
G2 Foundation

Resources
User’s Guide

Version 2015

G2 Foundation Resources User’s Guide, Version 2015

December 2015

The information in this publication is subject to change without notice and does not represent a
commitment by Gensym Corporation.

Although this software has been extensively tested, Gensym cannot guarantee error-free
performance in all applications. Accordingly, use of the software is at the customer’s sole risk.

Copyright (c) 1985-2015 Gensym Corporation

All rights reserved. No part of this document may be reproduced, stored in a retrieval system,
translated, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of Gensym Corporation.

Gensym®, G2®, Optegrity®, and ReThink® are registered trademarks of Gensym Corporation.

NeurOn-Line™, Dynamic Scheduling™ G2 Real-Time Expert System™, G2 ActiveXLink™, G2
BeanBuilder™, G2 CORBALink™, G2 Diagnostic Assistant™, G2 Gateway™, G2 GUIDE™,
G2GL™, G2 JavaLink™, G2 ProTools™, GDA™, GFI™, GSI™, ICP™, Integrity™, and SymCure™
are trademarks of Gensym Corporation.

Telewindows is a trademark or registered trademark of Microsoft Corporation in the United States
and/or other countries. Telewindows is used by Gensym Corporation under license from owner.

This software is based in part on the work of the Independent JPEG Group.

Copyright (c) 1998-2002 Daniel Veillard. All Rights Reserved.

SCOR® is a registered trademark of PRTM.

License for Scintilla and SciTE, Copyright 1998-2003 by Neil Hodgson, All Rights Reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/).

All other products or services mentioned in this document are identified by the trademarks or
service marks of their respective companies or organizations, and Gensym Corporation disclaims
any responsibility for specifying which marks are owned by which companies or organizations.

Gensym Corporation
52 Second Avenue
Burlington, MA 01803 USA
Telephone: (781) 265-7100
Fax: (781) 265-7101 Part Number: DOC021-1200

Contents Summary
Preface xi

Part I What is GFR? 1

Chapter 1 Overview of G2 Foundation Resources 3

Part II Using GFR 11

Chapter 2 Managing Modules 31

Chapter 3 Handling Errors and Communications 53

Chapter 4 Localizing KBs 69

Chapter 5 Managing Palettes 85

Chapter 6 The Universal Unique ID System 97

Chapter 7 Additional GFR Utilities 105

Part III API Procedures and Functions 107

Chapter 8 Application Programmer’s Interface 109

Index 183
iii

iv

Contents
Preface xi

About this Guide xi

Audience xi

Organization xii

A Note About the API xii

Conventions xiii

Related Documentation xiv

Customer Support Services xvii

Part I What is GFR? 1

Chapter 1 Overview of G2 Foundation Resources 3

Introduction 3

Module Management Utilities 4

Communications and Error Handling 5

Localization 5

Palette Management 5

Unique ID Facility 6

Text Parsing and Other Utilities 6

Loading and Running GFR 6

Application Programmer’s Interface 8

Part II Using GFR 11

Chapter 2 Managing Modules 31

Introduction 31

Module Version Control 32
v

Version Information Object Attributes 34
Specifying the Module Version 36
Specifying the Minimum G2 Version 37
Specifying the Oldest Compatible Module Version 37
Getting Version Information 38
Providing an Upgrade Procedure 38

Using Module Startup Objects 39
Attributes of the Startup Object 40
Warmbooting 43
Starting Up When a KB is Not Consistently Modularized 43

Managing User-Settable Parameters for Modules 44
Loading and Activating Module Settings 46
Using GFR’s Module Settings 47

Using Module Management Procedures and Functions 50
Getting Information on the Module Hierarchy 50
Managing Cached Module Information 51
Depositing Items in Other Modules 51

Chapter 3 Handling Errors and Communications 53

Introduction 53

Communication and Error Handlers 56
Handler Precedence 57

Using Communications Objects 58
Using gfr-alert 59
Using gfr-confirm 60

Using GFR’s Error Handling Facility 63
The gfr-error Class 65

Writing Your Own Handlers 66
Using the Call Next Facility 67

Chapter 4 Localizing KBs 69

Introduction 69

Storing Texts in Resource Objects 70
Using Local Text Resources 70
Storing Local Text Resources 75
Using Text Resource Groups 76

Accessing Localized Texts 78

Using Text Substitutions 79

Using Text Proxies 80
vi

Using Localizable Message Classes 81
Example 82

Using Default Languages 84

Chapter 5 Managing Palettes 85

Introduction 85

Standardizing Palette Creation and Management 86

Implementing Palette Behavior for Items 87

Adding Palette Behavior to an Item 89

Understanding How Items are Created from a Palette 91
Cloning the Palette Item 92
Handling Complex Initialization Requirements 92

Configuring Palette Workspaces 93
Special Considerations for Proprietary Palettes 93

Adding Bubble Help to Palette Items 94

Chapter 6 The Universal Unique ID System 97

Introduction 97

Unique ID Format 98

Inheriting Classes with Universal Unique IDs 98

Referencing an Item through its UUID 99

Using the ID Management System 99
Creating ID-Bearing Items Programmatically 100
Using the gfr-initialize Method 101
Using the gfr-copy Method 102
Validating UUIDs 103

Chapter 7 Additional GFR Utilities 105

Introduction 105

File Parsing 105

Item Edge Position Functions 106
vii

Part III API Procedures and Functions 107

Chapter 8 Application Programmer’s Interface 109

Introduction 111
Specifying the Client Object Argument 111

Module Management Utilities 112
gfr-deposit-item-in-public-bin 113
gfr-disable-error-handling 114
gfr-disable-version-checking 115
gfr-enable-error-handling 116
gfr-enable-version-checking 117
gfr-get-active-setting 118
gfr-get-directly-required-modules 119
gfr-get-directly-requiring-modules 120
gfr-get-g2-version 121
gfr-get-handler-hierarchy 123
gfr-get-linearized-module-hierarchy 124
gfr-get-module-of-item 125
gfr-get-public-bin-for-module 126
gfr-get-required-modules 127
gfr-get-requiring-modules 128
gfr-get-supporting-version-information 129
gfr-get-top-level-module 131
gfr-get-version 132
gfr-install-module-settings 134
gfr-invalidate-module-information 135
gfr-startup-module 136
gfr-startup-modules 137

Communications Operations 138
gfr-call-next-communication-handler 139
gfr-call-next-error-handler 140
gfr-dispatch-communication 141

Localization Operations 142
gfr-add-to-local-text-resource 143
gfr-clear-local-text-resource 144
gfr-configure-text-proxy 145
gfr-do-single-text-substitution 146
gfr-evaluate-text-proxy 147
gfr-get-all-unsubstituted-messages 148
gfr-get-local-text-resource 149
gfr-get-unsubstituted-message 151
gfr-language 152
gfr-load-local-text-resource-from-file 153
gfr-localize-message 154
viii

gfr-localize-messages-on-workspace 156
gfr-make-local-text-resource-permanent 157
gfr-modify-message-in-local-text-resource 158
gfr-remove-from-local-text-resource 159
gfr-write-local-text-resource-to-file 160

Procedures Dealing with Palette Management 161
gfr-add-palette-behavior-to-item 162
gfr-create-instance-using-palette-method 163
gfr-item-is-palette-object 164
gfr-remove-palette-behavior-from-item 165
gfr-show-bubble-help 166

Procedures Dealing with Unique IDs 167
gfr-check-uuids-on-cloned-item 168
gfr-universal-unique-id 169

File Parsing and Miscellaneous Functions and Procedures 170
gfr-bottom 171
gfr-convert-value-list-to-string 172
gfr-left 174
gfr-load-file-into-list 175
gfr-parse-string-into-value-list 178
gfr-right 180
gfr-top 181

Index 183
ix

x

Preface
Introduces this document and the conventions that it uses.

About this Guide xi

Audience xi

Organization xii

A Note About the API xii

Conventions xiii

Related Documentation xv

Customer Support Services xvi

About this Guide
This guide contains complete information about G2 Foundation Resources (GFR)
and shows you how to use the module at any supported level. This guide:

• Introduces GFR and describes the functions, classes, and associated
capabilities that it provides.

• Describes the GFR application programmer’s interface (API) and shows you
how to use GFR functions programmatically.

• Lists all GFR API functions in a reference dictionary.

Audience
This guide assumes you are generally familiar with G2 terminology and practices,
but does not require a thorough understanding of G2. If you encounter G2 terms
or concepts that you do not understand, see the G2 Reference Manual.
xi

This guide assumes you have a general familiarity with designing and creating
user interfaces, objects, and text messages. It does not assume an understanding
of user interface internals of any kind.

Organization
This guide contains eight chapters in four parts:

A Note About the API
The GFR API, as described in this guide, is not expected to change significantly in
future releases, but exceptions may occur. A detailed description of any changes
will accompany the GFR release that includes them.

Title Description

Part I What is GFR?

1 Overview of G2
Foundation Resources

Introduces the capabilities of the G2
Foundation Resources module.

Part II Using GFR

2 Managing Modules Discusses how GFR manages KBs that
consist of multiple modules.

3 Handling Errors and
Communications

Describes the model of communications
handling used in GFR.

4 Localizing KBs Describes the localization facilities of GFR.

5 Managing Palettes Discusses how to use the palette creation
utilities provided by GFR.

6 The Universal
Unique ID System

Discusses how GFR generates and
manages universal unique identifiers
(UUIDs).

7 Additional GFR Utilities Discusses file parsing and other GFR
utilities.

Part III API Procedures and Functions

8 Application Programmer’s
Interface

Describes the Application Programmer’s
Interface (API) to the GFR module.
xii

Conventions
Therefore, it is essential that you use GFR exclusively through its API, as
described in this guide. If you bypass the API, you cannot rely on your code to
work in the future, since GFR may change, or in the present, because the code
may not correctly manage the internal operations of GFR.

If GFR does not seem to provide the capabilities that you need, contact Gensym
Customer Support at 1-781-265-7301 (Americas) or +31-71-5682622 (EMEA) for
further information.

Conventions
This guide uses the following typographic conventions and conventions for
defining system procedures.

Typographic

Convention Examples Description

g2-window, g2-window-1,
ws-top-level, sys-mod

User-defined and system-defined
G2 class names, instance names,
workspace names, and
module names

history-keeping-spec, temperature User-defined and system-defined
G2 attribute names

true, 1.234, ok, “Burlington, MA” G2 attribute values and values
specified or viewed through
dialogs

Main Menu > Start

KB Workspace > New Object

create subworkspace

Start Procedure

G2 menu choices and button labels

conclude that the x of y ... Text of G2 procedures, methods,
functions, formulas, and
expressions

new-argument User-specified values in
syntax descriptions

text-string Return values of G2 procedures
and methods in syntax
descriptions
xiii

Note Syntax conventions are fully described in the G2 Reference Manual.

Procedure Signatures

A procedure signature is a complete syntactic summary of a procedure or
method. A procedure signature shows values supplied by the user in italics, and
the value (if any) returned by the procedure underlined. Each value is followed by
its type:

g2-clone-and-transfer-objects
(list: class item-list, to-workspace: class kb-workspace,
delta-x: integer, delta-y: integer)

-> transferred-items: g2-list

Related Documentation

G2 Core Technology

• G2 Bundle Release Notes

• Getting Started with G2 Tutorials

• G2 Reference Manual

File Name, OK, Apply, Cancel,
General, Edit Scroll Area

GUIDE and native dialog fields,
button labels, tabs, and titles

File > Save

Properties

GMS and native menu choices

workspace Glossary terms

c:\Program Files\Gensym\ Windows pathnames

/usr/gensym/g2/kbs UNIX pathnames

spreadsh.kb File names

g2 -kb top.kb Operating system commands

public void main()
gsi_start

Java, C and all other external code

Convention Examples Description
xiv

Related Documentation
• G2 Language Reference Card

• G2 Developer’s Guide

• G2 System Procedures Reference Manual

• G2 System Procedures Reference Card

• G2 Class Reference Manual

• Telewindows User’s Guide

• G2 Gateway Bridge Developer’s Guide

G2 Utilities

• G2 ProTools User’s Guide

• G2 Foundation Resources User’s Guide

• G2 Menu System User’s Guide

• G2 XL Spreadsheet User’s Guide

• G2 Dynamic Displays User’s Guide

• G2 Developer’s Interface User’s Guide

• G2 OnLine Documentation Developer’s Guide

• G2 OnLine Documentation User’s Guide

• G2 GUIDE User’s Guide

• G2 GUIDE/UIL Procedures Reference Manual

G2 Developers’ Utilities

• Business Process Management System Users’ Guide

• Business Rules Management System User’s Guide

• G2 Reporting Engine User’s Guide

• G2 Web User’s Guide

• G2 Event and Data Processing User’s Guide

• G2 Run-Time Library User’s Guide

• G2 Event Manager User’s Guide

• G2 Dialog Utility User’s Guide

• G2 Data Source Manager User’s Guide

• G2 Data Point Manager User’s Guide

• G2 Engineering Unit Conversion User’s Guide
xv

• G2 Error Handling Foundation User’s Guide

• G2 Relation Browser User’s Guide

Bridges and External Systems

• G2 ActiveXLink User’s Guide

• G2 CORBALink User’s Guide

• G2 Database Bridge User’s Guide

• G2-ODBC Bridge Release Notes

• G2-Oracle Bridge Release Notes

• G2-Sybase Bridge Release Notes

• G2 JMail Bridge User’s Guide

• G2 Java Socket Manager User’s Guide

• G2 JMSLink User’s Guide

• G2 OPCLink User’s Guide

• G2 PI Bridge User’s Guide

• G2-SNMP Bridge User’s Guide

• G2 CORBALink User’s Guide

• G2 WebLink User’s Guide

G2 JavaLink

• G2 JavaLink User’s Guide

• G2 DownloadInterfaces User’s Guide

• G2 Bean Builder User’s Guide

G2 Diagnostic Assistant

• GDA User’s Guide

• GDA Reference Manual

• GDA API Reference
xvi

Customer Support Services
Customer Support Services
You can obtain help with this or any Gensym product from Gensym Customer
Support. Help is available online, by telephone, by fax, and by email.

To obtain customer support online:

 Access G2 HelpLink at www.gensym-support.com.

You will be asked to log in to an existing account or create a new account if
necessary. G2 HelpLink allows you to:

• Register your question with Customer Support by creating an Issue.

• Query, link to, and review existing issues.

• Share issues with other users in your group.

• Query for Bugs, Suggestions, and Resolutions.

To obtain customer support by telephone, fax, or email:

 Use the following numbers and addresses:

Americas Europe, Middle-East, Africa (EMEA)

Phone (781) 265-7301 +31-71-5682622

Fax (781) 265-7255 +31-71-5682621

Email service@gensym.com service-ema@gensym.com
xvii

xviii

Part I
What is GFR?
Chapter 1: Overview of G2 Foundation Resources

Introduces the capabilities of the G2 Foundation Resources module.
1

2

1

Overview of G2
Foundation Resources
Introduces the capabilities of the G2 Foundation Resources module.

Introduction 3

Module Management Utilities 4

Communications and Error Handling 5

Localization 5

Palette Management 5

Unique ID Facility 6

Text Parsing and Other Utilities 6

Loading and Running GFR 6

Application Programmer’s Interface 8

Introduction
G2 Foundation Resources (GFR) is a G2 knowledge base (KB) module that
provides tools for implementing multiple-module KBs. By adopting GFR, the
modules and applications you develop will gain several advantages:

• Increased compatibility and consistency with modules written by other
authors.

• Ability to combine different sets of existing modules to form new
applications, without introducing conflicts.
3

• Reduction of the development time required to deploy your applications.

• Increased reliability and quality stemming from the use of well-tested and
supported software, written by experienced G2 developers.

While GFR does not represent a comprehensive solution to all issues in modular
KB development, GFR provides many basic module integration issues and will
continue to expand and address more issues faced by KB designers and
developers. For this reason, Gensym now recommends that all G2 KBs include
GFR, directly or indirectly, as a required module, and that users adopt the GFR
standards into their own development practices.

The main features of GFR include:

• Module management utilities, including version control, coordinated startup
and warmboot, and a way to define user-customizable module settings.

• Communications and error handling.

• Localization utilities.

• Palette management.

• Object identification.

• Text parsing and other miscellaneous utilities.

Module Management Utilities
GFR is a set of related module management utilities that help organize and
coordinate the actions of multiple-module KBs. When you are developing or
using multiple-module KBs, especially during team development, you may find it
difficult to document and enforce version dependencies between modules.

GFR’s utilities determine and validate the version dependencies between
modules, and between the modules and G2.

The version checking system warns the user if an incompatible set of modules is
loaded and also dispatches user-defined upgrade procedures when a new version
of a supporting module is loaded.

When starting a multiple-module KB, initialization activities must occur in a
defined sequence. GFR organizes startup activities so the initialization of modules
is consistent with the module hierarchy. GFR also provides organized startup
when modules are merged into a running G2 and when snapshot files are loaded.

Modules often feature user-customizable settings that control certain aspects of
the module’s behavior or define the resources to be used by the module. In
modular KBs, competitions for the use of these settings may arise, for example,
when two modules attempt to customize the settings of a common required
module. GFR offers a standard approach for defining module settings, the classes
4

Communications and Error Handling
that represent preferences for these settings, and a method of resolving
competitions between modules for these settings, should they occur.

For details, see Managing Modules.

Communications and Error Handling
One of the most important shareable resources in a multiple-module KB is the
user interface. If every module uses the interface as it sees fit, the end result can be
chaotic. The GFR communications and error handling model enables you to “soft-
code” the handling of user communications such as error messages, alerts, and
confirm dialogs, so that the end user can control and customize the user interface
according to his or her unique specifications. As a module developer, if you
structure all user communications according to this model, you will greatly
enhance the flexibility and utility of your module.

For details, see Handling Errors and Communications.

Localization
GFR provides the basic tools for engineering KBs so that the user interface is
easily translated into other languages. While G2 enables you to translate the texts
appearing on its menus, it does not provide a structured approach for translating
free texts and messages used in an application’s user interface.

GFR contains classes for storing and organizing language-specific texts, a simple
application programmers interface (API) to retrieve language-specific text, and
classes of localizable messages. GFR’s text substitution facility enables you to
implement localizable messages that contain substrings whose values are
determined at run time.

For details, see Localizing KBs.

Palette Management
GFR enables you to implement palettes, which are workspaces with click-to-clone
objects. Palettes are a convenient way to create instances of the objects the icon
represents.

GFR palettes optionally provide pop-up “bubble help” that describes the object
currently under the mouse. You can make GFR palettes proprietary to prevent the
end user from making unauthorized changes. GFR palettes also automatically
protect against the user re-depositing the cloned item back onto the palette.

For details, see Managing Palettes.
5

Unique ID Facility
Unique identifiers are often required when items participate in persistent data
structures involving other items. The ID is the mechanism for identifying the
parts of the structure, similar to a persistent pointer. Beginning with Version 5.0,
G2 provided a mixin class, named unique-identifier, which gives each instance of
the class with an identification string. The format of this ID string assures
uniqueness, to a very high level of probability.

Beginning with Version 4.1, GFR provided a similar facility implemented at the
KB level. This facility is separate from G2’s unique identification facility. There
are differences in how and when IDs are assigned, when objects are created, how
objects are initialized, and how they can be used in permanent data structures.

Beginning with Version 6.1, G2 assigns a uuid attribute to every item when the
item is created. In addition, you can generate a UUID, using the g2-make-uuid
system procedure. Therefore, the GFR unique identifier facility is now redundant.

For details, see The Universal Unique ID System.

Text Parsing and Other Utilities
G2 provides basic file management utilities, such as the ability to open and close
files, and to read and write lines of text. When, using these utilities, you read a
file, you are forced to write parsing routines to separate the resulting text string
into its lexical elements.

While GFR does not address this problem directly, it does provide a utility that
converts the contents of a file into a list containing G2 value types (floats, integers,
symbols, texts, and truth-values). Once a file has been converted into a value list,
further text parsing is usually unnecessary.

For details of this and a small set of unrelated utilities provided by GFR, see
Additional GFR Utilities.

Loading and Running GFR
To load and run GFR:

1 Load the file named gfr.kb located in the utils subdirectory in the kbs
directory under the g2 directory.

2 Start G2.

GFR does not operate when G2 is reset or paused.

3 Display the top-level workspace named gfr-top-level.
6

Loading and Running GFR
Here is the GFR top-level workspace:

The main features of the workspace are:

1 Click the copyright symbol to display the module version information. For
details, see Module Version Control.

2 Click this button to display the Application Programmer’s Interface (API)
for GFR.

3 This checkbox activates the menu choices related to palette preparation.
Normally, these menu choices are not shown. Click this checkbox when you
are constructing palettes.

4 This checkbox indicates whether to use native dialogs when viewing dialogs
for communication objects through Telewindows.

5 Click this icon to access the English-language text resource for GFR. If you
want to translate GFR into a language other than English, clone the English-

3

5

6

7

8

9

10

11

12

2

1

4

7

language text resource and translate the English-language text strings of
cloned item. Place the cloned text resource in a module other than GFR. For
details, see Storing Texts in Resource Objects.

6 These icons are palette objects for the language localization facility. The large
icon represents a group of localizable texts and the book icon represents an
individual language resource.

7 Use this object to start up modules. Each module whose startup is managed
by GFR must contain one startup object.

8 Use startup settings to specify the level of user interactions during startup.

9 The communication handler is a subclass of a procedure that enables you to
customize how communications such as alert dialogs are presented to the
user. To add a custom communications handler, clone this object and place it
in your module.

10 The error handler is a subclass of a procedure that enables you to customize
how errors are presented to the user. To add a custom error handler, clone this
object and place it in your module.

11 Use the message board handler setting to override the normal message board
behavior. Clone an instance of this item and place it in the module that wants
to override the normal message board behavior. When you load or merge an
application, GFR registers the message board handler specified in the highest
module in the module hierarchy.

12 The logbook handler icon performs the same role as the message board
handler icon. Assign a custom logbook handler, clone this icon and place the
resulting instance in another module.

Note To clone these objects, select the item you wish to clone with a full mouse click. A
second click transfers the item from the mouse to the desired workspace
destination.

Application Programmer’s Interface
All programmatic interactions with GFR take place through a small set of
specially-designated “public interface” procedures, functions, classes, and
attributes. These items are referred to as the Application Programmer’s Interface
(API) and are described in Part III, API Procedures and Functions.

Because G2 does not have a mechanism to distinguish public and private classes
and attributes, GFR uses a naming convention to help you differentiate the API
from the internals of GFR.
8

Application Programmer’s Interface
The convention is the following statement:

Items and attributes whose names begin with the prefix _gfr- are private. You may not
refer to, alter, or subclass any item or attribute whose name begins with _gfr-.

Caution Using the Inspect Facility, you may be able to navigate to or view private items
and attributes. However, you must never refer to these items programmatically or
edit them manually.

When building your own KBs, Gensym recommends that all users adopt the
naming convention of using a leading underscore to distinguish the internals of a
module. When you follow this convention, users of your module understand
your intentions.

Following this convention also helps you, as a KB designer, to focus on the
interface your module presents to other modules. A well-defined interface allows
you to make improvements and changes to the module, without the risk of
introducing incompatibilities, if you maintain the API unchanged. Without
formal module interfaces, you cannot realize the benefits of modularity.

Only items whose names begin with gfr- are part of the public interface to GFR.

The API to GFR consists of G2 procedures and methods, which you access by
writing your own G2 procedures that call the API procedures. In some cases, you
may create subclasses of GFR classes and write methods on your subclasses. For
more information about G2 procedures, subclassing and methods, refer to the
G2 Reference Manual.
9

10

Part II
Using GFR
Chapter 2: Managing Modules

Discusses how GFR manages KBs that consist of multiple modules.

Chapter 3: Handling Errors and Communications

Describes the model of communications handling used in GFR.

Chapter 4: Localizing KBs

Describes the localization facilities of GFR.

Chapter 5: Managing Palettes

Discusses how to use the palette creation utilities provided by GFR.

Chapter 6: The Universal Unique ID System

Discusses how GFR generates and manages universal unique identifiers (UUIDs).

Chapter 7: Additional GFR Utilities

Discusses file parsing and other GFR utilities.
11

12

2

Managing Modules
Discusses how GFR manages KBs that consist of multiple modules.

Introduction 31

Module Version Control 32

Using Module Startup Objects 39

Managing User-Settable Parameters for Modules 44

Using Module Management Procedures and Functions 50

Introduction
When you create a KB of any significant size, Gensym recommends that you
break the KB into multiple modules to organize your development hierarchically.
Ideally, each module you create has a clearly-defined function, as well as a clean
interface with the user and with other modules.

By creating module hierarchies, you can build modules upon other modules to
achieve sophisticated functionalities. The hierarchy defines the dependencies
between modules. The higher-level modules depend on the modules below, and
those below provide services to higher-level modules.

When a module is operating in a hierarchical environment, you must coordinate
its interaction with the other modules in the hierarchy. The interactions that you
must coordinate include version control, organization of startup activities, and
sharing and allocation of common resources.
31

GFR provides the following tools for managing multiple-module KBs:

• Version control

GFR’s version control system provides a mechanism for determining and
validating the version dependencies between modules, and between the
modules and G2. The version checking system warns the user if an
incompatible set of modules is loaded. It also dispatches user-defined
upgrade procedures when a new version of a module is loaded. For details,
see Module Version Control.

• Startup facility

The GFR startup facility assures that module initialization activities proceed
in an organized fashion from lower-level modules up the hierarchy to higher-
level modules. This facility also provides for organized dispatch to multiple
warmboot procedures following the loading of your KB from a snapshot file.
For details, see Using Module Startup Objects.

• Module setting utility

This utility provides module settings that are analogous to G2 System Tables.
Each module can define user-customizable operational parameters, called
module settings. Its client modules (higher-level modules requiring that
module) can determine these settings. At startup, GFR determines which
module settings should be active and installs those settings in the appropriate
modules. For details, see Managing User-Settable Parameters for Modules.

In addition, GFR includes a set of API procedures that provide information about
the module hierarchy, and a standard technique for storing objects in other
modules. For details see Application Programmer’s Interface.

Module Version Control
GFR provides a standard method for recording version information in a KB, using
objects of the class gfr-version-information-object. The GFR palette’s version
information object is the copyright symbol. GFR actively employs version
information objects to:

• Provide internal documentation.

• Assure consistency between the modules comprising the KB and between
these modules and G2.

• Launch upgrade procedures.

Note Each module dependent on GFR must contain exactly one version information
object.
32

Module Version Control
If a module that requires GFR does not contain a version information object, GFR
automatically creates one and places it in the module’s public bin. Although you
will find a version information object on GFR’s palette, in most cases, you do not
need to clone this icon from the GFR palette because GFR will have automatically
created a version information object. You can retrieve and move this version
information object and manually edit the attributes.

To retrieve a version information object created by GFR:

1 Type the following in Inspect:

show on a workspace every gfr-version-information-object

2 Choose the go to original user menu choice in the appropriate version
information object’s pop-up menu.

The version information object is located on the subworkspace of module_name-
public-bin, where module_name is the name of your module. You can move the
version information object to any other workspace in the same module by using
operate on area.

The icon for the version information object is the copyright symbol (). You can
use the version information object to display copyright information in addition to
the object’s version control function.

Tip If your application has a “nameplate” workspace, Gensym recommends that the
version information object be placed there or in another location easily accessible
to the user.

To retrieve version information for G2 and all loaded modules:

1 Display the pop-up menu for any version information object.

2 Choose the show all versions user menu choice.

The version information for G2 and all loaded modules appears on the Message
Board, for example:
33

Version Information Object Attributes

The following is a list of attributes of the version information object:

Attribute Description

gfr-module-name The name of the module described by this version
information object, which must be the same as the module
containing the object.

Allowable values: Any symbol naming a G2 module

Default value: unspecified

gfr-package-name A text describing the bundling of modules into a package,
for example, GFR is part of the G2 utilities package.

Allowable values: Any text

Default value: ““

gfr-version-
description

A text describing the current version, for example,
“Version 1.0 Rev. 2”.

Allowable values: Any text

Default value: ““

gfr-minimum-g2-
version

A text describing the minimum required version of G2
needed to run this module, for example, “Version 2015
Rev. 0”.

Allowable values: A text in the format returned from g2-get-software-version

Default value: ““
34

Module Version Control
gfr-version-number A release sequence number that represents how the
current version of the module fits into sequence with other
versions of the same module.

Allowable values: A non-negative integer

Default value: 0

gfr-oldest-
compatible-version

The release sequence number of the oldest version of this
module that can support applications developed using the
current version of this module.

Allowable values: A non-negative quantity

Default value: 0

gfr-upgrade-
procedure

The name of the procedure to call to upgrade an
application module developed in an older version of this
module.

Allowable values: The name of an upgrade procedure, or the symbol
unspecified

Default value: unspecified

gfr-copyright-
information

Copyright information for this module.

Allowable values: Any text

Default value: ““

gfr-build-
information

Additional information about the version of this module,
such as the build date.

Allowable values: Any text

Default value: ““

Attribute Description
35

When a version information object is not on a proprietary workspace, you can
manually edit the attributes of the version information object. To prevent
accidental edits, make the workspaces containing your version information
objects proprietary before release.

You must be in administrator mode to carry out manual edits. In any user mode
other than administrator, only the attributes gfr-module-name, gfr-package-name,
gfr-version-description, gfr-minimum-g2-version, and gfr-copyright-information are
visible.

Note You must manually specify the attributes of the version information object before
distributing your module.

Specifying the Module Version

The version information object contains information on the module version:

• gfr-module-name (a symbol) – The name of the module containing the object.

• gfr-package-name (a text) – The name for a collection of modules to which
this module belongs.

• gfr-version-description (a text) – The version description that identifies the
release for the user in the terminology of your choice.

• gfr-version-number (an integer) – The version number that places this release
in sequence with other releases of the same module. “Version 1 Rev. 0” might
be version number 1; “Version 1 Rev. 1” might be version number 2; and
“Version 2 Rev. 0” might be version number 3.

• gfr-copyright-information (a text) – The copyright information for the module.

• gfr-build-information (a text) – Additional information on the module.

Usually, the version numbers increase with each successive release, although in
some cases, the sequencing of releases might be more complex, particularly when
different major versions are simultaneously being supported. For example, you
might release Version 1.1 Rev. 1 sometime after Version 2.0 Rev. 0 to support
customers still using Version 1.1, but you want Version 1.1 Rev. 1 to have a
smaller version number than Version 2.0 Rev. 0.

You may leave gaps in the version number sequence between major versions to
allow for future revisions of older versions. Gaps in the version number sequence
do not affect GFR’s version validation.
36

Module Version Control
Specifying the Minimum G2 Version

By setting the gfr-minimum-g2-version attribute, you are assured of using the
correct version of G2.

To set the minimum G2 version, specify a value for gfr-minimum-g2-version.

If you do not enter the G2 version correctly, GFR may be unable to validate that
the correct version of G2 is being used.

GFR assumes that higher, newer versions than the gfr-minimum-g2-version can be
used. For example, if the minimum version is “Version 6.1 Rev. 0,” then
Version 6.0 Rev. 2 would be acceptable.

GFR also checks the module sys-mod, which is always loaded when GFR is
present. Since sys-mod version numbering matches that of G2, the sys-mod
version must also conform to the minimum G2 version. GFR signals an error at
startup time if you use an invalid version of G2 or sys-mod.

Specifying the Oldest Compatible Module Version

By setting the gfr-oldest-compatible-version-number attribute, you can control the
loading of applications of your module into previous versions of your module.

To specify the oldest compatible module version, specify a value for gfr-oldest-
compatible-version-number.

For example, if the current version of your module is Version 1.1 Rev. 1, and it is
permissible to load an application developed in Version 1.1 Rev. 1 back into
Version 1.1 Rev. 0, then the gfr-oldest-compatible-version-number should be the
version number of Version 1.1 Rev. 0.

The ability to move an application backwards to previous versions of a
supporting module is not often supported, so in many cases the gfr-oldest-
compatible-version-number is the same as the gfr-version-number. GFR signals an
error at startup time if the user tries to “move backwards” to a previous version of
your module that is older than the gfr-oldest-compatible-version-number.

Note In rare special cases, you may need to disable version checking. Disabling allows
the startup to complete regardless of version incompatibilities. To disable version
checking before merging modules into a running G2, call gfr-disable-version-
checking. To turn off version checking for startup, use the startup settings object.
Use this option with caution, since the effects of running incompatible versions
and omitting required upgrades is unpredictable.
37

Getting Version Information

GFR provides a procedure, gfr-get-g2-version, that returns the G2 version
information as a float, indicating the major and minor versions, and an integer,
indicating the revision number. The system procedure g2-get-software-version,
returns this information as a text, which you normally would have to parse to get
information useful to a procedure or rule.

GFR also provides a procedure that returns its own version, gfr-get-version. For
details on these procedures, see File Parsing and Miscellaneous Functions
and Procedures.

Providing an Upgrade Procedure

In general, when you release a new version of your module, users load it with
G2’s “automerge” facility (loading or merging automatically resolving conflicts)
the first time they load their applications with the updated module. Automerge
automatically alters instances in the application module so that they conform to
the current class definitions.

In many cases, nothing further is required to upgrade an application to a new
release of a supporting module. However, when data structures have been
fundamentally redesigned, it may be necessary to take additional steps to convert
old representations to new ones.

Whenever a module developed in an older version of your module is loaded, GFR
automatically calls the procedure named by the attribute gfr-upgrade-procedure.

For example, when an application developed in Version 1.1 Rev. 0 is loaded into a
newer version of your module, say Version 2.0 Rev. 0, the upgrade procedure in
Version 2.0 Rev. 0 is called.

The signature of the upgrade procedure is:

my-upgrade-procedure
(module-to-upgrade: symbol, version-developed-in: integer,
client: class object)
-> save-required: truth-value)

where:

module-to-upgrade: The name of the application module undergoing
the upgrade.

version-developed-in: The version number (not description) of the supporting
module that was used to develop the application module.

Note This number is not the same as the version number of the application module.
It is the version number of your module that was present when the
application module was last loaded.
38

Using Module Startup Objects
client – A g2-window or other object representing the source of this call.

save-required – A truth-value indicating whether changes were made that
require the user to save the application module.

The upgrade procedure you supply may take different actions depending on the
version number associated with the application module. For example, if the
current version of your module is 2.0 Rev. 1, you may not have to take any actions
when loading an application developed in 2.0 Rev. 0, but certain actions might be
required when loading an application developed in Version 1.1, and yet another
set of actions for applications developed in Version 1.0.

Module developers must keep track of the version history of this module and the
upgrade actions required to move between versions. If you cannot successfully
upgrade the application module (perhaps it is too old to be upgraded), then your
upgrade procedure should signal an error.

For more information on upgrades and version checking performed as part of the
startup sequence, see Using Module Startup Objects.

Using Module Startup Objects
GFR startup objects help you initialize modules in the correct order. Lower-level
modules should always start before higher-level modules. To make sure your
module initializes and warmboots in the correct order according to its place in the
module hierarchy, GFR provides an object of the class gfr-startup-object. GFR
startup objects also provide support for warmbooting.

The icon for the startup object appears in the following figure:

Gensym recommends that you coordinate startup activities using GFR startup
objects, rather than initially rules. You cannot assure the correct order of startup
using G2 initially rules, unless the end user carefully adjusts the priorities of the
rules to reflect the module hierarchy and maintains these priorities whenever the
module hierarchy is changed. Adjusting rule priorities is impractical and
infeasible if some of the modules involved are proprietary.
39

GFR uses GFR startup objects in three situations:

• When G2 is initially started.

• When new modules are created or modules are merged into a running G2.

• When a KB that was saved using G2’s snapshot facility is loaded using the
“warmboot afterwards” option.

If you have a startup object in your module, your module does not have to be
concerned with detecting startup, warmboot, or merge events because GFR
detects them for you.

To add a startup object to your module:

 Clone a gfr-startup-object from the GFR palette and place it on any workspace
in your module.

Each module that requires GFR should contain at most one startup object.

Attributes of the Startup Object

The attributes of a gfr-startup-object object are summarized in the following table:

Attribute Description

startup-procedure A symbol naming the startup procedure to be called when
the module containing the object is activated.

Allowable values: Any procedure name

Default value: unspecified

warmboot-
procedure

A symbol naming the procedure to be called when the
module warmboots after loading from a snapshot file.

Allowable values: Any procedure name

Default value: unspecified

module-is-active A read-only attribute that indicates if the module startup
procedure has been run.

Allowable values: true or false

Default value: false
40

Using Module Startup Objects
The startup-procedure attribute names the procedure you want to have called
when G2 is started and when modules are created or merged. The signature for
your startup procedure must be:

my-startup-procedure
(object: class gfr-startup-object, initial-startup: truth-value,
 modules: class symbol-list, client: class object)

where:

object: The startup object that generated the call to the procedure. You can
determine if the module has been previously started by looking at the module-
is-active attribute. After the startup has been run once, GFR sets the module-
is-active attribute to true.

initial-startup: A truth-value indicating whether this is the first startup
managed by GFR after G2 was started.

modules: A symbol list that contains the names of all modules dependent
upon the module that should be started up at the time of the call. This list can
contain the module itself.

client: An object that represents the source of the call.

The startup procedure in your module performs a dual purpose:

• To initialize your module.

• To initialize the modules dependent on your module.

These two activities might be performed together, or separately, depending on
whether the procedure is being called when G2 initially starts, or after modules
are created or merged.

When the module-is-active attribute of the startup object is false, your module
should perform whatever activities it needs to do to get itself running. Typical
startup activities include:

• Making external connections to data sources.

• Starting monitoring procedures that need to be continuously running.

• Presenting welcome screens.

The Modules argument indicates all the dependent modules that should be
started up. This list includes the name of your module if it has not yet been
activated. Your startup procedure should initialize the application objects defined
by your module and found in the modules named in the Modules list. These
activities typically include:

• Setting initial states of application objects.

• Restoring non-permanent data structures associated with application objects.
41

When InitialStartup is true, your module must initialize itself and all objects in
the KB defined by your module. You do not have to check for the module
assignment of the objects you initialize. If InitialStartup is false, your startup
procedure is being called either because a new module was created or because
modules were merged while G2 was running. In this case, you should initialize
only the objects found in modules explicitly given by the Modules list; otherwise,
you may re-initialize an object unnecessarily.

Note You can use the function gfr-get-module-of-item to determine the module
assignment of items.

Note The startup procedure is also called when your module is merged into a running
G2. If GFR is merged at the same time as your module, InitialStart = true. If GFR
was previously loaded, then InitialStart = false and module-is-active = false.
Consequently, your module must start itself and all dependent modules in the
Modules list.

Whenever a G2 is started or modules are merged into a running KB, GFR gathers
a complete list of modules to start. It then performs the following series of startup
actions in the following order:

1 If GFR has not already been started, GFR installs startup, Logbook, and
Message Board settings (see Managing User-Settable Parameters
for Modules).

2 GFR obtains a list of all modules arranged in bottom-up order.

3 For each module in the complete module list, GFR:

a Validates the G2 and sys-mod versions for the specified module, if this
module is in the list of modules to start.

b Validates and upgrades all modules requiring the specified module, if the
requiring modules are in the list of modules to start.

c Installs the specified module’s settings if any active module settings have
changed.

d Calls its startup procedure (if there is one), if this module is in the list of
modules to start.

4 GFR prompts the user to save any modules that required an upgrade.
42

Using Module Startup Objects
Warmbooting

To assure that your module is warmbooted in the correct order, use the
warmboot-procedure attribute. This attribute names the procedure you want to
have called when your KB is loaded from a snapshot file. This procedure should
not be named “warmboot”.

Typically, the warmboot procedure does things like restart procedures that were
running when the snapshot of the KB was taken. The signature of your warmboot
procedure must be:

my-procedure-name
(object: class gfr-startup-object)

where:

object: The startup object that generated the call to the procedure.

When GFR’s warmboot procedure is called, it first calls all other procedures in the
KB named warmboot. Then, it traverses the module hierarchy from the bottom up,
calling the procedures named by the warmboot-procedure attribute of each
startup object.

Caution To use GFR’s warmboot procedure, GFR must be the first module containing a
procedure named warmboot loaded into the KB. Otherwise, G2 does not call
GFR’s warmboot procedure, because G2 only calls the first procedure named
warmboot when a snapshot file is loaded.

Caution Loading or merging a KB using the resolve all conflicts option can result in
automatic deletion of procedures named warmboot, if there are any outside the
module GFR. Because GFR contains a procedure named warmboot, do not name
other procedures warmboot in the KB. Before you merge GFR into an application
for the first time, rename any procedures named warmboot to prevent their
accidental deletion.

Starting Up When a KB is Not Consistently
Modularized

GFR starts up a KB in most circumstances, even if your KB is not consistently
modularized. For example, if modules are present that are not required by the KB,
they are still started up in a consistent order.

However, GFR cannot start up modules that directly or indirectly require other
modules that are not present in the KB. A module that is missing required
modules has the attribute module-is-active = false, and its startup procedure is
not called.
43

Managing User-Settable Parameters
for Modules

Modules often provide user-settable parameters that tailor certain module
behaviors. For example, a module might let the user customize the colors it uses
or provide default file pathnames.

The user-settable parameters of G2 appear in the System Tables, which allow the
user to tailor the behaviors of G2 itself, including the choice of fonts, timing
parameters, drawing parameters, and many more. For modules, there is no built-
in mechanism akin to G2 system tables.

GFR provides a standard approach for modules to manage their user-settable
parameters, which are called module settings. This facility is analogous to G2’s
System Tables for the following reasons:

• A module can have different types of module settings like different types of
System Tables.

• While there may be more than one module setting of a given class present in
the module, exactly one module setting of each class is active at any time.

• The active module settings are determined by the module hierarchy, with
precedence given to higher-level modules.
44

Managing User-Settable Parameters for Modules
The following figures illustrate the analogy between G2 system tables and
module settings.

The module settings figure assumes that module Z is the top-level module, and
module X defines two types of module settings for itself: the module-x-file-
settings and the module-x-color-settings.

One instance of module-x-color-settings exists in each module X, Y and Z, just as
one drawing-parameters system table exists in each module. The module-x-color-
settings instance assigned to the top module (Z) is active.

Instances of Drawing Parameters

Module X

Module Y

Module Z
(active)

G2 System Tables

Module Z
(active)

Module X

Instances of module-X-color-settings

Module Y

Module Settings
45

The following differences exist, however, between the system tables and module
settings:

• While each module comes equipped with a complete set of system tables,
modules do not contain module setting objects unless they are specifically
created and placed there.

• The active system tables are always those in the top-level module. In contrast,
the active module setting of a given type is the one highest in the module
hierarchy, even if it is not in the top-level module.

Loading and Activating Module Settings

When G2 is started or when modules are merged, GFR searches the module
hierarchy for module settings objects and installs them in the modules where they
belong. Thus, when GFR activates the module, its active module settings are
already determined.

GFR determines which module settings to install in a given module by looking at
the subclasses of gfr-module-setting defined in that module. For each setting class
defined in the target module, GFR determines which instance of that class should
be active, using the module hierarchy precedence described in the previous
section.

Caution You should always provide a default instance of every class of module setting
you define, so that it is guaranteed that GFR will find a suitable module setting to
install.

When GFR locates the instance, it calls the method gfr-propagate-module-setting-
information. The purpose of this method is to take the actions necessary to
implement the settings contained in the active setting object. You may, for
example, copy information in the setting object into private data structures within
the target module.

The signature of the gfr-propagate-module-setting-information method is as
follows:

gfr-propagate-module-setting-information
(setting: class gfr-module-setting)

where:

setting: The module setting object that is being activated. Optionally, you can
provide a method of this name for each subclass of gfr-module-setting
you define.
46

Managing User-Settable Parameters for Modules
Note Your code must call the gfr-propagate-module-setting-information whenever the
attributes of the active setting are edited by the user, if these changes are to take
effect immediately. If the active setting changes because the user merges modules,
the new modules settings are automatically installed.

When you want to retrieve the active setting of a particular class of module
setting, use the API procedure gfr-get-active-setting. If you create a new instance
of a module setting that you intend to become the active instance, call gfr-install-
module-settings.

Example

As shown in the previous figure, module X defines the module setting class
module-x-color-settings. Suppose this object has an attribute named highlight-
color, and an internal parameter in module X named active-highlight-color needs
to be set to this color. You write the following method:

gfr-propagate-module-setting-information(Setting: class module-X-color-
settings)

begin
conclude that active-highlight-color = the highlight-color of Setting;

end

To reference the active color setting object at any time, you would include the
following line of code:

Setting = call gfr-get-active-setting(the symbol module-X-color-settings, Win);

Using GFR’s Module Settings

GFR defines three module settings found on GFR’s palette:

• gfr-startup-settings – Allows you to specify the level of messages produced by
GFR during the startup process.

• gfr-message-board-handler-setting – Allows you to specify a custom message
board handler.

• gfr-logbook-handler-setting – Allows you to specify a custom logbook handler.

To use GFR module settings:

 Clone an instance of the desired setting from GFR’s palette and place it in
your module.

If your module is the highest in the module hierarchy that defines the specified
class of settings, GFR installs your settings.
47

Attributes of gfr-startup-settings

The attribute settings for the gfr-startup-settings class are specified in the
following table:

Attribute Description

gfr-confirm-before-
upgrade

A truth-value that enables you to specify whether GFR
prompts the user to confirm or prevent the launch of an
upgrade procedure on a module. False means the user is
not prompted.

Allowable values: true or false

Default value: false

gfr-prompt-for-save-
after-upgrade

A truth-value that enables you to specify whether GFR
prompts the user to confirm or prevent the saving of an
upgraded module after all required upgrade procedures
have been called. False means the user is not prompted.

Allowable values: true or false

Default value: true

gfr-trace-startup A truth-value that enables you to specify that GFR display
trace messages the steps G2 is taking on every startup. The
messages are displayed on the Message Board. False
means that trace messages are not displayed.

Allowable values: true or false

Default value: false
48

Managing User-Settable Parameters for Modules
Attributes of gfr-message-board-handler

The attribute setting for the gfr-message-board-handler class is specified in the
following table:

gfr-error-handling-
enabled

A value of true enables GFR error handling; a value of
false disables it.

Allowable values: true or false

Default value: false

gfr-version-
checking-enabled

A value of true enables GFR version checking; a value of
false disables it.

Allowable values: true or false

Default value: true

Attribute Description

Attribute Description

gfr-message-board-
handler

A symbol naming the message handler procedure to be
called when the module needs to send messages to the
Message Board.

Allowable values: The name of a procedure that takes one text argument and
returns none

Default value: unspecified
49

Attributes of gfr-logbook-handler

The attribute setting for the gfr-logbook-handler class is specified in the following
table:

Using Module Management Procedures
and Functions

GFR provides several procedures and functions for module management. These
procedures and functions allow you to determine the precedence of modules in
the module hierarchy and provide a mechanism for depositing items in another
module.

Getting Information on the Module Hierarchy

Several procedures and functions allow you to determine the module of any item
and the precedence of modules in the module hierarchy:

• To determine the modules that are directly required by a module, use gfr-get-
directly-required-modules.

• To determine all modules that are directly or indirectly required by a module,
use gfr-get-required-modules.

• If you need to know which modules directly require a module, use gfr-get-
directly-requiring-modules.

• If you want to know which modules directly or indirectly require a module,
use gfr-get-requiring-modules.

• To determine the top-level module, use gfr-get-top-level-module.

• To return the module hierarchy flattened into a list, use gfr-get-linearized-
module-hierarchy. The list contains all modules sorted so that if a module X is
required by another module Y, module X always appears after module Y in

Attribute Description

gfr-logbook-
message-handler

A symbol naming the logbook message handling
procedure to be called when the module needs to send
messages to the logbook.

Allowable values: The name of a procedure that takes one text argument and
returns none

Default value: unspecified
50

Using Module Management Procedures and Functions
the list. The linearization follows the same rules as the linearized class
inheritance path for object definitions with multiple inheritance.

• To determine the current module assignment of any item, use gfr-get-module-
of-item.

For more details on these procedures, see Module Management Utilities.

Managing Cached Module Information

Because the module hierarchy is relatively static, GFR stores (caches) data on the
required and requiring modules at startup time in a form that GFR can access
efficiently. When GFR receives a request for information on the module hierarchy,
GFR does not re-analyze the module hierarchy, but instead, returns information
based on its stored data.

GFR automatically updates the cached module information whenever the module
hierarchy is changed.

If you change the module hierarchy programmatically, GFR does not de-cache the
stored module information immediately. GFR de-caches the stored module
information only after a rule (scheduled at priority 6) gets to run.

If you want to immediately access the revised module hierarchy after making a
programmatic change, you must force GFR to de-cache the stored information by
calling the procedure gfr-invalidate-module-information, which causes GFR to
recompile its cached module hierarchy information. If you fail to make such a call,
GFR will return outdated information based on the module hierarchy before it
was changed.

Depositing Items in Other Modules

For a variety of reasons, a module may have to place an item into another module,
on a permanent or transient basis. Although you can programmatically create a
new workspace, assign it to the module, place whatever object needs to be stored
upon it, in time and with enough modules, this practice can lead to a multiplicity
of these “bin” workspaces inside each module.

Instead of having multiple modules independently creating workspaces within a
module, GFR provides for a “public bin” for each module where one is required.
GFR provides this procedure gfr-deposit-item-in-public-bin as a standard method
for placing an item into a module’s public bin.
51

By convention, the bin is the subworkspace of an item of the class gfr-public-bin
named module_name-public-bin. You can retrieve the public bin for a module,
using the procedure named gfr-get-public-bin-for-module. The icon for the public
bin appears in the following figure:

GFR does not automatically make permanent items placed in the public bin. If
you want to make an item permanent, do so after it is placed in the bin. You must
retain some sort of handle to the items you place in the bin, because no procedure
lets you remove an item from the bin. When you want to remove an item from the
bin, you do so directly.

The arrangement of items on the bin workspace is random, not laid out in any
regular pattern. Making an artistic layout in the bin takes considerable
computational time, if the number of items in the bin gets very large.

If you change the name of a module, you must also change the name and module
assignment of the public bin assigned to that module.
52

3

Handling Errors and
Communications
Describes the model of communications handling used in GFR.

Introduction 53

Communication and Error Handlers 56

Using Communications Objects 58

Using GFR’s Error Handling Facility 63

Writing Your Own Handlers 66

Introduction
The user interface is one of the most important shareable resources in a multiple-
module system. In the absence of standards, the user interface of a multiple-
module system can easily become a melange of inconsistent interface styles. One
module might route its messages to the logbook, another might use the Message
Board, another might use scrollable queues, and yet another might use dialogs.

While it might appear that this is a cosmetic problem, more serious design issues
are at stake. For example, a monitoring system for a power plant might display
critical safety parameters in the center of the screen. If a dialog from a supporting
module pops up in the center of the screen, safety could be compromised.

The specific requirements for the end-user interface vary from application to
application. Yet you must often write support modules before these requirements
are known.

GFR introduces a style of communications applicable to a wide range of
communications, including error messages, that allows low-level modules to
53

“soft-code” accesses to the user interface. Using this system, higher-level modules
can override or customize user interface behaviors defined in lower-level
modules.

In GFR, you model user communications as objects whose ultimate
representation in the user interface is controlled by a special class of procedures
called communication handlers. If you want to override how a communication is
presented to the user, you provide your own communication handler and assign
it to a specific type of communication.

Suppose that a procedure needs to communicate to the user a special
circumstance via an alert message. In the simplest and most direct approach, the
procedure creates and manages its own user interface element, in this case by
generating a borderless free text, putting it on a workspace with an action button,
and showing it to the user:

Unfortunately, because the presentation of this communication is hard-coded, the
behavior cannot be modified, except by modifying the source code. Even if you
had access to all the source code, it would be very burdensome to modify every
procedure that made direct reference to the UI.

By contrast, if you structure your communications according to GFR’s design,
users of your module have ultimate control over the style of the communications
your module generates.
54

Introduction
The following figure illustrates GFR’s approach for structuring your
communications:

In the figure, the procedure generating the communication creates an object that
contains all the information required for the communication. In this case, the alert
object is a gfr-alert.

GFR then selects a handler from the set of handlers for alert objects. GFR bases the
selection on the handler’s position in the module hierarchy and the class of
communications it is able to handle. Handlers in higher-level modules take
precedence over handlers in lower-level modules. For more information on how
GFR assigns precedence, see Handler Precedence.

The selected alert handler uses the information in the alert object to present the
information in its own style, for example, posting the alert to a message queue.

The three communication objects, gfr-alert, gfr-ok-cancel-confirm, and gfr-yes-no-
cancel-confirm provide default handlers that display dialogs with various
buttons. You have the option of viewing these dialogs as standard Windows
dialogs when viewed through Telewindows on Windows platforms. To enable
this feature, enable the Use Native Dialogs option on the gft-top-level workspace.

Procedure
generating the
communication

User interface presentation

Alert object

Alert object
55

Communication and Error Handlers
GFR provides a special class of procedure that you use to define custom
communication handlers. The class is called gfr-communications-handler. A
similar class for defining error handlers called gfr-error-handler. The following
figure shows the icons for a gfr-communications-handler and a gfr-error-handler:

In addition to the normal attributes of procedures, the handler classes have the
attribute gfr-applicable-class, which is a symbol naming the class of error or
communication the procedure handles. Initially, this attribute is the symbol
unspecified. You must change this attribute to the name of a class of
communication or error, or GFR will ignore your handler. You can edit handlers
like normal procedures. Each handler must have a unique name.

Note You cannot use normal procedures and methods as communication or error
handlers. You must use a gfr-communications-handler or a gfr-error-handler
procedure.

GFR controls the dispatch of communications to handler procedures through a
procedure named gfr-dispatch-communication. When you create an instance of a
gfr-communication, you send it to a handler by calling gfr-dispatch-
communication. Gfr-dispatch-communication, like every communication handler
you write, takes three arguments:

• The communications object (class gfr-communication)

• An initiating item (item or value)

• The client (class object)

Your communication handler procedure must return a structure, as described in
Using Communications Objects.

Every error handler must take one argument, the error being passed: class error.
Error handlers do not return values.

gfr-communications-handler gfr-error-handler
56

Communication and Error Handlers
Handler Precedence

When you call the gfr-dispatch-communication procedure, GFR selects a handler
according to the following rules:

• The gfr-applicable-class of the selected handler must name the class of the
communication or a superior class of the communication.

• Within a single module, handlers with a more specific applicable class
reference are given precedence over handlers with more general class
references.

• Handlers in higher-level modules are given precedence over handlers in
lower-level modules, even if the class reference is less specific.

The precedence of communication handling is illustrated in the following figure:

In this figure, there are three possible handlers for a gfr-alert, which is a subclass
of gfr-communication. The precedence order is: Handler-1, then Handler-2, then
Handler-3.

Handler-1 is first because it is in a higher level module. Handler-2 is second
because it is a more specific applicable class reference: an alert class. Handler-3 is
third because it is a more general class reference.

Handler-1, even though it refers to the less specific class gfr-communication,
overrides Handler-2 because Handler-1 is in a higher level module. By including
a handler capable of handling all communications in the top module, the author
of the top module has overridden the handling of all gfr-communication objects.

Note The precedence of communication handling also applies to error handlers.

Top module

Bottom module

gfr-applicable-class =
gfr-communication
Handler-1

gfr-applicable-class =
gfr-alert
Handler-2

gfr-applicable-class =
gfr-communication
Handler-3
57

To see the current handler hierarchy for any communications class, select the
menu choice show-handler-hierarchy, which appears on instances of gfr-
communication and it subclasses, error and it subclasses, class definitions that
define communications or errors, and handler procedures. Programmatically, you
can access the same information, using the procedure gfr-get-handler-hierarchy.

GFR provides a facility for handlers that is similar to G2’s call next method. You
can call the next handler in the sequence by calling gfr-call-next-communication-
handler. When you make this call, GFR finds the next-highest handler and calls it.
Calling the next handler is optional. If your handler presents the communication
in the desired manner, you would not need to call the next handler. If the next
handler does not exist, and you attempt to call it, GFR will signal an error.

The call to the next error handler is gfr-call-next-error-handler. This call is also
optional.

Using Communications Objects
GFR provides a small set of communications objects, including a root object,
gfr-communication, and classes for alert and confirm messages, shown in the class
hierarchy below:

When you define or use a gfr-communication object, you must consider return
arguments. For example, a purely informational message to the user will not
return any arguments, but a message that asks the user for permission before
performing an action will return (at least) one true/false argument. All
communication handlers return one argument of type structure to contain the
appropriate returns. Gfr-dispatch-communication returns the structure returned
to it by the highest-precedence handler.

To create your own types of communications:

 Subclass from gfr-communication.

To allow the creation of custom handlers, the subclasses you create and the
attributes of these subclasses should typically be public. There are no other
restrictions on the classes you create. You should document the number and type
of return arguments associated with your class of communications, including the
attribute name for each return argument.
58

Using Communications Objects
Using gfr-alert

To create and specify the text of an alert communication:

1 Create a gfr-alert object, using the G2 create action.

2 Specify the localizable texts that appear as the prompt and button label by
configuring the text proxies of the alert object.

3 Call gfr-dispatch-communication to send the alert to the appropriate handler.

These steps are illustrated in the following code fragment:

create a gfr-alert Alert;
call gfr-configure-text-proxy(the gfr-prompt-text of alert,

the symbol gfr-test-messages, the symbol gfr-test-alert);
Response = call gfr-dispatch-communication(Alert, InitiatingItem, Client);
delete Alert;

Handlers for the gfr-alert class return an empty structure, so in this code
fragment, the returned structure Response contains no attributes.

The default handler for gfr-alert produces a popup dialog that looks like the
following figure:

As soon as GFR posts the popup dialog to the screen, the handler returns control
without waiting for a response. In general, handlers do not delete the
communications objects passed to them, so you must delete the alert object after
the handler returns.

Note The attribute gfr-handler-class exists for compatibility with GFR 4.1 and is not
used in the current version of GFR.
59

The gfr-alert class contains the following attributes:

Using gfr-confirm

Unlike an alert dialog, a confirm dialog returns a value indicating which button
was selected by the user. The thread of processing is suspended until the user
responds or until the confirm times out.

The GFR default handler for gfr-ok-cancel-confirm produces a popup dialog that
looks like the following figure:

Attribute Description

gfr-handler-class (not used)

gfr-prompt-text A text proxy which you configure with the message of the
alert.

Allowable values: A gfr-text-proxy

Default value: A gfr-text-proxy

gfr-button-label A text proxy that you configure with the label of the
acknowledgment button of the alert.

Allowable values: A gfr-ok-text-proxy, which by default has the text resource
group gfr-text-resource, and the message name gfr-ok

Default value: A gfr-ok-text-proxy
60

Using Communications Objects
The default handler for gfr-yes-no-cancel-confirm is similar, but has three buttons:

Handlers for the gfr-confirmation class return a structure with one symbolic
attribute, named confirmation-result, indicating the button that was selected by
the user, or the symbol timeout.

• For a gfr-yes-no-cancel-confirm, the confirmation-result is either the symbol
yes, no, cancel, or timeout.

• For a gfr-ok-cancel-confirm, the confirmation-result is either ok, cancel, or
timeout.

To create and specify the text of a confirm communication:

1 Create a gfr-confirm object, using the G2 create action.

2 Configure the prompt text proxy in the gfr-prompt-text attribute. Optionally,
you can configure the button label text proxies to substitute your own button
labels.

3 Call gfr-dispatch-communication to send the confirm to the appropriate
handler. The call returns a structure.

4 Delete the confirm object.

These steps are illustrated in the following code fragment:

create a gfr-confirm Confirm;
call gfr-configure-text-proxy(the gfr-prompt-text of Confirm,

the symbol gfr-test-messages, the symbol gfr-test-confirm);
Response = call gfr-dispatch-communcation(Confirm, InitiatingItem, Client);
inform the operator that “the response was

[the confirmation-result of Response]”;
delete Confirm;

Handlers for the gfr-confirm class return a structure containing the attribute
confirmation-result, which will contain the value.

Note The attribute gfr-handler-class exists for compatibility with GFR 4.1 and is not
used in the current version of GFR.
61

The gfr-confirm class and its subclasses contain the following attributes:

Attribute Description

gfr-handler-class (not used)

gfr-prompt-text A text proxy that you configure with the prompt text of
the confirm.

Allowable values: A gfr-text-proxy

Default value: A gfr-text-proxy

gfr-confirmation-
timeout

The maximum time that the handler is to wait for the user
to confirm the message, before returning the symbol
timeout.

Allowable values: Any positive float, if the timeout is to be used; if the
timeout is to be ignored, zero or any negative float.

Default value: 0.0

gfr-cancel-button-
label

A text proxy that you configure with the label of the cancel
button of the confirm.

Allowable values: A gfr-cancel-text-proxy, which by default has the text
resource group gfr-text-resource, and the message name
gfr-cancel

Default value: A gfr-cancel-text-proxy

gfr-ok-button-label
(for gfr-ok-cancel-
confirm)

A text proxy that you configure with the label of the OK
button of the confirm.

Allowable values: A gfr-ok-text-proxy, which by default has the text resource
group gfr-text-resource, and the message name gfr-ok

Default value: A gfr-ok-text-proxy
62

Using GFR’s Error Handling Facility
Using GFR’s Error Handling Facility
GFR provides a method of handling errors that is similar to the communications
handling model. Using GFR’s error handling facility, you can define handlers for
different classes of errors. This gives you added flexibility in the way errors are
presented to the end user, and allows the end user to override default error
handling defined in low-level modules.

In G2, errors can occur in two ways:

• G2 will generate an error when it is asked to do an illegal operation, such as
referencing the value of an uninitialized variable, or referencing an object that
does not exist. When G2 detects that an illegal operation has been attempted,
it signals an error of the class g2-error or g2-rpc-error.

• The user can raise an error using the signal statement. Signal statements are
typically used when an application detects condition that prevents normal
processing. When you signal an error, you can signal a symbol and text
argument, or signal the error object that is an instance of any subclass of error.
If you signal a symbol and text, G2 will transparently perform a conversion
into an error object of class default-error, if error handling code is written in an
object-oriented form.

By default, GFR’s error handling facility is off. If you want to use the facility, place
an instance of a gfr-startup-settings in your module, and change the attribute gfr-
error-handling-enable to true. This will take effect when you next start G2. To

gfr-yes-button-label
(for gfr-yes-no-
cancel-confirm)

A text proxy that you configure with the label of the yes
button of the alert.

Allowable values: A gfr-yes-text-proxy, which by default has the text
resource group gfr-text-resource, and the message name
gfr-yes

Default value: A gfr-yes-text-proxy

gfr-no-button-label
(for gfr-yes-no-
cancel-confirm)

A text proxy that you configure with the label of the no
button of the confirm.

Allowable values: A gfr-no-text-proxy, which by default has the text resource
group gfr-text-resource, and the message name gfr-no

Default value: A gfr-no-text-proxy

Attribute Description
63

activate GFR’s error handling without restarting G2, use the API procedure gfr-
enable-error-handling.

When the error handling facility is active, all errors that are not otherwise caught
by on-error statements are dispatched by GFR. If an appropriate error handler is
found, GFR calls that error handler. If there is no appropriate error handler, GFR
routes the error to the logbook. GFR determines the precedence of error handlers,
using the same rules as for communication handlers, namely:

• Within a single module, handlers with a more specific applicable class
reference are given precedence over handlers with more general class
references.

• Handlers in higher-level modules are given precedence over handlers in
lower-level modules, even if the class reference is less specific.

When GFR looks for error handlers, only procedures that are instances of the class
gfr-error-handler are considered. The gfr-applicable-class attribute of the handler
determines what errors can be sent to the handler. A handler with the applicable
class error can handle any error; one with the applicable class g2-rpc-error will
only handle errors produced in remote procedure calls, etc.

In the error handling facility, there is no procedure analogous to gfr-dispatch-
communication. When the error handling facility is active, all signalled errors that
are not caught by on-error statements are automatically dispatched to handlers.

Caution When GFR error handling is active, and an error occurs for which there is no
appropriate handler, the error message on the operator logbook does not support
the “go to referenced item” menu choice normally associated with logbook
messages.
64

Using GFR’s Error Handling Facility
The gfr-error Class

GFR provides a class of error, gfr-error, that provides language localization, using
GFR’s localization facility. The gfr-error class has the following attributes:

When your application signals a error that you want GFR to localize, you create a
gfr-error, and set the attributes gfr-text-resource and gfr-message-name. GFR will
fill in the localized text before the error reaches any handler (or the logbook, if no
handler for the error is found). Because errors are not normally associated with
particular G2 clients, the language used in the localization is G2’s default
language, as defined in the current-language of the language-parameters system
table.

The following code fragment illustrates how to signal an error, using the gfr-error
class:

create a gfr-error Error;
conclude that the gfr-text-resource of Error = the symbol my-resource;
conclude that the gfr-message-name of Error = the symbol

my-error-message;
signal Error;

Attribute Description

gfr-text-resource The name of a text resource group where the text of the
error message is defined.

Allowable values: A symbol naming a gfr-text-resource-group.

Default value: unspecified

gfr-message-name The symbolic key for the message associated with the
error.

Allowable values: Any symbolic key defined by the text resource group.

Default value: unspecified

gfr-localized-text The localized text for this error.

Allowable values: Not user specified (filled in by GFR)

Default value: ““
65

Writing Your Own Handlers
The purpose of the GFR communications handling model is to enable you, or
users of your module, to override default handling of error and messages. To
modify default methods of error or communications handling, you write override
handlers.

To create a communication handler:

1 Clone a gfr-communications-handler from the GFR palette and place it in your
module.

2 Set the gfr-applicable-class to the name of the class of communication that it is
going to handle.

3 Edit the procedure, giving it a unique name and the following signature:

my-communication-handler(communication: class gfr-communication,
initiating-item: item or value, client: class object) = (structure)

For example, you can create an override handler that send alerts to the
Message Board.

To send alerts to the Message Board, instead of displaying a popup dialog:

 Create a gfr-communication-handler named my-alert-handler with the
following text:

my-alert-handler(Alert: class gfr-alert, InitiatingItem: item or value,
Client: class object) = (structure)

MessageText: text;
Response: structure = structure();
begin

MessageText = call gfr-evaluate-text-proxy(the gfr-prompt-text of
Alert, gfr-language(Client), Client);

inform the operator that "[MessageText]";
return Response;

end

Note that it is necessary to return an empty structure from your alert handler. All
communication handlers must return a structure, even if they do not add
attributes in the structure.

To create an error handler:

1 Clone a gfr-error-handler from the GFR palette and place it in your module.

2 Set the gfr-applicable-class to the name of the class of error that it is going to
handle.

3 Edit the procedure, giving it a unique name, and the following signature:

my-error-handler(Error: class error)
66

Writing Your Own Handlers
For example, you can create a handler that sends g2-errors to the Message Board.

To send g2-errors to the Message Board, instead of the logbook:

 Create a gfr-error-handler named my-error-handler with the following text:

my-error-handler(Error: class g2-error);
begin

inform the operator that "[the text of the error-description of Error]";

end

Note There are no return arguments from an error handler.

Using the Call Next Facility

GFR’s call next facility gives you a way to add new behaviors to existing
communication and error handlers, with a minimum of re-implementation.

Suppose, for example, you want to write all alert messages to a log file, using a
procedure named write-to-log-file, and then use the default popup alert. In this
case, you create a handler that calls the logging function, and then uses gfr-call-
next-communication-handler to generate the popup alert, as follows:

log-and-alert-handler(Alert: class gfr-alert, InitiatingItem: class item,
Client: class object) = (structure)

MessageText: text
Response: structure;
begin

MessageText = call gfr-evaluate-text-proxy(the gfr-prompt-text of
Alert, gfr-language(Client), Client);

call write-to-log-file(MessageText);
Response = call gfr-call-next-communication-handler(Alert,

InitiatingItem, Client);
return Response;

end

For communications that define return attributes, such as gfr-confirm, the call to
gfr-call-next-communication-handler returns a structure containing one or more
attributes. The handler you write must return a structure whose attributes are
consistent with the class of communication that is handled.
67

For example, suppose you want to add an audible beep if a confirm dialog times
out before the user responds. Your handler would look like this:

confirm-with-timeout-signal(Confirm: class gfr-confirm,
InitiatingItem: class item, Client: class object) = (structure)

Response: structure;
begin

Response = call gfr-call-next-communication-handler(Confirm,
InitiatingItem, Client);

if the confirmation-result of Response = the symbol TIMEOUT and
Client is a g2-window then call g2-beep(Client);

return Response;

end

For error handling, the procedure to call the next handler is named gfr-call-next-
error-handler. The argument to this procedure is the error object, and there are no
return arguments.

For example, if you want to log all G2 error messages to a file, before allowing the
next error handler to post the error, you would write the following override
handler, where write-to-log-file is a procedure you provide:

log-then-pass-error(Error: class g2-error)
begin

call write-to-log-file(the text of the error-description of Error);
call gfr-call-next-error-handler(Error);

end
68

4

Localizing KBs
Describes the localization facilities of GFR.

Introduction 69

Storing Texts in Resource Objects 70

Accessing Localized Texts 78

Using Text Substitutions 79

Using Text Proxies 80

Using Localizable Message Classes 81

Using Default Languages 84

Introduction
The translation of texts in an application is called localization. User interface is a
critical part of most applications, and text is an essential part of most user
interfaces. Most of your KB modules have text components in the form of menus,
dialogs, error messages, labels on workspaces, and the like. If you want the user-
visible texts in your KB to be easily translatable into other languages, you must
prepare your KB as described in this chapter.

To build localizable KBs, do not type text strings directly into the KB. Instead,
everywhere you use text, include a “symbolic key” in its place. At runtime, GFR
uses these keys, together with the client’s language, to look up a language-specific
text.
69

The language of the client is a property of the g2-window where the
communication is taking place. GFR stores the language in the attribute of the
window called g2-window-specific-language. For more information about g2-
window objects, refer to the G2 Reference Manual.

Storing Texts in Resource Objects
To contain and group the text strings in your KB, use two types of GFR objects:

• Local text resources

• Text resource groups

Using Local Text Resources

GFR stores the language-specific texts in objects of the class gfr-local-text-
resource. A local text resource object looks like the following figure:

A local text resource contains symbol-text pairs that associate a symbolic key with
a text in a certain language. Although the data structure used to store the symbol-
text pairs is private, you can think of the contents of a local text resource object as
a table with two columns and any number of rows:

To create a gfr-local-text-resource:

 Clone it from the palette workspace gfr-top-level, or create it, using the
standard G2 create action, in a procedure, rule, or action button.

Key Text Value

ALERT-MSG-1 “A sample alert message”

ALERT-MSG-2 “Delete this [1]?”

... ...

... ...
70

Storing Texts in Resource Objects
A gfr-local-text-resource has the following attributes:

Attribute Description

gfr-language The language of the texts stored in the resource.

Allowable values: Any symbol

Default value: The symbol english

gfr-resource-group The name of the gfr-text-resource-group that is associated
with this object.

Allowable values: The name of any gfr-text-resource-group

Default value: The symbol unspecified

gfr-version A text giving version information about the object.

Allowable values: Any text

Default value: The current version of GFR

gfr-file-location An optional text string giving a file name where the
resource can be saved to or loaded from.

Allowable values: Any text which names a valid file location on your file
system

Default value: " " (the empty string)

gfr-preload-
resource

A flag indicating whether a file containing the symbol-text
pairs is to be loaded at G2 startup, if the resource is not
permanently stored in G2.

Allowable values: true or false

Default value: false
71

Entering Symbol-Text Pairs into a Local Text Resource

The three ways to enter symbol-text pairs into a local text resource are:

• Create an external text file using any text editor, and then load it into the text
resource object.

• Load the G2 XL spreadsheet module, which is provided with G2, and edit the
text resource from inside G2.

• Programmatically add symbol-text pairs using the GFR API procedure, gfr-
add-to-local-text-resource.

The first two options are explained in the following sections. For a description of
the programmatic option, see Localization Operations.

Using an External Text Editor to Edit a Local Text Resource

GFR supports editing of local text resources outside of G2. This design enables
someone who does not know G2 to translate your KB into a new language, using
any word processor or text editor. Then, you can load the translation into G2 with
almost no effort.

To prepare a new local text resource

 Create a text file.

The first three lines of the text file must contain the following, with each item on a
separate line:

• The resource group name, as a symbol.

• A line of version information which may help you identify the file, as a
quoted text.

• The language, as a symbol.

Starting on the fourth line of the file, type the symbol-text pairs, separated by a
comma, one pair per line. Enclose the texts following the symbol keys in double
quotation marks.

Note Do not type carriage returns in the body of the texts.

For example, the text file could look like this:

MY-ALERT-TEXTS
“Version 2015"
ENGLISH
ALERT-MSG-1, "A sample alert message"
ALERT-MSG-2, "Delete this [1]?"

For clarity, symbols are in capital letters, but this is not necessary.
72

Storing Texts in Resource Objects
If you have embedded quotation marks in any texts, use two sets of double
quotation marks. For example, if the text to be loaded is abc "def" geh, represent
this in the file as "abc ""def"" geh".

You can use any special or foreign characters that are part of the Gensym
character set, as described in G2 Reference Manual. For example, the following text
file is for English and includes a newline character, the copyright symbol, and an
accented character for the word “café:”

MY-ALERT-TEXTS
“Version 2015”
ENGLISH
ALERT-MSG-1, “The first line.@LThe second line.”
ALERT-MSG-2, “Copyright ~| 2015”
ALERT-MSG-3, “Caf~e”

To load the file contents into a local text resource object:

1 Start G2 and clone a local text resource from the palette workspace named
gfr-top-level.

2 Edit the table of the local text resource object:

a Change the gfr-file-location attribute to the path of the file you want to
load.

b Change the gfr-resource-group attribute to the resource group named in
the file (MY-ALERT-TEXTS, in the example).

3 On the menu for the object, choose load text resource. This will load the data
from your file, replacing whatever was previously stored.

Note The menu choices for loading and saving the resource to a file only appear when
the gfr-file-location attribute is specified.

Using the G2 XL Spreadsheet to Edit a Local Text Resource

The G2 utility G2 XL Spreadsheet provides a convenient way to edit local text
resources from within G2. GXL is located in the file named gxl.kb in the utils
subdirectory in the kbs directory under the g2 directory.

To use a spreadsheet to edit a local text resources:

1 Merge the module gxl into your KB.

2 Get the workspace named gxl-top-level and click the check box labelled
array and list editing on this workspace.

When you select array and list editing, G2 adds a new menu choice,
edit resource to the menu of local text resource objects.
73

3 Choose edit resource to see the following spreadsheet workspace (the
numbered callouts are referenced in the following procedures):

To enter the first key-text pair:

1 Click on the cell labelled (1) and type the desired symbolic key and press
Return when you are finished.

2 Click on the cell labelled (2) and type the text. Do not use enclosing quotation
marks when entering texts in the spreadsheet.

To enter special characters:

 Use keystroke commands, as described in the G2 Reference Manual.

For example, to enter a carriage return, type Ctrl + j.

To add a second key-text pair.

1 Click on the cell labelled (3) to select the first row of the spreadsheet.

2 Click the add row below selection button (second from the left on the toolbar)
to add an empty row below the first row.

3 Repeat this process to add as many key-text pairs as you like.

When you exceed five rows, a vertical scroll bar appears on the right side of the
spreadsheet to allow you to access rows not shown on the spreadsheet.

You can also delete a row by selecting the row and choosing the delete button
(third button from the left on the toolbar).

Add row button

Delete row button

(1) (2)(3)
74

Storing Texts in Resource Objects
When you are finished entering data, click the OK button. This will save the
values you have entered into the local text resource. If you do not want to save
your edits, click Cancel.

For information on sorting, cutting, pasting and other spreadsheet functions, see
the G2 XL Spreadsheet User’s Guide.

When you are finished editing resources, you can delete the spreadsheet module.

To delete the spreadsheet module:

 Choose Main Menu > Miscellany > delete module > gxl.

Choose the All option to also delete all workspaces in the module.

Storing Local Text Resources

You have several options on how G2 stores key-text pairs in a local text resource.
The options are:

• Store the values permanently in the KB.

• Store the values permanently in a file and load them each time G2 is started.

• Store the values permanently in a file and load them only on demand.

Storing Local Text Resources in a KB

If you store the values permanently in a KB, you have the convenience of not
having to manage auxiliary files, because all information is stored in G2.
However, there is a certain memory penalty for storing the information in G2 on a
permanent basis. The penalty is roughly about 200 bytes per key-text pair,
although this depends on the length of the texts.

To store the information in a local text resource as a permanent part of a KB:

 Choose make resource permanent from the menu of the resource or call
gfr-make-local-text-resource-permanent.

For more details, see Application Programmer’s Interface.

Loading a Local Text Resources File at Startup

If you choose to load local text resources at G2 startup, the memory requirement
is reduced to about 100 bytes per key-text pair, depending on the length of the
texts. However, starting up G2 is slower because the file is loaded when G2 is
started. Also, you must make sure that the path to the file named in gfr-file-
location is always valid.

To load local text resources at G2 startup:

 Specify the file name in the gfr-file-location attribute and set the gfr-preload-
resource attribute to true.
75

Loading a Local Text Resources on Demand

If you choose to load the resource only on demand, you save 100% of the memory
for the local text resources that are not used during a G2 session. If you are
supporting several languages, and only one is currently in use, then this option
saves you from loading unused languages. However, the first time any resource is
demanded, CPU time is allocated to loading the file.

To load local text resources on demand:

 Specify the file location and set gfr-preload-resource to false.

Using Text Resource Groups

Each local text resource is associated with exactly one gfr-resource-group, which
serves to link resources in different languages. All local text resources associated
with a resource group contain the same keys but different languages, as shown in
the following figure:

Within a KB, you can have as many resource groups as you like. Usually, each
module supplies its own resource group or groups.

To create a text resource group:

 Clone it from the palette workspace gfr-top-level, or create it, using the
standard G2 create action, in a procedure, rule, or action button.

Gensym recommends that, within a module, you divide texts according to their
purpose and have multiple resource groups, rather than putting all the texts in
one resource group. This both improves access time and makes it easier to
organize your texts. For example, you might make a resource group for error
messages, another for dialog labels, and another for texts appearing on menus.

gfr-text-resource-group
76

Storing Texts in Resource Objects
Caution You must not have more than one local text resource with the same language in a
given resource group.

The attributes of a text resource group are as follows:

For a description of the use of default languages, see Using Default Languages.

Attribute Description

gfr-version A text giving version information about the object.

Allowable values: Any text

Default value: The current version of GFR

gfr-default-language Indicates which language to use when the requested
language is not supported or unspecified, or if the key is
not found in the requested language.

Allowable values: Any symbol

Default value: The symbol english

gfr-use-default-
language

A flag indicating whether the default language is to be
used.

Allowable values: true or false

Default value: true
77

Accessing Localized Texts
At run time, use the key, the resource group, and the window-specific language to
retrieve a localized text. The following figure shows the flow of information:

Typically, you do not interact directly with local text resources when retrieving
localized texts. Instead, you interact with the resource group, and the resource
group locates the appropriate local resource and retrieves the text corresponding
to the given key.

The following line of code shows how you would access a localized text in the
English language, corresponding to the example above:

LocalText = call gfr-localize-message(my-alert-texts, the symbol alert-msg-1,
gfr-language(Win), Win);

In this example, Win is the window where the call originates, and the text is to be
rendered in the language of that window. The function gfr-language retrieves the
window-specific language. This function returns the current default language
when the window-specific language is unspecified.

For more information on gfr-localize-message and gfr-language, see Application
Programmer’s Interface.

Language (e.g., English)

g2-window

“A sample alert message”

ALERT-MSG-1
(key)
78

Using Text Substitutions
Using Text Substitutions
GFR provides for text substitutions within localized texts. Text substitution
increases the flexibility of the text facility. You can substitute text when the text
you want to display contains run-time information, such as the value of a
variable, the name of an item, and so on.

GFR uses bracketed integers, such as [1], [2], [3], to indicate where substitutions
should be made within a local text. For example, in ALERT-MSG-2, “Delete this
[1]?”, you can substitute the [1] with the class of the item being deleted, as
follows:

LocalText = call gfr-localize-message(my-alert-texts, the symbol alert-msg-2,
gfr-language(Win), the class of Foo, Win);

If the class of Foo is tank-with-one-input, then LocalText will have the value
“Delete this tank-with-one-input?”, assuming the language of the window is
English.

Tip You can use the localization facility to “pretty print” or localize class or attribute
names. For example, you could provide a local language version or a more
readable English text representation for tank-with-one-input before substituting it
into the alert message.

You can have as many as 10 different substitutions within a single message, and a
given substitution can repeat more than once. Substitutions can be any value
(text, symbol, quantity, or truth-value).

You use the procedure gfr-localize-message to generate the localized text,
regardless of the number of substitutions. After the third argument to gfr-localize-
message, you can type the substitution arguments as given. For example, the call
to gfr-localize-message with three substitution arguments would have the form:

LocalText = call gfr-localize-message(group-name, key, language,
substitution-1, substitution-2, substitution-3, window);

Note GFR does not signal errors if you provide too few or too many substitution
arguments. Substitutions that are possible are made, and the remainder are
ignored.
79

Using Text Proxies
In addition to providing access to texts, GFR provides:

• Object classes – To embed a localizable text into an object.

• Message classes – To display localizable messages on a workspace.

The object classes are called text proxies. You use a text proxy when an object has
an attribute in which you would normally put a text, if you were not concerned
about localization. Instead of hard-coding the text, you introduce the text proxy as
subobject. GFR evaluates the text proxy at run-time to yield a localized text.

There are two classes of text proxy, gfr-simple-text-proxy and gfr-text-proxy,
whose attributes are given below:

Attribute Description

gfr-text-resource-
group

Names the resource group that contains the key-text pair
needed to evaluate this text proxy.

Allowable values: The name of any gfr-text-resource-group

Default value: The symbol g2

gfr-message-name The key used to retrieve the message from the resource
group.

Allowable values: Any symbol

Default value: The symbol english

gfr-substitutions
(gfr-text-proxy only)

A list containing values to be substituted into the text.

Allowable values: Any values

Default value: none (an empty list)
80

Using Localizable Message Classes
For example, suppose you have a class of buttons with an attribute called label,
containing the text used in the label of the button. To make the button localizable,
instead of putting the text of the label directly in the attribute, define the label
attribute to be an instance of a gfr-simple-text-proxy.

The text proxy names the resource group and gives the message name that
provides the button label. At run time, you make the following call to get the
localized text of the button, Button:

Label = call gfr-evaluate-text-proxy(the label of Button, gfr-language(Win), Win);

Typically, you would make this call just before the button is displayed on a
window, when the language of the window is known.

Note Although text proxies provide a convenient interface, they introduce the memory
overhead of an additional object. If memory is a concern, you may want to add
two symbolic attributes to the object, one naming the resource group and the
other giving the key, instead of using a text proxy.

The class gfr-simple-text-proxy does not support substitution arguments. If you
want to use substitutions in an embedded object, you use the class gfr-text-proxy,
and insert the substitutions into the list gfr-substitutions, which is an attribute of
this class.

GFR provides the API procedure gfr-configure-text-proxy as a convenient way to
set up a text proxy before it is evaluated. For a simple text proxy, the call to gfr-
configure-text-proxy sets up the resource group and message name. For a gfr-text-
proxy, the same call sets up the resource group, message name, and the
substitutions. See Application Programmer’s Interface for details.

Using Localizable Message Classes
GFR provides two classes of localizable messages that you can use where you
want visible text on a workspace. The classes are gfr-localizable-message and gfr-
81

simple-localizable-message. The following table summarizes the attributes of
these classes:

Example

This is an example of how to use localizable messages. On the workspace shown
in the following figure, you see three localizable messages with different
horizontal invariants. In each case, the vertical invariant is center. The border
color of messages, normally transparent, has been set to black to see more easily.

Attribute Description

gfr-id An identifier of the message.

Allowable values: Any text

Default value: " "(the empty string)

gfr-horizontal-
position-invariant

The horizontal position of the message that is maintained
if the width of the message changes when it is rendered in
a specific language.

Allowable values: One of the following symbols: left, right or center

Default value: The symbol center

gfr-vertical-invariant The vertical position of the message that is maintained if
the height of the message changes when it is rendered in a
specific language.

Allowable values: One of the following symbols: top, bottom or center

Default value: The symbol center

gfr-text-proxy A text proxy used to produce the text of the message.

Allowable values: An instance of a gfr-text-proxy (for a gfr-localizable-
message) or a gfr-simple-text-proxy (for a gfr-simple-
localizable-message)

Default value: An instance of a gfr-text-proxy (for a gfr-localizable-
message) or a gfr-simple-text-proxy (for a gfr-simple-
localizable-message)
82

Using Localizable Message Classes
For the purposes of this example, the text proxies of the messages have been
configured to use one of the messages in gfr-test-messages, on the examples
workspace in GFR.

The workspace initially has three empty messages, as shown in the following
figure:

If the language of the window is English, and we make the following call. The
results appear in the following figure:

call gfr-localize-messages-on-workspace(ws1, gfr-language(Win), Win);

Hint The default font size of GFR’s localized message classes is large. To set the font
size and magnification of a message to another value, use the G2 system
procedure g2-set-font-of-text-box.

To translate the messages, change the language of the window to French and
repeat the gfr-localize-messages-on-workspace call. The results appear in the
following figure:

Tip If you support window-by-window localization in your application, design your
application so that user interface workspaces containing text are never
simultaneously shown on more than one window. This is not necessary if every
window connected to a given G2 is in the same language.
83

Using Default Languages
When the window-specific language of the g2-window passed to the function gfr-
language is not specified, GFR uses G2’s language parameters system table as its
global default language.

To set the global default language:

 Edit the current-language attribute of the language parameters system table.

You can also specify a default language for each gfr-text-resource-group by setting
the attribute gfr-default-language. You use this language when no local text
resource exists for the language requested in a call to gfr-localize-message. If the
local text resource for the default language is not found, an empty string
is returned.

You can also prevent the use of a default language by setting gfr-use-default-
language of a resource group to false. If you do not use a default language, the
empty string is returned if the local text resource for the requested language is
not found.
84

5

Managing Palettes
Discusses how to use the palette creation utilities provided by GFR.

Introduction 85

Standardizing Palette Creation and Management 86

Implementing Palette Behavior for Items 87

Adding Palette Behavior to an Item 89

Understanding How Items are Created from a Palette 91

Configuring Palette Workspaces 93

Adding Bubble Help to Palette Items 94

Introduction
Palettes are a common user interface device in G2 applications. A palette is a
workspace from which users can clone items to use in a KB they are developing.

As a method of creating instances, palettes have several advantages over the
New Object command on the KB Workspace menu:

• Objects on palettes can be initialized in any way required by the application.

When you use the New Object menu, the object you obtain might not be
initialized properly. For example, an object created in this manner cannot
have a subworkspace.
85

• Palettes immediately present the objects that the user is meant to see.

Use of the New Object menu could require complex navigation through many
menu levels to find the desired class. The names of the classes that must be
traversed might be unfamiliar to the user. Additionally, navigation through
the class hierarchy might require traversal of private classes, which should be
hidden from the end user.

• Palettes allow users to identify visually the object they want to create, even if
they cannot remember the class name.

Users recognize classes by their icons more easily than by their class name.

Because of these advantages, palettes have become a standard way to present
items to the user, and they are found in many KB modules.

Standardizing Palette Creation and
Management

You have several reasons to standardize on a single palette creation and
management system, aside from the basic inefficiency of having different
software development groups building and maintaining their own palette
management systems. Some of the reasons for adopting a standard include:

• It is not as straightforward as it seems to create a good palette management
system.

Although the item configuration selecting any X implies clone implements a
basic click-to-clone behavior, you cannot use this configuration statement on
proprietary workspaces.

• When you create a palette using item configurations, no clean way exists to
prevent the user from transferring the cloned item back to the palette,
intentionally or accidentally.

Many palette systems involve whenever any item is moved rules to handle
this contingency, but such rules impose an efficiency drag on the entire KB
because they trigger on all item moves, not just the moves to palette
workspaces.

• To enhance usability, a single standard set of mouse gestures should exist for
cloning items from palettes.
86

Implementing Palette Behavior for Items
GFR provides a standard, easy-to-use system for creating palettes. Because it is
based on mouse tracking rather than item configurations, it improves upon most
existing G2 palette systems in several ways:

• You can make GFR’s palettes proprietary to prevent a user from altering
the palette.

• The GFR palette system does not require the user to write complex item
configuration statements.

• There are no whenever rules dealing with object movement in the GFR palette
system, which might interfere with the efficiency of the KB.

• You can disable items on GFR palettes to make them invisible to rules and
procedures within G2, so they do not interfere with the functioning of “real”
items in your KB.

• GFR provides optional bubble help on palette items.

Implementing Palette Behavior for Items
Although palettes seem like a special type of workspace, GFR implements palette
behavior on individual items, not entire workspaces. Not all items on a palette
workspace, such as labels, titles, or hide buttons, should have click-to-clone
behavior.

Caution Palette behavior is implemented by placing a transparent object of the class gfr-
palette-window over the palette item. You must never create, clone, delete, or
otherwise manipulate palette windows except through GFR menu choices or API
procedures.

If a mouse gesture can clone an item, the item has palette behavior. When you
use GFR to add palette behavior to an item, you get the following behavior:

• When you press a mouse button over a palette item, bubble help (if defined)
appears.

If you move the mouse to another palette item without releasing the mouse
button, GFR dismisses the bubble help for the first item and displays the
bubble help for the second item.

• When you click on a palette item (or release the mouse over the original item
after viewing bubble help), a new instance of the object is created and attached
to the mouse.

For details on how this object is created, Understanding How Items are
Created from a Palette.
87

• When you click the mouse again, the instance is deposited wherever the
mouse happens to be at the time.

If you are over the background or a proprietary workspace, the instance is
deleted.

• If you deposit the item back onto the original workspace, the new instance is
deleted, and the workspace is shrinkwrapped.

• If you have successfully placed the object instance on a workspace, GFR calls
the method gfr-initialize if the item is a gfr-item-with-uuid.

You can use the gfr-initialize method for any purpose appropriate to your
application.

These behaviors occur when the workspace that contains the palette item is
proprietary, or when you are not in Administrator mode and the workspace
containing the palette item is not proprietary.

When you are in Administrator mode and the workspace containing the palette
item is not proprietary, selecting the palette item displays the menu of the palette
window.

If you drag the palette window, the palette item “snaps” to the new location of the
palette window after the move. For more information on user modes and making
workspaces proprietary, see the G2 Reference Manual.

Palette windows cover the item, its stubs, and its attribute displays.

Note When you are in Administrator mode on a non-proprietary palette, use the clone
palette item menu choice to create a new instance of the palette item. To display
the clone palette item menu choice, select the palette window covering the item of
interest.
88

Adding Palette Behavior to an Item
Adding Palette Behavior to an Item
Using GFR’s palette preparation tools, you can add palette behavior to G2 items.

Note G2 must not be paused or reset when you perform these actions.

To activate menu choices related to palette preparation:

1 Get the workspace gfr-top-level and click the check box labelled palette
preparation tools, as shown in the following figure:

2 Alternatively, you can turn on palette preparation programmatically by
concluding that the logical parameter named gfr-palette-tools-on is true.
89

The following user menu choices appear on G2 items when GFR palette
preparation is active:

To add palette behavior to an item:

 Choose add palette behavior from the item menu.

If you are not in Administrator mode, you immediately get the palette
behavior described in the table. You can add palette behavior to items that are
disabled. You cannot add palette behavior to items on proprietary
workspaces.

To remove palette behavior from an item on a non-proprietary workspace:

1 Switch into Administrator mode.

2 Choose remove palette behavior from the menu of the palette window over
the item.

Caution You must never delete an item with palette behavior without first using the
remove palette behavior menu choice to return the item completely to normal
G2 object behavior. Otherwise, there may be invisible connection stubs left on
the item. You can also use the API call, gfr-remove-palette-behavior-from-item.

To view the items on a workspace that have palette behavior:

 Choose the show palette windows workspace menu choice.

This menu choice... Appears on... And does this...

add palette behavior All G2 items except
workspaces and
connections, if the item
does not already have
palette behavior

Adds palette behavior to
the item

remove palette
behavior

Any G2 item that has
palette behavior

Removes palette
behavior and returns the
normal behavior to an
item

show palette windows Workspaces that contain
any item with palette
behavior

Outlines all palette
windows on the
workspace

hide palette windows Workspaces that contain a
visible palette window

Makes the palette
windows on the
workspace invisible
90

Understanding How Items are Created from a Palette
This menu choice appears only if there are palette items on the workspace. The
palette window covers the item, its stubs, and its attribute displays. Be sure to
hide the palette windows, using the hide palette windows menu choice when you
are done.

Note You cannot manually resize a palette window or an item with a palette window,
without causing a misalignment between the palette window and the item it is
covering. If a misalignment occurs, you must remove the palette behavior and
add it again using the menu choices provided.

Understanding How Items are Created from
a Palette

When the user selects a palette item, GFR creates an item and transfers it to the
mouse. The item is instantiated in one of two ways:

• If the palette item does not have a subworkspace, GFR creates a new instance
of the object by calling the method gfr-create-instance-from-palette-item,
which you can optionally provide.

If you do not provide an overriding method, GFR uses the default method of
creating an instance from the object definition of the class, using the native G2
create action.

• If the palette item has a subworkspace and an item of the same class as the
palette item exists on this subworkspace, GFR creates the new item by cloning
the item on the subworkspace.

Note The item created from the palette is never a clone of the palette object itself. It is
either an object created via the gfr-create-instance-from-palette-item method or a
clone of the item on the subworkspace of the palette item. This allows the palette
to be proprietary and the palette item to be disabled, as discussed in the following
sections.

To create an instance programmatically:

 gfr-create-instance-from-palette-item
(item: class item, window: class g2-window
-> instance: class item)

where:

item: The palette item.

window: The g2-window of the client.
91

In your method, you create, configure, and return a new object that is attached to
the user’s mouse when you press the button over the palette item. When you
write this method, you must include the class of the palette item in the
declaration, not class item.

If the palette item is disabled, your gfr-create-instance-from-palette-item method
must be able to refer to inactive items. To allow your method to refer to inactive
items, set this property of your method using the following syntax:

conclude that the may-refer-to-inactive-items of the evaluation-attributes
of your-method = true

Cloning the Palette Item

The second technique of creating an item allows you to control the creation of the
palette item without writing methods. For example, if you want the cloned palette
item scaled differently than its defined icon size, follow these steps:

1 Create two instances of the item you want to appear on the palette and change
their sizes to the desired dimensions.

2 Create a subworkspace under one of the items.

3 Transfer the other item to the subworkspace.

4 Optionally, disable the superior item.

5 Add palette behavior to the superior item.

When the user presses the mouse on the palette item, GFR clones the item found
on the subworkspace of the palette item and transfers it to the mouse. Do not
disable the subworkspace items.

Handling Complex Initialization Requirements

To accommodate more complex initialization requirements, such as rotating or
connecting the new object when it arrives on the destination workspace, you can
provide an initialization method called gfr-initialize.

GFR calls the gfr-initialize method immediately after the user deposits a new
ID-bearing item (either gfr-object-with-uuid or gfr-message-with-uuid) onto a
workspace.
92

Configuring Palette Workspaces
The signature for this method is:

gfr-initialize
(item: class item, client: class object)

where:

item: The item to be initialized. When you write this method, you must
include the class of the item you want to initialize in the declaration, not
class item.

client: An object representing the source of the call, typically a g2-window.

Caution If you place an item created from a palette directly onto a disabled or inactive
workspace, GFR does not call the gfr-initialize method.

Configuring Palette Workspaces
After you have added palette behavior items on a workspace, you can specify the
item configuration of the workspace. For example, you may not want the user to
move and edit free text labels or to add and remove palette behavior from items.

The following are typical item configurations for a palette workspace:

configure the user interface as follows:
unless in administrator mode:
menu choices for workspace include hide-workspace;
menu choices for borderless-free-text include: nothing;
non-menu choices for item exclude additionally:
move-object, click-to-edit

These restrictions prevent the user from moving and editing borderless free texts
and they also suppress menu choices, other than hide-workspace, from the
workspace. Of course, you may add any item configurations you wish.

Special Considerations for Proprietary Palettes

GFR gives you the ability to create proprietary palettes. When you make a
workspace containing proprietary palette items, you can make the palette
impervious to accidental damage by the user, even when the user is in
Administrator mode.

If you are using the create-by-cloning technique, and palette items have
subworkspaces, these subworkspaces must be explicitly marked as not proprietary
during package preparation.
93

When you create a proprietary palette, you should include restrictions on the
workspace similar to the previous example plus the following restrictions on
these proprietary items:

restrict proprietary items as follows:
menu choices for workspace include:hide-workspace;
menu choices for borderless-free-text include: nothing;
non-menu choices for item exclude additionally:
move-object, click-to-edit

Adding Bubble Help to Palette Items
For palette items, GFR provides optional bubble help, also known as a tooltips.

To add bubble help to a palette item on a non-proprietary workspace:

1 Add palette behavior to the item, as described in Adding Palette Behavior to
an Item.

2 In Administrator mode, click on the palette item to display the palette
window menu.

3 From the palette window menu, select Table.

4 Change the value of gfr-help-message-name to the key for the bubble help
text.

5 Change the gfr-help-text-resource to the name of the gfr-text-resource-group
that provides the text of the bubble help.

Note You must use the GFR text translation facility when you use bubble help.

The attributes in the table for the palette window menu are:

Attribute Description

gfr-help-message-
name

The key of the help message in the local text resource.

Allowable values: Any symbol

Default value: unspecified
94

Adding Bubble Help to Palette Items
gfr-help-text-
resource

The name of the text resource that specifies the text of
bubble help.

Allowable values: Any symbol naming a text resource for bubble help

Default value: unspecified

Attribute Description
95

96

6

The Universal
Unique ID System
Discusses how GFR generates and manages universal unique identifiers (UUIDs).

Introduction 97

Unique ID Format 98

Inheriting Classes with Universal Unique IDs 98

Referencing an Item through its UUID 99

Using the ID Management System 99

Introduction
It is often desirable to tag items in a KB with a permanent, unique identifier (ID).
Like a pointer, a unique ID provides a persistent handle to an item that can be
stored in other objects that reference the identified item. A unique ID provides a
way for the KB developer to build arbitrarily complex data structures involving
multiple items.

GFR’s unique ID management system also provides a mechanism for detecting
and managing creation of ID-bearing objects by the user. When you create or
clone an ID-bearing item, the ID management system calls the methods
gfr-initialize and/or gfr-copy. These methods enable you to initialize the object
created by the user.
97

Unique ID Format
GFR offers a standard ID generator that generates a unique ID. The ID generated
by GFR is unique not only to the KB, but also is universally unique: The ID is not
duplicated in any KB, anywhere in the world, at any time, past or future, unless
the KB file is copied or the same KB is loaded into another G2. Therefore, Gensym
calls it a Universal Unique ID (UUID).

UUIDs conform to the standard OSF/Open DCE UUID format. A UUID
incorporates hardware identifiers, creation-time data, and other information that
make a UUID unique across KBs created anywhere, at any time.

Within G2, a UUID is stored in a compressed memory-saving format. It is
displayed on attribute tables as a text value containing 32 hexadecimal digits.
UUIDs are saved with the KB, and are necessary for the successful saving and
reloading of a KB.

Note In addition to GFR’s unique ID management system, G2 offers its own unique-
identification mixin class that adds a universal unique identifier (UUID) attribute
to new or existing classes. You can add a UUID to the instances of a subclass by
including the unique-identification mixin class in the subclass’s inheritance. G2
implements UUIDs as indexed attributes. Both the G2 UUID and the GFR UUID
have the same format, as described in this section. For more information on the
G2 UUID facility, see the G2 Reference Manual.

To generate a unique ID:

 gfr-universal-unique-id
()
-> uuid: text

Even if you use no other parts of GFR’s ID mechanism, you can use gfr-universal-
unique-id to generate IDs.

Inheriting Classes with Universal Unique IDs
GFR provides two classes, gfr-object-with-uuid and gfr-message-with-uuid, that
have a universal unique ID attribute. The classes inherit from the gfr-item-with-
uuid class, as shown in the following figure:
98

Referencing an Item through its UUID
You can use multiple inheritance from these classes into your classes that require
IDs. The two classes are:

• gfr-object-with-uuid, which any object class can inherit.

• gfr-message-with-uuid, which any message class can inherit.

Note GFR does not provide a connection class with ID.

The universal unique ID attribute of gfr-object-with-uuid and gfr-message-with-
uuid is summarized in the following table:

Referencing an Item through its UUID
Because the gfr-uuid is an indexed attribute, you can use index-attribute lookups
to efficiently locate an item using its UUID as a handle. For complete information
about indexed attributes, see the G2 Reference Manual.

For example, if the UUID of the object we are trying to find is MyID, you can use
the following statement to find it:

if there exists a gfr-object-with-uuid Obj such that
(the gfr-uuid of Obj = MyID) then

begin

{Insert statements dealing with Obj here}

end

To find gfr-messages-with-uuids, use an analogous statement. You can also add
other criteria into the existence check by extending the such that clause.

Using the ID Management System
The job of the ID management system is to assure that new instances of the classes
gfr-object-with-uuid and gfr-message-with-uuid are assigned IDs whenever they
are created. As long as G2 is not reset, GFR detects manual actions such as
creating and cloning and maintains unique IDs for all ID-bearing objects and
messages. The actions detected by GFR include:

Attribute Description

gfr-uuid An indexed attribute containing the universal unique ID
of the item.

Allowable values: Any UUID generated by gfr-universal-unique-id

Default value: "" (the empty string)
99

• Creation of objects by selecting New Object or New Free Text from the
KB Workspace menu, or selecting the create-instance menu choice of a class
definition.

• Creation of items by manual cloning, including items cloned from a palette,
and items created by cloning with the operate on area tool.

• Creation of objects by workspace cloning, including objects created by cloning
an object with a subworkspace or cloning a workspace containing objects with
subworkspaces.

The ID management system does not update IDs of items that are attributes of
other items. If you define a class that has an instance of an ID-bearing item as an
attribute, you must provide a gfr-initialize method for the class that assigns an ID
to the subobjects. For more information on the gfr-initialize method, see Using the
gfr-initialize Method.

Creating ID-Bearing Items Programmatically

When you programmatically create an instance of classes gfr-object-with-uuid or
gfr-message-with-uuid, this action is not detected by GFR. You must make sure
that the object you create is assigned a new ID. You do this by calling the method
gfr-initialize on the object you have created.

Two fundamentally different create actions exist in G2:

• Simple Create

• Create by Cloning

Simple Create

If foobar is a subclass of either ID-bearing class, the first case can be handled
straightforwardly, as follows:

create a foobar Foo;
call gfr-initialize(Foo, Client);

where Client is any client object, usually a g2-window.

If the class has an attribute that is an instance of an ID-bearing class, the author of
the class must provide a gfr-initialize method to assign an ID to the subobject.

Create by Cloning

The programmatic clone action is more involved. When you create an item by
programmatically cloning another item, the possibility exists that the item you are
cloning might have a subworkspace containing other items. If the items on the
subworkspace bear IDs, they also must be assigned new IDs.

GFR provides a procedure that checks the subworkspace hierarchy of the cloned
item and appropriately initializes the IDs by dispatching calls to gfr-initialize and
100

Using the ID Management System
gfr-copy, as described in the following sections. The name of this procedure is gfr-
check-uuids-on-cloned-item.

For example, if Bar is an item that has a subworkspace that could contain ID-
bearing objects, use the following sequence for cloning the item:

create a item Bar2 by cloning Bar;
call gfr-check-uuids-on-cloned-item(Bar2);

Bar itself may or may not be an ID-bearing object.

You must also use this cloning procedure when you are programmatically
cloning a workspace, as in the following example:

create a kb-workspace WS2 by cloning WS1;
call gfr-check-uuids-on-cloned-item(WS2);

The call to gfr-check-uuids-on-cloned-item assures that all ID-bearing items upon
WS2 and in the workspace hierarchy of objects upon WS2 are correctly initialized
with new IDs.

Using the gfr-initialize Method

The GFR ID-management system uses the method gfr-initialize to give new
instances unique IDs. You can specialize the gfr-initialize method to give
initialization behavior to your classes whenever an instance of your class
is created.

Here are some of the ways you could use the gfr-initialize method:

• To validate whether the object has been placed on the right type of workspace,
or in the correct module.

• To establish relations that must apply to each item of a given class.

• To create additional objects needed in a structure, such as populating a matrix
object with arrays representing the matrix’s rows, when the item-array
is created.

• To launch a procedure invocation associated with the object that could
monitor or animate the object.

The signature of the gfr-initialize method is as follows:

gfr-initialize
(item: class item, client: class object)

where:

item: The item to be initialized, which is an ID-bearing object.

client: The g2-window of the client requesting the initialization, or gfr-default-
window if no appropriate window is available.
101

Caution When you create your own gfr-initialize method, you must use a call next method
statement somewhere in your method.

As long as GFR is running, gfr-initialize is called automatically on each new ID-
bearing object you manually create. The calls are automatically made when you
are performing manual actions such as creating objects using G2’s New Object
menu or new instance menu choice, and cloning objects or workspaces.

These calls to gfr-initialize are asynchronous and lag the actual creation of the
object by some small amount of time. By default, IDs are updated as a priority 3
task. When you create or clone objects programmatically, GFR does not call the
gfr-initialize method automatically; you must call gfr-initialize or gfr-check-uuids-
on-cloned-item, as described in this and the previous section.

Using the gfr-copy Method

When the user clones a gfr-object-with-uuid or gfr-message-with-uuid and the
object is initialized, the ID management system immediately calls a second
method called gfr-copy. When the default G2 clone does not perform the clone
action required by your data structures, the gfr-copy method can be used for
specializing the native G2 clone action.

For example, you want to clone a matrix (an item array whose elements are float
arrays) and copy the contents of the float arrays into the cloned matrix. You also
want the contents of the cloned matrix and the source matrix to be identical. The
G2 clone action does not assure that the contents are identical.

Therefore, when you define your matrix class, you should inherit from gfr-object-
with-uuid and appropriately define gfr-initialize and gfr-copy methods.

The signature of gfr-copy is as follows:

gfr-copy
(source-item: class gfr-item-with-uuid,
 cloned-item: class gfr-item-with-uuid)

where:

source-item: The item that was cloned.

cloned-item: The item created by cloning.

When you create a gfr-copy method for your class, you must replace the class
name in the declaration of the method to your class name.
102

Using the ID Management System
Validating UUIDs

The GFR ID management system only works when G2 is not reset. If the user
creates objects by instantiation or cloning while G2 is reset, the objects do not
automatically receive unique IDs, which is a corruption of the ID management
system. Because of this possibility, whenever G2 is started, GFR validates all ID-
bearing objects and messages.

During validation, the ID management system checks for duplicate IDs. By
default, the ID management system alerts you if it detects items with duplicate
IDs. The alert message contains the ID of the duplicate objects, allowing you to
use the Inspect facility to locate them.

When duplicate IDs are detected, it is usually an indication that:

• An ID-bearing object was cloned while G2 was reset.

• A programmatic create or clone action was performed without calling:

– gfr-initialize (see Using the gfr-initialize Method).

– gfr-check-uuids-on-cloned-item (see Create by Cloning).

Depending how IDs are used in the modules required by your KB, it may be
unsafe to have items in your KB with duplicate IDs. Therefore, the message
posted by GFR recommends that the user delete the objects with duplicate IDs
before continuing.

You can override the warning issued by GFR and handle invalid IDs yourself by
providing a method named gfr-handle-invalid-uuid. The signature of this method
is as follows.

gfr-handle-invalid-uuid
(obj: class gfr-item-with-uuid, client: class object)

where:

obj: The object with duplicate IDs.

client: The g2-window of the client or gfr-default-window if no appropriate
window is available.

Normally, the method you provide should change the ID of the item in question
or delete the item.
103

104

7

Additional
GFR Utilities
Discusses file parsing and other GFR utilities.

Introduction 105

File Parsing 105

Item Edge Position Functions 106

Introduction
GFR provides a small number of additional utilities dealing with parsing, file
operations, and the coordinates of item edges. This chapter summarizes these
utilities.

File Parsing
GFR provides two utility that help you load data from files into G2. While G2
already provides a set of system procedures for reading and writing files, these
utilities work only with text strings.

Putting together a line of text for writing to a file is usually straightforward. Do
this using G2’s text concatenation operations. However, reversing the process by
parsing lines of text that have been read from a file is a difficult problem many
developers face.

While GFR does not solve the parsing problem in its most general form, it does
provide a utility that converts the contents of a file into a value list containing G2
value types, namely floats, integers, symbols, texts, and truth-values. Once a file
has been converted into a value list, further text parsing is usually unnecessary.
105

Thus, GFR removes some of the difficulty of loading file data into G2. GFR uses
this utility to read text resource files.

The two procedures GFR uses to read file data are gfr-load-file-into-list and gfr-
parse-string-into-value-list. These procedures are described in File Parsing and
Miscellaneous Functions and Procedures.

To convert a list of values into a string appropriate for writing to a file in a format
compatible with these utilities, use gfr-convert-value-list-to-string.

Item Edge Position Functions
GFR provides functions that return the workspace coordinates of the left, right,
top and bottom of an item. Although G2 provides the width or height of an item
and its workspace position, it does not have a built-in function to determine the
edge positions of an item.

The correct calculation of the edges is a little trickier than it seems, since you must
account correctly for fractional pixels if the height or width of the item is an odd
number. The functions gfr-left, gfr-right, gfr-top and gfr-bottom account correctly
for the rounding.
106

Part III
API Procedures
and Functions
Chapter 8: Application Programmer’s Interface

Describes the Application Programmer’s Interface (API) to the GFR module.
107

108

8

Application
Programmer’s Interface
Describes the Application Programmer’s Interface (API) to the GFR module.

Introduction 111

Module Management Utilities 112
gfr-deposit-item-in-public-bin 113
gfr-disable-error-handling 114
gfr-disable-version-checking 115
gfr-enable-error-handling 116
gfr-enable-version-checking 117
gfr-get-active-setting 118
gfr-get-directly-required-modules 119
gfr-get-directly-requiring-modules 120
gfr-get-g2-version 121
gfr-get-handler-hierarchy 123
gfr-get-linearized-module-hierarchy 124
gfr-get-module-of-item 125
gfr-get-public-bin-for-module 126
gfr-get-required-modules 127
gfr-get-requiring-modules 128
gfr-get-supporting-version-information 129
gfr-get-top-level-module 131
gfr-get-version 132
gfr-install-module-settings 134
gfr-invalidate-module-information 135
gfr-startup-module 136
gfr-startup-modules 137

Communications Operations 138
gfr-call-next-communication-handler 139
gfr-call-next-error-handler 140
gfr-dispatch-communication 141

Localization Operations 142
gfr-add-to-local-text-resource 143
gfr-clear-local-text-resource 144
109

gfr-configure-text-proxy 145
gfr-do-single-text-substitution 146
gfr-evaluate-text-proxy 147
gfr-get-all-unsubstituted-messages 148
gfr-get-local-text-resource 149
gfr-get-unsubstituted-message 151
gfr-language 152
gfr-load-local-text-resource-from-file 153
gfr-localize-message 154
gfr-localize-messages-on-workspace 156
gfr-make-local-text-resource-permanent 157
gfr-modify-message-in-local-text-resource 158
gfr-remove-from-local-text-resource 159
gfr-write-local-text-resource-to-file 160

Procedures Dealing with Palette Management 161
gfr-add-palette-behavior-to-item 162
gfr-create-instance-using-palette-method 163
gfr-item-is-palette-object 164
gfr-remove-palette-behavior-from-item 165
gfr-show-bubble-help 166

Procedures Dealing with Unique IDs 167
gfr-check-uuids-on-cloned-item 168
gfr-universal-unique-id 169

File Parsing and Miscellaneous Functions and Procedures 170
gfr-bottom 171
gfr-convert-value-list-to-string 172
gfr-left 174
gfr-load-file-into-list 175
gfr-parse-string-into-value-list 178
gfr-right 180
gfr-top 181
110

Introduction
Introduction
This chapter presents all the procedures and functions in GFR’s API in the
following functional categories:

• Module management

• Communications and error handling

• Localization

• Palette management

• Unique ID facility

• File parsing and other utilities

Specifying the Client Object Argument

Most API procedures require a client object as their last argument. In general, this
is the g2-window where the call originated, but the client can be any object that
represents the source of the call, such as another G2, an external program, etc.
When communicating with the user, GFR uses the client object to determine the
user mode and language, when needed.

When you begin a thread of processing from an action button or user menu
choice, the client should be the window associated with the button or menu
choice and it should be accessed with the this window syntax. When you start a
procedure from an external client, you should create your own client object
representing the external client. If the thread of processing is started by a rule or
other scheduled activity in G2 not associated with a specific window, you may
use the permanent g2-window object named gfr-default-window as the client
argument.
111

Module Management Utilities
GFR provides the following procedures and functions for managing modules:

gfr-deposit-item-in-public-bin

gfr-disable-error-handling

gfr-disable-version-checking

gfr-enable-error-handling

gfr-enable-version-checking

gfr-get-active-setting

gfr-get-directly-required-modules

gfr-get-directly-requiring-modules

gfr-get-g2-version

gfr-get-handler-hierarchy

gfr-get-linearized-module-hierarchy

gfr-get-module-of-item

gfr-get-public-bin-for-module

gfr-get-required-modules

gfr-get-requiring-modules

gfr-get-supporting-version-information

gfr-get-top-level-module

gfr-get-version

gfr-install-module-settings

gfr-invalidate-module-information

gfr-startup-module

gfr-startup-modules
112

gfr-deposit-item-in-public-bin
gfr-deposit-item-in-public-bin
Places an item in a module’s public bin.

Synopsis

gfr-deposit-item-in-public-bin
(item: class item, module: symbol)

Description

You use this procedure when your module wants to store an item in another
module. This procedure first finds the target module’s public bin or creates one if
the bin does not exist. Then, the item is transferred to the subworkspace of the bin
at a random location.

The item passed to this procedure must be transient, otherwise an error is
signalled. The item deposited in the bin is not made permanent by this procedure.

Example

The following call deposits an instance of a gfr-module-setting in the module
module-1 and makes it permanent:

create a gfr-module-setting S;
call gfr-deposit-item-in-public-bin(S, the symbol module-1);
make S permanent;

Argument Description

item The item to be deposited.

module The module where the item is to be stored.
113

gfr-disable-error-handling
Disables GFR’s error handling facility until the next G2 start or until GFR’s error
handling facility is enabled by gfr-enable-error-handling.

Synopsis

gfr-disable-error-handling ()

Description

You use this procedure if you want to disable GFR’s error handling facility. The
effect of this procedure lasts only through the next G2 start. To control whether
GFR initially enables error handling, use a gfr-settings-object.

Example

The following call turns off error handling:

call gfr-disable-error-handling();
114

gfr-disable-version-checking
gfr-disable-version-checking
Disables version checking and module upgrades until the next G2 start or until
gfr-enable-version-checking is called.

Synopsis

gfr-disable-version-checking ()

Description

You use this procedure if you want to prevent GFR from checking version
consistency when modules are merged into a running G2. This procedure should
only be used in special situations, because it may result in an inconsistent set of
modules being loaded.

The effect of this procedure lasts only through the next G2 start. To control
whether GFR initially checks versions, use a gfr-startup-settings object.

Example

The following call turns off version checking:

call gfr-disable-version-checking();
115

gfr-enable-error-handling
Enables GFR’s error handling facility by replacing the current default error
handler with GFR’s error handling dispatcher.

Synopsis

gfr-enable-error-handling ()

Description

You use this procedure if you want to enable GFR’s error handling facility.

Example

The following call turns on error handling:

call gfr-enable-error-handling();
116

gfr-enable-version-checking
gfr-enable-version-checking
Enables version checking and module upgrades until the next G2 start.

Synopsis

gfr-enable-version-checking ()

Description

You use this procedure if you want GFR to check version consistency when
modules are merged into a running G2.

The effect of this procedure lasts only through the next G2 start. To control
whether GFR initially checks version, use a gfr-startup-settings object.

Example

The following call turns on version checking:

call gfr-enable-version-checking();
117

gfr-get-active-setting
Finds the active module setting of a given class.

Synopsis

gfr-get-active-setting
(classname: symbol, client: class object)
-> setting: class gfr-module-setting

Description

This procedure returns the active module setting object of a given class. The active
module setting is the instance of the given class that is highest in the module
hierarchy. If there is more than one instance of the class in the highest module,
one instance is chosen arbitrarily. The class name of the returned item matches the
classname argument exactly (i.e., the returned object is not a subclass of the target
class).

If there is no instance of the given classname, an error is signalled.

Example

The following call returns the active module-x-color-setting, which is a subclass of
gfr-module-setting:

Setting = call gfr-get-active-setting(the symbol module-x-color-setting, Win);

Argument Description

classname The class of the module setting to be
retrieved.

client The client originating this call.

Return Value Description

setting The active module setting matching the
classname.
118

gfr-get-directly-required-modules
gfr-get-directly-required-modules
Returns the modules directly required by another module.

Synopsis

gfr-get-directly-required-modules
(module: symbol, module-list: class symbol-list, client: class object)

Description

This procedure returns the names of the modules directly required by a given
module. This list of module names is simply the contents of the attribute directly-
required-modules of the module-information object for the given module.

This procedure does not clear the module-list before appending the required
modules.

Example

The following call gets the directly required modules of module GFR:

call gfr-get-directly-required-modules(the symbol GFR, module-list, Win);

The symbol sys-mod is appended to module-list as a result of this call.

Argument Description

module The name of the module that is the subject of
this call.

module-list The required modules appended to this list.

client The client originating this call.
119

gfr-get-directly-requiring-modules
Returns the names of the modules directly requiring a given module.

Synopsis

gfr-get-directly-requiring-modules
(module: symbol, module-list: class symbol-list, client: class object)

Description

This procedure returns the names of the modules directly requiring a given
module, that is, the name of each module that includes the target module as one
of its directly-required-modules, as given by its module-information object.

This procedure does not clear the module-list before appending the requiring
modules.

Example

The following call gets a list of modules directly requiring the module sys-mod:

call gfr-get-directly-requiring-modules(the symbol sys-mod, module-list, Win);

Assuming GFR is loaded and is the only module requiring sys-mod, the symbol
GFR is appended to module-list as a result of this call.

Argument Description

module The name of the module that is the subject of
this call.

module-list The requiring modules appended to this list.

client The client originating this call.
120

gfr-get-g2-version
gfr-get-g2-version
Returns the current G2 version in quantitative form.

Synopsis

gfr-get-g2-version ()
-> release: float, revision: integer, type: symbol

Description

G2 versions are expressed as a major release, a minor release, and a revision
number. This procedure returns the major-minor release number as in dd.d
format, and the revision number as an integer.

The type is a symbol representing the type of G2 release (ALPHA, BETA
or RELEASE).

Example

If G2 Version 2015 Rev. 0 is being used, then the following procedure returns 7.0
and 0 as the values of release, revision, and type, respectively:

example-proc (Win: class g2-window)
release: float;
revision: integer;
type: symbol;
begin

release, revision, type = call gfr-get-g2-version();
inform the operator that "G2 version info is [release] Rev. [revision] {type]";

end

The version information appears on the Message Board, as shown in the
following figure:

Value Description

 release The major/minor release number of G2.

 revision The revision number of G2.

 type The release type of G2, which is one of
ALPHA, BETA or RELEASE.
121

122

gfr-get-handler-hierarchy
gfr-get-handler-hierarchy
Determines the hierarchy of handlers for a specified item.

Synopsis

gfr-get-handler-hierarchy
(item: class item, handlers: class item-list, client: class object)

Description

This procedure enables you to determine the hierarchy of handlers for a given
item. The item must be either an instance of class error or a gfr-communication.
The handlers argument is usually an empty list on input. On output, it contains
the handlers for the given item in order from highest to lowest precedence.

Arguments Description

item The item whose handlers you want to
determine.

handlers A list of handlers for this item.

client The client originating this call.
123

gfr-get-linearized-module-hierarchy
Returns a sorted list of the modules in a KB.

Synopsis

gfr-get-linearized-module-hierarchy
(module-list: class symbol-list, client: class object)

Description

This procedure returns the module hierarchy flattened into a list. The list contains
all modules sorted so that if a module X is required by another module Y,
module X always appears after module Y in the list. The linearization follows the
same rules as the linearized class inheritance path for object definitions with
multiple inheritance (see the G2 Reference Manual for details).

This procedure does not clear the module-list before appending to it.

Example

Consider the following module hierarchy involving modules U, V, W, X, Y and Z:

• U requires V and W.

• V requires X and Y.

• Y requires Z.

• W requires Z.

The following call gets the linearization of this module hierarchy:

call gfr-get-linearized-module-hierarchy(module-list, Win);

On return, the module-list contains the modules in this order: U, V, X, Y, W, Z.

Argument Description

module-list The names of modules present in the KB are
appended in sorted order to this list.

client The client originating this call.
124

gfr-get-module-of-item
gfr-get-module-of-item
A function that returns the current module assignment of the item.

Synopsis

gfr-get-module-of-item
(item: class item)
-> module: symbol

Description

The gfr-get-module-of-item function call returns the name of the module to which
an item is assigned. If the item is not assigned to any module, gfr-get-module-of-
item returns the symbol unspecified.

Example

The following example determines the module assignment of an object Obj and its
definition Def, and determines if proper modularity is satisfied:

InstanceModule = gfr-get-module-of-item(Obj);
DefinitionModule = gfr-get-module-of-item(Def);
if InstanceModule /= DefinitionModule then begin

create a symbol-list module-list;
call gfr-get-requiring-modules(DefinitionModule, module-list, Win);
if InstanceModule is a member of module-list then inform the operator that

“modularity is OK” else inform the operator that “KB is not correctly
modularized”;

delete module-list;
end else inform the operator that “modularity is OK”

Argument Description

item The item whose module assignment is to be
determined.

Return Value Description

module The module of the item or the symbol
unspecified.
125

gfr-get-public-bin-for-module
Returns the public bin for a module.

Synopsis

gfr-get-public-bin-for-module
(module: symbol, client: class object
-> module-bin: class gfr-public-bin)

Description

This procedure returns the public bin for the specified module. If a bin does not
exist when this call is made, this procedure creates one. The objects deposited in
the bin are stored on the subworkspace of the bin.

Arguments Description

module The module that owns the public bin you
want to use

client The client originating this call.

Return Value Description

module-bin The public bin of the specified module.
126

gfr-get-required-modules
gfr-get-required-modules
Returns the modules required by another module, including indirectly required
modules.

Synopsis

gfr-get-required-modules
(module: symbol, module-list: class symbol-list, client: class object)

Description

This procedure returns the names of the modules required by a given module.
These are all the modules that are below the given module in the module
hierarchy.

This procedure does not clear the module-list before appending the required
modules.

Example

The following call returns the required modules of module GFR:

call gfr-get-directly-required-modules(the symbol GFR, module-list, Win);

The symbols sys-mod and uilroot are appended to module-list as a result of this
call.

Argument Description

module The name of the module that is the subject of
this call.

module-list The required modules are appended to this
list.

client The client originating this call.
127

gfr-get-requiring-modules
Returns all modules requiring a given module, directly or indirectly.

Synopsis

gfr-get-requiring-modules
(module: symbol, module-list: class symbol-list, client: class object)

Description

This procedure returns the names of the modules that require the given module.
These are all the modules that require, directly or indirectly, the given module.

This procedure does not clear the module-list before appending the requiring
modules.

Example

The following call gets a list of modules directly requiring the module uilroot:

call gfr-get-requiring-modules(the symbol uilroot, module-list, Win);

Assuming GFR is the top level module, the symbols GFR and sys-mod are
appended to module-list as a result of this call.

Argument Description

module The name of the module that is the subject of
this call.

module-list The requiring modules are appended to this
list.

client The client originating this call.
128

gfr-get-supporting-version-information
gfr-get-supporting-version-information
Returns information about the modules supporting another module from that
module’s information object.

Synopsis

gfr-get-supporting-version-information
(module: symbol, client: class object)
-> version-information: sequence

Description

This procedure provides version information about all the modules that support
the given module. The version information is returned in the form of a sequence,
with one element for each supporting module. Each structure in the sequence
includes the supporting module name, the current version as a text, the current
version number as an quantity, and the oldest compatible version number as
a quantity.

Argument Description

module The name of the module for which
supporting module version information is
sought

client The client originating this call.

Return Value Description

version-information A sequence of structures describing the
supporting modules, where each structure
has the form: (module-name: symbol,
version-string: text, version-number:
quantity, compatible-version-number:
quantity)
129

Example

The following example procedure determines the supporting module version
information for the GMS module, where Version Info is a sequence:

The following message is printed to the Message Board:
130

gfr-get-top-level-module
gfr-get-top-level-module
A function that returns the name of the top-level module.

Synopsis

gfr-get-top-level-module ()
-> name: symbol

Description

The gfr-get-top-level-module function call returns the name of the top-level
module.

Example

Assuming GFR is the top-level module, the following function call returns the
symbol GFR:

TopModule = gfr-get-top-level-module();

Return Value Description

name The name of the top-level module.
131

gfr-get-version
Returns the version of the gfr module.

Synopsis

gfr-get-version ()
-> version: text, revision: quantity

Description

This procedure allows you to find out the version of the gfr module that is
currently loaded.

The version information is found in the gfr-version-description attribute in the gfr-
version-information-object. It is returned as a text in the format major.minor type
revision, where:

major: An integer representing the major release number.

minor: An integer representing the minor release number.

type: A word describing the type of release, such as “Rev.,” “Alpha,“
or “Beta.”

revision: An integer representing the revision number.

For example, the current release of this software is “7.0 Rev. 0”. The format of this
string is subject to change.

The second return argument can be used to establish the release order of different
versions of the module. This number increases with each revision of the software.

Return Value Description

 version A text describing the version number of the
module. The version number is found in the
gfr-version-description attribute in the gfr-
version-information-object.

 revision An integer which increments on every
revision of the module. The revision is the
gfr-version-number.
132

gfr-get-version
Example

The following procedure returns version information about the gfr module:

example-proc2 (Win: class g2-window)
versino: text;
revision: quantity;
begin

version, revision = call gfr-get-version();
inform the operator that "Module version is [version];

Release order is [revision]";
end

The version information for the module appears in the Message Board:
133

gfr-install-module-settings
Installs the module settings for a given module.

Synopsis

gfr-install-module-settings
(module: symbol, client: class object)

Description

This procedure installs the module settings for a given module. GFR determines
which module settings to install in a given module by looking at the subclasses of
gfr-module-setting defined in that module. For each setting class defined in the
target module, GFR determines which instance of that class should be active,
using the module hierarchy precedence described in the Managing User-Settable
Parameters for Modules.

Caution You should always provide a default instance of every class of module setting
you define, so that it is guaranteed that GFR will find a suitable module setting to
install.

When GFR locates the instance, it calls the method gfr-propagate-module-setting-
information. This method takes the actions necessary to implement the settings
contained in the active setting object. You may, for example, copy information in
the setting object into private data structures within the target module.

This procedure is called automatically by GFR before it starts up a module.

Example

See Managing User-Settable Parameters for Modules.

Argument Description

module The name of the module that is the subject of
this call.

client The client originating this call.
134

gfr-invalidate-module-information
gfr-invalidate-module-information
Forces GFR to read the module hierarchy and update its cached module
information.

Synopsis

gfr-invalidate-module-information
(client: class object)

Description

GFR internally caches the module hierarchy in a form that allows rapid access to
this information. G2 sets up this cache when it starts and revises it when the
module hierarchy is changed. When a call is made to one of the GFR procedures
that provides module hierarchy information, GFR uses the cached information,
not the actual module hierarchy.

Revising the module cache depends on firing event-detector rules. Therefore, if
you make a programmatic change to the module hierarchy and immediately want
module hierarchy information, you must call this procedure to force GFR to cache
the current module structure.

Example

The following call invalidates GFR’s cached module information:

call gfr-invalidate-module-information(Win);

Argument Description

client The client originating this call.
135

gfr-startup-module
Performs initialization activities for a module.

Synopsis

gfr-startup-module
(module: symbol, client: class object)

Description

This procedure performs the startup activities for a module. These activities
include, in the following order:

• For each module required by this module, validate the version of this module
and, if necessary, perform upgrade activities on this module.

• Validate the G2 version required by this module.

• Validate the versions of and, if necessary, upgrade all modules that require
this module.

• Install the module settings by calling gfr-install-module-settings.

• Load text resources, if the gfr-preload-resource attribute of the text resource is
true.

• If an instance of a gfr-startup-object exists in the module, call the procedure
named by the startup-procedure of the object.

Example

The following call starts up the module module-1:

call gfr-startup-module(the symbol module-1, Win);

Argument Description

module The module to start.

client The client originating this call.
136

gfr-startup-modules
gfr-startup-modules
Performs initialization activities for a list of modules.

Synopsis

gfr-startup-modules
(modules: class symbol-list, client: class object)

Description

This procedure performs the startup activities for a list of modules. The startup
activities for the modules in the list are performed in bottom-up order, with the
modules lower in the module hierarchy starting before those higher in the
hierarchy. The startup activities are the same as described in Using Module
Startup Objects.

Example

The following call starts up the modules module-1 and module-2:

create a symbol-list Modules;
insert the symbol module-1 at the end of Modules;
insert the symbol module-2 at the end of Modules;
call gfr-startup-modules(Modules, Win);
delete Modules;

Argument Description

modules The list of modules to perform startup
activities on.

client The client originating this call.
137

Communications Operations
GFR provides the following procedures for structured communications in a KB:

gfr-call-next-communication-handler

gfr-call-next-error-handler

gfr-dispatch-communication
138

gfr-call-next-communication-handler
gfr-call-next-communication-handler
Dispatches a call to the next communication handler appropriate to the given
communication.

Synopsis

gfr-call-next-communication-handler
(communcation: class gfr-communcation, initiatingitem: class item,
 client: class object)
-> return: structure

Description

This procedure is used to pass control to the next communication handler capable
of handling a specific type of communication. The precedence order for
communication handlers is described in Communication and Error Handlers.
You use this procedure in a manner similar to G2’s “call next method” statement.

This procedure can only be called from a communication handler, otherwise an
error is signalled.

The returned structure contains any attributes returned from the handler, if any.

Argument Description

communication The gfr-communication that is currently
being handled

initiatingitem The initiating item associated with the
communication, passed to the handler

client The client originating this call.

Return Value Description

return Any attributes returned from the handler.
139

gfr-call-next-error-handler
Dispatches a call to the next error handler appropriate to the given error.

Synopsis

gfr-call-next-error-handler
(error: class error)

Description

This procedure is used to pass control to the next error handler capable of
handling a specific type of error. The precedence order for error handlers is
described in Communication and Error Handlers. You use this procedure in a
manner similar to G2’s “call next method” statement.

This procedure can only be called from an error handler; otherwise an error is
signalled.

If an appropriate next error handler is not found, calling this procedure has no
effect.

Argument Description

error The error that is being processed.
140

gfr-dispatch-communication
gfr-dispatch-communication
Dispatches a gfr-communication to GFR’s communication handling system.

Synopsis

gfr-dispatch-communication
(communcation: class gfr-communication, initiating-item: class item,
 client: class object)
-> return: structure

Description

This procedure is called to dispatch a Communication to GFR’s communication
handling facility. Typically, you create and configure a communication object,
then call this procedure to begin the processing of the Communication. GFR will
find the handler with the highest precedence for that type of communication and
call it.

If the Communication defines one or more return arguments, they will be
returned from gfr-dispatch-communication in the returned structure.

Argument Description

communication The communication to be handled.

initiating-item Any item associated with the
communication.

Client The client originating this call.

Return Value Description

return Any attributes returned from the handler.
141

Localization Operations
GFR provides the following procedures and functions for localizing text in a KB:

gfr-add-to-local-text-resource

gfr-clear-local-text-resource

gfr-configure-text-proxy

gfr-do-single-text-substitution

gfr-evaluate-text-proxy

gfr-get-all-unsubstituted-messages

gfr-get-local-text-resource

gfr-get-unsubstituted-message

gfr-language

gfr-load-local-text-resource-from-file

gfr-localize-message

gfr-localize-messages-on-workspace

gfr-make-local-text-resource-permanent

gfr-modify-message-in-local-text-resource

gfr-remove-from-local-text-resource

gfr-write-local-text-resource-to-file
142

gfr-add-to-local-text-resource
gfr-add-to-local-text-resource
Adds one key-text pair to a local text resource.

Synopsis

gfr-add-to-local-text-resource
(resource: class gfr-local-text-resource, key: symbol, msg: text,
 client: class object)

Description

This procedure adds a single key-text pair to a given local text resource. You
provide the symbolic key and text of the message you want to add. This
procedure does not affect the permanent values of the local text resource. If you
want your changes to be permanent, you must call gfr-make-local-text-resource-
permanent.

Example

The following call adds the message “Help” under the key gfr-help to the local
text resource named text-resource-1:

call gfr-add-to-local-text-resource(text-resource-1, the symbol gfr-help,
"Help", win);

Argument Description

resource The local text resource that is the target of
this operation.

key The symbolic key for the message to be
added to the resource.

msg The text of the message to be added to the
resource.

client The client originating this call.
143

gfr-clear-local-text-resource
A function that clears the key-text pairs stored in a local text resource.

Synopsis

gfr-clear-local-text-resource
(resource: class gfr-local-text-resource, client: class object)

Description

This function clears the localized texts and the symbolic keys that are the contents
of a local text resource. Other attributes of the local text resource are not affected
by this call. This call does not affect permanent values of the resources, if any.

Example

The following function calls the local text resource named text-resource-1:

call gfr-clear-local-text-resource(text-resource-1, win);

Argument Description

resource The local text resource that is the target of
this operation.

client The client originating this call.
144

gfr-configure-text-proxy
gfr-configure-text-proxy
Sets the symbol key, resource group, and substitution arguments of a text proxy.

Synopsis

gfr-configure-text-proxy
(proxy: class gfr-text-proxy, resource-group: symbol, key: symbol,
 optional-arguments)

Description

This procedure changes the attributes of gfr-text-proxy or gfr-simple-text-proxy
objects. Calling this procedure is equivalent to:

• Concluding that the gfr-text-resource-group attribute of proxy is resource-
group.

• Concluding that the gfr-message-name attribute of proxy is key.

• Inserting the values in optional arguments at the end of the gfr-substitutions
list of the proxy.

It is up to the caller to clear the substitutions list of the text proxy, if desired,
before making this call.

Example

The following call configures the text proxy proxy-1 to refer to the resource group
named my-error-messages and the localized text keyed by the symbol error-
message-1, with the substitutions 123 and the symbol foo:

call gfr-configure-text-proxy(proxy-1, the symbol my-error-messages,
the symbol error-message-1, 123, the symbol foo);

Argument Description

proxy The text proxy to be configured.

resource-group The name of the resource group containing
the key.

key A symbol that is the key for retrieving the
localized text.

optional-arguments Up to 10 values that will be the substitution
values in the localized text when the proxy
is evaluated.
145

gfr-do-single-text-substitution
Substitutes a given value for a substitution marker.

Synopsis

gfr-do-single-text-substitution
(input-text: text, substitution-number: integer, substitution: value)
-> text: text

Description

This procedure substitutes the substitution value at every position identified by
the bracketed integer [substitution-number]. If there is no match, the returned text
is the same as input-text.

Example

The following call substitutes the symbol foo wherever [2] occurs in the input text:

output-text = call gfr-do-single-text-substitution(“[2] is a meaningless
[1] symbol and so is [2]bar”, 2, the symbol foo);

The result is “foo is a meaningless [1] symbol and so is foobar”.

Argument Description

input-text The text into which substitutions are to be
made.

substitution-number The integer marker that is to be substituted
for.

substitution The value to be converted into text and
substituted into the input-text.

Return Value Description

 text The text resulting from the substitutions.
146

gfr-evaluate-text-proxy
gfr-evaluate-text-proxy
Returns the text represented by a text proxy localized to a given language.

Synopsis

gfr-evaluate-text-proxy
(proxy: class gfr-text-proxy, language: symbol, client: class object)
-> text: text

Description

This procedure takes a configured text proxy object and returns the text
represented by the text proxy in the given language.

Example

Suppose the symbol error-message-1 in the resource group named my-error-
messages is keyed to the English text “Error [1]: Illegal object type [2]”. The
following code fragment configures the text proxy proxy-1 and then evaluates it:

call gfr-configure-text-proxy(proxy-1, my-error-messages,
the symbol error-message-1, 123, the symbol foo);

ErrorMessage = call gfr-evaluate-text-proxy(proxy-1, the symbol English,
Win);

As a result of these calls, ErrorMessage will be “Error 123: Illegal object type foo”.

Argument Description

proxy A text proxy whose gfr-message-name, gfr-
text-resource-group, and gfr-substitutions
have been configured.

language The target language.

client The client originating this call.

Return Value Description

 text The text resulting from evaluating the
proxy.
147

gfr-get-all-unsubstituted-messages
Returns the full contents of a local text resource.

Synopsis

gfr-get-all-unsubstituted-messages
(resource: class gfr-local-text-resource, keys: class symbol-list,
 msgs: class text-list, client: class object)

Description

This procedure returns the full contents of a local text resource in two lists you
provide. This procedure does not clear the provided lists before appending the
keys and texts in the local text resource.

Example

The following call retrieves the contents of text-resource-1 into symbol-list-1 and
text-list-1:

call gfr-get-all-unsubstituted-messages(text-resource-1, symbol-list-1,
text-list-1, win);

Argument Description

resource The local text resource that is the target of
this operation.

keys A symbol list that will receive the keys
stored in the resource.

msgs A text list that will receive the message texts
stored in the resource.

client The client originating this call.
148

gfr-get-local-text-resource
gfr-get-local-text-resource
Returns the local text resource object belonging to a resource group, given a
language.

Synopsis

gfr-get-local-text-resource
(resource-group: class gfr-text-resource-group, language: symbol,
 client: class object)
-> resource: class gfr-local-text-resource

Description

This procedure returns a local text resource associated with a given resource
group in the specified language. All local text resource objects whose gfr-
resource-group attribute names the given resource group are considered potential
matches.

If the resource group is configured to allow the use of a default language and the
local text resource for the specified language is not found, the local text resource
corresponding to the default language is returned.

As a side effect of calling this procedure, if the local text resource is empty, a call is
made to gfr-load-local-text-resource-from-file, so the local text resource contains
its proper key-value pairs on return.

If a suitable local text resource cannot be found, the error gfr-language-not-found
is signalled.

Argument Description

resource-group The resource group that is the target of this
call.

language The target language.

client The client originating this call.

Return Value Description

resource The local text resource located by this call.
149

Example

The following code fragment gets the English-language local text resource from
the resource group named my-error-messages:

LocalResource = call gfr-get-local-text-resource(my-error-messages,
the symbol English, Win);
150

gfr-get-unsubstituted-message
gfr-get-unsubstituted-message
Returns a text from a local text resource based on a key, without substitutions.

Synopsis

gfr-get-unsubstituted-message
(local-resource: class gfr-local-text-resource, key: symbol, client: class object)
-> text: text

Description

This is a low-level procedure for returning a text from a local resource, given a
key. When you use this procedure, substitutions are not made in the text. An
empty string is returned if the key is not matched.

To retrieve a local text resource, use gfr-get-local-text-resource.

Example

The following code fragment gets a text keyed by the symbol error-message-1 in
English from a local resource associated with the resource group named my-error-
messages:

LocalResource = call gfr-get-local-text-resource(my-error-messages,
the symbol English, Win);

ErrorMessage = call gfr-get-unsubstituted-message(LocalResource,
the symbol error-message-1, Win);

Argument Description

local-resource The resource group that is the target of this
call.

key The symbolic key to the text being retrieved.

client The client originating this call.

Return Value Description

 text The text retrieved by this call.
151

gfr-language
A function that returns the language of a window or the default language.

Synopsis

gfr-language
(client: class object)
-> language: symbol

Description

Use the gfr-language function call when you are determining the language of a
g2-window or other client object.

• If the client is a window and the window-specific language of the window
exists, gfr-language returns that language.

• If not, this function returns the value of the current-language attribute of the
Language Parameters system table.

Example

The following function call gets the language of the window Win:

Language = gfr-language(Win);

Argument Description

client The client object whose language is to be
determined.

Return Value Description

 language The language of the window or the global
default.
152

gfr-load-local-text-resource-from-file
gfr-load-local-text-resource-from-file
Loads a local text resource with the key-text value pairs found in a file.

Synopsis

gfr-load-local-text-resource-from-file
(local-resource: class gfr-local-text-resource, client: class object)

Description

This procedure loads a local text resource, using the contents of the file identified
by the gfr-file-location attribute of local-resource. Only the key-text value pairs are
updated when the file is loaded; the remaining attributes of the local resource are
unaffected. The resource is cleared before loading the data contained in the file.
Calling this procedure does not affect the permanent values of the text resource.

For a description of the required file format, see Localizing KBs.

• If the file format is incorrect, the error gfr-invalid-file-format is signalled.

• If the file names a resource group other than that named by the gfr-resource-
group attribute of local-resource, the error gfr-wrong-resource-group is
signalled.

• If the file cannot be opened for read, the error gfr-open-file-failure is signalled.

Example

The following call loads the local text resource named local-resource-1, using the
file path specified in its gfr-file-location attribute:

call gfr-load-local-text-resource-from-file(local-resource-1, Win);

Argument Description

local-resource The resource group that is the target of this
call.

client The client originating this call.
153

gfr-localize-message
Gets the localized version of a text based on a resource group, key, and language,
and performs substitutions, if any.

Synopsis

gfr-localize-message
(resource-group: class gfr-text-resource-group, key: symbol, language: symbol,
 optional-arguments, client: class object)
-> text: text

Description

Calling this procedure is the standard way to obtain localized texts. Given a
resource group, key, and language, this procedure finds the local text resource,
retrieves the text corresponding to the key, and then performs substitutions on
the text for each bracketed integer.

This procedure may return the text in the default language of the resource group,
if the gfr-use-default-language of the resource group is true. If the key cannot be
found in either the specified language or the default language (if used), the empty
string (" ") is returned.

Argument Description

resource-group The resource group containing the key.

key A symbol that is the key for retrieving the
localized text.

language The language for the returned text.

optional-arguments Up to 10 values to be substituted into the
returned text.

client The client originating this call.

Return Value Description

 text The localized text produced by this call.
154

gfr-localize-message
Example

The following call retrieves an English-language text from the resource group
named my-error-messages. keyed by the symbol error-message-1, with the
substitutions 123 and the symbol foo:

ErrorMessage = call gfr-localize-message(my-error-messages,
the symbol error-message-1, the symbol English, 123, the symbol foo,
Win);

If the unsubstituted text is “Error [1]: Illegal object type [2]”, then ErrorMessage
will have the value “Error 123: Illegal object type foo” as a result of this call.
155

gfr-localize-messages-on-workspace
Localizes into a given language all items of the class gfr-localizable-message on a
given workspace.

Synopsis

gfr-localize-messages-on-workspace
(workspace: class kb-workspace, language: symbol, client: class object)

Description

This procedure localizes all localizable messages on a workspace. Each instance of
a gfr-localizable-message upon the workspace receives the following treatment:

• The text of the message is changed to the result obtained by evaluating the
text proxy of the message.

• The message is repositioned upon the workspace at the position indicated by
the position invariants of the message.

You must make all gfr-localizable-messages on the target workspace transient
before calling this procedure. You may make them permanent after the
completion of this procedure.

Example

Please refer to the example described in Using Localizable Message Classes.

Argument Description

workspace The workspace that contains messages to be
localized.

language The language for the localized messages.

client The client originating this call.
156

gfr-make-local-text-resource-permanent
gfr-make-local-text-resource-permanent
Makes the current key-text pairs in a local text resource a permanent part of the
KB.

Synopsis

gfr-make-local-text-resource-permanent
(local-resource: class gfr-local-text-resource, client: class object)

Description

This procedure makes the transient key-text value pairs stored in a local text
resource the initial values of the local resource. The initial values are the values
that will be stored when the KB is saved in a file and the values that the local
resource will have when G2 is initially started. See Storing Local Text Resources
for a full discussion of the alternative methods of persistent storage of the
information in a local text resource.

Example

The following call sets the initial values of the local text resource named local-
resource-1:

call gfr-make-local-text-resource-permanent(local-resource-1, Win);

Argument Description

local-resource The local resource that will be made
permanent by this call.

client The client originating this call.
157

gfr-modify-message-in-local-text-resource
Changes the text of one key-text pair in a local text resource.

Synopsis

gfr-modify-message-in-local-text-resource
(resource: class gfr-local-text-resource, key: symbol, msg: text,
 client: class object)

Description

This procedure changes the text associated with an existing key in a local text
resource and does not affect the permanent values of the local text resource.

• If you want your changes to be permanent, you must call gfr-make-local-text-
resource-permanent.

• To add a new key-text pair, see gfr-add-to-local-text-resource.

• If key does not exist, this procedure signals an error.

Example

The following call changes the text associated with the key gfr-sample to “New
sample text” in the local text resource named text-resource-1:

call gfr-modify-message-in-local-text-resource(text-resource-1,
the symbol gfr-sample, "New sample text", win);

Argument Description

resource The local text resource that is the target of
this operation.

key The symbolic key for the message to be
modified in the resource.

msg The text that will replace the existing text of
the message referenced by key.

client The client originating this call.
158

gfr-remove-from-local-text-resource
gfr-remove-from-local-text-resource
Removes one key-text pair from a local text resource.

Synopsis

gfr-remove-from-local-text-resource
(resource: class gfr-local-text-resource, key: symbol, client: class object)

Description

This procedure removes a key-text pair from a given local text resource based on
its key. This procedure does not affect the permanent values of the local text
resource.

• If you want your changes to be permanent, you must call gfr-make-local-text-
resource-permanent.

• If key does not exist, this procedure signals an error.

Example

The following call removes the key-text pair associated with the key gfr-sample in
the local text resource named text-resource-1:

call gfr-remove-from-local-text-resource(text-resource-1,
the symbol gfr-sample, win);

Argument Description

resource The local text resource that is the target of
this operation.

key The symbolic key for the message to be
removed from the resource.

client The client originating this call.
159

gfr-write-local-text-resource-to-file
Writes the current contents of a local text resource to a file.

Synopsis

gfr-write-local-text-resource-to-file
(local-resource: class gfr-local-text-resource, client: class object)

Description

This procedure writes the name of the resource group, version information,
language, and the current key-text value pairs stored in a local text resource to the
file identified by the gfr-file-location attribute of the local resource. For a
description of the resulting file format, see Localizing KBs. If the file cannot be
opened for read, the error gfr-open-file-failure is signalled.

Example

The following call writes the information in the local text resource local-
resource-1 to a file:

call gfr-write-local-text-resource-to-file(local-resource-1, Win);

Argument Description

local-resource The resource group that is the target of this
call.

client The client originating this call.
160

Procedures Dealing with Palette Management
Procedures Dealing with Palette Management
GFR provides the following procedures and functions for managing palettes:

gfr-add-palette-behavior-to-item

gfr-create-instance-using-palette-method

gfr-item-is-palette-object

gfr-remove-palette-behavior-from-item

gfr-show-bubble-help
161

gfr-add-palette-behavior-to-item
Adds a palette window to the item, giving it palette behavior.

Synopsis

gfr-add-palette-behavior-to-item
(item: class item, client: class object)
-> palette-window: class gfr-palette-window

Description

This procedure adds a palette window to the given item, giving it the palette
behavior defined in Managing Palettes.

This procedure can refer to inactive items.

Example

The following call gives item-1 palette behavior:

call gfr-add-palette-behavior-to-item(item-1, win);

Argument Description

item The item that is to be converted into a
palette item.

client The client originating this call.

Return Value Description

palette-window The new palette window created by this
procedure.
162

gfr-create-instance-using-palette-method
gfr-create-instance-using-palette-method
Programmatically creates an instance, using the same method used in creating
from a palette.

Synopsis

gfr-create-instance-using-palette-method
(class: symbol, client: class object)
-> instance: class item

Description

This procedure creates an item, using the palette creation method. The item
returned from this procedure is the same as it would be if you obtained it by
manual cloning from a palette. Since palette items can have a subworkspace, non-
default size or other non-default attributes depending on the palette
configuration and the nature of the gfr-create-instance-from-palette-item method,
the item returned from this procedure might be different from an item of the same
class created using the native G2 create action.

Example

The following call creates an instance of the class foobar:

Bar = call gfr-create-instance-using-palette-method(the symbol foobar, win);

Argument Description

class The class of the item that is to be created.

client The client originating this call.

Return Value Description

instance The new instance created by this procedure.
163

gfr-item-is-palette-object
A function that determines if an item has palette behavior.

Synopsis

gfr-item-is-palette-object
(item: class item)
-> outcome: truth-value

Description

This function is used to determine if an item has palette behavior. True is returned
if the item has a palette window or is a subobject of a palette item and therefore
has palette behavior; otherwise false is returned.

Example

The following function call determines if item-1 has palette behavior:

IsPaletteItem = gfr-item-is-palette-object(item-1);

Argument Description

item The item in question.

Return Value Description

outcome A truth-value indicating if the item has
palette behavior.
164

gfr-remove-palette-behavior-from-item
gfr-remove-palette-behavior-from-item
Removes the palette window from an item, removing its palette behavior.

Synopsis

gfr-remove-palette-behavior-from-item
(item: class item, client: class object)

Description

This procedure removes the palette window from the given item, if it contains
one. Removing palette behavior is defined in Managing Palettes.

Item can be an inactive item.

Example

The following call removes palette behavior from item-1:

call gfr-remove-palette-behavior-from-item(item-1, win);

Argument Description

item The item whose palette behavior is to be
removed.

client The client originating this call.
165

gfr-show-bubble-help
Pops up a workspace in the vicinity of the mouse.

Synopsis

gfr-show-bubble-help
(mouse-ws: class kb-workspace, bubble-ws: class kb-workspace,
 mouse-x: integer, mouse-y: integer, win: class g2-window)

Description

This procedure shows a workspace (called the bubble workspace) in the vicinity
of the mouse. If possible, the entire bubble workspace is shown on the screen,
without positioning the bubble workspace directly under the mouse.

You must provide the current mouse coordinates to this procedure, which are
usually provided from a mouse tracking procedure.

The magnification of the bubble workspace is automatically set to the same
magnification as the workspace that the mouse is currently tracking over.

Argument Description

mouse-ws The workspace that the mouse is currently
tracking over.

bubble-ws The workspace that is to be shown.

mouse-x The current mouse x-position upon
mouse-ws, as a workspace coordinate.

mouse-y The current mouse y-position upon
mouse-ws, as a workspace coordinate.

win The window where the bubble workspace is
to be shown.
166

Procedures Dealing with Unique IDs
Procedures Dealing with Unique IDs
GFR provides the following procedures for generating universal unique IDs:

gfr-check-uuids-on-cloned-item

gfr-universal-unique-id
167

gfr-check-uuids-on-cloned-item
Provides dispatch to the gfr-initialize and gfr-copy methods after programmatic
cloning.

Synopsis

gfr-check-uuids-on-cloned-item
(item: class item)

Description

You must call this procedure after creating an item, using a programmatic clone
action, if the item is a gfr-object-with-uuid or a gfr-message-with-uuid, or if it
contains an item of these classes in its workspace hierarchy.

Internally, this procedure has an efficient way to check for the existence of ID-
bearing items in the workspace hierarchy. If the item you cloned has a
subworkspace and you are unsure about the possible presence of ID-bearing
items in this hierarchy, do not bother to check for the presence of such an item
before calling this procedure; simply call it, and the checking will be done for you.

Example

The following code fragments illustrate the correct use of this procedure:

create a item Bar2 by cloning Bar;
call gfr-check-uuids-on-cloned-item(Bar2);

create a kb-workspace WS2 by cloning WS1;
call gfr-check-uuids-on-cloned-item(WS2);

Argument Description

item An item that has just been created by
programmatic cloning.
168

gfr-universal-unique-id
gfr-universal-unique-id
Generates a universal unique identifier.

Synopsis

gfr-universal-unique-id ()
-> uuid: text

Description

This procedure generates a UUID with the format discussed in Unique ID Format.

Example

The following generates a UUID:

UUID = call gfr-universal-unique-id();

Return Value Description

 uuid A universal unique ID.
169

File Parsing and Miscellaneous Functions
and Procedures

GFR provides the following procedures and functions for parsing the contents of
files and for returning the coordinates of item edges:

gfr-bottom

gfr-convert-value-list-to-string

gfr-left

gfr-load-file-into-list

gfr-parse-string-into-value-list

gfr-right

gfr-top
170

gfr-bottom
gfr-bottom
A function that returns the location in workspace coordinates of the bottom edge
of an item on a workspace.

Synopsis

gfr-top
(item: class item)
-> coordinate: integer

Description

This function returns the integer coordinate for the bottom edge of an item on a
workspace. The coordinate is measured from the origin (0, 0) of the workspace.

Argument Description

item The item whose bottom edge you want to
locate.

Return Value Description

coordinate An integer representing the coordinate for
the bottom edge of the item.
171

gfr-convert-value-list-to-string
Converts a value list into a string suitable for saving to a file, using the system
procedure g2-write-line-in-gensym-charset.

Synopsis

gfr-convert-value-list-to-string
(values: class value-list, separator: text, clear-list: truth-value,
 client: class object)
-> string: text

Description

You use this procedure to generate a text string by concatenating the elements of a
value list, or any subclass of value list, using the given separator between
elements. This procedure is the inverse of gfr-parse-string-into-value-list, and
follows the same rules for handling G2’s value types. The rules are as follows:

• Truth values, integer, and symbols are written out as is.

• Floating point numbers are expressed to the full available precision.

• Texts are delineated with quotation marks, and quotes that are part of the text
are replaced by two consecutive quotation marks.

Because of these conversions, the resulting string is not necessarily equivalent to
simple text concatenation using G2’s text concatenation operators.

Argument Description

values A list of values that are to be converted to a
string.

separator A character used to separate the values in
the list.

clear-list A truth-value indicating whether the value
list is to returned empty or with its elements
intact.

client The client originating this call.

Return Value Description

 string The text string that is generated.
172

gfr-convert-value-list-to-string
For correct handling of multiple-line texts or texts with special characters, you
must use g2-write-line-in-gensym-charset, rather than g2-write-line, if you write
the resulting string to a file.

Often the separator is a comma or a comma followed by a space, but you can use
any G2 text. Set the argument clear-list to true if you want this procedure to
return your value list empty, which can be useful when you are using this
procedure in an iteration.

Example

Suppose we have a value-list containing the following elements:

The following text fragment opens the file foo.text, generates a string, and writes
the string to the file:

Stream = call g2-open-file-for-write("foo.text");
String = call gfr-convert-value-list-to-string(values, ", ", false, win);
call g2-write-line-in-gensym-charset(Stream, String);
call g2-close-file(Stream);

The file foo.text contains the following line of text:

true, false, , 1.0e32, "ab\ SScde", ABC, "Bob says ""hi""", 1, ,

Element Value Type

0 true truth-value

1 false truth-value

2 !nv text

3 1.0e32 float

4 ab
cde

text

5 abc symbol

6 Bob says “hi” text

7 1 integer

8 !nv text
173

gfr-left
A function that returns the location in workspace coordinates of the left edge of
an item on a workspace.

Synopsis

gfr-top
(item: class item)
-> coordinate: integer

Description

This function returns the integer coordinate for the left edge of an item on a
workspace. The coordinate is measured from the origin (0, 0) of the workspace.

Argument Description

item The item whose left edge you want to locate.

Return Value Description

coordinate An integer representing the coordinate for
the left edge of the item.
174

gfr-load-file-into-list
gfr-load-file-into-list
Loads the contents of a comma-separated-value file into a value list.

Synopsis

gfr-load-file-into-list
(stream: class g2-stream, data: class value-list,
 values-per-line: class integer-list, progress: class integer-parameter,
 allow-other-processing-interval: integer, client: class object)
-> outcome: truth-value

Description

This procedure loads the contents of a file into a value list. The file that is written
must be opened prior to this call, and is provided as a g2-stream object. For more
information on streams, refer to the G2 System Procedures Reference Manual.

The format of the file must be as follows:

Argument Description

stream A g2-stream that was generated by calling
g2-open-file-for-write or g2-open-file-for-
read-and-write.

data A value list that receives the values read
from the file.

values-per-line An integer list that receives the number of
values per line in the file.

progress An integer parameter that is incremented as
the save proceeds, which can also be used to
interrupt this procedure.

allow-other-
processing-interval

An integer indicating how many lines
should be read before allowing other
processing.

client The client originating this call.

Return Value Description

outcome A truth-value indicated whether the load
completed.
175

• The file can have any number of lines.

• The values on each line are separated by a comma.

• The number of values on a line may vary.

• Texts are explicitly quoted, embedded quotes within a text are doubled (each
quote is replaced by a two quotes).

• Line breaks embedded within texts are represented as the character sequence
“@L” or “\ SS.”

• Special characters appearing in texts are represented in their encoded form, as
given in the G2 Reference Manual, for example, the trademark symbol is
represented as ~:

The texts read from the file are converted into the G2 value types according to the
rules explained in the description of gfr-parse-string-into-value-list. The values
are appended to the value-list data, which you provide. As each line of the file is
read, the number of values on the line is appended to values-per-line. Neither data
nor values-per-line are cleared when this procedure is called.

This procedure periodically allows other processing (see the G2 Reference Manual
for discussion of allow other processing statements). Just before allowing other
processing, the progress parameter is updated to indicate the percentage complete
of the load. Progress has a final value of 100 when the load is finished. If you start
(rather than call) this procedure, you can set up a monitor that receives control
when progress is updated, by using a wait until progress receives a value
statement.

The other use of the progress parameter is to abort a load in progress. If you delete
progress before the completion of the load, the load will be aborted at the next
allow other processing break. If the load is aborted, this procedure returns false.
Otherwise, it returns true.

If you want G2 to continue other scheduled activities while the file load is in
progress, set the allow-other-processing-interval argument to a small number of
lines. You may set this parameter to a large number if you want the procedure to
run without interruption.

Example

Suppose we have a file that contains the following lines:

true, false, , 1.0e32
"ab\ SScde", abc, "Bob says ""hi"""
1,

The following code fragment reads this file, assuming it is already open for read
on stream-1:
176

gfr-load-file-into-list
create a value-list Data;
create an integer-list ValsPerRow;
create an integer-parameter Progress;
call gfr-load-file-into-list(stream-1, Data, ValsPerRow, Progress, 20, Win);

As a result of this call, ValsPerRow = (4, 3, 2) and Data contains the following
elements:

Note that, in this case, the processing inside gfr-load-file-into-list occurred as a
single uninterrupted activity because the allow-other-processing-interval (20) was
greater than the number of lines in the file (3).

Element Value Type

0 true truth-value

1 false truth-value

2 !nv text

3 1.0e32 float

4 ab
cde

text

5 abc symbol

6 Bob says "hi" text

7 1 integer

8 !nv text
177

gfr-parse-string-into-value-list
Converts a line of text into a value list according to parsing rules based on G2’s
value types.

Synopsis

gfr-parse-string-into-value-list
(input-text: text, data: class value-list, separator: text, client: class object)

Description

This procedure converts a text into one or more G2 values, which are appended to
the value list data. When this procedure is called, the input text is first separated
into substrings, or tokens, delimited by the specified separator, ignoring
separators embedded in text strings. Each token is converted to a value, using the
following rules:

• If the token is the empty string or consists only of white space, the text !nv is
inserted into data.

• If there are opening and closing quotes, the token is converted to a text by
removing the surrounding quotes, and replacing any embedded double
quotes with one quotation mark, and replacing the line break sequence <lb>
with an actual line break.

• If the token begins with a quantity, it is converted to a quantity using G2’s
quantity operator, which can return either an integer or a float.

• If the token is true or false, it is converted into a truth-value.

• Otherwise, the token is converted to a symbol using G2’s symbol function.

If the last step fails to yield a valid token, the text !nv is inserted at the end of data.

Argument Description

input-text The text that is to be parsed.

data A value list that receives the values parsed
from the input-text.

separator The text that separates the values in the
input-text.

client The client originating this call.
178

gfr-parse-string-into-value-list
Example

See gfr-load-file-into-list for examples of the text conversion in this procedure.
179

gfr-right
A function that returns the location in workspace coordinates of the right edge of
an item on a workspace.

Synopsis

gfr-right
(item: class item)
-> coordinate: integer

Description

This function returns the integer coordinate for the right edge of an item on a
workspace. The coordinate is measured from the origin (0, 0) of the workspace.

Argument Description

item The item whose right edge you want to
locate.

Return Value Description

coordinate An integer representing the coordinate for
the right edge of the item.
180

gfr-top
gfr-top
A function that returns the location in workspace coordinates of the top edge of
an item on a workspace.

Synopsis

gfr-top
(item: class item)
-> coordinate: integer

Description

This function returns the integer coordinate for the top edge of an item on a
workspace. The coordinate is measured from the origin (0, 0) of the workspace.

Argument Description

item The item whose top edge you want to locate.

Return Value Description

coordinate An integer representing the coordinate for
the top edge of the item.
181

182

Index
 @ A B C D E F G H I J K L M
 # N O P Q R S T U V W X Y Z
A
active settings
add palette behavior item menu choice
Administrator mode
alert dialogs
alert objects
API reference
Application Programmers Interface

See API
arguments

for API procedures
assigning unique IDs

programmatically
automatic upgrade
automerge

B
bubble help

adding

C
cached module information
call

where originated
call next facility
carriage returns
classes

private
public

client object
cloning

UUID items
common resources

allocation of
communication handlers

custom
communications

API for structured
for system messages
modeled as objects for user interface
user interface
compatible versions

oldest
configurations

for palette workspaces
confirm dialogs
conventions

for public and private classes
copyright
customer support services

D
default language

setting
duplicate IDs

deleting objects with
duplicate UUID detection

E
error handling facility
errors

user interface
external client
external text file

F
file format

of local text resources
file parsing

utility for
files

loading contents into a value list
parsing contents programmatically

functions
for determining workspace coordinates of

items
183

G
G2

version information
G2 Foundation Resources

See GFR
G2 minimum version
G2 system tables
G2 version

gfr-get-g2-version API call
returning programmatically

G2 XL Spreadsheet
using to edit local text resources

g2-set-font-of-text-box
g2-window object
gaps

in version numbers
Gensym character set
GFR

introduction to
loading
obtaining current version, using API
palette system described
top-level workspace
unique ID system
using for localizing KBs
utilities

gfr.kb

gfr-add-palette-behavior-to-item API
gfr-add-to-local-text-resource

API
gfr-alert

class
creating object

gfr-bottom
API
using

gfr-build-information attribute
gfr-button-label

attribute of gfr-alert class
gfr-call-next-communication-handler

API
using

gfr-call-next-error-handler API
gfr-cancel-button-label attribute

of gfr-confirm-class
gfr-check-uuids-on-cloned-item API
gfr-clear-local-text-resource API
gfr-communication class
gfr-configure-text-proxy API
gfr-confirm class
184
gfr-confirmation-timeout attribute
of gfr-confirm-class

gfr-convert-value-list-to-string API
gfr-copy method
gfr-copyright-information attribute
gfr-create-instance-using-palette-method API
gfr-default-language attribute

of gfr-text-resource-group
gfr-default-window
gfr-deposit-item-in-public-bin

API
using

gfr-disable-error-handling
API

gfr-disable-version-checking
API

gfr-dispatch-communication
API
using

gfr-do-single-text-substitution
API

gfr-enable-error-handling
API

gfr-enable-version-checking
API

gfr-error-or-communications-handler
class

gfr-evaluate-text-proxy
API

gfr-file-location attribute
of gfr-local-text-resource

gfr-get-active-setting
API

gfr-get-all-unsubstituted-messages
API

gfr-get-directly-required-modules
API

gfr-get-directly-requiring-modules
API
using

gfr-get-g2-version
API
using

gfr-get-handler-hierarchy
API

gfr-get-linearized-module-hierarchy
API
using

gfr-get-local-text-resource
API

gfr-get-module-of-item

API
gfr-get-public-bin-for-module

API
gfr-get-required-modules

API
gfr-get-requiring-modules

API
using

gfr-get-supporting-version-information
API

gfr-get-top-level-module
API

gfr-get-unsubstituted-message
API

gfr-get-version
API
using

gfr-horizontal-position-invariant
attribute

gfr-id
attribute

gfr-initialize
method

gfr-install-module-settings
API

gfr-invalidate-module-information
API
using

gfr-item-is-palette-object
API

gfr-language
API
attribute of gfr-local-text-resource

gfr-left
API
using

gfr-load-file-into-list
API
reading file data

gfr-load-local-text-resource-from-file
API

gfr-localizable-message
API
using

gfr-localize-message
API
using

gfr-localize-messages-on-workspace
API

gfr-local-text-resource class
attributes
gfr-make-local-text-resource-permanent
API

gfr-message-name
attribute of gfr-simple-text-proxy and gfr-

text-proxy
gfr-message-with-uuid

class
gfr-minimum-g2-version

attribute
gfr-modify-message-in-local-text-resource

API
gfr-module-name

attribute
gfr-no-button-label

attribute of gfr-confirm
gfr-object-with-uuid

class
gfr-ok-button-label

attribute of gfr-confirm-class
gfr-oldest-compatible-version

attribute
gfr-package-name

attribute
gfr-parse-string-into-value-list

API
reading file data

gfr-preload-resource
attribute of gfr-local-text-resource

gfr-prompt-text
attribute of gfr-alert class
attribute of gfr-confirm-class

gfr-propagate-module-setting-information
method

gfr-remove-from-local-text-resource
API

gfr-remove-palette-behavior-from-item
API

gfr-resource-group
attribute of gfr-local-text-resource
class

gfr-right
API
using

gfr-show-bubble-help
API

gfr-simple-localizable-message
class

gfr-simple-text-proxy
class

gfr-startup-module
API
185

gfr-startup-modules
API

gfr-startup-object
signature for startup procedure

gfr-substitutions
attribute of gfr-text-proxy

gfr-test-messages
class

gfr-text-proxy
attribute
class

gfr-text-resource-group
attribute of gfr-simple-text-proxy and gfr-

text-proxy
gfr-text-resource-group class

specifying default language for each
gfr-top

API
using

gfr-top-level
creating local text group from palette
GFR palette

gfr-universal-unique-id
API
generating unique IDs programmatically

gfr-upgrade-procedure attribute
gfr-use-default-language

attribute of gfr-text-resource-group
gfr-uuid attribute

of unique ID classes
gfr-version

attribute of gfr-local-text-resource
attribute of gfr-text-resource-group

gfr-version-description
attribute

gfr-version-information-object
class

gfr-version-number
attribute

gfr-vertical-invariant
attribute

gfr-write-local-text-resource-to-file
API

gfr-yes-button-label attribute
of gfr-confirm-class

gxl-top-level workspace

H
handles
186
providing through unique IDs
hierarchical development

I
ID-management system
illegal operation
indexed attributes

used in unique IDs
initially rules
item configurations

for a palette workspace
items

edge position functions
obtaining workspace coordinates through

functions

K
KBs

initialization activities
localizing

key
symbol-text pair in text resources

keystroke commands
key-text pairs

adding to a GXL spreadsheet
adding with gfr-add-to-local-text-resource
changing with gfr-modify-message-in-

local-text-resource
clearing with gfr-clear-local-text-resource
making local text resources permanent

programmatically
of local text resources
removing with gfr-remove-from-local-text-

resource
knowledge bases

See KBs

L
language

of a window
getting programmatically

setting a default
user interface and

loading GFR
local text resources

editing using an external text editor
format for

getting text based on a key from, using gfr-
get-unsubstituted-message

getting using gfr-get-local-text-resource
interacting with
loading
loading file contents into G2
loading on demand
loading with key-text pairs

programmatically
storing
storing permanently
writing current contents to file

programmatically
localizable messages

example of using
localization
localized text

getting programmatically based on
resource group, key, and language

retrieving at run time
localizing KB text

APIs for
definition of

lower-level modules

M
memory penalty
methods

gfr-copy
mixin class
modular KB development
modularized
module hierarchies
module management in GFR

depositing items in other modules
functions for determining module

hierarchy
installing module settings
managing cached module information
module settings
using module startup objects

module settings
loading and activating

module-is-active attribute
modules

lower-level
returning name of
version information for loaded

mouse tracking
used in palette management
multiple modules
multiple-module KBs

N
nameplate workspace

O
objects

used for communications

P
package name
palette behavior

adding to items
checking item for programmatically
deleting item with

palette items
controlling initialization when created

palette management
APIs for

palette preparation
menu choices
tools

palette windows
adding to an item programmatically
removing from item programmatically
resizing

palette workspaces
adding configurations to

palettes
precedence

of communication handling
private classes

conventions for
procedures

for generating UUIDs
for localizing text in a KB
for palette management
for parsing file contents
for structured communications in a KB

programmatically assigning UUIDs
proprietary palettes
proprietary workspaces
public bin

adding version information object to
public classes
187

conventions for

R
reading file data
release

major and minor
release number
remove palette behavior menu choice
removing palette behavior from an item
reset

and GFR ID management system
creating objects by instantiation or cloning

while G2 is

S
shareable resources

and user interface
show palette window workspace menu choice
signal statement
spreadsheet
startup
startup actions
startup activities

coordinating
startup objects

when to use
startup procedure
startup-procedure attribute
strings

converting into value list
programmatically

substituting text in localized texts
subworkspaces

cloning and UUIDs
symbol-text pairs

entering into a local text resource
in resource objects

system tables

T
text

storing in resource objects
text proxies

for object attributes
returning text represented by
setting with gfr-configure-text-proxy

text resource groups
188
getting text resource object belonging to
text resource objects

for storing text
text substitution

using gfr-do-single-text-substitution
within localized texts

text translation
this window syntax
thread of processing
tool tips

adding

U
Universal Unique ID (UUID)

See UUIDs
universal unique identifiers

See UUIDs
upgrade procedures
user interface
user menu choices

on items during palette preparation
user mode
using palettes
UUIDs

assigning to newly-created items
checking on cloned item
format of
generating programmatically
GFR facility
referencing items through
validating

V
validating UUIDs
value list
version checking system
version control
version dependencies
version history
version information

editing attributes
G2 and all loaded modules
object
of G2
of GFR
placing object
returning GFR programmatically

versions

description
minimum G2
number
oldest compatible

viewing items that have palette behavior

W
warmbooting
warmboot-procedure

attribute
workspace coordinates of items

functions for obtaining
workspaces

cloning and UUIDs
gxl-top-level
proprietary
with palette behavior items

adding configurations to
189

190

	Contents Summary
	Contents
	Preface
	About this Guide
	Audience
	Organization
	A Note About the API
	Conventions
	Related Documentation
	Customer Support Services

	What is GFR?
	Overview of G2 Foundation Resources
	Introduction
	Module Management Utilities
	Communications and Error Handling
	Localization
	Palette Management
	Unique ID Facility
	Text Parsing and Other Utilities
	Loading and Running GFR
	Application Programmer’s Interface

	Using GFR
	Managing Modules
	Introduction
	Module Version Control
	Version Information Object Attributes
	Specifying the Module Version
	Specifying the Minimum G2 Version
	Specifying the Oldest Compatible Module Version
	Getting Version Information
	Providing an Upgrade Procedure

	Using Module Startup Objects
	Attributes of the Startup Object
	Warmbooting
	Starting Up When a KB is Not Consistently Modularized

	Managing User-Settable Parameters for Modules
	Loading and Activating Module Settings
	Using GFR’s Module Settings

	Using Module Management Procedures and Functions
	Getting Information on the Module Hierarchy
	Managing Cached Module Information
	Depositing Items in Other Modules

	Handling Errors and Communications
	Introduction
	Communication and Error Handlers
	Handler Precedence

	Using Communications Objects
	Using gfr-alert
	Using gfr-confirm

	Using GFR’s Error Handling Facility
	The gfr-error Class

	Writing Your Own Handlers
	Using the Call Next Facility

	Localizing KBs
	Introduction
	Storing Texts in Resource Objects
	Using Local Text Resources
	Storing Local Text Resources
	Using Text Resource Groups

	Accessing Localized Texts
	Using Text Substitutions
	Using Text Proxies
	Using Localizable Message Classes
	Example

	Using Default Languages

	Managing Palettes
	Introduction
	Standardizing Palette Creation and Management
	Implementing Palette Behavior for Items
	Adding Palette Behavior to an Item
	Understanding How Items are Created from a Palette
	Cloning the Palette Item
	Handling Complex Initialization Requirements

	Configuring Palette Workspaces
	Special Considerations for Proprietary Palettes

	Adding Bubble Help to Palette Items

	The Universal Unique ID System
	Introduction
	Unique ID Format
	Inheriting Classes with Universal Unique IDs
	Referencing an Item through its UUID
	Using the ID Management System
	Creating ID-Bearing Items Programmatically
	Using the gfr-initialize Method
	Using the gfr-copy Method
	Validating UUIDs

	Additional GFR Utilities
	Introduction
	File Parsing
	Item Edge Position Functions

	API Procedures and Functions
	Application Programmer’s Interface
	Introduction
	Specifying the Client Object Argument

	Module Management Utilities
	gfr-deposit-item-in-public-bin
	gfr-disable-error-handling
	gfr-disable-version-checking
	gfr-enable-error-handling
	gfr-enable-version-checking
	gfr-get-active-setting
	gfr-get-directly-required-modules
	gfr-get-directly-requiring-modules
	gfr-get-g2-version
	gfr-get-handler-hierarchy
	gfr-get-linearized-module-hierarchy
	gfr-get-module-of-item
	gfr-get-public-bin-for-module
	gfr-get-required-modules
	gfr-get-requiring-modules
	gfr-get-supporting-version-information
	gfr-get-top-level-module
	gfr-get-version
	gfr-install-module-settings
	gfr-invalidate-module-information
	gfr-startup-module
	gfr-startup-modules

	Communications Operations
	gfr-call-next-communication-handler
	gfr-call-next-error-handler
	gfr-dispatch-communication

	Localization Operations
	gfr-add-to-local-text-resource
	gfr-clear-local-text-resource
	gfr-configure-text-proxy
	gfr-do-single-text-substitution
	gfr-evaluate-text-proxy
	gfr-get-all-unsubstituted-messages
	gfr-get-local-text-resource
	gfr-get-unsubstituted-message
	gfr-language
	gfr-load-local-text-resource-from-file
	gfr-localize-message
	gfr-localize-messages-on-workspace
	gfr-make-local-text-resource-permanent
	gfr-modify-message-in-local-text-resource
	gfr-remove-from-local-text-resource
	gfr-write-local-text-resource-to-file

	Procedures Dealing with Palette Management
	gfr-add-palette-behavior-to-item
	gfr-create-instance-using-palette-method
	gfr-item-is-palette-object
	gfr-remove-palette-behavior-from-item
	gfr-show-bubble-help

	Procedures Dealing with Unique IDs
	gfr-check-uuids-on-cloned-item
	gfr-universal-unique-id

	File Parsing and Miscellaneous Functions and Procedures
	gfr-bottom
	gfr-convert-value-list-to-string
	gfr-left
	gfr-load-file-into-list
	gfr-parse-string-into-value-list
	gfr-right
	gfr-top

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

