
G2 ProTools

User’s Guide
Version 2015

G2 ProTools User’s Guide, Version 2015

December 2015

The information in this publication is subject to change without notice and does not represent a
commitment by Gensym Corporation.

Although this software has been extensively tested, Gensym cannot guarantee error-free
performance in all applications. Accordingly, use of the software is at the customer’s sole risk.

Copyright (c) 1985-2015 Gensym Corporation

All rights reserved. No part of this document may be reproduced, stored in a retrieval system,
translated, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of Gensym Corporation.

Gensym®, G2®, Optegrity®, and ReThink® are registered trademarks of Gensym Corporation.

NeurOn-Line™, Dynamic Scheduling™ G2 Real-Time Expert System™, G2 ActiveXLink™, G2
BeanBuilder™, G2 CORBALink™, G2 Diagnostic Assistant™, G2 Gateway™, G2 GUIDE™,
G2GL™, G2 JavaLink™, G2 ProTools™, GDA™, GFI™, GSI™, ICP™, Integrity™, and SymCure™
are trademarks of Gensym Corporation.

Telewindows is a trademark or registered trademark of Microsoft Corporation in the United States
and/or other countries. Telewindows is used by Gensym Corporation under license from owner.

This software is based in part on the work of the Independent JPEG Group.

Copyright (c) 1998-2002 Daniel Veillard. All Rights Reserved.

SCOR® is a registered trademark of PRTM.

License for Scintilla and SciTE, Copyright 1998-2003 by Neil Hodgson, All Rights Reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/).

All other products or services mentioned in this document are identified by the trademarks or
service marks of their respective companies or organizations, and Gensym Corporation disclaims
any responsibility for specifying which marks are owned by which companies or organizations.

Gensym Corporation
52 Second Avenue
Burlington, MA 01803 USA
Telephone: (781) 265-7223
Fax: (781) 265-7101 Part Number: DOC105-1200

Contents
Preface vii

About this Guide vii

Audience viii

A Note About the API viii

Organization viii

Conventions ix

Related Documentation xi

Customer Support Services xiii

Chapter 1 Overview of G2 ProTools 1

Introduction 1

Loading G2 ProTools 2
Adding ProTools to Your Module Hierarchy 2
Removing ProTools from Your Module Hierarchy 3

Generating the Online Reference Manual 4
Using the Online Reference Manual 5

Chapter 2 G2 ProTools Palette 7

Introduction 8

G2 ProTools Palette Navigation Buttons 8
Contents 9
Control Panel 9
Configuration 12
README 14

G2 ProTools Palette Objects 14
Internal Documentation Messages 14
Automatic Documentation Objects and Templates 17
The Accelerator Object 17
The Cross Hair Object 18
The Workspace Header Object 18
The Under-Construction Object 19

User Menu Choices 19
iii

Enabling References to Inactive Items 20
Highlighting the Superior Item of a Workspace 21
Measuring the Memory of an Item 21
Making an Item Permanent 21
Listing the Attributes of an Item 21

Chapter 3 Telewindows Collaboration Tools 23

Introduction 23

Window-Specific Message Board 24

Telewindows Broadcast 25

Chapter 4 Application Analysis Tools 27

Introduction 27

Creating Call Trees 28
Generating and Extending a Call Tree 28
Representing Method Calls 30
Other Special Cases 31

Using the Tree Shaker 32

Finding Unused Variables 33

Using the Profiling Facility 33

Procedure Pause 34

Chapter 5 Automatic Documentation Tools 35

Introduction 35
Automatic HTML 36
Documentation Tools on the G2 ProTools Palette 37

Producing a Reference Manual for Your Application 37
Customizing Item Selection 38

Adding Comments to Your Documentation 40
Adding Comments from Procedures and Methods 40
Adding Comments from Function Definitions 42
Adding Comments from Class Definitions 42
Adding Comments from Other Items 43

Understanding Documentation Templates 44
Creating a Structure 44
Converting a Structure 45
The protools-documentation-template Class 46
The protools-sequence-template Class 48

Understanding the Document Generation Process 50
iv

The protools-book Class 50
The protools-chapter Class 50
The Document Generation Process 51

Customizing Your Documentation 52
Adding or Removing Individual Items 52
Modifying Chapter Attributes 52
Removing Unwanted Chapters 53
Translating from English to Another Language 53
Creating Custom HTML Templates 54
Creating a New Chapter 54
Changing the Output File Format 55

Chapter 6 Formatting and Layout Tools 57

Introduction 57

Formatting Procedures and Methods 58

Changing Objects to Uniform Size 59

Arranging the Contents of a Workspace 60
Undoing Arrangement 61

Changing Workspaces to Uniform Style 61

Chapter 7 Shortcuts and Convenience Tools 63

Introduction 63

Printing Workspaces 64

Quick-Launching Procedures and Methods 65
Accepting the Defaults 65
Viewing Return Arguments 66

Defining and Using Accelerators 67

Viewing the Description of a Procedure 67

Loading External Text Files into G2 68

Index 69
v

vi

Preface
Describes this guide and the conventions that it uses.

About this Guide vii

Audience viii

A Note About the API viii

Organization viii

Conventions ix

Related Documentation xi

Customer Support Services xii

About this Guide
This guide contains complete information about the G2 ProTools utility, and
shows you how to use the module at any supported level. This guide:

• Provides an overview of G2 Protools and its features.

• Describes the G2 ProTools palette.

• Describes how to use these features:

– Developer collaboration.

– Application analysis.

– Automatic documentation.

– Formatting and layout.

– Shortcuts and conveniences.
vii

Audience
This guide assumes that you are generally familiar with G2 terminology and
practices. If you encounter G2 terms or concepts that you do not understand, see
the G2 Reference Manual.

A Note About the API
The ProTools API, as described in this guide, is not expected to change
significantly in future releases, but exceptions may occur. A detailed description
of any changes will accompany the G2 ProTools release that includes them.

Therefore, it is essential that you use ProTools exclusively through its API, as
described in this guide. If you bypass the API, you cannot rely on your code to
work in the future, since ProTools may change, or in the present, because the code
may not correctly manage the internal operations of ProTools.

If ProTools does not seem to provide the capabilities that you need, contact
Gensym Customer Support at 1-781-265-7301 (Americas) or +31-71-5682622
(EMEA) for further information.

Organization
This guide contains six chapters:

Title Description

1 Overview of G2 ProTools Describes the features of G2 ProTools and
how to load and incorporate G2 ProTools
into your development environment.

2 G2 ProTools Palette Describes the top-level workspace of
ProTools, its cloneable objects, the
ProTools control panel, and how to
configure the ProTools environment.

3 Telewindows
Collaboration Tools

Describes features supporting cooperative
development.

4 Application Analysis Tools Describes facilities for application
analysis, including constructing call trees,
finding dead code, and application
profiling.
viii

Conventions
Conventions
This guide uses the following typographic conventions and conventions for
defining system procedures.

Typographic

5 Automatic Documentation
Tools

Describes the facilities for automatically
generating documentation for your
application.

6 Formatting and Layout
Tools

Describes tools for formatting items and
laying out workspaces in your
application.

Title Description

Convention Examples Description

g2-window, g2-window-1,
ws-top-level, sys-mod

User-defined and system-defined
G2 class names, instance names,
workspace names, and
module names

history-keeping-spec, temperature User-defined and system-defined
G2 attribute names

true, 1.234, ok, “Burlington, MA” G2 attribute values and values
specified or viewed through
dialogs

Main Menu > Start

KB Workspace > New Object

create subworkspace

Start Procedure

G2 menu choices and button labels

conclude that the x of y ... Text of G2 procedures, methods,
functions, formulas, and
expressions

new-argument User-specified values in
syntax descriptions
ix

Note Syntax conventions are fully described in the G2 Reference Manual.

Procedure Signatures

A procedure signature is a complete syntactic summary of a procedure or
method. A procedure signature shows values supplied by the user in italics, and
the value (if any) returned by the procedure underlined. Each value is followed by
its type:

g2-clone-and-transfer-objects
(list: class item-list, to-workspace: class kb-workspace,
delta-x: integer, delta-y: integer)

-> transferred-items: g2-list

text-string Return values of G2 procedures
and methods in syntax
descriptions

File Name, OK, Apply, Cancel,
General, Edit Scroll Area

GUIDE and native dialog fields,
button labels, tabs, and titles

File > Save

Properties

GMS and native menu choices

workspace Glossary terms

c:\Program Files\Gensym\ Windows pathnames

/usr/gensym/g2/kbs UNIX pathnames

spreadsh.kb File names

g2 -kb top.kb Operating system commands

public void main()
gsi_start

Java, C and all other external code

Convention Examples Description
x

Related Documentation
Related Documentation

G2 Core Technology

• G2 Bundle Release Notes

• Getting Started with G2 Tutorials

• G2 Reference Manual

• G2 Language Reference Card

• G2 Developer’s Guide

• G2 System Procedures Reference Manual

• G2 System Procedures Reference Card

• G2 Class Reference Manual

• Telewindows User’s Guide

• G2 Gateway Bridge Developer’s Guide

G2 Utilities

• G2 ProTools User’s Guide

• G2 Foundation Resources User’s Guide

• G2 Menu System User’s Guide

• G2 XL Spreadsheet User’s Guide

• G2 Dynamic Displays User’s Guide

• G2 Developer’s Interface User’s Guide

• G2 OnLine Documentation Developer’s Guide

• G2 OnLine Documentation User’s Guide

• G2 GUIDE User’s Guide

• G2 GUIDE/UIL Procedures Reference Manual

G2 Developers’ Utilities

• Business Process Management System Users’ Guide

• Business Rules Management System User’s Guide

• G2 Reporting Engine User’s Guide

• G2 Web User’s Guide

• G2 Event and Data Processing User’s Guide
xi

• G2 Run-Time Library User’s Guide

• G2 Event Manager User’s Guide

• G2 Dialog Utility User’s Guide

• G2 Data Source Manager User’s Guide

• G2 Data Point Manager User’s Guide

• G2 Engineering Unit Conversion User’s Guide

• G2 Error Handling Foundation User’s Guide

• G2 Relation Browser User’s Guide

Bridges and External Systems

• G2 ActiveXLink User’s Guide

• G2 CORBALink User’s Guide

• G2 Database Bridge User’s Guide

• G2-ODBC Bridge Release Notes

• G2-Oracle Bridge Release Notes

• G2-Sybase Bridge Release Notes

• G2 JMail Bridge User’s Guide

• G2 Java Socket Manager User’s Guide

• G2 JMSLink User’s Guide

• G2 OPCLink User’s Guide

• G2 PI Bridge User’s Guide

• G2-SNMP Bridge User’s Guide

• G2 CORBALink User’s Guide

• G2 WebLink User’s Guide

G2 JavaLink

• G2 JavaLink User’s Guide

• G2 DownloadInterfaces User’s Guide

• G2 Bean Builder User’s Guide
xii

Customer Support Services
G2 Diagnostic Assistant

• GDA User’s Guide

• GDA Reference Manual

• GDA API Reference

Customer Support Services
You can obtain help with this or any Gensym product from Gensym Customer
Support. Help is available online, by telephone, by fax, and by email.

To obtain customer support online:

 Access G2 HelpLink at www.gensym-support.com.

You will be asked to log in to an existing account or create a new account if
necessary. G2 HelpLink allows you to:

• Register your question with Customer Support by creating an Issue.

• Query, link to, and review existing issues.

• Share issues with other users in your group.

• Query for Bugs, Suggestions, and Resolutions.

To obtain customer support by telephone, fax, or email:

 Use the following numbers and addresses:

Americas Europe, Middle-East, Africa (EMEA)

Phone (781) 265-7301 +31-71-5682622

Fax (781) 265-7255 +31-71-5682621

Email service@gensym.com service-ema@gensym.com
xiii

xiv

1

Overview of
G2 ProTools
Describes the features of G2 ProTools and how to load and incorporate
G2 ProTools into your development environment.

Introduction 1

Loading G2 ProTools 2

Generating the Online Reference Manual 4

Introduction
G2 ProTools is a tool for G2 developers that helps you develop, test, debug,
document and deploy your G2 applications faster than ever before. G2 ProTools
provides a variety of useful tools, including tools for:

• Developer collaboration.

• Application analysis.

• Automatic documentation.

• Formatting and layout.

• Shortcuts and conveniences.

You access these features from the G2 ProTools palette. You can easily add and
remove G2 ProTools to and from your application, simply by merging or deleting
the protools module, protools.kb. However, you will get the maximum benefit
from ProTools when you make it a permanent component of your environment
by adding it to your module hierarchy. This approach gives you instant access to
ProTools, and allows you to store ProTools objects in your application’s modules.
1

ProTools can be removed in a single easy step, using the Delete Module
command.

Using ProTools is highly intuitive. You access most of ProTools’ functionality
through user menu choices, action buttons, and attribute tables. Or, to gain
additional flexibility and power, you can use ProTools’ extensive programmatic
API. ProTools also provides two useful workspaces, a palette, which is the source
of cloneable items, and a control panel, where the most frequently-used controls
(such as those for switching operator mode) are located. From the palette, you can
easily navigate to all workspaces of interest within ProTools.

Loading G2 ProTools
To load ProTools, start G2 in the normal manner and load your source files. Then,
with G2 reset or paused, merge protools.kb into your environment, using the
Merge KB command. You can use ProTools in a development or in a deployment
environment.

When you merge ProTools, four modules are loaded:

• protools

• ptroot

• sys-mod

• uilroot

Adding ProTools to Your Module Hierarchy

In most cases, you will want to make ProTools a standard part of your
environment by adding it to your module hierarchy, so that it is loaded each time
you work on your application. The protools module should be added to your
module hierarchy under your modules; that is, your modules should require
ProTools. This allows you to put ProTools objects into your modules while
maintaining consistent modularity.

Example

Assume you are developing three modules, named top, middle, and bottom,
where:

• top requires middle.

• middle requires bottom.

• bottom requires uil, a utility module provided by Gensym.

Since bottom is the lowest-level module you are developing, you should make
bottom require protools. You would change the directly required modules of
2

Loading G2 ProTools
bottom to uil, protools. To learn more about module hierarchies, see the G2
Reference Manual.

Removing ProTools from Your Module Hierarchy

Once ProTools is added to your module hierarchy, it normally will become a
permanent part of your environment. As you use ProTools, you will put instances
of objects defined by ProTools in your modules. ProTools objects help to organize
and document your development activities.

You must exercise caution when changing your module hierarchy if you have
ProTools objects, such as documentation details or developer notes, that you wish
to preserve. In particular, if you remove both ProTools modules from your
application, all objects defined by ProTools will be automatically deleted.

ProTools provides run-time functionality in a deployment environment.
However, you may also want to remove ProTools when your application is ready
for deployment. This operation is normally done using a copy of your source code,
not the source code itself. In this way irreversible operations such as deleting
testing procedures, text-stripping, making the application proprietary, and the
like, do not affect the source code. Removing ProTools should be part of this
package preparation procedure.

You may also need to temporarily remove ProTools, to enable your application to
run on a machine where ProTools is not authorized, without losing your ProTools
objects. In this case, you delete the module protools, keeping the module ptroot.
ptroot contains key object definitions for ProTools objects, and does not require
authorization. As long as you do not delete ptroot, your objects will be retained.
Later, protools can be reintroduced.

Caution Deleting the module ptroot from your development environment will
permanently delete all ProTools objects, such as documentation details and
developer notes, from your application.

Temporarily Removing ProTools

To run your application on a machine where ProTools is not authorized, and yet
retain ProTools objects, you delete the module protools, leaving the module ptroot
intact.

To delete the protools module from a copy of your source code:

1 Select Main Menu > Miscellany > Delete Module.

2 Choose protools from the menu.

3 Click the All button on the resulting dialog to delete all workspaces associated
with ProTools.
3

4 Use Inspect to show the module hierarchy.

5 Remove protools from the list of required modules, wherever it is required,
and replace it with ptroot.

In the previous example, you would change the directly required modules of
bottom to ptroot.

Removing ProTools Permanently

To permanently remove ProTools from your source code, simply delete both
ProTools modules from your source code. This action will delete all ProTools
objects from your source code, including documentation details, developer notes,
and any other ProTools items.

If you are preparing a deployment version of your application, be sure to perform
this action on a copy of your source code, not the source code itself, because
deleting both ProTools modules results in irreversible deletion of all objects
defined by ProTools, even if they reside in your modules.

To delete ProTools and associated objects from your application:

1 Select Main Menu > Miscellany > Delete Module.

2 Choose protools from the menu.

3 Click the All button on the resulting dialog to delete all workspaces associated
with ProTools.

4 Repeat the above procedure with the module ptroot.

5 Use Inspect to show the module hierarchy.

6 Remove protools and ptroot from the list of required modules, wherever they
are required.

In the previous example, you would change the directly required modules of
bottom back to uil.

Generating the Online Reference Manual
One of the most powerful features of G2 ProTools is its ability to automatically
generate documentation for an application. You use this facility to generate the
G2 ProTools Reference Manual.

To generate the G2 ProTools Reference Manual:

1 Load the ProTools KB and start G2.

2 Go to the protools-top-level workspace and click the README button.

3 Enter the name of the desired directory path into the edit box.
4

Generating the Online Reference Manual
Note This must be an existing directory. If a suitable directory does not exist, first
create it in the usual manner on your system.

4 Click the document protools button.

On most systems, it will take less than a minute to complete the generation of
the reference manual.

Using the Online Reference Manual

After you generate the online reference manual, the target directory contains
many files of type .htm (hypertext markup) and a few of type .dat. Start your
browser and load the .htm files for viewing in the usual manner for your system.

Key Files in the Online Reference Manual

The following table describes the contents of important files in the online
reference manual:

You may want to bookmark one or more of these files in your browser, to provide
an easy entry point into the Reference Manual:

Obtaining a Printed Reference Manual

Using your browser, you can print any files in the Reference Manual, one at a
time. However, because the reference manual is comprised of many files, it is very
time consuming to individually load and print each file. To obtain the entire
reference manual on paper, use the book.htm file. It contains the entire reference
manual in a single file, and thus can be printed with a single print command.

File Name Contents

titlepag.htm The title page of the manual, providing links
to table of contents, index, and first chapter.

booktoc.htm The table of contents for the manual,
providing links to all chapters.

bookix.htm An alphabetical index for the manual,
providing links to all documented classes,
procedures, methods, user menu choices, and
relations.

book.htm The entire reference manual in a single
HTML-formatted file.
5

6

2

G2 ProTools Palette
Describes the top-level workspace of ProTools, its cloneable objects, the ProTools
control panel, and how to configure the ProTools environment.

Introduction 8

G2 ProTools Palette Navigation Buttons 8

G2 ProTools Palette Objects 14

User Menu Choices 19
7

Introduction
The top-level workspace of G2 ProTools serves as the starting point for most G2
ProTools activities:

This workspace, named protools-top-level, is available from the G2 Main Menu:

Main Menu > Get Workspace > protools-top-level

The various items on this workspace are described in the following sections.

G2 ProTools Palette Navigation Buttons
This section explains the navigation buttons that appear in the top half of the G2
ProTools palette:

Internal
documentation
objects

Automatic
documentation
templates

Automatic
documentation
objects

Under-construction
object

Accelerator object

Crosshair
8

G2 ProTools Palette Navigation Buttons
Contents

This navigation button allows you to navigate to the various functional parts of
G2 ProTools. On the subworkspace of this button, you will see another set of
buttons that correspond the chapters of this User’s Guide, for example,
Telewindow Collaboration Tools, Application Analysis Tools.

Each topic on the contents workspace contains one or more subworkspaces
containing demos, explanations, and various G2 objects. To best familiarize
yourself with G2 ProTools, you should explore the workspaces under the contents
button in some detail. Often, you will find examples you can copy or emulate.

Control Panel

The subworkspace of this button is a control panel that contains several useful
controls that you may use frequently during development.

You can keep this workspace visible in a corner of your G2 window for easy
access. The buttons on the control panel allow you to:

• Change user mode.

• Run the profile.

• Communicate with other developers.

Changing the User Mode

Clicking the administrator, developer, or user button in the first row on the control
panel changes the user mode to the mode specified on the button. The effect of
these buttons is the same as entering Ctrl y and typing the user mode in the G2
Login dialog.
9

Using the Profiling Controls

G2 provides a useful profiling capability, which you can use to optimize the
performance of your application. G2 ProTools offers a lightweight user interface
to this facility.

Note G2 provides an alternative, full-feature user interface to the profiling facility
called Profiler. Shipped with G2, the Profiler KB provides more data display
options than the interface provided with G2 ProTools. The advantage of the G2
ProTools profiler interface is its lightweight character and independence from
other utility module requirements, so it can be merged into any application
without generating version conflicts.

To start profiling:

 Click the enable button.

G2 records the number of calls, the average time, and the total time spent
evaluating each executable item in your KB.

To stop profiling:

 Click the disable button.

To show a summary report of the data collected during the profiling run:

 Click the report button.

To clear the data from the previous profiling run:

 Click the clear button.
10

G2 ProTools Palette Navigation Buttons
The Profile Report

Clicking the report button displays a workspace similar to the this:

This workspace contains a bar chart showing the breakdown of time spent in
various types of activities, such as time for processing workstation events, time
for G2 processing, idle time, and the like. Below, there is a list of report items
showing the time spent in certain executable items in the KB. This list is ordered
with the executable items accounting for the most total time listed first. By
default, only items that have executed for a total time of more than 0.01 seconds
are shown. You can specify a different cut-off time by editing the action of the
report button.

More information on the activities within any profiled item can be obtained by
selecting the report item. This additional information includes the number of
times certain statements within the executable item have been evaluated.

For more information on using the profiler, including the list of actions and
statements that G2 profiles, see the G2 Reference Manual.

Communicating with Other Users

The last set of buttons on the control panel allow you to communicate with other
users logged into the same G2 through Telewindows. When you develop as a
team with multiple users logged into the same G2, you often need to
communicate, particularly before taking actions that affect all users, such as
11

pausing or resetting G2, saving modules, entering simulate proprietary mode,
and the like. G2 ProTools provides a simple dialog mechanism for
communicating with your co-workers when you need to take an action that might
affect their work.

For example, you need to reset G2. To ask the other users if this is OK, you click
the reset button. G2 ProTools displays a dialog similar to the following on each of
the Telewindows connected to the G2.

G2 automatically resets as soon as all users respond yes.

If there is no response within 15 seconds (default time-out) on a certain window,
the Yes button is selected automatically on that window.

The time remaining before the default action occurs is displayed on each dialog.
Any user clicking No before the time-out cancels the reset, and you receive a
message to that effect. The message contains the user name of the user who
responded negatively. You can change the time-out by editing the reset button.

Several of these buttons require that you take the action manually once all users
have responded. Only the reset and pause actions are taken automatically.

For more information on this facility, see Telewindows Broadcast.

Configuration

You can configure three aspects of the operation of G2 ProTools:

• User menu choices

• Accelerators

• The control panel

Configuring User Menu Choices

G2 ProTools offers more than a dozen user menu choices that appear on built-in
classes such as workspaces and procedures. You may want to hide the menu
choices not used, to reduce menu clutter.
12

G2 ProTools Palette Navigation Buttons
To configure which menu choices you want to show:

1 Click the navigation button labelled User Menu Choices on the configuration
workspace.

A workspace of user menu choices appears.

2 Do one of the following:

• Check the box next to the menu choice to hide it.

• Uncheck the box next to the menu choice to show it.

These user menu choice settings last only as long as your current G2 session. If
you want these settings next time you load G2, you must save the protools
module.

Installing Accelerators

You may find it convenient to use accelerators for certain actions that you use
frequently in G2, such as hiding and showing workspaces, navigating to the
subworkspaces of items, and the like. G2 ProTools makes it easy to define your
own customized set of accelerators, and also provides a small set of built-in
accelerators.

G2 ProTools defines these built-in accelerators:

These built-in accelerators are inactive, by default.

To activate any of these built-in accelerators:

1 Click the Accelerators button on the Configuration workspace.

2 Click the button turn on default accelerators.

You can also turn the accelerators on or off individually, using the menu choices
turn accelerator on and turn accelerator off.

Because accelerators are defined per G2 rather than on a per Telewindow basis, all
Telewindows users must agree on a standard set of accelerators. Also,
accelerators are not active in administrator mode, since they are implemented via
item configurations.

Action Accelerator Shortcut Applicable Class

go to subworkspace Ctrl + any mouse button item

highlight superior
object

Alt + any mouse button kb-workspace

hide workspace Esc(ape) key kb-workspace
13

For more information on defining your own accelerators, see The Accelerator
Object.

Configuring the Control Panel

The final configuration for G2 ProTools enables you to determine whether the
control panel appears when G2 is started. By default, the control panel appears in
the lower left corner of the screen each time G2 is started. If you do not want the
control panel to appear, uncheck the check box on the subworkspace of
navigation button labelled Control Panel on the configuration workspace. Also on
this workspace, there is a button that enables you to start the G2 Profiler
immediately when G2 is started, so you can profile start-up activities.

README

The subworkspace of the README navigation button contains last-minute
information relating to the release, if any. In addition, the workspace contains
instructions and an action button for generating files for the G2 ProTools Reference
Manual. For details on how to generate the online reference manual, see
Generating the Online Reference Manual.

G2 ProTools Palette Objects
This section describes the objects that can be cloned from the G2 ProTools palette,
that appear in the lower half of the palette workspace.

Internal Documentation Messages

G2 ProTools provides message objects that help you document your application
and its development history. Three classes of messages are provided: protools-to-
do, protools-change-message, and protools-comment, along with the extensible
parent class, protools-authored-message.

You use these messages by placing them in your application, nearby a target
object.

For example, if you have made modifications to a method, you might place a
change message on the workspace where the method is located. The messages can
be used freely anywhere in your application, since they can be removed from
your application by deleting the ProTools module, a step usually taken during
package preparation and described in Removing ProTools Permanently.

protocols-to-do

protocols-change-message

protocols-comment
14

G2 ProTools Palette Objects
At any time, you can use Inspect to locate and summarize the information
contained in internal documentation objects. For example, using Inspect, you can
make a table of all to-do reminders with high priority, or changes made by a
particular individual.

These messages are extremely useful in the context of team development. They
provide documentation and development history to anyone involved with code
development or maintenance. To get maximum benefit, it is important that you
establish standards for the use of internal documentation messages. Establishing
use standards ensures that all team members use the messages consistently and
that the information provided is thorough and accurate.

Caution If you use free texts (or borderless free texts) to annotate your application, it will
be difficult to find and categorize your annotations. Furthermore, you will have
difficulty isolating these annotations if you want to remove them during package
preparation.

Creating Internal Documentation Messages

To add one of these messages to your application,

 Clone it from the G2 ProTools palette by clicking the mouse, which creates a
new item, and then clicking again near the application item you wish to
document.

When you place the message on a workspace for the first time, you will be
prompted to create a relation with the nearest object. This relation serves to
associate a message with its subject. If, subsequently, you move the subject object
to a new position or workspace, the associated message will automatically follow.

If you decline to create the relation when the message is first created, you can use
the menu choice link-to-nearest-item to create the relation at any time. Menu
choices are also provided to unlink the message, and to navigate from the
message to the subject item. Also, when an internal documentation message is
created, its author and creation-date attributes are automatically filled out.

To reduce clutter in your application, internal documentation messages have a
useful feature that allows you to hide the full text of a multi-line message, making
it take up less workspace area. To shrink or enlarge a message, use the hide-full-
message and show-full-message menu choices.
15

The following table summarizes the use of each class of internal documentation
message:

For full details of the attributes, methods, relations and menu choices associated
with these classes, see the G2 ProTools Reference Manual.

You may also create new classes of messages to meet your specific needs by
subclassing protools-authored-message.

Message Description

To-do reminders You can use to-do reminders to mark
incomplete places in the application, where
more development work is required. You can
also use these objects to mark places where
bug fixes are required. Attributes for to-do
reminders include the person responsible for
carrying out the work, the priority of the
work, the target software version for which
the work is required, and the target
completion date.

Change message Use the attributes of the change message to
explain the nature of and reason for changes
you make to your application. Change
messages complement G2’s change logging
feature, which records the state of the subject
item before and after the change but not the
reason for the change. Also change logging
alone cannot explain architectural changes to
your application, that might affect more than
one item.

The attributes of a change message include the
reason for the change, the description of the
change, an optional cross reference (perhaps
to a bug report number), and a description of
the possible testing fan-out of the change.
These fields accept any text.

Free-form comment You can use comment messages to add
explanatory text anywhere you deem
appropriate in your application. There are no
attributes in a comment message besides
author and creation date.
16

G2 ProTools Palette Objects
Automatic Documentation Objects and Templates

The G2 ProTools palette includes several objects related to the automatic
documentation facility. Automatic documentation objects include the classes:

These objects are used in preparing your application for the automatic
documentation generator. For information on how to use these objects, see
Automatic Documentation Tools.

The Accelerator Object

The protools-accelerator object represents the definition of an accelerator, a
keyboard and/or mouse gesture that carries out an action. You use instances of
this class to define your own accelerators. G2 ProTools also defines a small
number of built-in accelerators, as described in Installing Accelerators, whose use
is optional.

To define your own accelerator:

1 Clone an accelerator object from the palette and place it on any application
workspace.

2 Specify a native action or the label of a user menu choice that will be activated
by the accelerator in the protools-action-or-menu-choice attribute.

Native actions are those actions you can enter into an item configuration
following “implies”, such as go-to-subworkspace.

Item Class

protools-book

protools-chapter

protools-documentation-details

protools-exclusion-marker

protools-inclusion-marker

protools-documentation-template

protools-sequence-template
17

3 Specify an applicable class in the protools-applicable-class attribute and the
keyboard or mouse gesture that will activate the accelerator in the protools-
keystroke attribute.

To activate the accelerator:

 Choose turn accelerator on from the accelerator menu.

Note Remember, even when the accelerator is on, it is only active when the user mode
is not administrator.

To deactivate the accelerator:

 Choose turn accelerator off from the accelerator menu.

Note that accelerators cannot be defined on a window-by-window basis, so all
Telewindows users share the same accelerators.

The Cross Hair Object

Use the cross hair object to determine the coordinates of any point on a
workspace. Simply clone a cross hair object from the palette, and place it in
anywhere on a workspace. The x and y coordinates are given in workspace units.

The Workspace Header Object

If you name too many workspaces in your application, the Get Workspace menu
becomes cluttered and difficult to use. Therefore, it is good practice to minimize
the number of named workspaces. The workspace header object provides another
way to label a workspace, without requiring that the workspace have a name.

To add a workspace header to a workspace:

1 Clone the header from the palette and place it on any workspace in your
application.

2 Change the text of the header to a suitable label for the workspace.

Like the internal documentation messages, workspace header messages can be
easily located, using Inspect, and removed from the application during package
preparation.
18

User Menu Choices
The Under-Construction Object

The under-construction object has a subworkspace which gives you a place to put
unfinished work, tests, and other items that may not be ready to deliver with your
application. It is also a handy way to find areas of your application that are
incomplete.

Because the definition of this class is contained in the protools module, all under-
construction objects and their subworkspaces are deleted when you delete the
protools module. Thus, when you prepare your application for delivery by
deleting the protools module, all items on the subworkspaces of under-
construction objects are automatically deleted. This gives you a fast, reliable way
to clean up your application prior to deployment.

User Menu Choices
G2 ProTools defines several menu choices that are available on high-level classes
such as kb-workspace or procedure. The following table summarizes these menu
choices:

Menu Choice Function See

format-ws-hierarchy Copies the style of the
workspace to its
subworkspaces

Changing Workspaces to
Uniform Style

enable-references-to-
inactive-items

disable-reference-to-
inactive-items

Enables or disables the
items from referring to
disabled items

Enabling References to
Inactive Items

highlight-superior-item Highlights the item
superior to a workspace

Highlighting the Superior
Item of a Workspace

measure-memory Reports on the memory
required for any item

Measuring the Memory of an
Item

make-permanent Makes an item
permanent

Making an Item Permanent

parse-for-unused-
variables

Checks a procedure for
local variables that have
been declared but not
used

Finding Unused Variables

reformat-procedure Standardizes the
formatting of procedures

Formatting Procedures and
Methods
19

The following sections discuss the menu choices that are not described elsewhere
in this document.

Enabling References to Inactive Items

The enable-references-to-inactive-items and disable-references-to-inactive-items
menu choices provide a quick way to toggle the evaluation attributes of an item to
control whether it can reference inactive items. These menu choices are available
on any item with evaluation attributes, such as rules, procedures, and user menu
choices.

References to inactive items are normally disabled in G2. For example, if you loop
programmatically over all tanks in your application, the loop will ignore tanks
that are disabled or located on inactive workspaces. However, when you enable
references to inactive items, the executable item can “see” items in your
application that have been disabled or are located in an inactive workspace
hierarchy. The tank loop, for example, will include all tanks, regardless of their
activation status.

For more information about this feature of G2, see the G2 Reference Manual.

get-signature Reports on the input and
return arguments of a
procedure

Viewing the Description of a
Procedure

list-attributes Gives a complete list of
the attributes of any item,
with their current values

Listing the Attributes of an
Item

launch-procedure Generates a dialog that
enables you to start a
procedure or method

Quick-Launching Procedures
and Methods

generate-call-tree Creates a call tree rooted
at the selected executable
item

Creating Call Trees

arrange-workspace

undo-arrange-
workspace

Neatly arranges the items
on a workspace

Arranging the Contents of a
Workspace

print-workspace Launches a print dialog
that gives you easy access
to printing

Printing Workspaces

Menu Choice Function See
20

User Menu Choices
Highlighting the Superior Item of a Workspace

The highlight-superior-item menu choice enables you to find the item superior to a
given workspace. When you select this menu choice, the workspace containing
the superior item is shown, with a flashing “bull’s-eye” on the superior item.

This menu choice appears only if the workspace has a superior item.

Measuring the Memory of an Item

The measure-memory menu choice, shown on any item, is a convenient interface
to the G2 system procedure, g2-measure-memory. When you select this menu
choice, the message board displays results of g2-measure-memory for the selected
item. For details on interpreting the results of this procedure, see the G2 System
Procedures Reference Manual.

Making an Item Permanent

The make-permanent menu choice, shown on any item, allows you make an item
permanent. It is a convenient shortcut to executing the expression, make item
permanent.

Listing the Attributes of an Item

The list-attributes menu choice provides a comprehensive list of all the attributes
of an item, and their current values. When you select this menu choice, the
message board displays this list, including all the “virtual attributes” of the item,
such as the workspace position, item-width, and containing-module. Therefore,
the information provided is more comprehensive than showing the item’s table.
21

22

3

Telewindows
Collaboration Tools
Describes features supporting cooperative development.

Introduction 23

Window-Specific Message Board 24

Telewindows Broadcast 25

Introduction
G2 Telewindows allows multiple users to work simultaneously on a single
application hosted by one G2, in a process called cooperative development.
Cooperative development is particularly useful for rapid prototyping and other
activities where multiple developers can work simultaneously without excessive
interference with each other.

G2 ProTools provides two useful tools to support cooperative development:

• The window-specific message board is similar to G2’s built-in message board,
but it is dedicated to a single user. Messages posted on the dedicated message
board do not appear on other windows.

• The Telewindows broadcast facility helps multiple Telewindows users
communicate. This makes it easier to work without the need for constant
phone calls (or shouting) between team members.
23

Window-Specific Message Board

G2’s built-in message board is common to all clients in a multiple-client
environment. This works well for some purposes, particularly, whenever a
message must be posted on all clients. However, in other applications messages
should be designated for specific clients. G2’s built-in message board does not
provide this functionality.

Specifically, during debugging, you will often insert “inform the operator”
statements in procedures, so you can trace the flow of control and print key
variables. During cooperative development, you do not want these messages
appearing on other windows, because they interfere with the activities of other
developers.

G2 ProTools provides a method, protools-inform, which implements a client-
specific “inform the operator”. This method automatically creates a message
board for the target window and displays the desired text on the message board.
Optionally, you can provide a display duration and designate a source item for
the message. Providing a source item enables you to navigate back to the source
of the message, using the go-to-originating-item menu choice.

Note In administrator mode, both the G2 go-to-message-origin and ProTools go-to-
originating-item are visible. The G2 menu choice navigates back to the protools-
inform method. The ProTools go-to-originating-item navigates back to the
originating item specified in the call to protools-inform, if one was specified.

In most respects, you can treat the window-specific message board exactly like
the built-in G2 message board. You can set the maximum number of messages,
the initial width and height of the message board, and the spacing between
messages, using the Message Board Parameters system table.

An example of using protools-inform is given in the ProTools KB:

Protools-Top-Level > Contents > Telewindows Collaboration Tools >
Window-Specific Message Board

See the G2 ProTools Reference Manual for more details on protools-inform.
24

Telewindows Broadcast
Telewindows Broadcast
The Telewindows broadcast facility allows you to notify users who are connected
to the same G2 when you plan to take an action that might affect them, such as
resetting G2. The simplest way to use Telewindows broadcast is by using the
“Ask other users” buttons on the ProTools Control Panel. These buttons
broadcast requests for:

• Resetting G2.

• Saving the knowledge base.

• Pausing G2.

• Restarting G2.

• Entering simulate proprietary mode.

Clicking one of these buttons displays a confirmation dialog on all windows,
including your window, in case you want to change your mind. Other users can
agree to, or cancel, the proposed action by clicking a button on the confirmation
dialog. For more information about using these buttons, see Communicating with
Other Users.

You can also customize Telewindows broadcast by writing your own procedures.
To do this, you use the protools-confirm-action-with-other-users procedure, and
provide your own launching and callback procedures. You may provide a time-
out that will allow the action to take place, if one or more users have not replied
within the time-out period.

For details on using protools-confirm-action-with-other-users, see the G2 ProTools
Reference Manual.
25

26

4

Application
Analysis Tools
Describes facilities for application analysis, including constructing call trees,
finding dead code, and application profiling.

Introduction 27

Creating Call Trees 28

Using the Tree Shaker 32

Finding Unused Variables 33

Using the Profiling Facility 33

Procedure Pause 34

Introduction
G2 ProTools contains a number of tools that help you understand the structure
and performance characteristics of complex applications. These facilities include:

• A call tree facility that displays the relationships between the executable
items in your application, allowing you to see control paths through
procedures, methods, rules, action buttons and user menu choices.

• A tree shaker locates procedures that have no callers, and are therefore
potentially dead code.

• A parser that finds variables in procedures that are declared but not used.
27

• A profiling utility that helps you determine where computation time is spent
in your application.

• A procedure pause facility that suspends computational threads, allowing
you to examine the structure of objects in the midst of procedural processing.

These facilities are described in the following sections.

Creating Call Trees
A call tree is a graph that depicts calling relationships between executable items.
In G2, executable items include:

• Procedures

• Methods

• Rules

• Action buttons

• User menu choices

The ProTools call tree facility generates graphs whose nodes represent these
executable items, and whose connections show call and start actions.

Of the five types of executable items, only procedures and methods can be called
(or started) by other executable items. Therefore, only procedures and methods
can be internal nodes in a call tree, with both input and output connections. Rules,
action buttons, and user menu choices serve as entry points to the call tree, and
only have output connections.

Generating and Extending a Call Tree

To generate a call tree:

 Go to the executable item you wish to trace and select the generate-call-tree
menu choice.
28

Creating Call Trees
A workspace similar to the following appears:

This example indicates that proc1 calls (or starts) proc2, proc3, and proc4. Notice
that the direction of the arrow indicates the calling direction.

Each executable item is represented by a proxy item that you can select to obtain a
menu of further choices. These menu choices are:

Menu Choice Description

go to origin Navigates to the executable item represented
by the selected node

show called procedures Expands a call tree node to show all
procedures called by the selected node

show callers Expands a call tree node to show all
executable items calling the selected node

hide called procedures Hides all the nodes connected at an output of
the selected node

hide node Hides the selected node

get signature Describes the calling arguments of the
selected node (procedures and methods only)

edit procedure Edits the procedure represented by the
selected node (procedures and methods only)
29

You can navigate from any node in the call tree to the original item, using the
go-to-origin menu choice. You can extend the call tree from any visible node,
using the show-called-procedures and show-callers menu choices. As you extend
the call tree, you can graphically arrange the call tree by dragging the nodes to
new positions. If the call tree becomes too cluttered, you can hide branches of the
call tree or individual nodes, using the hide-called-procedures and hide-node
menu choices.

As a convenience, you can view the calling signature of any procedure or method,
using the get-signature menu choice. You can even edit any procedure or method
directly from the call tree, using the edit-procedure menu choice.

Representing Method Calls

When you call a method, G2 determines which specific method to call by looking
at the class of the first argument and the number of arguments, picking the most
specific method that has the proper number of arguments. The process of
choosing a specific method from all methods with a matching name is called run-
time dispatching.

When developing a call tree, the class of the item involved in run-time
dispatching is not precisely known. Consider, for example, the following
procedure:

a-procedure(Obj: class my-object)
begin

call my-method(Obj);
end

Until the procedure is executed, we do not know the exact class of Obj. It may be
the class my-object, or it may be a subclass of my-object. Nonetheless, run-time
dispatch of the call to my-method is constrained by the following considerations:

• Instances of my-method with two or more arguments will not be called.

• If there is an instance of my-method with one argument defined on class
my-object or on a subclass of my-object, it may be called, depending on the
class of Obj.

• If there is an instance of my-method with one argument defined on class
my-object, and there is another instance of my-method defined on a parent
class of my-object, the method defined on the parent class will not be invoked.

• If there is no method defined on the class my-object, but there are methods
defined on both subclasses and superclasses of my-object, then any of the
subclass methods and the most specific superclass method can be called.

ProTools uses these considerations to determine which instances of a method can
be called. However, even with these constraints, it may be impossible to resolve
which method will be called at run time. In this case, ProTools represents the
possible method calls using red connection arrows. A red connection in the call
30

Creating Call Trees
tree indicates that the method at the output end of the connection might be called,
depending on the class of items at run time.

Call Next Method

The call next method statement is special type of method call that invokes another
instance of the current method; specifically, a method of the same name with the
same number of arguments, defined on the most specific superior class of the
current method. Call next method statements do not depend on run-time
dispatch, assuming that the class hierarchy does not change at run time. ProTools
includes the methods invoked by call next method statements with black (normal)
connections.

Qualified-Name Method Calls

Methods can also be invoked by including a specific class name, such as
my-class::my-method. Since this is tantamount to a calling a procedure by name,
there is no run-time dispatch. ProTools includes such qualified-name method
calls, using black (normal) connection arrows.

Other Special Cases

Text-Stripped Procedures

The call tree facility must have access to the text of the executable items to
determine what procedures are called by the item. Therefore, ProTools cannot
develop nodes corresponding to text-stripped items nor find calls that originate
from text-stripped executable items.

Recursive Calls

A recursive call is when a procedure or method calls itself. Recursive calls are
depicted in the call tree as a connection that originates and terminates at the same
node.

Indirectly Called Procedures

In G2, there are several ways to invoke a procedure without mentioning its name
directly. Consider the following examples:

another-procedure()
P: class procedure = the procedure nearest to this procedure;
begin

call P();
end

yet-another-procedure()
S: symbol;
T1: text = text-parameter-1;
T2: text = the callback-suffix of button-2;
31

begin
S = symbol(“[T1]-[T2]”)
call the procedure named by S();

end

In these cases, ProTools cannot determine which procedure is called, since
making this determination would require running the application. ProTools uses
a node labelled determined-at-run-time to represent indirectly invoked procedure
calls.

Comments, Texts, and Inactive Items

ProTools ignores call statements that have been commented out, occur inside text
string, or occur inside inactive items.

Using the Tree Shaker
Over the course of time, in developing a large KB, you may write many
procedures that are not actually used in the finished application. Sometimes, you
might forget to delete old, unused procedures that are no longer required in your
application. To help you find this “dead code,” ProTools provides a facility to
locate unused procedures and methods, called the tree shaker.

The simplest way to use the tree shaker is by invoking the procedure, protools-
report-uncalled-procedures. This procedure analyzes one or more modules at a
time, and posts on the message board a list of procedures that are not explicitly
called by any other procedure, action button, user menu choice, rule, or method in
the application. To get an item list of uncalled procedures, use protools-find-
uncalled-procedures. See the G2 ProTools Reference Manual for details of these
procedures.

When considering methods, if it is possible that a method might be called,
depending on the class of run-time arguments, the method is not included in the
list of uncalled procedures. In other words, if a method would be included in any
call tree, via either a red or black connection, it will not be included in the list of
uncalled procedures.

You should not automatically assume that procedures identified by the tree
shaker are “dead code.” The procedures identified by the tree shaker include all
procedures that are not specifically called by name in the application. However,
some or all these procedures might be called indirectly in statements, such as,
call the procedure named by S, where S is a symbol.

Additionally, since the tree shaker works by parsing the text of executable items,
procedures called by text-stripped items might be included in the tree shaker’s list
of uncalled procedures. Furthermore, procedures that make up the public
interface (API) to a module might not be called in your application, but still might
be required for completeness in other applications of your module. So, before you
delete a procedure, make sure it is genuinely “dead code.”
32

Finding Unused Variables
Caution Be extremely careful before deleting any item located by the tree shaker.
Procedures that are not explicitly called still might be invoked indirectly or called
by a text-stripped procedure.

Finding Unused Variables
This facility helps you clean up the declarations section of procedures and
methods. Specifically, it identifies local variables you have declared, but do not
reference in the body of the procedure.

To find extra declarations in a specific procedure, use the Protools procedure,
protools-find-extra-declarations-in-procedure. This procedure is conveniently
launched through the user menu choice, parse-for-unused-variables, which is
available on any procedure or method. The menu choice posts the list of declared
but unused variables on the message board.

To locate extra declarations in all procedures in a module or application at once,
use the protools-check-module-for-extra-declarations or protools-check-all-
modules-for-extra-declarations procedures. The results are written to the file
named by protools-output-file-name. The easiest way to use these procedures is by
choosing the action buttons located under Protools-Top-Level > Contents >
Application Analysis Tools > Find Unused Variables.

Using the Profiling Facility
The ProTools profiling facility provides a lightweight user interface to G2’s
Profiler. To implement profiling, use the action buttons on the ProTools Controls
workspace, or use the following procedure calls:

When calling protools-generate-profile-report, you can specify a positive cutoff
time as the first argument. If the total profiled time in any executable item is
below this cutoff, it will be excluded from the list of profiled items.

For further discussion of this facility, see Using the Profiling Controls.

To... Call this procedure...

Begin profiling g2-enable-profiling()

Turn off profiling g2-disable-profiling()

Display profiling
results

protools-generate-profile-report
(float, g2-window)

Clear profiling data g2-clear-profile()
33

Procedure Pause
ProTools provides a breakpoint function, protools-pause, that can help you debug
your application. To use this facility, you insert a call to protools-pause at the
desired location in your code. When the procedure is called, the thread is
suspended, and ProTools displays a dialog with a button that allows you to
continue the thread when you are ready to do so. During the pause, you can
inspect the state of objects in your application.

This facility optionally displays an item on the pause dialog. You can use this
feature to gain access to an item or display a value that is locally-defined within
the calling procedure. For example, if you create a transient list in a procedure,
you can use protools-pause to display the list and thus examine its contents
during the execution of the procedure.

The arguments to protools-pause include:

• A text argument, which appears on the pause dialog.

• An item-or-false argument, which represents an optional item to be shown on
the dialog.

• A client argument.

For more information about this procedure, see the G2 ProTools Reference Manual.
34

5

Automatic
Documentation Tools
Describes the facilities for automatically generating documentation for your
application.

Introduction 35

Producing a Reference Manual for Your Application 37

Adding Comments to Your Documentation 40

Understanding Documentation Templates 44

Understanding the Document Generation Process 50

Customizing Your Documentation 52

Introduction
One of the most powerful features of G2 ProTools is its ability to automatically
generate documentation for an application. Using the automatic documentation
facility, you can almost instantly generate a reference manual that is guaranteed
to be accurate and up-to-date.

This system is based on G2’s ability to describe its own knowledge base
components. There are many expressions and procedures to determine, among
other things, the attributes of an item, its methods, its inheritance, and its menu
choices. In addition, by parsing the text of a procedure or method, you can
determine its arguments, return types, and similar information. Imagine putting
all this information into formatted text files, and you get the basic idea of G2
ProTools’ automatic documentation facility.
35

You can generate automatic documentation at several levels. The simplest
approach is to use the pre-defined book and chapter templates to generate a
reference manual for your application. Very little customization or effort is
needed at this level. At a more advanced level, you can modify the existing
templates to change the format of the generated documentation. At this level you
need to understand how G2 ProTools uses templates, but again, only limited
programming is required. Advanced users can use the documentation facility and
define entirely new formats and procedures to generate highly-customized
documentation. This level requires G2 programming skills and, potentially,
substantial investment of time and effort.

The automatic documentation generation tools include:

• Producing a Reference Manual for Your Application shows you how to
generate a basic reference manual for your application, using the built-in
HTML template.

• Adding Comments to Your Documentation shows you how to enrich the
automatically generated documentation by adding comments to your
application.

• Understanding Documentation Templates explains the use and customization
of templates.

• Understanding the Document Generation Process shows you how to use
classes and procedures to generate automatic documentation.

• Customizing Your Documentation discusses how to produce complete
customized documents by using the full power of G2 ProTools.

Automatic HTML

An important aspect of the automatic documentation facility is hypertext markup
language (HTML). HTML is a simple and universal text formatting language that
can be interpreted by almost any Internet browser. By default, G2 ProTools
produces HTML output. This format has the advantage of being readable on any
platform with low-cost or free software. In addition, using this format, you can
create context-sensitive links from your application to the documentation, using
G2 On-Line Documentation (GOLD). For more information, see the G2 OnLine
Documentation Developer’s Guide.
36

Producing a Reference Manual for Your Application
Documentation Tools on the G2 ProTools Palette

When you generate automatic documentation, you work with several items from
the G2 ProTools palette. The following table identifies the relevant items:

Producing a Reference Manual for Your
Application

Note G2 ProTools cannot document non-modular KBs.

To produce a reference manual for your application:

1 Clone a book object from the ProTools palette, and place it on a workspace in
your application.

2 Specify the attributes of the book object.

For best results, you should fill out all unspecified attributes of the book,
without changing default values. At minimum, you must provide the
following information:

Item Class

protools-book

protools-chapter

protools-documentation-details

protools-exclusion-marker

protools-inclusion-marker

protools-documentation-template

protools-sequence-template

Book

Chapter

Details

Exclude

Include
37

Caution Do not attempt to store two or more different reference manuals in the same
directory. The file names will conflict.

3 Choose create chapters from the book menu to generate several protools-
chapter objects, which are placed on the workspace near the book.

If you do not see this menu choice, make sure the protools-chapters attribute
of the book has the empty sequence value, sequence().

4 Choose generate book from the book menu to generate the documentation
files and write them out to the specified directory.

You should now be able to open the documentation files using any browser. For a
description of key files in your documentation, see Using the Online Reference
Manual.

To create another reference manual with different contents, simply clone another
new book and repeat these steps, but be sure to designate a different target
directory.

Customizing Item Selection

When you generate documentation from a given book, ProTools considers only
the items contained in modules you specified in the protools-target-modules
attribute. From this pool of items, when you use the default reference manual
template, ProTools will document all public instances of the following classes:

Required Attribute Name Description

protools-directory The name of a directory to contain the
documentation files. This directory
must exist; if it does not, you must
create it.

protools-title-information,
full-product-name

The full name for your application, for
example, “My G2 Application”

protools-title-information,
product-acronym

A short string with no spaces, an
abbreviation or acronym for your
product, for example, “myapp”

protools-target-modules A list of the modules comprising the
application, as a sequence of symbols.
To specify a single module, enter it as
a sequence of one symbol, for
example, sequence(the symbol
my-module).
38

Producing a Reference Manual for Your Application
• Class definition

• Procedure and method

• User menu choice

• Relation

• Function-definition

Each class appears in a separate chapter of the reference manual, and each
instance appears as a separate HTML file.

The following sections describe how you can tailor the selection process to add or
remove items from the default set of items documented by ProTools.

Adding Specific Items to the Documentation

If you want to add a specific item to the documentation, mark it with a Protools
inclusion marker. Inclusion markers apply hierarchically to the item and all its
subworkspaces, unless overridden at a lower level by an exclusion marker.

To add specific items to the documentation:

1 Clone a inclusion marker from the ProTools palette.

2 With the marker attached to the mouse, click the item you wish to include in
the documentation.

3 When prompted to create an association between the marker and the item,
click OK.

The items that you designate in this fashion appear in the last chapter of the
reference manual, “Miscellaneous Items,” unless they are instances of the classes
documented in earlier chapters.

To reverse the designation, simply delete the marker.

Adding Private Items to the Documentation

By default, ProTools only documents public items. ProTools determines if an item
is public by examining the item’s name (or label, in the case of a user menu
choice). If the name begins with an underscore character, the item is considered
private, and the item is not documented. Otherwise, it is considered public. For
more information on the public-private naming convention, see the G2 User’s
Guide.

ProTools uses the same criterion when documenting the attributes of objects. If
the attribute name begins with an underscore character, by default, the attribute is
not documented.
39

To include all private items in your documentation:

 Set the protools-document-private-items parameter to true, before you
generate the documentation.

To include only selected private items in your documentation:

 Attach inclusion markers to each item.

Suppressing Documentation of Selected Items

If you want to prevent a certain item from appearing in the documentation, mark
the item with a Protools exclusion marker. Exclusion markers apply hierarchically
to the item and all its subworkspaces, unless overridden at a lower level by an
inclusion marker.

To exclude the documentation of specific items:

1 Clone an exclusion marker from the ProTools palette.

2 With the marker attached to the mouse, click the item you wish to exclude in
the documentation.

3 When prompted to create an association between the marker and the item,
click OK.

Adding or Suppressing Attribute Documentation

By default, ProTools documents all user-defined public attributes of class
definitions. If you want to add or remove specific attributes from the
documentation of a class definition, you must use a documentation details object
to specify which attributes you want to add or suppress. See Adding Comments
to Your Documentation for details.

Adding Comments to Your Documentation
The generated documentation includes basic factual information about your
application. This factual information includes the names of classes, the names of
attributes, their type and initial values, the signature of procedures and methods,
and the like. While necessary, the factual information is not always sufficient to
communicate how the items are intended to be used, particularly if item and
attribute names are less than descriptive. This section discusses how to add
comments to your application, so they subsequently appear in your
documentation.

Adding Comments from Procedures and Methods

In G2, you can add comments to procedures and methods by delimiting text in
curly brackets {}. ProTools follows a convention to determine which of your
40

Adding Comments to Your Documentation
comments in procedures and methods should be included in the generated
documentation. This convention is based on the location of the comments within
the procedure or method:

• A comment appearing directly after any calling or return argument in the
argument list is interpreted as the description of the preceding argument, and
included in the documentation.

• A comment appearing directly after the procedure signature is interpreted as
the overall description of the procedure, and included in the documentation.

• All other comments are ignored.

If you plan to generate automatic documentation, it makes sense to create
comments following these conventions, each time you create a public procedure.
This will greatly reduce the amount of effort needed to generate high-quality
documentation, when the application is finished.

Example

Consider the text of the method, protools-inform, which includes five comments:

Comments 1, 2, and 3 describe particular input and return arguments, and are
located inside the calling signature. Comment 4, located after the signature but
before its local declarations, describes the overall purpose of the method.
Comment 5 is located in the body of the code.

123

4

5

41

Here is the resulting documentation page:

Comments 1 - 3 from the procedure signature appear as descriptions of their
respective arguments. Comment 4 appears as the description of the method.
Comment 5 does not appear.

Adding Comments from Function Definitions

The same conventions are followed for function definitions, except that there are
no return arguments in function definitions. Specifically, a comment appearing
directly after an input argument is interpreted as documenting the preceding
input argument. A comment appearing after the argument signature but before
the “=” sign in the function definition is interpreted as the overall description of
the function.

Adding Comments from Class Definitions

In G2, there is only a limited ability to add comments to class definitions. For
example, you cannot add curly-bracket comments to the class-specific-attributes
property of a class definition. To overcome this limitation, ProTools provides a
class of “helper” objects to contain extra information about class definitions and
other non-procedural items. The class is protools-documentation-details,
represented by the details icon on the Protools palette. Although you can add a
documentation details object to any instance of any class, it is particularly useful
for adding information to class definitions.

Comment 1

Comment 2

Comment 3

Comment 4
42

Adding Comments to Your Documentation
To add documentation comments to any class definition in your application:

1 Clone a details object from the ProTools palette.

2 With the object still attached to the mouse, click on the class definition you
want to document.

3 When prompted, associate the documentation details object with the class
definition.

4 Enter a general description of the class in the protools-description attribute of
the details object.

5 In the protools-attribute-description attribute there is a sequence of structures,
one structure for each attribute. The structure has the following subattributes:

• attribute-name (symbol)

• public (T/F)

• allowable-values (text)

• description (text)

Enter a description of the attribute into the description field of each structure.
You may also specify the allowable values of each attribute, or change the
public/private designation of the attribute.

When ProTools documents a class that has an associated details object, it includes
the additional information in the documentation.

If G2 is running and you modify a definition that already has a documentation
details object, for example, by adding, removing, or renaming an attribute, the
documentation details object automatically updates. If you change a definition
while G2 is reset, the documentation details objects do not automatically update.
In that case, you can manually cause a documentation details object to update,
using the update-documentation-details menu choice, which appears on the class
definition associated with the documentation details object.

Adding Comments from Other Items

You can also use a documentation details object to add documentation to other
items, for example, parameters, user menu choices, and instances of your user-
defined classes. Use the same procedure as described previous section to add
information to the documentation details object.
43

Understanding Documentation Templates
This section explains how ProTools produces formatted text descriptions of items
in your application. This information will enable you to customize the format of
documentation pages. This section assumes you are comfortable with the basic
procedures for generating documentation in the default format, including
creating books, chapters, and adding comments and documentation details to
your application.

For each documented item, there are two main steps to produce a documentation
page:

1 Create a G2 structure that summarizes the key information about the target
object.

2 Convert the structure into text using documentation templates.

Creating a Structure

ProTools provides several procedures to create the structure in Step 1. These
include:

• protools-get-procedure-signature

• protools-get-function-signature

• protools-describe-class

• protools-describe-umc

• protools-describe-relation

• protools-describe-instance

Without going into detail, each of these procedures returns a structure that
describes the important properties the target object, from a documentation point
of view. This structure can sometimes be large, depending on the complexity of
44

Understanding Documentation Templates
the target item. For example, protools-get-procedure-signature returns this
information about itself:

structure (
procedure-name: the symbol protools-get-procedure-signature,
description: "This procedure analyzes the header of procedures and
returns a structure containing the name, description, inputs, and
outputs.",
inputs: sequence (

structure (
argument-name: the symbol proc,
type: the symbol procedure,
description: "the procedure to be analyzed"),

structure (
argument-name: the symbol client,
type: the symbol object,
description: "the client for this call")),

outputs: sequence (
structure (

type: the symbol structure,
description: "structure containing details of the calling arguments
of Proc")))

This structure contains all the information that eventually appears on the
documentation page for this procedure. For more details concerning the
procedures that summarize item properties as structures, see the G2 ProTools
Reference Manual.

Converting a Structure

The second step to produce the documentation page is to convert a structure, like
the one above, into a formatted text. To do this, ProTools uses a class of message
items of type documentation-template. A template defines the layout and
appearance of a type of documentation page, or part of a page, omitting the
specific information unique to instances of the page. For example, you might have
a template (or group of templates) defining the appearance of a documentation
page that describes a procedure. The template includes both fixed text, and places
where specific data from the structure describing the procedure are to be inserted.
We sometimes refer to the process of applying specific data to a template as
expanding the template. The main procedure used to expand templates is
protools-expand-template. See the G2 ProTools Reference Manual for more
information about this procedure.

To produce formatted output, templates include formatting symbols that are
specific to a given text-formatting language. Since ProTools’ default file format is
HTML, it’s built-in templates contain HTML formatting commands. The
commands, referred to as tags in HTML parlance, are delimited by angle brackets
< >. For example, a level-1 heading in HTML is delimited by the pair of tags <h1>
and </h1>. Knowledge of HTML formatting, or other formatting languages, is
45

necessary to create your own templates. A description of text formatting
languages is beyond the scope of the current document.

The protools-documentation-template Class

The primary class used to define documentation page formats is protools-
documentation-template. The template consists of bracketed terms, indicating
places for text substitution, and non-bracketed text. When the template is
expanded using the information in a structure, the non-bracketed text is not
changed. Bracketed terms are substituted.

The use of square brackets to indicate substitution arguments is similar to native
G2. G2 supports expressions such as:

inform the operator that “The current time is [the current real time]”.

When evaluated, [the current real time] is substituted with the value of this
expression, resulting in a meaningful text.

In documentation templates, bracketed terms can have four different formats:

The easiest way to understand how these forms are used is through a series of
examples.

Substitution Form Action

[attribute-name] Substitutes the value of the named
attribute.

[attribute-name, format]
where format is title-case, upper-
case, or lower-case

Substitutes the value of the named
attribute, applying the given format.

[template-name] Substitutes the text resulting from
expanding the named template,
using the original data structure.

[attribute-name, template-name] Substitutes the text resulting from
expanding the named template,
using the named attribute of the
original data structure, which must
be a sequence or structure.
46

Understanding Documentation Templates
Example 1

This example illustrates the first two substitution forms, [attribute-name] and
[attribute-name, format].

Example 2

The third substitution form, [template-name], allows you to nest templates.
Suppose template-1 = “[company-name, title-case] was founded in [founding-
year].” This template can be used in another template, by giving its name in
brackets, as follows:

Note that when template-1 is expanded, the data from the original data structure
is used.

Example 3

The last substitution form, [attribute-name, template-name], allows you to expand
attributes of the original data structure that are themselves structures or
sequences. Suppose our data is as follows:

gensym-information-1 =
structure(

company-data:
structure(company-name: “gensym corporation”,
founding-year: 1987),

product-data:
structure(product-name: “G2”, version-number: 7.0))

Data Template Result

structure(company-
name: “gensym
corporation”, founding-
year: 1987)

“[company-name, title-
case] was founded in
[founding-year].”

Gensym
Corporation was
founded in 1987.

Data Template Result

structure(company-
name: “gensym
corporation”, founding-
year: 1987, CEO:
“Lowell Hawkinson”)

[template-1] Its
CEO is [CEO].

Gensym Corporation
was founded in 1987.
Its CEO is Lowell
Hawkinson.
47

Because the two attributes, company-data and product-data, are structures, the
[attribute-name, template-name] form must be used to access their data. To
expand the product data, we define template-2, in addition to the already defined
template-1.

template-2 =
“Its main product is [product-name] Version [version-number]

Template-1 is then used to expand the company data, and template-2 expands the
product-data.

To combine the results, we define another template consisting of two [attribute-
name, template-name] references, as follows:

The protools-sequence-template Class

Sequence templates are a special kind of documentation template used to expand
sequences. You use a sequence template when you want to generate text
repeatedly, for each member of a sequence. The template is applied to each
member of the sequence.

To achieve proper formatting of the sequence, the sequence template also defines
a separator to print between elements of the sequence, and texts that can appear
before and after the sequence. The template also defines an optional text that is
printed if the sequence is empty.

Example

Suppose we define another attribute of the data structure, defining Gensym’s
field offices, as follows:

gensym-information-2 =
structure(

company-data:
structure(company-name: “gensym corporation”, founding-year:
1987),

product-data:
structure(product-name: “G2”, version-number: 7.0),

field-offices:
sequence(

structure(location: “atlanta”),
structure(location:“houston”),
structure(location: “chicago”)))

Data Template Result

gensym-information-1 [company-data,
template-1]
[product-data,
template-2]

Gensym Corporation
was founded in 1987.
Its main product is G2
Version 7.0.
48

Understanding Documentation Templates
To format the field-offices attribute, we must use a sequence template. The
sequence template, template-3, is defined with the following attributes:

Now we can expand gensym-information-2 as follows:

Note that each element of the sequence must be a structure, so that the
substitutions in template-3 work with specific named attributes. The data
structure cannot be given as sequence(“Atlanta”, “Houston”, “Chicago”), because
this would deprive template-3 of a named handle to the location of the offices.

Also note that the phrase “Its field offices are located in:” is included as the initial
text attribute of the sequence template. This allows the text to be conditional on
the existence of elements in the sequence, and assures that it is printed only once,
not repeated for each element of the sequence. Because the protools-text-if-
sequence-is-empty attribute is “” (the empty text), nothing would be printed by
the bracketed term [field-offices, template-3] if the sequence of field offices
contained no elements.

Attribute Value

protools-initial-text “Its field offices are located in:”

protools-separator “,”

protools-final-text “.”

protools-text-if-sequence-is-empty “”

text [location, title-case]

Data Template Result

gensym-information [company-data,
template-1] [product-
data, template-2] [field-
offices, template-3]

Gensym Corporation
was founded in 1987.
Its main product is G2
Version 7.0. Its field
offices are located in:
Atlanta, Houston,
Chicago.
49

Understanding the Document Generation
Process

This section discusses the classes and procedures used in the automatic
documentation generation facility.

The protools-book Class

When you generate documentation for your application, you use an instance of
the class protools-book. This is the central object in the documentation generation
process. The book object gives the basic information needed to generate the book,
including a listing of the chapters of the book, the title information for the book, a
list of target modules, various templates to use for the book, the directory in
which to write the resulting files, and other information. For detailed information
about the protools-book class and its attributes, see the G2 ProTools Reference
Manual.

You clone a book object from the palette as the first step in documenting your
application. See Producing a Reference Manual for Your Application, for
information on how to create default-format documentation for your application.

If you want to customize your documentation, you may change certain default
attributes of the book object, in particular, the default templates. For more
information on customizing your documentation, see Customizing Your
Documentation.

The protools-chapter Class

You use an instance of the class protools-chapters to represent each chapter in
your book. The chapter objects are associated with a book if they are named in the
protools-chapters attribute of the book. The chapter object has attributes
specifying the chapter title, giving a short description of the chapter, and a file
prefix for the output files associated with the chapter.

Each chapter in the book uses one page layout. You cannot combine different
page layouts into one chapter. Generally, this means you will document items of
the same class in one chapter, so they can all share the same page layout. The
chapter object specifies the templates used in this page layout.
50

Understanding the Document Generation Process
In addition, each chapter names three procedures. The procedures and their
functions are:

For more details on the attributes of chapter objects and their attributes, see the
G2 ProTools Reference Manual.

The Document Generation Process

The main procedure for generating documentation is protools-generate-book.
This procedure accepts a book as an argument, and uses the attributes of the book
to generate the documentation files.

To generate documentation:

1 Write out the title page of the book using the title page template specified by
the book and the information given in the title information attribute of
the book.

2 Write out the front matter file, which usually contains copyright information,
disclaimers, trademark disclosures, and the like, using the front matter
template specified by the book and the title information.

3 Generate an index for the book, as follows:

a Iterate though each chapter associated with the book, and calling the
chapter’s collection procedure,

b Associate a file name with each item,

c Sort the list of items alphabetically,

d Print the index using the index templates specified in the book object.

Steps a-c are carried out by protools-generate-index, and step d by protools-
print-index.

4 Generate the bookstb.dat and bookhid.dat files, used only if you use G2 On-
Line Documentation (GOLD) to create context-sensitive help links.

Procedure Function

collection procedure Returns a list of items to be documented
in this chapter.

description procedure Returns a structure describing the item
to be documented.

cross-referencing
procedure

Adds cross-reference tags to the page of
text generated by expanding the
description using the named item
expansion template.
51

5 For each chapter, perform the following steps, using protools-generate-
chapter:

a Write a title page for the chapter, including its table of contents.

b Call the collection procedure for the chapter, which returns a list of items
for the chapter.

c For each item in the chapter, create a documentation page by calling its
description procedure, expanding the resulting structure using the item
expansion template designated by the chapter object, and then adding
cross-references to the resulting text, using the cross-referencing
procedure.

6 Create a book file containing all files appended together.

If you want to customize the documentation, you should review and understand
the procedures involved in the documentation generation process. The text of the
key procedures is provided in the ProTools module.

Customizing Your Documentation
There are several ways to customize the output of the automatic documentation
generator. Before attempting to customize you documentation, it is important to
be familiar with the automatic documentation system. For reference, most of the
source code for the documentation system is available in the ProTools KB.

Adding or Removing Individual Items

You can easily add or remove individual items from the documentation. For
details, see Customizing Item Selection.

Modifying Chapter Attributes

Another simple customization is to change the title or short description of any
chapter.

To modify the title or description of any chapter:

 Edit the protools-chapter-title or protools-chapter-short-description attributes
of your chapter objects.
52

Customizing Your Documentation
Removing Unwanted Chapters

The another simple customization involves removing unwanted chapters from
the default reference manual.

To remove an unwanted chapter:

 Remove the name of the unwanted chapter from the protools-chapters
sequence attribute of the book object.

Translating from English to Another Language

The templates that are provided produce English-language documentation.
However, it is relatively simple to create a set of templates in another language.
Of course, item and attribute names and embedded comments will appear in the
language used inside the application, regardless of the language in the templates.
Translating the templates directly affects the (relatively few) English-language
words that appear in the templates.

To translate the default templates into a non-English language:

1 Clone the entire set of default templates, located under the ProTools palette:

Contents > Automatic Documentation Tools > Reference Manual Template

2 Name each cloned template by extending its original name with the new
language.

For example, when you clone protools-title-page, you should name the new
template protools-title-page-german.

3 Edit each template, and replace each embedded template names with the
corresponding extended names. You can easily identify template names
because they all begin with the prefix protools-.

4 Translate English-language words appearing in the documentation templates.

If you use special character sets, enter them as you normally would in G2
messages or free texts.

5 In your chapter objects, edit the protools-template-name, inserting the
modified template names.
53

6 (Special character sets only). Determine what character encoding you will use
in your browser, and create a text-conversion-style whose external-character-
set attribute is set to the same character encoding.

To create a text-conversion-style:

a Select New Definition > text-conversion-style from the KB Workspace
menu. Give a unique name to the object.

b In the table of the text conversion style object, edit the attribute, external-
character-set, to correspond to the setting of your browser.

7 (Special character sets only). Enter the name of the text conversion style object,
as a text, in the protools-text-converter attribute of your book object.

You can then produce your documentation in the normal manner, and the
generated HTML files will appear in the desired language.

Creating Custom HTML Templates

With relatively minor effort, you can modify the appearance of your HTML
output files. To do this, you create your own documentation templates, and then
refer to your templates in the attributes of the chapter objects.

To create your own HTML templates:

1 Clone the desired template class (protools-documentation-template or
protools-sequence-template) from the ProTools palette, and place it in your
application.

2 Change the text of the template to reflect the desired format, as explained in
Understanding Documentation Templates.

To help you get started, you can copy any of the existing default templates. If
you are directly substituting your own template for one of the default
templates, be sure to refer to the same attribute names in your template.

3 In the corresponding chapter object, change the protools-template-name
attribute to reflect the name of your new template.

When you are ready, you can generate the documentation using your new
templates, using the generate-book menu choice.

Creating a New Chapter

You may find that the default reference manual format does not document certain
items of interest in your application. The “quick fix” for this problem is to mark
the missing items with inclusion markers, as discussed in Adding Specific Items
to the Documentation. The additional items will be documented in the
Miscellaneous Items chapter. However, the generic format of the Miscellaneous
54

Customizing Your Documentation
Items chapter may not be sufficient. In that case, you might want to create a
separate chapter devoted to a certain class of your application items.

Defining a new chapter requires that you are comfortable programming in G2.

To define a new chapter:

1 Define an item collection procedure that will return an item-list containing the
items to be documented in this chapter. You may want to emulate existing
collection procedures, such as protools-collect-class-definitions.

2 Define a description procedure that summarizes the salient properties of the
target object as a single structure. Usually, this involves iterating over the
attributes of the object and placing the value of the attribute into the structure.
For an example of a structure created to describe procedures, see Creating a
Structure. The contents of the returned structure are arbitrary, but there are
several constraints on the form of the structure:

• The structure cannot include items.

• If there are sequences in the structure, the elements of the sequence must
be structures.

3 Create a template, or set of nested templates, for formatting the items in your
chapter. The template you create must be consistent with the structure
generated by your description procedure. For more information on specifying
templates, see Understanding Documentation Templates.

4 Create a new chapter object, and fill in its attributes to reflect the names of
your collection and description procedures, and your primary template.

5 Add the chapter object to the chapters attribute of your book.

6 Generate the documentation, using the generate-book menu choice.

Changing the Output File Format

By default, ProTools produces documentation in hypertext markup language
(HTML). You may want output in another text-formatting language, such as RTF
or Postscript. ProTools does not provide documentation templates for those
file formats.

To change the output file format, you need to replace all HTML tags in the default
templates with non-HTML equivalents. It is unlikely that the replacement will be
a simple one-to-one replacement. A project to create an entirely new set of
templates may require a substantial investment of time, from (at least) several
days, to possibly a week or more.
55

The following steps summarize what you need to do to change the output file
format:

1 For each default template, create a new template in the desired output file
format. Use the same attribute names as in the original template.

2 Where templates refer to each other, be sure to change the names to refer to
the new template set names.

3 In each of your chapter objects, change the protools-template-name attribute
to refer to your new top-level template names.

4 Create procedures that generate the title page, index, and table of contents
(both for each chapter and the overall book) in your output file format.

To do this, you should carefully study the code for protools-generate-book,
and the procedures that it calls, and adapt them as necessary for your output
format. It is likely that the overall flow of control of these procedures can be
preserved, but some details may need to be changed. These details are highly
dependent on the output file format.
56

6

Formatting and
Layout Tools
Describes tools for formatting items and laying out workspaces in your
application.

Introduction 57

Formatting Procedures and Methods 58

Changing Objects to Uniform Size 59

Arranging the Contents of a Workspace 60

Changing Workspaces to Uniform Style 61

Introduction
Whether you are building a large or small application, you are likely to spend a
significant proportion of your time working on formatting and layout. Good
layout and formatting not only makes your application more attractive, but also
easier to understand and navigate. As a result, a well-formatted application may
be easier to maintain and debug.

G2 ProTools provides several tools that help you format your application. These
tools can help you:

• Standardize the format of procedures and methods for the best readability.

• Standardize the size of items, enabling neat and compact workspace layouts.

• Align and distribute objects neatly on a workspace.

• Standardize workspace styles.
57

Formatting Procedures and Methods
These guidelines help you format the text of procedures and methods for
maximum readability and consistency. Although there is not one “right” way to
format a procedure, Gensym does suggest a particular combination of naming,
capitalization, and indentation as a “standard” for G2 procedures and methods.
These instructions follow this standard. For more information on procedure
formatting standards, see the G2 Developer’s Guide.

For the most part, reformatting only affects the “white space” (spaces, tabs, end-
of-lines) in your procedure. G2 ProTools does not alter the text of your procedure.
It does, however, change symbols to upper case.

Caution Reformatting causes the target procedure to recompile, which in rare cases, might
cause items to become incomplete in applications where stability declarations
have been used.

To format an existing procedure:

 Use the reformat-procedure menu choice on any procedure whose status
is OK.
58

Changing Objects to Uniform Size
Here is an example of a (nonsense) procedure before and after reformatting:

To apply procedure reformatting to many procedure at once, you can iterate over
the target procedures, and call the procedure, protools-format-procedure, for each
target procedure.

Changing Objects to Uniform Size
You can change the size of items on a workspace to a uniform size. This is usually
the first step in making a neat, compact arrangement of items on a workspace. For
example, if you have many procedures on a workspace, you might want to reduce
their size so they fit into a smaller space.

In addition to changing the sizes of items, you can also standardize the placement
of name boxes and attribute displays.

Before reformatting After reformatting
59

To standardize the size, attribute displays, and name boxes of items on a
workspace:

1 Create a “standard item” with the desired size and placement of name box
and attribute displays, if any.

2 Transfer the standard item to the target workspace, if it is not already there.

3 Choose change others to match on the standard item.

All other items of the same class as the standard item will change to match the
size and layout of the standard item. This action only affects items on the same
workspace as standard item.

To change all items of a given class to a standard size and layout:

1 Create a “standard item” with the desired size and placement of name box
and attribute displays, if any.

2 Programmatically, do the following:

• Loop over the workspaces in your application, and transfer the standard
item in turn to each workspace, and call the procedure, protools-change-
layout-of-items-to-match.

• When finished with each workspace, transfer the standard item off the
workspace.

You must make the standard object transient during this operation.

Arranging the Contents of a Workspace
You can neatly arrange objects on a workspace. While preserving the general
layout of your workspace, you can also neatly align and evenly distribute
columns and rows of items.

To arrange objects on a workspace:

1 Put items near their desired locations.

2 Choose arrange workspace from the workspace menu.

Because this procedure always strives to preserve the existing general layout of
your workspace, it will not work effectively on workspaces where the
arrangement of items is totally random. Instead, G2 ProTools uses an “intelligent”
approach that tries to determine your intent, by discerning groups of items that
are already nearly aligned, horizontally or vertically, and aligning these items
while equalizing the gaps between the items.

G2 ProTools’ approach, while having certain limitations, has significant
advantages over other similar tools that do not preserve the general layout of
items. For example, typical facilities to arrange folders on a desktop often
60

Changing Workspaces to Uniform Style
arbitrarily rearrange your folders to fit a regularly-spaced rectangular grid. This
generates a neat arrangement, but also tends to destroy nearest-neighbor
relationships. Folders adjacent to each other before arrangement become widely
dispersed after arrangement.

A little experimentation with the arrange-workspace facilities may be required to
optimize your results, but you will save significant time in the long run.

Undoing Arrangement

The arrange-workspace facilities allow you to undo your last arrange command,
on a workspace-by-workspace basis.

To return the items on a workspace to their previous positions,

 Choose undo arrange workspace from the workspace menu.

Changing Workspaces to Uniform Style
You can format a workspace hierarchy, so that all workspaces in the hierarchy
have a uniform color scheme, frame style, and margin width. If you arrange the
workspaces in each module into a single hierarchy per module, you can change
all workspaces in a module to a uniform style with a single menu choice.

To change a workspace hierarchy to a uniform style:

1 Go to the workspace that is at the top of the hierarchy, or at the point in the
hierarchy where you want all subworkspace to have the same format.

2 Change the foreground and background color, frame style, and margin to the
desired settings.

3 Choose format ws hierarchy from the workspace menu to propagate the style
of the workspace recursively to all its subworkspaces.
61

62

7

Shortcuts and
Convenience Tools
Describes facilities for printing, launching procedures, keyboard accelerators,
and more.

Introduction 63

Printing Workspaces 64

Quick-Launching Procedures and Methods 65

Defining and Using Accelerators 67

Viewing the Description of a Procedure 67

Loading External Text Files into G2 68

Introduction
G2 ProTools offers a set of shortcuts and convenience tools designed to speed up
the development process. These tools include the following:

• A print routine that saves you the effort of setting up System Tables each time
you want to print a workspace.

• A procedure launcher that enables you to start a procedure quickly, without
creating an action button.

• Definable keyboard and mouse accelerators that help you rapidly navigate
your application, or perform other action commands.
63

• A procedure viewer that allows you to see the arguments of a procedure or
method, without opening its table.

• A utility for importing text files into G2.

Printing Workspaces
G2 ProTools makes it easier and faster to print workspaces. The normal
procedure for printing a workspace involves several steps; specifically, going to
the Printer Setup System Table, editing its attributes, returning to the workspace
you want to print, and using the print command. G2 ProTools replaces this
process with a lightweight print dialog that makes it easier and faster to select
print options and carry out printing.

To print using G2 ProTools:

1 Choose print workspace from any workspace menu.

The following dialog appears:

2 Specify the name of the printer in the Printer edit box.

3 Specify the name of the server in the Server edit box.

Note The server depends on the configuration of your host system. At some sites,
servers are aliased to have same name as the printer. In other cases, the server
name is the name of the machine hosting the printer.
64

Quick-Launching Procedures and Methods
4 Specify any print options you wish to use.

Clicking the Options button displays additional options, including paper size
and margins. For information on the various printing options, see the G2
Reference Manual.

5 Click the OK button to print the workspace.

Quick-Launching Procedures and Methods
The launch-procedure menu choice, available on any procedure or method,
enables you to start a procedure without having to create an action button. If no
arguments are required, the procedure starts immediately.

If the procedure requires input arguments, this command will generate a
lightweight dialog containing appropriate fields for you to specify the arguments
to the procedure. For example:

The name of the procedure you are launching appears as the title of the dialog, in
this case, protools-find-extra-declarations-in-procedure. This procedure requires
one argument of type procedure, which is the procedure to be analyzed for extra
declarations.

Note The dialog gives the local name and data type for the input argument, and
includes the embedded comment from the procedure that describes this
argument. The dialog also contains the embedded comment from the procedure
that describes the overall purpose of the procedure. For comments to appear in
the dialog, the comments in the procedure must conform to the standard
discussed in Adding Comments to Your Documentation.

Accepting the Defaults

For each field, the launcher proposes a default, when possible. It the procedure
argument is an item, then the nearest item of the required class is selected as the
65

default. If the argument is type g2-window, the default is the current window,
expressed as this window. Clicking the OK button accepts the defaults.

If you need to specify one or more input arguments, click the appropriate edit
field and enter the item name or value.

If you anticipate that you will need to launch the same procedure with the same
arguments again, click the OK, and create action button button. This will start the
procedure and also create an action button nearby the procedure that allows you
to start the procedure with the same arguments again.

Note Since this method depends on parsing the target procedure to determine its
arguments, it cannot be used if the target procedure is text-stripped.

Viewing Return Arguments

In addition to starting the procedure, the procedure launcher allows you to look
at the items or values returned from the procedure, without inserting “inform the
operator” statements into the source code.

If the procedure returns one or more items, and the workspace of the returned
items does not exist, then the items are displayed on a temporary (transient)
workspace; for example:

In this case, protools-find-extra-declarations-in-procedure returned a text-list
containing the list of unused local variables. You can examine the list by
describing its contents or viewing its table in the usual G2 manner. Note that the
output workspace also contains an embedded comment describing the return
argument, extracted from the procedure.

If the procedure returns a value or values, they will be shown on the
Message Board.
66

Defining and Using Accelerators
Defining and Using Accelerators
Some navigation actions are performed so frequently that keyboard and mouse
shortcuts, referred to as accelerators, can be very useful. G2 ProTools accelerators
allow you to quickly define and install accelerators, to use in your G2
development environment.

To define an accelerator:

1 Clone an accelerator object from the G2 ProTools palette and place it on a
workspace in your application.

2 Specify an action or menu choice, applicable class, and a keystroke in the table
of the accelerator.

3 Activate the accelerator by using the turn-accelerator-on menu choice.

To turn off the accelerator, use the turn-accelerator-off menu choice. When an
accelerator is off, it is indicated by a red circle with a diagonal bar over its icon.

For more information about how to specify the attributes of an accelerator, see the
G2 ProTools Reference Manual. For a discussion of default accelerators, see
Installing Accelerators.

Viewing the Description of a Procedure
This G2 ProTools viewer allows you to see a description of any non-text-stripped
procedure or method, without opening the table of the item. Typically, you use
this viewer through its menu choice, get-signature. The output is displayed on the
message board, for example:

The description includes the input argument name, its declared type, and
associated comment, if any. The type and associated comment for output
arguments are also given. If there is a comment describing the overall purpose of
67

the procedure, it is also included. See Adding Comments to Your Documentation
for information on the placement of comments, so they can be accessed by this
facility.

This feature is particularly useful in conjunction with the call tree facility. Using
get-signature menu choice on the call tree nodes, you can look at calling
signatures without navigating to the items represented by the call tree nodes. See
Creating Call Trees for more information about call trees.

Loading External Text Files into G2
The file uploader provides a simple way to load external text files into G2.

To load an external text file into G2:

1 Do one of the following to go to the workspace of the file uploader:

• Follow the path:

Protools-Top-Level > Contents > Shortcuts and Convenience Tools >
File Uploader

• Using Inspect, enter:

go to protools-receiving-box

2 Edit the protools-input-file-name edit box and specify the directory and file
name of the file you want to load.

3 If your file uses a special character set, such as jis, ksc, or unicode, edit the
protools-text-conversion-style object to specify the desired encoding.

For more information about text conversion styles, see the G2 Reference
Manual.

4 Click the read from file button.

The text of your file will be loaded into the receiving box below the button.

Once the text is in the receiving box, you can copy it using standard G2 text
editing commands, or “swipe” the text into an open editor session by dragging
the mouse over the text.
68

Index
 @ A B C D E F G H I J K L M
 # N O P Q R S T U V W X Y Z
A
accelerators

activating
built-in

activating
deactivating
user-defined

creating
attributes

listing

B
book.htm
bookix.htm
booktoc.htm

C
call next method statement

and ProTools call tree
call tree

comments
generating
inactive items
indirectly called procedures
proxy item menu choices

edit procedure
get signature
go to origin
hide called procedures
hide node
show called procedures
show callers

recursive calls
texts

change message
chapter attributes

modifying
class definitions

adding comments
configuring user menu choices
Contents navigation button
control panel
ask other users buttons

using
configuring

control panel navigation button
cooperative development

and G2 ProTools
cross hair object
customer support services

D
dead code

finding
debugging

breakpoint function
defining accelerators
dialogs

launching protools-find-extra-declarations-
in-procedure

documentation objects
protools-book
protools-chapter
protools-documentation-details
protools-documentation-template
protools-exclusion-marker
protools-inclusion-marker
protools-sequence-template

documentation templates
customizing
description
page format

defined by protools-documentation-
template

sequence expansion
defined by protools-sequence-

template

E
enabling references to inactive items
69

F
files

text
loading into G2

formatting a workspace hierarchy
free-form comment

G
G2

loading external text files with ProTools
G2 ProTools

See ProTools
generating ProTools online reference manual

H
hypertext markup language (HTML)

I
inactive items

enabling references to
internal documentation messages

change message
description

creating
enlarging
free-form comment

description
locating
shrinking
to-do-reminders

description
item

listing attributes of
making permanent
measuring memory
superior

highlighting

L
launching methods
launching procedures

accepting defaults
viewing return arguments

launching protools-find-extra-declarations-in-
procedure dialog
70
example of
loading ProTools
loading text files into G2

M
menu choices

See user menu choices
merging ProTools
message board

posting unused variables
viewing procedure description
window-specific

message objects
protools-change-message
protools-comment
protools-to-do

method calls
and ProTools call tree

methods
formatting with ProTools
launching with menu choice
unused

finding
module hierarchy

adding ProTools
removing ProTools

N
newlink "Application Analysis Tools"
newlink "The G2 ProTools Palette"

O
online documentation

customizing
changing output file format
creating new chapter
modifying chapter attributes
removing items
removing unwanted chapters
translating into another language

producing with ProTools

P
printing ProTools online reference manual
printing workspaces

Procedures
procedures

displaying description on message board
formatting with ProTools

example
launching with menu choice
menu choice

get-signature
reformat-procedure

protools-check-all-modules-for-extra-
declarations

protools-check-module-for-extra-
declarations

protools-find-extra-declarations-in-
procedure

protools-generate-book
protools-generate-profile-report
protools-pause
unused

finding
profile report

example
profiling

using control action buttons
ProTools

accelerators
user-defined

adding to module hierarchy
arranging workspace objects
breakpoint function
call tree

proxy item menu choices
configuring
control panel

configuring
description
documentation generator

changing output file format
customizing
description
producing an reference manual
templates

file uploader
finding unused variables
formatting a workspace hierarchy
formatting procedures and methods
loading
making items uniform size
online reference manual

generating
key files
printing
using

printing workspaces
procedure launcher

accepting defaults
viewing return arguments

profiling procedures
removing from module hierarchy
required modules
Telewindows broadcast

customizing
top-level workspace

navigation buttons
palette objects

tree shaker
user menu choices

configuring
window-specific message board

used with Telewindows
ProTools controls

changing user mode
communicating with other users
using profiling controls

protools module
making it required

ProTools objects
accelerator
cross hair
documentation
message
under-construction
workspace header

ProTools.kb

protools-book class
protools-chapter class
protools-documentation-template class
protools-inform method
protools-sequence-template class
protools-top-level workspace

Configuration
Contents
control panel
palette objects

accelerator
cross hair
documentation
internal documentation messages
under construction
workspace header

README
71

Q
qualified-name method calls

and ProTools call tree

R
README navigation button
reference manual

adding comments
customizing item selection
producing with ProTools

T
Telewindows

communicating with other users
cooperative development

Telewindows broadcast
customizing

text-stripped procedures
and ProTools call tree

titlepag.htm

to do reminder
tree shaker

using

U
under-construction object
user menu choices

arrange-workspace
disable-references-to-inactive-items
enable-references-to-inactive-items
format-ws-hierarchy
generate-call-tree
go-to-originating-item
highlight-superior-item
launch-procedure
list-attributes
make-permanent
measure-memory
parse-for-unused-variables
print-workspace
reformat-procedure
turn-accelerator-off
turn-accelerator-on
undo arrange-workspace

user mode
changing with Protools controls
72
using accelerators
using ProTools online reference manual

V
variables

unused
finding

W
workspace

menu choice
arrange-workspace
format-ws-hierarchy
undo arrange-workspace

neatly arrange contents of
undo

printing
superior item

finding
workspace header object

adding to a workspace
workspace hierarchy

uniform style format

	Contents
	Preface
	About this Guide
	Audience
	A Note About the API
	Organization
	Conventions
	Related Documentation
	Customer Support Services

	Overview of G2 ProTools
	Introduction
	Loading G2 ProTools
	Adding ProTools to Your Module Hierarchy
	Removing ProTools from Your Module Hierarchy

	Generating the Online Reference Manual
	Using the Online Reference Manual

	G2 ProTools Palette
	Introduction
	G2 ProTools Palette Navigation Buttons
	Contents
	Control Panel
	Configuration
	README

	G2 ProTools Palette Objects
	Internal Documentation Messages
	Automatic Documentation Objects and Templates
	The Accelerator Object
	The Cross Hair Object
	The Workspace Header Object
	The Under-Construction Object

	User Menu Choices
	Enabling References to Inactive Items
	Highlighting the Superior Item of a Workspace
	Measuring the Memory of an Item
	Making an Item Permanent
	Listing the Attributes of an Item

	Telewindows Collaboration Tools
	Introduction
	Window-Specific Message Board
	Telewindows Broadcast

	Application Analysis Tools
	Introduction
	Creating Call Trees
	Generating and Extending a Call Tree
	Representing Method Calls
	Other Special Cases

	Using the Tree Shaker
	Finding Unused Variables
	Using the Profiling Facility
	Procedure Pause

	Automatic Documentation Tools
	Introduction
	Automatic HTML
	Documentation Tools on the G2 ProTools Palette

	Producing a Reference Manual for Your Application
	Customizing Item Selection

	Adding Comments to Your Documentation
	Adding Comments from Procedures and Methods
	Adding Comments from Function Definitions
	Adding Comments from Class Definitions
	Adding Comments from Other Items

	Understanding Documentation Templates
	Creating a Structure
	Converting a Structure
	The protools-documentation-template Class
	The protools-sequence-template Class

	Understanding the Document Generation Process
	The protools-book Class
	The protools-chapter Class
	The Document Generation Process

	Customizing Your Documentation
	Adding or Removing Individual Items
	Modifying Chapter Attributes
	Removing Unwanted Chapters
	Translating from English to Another Language
	Creating Custom HTML Templates
	Creating a New Chapter
	Changing the Output File Format

	Formatting and Layout Tools
	Introduction
	Formatting Procedures and Methods
	Changing Objects to Uniform Size
	Arranging the Contents of a Workspace
	Undoing Arrangement

	Changing Workspaces to Uniform Style

	Shortcuts and Convenience Tools
	Introduction
	Printing Workspaces
	Quick-Launching Procedures and Methods
	Accepting the Defaults
	Viewing Return Arguments

	Defining and Using Accelerators
	Viewing the Description of a Procedure
	Loading External Text Files into G2

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	T
	U
	V
	W

