gsi_set name 445

gsi_set_option 446
gsi_set_pause_timeout 448
gsi_set _rpc_remote_return_exclude user_attrs 449
gsi_set_rpc_remote_return_include_system_attrs 450
gsi_set_rpc_remote_return_include_all_system_attrs_except 451
gsi_set_rpc_remote_return_value_kind 452
gsi_set_run_loop_timeout 454
gsi_set_status 455

gsi_set str 456

gsi_set_str_array 457
gsi_set_str_list 459
gsi_set_string_converson_style 461

Xiv

gsi_set sym 464

gsi_set sym_array 465

gsi_set sym_list 467
gsi_set_symbol_user_data 469
gsi_set_timestamp 470
gsi_set_type 471
gsi_set_unqualified_attr name 474
gsi_set update items_in_lists_and_arrays flag 475
gsi_set user data 476
gsi_set_usv 477
gsi_signal_error 478
gsi_signal_handler 479
gsi_simple_content_copy 480
gsi_start 481

gsi_status of 483
gsi_string_conversion_style 484
gsi_str_array_of 485
gsi_str_list of 487

gsi_str_of 489

gsi_sym_array of 491
gsi_sym_list_of 492

gsi_sym_of 493
gsi_symbol_name 494
gsi_symbol_user_data 495
gsi_timestamp_of 496
gsi_type of 497
gsi_unqualified_attr_name_of 498
gsi_unwatch_fd 499
gsi_unwatch_fd_for_writing 501
gsi_update_items_in_lists_and_arrays _flag 503
gsi_user_data_of 504
gsi_usv_length of() 505
gsi_usv_of 506
gsi_version_information 507
gsi_wakeup 508

gsi_watch_fd 509
gsi_watch_fd_for_writing 511
gsi_watchdog 513

Chapter 10 Preprocessor Flags and Runtime Options 515

Introduction 515

G2 Gateway C Preprocessor Flags 515
GSI_USE_NEW_SYMBOL_API 517
GSI_NON_C 517
GSI_USE_WIDE_STRING_API 518

XV

Chapter 11

XVi

Defining C Preprocessor Flags 518

G2 Gateway Runtime Options 519
GSI_NO_SIGNAL_HANDLERS 519
GSI_ONE_CYCLE 520
GSI_PROTECT_INNER_CALLS 521
GSI_STRING_CHECK 521
GSI_SUPPRESS_OUTPUT 522
GSI_TRACE_RUN_LOOP 522
GSI_TRACE_RUN_STATE 522
Setting and Resetting Runtime Options 522

Building and Running a G2 Gateway Bridge 525

Introduction 526
G2 Gateway Files 526

Compiling G2 Gateway on UNIX 527
Configuration Requirements 527
Compiling and Linking G2 Gateway Applications on UNIX Platforms
Running the Bridge 528

Compiling G2 Gateway on Windows 529
Configuration Requirements 530
Compiling and Linking G2 Gateway on Windows 530
Compiling and Linking G2 Gateway Applications on Windows

Platforms 532

Compiling and Linking a Windows Application 533
Compiling and Linking a Console Application 534
Running the Bridge 535

Command-Line Options and Arguments 535

cert 537

help 538

log 539

rgn1imt 540

rgn2imt 542

secure 544

tcpipexact 547

tcpport 548

Starting a G2 Gateway Bridge from within G2 553
Placement of the GSI Interface 554
Representing the Bridge Process Information 554

Stopping G2 Gateway from within G2 554

527

Partlll Appendixes 555

Appendix A Functions by Argument and Return Type 557
Introduction 557
Functions by Argument Type 557
Functions by Type of Return Value 573

Functions with No Arguments 580

Appendix B Constants 581

Introduction 581

Appendix C G2 Gateway Error Messages 585

Introduction 585

Appendix D G2 Gateway Data Types 595

Introduction 595

Data Types Supported by G2 Gateway 595
Floats 595
Integers 596
Long integers 596
Null 596
Logicals 596
Strings 596
Symbols 597
Sequence and Structure Types 600
Wide String Type 600

G2 Data Types and G2 Gateway Type Tags 601
G2 Gateway Data Types for RPC Arguments 604

Appendix E Limits and Ranges 609
Introduction 609
Limits on Contexts, Objects, Attributes, and Error Codes 610
Limits on G2 Data Types 611
Limits on Callback Functions 612
Limits on API Functions 612

Limits on Remote Procedure Calls 613

Xvii

Appendix F How G2 and G2 Gateway Exchange Data 615
Introduction 615
Setting an External Data Point and Updating a GSI Variable 616
Receiving Unsolicited Data from a G2 Gateway Bridge 617
Invoking a Local Function in a G2 Gateway Bridge from G2 618
Invoking G2 Procedures and Methods from a G2 Gateway Bridge 620
Exchanging Text Messages Between G2 and a G2 Gateway Bridge 621

Appendix G Upgrading G2 Gateway Applications 623
Introduction 623

Support of Earlier GSI Versions 624
GSI 4.1 Support Policy 624

New G2 Gateway 6.0 Features 624
New API Functions 625
New Runtime Options 625

Changes to G2 Gateway 6.0 626
Make File Changes 626
gsi_main.c Changes 626
gsi_misc.h Changes 626
Superseded Practices 626
32-bit and 64-bit Support for G2 Gateway 627

Previously Undocumented Changes in 5.0 627
Changes to API Functions in G2 Gateway 5.0 628

Upgrading from GSI 4.1 to G2 Gateway to 7.0 628
Upgrading from G2 Gateway 5.0t0 7.0 629

Glossary 631

Index 641

Xviii

Preface

Describes the G2 Gateway Bridge Developer’s Guide and the conventions that it
uses.

About this Guide xxi
Product Name xxi
Audience xxii

Organization xxii

A Note About the APl xxiv
Conventions xxiv

Related Documentation xxvi

Customer Support Services xxviii

About this Guide

This guide describes the G2 Gateway standard interface (GSI), which allows you
to create generic bridges between G2 and external systems. Gensym provides a
number of higher-level bridges between G2 and standard databases and
standards such as ActiveX, Java, CORBA, and OPC. If your application needs to
communicate with databases or standards, use one of these bridges instead of
G2 Gateway.

Product Name

In G2 5.0, the GSI product name changed to G2 Gateway. Within G2, however, no
such change has been made: grammar prompts and item names still refer to GSI,
rather than to G2 Gateway. Changing these references would caused existing
applications to fail.

Xix

This manual uses “G2 Gateway” to refer to the product as a whole, and it refers to
“GSI” when an internal component of it is described, such as a GSI interface.

Audience

This guide is intended for developers of G2 Gateway bridge applications, whom

it addresses throughout as “you”. It assumes that you have a working knowledge
of programming in the C language. It also assumes that you know how to create

and configure G2 objects such as classes, class instances, rules, and procedures.

Organization
This guide contains 12 chapters and six appendixes in four parts:
Title Description
Part I User’s Guide
1 G2 Gateway Solutions Describes how you can develop solutions
for Connectivity Problems to your communication problems, by
using G2 Gateway bridges, through which
G2 applications and dynamic external
processes can communicate with each
other.

2 Configuring the Describes how to create GSI interfaces,

G2 Knowledge Base GSl variables, and GSI message servers
that enable your G2 knowledge base to
communicate with a G2 Gateway bridge.

3 Preparing the Bridge User = Describes how to organize and code the

Code customized portion of the G2 Gateway
bridge.

4 Remote Procedure Calls Describes how a G2 Gateway bridge and a
G2 application can make remote
procedure calls to each other.

5 Error Handling Describes how G2 Gateway handles errors
by default, and how you can customize
error handling in your G2 Gateway
bridge.

6 Troubleshooting Describes how to identify problems in

Guidelines your G2 Gateway bridge user code.

XX

Organization

Title Description
Part II Reference
7 G2 Gateway Describes how G2 Gateway data
Data Structures structures store information that is useful
to your application, and how your G2
Gateway user code can access this
information.

8 Callback Functions Describes the callback functions that you
complete to implement your G2 Gateway
user code.

9 API Functions Describes the capabilities and syntax of
the API functions supported by
G2 Gateway.

10 Preprocessor Flags Describes C preprocessor macros and

and Runtime Options runtime options that you can use to
modify the behavior of your G2 Gateway
bridge.

G Upgrading G2 Gateway Describes how to upgrade existing GSI

Applications applications to G2 Gateway 6.0.
11 Building and Runninga G2 Describes how to compile, link, and run a
Gateway Bridge G2 Gateway bridge executable image, and
how to start and stop a G2 Gateway
bridge process from within a G2
procedure.
Part I11 Appendixes
A Functions by Argument Lists the API and callback functions
and Return Type provided by G2 Gateway, grouped by the
data types of their arguments and their
return values.

B Constants Lists symbolic constants defined in G2
Gateway header files.

C G2 Gateway Lists and describes the standard error

Error Messages messages returned by G2 Gateway.
D G2 Gateway Data Types Describes the data types defined for use in

G2 Gateway user code.

XXi

Title Description

|t

les|

Limits and Ranges Describes limits and ranges applicable in

G2 Gateway.
How G2 and G2 Gateway Provides a brief summary of techniques
Exchange Data for exchanging data between a G2

Gateway bridge and a G2 KB.

A Note About the API

The G2 Gateway AP, as described in this guide, is not expected to change
significantly in future releases, but exceptions may occur. A detailed description
of any changes will accompany the release that includes them.

Therefore, it is essential that you use G2 Gateway exclusively through its AP, as
described in this guide. If you bypass the API, you cannot rely on your code to
work in the future, since G2 Gateway may change, or in the present, because the
code may not correctly manage the internal operations of G2 Gateway.

If G2 Gateway does not seem to provide the capabilities that you need, contact
Gensym Customer Support at 1-781-265-7301 (Americas) or +31-71-5682622
(EMEA) for further information.

Conventions

xXii

This guide uses the following typographic conventions and conventions for
defining system procedures.

Typographic

Convention Examples

Description

g2-window, g2-window-1,
ws-top-level, sys-mod

User-defined and system-defined
G2 class names, instance names,
workspace names, and

module names

history-keeping-spec, temperature

User-defined and system-defined
G2 attribute names

true, 1.234, ok, “Burlington, MA”

G2 attribute values and values
specified or viewed through
dialogs

Convention Examples

Conventions

Description

Main Menu > Start
KB Workspace > New Object
create subworkspace

Start Procedure

G2 menu choices and button labels

conclude that the x of y ...

Text of G2 procedures, methods,
functions, formulas, and
expressions

new-argument

User-specified values in
syntax descriptions

text-string

Return values of G2 procedures
and methods in syntax
descriptions

File Name, OK, Apply, Cancel,
General, Edit Scroll Area

GUIDE and native dialog fields,
button labels, tabs, and titles

File > Save GMS and native menu choices
Properties
workspace Glossary terms

c:\Program Files\Gensym\

Windows pathnames

/usr/gensym/qg2/kbs

UNIX pathnames

spreadsh. kb

File names

g2 -kb top.kb

Operating system commands

public void main()
gsi start

Java, C and all other external code

Note Syntax conventions are fully described in the G2 Reference Manual.

xXiii

Procedure Signatures

A procedure signature is a complete syntactic summary of a procedure or
method. A procedure signature shows values supplied by the user in italics, and
the value (if any) returned by the procedure underlined. Each value is followed by
its type:

g2-clone-and-transfer-objects
(list: class item-list, to-workspace: class kb-workspace,
delta-x: integer, delta-y: integer)
-> transferred-items: g2-list

Related Documentation

G2 Core Technology

® G2 Bundle Release Notes

* Getting Started with G2 Tutorials

® G2 Reference Manual

® G2 Language Reference Card

* G2 Developer’s Guide

® G2 System Procedures Reference Manual
® G2 System Procedures Reference Card

® G2 Class Reference Manual

* Telewindows User’s Guide

* G2 Gateway Bridge Developer’s Guide

G2 Utilities

® G2 ProTools User’s Guide

® G2 Foundation Resources User’s Guide

* G2 Menu System User’s Guide

® G2 XL Spreadsheet User’s Guide

® G2 Dynamic Displays User’s Guide

® G2 Developer’s Interface User’s Guide

® G2 OnLine Documentation Developer’s Guide

® G2 OnLine Documentation User’s Guide

xXxXiv

Related Documentation

G2 GUIDE User’s Guide
G2 GUIDE/UIL Procedures Reference Manual

G2 Developers’ Utilities

Business Process Management System Users” Guide
Business Rules Management System User’s Guide
G2 Reporting Engine User’s Guide

G2 Web User’s Guide

G2 Event and Data Processing User’s Guide

G2 Run-Time Library User’s Guide

G2 Event Manager User’s Guide

G2 Dialog Utility User’s Guide

G2 Data Source Manager User’s Guide

G2 Data Point Manager User’s Guide

G2 Engineering Unit Conversion User’s Guide
G2 Error Handling Foundation User’s Guide

G2 Relation Browser User’s Guide

Bridges and External Systems

G2 ActiveXLink User’s Guide
G2 CORBALink User’s Guide
G2 Database Bridge User’s Guide
G2-ODBC Bridge Release Notes
G2-Oracle Bridge Release Notes
G2-Sybase Bridge Release Notes
G2 [Mail Bridge User’s Guide
G2 Java Socket Manager User’s Guide
G2 [MSLink User’s Guide

G2 OPCLink User’s Guide

G2 PI Bridge User’s Guide
G2-SNMP Bridge User’s Guide

XXV

®* (G2 CORBALink User’s Guide
®* G2 WebLink User’s Guide

G2 JavaLink

* G2 JavaLink User’s Guide

* G2 DownloadInterfaces User’s Guide
® G2 Bean Builder User’s Guide

G2 Diagnostic Assistant
* GDA User’s Guide

® GDA Reference Manual

®* GDA API Reference

Customer Support Services

You can obtain help with this or any Gensym product from Gensym Customer
Support. Help is available online, by telephone, by fax, and by email.

To obtain customer support online:
2 Access G2 HelpLink at www. gensym-support.com

You will be asked to log in to an existing account or create a new account if
necessary. G2 HelpLink allows you to:

® Register your question with Customer Support by creating an Issue.
* Query, link to, and review existing issues.

® Share issues with other users in your group.

* Query for Bugs, Suggestions, and Resolutions.

To obtain customer support by telephone, fax, or email:

2> Use the following numbers and addresses:

Americas Europe, Middle-East, Africa (EMEA)
Phone (781) 265-7301 +31-71-5682622
Fax (781) 265-7255 +31-71-5682621
Email service@gensym.com service-ema@gensym.com

XXVi

Customer Support Services

XXVii

XXViii

User’s Guide

Chapter 1: G2 Gateway Solutions for Connectivity Problems

Describes how you can develop solutions to your communication problems, by using G2
Gateway bridges, through which G2 applications and dynamic external processes can
communicate with each other.

Chapter 2: Configuring the G2 Knowledge Base

Describes how to create GSI Interfaces, GSI variables, and GSI message servers that enable
your G2 knowledge base to communicate with a G2 Gateway bridge.

Chapter 3: Preparing the Bridge User Code

Describes how to organize and code the customized portion of the G2 Gateway bridge.

Chapter 4: Remote Procedure Calls

Describes how a G2 Gateway bridge and a G2 application can make remote procedure calls to
each other.

Chapter 5: Error Handling

Describes how G2 Gateway handles errors by default, and how you can customize error
handling in your G2 Gateway bridge.

Chapter 6: Troubleshooting Guidelines

Describes how to identify problems in your G2 Gateway bridge user code.

G2 Gateway Solutions
for Connectivity Problems

Describes how you can develop solutions to your communication problems, by
using G2 Gateway bridges, through which G2 applications and dynamic external
processes can communicate with each other.

Introduction 3

Capabilities of G2 Gateway Bridges 4
Developing G2 Gateway Applications 6
Deploying G2 Gateway Bridges 12
Starting G2 Gateway Bridge Processes 13
How a G2 Gateway Bridge Works 13

gensym.

Introduction

This manual describes how to use Gensym’s G2 Gateway to develop interfaces, or
bridges, that support two-way communication between dynamic external
processes and G2 applications.

Through a G2 Gateway bridge to an external system, a G2 application can quickly
obtain real-time data that it needs to make intelligent control decisions in a time-
critical processing environment. The G2 application can also update the state of
an external system — for example, by writing or updating a record in a database,
or by controlling a PLC.

A G2 Gateway bridge process and a G2 process run concurrently, enabling the G2
application to continue to perform its tasks while the G2 Gateway bridge
manages the communication between G2 and an external system.

G2 Gateway bridges enable G2 KBs to communicate with a wide variety of
external systems, such as:

* Database management systems (DBMSs)

® Programmable logic controllers (PLCs)

® Supervisory control and data-acquisition (SCADA) systems
* Distributed control systems (DCSs)

* C/C++ programs

* Non-G2 operator consoles or displays

* External simulation software

G2 Gateway bridges can communicate across networks that use the TCP/IP
protocol. Gensym’s Intelligent Communications Protocol (ICP), which is built into
G2 Gateway, handles details of network communication automatically, enabling
you to develop distributed systems among heterogeneous platforms without
having detailed knowledge of protocols or of network software in general.

Gensym and its Solution Partners provide bridge products implemented with G2
Gateway that support communication between G2 and a wide range of external
systems, including many common databases and programmable logic controllers.
Call your Gensym account representative for information about Gensym’s bridge
products.

Capabilities of G2 Gateway Bridges

G2 Gateway is shipped with C code libraries of high-level functions that enable a
G2 application and a G2 Gateway bridge to provide real-time data service for G2
variables, make remote procedure calls into each other, and exchange copies of
G2 objects.

Providing Data Service for G2 Variables

G2 Gateway can act as a high-performance data server for variables in G2.
Through a G2 Gateway bridge, a G2 application can both send data values to and
receive values from an external system. The data can be numbers, symbols, truth
values, text messages, arrays, or lists.

The G2 application can actively solicit data from an external system, and an
external system can send data to G2 without having received a request from G2
for the data.

Capabilities of G2 Gateway Bridges

Invoking Remote Procedures

A G2 KB can invoke user-written functions in a G2 Gateway bridge, and a G2
Gateway procedure can invoke G2 methods and procedures. When a remote
procedure is invoked by G2, G2 continues to perform its other tasks while the
procedure call returns values and completes.

Through remote procedure calls, a G2 application and a G2 Gateway bridge can
exchange data values, references to G2 objects, or copies of G2 objects as
explained in the following section.

Passing Objects

A G2 application typically stores important real-time data in attributes of G2
objects. Through remote procedure calls, a G2 application and a G2 Gateway
bridge can exchange copies of these data-rich objects. A G2 application and a G2
Gateway bridge can exchange copies of any G2 object that inherits from the G2
item class.

A G2 application can pass a copy of a G2 object to the bridge by invoking a G2
Gateway bridge function as a remote procedure. G2 specifies the object to be
passed as an argument of the remote procedure call.

When a G2 Gateway bridge receives a copy of the G2 object, it creates its own data
structures to represent the object. The G2 Gateway bridge can read from and
write to the data contained in these data structures. The G2 Gateway bridge can
return these data structures to G2 through remote procedure calls to G2
procedures. G2 creates objects of existing G2 classes based on the data structures
that it receives from the G2 Gateway bridge.

Other Support for Dynamic Real-Time Processing

G2 Gateway provides other features in support of dynamic real-time processing,
including;:
* Time-stamping of data exchanged between a G2 application and a G2

Gateway bridge.

* Exchange of text messages with the external system: a G2 application can send
text messages to the G2 Gateway bridge, and the G2 Gateway bridge can post
messages on the G2 Message Board.

Developing G2 Gateway Applications

To implement a solution to your connectivity problems, you create a G2 Gateway
application consisting of one or more G2 Gateway bridges, and one or more G2
KBs. The following figure illustrates the possible components of a G2 Gateway

application.
r—-—-——---------- - - - L
| G2 Gateway Application |
| —(Bridge) — Databases
I I
. I Network
ICP — e ; systems
G2 [G2
Objects (TCP/IP) » ! Control
I 1B e I systems
I I
Bridge L | C/CH
() | | programs
G2 ICP I
G2 | Object
165 (rep/1p) B || End user
ridge .
| | displays
I I
! Bridge | | Other
I | | systems

As the figure above illustrates:

® Each G2 KB can be connected to more than one G2 Gateway bridge process.
Each G2 KB contains objects that support communication with the bridge
processes.

* FEach G2 Gateway bridge can be connected to more than one G2 KB (as many
as 50 KBs), and to more than one external system.

Steps for Developing a G2 Gateway Application

To develop a G2 Gateway application, you must:

® Create and configure G2 Gateway objects in each G2 KB that will
communicate with a G2 Gateway bridge process.

® Create one or more executable G2 Gateway bridges.

Developing G2 Gateway Applications

Preparing a G2 KB to Communicate with a
G2 Gateway Bridge

The following figure illustrates the G2 objects that you create and configure in a
G2 KB to enable it to communicate with a G2 Gateway bridge:

G2 Objects that Support Communication with a G2 Gateway Bridge

G2 Knowledge Base G2 Gateway Bridge
G2 GSl interface configures a User code responds
msz/| single connection between to requests from
G2 and the bridge. G2 to:
A MY-GS |-V ARIABLE-CLASS 7 Gty velies
for GSI variables
@ - from external
GSI-VAR-1 data points.
P o Write values of
GSl-VAR-2 GSI variables to
external data
points.
declare remote Bridg? can send
my_remote_gsi_procedure(integer, text) unsolicited updates
= (integer) to GSI variables.
=1 i 9
= User-written local
= | WY-PROCEDURE-1 .
function, invoked by
G2 procedure.
= |- User code calls
= MY-PROCEDURE-2 G2 procedure.
A MY-MESSAGE-SERVER-CLASS - -
— Bridge receives text
P from G2.
MY-MESSAGE-SERVER

To prepare the G2 KB for communication with a G2 Gateway bridge:

1

Create a GSI interface to define operating characteristics of each connection
between a G2 KB and a G2 Gateway bridge process. A GSI interface is required
for any communication between a G2 KB and a G2 Gateway bridge process.

Each GSI interface must be an instance of the standard class gsi-interface, or of
a subclass of this class. You create a GSI interface using the standard G2 menu
for creating new objects. You then edit attributes of the GSI interface to
identify the G2 Gateway process with which G2 will communicate over this
connection and to define operating characteristics of the connection.

A GSl interface is created automatically when a G2 Gateway bridge initiates a
connection to G2 by calling the API function gsi initiate connection().
For information about this function, see gsi_initiate connection.

Create a GSI variable to represent each data point in an external system that
your G2 KB needs to read from or write to. These variables will receive data
service from the G2 Gateway bridge.

To create GSI variables, you first define an object class that includes the G2
mixin class gsi-data-service as a direct superior class. You then create
instances of your GSI variable class to represent separate data points in the
external system.

Create G2 procedures that the G2 Gateway bridge can call as remote
procedures. You create these procedures using the standard G2 menu for
creating new object definitions.

In your G2 Gateway user code, call gsi_rpc declare remote () to declare
each G2 procedure that your G2 Gateway bridge process needs to invoke as a
remote procedure.

To support remote procedure calls from G2 to the G2 Gateway bridge, create
one or more local functions in your G2 Gateway user code.

Through calls to G2 Gateway procedures, your G2 KB can send copies of G2
objects, references to G2 objects, and data values to the G2 Gateway bridge.
The bridge can return objects, references, and values to G2 through remote
procedure calls.

In your G2 Gateway user code, invoke gsi_rpc declare local () to declare
each local function that G2 needs to invoke as a remote procedure.

In your G2 KB, create a remote procedure declaration for each G2 Gateway
local function that your G2 KB needs to invoke as a remote procedure. You
create remote procedure declarations using the standard G2 menu for creating
new object definitions.

For information about how to make remote procedure calls, from G2 to G2
Gateway and from G2 Gateway to G2, see Remote Procedure Calls.

Developing G2 Gateway Applications

5 Create a GSI Message Server, to enable your G2 KB to send text messages to
an external system.

To create a GSI Message Server, you first define a new object class that
includes the G2 mixin class gsi-message-service as a direct superior class.
You then create an instance of your message server class. To send a text
message to the G2 Gateway bridge, a G2 KB runs an Inform action on the
message server. In your G2 Gateway bridge process, you must complete the
callback gsi receive message () to receive the message from G2 and send it
to the external system.

The steps that you follow to create GSI interfaces, GSI variables, and GSI
message servers are described in Configuring the G2 Knowledge Base. For
information about gsi_receive message (), see gsi_receive message.

Building a G2 Gateway Bridge Executable

You build the executable image of your G2 Gateway bridge by compiling and
linking your G2 Gateway user code written in the C or C++ programming
language with G2 Gateway libraries, and, optionally, with libraries of API
functions provided with external systems.

The following figure illustrates the components that you build into the executable
image of a G2 Gateway bridge process:

Components of a G2 Gateway Bridge Process

G2 Process
G2 Gateway Bridge Process
Knowledge
Base 2 External
Communications link Gateway User system
Objects libraries code API
configured libraries
to support
G2 Gateway
External
System

On Windows platforms, the G2 Bundle ships with two G2 Gateway directories,
one called gsi - intc, which contains the GSI libraries and examples compiled
with the Intel compiler, and the other called gsi -msvc, which contains the GSI

10

libraries and examples compiled with Microsoft Visual Studio. The components
of the executable image are:

Note

G2 Gateway libraries of network-oriented application programmer interface
(API) functions that can perform the following tasks for your bridge:

Establishing and maintaining the communications link to the G2 process,
automatically managing all communications across the link.

Supporting the G2 Gateway main processing loop, in which the G2
Gateway bridge process responds to network activity on connections to
G2 by invoking appropriate user code functions.

Receiving requests to send values to data points in the external system
from the G2 knowledge base and calling appropriate user code functions
to handle the requests.

Sending data to G2 at the request of the G2 Gateway user code.

User code, which processes G2 requests and reacts to events in external
systems. User code includes:

gsi_main.h: This is a source code header file provided by Gensym that
you must include in all your user code files. Do not modify this header
file.

gsi_main.c Thisis a Csource code file provided by Gensym that contains
a sample of the main () routine from which G2 Gateway is started. Modify
this file or replace it to suit your application.

(on Windows) gsimmain.c. This is a C source code file provided by
Gensym that performs special initializations required only on Windows
platforms when building a windows application, and then calls the

main () function that you define in the gsi main. cfile. The file gsimmain.
cis not needed when building a console application.

On Windows platforms, you must compile and link the file gsimmain. cwith
your G2 Gateway application. When building a windows application,
gsimmain.c performs special initializations required only on Windows
platforms, and then calls the main () function that you define in the gsi main.
cfile. You do not need to make any changes to gsimmain.c. The file
gsimmain.cis not needed when building a console application on Windows.

One or more source files of callback functions. G2 Gateway invokes each
callback function automatically in response to a particular network event
on a connection between the G2 Gateway bridge and G2, such as the
activation of the connection or a request from G2 for a new value for a
variable.

Gensym provides a source file, skeleton.c, of uncompleted callback
functions. You complete the code of the callback functions that you need

Developing G2 Gateway Applications

for your application, and leave the other callback functions in their
uncompleted form.

Within the callback functions, you include code that implements your G2
Gateway bridge’s response to the network event. Callback functions can
include calls to G2 Gateway API functions, to API functions of an external
system, to user written procedures, or to any other procedures or
functions available to a C or C++ program.

- User-written functions that G2 can invoke through remote procedure
calls.

External system application programmer interface libraries, which provide a
programmable interface between the G2 Gateway bridge and the external
system.

To build the G2 Gateway bridge executable image:

1

Complete callback functions in the skeleton. cfile provided with G2
Gateway.

In order to link properly, your G2 Gateway bridge code must include at least
the stub version of every callback function in skeleton.c. The G2 Gateway
functions and the G2 Gateway data structures that callback functions can
invoke and access are described in Part II, Reference, of this manual.

Modify or replace the main () routine in the gsi main.c source code file as
needed for the purposes of your G2 Gateway bridge.

The main () function initializes G2 Gateway data structures and passes control
to the G2 Gateway bridge’s own processing loop.

On Windows, you can edit the main () and WinMain () procedures before
compiling and linking gsi main.cand gsimmain.c. Use this option if your
application includes Windows code, which you place in winMain ().

Write and declare G2 Gateway functions that G2 can call as remote
procedures.

Compile your user code and link it with the G2 Gateway libraries and with
any libraries of external API functions required by your bridge.

These steps are described in detail in Preparing the Bridge User Code and in
Remote Procedure Calls.

Building and Running a G2 Gateway Bridge describes the requirements for
compiling and linking the executable image on each supported platform.

11

Deploying G2 Gateway Bridges

The following figure illustrates several ways that you can deploy G2 Gateway
bridges and the G2 KBs with which they communicate:

Deploying G2 Gateway Bridge Processes

Computer Computer
G2 - >_> External system
Computer
G2 <_> > External system
Computer Computer
Computer
G

As the figure above illustrates:

* A G2 process and the G2 Gateway bridge with which it communicates can run
on the same computer or on different computers.

* A G2 Gateway bridge can be used to exchange data with a G2 process alone,
or with both a G2 process and an external system. A G2 Gateway bridge that
is not connected to an external system can provide data for G2 variables, or
perform a special computation at the request of the G2 KB.

12

Starting G2 Gateway Bridge Processes

Starting G2 Gateway Bridge Processes

In both of the previous cases, G2 Gateway bridge runs as a separate process,
distinct from any G2 process. You can start a G2 Gateway bridge process from
within a G2 process, or independently of any G2 process.

For information about how to start a G2 Gateway bridge process from G2, see
Starting a G2 Gateway Bridge from within G2.

How a G2 Gateway Bridge Works

After you start a G2 Gateway bridge process, the bridge process initializes both its
private data structures and the application-defined data structures.

The G2 Gateway bridge process then waits for one or more G2 processes to
initiate a connection to it. The G2 Gateway bridge process can itself initiate a
connection to a G2 KB, calling the API function gsi_initiate connection().

Procedural Flow of a G2 Gateway Bridge Process

The main () function in your G2 Gateway bridge user code must call the G2
Gateway API function gsi_start () before it calls any other API function. gsi
start () takes as input the argc and argv arguments that were passed to the
main () function of your G2 Gateway program and uses these arguments to set up
listeners as specified in the command line.

The gsi_start () function in turn calls:

* gsi set up(),acallback that is useful for performing tasks that are required
only once during the lifetime of the G2 Gateway bridge process, such as
installing customized error handlers, setting or resetting initial G2 Gateway
run-time options, declaring local functions in the user code as remote
procedures, and allocating arrays of G2 Gateway data structures.

®* gsi get tcp port(),a callback that can provide a default TCP/IP port
number that G2 Gateway will listen on for connections from a G2 process, if
no port number or a port number of 0 is specified on the command line used
to start the G2 Gateway bridge process.

13

14

gsi_run loop(), an API function that provides the main processing loop of
the G2 Gateway bridge process. When gsi_run loop () is executing, G2
Gateway does the following:

- Makes any new connections requested by G2.

- Responds to all outstanding messages received from G2 over each
currently active connection. In response to these messages, G2 Gateway
can invoke local functions called by G2 as remote procedures, or invoke
callback functions in response to particular network events or requests
from G2. For information about how to use gsi run loop(), see
Processing Events through ¢si_run_loop().

Run-Time Modes of Bridge Operation

To provide you with greater flexibility in the design of your user code, G2
Gateway supports two run-time modes of bridge operation: continuous mode
and one-cycle mode. The modes affect the behavior of gsi_run Ioop() and the
procedural flow of the G2 Gateway bridge process:

In continuous mode (the default mode), gsi run Ioop () loops repeatedly as
long as no fatal error occurs. (For a list of G2 Gateway fatal errors see
Appendix C, G2 Gateway Error Messages.) Your user code does not call gsi
run_loop () explicitly. At the end of each loop, gsi run loop() calls gsi
pause (), which causes the bridge process to enter an interruptible sleep. The
bridge awakens when it detects network activity to which it must respond.

Continuous mode is the better mode for bridges designed to obtain data from
external systems by polling them actively.

In one-cycle mode, gsi_run loop() executes once automatically, and then
exits. To reenter gsi run loop (), you must include an explicit call to gsi
run_loop () in your G2 Gateway user code. Running the bridge in one-cycle
mode enables you to pass control from gsi run Ioop () to other functions
within your G2 Gateway bridge process, as required by your application.

One-cycle mode is the better mode for bridges designed to respond to
network activity on connections to external systems, rather than those
designed to poll the external systems actively.

Providing Data Service for GSI Variables in a G2 KB

A G2 Gateway bridge can provide data service for G2 variables in the current KB
of a G2 process. G2 variables that receive data service from a G2 Gateway bridge
process are called GSI variables.

How a G2 Gateway Bridge Works

GSl variables in a G2 KB can receive values from a G2 Gateway bridge through
either solicited or unsolicited data service, as follows:

® Solicited data service occurs when G2 requests the G2 Gateway bridge to
produce (or to obtain from the external system) data at regular time intervals.
G2 passes this time interval to the G2 Gateway bridge before data service
begins. If the G2 Gateway bridge must, in turn, request that data from the
external system, it does so at the same time interval.

The G2 Gateway bridge can also provide solicited data to G2 on demand —
for example, when G2 requests an updated value for a particular GSI variable.

* Unsolicited data service occurs when G2 receives data from the G2 Gateway
bridge that it has not requested. A G2 Gateway bridge process can obtain
unsolicited data from an external system by polling the external system (in
continuous mode), or by responding to messages sent to it by the external
system (in one-cycle mode). The G2 Gateway bridge then transfers the data
to G2.

Each GSI variable references a GSI interface, which identifies a single network
connection to a G2 Gateway bridge process and records the status of that
connection. See Configuring the G2 Knowledge Base, for information about how
to create and configure GSI variables and GSI interfaces.

Setting Data Values in an External System

You can use the G2 set action to assign values to data points in an external
system. You run the set action on a GSI variable, which causes G2 to send the
value specified in the set action to the G2 Gateway bridge. Your bridge in turn
sets a particular data point in the external system to the value that it receives from
G2. The G2 Gateway bridge maintains a mapping between the GSI variable in the
G2 KB and a data point in the external device, application, or data-processing
system.

When the G2 KB performs the set action on a GSI variable, G2 sends the specified
value to the G2 Gateway bridge by means of the specified GSI interface. When the
G2 Gateway bridge receives the value, it calls the gsi_set data () callback
function in the user code of the G2 Gateway bridge. You must include code in this
callback to send the communicated value to the appropriate bridge data structure
or to the external system.

To echo that value back to the GSI variable in G2, you can include a call to the API
function gsi_return values () in the gsi set data () callback.

15

16

Sending Text Values to and from the G2 Gateway
Bridge

A G2 KB can pass text messages to an external system through a G2 Gateway
bridge process. To do this, in the G2 KB you define a user-defined class that must
inherit from the standard G2 mixin class gsi-message-service. Your G2 KB sends
the text by running an inform action on an instance of this user-defined class. In
your G2 Gateway bridge process, you must complete the callback gsi receive
message (), so that it responds to the message from G2 as required by your
application. For more information about how a G2 KB can send text messages to
an external system, see Creating and Configuring GSI Message Servers.

To send a text message to G2, your G2 Gateway user code can call the API
function gsi_return message (), which prints a message on the G2 message
board. For information about how to do this, see gsi return message.

Making and Receiving Remote Procedure Calls

Using the remote procedure call (RPC) mechanism, a procedure in a G2 KB can
directly invoke a user-written function in a G2 Gateway bridge process. G2 can
send simple data values, copies of G2 objects, or references to G2 objects to the G2
Gateway bridge process, through remote procedure calls to user-written G2
Gateway functions.

Similarly, a user-written function in a running G2 Gateway bridge can directly
invoke a procedure in the current KB of a running G2 process.

For more information about how a G2 Gateway bridge and G2 can communicate
through remote procedure calls, see Remote Procedure Calls.

Configuring the
G2 Knowledge Base

Describes how to create GSI Interfaces, GSI variables, and GSI message servers
that enable your G2 knowledge base to communicate with a G2 Gateway bridge.

Introduction 17

Configuring Connections between G2 and G2 Gateway 18
Configuring GSI Variables in the KB 40

Creating and Configuring GSI Message Servers 46

gensym.

Introduction

This chapter describes how to:

* Configure a connection between the G2 knowledge base and a G2 Gateway
bridge. To do this, you create a GSI interface in the G2 knowledge base.

® Create GSI variables that your G2 knowledge base uses to write to and read
from data points in an external system. You create GSI variables as instances
of a GSI variable class, which you must define.

® Create a GSI Message Server in the G2 knowledge base, and use it to send text
messages to a G2 Gateway bridge. To send the messages, you run the G2
inform action on the GSI Message Server.

For information about how to prepare your G2 knowledge base to communicate
with a G2 Gateway bridge through remote procedure calls, see Remote
Procedure Calls.

17

Configuring Connections between G2 and
G2 Gateway

You must create and configure a GSI interface for each connection between a G2
knowledge base and a G2 Gateway bridge. You edit attributes of the GSI interface
to configure one connection between G2 and G2 Gateway.

A GSl interface serves the following purposes:

* To identify a G2 Gateway bridge with which this G2 process will attempt to
establish a network connection.

* To specify whether G2 or the G2 Gateway bridge determines when data is
passed from the bridge to G2.

* To indicate whether the G2 Gateway bridge will receive unsolicited data from
the external system.

* To designate as many as six user-defined attributes of each class of GSI
variables as the identifying attributes of that class. The values of a GSI
variable’s identifying attributes must distinguish it from all other variables in
the KB. The identifying attributes of a GSI variable provide a unique
identification for the variable, which G2 Gateway needs in order to map it to a
data point in an external system.

* To contain a status value for a particular connection between this G2 and the
G2 Gateway bridge. This status reflects the condition of the connection to the
G2 Gateway bridge.

After a network connection has been established between a G2 process and a
G2 Gateway bridge across a particular GSI interface, the G2 knowledge base
can consult that GSI interface for the status of that connection.

A GSI interface must be activated in order to support a connection between the
G2 process and a G2 Gateway bridge. When the GSI interface is activated, G2
attempts to make a network connection with the specified G2 Gateway bridge.
When the GSI interface is deactivated, G2 breaks the connection (if one still exists)
between itself and the G2 Gateway bridge. For information about how to activate
and deactivate a GSI interface, see Activating and Deactivating a GSI Interface.

A GSl interface can reside on any kb-workspace in the G2 knowledge base. A GSI
interface can be an attribute of another G2 object.

Number of GSI Interfaces Required

A G2 knowledge base must contain at least one GSI interface for each G2 Gateway
bridge with which it is communicating.

A G2 knowledge base can also communicate with the same G2 Gateway bridge
through more than one GSI interface.

18

Note

Configuring Connections between G2 and G2 Gateway

Using more than one GSI interface might be necessary when a G2 Gateway bridge
provides data service for the G2’s variables, but the bridge obtains data for some
of the variables in a solicited manner and for others in an unsolicited manner.
Using more than one GSI interface might also be necessary when the same G2
Gateway bridge provides both data service for a G2’s variables and functions that
the G2 can invoke through remote procedure calls.

Variables that require G2 Gateway data service, items that require GSI message
service, and the knowledge base’s executable items can use the same named GSI
interface to refer to the same G2 Gateway bridge.

Creating a GSlI Interface

A GSI interface is an instance either of the G2 standard gsi-interface class or of a
user-defined subclass of the gsi-interface class.

To create and configure a GSl interface:
1 Create an instance of gsi-interface by selecting:

KB Workspace > New Object > network-interface > gsi-interface
(or a subclass of gsi-interface)

2 Open the attribute table of the GSI interface for editing by selecting;:

gsi interface > table

Setting Attributes of a GSI Interface

The following table summarizes the attributes of a GSI interface that you edit to
configure a connection between a G2 knowledge base and a G2 Gateway bridge.

GSI Interface Attributes

Attribute Description

names One or more unique names for the object.
Allowable values: Any valid object name (symbol).
Default value: none

Notes: Every GSI variable and Message Server must
reference one of the names listed in the names
attribute of a GSI interface.

19

20

GSI Interface Attributes

Attribute

Description

gsi-connection-
configuration

Allowable values:

Default value:

Notes:

external-system-has-
a-scheduler

Allowable values:

Default value:

Notes:

Specifies the communications protocol and
location of the G2 Gateway bridge process.

tcp-ip host "hostname" port-number tcp-ip-port-
number secure {yes | no}

none

See Gsi-Connection-Configuration Attribute.

Specifies whether G2 or the G2 Gateway bridge
determines when data is returned to G2.

yes: G2 assumes that the G2 Gateway user code
handles the return of data to G2, without
explicit requests from G2.

no: G2 Gateway continuously reads a queue of
requests for data from G2.

no

See External-System-Has-a-Scheduler Attribute.

Configuring Connections between G2 and G2 Gateway

GSI Interface Attributes

Attribute Description

poll-external-system- Determines whether the G2 Gateway bridge

for-data receives unsolicited data from the external
system by executing the callback function gsi_
92 poll () every cycle.

Allowable values: yes: The G2 Gateway bridge calls gsi g2
poll () every cycle.

no: The G2 Gateway bridge does not call gsi_
g2 poll().

Default value: no

This is the recommended setting.

Notes: You must set this attribute to yes if you want the
bridge to receive unsolicited data. For more
information, see Poll-External-System-for-Data

Attribute.
interval-to-poll- Controls the polling interval when the poll-
external-system external-system-for-data attribute is set to yes.

Allowable values: Time interval from 1 second to G2’'s maximum
allowable time interval

Specify the time interval in the form:

integer {second[s] | minute[s] | hour([s] |
day[s] | week[s] }

use default (equivalent to 1 second)

Default value: use default

21

22

GSI Interface Attributes

Attribute

Description

grouping-
specification

Allowable values:

Default value:

Notes:

identifying-attributes

Allowable values:

Default value:

Notes:

(Optional) Enables you to group requests for
data service using one or more of the identifying
attributes of a variable.

group requests by attribute [, attribute]...
no grouping

no grouping

If this attribute specifies group requests by an
attribute or attributes, G2 uses a single message
to request data service for all GSI variables that
have the same values for the specified
attribute(s). If more than 21 GSI variables have
the same values for the specified attributes, G2
requests data service for GSI variables in
separate groups of 21. You can specify any
identifying attribute or attributes of a GSI
variable, including class-qualified attributes.

If this attribute specifies no grouping, G2 does
nothing to group requests for data service for
GSI variables.

List of names of attributes whose values
together uniquely identify each GSI variable
that receives GSI data service through this
GSI Interface.

attribute [, attribute] ...
none

none

You can specify class-qualified attribute names
in this attribute.

See the section Identifying-Attributes Attribute.

Configuring Connections between G2 and G2 Gateway

GSI Interface Attributes

Attribute

Description

remote-process-
initialization-string

Allowable values:
Default value:

Notes:

String passed from G2 to the gsi_initialize
context () function in the G2 Gateway bridge
user code, when G2 directs the G2 Gateway
bridge to initialize itself.

"series-of-gensym-character-set-characters"

(empty string)
The maximum length of this string is 65,535

characters.

See the section Remote-Process-Initialization-
String Attribute.

23

24

GSI Interface Attributes

Attribute

Description

interface-timeout-
period

Allowable values:

Default value:

Notes:

Specifies how long G2 waits for a response after
sending a request to the G2 Gateway bridge.

The following three timeout intervals apply to
G2-to-G2 and GSI interfaces:

1 Establish a connection.
2 Initialize the connection.
3 Wait for a response.

This attribute specifies the timeout period for
the first and third intervals. The interface-
initialization-timeout-period attribute applies to
the second interval.

In addition, if the poll-external-system-for-data
attribute is set to yes, this attribute specifies how
long the G2 Gateway bridge waits for calls to
gsi g2 poll () to complete. If the call to gsi
92 poll () does not complete within the
specified interval, the bridge sets the gsi-
interface-status value of this GSI interface to -1.
If the poll-external-system-for-data attribute is
set to no, this attribute has no meaning after the
connection is established.

If you specify use default for this attribute, G2
uses the default time interval of 10 seconds.

Time interval from 1 second to G2’s maximum
allowable time interval

Specify the time interval in the form:

integer {second[s] | minute[s] | hour([s] |
day[s] | week[s] }

use default (equivalent to 10 seconds)
use default

For more information, see Interface-Timeout-
Period Attribute.

Configuring Connections between G2 and G2 Gateway

GSI Interface Attributes

Attribute

Description

interface-
initialization-timeout-
period

Allowable values:

Default value:

Specifies how long G2 waits to initialize a
connection using Gensym (ICP) protocols.

The following three timeout intervals apply to
G2-to-G2 and GSI interfaces:

1 Establish a connection.
2 Initialize the connection.
3 Wait for a response.

This attribute applies to the second interval. The
interface-timeout-period attribute specifies the
timeout period for the first and third intervals.

Possible values are:

® An integer specifying some number of
seconds

* unlimited: the initialization interval never
times out

¢ use default: the interface-initialization-
timeout-period is the same as the interface-
timeout-period

unlimited, which specifies that the initialization
interval never times out

25

GSI Interface Attributes

Attribute

Description

gsi-interface-status

Allowable values:

Default value:

Notes:

gsi-interface-is-
secure

Allowable values:
Default value:

Notes:

26

Status of the connection between this G2 and the
G2 Gateway bridge specified in this item’s Gsi-
connection-configuration attribute. This attribute
is automatically updated by G2 after each
transmission between G2 and the G2 Gateway
bridge.

2 (ok)

1 (in transition)
0 (inactive)

-1 (timeout)

-2 (error)

For more information about the meaning of
these values, see Identifying the Status of a
Connection.

0 (zero)

This attribute is read-only.

Whether the GSI interface is a secure connection.

yes | no
no

This attribute is read-only.

Configuring Connections between G2 and G2 Gateway

GSI Interface Attributes

Attribute Description

interface-warning- Sets the severity level for error and warning

message-level messages that G2 provides for the interface
object.

Allowable values: 0 to 3: Level 0 is the lowest severity level, and
provides the least error information. Increasing
the warning message level causes G2 to provide
more information about errors and failures that
are otherwise only detectable through the value
of the gsi-interface-status attribute. Messages
are posted to the Operator Logbook by default.

For example, when the warning message level is
at 0 or 1, a failure to connect to a bridge causes
the gsi-interface-status to change to -2 (Error),
but no information is made available about why
the failure occurred. If the warning message
level were set to 3 and the same connection
failure occurred, G2 would post a message
describing why the connection failed.

Default value: The value of interface-warning-message-level
defaults to warning message level. This value
causes the Interface-warning-message-level to
take on the value of the Warning-message-level
attribute in the Debugging Parameters system
table.

27

28

GSI Interface Attributes

Attribute

Description

disable-interleaving-
of-large-messages

Allowable values:

Default value:

Controls whether G2 Gateway interleaves
(changes the transmission order of) message
packets.

yes: G2 Gateway transmits messages without
interleaving, preserving their transmission
order. With this setting, overall performance can
suffer when the messages have very different
lengths, because many short messages may have
to wait for one long message to complete.

no: G2 Gateway transmits messages with
interleaving, which reorders the message
packets so that large messages do not lock out
smaller messages during large message
transmission.

no

Note The notes, item-configuration, and names attributes of a GSI interface are
common to all G2 items. For information about these attributes, see the

G2 Reference Manual.

Names Attribute

You must specify one or more names for the GSI interface in the names attribute.
An unnamed GSI interface cannot support communication between a G2
Gateway bridge and a G2 KB.

G2 objects refer to a named GSI interface as follows:

® For a GSI variable to receive data service through a G2 Gateway bridge, the
variable’s gsi-interface-name attribute must name the activated GSI interface
that, in turn, identifies the G2 Gateway bridge that provides the actual data

service.

® Inanitem that can execute actions (such as rules, procedures, and methods), a
start or call action invokes a function in the G2 Gateway bridge through a
remote procedure call. The start or call action must specify which bridge by
including the across gsi-interface-object phrase, as described in the
G2 Reference Manual.

* For a GSI message server item to be the source or destination of a text message
sent between a G2 and a G2 Gateway bridge, its gsi-interface-name attribute

Configuring Connections between G2 and G2 Gateway

must specify an activated GSI interface that, in turn, identifies an active
connection to a running G2 Gateway bridge.

Note An unnamed GSI interface created by the API function gsi_initiate

Note

connection () can be used for remote procedure calls, but not for data service for
GSl variables. For information about his function, see gsi_initiate
connection.

Gsi-Connection-Configuration Attribute

This attribute contains an expression that identifies a running G2 Gateway bridge.
In order for G2 to establish a connection to the specified G2 Gateway bridge, the
gsi-connection-configuration attribute must match:

® The name of the machine that runs the G2 Gateway bridge, or
® The IP address of the machine that runs the G2 Gateway bridge, or
* localhost, a special hostname that represents the local machine, and

® The TCP/IP port number displayed by the G2 Gateway bridge on the
command line where the bridge is started, and

* Whether the connection is secure.

For example, the following expression specifies a G2 Gateway bridge process
with port number 22041 that runs on the local computer (the computer on which
G2 is running) and to which this G2 connects using the TCP/IP protocol:

tcp-ip host "localhost" port-number 22041

The TCP/IP port number of a G2 Gateway bridge can range from 3001 to 29,999,
but cannot be in use by another process on that computer.

A G2 Gateway bridge process’s TCP/IP port number can be specified or accepted
as follows:

* Specified as a command line argument (see Building and Running a G2
Gateway Bridge.)

® Specified within the user code function gsi_get tcp port ()

* Accepted by default, using TCP/IP port number 22041

External-System-Has-a-Scheduler Attribute

The external-system-has-a-scheduler attribute affects when the callback function
gsi_get data/() is invoked.

29

30

G2 Gateway calls gsi_get data () to respond to requests from G2 for values for
GSI variables. For information about how to use gsi_get data (), see Returning
Solicited Data to G2.

When the value of external-system-has-a-scheduler is yes, gsi get data() is
called:

® At creation, activation, or enabling of a GSI variable, provided that the
variable has a default-update-interval other than none.

* Attherequest of arule, areadout table, or a collect data statement within a G2
procedure, if the validity-interval of the GSI variable has expired.

* Unconditionally as a result of an update action within a G2 rule or procedure.

When the value of external-system-has-a-scheduler is no, gsi get data() is
called: under the same conditions, with one addition. It is also called at the
expiration of a GSI variable’s default-update-interval, if this interval is other
than none.

Regardless of the setting of external-system-has-a-scheduler attribute, a GSI
variable is registered in the following circumstances:

* [f the default-update-interval of a GSI variable is a value other than none, G2
sends to G2 Gateway a request to register and update the variable when the
GSl interface is activated.

* [f the default-update-interval of a GSI variable is none, the variable is
registered the first time the G2 set or update action is performed on it.

When a GSI variable is registered (and again whenever a set or update action is
subsequently performed on the variable), G2 sends the default-update-interval
value of the variable to the G2 Gateway bridge. The value is stored in data
structures that your user code can access through API functions. Your bridge user
code can use this value when it communicates with an external system, or it can
ignore the value, as your G2 Gateway application requires. For information about
how your user code can access the default update interval values stored in the
data structures, see G2 Gateway Data Structures.

Regardless of the setting of the external-system-has-a-scheduler attribute, G2 can
always explicitly request values for GSI variables from the G2 Gateway bridge.

Poll-External-System-for-Data Attribute

If this attribute is set to yes, the G2 Gateway bridge obtains unsolicited data by
executing the gsi g2 poll () callback at regular intervals. For information about
how to use this callback, see gsi_g2 poll.

If this attribute is set to no, the G2 Gateway bridge does not call the gsi g2
poll () callback.

Note

Configuring Connections between G2 and G2 Gateway

Interval-to-Poll-External-System Attribute

This attribute controls the polling interval when the poll-external-system-for-data
attribute is set to yes. By default, polling happens every second, but you can
change this by setting the value of the interval-to-poll-external-system attribute.
Allowable values are any time interval from 1 second to G2’s maximum allowable
time interval.

When the poll-external-system-for-data attribute is yes and the interface is
connected, G2 sends a message to G2 Gateway at intervals specified by the
interval-to-poll-external-system attribute. If G2 Gateway is running (if it is in gsi
start () orin gsi_run loop()), it reads the message, sends a reply back to G2,
and then calls the gsi g2 poll () callback. G2 does not send any further poll
messages until it receives a reply from G2 Gateway.

If G2 does not receive a reply within the interval specified by the interface-
timeout-period attribute, then:

* The gsi-interface-status attribute of the gsi-interface object is changed to -1.
* G2invokes any rules that check for a -1 value for this attribute.

During the interval that the gsi-interface-status remains at -1, the connection
remains open. If G2 receives a reply at some later time, the value of the gsi-
interface-status attribute is set to 2.

Identifying-Attributes Attribute

This attribute lists class-specific attributes of GSI variable classes that provide a
unique identifier for each GSI variable. The values of the identifying attributes of
each GSI variable must distinguish that GSI variable from all other GSI variables
in the KB.

G2 and the G2 Gateway bridge use the identifying attribute values of a GSI
variable to maintain a one-to-one mapping between that GSI variable and the
source of data in an external system.

When a GSI variable class is defined with one identifying attribute, G2 and the G2
Gateway bridge assume that each GSI variable of that class in the KB has a unique
value in this attribute.

When a GSI variable class is defined with more than one identifying attribute, G2
and the G2 Gateway bridge assume that each GSI variable of that class within the
KB has a unique combination of values for these attributes.

Data should not be returned to identifying attributes of GSI variables. Another
way of saying this is that the identifying attributes of a GSI variable should not
themselves be GSI variables. If the G2 Gateway bridge returns data to one or more
of a GSI variable’s identifying attributes, it causes the GSI variable to be
deregistered and then reregistered with the bridge.

31

32

The identifying-attributes attribute of a GSI interface lists the aggregate of the
identifying attributes of all classes of GSI variables that use this particular GSI
interface. If more than one class of GSI variables uses a particular GSI interface,
individual GSI variables of any of these classes will have only some of the
identifying attributes listed in the identifying-attributes attribute of the GSI
interface.

For information about how to specify identifying attributes, see Defining
Identifying Attributes.

Remote-Process-Initialization-String Attribute

This attribute specifies a string that G2 passes at startup time to the gsi
initialize context () function in the G2 Gateway bridge user code.

In the GSI bridge user code, you can add code to the gsi initialize context ()
callback function that uses this initialization string during the initialization of the
G2 Gateway bridge process. For example, the initialization string can specify a list
of run-time parameters for the bridge process or can specify the pathname for a
file that the bridge process should open during bridge initialization.

Interface-Timeout-Period Attribute

For systems using the TCP/IP protocol, this attribute indicates how long G2
should wait for a response after sending a request to the G2 Gateway bridge. G2
uses this value when connecting to the G2 Gateway bridge process and after each
transmission that requests data from the bridge process. G2 measures a timeout
interval from the most recent time that data was received.

Three timeout intervals apply to G2-to-G2 and GSI interfaces. These set the
maximum time to:

1 Establish a connection at the TCP/IP network level.
2 Initialize the connection using Gensym (ICP) protocols.
3 Wait for a response to a message sent by G2.

The interface-timeout-period sets the timeout period for the first and third
intervals. The interface-initialization-timeout-period attribute sets the timeout
period for the second interval.

To specify all three timeouts to be the same:
1 Set the interface-timeout-period attribute to the desired interval.
2 Use the default setting for the interface-initialization-timeout-period attribute.

The interface-timeout-period time interval begins at the time that the request is
made. If the G2 process cannot obtain the status of the G2 Gateway bridge
process, the GSI interface times out. If tracing is at level 3, G2 reports the error on
its Operator Logbook.

Configuring Connections between G2 and G2 Gateway

If you specify use default for this attribute, G2 uses the default time interval of
10 seconds.

Interface-Initialization-Timeout-Period Attribute

This attribute specifies how long G2 waits to initialize a connection using Gensym
(ICP) protocols. G2 measures a timeout interval from the most recent time that
data was received.

The possible values for interface-initialization-timeout-period are:
* An integer specifying some number of seconds.
* unlimited: the initialization interval never times out.

* use default: the interface-initialization-timeout-period is the same as the
interface-timeout-period.

The default value is unlimited, which specifies that the initialization interval never
times out.

Three timeout intervals apply to G2-to-G2 and GSI interfaces. These set the
maximum time to:

1 Establish a connection at the TCP/IP network level.
2 Initialize the connection using Gensym (ICP) protocols.
3 Wait for a response to a message sent by G2.

The interface-initialization-timeout-period attribute sets the timeout period for the
second interval. The interface-timeout-period sets the timeout period for the first
and third intervals.

To specify all three timeouts to be the same:

1 Set the interface-timeout-period attribute to the desired interval.

2 Use the default setting for the interface-initialization-timeout-period attribute.
To specify a different timeout for the initialization interval:

= Set the interface-initialization-timeout-period attribute to the desired interval,
or to unlimited if no timeout is desired.

33

34

Disable-Interleaving-of-Large-Messages Attribute

This attribute controls whether G2 Gateway interleaves (changes the transmission
order of) message packets.

If set to no (the default):

* (G2 transmits messages in packets. A large message occupies several packets.
A small message occupies a single packet.

* When more than one message requires transmission across an interface, G2
interleaves the packets that constitute the messages.

As a result of this behavior, large messages do not lock out smaller messages
during large message transmission, which can improve performance when
messages of different lengths are transmitted over the same interface.

However, a shorter message that begins transmitting after a longer message
begins can finish transmitting before the longer message finishes. This reverses
the effective transmission order of the messages, because a message cannot be
acted on until its transmission is complete. Messages of the same length can also
be reordered if network errors require packet retransmission.

If the original transmission order was significant, reordering of interleaved
messages can cause errors. For example, procedures that should have been
invoked in one order could be executed in another.

To prevent message interleaving from reordering messages:

= Set the disable-interleaving-of-large-messages attribute of the interface object
to yes before opening the connection.

Messages then transmit without interleaving, preserving their transmission order.
However, overall performance can suffer when the messages have very different
lengths, because many short messages may have to wait for one long message to
complete.

Changing disable-interleaving-of-large-messages does not affect an existing
connection.

To change the interleaving of an existing connection:
1 Set disable-interleaving-of-large-messages to yes or no.
2 Conclude the connection into itself as a structure.

The conclude closes and reopens the connection, which then reflects the new
attribute value. For example, to reconnect a G2-to-G2 interface object:

conclude that the icp-connection-specification of g21 = structure
(network-transport : the symbol tcp-ip, hostname: "london", port: 1114)

Configuring Connections between G2 and G2 Gateway

Initializing Attributes in Subclasses

There are some system-defined attributes that you can initialize for a GSI interface
subclass and some that you can initialize for a G2-to-G2 interface. The following
table lists the system-defined attributes that you can initialize for each:

Attribute G2-to-G2 G2 Gateway

external-system-has-a-scheduler v
poll-external-system-for-data
grouping-specification
remote-process-initialization-string
interval-to-poll-external-system
identifying-attributes
interface-warning-message-level
interface-timeout-period
interface-initializiation-timeout-period*
disable-interleaving-of-large-messages™

attribute-displays

AN Y VU U N N N NN

DN N N NN

stubs

Identifying the Status of a Connection

The gsi-interface-status attribute of each GSI interface indicates:

® Whether a connection exists between G2 and the specified G2 Gateway
bridge.

* If a connection exists, the last event that took place over the connection.

G2 automatically updates the value of the gsi-interface-status attribute. If a

connection exists between G2 and the specified G2 Gateway bridge, G2 updates

the value of the gsi-interface-status attribute whenever a network message is
passed between G2 and the G2 Gateway bridge.

When a gsi-interface object is activated and there is no bridge to connect to (i.e.,
bridge connection failure), the value of the gsi-interface object gsi-interface-status
attribute depends on whether the gsi-connection-configuration attribute has a
connection value or is none:

35

¢ [f the gsi-connection-configuration attribute has a value, the value of gsi-
interface-status is 1 (In transition).

* If the gsi-connection-configuration attribute is none, the value of gsi-interface-
status is 0 (Inactive).

The following table lists and describes the possible values of the gsi-interface-
status attribute:

Possible Values of Gsi-Interface-Status Attribute

-2 (error) Following a connection attempt (gsi-interface-
status value is 1), a value of -2 (Error) indicates a
connection failure. Possible causes:

* No bridge process at the port specified.

* The bridge process rejected the connection by
returning GSI_REJECT.

After a connection has been made, a value of -2
(Error) indicates that an error condition occurred,
and the connection has broken between G2 and
the bridge process.

-1 (timeout) The G2 process has not heard from the bridge
process within the interface-timeout-period
specified for the GSI interface. This status may
also indicate that a communications overload has
occurred.

This status can occur only when the poll-external-
system-for-data attribute of the GSI interface is set
to yes.

0 (inactive) The GSI interface is either disabled or inactive.
The GSI interface is inactive when it is either on
an inactive workspace, has no name, is otherwise
not ok, or G2 is not running,.

When the GSI-connection-configuration attribute
value is none, activation cannot result in a
connection.

Configuring Connections between G2 and G2 Gateway

Possible Values of Gsi-Interface-Status Attribute

1 (in transition) | This state indicates that G2 is either completing or
breaking a connection to G2 Gateway. In either
case, no G2 data service, RPC action, or message
service can be done on the GSI interface.

If a GSI interface was in state 0, and changed to 1,
this indicates that G2 is negotiating a new G2
Gateway connection. The next state will be 2 if
successful or -2 if the connection fails.

When a GSI interface is in state 2, and is
deactivated, it changes to state 1 until it is certain
that the G2 Gateway bridge has received and
acknowledged the connection shutdown. It will
time out after 15 seconds.

2 (ok) The connection between the G2 process and the
bridge process is successful and being
maintained.

Triggering Rules when the Interface Status Changes

Changes to the gsi-interface-status attribute value of a GSI interface that occur
just before the interface becomes active can trigger rules.

Consistency of Status between a GSl Interface and Other G2 Objects

There can be a gap between the moment when G2 updates the status of a GSI
interface and when G2 updates the current value of a GSI variable that receives
G2 Gateway data service through that GSI interface. For this reason, your G2
knowledge base should not be designed to assume that if the gsi-interface-status
of a GSI interface is not OK, then the statuses of the variables that rely upon that
GSl interface for G2 Gateway data service are also not OK.

For example, when a G2 Gateway bridge is heavily loaded, it is possible for a GSI
variable in the G2 knowledge base to fail to receive a value, even though the G2
Gateway bridge is still running. The gsi-variable-status attribute of the GSI
variable might contain the value O (indicating that the data object in the G2
Gateway bridge memory was most recently known to be OK), although the
gsi-interface-status attribute of the variable’s associated GSI interface has the
value -1, indicating that the G2’s connection to the G2 Gateway bridge has

timed out.

In this case, it is not necessary to break and reestablish the connection between G2
and the G2 Gateway bridge. Instead, you can design your G2 knowledge base to
allow additional time for the G2 Gateway bridge to return a new value for the
variable when the gsi-interface-status attribute of a GSI interface receives a new
value that is not OK.

37

38

Note

Determining Whether the Interface is Secure

The gsi-interface-is-secure attribute determines whether the interface was started
with the secure yes option in the gsi-connection-configuration.

For more information, see secure.

Updating GSI Interface Attributes While the KB
is Running

You can apply edits to only two attributes of a GSI interface while the G2
knowledge base is running: grouping-specification and poll-external-system-for-
data. These attributes are updated immediately after you edit them.

Edits that you make to any other attributes of a GSI interface do not take effect
until you reset and start the G2 knowledge base.

Activating and Deactivating a GSI Interface

When a fully configured GSI interface becomes activated, G2 attempts to establish
a network connection to the G2 Gateway bridge identified in the gsi-connection-
configuration attribute of the GSI interface.

What fully configured means depends on which kinds of objects in the G2
knowledge base refer to that GSI interface. That is, it depends on whether a GSI
variable, or GSI Message Server, or executable item (i.e. one containing a start or
call action that invokes a G2 Gateway bridge function through a remote
procedure call), or any combination of these refers to the GSI interface.

An enabled item becomes activated when its parent workspace or superior object
becomes activated. See the G2 Reference Manual for information about how to
activate workspaces.

Successful Activation
A GSl interface becomes activated in the following ways:

* Explicitly, as a result of programmatically activating either the GSI interface’s
workspace or another workspace that is superior to the object in the
knowledge base’s workspace hierarchy.

* Implicitly, as a result of starting the G2 knowledge base.
* Through user actions that enable or disable the GSI interface itself.

If G2 successfully establishes a network connection with a particular G2 Gateway
bridge process, it automatically sets the GSI interface’s gsi-interface-status
attribute to indicate that the connection is open and functioning. If G2 fails to
establish the connection, it automatically sets the gsi-interface-status attribute to

Hint

Configuring Connections between G2 and G2 Gateway

indicate that the attempt failed. See Identifying the Status of a Connection for a
list of the possible values of the gsi-interface-status attribute.

The G2 knowledge base can use the value of the gsi-interface-status attribute in its
processing. For example, given that G2 automatically updates the value of the gsi-
interface-status attribute of any GSI interface whenever any data is exchanged
between the G2 and the G2 Gateway bridge process, you can include a whenever
rule that is triggered each time the gsi-interface-status attribute of any GSI
interface receives a value, as follows:

for any custom-gsi-interface C
whenever the gsi-interface-status of C receives a value
and when the gsi-interface-status of C = -1
then in order invoke timeout rules
and inform the operator that
"The GSI interface [the name of C] has timed out."

Concluding a new value to a GSI interface’s gsi-connection-configuration attribute
or identifying-attributes attribute causes G2 to break the connection (if it exists)
with the G2 Gateway bridge process and then immediately to attempt to make a
new connection. You can use this technique to perform operations such as
resetting and reestablishing communication with a G2 Gateway bridge process or
switching the connection to another process. For example, to programmatically
toggle the connection of a GSI interface perform the following action:

change the text of the gsi-connection-configuration of MY10O to the text of the gsi-
connection-configuration of MY10. Note that the value does not necessarily have
to be a different value.

Unsuccessful Activation

After G2 activates a GSI interface, G2 attempts to use it to establish a network
connection with a G2 Gateway bridge process. If the values in the GSI interface’s
attributes are incomplete or invalid, G2 places one or more messages to that effect
on the G2’s Operator Logbook. The Operator Logbook is described in the

G2 Reference Manual.

Deactivating a GSI Interface
A GSI interface becomes deactivated in these ways:

* Explicitly, as a result of programmatically deactivating either the GSI
interface’s workspace or another item that is superior to the object in the
knowledge base’s workspace hierarchy.

* Implicitly, as a consequence of resetting the G2 knowledge base.

* Explicitly, when a user disables the GSI interface itself.

39

Note

When you deactivate an activated GSI interface that refers to an established
network connection between the G2 knowledge base and a G2 Gateway bridge
process, G2 automatically breaks that network connection.

Breaking a network connection between a G2 and a G2 Gateway bridge process
does not kill the G2 Gateway bridge process and does not cause it to stop
executing, unless the bridge programmer has arranged for this to happen
explicitly, in the bridge user code.

Deleting a GSI Interface

If a GSI interface is deleted, the connection is lost, but other connections are not
affected. The bridge does not exit unless the user has programmed that behavior.

Configuring GSI Variables in the KB

40

To enable your G2 knowledge base to read values from and write values to data
points in an external system, you must create GSI variables. A GSI variable is a
G2 variable that receives data service from a G2 Gateway bridge.

You map each GSI variable to a data point in an external system. Your G2
knowledge base then reads from and writes to the external data points through
the corresponding GSI variable. Each GSI variable must refer to a GSI interface.

To create GSI variables that your G2 knowledge base can use to read from and
write to data points in an external system, you must:

1 Define a class of GSI variables.

2 Create an instance of this class for each external data point that your G2
application needs to read from or write to.

3 Edit the attributes of each GSI variable to specify the GSI interface that it
references to communicate with the G2 Gateway bridge process, and to
specify other characteristics of the GSI variable.

Defining GSI Variable Classes

You can create different application-specific classes of GSI variables to represent
different types of data exchanged with the G2 Gateway bridge and with the G2-
based application’s external system.

The class definition for GSI variables can also be a subclass of any class that
inherits from these standard variable classes.

Configuring GSI Variables in the KB

To define a GSl variable class:
1 Create a class definition for your GSI variables by selecting:
KB Workspace > New Definition > class-definition > object-definition

An icon representing the new class definition appears on the workspace
where you are creating the class definition.

2 Open the menu for the class definition and select table.
The attribute table of the class definition appears.
3 In the attribute table, specify a name for your new class under class-name.

4 Under direct-superior-classes, specify one of the following standard variable
classes: integer-variable, float-variable, quantitative-variable, logical-variable,
symbolic-variable, text-variable, or sensor.

5 Also under direct-superior-classes, specify the G2 mixin class gsi-data-
service.

A variable must inherit from this class in order to receive data service from a
G2 Gateway bridge.

6 Under class-specific-attributes, specify any attributes that you want to add to
this class definition.

For more information about defining new classes, see the G2 Reference Manual.

Attributes of GSI Variables

You can modify all attributes of GSI variables, including their identifying
attributes, while the knowledge base is running (although the user code must be
written correctly for it to be effective).

The following table lists attributes that are of particular importance to the
behavior of a GSI variable. For information about the attributes of variables that
do not relate to G2 Gateway, see the G2 Reference Manual.

41

42

GSI Variable Attributes

Attribute

Description

validity-interval

Allowable values:

Default value:

Note:

data-server

Allowable values:

Default value:

Note:

The length of time that the last-recorded-value
of the variable remains current.

Any time-interval
indefinite

supplied

A validity interval of supplied is not valid for a
variable whose data server is GSI| data service.
You must specify a value for this attribute. For
information about how to set the validity
interval attribute, see the G2 Reference Manual.

The data server for this variable.

The symbol gsi-data-server, or any unreserved
symbol that is defined in the knowledge base’s
Data Server Parameters system table as an alias
for gsi-data-server.

For information about how to define an alias for
a standard G2 data server, see “Data Server
Parameters” under “System Tables” in the

G2 Reference Manual.

gsi-data-server

To prototype GSI variables in your KB, you can
specify the G2 Inference Engine as their data
server, and use formulas specified in formula
attributes of the GSI variables to compute values
for the variables. The formula attribute of a GSI
variable is not useful for any purpose other than
prototyping the variable. To provide a GSI
variable with data service from a G2 Gateway
bridge, you must specify GS| data server as the
data server of the variable.

Configuring GSI Variables in the KB

GSI Variable Attributes
Attribute Description
default-update- Specifies a regular time interval at which G2
interval obtains a value for this variable.

Allowable values: Any non-negative number
none

Default value: none

gsi-interface-name Name of the GSI interface that supports data
service for this variable. Must be specified to
allow this variable to exchange data with the G2
Gateway bridge.

Note: If you modify this attribute, you must
reset and start the knowledge base for the
changes to take effect.

Allowable values: Any unreserved symbol that names a
GSI Interface
none

Default value: none

Notes: When you create GSI variables
programmatically, this should be the last
attribute that you set, because setting this
attribute causes the GSI variable to be
immediately eligible for mapping to an external
data point. You may want to delay mapping
until all the attributes of the GSI variable are set.

gsi-variable-status Status of the data point or variable in an external
system that the G2 Gateway bridge maps to this
GSI variable

Allowable values: Integer value of 0 (zero) or higher
Default value: 0 (zero)

Notes: See Identifying the Status of the GSI Variable.

43

Caution

44

Defining Identifying Attributes

A GSl interface can designate as many as six different attributes of a GSI variable
class as identifying attributes for variables of that class. The values of a GSI
variable’s identifying attributes must distinguish it from all other variables in the
KB. The identifying attributes of a GSI variable provide a unique identification for
the variable, which G2 Gateway needs in order to map it to a data point in an
external system.

The identifying attributes of a GSI variable must be user-defined attributes —
either class-specific-attributes of the GSI variable’s own class, or class-specific-
attributes that the GSI variable inherits from a superior class. Class-qualified
attribute names can be used as identifying attributes.

The data type of an identifying attribute can be either a G2 value (an integer, float,
truth-value, symbol, or text) or a G2 parameter. An identifying attribute cannot be
an array, list, variable, or any other G2 item that is not a parameter.

For more information about defining a variable class, see the G2 Referenice Manual.

You list the identifying attributes of a GSI variable class in the identifying-
attributes attribute of a GSI interface. Each instance of a GSI variable class must
use the GSI interface that lists its identifying attributes. The identifying-attributes
attribute of a GSI interface contains the aggregate of the identifying attributes of
all GSI variable classes that use that GSI interface.

G2 communicates the values of identifying attributes to the G2 Gateway bridge
whenever a GSI variable is registered or reregistered with the G2 Gateway bridge.

Whenever a value of an identifying attribute of a GSI variable is changed, that
variable is deregistered and reregistered. Updating the value of the identifying-
attributes attribute of a GSI interface causes G2 to request the G2 Gateway bridge
to deregister all registered variables that use this GSl interface, then to register
the set of variables that use the new set of identifying attributes listed in the GSI
interface.

Because a GSI variable is reregistered whenever the values of any of the
identifying attributes are changed, do not return values, directly or indirectly, to
identifying attributes from the G2 Gateway bridge user code. This would result in
unnecessary exchanges of data between the G2 and the G2 Gateway bridges.

Configuring GSI Variables in the KB

The following figure illustrates a GSI variable class definition named gsi-quant-
var and a variable of this class named gsi-quant-var-1:

GS1-QUANT-VAR
Direct superior classes guantitative-variable, gsi-data-service
A Class specific attributes equipment-type initially is pump;
equipment-name initially is "*;
data-value initially is ™
GS1-OQUANT-VAR-1
Eguipment type pump
Ig Equipment name "
Data value ™"

Cata server G3| data server
33| interface name interface-1

INTERF ACE-1

B3 equipment-type, equipment-name
Ry
GSI

In the preceding figure, the GSI interface interface-1 specifies the equipment-type
and equipment-name attributes of the gsi-quant-var class as identifying attributes
for variables of this class. Note that the data-value attribute is not suitable for use
as an identifying attribute, because the G2 Gateway bridge sends values to this
attribute.

Identifying the Status of the GSI Variable

GSI variable status codes indicate the status of the external data point or variable
that is mapped to a GSI variable in a G2 KB. The status code is registered in the
gsi-variable-status attribute. Its value is set by G2 Gateway, depending on the
value of the status field set within the user code for this variable. This attribute
is read-only.

The possible values for the gsi-variable-status attribute of a GSI variable are:
® 0 (zero): the external variable is OK
® 1 to 5: reserved for use by G2 Gateway

* 6 and higher: Values set in the G2 Gateway bridge’s user code, which can
represent status messages from the bridge to G2 about this GSI variable’s
corresponding external data point

45

You can create whenever rules that depend on the value of this attribute. For
example, G2 invokes the following rule whenever the gsi-variable-status of any
GSl variable receives a value:

for any GSl variable G
whenever the gsi-variable-status of G receives a value then
inform the operator for the next 4 seconds that "The status of [the
name of G] is [the gsi-variable-status of G]."

For more information about whenever rules, see the G2 Reference Manual.

Specifying Initial Values for GSI Variables

It is good practice to provide initial values for all GSI variables, either by:

* Specifying an initial value for all the GSI variables of each GSI variable class.
To do this, specify the initial value in the attribute-initializations attribute of the
GSl variable class definition. For example, you can specify the following in the
attribute-initializations attribute of a class of integer variables:

initial value for integer-variable: 1

* Providing a value for the GSI variable when G2 registers the variable for data
service, through a call to gsi_return values or related function in the
callback function gsi_ receive registration().For information about this
function, see gsi receive registration.

If G2 is unable to obtain a value for a GSI variable within the amount of time
specified in the timeout-for-variables parameter of the Inference Engine
Parameters system table, G2 repeatedly attempts to obtain a value for the variable
at the interval specified by the retry-interval-after-timeout parameter of the
Inference Engine Parameters system table. This can result in repeated calls to the
callback function gsi_get_data(), at the specified interval specified by retry-
interval-after-timeout.

Creating and Configuring GSI Message Servers

46

A G2 KB can send text messages to a G2 Gateway bridge using a GSI message
server. A GSI message server is a G2 object that inherits from the G2 mixin class
gsi-message-service and at least one G2 class from which you can create
instances.

To send the text message to the external system, G2 runs an inform action on the
GSI message server. The inform action specifies the text message that G2 sends to
the G2 Gateway bridge.

When the G2 Gateway bridge receives the text message, it calls the gsi receive
message () callback function, which can pass the text that it receives from G2 to an
external system or handle the message in any other way that your application
requires. For information about gsi receive message (), see Callback Functions.

Creating and Configuring GSI Message Servers

To create and configure a GSI message server, follow these steps:
1 Create a message server class definition by selecting:
KB Workspace > New Definition > object-definition
An icon representing a class definition appears on the workspace.

2 Open the menu for the class definition and select table. The attribute table of
the class definition appears.

3 In the attribute table, specify a name for the message server class under
class-name.

4 Also in the attribute table, specify the following classes under direct-superior-
classes:

* The gsi-message-service mixin class.

* A G2class from which you can create instances. This class can inherit from
the object, message, or connection standard G2 classes. For example:
text-variable.

A GSI message server class can optionally include the gsi-data-service mixin
class among its direct superior classes, but is not required to.

5 Close the attribute table of the message server class definition.
6 Create a GSI message server.

To do this, select create instance from the menu of the message server class
definition. The GSI message server appears on the workspace near the icon for
the message server class definition.

7 In the attribute table of the GSI message server, specify a name for the
message server under names.

8 Also in the attribute table of the GSI message server, specify the name of a
gsi-interface under gsi-interface-name. Use the name of the GSI interface that
represents the connection between the G2 that sends the text message and the
G2 Gateway bridge that you intend to receive it.

47

Attributes of a GSI Message Server

The following table summarizes the class-specific attributes of a GSI message
server:

GSI Message Server Attributes

Attribute Description

gsi-interface-name Name of the GSI interface that supports data
service for this GSI message server. You must
specify a GSI interface to enable the GSI
message server to send data to the G2 Gateway
bridge.

Allowable values: Any unreserved symbol that names a
GSI Interface
none

Default value: none

Notes: Setting the attribute causes the variable to be
immediately eligible for mapping. To delay
mapping until all the attributes are set properly,

set this attribute last.
data-server-for- The symbol gsi-data-server or any symbol
messages defined as an alias for the G2 standard data

server gsi-data-server.

Allowable values: The symbol gsi-data-server, or any unreserved
symbol that is defined in the knowledge base’s
Data Server Parameters system table as an alias
for gsi-data-server.

For information about how to define an alias for
a standard G2 data server, see “Data Server
Parameters” under “System Tables” in the

G2 Reference Manual.

Default value: gsi-data-server

These attributes are contributed by the G2 standard gsi-message-service mixin
class.

Creating and Configuring GSI Message Servers

Running an Inform Action on a GSI Message Server

To send a text message to a G2 Gateway bridge through a GSI message server, a
G2 KB runs the inform action on the GSI message server. In the inform action, you
specify the text of the message that you want to send in double quotation marks.

For example, the following rule runs the inform action on a GSI message server
named gsi-msg-var-1, and sends the text message: “The temperature of vat-1 is
too high.”

If the temperature of gauge-1 is too-high then
inform gsi-msg-var-1 that "The temperature of vat-1 is too high."

Similarly, the following rule runs the inform action on a GSI message server
named operator-2:

if product-ph < 7 and hydroxide-feed-rate = max-hydroxide-feed-rate then
inform operator-2 that "Product is too acid to neutralize. pH =
[product-ph] with maximum hydroxide input.”

If the pH of the product is less than 7 (for example, 5.72), and the system is unable
to feed the hydroxide any faster, G2 invokes this rule and sends the text message:

"Product is too acid to neutralize. pH = 5.72 with maximum hydroxide input."

to the G2 Gateway bridge through the GSI interface used by the GSI message
server named operator-2.

For information about how to invoke the inform action, see the G2 Reference
Manual.

49

50

Preparing the
Bridge User Code

Describes how to organize and code the customized portion of the G2 Gateway
bridge.

Introduction 52

Components of G2 Gateway User Code 52

Structure of G2 Gateway User Code 53

Using gsi_start() 57

Managing a Connection between G2 and a G2 Gateway Bridge 60
Processing Events through gsi_run_loop() 62

Implementing Data Service in G2 Gateway 67

Message Passing 76

Iltem Passing 76

Registering and Deregistering Items 77

Context Control 82

User Watchdog Functions 83

Memory Management Responsibilities of G2 Gateway User Code 85
Write Buffer Management 87

Using and Disabling Abbreviated Function Name Aliases 87

Using and Disabling ANSI C Prototypes for APl Functions 88

gensym.

51

Introduction

The user code is the part of a G2 Gateway bridge that acts as an interface between
the bridge and G2. This chapter describes the structure of your user code, the
tasks that it can perform, and the functions, data structures, and data types that it
uses to perform these tasks.

This chapter does not describe the G2 Gateway bridge code that you must write to
provide an interface between your G2 Gateway bridge and external systems such
as databases or PLCs. For information about how to write this part of your bridge
code, see the documentation for your external system.

Language Support for G2 Gateway User Code

Gensym supports user code development in the C programming language. If you
use any other language to develop your bridge, you must provide the appropriate
links to G2 Gateway C routines called by your user code functions.

The following discussion of G2 Gateway user code assumes that you are
developing the code in C.

Single-Threaded Programming and Reentrancy

Applications developed with GSI 4.0, G2 Gateway 5.0, and later versions are
designed to run in single-threaded programming environments.

The G2 Gateway library of API functions is not thread-safe; that is, it cannot be
used by programs running under a thread package that supports multiple threads
of control. Attempts to run a G2 Gateway application in a multi-threaded
programming environment will cause serious errors.

A G2 Gateway program is not re-entrant; this is, it cannot be executed
simultaneously by multiple threads of control. However, you may have any
number of G2 Gateway processes running simultaneously.

Components of G2 Gateway User Code

52

You develop the user code part of your G2 Gateway bridge by:

* Completing the code for predeclared callback functions provided with G2
Gateway. G2 Gateway callback functions form the basis of your user code. For
information about these functions, see Callback Functions.

G2 Gateway calls callback functions automatically in response to events in G2,
such as requests by G2 to get or set the values of data points in an external
system. You do not need to invoke callback functions explicitly from
anywhere in your user code, and should not attempt to do this.

Structure of G2 Gateway User Code

* Writing functions that G2 can invoke as remote procedures. For information
about how to write these functions, see Remote Procedure Calls.

* Writing user functions to perform computations or any customized
processing required by your G2 Gateway application.

Callback functions, remote procedures, and user functions can invoke API
functions provided with G2 Gateway to perform a wide variety of tasks, such as
accessing data received from G2, supporting data service of G2 variables,
supporting remote procedures, and error handling. For information about API
functions, see API Functions.

You can write user code that handles all interactions between G2 and G2 Gateway
through remote procedure calls. For information about how to do this, see
Developing a Bridge Using Only Remote Procedure Calls.

For information about how to compile, link, and run your code, see Building and
Running a G2 Gateway Bridge.

Structure of G2 Gateway User Code

As in any C program, main () is the first function in the user code portion of your
bridge to be executed.

From within main (), you can call G2 Gateway API functions and any other
functions available to a C or C++ program. Note, however, that you do not call G2
Gateway callback functions directly from within main (). G2 Gateway calls the
callback functions automatically in response to network events on a connection to
a G2 KB. Instead, you supply code that performs tasks for your application for the
time the function is called.

Contents of the main() Function

The only function that your main () function must call is gsi_start (). This API
function initializes G2 Gateway, performs setup operations, and passes control to
the API function gsi_run loop (), which establishes the main event processing
loop of your G2 Gateway bridge process. For more information about gsi
start (), see Using gsi_start().

Your main () function can optionally include:

* (In one-cycle mode) Code defining an event processing loop that executes
under control of your user code. For information about how to establish a
processing loop under control of your user code, see Processing Events
through ¢si_run_loop().

* Statements that set global GSI variables to specify the version of the G2
Gateway user header file gsi main.hto use, and to ensure that this header

53

54

file matches the version of the G2 Gateway object libraries with which you
link your user code.

To do this, include the following statements in main():

gsi include file major version = GSI INCLUDE MAJ VER NUM;
gsi_include file minor version = GSI_INCLUDE MIN VER NUM;
gsi_include file revision version = GSI_INCLUDE REV VER NUM;

Note You cannot use the gsi include file major version, gsi_ include
file minor version, and gsi_include file revision version
variables with a G2 Gateway that is delivered as a DLL. Thus, if you are using G2
Gateway on WIN32 platforms (in addition to being delivered as three libraries, as
before), use the gsi_set include file version () function to specify the minor
version, major version, and revision.

You can use gsi_set include file version() to specify versions on any
platform.

Structure of G2 Gateway User Code

The following illustrates the basic structure of your G2 Gateway user code.

Structure of G2 Gateway User Code

What the user codes
(API functions and callbacks)

What G2 Gateway does
(callbacks)

main(argc, argv)

{
gsi set options from
_compile()
/* Only 1f not present
in gsi_main.c. */

gsi start(argc, argv)

/* User -defined event loop
(Only in one-cycle mode) */
for (;;)
{

gsi_run loop ()

/* Other function calls.*/
}
}

/*Callback functions:*/

gsi set up()

{
/* Invoke API functions
to perform application-
specific operations */

}

gsi get tcp port()

{
/* Specifies default
TCP/IP port number used
if port number is omitted
from command line */

}

gsi_start (argc,argu)

{
gsi set up()
gsi_get tcp port()

gsi _run loop()

}

gsi run loop ()

{

do {
/* Accept new connections
from G2 */
/* Invoke callback functions
to process events on

connection to G2 */

} while in continuous
mode

55

56

Passing Command-Line Arguments to the Bridge Through main()

Your main () function receives two arguments from the operating system’s
command-line interpreter: argc and argv:

* argcrepresents the number of command line arguments.

® argvis an array of strings in which the command line arguments are stored.
argv[0] is reserved for the name of your bridge program and argv (1] is
reserved for the TCP/IP port number. Other elements of argvare available to
users.

On systems that use the TCP/IP protocol, if a 0 is passed as the first argument
(argv(1]), the callback function gsi_get tcp port () is called to return a
default port number. For information about this function, see Callback
Functions.

Your main () passes the argcand argvarguments to the API function gsi
start (), which starts and initializes the bridge process.

If your application requires command line arguments other than those expected
by gsi_start (), you can remove the non-standard arguments from argvand
adjust argc before passing them to gsi_start (). See your C manual for
information about how to manipulate the command line argument structures.

The main() Function in Continuous and One-Cycle Modes

G2 Gateway supports two modes of bridge operation: continuous and one-cycle.
These modes affect the behavior of gsi_run loop () and the flow of control in
your G2 Gateway bridge:

* In continuous mode, the bridge runs entirely within the gsi run Ioop ()
event-processing loop initiated by the API function gsi_start (). If you
intend to run your bridge only in continuous mode, a call to gsi_start () is
the only required statement in the main () function.

* Inone-cycle mode, gsi_start () exits after gsi_run Ioop () completes one
cycle, and control passes to your user code. If you intend to run your bridge in
one-cycle mode, you must add code to main () that defines an event
processing loop, which receives control of your program when gsi start ()
finishes executing the first time.

Your user code can change modes at any time, using the following statements:

®* gsi set option(gsi_one cycle), which sets the bridge to run in one-cycle
mode.

®* gsi reset option(gsi one cycle), which sets the bridge to run in
continuous mode.

By default, the gsi_one cycleoption is reset, causing your bridge to run in
continuous mode.

Using gsi_start()

For information about the uses of continuous and one-cycle modes, see Behavior
of gsi_run_loop() in Continuous and One-Cycle Modes.

Sample main() Function

Gensym provides a source file named gsi main.cas asample main() function.
The default contents of this file are:

#include "gsi main.h"

int main(argc, argv)
int argc;
char *argv(];

{
GSI_SET OPTIONS FROM COMPILE();
gsi_start(argc,argv);
return 0;

}

For continuous mode operation, you can use the main () function in gsi main.c
without modification. If you want to operate your bridge in one-cycle mode, you
must add code to main () that establishes and controls an event processing loop.

Using gsi_start()

Caution

Within your main () function, the first G2 Gateway API function called must be
the API function gsi_start (), which starts and initializes G2 Gateway.

main () cannot call any other function before gsi_start ().

gsi_start () does the following:

® Receives the argcand argvarguments from main().
* Initializes G2 Gateway internals.

* Executes the callback function gsi_set up().

* Establishes network listeners as specified by the command line arguments or
by the callback function gsi get tcp port().

® Passes control to the API function gsi_run Ioop (), which provides the main
event loop of the G2 Gateway bridge. For information about this function, see
Processing Events through gsi_ run_loop().

57

58

Note

Performing Once-Only Operations through gsi_set_
up()

The intended use of the callback function gsi_set up() is to perform operations
that need to be performed only once in the lifetime of a G2 Gateway process. For
this reason, gsi_start () calls gsi_set up() only once.

You can use gsi_set _up() to perform operations such as:

® Selecting initial G2 Gateway runtime options. G2 Gateway’s run-time options
are global variables that control G2 Gateway operations and communications.
You can set and reset options at any time during the execution of a bridge. For
more information about G2 Gateway options. see Preprocessor Flags
and Runtime Options.

® Registering customized error handlers. For information about error handlers,
see Error Handling.

® Declaring local functions in the bridge that G2 can invoke as remote
procedures. For information about how to write and declare these functions,
see Remote Procedure Calls.

* Allocating G2 Gateway data structures that you intend to use repeatedly.

Calls to gsi_set option(), gsi rpc declare local (), and other functions that
are best called from gsi set up() do not work if gsi start () has not been
called.

The following example illustrates a gsi_set up () function used in a G2 Gateway
application that handles alarms:

void gsi_set up()
{

gsi_attr *attrs;

/* Set this application to run 1in one-cycle mode. */
gsi set option(GSI ONE CYCLE) ;

/*

* Install customized error handler to be called after
* G2 Gateway internal errors occur and are handled by
* the internal error handler.

*/

gsi_install error handler (my custom error handler);

/* Declare local functions to be remotely invocable. */
gsi rpc declare local (enable alarming,

"ENABLE -ALARMING") ;
gsi rpc declare local (disable alarming,

Using gsi_start()

"DISABLE-ALARMING") ;
}

This example of a gsi_set up () function does the following:
® Sets the runtime option to one cycle mode.

¢ Installs a customized error handler. For information about how to create and
install customized error handlers, see Error Handling.

® Declares user-written G2 Gateway functions as remote procedures that G2 can
call. For information about how to declare G2 Gateway functions as remote
procedures, see Making Remote Procedure Calls from G2 to the G2 Gateway

Bridge.

For information about the functions invoked from this example, see API
Functions.

Specifying a Default TCP/IP Port Number

G2 Gateway invokes the callback function gsi get tcp port () only when the
command line used to start the G2 Gateway bridge process specifies no port
number, or 0 for the port number.

gsi get tcp port () returns a user-specified default TCP/IP port number for
the ICP socket used by G2 Gateway to connect to an external system over a
TCP/IP link. If gsi_get tcp port () returns 0, G2 Gateway uses Gensym’s
default port number 22041. If 22041 is not available, G2 Gateway uses the first
available port number within the next 99 addresses.

In the following example, gsi get tcp port () returns 0, which causes G2
Gateway to use the default port number 22041 or the first available number
within the next 99 addresses:

#tdefine TCPIP PORT NUMBER 0

gsi_int gsi get tcp port ()
{

return (TCPI. P PORT NUMBER);
}

For information about the syntax of the command line for starting the bridge, see
Building and Running a G2 Gateway Bridge.

If TCP/IP is not installed, gsi_get tcp port () has no effect.

59

Managing a Connection between G2 and a
G2 Gateway Bridge

60

Hint

You can use the following G2 Gateway callback functions to control the
connection between the G2 Gateway bridge process and G2:

®* gsi initialize context (), called when a connection between G2 and G2
Gateway is established.

®* gsi pause context (), called when G2 pauses its KB.
®* gsi resume context (), called when G2 resumes its KB.

®* gsi shutdown context (), called when a connection between G2 and G2
Gateway is shut down.

Initializing a Connection

Whenever a GSI interface is enabled, G2 sends an initialization request to the G2
Gateway bridge process, which then calls the callback function gsi initialize
context () Each context corresponds to a single GSI interface in G2.

Since context numbers are contiguous integers they can be used as array indices
to access contexts stored in an array.

You canuse gsi_initialize context () to initialize a connection between a
single GSI interface in G2 and GSI, and give G2 Gateway the option of rejecting
the connection. gsi_initialize context () can perform tasks such as:

* Validating connections from G2, as for a login procedure.

® Declaring G2 procedures as remote procedures that your G2 Gateway bridge
can invoke, using the API function gsi_rpc declare remote (). These
remote procedure declarations are valid only for the context through which
the G2 process is connected to the G2 Gateway bridge.

* Allocating and/or initializing global tables on a per-connection basis; that is,
tables that are unique to this connection.

For more information about gsi initialize context (), see Callback Functions.

Pausing a Connection

G2 Gateway calls the callback function gsi pause context () whenever G2
pauses a KB. The gsi_pause context () function accepts no arguments and
returns no value.

Managing a Connection between G2 and a G2 Gateway Bridge

gsi_pause context () is useful for pausing any functions in your G2 Gateway
bridge that operate independently of G2. gsi pause context () can suspend
these functions until G2 resumes operation. For example, you can use gsi_pause
context () to halt unsolicited data collection from a queue in the external system,
record an event in a log file, or stop the G2 Gateway watchdog timer invoked
through the API function gsi watchdog ().

Calls to gsi_g2 poll () are stopped when the G2 process pauses its current KB.

Resuming a Connection After a Pause

G2 Gateway calls the callback function gsi resume context () whenever G2
resumes a paused KB.

Youcanuse gsi_resume context () to prepare the external system to access data,
resume unsolicited data collection, record events in a log file, or inform a G2
operator that the application has resumed. gsi_resume context () accepts no
arguments and returns no value.

If your G2 application initiates all read and write access requests, you can leave
gsi_pause context () in its stub form, because all read and write requests are
stopped when the G2 application is stopped. If you do not use gsi pause
context (), you can also leave gsi_resume context () in its stub form.

Shutting Down a Connection

G2 Gateway calls the callback function gsi shutdown context () whenever G2 is
reset or the GSI interface is deactivated or deleted. gsi shutdown context () is
called once for each active G2 Gateway context. It accepts no arguments and
returns no value.

You can use gsi_shutdown context () to perform the tasks necessary to shut
down the external system and clean up the G2 Gateway bridge process. Possible
uses for gsi shutdown context () include:

® Shutting down your external system.

* Disabling all data collection.

* Resetting your data collection functions.

* C(losing files.

* Recording events in a log file.

® Freeing any memory allocated by the bridge.

Before you call gsi_shutdown context (), make certain that you free any
dynamically allocated memory not freed in the body of the gsi receive
deregistrations () callback. For information about how to do this, see Using
gsi_receive_deregistrations().

61

Processing Events through gsi_run_loop()

62

The API function gsi_run Ioop () initiates the main event loop of the G2
Gateway bridge. This event loop handles network activity on connections to G2
processes and to external systems.

Each time gsi run Ioop () is executed, it does the following:
1 Makes any new connections requested by G2.

2 In each currently active context, responds to all outstanding messages
received from G2.

gsi_run loop () processes all messages that are outstanding at the time when
it is called. Because G2 Gateway is single-threaded, gsi run Ioop()
processes only those messages that are already completed at the time when
gsi_run loop() is called. Any messages that arrive or are completed during
the current call to gsi_run loop () are processed by the next call to gsi run
loop().

gsi_run loop () executes until it has nothing to do, or until the run loop timeout
period is reached, whichever happens first. By default, the run loop timeout
period is 200 ms. You can call gsi_set run loop timeout () to specify a
different timeout period for gsi run Ioop (). For information about this function,
see gsi set run loop timeout.

gsi run loop () is executed automatically by the API function gsi start().In
one-cycle mode, you can execute gsi_run loop () explicitly, outside of gsi
start (). The following sections describe the behaviors and uses of gsi_ run
loop () in continuous and one-cycle modes.

Behavior of gsi_run_loop() in Continuous and
One-Cycle Modes

In continuous mode, the bridge executes entirely inside the call to gsi start (),
which calls gsi_run loop () repeatedly as long as no fatal error occurs.
Continuous mode is the default mode of bridge operation.

In one-cycle mode, gsi_start () exits after the first call to gsi run loop() is
completed. Your G2 Gateway bridge then executes under control of user code that
you provide.

gsi_run_loop() in Continuous Mode

When the G2 Gateway bridge is running in continuous mode, it executes entirely
within gsi_start (), which invokes gsi_run loop () repeatedly as long as no
fatal error occurs.

Control passes from gsi run loop () to your user code only when GSI, in
response to network activity, invokes callback functions or functions declared as

Processing Events through gsi_run_loop()

remote procedures. Control returns to gsi_run Ioop () when the callback or
remote procedure finishes executing.

When there is no network activity to which the bridge must respond, gsi run
loop () calls the API function gsi_pause () internally, which causes the G2
Gateway bridge to enter an interruptible sleep. The bridge awakens when it
detects network activity to which it must respond. The bridge can sleep for no
longer than 1 second, after which time it awakens automatically; if there is no
network activity to which it must respond, it reenters the interruptible sleep.

Continuous mode is the better mode for polling an external system for data. The
bridge can poll the external system using the callback function gsi g2 poll (),
which is invoked by G2 Gateway approximately once per schedule cycle (one
second by default).

gsi_run_loop() in One-Cycle Mode

When the G2 Gateway bridge is running in one-cycle mode, control passes from
gsi_start () when gsi run loop () completes execution for the first time.
Control then passes to your user code, which can subsequently execute gsi run
loop () as needed.

In one-cycle mode, your user code must provide the main event loop of the
bridge. This loop must make periodic calls to gsi_run loop() to respond to the
network events that the G2 Gateway bridge detects on active connections to G2
applications. When gsi_run loop () has responded to all these events, it returns
control to the main event loop provided by your user code, which can process
other events before calling gsi_run loop () again.

One-cycle mode is the better mode for bridges designed to respond to network
activity on connections to external systems, rather than to poll the external
systems actively.

The following figure illustrates a G2 Gateway bridge process that enables a G2
knowledge base to communicate with a PLC:

PLC Bridge G2 Knowledge
port 3000 Process port 22041 Base
P g
registers GSI Variables
O O o O O O

63

The following code illustrates how user code running in one-cycle mode can
respond to messages both from the PLC and from the G2 knowledge base:

main(argc, argv)
int argc;
char *argv/(];

/* One-cycle mode is selected by the gsi_set up()
callback invoked through gsi start(). */

gsi start();

/* Code to connect to PLC */

/* A file descriptor 1s specified by user-defined
global variable PLC FD, corresponding to port
30000. */

gsi watch fd(PLC FD);
/* User -defined event loop. */

for (;;) {
gsi pause();

/* Check for data or messages from the PLC.*/
my_get plc data();

/* Check for data or messages from G2.%*/
gsi run loop(); }

}

The example above assumes that the callback gsi set up(), invoked by gsi
start (), calls gsi_set option(GSI ONE CYCLE) to set the bridge to run in one-
cycle mode. (Continuous mode is the default.)

The gsi_watch fd(PLC FD) statement then sets the bridge to watch the file
descriptor specified by a global variable, PLC FD. This global variable corresponds

to port 30000.

Processing Events through gsi_run_loop()

Control then passes to the for () loop, which loops indefinitely as long as no fatal
error occurs. The first function called in the for () loop is gsi_pause (), which
causes the G2 Gateway bridge to enter an interruptible sleep. The G2 Gateway
bridge wakes up when:

* The PLC sends data to the bridge on port 30000. The bridge then calls the
user-defined procedure my get plc data (), which receives the data from the
PLC and sends it to G2. To send the data to G2, my _get plc data() can call
the API functions gsi_return values(), gsi_return attrs(), gsi return_
timed values (), or gsi return timed attrs(). Whenmy get plc data()
completes, control passes to gsi_run Ioop().If gsi run loop() finds no
messages from G2, it exits and control passes to the beginning of the for ()
loop.

* (G2 sends a message to the bridge on any active connection. The bridge then
calls my get plc data(), which finds that there is no message from the PLC.
Control then passes to gsi_run loop (), which responds to the message from
G2. When gsi_run loop () completes one loop, it exits and control passes to
the beginning of the for () loop.

Communicating with G2 After Running Outside of gsi_run_loop()

If your G2 Gateway bridge has been running outside of gsi run loop() for any
length of time, your user code should call gsi_run Ioop () atleast once before it
attempts to send values to G2 or attempts to communicate with G2 in any other
way. Running gsi_run loop() gives your user code a chance to respond to any
outstanding messages from G2 that it may have received while running outside of
gsi_run loop (). Thus, your user code can become informed about changes that
have taken place within the G2 KB before it attempts to communicate with the
KB.

For example, while the bridge was running outside of gsi run Ioop (), GSI
variables may have been deregistered by an event in G2 such as the deactivation
of the workspace on which the variables reside. The G2 Gateway bridge user code
remains unaware of the deregistrations because gsi receive
deregistrations () is never invoked while the bridge is running outside of gsi
run_loop (). Thus, your user code might attempt to communicate with GSI
variables that have been deregistered. Before your user code attempts to send
values to the GSI variables, it should call gsi run loop() so that gsi receive
deregistrations () can be invoked, if necessary, to deregister any GSI variables
that were deregistered by G2 while the bridge was running outside of gsi run
loop ().

Interruptible Sleep

To save system resources, a G2 Gateway bridge can enter an interruptible sleep
when there is no network activity to which it must respond. What causes a bridge

65

66

to enter an interruptible sleep depends on the mode in which the bridge is
running.

In continuous mode, G2 Gateway causes a bridge to enter an interruptible sleep
automatically when there is no network activity to which the bridge must respond.
If the bridge detects such network activity, it awakens. The bridge can sleep for no
longer than 1 second, after which it awakens automatically; if there is no network
activity, the bridge goes back to sleep.

In one-cycle mode, the bridge enters an interruptible sleep only when your user
code calls the gsi_pause () function. The bridge does not enter an interruptible
sleep automatically.

In either mode, the bridge is awakened when network activity is detected on:

® Any active connections to G2 processes. G2 Gateway automatically watches
these connections. You do not have to instruct the bridge process to watch
connections to G2.

® Particular connections to external systems that you instruct the bridge to
watch for network activity.

You use the gsi_watch fd() API function to instruct the bridge to watch the
file descriptor for a particular connection. You can use the gsi unwatch fd()
function to cause the bridge not to watch a particular file descriptor.

The gsi_watch fd() API function is useful mainly in one-cycle mode, which
is the better mode for applications designed to respond to network activity on
connections to external systems, rather than to poll the external systems
actively.

However, you can use gsi_watch fd() in continuous mode if you want your
bridge process to awaken as soon as there is activity on a connection to an
external system, rather than waiting for activity on a connection to a G2
process. In this case, you can use the callback function gsi g2 poll () to
respond to messages on the connection specified in the gsi_watch fd()
function call.

For information about gsi_watch fd() and gsi unwatch fd(), see API
Functions.

Implementing a Customized Sleep Facility in One-Cycle Mode

For some purposes, you may want to implement a customized sleep facility for
your G2 Gateway application, or integrate an existing sleep facility with it. To use
a customized sleep facility, you must run the bridge process in one-cycle mode,
which gives control over sleep to your user code.

You implement a customized sleep facility using the select statement or other
operating system facility.

Caution

Implementing Data Service in G2 Gateway

G2 Gateway provides two API functions, gsi_Iistener socket () and gsi_
context socket () for implementing a customized sleep facility. These functions
enable you to obtain a complete list of the file descriptors on which input and
output can occur:

®* gsi listener socket () returns the UNIX file descriptor associated with the
bridge’s TCP listener.

* gsi context socket (), which returns the file descriptor associated with a
particular context.

For more information about gsi listener socket () and gsi context
socket (), see API Functions.

Handling Interrupts

Interrupts can occur during execution of a G2 Gateway bridge process. Your G2
Gateway bridge can invoke interrupt handling routines that you write to manage
these interrupts.

Your interrupt handling routines must not invoke G2 Gateway API functions,
because doing this can interfere with the work that was interrupted.

Implementing Data Service in G2 Gateway

Note

G2 Gateway supports the G2 data service feature, which provides an interface for
reading from and writing to data points in an external system controlled by GSI
variables in a G2 KB.

G2 uses GSI variables to map data in your KB to data points in external systems.
A GSI variable is a G2 variable that inherits from the class gsi-data-service.

Using the data service feature, G2 can write the values of GSI variables to external
data points or read values from external data points to update the values of GSI
variables. G2 can provide data service only for GSI variables, and not for G2
arrays, lists, or other items.

History data can be passed between a G2 Gateway bridge and a G2 only by means
of remote procedure calls, and not as a side-effect of data service on GSI variables.
For information about remote procedure calls, see Remote Procedure Calls.

67

68

Solicited and Unsolicited Data Transfers

G2 Gateway supports both solicited and unsolicited data transfers:

In solicited data transfers, G2 schedules regular requests for values from the
external system through G2 Gateway.

In unsolicited data transfers, G2 Gateway is responsible for updating the
values of GSI variables at regular intervals, or whenever their values change
in the external system.

You can use the following G2 Gateway callback functions in your user code to
support data service for GSI variables:

gsi _get data (), which G2 Gateway calls whenever G2 requests a value for a
GSI variable. You can implement this callback to retrieve a value from an
external system and return it to G2.

gsi_ g2 poll (), which G2 Gateway calls at regular intervals. You can
implement this callback to seek data from an external system and return it to
G2, or to perform other user-specified actions.

gsi_set data (), which G2 Gateway calls whenever G2 requests the bridge to
set the value of an external data point. G2 makes this request when a set
action is run on a GSI variable.

The gsi_get data() and gsi g2 poll () callbacks can use the following API
functions to return data to GSI variables in G2:

gsi_return values (), which returns one or more values to the last-recorded-
value attributes of one or more GSI variables.

gsi_return timed values (), which returns one or more timestamped
values to the last-recorded-value attributes of one or more GSI variables. If the
GSI variables have history-keeping specifications, the values are stored in G2
history.

gsi_return attrs (), which returns a value to the last-recorded-value
attribute of a GSI variable, and returns one or more values (an array) to
attributes of the same GSI variable.

gsi_return timed attrs(), which returns a timestamped value to the last-
recorded-value attribute of a GSI variable, and returns one or more values
(some, all, or none of which may be timestamped) to attributes of the same
GSI variable.

For more information about these functions, see Part II, Reference, of this manual.

Implementing Data Service in G2 Gateway

Returning Solicited Data to G2

When G2 asks G2 Gateway for a value for a GSI variable, G2 Gateway calls the
gsi_get data /() callback to get the value from the external system and return it
to G2. Data requested by G2 under these conditions is known as solicited data.

G2 asks G2 Gateway for a value for a GSI variable only if the validity-interval of the
variable has expired, indicating that the current value of the variable can no
longer be considered valid. The conditions under which G2 then requests G2
Gateway for a value depend on the setting of the external-system-has-a-
scheduler attribute of the GSI interface that G2 is using to communicate with G2
Gateway.

If the external-system-has-a-scheduler attribute is set to yes, G2 Gateway calls
gsi _get data () when:

* A GSl variable is created, activated, or enabled, and the default-update-
interval attribute of the variable is set to a value other than none.

* A display item such as a readout table, trend chart, dial, or meter requests a
value for the GSI variable.

* A local name declaration or a collect data or wait until statement within a G2
procedure requests a value for the GSI variable.

¢ A rule that refers to the GSI variable is invoked.

® Anupdate request is made through the G2 update action within a G2 rule or
procedure.

If the external-system-has-a-scheduler attribute of the GSI interface is set to no,
G2 Gateway calls gsi_get data () in the same circumstances as when this
attribute is set to yes. But in addition, G2 Gateway calls gsi get data () at each
expiration of a GSI variable’s default-update-interval, if this interval is other than
none.

At every G2 scheduler cycle:

* The handles of any GSI variables that require updates are sent to G2 Gateway
and packaged into gsi registered item structures, and are then passed to
gsi_get data(). The handle is an integer that uniquely identifies the item.
Procedures in a G2 Gateway bridge can use the handles to refer to particular
objects in G2.

* For all requests for set operations, either through a rule or a procedure, that
have occurred since the last clock tick, handles are sent to G2 Gateway and
packaged into gsi registered item structures, and are then passed to gsi
set data().

If you have specified a value other than none for the grouping-specification
attribute of the GSI interface, G2 groups the requests according to the identifying
attributes you specified for the attribute. You can group requests using more than

69

70

one identifying attribute, but you can only group requests with identifying
attributes. For best performance, do not use grouping unless it is needed for
other reasons.

Using gsi_get_data()

G2 Gateway calls the callback function gsi_get data () when G2 requests a
value for one or more GSI variables. Within gsi get data (), you can include:

* Code that gets the value of a data point in an external system.

® The API functions gsi_return values (), gsi return timed values(),
gsi return attrs(),or gsi_return timed attrs(), ‘which return values to
the GSI variable in the G2 knowledge base.

G2 Gateway builds an array of gsi_itemstructures and assigns to each structure
the handle of a GSI variable requesting data. When G2 Gateway receives a data
request from G2 for one or more GSI variables, it calls gsi_get data() and
passes to it the array of gsi_registered item structures.

For information about the gsi registered itemstructure, see G2 Gateway
Data Structures.

To return the data to G2, place a call inside gsi_get data () to one of the G2
Gateway API return functions. In the typical case where gsi return values() is
used to return data to G2, you would reuse the array of gsi registered item
structures passed to gsi_get data(), looping through them and filling in the
valueand status fields of each element, and passing the same array of structures
as an argument to gsi_return values ().

Using gsi_set_data()

G2 Gateway calls the callback function gsi_set data () when G2 requests the
bridge to set the value of a data point in an external system. Your G2 KB can set
the value of an external data point using the set action on a GSI variable that is
mapped to the data point.

If the GSI variable is not already registered with the bridge when the set action is
run on it, the variable is registered with the bridge automatically, causing G2
Gateway to call the callback function gsi receive registration().

After the values are successfully set in the external system, you can echo the
values back to the GSI variables in G2. Echoing values back to G2 ensures that
values just set in the external system are consistent with the last recorded values
of the variables in the G2 knowledge base.

The G2 set action does not change the last-recorded-value attribute of a GSI
variable. However, you can set last-recorded-value to the value that you specify
in the set action by causing G2 Gateway to echo the value back to the

GSl variable.

Implementing Data Service in G2 Gateway

To echo back the value, call one of the G2 Gateway data return functions gsi
return values (), gsi_return attrs(), gsi_return timed values(),or gsi_
return timed attrs() and use the same gsi_ itemstructure you passed to gsi
set data (). A value set with gsi_set data () will only be echoed back to the
GSl variable in G2 if gsi_set data () returns the value through a data return
function. Using the set action with a GSI variable does not automatically cause
that value to be returned to G2 as the last recorded value of the variable.

Using the Gsi-Variable-Status Attribute

The gsi-variable-status attribute of a GSI variable indicates the status code value
of the external data point or variable to which a GSI variable in G2 is mapped.

The possible values for the gsi-variable-status attribute are:
* 0:0K.

® 1-5:Reserved by Gensym for future releases.

* 6 and up: These status codes are application-specific. You can establish any set

of status codes needed for your application. See Identifying the Status of the
GSI Variable for information about how the G2 knowledge base can use these
status codes.

You set the gsi-variable-status in your G2 Gateway code with the gsi set
status API function. For information on this function see gsi_set_status.

When you set the status of your gsi registered itemdata structure to O:

®* Your variable will receive its value if the value returned is a non-null

data type.

You will receive a G2 Gateway programming error if you return a null data
type. Never give a null data type a status code of 0.

When you set the status of your gsi registered itemdata structure to a value
other than 0:

®* Your variable will receive its value if the value returned is a non-null
data type.

® Your variable will not be updated if your value has a null data type.

7

72

Sending Unsolicited Data to G2

Unsolicited data is data that a bridge sends to G2 without having received a
request from G2 for the data. Common examples of unsolicited data are:

Alarm conditions raised in an external system.
Reports of values in an external system that have gone out of range.

Updates sent to G2 automatically to relieve G2 of the processing load of
scheduling and sending update requests to G2 Gateway.

Unsolicited data can be sent to G2 in two ways:

Note

When an external system sends the unsolicited data to the bridge without
having received a request for the data from the bridge. Getting unsolicited
data this way is better done in one-cycle mode.

When G2 Gateway retrieves data from the external system by calling the
callback function gsi_g2 poll (). Getting unsolicited data this way is better
done in continuous mode.

G2 causing gsi_g2 poll to be called would seem like solicitation. It is not,
however, because G2 is not soliciting values for any specific variable.

Reporting by Exception

If your external system supports reporting by exception, you can achieve best
performance by running your G2 Gateway application in one-cycle mode and
placing the user code that responds to exceptions outside the gsi run loop () call
tree. Your user code can return the exceptions to G2 as they occur, using the G2
Gateway data return functions.

If you return values reported as exceptions to G2 in this way, it is important to
identify the numbers of the contexts in which the variables are defined. Outside of
the gsi run loop() call tree, the current context number is undefined, and you
must specify the context number in order to refer to the intended variable.

To get data to G2 from an external system that supports reporting by exception:

1
2

Verify that your external system supports reporting by exception.

Find out which file descriptor represents the socket to which the external
system is connected.

In your gsi_set up() callback function, include the following call to change
the mode to one-cycle:

gsi_set option(GSI_ONE CYCLE) ;

In your main () function, call gsi watch fd() to specify the socket to watch
for messages from the external system.

Implementing Data Service in G2 Gateway

5 Writea for (;,) loop that repeatedly calls gsi_pause (), gsi_run loop (), and
the code that you write to handle the data from the external system. gsi
pause () causes G2 Gateway to enter an interruptible sleep from which it
awakens when there is network activity on connections to G2 or on
connections to external systems that the bridge is watching.

gsi_run loop () handles messages sent to the bridge from G2, and your user
code handles data and messages from the external system in whatever way is
appropriate for your application.

The following code illustrates one way to get unsolicited data from an external
system. Note that this example is similar to the one-cycle PLC code in the section
called ¢si_run_loop() in One-Cycle Mode.

gsi int EXT SYS FD = 30000; /* Global variable
representing socket to
external system */
main(argc, argv)
int argc;
char *argv/[];

/* gsi start() must be called in main() before any
Gateway calls */

gsi start(); /* Invokes gsi set up() to change mode
to one-cycle. */

/* User code to connect to external system */

gsi watch fd(EXT SYS FD); /* Specify file
descriptor to watch. */

for (;;)
{
gsi pause() ; /* Enter interruptible sleep. */
gsi run loop(); /* Check for messages from G2. */
my_code () ; /* Check for messages or data
from external system. */
}

}

Polling an External System for Data

A G2 Gateway bridge can also receive unsolicited data by polling the external
system for data, without being requested by G2 to get new data values. You can
choose to send values to G2 only when the data values that the bridge obtains
differ from previously stored values.

73

74

When the poll-external-system-for-data attribute for the GSI interface is set to yes,
G2 Gateway calls gsi_g2 poll () to enable the external system to return
unsolicited values to G2.

When the external-system-has-a-scheduler attribute for the GSI interface is set to
yes, the default update interval is sent to G2 Gateway in calls to gsi receive
registration(), gsi_set data(),and gsi get data () which are then called
only in cases of explicit updates (G2 update action).

You canuse gsi_initialize context () to initialize any structures used for
providing unsolicited data. gsi g2 poll () can access the handle for a variable
and any information for filtering from gsi receive registration().

When your user code retrieves data from the external system, it can allocate
arrays in which to return the data to G2:

* For single data values, it can allocate arrays of gsi_itemor gsi registered
1temstructures.

* For arrays of attribute values, it can allocate arrays of gsi_attr structures.

To send the data values to G2, your user code writes the data values into these
arrays and passes the arrays to the API functions gsi return values(), gsi
return attrs(), gsi_return timed values (), or gsi return timed attrs().
Each of these API functions requires handles to identify the GSI variables to
which it is returning values.

Setting Values in the External Application

You can use the G2 set action to assign values to external data points that are
mapped to the GSI variables in your knowledge base. Running a set action on a
GSI variable causes the variable to be registered automatically, if it is not
currently registered.

You can invoke the set action in a G2 rule or procedure. The following are
examples of the set action in a rule:

unconditionally set spindle-motor-on-off to 0
initially set the set-point of device-controller-1 to the symbol on

If the GSI variable is not registered with the bridge when you run the set action
on it, it is registered automatically; this causes G2 Gateway to invoke the callback
function gsi_receive registration().

Note

Caution

Implementing Data Service in G2 Gateway

The set action does not conclude a value back to the last-recorded-value of the
GSl variable. To conclude the value back to the GSI variable in the G2 knowledge
base, your G2 Gateway user code must call the API function gsi return
values (). You can place a call to gsi_return values () in the gsi set data()
callback function that G2 Gateway invokes to process the set action. See Using

gsi_set_data() for more information.

If you want to be able to set the value of an attribute of a GSI variable, you must
define that attribute to be a GSI variable itself. For more information on the G2 set
action, refer to the G2 Reference Manual.

Because a GSI variable is reregistered whenever the values of any of the
identifying attributes are changed, do not return values, directly or indirectly, to
identifying attributes from the G2 Gateway bridge user code. This would result in
unnecessary exchanges of data between the G2 and the G2 Gateway bridges.

When G2 makes a set request to the bridge, G2 Gateway builds an array of gsi
registered_itemstructures to hold the information for each GSI variable
whose external data point is affected by the request. G2 Gateway then calls the
gsi_set data /() callback function and passes to it the array of gsi
registered item structures.

The syntax for gsi_set data() is:

void gsi int gsi set data (registered_items, count)
gsi registered item *registered_items ;
gsi_int count;

where:

registered_items is an array of gsi registered item structures. It is defined
by G2 Gateway and initialized to point to the first element of the objects
array built by G2 Gateway. Each element of the array contains the handle and
value of the corresponding data point to be set.

count is a gsi_int value specifying the number of gsi registered item
structures in the array. Use count to loop through and process each gsi
registered_ itemin the array.

Requests to set GSI variables can be grouped by G2 according to the grouping-
specification attribute of the GSI interface. For information about this attribute,
see Setting Attributes of a GSI Interface.

75

Message Passing

A G2 KB can send text messages to a G2 Gateway bridge, using GSI Message
Servers and the gsi receive message () callback function. A G2 Gateway bridge
can send text messages to the Message Board in G2 from the G2 Gateway bridge,
using the gsi return message () API function.

Sending Messages from G2 to the External System

A G2 KB can send text messages to a G2 Gateway bridge using a GSI Message
Server. A GSI Message Server is a G2 object that inherits from the G2 mixin class
gsi-message-service and from at least one other G2 class.

To send the text message to the external system, G2 runs an inform action on the
GSI Message Server. The inform action specifies a text message that is sent to the
G2 Gateway bridge. For information about how to create and configure a GSI
Message Server, see Creating and Configuring GSI Message Servers.

When the G2 Gateway bridge receives the text message, it invokes the gsi
receive message () callback function, and passes the message to this function.
You complete the code of the gsi receive message ()callback to specify how the
callback sends the message to the external system.

gsi_receive message () can also return data to G2, by calling one of the data
return API functions gsi_return values(), gsi_return timed values(), gsi
return attrs(),or gsi return timed attrs (). For more information about
gsi receive message (), see Callback Functions.

Returning Text Messages to G2

GSI Message Servers cannot be used to send a text value from the G2 Gateway
bridge to G2.

A G2 Gateway bridge can send text messages to the Message Board in G2 by
calling the API function gsi_return message (). For information about gsi
return message (), see API Functions.

Item Passing

76

Through remote procedure calls, a G2 application can send G2 items with their
attributes to the G2 Gateway bridge, and the bridge can send structures that
correspond to the objects and their attributes to G2. This exchange of data is called
item passing.

For information about how to do this, see Remote Procedure Calls.

Registering and Deregistering Items

Registering and Deregistering ltems

G2 registers certain items when it passes them to a G2 Gateway bridge over a
G2-to-G2 Gateway network connection. G2 registers items to provide a G2
Gateway bridge with the information that it needs to refer to and access the items
in G2.

An item’s registration is valid for one specific network connection between G2
and G2 Gateway, as configured by a GSI interface.

Kinds of Items Registered by G2

G2 registers two kinds of items:
* Data-served GSI variables.

When data service is requested for a GSI variable in a G2 KB, G2 creates a
copy of the variable, registers the copy, and sends the copy to G2 Gateway. A
G2 Gateway bridge uses information in the registered copy to service the
request for an updated value. G2 Gateway assigns each registered variable a
handle, which is an integer that uniquely identifies the item, beginning with
the number 1.

* [tems passed to G2 Gateway as handles through remote procedure calls made
by G2.

The handle is an integer that uniquely identifies the item, beginning with the
number 1. Procedures in a G2 Gateway bridge can use the handles to refer to
particular objects in G2. In G2, the procedure that passes the item as a handle
must be declared as a remote procedure with the as handle grammar.

G2 does not register the following items, which can be exchanged between G2 and
G2 Gateway without being registered:

® Values of variables, values of parameters, or object copies (as opposed to
handles) that G2 passes to G2 Gateway as arguments to remote procedure
calls.

* Text sent to G2 Gateway through a gsi-message-server.

Registering Items Automatically

G2 registers items automatically when the following events occur:

* A GSl variable is registered automatically if it cites a connected GSI interface,
is active and has a default-update-interval other than none or, if its validity-
interval is indefinite, the first time a read or write operation from or to a G2
Gateway bridge is performed on a data-served GSI variable for the first time
after the GSI variable is created or activated.

77

78

* One of the identifying attributes of a GSI variable is modified. This causes the
GSl variable to be deregistered and then reregistered automatically.

® (G2 passes an object as a handle, through a remote procedure call that is
declared in G2 with the as handle grammar.

A G2 item is registered when it passes to a G2 Gateway bridge process through a
particular context for the first time. Thus, a single G2 item can have more than
registration and more than one item handle. For example, if data service is
performed on a GSI variable through two separate contexts, the GSI variable is
registered twice. The variable now has two separate registrations and two
separate handles. Handles are unique only within a context. If a G2 item has
handles in several different contexts, there is no guarantee that they will be
different from each other.

Registering Items Explicitly

You can register any item explicitly by calling the G2 system procedure
g2-register-on-network(). This procedure enables you to register a G2 item that
you can later pass to G2 Gateway as an item handle, by calling a remote
procedure declared with the as handle grammar.

For information about g2-register-on-network(), see the G2 System Procedures
Reference Manual.

What G2 Gateway Does When G2 Registers an Iltem
When G2 registers a GSI variable or a handle, G2 Gateway does the following:

1 Createsa gsi_registrationstructure. This structure contains information,
provided by G2, that the bridge can use to complete any read or write
operations on the registered item.

Because the bridge can use the information in the gsi registration
structure to service any number of read or write requests on the same item,
the gsi registrationstructure remains in existence until the item is
deregistered.

2 (Calls the callback function gsi receive registration (), and passes the
gsi registrationstructure to the function call.

You can use gsi_receive registration() to perform tasks such as
initializing the external data point to which you are mapping the registered
item, allocating memory, or returning the handle to an attribute of the
variable for some future use.

For more information about the gsi registrationand gsi registered
1temdata structures, see G2 Gateway Data Structures.

Registering and Deregistering Items

3 For each request to read from or write to a data-served GSI variable, G2
Gateway creates a gsi_registered itemstructure, and passes this structure
to the gsi_set data() or gsi_get data() that it calls to service this request.

The gsi_registered itemstructure contains information needed to complete
the current read or write operation on the registered GSI variable. For this
reason, the gsi registered itemstructure remains in existence only during
execution of the current gsi_get data() or gsi_set data () procedure.

How G2 Gateway Stores Information Associated
with Registered Items

When G2 Gateway receives registered items, it creates internal data structures
that store information associated with the registered items. These internal
structures are referenced by the following void * pointers provided with G2
Gateway:

®* gsi registration, which is created by G2 Gateway when G2 first registers a
data-served GSI variable or a handle that G2 passes through a remote
procedure call. The gsi registrationstructure stores the item handle,
name, data type, six identifying attributes, attribute count, and default update
interval of the variable being registered. It can also store user data that your
G2 Gateway user code chooses to associate with this registered item.

®* gsi registered item which is created by G2 Gateway each time G2
requests G2 Gateway to read from or write to a data-served GSI variable. The
gsi_registered itemstructure stores the item handle, status, default update
interval, and a pointer to a gsi_1itemstructure, which contains additional
information associated with a registered item, such as its value.

At every G2 scheduler cycle:

- For any GSI variables that require updates, G2 sends handles to G2
Gateway, which packages them into gsi_registered itemstructures and
passes them to the callback function gsi_get data().

- For any requests for set actions on GSI variables, either through a rule or a
procedure, that have occurred since the last clock tick, G2 sends handles of
the GSI variable to G2 Gateway, which packages them into gsi
registered_itemstructures and passes them to the callback function
gsi_set data().

Your user code can access the information stored in these structures by calling
API functions provided with G2 Gateway. For information about these API
functions, see API Functions.

For a description of the information in G2 Gateway data structures that you can
access through API functions, see G2 Gateway Data Structures.

79

Associating User Data with a Registered Item

For some purposes, your application may need to store application-specific
information on the objects that it registers with G2 Gateway. To do this, your G2
Gateway user code can associate data with each registered object through the
user data component of the object’s gsi registrationstructure.

The user data component points to a location that your G2 Gateway user code
can both write to and read from. G2 Gateway itself neither reads from nor writes
to the structure pointed to by the user datacomponent.

You use the API function gsi set user data() to set the user datacomponent
of a gsi_registrationstructure, as illustrated in the following example:

void gsi_receive registration(item reg)
gsi registration item reg;
{
struct tag type *tag ptr;
/*
Create a new tag structure, attach it to the main
object array and call a routine to translate
the identifying attributes stored in the
gsi registration into tag data for quick access
later.
*/
tag ptr = (tag type *) malloc (sizeof (tag type));
gsi set user data(item reg, (void*)tag ptr);
fill tag struct using item reg
(tag ptr,gsi handle of (item reg));
}

You use the API function gsi_user data of () to obtain the contents of the user
datacomponent of a gsi_registrationstructure. For information about gsi
set user data()and gsi user data of (), see API Functions.

Note The enclosing gsi registrationstructure is reclaimed when the item is
deregistered, but the unallocated memory is the responsibility of the user.
Typically this happens in the callback function gsi receive
deregistrations().

Registering and Deregistering Items

Deregistering Items Automatically

Items are deregistered automatically when:

* A GSlinterface is disabled, deactivated, or deleted. All registered items
associated with that GSI interface are immediately deregistered before the
connection to G2 Gateway is shut down.

* Anindividual registered item is disabled, deactivated or deleted.

* Any identifying attribute of a GSI variable is changed. In this case, the GSI
variable is deregistered and reregistered automatically, with the same handle.

* When the G2 knowledge base is reset, at which time any active items must
stop receiving data.

* The workspace where the item is located is deactivated.

When registered items are deregistered, their handle numbers are sent to G2
Gateway where they are packaged into gsi_registrationstructures, and passed
to the user in one or more calls to the callback function gsi_receive
deregistrations (). This callback deregisters more than one item in a single call.
In contrast, the callback function gsi receive registration() registers only
one item in a single call.

Using gsi_receive_deregistrations()

G2 Gateway calls the callback function gsi receive deregistrations() when
an item is deregistered. Your bridge must delete any internal mapping of the item
to prevent future confusion, because its handle may be recycled by G2.

The callback function gsi receive deregistrations () has the following
syntax:

void gsi receive deregistrations (registered_items,count)
gsi registered item *registered_items,
gsi_int count;

where:
registered_items is an array of gsi registered itemstructures.

countisa gsi_int value that gives the number of gsi registered item
elements in the array.

gsi_receive deregistrations () should unpack the array pointed to by
registered_items and identify the items it contains. For each item in the array that
is a GSI variable, it must remove the item from the data acquisition queue of the
external system. If the external system has a scheduler, the external system must
be notified that the items are no longer receiving data.

81

Deregistering Items Explicitly

You can explicitly deregister an item using the G2 system procedure
g2-deregister-on-network(). For information about this procedure, see G2 System
Procedures Reference Manual.

Context Control

82

Note

Each instance of a GSI interface connecting to a G2 Gateway bridge process is
referred to as a context. All GSI interfaces, whether of the same or of different G2
processes, can communicate with the same G2 Gateway bridge process, but use
separate contexts. G2 Gateway manages the separate contexts (maximum 50) and
tracks which GSI interface is served in each context.

Contexts are identified by a number. At any time, your program can call the G2
Gateway API function gsi_current context () to get the current context
number.

Outside the gsi_run Ioop () call tree, the current context is undefined. If the
current context is undefined, gsi_current context () returns -1.

If you plan to support more than one context and you have global variables or
structures whose scope is limited to a single context, you must create an array that
provides for a duplicate set of these objects for each context you plan to support.

G2 Gateway API functions that access G2 applications — for example, to send

data to the G2 application, or to make remote procedure calls to it — include a
context argument that enables you to specify the context through which the G2
application is accessed. The specified context can be the current context or any
other active context.

Remote Procedure Calls within a Context

Over all active contexts, as many as 4096 remote procedure calls can be
outstanding at one time.

Within the same context, any number of calls to different remote procedures can
be outstanding at the same time. In addition, any number of calls to the same
remote procedure from different contexts can be outstanding at the same time,
subject to the overall 4096 limit.

User Watchdog Functions

User Watchdog Functions

Note

The gsi watchdog () API function calls a function that you specify when the gsi
watchdog () function’s time-out interval expires. When gsi_watchdog () is called,
its timer begins counting down to zero from the specified time. If gsi

watchdog () is called again before the time-out period is reached, the timer is reset
to the latest specified time. The watchdog timer can be reset or disabled at any
time, whenever gsi watchdog () is called.

The gsi watchdog () function is not available on Windows platforms.

gsi_watchdog () returns no value, and accepts the following arguments:

user_watchdog_function, a pointer to a user-written function that G2 Gateway
executes after the timeout_interval expires.

timeout_interval, an integer greater than or equal to zero, that specifies the
time-out interval in seconds. If timeout_interval is set to zero (0), the G2
Gateway watchdog timer is disabled.

Suppose a call to gsi_watchdog () specifies a time period of 90 seconds. Another
call to gsi_watchdog (), made 80 seconds later, also specifies a time period of 90
seconds. The second call causes the timer for the watchdog process to be reset to
90; the G2 Gateway bridge can then go for another 90 seconds before it times out,
rather than for only 10 seconds.

To use the watchdog function, include calls to gsi_watchdog () in any of the
functions in the user code, with appropriate periods for each. You may need to
experiment to find a good expiration period for your application.

gsi_watchdog () is useful when you need to execute a function at a specified
period of time, or when the G2 Gateway bridge stops communicating with G2
and you either want to re-establish communication or run a clean-up function and
exit the G2 Gateway bridge process. If there is no communication between the G2
Gateway bridge and the G2 process within a period of time that you specify
(perhaps due to the G2 Gateway bridge being hung), the watchdog process causes
the G2 Gateway bridge to execute a specified function or to exit.

Thus, if communication between the processes breaks down and G2 loses control
of the G2 Gateway bridge, the bridge process can exit and automatically close.

83

84

The following code illustrates the use of gsi watchdog () :

gsi_int gsi initialize context (str, str len)
gsi char *str;
gsi int str len;
{
/*Set the timer initially.*/
gsi watchdog (my exit func,100);

void gsi g2 poll() /* Called every second */
{

/* Resets timer to 100 seconds.*/

gsi watchdog (my exit func,100);

void gsi_pause context ()
{
/* Disable timer. */
gsi watchdog (my exit func,0);

void my exit func()

{
/* Called when the watchdog timer expires.*/
exit(0);

}

In this example, if one of the user code functions hangs for some reason, gsi g2
poll () is not called every second, its watchdog timer counts down to zero, and
my exit func () is then called by the system. This watchdog function merely
exits.

A whenever rule in G2 can monitor the gsi-interface-status of interface objects, so
that if a connection to G2 Gateway times out and closes, G2 deactivates and
reactivates the corresponding GSI interface. This cleanly restarts the G2 Gateway
bridge process.

gsi_watchdog () must be called at least once for its timer to begin. gsi
initialize context () is a typical function from which to call the watchdog
function, because the G2 Gateway bridge calls gsi_initialize context () when
it starts to initialize the data objects in G2 Gateway. Another function in which
you could include a call to gsi _watchdog () is gsi_resume context ().

Memory Management Responsibilities of G2 Gateway User Code

You most likely will want the functions gsi_pause context () and gsi_
shutdown_context () to call gsi_watchdog () with a period of 0 to disable the
timer, so that neither one causes G2 Gateway to time out.

gsi watchdog () can be used to reset the timer in gsi g2 poll (), which is called
each second if the poll-external-system-for-data attribute of the GSI interface has
the value yes.

If you are controlling the processing loop by running G2 Gateway in one-cycle
mode, include a single call to gsi_watchdog () after the call to gsi_run loop().

Memory Management Responsibilities of
G2 Gateway User Code

For most purposes, G2 Gateway automatically manages memory for data
structures and the strings and arrays that they contain. However, for some
purposes, your G2 Gateway user code can or must manage memory for these
items.

Managing Data Structures

Your G2 Gateway user code is responsible for deallocating memory for any data
structures that it has allocated itself. Your user code can allocate data structures
using the API functions gsi_make attrs(), gsi_make attrs with items(),
gsi _make items(),or gsi make registered items (). Your user code can
reclaim this memory whenever it has no further use for it, using the API functions
gsi reclaim attrs(), gsi reclaim attrs with items(), gsi reclaim
items(),or gsi reclaim registered items ().

Your G2 Gateway user code does not need to deallocate any gsi registration,
gsi_registered item gsi item or gsi attr structures that G2 Gateway
allocates automatically, and should not attempt to do so:

* G2 Gateway automatically allocates a gsi_registrationstructure for each
item that is registered with the G2 Gateway bridge. A gsi registration
structure lasts until the corresponding item is deregistered. Your user code
cannot either allocate or deallocate gsi registrationstructures.

* G2 Gateway automatically allocates gsi registered item gsi item or
gsi_attr data structures when it invokes callback functions. These data
structures last only for the duration of the current invocation of the callback.

To determine whether a given data structure was created by user code or
generated automatically by G2 Gateway, use the API function gsi owner of ().
For information about this function, see API Functions.

85

86

Managing Arrays and Lists

API functions that set the values of arrays and lists with arrays or lists provided
by your user code can be grouped into two categories:

* Functions that make copies of the arrays or lists that your user code passes to
them. These include all API functions that set an array or list to elements of a
particular type, such as gsi_set flt array() or gsi_set sym list().

* Functions that do not make copies of the arrays or lists. There are two such
functions: gsi_set elements() and gsi_set attrs().

The API functions that set arrays or lists to elements of a particular type all make
copies of the arrays or lists that your user code passes to them. If your user code
has no further use for the elements after these API functions complete, it can
deallocate the elements.

For example, the API function gsi_set flt array () makes a copy of a floating-
point array that user code passes to it and writes this copy into a gsi_item. If this
array is located in a block of memory that the user code previously allocated with
malloc(),itcan free () this memory after gsi set flt array () completes if it
no longer needs the memory.

In contrast, the API functions gsi set elements () and gsi_set attrs() donot
make copies of the arrays that your user code passes to them. These functions
accept existing arrays that your user code has allocated:

* The function gsi_set elements () accepts an array of gsi_itemelements that
your user code has allocated by calling gsi make items().gsi set
elements () uses this array to set the value component of a gsi_item Your
user code can call gsi reclaim items () to deallocate the array after gsi
set elements () completes, it if no longer needs the array.

® The function gsi_set attrs() accepts an array of gsi_attr elements that
your user code has allocated by calling gsi_make attrs().gsi_set attrs()
uses this array to set the attribute (s) component of a gsi_itemstructure.
Your user code can call gsi_reclaim attrs() to deallocate these structures
after gsi_set attrs () completes, if it no longer needs them.

API functions that return pointers to arrays of particular data types do not make
copies of the arrays. The arrays persist only as long as the data structures that
contain them. If your user code needs to use the arrays after the data structures
have been deallocated, it must make copies of the arrays before the data
structures are deallocated.

For example, the API function
double *gsi flt array of (item)

returns an array of floating-point values stored in a gsi_itemstructure specified
by item. This array persists only as long as the gsi_itempersists. If your user code

Write Buffer Management

needs to use this array after the gsi_itemdeallocated, your user code must make
a copy of the array before it is deallocated.

The API functions gsi_elements of () and gsi_attrs of () do not allocate any
new memory. Their return value point to existing arrays or lists stored in G2
Gateway data structures. These array and lists, and their elements, persist as long
as the data structures that contain them.

Reclaiming Memory

Any memory you create with C functions such as malloc () is your responsibility
to reclaim with free (). G2 Gateway will not do this, even for memory you have
stored as user data.

Write Buffer Management

Each context in G2 Gateway has its own write buffer of fixed size (999,999 bytes).
Every G2 Gateway API that sends data to G2, such as gsi return values(),
places the data in the write buffer for the specified context and then flushes the
buffer out to G2.

Using and Disabling Abbreviated Function
Name Aliases

The header file gsi_main.hdefines macros for abbreviated names of G2 Gateway
API functions and G2 Gateway types. For example:

#define NULL TAG GSI NULL TAG
#define context socket (c) gsi context socket (c)

You can define the GENSYM NOALIAS C preprocessor flag to force the gsi
main.hheader file to omit the abbreviated names and macros for G2 Gateway
API functions and types. Omitting abbreviated names can avoid conflicts between
the abbreviated names used by the user code and the external system.

Be sure to define GENSYM NOALIAS before you include gsi main.h. For
example:

/* G2 Gateway */
#define GENSYM NOALIAS
#include "gsi_main.h"

For more info on defining C preprocessor flags see Defining C Preprocessor Flags.

Note This manual uses the unabbreviated names of API and callback functions.

87

Using and Disabling ANSI C Prototypes for
API Functions

88

By default, the G2 Gateway header file gsi main.h defines ANSI prototypes for
the API functions of GSI. These prototypes are used whenever the bridge source
program is compiled with an ANSI-compliant C compiler. These compilers define
a preprocessor flag named _ STDC__ to indicate that the compiler is using

ANSI C.

However, you can disable the ANSI prototypes and use the Kernighan and
Ritchie style function declarations. To do this, you must compile your G2
Gateway code with the GENSYMKR _ C preprocessor flag defined or use the
corresponding compile time switch.

However, you can disable the ANSI prototypes and use the Kernighan and
Ritchie style function declarations. To do this, define the C preprocessor flag
GENSYMKR __before you include the header file gsi main.h. For example:

/* G2 Gateway*/
#define _ GENSYMKR
#include "gsi_main.h"

For more info on defining C preprocessor flags see Defining C Preprocessor Flags.

Remote
Procedure Calls

Describes how a G2 Gateway bridge and a G2 application can make remote
procedure calls to each other.

Introduction 89

Making Remote Procedure Calls from G2 to the G2 Gateway Bridge 91
Making Remote Procedure Calls from a G2 Gateway Bridge to G2 107
Developing a Bridge Using Only Remote Procedure Calls 122

Call Identifiers and Procedure User Data 123

gensym.

Introduction

Remote procedure calls provide a powerful and flexible means of communication
between a G2 and a G2 Gateway bridge. Through remote procedure calls:

* A G2 procedure can invoke user-written C functions in a G2 Gateway bridge.
The user-written functions are known as G2 Gateway local functions.

* A G2 Gateway bridge can invoke user-written G2 procedures or methods of
G2 objects.

89

90

Kinds of Data that G2 Can Pass to G2 Gateway

When a G2 procedure invokes a G2 Gateway local function, it can pass the
following kinds of data to the local function:

Variable or parameter, or simple values such as float or int, whether
directly computed or as the value of a G2 variable or parameter.

References to items, including both items that inherit from the object class and
those that do not.

Copies of items, including both items that inherit from the object class and
those that do not.

Kinds of Data that G2 Gateway Can Pass to G2

When a G2 Gateway bridge invokes a G2 procedure or method, it can pass the
following kinds of data to the procedure or method:

Variable or simple values whose types map to G2, such double or C integer
types.

References to items all classes, including both items that inherit from the
object class and those that do not.

Copies of data structures, which G2 uses to create instances of existing G2
classes. These can be either:

- Data structures that your G2 Gateway user code allocates by calling the
API functions gsi make item(), gsi_make items(), gsi make array(),
gsi_make attrs with items(),or gsi _make attrs(). These become
genuine items when they reach G2, no different from items local to that
G2.

- Data structures that G2 Gateway previously allocated to represent a copy
of an object that it received from G2 through a remote procedure call.

Making Remote Procedure Calls from G2 to the G2 Gateway Bridge

Making Remote Procedure Calls from G2 to the
G2 Gateway Bridge

To enable G2 to make remote procedure calls to G2 Gateway local functions:

1

Write the G2 Gateway local functions that G2 can call or start, making certain
that you include the required arguments.

Declare the G2 Gateway local functions in your bridge user code, using the
API function gsi _rpc declare local () within the gsi set up () callback
function.

For information about how to write and declare local functions, see Writing a
G2 Gateway Local Function to be Called by G2.

In G2, declare each G2 Gateway local function as a remote procedure. For
information about how to do this, see Declaring the G2 Gateway Local
Function in G2.

Write G2 procedures that start or call the G2 Gateway local functions.
G2 procedures start G2 Gateway local functions that do not return data to G2.

G2 procedures call G2 Gateway local functions that return data to the G2
procedures. You can write these G2 procedures to use any data returned by
the G2 Gateway local functions.

Local functions that G2 invokes with either call or start can return error
information to G2, if you code them to call the API function gsi rpc return
error values().

91

The following figure summarizes how G2 can invoke G2 Gateway local functions
as remote procedures.

Invoking G2 Gateway Local Functions from G2

G2 Gateway Bridge value, G2 Process
item,
void gsi_rpc_declare_local handle, Remote Procedure Declaration
(local-function, g2_function_name) or. item for GSI local function with empty
with return value.
handle
-
Local function receives item or data fstarttgctlon invokes GSl local
value from G2. unction.
-
If an error occurs, local function
can call gsi_rpc_return_error
values() to signal error to G2 Error handler procedure of the G2
Brocedure. P procedure, or of a caller of this
procedure, or the default error
handler.
Remote Procedure Declaration for
GSI local function with return value
Local function receives item or data or values.
value from G2. Local function can
call:
gsi_rpc_return_values() to ot call statement in G2 procedure
return a value or values to G2 invokes GSl local function.
procedure. >
gsi_rpc_return_error Error handler procedure of the G2
vaﬁues_() to sig}nal error to G2 - procedure, or of a caller of this
grror object procedure, or the default error
' handler.

Note G2 can make remote procedure calls only to user-defined functions (G2 Gateway
local functions). G2 cannot make remote procedure calls to any of the standard
functions provided with G2 Gateway.

Making Remote Procedure Calls from G2 to the G2 Gateway Bridge

Writing a G2 Gateway Local Function to be Called
by G2

Each G2 Gateway local function that you want to call from G2 must have the
arguments: rpc_arguments, count, and call_identifier. It can optionally have a
procedure_user_data argument. In the description below, arguments enclosed in
square brackets [] are optional.

The syntax is:

void local_function (procedure_user_data, rpc_arguments,
count, call_identifier)
[gsi procedure user data type procedure_user_data;]
gsi_item *rpc_arguments;
gsi_int count;
gsi_call identifier type call_identifier ;

where:
local_function is the unique name of the G2 Gateway local function.

procedure_user_data is user data that G2 associates with the call to G2
Gateway. For information about the use of the procedure_user_data argument,
see Call Identifiers and Procedure User Data. This argument is enabled only if
the compile time switch GSI USER DATA FOR CALLBACKSis set. This switch is
set automatically if you compile your G2 Gateway application with the GST
USE_USER DATA FOR CALLBACKS C preprocessor flag defined or you use the
corresponding compile time switch. For information about these flags and
options, see Preprocessor Flags and Runtime Options.

rpc_arguments is an array of gsi_item Items passed from G2 to G2 Gateway
are stored as elements of this array.

count is an integer that indicates the number of gsi_itemstructures in the
array.

call_identifier is an integer that G2 generates to identify a particular remote
procedure call to a G2 Gateway local function, within the current context. The
API functions gsi_rpc return values() and gsi rpc return error
values () reference call_identifier to indicate which outstanding remote
procedure call within a specified context to return values to in G2. If the G2
Gateway local function is invoked by a start action in G2, the call_identifier
argument of the local function is set to CALL, HANDLE OF START.

You must declare each receiver function in your header file. As a convenience,
you can use the macro declare gsi rpc local fnto create the appropriate
prototype declaration. The syntax is:

specifier declare gsi rpc local fn(local_function_name) ;

93

94

Note

Note

For example:

static declare gsi rpc local fn(my local function);

If you are using a C compiler that supports ANSI C, these declare- macros
generate prototype declarations for the callbacks; otherwise, Kernighan and
Ritchie style declarations are generated.

The return value of a G2 Gateway local function must be declared void.

Returning Values to G2 Through a G2 Gateway Local Function

When a G2 Gateway local function is invoked by a G2 call action, it can call the
API function gsi_rpc return values () to return values to G2.

If the G2 Gateway local function is invoked by a start action in G2, the local
function should not attempt to return values to G2, because G2 is not expecting it
to return any values. However, the local function can call gsi_rpc return
error values () to signal an error to G2.

The first argument to gsi_rpc return values () is an array of GSI items (type
gsi_item *).To provide this argument, you can either allocate your own GSI
items or reuse the array of GSI items pointed to by the rpc_arquments argument
of the local function. For more information about gsi rpc return values(), see
APT Functions.

If you reuse the item array received by the local function in rpc_arguments to
return items to G2, do not change the values of these items before you finish
reading them, and do not try to add items to rpc_arguments before returning it to
G2. However, you do not need to return all the items that the G2 Gateway local
function received in rpc_arguments.

If you allocate your own GSI items as return values, you must either reclaim them
when you no longer need them, or allocate them once in gsi_set up () and reuse
them repeatedly. If you allocate them in gsi_set up (), the arguments persist
until the bridge process terminates.

Making Remote Procedure Calls from G2 to the G2 Gateway Bridge

The following example illustrates a G2 Gateway local function named addnums
that adds any number of integers and returns their sum to G2:

void addnums (arguments, count, call identifier)
gsi_item *arguments;
gsi int count;
gsi _call identifier type call identifier;
{
gsi int i, sum = 0;
gsi item return value;
gsi item *return value pointer;

return value pointer = gsi_make items(1);
return value = *return value pointer;

for (i = 0; i < count,; i++, arguments++)
sum += gsi int of (arguments) ;

gsi_set int(return value,sum);
gsi_rpc return values (&return value, 1,

call identifier,gsi current context());
gsi reclaim items (return value pointer);

}
In this example, the function addnums calls the following API functions:

®* gsi make items (), which allocates the item pointed to by return value
pointer. G2 Gateway automatically allocates and reclaims data structures
for items that the bridge receives from G2. The gsi make items () function is
included in this example to illustrate how to allocate data structures to
represent values that originate in the bridge or in an external system and were
not previously sent to the bridge by G2.

®* gsi_int of (), which gets the integer values of the items pointed to by
arguments

* gsi set int(), which sets the integer value of return value to the sum of
the integer values in the items pointed to by arguments.

®* gsi rpc return values (), whichreturns the item to the calling procedure in
G2.

®* gsi reclaim items (), which frees the memory allocated by the call to gsi
make items ().

95

96

Setting Behavior for Writing to G2 Lists or Arrays

Two internal G2 Gateway flags determine the behavior of gsi rpc return
values () when it is used to return values to a G2 list or array:

® item append flag.
When this flag is set (turned on), gsi_return values () appends the contents
of a gsi_itemwith a list or array type to values in an existing G2 list or array.
You can turn this flag on and off using the function gsi set item append
flag().

®* update items in list or array flag.
When this flag is set (turned on), the attribute values of items in a G2 list or
array are updated with attribute values of the corresponding items in a list or
array returned to G2 by gsi return values (). You can turn this flag on and
off using the function gsi_set update items in list or array flag().

The default behavior when either of these flags is set is to overwrite the contents
of the G2 list or array.

Declaring the Local Function in Your G2 Gateway
User Code

After you write a G2 Gateway local function, you must declare that function in
your G2 Gateway user code, so that G2 Gateway knows which function to execute
when G2 calls the function.

To declare G2 Gateway local functions, use the API function gsi rpc declare
local (). Call this API function from gsi set up() or from a function called
from gsi_set up().In the description below, arguments enclosed in square
brackets [] are optional. The syntax is:

void gsi rpc declare local (local_function, procedure_user_data,
§2_function_name)
gsi_rpc local fn type *local_function;
[gsi_procedure user data type procedure_user_data ;]
char *¢2_function_name ;

where:
local_function is a pointer to the G2 Gateway local function.

procedure_user_data is user data associated with the call that G2 makes to the
local function. For information about the use of the procedure_user_data
argument, see Call Identifiers and Procedure User Data. This argument is
enabled only if the compile time switch GSI USER DATA FOR CALLBACKSis set.
This switch is set automatically if you compile your G2 Gateway application
with the GSI USE USER DATA FOR CALLBACKS C preprocessor flag defined or
you use the corresponding compile time switch. For information about these
flags and options, see Preprocessor Flags and Runtime Options.

Note

Making Remote Procedure Calls from G2 to the G2 Gateway Bridge

g2_function_name is a string that gives the name of the G2 Gateway local
function. The string must match exactly the string specified in the name-in-
remote-system attribute of the remote procedure declaration in G2.

For example, the following call to gsi_rpc declare local () declares a function
named receive and return copy () as a G2 Gateway local function. In G2, the
name-in-remote-system attribute of the remote procedure declaration that
invokes this procedure is receive-and-return-item-copy.

gsi rpc declare local (receive and return copy,
"RECEIVE-AND-RETURN-ITEM-COPY") ;

It is not necessary to declare G2 Gateway local functions more than once. For this
reason, it is good practice to invoke gsi rpc declare local () inthe gsi set
up () callback function, which is called only once during the life of the G2
Gateway process. For information about gsi_set up(),see gsi_set_up.

Declaring the G2 Gateway Local Function in G2

You must declare the G2 Gateway local function as a remote procedure within
your G2 knowledge base, so that G2 can call or start the function as a remote
procedure. The declaration tells G2 the name of the function, the number and type
of arguments that it requires, and the number and type of values, if any, that it
returns to G2.

To declare the G2 Gateway local function as a remote procedure that you can
invoke from your G2 application:

1 Select KB Workspace > New Definition > remote-procedure-declaration.

2 In the G2 text editor window that appears, create the remote procedure
declaration. The syntax is:

declare remote remote-procedure-name (argument-type(s)) =
(return-type(s))

where:

remote-procedure-name specifies the name of the G2 Gateway local
function, as it is known in G2. This is the name used in G2 to call or start
the local function. By default, the name you specify here will be
duplicated as a string in upper case letters in the name-in-remote-system
attribute in the attribute table of this remote procedure declaration.

argument-type(s) are the G2 data types of the arguments passed to the
local function. Argument types can be simple data types (float, integer,
truth-value, symbol, or text), compound data types (sequence and
structure), abstract data types (item-or-value, value, quantity), or items. For

97

98

more information about how to specify argument-type(s), see Grammar
for G2 Remote Procedure Argument Declarations.

return-type(s) are G2 data types of the values returned by the function.
Return values can be item classes, as handles or objects, or data types of
float, integer, truth-value, symbol, or text.

For example:

declare remote addnums(integer, integer) =
(integer)

In this example, the name of the G2 Gateway local function declared as a
remote procedure in G2 is addnums. The two arguments and the return value
of the remote procedure are declared as integer values. The local function
must call the G2 Gateway API function gsi rpc return values () to return
the integer value to the calling procedure in G2.

For more information about declaring a G2 Gateway local function as a
remote procedure, see the discussion of the G2-to-G2 interface in the
G2 Reference Manual.

Display the attribute table of the remote procedure declaration to set the
name-in-remote-system attribute to a string that specifies the name of the
local function in G2 Gateway. For example:

ADDNUMS, a remote-procedure-declaration

Notes | OK

Authors | jtb (7 Jun 1997 8:42 a.m.)

Change log | 0 entries

Item configuration | none

declare remote addnums(integer, integer) =
(integer)

Name in remote system | "ADDNUMS"

The name-in-remote-system string must be identical to the ¢g2_function_name
argument of the gsi rpc declare local () function called in the G2
Gateway user code to declare the local function. You must enclose the string
in double quotation marks (“*).

For detailed information about how to declare a remote procedure, see the
G2 Reference Manual.

Making Remote Procedure Calls from G2 to the G2 Gateway Bridge

Caution If you start the remote procedure, be careful not to modify or delete any G2 item
that you are passing through the remote procedure call until the item has been
successfully passed to G2 Gateway. If you modify the item before it is fully
passed, it may be passed with some of your modifications. If you delete the item
before it is passed, the item may not be passed successfully, with unpredictable
results.

To avoid this problem, call the remote procedure (rather than start it), and call
gsi_rpc return values () in your bridge to send an acknowledgment to G2
indicating that the item has been received. When G2 receives the
acknowledgment, it is safe to modify or delete the item. To send the
acknowledgment, you can use a call of the form:

gsi _rpc return values (NULL PTR, 0, call identifier,
gsi current context());

Grammar for G2 Remote Procedure Argument
Declarations

G2 remote procedure declarations enable you to specify the following
information about remote procedure calls:

® The number and type of the arguments passed to the local function in
G2 Gateway.

® The number and type of the values returned to G2 by the local function.

Specifying the Data Type of Arguments in the Remote Procedure Call

For the data types of arguments to remote procedure calls, you can specify the
following G2 data types:

* Simple data types (float, integer, truth-value, symbol, or text)
* Compound data types (sequence and structure)
* Abstract data types (item-or-value, value, quantity)

* Jtems

99

100

A G2 application can send G2 items with their attributes to the G2 Gateway
bridge. G2 can pass items through arguments of any type except the simple data
types. Note that:

* Anitem-or-value can be an item, a value, a sequence, or a structure.
* A value can be a sequence, a structure, or any other value.

* A sequence or structure can contain items, any value types, or any other
sequence or structure.

When you declare an argument of any data type through which you can pass
items, you can include item-passing grammar that enables you to specify:

* Whether to pass a copy of the item, only a handle that refers to the item, or a
copy with a handle.

* If you are passing a copy, which attributes of the copy to pass.

The following figure illustrates the item-passing grammar that you can use in G2
remote procedure declarations:

Item-Passing Grammar for G2 Remote Procedure Declarations

as handle
all system attributes
including < the system attribute(s)...
only the user attribute(s).
with handle
item-or-value excluding the user attribute(s)...
value
structure
sequence
class class-name all system attributes
the system attribute(s)...
including
only the user
attribute(s)...
excluding the user attribute(s)
Argument types Item-passing grammar

Making Remote Procedure Calls from G2 to the G2 Gateway Bridge

If you do not specify any item-passing grammar, the item is passed by default as a
copy, with no handle, with all of its user-defined attributes, and with none of its
system attributes.

The following table lists the elements of item-passing grammar and describes
their meanings:

Elements of Item-Passing Grammar

Grammar Meaning

as handle Pass only a reference to the item. Do not pass a copy of
the item, or any attributes of the item.

Note: When you pass a sequence or a structure using
as handle, the sequence or structure itself is passed as
a copy, and each item contained in the sequence or
structure is received by G2 Gateway as a gsi_item
with the G2 Gateway type tag GSI HANDLE TAG. A
sequence or a structure that is contained within the
attribute of another sequence or a structure is
processed in exactly the same way as the outer,
containing sequence or a structure: the embedded
sequence or structure is passed as a copy, and any
items that it contains are passed as items that have the
G2 Gateway type tag GSI _HANDLE TAG.

with handle Pass both a copy of the item as of the time of the call
and a reference to it.

101

102

Note

Elements of Item-Passing Grammar

Grammar Meaning

including Specifies the attribute or attributes to pass when you
pass a copy of an item. The following grammar
enables you to specify which attributes are passed:

¢ all system attributes

Pass only the system attributes of the item. By
default, no system attributes are passed. For
information on system attributes see the

G2 Reference Manual.

¢ the system attribute(s)

Pass only the system attribute or attributes that
you specify by name.

* only the user attribute(s)

Pass only the user attributes that you specify by
name. By default, all user attributes are passed.

excluding the Specifies the user -defined attributes that are not
user attributes passed. By default, all user attributes are passed.

The item-passing grammar with handle can be used only following class
classname, and cannot be used to pass sequence or structure types.

For example, the following remote procedure declaration passes an item-or-value
object with no system attributes and all user-defined attribute except temperature,
pressure, and volume:

declare remote tank-data-function(item-or-value
excluding the user attributes: temperature, pressure, volume) = (integer)

For more information about G2 remote procedure declarations, see the
G2 Reference Manual.

Passing Attributes of Structures and Sequences

All attributes of any structure or sequence are passed with the structure or
sequence; you cannot select which attributes to pass. However, for those
attributes of the structure or sequence that are items in G2, you can specify which
attributes of the items in the structure or sequence are passed with those item. To
do this, you use the item-passing grammar for remote procedure declarations.

Caution

Note

Making Remote Procedure Calls from G2 to the G2 Gateway Bridge

For example, the following remote procedure declaration specifies that all system
attributes of each item in a sequence are passed to G2 Gateway with that
sequence:

declare remote tanks-array-function(sequence
including all system attributes) = (integer)

Invoking the G2 Gateway Local Function from G2

G2 can make a remote procedure call to any of your G2 Gateway local functions,
either by a call statement or by a start action. G2 supports up to 4096 simultaneous
outstanding calls.

Invoking a G2 Gateway Local Function that Returns Values to G2

If the G2 Gateway local function in the bridge user code is to return values to G2,
it should be invoked from G2 by a call procedure statement. The call statement
can be used only in G2 procedures.

Do not use the start action to invoke a G2 Gateway local function that needs to
return a value to G2.

After G2 executes the call statement within a procedure, the procedure waits
indefinitely for the function accessed by the remote procedure call to complete
and return a value. When the calling procedure receives the return value, it
resumes execution. If G2 Gateway returns an error through gsi return timed
values (), G2 looks for an error handler. If G2 Gateway closes the connection over
which the remote procedure call was made, G2 aborts the calling procedure.

If the remote procedure call is one branch of a do in parallel [until one completes]
statement, and the other branch statement finishes first, G2 may abort the remote
procedure call but continue to process the calling procedure. If that happens, data
is not returned from the remote procedure call.

The call statement in G2 has the same priority as the procedure that contains it.
This priority has no effect on calls when they are handled by the bridge process.

The syntax is:
[x, y ...] = call remote-procedure-name (arguments) across gsi-interface-object
where:

x, y are names of G2 objects (such as GSI variables) in which G2 places the
values returned by the called G2 Gateway function. The number and order of
the objects [x, y...] must match the number and order of the values returned. If
any objects are returned, they will be transient within G2. To prevent a
memory leak, you must either delete them or make them permanent.

103

104

Note

remote-procedure-name is the name of the remote procedure declaration
specifying the local function called by your G2 Gateway bridge.

arguments are the supplied argument(s) used by the called function. Separate
the arguments with commas.

gsi-interface-object is the name of the GSI interface used by G2 to connect to
the bridge.

An example is:
sum = call addnums (integer1, integer2) across interface-10

In this example, sum, integer1, and integer2 are local variables in the G2
procedure, addnums is the name of the remote procedure declaration that
specifies the G2 Gateway local function in the bridge that is called by G2, and
interface-10 is the name of the GSI interface used by G2 to access the bridge.
When addnums completes, it returns a value to sum.

If you use a G2 call statement to call a G2 Gateway local function that does not
return values, you should include in the local function a call to the API function
gsi_rpc return values (), with a 0-length argument list.

Invoking a G2 Gateway Local Function that Does Not Return Values
to G2

If the G2 Gateway local function in the G2 Gateway user code does not return
values to G2, use a G2 start action to invoke the function. You can use start actions
in both rules and procedures.

When G2 uses a start action to invoke a G2 Gateway local function, G2 continues
to execute the rule or procedure that contains the start action, without waiting for
the started function to complete. This is true even if the function does not exist or
if an error occurs in starting the function. If an error occurs, it can be recorded on
the Operator’s Logbook.

Use this syntax to start a local G2 Gateway function:
start remote-procedure-name (arguments) across gsi-interface-object(s)
where:

remote-procedure-name is the name of the remote procedure declaration that
specifies the local G2 Gateway function called by G2.

arguments are the arguments passed to the G2 Gateway procedure. Use
commas to separate arguments.

gsi-interface-object is the name of the GSI interface used by G2 to connect to
the bridge, or a list or array of GSI interface objects across which you can
broadcast the start action. The list or array can contain g2-to-g2-data-interface
and/or gsi-interface objects in any combination.

Making Remote Procedure Calls from G2 to the G2 Gateway Bridge

For example:
start sendnums (integer1, integer2) across interface-10

where integer1 and integer2 are variables in the G2 knowledge base, sendnumsy()
is the name of the remote procedure declaration for the function in the bridge that
is called by G2, and interface-10 is the name of the GSI interface used by G2 to
access the bridge. sendnums() does not return a value to G2.

Alternatively:
start rem-procs (10) across interface-array
which starts rem-procs with the argument 10 across every interface in interface-
array.
Enhancing Performance when Using the start Action

A broadcast start can execute several times faster than a series of single starts. This
improvement requires changes that are not available in versions of G2 and G2
Gateway prior to 5.1. It also requires that a connection not use message
interleaving, as described in “

To maximize the performance of a broadcast start:
* Specify only interfaces to G2 or G2 Gateway Version 5.1 or higher.
® Use only interfaces that do not use message interleaving.

If either of these rules is violated, the broadcast start will execute correctly, but its
performance advantage will not be fully realized.

Passing a Varying Number of Arguments to the
Same G2 Gateway Local Function

Your G2 application may need to make remote procedure calls with varying
numbers of arguments to the same G2 Gateway local function. Every G2 Gateway

local function has a count argument indicating the number of arguments that it
receives from G2 in any particular call.

105

106

Note

If your G2 application needs make calls to the same local function with varying
numbers of arguments, you can either:

* Make a single G2 remote procedure declaration that passes a varying number
of arguments to the G2 Gateway local function. To do this, use the
all remaining grammar to allow the remote procedure declaration to accept a
varying number of arguments. Declare the all remaining arguments to be of
the type quantity, value, or item-or-value.

For example, the following remote procedure declaration accepts an integer
argument and a text argument, followed any number of arguments that are
declared item-or-value:

declare remote my-rpc (integer, text, all remaining item-or-value) = (integer)

* Make several different G2 remote procedure declarations, each of which
passes a different, but fixed, number of arguments to the G2 Gateway local
function.

In each G2 remote procedure declaration, specify a different remote-
procedure-name value and a different number of arguments, but specify the
same string in the name-in-remote-system attribute.

For example, if your G2 Gateway user code includes a local function that can
find the sum of any number of values received as arguments, you can create
several remote procedure declarations for this G2 Gateway local function. The
remote procedure declarations specify different numbers of arguments, but
they all specify the same string in their name-in-remote-system attributes. The
G2 Gateway local function can find the sum of the arguments passed to it by
G2 through any of these remote procedure declarations.

How a Local Function Can Process Argument
Arrays Received from G2

In G2 Gateway, a G2 item is represented by a gsi_itemstructure. The user-
defined attributes of the G2 item are represented by an array of gsi_attr
structures; each element of this array represents one attribute. Each element has
the same data type as the G2 item attribute that it represents.

To access gsi_itemor gsi_attr structures, your user code must call API
functions provided with G2 Gateway. For example, it can call gsi_attrs of () to
get the attributes of a gsi_itemstructure, gsi_attr name of () to get the name of
a gsi_attr structure, and other API functions to get similar kinds of information.
For information about these API functions, see API Functions..

Your user code cannot access gsi_itemor gsi_attr structures directly. It must
use the API functions provided with G2 Gateway.

Making Remote Procedure Calls from a G2 Gateway Bridge to G2

To process each element of the array that is received as arguments, the G2
Gateway local function can:

Find out whether the element corresponds to a G2 item, using the API
function gsi_is item().

If the element corresponds to a G2 item:

Invoke gsi_attr count of (), which returns the number of attributes in
the item.

Invoke gsi_attrs of (), which returns an array containing the attributes
of the item. You can use the value returned by gsi_attr count of () as
the size of this array.

Loop over the array of attributes, using gsi is item() to determine
whether each subattribute corresponds to a G2 item, and then process the
attribute accordingly.

For example, if gsi_is itemis true of an attribute, you can use gsi
attrs of () to return its attributes to an array, and then loop over the
elements of this array to process them as your application requires. If the
attribute is a constant value, the G2 Gateway local function can evaluate
and use the attribute value as your application requires.

If the element is a not a G2 item, the G2 Gateway local function can evaluate
and use the value as your application requires.

Making Remote Procedure Calls from a
G2 Gateway Bridge to G2

Your G2 Gateway bridge user code can make remote procedure calls to user-
defined G2 procedures and to methods of user-defined G2 classes.

To enable your G2 Gateway bridge to make remote procedure calls to a G2 KB:

1

Write the G2 procedures or G2 object methods that the G2 Gateway bridge
can call.

No special configuration is required in G2 for these procedures or methods.

In your G2 Gateway user code, declare the G2 procedures or methods as
remote procedures, by calling gsi_rpc declare remote() or gsi_rpc
declare remote with error handler and user data ()within the gsi
initialize context () callback function.

107

108

For each procedure or method that you declare, you must create a global
variable called a function handle. The type of a function handle variable must
be gsi function handle type. The function handle holds a pointer to your

receiver function (see below).

Your G2 Gateway user code can use the API function gsi rpc start() to
invoke a G2 procedure or method that does not return values to the bridge, or
gsi rpc call()or gsi_rpc call with count () toinvoke a G2 procedure
or method that returns values to the bridge.

If a G2 procedure or method that your bridge invokes as a remote procedure
is to return values to the G2 Gateway bridge, you must write a function in
your G2 Gateway user code that can receive these return values from G2.

Such a function is called a receiver function.

Making Remote Procedure Calls from a G2 Gateway Bridge to G2

The following figure summarizes how a G2 Gateway bridge can invoke G2

procedures and methods:

Invoking G2 Procedures or Methods from a G2 Gateway Bridge

G2 Gateway Bridge

gsi_function_handle_type
function-handle;

gsi_rpc_declare_remote

(function_handle, g2_function,
receiver_function, arg_count, return_count,
context)

gsi_rpc_declare_remote_with_error
_handler_and_user_data (function_handle,
g2_function, receiver_function, error_
handler, user_data, arg_count, return_count,
context)

gsi_rpc_call (function-handle,
arguments, context)

value,
item,
handle,
or item
with
handle.

-

receiver_function, a GSI user function,
receives value returned by G2.

G2 Process

g2-function, a user-defined
G2 procedure or method of
G2 object, receives value
from G2 Gateway.

return statement in

Error receiver function, invoked to handle
errors from g2-functions declared with gsi_
rpc_declare_remote_with_error_handler_
and_user_data().

Standard error handler, invoked to handle
errors from g2-function declared with gsi_
rpc_declare_remote().

g2-function can
return value to
receiver_function.

™

gsi_rpc_start (function-handle, arguments,
context)

g2_function, a user-
defined G2 procedure or
method of G2 object,
receives value from G2
Gateway.

109

110

Writing the G2 Procedure or Method to be Invoked
by G2 Gateway

To write G2 procedures or methods to be invoked by G2 Gateway, you can use
the same syntax that you use to write any other G2 procedures or methods. For
information about how to write G2 procedures and methods, see the G2 Reference
Manual.

The following example illustrates a G2 procedure that you can declare as a remote
procedure in the bridge:

display-new-alarm(new-alarm: class alarm)

begin
transfer new-alarm to the workspace of the item
superior to this workspace at (alarm-x-pos,
alarm-y-pos);

end

The following sections illustrate how to declare a G2 procedure or method as a
remote procedure in the bridge.

Declaring the Remote Procedure in the Bridge

Recall that local functions are cross-context and can therefore be declared in gsi
set up() but remote declarations are context-specific and are better declared in
gsi initialize context().

You must declare G2 procedures and methods to which the bridge makes remote
procedure calls, using the API function gsi rpc declare remote() or gsi_rpc
declare remote with error handle and user data (). The first argument,
function_handle, points to a global variable that enables the bridge to identify the
remote procedure or method. In your G2 Gateway user code, you must create a
function handle for each G2 procedure or method that you declare as a remote
procedure.

Creating a Handle for the Remote Procedure

The G2 Gateway bridge process needs a gsi_function handle type global
variable, or handle, to identify each G2 procedure or method that it invokes as a
remote procedure. For each handle that you need, include a declaration of the
handle in your user code before you use the handle in declaring or invoking the
remote procedure. The syntax is:

gsi function handle type handle;

where handle is the name by which the user code refers to the G2 procedure or
method.

Making Remote Procedure Calls from a G2 Gateway Bridge to G2

For example, if the name that you want to use in your user code to refer to the G2
procedure is display new alarm, you can declare the handle as:

gsi function handle type display new alarm;

If you want to declare a G2 procedure as a remote procedure for use in more than
one context, you can declare an array of gsi function handle type, and use the
number of the current context to index the array. This takes advantage of the fact
that context numbers are contiguous integers, suitable for such array indices.

Using gsi_rpc_declare_remote() and gsi_rpc_declare_remote_with_
error_handler_and_user_data()

To declare the G2 procedure or method as a remote procedure, include a call to
the G2 Gateway API function gsi_rpc declare remote() or gsi_rpc declare
remote with error handler and user data () once for every context in which
the remote procedure is used. To do this, include the calls to these API functions

in gsi_initialize context (), which is called each time a new context is
established.

The syntax of gsi_rpc declare remote() is:

void gsi rpc declare remote (function_handle,
g2_function_name , receiver_function, procedure_user_data,
argument_count ,return_count, context_number)
gsi_function handle type *function_handle;
gsi_char *¢2_function_name;
gsi_rpc receiver fn type *receiver_function;
[gsi procedure user data type procedure_user_data;]
gsi_int argument_count;
gsi_int return_count;
gsi_int context_number;

where:

function_handle is a pointer to a global variable used in the G2 Gateway user
code to identify the G2 procedure or method.

§2_function_name is the name of the G2 procedure or method as it is known
in G2. This string must be enclosed in double quotation marks (“*), and must
match the format of the procedure as it appears in G2.

If g2_function_name refers to a method of a G2 object, you can specify the
method either by its name alone (generically), or by its name prefixed with the
name of its class followed by two colons (directly). For example, you can
specify the method fill of a G2 class flask as "FILL" (generically) or as

"FLASK: :FILL" (directly). For more information about how to invoke G2
methods, see the G2 Reference Manual. For more information about how to
invoke a method, see Invoking Methods of G2 Items from G2 Gateway.

111

112

receiver_function is a pointer to the receiver function that receives values
returned by the G2 procedure to the bridge, or NULL PTRif no values are
returned.

procedure_user_data is user data associated with this remote procedure call to
G2. Procedure user data can be associated with the call only if the compile
time switch GSI USER DATA FOR CALLBACKSis set. This switch is set
automatically if y you compile your G2 Gateway application with the GSI USE
USER DATA FOR CALLBACKS C preprocessor flag defined or you use the
corresponding compile time switch. For information about these flags and
options, see Preprocessor Flags and Runtime Options.

argument_count is the number of arguments passed to the remote procedure.

return_count is the number of values returned by the remote procedure to the
bridge.

context_number is the context used by this function. The context identifies one
particular connection to G2.

An example of a call to gsi_rpc declare remote() is:

gsi rpc declare remote (&display new alarm,
“DISPLAY-NEW-ALARM”, NULL PIR, 1, O,
gsi_current context());

The G2 procedure is known in G2 as display-new-alarm. In your bridge user code,
you can refer to the procedure using the handle variable display new alarm.

The API function gsi_rpc declare remote with error handler and user
data () is similar to gsi_rpc declare remote(), but in addition it allows user
data to be associated with this remote procedure call, and specifies an error
receiver function that receives error values returned by the G2 procedure. The G2
procedure can signal error values to the error receiver function if it is invoked
with gsi_rpc call (), but not if it is invoked with gsi rpc start ().

Invoking Methods of G2 Items from G2 Gateway

When you use gsi_rpc call () or gsi_rpc start () to invoke a method of a G2
item, the first argument included in the list of arguments (gsi_item*arguments)
passed to the G2 method must be the G2 item whose method is invoked.

This first argument passed to the G2 method can be either:

®* agsi itemwith GSI HANDLE TAGfor its type tagcomponent, to reference
the G2 item by handle. This call invokes the G2 method but does not pass
attribute data to the G2 item.

®* agsi itemwithavalid G2 class name for its class name component. This
call causes G2 to create a new G2 item of the specified class, and passes
attribute data to the specified method of that item.

Making Remote Procedure Calls from a G2 Gateway Bridge to G2

Defining a Function to Receive Values Returned
by G2

When the bridge process invokes a G2 procedure, it does not wait for the G2
procedure to complete and return values before continuing with processing. To
make it possible for G2 to return values to the bridge, you must create a function
in your G2 Gateway user code known as a receiver function to receive values
from G2.

When the G2 procedure called by G2 Gateway has completed execution, G2 sends
its return value to G2 Gateway, which causes G2 Gateway to invoke the receiver
function. The receiver function then receives the return value.

The receiver function can perform any operations necessary for the application,
including evaluation of the data returned by G2.

The syntax for a receiver function is:

void receiver_function (procedure_user_data, arguments,
count, call_identifier)
gsi_procedure user data type procedure_user_data ;
gsi_item *arguments;
gsi int count;
gsi call identifier type call_identifier ;

where:
receiver_function is the unique name of the receiver function.

procedure_user_data is procedure user data associated with the call that G2
makes to the receiver function. The receiver function can receive procedure
user data only if the compile time switch GSI USER DATA FOR CALLBACKSis
set. To set this switch, you must compile your r G2 Gateway code with the GSI_
USE_USER_DATA_FOR_CALLBACKS C preprocessor flag defined or use
the corresponding compile time switch. For information about these flags and
options, see Preprocessor Flags and Runtime Options.

arguments is an array of gsi_item which contains the data values that G2 is
returning to the bridge process.

count is an integer specifying the number of values in the arguments array.

call_identifier is a user-specified call identifier value that G2 Gateway
associated with its call to the G2 procedure and that G2 associates with its
return call to the receiver function. The receiver function can receive a call
identifier only if the compile time switch GSI USER DATA FOR CALLBACKSis
set. To set this switch, you must compile your G2 Gateway code with the GSI_
USE_USER_DATA_FOR_CALLBACKS C preprocessor flag defined or use
the corresponding compile time switch. For information about these flags and
options, see Preprocessor Flags and Runtime Options.

113

114

Note

Note

You can enable procedure_user_data and call_identifier using the compile time
switch GSI USER DATA FOR CALLBACKS. This switch is set automatically if you
compile your G2 Gateway application with the GSI USE USER DATA FOR
CALLBACKS C preprocessor flag defined or you use the corresponding compile
time switch. For information about preprocessor flags and runtime options, see
Preprocessor Flags and Runtime Options.

You must declare each receiver function in your header file. As a convenience,
you can use the macro declare gsi rpc receiver fnto create the appropriate
prototype declaration. The syntax is:

specifier declare gsi rpc receiver fn(receiver_function_name);
For example:

static declare gsi rpc receiver fn(my receiver function);

If you are using a C compiler that supports ANSI C, these declare- macros
generate prototype declarations for the callbacks; otherwise, Kernighan and
Ritchie style declarations are generated.

Defining a Function to Receive Error Values
Returned by G2

When you declare a G2 procedure as a remote procedure that can be invoked by
the G2 Gateway bridge, you can specify an error receiver callback function in the
bridge to which G2 can signal error values in the case of an error. To do this, you
must:

® Use the API function gsi _rpc declare remote with error handler and
_user data () to declare the G2 procedure as a remote procedure For
information about this function, see gsi_rpc _declare remote with
error handler and user data.

* Write an error receiver callback function in your G2 Gateway user code to
which the remote G2 procedure can signal error values.

The error receiver function can perform any operations necessary for the
application, including examination of the error data returned by G2. The error
receiver function can signal an error back to G2 by call the API function gsi rpc
return error values().

The syntax for an error receiver function is:

void error_handler (arguments)
gsi_item *arguments;

Making Remote Procedure Calls from a G2 Gateway Bridge to G2

where:
arguments can be either:
®* agsi itemrepresenting an error object in G2.

* asymbolic-expression and a text-expression, similar to the arguments of the
signal G2 procedure statement.

These arguments are identical in meaning to the error_arguments in a call to
gsi_rpc return error values (). For more information about these
arguments, see gsi_rpc_return error values.

For information about how to write error receiver functions, see Callback
Functions.

Invoking the Remote G2 Procedure

After you declare remote procedures with gsi rpc declare remote(), you can
invoke them using the API functions gsi rpc call(), gsi rpc call with
count (), and gsi_rpc start().

A G2 Gateway function containing a call to gsi_rpc call(), gsi rpc call
with count (), or gsi rpc start () continues after it executes the call, and does
not wait for the remote procedure in G2 to complete.

A remote G2 procedure invoked by gsi_rpc start () does not return values, so
your G2 Gateway user code does not need to include a corresponding receiver
function.

Calling a G2 Procedure that Returns Values to the Bridge

Use gsi_rpc call()or gsi rpc call with count () if the procedure in G2 is to
return values to the bridge. For detailed information about gsi_rpc call () and
gsi _rpc _call with count (), see API Functions.

gsi_rpc call() and gsi rpc call with count () return immediately and do
not wait for return arguments. The remote procedure in G2 is executed as soon as
G2 receives the remote procedure call from G2 Gateway.

An example of a call to gsi_rpc call() is:

gsi rpc call (display new alarm, alarm args,
gsi current context());

In this example, the handle of the remote procedure passed is display new
alarm and the pointer to the array of arguments is called alarm args.

Your bridge user code must include a receiver function to accept the values
returned to G2 Gateway by the remote procedure in G2. You specify the receiver
function in the remote procedure declaration of the G2 procedure. For
information about how to write receiver functions, see Defining a Function to
Receive Values Returned by G2.

115

116

Note The receiver function is called only within the gsi run Ioop () call tree. If you are

running your G2 Gateway bridge in one-cycle mode, you must call gsi_run
loop () to ensure that the receiver function is called.

Starting a G2 Procedure that Does Not Return Values to the Bridge

Use gsi_rpc start () if the remote G2 procedure does not return values to the
bridge.

An example of a call to gsi_rpc start() is:

gsi rpc start(start timer, timer args,
gsi_current context());

In this example, the handle of the remote G2 procedure is start timer, and the
pointer to the array of arguments is called timer args.

Passing Items from a G2 Gateway Bridge to G2

A G2 Gateway bridge typically sends data to a G2 application at the request of an
external system. The bridge process can invoke a G2 Gateway user function to
send an item and its attribute values to G2. The user function must do the
following:

® Assemble the data to be passed to G2 into an array of gsi itemstructures.
The gsi_itemstructures must correspond to existing class-definitions in G2.
To do this, your G2 Gateway user code must:

- Allocate an array of the gsi itemstructures that you want to pass to G2.
To do this, invoke some combination of the API functions gsi make
items (), gsi_make attrs(),or gsi make attrs with items().

- Invoke gsi_set class name() to set the class name component of each
gsi_itemstructure in the array that you allocated. Set the class name of
each gsi_itemto the name of an existing item definition in G2.

gsi_set class name () does not reset the data type of the gsi item If the
gsi_itemstructure was previously used, its G2 Gateway type tag may not
be appropriate for the class to which you are setting it. In this case, you
must reset the type of the gsi itemto a G2 Gateway data type that is
appropriate for the class. For a list of the API functions that set the types of
G2 Gateway structures, see gsi_set_type. For information about the G2
Gateway type tags that correspond to G2 data types, see G2 Data Types
and G2 Gateway Type Tags.

- Populate the array with the items to be passed.

Note

Making Remote Procedure Calls from a G2 Gateway Bridge to G2

* Invoke gsi rpc call(), gsi rpc call with count(),or gsi_rpc start()
to pass the array of items to G2. If you have set gsi_use data for
callbacks, a call to any of these functions should specify the call_identifier
value used in the call to your receiver function.

® Reclaim the items that you passed to G2. To do this, invoke the API functions
gsi reclaim items(), gsi reclaim attrs(),or gsi_reclaim attrs with
items (), depending on how the items were created.

When G2 receives a gsi_itemstructure, it creates an item of the class specified by
gsi_set class name (), in exactly the same way that a create action creates an
item. Attributes for which G2 Gateway does not send values are given the default
values in the specified G2 item definition.

Returning G2 Items from G2 Gateway Back to G2

To enable a G2 Gateway bridge to pass items back to a G2 that originated there,
the API functions gsi_return values(), gsi_return attrs(), gsi return
timed values(),and gsi return timed attrs() accept gsi itemin their first
argument. The gsi itemmust represent an item that G2 passed to the bridge
through a remote procedure call declared in G2 with the with handle grammar.

Thus, these API functions can be invoked with the following arguments:

void gsi return values (gsi_items, count, context_number)

void gsi return attrs (registered_item, attributes, count,
context_number)

void gsi return timed values (registered_items, count,
context_number)

void gsi return timed attrs (registered_item, attributes, count,
context_number)

where gsi_item or gsi_items refers to items passed to the bridge by G2 through
remote procedure calls declared using the with handle grammar.

These API functions can still be invoked with a gsi registered itemas their
first argument, as in previous releases.

Attributes Passed with Items

The functions gsi_return values(), gsi_return attrs(), gsi_return timed
values(),and gsi_return timed attrs() canreturn the following attributes of
an item (represented by a gsi_itemstructure) to G2:

® User-defined attributes, including attributes that are class-qualified.

To exclude certain user-defined attributes, use gsi_set rpc remote return
exclude user attrs.

117

118

Note

Note

* System-defined attributes exported to the bridge by G2.

To specify the system-defined attributes to include, use gsi_set rpc
remote return include system attrs. To specify the system-defined
attributes to exclude, use gsi set rpc remote return include all
system attrs except.

* A gsi_attr marked with an index value that specifies the location in a G2
item-array into which the item in the gsi_attris to be placed.

You can set the index value of a particular element of the attribute array by
calling gsi set attr array index(). Array indexes start at 0. For example,
agsi_attrwithina gsi_itemof class float-array whose index is 3 refers to the
fourth element of that array in G2.

Passing Network Handles as the Class in RPCs

You can pass the network handle of an item as an argument to an RPC in a G2
Gateway bridge, where the receiving procedure in the local G2 expects an item,
and G2 attempts to replace the handle with the item before calling the procedure.
If G2 does not find an item with that network handle, or if the handle is not of the
class the procedure is expecting, it signals a type-mismatch error to the caller.

To call a G2 procedure with a network handle in order to rendezvous with an
item, the procedure must declare its argument type to be a class of item; the
procedure cannot declare it to be an item-or-value.

To use this feature, you must register the item in the local G2 and pass the local
network handle as the argument to the RPC. For example, you might register a
number of items in the local G2 and pass a list of network handles to the G2
Gateway bridge, which can then be used to call a procedure remotely in the
originating G2 where item rendezvous can now occur.

Making Remote Procedure Calls from a G2 Gateway Bridge to G2

This figure illustrates how item rendezvous occurs when passing network
handles:

-

~

4 Local G2 N G2 Gateway
Item must Remote
Item >
be registered it Procedure
in local G2. em Declaration
for receiver

-

receiver(itm: class item)

begin -

=3 | Receiving
=3 | procedure

Procedure sending
the network handle

network registration

/ handle in local G2 \ /

Example of Passing Handles as the Class

For example, in the local G2, suppose you have an item named con-post that you
want to pass as the argument to a procedure named receiver, which you are
calling from a G2 Gateway bridge:

Local G2
—
i |
Y
CON-POST _—
RECEIVER

Here is the receiver procedure in the local G2, which takes an item as its argument
and simply posts the name of the item to the Message Board. Notice that the
procedure argument is declared to be a class of item, not item-or-value.

receiver(i: class item)

begin

post "received an item named [the name of i]";
end

In the G2 Gateway bridge, you would define a GSI interface and declare the
remote procedure. Note that the remote procedure declaration takes as its

119

120

Note

argument a value, which is the argument type that is being passed to the RPC in
the remote G2, namely, a network handle.

In the G2 Gateway bridge, you can make a remote procedure call to receiver,
passing the network handle as the argument, in this case, the integer 1. Note that
this integer is the network handle of the item registration in the local G2, which
you must generate locally and pass to the G2 Gateway bridge.

Here is the send-handle procedure, which makes the remote procedure call,
passing the network handle as the argument, instead of the item:

send-handle(handle: integer)

begin

call receiver(handle) across interface;
end

Calling receiver across the GSI interface replaces the network handle with the
item, which posts the name of the item in the Message Board:

Local G2

#8 43852 pm. received an item named
CON-POST

Passing UUIDs Referring to Iltems in RPCs

You can pass the text of the UUID of an item as an argument to an RPC in a G2
Bridge, where the receiving procedure in the local G2 expects an item, and G2
attempts to replace the UUID with the item before calling the procedure. If G2
does not find an item with that UUID, or if the UUID is not of the class the
procedure is expecting, it signals a type-mismatch error to the caller.

To call a G2 procedure with a UUID in order to rendezvous with an item, the
procedure must declare its argument type to be a class of item; the procedure
cannot declare it to be an item-or-value.

Making Remote Procedure Calls from a G2 Gateway Bridge to G2

This figure illustrates how item rendezvous occurs when passing UUIDs:

receiver(itm: class item)

Local G2 \ G2 Gateway

e > Remote
Item Procedure

| .
tem Declaration
for receiver

=3 | Receiving
—3z | procedure

Procedure sending
the UUID

begin -
s UuID

/ = /

Example of Passing UUIDs Referring to Items

For example, in the local G2, suppose you have an item named con-post that you
want to pass as the argument to a procedure named receiver, which you are
calling from a G2 Gateway bridge:

Local G2
—
i |
Y
CON-POST _—
RECEIVER

Here is the receiver procedure in the local G2, which takes an item as its argument
and simply posts the name of the item to the Message Board. Notice that the
procedure argument is declared to be a class of item, not item-or-value.

receiver(i: class item)

begin

post "received an item named [the name of i]";
end

In the G2 Gateway bridge, you can make a remote procedure call to receiver,
passing the text of the UUID as the argument. Note that the remote procedure

121

Note

declaration takes as its argument a value, which is the argument type that is being
passed to the RPC in the G2 Gateway bridge, namely, a UUID.

You can also pass the UUID in compressed format; however, note that you cannot
see the value of the UUID in compressed format like you can the text format.

Here is the send-uuid procedure, which makes the remote procedure call, passing
the UUID as the argument, instead of the item:

send-uuid(uuid: text)

begin

call receiver(uuid) across interface;
end

Calling receiver across the GSI interface replaces the UUID with the item, which
posts the name of the item in the Message Board in the local G2:

Local G2

#8 43852 pm. received an item named
CON-POST

Developing a Bridge Using Only Remote
Procedure Calls

122

To build your G2 Gateway application, relying on only RPCs to handle events or
transfer data between G2 and the bridge, the minimum that you must include in
your application is as follows:

e InG2:

- Create and configure one GSI interface for each connection that G2 needs
to establish to the bridge.

- Declare all of your G2 Gateway local functions (functions that G2 will
invoke as remote) inside the callback function gsi_set up().

- Declare the G2 Gateway local functions as remote procedures that can be
invoked by G2.

* In G2 Gateway:

- Include all of the G2 Gateway callback functions in your G2 Gateway user
code. If you do not modify any of the callback functions for your own use,
you must still include them in their stub form (unmodified, except to
return GSI_ACCEPT or GSI_REJECT).

Call Identifiers and Procedure User Data

- Declare all of your remote procedures (G2 procedures invoked by the
bridge) in gsi _initialize context().

- Declare a global variable of the type functon handle type to identify
each G2 procedure that G2 Gateway invokes as a remote procedure.

Call Identifiers and Procedure User Data

G2 Gateway enables remote procedure calls between G2 and G2 Gateway to
include:

® Procedure user data arguments, which contain values that identify particular
remote procedure declarations in the G2 Gateway user code.

* Call identifier arguments, which contain values that distinguish individual
remote procedure calls from each other.

To enable the use of these arguments, you must compile your G2 Gateway code
with the gsi _use user data for callbacks C preprocessor flag defined or use
the correspondmg compile time switch. For information about the G2 Gateway
preprocessor flags and runtime options, see Preprocessor Flags and Runtime

Options.

Procedure User Data for Remote Procedure Calls

You can associate user data with calls to particular G2 procedures by including a
procedure_user_data argument in the calls. The procedure user data is returned to
G2 Gateway in the first arguments of G2 Gateway local functions, receiver
functions and error receiver callback functions. The procedure_user_data
argument of a remote procedure call can be data of any type.

You can include a user data argument in local functions and receiver functions
only if the compile time switch gsi_user data for callbacksis set. This switch
is set automatically if you compile your G2 Gateway application with the

gsi _use user data for callbacks C preprocessor flag defined or you use the
corresponding compile time switch. For information about these flags and
options, see Preprocessor Flags and Runtime Options.

Declare a procedure_user_data argument as follows:
gsi procedure user data type procedure_user_data
Procedure User Data in Receiver Functions and Error Receiver
Functions

As the first argument of receiver functions and error receiver functions, procedure-
user-data represents a value that was specified by the GSI programmer and
associated with a particular remote procedure declaration, using gsi_rpc
declare remote with error handler and user data().

123

124

Every call that the G2 Gateway bridge makes to a G2 procedure using this
declaration has the specified procedure user data value associated with it; the
procedure user data is, in effect, a label identifying a particular remote procedure
declaration. G2 never examines or uses the procedure user data, but associates it
with any return call that it makes to the receiver function or error receiver
function in the G2 Gateway bridge. The procedure user data then enables the
receiver function or error receiver function to know which G2 Gateway remote
procedure declaration was used to invoke the G2 procedure that is now sending a
response to the receiver function or error receiver function.

Procedure User Data in Local Functions

As the first argument of local functions, procedure user data represents a value
that was specified by the G2 Gateway programmer and associated with a
particular local procedure declaration, using gsi_rpc declare local().

When the local function is invoked by G2, it receives the procedure user data
value specified in the corresponding local procedure declaration. Each local
procedure declaration specifies a different g2-function-name, which must be
identical to the name-in-remote-system attribute of the G2 remote procedure
declaration through which G2 is invoking the local function.

Using Procedure User Data

For some purposes, you can use gsi_procedure user data type arguments to
eliminate the need for separate local functions or receiver functions. For example,
you can include several calls to gsi_rpc declare local () in your user code,
with each call specifying the same user-written G2 Gateway local function, but
with different G2 names and gsi procedure user data type arguments. Thus,
the single local function in your bridge appears to G2 as several different remote
procedures, each with a different name. When G2 calls the function under one of
its names, it passes a value of whatever type to the gsi procedure user data
type argument local function. Your G2 Gateway user code can customize its
behavior based on the gsi procedure user data type value that it receives, in
a case statement or by other means.

Similarly, a single receiver function with a gsi_procedure user data_ type
argument can handle return data from a variety of different G2 procedures
invoked from the bridge. Without the use of a gsi procedure user data type
arguments, several different receiver functions might be required to handle
different types of data returned by different G2 procedures.

Declaring a Local Function with a Procedure User Data Argument

When you declare a G2 Gateway local function, you specify the procedure user
data argument in the call to gsi_rpc declare local():

void gsi_rpc declare local
(local_function, procedure_user_data, g2_function_name)

Call Identifiers and Procedure User Data

Any G2 procedure that invokes the local function sends the procedure user data
associated with the invocation to the first argument (the procedure_user_data
argument) of the local function.

Declaring a G2 Procedure as a Remote Function with a Procedure
User Data Argument

When you declare a G2 procedure as a remote procedure that can be invoked by
the G2 Gateway bridge, you specity the procedure_user_data argument in the call
to gsi rpc declare remote():

void gsi_rpc declare remote
(function_handle, g2_function_name, receiver_function,
procedure_user_data, argument_count, return_count,
context_number)

A G2 procedure called by the G2 Gateway bridge through gsi rpc call() or
gsi _rpc call with count () canreturn data of any type to the first argument
(the procedure_user_data argument) of the receiver function in the G2 Gateway
bridge.

Writing Receiver Functions and Error Receiver Callbacks with
Procedure User Data Arguments

You can include a procedure user data argument in G2 Gateway receiver
functions and error receiver callback functions. For information about the
argument syntax of these functions, see RPC Support Callback Functions.

Call Identifiers for Remote Procedure Calls

G2 Gateway supports the use of call identifiers both in calls from G2 Gateway to
G2, and in calls from G2 to G2 Gateway.

If a G2 Gateway bridge invokes the same G2 procedure repeatedly, there is no
guarantee that the G2 procedure will return the results of the separate invocations
to the bridge in the order in which the bridge made them. Thus, the bridge needs
a way to distinguish separate calls from each other. Similarly, G2 may make
repeated calls to local function in a G2 Gateway bridge, and need to distinguish
these calls from each other.

To make it possible for G2 Gateway to distinguish the values returned to the
bridge by different invocations of a remote G2 procedure, gsi rpc call() and
gsi _rpc call with count () caninclude a call identifier argument that you
supply. For example:

void gsi rpc_call (function_handle, arquments,
call_identifier, context_number)

125

126

The G2 procedure can send the original call_identifier value specified in the call to
gsi_rpc call()or gsi_rpc call with count () to areceiver function in the G2
Gateway bridge.The required syntax for a receiver function is:

void receiver_function (procedure_user_data,arguments,count,
call_identifier)

where call_identifier isa gsi_call identifier typevalue returned from G2
that is identical to the value returned by the call to gsi rpc call() or gsi rpc
call with count () that invoked the G2 procedure.

In calls that G2 makes to a G2 Gateway local function, the call identifier is a value
that G2 generates automatically to distinguish each call from other calls that it
may make to the same local function. G2 passes this value to the call_identifier
argument of the local function. The local function should return this value to G2
in calls that it makes to gsi_rpc return error values() or gsi rpc return
values (), but it can also use this value to distinguish between simultaneous calls
to the same local function.

Error Handling

Describes how G2 Gateway handles errors by default, and how you can customize
error handling in your G2 Gateway bridge.

Introduction 127

Default Error Handling 128

Sending Error Information to Standard Output 128
Customized Error Handling 129

Error Handling in Continuous and One-Cycle Modes 131

gensym.

Introduction

G2 Gateway provides a default error handler that responds to a variety of system-
defined errors automatically, as they occur. It also enables you to signal user-
defined errors from your user code, and to create a customized error handling
procedure to perform any specialized processing of errors that your application
requires.

127

Default Error Handling

When an API function or callback detects an error, the default error handler:

® Sends information about the error to the G2 Gateway application’s standard
output device (stdout).

Your G2 Gateway application can suppress the output of error information.
For information about how to do this, see Sending Error Information to
Standard Output.

® If the error is fatal, shuts down the context (if known) in which the error
occurred.

If the error is non-fatal, the default error handler allows the context to
continue running.

For a complete list of standard error conditions, see Appendix C, G2 Gateway

Error Messages.

* If you have not installed a customized error handler, returns control to the
point in your user code that called the function that detected the error.

* If you have installed a customized error handler procedure, calls this
customized procedure.

See the table in the section called Error Handling in Continuous and One-Cycle
Modes for details.

Sending Error Information to Standard Output

128

When G2 Gateway detects an error condition in a G2 Gateway internal operation,
callback function, or API function, it prints information about the error on the G2
Gateway application’s standard output (stdout) device. This information
includes the error number, the message associated with the error, and the name of
the function that produced the error.

For a list of the standard errors signalled by G2 Gateway, see Appendix C, G2
Gateway Error Messages.

You can suppress the output of error messages to standard output by setting the
GSI_SUPPRESS OUTPUT option. To do this, include a call to the following API
function in your gsi_set up () callback function:

gsi_set option(GSI_SUPPRESS OUTPUT) ;

Customized Error Handling

Shutting Down the Context Where the Error
Occurred

After printing the error information about a fatal error, G2 Gateway
unconditionally shuts down the context in which the error occurred and passes
control back to gsi_run loop ().

If an error occurs in an API function called from outside the gsi run Ioop () call
tree, any context that the API function operated on is shut down. Some API
functions accept a context number argument to specify the particular context on
which they operate. If the API function does not specify a particular context, it is
of the sort that does not require that the context be shut down when an error
occurs.

Customized Error Handling

G2 Gateway enables you to extend the default error-handling of your G2
Gateway bridge process by:

* Signalling non-standard user errors from your user code, using the API
function gsi_signal error (). The default error handler handles user-
defined errors in the same way that it handles standard errors.

® Creating a customized error handler procedure to respond to errors in
specialized ways required by your G2 Gateway bridge process. The
customized error handler responds to both standard and user-defined errors.

The customized error handler is called by the default error handler, and works in
conjunction with, not in place of, the default error handler.

The default error handler calls the customized error handler after the data is sent
to standard output and, in the case of a fatal error, after the current context has
been shut down.

Signalling Customized Error Conditions

Your user code can signal its own errors and make use of the internal G2 Gateway
error handling system by calling gsi signal error (). You can use values above
1024 for your user code errors.

When gsi signal error () signals a customized error, the G2 Gateway error
handler responds to it in the same way that it responds to errors generated by G2
Gateway internals.

For information about gsi_signal error (), see API Functions.

129

130

Note The API functions gsi signal handler () handles C and UNIX signals, and not

signals raised by your user code by calling gsi_signal error (). The term signal
has a different sense in the two cases.

Writing a Customized Error Handler

When an API function reports an error, the default error handler automatically
invokes your user error handler procedure, if you have installed one.

As arguments to the customized error handler, the default error handler passes
the number of the context where the error occurred, the error number, and the
error message that G2 Gateway associates with the error.

Your error handler procedure must use the following syntax:

void *handler_function (error_context, error_code, error_message)
gsi_int error_context;
gsi_int error_code;
gsi_char *error_message;

where:
error_context is the context number of the context in which the error occurred.
error_code is an integer that identifies the error condition.

error_message is the text of the G2 Gateway message associated with the error
number.

Installing a Customized Error Handler

You must install your customized error handler procedure by calling the API
function gsi_install error handler ().

Because you install an error handler only once, it is good practice to invoke gsi
install error handler () inthe gsi_set up () callback function.

The error-handling procedure that you install is called automatically by G2
Gateway’s internal error handler when an error occurs.

Checking the Global Error Flag

A global error flag is set by each API function when it finishes executing. If an
error occurs during the execution of an API function, G2 Gateway sets the global
error flag and saves the message associated with the error. The value to which the
API function sets the flag specifies the particular error that occurred during
execution of the function, or specifies that no error occurred.

Error Handling in Continuous and One-Cycle Modes

To read the global error flag, your error handler function can call gsi_Ilast
error message (). This function returns the value of the error flag, which is a
number that identifies the error. Use gsi_last error message () rather than
gsi_error message (), which can return formatting templates rather than the
simple text of the error message.

Your user code can pass the error number returned by gsi last error () to the
API function gsi_error_message (), which returns a string containing the
message associated with a specified error code.

You can clear the global error flag by calling the API function gsi clear last
error (), which sets the last error number to zero.

Error Handling in Continuous and One-Cycle
Modes

G2 Gateway performs both default and customized error handling differently in
one-cycle and continuous modes.

The following table summarizes the default and customized error-handling
behavior of G2 Gateway in continuous and one-cycle modes:

131

Error Handling in Continuous and One-Cycle Modes

Default Error Handling Customized Error Handling
Continuous |1 Send error information to 1 Send error information to
Mode stdout. stdout.

2 Shut down context where 2 Shut down the context where
the error occurred. Not all the error occurred. Not all
errors shut down the errors shut down the context.
context. For a list of the For a list of the errors that do,
errors that do, see Errors see Errors that Shut Down a
that Shut Down a Context. Context.

3 Pass control to bottom of 3 Invoke customized error
gsi run loop (), which handler.
continues to iterate over

;i 4 Pass control to bottom of
any contexts that remain . .
open gsi_run loop (), which
pen. continues to iterate over any
contexts that remain open.
One-Cycle 1 Send error information to 1 Send error information to
Mode stdout. stdout.

2 Shut down context where 2 Shut down the context where
error occurred. Not all the error occurred. Not all
errors shut down the errors shut down the context.
context. For a list of the For a list of the errors that do,
errors that do, see Errors see Errors that Shut Down a
that Shut Down a Context. Context.

3 If the error is detected 3 Invoke customized error
within gsi_run Ioop(), handler.
return trol t de that . 1

e Cor.l rotto code 4 If the error is detected within
called gsi run Iloop().)
- = gsi run loop (), return
If the error is detected by control to code that called gsi
an API function outside run _loop ().
si run loop (), return .
gs1_run_loop () If the error is detected by an
control to the code that .) s
. . . API function outside gsi run
invoked this API function. — =
loop (), return control to code
that called this API function.

132

Error Handling in Continuous and One-Cycle Modes

Errors that Shut Down a Context

The following table lists errors that always shut down the context in which they

occur:
Errors that Always Shut Down a Context
Value |Error Symbol Text of Error
38 GSI CONNECTION "Network layer reports
_LOST connection was lost or ICP
protocol error occurred:
error-message"
57 GSI ICP MESSAGE "ICP message series too long
__TOO LONG -- please call Gensym customer
suppor t"
58 GSI ICP MESSAGE "Protocol out-of-synch
_OUT OF SYNCH CASE | (case 2)"
2
59 GSI_MAXIMUM TEXT "Attempting to allocate
_STRING LENGTH number-of-elements element
__ERROR string, which is beyond the
established maximum of
maximum-elements . "
60 GSI_EXTEND CURRENT |"Trying to write a string
TEXT STRING ERROR longer than 1MB!"
63 GSI_CIRCULARITY "Self referencing items may not
_NOT SUPPORTED yet be sent to G2 - sorry"
Note: This error occurs only when G2
Gateway 5.0 is communicating with a
G24.0.
67 GSI_UNKNOWN TYPE "GSI structure contains unknown
_TAG type tag."
71 GSI MAXIMUM "Connection rejected -
_ CONTEXTS GSI bridge context limit
_ EXCEEDED maximum-contexts exceeded."
72 GSI_CONNECTION "Connection denied - the G2

_DENTIED

at protocol-host-port has
disallowed connections from
GSI"

133

134

Errors that Always Shut Down a Context

Value |Error Symbol Text of Error

74 GSI ERROR _IN "Error during connection
_ CONNECT attempt: error-message"

79 GSI UNKNOWN "Unknown calling procedure
_CALLING Index."
_ PROCEDURE_INDEX

The following table lists errors that can shut down a context, depending on the
circumstances that gave rise to the error.

Errors that Shut Down a Context in Some Circumstances

Value | Error Symbol Text of Error
16 GSI INCOMPATIBLE "Type mismatch - value of type
_TYPE data-type passed to this
function"
30 GSI INCOMPATIBLE "Received null pointer
_STRUCTURE argument, or a structure type
incompatible with requested
operation"
68 GSI_INVALID "GSI found an invalid value
_HISTORY TYPE type for this history."

Troubleshooting
Guidelines

Describes how to identify problems in your G2 Gateway bridge user code.

Introduction 135

Connectivity 136

Data Collection and Transmission 138

Iltem Registration 141

Remote Procedure Calls (G2-to-G2 Gateway) 141
Reporting Problems to Gensym 142

gensym.

Introduction

This chapter provides troubleshooting suggestions for your G2 Gateway
application, and concludes with a procedure for submitting any problems you
may have with your code, the G2 Gateway bridge, or G2 to Gensym’s Customer
Support personnel.

This chapter lists problems for the following general topics:
* Connectivity

® Data collection and transmission

* Initializing

* Object definition

* Remote Procedure Calls (RPCs)

135

Connectivity

This section covers problems with the interface between the G2 and the G2
Gateway processes, the Intelligent Communications Protocol (ICP), or network
connections.

136

Problem: You have created a GSI interface, started the bridge process, and started
the G2 process, but nothing happens.

Solutions:

The workspace on which the GSI interface is located may be inactive
(disabled). Make sure that the workspace is enabled.

The GSI interface is not named. An unnamed GSI interface cannot support a
connection between a G2 Gateway bridge process and a G2 knowledge base.
Specify one or more names for the GSI interface in its names attributes.

The GSI interface has a different specification for its gsi-connection-
configuration attribute than the one it should have to locate the bridge process
you want to use. For example, you may have specified an incorrect port
number or machine name. Check the value specified for this attribute and
change it if necessary.

If the bridge process was started after the G2 process, the bridge may not be
able to connect to the G2 process without your disabling, then re-enabling the
GSI interface used to connect to the bridge. The GSI interface only checks
whether the bridge process is running when the GSI interface becomes
enabled, which is usually at the same time that you start the G2 process. By
manually toggling the GSI interface, you allow the GSI interface to determine
whether the bridge process is running, and, if so, connect to it.

Problem: The operator’s logbook displays the error message “Cannot establish ICP
connection.”

Solutions:

Is there an ICP connection between the machines on which the G2 and the G2
Gateway processes are running? Send out a ping to the machine on which the
bridge process is running. If it does not respond or does not respond before
the interface times out, there may be network problems that are interfering
with communication.

Make sure that you have specified the correct location of the bridge process
for the gsi-connection-configuration attribute of the GSI interface. If you edit
the attribute while the processes are still running, toggle the GSI interface so
that it will check to see if the bridge process is running and, if so, connect to it.

Connectivity

Problem: The bridge process could not establish a listener at the TCP/IP port and
exits, or it establishes a listener but doesn’t connect.

Solutions:

The port number or object name is unavailable. Try using a different port or
object name.

The two arguments argvand argc are not passed correctly from main () to
gsi_start (). You must make sure that, however you define the two
arguments in main (), when you pass the arguments on to gsi_start (), the
arguments are exactly what you expect gsi_start () to receive.

If the bridge process was started after the G2 process, the bridge may not be
able to connect to the G2 process without your disabling, then re-enabling the
GSI interface used to connect to the bridge. The GSI interface only checks
whether the bridge process is running when the GSI interface becomes
enabled, which is usually at the same time that you start the G2 process. By
manually disabling and re-enabling the GSI interface, you allow the GSI
interface to determine whether the bridge process is running, and, if so, to
connect to it.

On some platforms the operating system takes a while to release a socket that
was retained by a recently killed process. Either try a different port number or
wait a while. The duration is platform-dependent and ranges from a few
seconds to a few minutes.

Ask your network administrator to check the physical connection between the
machines on which G2 and G2 Gateway are running.

Problem: The GSI interface times out.

Solutions:

You may be running in an environment with heavy network traffic. Increase
the interface-timeout-period attribute of the GSI interface until the interface no
longer times out.

G2 Gateway may be attempting to define at one time a large number of objects
for which you have specified default update intervals. You can arrange to
stagger definition requests over time by placing groups of the objects you
want to be defined onto different subworkspaces, then enabling the
subworkspaces one at a time, pausing in between each enable operation until
all objects on that workspace are defined.

137

Problem: The GSI interface’s status code changes to -1 or -2.
Solutions:

® The -1 status code indicates that the ICP connection has timed out and
possibly may be gone. For this case, there may be no need for your code to
take action in response, because the status code will change to a 2 (OK) or -2
(failed) after several seconds or so have elapsed. If it does not, you can toggle
the GSI interface by disabling, then re-enabling it.

® The -2 status code indicates that the ICP connection is gone and cannot be
recovered. You may be able to establish a new connection without restarting
the bridge. Try to restart the bridge process, followed by restarting the G2
process. If the problem persists, report it to Gensym’s Customer Support staff.

Problem: The ICP out of synch error message appears.
Solutions:

* You may be using an outdated gsi main.hfile, or linking against an old gsi
mainobject. Gensym recommends that you use the gsi main.hfile that was
included with the G2 Gateway distribution kit.

* Memory may be corrupted due to a user programming error.

* Too many arguments are specified when you are passing arguments in a
remote procedure call (RPC). Check that you are passing the correct number
of RPC arguments.

Data Collection and Transmission

138

This section covers problems with the collection and transmission of data from
the bridge to the knowledge base, or with G2 setting values in the external
system.

Problem: The GSI interface is okay but the G2 process is very slow (or eventually
exits).

Solution: You may be inundating G2 Gateway with more requests for values than
it can return to G2 in a cycle. G2 may slow down as more and more requests wait
to be processed. Stagger the update intervals for your variables or decrease the
frequency with which G2 sets values in the external system.

Problem: The bridge cannot return attribute values to G2.

Solution: The names of attributes whose values are returned from the external
system through a vector must be specified in your user code as symbols. (Refer to
your G2 Reference Manual for the correct symbol format.) Frequently, this simply
means using upper case letters for attribute names in your bridge code instead of
lower case letters.

Data Collection and Transmission

Problem: A GSI variable is not receiving any values.

Solutions:

The item may not be registered. Call the system procedure g2-get-network-
handle-from-item() to determine if the item is registered. For information
about this procedure, see the G2 System Procedures Reference Manual.

The gsi-interface-name specified for the GSI variable is incorrect or missing.
Edit the GSI variable’s gsi-interface-name attribute, specifying the unique
name for the GSI interface used by the variable.

You may be passing back the NULL TAG data type to the variable. Make sure
that you return the value as NULL TAG only if you do not want to update the
value of the variable.

Set a higher priority for the priority-of-data-service attribute in the Data Server
Parameters system table, or reduce the processing load of your G2
application.

If you have specified a low priority for the priority-of-data-service attribute in
the Data Server Parameters system table, and your G2 application has a heavy
processing load, gsi g2 poll () may never be called. This results in the GSI
variables not receiving values if your G2 Gateway application uses gsi g2
poll ()to get values from an external system and return them to the GSI
variables in G2.

Problem: The bridge is returning the wrong value to a GSI variable.

Solutions:

Make sure that the data type corresponds to the one expected for the variable.
Make sure that your code performs any necessary type conversions prior to
transmission of the value.

Signed integer values that occupy more than 29 bits, or unsigned integer
values that occupy more than 30 bits are not accepted by G2. Limit the size of
your integer values to no more than 29 bits for a signed integer, or 30 bits for
an unsigned integer. Alternatively, you can cast the integer value as a float, or
specify the variable as a quantitative variable. Quantitative variables
automatically convert integers to floating point numbers if they are too large
for G2 to accept as integers.

139

140

Problem: An error message appears on the Operator’s Logbook stating that a data
type mismatch has occurred.

Solution: The value returned to a GSI variable is of the wrong data type. Make
sure that the data type corresponds to the one expected for the variable. Make
sure that your code performs any necessary type conversions prior to
transmission of the value.

Problem: The variable is not updated in accordance with the default update
interval for a GSI variable.

Solutions:

* You have not placed the proper code in gsi_get data () to retrieve the
requested value and return it to G2. (This assumes that external-system-has-
a-scheduler is No.) Change gsi get data () to include code to return the
value to G2.

* The external-system-has-a-scheduler attribute for the GSI interface used by
the variable is specified as yes, but you have not yet implemented the external
system’s scheduler. Either edit the attribute to turn off this feature, or
implement the scheduler.

Problem: A value set by G2 in the external system is not echoing back to the
corresponding GSI variable in the knowledge base.

Solution: Values set by G2 in the external system are not echoed back to the
corresponding variables automatically. You must include a call to gsi return
values () in your user code for each set value that you want returned to update a
variable in your knowledge base.

Problem: Unsolicited data is not returned to GSI variables.

Solution: To make sure that unsolicited data is returned to G2, the value of both
the external-system-has-a-scheduler attribute and the poll-external-system-for-
data attribute of the GSI interface must be yes.

Problem: A rule of the form, “whenever X fails to receive a value”, is not
evaluated when a bridge does not return a value to a variable.

Solution: The reason for this problem is that the timeout-for-inference-
completionof Inference-Engine-Parameters does not apply to variables whose
data server attribute is gsi-data-service. A bridge may use as much time as it
needs to return a value. There is no timeout for data acquisition from a bridge.

To determine if a variable is no longer receiving values, you can use a
combination of the variable's validity-interval, default-update-interval,
and a rule of the form “whenever x loses its value”.

ltem Registration

Item Registration

This section covers problems that apply to the registration of items for the G2 and
the bridge processes at startup time, or the redefinition of variables when they are
changed.

Problem: The function gsi_receive registration() isnot called to define
objects.

Solutions:

* You have not specified default update intervals for your GSI variables, or
your G2 process is not calling gsi_set data() or gsi_get data() by setting
values in the external system or requesting values explicitly. If the update
interval is set to none, you must either change the update interval to a positive
length of time, or make explicit data requests.

* The GSI interface name specified for the variables is wrong or missing.
Change to the unique name of the GSI interface, or supply it if it is missing.

Problem: A GSI variable is registered more than once.

Solution: A GSI variable is registered every time to change the list of its
identifying attributes. If you use a procedure in G2 to fill in the identifying
attributes for a GSI interface, make sure that the GSI interface is disabled,
undefined, or differently named until you have finished listing the identifying
attributes. If the GSI interface is enabled when the procedure fills in the values for
the attributes, the GSI variable is registered each time an identifying attribute is
added to the list, resulting in a call to gsi_receive registration() each time.

Remote Procedure Calls (G2-to-G2 Gateway)

This section covers problems that apply to RPCs made to the bridge from the
G2 process.

Problem: An RPC is not being invoked or is not being called.
Solutions:

® You may have specified the wrong number of arguments. Check and if
necessary adjust the number of arguments.

* The p typevalue for a parameter of the remote function does not match the
type specified in the G2 RPC declaration. Make sure that the p _type
specification matches the type given in the RPC declaration.

* RPCis started instead of being called. Use a call statement in a procedure on a
workspace, or in place of a start action.

141

Reporting Problems to Gensym

Use the procedure explained in this section for reporting any problems you have
with your G2 Gateway bridge or G2.

142

To report a problem to Gensym:

1
2
3

Identify the problem and/or its symptoms.

Try to recreate the problem.

Assemble and be prepared to provide the following information:

Your name, your company’s name, and (optionally) your location within
the company.

Your telephone number and extension, your facsimile number, and the
best times for Gensym personnel to contact you using either number.

The version numbers of both G2 and G2 Gateway.
The name and version number of the G2 Gateway bridge product you are
using (if any).

A problem description that includes its symptoms, a detailed synopsis of
what you were doing when the problem occurred, and the severity of the
problem. Include the exact text of any G2 Gateway internal errors and G2
log book errors associated with the problem.

4 Report your problem to Gensym’s Customer Support staff.

Provide all of the information you gathered in step 3 of this procedure to the
customer support representative. You may want to include a section of the
relevant code.

For contact information, see Customer Support Services.

Reference

Chapter 7: G2 Gateway Data Structures

Describes how G2 Gateway data structures store information that is useful to your
application, and how your G2 Gateway user code can access this information.

Chapter 8: Callback Functions

Describes the callback functions that you complete to implement your G2 Gateway user code.

Chapter 9: APl Functions

Describes the capabilities and syntax of the API functions supported by G2 Gateway.

Chapter 10: Preprocessor Flags and Runtime Options

Describes C preprocessor macros and runtime options that you can use to modify the behavior
of your G2 Gateway bridge.

Chapter 11: Building and Running a G2 Gateway Bridge

Describes how to compile, link, and run a G2 Gateway bridge executable image, and how to
start and stop a G2 Gateway bridge process from within a G2 procedure.

143

144

G2 Gateway
Data Structures

Describes how G2 Gateway data structures store information that is useful to your
application, and how your G2 Gateway user code can access this information.

Introduction 146

Summary of G2 Gateway Data Structures 146

Using Get and Set Functions for Data Structures 149
Referencing Data Structures in Your User Code 150
Accessing Data Structures through Other Data Structures 150
Type Tags of G2 Gateway Data Structures 152

G2 Gateway Data Structures and Functions for Data Transfer Operations 153
Allocating and Reclaiming G2 Gateway Data Structures 158
gsi_registration Data Structures 159

gsi_registered_item Data Structures 163

gsi_item Structures 167

gsi_attr Structures 177

gsi_symbol Structures 179

gensym.

145

Introduction

Note

G2 Gateway creates data structures to store information that it receives from G2.
Your G2 Gateway user code can allocate the same kinds of data structures to store
information that the G2 Gateway bridge receives from an external system.

Each structure includes different components to receive different kinds of
information, such as item handles, attribute values, or history information. Some
data structures also have components that contain other data structures.

Your user code can access the components of data structures by calling API
functions provided with G2 Gateway. Each API function is designed to access a
particular component of one or more data structures.

For fewer upgrade problems and less implementation-dependent code,

G2 Gateway does not permit direct access to G2 Gateway data structures. Your
user code can access the data structures only by invoking the API functions
provided for this purpose.

The text of messages that G2 Gateway receives from a GSI Message Server is not
maintained in a data structure, nor is it available after the callback gsi receive
message () exits.

Summary of G2 Gateway Data Structures

146

G2 Gateway provides void* pointers to its internal data structures:
® gsi registration

® gsi registered item

® gsi item

®* gsi attr

®* gsi symbol

Summary of G2 Gateway Data Structures

The following table lists the G2 Gateway internal data structures referenced by

these pointers and describes how G2 Gateway uses each structure:

G2 Gateway Data Structures

G2 Gateway
Data Structure Description

gsi_registration Created by G2 Gateway when G2 registers a
data-served GSI variable or an item handle
that it passes through a remote procedure
call. Remains in existence until the variable
or item handle is deregistered.

Stores the handle, data type, and six
identifying attributes of the variable being
registered. Can also store user data that you
choose to associate with this registered item.

gsi_registered Created by G2 Gateway each time G2 asks G2
_item Gateway to get a new value for a GSI variable
from an external system, or when G2 asks G2
Gateway to write the value of a GSI variable
to a data point in an external system.
Remains in existence only during the read or
write operation.

Stores the handle, current attribute values,
and other information associated with the
registered item.

You can create this data structure in your
bridge code by using API functions.

gsi_item Created by G2 Gateway each time G2
requests G2 Gateway to read from or write to
a data-served GSI variable, or passes an item
handle or object to G2 Gateway through a
remote procedure call.

Stores information associated with the
variable or object, such as its value.

You can create this data structure in your
bridge code by using API functions.

147

148

G2 Gateway Data Structures

G2 Gateway
Data Structure

Description

gsi _attr

Created by G2 Gateway to represent an
attribute of an object that G2 Gateway
receives from G2.

Stores information associated with the
attribute.

You can create this data structure in your
bridge code by using API functions.

gsi symbol

Created by G2 Gateway to represent a
symbol that G2 Gateway receives from G2.

Stores information associated with the
symbol.

You can create this data structure in your
bridge code by using API functions.

Using Get and Set Functions for Data Structures

Using Get and Set Functions for Data
Structures

Application-specific information can be stored in GSI data structures. The
information includes the following user data: registrations and items, contexts,
symbols, local and remote procedures, and remote calls.

The following table correlates types of data structures, data types, and set and get

functions:
Type of Structure C Data Type Get Function Set Function
Registrations and |gsi item user gsi user data gsi set user
items data type type data
Contexts gsi context gsi context gsi set
user data type user data context user
data
gsi initiate
connection
with user data
Symbols gsi symbol gsi symbol gsi set symbol
user data type user data user data
Local procedures |gsi procedure local functions |gsi rpc
user data type declare local
Remote procedures |gsi procedure receiver gsi rpc_
user data type functions declare local
gsi_rpc_
declare remote
with error
handler and
user data
Local calls gsi call local functions |none
Identifier type
Remote calls gsi call receiver gsi_rpc call
identifier type |function ,
- gsi rpc call
with count

Data structures are created by G2 Gateway for a callback function and can be
accessed by subsequent callbacks without the use of a lookup table. During a

149

callback function, G2 Gateway supplies registration so that a function can store
user data in a data structure.

Referencing Data Structures in Your User Code

Your user code can use gsi_registration, gsi registered item, gsi item,
gsi_attr,and gsi_symbol to declare instances of the G2 Gateway internal data
structures.

For example, the callback function
void gsi receive registration (item_registration)

receives one argument, an instance of a gsi_registrationstructure, which
contains information about a registered item. You declare this argument as
follows:

gsi registration item_registration ;
where:

item_registration is declared to be an instance of gsi registration.

Accessing Data Structures through Other Data
Structures

Some data structures have components that contain other data structures. This
feature enables you to access one data structure through another, using API
functions provided for this purpose.

For example, the API function gsi_item of registered item() takesa gsi
registered_ itemstructure as an argument and returns the gsi_itemstructure
associated with the gsi_registered item

150

Accessing Data Structures through Other Data Structures

The following figure illustrates the G2 Gateway data structures, their

components, and the API functions you can use to access data structures through
their enclosing structures:

G2 Gateway Data Structures and Their Components

gsi_registered_item gsi_item
item handle A type tag
item item handle
default update interval name
status class name
value
element count
elements
history type
history values
history times
history specification
gsi_registration attribute count
type tag attribute(s)
item handle
class name B
name b
identifying attribute(s) — gsi_attr
default update interval name
user data item
C
gsi_item

A gsi_item gsi_item_of_registered_item(gsi_registered_item)

B gsi_attr *gsi_attrs_of(gsi_item)

C gsi_item gsi_item_of_attr(gsi_attr)

D gsi_attr gsi_identifying_attr_of(gsi_registration,attribute_index)

151

Type Tags of G2 Gateway Data Structures

Caution

152

In GSI Version 3.1 and later versions, G2 Gateway assigns data type tags to all
gsi registrationand gsi itemdata structures to indicate the data type of their
values. The data type tags enable the API functions to perform type-checking and
to handle the structures appropriately to their type.

Setting Type Tags

API functions that set the value component of gsi itemstructures also reset the
type tags of these structures. For example, the function gsi_set int () function
sets the type tag of a gsi_itemstructure to GSI INTEGER TAG before setting the
value component of the structure to an integer value.

Setting the Type to Null

The API function gsi_set type () can set the type of a gsi_itemstructure to any
non-list or non-array data type. gsi_set type () specifies a default value of the
appropriate type for the gsi_itemstructure.

gsi_set type () is useful mainly for setting the type of a gsi registered item
to null. You may want to do this if you are sending an array of gsi registered
itemstructures back to G2 to update a set of GSI variables, but there are certain
GSI variables that do not need to be updated. You can set the gsi registered
itemstructures that correspond to these GSI variable to null, using gsi set
type ().

A G2 Gateway error results if your user code attempts return a gsi_registered
itemto G2 with a null type and a status component value of 0 (OK). You can use
the API function gsi_set status () to set the status component of a gsi
registered itemstructure. For information about the values to which you can
set the status of gsi registered itemstructures, see Using the Gsi-Variable-
Status Attribute.

G2 Gateway Data Structures and Functions for Data Transfer Operations

G2 Gateway Data Structures and Functions for
Data Transfer Operations

G2 Gateway uses different combinations of data structures and functions to
perform different kinds of data transfer operations. The following table lists the
data structures that G2 Gateway creates to support different data transfer

operations:

G2 Operations and G2 Gateway Data Structures

G2 Operation

Data Structures that G2 Gateway
Creates to Support this Operation

Ask G2 Gateway to set
the value of a data
point in an external
system, using the value

gsi_registration
gsi registered item
gsi item

an argument to a
remote procedure in G2
Gateway.

of a GSI variable in G2.

Ask G2 Gateway to gsi registration

update a GSI variable |gsi registered item

in G2. gsi item

Pass a copy of a G2 gsi_item(for the object)

object to G2 Gateway as |gsi_attr (for each attribute of the object)

gsi_item(for each attribute of the object)

Pass a simple value to
G2 Gateway as an
argument to a remote
procedure in G2
Gateway.

gsi item

Pass the handle of a G2
item as an argument to
a remote procedure in
G2 Gateway.

gsi registration
gsi_item(the type tagof this structure is
GSI_HANDLE TAG)

The following sections describe the combinations of data structures and functions
calls that support different kinds of data exchange between a G2 Gateway bridge

and a G2 application.

153

154

Setting the Value of an External Data Point

The following steps summarize the data structures and functions that enable a G2
application to update the value of a data point in an external system using the
value of a GSI variable, and to echo the value back to the GSI variable.

1

The set action in G2 sends the value of a GSI variable to the G2 Gateway
bridge.

G2 Gateway creates a gsi_registrationstructure to store the information
received from G2.

G2 Gateway calls the callback gsi receive registration(),passing to it the
gsi registration structure.

G2 Gateway creates gsi registered itemand gsi itemstructures. The
value component of the gsi itemstructure contains the value of the GSI
variable.

G2 Gateway calls the callback gsi_set data (), passing to it an array of one
or more gsi_registered itemstructures, which represent G2’s requests to
set values in the external system.

In gsi_set data (), you can use API functions such as gsi_int of () or gsi
sym_of () to access the value of the GSI variable. These functions can take the
gsi_registered itemstructure as their argument. They return the value
component of the gsi_itemstructure, which stores the value of the GSI
variable.

Alsoin gsi_set data (), you add code that sets the value of the external data
point with the value of the GSI variable, using the value returned from the
gsi_itemstructure.

When the value of the external data point has been set, gsi_set data() can
call the API function gsi_return values (), passing to it the gsi
registered_itemstructure that represents the GSI variable. gsi return
values () echoes the value back to the GSI variable in G2.

Updating the Value of a GSI Variable

The following steps summarize the data structures and functions that enable a G2
application to update the value of a GSI variable using the value of a data point in
an external system.

1

An update action or a collect data procedure statement in G2 requests G2
Gateway to send a value to a GSI variable in G2.

G2 Gateway creates a gsi_registrationstructure to store information
associated with the request from G2.

G2 Gateway calls gsi_receive registration(), passing to it the gsi
registration structure.

G2 Gateway Data Structures and Functions for Data Transfer Operations

G2 Gateway creates gsi registered itemand gsi itemstructures.

G2 Gateway calls the callback gsi_get data(), passing to it an array of one
or more gsi registered itemstructures, which represent G2's requests for
update values.

In gsi_get data(), you add code to get the value of the data point in the
external system.

Alsoin gsi get data (), you use API functions such as gsi_set int() or
gsi_set sym() to set the value component of the gsi itemstructure, using
the value obtained from the external system. These API functions can take the
gsi_registered itemstructure as their argument.

Also in gsi_get data(), you add a call to the API function gsi return
values (), passing to it the gsi registered itemstructure. gsi return
values () returns the value of the external data point to the GSI variable in G2.

Receiving Unsolicited Updates of GSI Variables

The following steps summarize the data structures and functions that enable a G2
application to receive unsolicited updates to the values of GSI variables., when
the bridge obtains this data by polling the external system. The GSI variables are
updated with the values of data points in an external system.

1

When G2 is started, it registers all data-served GSI variables.

In order for the GSI variables to receive unsolicited updates, you must set the
poll-external-system-for-data attribute of your GSI interface object to yes.

G2 Gateway creates a gsi_registration structure for each registered GSI
variable when the variable is activated.

G2 Gateway calls gsi receive registration()and passes to it the gsi
registration structures.

G2 Gateway calls the callback gsi g2 poll (), to which you add the code that
gets values for GSI variables from the external system.

Your gsi_g2 poll () calls gsi make registered items () to allocate an
array of gsi registered itemstructures. These structures represent the
update values to be sent to GSI variables in G2.

Your gsi g2 poll () calls API functions such as gsi_set int() and gsi
set sym() to set the values of the gsi registered itemstructures in the
array, using the values obtained from the external system.

Your gsi_g2 poll () calls gsi return values (), passing to it the array of
gsi registered itemstructures.

gsi_return values ()returns values to the last-recorded-value attribute of
GSI variables.

155

156

The following steps summarize the data structures and functions that enable a G2
application to receive unsolicited updates to the values of GSI variables, when the
external system sends data values to the bridge without having been polled by the
bridge. The GSI variables are updated with the values of data points in an
external system.

1
2

When G2 is started, it registers all data-served GSI variables.

G2 Gateway creates a gsi_registrationstructure for each registered GSI
variable.

G2 Gateway calls gsi receive registration()and passes to it the gsi
registration structures.

The external system sends a new value for a registered GSI variable to the
bridge.

The G2 Gateway user code calls gsi make registered items () to allocate
an array of gsi_registered itemstructures. These structures represent the
update values to be sent to GSI variables in G2.

The G2 Gateway user code calls API functions such as gsi_set int() and
gsi set sym() to set the values of the gsi registered itemstructures in
the array, using the values obtained from the external system.

The G2 Gateway user code calls gsi_return values (), passing to it the array
of gsi registered itemstructures.

gsi_return values ()returns values to the last-recorded-value attribute of
GSI variables.

Passing Objects through Remote Procedure Calls

The following steps summarize the data structures and functions that enable a G2
application to pass a copy of an object to G2 Gateway as an argument to a remote
procedure call to a user-defined local function in the bridge.

1

G2 calls a remote procedure in G2 Gateway, passing a G2 object as an
argument to the procedure.

G2 Gateway creates a gsi_itemstructure to represent the G2 object, and an
array of gsi_attr structures that represent any attributes that G2 Gateway
passes with the object.

G2 Gateway invokes the local function that G2 called as a remote procedure.
G2 Gateway passes to the local function an array of one or more gsi_item
structures, which includes the G2 object passed to G2 Gateway.

The local function can call gsi_attrs of (), passing to it the gsi item
structure that represents the G2 object. gsi_attrs of () returns the array of
gsi_attr structures that represent the attributes of the object.

G2 Gateway Data Structures and Functions for Data Transfer Operations

The local function can call API functions to get and set components of the
gsi_itemand gsi_attr structures.

For example, it can call gsi_int of () to get the value component of a gsi
itemstructure, and gsi set int() to set the value component. It can call
gsi_attr name of () to get the name component of a gsi_attr structure, and
gsi_set attr name () to change the name component. For information about
these API functions, see API Functions.

The local function can perform any other operations required by your
application.

The local function can call gsi_rpc return values (), which returns data
associated with the object to G2. The local function must pass to gsi_rpc
return values () an array of one or more gsi_1itemstructures, which can
include the structure representing the G2 object.

G2 creates a G2 object based on the gsi i temstructure that it receives through
gsi_rpc return values ().

The class name component of the gsi itemmust specify the name of an
existing class definition in G2; otherwise, G2 cannot create an object based on
the gsi item and an error occurs.

Passing Items as Handles

The following steps summarize the data structures and functions that enable a G2
application to pass an item handle to G2 Gateway through a remote procedure
call. An item handle is a value that identifies a particular G2 item.

1

G2 calls a local function in G2 Gateway that is declared in G2 as a remote
procedure. The remote procedure declaration in G2 must use the as handle
grammar.

The item handle is passed to G2 Gateway through this remote procedure call.
For information about how to declare a remote procedure to send items
handles to and receive them from G2 Gateway, see the G2 Reference Manual.

G2 Gateway creates a gsi_registration structure to store information
associated with the item handle.

G2 Gateway calls gsi receive registration(), passing to it the gsi
registration structure.

G2 Gateway creates a gsi_1itemstructure to represent the item handle.

G2 Gateway invokes the local function that G2 called as a remote procedure,
passing to it an array of one or more gsi_itemstructures, which can include
the item handle.

157

6 The local function performs any operations required by your application.

7 The local function calls gsi rpc return values (), passing to it an array of
one or more gsi_itemstructures, which can include your item handle. gsi
rpc_return values () returns the item handle to the remote procedure call
in G2.

Note Passing item handles rather than actual items provides a way for G2 to reference

the items rather than making copies of them. This can reduce processing time,
save space in your KB and prevent unnecessary traffic across your network.

Allocating and Reclaiming G2 Gateway
Data Structures

158

G2 Gateway allocates an appropriate data structure automatically when G2
registers a variable or object, or when G2 Gateway receives an object passed to it
from G2.

Your G2 Gateway user code must allocate a data structure explicitly only when:

* Your G2 Gateway bridge needs to send a variable or object to G2 that it has
not previously received from G2.

® You declare a variable to be a pointer to a data structure in a callback function.

In callback functions, a G2 Gateway data structure is not allocated
automatically when you declare a variable to be a data structure. Instead, you
must first allocate a G2 Gateway data structure explicitly, by calling the API
function that allocates a data structure of the type that you want to use. Then
you can assign the structure that you allocated to the declared variable.

To allocate data structures, use the following API functions: gsi_make attrs(),
gsi_make attrs with items(), gsi_make items (), and gsi_make_
registered items().

These API functions return arrays of one or more structures. For this reason, if
you allocate a gsi_attr structure as follows:

gsi_attr *my att-array = gsi_make attrs(1);
you must:
® Declare any variable that points to this gsi_attr data structure.

® Access this variable by specifying the zeroth element of the array, as for
example:

gsi attr my att = my attr array[0];

gsi_registration Data Structures

Caution If you are allocating G2 Gateway data structures dynamically, in a part of your
user code that can be executed more than once in the lifetime of the G2 Gateway
bridge process, be sure to reclaim the data structures as soon as you no longer
need them. You can reclaim data structures using the following API functions:
gsi reclaim attrs(), gsi reclaim attrs with items(), gsi reclaim
items (), gsi_reclaim registered items().

For information about the API functions, see API Functions.

gsi_registration Data Structures

G2 Gateway creates a gsi_registrationstructure when G2 registers a GSI
variable. This happens the first time when G2 requests G2 Gateway to read from
or write to the GSI variable. G2 Gateway also creates a gsi_registration
structure when G2 registers an item handle that it passes to G2 Gateway through
a remote procedure call.

The gsi_registrationstructure stores information associated with the
registered item, such as its handle and a list of its identifying attributes. G2
Gateway uses this information when it responds to all subsequent requests from
G2 to read from or write to the variable.

A gsi registrationstructure remains in existence until the item that it
represents is deregistered. For information about how items are deregistered, see
Deregistering Items Automatically.

Registering a GSI Variable or Item Handle

G2 Gateway calls the callback function gsi receive registration() when G2
registers a GSI variable or item handle with the G2 Gateway bridge. G2 Gateway
passes the gsi registrationstructure for the variable or handle to the callback.

You can use gsi_receive registration() to perform tasks such as initializing
an external data point, allocating memory, or returning the variable’s network
handle to an attribute of the variable for some future use.

For more information about gsi receive registration(), see Callback
Functions.

Getting a gsi_registration Structure

The following API function returns the gsi registrationstructure associated
with a given handle and context:

gsi registration gsi registration of (item_handle, context)

For more information about gsi registration of{(), see APl Functions.

159

160

Note You do not need to use an API function call to create a gsi_registrationdata
structure.

Accessing Components of a gsi_registration
Structure

The following figure illustrates the components of a gsi_registrationstructure
that you can access with API functions.

Components of gsi_registration Structures
Accessed through API Functions

gsi_set_type()

gsi_set_user_data()

gsi_registration

type tag

item handle

class name

name

identifying attributes

default update interval

user data

e
Set component values

gsi_type_of()

gsi_handle_of()

gsi_class_name_of()

gsi_name_of()

gsi_identifying_attr_of()

gsi_interval_of()

gsi_user_data_of()

Get component values

gsi_registration Data Structures

The following table describes the components of a gsi registrationstructure
that your user code can access through API functions:

Components of a gsi_registration Structure

Component Functions for Accessing

type tag gsi_int gsi type of
registration

One of: (reg)

GSI_FLOAT64_TAG,
GSI_INTEGER_TAG,
GSI_LOGICAL TAG,
GSI_SYMBOL TAG,
GSI_STRING TAG,
GSI_FLOAT64 ARRAY TAG,
GSI_INTEGER ARRAY TAG,
GSI_LOGICAL ARRAY TAG,
GSI_STRING ARRAY TAG,
GSI _SYMBOL ARRAY TAG,
GSI_ITEM ARRAY TAG,
GSI_VALUE ARRAY TAG,
GSI_INTEGER LIST TAG,
GSI_SYMBOL LIST TAG,
GSI_STRING_LIST TAG,
GSI _LOGICAL LIST TAG,
GSI_FLOAT64 LIST TAG,
GSI_ITEM LIST TAG,
GSI_VALUE _LIST TAG

item handle

A gsi_int value, used by G2
Gateway functions to reference
the registered G2 item within a
particular context.

gsi_int gsi handle of
(registration)

class name

The class name of the registered
G2 item.

gsi symbol gsi_class name of
(registration)

161

162

Components of a gsi_registration Structure

Component

Functions for Accessing

name

The name of the registered G2
item. Can be either a GSI
variable registered for data
service, or an item handle
passed to G2 Gateway as an
argument of a remote procedure
call.

gsi char *gsi name of
(registration)

ldentifying attributes

A list of the values of the
identifying attributes of the
registered GSI variable. These
values together uniquely
identify each variable that
receives G2 Gateway data
service through this GSI
interface object. Can be from 1 to
6 simple attributes.

The identifying attributes stored
inthe identifying attributes
component do not include the
names of the attributes.

gsi attr gsi identifying
attr of
(registration, attribute_index)

gsi_registered_item Data Structures

Components of a gsi_registration Structure

Component Functions for Accessing
default update interval double gsi_interval of
(registration)

The default update interval of
the GSI variable that is
registered for data service.

Note: There is no default update
interval for items passed as
handles through remote
procedure calls.

user data void gsi_set user data

Reserved for use by your G2 (registration, user_data)

Gateway user code. The user gsi_item user data type gsi
data must be of type gsi_item |user data of
user data type. (registration)

You can use this component to
associate any application-
specific information with the
gsi registration, such as data
that the G2 Gateway bridge
process receives from a PLC or
other external device.

G2 Gateway itself never reads
from nor writes to the user
data component.

gsi_registered_item Data Structures

gsi_registered itemcontains a structure representing a GSI variable that G2
has registered across a G2-to-G2 Gateway connection. A GSI variable is an
instance of a G2 variable class (a logical-, quantitative-, float-, integer-, symbolic-,
or text-variable) or subclass that includes gsi-data-service as one of its direct
superior classes.

G2 Gateway creates a gsi_registered itemstructure when G2 asks G2 Gateway
to get a new value for a GSI variable from an external system, or when it asks G2
Gateway to write the value of a GSI variable to a data point in an external system.
A gsi_registered itemstructure remains in existence for the duration of the
read or write operation.

163

164

Returning Values to a GSI Variable

The following API functions take gsi registered itemstructures as arguments
and return values to the corresponding GSI variables in G2:

void gsi return timed values (registered_items, count, context)
void gsi return values (registered_items, count, context)

Setting Arguments of GSI Variables

The following API functions return values to registered GSI variables and set one
or more of their attributes:

void gsi return attrs (registered_item, attributes, count, context)
void gsi return timed attrs (registered_item, attributes,
count, context)

Callbacks that Access gsi_registered_item
Structures

The following callback functions access gsi_registered itemstructures. In each
of the following callbacks, registered_items is an array of one or more gsi_
registered itemstructures:

void gsi get data (registered_items, count)
void gsi set data (registered_items, count)
void gsi receive deregistrations (registered_items, count)

For information about these functions, see Callback Functions.

Allocating and Reclaiming gsi_registered_item
Structures

Your G2 Gateway user code must allocate a gsi_registered itemstructure in
order to transfer an item to G2 when the item to be transferred did not originate in
G2. In this case, there is no automatically created gsi registered itemstructure
to represent the item.

The following API function allocates an array of gsi registered item
structures:

gsi registered item *gsi make registered items (count)

You can then pass the array of gsi registered itemstructures to the API
function gsi_return values (), which sends the structures to G2.

The following API function reclaims gsi registered itemstructures:

void gsi reclaim registered items (registered_items)

gsi_registered_item Data Structures

For information about allocating and reclaiming gsi registered item
structures, see Passing Items as Handles.

Accessing Components of a gsi_registered_item

Structure

The following figure illustrates the components of a gsi_registered item
structure that you can access with API functions.

Components of gsi_registered_item Structures
Accessed through API Functions

gsi_set_handle()
gsi_clear_item()
gsi_set_interval()

gsi_set_status()

Set component values

gsi_registered_item

item handle

item

default update interval

status

gsi_handle_of()
gsi_item_of_registered_item()
gsi_interval_of()

gsi_status_of()

Get component values

165

The following table lists the components of the gsi registered itemstructure
that your user code can access through API functions:

Components of gsi_registered_item Structures

Component API Functions for Accessing

Item handle gsi int gsi handle of

A gsi_int value, which refers to an (registered_item)

object in G2 that has been registered | void gsi set handle

for G2 Gateway data service through | (registered_item, handle_value)
the G2 Gateway callback function
gsi receive registration().

To get the gsi_registration
associated with this registered item,
you can pass the handle value
returned by gsi_handle of () to the
gsi registration of () API
function, which returns the gsi
registration.

item gsi_item gsi item of
registered

gsi_itemcontained in this gsi _item(registered_item)

registered item
void gsi_clear item

Some API functions that access . :
(registered_item)

components of a gsi_itemstructure
can take as an argument a gsi
registered itemstructure that
points to the gsi_item Other API
functions can access the gsi_item
only directly, and require the gsi
itemitself as an argument. To find
out whether an API function can
access a component of a gsi_item
structure directly, see the description
of that function in API Functions.

166

gsi_item Structures

Components of gsi_registered_item Structures

Component API Functions for Accessing

default update interval double gsi interval of

Current default update interval, (registered_item)

corresponding to the default-update- |void gsi set interval
interval attribute of a G2 variable. (registered_item, interval)

status gsi int gsi status of

A status code, which G2 Gateway (registered_item)

sends to the gsi-variable-status void gsi set status
attribute of the GSI variable in G2 (registered_item, status)
that corresponds to this gsi
registered item.

G2 Gateway initially sets statusto
0, indicating no error. Your user code
can set status to a positive or
negative integer that reflects the
current status of the external data
point to which the GSI variable is
mapped.

When G2 receives the registered
item, it updates the gsi-variable-
status attribute of the corresponding
GSI variable.

gsi_item Structures

gsi_itempoints to a G2 Gateway data structure that represents an item or a
value. G2 Gateway creates a gsi_1itemstructure for each data-served variable,
object, item handle, or simple value that G2 passes to G2 Gateway.

Verifying that an Item is an Item

The following API function determines whether item is a member of the G2 class
item:

gsi_int gsi is item(item)

167

gsi_item Structures as Arguments of Remote
Procedure Calls

The following API functions accept gsi_itemstructures as arguments:
void gsi rpc call (function_handle, gsi_item_arguments, context)
void gsi rpc start (function_handle, gsi_item_arguments, context)

void gsi_rpc return values
(gsi_item_arguments, count, call_handle, context)

Copying Contents of a gsi_item Structure

void gsi simple content copy (destination_item, source_item)

API Functions that Return gsi_item Structures

The following API functions return gsi_itemstructures:
gsi item gsi item of attr (gsi_attr)

gsi item gsi item of registered item/registered_item)

API Functions that Allocate and Reclaim gsi_item
Structures

The following API functions allocate or reclaim gsi itemstructures:
gsi item *gsi make items (count)
gsi attr *gsi make attrs with items (count)

void gsi reclaim items (items)

Returning gsi_item Values and Attributes to G2

The API functions that return the values and attribute values of a gsi_item
structure to a GSI variable all take as an argument the gsi_registered itemthat
contains the gsi_item rather than the gsi itemitself. These functions are: gsi
return values(), gsi return timed values(), gsi return timed attrs(),
and gsi_return attrs (). For information about these functions, see APl
Functions.

168

gsi_item Structures

Components of a gsi_item Structure

The following figure illustrates the API functions that set values of components of
gsi_itemstructures:

API Functions that Set Values of gsi_item Components

gsi_item
gsi_set_type() type tag
gsi_set_handle() item handle
gsi_set_name() name

class name (null if item

gsi_set_class_name() -
- = - represents a simple value)

Various functions. See below. value
gsi_set_element_count() element count
gsi_set_elements() elements
gsi_set_history() history type
gsi_set_history() history values

gsi_set_history()

history ti
gsi_set_timestamp() story times

gsi_set_history() history specification
gsi_set_attr_count() attribute count
gsi_set_attrs() attribute(s)

gsi_set_attr_by_name()

gsi_set_user_data() user data

169

170

The following figure illustrates the API functions that get the values of
components of a gsi_1itemstructure:

API Functions that Get Values of gsi_item and gsi_attr Components

gsi_item

gsi_type_of() type tag

gsi_handle_of() item handle

gsi_name_of() name

class name (null if item

gsi_class_name_of() .
- - - represents a simple value)

Array of simple

Various functions. See below. value — gy valuesorgsi_

item.

gsi_element_count_of()

element count value or gsi_item

value or gsi_item
gsi_elements_of() elements

value or gsi_item

gsi_history_type_of() | pistory type value or gsi_item

gsi_extract_history()

I history values .
gsi_history_count_of()

gsi_timestamp_of() history times

gsi_extract_history_spec() history specification

gsi_attr_count_of() attribute count

gsi_user_data_of() user data

gsi_attr_by_name()

; attribute(s)
gsi_attrs_of()

Array of gsi_attr

gsi_item Structures

The following table describes the components of the gsi i temstructure that your
user code can access through API functions:

Components of gsi_item Structures

Component API Functions for Accessing
type tag Set the type tagcomponent:
When representing an item void gsi _set type (item)

(class name component has a

value), one of: void gsi _clear item(item)

GSI_NULIL_TAG,

GSI_INTEGER ARRAY TAG, Get the type tagcomponent:
GSI SYMBOL ARRAY TAG, . , ,
GSI_STRING ARRAY TAG, gsi_int gsi_type of (item)

GSI_LOGICAL ARRAY TAG,
GSI_FLOAT64 ARRAY TAG,
GSI_ITEM ARRAY TAG,
GSI_VALUE ARRAY TAG,
GSI_INTEGER LIST TAG,
GSI_SYMBOL LIST TAG,
GSI_STRING LIST TAG,
GSI_LOGICAL LIST TAG,
GSI_FLOAT64 LIST TAG,
GSI_ITEM LIST TAG, or
GSI_VALUE LIST TAG

When representing a value
(class name component is
null), one of:

GSI_NULL TAG,
GSI_HANDLE TAG

(RPC arguments only),
GSI_INTEGER TAG,

GSI SYMBOL TAG,

GSI STRING TAG,
GSI_LOGICAL TAG,
GSI_FLOAT64 TAG

171

172

Components of gsi_item Structures

Component

API Functions for Accessing

item handle

A gsi_int value, which refers
to some object in G2 that has
been registered through the
API function gsi_receive
_registration(). G2
generates handles for the
following objects:

® A GSI variable, when it is
registered for data service.

® An object passed to G2
Gateway through a remote
procedure call declared
with the as handle
grammar.

® An object registered by the
G2 system procedure
g2-register-on-network().

gsi_int gsi_handle of (item)

void gsi set handle (item,
handle_value)

name

The name of the GSI variable
registered for data service, or
of an object passed to G2
Gateway through a remote
procedure call.

gsi char *gsi name of (item)

void gsi_set name (item, name)

(gsi_item)

class name

Name of the G2 class. If the
gsi_itemstructure represents
a simple value in G2, this
component is null. In this case,
only the type tag, value,
element count, and elements
components of this gsi_item
are meaningful.

gsi symbol gsi_class name of

(item)
gsi int gsi is item(item)

void gsi_set class name
(item, class_name)

gsi_item Structures

Components of gsi_item Structures

Component API Functions for Accessing
value Set the value component:
One or more values. void gsi set flt (item,

float_value)

void gsi set flt array (item,
doubles_array, count)

void gsi set flt list (item,
doubles_array, count)

void gsi set int (item,
integer_value)

void gsi set int array (item,
in tegers_array, count)

void gsi set int list (item,
integers_array, count)

void gsi set log (item,
truth_value)

void gsi set log array (item,
truth_values_array, count)

void gsi set log list (item,
truth_values_array, count)

void gsi set str (item, text_value)

void gsi set str array (item,
text_values_army, count)

void gsi set str list (item,
text_values_array, count)

void gsi set sym(item,
symbol_value)

void gsi set sym array (item,
symbol_values_array, count)

void gsi set sym list (item,
symbol_values_array, count)

Clear memory associated with the
value component:

void gsi clear item(item)

173

174

Components of gsi_item Structures

Component

API Functions for Accessing

value

Get the value component:

double *gsi flt array of (item)
double *gsi flt list of (item)
double gsi flt of (item)

gsi _int *gsi int array of (item)
gsi_int *gsi int list of (item)
gsi_int gsi_int of (item)

gsi int *gsi log array of (item)
gsi int *gsi log list of (item)
gsi _int gsi log of (item)

gsi char **gsi_str array

of (item)

gsi_char **gsi str list

of (item)

gsi char *gsi str of (item)
gsi_char **gsi sym array

of (item)

gsi char **gsi sym 1ist

of (item)

gsi symbol *gsi sym of (item)

element count

Number of elements in the

gsi_int gsi element count of
(item)

value component. void gsi_set element count
(item, count)
void gsi clear item/(item)
elements gsi_item *gsi elements of

The elements in the value
component.

(item)

void gsi_set elements
(item, elements_army, count, type_
tag)

history type

Type of the item’s associated

history data, if any.

This component is meaningful

only when the class name
component of this gsi_item
has a value that names a
subclass of variable or
parameter in G2.

gsi_int gsi history type of
(item)

void gsi _clear item/(item)

gsi_item Structures

Components of gsi_item Structures

Component

API Functions for Accessing

history values

C array that contains the item’s
associated history data, if any.

This component is meaningful
only when the class name
component of this gsi item
has a value that names a
subclass of variable or
parameter in G2.

gsi _int gsi extract history
(item ,values_address,
timestamps_address , type_address)

gsi_int gsi history count of
(item)

void gsi_set history

(item, values, timestamps, count,
type, maximum_count,
maximum_age, min_interval)

void gsi clear item(item)

history times

Array of floating-point
timestamp values, if any.

This component is meaningful
only when the class name
component of this gsi item
has a value that names a
subclass of variable or
parameter in G2.

void gsi_set history

(item, values, timestamps, count,
type, maximum_count,
maximum_age, min_interval)

void gsi set timestamp (item,
timestamp_value)

double gsi timestamp of (item)

void gsi clear item(item)

history specification

Maximum number of history
data values to retain, the
maximum age of history data
values, and the minimum
interval between timestamps,
which correspond to those
specified in the history-
keeping-specification attribute
of a G2 variable or parameter.

This component is meaningful
only when the class name
component of this gsi item
has a value that names a
subclass of variable or
parameter in G2.

gsi int gsi extract history
(item ,values_address,
timestamps_address , type_address)

gsi_int
gsi extract history spec
(item ,maximum_count_address,
maximum_age_address,
minimum_interval_address)

void gsi_set history

(item, values, timestamps, count,
type, maximum_count,
maximum_age, min_interval)

void gsi clear item/(item)

175

176

Components of gsi_item Structures

Component

API Functions for Accessing

attribute count

Number of attributes in the
attributes component.

This component is meaningful
only when the class name
component of this gsi item
has a value.

gsi int gsi attr count of
(item)

void gsi set attr count
(item ,count)

void gsi_clear item
(registered_item)

user data

Reserved for use by your G2
Gateway user code. Can point
to any 32-bit entity, including
memory allocated by a user-
written function.

You can use this component to
associate any application-
specific information with the
gsi registration, such as
data that the G2 Gateway
bridge process receives from a
PLC or other external device.

G2 Gateway itself never reads
from nor writes to the user
data component.

void gsi set user data
(registration, user_data)

gsi_int gsi user data of
(registration)

gsi_attr Structures

Components of gsi_item Structures

Component

API Functions for Accessing

attribute(s)

An array of gsi_attr
structures, representing the
attributes of this class of item.

This component is meaningful
only when the class name
component of this gsi item
has a value.

gsi_attr *gsi_attrs of (item)

gsi attr *gsi attr by name
(item ,search_name)

void gsi_set attrs
(item, new_attributes, count)

void gsi_set attr by name
(destination_item, search_name,
source_item)

void gsi_set item of attr
(attribute, source_item)

void gsi clear item/(item)

void gsi_return attrs
(registered_item, attributes, count,
context)

void gsi_return timed attrs
(registered_item, attributes, count,
context)

gsi_attr Structures

A gsi_attr points to an internal G2 Gateway structure that represents an

attribute of an item. The attribute can contain an attribute value or can contain a

gsi_itemstructure that represents a G2 object embedded in an attribute of

another G2 object.

API Functions that Return gsi_attr Structures

The following API functions return gsi_attr structures:

gsi_attr gsi identifying attr of (registration,
identifying_attribute_index)

gsi attr *gsi attr by name (item-or-attribute, search-name)

gsi_attr *gsi attrs of (item-or-attribute)

177

178

API Functions that Allocate and Reclaim gsi_attr
Structures

The following API functions allocate or reclaim gsi_attr structures:

gsi attr *gsi make attrs (count)

gsi_attr *gsi_make attrs with items (count)
void gsi reclaim attrs (attributes)

void gsi reclaim attrs with items (attributes)

For information about allocating and reclaiming gsi attr and other G2 Gateway
data structures, see the following section.

Components of a gsi_attr Structure

A gsi_attr structure has a user-accessible name component and an item
component that can contain a gsi_itemstructure. This gsi_itemstructure
represents an G2 object that is embedded in the G2 object attribute represented by
the gsi_attr structure.

If the itemcomponent contains a gsi_itemstructure, the gsi_attr structure can
be used as an argument of API functions that access components of gsi_item
structures. In this case, the API functions access the components of the gsi_item
structure indirectly, through the gsi_attr structure that points to the gsi item
structure.

The following figure illustrates the components of a gsi_attr structure that you
can access through API functions.

API Functions that Set and Get Values of gsi_attr Components

gsi_attr
name gsi_attr_name_of()
gsi_set_attr_name() . gsi_class_qualifier_of()
. . class-qualifier
gsi_set_class_qualifier() L _ — _ _ | gsi_unqualified_attr_name_of()
gsi_set_unqualified_attr_name() unqualified gsi_attr_name_is_qualified()
gsi_set_item_of_attr() item gsi_item_of_attr()

Functions for accessing gsi_item
components of gsi_item components

—,

Set component values Get component values

gsi_symbol Structures

The following table describes the components of the gsi attr structure that your
user code can access through API functions.

Components of gsi_attr Structures

Component API Functions for Accessing
name gsi char *gsi_attr name of (attribute)
The name of this gsi_chz?zr *gsi class qualifier of
. (attribute)
gsi attr structure, .
= gsi char
which represents the — . .y
. *gsi unqualified attr name of
name of an attribute of = - - —
G2 obiect (attribute)
a%os object. gsi int gsi attr name is qualified
(attribute)
void gsi set attr name (attribute,
attribute_name)
void gsi_set class qualifier
(attribute, attribute_name)
void gsi set unqualified attr name
(attribute, attribute_name)

item gsi_item gsi item of attr (attribute)
A gsi_itemstructure void gsi set item of attr (attribute,
that represents a G2 source_item)
item embedded in the
G2 attribute that this
gsi_attr represents.

gsi_symbol Structures

The gsi_symbol data structure helps improve performance because it is more
efficient to compare symbols than to compare text strings. Symbols are like text
strings, but they are stored differently. The system stores all symbols in a table.
When creating a symbol given a text string, the system checks for an existing
symbol having the same name as the given text string. If the system finds a
symbol with the same name, it always uses the symbol.

When the GSI_NEW _SYMBOL API runtime option is in effect, a symbol is a (void *)
pointer that does not change through the lifetime of the G2 Gateway process.
Calling gsi_make symbol with a text string having the same contents as in an
earlier call always returns exactly the same result.

Symbols and text strings cannot be used interchangeably. For example, using
gsi_set symon a text attribute will fail and using gsi set str ona symbol
attribute will fail.

179

Note If gsi use new symbol apiis notin effect, the gsi make symbol and
gsi_symbol name functions returnaresultasa gsi_ char* type, which is simply a
copy of the argument string.

API Functions that Return gsi_symbol Structures

The following API functions return gsi_symbol structures:
gsi attr name of ()
gsi class name of ()
gsi class qualifier of()
gsi make symbol ()
gsi name of ()
*gsi sym array of ()
*gsi sym list of()
gsi_sym of ()
gsi unqualified attr name of ()

gsi_symbol user data/()

An API Function that Allocates a gsi_symbol
Structure

The API function gsi_set symbol user data () allocatesa gsi symbol
structure.

Accessing Components of a gsi_symbol Structure

The following figure illustrates the components of a gsi_symbol structure that
you can access with API functions:

gsi_symbol
name gsi_name_of()
gsi_set_symbol_user_data() user data gsi_symbol_user_data()
Set component values Get component values

180

gsi_symbol Structures

Note Because you cannot set the name of a symbol, create a new symbol using
gsi _make symbol.

The following table lists the components of the gsi symbol structure that your
user code can access through API functions:

Components of gsi_symbol Structures

Component API Functions for Accessing

name gsi_symbol gsi name of

A symbol giving the name of the (ttem_atir_or_reg)

specified data structure.

The symbol persists only as long as
the data structure with which it is
associated exists. If your user code
needs to keep the symbol for longer
than the life-span of the data
structure, it must copy the symbol
into memory that it has allocated
itself.

user data void
gsi set symbol user data

Reserved for use by your G2 (symbol, symbol_user_data)

Gateway user code. Can point to any
32-bit entity, including memory gsi_symbol user data_ type
allocated by a user-written function. gsi_symbol user data

. symbol
You can use this component to 5y J

associate any application-specific
information with the gsi symbol.

G2 Gateway itself never reads from
nor writes to the user data
component.

181

182

Callback Functions

Describes the callback functions that you complete to implement your G2 Gateway
user code.

Introduction 184

Standard Callback Functions 185

Using Standard Callback Functions 185

Calling Other Functions from Callbacks 188

Values Returned by Callback Functions 189

Groups of Functionally Related Callback Functions 189

Standard Callbacks 192
gsi_close fd 193
gsi_error_handler 194
gsi_g2 poll 195
gsi_get data 198
gsi_get _tcp_port 201
gsi_initialize_context 203
gsi_missing_procedure_handler 208
gsi_not_writing_fd 209
gsi_open_fd 210
gsi_pause_context 211
gsi_read_callback 213
gsi_receive_deregistrations 214
gsi_receive_message 216
gsi_receive_registration 218
gsi_reset_context 221
gsi_resume_context 222
gsi_run_state_change 223
gsi_set data 225
gsi_set up 228
gsi_shutdown_context 230
gsi_start_context 232

183

gsi_write_callback 233
gsi_writing fd 234

RPC Support Callback Functions 236
local functions 237
receiver functions 239
error receiver functions 241
watchdog functions 243

Using the Select Function in G2 Gateway 244

Introduction

Caution

184

Callback functions form the basis of your G2 Gateway user code. G2 Gateway
invokes callback functions automatically, when network events on a connection to
a G2 KB occur. G2 Gateway invokes each callback to respond to one particular
kind of event, such as the activation of a GSI interface or a request by G2 for a
value for a GSI variable.

You complete the code of stub versions of callback functions provided with G2
Gateway and provide the code for callback functions not provided with G2
Gateway in stub form to make them respond to these network events in the ways
required by your application.

G2 Gateway invokes callback functions only while your G2 Gateway bridge
process is executing under the control of gsi run Ioop (), the API function that
establishes the main event-processing loop of your G2 Gateway bridge process.
For information about gsi run loop (), see API Functions.

Do not attempt to invoke callback functions directly from your G2 Gateway user
code. G2 Gateway automatically invokes all callbacks at the appropriate times.

Standard Callback Functions

Standard Callback Functions

There are a total of 23 standard callback functions, 12 of which existed in GSI 4.1
and 11 of which were added in G2 Gateway 5.0. For compatibility with GSI 4.1,
there are different rules for using the 4.1 functions than for using the 5.0 functions.

Callbacks that Existed in GSI 4.1

Callbacks Added in G2 Gateway 5.0

gsi set up()

gsi _get tcp port()

gsi initialize context ()

gsi pause context ()

gsi resume context ()
gsi_shutdown context ()

gsi receive registration()
gsi receive deregistrations ()

gsi close fd()

gsi error handler ()

gsi _missing procedure handler ()
gsi open fd()

gsi read callback()

gsi_run state change()

gsi write callback()

gsi start context ()

gsi g2 poll()

gsi get data()

gsi_set data()
gsi_receive message ()

gsi reset context ()
gsi writing fd()
gsi _not writing fd()

Using Standard Callback Functions

The way in which you use the standard callback functions differs depending
on whether:

® You are using the GSI 4.1 standard callback functions.

* You are using the standard callback functions introduced in G2 Gateway 5.0.
® Your code is linked to G2 statically.

® Your code is linked using dynamic libraries (DLLs).

The following sections provide instructions for each.

Using GSI 4.1 Callbacks with G2 Gateway Linked
Statically

The GSI 4.1 callback functions have required argument signatures and required
names, you cannot rename these functions.

G2 Gateway provides the argument signature for the GSI 4.1 callback functions.
The only requirement for using these callbacks is that a definition for each must
be included in your user code. The definition can be only a stub if you do not
intend to use the callback. See the section, Using Stub Versions of GSI 4.1
Callbacks, for more information.

185

186

Using GSI 4.1 Callbacks with G2 Gateway Linked
Dynamically

The GSI 4.1 callback functions have required argument signatures and required
names. You cannot rename these functions.

To use GSI 4.1 callback functions when you link G2 Gateway using DLLs:
1 Include a definition for each callback in your user code.

The definition can be only a stub if you do not intend to use the callback. See
the section, Using Stub Versions of GSI 4.1 Callbacks, for more information.

2 Use the standard gsi main.hheader file.

The gsi_main.hfile contains a prototype declaration for each GSI 4.1 callback
function.

3 Set the C preprocessor flag GSI USE DLL when you compile your application.

See Defining C Preprocessor Flags for instructions on defining a C
preprocessor flag when you compile your G2 Gateway application.

4 Include a call to the GSI_SET OPTIONS FROM COMPILE () before the call to
gsi_start () in your main () function.

The gsi_main.cfile includes a call to GSI SET OPTIONS FROM COMPILE().If you
are using the standard gsi_main. cfile, you do not need to do anything for this
step.

Setting the compile flag GSI USE DLL and including a call to GSI_SET OPTIONS
FROM_COMPILE () in your main() function results in G2 Gateway calling the gsi__
initialize callbacks () API function for each GSI 4.1 callback function.

Using Stub Versions of GSI 4.1 Callbacks

For each callback function that existed in GSI 4.1, you must include a definition.
The definition can be only a stub if you do not intend to use the callback.

G2 Gateway provides an uncompleted stub version of each of the GSI 4.1
standard named callback functions, in a file named skeleton.c. You can copy the
skeleton. cfile to make your own source file, in which you can complete the
code of the stub functions.

In order for your G2 Gateway user code to link successfully, it must include all
the callback functions in skeleton.c. If you do not intend to use a particular
callback function in the skeleton. cfile, your user code must nevertheless
include the stub version of that callback.

Using Standard Callback Functions

Note The skeleton.c file contains two utility functions, gsi show callback () and
gsi show registered items (), that are invoked by several of the stub callbacks
in the file. These functions are provided for convenience only; callbacks are not
required to use them. gsi show callback () and gsi show registered items()
are not themselves callback functions and are not part of the G2 Gateway library
of API functions.

Using G2 Gateway 5.0 Callbacks with G2 Linked
Statically or Dynamically

The callback functions introduced in G2 Gateway 5.0 have required argument
signatures; however, the names can be user defined. The procedure to use 5.0
callback functions is the same regardless of whether you link with G2 Gateway
statically or using dynamic libraries (DLLs).

To declare and install G2 Gateway Version 5.0 callback functions:

1 Declare each callback function by calling the appropriate macro from your
header file.

G2 Gateway provides you with macros that create the appropriate prototype
for each 5.0 callback function. The format for the macros are:
specifier declare_callback_name(callback_name) ;

For example:

extern declare gsi error handler (gsi error handler);

Note If you are using a C compiler that supports ANSI C, these macros generate
prototype declarations for the callbacks; otherwise, Kernighan and Ritchie
style declarations are generated.

2 Install each callback function by calling the appropriate install-macro before
the callto gsi start () inyour main() function.

G2 Gateway provides you with install-macros that install each 5.0 callback
function. The format for the macros are:

specifier install_callback_name(callback_name) ;
For example:
static gsi install error handler (gsi error handler);

The install-macro expands into a call to gsi_initialize callbacks (), with
the correct argument list.

187

Note If you do not use the install-macros, you can initialize each 5.0 callback
function individually using the gsi_initialize_callbacks() API function. This
method for initializing the callback functions is not recommended.

3 Write the function.

Note that you can change the name of the callback function to something else. For
example, you can use a function named my error handler () using the following
syntax:

extern declare gsi_error handler (my error handler);
static gsi _install error handler (my error handler);

Using Stub Versions of G2 Gateway 5.0 Callbacks

Unlike GSI 4.1 callback functions, you do not need a stub for the 5.0 callbacks.
There is no action that you must take for the G2 Gateway callback functions that
you do not intend to use.

Calling Other Functions from Callbacks

Your callback functions can make calls to other functions, including;:

* G2 Gateway API functions, which are defined in the G2 Gateway object
libraries provided by Gensym. You make calls to these built-in functions
inside your user code functions to perform various GSI-related tasks, such as
returning data to G2.

Your callback functions can call any API functions except gsi_start (),
gsi run loop(),and gsi pause (). These functions can be called only
outside the extent of any callback function.

For more information about specific G2 Gateway API functions, see API
Functions.

* User-written functions in your G2 Gateway user code.

* API functions for accessing the external system to which your G2 Gateway
bridge is connected or any third-party utility libraries that you need.

* Remote procedure calls (RPCs), which are local functions in your G2
Gateway bridge user code that can be called from G2. You can also set up
your bridge user code to call procedures found in your G2 knowledge base.

For more information about RPCs, see Remote Procedure Calls.

188

Values Returned by Callback Functions

Values Returned by Callback Functions

gsi_get tcp port()and gsi initialize context () are the only G2 Gateway
callback functions that can return a value. The return value of all other callback
functions is declared void.

Groups of Functionally Related Callback
Functions

Callback functions fall into several functionally related groups, as described in the
following sections.

Application Initialization

The following functions support the initial setup of a G2 Gateway application:

gsi get tcp port()
gsi set up()

Both of these callbacks are executed by the API function gsi_start (). For a
general discussion about how to use these functions, see Using gsi_start().

Connection Management

G2 Gateway calls the following functions when connections are activated or
deactivated, or when a connected G2 process is paused or resumed:

gsi initialize context () gsi pause context ()
gsi_resume context () gsi_shutdown context ()

For information about how to use these functions, see Managing a Connection
between G2 and a G2 Gateway Bridge.

Flow Control

G2 Gateway invokes the following functions when there is change in its ability to
read or write on an open connection, or when a file descriptor is opened or closed:

gsi_read callback () gsi_write callback ()
gsi_open fd() gsi_close fd()

189

190

Item Registration and Deregistration

G2 Gateway calls the following functions to register and deregister items with the
G2 Gateway bridge process:

gsi receive registration()
gsi_receive deregistrations ()

For information about how G2 Gateway registers items, see Registering and
Deregistering Items.

Data Service

The following functions support data-service for GSI variables in G2:

gsi get data() gsi set data()
gsi g2 poll()

For a general discussion about how to use these functions, see Implementing Data

Service in G2 Gateway.

Error Handling

G2 Gateway calls the following functions to handle errors on active contexts, or to
respond to a remote procedure call to a local function that has not been declared
in the G2 Gateway user code:

gsi_error handler () gsi_missing procedure handler ()

For information about how to signal errors for your G2 Gateway code and write
customized error-handling procedures, see Error Handling.

Message Passing

G2 Gateway calls the following function to receive text messages that G2 sends
using the G2 inform action:

gsi_receive message ()

For a general discussion of message passing, see Message Passing.

Groups of Functionally Related Callback Functions

Run State Change

G2 Gateway calls the following callback whenever the flow of control enters or
leaves G2 Gateway:

gsi run state change ()

191

Standard Callbacks

This section presents basic reference information about each of the standard
named callback functions. The functions are presented in alphabetical order.

gsi_close fd

gsi_error _handler

gsi_g2 poll

gsi_get data

gsi_get tcp port
gsi_initialize context
gsi_missing procedure handler
gsi_not writing fd
gsi_open fd

gsi pause context

gsi read callback

gsi receive deregistrations
gsi_receive _message
gsi_receive registration
gsi_reset context
gsi_resume context

gsi run state change

gsi_set data

gsi_set up
gsi_shutdown context

gsi_start context
gsi_write callback

gsi_writing fd

192

gsi_close_fd

gsi_close_fd

Called whenever a file descriptor for network I/O is closed.

Synopsis

void gsi close fd(gsi int descriptor)

Argument Description
descriptor The file descriptor.
Description

gsi_close fd()is called whenever a file descriptor for network I/O is closed.

gsi_open fd() and gsi close fd() enable a bridge to wait until there is
network activity to which it must respond. Use of these callbacks, rather than the
API function gsi_pause (), is recommended if the bridge is handling non-
blocking I/O outside of the control of G2 Gateway. In this case, a mask containing
a 1 bit for each of the currently open file descriptors should be maintained, using
gsi_open fd() and gsi close fd() as well as the non-G2 Gateway file
descriptors through which the bridge is performing the non-blocking I/O. This
mask, and possibly also a timeout, should be passed to the select() system
function, to perform the waiting.

Before you can use the gsi_close fd() callback, you must declare and install it.
For instructions, see Using G2 Gateway 5.0 Callbacks with G2 Linked Statically or

Dynamically.

193

gsi_error_handler

194

Called when errors occur in active contexts.

Synopsis

void gsi_error handler (context, code, message)

Argument Description
gsi_int context The context in which the error occurs.
gsi _int code The error code associated with the error.

gsi_char *message The message associated with the error.

Description

The gsi_error handler () callback is invoked when an error occurs in any active
context. It receives argument values specifying the context in which the error
occurred, and the error code and message associated with that error.

You can complete the code of gsi _error handler () to handle the errors in the
way that your application requires.

Before you can use the gsi error handler () callback, you must declare and
install it. For instructions, see Using G2 Gateway 5.0 Callbacks with G2 Linked
Statically or Dynamically.

gsi_g2_poll

gsi_g2_poll

Seek data or perform other user-specified actions, repeatedly.

Synopsis

void gsi g2 poll ()

Description

Use gsi g2 poll () to perform any task that must be done repeatedly, such as
polling an external system for data. A typical implementation of gsi g2 poll ()
checks which registered GSI variables need updating, retrieves any data values
available, packages the values into data structures, and sends these data
structures to G2 via one of these API functions:

® gsi return values()

® gsi return timed values ()
® gsi return attrs()

® gsi return timed attrs()

G2 Gateway calls gsi g2 poll () if the poll-external-system-for-data attribute of
the GSI interface is set to yes.

How often G2 Gateway calls gsi_g2 poll () is determined by the setting of the
scheduler-mode attribute of the Timing Parameters system table in the current KB
of the connected G2 process:

* If scheduler-mode is set to as fast as possible, G2 Gateway calls gsi g2
poll () as often as possible.

* If scheduler-mode is set to real time, G2 Gateway calls gsi g2 poll()
approximately once per second.

The real time interval can vary, depending on the processing load of G2, and
on the value assigned to the priority-of-data-service attribute, which is found
under Data Server Parameters in the system tables of your KB.

Caution If you have specified a low priority in priority-of-data-service and your G2
application has a heavy processing load, gsi_g2 poll () may never be called.

* If scheduler-mode is set to simulated time, G2 calls gsi g2 poll () at the end
of each scheduler tick.

If any tasks performed through gsi g2 poll () take longer than 1 second, G2
Gateway queues the accumulated gsi g2 poll () calls for future execution.

195

196

Note

gsi g2 poll () is stopped automatically when the G2 KB to which it is connected
is paused, and it resumes when the G2 KB is resumed.

For more information about the G2 system tables, see the G2 Reference Manual.

Example

The following gsi g2 poll () callback updates the value of the data-value
attribute of a G2 object if the value for that attribute in the bridge has changed
since the last time when gsi g2 poll () was executed.

This attribute is named “DATA-VALUE” in G2 Gateway.

A gsi g2 poll () callback has no arguments through which it can receive
existing data structures. For this reason, gsi g2 poll () must allocate any data
structures that it needs in order to send values back to G2. This gsi g2 poll ()
callback allocates the following data structures:

* Agsi registered item to which gsi g2 poll () assigns the handle of an
object in G2.

®* A gsi attrwithanitem.

The item allocated with this gsi attr is used by this gsi g2 poll () to carry
a value back to the data-value attribute of the object in G2.

This example assumes that the G2 Gateway user code includes the following
global variables:

®* my stored object handle, which contains the handle of the object in G2.
This variable can receive the handle either within the gsi receive
registrations () callback, or from a user-defined G2 Gateway function. The
gsi_g2 poll () callback assigns the handle in my stored object handleto
the gsi_registered itemthat it allocates.

®* new object value, in which the user code stores the current value for the
object. The user code obtains values for this variable from the external system.

®* old object value, in which the user code saves for future use the value with
which it updates the data-value attribute of the object in G2.

gsi_int new object value = 0;
gsi_int old object value = 0;
gsi int my stored object handle = 0;

/* gsi g2 poll() callback function */

void gsi g2 poll()

gsi_g2_poll

{
gsi registered item *object;
gsi_attr *ret attr;

/* Include code here that gets a new value from external
system and stores it in new object value. If the new
value is equal to the old value, this callback returns
without updating the attribute. */

1f (new object value == old object value)

return;

/* If the new attribute value is not equal to the old
value, update the attribute in the G2 object with the
new value. */

/* Allocate memory for the local object and attribute */
object = gsi _make registered items(1);
ret attr = gsi make attrs with items(1);

/* Set the handle of the local object to the handle of
the G2 object to which the value will be returned. */
gsi_set handle (object [0], my stored object handle);

/* Set the object index attribute name and value.

Note: Must enable object status return (if it is
disabled)in order to get the index back to the object */
gsi_set attr name(ret attr (0], "DATA-VALUE");
gsi _set int(ret attr (0], new object value);
gsi return attrs(object[0], ret attr, 1,
gsi current context());
/* Release the allocated memory */

gsi reclaim registered items (object);
gsi reclaim attrs with items (ret attr);

return;

} /* End of gsi g2 poll() */

197

gsi_get _data

Respond to a request from G2 for a value for a data-served GSI variable.

Synopsis

void gsi get data (registered_items,count)

Argument Description
gsi_registered item An array of one or more registered
“registered_items items. G2 Gateway creates a

gsi registered itemstructure each
time G2 asks G2 Gateway to get a new
value for a GSI variable from an
external system, or to write the value of
a GSI variable to a data point in an
external system. The structure stores
the handle, current attribute values,
and other information associated with
the registered item.

For information about the components
of gsi_registered itemstructures
and the API functions that access these
components, see gsi_registered_item
Data Structures.

gsi_int count Number of registered items.

Description

G2 Gateway calls gsi_get data () when it receives a request from G2 for a value
for one or more data-served GSI variables. For information about the events that
cause G2 to request G2 Gateway for a value for a GSI variable, see Returning
Solicited Data to G2.

G2 Gateway may also call gsi_get data () repeatedly, at regular intervals,
depending on the settings of the retry-interval-after-timeout and timeout-for-
variables attributes of the G2 Inference Engine Parameters system table. If the
retry-interval-after-timeout attribute has a time interval value, G2 requests G2
Gateway for values for GSI variables immediately when the variables exceed the
time interval specified in timeout-for-variables, and repeatedly thereafter at the
interval specified in retry-interval-after-timeout. Setting retry-interval-after-timeout
to do-not-retry prevents G2 from retrying a variable. Note that these attributes
affect all variables in a KB. For more information about system engine
parameters, see the G2 Reference Manual.

198

Note

gsi_get_data

To return the data to G2, include a call inside gsi _get data () to one of the
following G2 Gateway API functions:

gsi return values ()

gsi return timed values ()
gsi_return attrs()

gsi return timed attrs()

If you use gsi_return values (), it can be convenient to pass to it the array
pointed to by registered_items, because this array is already allocated, is of the
correct size, and has handles already assigned.

If the G2 value of a quantitative variable is none when G2 Gateway makes a call to
gsi_get data(), G2 sets the data type to gsi null tag. Thisis anindication that
there is no valid value available for the variable.

See also the discussion of G2 Gateway data service in the G2 Reference Manual.

Example

The following gsi get data () callback updates the value of the data-value
attribute of a G2 object. This example assumes that:

* The G2 Gateway user code obtains a new value for the data-value attribute
from an external system, and stores this value in a global variable named
new object value.

® The item passed to this function represents a G2 object that was passed to the
G2 Gateway bridge through a remote procedure call, using the as handle
grammar. Thus, the object’s handle value was sent to the bridge, but not its
attributes.

* The G2 object has an attribute named data-value. This callback passes the new
value to this attribute.

To return a value to the data-value attribute, this gsi get data() callback does
the following;:

1 Allocates a gsi_registered itemstructure and assigns to it the handle of the
G2 object. The handle value is the only meaningful information that this
structure carries.

2 Allocates a gsi_attr structure and assigns to it the new value for the data-
value attribute of the G2 object.

3 Calls the API function gsi_return attrs() to return the new attribute value
to the G2 object designated by the handle value of the gsi registered item
structure.

199

4 Deallocates the gsi_registered itemand gsi attr structures.

/* gsi get data() callback function */

void gsi get data(registered items, count)
gsi registered item *registered items;
gsi_int count;

gsi registered item *object;
gsi attr *ret attr;
gsi int n;

/* Allocate memory for the local object and attribute */

object = gsi make registered items(1);
ret attr = gsi make attrs with items(1);

/* Loop through registered items sent to this function. */

for (n=0; n<count; n++)
{

/* Set the handle of the local object to the handle of
the G2 object to which the value will be returned */

gsi_set handle (object [0],
gsi_handle of (registered items(n]));

/* Set the object index attribute name and value.
Note: Must enable object status return (if it is

disabled) to get the index back to the object */

gsi _set attr name(ret attr [0], "DATA-VALUE");
gsi set int(ret attr[0], new object value);

gsi return attrs(object[0], ret attr, 1,
gsi_current context());

} /* End of for loop */

/* Release the allocated memory */

gsi reclaim registered items (object);

gsi reclaim attrs with items (ret attr);

return;

} /* End of gsi_get data() */

200

gsi_get_tcp_port

gsi_get_tcp_port

Note

Specify a default port number that a G2 Gateway process using TCP/IP can listen
on for connections from a G2 process.

Synopsis

gsi int gsi get tcp port()

Return Value Description
gsi_int The TCP/IP port number that G2 Gateway
will listen on for connections from a G2
process.
Description

G2 Gateway calls gsi_get tcp port () at startup if no port number, or a port
number of 0, is specified on the command line that invokes the G2 Gateway
bridge process. gsi get tcp port () specifies a default port number for the G2
Gateway process to listen on.

Use a returnstatement inside gsi _get tcp port () to return the value that
you want to specify as the default port number. If gsi _get tcp port ()
returns a value of 0, G2 Gateway by default uses port number 22041, if it is
available. If 22041 is not available, G2 Gateway uses the first available port
number within the next 99 addresses.

If you use the -tcpipexact option when you activate a G2 Gateway interface, the
process will exit if the port is not available. For more information, see the

description of tcpipexact.

If TCP/IP is not installed, gsi_get tcp port () has no effect.

Examples

The following gsi get tcp port ()callback returns the value 0, which causes G2
Gateway to use the default port number, 22041, or the port number at the first
available address:

#define TCPIP PORT NUMBER 0

/* gsi get tcp port() callback function */

201

gsi_int gsi get tcp port()
{
return (T CPIP PORT NUMBER)
} /* End of gsi get tcp port() */

The following gsi get tcp port () callback returns the port number 4000 if the
variable my machine name contains the string " DEVELOPMENT". Otherwise, it
returns the port number 4001.

/* gsi get tcp port() callback function */

gsi_int gsi get tcp port()
{
gsi int tcpip starting port number =
TCPIP PORT NUMBER;

if (!strcmp (my machine name,"DEVELOPMENT"))
tcpip starting port number = 4000;

else
tcpip starting port number = 4001;

return(tcpip starting port number);
} /*End of gsi_get tcp port() */

202

gsi_initialize_context

gsi_initialize_context

Initialize a connection between a GSI interface in G2 and G2 Gateway, or reject the

connection.

Synopsis

gsi_int gsi initialize context (rpis, length)

Argument

Description

gsi _char *rpis

gsi_int length

Points to the string specified for the remote-
process-initialization-string attribute of the
GSl interface that configures the connection
between this G2 Gateway process and a G2
process.

The string pointed to by the rpis argument
can be any user-specified string that enables
gsi_initialize context()to perform
tasks such as initializing data structures,
opening a file for reading, starting a device,
turning on debugging, obtaining a database
user login and password, and opening
communication with the external system.

For information about how to specify the
remote-process-initialization-string attribute
of a GSI interface, see Remote-Process-
Initialization-String Attribute.

Number of characters (not including the
null terminator character) in rpis.

203

Return Value Description

gsi int Must be GSI_ACCEPT or GSI_REJECT. This
value indicates your user code’s acceptance
or rejection, respectively, of the new
connection.

If this function returns GSI_ACCEPT, the
connection from G2 is accepted. G2 sets the
gsi-interface-status attribute of the GSI
interface to 2 (the connection is active).

If this function returns GSI REJECT, the
connection from G2 is rejected. G2 sets gsi-
interface-status to -2 (the connection failed).
G2 Gateway assumes that the new
connection has been rejected by the user
code, and immediately shuts down the just-
opened context. If you are running in
continuous mode, gsi run loop()
processing continues. If you are running in
one-cycle mode, gsi_run loop () exits.

Description

G2 Gateway calls gsi_initialize context () per context each time you activate
a GSl interface that specifies the machine name and port number on which this G2
Gateway application is listening.

You can use this callback to perform tasks such as:
* Validating connections from G2, as for a login procedure.

® Allocating and/or initializing global tables on a per-connection basis; that is,
tables which are unique to this connection.

® Declaring G2 procedures as remote procedures, so that your G2 Gateway
bridge process can invoke them. These remote procedure declarations are
valid only for the context through which the G2 process is connected to the G2
Gateway bridge.

An additional feature of this function is that it allows remote procedure calls and
message service after making a connection but before returning a value. This is
true regardless of whether gsi initialize context () eventually returns
GSI_ACCEPTor GSI_REJECT.

204

Note

Note

gsi_initialize_context

To enable G2 to access local C functions in your bridge user code through remote
function calls, declare these C functions in gsi_set up (), using the callback
function gsi_rpc declare local().

You can use the string pointed to by the rpis argument to perform tasks such as
initializing data structures, opening a file for reading, starting a device, turning
on debugging, passing a database user login and password, or opening
communication with the external system.

gsi_initialize context () and gsi_get tcp port () are the only two
G2 Gateway callback functions that return a value.

Examples

The following gsi initialize context () callback declares a G2 procedure
named g2-custom-proc() as a remote procedure that can be invoked by your
G2 Gateway user code within any active context:

gsi_int context procedure hdl [50];

/* gsi_initialize context () callback function */

gsi_int gsi initialize context(remote process init string,
length)
gsi _char *remote process init string;
gsi int length;

gsi_int context number;
context number = gsi current context();

/* Call a user defined function here to perform context
specific initializations, such as allocating memory,
connecting to external systems, checking system
resources, managing logfiles, and so on. */

/* Declare any remote procedure calls here (GSI to g2).
Because remote procedure declarations are per

context, they cannot appear in gsi set up(). */

/* Declare G2-CUSTOM-PROC() as a remote procedure
that your G2 Gateway bridge can invoke. */

205

gsi_rpc declare remote (&context procedure hdl
[context number],"G2-CUSTOM- PROC",
NULL, 3, 0, context number) ;

/* The declaration above is available on every active
context. Thus, 'G2-CUSTOM-PROC' can be called from
within any active context. */

return (GSI_ACCEPT) ;
} /* End of gsi initialize context() */

The following gsi initialize context () callback opens a file whose filename
is specified by the remote-process-initialization-string attribute of the GSI interface
that configures this connection:

fdefine MAX CONTEXTS 50

#define MAX FNAME 25

char file name[MAX CONTEXTS] [MAX FNAME] ;
gsi_int file status[MAX CONTEXTS];

FILE *file id[MAX CONTEXTS] = {NULL};

/* gsi_initialize context () callback function */

gsi int gsi initialize context (rpis, length)
gsi char *rpis;
gsi int length;

gsi_char *msg ptr;

gsi int i;
gsi int status;

206

gsi_initialize_context

/*
* QOpen a file for reading specified by G2.
*/
strcpy (file name[current context], rpis);
printf ("\nInitializing data server, file = %s for
#8hd\n", rpis, current context);
file id[current context] = fopen(rpis, "r");
printf("\nFile open state = $ld\n", (gsi_int)
file id[current context]);
if(file id[current context] == NULL) {
printf ("\nCannot open file %s in gsi init().\n",
rpis);
file status/[current context] = CLOSED;
return(GSI_REJECT); }
else
file status/[current context]

OPEN;
return (GSI_ACCEPT) ;

} /* End of gsi_initialize context() */

207

gsi_missing_procedure_handler

208

Called whenever G2 makes a call to a G2 Gateway local function that has not been
declared in the bridge by a call to gsi_rpc _declare local().

Synopsis
void gsi missing procedure handler (name)

Argument Description

gsi _char * name The name of your missing procedure
handler function.

Description

gsi missing procedure handler () enables your G2 Gateway user code to
designate a handler callback that is called whenever G2 makes a remote
procedure call to a G2 Gateway function that has not been declared by a call to
gsi _rpc declare local ().

You can include a call to gsi_rpc declare local () within gsi missing
procedure handler () to declare the undeclared local function. G2 Gateway
then invokes the local function in response to the call from G2.

Before you can use gsi_missing procedure handler (), you must declare
and install it. For instructions, see Using G2 Gateway 5.0 Callbacks with G2
Linked Statically or Dynamically.

gsi_not_writing_fd

gsi_not_writing_fd

Called whenever a specified file descriptor stops being in use by G2 Gateway for

writing.

Synopsis

void gsi not writing fd (gsi int file descriptor)

Argument

Description

gsi_int file
descriptor

A UNIX file descriptor, usually referring to
a network socket (or possibly a pipe), on
which input or output can occur
asynchronously.

Related Functions

Function

Description

gsi open fd()

gsi close fd()

gsi writing fd()

gsi watch f£d()

gsi unwatch fd()

gsi _watch fd for
writing()

gsi unwatch fd
for writing

gsi pause ()

Called whenever a specified file descriptor
is opened for network I/O.

Called whenever a file descriptor for
network I/O is closed.

Called whenever a specified file descriptor
is in use by G2 Gateway for writing,.

Specifies a file descriptor that G2 Gateway
watches for network read or error activity.

Causes gsi_run loop () to not wake up
when input or output takes place on a file
descriptor.

Starts G2 Gateway watching for write
activity on a file descriptor.

Stops G2 Gateway from watching for write
activity on a file descriptor.

Causes the bridge process to sleep for 1
second by default, or until a network event
occurs on a network connection to the
bridge process.

209

gsi_open_fd

Called whenever a specified file descriptor is opened for network I/O.

Synopsis

void gsi open fd(gsi_int descriptor)

Argument Description
descriptor The file descriptor.
Description

gsi_open fd() and the callback gsi close fd() enable a bridge to wait until
there is network activity to which it must respond. Use of these callbacks, rather
than the API function gsi pause (), is recommended if the bridge is handling
non-blocking I/O outside of the control of G2 Gateway. In this case, a mask
containing a 1 bit for each of the currently open file descriptors should be
maintained, using gsi_open fd() and gsi close fd() as well as the non-G2
Gateway file descriptors through which the bridge is performing the non-
blocking I/O. This mask, and possibly also a timeout, should be passed to the
select() system function, to perform the waiting.

Before you can use the gsi_open fd() callback, you must declare and install it.
For instructions, see Using G2 Gateway 5.0 Callbacks with G2 Linked Statically or

Dynamically.

210

gsi_pause_context

gsi_pause_context

Called by G2 Gateway whenever any G2 process that is connected to this G2
Gateway process pauses its current knowledge base (KB).

Synopsis

void gsi pause context ()

Description

gsi_pause context () is useful for pausing any functions in your G2 Gateway
bridge process that operate in cooperation with G2. You can use gsi pause
context () to suspend these functions until G2 resumes operation.

For example, you can use gsi_pause context () to halt unsolicited data
collection from a queue in the external system, record an event in a log file, or stop
the G2 Gateway watchdog timer invoked through the API function gsi
watchdog (). If an external system is sending data to the G2 Gateway bridge
asynchronously to G2, gsi_pause context () can arrange for the external system
to stop sending the data.

Your code in gsi_pause context () should perform the reverse of your code in
gsi_resume context (), which you can use to reenable G2 Gateway operations
that require a running KB.

Unsolicited reporting through gsi g2 poll () works in cooperation with G2,
which means that calls to gsi g2 poll () are stopped when the G2 process
pauses its current KB.

Related Procedures

Procedure Description

gsi_current context () Returns the context number of the
current context.

21

212

Example

The following gsi pause context () callback illustrates where you can place
statements that suspend operations performed asynchronously to G2, tell an
external system that the G2 Gateway bridge process is paused, or perform any
other appropriate operations as required by your application.

/* gsi pause context () callback function */
void gsi_ pause context ()
{
printf("gsi pause context in context %d\n",
gsi_current context());

/* Suspend operations here. */

} /* End of gsi pause context() */

gsi_read_callback

gsi_read_callback

Called by G2 Gateway when there is a change in the state of G2 Gateway’s ability
to read data from G2 on an open connection.

Synopsis
void gsi read callback (context, state)

Argument Description

gsi_int context The number of the context through which
G2 Gateway is trying to read data from G2.

gsi_int state GSI IO BLOCKED (there is no data to read)
or
GSI IO UNBLOCKED (there is data to read)

These statuses are defined in gsi_main.h.

Description

gsi_read callback () is called by G2 Gateway when there is a change in the state
of G2 Gateway’s ability to read data from G2. That is, G2 Gateway invokes this
callback when:

* It becomes impossible for G2 Gateway to read data, after a period when it was
possible; for example, when G2 Gateway tries to read data from G2 but there
is no longer any data to read. In this case, G2 Gateway calls gsi read
callback (), passes the number of the current context to context, and sets state
to GSI_TO BLOCKED.

* It becomes possible for G2 Gateway to read data, after a period when it was
not possible; for example, when there is once again data in G2 that the bridge
can read. In this case, G2 Gateway calls gsi read callback (), passes the
number of the current context to context, and sets state to GSI TO UNBLOCKED.

You can use gsi_read callback () for purposes such as accumulating
information about the flow of data, or to set indicators on a control panel.

Note Before you can use the gsi read callback () callback, you must declare and
install it. For instructions, see Using G2 Gateway 5.0 Callbacks with G2 Linked
Statically or Dynamically.

213

gsi_receive_deregistrations

214

Deregister a single registered variable.

Synopsis

void gsi receive deregistrations (registered_items, count)

Argument Description
gsi registered item An array of one or more registered items,
*registered_items each of whose handle indicates a G2

variable whose G2 Gateway data service
was cancelled in some way.

For information about the components of
gsi_registered itemstructuresand the
API functions that access these
components, see gsi_registered_item
Data Structures.

gsi_int count Number of elements in the array pointed
to by registered_items.

Description

G2 Gateway calls gsi receive deregistrations():

* Before a GSI interface is shut down. G2 Gateway calls gsi shutdown
context ()immediately after it calls gsi receive deregistrations().

* When a GSI variable is disabled, or deleted, or before a GSI variable is
redefined by a change to its data type or one of its identifying attributes.

A common use of this function is to free handles and any memory that was
allocated for variables when they were defined, and if the external system has a
scheduler, to notify the external system that the variables are no longer receiving
data.

The items involved in your gsi_receive deregistrations () code must not
conflict with a subsequent gsi get data () call, or the reporting of unsolicited
(but unscheduled) values. gsi receive deregistrations () must free any
memory that was dynamically allocated for a particular item by gsi receive
registration/().

For information about how G2 Gateway registers and deregisters items, see
Registering and Deregistering Items.

gsi_receive_deregistrations

Example

The following gsi receive deregistrations () callback deregisters G2 objects,
identifying each object by its handle.

void gsi receive deregistrations (registered items, count)
gsi_registered item registered items[];
gsi_int count;
gsi int obj handle;
/* For the G2 object passed to this function */

obj handle = gsi handle of (registered items[0]);

/* Make sure that the object handle is valid */

1f (gsi registration of (obj handle, gsi current context())
NULL) {
printf ("Bad handle 8d\n", obj handle);
}

else {

/* For this object perform object-specific deinitializations,
such as deallocating memory and data structures, managing
logfiles, disconnecting the object from an external system
or data point, and so on. These deallocations are commonly
the reverse of any allocation performed in the
gsi receive registration() callback. */

gsi_show registered items("gsi receive deregistrations",
registered items, count);

}

/* End of gsi receive deregistrations() */

215

gsi_receive_message

216

Receive a message from G2, sent as a result of a G2 inform action on a GSI message
server.

Synopsis
void gsi receive message (message, length)

Argument Description

gsi_char *message A pointer to the text string passed to the G2
Gateway bridge from G2 as a result of an
inform action.

gsi_int length Number of characters (not including the
null terminator) in message.

Description

G2 Gateway calls gsi_receive message () whenever a G2 KB executes an inform
action on an item that is a GSI message server. For information about how to use
GSI message servers to pass messages from G2 to G2 Gateway, see Message

Passing.

gsi_receive message () can pass the text that it receives from G2 to any external
system with which this G2 Gateway bridge is communicating.

The maximum number of characters that G2 can send in a string to gsi_receive
message () is 999,9999, including the null terminator.

Your gsi_receive message () function must be coded to accept a C string of
characters that are encoded in the Gensym character set. The Gensym character
set can encode characters not found in the standard ASCII character set. For
information about the Gensym character set, see the G2 Reference Manual.

Example

The following gsi receive message () callback receives a message and returns
the message to G2, through a remote procedure call to a G2 procedure. This
example assumes that your user code does the following:

® Declares a G2 procedure as a remote function, by including the following call
in gsi initialize context():

gsi rpc declare remote
(&context procedure hdl[gsi current context ()],
G2 _CUSTOM PROC,NULL, 3, 0, context number) ;

gsi_receive_message

* Allocates the following variable to hold the current context number:
gsi_int context procedure hdl [50];
/* gsi receive message () callback function */
void gsi_receive message (message, length)

gsi_char *message;
gsi_int length;

gsi item *return args;
char temp buff[128];

/* Recelve a message from G2, manipulate it and place into
an item array for return as an RPC argument back to G2. */

/* Modify the original message */

sprintf (temp buff,"$s 8s","The message I received
is:",message) ;

/* Allocate three items to hold the return values */
return args = gsi make items (3);

/* arg0 = the modified message
argl = the new length of the message
arg2 = a symbol identifying the message */

/* Load three values into the return item structure */
gsi_set str(return args(0], temp buff);
gsi_set int(return args[1], strlen(temp buff));
gsi _set sym(return args/[2], "GENSYM-MESSAGE");

/* Send the values back to the G2 procedure identified by
context procedure hdl [gsi current context()] */

gsi_rpc start (context procedure hdl
[gsi current context()],return args,
gsi current context());

gsi _reclaim items (return args);

} /* End of gsi receive message() */

217

gsi_receive_registration

218

Called when G2 registers an item with G2 Gateway.

Synopsis

void gsi receive registration (registration)

Argument Description
gsi_registration Specifies the data type of the variable
registration being registered, the default update
interval, and the six identifying
attributes.
Description

G2 Gateway calls gsi receive registration() when:

® (G2 tries to map a GSI variable to a data point in an external system. This
happens the first time when G2 requests G2 Gateway to read from or write to
the GSI variable, or immediately after any GSI variable’s data type or
identifying attributes are modified.

® G2 calls alocal function in G2 Gateway and passes a handle for a G2 item that
has not previously been registered. gsi receive registration() is called
before the local function is invoked in G2 Gateway.

You can use gsi_receive registration() to perform tasks such as initializing
the external data point, allocating memory, or returning the variable’s network
handle to an attribute of the variable for some future use.

For more information about how items are registered, see Item Passing.

See also the description of the G2 system procedure g2-register-on-network() in
the G2 System Procedures Reference Manual.

Example

The gsi receive registration() callback shown below does the following:
1 Stores the handle of a gsi registered itemin a variable named obj handle.

2 Allocates a gsi_registered itemnamed object, and an attribute named
ret_attr. The callback uses these structures to return a value to the registered
G2 object.

gsi_receive_registration

Assigns the handle stored in obj handle to the handle component of the
newly allocated gsi registered itemstructure named object. The object
structure now has the same handle as the registered G2 object.

Assigns the name OBJECT-HANDLE to the name component of the structure ret
attr. This example assumes that the registered G2 object has an attribute
named object-handle.

Assigns the value of obj handleto the ret attr structure.

Calls gsi_return attrs() toreturn the value in the ret attr structure to the
object-handle attribute of the registered G2 object.

/* gsi receive registration() callback function */

void gsi receive registration(item registration)
gsi registration item registration;
{
gsi_registered item *object;
gsi_attr *ret attr;
gsi_int obj handle;

/* Get the item handle of this item */
obj handle = gsi handle of (item registration);

/* Store this object handle for later use */
my stored object handle = obj handle;

/* Allocate memory for the local object and attribute */
object = gsi make registered items(1);
ret attr = gsi make attrs with items(1);

/* Set the handle of the local object to the handle of
the item registration object */
gsi set handle(object[0], obj handle);

/* For this object, identified by the object handle, perform
object-specific initializations, such as allocating memory and
data structures, managing logfiles, connecting the object to an
external system or data point, and so on. These operations
_deregistrations(). */

/* Initialize the object here */

/* Assume that there 1s an attribute of the
item registration object called 'OBJECT-HANDLE'. Set
the OBJECT-HANDLE attribute name and value of the
object */
gsi_set attr name(ret attr[0], "OBJECT-HANDLE") ;

219

gsi_set int(ret attr[0], obj handle);
gsi return attrs(object[0], ret attr, 1,
gsi _current context());
/* Release the allocated memory */
gsi_reclaim registered items (object);
gsi_reclaim attrs with items(ret attr);

return;

} /* End of gsi receive registration() *

220

gsi_reset_context

gsi_reset_context

Called by G2 Gateway whenever any G2 process that is connected to this G2
process through a permanent connection resets its current knowledge base (KB).

Synopsis

void gsi reset context ()

Description

Use this callback to respond as needed whenever G2 is reset. Clearing a KB first
resets it, calling gsi_reset_context(). Restarting a KB first resets and then starts it,
calling first gsi_reset_context() and then gsi_start_context().

Note This callback is applicable only to permanent connections.

221

gsi_resume_context

Note

222

Called by G2 Gateway when a connected G2 process resumes its current KB.

Synopsis

void gsi resume context ()

Description

G2 Gateway calls gsi_resume context () when a connected G2 process resumes
running its current knowledge base (KB).

If your bridge has any asynchronous operations that you have suspended within
your code for gsi_pause_context (), you can include code in gsi_resume
context () to resume these operations.

For example, you can use gsi resume context () to prepare the external system
to access data, resume unsolicited data collection, record events in a log file, or
inform a G2 operator that the application has resumed.

When the connected G2 process is paused, a variable can still be registered and
deregistered.

Example

The following gsi resume context () callback prints a message saying that the
context has been resumed, and calls a user-defined procedure, check for
queued messages (), that checks for messages received by the context while it
was paused.

/* gsi resume context () callback function */

void gsi_resume context ()
{
printf ("gsi resume context in context %d\n",
gsi_current context());

/* No longer idle. Service events that occured
while context was paused. */
check for gqueued messages () ;

} /* End of gsi resume context() */

gsi_run_state_change

gsi_run_state_change

Called whenever the flow of control enters or leaves G2 Gateway.

Synopsis

void gsi run state change (gsi_int direction, gsi_int type,

char *name)

Argument

Description

direction

type

name

Description

The direction in which the flow of control changed.
The possible values are:

GSI_RUN STATE DIRECTION ENTERING GST
GSI_RUN STATE DIRECTION LEAVING GST
GSI_RUN_STATE ENTERING WATCHDOG
GSI_RUN _STATE LEAVING WATCHDOG
GSI_RUN STATE DIRECTION ENTERING GSI
BY SIGNAL

The kind of state change that occurred. The possible
values are:

GSI_RUN STATE TYPE API
GSI_RUN STATE TYPE CALLBACK
GSI_RUN STATE_TYPE WAIT
GSI_RUN STATE TYPE SIGNAL

The name of the API function or callback the G2
Gateway entered or left, causing the run state
change.

The direction codes GSI RUN STATE DIRECTION ENTERING GSIand GSI RUN
STATE DIRECTION LEAVING GSI are used with the state change types GSI_RUN
STATE TYPE API, GSI RUN STATE TYPE CALLBACK, and GSI RUN STATE TYPE

WAIT.

The direction codes GSI RUN STATE ENTERING WATCHDOG, GSI RUN STATE
LEAVING WATCHDOG, and GSI_RUN STATE DIRECTION ENTERING GSI BY SIGNAL
are used with the state change type GSI RUN STATE TYPE SIGNAL.

223

Note Using the gsi run state change callback to manage a lock is prone to hangs.
Use the GSI PROTECT INNER CALLSruntime option to prevent hangs in
applications that use the gsi_run state change () callback

Note Before youcanuse gsi run state change (), you must declare and install it. For
instructions, see Using G2 Gateway 5.0 Callbacks with G2 Linked Statically or

Dynamically

224

gsi_set_data

gsi_set data

Called when G2 executes one or more set actions on a data served GSI variable.

Synopsis

void gsi set data (registered_items, count)

Argument Description

gsi_registered Array of one or more registered items. Each
item *registered_ item has a handle that indicates a G2

items variable with G2 Gateway data service

requesting to set a value to the external data
point to which it is mapped. The type and
value of each registered item can be
referenced to set the external data point.

gsi_int count Number of registered items referenced in
the registered_items argument.

Description

The G2 set action sends a request to G2 Gateway to set the value of an external
data point that is mapped to a GSI variable in the G2 KB.

The set action does not change the value of the GSI variable in G2.

G2 sends handles to G2 Gateway for all requests for set operations, either through
arule or a procedure, that have occurred since the last clock tick. G2 Gateway
packages the handles into gsi registrationstructures and passes them to gsi
set data().

Implementations of gsi set data () frequently include one or more calls to G2
Gateway return functions, in order to echo the values being set in the external
system back to the G2 process. In this way, you can arrange for the last-recorded-
value attribute of a GSI variable to change only after its corresponding value in
the external system has changed.

225

226

Example

The following gsi set data() callback:

Receives an array of registered items from G2.
Loops through the array, determining the data type of each item.

Sets global variables to the values of the items whose types correspond to the
types of the global variables.

This example assumes:

That each registered item has one of the following handles, which indicate the
data type of the item: string handle, symbol handle, float64 handle,
integer handle, or logical handle.

The G2 Gateway user code includes the global variables string dat,
symbol dat, float64 dat, integer datand logical dat to receive
the values of the registered items.

/* gsi set data() callback function */

void gsi_set data(registered item array, count)
gsi_registered item *registered item array;
gsi_int count;

gsi int i;

/* For each object sent by G2, set a global variable in
accordance with its type. */

for (1=0; i<count; ++1i) {

1f(gsi handle of (registered item array[i]) ==
string handle) {
strcpy (string dat,
gsi_str of (registered item array/[i]));
continue; }
if(gsi handle of (registered item array/[i]) ==
symbol handle) {
strcpy (symbol dat,
gsi_sym of (registered item array([i]));
continue; }
if(gsi handle of (registered item array/[i]) ==
float64 handle) {
float64 dat = gsi flt of (registered item arrayl[i]);
continue; }

gsi_set_data

if(gsi_handle of (registered item array/[i]) ==
integer handle) {
integer dat = gsi_int of (registered item array/[i]);
continue; }

1f(gsi handle of (registered item array[i]) ==
logical handle) {
logical dat = gsi_log of (registered item array([i]);
continue; }

} /* End of for loop */

} /* End of gsi set data() */

227

gsi_set _up

228

Perform G2 Gateway-related operations that need to be performed only once
during the lifetime of the bridge process.

Synopsis

void gsi_set up()

Description

gsi_set up() is called by the API function gsi_start () before it calls any other
G2 Gateway callback function.

The following operations can be performed in gsi set up():

* Installing a custom error handler.

® Setting or resetting G2 Gateway run-time options.

* Declaring local functions that G2 can call as remote procedures.
* Allocating arrays of G2 Gateway structures.

* Initializing global variable.

* Executing any operation that requires a one-time startup when the bridge is
started.

For an example of how to perform these operations, see Performing Once-Only
Operations through ¢si_set_up().

Note that remote declarations for G2 procedures (as opposed to local declarations
for G2 Gateway functions) are placed in gsi_initialize context (), rather than
gsi_set up(), because remote procedures are per context. gsi_set up() is
called once during the life of the G2 Gateway application process. gsi
initialize context () is called once for each context created.

gsi_set_up

Example

The following gsi set up() callback installs an error handler, declares local
functions that can be called by G2, and allocates G2 Gateway structures:

/* gsi set up() callback function */

void gsi_set up()

{
gsi _item error object;
gsi attr *error object attrs;
gsi attr *name attr ptr;
gsi_attr name attr;

/* Install custom error handler. */
gsi_install error handler (itemtest error handler);
/* Declare local functions called by G2. */

gsi rpc declare local (receive item or value,
"RECEIVE-AND-DISPLAY-ITEM") ;

gsi_rpc declare local (receive and return copy,
"RECEIVE-AND-RETURN-ITEM-COPY") ;

gsi_rpc declare local (receive item transfer,
"RECEIVE-AND-DISPLAY - TRANSFER") ;

gsi rpc declare local (receive request for copy,
"RECEIVE-REQUEST- ITEM-COPY") ;

/ *
* Allocate and set up context-independent global
* G2 Gateway structures.
*/
error object ptr = gsi _make items(1);
error object = *error object ptr;
name attr ptr = gsi make attrs with items(1);
name attr = *name attr ptr;
gsi _set attr name (name attr,"NAME");
gsi set sym(name attr,"ERROR-OBJECT");
gsi set attrs(error object,name attr ptr,1);
gsi set class name (error object,"OBJECT");

} /* End of gsi set up */

229

gsi_shutdown_context

230

Shut down a context and perform operations necessary to shut down the external
system and clean up the bridge process.

Synopsis

void gsi_ shutdown context ()

Description

G2 Gateway calls gsi_shutdown context () when:
® The connected G2 process disables, deactivates, or deletes the GSI interface.

® The connected G2 process changes the text of the gsi-connection-configuration
attribute of the GSI interface that configures this context.

* When the connected G2 is reset.

* When a network error or failure causes the connection to the G2 process to be
lost.

G2 Gateway calls gsi shutdown context () immediately after it calls gsi
receive deregistrations().

By the time G2 Gateway calls gsi_shutdown context (), G2 has already closed
the network connection that supports the context being shut down, or the
connection has already been lost due to a network error or failure.

Because the network connection is already closed:

Do not try to send data to G2 or invoke any G2 procedures from gsi shutdown
context () through the context that is being shut down.

Do not try to call gsi_context socket () from gsi shutdown context ().If you
need to perform actions when a socket is opened or closed, do this through the
callbacks gsi_open fd() and gsi_close fd().

gsi_shutdown_context

Example

The following gsi shutdown context () callback checks to see whether a file
specified by the number of the current context is open, and closes this file if it is
open, before shutting down the current context:

#define CLOSED 1

#define MAX CONTEXTS 50

gsi_int file status[MAX CONTEXTS];
FILE *file id[MAX CONTEXTS] = {NULL};

/* gsi shutdown context () callback function */

void gsi_shutdown context ()

{
if (file status(current context] != CLOSED) {
fclose (file id[current context]);
file status/[current context] = CLOSED; }

} /* End of gsi_shutdown context() */

231

gsi_start_context

Called by G2 Gateway whenever any G2 process that is connected to this G2
process through a permanent connection starts its current knowledge base (KB).

Synopsis

void gsi_start context ()

Description

Use this callback to respond as needed whenever G2 is started. Restarting a KB
first resets and then starts it, calling first gsi_reset_context() and then gsi_start_
context().

Note This callback is applicable only to permanent connections.

232

gsi_write_callback

gsi_write_callback

Called by G2 Gateway when there is a change in the state of G2 Gateway’s ability
to write data to G2 on an open connection.

Synopsis
void gsi write callback (context, state)

Argument Description

gsi_int context The number of context through which G2
Gateway is trying to write data to the G2.

gsi_int state GSI IO BLOCKED: The network cannot
deliver the data.

GSI IO UNBLOCKED: The network can
deliver the data.

These statuses are defined in gsi_main.h.

Description

gsi_write callback () is called by G2 Gateway when there is a change in the
state of G2 Gateway’s ability to write data to G2. That is, G2 Gateway invokes this
callback when:

* It becomes impossible for G2 Gateway to write data to G2, after a period when
it was possible; for example, when the G2 is reading data more slowly than G2
Gateway is writing it and the operating systems buffers have become full. In
this case, G2 Gateway calls gsi_write callback (), passes the number of the
current context to context, and sets state to GSI_ IO BLOCKED.

* It becomes possible for G2 Gateway to write data, after a period when it was
not possible; for example, when G2 is once again able to read the data that G2
Gateway is writing. In this case, G2 Gateway calls gsi write callback(),
passes the number of the current context to context, and sets state to GSI_ 10
UNBLOCKED.

You can use gsi_write callback () for purposes such as accumulating
information about the flow of data, or to set indicators on a control panel.

Note If you intend to use gsi write callback (), you must declare it as described in
Calling Other Functions from Callbacks, even if you are not using G2 Gateway as
aDLL.

233

gsi_writing_fd

Called whenever a specified file descriptor is in use by G2 Gateway for writing.

Synopsis

void gsi writing fd (gsi_int file_descriptor)

Argument Description
gsi_int file_ A UNIX file descriptor, usually referring to
descriptor a network socket (or possibly a pipe), on
which input or output can occur
asynchronously.
Description

gsi writing fd() and the three callbacks gsi open fd(), gsi close fd(),and
gsi not writing fd() enable a bridge to wait until there is network activity to
which it must respond. Use of these callbacks, rather than the API function gsi
pause (), is recommended if the bridge is handling non-blocking I/O outside of
the control of G2 Gateway. In this case, a mask containing a 1 bit for each of the
currently open file descriptors should be maintained, using gsi open fd() and
gsi_close fd() as well as the non-G2 Gateway file descriptors through which
the bridge is performing the non-blocking I/O. This mask, and possibly also a
timeout, should be passed to the select () system function, to perform the
waiting.

Related Functions

Function Description

gsi_open fd() Called whenever a specified file descriptor
is opened for network I/O.

gsi_close fd() Called whenever a file descriptor for
network I/0O is closed.

gsi_not writing Called whenever a specified file descriptor

£d() stops being in use by G2 Gateway for
writing.

gsi_watch fd() Specifies a file descriptor that G2 Gateway

watches for network read or error activity.

234

Function

gsi_writing_fd

Description

gsi unwatch fd()

gsi_watch fd for
writing()

gsi unwatch fd
for writing

gsi pause ()

Causes gsi_run loop () to not wake up
when input or output takes place on a file
descriptor.

Starts G2 Gateway watching for write
activity on a file descriptor.

Stops G2 Gateway from watching for write
activity on a file descriptor.

Causes the bridge process to sleep for 1
second by default, or until a network event
occurs on a network connection to the
bridge process.

235

RPC Support Callback Functions

236

To support RPCs between G2 and G2 Gateway, you write local functions and
receiver functions in your G2 Gateway user code. G2 can invoke (as remote
procedures) G2 Gateway local functions. When G2 Gateway invokes (as a remote

procedure) a G2 procedure, the G2 procedure can return values by invoking a G2
Gateway receiver function.

The RPC support callback functions include:
® Local functions invoked as remote procedures by G2.

® Receiver functions, which receive values returned by G2 procedures invoked

as remote procedures by G2 Gateway.

* Error receiver functions, which receive error values returned by G2
procedures invoked as remote procedures by G2 Gateway.

See the following sections for a description of these types of callback functions:

® Jocal functions.

®* receiver functions.

® error receiver functions.

* watchdog functions.

See these other sections for instruction on using the functions:

* Writing a G2 Gateway Local Function to be Called by G2 for information on
using local functions.

* Defining a Function to Receive Values Returned by G2 for information on
using receiver functions.

local functions

local functions

A user-defined G2 Gateway function that G2 can call or start as a remote

procedure.

Synopsis

void local_function (procedure_user_data, rpc_arguments,
count, call_identifier)

Argument

Description

gsi procedure
user data_ type
procedure_user_data

gsi_item *rpc_
arguments

gsi_int count

gsi_call
identifier type
call_identifier

Description

User data associated with the call to the
local function made by G2. To use this
argument, you must compile your G2
Gateway code with the GSI USE USER
DATA FOR CALLBACKS C preprocessor flag
defined or use the corresponding compile
time switch. For more info see Call
Identifiers for Remote Procedure Calls.

This argument is optional.

An array of gsi_item Items passed from G2
to G2 Gateway are stored as elements of this
array.

An integer that indicates the number of gsi
itemstructures in the array.

An integer that G2 generates to identify a
particular remote procedure call to a G2
Gateway local function, within the current
context. The gsi rpc return values() or
gsi rpc return error values () function
references call_identifier to indicate the
outstanding remote procedure call within a
specified context to return values to in G2.

A G2 procedure can send values to a G2 Gateway bridge by invoking a local
function in the bridge. The local function can have any name that you specify;
however, it must have the arguments of the types specified in the Synopsis

section above.

237

238

Note

You must declare each receiver function in your header file. As a convenience,
you can use the macro declare gsi rpc local fnto create the appropriate
prototype declaration. The syntax is:

specifier declare gsi rpc local fn(local_function_name) ;
For example:

static declare gsi rpc local fn(my local function);

If you are using a C compiler that supports ANSI C, these declare- macros
generate prototype declarations for the callbacks; otherwise, Kernighan and
Ritchie style declarations are generated.

Each G2 Gateway local function that you want to call from G2 must have the
arguments: arguments, count, and call_identifier.

It can also have a procedure_user_data argument, if you compile your G2 Gateway
application with the GST USE USER DATA FOR CALLBACKS C preprocessor flag
defined or use the corresponding compile time switch. For information about
setting compile time switches, see Call Identifiers for Remote Procedure Calls. For
information about how to use the procedure_user_data argument, see Procedure
User Data for Remote Procedure Calls.

You must declare each local function to be invocable, as a remote procedure, by a
connected G2 process. You do so using the API function gsi rpc declare
local (). If the declaration of the local function is missing, the callback function
gsi missing procedure () is called.

To return values to G2, a local function can call the API function gsi rpc
return values (). For information about this function, see API Functions.

To return error values to G2, a local function can call the API function gsi
return error values (). For information about this function, see gsi_rpc
return error_values.

If the G2 Gateway local function is invoked by a start action in G2, the call_
identifier argument of the local function is set to GSI CALL HANDLE OF START.In
this case, the local function should not call gsi rpc return values(), , because
G2 is not expecting the local function to return any values to it.

However, a local function invoked by a start action in G2 can call gsi_rpc
return error values () to signal an error to G2.

receiver functions

receiver functions

A user-defined G2 Gateway function to which a G2 procedure, invoked remotely
by a G2 Gateway bridge, can return values.

Synopsis

void receiver_function (procedure_user_data, arguments,
count, call_identifier)

Argument

Description

gsi procedure
user data_ type
procedure_user_data

gsi_item
*arguments

gsi_int count

gsi_call
ldentifier type
call_identifier

User data that G2 passes to G2 Gateway.
The receiver function can include this
argument to receive user data only if you
compile your G2 Gateway application with
the GSI USE USER DATA FOR CALLBACKS
preprocessor macro defined or use the
corresponding compile time switch. For
more info see Call Identifiers for Remote
Procedure Calls.

This argument is optional.

An array of gsi_item which contains the
data values that G2 is returning to the
bridge process.

An integer specifying the number of values
in the arguments array.

Data that G2 sends to G2 Gateway to
identify this particular call to the receiver
function. The receiver function can include
this argument to receive a call identifier
value only if you compile your G2 Gateway
application with the GSI USE USER DATA
FOR_CALLBACKS preprocessor macro
defined.

This argument is optional.

239

240

Note

Description

A G2 procedure invoked by a G2 Gateway bridge can return values to the bridge
by invoking a receiver function in the bridge. The receiver function can have any
name that you specify; however, it must have the arguments of the types specified
in the Synopsis section above.

You must declare each receiver function in your header file. As a convenience,
you can use the macro declare gsi rpc receiver fnto create the appropriate
prototype declaration. The syntax is:

specifier declare gsi rpc receiver fn(receiver_function_name);
For example:

static declare gsi rpc receiver fn(my receiver function);

If you are using a C compiler that supports ANSI C, these declare- macros
generate prototype declarations for the callbacks; otherwise, Kernighan and
Ritchie style declarations are generated.

You must also specify the receiver function to which a G2 procedure can return
values in the call to gsi_rpc declare remote() or gsi rpc declare remote
with error handler and user data () thatyou use to declare the G2 procedure
as a remote procedure.

error receiver functions

error receiver functions

A user-defined G2 Gateway function to which a G2 procedure, invoked remotely
by a G2 Gateway bridge, can return error values.

Synopsis

void error_handler (arguments)

Argument

Description

gsi procedure
user data_ type
procedure_user_data

gsi item
farguments

gsi int count

gsi call
Identifier type
call_identifier

User data that G2 passes to G2 Gateway. The
receiver function can include this argument to
receive user data only if you compile your G2
Gateway application with the GSI USE USER
DATA FOR CALLBACKS preprocessor macro
defined or use the corresponding compile time
switch. For more info see Call Identifiers for
Remote Procedure Calls.

Can be either:

* A gsi_itemrepresenting an error object
in G2.

® A symbolic-expression and a text-expression,
similar to the arguments of the signal G2
procedure statement.

These arguments are identical in meaning to the
error_arguments ina call to gsi_rpc return
error values (). For more information about
these arguments, see gsi_rpc_return error_
values.

An integer specifying the number of values in the
arguments array.

Data that G2 sends to G2 Gateway to identify this
particular call to the receiver function. The
receiver function can include this argument to
receive a call identifier value only if you compile
your G2 Gateway application with the GSI USE
USER DATA FOR CALLBACKS preprocessor macro
defined.

241

242

Description

When you declare a G2 procedure as a remote procedure that can be invoked by
the G2 Gateway bridge, you can specify an error receiver function in the bridge to
which G2 can return error values in the case of an error.

To do this, you must use the API function gsi_rpc declare remote with
error_handler and user data () to declare the G2 procedure as a remote
procedure. For information about this function, see gsi_rpc_declare
remote with error handler and user_ data.

The error receiver function can perform any operations necessary for the
application, including evaluation of the error data returned by G2.

watchdog functions

watchdog functions

Note

Called by G2 Gateway when a a time-out interval specified in a call to
gsi_watchdog () expires.

Synopsis

void user_watchdog_function ()

Description

You can write a watchdog function to perform any tasks that you want performed
after a specified interval of time.

You specify both a particular watchdog function, and the interval of time after
which the watchdog function is called, in a call to the API function gsi
watchdog (). When gsi_watchdog () is called, a watchdog timer, internal to GSI,
begins counting down to zero from a number of seconds, which must be greater
than or equal to zero.

If gsi_watchdog () is called again before the time-out period expires, GSI's own
internal timer is set again to timeout_interval, which puts off the call to the user-
written watchdog function.

At any time, by calling gsi_watchdog () and passing it a timeout_interval of zero
(0), your G2 Gateway application can disable G2 Gateway’s internal watchdog
timer.

gsi_watchdog () is not supported on Windows.

You must declare each watchdog function in your header file. As a convenience,
you can use the macro declare gsi watchdog functionto create the
appropriate prototype declaration. The syntax is:

specifier declare gsi watchdog function(watchdog_function_name) ;
For example:

static declare gsi watchdog function(my watchdog function);

243

Using the Select Function in G2 Gateway

The C-library select () function lets you wait until activity is present on any one
of a specified set of file descriptors (fds). Use the select () function when writing
a bridge that performs network I/O that is independent of G2 Gateway, and
needs to determine when activity occurs on both the bridge’s fds, and on the fds
of G2 Gateway.

G2 Gateway provides functions for:
* A bridge to inform G2 Gateway of its file descriptors.
* G2 Gateway to inform the bridge of its file descriptors.

While it is not necessary for a bridge to use either kind of function, using at least
one kind helps to achieve optimal performance.

Use the functions as follows:

These functions... Are called by...
gsi watch fd A bridge to inform G2 Gateway of
gsi_unwatch fd its fds.

gsi_watch fd for writing

gsi_unwatch fd for writing G2 Gateway then uses this

information inside gsi_pause () so
that if there is activity on any
bridge fd, gsi pause () returns to

the user.
gsi_open fd G2 Gateway to inform the bridge
gsi_close fd of its fds, so that a select ()
gsi writing fd statement in the bridge can wake
gsi not writing fd up whenever activity occurs on a
G2 Gateway fd.

If a bridge includes a select () statement with only the bridge’s fds, then the
bridge may experience a delay equal to the timeout value you supply to the
select () statement. Specifying a timeout of null causes the bridge to hang.

Similarly, if the bridge calls gsi pause () without first telling G2 Gateway of the
bridge’s fds, a delay equal to the default timeout, or that specified by gsi set
pause_timeout (), may occur when there is activity on the bridge’s fds.

Supplying Arguments to the Select Function

This section shows you how to use G2 Gateway API functions to create values for
readfds, writefds, and exceptfds. For information about the C-library

select () function itself, its other arguments, and its return value, see the
documentation for that function.

244

Using the Select Function in G2 Gateway

The syntax of the select () function is:

int select (int maxfds,

fd set *readfds,

fd set *writefds,
fd set *exceptfds,
struct timeval *tvptr)

Argument

Description

fd set *readfds

fd set *writefds

fd set *exceptfds

The following code example shows how to supply arguments to the select ()

function:

An fd_set that includes both the bridge’s fds and
those of G2 Gateway. Every time gsi open fd()
is called, you should add the fd argument of that
function to the select readfds argument.

Every time gsi close fd() is called, remove the
fd argument of that function from the select
readfds argument.

An fd_set that includes both the bridge’s fds and
those of G2 Gateway. Every time gsi writing
fd() is called, you should add the fd argument of
that function to the select writefds argument.

Every time gsi not writing fd() is called,
remove the fd argument of that function from the
select writefds argument.

An fd set that should be the same as the
readfds argument.

#include "gsi main.h"

fd set all read fds, all write fds;
fd set select read fds, select write fds, select except fds;

int max fd = 0;

declare gsi open fd(gsi open fd);

declare gsi close fd(gsi_close fd);
declare gsi writing fd(gsi writing fd);
declare gsi not writing fd(gsi not writing fd);

245

246

void initialize fd sets() {

/*
/*
/*
/*

FD ZERO(&all read fds);

FD ZERO(&all write fds);

gsi install open fd(gsi open fd);

gsi install close fd(gsi close fd);

gsi install writing fd(gsi writing fd);
gsi_install not writing fd(gsi not writing fd);

}

The following four functions will be called as needed by */
G2 Gateway. The bridge should also call these functions, */
so that all read fds and all write fds will contain both /*
G2 Gateway and bridge fds. */

void gsi open fd(fd)

gsi int fd; {

FD SET(fd, &all read fds);

1f (fd > max fd) max fd = fd;
}

void gsi_close fd(fd)

gsi_int fd; {
FD CLR(fd, &all read fds);
}

void gsi_writing fd(fd)

gsi_int fd; {
FD SET(fd, &all write fds);
}

void gsi_not writing fd(fd)

gsi_int fd; {
FD CLR(fd, &all write fds);
}

void copy fd set (out fd set, in fd set)

fd set *out fd set, *in fd set; {
int fd;

FD ZERO (&out fd set);

for (fd=0; fd<=max fd; fd++)

if (FD ISSET(fd, &in fd set))

FD SET(fd, &out fd set);

}

Using the Select Function in G2 Gateway

int wait for something to do(timeout in milliseconds)
int timeout in milliseconds; {
struct timeval timeout, *select timeout = NULL;
int select result;
if (timeout >= 0) {
timeout.tv sec = timeout in milliseconds / 1000;
timeout.tv_usec =
(timeout in milliseconds -
(timeout.tv_sec * 1000))
* 1000;
select timeout = &timeout;

}

/* negative timeout means walt forever */
copy fd set(&select read fds, &all read fds);
copy fd set (&select write fds, &all write fds);
copy fd set (&select except fds, &all read fds);
select result = select (max fd+1, &select read fds,

&select write fds, &select except fds, select timeout);
return select result;

}

247

248

API Functions

Describes the capabilities and syntax of the API functions supported by
G2 Gateway.

Introduction 253

Groups of Functionally Related APl Functions 254
Required Header File 259

Specifying Symbolic Values in APl Function Calls 259

API Function Descriptions 260
gsi_attr_by name 261
gsi_attr_count_of 262
gsi_attr_is_transient 263
gsi_attr_name_is_qualified 264
gsi_attr_name_of 266
gsi_attrs_of 268
gsi_class_name_of 270
gsi_class_qualifier_of 272
gsi_class_type of 274
gsi_clear_item 276
gsi_clear_last_error 277
gsi_close_listeners 278
gsi_context_is_secure 279
gsi_context_received_data 280
gsi_context_remote _host 281
gsi_context_remote_listener_port 282
gsi_context_remote_process_start_time 283
gsi_context_socket 284
gsi_context_user_data 285
gsi_convert_string_to_unicode 286
gsi_convert_unicode to_string 287
gsi_convert_unicode_to_wide_string 288
gsi_convert_wide_string_to_unicode 289
gsi_current_context 290

249

gsi_current_context_is_secure 291
gsi_decode _timestamp 292
gsi_element_count_of 293
gsi_elements_of 294
gsi_encode_timestamp 296
gsi_error_message 298
gsi_establish_listener 299
gsi_establish_secure_listener 301
gsi_extract_history 303
gsi_extract_history_spec 305
gsi_flt_array_of 307

gsi_flt list of 308

gsi_flt of 310

gsi_flush 311

gsi_handle of 312
gsi_history_count_of 313
gsi_history_type of 315
gsi_identifying_attr_of 316
gsi_initialize_callbacks 317
gsi_initialize_error_variable 318
gsi_initialize_for_win32 319
gsi_initiate_connection 320
gsi_initiate_connection_with_user_data 323
gsi_initiate_secure_connection 326
gsi_initiate_secure_connection_with_user_data 328
gsi_install_error_handler 330
gsi_int_array_of 331
gsi_int_list_of 332

gsi_int_of 333

gsi_interval_of 334

gsi_is_item 335

gsi_item_of attr 336

gsi_item_of _attr_by name 337
gsi_item_of_identifying_attr_of 339
gsi_item_of _registered_item 340
gsi_kill_context 341
gsi_last_error 342
gsi_last_error_call_handle 343
gsi_last_error_message 344
gsi_listener_socket 345
gsi_log_array_of 346
gsi_log_list of 347

gsi_log_of 349

gsi_long_of 350

gsi_make_array 351
gsi_make_attrs 352
gsi_make_attrs_with_items 353

250

gsi_make_item 354
gsi_make_items 355
gsi_make_registered_items 356
gsi_make_symbol 357
gsi_name_of 358
gsi_option_is_set 360
gsi_owner_of 362

gsi_pause 364
gsi_print_backtrace 366
gsi_reclaim_array 367
gsi_reclaim_attrs 368
gsi_reclaim_attrs_with_items 369
gsi_reclaim_item 370
gsi_reclaim_items 371
gsi_reclaim_registered_items 372
gsi_registration_of _handle 373
gsi_registration_of _item 374
gsi_reset_option 375
gsi_return_attrs 377
gsi_return_message 378
gsi_return_timed_attrs 379
gsi_return_timed_values 380
gsi_return_values 381
gsi_rpc_call 382
gsi_rpc_call_with_count 384
gsi_rpc_declare_local 386
gsi_rpc_declare_remote 387
gsi_rpc_declare_remote_with_error_handler_and_user_data 390
gsi_rpc_return_error_values 393
gsi_rpc_return_values 395
gsi_rpc_start 397
gsi_rpc_start with_count 398
gsi_run_loop 399
gsi_set_attr_by name 401
gsi_set_attr_count 402
gsi_set_attr_is_transient 404
gsi_set_attr name 405
gsi_set_attrs 407
gsi_set_class_name 409
gsi_set_class_qualifier 410
gsi_set_class_type 412
gsi_set_context_limit 414
gsi_set_context_user_data 415
gsi_set _element _count 416
gsi_set_elements 417
gsi_set_flt 420

gsi_set flt_array 421

251

gsi_set flt_list 423

gsi_set handle 425

gsi_set_history 427
gsi_set_include_file_version 429
gsi_set_int 430

gsi_set_int_array 431

gsi_set_int_list 433

gsi_set interval 434

gsi_set item_append flag 435
gsi_set_item_of _attr 436
gsi_set_item_of attr_ by name 437
gsi_set log 439

gsi_set _log_array 440

gsi_set log list 442

gsi_set long 444

gsi_set_name 445

gsi_set_option 446

gsi_set _pause_timeout 448
gsi_set_rpc_remote_return_exclude _user_attrs 449
gsi_set _rpc_remote_return_include system_attrs 450
gsi_set_rpc_remote_return_include_all_system_attrs_except 451
gsi_set_rpc_remote_return_value_kind 452
gsi_set_run_loop_timeout 454
gsi_set_status 455

gsi_set_str 456

gsi_set_str_array 457

gsi_set_str_list 459
gsi_set_string_converson_style 461
gsi_set_sym 464

gsi_set sym_array 465

gsi_set_sym_list 467

gsi_set symbol user data 469
gsi_set_timestamp 470

gsi_set_type 471
gsi_set_unqualified_attr_name 474
gsi_set update items_in_lists_and_arrays flag 475
gsi_set_user_data 476

gsi_set usv 477

gsi_signal_error 478

gsi_signal_handler 479
gsi_simple_content_copy 480

gsi_start 481

gsi_status_of 483
gsi_string_conversion_style 484
gsi_str_array_of 485

gsi_str_list_of 487

gsi_str_of 489

252

Introduction

gsi_sym_array of 491
gsi_sym_list of 492

gsi_sym_of 493
gsi_symbol_name 494
gsi_symbol_user_data 495
gsi_timestamp_of 496
gsi_type of 497
gsi_unqualified_attr name_of 498
gsi_unwatch_fd 499
gsi_unwatch_fd_for_writing 501
gsi_update_items_in_lists_and_arrays_flag 503
gsi_user_data_of 504
gsi_usv_length_of() 505
gsi_usv_of 506
gsi_version_information 507
gsi_wakeup 508

gsi_watch_fd 509
gsi_watch_fd_for_writing 511
gsi_watchdog 513

Introduction

G2 Gateway provides a large set of Application Programmer Interface (API)
functions.

API functions are commonly called from within G2 Gateway callback functions,
which are invoked by G2 Gateway while your bridge process is executing under
the control of the gsi run Ioop () API function. For detailed information about
callback functions, see Callback Functions.

API functions can also be called from outside gsi run loop(), if gsi start()
has already been called. In order to be able to transfer control from gsi run
loop () to other parts of your user code, you must run your G2 Gateway bridge
process in one-cycle mode. For information about how to do this, see The main()
Function in Continuous and One-Cycle Modes.

253

Groups of Functionally Related API Functions

254

This section lists API functions grouped by the kinds of functions that they
perform.

G2 Gateway Entry Points

gsi start()
gsi_run loop()
gsi set runloop timeout ()

Initialization and Run State

gsi initialize for wind32()
gsi set include file version()
gsi_initialize callbacks ()
gsi_run state change ()

Context Management

gsi_establish listener

gsi establish secure listener

gsi initiate connection()

gsi initiate connection with user data()
gsi initiate secure connection()
gsi_initiate secure connection with user data/()
gsi_context received data ()

gsi _current context()

gsi current context is secure()

gsi context is secure

gsi flush()

gsi_set context limit ()

gsi _kill context()

gsi context user data()

gsi set context user data/()

Groups of Functionally Related API Functions

Data Structure Access

Type and Value Access

gsi _element count of ()
gsi elements of ()
gsi flt array of ()
gsi flt list of()
gsi flt of()
gsi_handle of ()
gsi_int array of ()
gsi int list of()
gsi int of()

gsi is item()
gsi_log array of()
gsi log list of()
gsi log of()

gsi long of ()

gsi name of ()
gsi_str array of()
gsi_str list of()
gsi str of()

gsi sym array of ()
gsi sym list of()
gsi sym of ()
gsi_type of ()
gsi_usv _of ()

gsi usv_length of ()

Attribute Access

gsi attrs of ()

gsi attr by name/()
gsi_attr count of ()

gsi_attr is transient ()
gsi attr is array index()
gsi attr array index of ()
gsi set attr array index()
gsi identifying attr of ()

gsi _set elements()
gsi set flt array()
gsi set flt list()
gsi set flt()
gsi_set handle()
gsi set int array()
gsi set int list()
gsi set int()

gsi set log array ()
gsi set log list()
gsi_set log()

gsi set long()

gsi set name ()

gsi set str array()
gsi set str list()
gsi_set str()
gsi_set sym array ()
gsi set sym list()
gsi set sym()
gsi_set type()

gsi set usv()
gsi_usv_length of ()

gsi set attrs()

gsi set attr by name()
gsi_set attr is transient()
gsi_attr is list index()

gsi attr list index of()
gsi set attr list index()

255

256

Attribute Name Access

gsi_attr name of ()
gsi set attr name()

gsi unqualified attr name of ()
gsi set unqualified attr name()

gsi class qualifier of()
gsi_set class qualifier ()

gsi attr name is qualified()

Timestamp and History Access

gsi decode timestamp ()
gsi timestamp of ()

gsi extract history()
gsi_history type of()
gsi _history count of ()

gsi encode timestamp ()

gsi set timestamp ()

gsi extract history spec()
gsi_set history()

Miscellaneous Data Structure Access

gsi status of ()
gsi interval of()
gsi_item of attr()

gsi_item of registered item()

gsi user data of ()

gsi set element count ()
gsi class name of ()

gsi identifying attr of()
gsi_clear item()

Data Service

gsi_return values ()
gsi_return timed values()
gsi return timed attrs()

gsi set status()

gsi interval of()

gsi_set item of attr()
gsi_set user data/()

gsi simple content copy ()
gsi set class name ()
gsi registration of ()

gsi version information/()

gsi_return attrs()

Groups of Functionally Related API Functions

Data Structure Allocation and Deallocation

gsi_make attrs()

gsi make attrs with items()
gsi reclaim attrs with items()
gsi make items()

gsi make registered items ()
gsi reclaim registered items()

Error Handling

gsi error handler ()
gsi_initialize error variable()
gsi last error()

gsi last error call handle()
gsi clear last error ()

gsi signal error ()

gsi_install error handler ()

gsi_reclaim attrs()

gsi reclaim items ()

gsi last error message ()

gsi_error message ()
gsi signal handler ()

File Descriptor Management

gsi_open fd() gsi_close fd()

Interruptible Sleep

gsi_context socket () gsi_listener socket ()
gsi_pause() gsi_set pause timeout ()
gsi unwatch fd() gsi wakeup ()

gsi watch f£d()

Message Passing

gsi return message ()

Missing Callback Declarations

gsi missing procedure handler ()

257

Remote Procedure Support

gsi_rpc declare local ()

gsi rpc declare remote()

gsi rpc call()

gsi rpc start()

gsi rpc declare remote with error handler and user data/()
gsi_rpc return error value()

gsi_rpc return values ()

gsi _set rpc remote return value kind()

gsi set rpc remote return exclude user attrs

gsi set rpc remote return include system attrs

gsi set rpc remote return include all system attrs except

Runtime Options

gsi option is set() gsi reset option()
gsi_set option()

String Conversion

gsi_convert string to unicode()
gsi_convert unicode to string()

gsi convert unicode to wide string()
gsi_convert wide string to unicode ()
gsi string conversion style()

gsi set string conversion style()

Symbol Access

gsi make symbol () gsi symbol name()
gsi_symbol user data/()

gsi_set symbol user data()

gsi sym of () gsi _sym array of ()
gsi sym list of() gsi set sym()

gsi set sym array ()

gsi set sym list()

258

Required Header File

User Data

gsi_user data of () gsi_set user data()

Watchdog Function

gsi_watchdog ()

Required Header File

To use the G2 Gateway API functions, you must include the header file gsi
main.h, using the following statement:

#include "gsi_main.h"

Specifying Symbolic Values in APl Function
Calls

Caution

G2 uses the symbol type for all G2 identifiers, such as names of G2 items, classes,
and attributes. G2 expresses symbol values in uppercase letters by default. To
include a lower case letter in a G2 symbol in a G2 editor, you must precede it with
an escape character.

When G2 Gateway returns a symbol value to G2, all characters in the symbol
value arrive in G2 in uppercase form, except for characters that were preceded by
escape characters. For this reason, you must use only uppercase letters to specify
any API function argument that represents a G2 identifier, unless you know that
the corresponding G2 symbol value uses escape characters to express lower case
characters.

You must also use uppercase letters to specify arguments that you pass to the API
functions gsi_set sym(), gsi_set sym array () and gsi set sym list(),
which set the value of a structure to a symbol value (type GSI_SYMBOL TAG).

Symbols and text strings cannot be used interchangeably. For example, using
gsi_set symon a text attribute will fail and using gsi set str ona symbol
attribute will fail.

259

API Function Descriptions

The rest of this chapter presents detailed descriptions of the API functions,
presented in alphabetical order.

260

gsi_attr_by name

gsi_attr by name

Invokes gsi_item of attr by name().

For information about this API function, see gsi_item of attr by name.

261

gsi_attr_count_of

Returns the number of attributes associated with an item.

Synopsis
gsi_int gsi_attr count of (item)

gsi int gsi attr count of (attribute)

Argument Description

gsi_item A gsi_itemfor which this function returns a
item count of attributes.

gsi_attr A gsi_attr containing an embedded gsi_
attribute itemfor which this function returns a count

of attributes.

Return Value Description

gsi_int Represents the number of attributes in item
or attribute.

Note: The return value is 0if the argument
passed to this function is a gsi item
extracted from a gsi_registered itemby
gsi item of registered item(),and this
gsi registered itemwas obtained from a
callback function, such as gsi_set data ().

Description

gsi_attr count of () returns the number of attributes in an item or embedded
item in an attribute.

262

gsi_attr_is_transient

gsi_attr_is_transient

Returns a value indicating whether or not a specified attribute is transient.
Transient attributes are not passed in remote procedure calls.

Synopsis
gsi int gsi attr is transient (attribute)

Argument Description

gsi_attr attribute The attribute.

Return Value Description

gsi_int 1 if the attribute is transient

0 if it is not transient.

Description

G2 Gateway ignores transient attributes in remote procedure calls, and does not
send them to G2.

You can cause remote procedure calls either to pass or not to pass particular
attributes by setting the attributes to be not transient or transient. To do this, use
the API function gsi set attr is transient().

The API functions gsi_return attrs() and gsi_return timed attrs() return
transient attributes only.

263

gsi_attr_name_is_qualified

264

Returns trueif the name of an attribute is class-qualified, and false otherwise.
Synopsis
gsi_int gsi_attr name is qualified (attribute)

Argument Description

gsi_attr attribute The attribute whose name is examined by
this function.

Return Value Description
gsi_int 1 if the name is class-qualified, and 0
otherwise.
Description

gsi_attr name is qualified()returns a value that indicates whether the name
component in the gsi_attr structure specified by attribute includes a class
qualifier.

Class qualifiers are required only for items of a class defined using multiple-
inheritance. Multiple inheritance makes it possible for a class definition to include
different attributes of the same name, inherited from different direct superior
classes. The class-qualifiers added to the names of these attributes distinguish the
attributes from each other.

Related Functions

Function Description

gsi_attr name of () Returns the name of an attribute.
gsi_set attr name() Changes the name of an attribute.
gsi ungualified attr Returns the unqualified part of an
_name of () attribute’s name.

gsi_attr_name_is_qualified

Function Description

gsi_class qualifier Returns the part of an attribute name
_of () that is the class qualifier.

gsi_set class Changes the part of an attribute
_qualifier () name that specifies the G2 class that

defines the attribute.

265

gsi_attr_name_of

266

Returns the name of an attribute.

Synopsis

gsi_symbol gsi attr name of (attribute)

Argument

Description

gsi_attr attribute

Return Value

The attribute whose name is returned by
this function.

Description

gsi_symbol

Description

Use gsi_attr name of () to access the value of the name component of the

A read-only symbol giving the name of the
attribute.

The symbol persists only as long as the
gsi_attr data structure with which it is
associated. If your user code needs to keep
the symbol for longer than the life-span of
the gsi_attr structure, it must copy the
symbol either into user allocated memory or
a G2 Gateway data structure.

gsi_attr specified by the attribute argument.

Related Functions

Function

Description

gsi set attr name()

gsi_unqualified attr
_name of ()

gsi set unqualified
_attr name()

Changes the name of an attribute.

Returns the unqualified part of an
attribute’s name.

Sets the unqualified part of an
attribute’s name.

Function

gsi_attr_name_of

Description

gsi attr name is
_qualified()

gsi class qualifier
_of ()

gsi set class
_qualifier()

Indicates whether an attribute name
is qualified.

Returns the part of an attribute name
that is the class qualifier.

Changes the part of an attribute
name that specifies the G2 class that
defines the attribute.

267

gsi_attrs_of

268

Returns an array of gsi_attr structures, each of which corresponds to an
attribute of an item.

Synopsis
gsi_attr *gsi attrs of (item)

gsi attr *gsi attrs of (attribute)

Argument Description

gsi_item The gsi_itemwhose attributes are

item returned.

gsi_attr The gsi_attr containing an embedded

attribute gsi_itemwhose attributes are returned.
Return Value Description

gsi attr * An array of gsi_attr structures, which

correspond to the attributes of a gsi_item.

Description

gsi_attrs of () extracts an array of gsi_attr structures corresponding to the
attributes of a gsi_itemor gsi_attr.

This function does not allocate any new memory. Its return value points to the
array stored in item or attribute, and neither the array nor any of its elements are
copied.

Related Functions

Function Description

gsi_attr count Determines how many attributes are in a

_of () gsi itemor gsi attr.

gsi_set attrs() Changes the attributes ina gsi_itemor
gsi attr.

gsi_attrs_of

Function Description

gsi_attr by Obtains a specific attribute in a gsi_itemor
_name () gsi attr.

gsi_set attr by Changes a specific attributeina gsi itemor
_name () gsi attr.

269

gsi_class _name_of

Returns the name of the G2 class of an item.

Synopsis
gsi_symbol gsi class name of (item)

gsi symbol gsi class name of (attribute)

Argument Description

gsi _item item A gsi_itemwhose class name is returned
by this function.

gsi_attr attribute An attribute containing an embedded gsi
itemwhose class name is returned by this
function.

Return Value Description

gsi symbol A symbol containing the name of the G2

class of the specified item. If the specified
item has no associated class or is not named,
the return value is a null pointer. See
Discussion below.

The symbol persists only as long as the data
structure with which it is associated. If your
user code needs to keep the symbol for
longer than the life-span of the data
structure, it must copy the symbol into
memory that it has allocated itself.

Description

gsi_class name of () returns the name of the G2 class of an item represented by
a gsi_itemstructure. As an argument, gsi_class name of () can take either a
gsi_itemor a gsi_attr representing an attribute containing an embedded gsi
item In either case, gsi class name of ()returns the class name of the G2 item
represented by the gsi item

gsi_class name of () can return the names of both system-defined and user-
defined G2 classes. There is no restriction on the class of G2 item whose class
name is returned by gsi class name of ().

270

gsi_class_name_of

Caution If the specified item has no associated class or is not named, the return value is a
null pointer. On some systems, passing a null pointer to printf () causes a
segmentation violation. For this reason, you may want to verify that the return
value of gsi_class name of () is not a null pointer before you pass it to
printf (). For example:

gsi_symbol char temp;
char temp = gsi class_name of (item);
1f (char temp)

printf("\ class: $s", char temp);
else

printf("\n class:NULL PTR");

271

gsi_class _qualifier_of

Returns the part of the name component of an attribute that is the class qualifier.

Synopsis

gsi_symbol gsi class qualifier of (attribute)

Argument Description

gsi_attr attribute The attribute whose name is class-qualified.

Return Value Description

gsi_symbol A read-only symbol that contains the class-
qualifier part of the name component of
attribute.

The symbol persists only as long as the data
structure with which it is associated. If your
user code needs to keep the symbol for
longer than the life-span of the data
structure, it must copy the symbol into
memory that it has allocated itself.

Description

Use gsi_class qualifier of () to access the class-qualifier portion of the name
component of a gsi_attr.

This function does not allocate any new memory. Its return value points to a C
string stored in attribute, and not to a copy of that string.

Related Functions

Function Description

gsi_attr name of () Returns the name of an attribute.
gsi_set attr name() Changes the name of an attribute.
gsi unqualified attr Returns the unqualified part of an
_name of () attribute’s name.

272

Function

gsi_class_qualifier_of

Description

gsi set unqualified
_attr name()

gsi attr name is
_qualified()

gsi set class
_qualifier()

Sets the unqualified part of an
attribute’s name.

Indicates whether an attribute name
is qualified.

Changes the part of an attribute
name that specifies the G2 class that
defines the attribute.

273

gsi_class_type of

Returns the type of the history data values associated with an item, a registered
item, or an item that is embedded in an attribute.

Synopsis
gsi_int gsi class type of (item)
gsi_int gsi class type of (registered_item)

gsi_int gsi class type of (attribute)

Argument Description

gsi item item An item from which this function returns
the type of the associated history data
values.

gsi registered A registered item from which this function

item registered_ returns the type of the associated history

item data values.

gsi_attr attribute An attribute containing an embedded item
from which this function returns the type of
the associated history data values.

Return Value Description

gsi_int One of the following G2 Gateway types:

GSI_INTEGER TAG
GSI_SYMBOL TAG
GSI_STRING TAG
GSI_LOGICAL TAG
GSI_FLOAT64 TAG
GSI_VALUE TAG
GSI_QUANTITY TAG
GSI _NULL _TAG

Description

gsi_class type of () returns the type of the history data values associated with
an item, a registered item, or with an item that is embedded in an attribute. If
there is no history associated with the item, registered item, or embedded item in

274

gsi_class_type_of

the attribute, gsi _class type of () returns the type that most closely
corresponds to the variable’s type in G2.

If a gsi_itemthat G2 sends to G2 Gateway through a remote procedure call
corresponds to a variable-or-parameter, this field derives from the data type in
G2, and reflects the allowable values for the variable-or-parameter.

If the item is neither a variable nor a parameter, the function returns GSI_NULL
TAG.

The types of the history values are shown in the following table:

Return Value G2 Gateway Element Type |C Element Type

GSI _INTEGER TAG homogeneous integer gsi_int
values

GSI_SYMBOL TAG homogeneous symbol char *
values

GSI_STRING TAG homogeneous string char *
values

GSI LOGICAL TAG homogeneous truth- gsi int
values

GSI_FLOAT64 TAG homogeneous floating- double
point numbers

GSI_VALUE TAG heterogeneous values gsi_item

GSI_QUANTITY TAG heterogeneous numbers |gsi item
(gsi_intor double)

Related Functions

Function Description

gsi_history count Returns the number of history data values

of () associated with an item.

gsi_extract Returns history data values associated with
history() an item.

gsi_extract Returns the history-keeping specification for
history spec() an item.

275

gsi_clear_item

276

Clears an item for reuse.

Synopsis

void gsi _clear item/(item)

void gsi clear item(regitem)

void gsi_clear item(attribute)

Argument Description

gsi_item item The gsi_itemstructure that this
function clears for reuse.

gsi_registered item The gsi registered itemstructure

regitem that points to the gsi_itemcleared for
reuse.

gsi_attr attribute The gsi_attr structure containing an

embedded gsi itemcleared for reuse.

Description

The gsi_clear item() function clears the specified gsi registered item,
gsi_item or gsi_attr structure by:

Reclaiming memory associated with the value and history components of
the structure. This memory is not in the form of G2 Gateway data structures,
but is stored in arrays of simple value types.

Setting counts to zero.

Setting the type to GSI NULL TAG.

Setting the class name to NULL PTR.
Eliminating references to other structures.

gsi_clear item() doesnotreclaim memory explicitly allocated by your user
code. If any of these data structures were explicitly allocated by your

G2 Gateway user code, the user code is responsible for reclaiming the
memory used by those data structures.

gsi_clear_last_error

gsi_clear_last_error
Resets the value of G2 Gateway’s last error number.

Synopsis

void gsi_clear last error ()

Description

gsi_clear last error () sets the value of G2 Gateway’s error number to zero
(0).
For information about the role of G2 Gateway’s last error number, see Error

Handling.

277

gsi_close _listeners

Closes all network listeners.

Synopsis

void gsi_close listeners()

Description

The function gsi close listeners() closes all network listeners. Use this
function if you want to close listeners before the G2 Gateway process has finished.

278

gsi_context_is_secure

gsi_context_is_secure

Returns the security status of the specified context.
Synopsis
gsi_int gsi context 1s secure (context)

Return Value Description

gsi_int The security status of the current context: 0
(insecure) or 1 (secure).

Description

Returns the security status of the specified context, which is a gsi_int.

279

gsi_context_received_data

Indicates whether there was network activity during the most recent invocation of
gsi_run loop().

Synopsis

gsi_int gsi context received data (context_number)

Argument Description
gsi_int context_ A context number. You can obtain the
number number of the current context using the API

function gsi_current context ().

Return Value Description

gsi_int 1 if there was network activity during the
most recent invocation; otherwise 0.

Description

gsi_context received data () takes a context number as an input argument
and returns 1 if there was network activity of any kind on the specified context
during the most recent pass through gsi run loop (). If there was no network
activity on the specified context during the most recent pass through gsi run
loop (), this function returns O.

The function detects any kind of network activity, such as remote procedure calls
from G2 or calls to any of the callback functions associated with data service.

Note This function is designed to be used in one-cycle mode. It is not useful in
continuous mode.

280

gsi_context_remote_host

gsi_context_remote_host

Returns a string naming the host to which G2 Gateway is connected.

Synopsis

gsi char *gsi_context remote host (context)

Argument Description

gsi _int context The current G2 Gateway context.

Return value Description

gsi_char * A string of the host name.
Description

gsi_context remote host () returns the name of the host to which G2 Gateway
is connected. The returned value is the same string that G2 prints in its title block.

281

gsi_context_remote_listener_port

Returns the TCP/IP port on which the remote G2 is listening.

282

Synopsis

gsi_int gsi context remote listener port (context)

Argument

Description

gsi_int context

The current G2 Gateway context.

Return value Description
gsi_int The TCP/IP port number.
Description

gsi context remote listener port () returns the G2 TCP/IP port.

gsi_context_remote_process_start_time

gsi_context_remote_process_start_time

Returns a floating-point value representing the G2 process launch time.

Synopsis

double gsi_context remote process start time (context)

Argument Description

gsi _int context The current G2 Gateway context.

Return value Description

double A floating-point value timestamp.
Description

gsi_context remote process start time () returns a floating-point value,
which you can pass to gsi_decode timestamp () to obtain a timestamp.

Related Functions

Function Description

Converts a floating-point timestamp

gsi_decode timestamp ()
value into its component parts.

283

gsi_context_socket

Returns the file descriptor associated with a specified connection (context).

Synopsis

gsi_int gsi_context socket (context_number)

Argument Description
gsi_int context_ A context number. You can obtain this
number number using the API function gsi

current context ().

Return Value Description

gsi_int The file descriptor associated with the
context specified by context_number.

284

gsi_context_user_data

gsi_context_user_data

Returns the user data associated with a context that was initiated by a call to gsi
initiate connection with user data () and setby acall to gsi set context
user data().

Synopsis

gsi context user data type gsi context user data (context)

Argument Description

gsi_int context The context from which user data is
returned.

Return Value Description

gsi context user The user data associated with context.

_data type

285

gsi_convert_string_to_unicode

286

Note

Converts a string in a specified style to Unicode.

Synopsis

short *gsi convert string to unicode (string, style)

Argument Description
char *string The string to be converted to Unicode.
gsi_int style The string conversion style from which

string is converted.

For a list of the supported string conversion
styles, see the description of gsi_set
string converson style.

Return Value Description

short * An array each element of which contains a
character code.

Description

Use gsi_convert string to unicode () toconverta particular string to
Unicode. Because this function returns an array of short each time, reclaiming the
array it returned last time, you need to copy the array of short before the next call
to gsi convert string to unicode().

For information about how to specify automatic string conversions for all strings,
see gsi set string converson style.

The result of gsi_convert string to unicode () remains valid until the
next call of any of the unicode convert functions:

gsi convert string to unicode()
gsi convert unicode to string()
gsi convert unicode to wide string()
gsi convert wide string to unicode ()

gsi_convert_unicode_to_string

gsi_convert_unicode to_string

Note

Converts a string of characters in Unicode to a specified string conversion style.

Synopsis

char *gsi convert unicode to string(string, style)

Argument Description
short *string The string to be converted to Unicode.
gsi_int style The string conversion style to which string

is converted. For a list of the supported
string conversion styles, see the description
of gsi set string converson style.

Return Value Description
char * The converted string of characters.
Description

Use gsi_convert unicode to string () toconverta particular string in
Unicode characters to a specified string conversion style.

Since this function returns an array of short each time, reclaiming the array it
returned last time, you need to copy the array of short before the next call to
gsi convert unicode to string().

For information about how to specify automatic string conversions for all strings,
see gsl set string converson sStyle.

The result of gsi convert unicode to string () remains valid until the
next call of any of the unicode convert functions:

gsi convert string to unicode()
gsi convert unicode to string()
gsi convert unicode to wide string()
gsi convert wide string to unicode ()

287

gsi_convert_unicode_to wide_string

288

Note

Converts a string of characters in Unicode to a wide string conversion style.

Synopsis

short *gsi convert unicode to wide string (string, style)

Argument

Description

short *string

gsi_int style

Return Value

The Unicode string of characters to convert
to style.

The string conversion style to which string
is converted.

Description

short *

Description

An array each element of which contains a
character code.

Since this function returns an array of short each time, reclaiming the array it
returned last time, you need to copy the array of short before the next call to
gsi_convert unicode to wide string().

Theresultof gsi convert unicode to wide string () remains valid until
the next call of any of the unicode convert functions:

gsi convert string to unicode ()
gsi convert unicode to string()
gsi convert unicode to wide string()
gsi convert wide string to unicode ()

gsi_convert_wide_string_to_unicode

gsi_convert_wide_string_to_unicode

Note

Converts a string of short characters to Unicode.

Synopsis

short *gsi convert wide string to unicode (string, style)

Argument

Description

short *string

gsi_int style

Return Value

The string to be converted to Unicode
characters.

The string conversion style from which
string is converted. For a list of the
supported string conversion styles, see
gsi_set_string converson style.

Description

short *

Description

An array each element of which contains a
character code.

Since this function returns an array of short each time, reclaiming the array it

returned last time, you need to copy the array of short before the next call to

gsi convert wide string to unicode().

The result of gsi convert wide string to unicode () remains valid until
the next call of any of the unicode convert functions:

gsi convert string to unicode ()
gsi convert unicode to string()
gsi convert unicode to wide string()
gsi convert wide string to unicode ()

289

gsi_current_context

290

Returns the number of the current context.
Synopsis
gsi_int gsi current context ()

Return Value Description

gsi_int An integer from 0 to 49 that represents the
current context number, or -1, indicating
that the context is undefined.

Description

gsi_current context () returns the number of the current context. A context
number is an integer value that identifies a connection between the G2 Gateway
bridge process and a GSI interface object in some G2 process. If more than one G2
process is connected to the same bridge process, each connection has a unique
context number.

The possible value of an active context is between 0 and 49.

gsi_current context () returns -1 if the current context is undefined. The
current context is undefined when:

* The bridge process is executing outside the extent of gsi run loop().

® When the current context has been shut down and the bridge process is
executing within a customized error handler.

gsi_current_context_is_secure

gsi_current_context_is_secure

Returns the security status of the current context.
Synopsis
gsi_int gsi current context is secure()

Return Value Description

gsi_int The security status of the current context: 0
(insecure) or 1 (secure).

Description

Returns the security status of the current context.

291

gsi_decode_timestamp

Converts a floating-point timestamp value into its component parts.

Synopsis

void gsi decode timestamp (timestamp, year_address, month_address,

day_address, hour_address, minute_address, second_address)

Argument Description
double The timestamp converted by this function.
timestamp

gsi_int *year_
address

gsi_int *month_
address

gsi_int

*day_address

gsi_int *hour_
address

gsi_int *minute_
address

gsi_int *second_
address

Description

A pointer to the 4-digit year component of
the timestamp.

A pointer to the month component of the
timestamp.

A pointer to the day component of the
timestamp.

A pointer to the hour component of the
timestamp.

A pointer to the minute component of the
timestamp.

A pointer to the second component of the
timestamp.

The function gsi_decode timestamp () converts a floating-point timestamp
value into its component parts by modifying its xxx_address arguments. UNIX
format places 0.0 at 12 AM January 1, 1970 GMT.

Caution The internal G2 clock has a limit of +/- 17 years from the time that G2 is started.
Using a timestamp that extends beyond this limitation may cause unexpected
results. You are encouraged to do validity checking of timestamps if you suspect
that this may be an issue.

292

gsi_element_count_of

gsi_element_count_of

Returns the number of elements in the value component of an item.

Synopsis
gsi_int gsi_element count of (item)
gsi int gsi_element count of (reg-item)

gsi_int gsi element count of (attribute)

Argument Description

gsi itemitem The gsi_itemfor which this function
returns the count of elements in the value
component.

gsi registered item The gsi registered itempointing to a
reg-item gsi_itemfor which the count is returned.

gsi_attr attribute The gsi_attr containing an embedded
gsi_itemfor which a count is returned.

Return Value Description

gsi_int The number of elements in the value
components of an item, registered item, or
embedded item in an attribute.

Description

Use gsi_element count of () to determine the number of elements in the value
component of an item, item referenced by a registered item, or embedded item in
an attribute that is a list or array.

The element count returned by this function is non-zero if the type of the
argument passed to the function is any of the following:

* A list type containing one or more elements.

® An array type containing one or more elements.

* A sequence containing one or more elements.

* A string the element count is the length of the string.

* An unsigned short vector the element count is the length of the vector.

293

gsi_elements_of

Returns an array of gsi_item, representing the value (s) component of an item
when the value is of type GSI ITEM ARRAY TAG, GSI ITEM LIST TAG, GSI_VALUE
ARRAY TAG, or GSI _VALUE LIST TAG.

Synopsis
gsi item *gsi elements of (item)

gsi item *gsi_elements of (attribute)

Argument Description

gsi item item The item from which this function returns
the value component as an array of
gsi_item.

gsi_attr attribute The attribute containing an embedded

gsi_itemwhose value component is
returned by this function returns as an array
of gsi item

Return Value Description
gsi_item * An array of gsi_iteminstances.
Description

The function gsi elements of () extracts an array of gsi iteminstances from
item or attribute. This array is a one-dimensional C array, suitable for
manipulation by address arithmetic.

If the value component of item or attribute is neither an item array, item list,
value array, nor value list, G2 Gateway signals an error.

To see a complete description of type tags for item arrays and lists refer to G2
Data Types and G2 Gateway Type Tags.

294

gsi_elements_of

For value arrays and value lists, the type of each element will be one of:

GSI_FLOAT64_TAG
GSI_STRING TAG
GSI_LOGICAL TAG
GSI_SEQUENCE_TAG
GSI_SYMBOL TAG
GSI_STRUCTURE_TAG
GSI_INTEGER TAG

For quantity arrays and lists, the type of each element will be one of:

GSI_FLOAT64_TAG
GSI_INTEGER TAG

This function does not allocate any new memory. It returns the array or list stored
in item or attribute, and neither it nor any of its elements are copied.

Related Functions

Function Description

gsi _type of() You can use this function to determine
the type of the element returned by
gsi elements of ().

gsi_set elements () Modifies a gsi_itemor gsi attrso
that its value component stores an item
array, item list, value array, or value
list.

295

gsi_encode_timestamp

Converts a year, month, day, hour, minute, and second into a floating-point
timestamp value.

Synopsis
double gsi _encode timestamp (year,month,day,hour, minute,second)

Argument Description

gsi_int year A value that is converted into the 4-digit
year component of the timestamp.

gsi_int month A value that is converted into the month
component of the timestamp.

gsi_int day A value that is converted into the day
component of the timestamp.

gsi_int hour A value that is converted into the hour
component of the timestamp.

gsi_int minute A value that is converted into the minute
component of the timestamp.

gsi_int second A value that is converted into the second
component of the timestamp.

Return Value Description
double Represents a floating-point timestamp
value.
Description

gsi_encode timestamp () converts a year, month, day, hour, minute, and second
into a floating-point timestamp value.

You can pass the double value returned from this function to the API function
gsi _set timestamp (), to set a timestamp on a gsi_itemstructure.

296

gsi_encode_timestamp

Caution The internal G2 clock has a limit of +/- 17 years from the time that G2 is started.
Using a timestamp that extends beyond this limitation may cause unexpected
results. You are encouraged to do validity checking of timestamps if you suspect
that this may be an issue.

297

gsi_error_message

Returns the G2 Gateway error message text associated with an error number.

Synopsis

gsi _char *gsi_error message (error_code)

Argument Description

gsi_int error_code The error code for which this function
returns the associated text message.

Return Value Description

gsi_char * Points to the text of the G2 Gateway error
message for error_code.

Description

gsi_error message () gets the text of the G2 Gateway error message for a
particular error number.

The error message text returned by gsi_error message () may contain place-
holding character sequences such as ~S, which are similar to the sequences like $s
used by printf (). To obtain the full text of an error message, with current values
rather than place-holding codes, use gsi_last_error message.

298

gsi_establish_listener

gsi_establish_listener

Establishes a network listener that G2 can connect to when ready.
Synopsis
gsi_int gsi_establish listener (network, port, exact)

Argument Description

gsi_char *network Specify “TCP-1F".

You can specify only the first letter of the
protocol name, in upper or lower case: “ 1"

Or 1" t”_

gsi_char *port Specify the number of the port on which the
G2 process is listening for a connection to
this bridge process.

gsi_int exact A value of 1 directs gsi_establish

listener () to try to open a network
connection at the specified port only.

A value of 0 directs the new gsi
establish listener () to try successive
ports until it is able to establish a network

connection.

Return Value Description

gsi_int Returns a value of 1 if the listener is
successfully launched and 0 if the launch
fails.

Description

Establishes a network listener that G2 can connect to when ready. G2 Gateway
does the equivalent of calling this function during the call to gsi_start, after the
user-written callback gsi_set upreturns, unless the command line switch
-nolistener was specified.

You might like to use gsi_establish listener()if you want to establish a
network listener sometime after the G2 Gateway process is launched. In that case,

299

the command line that establishes G2 Gateway should use the -nolistener
switch so that no listeners are established at start up.

300

gsi_establish_secure_listener

gsi_establish_secure_listener

Attempts to establish a listener, using the SSL protocol.

Synopsis

gsi _int gsi establish secure listener
(network, port, exact, certificate)

Argument Description

gsi_char *network Specify “TCP-IF".

You can specify only the first letter of the
protocol name, in upper or lower case: “1”

Or 1" t”_

gsi_char *port Specify the number of the port on which the
G2 process is listening for a connection to
this bridge process.

gsi_int exact A value of 1 directs gsi_establish

listener () to try to open a network
connection at the specified port only.

A value of 0 directs the new gsi
establish listener () to try successive
ports until it is able to establish a network
connection.

gsi_char* certificate The name of the certificate, which is a name
in the certificate store on Windows or a
filename on UNIX. The certificate can be

NULL.

Return Value Description

gsi_int Returns a value of 1 if the listener is
successfully launched and 0 if the launch
fails.

Description

Behaves exactly like gsi _establish listerer except establishes a secure
connection.

301

Note that if a request is received from a clear text (insecure) connection, it is
accepted as clear text.

302

gsi_extract_history

gsi_extract_history

Extracts the history data associated with an item or registered item embedded
item in an attribute.

Synopsis

void gsi extract history (item, values_address, timestamps_address,
type_address)

void gsi extract history (attribute, values_address, timestamps_address,
type_address)

Argument Description

gsi_item item The item of which this function extracts the
history data.

gsi_attr attribute The attribute containing an embedded item
from which this function extracts the history
data.

void **values_ Address of an array of undetermined type,

address whose values represent the history.

double **timestamps Address of an array of double whose values

_address are floating-point timestamp values.

gsi_int *type_ This function sets the value of this gsi_int

address to the type of the history.
Description

The function gsi extract history () extracts the history data associated with
an item or registered item embedded item in an attribute.

The G2 Gateway type of item can be: GSI INTEGER TAG, GSI _SYMBOL TAG, GSI
FLOAT64_TAG, GSI_ILOGICAL TAG, GSI_STRING TAG, GSI _QUANTITY TAG, or GSI
VALUE_TAG. The value array can be of type gsi int, gsi_char*, double, or gsi_
item, in accordance with the type of the history values. You can use gsi
history type of () to return the data type of the history data associated with an
item.

On UNIX and Windows, a timestamp value representing the number of seconds
since midnight, January 1, 1970, GMT. Use the API function gsi_decode
timestamp () to decode a floating-point timestamp value into its component parts
(month, day, year, and so on).

303

Note History data can be passed between a G2 Gateway bridge and a G2 only by means
of remote procedure calls, and not through data service on GSI variables. For
information about remote procedure calls, see Remote Procedure Calls.

Related Functions

Information from the related functions helps you create the arrays, values_
address and timestamps into which gsi extract history () stores its data.

Function Description

gsi_history Returns the size of the two arrays.
_count of ()

gsi_extract Returns the history-keeping specification for
_history spec () this variable or parameter within G2.

304

gsi_extract_history_spec

gsi_extract_history_spec

Extracts the history-keeping specification from an item or registered item
embedded item in an attribute.

Synopsis

gsi int gsi extract history spec (item, maximum_count_address,
maximum_age_address, minimum_interval_address)

Argument Description

gsi_item item The item from which this function extracts
the history-keeping specification.

gsi_int *maximum_ Address of a gsi_int whose value is set to

count_address the maximum count specified within the
history-keeping-specification of the
variable.

gsi_int *maximum_ Address of a gsi int whose value is set to

age_address the maximum age, in seconds, specified in
the history-keeping-specification of the
variable.

gsi_int *minimum_ Address of a gsi_int whose value is set to

interval_address the minimum interval, in milliseconds,
specified within the history-keeping-
specification of the variable.

Return Value Description
gsi_int Not meaningful. Do not use.
Description

gsi_extract history spec () extracts history-keeping specification that G2
associates with an item or registered item embedded item in an attribute.

305

306

Related Functions

Function

Description

gsi history
_count of ()

gsi extract
_history ()

Returns the number of history data values
associated with an item.

Returns the history data values associated
with an item.

gsi_flt_array_of

gsi_flt_array_of

Returns the array of floating-point numbers stored in an item or registered item
embedded item in an attribute.

Synopsis

double *gsi flt array of (item)
double *gsi flt array of (reg-item)
double *gsi flt array of (attribute)

Argument Description

gsi item item The gsi_itemfrom which this function
returns an array of floating-point
numbers.

gsi_registered item The gsi registered itemfrom which
reg-item this function returns an array of floating-
point numbers.

gsi_attr The gsi_attr containing an embedded

attribute gsi item from which this function
returns an array of floating-point
numbers.

Return Value Description

double * A one-dimensional C array of floating-point

values.
Description

gsi flt array of () returns the array of floating-point values stored ina gsi
itemor gsi_attr. This function does not allocate any new memory.

If the argument to this function is neither a gsi_item a gsi attr,nora gsi_
registered item, G2 Gateway signals an error.

To determine whether a gsi_itemor gsi attr represents an array of floating-
point values, verify that the value returned by the API function gsi type of () is
GSI_FLOAT64 ARRAY TAG.

307

gsi_flt_list of

308

Returns a one-dimensional C array that represents the list of floating-point values
stored in an item or registered item embedded item in an attribute.

Synopsis

double *gsi flt list of (item)
double *gsi flt list of (regitem)
double *gsi flt list of (attribute)

Argument Description

gsi item item The gsi itemfrom which this function
returns a C-array of floating-point
numbers.

gsi registered item The gsi registered itemfrom which
reg-item this function returns a C-array of floating-
point numbers.

gsi_attr attribute The gsi_attr containing an embedded
gsi itemfrom which this function
returns a C-array of floating-point

numbers.
Return Value Description
double * A one-dimensional C array of floating-point
values.

Description

gsi flt list of () returns a pointer to the list of floating-point values stored in
agsi itemor gsi attr.

If the argument to this function is neither a gsi_itemnor points toa gsi_item G2
Gateway signals an error.

To determine whether a gsi_itemor gsi_attr represents a floating-point list,
verify that the value returned by the API function gsi_type of () is GSI
FLOAT64 LIST TAG.

gsi_flt_list_of

To modify a gsi_itemor gsi attr so that it stores a floating-point list
(represented as a C array), use the API function gsi_set fit list().

This function does not allocate any new memory.

309

gsi_fit_of

Returns a C double that represents the floating-point value of an item, registered
item, or embedded item in an attribute.

Synopsis

double gsi flt of (item)
double gsi flt of (reg-item)
double gsi flt of (attribute)

Argument Description

gsi_item item The gsi_itemwhose value is returned by
this function.

gsi registered item The gsi registered itemof the item
reg-item whose value is returned.

gsi_attr attribute The gsi_attr containing the item whose
value is returned.

Return Value Description

double Represents the value of the item, registered
item, or the embedded item in an attribute.

Description

The function gsi flt of () returns the floating-point value of a gsi_item gsi
registered item, or gsi_attr.

The G2 Gateway type of the argument must be GSI FLOAT64 TAG. Otherwise, G2
Gateway signals an error.

310

gsi_flush

gsi_flush

Immediately flushes the G2 Gateway write buffer for the specified context.

Synopsis

void gsi_ flush (context_number)

Argument Description

gsi_int context_ Context that identifies a connection to a GSI

number interface object in a connected G2 process.
Description

Both G2 Gateway and the host operating system buffer network input and
output. This is done to achieve better performance, by minimizing the overhead
spent calling the host operating system and by reducing the overhead associated
with transmitting information on the network. However, this technique can result
in a delay in the delivery of data to G2.

Calling gsi_flush() enables your G2 Gateway application to ensure that all of
GSI's output buffers have been written out over the network.

For example, the application can call gsi_flush() after calling the API function
gsi rpc start (), to ensure that the specified remote procedure is started in the
connected G2 process as soon as possible.

311

gsi_handle_of

312

Given a gsi_itemstructure, returns a value of type GSI HANDLE TAG that
represents a registered item. Given a G2 Gateway structure of type gsi
registered itemor gsi registration, returns the handle for that structure.

Synopsis
gsi int gsi handle of (item)
gsi_int gsi _handle of (registered_item)

gsi_int gsi handle of (registration)

Argument Description
gsi_item A G2 Gateway item, from which this
item function returns a value of the type

GSI_HANDLE _TAG.

gsi_registered A registered item of which this function
_item registered_item returns the handle.

gsi_registration A registration of which this function
registration returns the handle.

Return Value Description

gsi_int An integer that stands for a particular G2

item registered in a given context.

Description

gsi_handle of () returns the handle for a given G2 Gateway item, either a gsi
item gsi registered item or gsi registration. The behavior of gsi
handle of () depends upon the type of the argument.

If passed a gsi_item gsi handle of () returns the value of the item, which must
be of G2 Gateway type GSI HANDLE TAG.

If passed a gsi_registrationor gsi registered item, gsi handle of ()
returns the handle of the registration or the handle of the registered item.

gsi_history_count_of

gsi_history_count_of

Returns the number of history data values that are associated with an item or
embedded item in an attribute.

Synopsis
gsi_int gsi history count of (item)

gsi_int gsi history count of (attribute)

Argument Description

gsi item item An item from which this function returns
the number of history data values.

gsi_attr attribute An attribute containing an embedded item
from which this function returns the
number of history data values.

Return Value Description

gsi_int Represents the number of history data
values associated with item or attribute.

Description

gsi_history count of () returns the number of history data values associated
with an item.

If G2 does not pass the history values associated with an item to G2 Gateway,
gsi_history count of () returns a history count of 0 for that item, even though
the item in G2 may have 1 or more history values. G2 can pass to G2 Gateway the
history values associated with an item only through remote procedure calls, and
not through data service operations such as those performed by gsi receive
registration() and gsi get data().

G2, by default, does not pass an object’s system-defined attributes through
remote procedure calls. You can override this default and specify in the remote
procedure declaration in G2 that system-defined attributes such as the history
values be passed. For information about how to pass the system-defined
attributes, see G2 Reference Manual.

313

Note History data can be passed between a G2 Gateway bridge and a G2 only by means
of remote procedure calls, and not through data service on GSI variables. For
information about remote procedure calls, see Remote Procedure Calls.

314

gsi_history_type_of

gsi_history_type of
An alias for gsi_class type of ().

For information about this function, see gsi_class type of.

315

gsi_identifying_attr_of

An alias for gsi_item of identifying attr of ().

For information about this function, see gsi_item of identifying attr_
of.

316

gsi_initialize_callbacks

gsi_initialize_callbacks

Sends the addresses of the user’s callback functions to G2 Gateway.

Synopsis

void gsi initialize callbacks (namel, functl, ... (char *)0)
Argument Description
char *namel The name of the callback as it appears in

gsi main.h.

function_pointer A pointer to the callback.
~typel functl Each callback initialized must be specified
by both a *namel and an functl argument.
(char *)0 Required to end the argument list.
Description

G2 Gateway provides a way to automatically initialize GSI 4.1 and
G2 Gateway 5.0 callback functions when you compile your application. See
Defining C Preprocessor Flags for instructions on doing so.

G2 Gateway does not provide a way to automatically initialize user-written, local,
receiver, error receiver, and watchdog functions. You must use the gsi
initialize callbacks () function to do so. See the following parts of the
documentation for instructions:

* User-written functions specified in a call to the API function gsi_watchdog ().
For information about this function, see gsi_watchdog.

* (G2 Gateway local functions. For information about these functions, see
Writing a G2 Gateway Local Function to be Called by G2.

* G2 Gateway receiver functions. For information about these functions, see
Defining a Function to Receive Values Returned by G2.

* G2 Gateway error receiver functions. For information about these functions,
see Defining a Function to Receive Error Values Returned by G2.

gsi initialize callbacks () takes a variable number of arguments. Each pair
of arguments names a G2 Gateway callback and provides the address of the user-
written version of that callback. If you omit a callback, G2 Gateway still links
dynamically. However, G2 Gateway returns warning messages rather than
invoke the omitted callbacks.

317

gsi_initialize_error_variable

318

Sets an error variable to the error code if an error occurs.
Synopsis
void gsi initialize error variable (variable_address)

Argument Description

gsi_int *variable_ The address of the error variable whose
address value is set to the error code.

Description

G2 Gateway recognizes a set of minor errors that do not invoke the G2 Gateway
error handling mechanism.

Youcancall gsi_initialize error variable() to setan error variable to the
error code values of these minor errors, as they occur. When this function is used,
the default and user-defined error handlers are not invoked. It is the
responsibility of your user code to check the value of the error variable after every
call to an API function.

It is recommended that your user code reset the error variable to 0 whenever it
detects that the error variable has been set to a non-zero value.

gsi_initialize_for_win32

gsi_initialize_for_win32

On a Windows platform, must be called prior to any other GSI API functions.

Synopsis

void gsi initialize for win32 (hlnstance, lpCmdLine)

Argument Description
HANDLE hlnstance Must correspond to the first parameter of
WinMain().
char *lpCmdLine Must correspond to the third argument of
winMain().
Description

If you use the supplied gsimmain.cor gsi_main.c, you do not need to add a call
to this function. gsi_initialize for win32 performs Windows-specific
initialization. In a Windows application, it will also look for a -Iogcommand-line
option. If the -Iogoption is present, it redirects console output to a file whose
name is specified by the argument following -Iog. For logging to work, in the call
to gsi_initialize for win32, the first argument must correspond to the first
parameter of WinMain (), and the second argument must correspond to the third
parameter of WinMain (). Windows bridges must call this function prior to calling
any other GSI API functions.

For more information about how to use this function, see Compiling and Linking
G2 Gateway on Windows.

319

gsi_initiate_connection

Initiates a connection to a G2 process and causes G2 to create a GSI interface for
that connection.

Synopsis

gsi_int gsi initiate connection (interface_name, class_name,
keep_connection, network, host, port, rpis)

Argument Description
gsi char *interface_ ~ The name of the GSI interface created. G2
name uses this GSI interface to communicate with

the bridge process that calls gsi_initiate
connection().

If you specify NULL for interface_name, G2
creates an unnamed GSI interface. G2 can
use the unnamed GSI interface for remote
procedure calls, but not for data service for
GSI variables.

gsi_char *class_name The name of an existing class definition in
the G2 KB. The GSl interface interface_name
is created as an instance of this class.

If you specify NULL for class_name, the GSI
interface is created as an instance of the G2
class gsi-interface.

gsi_int keep_ TRUE causes the connection not to close
connection when G2 is reset. The GSI interface is not
deleted.

FALSE causes the connection to close when
G2 is reset. The GSI interface generated for
this connection is deleted from the KB.

gsi char *network Specity “TCP-IF".

You can specify only the first letter of the
protocol name, in upper or lower case: “71”
Or “ t,,‘

gsi_char *host Specify the host on which the G2 process is
running.

320

gsi_initiate_connection

Argument Description

gsi_char *port Specify the number of the port on which G2
process is listening for a connection to this
bridge process.

gsi_char *rpis The remote process initialization string. At
startup time, G2 Gateway passes this string
to the callback function gsi_initialize

context ().

Return Value Description

0 The attempt to initiate a connection began
successfully.

If the attempt fails after this function returns
0, G2 Gateway signals an error. Check for
errors to verify that the connection was
successfully initiated. For information about
error handling, see Error Handling.

1 The attempt to initiate a connection failed
immediately.

Description

gsi initiate connection () initiates a connection to a G2 process running on a
specified host. It causes G2 to create a GSI interface, which the G2 uses to
communicate with the G2 Gateway process that calls gsi_initiate
connection().

You cancall gsi_initiate connection () from within the callback gsi set
up (), or from any subsequent function in your G2 Gateway user code. A bridge
process can call gsi_initiate connection() any number of times to initiate
connections to G2 processes.

When gsi initiate connection () establishes a connection to a G2 process, G2
Gateway calls the callback function gsi_initialize context ().If the
connection cannot be established, G2 Gateway signals an error.

When you call gsi _initiate connection () with keep connectionsetto FALSE,
G2 makes the GSI interface object transient and automatically deletes it when the
connection is closed or G2 is reset. For this reason, G2 does not need the
information provided by the GSI-connection-configuration attribute and
therefore sets it to none.

321

322

You should be aware that if keep connectionis set to FALSE, but you made the
GSI interface permanent [for example, by a rule that fires when the gsi-interface-
status becomes 2 (the connection is active)] G2 does not automatically delete the
GSl interface when the connection is closed or G2 is reset. You must first make the
permanent GSI interface transient and then delete it.

You can configure a G2 KB to prohibit G2 Gateway processes from initiating
connections to the KB. To do this, add a configuration statement to your KB
Configuration system table that prohibits connect access to G2 Gateway. For

information about how to specify network security for a G2 process, see
G2 Reference Manual.

Related Functions

Function Description

gsi initialize Initialize a connection between a GSI

_context () interface in G2 and G2 Gateway, or reject the
connection.

gsi_set up() Perform G2 Gateway-related operations that

need to be performed only once during the
lifetime of the bridge process.

gsi_initiate_connection_with_user_data

gsi_initiate_connection_with_user_data

Initiates a connection to a G2 process, causes G2 to create a GSI interface for the
connection, and associates user data with the connection.

Synopsis

gsi_int gsi initiate connection with user data
(interface_name, class_name, keep_connection, network, host,
port, rpis, context_user_data)

Argument

Description

gsi_char *interface_
name

gsi_char *class_name

gsi_int keep_
connection

gsi_char *network

gsi_char *host

gsi_char *port

The name of the GSI interface created. G2
uses this GSI interface to communicate with
the bridge process that calls gsi_initiate
connection with

_user_data().

If you specify NULL for interface_name, G2
creates an unnamed GSI interface. G2 can
use the unnamed GSI interface for remote
procedure calls, but not for data service for
GSI variables.

The name of an existing class definition in
the G2 KB. The GSlI interface interface_name
is created as an instance of this class.

If you specify NULL for class_name, the GSI
interface is created as an instance of the G2
class gsi-interface.

Specify FALSE. This argument is not
supported in this release.

Specify “TCP-IF".

You can specify only the first letter of the
protocol name, in upper or lower case: “ 1"
Or “" tll'

Specify the host on which the G2 process is
running.

Specify the number of the port on which G2
process is listening for a connection to this
bridge process.

323

324

Argument Description

gsi_char *rpis The remote process initialization string. At
startup time, G2 Gateway passes this string
to the callback function gsi_initialize

context ().
gsi_context user The user data associated with the context
data type context_ initiated by this call to gsi_initiate
user_data connection with

_user_datal).

Return Value Description
0 The attempt to initiate a connection began
successfully.

If the attempt fails after this function returns
0, G2 Gateway signals an error. Check for
errors to verify that the connection was
successfully initiated. For information about
error handling, see Error Handling.

1 The attempt to initiate a connection failed
immediately.

Description

The function gsi initiate connection with user data()enablesa G2
Gateway bridge to initiate a connection and to associate context user data with the
connection to identify its origin, purpose, or other characteristics.

You cancall gsi initiate connection with user data () from within the

callback gsi_set_up (), or from any subsequent function in your G2 Gateway
user code. A bridge process can call gsi initiate connection with user
data () any number of times to initiate connections to G2 processes.

When gsi_initiate connection with user data () establishes a connection to
a G2 process, G2 Gateway calls the callback function gsi initialize
context (). If the connection cannot be established, G2 Gateway signals an error.

You can configure a G2 KB to prohibit G2 Gateway processes from initiating
connections to the KB. To do this, add a configuration statement to your KB
Configuration system table that prohibits connect access to G2 Gateway. For
information about how to specify network security for a G2 process, see

G2 Reference Manual.

gsi_initiate_connection_with_user_data

Use the API function gsi context user data () to return the context user data
associated with a specified context. You can associate user data with an existing
context using the API function gsi set context user data().

325

gsi_initiate_secure_connection

Initiates a secure connection to a G2 process and causes G2 to create a GSI
interface for that connection.

Synopsis

gsi_int gsi initiate connection (interface_name, class_name,
keep_connection, network, host, port, rpis)

Argument Description
gsi char *interface_ ~ The name of the GSI interface created. G2
name uses this GSI interface to communicate with

the bridge process that calls gsi_initiate
connection().

If you specify NULL for interface_name, G2
creates an unnamed GSI interface. G2 can
use the unnamed GSI interface for remote
procedure calls, but not for data service for
GSI variables.

gsi_char *class_name The name of an existing class definition in
the G2 KB. The GSl interface interface_name
is created as an instance of this class.

If you specify NULL for class_name, the GSI
interface is created as an instance of the G2
class gsi-interface.

gsi_int keep_ TRUE causes the connection not to close
connection when G2 is reset. The GSI interface is not
deleted.

FALSE causes the connection to close when
G2 is reset. The GSI interface generated for
this connection is deleted from the KB.

gsi char *network Specity “TCP-IF".

You can specify only the first letter of the
protocol name, in upper or lower case: “71”
Or “ t,,‘

gsi_char *host Specify the host on which the G2 process is
running.

326

Argument

gsi_initiate_secure_connection

Description

gsi_char *port

gsi_char *rpis

Return Value

Specify the number of the port on which G2
process is listening for a connection to this
bridge process.

The remote process initialization string. At
startup time, G2 Gateway passes this string
to the callback function gsi_initialize
context ().

Description

0

Description

The attempt to initiate a connection began
successfully.

If the attempt fails after this function returns
0, G2 Gateway signals an error. Check for
errors to verify that the connection was
successfully initiated. For information about
error handling, see Error Handling.

The attempt to initiate a connection failed
immediately.

Behaves exactly like gsi initiate connection, but tries to make a secure

connection to G2 with SSL.

327

gsi_initiate_secure_connection_with_user_
data

Initiates a secure connection to a G2 process, causes G2 to create a GSI interface
for the connection, and associates user data with the connection.

Synopsis
gsi_int gsi initiate connection with user data

(interface_name, class_name, keep_connection, network, host,
port, rpis, context_user_data)

Argument Description

gsi_char *interface_ The name of the GSI interface created. G2
name uses this GSI interface to communicate with
the bridge process that calls gsi_initiate
connection with
_user_data().

If you specify NULL for interface_name, G2
creates an unnamed GSI interface. G2 can
use the unnamed GSI interface for remote
procedure calls, but not for data service for
GSI variables.

gsi_char *class_name The name of an existing class definition in
the G2 KB. The GSlI interface interface_name
is created as an instance of this class.

If you specify NULL for class_name, the GSI
interface is created as an instance of the G2
class gsi-interface.

gsi_int keep_ Specify FALSE. This argument is not
connection supported in this release.

gsi_char *network Specify “TCP-IF".

You can specify only the first letter of the
protocol name, in upper or lower case: “ 1"
Or “" tll'

gsi_char *host Specify the host on which the G2 process is
running.

328

Argument

gsi_initiate_secure_connection_with_user_data

Description

gsi_char *port

gsi_char *rpis

gsi _context user
data_ type context_
user_data

Return Value

Specify the number of the port on which G2
process is listening for a connection to this
bridge process.

The remote process initialization string. At
startup time, G2 Gateway passes this string
to the callback function gsi_initialize
context ().

The user data associated with the context
initiated by this call to gsi_initiate
connection with

_user datal).

Description

0

Description

The attempt to initiate a connection began
successfully.

If the attempt fails after this function returns
0, G2 Gateway signals an error. Check for
errors to verify that the connection was
successfully initiated. For information about
error handling, see Error Handling.

The attempt to initiate a connection failed
immediately.

Behaves exactly like gsi initiate connection with user data, but tries to
make a secure connection to G2 with SSL.

329

gsi_install_error_handler

Invokes gsi_initialize callbacks () to initialize the gsi error handler ()
callback function.

Synopsis

void gsi install error handler (gsi_error_handler)

Argument Description
gsi_error_handler The callback function to install.
Description

gsi_install error handler () calls gsi initialize callbacks () toinstall the
callback gsi error handler ().

You can complete the code of gsi_error handler() to perform any customized
error handling required by your application. For information about this callback,
see gsi_error handler.

330

gsi_int_array_of

gsi_int_array_of

Returns a pointer to a C array of gsi_int values, which corresponds to the values
in an item, registered item, or embedded item in an attribute, whose value must
be of G2 Gateway type GSI INTEGER ARRAY TAG.

Synopsis
gsi int *gsi int array of (item)
gsi_int *gsi int array of (registered_item)

gsi_int *gsi int array of (attribute)

Argument Description

gsi_item item An item to whose values this function
returns a pointer.

gsi_registered A registered item to whose values this

item registered function returns a pointer.

item

gsi_attr attribute An attribute containing an embedded item
to whose values this function returns a
pointer.

Return Value Description

gsi_int * Points to a C array of integer values that

correspond to the elements of the G2
Gateway type GSI INTEGER ARRAY TAG.

Description

gsi_int array of () returns a C array of gsi_int values, representing the
elements of the GSI INTEGER ARRAY TAGvalue specified by the argument to this
function.

The values in this array correspond to the elements of the GSI INTEGER ARRAY
TAGvalue of a gsi_item gsi registered item, or gsi_attr.

The argument item, registered_item, or attribute must be of G2 Gateway type GSI
INTEGER ARRAY TAG; otherwise, G2 Gateway signals an error.

This function does not allocate any memory.

331

gsi_int_list of

Returns a C array of gsi_int values, which corresponds to the values in an item,
registered item, or embedded item in an attribute, whose value must be of G2
Gateway type GSI_INTEGER LIST TAG.

Synopsis
gsi int *gsi int list of (item)
gsi int *gsi int list of (registered_item)

gsi_int *gsi int list of (attribute)

Argument Description

gsi_item item An item to whose values this function
returns a pointer.

gsi_registered A registered item to whose values this

item registered function returns a pointer.

item

gsi_attr attribute An attribute containing an embedded item
to whose values this function returns a
pointer.

Return Value Description

gsi_int * A C array of integer values that correspond

to the elements of the G2 Gateway type GSI
INTEGER LIST TAG.

Description

gsi_int list of () returns an array of gsi int values. The values in this array
correspond, in order, to elements of the GSI INTEGER LIST TAGvalueofa gsi
item gsi registered item or gsi attr.

The argument item, registered_item or attribute must be of G2 Gateway type GSI
INTEGER LIST TAG, otherwise, G2 Gateway signals an error.

This function does not allocate any memory.

332

gsi_int_of

gsi_int_of

Returns the integer value of an item, registered item, or embedded item in an
attribute.

Synopsis
gsi_int gsi_int of (item)
gsi_int gsi int of (registered_item)

gsi_int gsi_int of (attribute)

Argument Description

gsi_item item An item whose integer value is returned
by this function.

gsi_registered A registered item whose integer value is

item registered returned by this function.

item

gsi_attr attribute An attribute containing an embedded item
whose integer value is returned by this
function.

Return Value Description

gsi_int Represents the value of G2 Gateway type

GSI_INTEGER TAGstored in item, registered_
item, or attribute.

Description

gsi_int of () returns the value of an item, registered item, or embedded item in
an attribute that is of G2 Gateway type GSI INTEGER TAG. The value is returned
asagsi_int.

If the argument is not of G2 Gateway type GSI_INTEGER TAG, G2 Gateway signals
an error.

333

gsi_interval_of

Returns the current default update interval associated with a registered item or an
item registration.

Synopsis
double gsi interval of (registered_item)

double gsi interval of (registration)

Argument Description

gsi_registered The registered item whose default

itemrregistered_item update interval is returned by this
function.

gsi_registration The registration whose default update

registration interval is returned by this function.

Return Value Description

double Represents the default update interval in

registered_item, given in seconds.

Description

gsi_interval of () returns the default update interval of a registered item.

To change the default update interval in a registered item, use the API function
gsi_set interval ().

334

gsi_is_item

gsi_is_item

Determines whether a specified gsi_itemrepresents an item or a value in G2.

Synopsis

gsi_int gsi_is item(item)

Argument Description

gsi_item item The item examined by this function.
Return Value Description

gsi_int A non-zero value if item is an object that

inherits from the G2 class item, or 0 if it
represents a value.

The gsi_itemrepresents an object that
inherits from item if the class name
component of the gsi_itemcontains the
name of a G2 class.

The gsi_itemrepresents a value in G2 if the
class name component is set to NULL.

Description

gsi_is item() is useful for determining whether an argument received from G2
by a G2 Gateway local function represents an object that inherits from the G2 class
item, or a value of one of the G2 value types.

If gsi_is item() indicates that an argument represents an object, your user code
can traverse the object to access its attributes individually.

For more information about this use of gsi_is item(), see How a Local Function
Can Process Argument Arrays Received from G2.

335

gsi_item_of attr

Returns the gsi_itemstructure embedded in a gsi_attr structure.

Synopsis

gsi item gsi item of attr (attribute)

Argument Description

gsi_attr attribute An attribute containing an embedded item.

Return Value Description

gsi_item Represents the embedded item in attribute.
Description

gsi_item of attr () returnsthe gsi itemcontained in the specified gsi attr
structure.

336

gsi_item_of_attr_by name

gsi_item_of _attr by name

Returns the gsi_item structure contained in a specified gsi_attr structure.

Synopsis

gsi _item gsi item of attr by name (item, search_name)

gsi item gsi item of attr by name (attr, search_name)

Argument

Description

gsi _item item

gsi attrattr

gsi symbol search_
name

Return Value

If you specify a gsi_item, this argument
represents an item one of whose attributes,
specified by search_name, contains the item
that this function returns.

If you specify a gsi_attr, this argument
represents an attribute that contains an
embedded item. In this case, it is the
embedded item that has the attribute,
specified by search_name, that contains the
item returned by this function.

The name of the attribute that contains the
embedded gsi_itemreturned by this
function.

Specify this name in uppercase letters, to
correspond to the uppercase letters
ordinarily used in G2 identifiers, which are
of the G2 type symbol.

Description

gsi_item

Description

The gsi_item structure embedded in the
gsi_attr structure whose name is search_
name.

The function gsi_item of attr by name () returnsthe gsi itemembedded in
the gsi_attr structure whose name is specified by search_name. If no such
attribute exists, G2 Gateway signals an error.

337

Related Functions

Function Description

gsi attr count Returns the number of attributes in a gsi

_of () Itemor gsi_attr.

gsi attrs of () Obtains the attributes ina gsi itemor gsi
attr.

gsi_set attrs() Changes the attributes ina gsi_itemor
gsi attr

gsi_set attr Changes a specific attributeina gsi itemor

by name () gsi attr.

338

gsi_item_of_identifying_attr_of

gsi_item_of _identifying_attr_of

Returns a gsi_itemfrom an identifying attribute stored in a gsi registration
structure.

Synopsis

gsi_item gsi item of identifying attr of (registration, attribute_index)

Argument Description

gsi registration The item registration.

registration

gsi_int attribute_ An integer, between 1 and 6 inclusive, that
index specifies one of the six identifying attributes.

If you specify a value greater than 6, or
greater than the number of identifying
attributes, G2 Gateway returns an error.

Return Value Description

gsi_item The identifying attribute specified by
attribute_ index.

Description

gsi_item of identifying attr of () returns one of the identifying attributes
stored in the identifying attributescomponentofa gsi registration
structure.

When you configure a GSI interface, you designate the attributes to be used as the
identifying attributes for instances of each class of GSI variable that uses the GSI
interface. For information about how to specify the identifying attribute of a class
of GSI variable, see Identifying-Attributes Attribute.

The identifying attributes stored ina gsi registration structure do not
include the names of the attributes.

339

gsi_item_of registered_item

Returns the gsi_item structure that is pointed to by a specified gsi
registered itemstructure.

Synopsis

gsi_item gsi item of registered item/registered_item)

Argument Description
gsi registered The item structure.
item registered
item
Return Value Description
gsi_item The item structure contained in registered_
item.
Description

gsi _item of registered item() returns the gsi itemthat is contained in
registered_item.

340

gsi_kill_context

gsi_kill_context

Shuts down a G2 Gateway context immediately.

Synopsis

void gsi kill context (context_number)

Argument Description
gsi_int context_ The context that this function shuts down.
number

Description

gsi kill context () shuts down a specified context and performs operations
necessary to shut down the external system and clean up the bridge process.
When the context is shut down, G2 Gateway calls the callback function gsi
shutdown context () to perform any customized operations associated with the
shutdown that your application requires.

G2 Gateway calls gsi_shutdown context ()when any event closes a context —
such as a G2 shutting down or being reset, or a connection being broken. For
information about this callback function, see gsi shutdown context.

341

gsi_last_error

Returns the error number of the last error condition to which the global error flag
was set by an API function in your G2 Gateway application.

Synopsis

gsi int gsi last error ()

Return Value Description
gsi int Represents the number of the error
condition most recently encountered in the
G2 Gateway application.
Description

gsi_last error () returns the error number of the error condition most recently
encountered in the G2 Gateway application.

For information about how to use the global error flag, see Checking the Global
Error Flag.

342

gsi_last_error_call_handle

gsi_last_error_call _handle

Returns the call identifier that G2 generated and passed to the G2 Gateway local
function that invokes an error handler function.

Synopsis

gsi _call identifier type gsi last error call handle()

Return Value Description
gsi call The call-identifier received from G2 by the
identifier type local function that invoked the error handler
function.
Description

Use gsi_last error call handle () inside a user-defined error-handler
function that is invoked during an API call made by a G2 Gateway local function.

This function returns the call-identifier of the local function that invoked the error
handler. You can pass the call-identifier to the API function gsi_rpc return
error values (), which enables you to control the error message that is sent back
to G2.

343

gsi_last_error_message

Returns the message text of the last reported error.

Synopsis

gsi char *gsi_last error message ()

Return Value Description
gsi_char* The text of the last error message.
Description

Use gsi_last error message () rather than gsi error message (), which can
return formatting templates rather than the simple text of the error message.

344

gsi_listener_socket

gsi_listener_socket

Returns the UNIX file descriptor associated with the G2 Gateway bridge’s TCP
listener.

Synopsis

gsi int gsi listener socket ()

Return Value Description
gsi_int The file descriptor associated with the
bridge’s TCP listener, or -1, if not such
listener exists.
Description

gsi_ listener socket () returns the UNIX file descriptor associated with the G2
Gateway bridge’s TCP listener. If the bridge has no listener, for example, if the
bridge has been started without a TCP listener, this function returns -1.

345

gsi_log_array_of

346

Returns the array of truth-values stored in an item or registered item embedded

item in an attribute.

Synopsis

gsi _int *gsi log array of (item)

gsi_int *gsi log array of (registered_item)

gsi_int *gsi log array of (attribute)

Argument

Description

gsi item item
gsi_registered
__itemregistered_item

gsi_attr attribute

Return Value

An item from which this function returns
the array of truth-values.

A registered item from which this function
returns the array of truth-values.

An attribute containing an item from which
this function returns the array of truth-
values.

Description

gsi int *

Description

gsi log array of () returns a pointer to the array of truth-values stored in a

gsi itemor gsi_attr.

If the argument to this function is neither a gsi_itemnor a data structure that

A Carray of type gsi_int. Each element
represents a truth-value, ranging from
GSI_FALSE(-1000) for completely false to
GSI TRUE (+1000) for completely true.

points to a gsi_item G2 Gateway signals an error.

To determine whether a gsi_item, gsi registered item or gsi_attr

represents a truth-value array, verify that the value returned by the API function

gsi_type of () is GSI _LOGICAL ARRAY TAG.

To modify a gsi_itemor gsi attr so that it stores a truth-value array, use the

API function gsi_set log array ().

gsi_log_list_of

gsi_log_list_of

Returns a one-dimensional C array that represents the list of truth-values stored
in an item or registered item embedded item in an attribute.

Synopsis
gsi _int *gsi log list of (item)
gsi_int *gsi log list of (registered_item)

gsi_int *gsi log list of (attribute)

Argument Description

gsi_item item An item from which this function returns a
C array representing a list of truth values.

gsi_registered A registered item from which this function

_itemregistered_item returns a C array representing a list of truth
values.

gsi_attr attribute An attribute containing an embedded item.

Return Value Description

gsi_int * A one-dimensional C array of type gsi_int.

Each element represents a truth-value,
ranging from GSI FALSE

(-1000) for completely false to GSI TRUE
(+1000) for completely true.

Description

gsi_log list of () returns the list of truth-values stored ina gsi_itemor
gsi_attr.

If the argument to this function is neither a gsi_itemnor a data structure that
points to a gsi_item G2 Gateway signals an error.

This function does not allocate any new memory — that is, it returns the actual
array stored ina gsi_item gsi registered item or gsi_attr, not to a copy.

To determine whether a gsi_item gsi registered item or gsi attr
represents a truth-value list, verify that the value returned by the API function
gsi_type of ()is GSI LOGICAL LIST TAG.

347

To modify a gsi_item gsi registered item or gsi_attr so that it stores a
truth-value list, use the API function gsi_set log list().

348

gsi_log_of

gsi_log_of

Returns a gsi_int that represents the value of an item, registered item, or
embedded item in an attribute whose value is of G2 Gateway type GSI LOGICAL

TAG.

Synopsis

gsi int gsi log of (item)

gsi int gsi log of (registered_item)

gsi_int gsi_log of (attribute)

Argument

Description

gsi item item

gsi_registered
item registered
item

gsi_attr attribute

Return Value

An item whose value is returned by this
function.

A registered item whose value is returned
by this function.

An attribute containing an embedded item
whose value is returned by this function.

Description

gsi_int

Description

A truth-value, ranging from GSI FALSE
(-1000) for completely false to GSI TRUE
(+1000) for completely true.

gsi_log of () returns the value of a gsi_item gsi registered item or gsi

attr.

The G2 Gateway type of the argument must be GSI LOGICAL TAG; otherwise, G2

Gateway signals an error.

349

gsi_long_of

Returns the long value of an item, registered item, or embedded item in an
attribute.

Synopsis
gsi long gsi_long of (item)
gsi long gsi long of (registered_item)

gsi long gsi long of (attribute)

Argument Description

gsi_item item An item whose integer value is returned
by this function.

gsi_registered A registered item whose integer value is

item registered returned by this function.

item

gsi_attr attribute An attribute containing an embedded item
whose integer value is returned by this
function.

Return Value Description

gsi_long Represents the value of G2 Gateway type

GSI_LONG TAGstored in item, registered_
item, or attribute.

Description

gsi_long of () returns the value of an item, registered item, or embedded item in
an attribute that is of G2 Gateway type GSI LONG TAG. The value is returned as a
gsi long.

If the argument is not of G2 Gateway type GSI LONG TAG, G2 Gateway signals an
erTor.

350

gsi_make_array

gsi_make_array

Allocates an array containing space for a specified number of gsi_items.

Synopsis

gsi_item *gsi _make array (count)

Argument Description

gsi_int count The number of elements in the array
allocated by this function call.

Return Value Description

gsi item * The array of gsi_itemallocated by this
function call.

Description

Note, gsi_make array () doesn’t create the gsi items, only the array itself. You
populate the array using gsi_make item() or a related API function.

You are responsible for deallocating any arrays that you allocate using gsi make
array (). G2 Gateway does not deallocate it automatically. You can deallocate an
array using gsi_reclaim array ().

G2 Gateway automatically deallocates any arrays that it allocates itself. Do not
attempt to deallocate arrays automatically allocated by G2 Gateway.

351

gsi_make_attrs

Allocates one or more instances of the gsi_attr structure.

Synopsis

gsi_attr *gsi make attrs(count)

Argument Description
gsi_int count Number of instances of gsi_attr to
allocate.
Return Value Description
gsi_attr * The allocated C array of gsi_attr
structures.
Description

gsi _make attrs() allocates gsi_attr instances for the use of your G2 Gateway
bridge process. Use array-index pointer arithmetic to access each element of the
allocated array.

You can set the itemcomponent of any gsi_attr structure to reference any gsi
itemcreated by G2 Gateway itself or by the API function gsi make items(),
using the API function gsi_set item of attr().

It is good practice to deallocate the gsi attr structures that you allocate using
gsi_make attrs() assoon as these structures are no longer needed by your G2
Gateway bridge process.

Use the API function gsi reclaim attrs() to deallocate gsi attr structures.
You need to deallocate only those gsi_attr structures that you have allocated by
making calls to gsi _make attrs()or gsi make attrs with items().You do
not need to deallocate the gsi_attr structures that G2 Gateway has allocated
automatically, and should not attempt to do this.

352

gsi_make_attrs_with_items

gsi_make_attrs_with_items

Allocates one or more instances of the gsi_attr structure, each with its own gsi
itemstructure.

Synopsis

gsi attr *gsi make attrs with items (count)

Argument Description
gsi_int count Number of instances of gsi_attr to
allocate.
Return Value Description
gsi_attr * A newly allocated C array of gsi attr
structures.
Description

gsi _make attrs with items () allocates one or more instances of gsi_attr.
Each gsi_attr contains its own gsi_itemstructure.

It is good practice to deallocate the gsi attr structures that you allocate using
gsi_make attrs with items() as soon as these structures are no longer needed
by your G2 Gateway bridge process.

Use the API function gsi_reclaim attrs with items () to deallocate this array
(or any array of gsi_attr instances that your G2 Gateway application has
populated with gsi iteminstances). You need to deallocate only those gsi_attr
structures that you have allocated by making calls to gsi_make attrs() or gsi
make attrs with items().You do not need to deallocate the gsi attr
structures that G2 Gateway has allocated automatically, and should not attempt
to do this.

353

gsi_make_item

Allocates a single gsi_itemstructure.

Synopsis

gsi item gsi make item()

Return Value Description
gsi_item The gsi_itemallocated by this function call.
Description

You are responsible for deallocating any items that you allocate using gsi make
item(). G2 Gateway does not deallocate it automatically. You can deallocate an
array using gsi_reclaim item().

G2 Gateway automatically deallocates any items that it allocates itself. Do not
attempt to deallocate items automatically allocated by G2 Gateway.

354

gsi_make_items

gsi_make _items

Allocates an array of one or more instances of gsi_item

Synopsis

gsi_item *gsi_make items (count)

Argument Description
gsi_int count Number of instances of gsi_itemto
allocate.
Return Value Description
gsi_item * A newly allocated C array of gsi_item
structures.
Description

gsi _make items () allocates gsi iteminstances for use in the user code of your
G2 Gateway application. Use array-index pointer arithmetic to access each
element of the allocated array.

It is good practice to deallocate the gsi itemstructures that you allocate using
gsi_make items () as soon as these structures are no longer needed by your G2
Gateway bridge process.

Use the API function gsi reclaim items () to deallocate gsi itemstructures.
You need to deallocate only those gsi_itemstructures that you have allocated by
making calls to gsi_make items().You do not need to deallocate the gsi item
structures that G2 Gateway has allocated automatically, and should not attempt
to do this.

355

gsi_make _registered_items

356

Allocates one or more instances of the gsi_registered itemstructure.
Synopsis
gsi registered item *gsi make registered items (count)

Argument Description

gsi_int count Number of instances of gsi registered
itemto allocate.

Return Value Description

gsi registered A newly allocated C array of gsi

_Item * registered itemstructures.
Description

gsi _make registered items () allocates an array of one or more gsi
registered itemstructures. You can pass arrays allocated by this function to the
API functions gsi_return values(), gsi_return timed values(), gsi_
return attrs(),and gsi_return timed attrs().

You can deallocate the gsi registered itemstructures that you allocate using
gsi _make registered items () assoon as these structures are no longer needed
by your G2 Gateway bridge process. However, do not deallocate the gsi
registered_itemstructures until any API function to which the structures have
been passed completes and returns. For example, if you pass an array of gsi
registered itemto gsi return values (), do not deallocate this array until
gsi return values () returns.

Use the API function gsi reclaim registered items () to deallocate gsi
registered_itemstructures. You need to deallocate only those gsi registered
itemstructures that you have allocated by making calls to gsi_make
registered items (). You do not need to deallocate the gsi registered item
structures that G2 Gateway has allocated automatically, and should not attempt
to do this.

gsi_make_symbol

gsi_make_symbol
Returns a symbol, given the name of that symbol.
Synopsis
gsi_symbol gsi_make symbol (symbol-name)

Argument Description

gsi_char The name of the symbol.
*symbol-name

Return Value Description

gsi_symbol The symbol that corresponds to the
specified symbol name.

Description

When the GSI NEW SYMBOL API runtime option is set, gsi_make symbol (),
results in a (void *) pointer whose contents does not change throughout the
lifetime of the GSI process. Calling gsi_make symbol () at a later time with a
string having the same contents produces exactly the same result.

When the GSI NEW SYMBOL API runtime option is not set, gsi_make symbol ()
returns a string that is a copy of its argument.

357

gsi_name_of

358

Returns a symbol representing the name of a specified GSI item.

Synopsis
gsi_symbol gsi name of (item)
gsi symbol gsi name of (attr)

gsi_symbol gsi name of (reg)

Argument Description

gsi_item item If you specify gsi_item the name of that
item is returned.

gsi_attr attr If you specify a gsi_attr, the name of the
embedded gsi itemin that attribute is
returned.

gsi_registration If you specify a gsi_registration, the

reg name of the gsi itemfor which this is the

registration is returned.

Caution

gsi_name_of

Return Value Description

gsi_symbol A symbol giving the name of the specified
data structure.

The symbol persists only as long as the data
structure with which it is associated. If your
user code needs to keep the symbol for
longer than the life-span of the data
structure, it must copy the symbol into
memory it allocates either using malloc ()
or via one of the make xxxG2 Gateway API
functions.

Note: The return value is NULL if the
argument passed to this functionisa gsi
itemextracted from a gsi registered
itemby gsi item of registered item(),
and this gsi registered itemwas
obtained from a callback function, such as
gsi set data().

Description

gsi_name of () returns the value of the name attribute of a gsi_item A call to this
API function can reference the gsi 1itemstructure directly, or through a gsi
registrationor gsi_attr structure.

If the specified item has no associated class or is not named, the return value is a
null pointer. On some systems, passing a null pointer to printf () causes a
segmentation violation. For this reason, you may want to verify that the return
value of gsi_name of () is not a null pointer before you pass it to printf (). For
example:

gsi _symbol char temp;

char temp = gsi_name of (item);

1f (char temp)

printf ("\n name: $s", char temp);
else

printf ("\n name: NULL PTR");

359

gsi_option_is_set
Returns whether a particular G2 Gateway global run-time option is set.
Synopsis
gsi_int gsi option is set (option)

Argument Description

gsi_int option Symbolic constant that represents a G2
Gateway global run-time option.

Return Value Description

gsi int Either 1 (TRUE) or 0 (FALSE), depending on
whether the specified option is currently set
or reset, respectively.

Description

gsi_option is set () returns a value that indicates whether a particular G2
Gateway global run-time option is set.

For option, specify the symbolic constant that represents a G2 Gateway runtime
option, as shown in the table below.

Global

Run-time Option Purpose

GSI_NEW SYMBOL API Enables API functions to access symbols
efficiently. Use of this option is
recommended if you user code includes
calls to functions that access symbols.

GSI_NO_SIGNAL Prevents G2 Gateway from registering its

_HANDLERS own signal handlers with the operating
system.

GSI_NON C When set, directs G2 Gateway to use pass-

by-reference when calling the G2 Gateway
callback functions. When reset (the default),
directs G2 Gateway to use pass-by-value.

360

gsi_option_is_set

Global

Run-time Option Purpose

GSI ONE CYCLE When set, directs G2 Gateway to run in
One-Cycle mode. When reset, directs G2
Gateway to run in Continuous mode

GSI_STRING CHECK Determines whether G2 Gateway

automatically filters all strings passed
between G2 Gateway and G2 (that is,
automatically converts all carriage-returns,
at-signs, tildes, and backslashes, as
described in the G2 Reference Manual.)

GSI_SUPPRESS OUTPUT When set, directs GSI not to send
information and error messages to standard
output. When reset, (the default) GSI sends
information and error messages to standard
output.

GSI_TRACE RUN STATE Prints a message whenever the flow of
control enters or leaves G2 Gateway. If the
gsi run state change () callback is
initialized, it prints the message before this

callback is called.
GSI_USER DATA Enables the user of user_data arguments in
FOR_CALLBACKS remote procedure calls made from the

bridge to G2. For information about this
option, see Procedure User Data for Remote
Procedure Calls.

GSI_WIDE STRING API Enables the use of the wide string character
type. For information about this type, see
Wide String Type.

361

gsi_owner_of

362

Indicates whether user code or G2 Gateway allocated a specified item.

Synopsis

gsi_int gsi_owner of (item)
gsi int gsi owner of (regitem)
gsi_int gsi owner of (attr)

gsi_int gsi owner of (reg)

Argument Description

gsi item item A gsi item

gsi registered item A gsi registered item
regitem

gsi_attr attr A gsi_attr.

gsi registrationre§ A gsi registration.

Return Value Description

gsi_int Indicates whether the specified item was
allocated by user code or by G2 Gateway.
Can be any of the following values:

0 (GSI_OWNER IS USER):: The item was
allocated by user code, and the user code is
responsible for deallocating it.

1 (GSI_OWNER IS GSI):: The item was
allocated automatically by G2 Gateway,
which will deallocate it automatically
when it is no longer needed.

2 (GSI_OWNER IS CONTEXT):: The item was
allocated automatically on behalf of the
context by G2 Gateway, which will
deallocate the item automatically when it
is no longer needed.

gsi_owner_of

Description

The function gsi owner of() enables your user code to determine whether it
has memory management responsibility for a specified item. If gsi owner of ()
indicates that the user code allocated the item, the user code is responsible for
deallocating that item when it no longer needs the item. If gsi owner of ()
indicates that the item was generated automatically by G2 Gateway, the item will
be deallocated automatically by G2 Gateway when it is no longer needed, and the
user code has no memory management responsibility for that item. For more
information about the memory management responsibilities of G2 Gateway user
code, see Memory Management Responsibilities of G2 Gateway User Code.

363

gsi_pause

364

Note

Causes the G2 Gateway bridge process to sleep for 1 second, or until a network
event occurs on a network connection to the G2 Gateway bridge process.

Synopsis

void gsi_pause ()

Description

By default, gsi pause () causes the G2 Gateway bridge process to enter an
interruptible sleep for 1 second. You can override this default one-second interval
and set the maximum amount of time that the bridge process sleeps using the API
function gsi_set pause timeout ().

Three events can awaken a bridge that has been paused:
* A timeout occurs on the specified pause interval.

* Network activity occurs on particular connections to external systems that
you instruct the bridge process to monitor using the gsi watch fd() or gsi_
watch fd for writing() APIfunctions.

* Network activity occurs over active connections to G2 processes. G2 Gateway
automatically watches these connections; you do not have to instruct it to
watch for them specifically.

In continuous mode, gsi_run loop () calls gsi pause () automatically at the end
of each loop.

In one-cycle mode, the G2 Gateway bridge process enters an interruptible sleep
only when your user code calls the gsi pause () function. The bridge process
does not enter an interruptible sleep automatically.

If you call gsi_pause () more than once, without calling gsi run loop()
between the calls to gsi_pause (), only the first call to gsi pause () causes the
bridge to enter an interruptible sleep. Thus, if you call gsi_pause () ten times in
succession, without intervening calls to gsi_run loop (), the bridge sleeps for a
maximum of only 1 second.

You can use the API function gsi_wakeup () in a multi-threaded application to
cause a gsi_pause () in another thread to exit, allowing that thread to wake up.

gsi_pause

Related Functions

Function Description

gsi set pause Specifies the maximum amount of

timeout () time that gsi_pause () can pause the
bridge.

gsi_ wakeup () In a multi-threaded application,

causes a gsi_pause () running in
another thread to exit.

gsi_watch fd() Specifies a file descriptor that G2
Gateway watches for network read
or error activity.

gsi_watch fd for Specifies a file descriptor that G2
writing() Gateway watches for network write
activity.

365

gsi_print_backtrace

Prints a backtrace to the console on Sun4 and Solaris platforms.

Synopsis

void gsi_print backtrace()

Description

gsi_print backtrace () prints a backtrace to the console. If the G2 Gateway
executable is stripped, G2 Gateway prints a numeric bracktrace; if it is not, G2
Gateway prints a symbolic backtrace. This funtion is useful for debugging.

366

gsi_reclaim_array

gsi_reclaim_array
Deallocates an array of gsi_itemstructures.
Synopsis
void gsi_reclaim array (array)

Argument Description

gsi_item *array The array of gsi_itemdeallocated by this
function call.

Description

gsi_reclaim array() deallocates an array of gsi itemstructures.
You can allocate an array of gsi_itemusing the API function gsi make array().

G2 Gateway automatically deallocates arrays that it allocates automatically. Do
not attempt to deallocate automatically allocated arrays.

367

gsi_reclaim_attrs

368

Reclaims one or more instances of the gsi_attr structure.
Synopsis
void gsi reclaim attrs (attributes)

Argument Description

gsi_attr *attributes Anarray of gsi_attr structures that was
previously allocated using the API function
gsi make attrs().

Description

gsi_reclaim attrs() frees storage that was previously allocated by the API
function gsi_make attrs () for one or more instances of the gsi_attr structure.

gsi_reclaim_attrs_with_items

gsi_reclaim_attrs_with_items
Reclaims one or more instances of the gsi_attr structure.
Synopsis
void gsi reclaim attrs with items (attributes)

Argument Description

gsi_attr *attributes Anarray of gsi attr structures that was
previously allocated using the API function
gsi make attrs with items().

Description

gsi reclaim attrs with items () frees storage that was previously allocated
by the API function gsi make attrs with items () for one or more instances of
the gsi_attr structure.

369

gsi_reclaim_item

370

Deallocates a specified gsi_itemstructure.

Synopsis

void gsi reclaim item(item)

Argument Description
gsi_item item The gsi_itemdeallocated by this function
call.
Description

gsi reclaim item() deallocates a gsi itemstructure. You are responsible for
deallocating any items that you allocate using the API function gsi make item().

G2 Gateway automatically deallocates any gsi itemstructures that it allocates
automatically. Do not attempt to deallocate automatically allocated gsi_item
structures.

You should not attempt to reclaim the same items more than once.

gsi_reclaim_items

gsi_reclaim_items

Reclaims an array of instances of gsi itemthat were allocated using gsi make
items ().

Synopsis
void gsi reclaim items (items)

Argument Description

gsi_item *items An array of instances of the gsi item
structure that was previously allocated
using the API function gsi_make items ().

Description

gsi _reclaim items () frees storage that was previously allocated by the API
function gsi_make items () for one or more instances of the gsi itemstructure.

You cannot partially reclaim arrays that were allocated using the API function
gsi make items ().

You should not attempt to reclaim the same items more than once.

371

gsi_reclaim_registered_items

372

Reclaims an array of gsi_registered itemstructures.

Synopsis

void gsi reclaim registered items (registered_items)

Argument Description

gsi_registered An array of gsi_registered item

item *registered structures that was allocated using the API

items function gsi_make registered items ().
Description

gsi_reclaim registered items () frees storage that was previously allocated
using the API function gsi_make registered items (), for one or more instances
of the gsi registered itemstructure.

gsi_registration_of_handle

gsi_registration_of handle

Returns the gsi_registrationfor the given item_handle and context.

Synopsis

gsi registration gsi registration of handle
(item_handle, context_number)

Argument Description

gsi_int item_handle The item handle.

gsi_int context_number The context.

Return Value Description

gsi_registration The gsi registrationstructure that
corresponds to item_handle and context,
or a NULL pointer if item_handle is not a
valid handle.

Description

gsi_registration of handle() returns a gsi_registrationcorresponding to
a registered item. As input arguments, this function takes only the handle and
context of the registered item.

Because gsi_registration of handle() returns a NULL pointer if the item
handle specified by the item_handle argument is not valid, you can use this
function to test the validity of handles.

373

gsi_registration_of _item

Returns the gsi_registrationassociated with a gsi_registered item, gsi
item, or gsi_registration.

Synopsis
gsi registration gsi registration of item(item)
gsi registration gsi registration of item(regitem)

gsi_registration gsi registration of item(registration)

Argument Description

gsi item item The gsi_itemfor which this function
returns the gsi registration.

gsi registered item The gsi registered itemfor which this

regitem function returns the gsi registration.
gsi_registration If you specify a gsi_registrationfor this
registration argument, the function returns that same

gsi registration.

Return Value Description
gsi_registration The registration returned by this function.
Description

gsi registration of item()returns the registration of a registered item or
gsi_item If you specify a gsi registrationfor regitem_or_registration, this
function returns that gsi_registration.

374

gsi_reset_option

gsi_reset_option
Turns off a G2 Gateway global run-time option.
Synopsis
void gsi reset option (option)

Argument Description

gsi_int option Symbolic constant that represents a G2
Gateway global run-time option.

Description

gsi_reset option() turns off the G2 Gateway global run-time option specified
by option.

G2 Gateway run-time options are global settings that control G2 Gateway
operations and communications. For most purposes, it is best to set and reset
these options in the callback function gsi_set up (). However, you can set and
reset the options from any place in your user code after gsi start () has been
called.

For option, specify a symbolic constant that represents a G2 Gateway runtime
option, as listed in the following table.

G2 Gateway Runtime Options

Global
Run-time Option Purpose

GSI NO SIGNAL HANDLERS When set, directs G2 Gateway not to register
its own signal handlers with the operating
system. This can in some cases make
debugging easier.

When reset, directs G2 Gateway to register
its own signal handlers. This is the default.

GSI_ONE CYCLE When set, allows control to be returned to
your main function once per cycle. Refer to
Processing Events through gsi_run_loop()
for more information.

GSI PROTECT INNER When set, after encountering an error, G2
CALLS Gateway returns control to the caller rather
than returning control to gsi_run Ioop ().

375

376

G2 Gateway Runtime Options

Global
Run-time Option

Purpose

GSI_STRING
__CHECK

When set, filters out all non-ASCII
characters sent to (but not from) G2.

GST_SUPPRESS
_OUTPUT

When set, prevents all output generated by
G2 Gateway or the communications link
from appearing as standard output to your
screen.

GSI_TRACE RUN_LOOP

When set, prints a message whenever gsi
start () or gsi_run loop () are entered or
exited.

GSI_TRACE RUN
_STATE

When set, prints a message whenever the
flow of control enters or leaves G2 Gateway.
If the gsi_run state change () callback is
initialized, it prints the message before this
callback is called.

gsi_return_attrs

gsi_return_attrs

Returns a value to a registered GSI variable and sets one or more of its attributes.

Synopsis

void gsi return attrs (registered_item, attributes, count, context_number)

Argument Description

gsi_registered The registered item that contains attribute
itemregistered_item values.

gsi_attr *attributes Array of attributes whose names, types,

and values are set.

gsi_int count Number of items represented in attributes.
gsi_int context_ Context number specifying the GSI
number interface object through which registered_

item was registered.

Description

gsi_return attrs () returns a value (optionally null-typed, in which case no
value is sent) to a GSI variable and returns values to one or more of the variable’s
attributes.

The values returned by this function (that is, both the value of the variable and the
values of the variable’s attributes) can be timestamped.

To update a variable’s attributes without modifying its value, set the type of
registered_item to NULL TAG.

377

gsi_return_message

Returns a text string to the message-board item in the current KB of the
connected G2 process.

Synopsis
void gsi return message (message,context_number)

Argument Description

gsi_char *message Text string passed to the connected G2
process.

gsi_return message () does not retain the
message argument. If your G2 Gateway user
code allocated the memory for the message
string, it can deallocate this memory after
gsi_return message () completes, if it has
no further use for the string.

gsi_int context_ Context number that identifies a connection
number to a GSI interface.
Description

gsi_return message () passes the text of a message to the message-board item
in the current KB of a connected G2 process.

For example, the following gsi initialize context () callback function
invokes gsi_return message () to send the remote process initialization string of
the GSI interface to the message-board:

gsi_int gsi initialize context (remote process init string,
length)
gsi _char *remote process init string;
gsi int length;

{
char ret msg[100];
sprintf (ret msg, "Initialization string %s",
remote process init string);
gsi return message (ret msg, gsi current context());
return (GSI_ACCEPT) ;
}

378

gsi_return_timed_attrs

gsi_return_timed_attrs

Returns a timestamped value and one or more optionally timestamped attribute
values to a registered G2 variable.

Synopsis

void gsi return timed attrs (registered_item, attributes, count,

context_number)

Argument

Description

gsi registered item
registered_item

gsi_attr *attributes

gsi_int count

gsi_int context_number

Description

The registered item that contains the
timestamped value.

Array of attributes whose names, types,
and values have been set. Each attribute
can be timestamped.

Number of items represented in
attributes.

Context number specifying the GSI
interface object through which
registered_item was registered.

gsi_return timed attrs () returns atimestamped value (optionally, null-typed,
in which case, no value is sent) to a G2 variable and returns timestamped values
to one or more of the variable’s attributes.

The values returned by this function (that is, both the value of the variable and of
the variable’s attributes) can be timestamped. No special structure is required to

send timestamped values.

To update a variable’s attributes without modifying its value, set the type of

registered_item to NULL TAG.

379

gsi_return_timed_values

Caution

380

Returns one or more timestamped values to the last-recorded-value attribute of

one or more GSI variables.

Synopsis

void gsi return timed values (registered_items, count, context_number)

Argument

Description

gsi registered item
*registered_items

gsi_int count

gsi_int context_number

Description

An array of registered items that are set
with new values for the last-recorded-
value attribute. Thi