
G2 Menu System

User’s Guide
Version 2015

G2 Menu System User’s Guide, Version 2015

December 2015

The information in this publication is subject to change without notice and does not represent a
commitment by Gensym Corporation.

Although this software has been extensively tested, Gensym cannot guarantee error-free
performance in all applications. Accordingly, use of the software is at the customer’s sole risk.

Copyright (c) 1985-2015 Gensym Corporation

All rights reserved. No part of this document may be reproduced, stored in a retrieval system,
translated, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of Gensym Corporation.

Gensym®, G2®, Optegrity®, and ReThink® are registered trademarks of Gensym Corporation.

NeurOn-Line™, Dynamic Scheduling™ G2 Real-Time Expert System™, G2 ActiveXLink™, G2
BeanBuilder™, G2 CORBALink™, G2 Diagnostic Assistant™, G2 Gateway™, G2 GUIDE™,
G2GL™, G2 JavaLink™, G2 ProTools™, GDA™, GFI™, GSI™, ICP™, Integrity™, and SymCure™
are trademarks of Gensym Corporation.

Telewindows is a trademark or registered trademark of Microsoft Corporation in the United States
and/or other countries. Telewindows is used by Gensym Corporation under license from owner.

This software is based in part on the work of the Independent JPEG Group.

Copyright (c) 1998-2002 Daniel Veillard. All Rights Reserved.

SCOR® is a registered trademark of PRTM.

License for Scintilla and SciTE, Copyright 1998-2003 by Neil Hodgson, All Rights Reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/).

All other products or services mentioned in this document are identified by the trademarks or
service marks of their respective companies or organizations, and Gensym Corporation disclaims
any responsibility for specifying which marks are owned by which companies or organizations.

Gensym Corporation
52 Second Avenue
Burlington, MA 01803 USA
Telephone: (781) 265-7100
Fax: (781) 265-7101 Part Number: DOC024-1200

Contents Summary
Preface xiii

Part I Introduction 1

Chapter 1 Overview of the G2 Menu System 3

Chapter 2 Getting Started 13

Part II Creating a Menu 19

Chapter 3 Defining a Simple Menu 21

Chapter 4 Compiling the Menu Specification 47

Chapter 5 Using Specialized Templates 55

Chapter 6 Defining Popup Menus 67

Chapter 7 Writing and Using Callback Procedures 75

Chapter 8 Dynamically Defining and Changing Menus 87

Chapter 9 Including Additional Features in a Menu 101

Part III Controlling GMS 113

Chapter 10 Controlling Access to Menus 115

Chapter 11 Controlling the Appearance of Icons 121

Chapter 12 Internationalizing GMS Menus 133

Chapter 13 Configuring Global GMS Characteristics 139
iii

Chapter 14 Customizing the GMS Interface to the User 147

Chapter 15 Specifying the Interface between GMS and G2 159

Chapter 16 Managing GMS Programmatically 165

Part IV Appendixes 171

Appendix A GMS API Reference 173

Appendix B GMS Common Names and Formal Names 183

Glossary 185

Index 193
iv

Contents
Preface xiii

About this Guide xiii

Audience xiv

Organization xiv

A Note About the API xvi

Conventions xvii

Related Documentation xviii

Customer Support Services xxi

Part I Introduction 1

Chapter 1 Overview of the G2 Menu System 3

Introduction 3

What is GMS? 3

GMS Menu Types 4
Pulldown Menus in Menu Bars 4
Popup Menus 5
Cascade Menus 6

GMS Menu Entries 7
Components of a Menu Entry 7
Types of Menu Entries 7
Selecting and Choosing Menu Entries 8
Enabled and Disabled Menu Entries 8
Adding a Check to a Leaf Entry 8
Associating Help with a Menu Entry 9

GMS Menu Customizations 9
Using Dividers in Menu Panels 9
Choosing a Menu Entry 10
Defining GMS Menus Statically or Dynamically 11
Customizing GMS Menus Globally or for Each User 11

Displaying GMS Menus in Telewindows 12
v

Chapter 2 Getting Started 13

Introduction 13

Installing GMS 14
Requirements for Running GMS 14
Starting GMS 14

GMS Modules 15

The GMS Demo KB 15
Using the Demo KB 17
Navigating a Demo 17

Part II Creating a Menu 19

Chapter 3 Defining a Simple Menu 21

Introduction 22

Components of a Menu Specification 22
Example of a GMS Menu Specification 24

Displaying the GMS Palette 25

Creating Menu Templates 29

Using Root Templates 30
The Menu Bar Template 31
The Popup Menu Template 31

Using Entry Templates 31
Cascade Menu Template 31
Leaf Entry Template 31

Using Connections 32
Submenu Connection 32
Peer Menu Connection 32
Managing Connection Stubs 32

Specifying Menu Properties 34
Attributes of a Root Template 34
Additional Attribute for Popup Menus 38
Notes on the Root Template’s Properties 38
Attributes of a Menu Entry Template 38
Additional Attribute of a Cascade Menu Template 42
Additional Attributes of a Leaf Entry Template 43

Accessing a Menu Entry’s Properties Programmatically 44
Accessing a Menu Entry’s Label 44
Specifying Menu Entry Initial States 44
vi

Checking and Unchecking Menu Entries 45

Specifying the Effect of Choosing a Leaf Entry 46

Chapter 4 Compiling the Menu Specification 47

Introduction 47

How GMS Compiles Menu Specifications 47
The Menu Translation 48
The Menu Instance 49
The Handle 49
Compiling One or All Menus 49

Displaying Compiled Menus 50
GMS Handles for G2 Windows 50

Referencing Menus and Menu Entries 51
Menu Indexes 51
Mapping between User Keys and Menu Indexes 51

Displaying and Undisplaying Menu Bars 52

Chapter 5 Using Specialized Templates 55

Introduction 55

Predefined Leaf Templates 56

Changing the User Mode 57
Change User Mode Template Attributes 57

Displaying a Workspace 58
Show Workspace Template Attributes 58
Specifying the Workspace to Display 61
Specifying the Display Scale 61
Specifying the Workspace Location 62

Creating Built-in G2 Menus 64

Chapter 6 Defining Popup Menus 67

Introduction 67

Defining a Popup Menu 68
Creating a Menu Specification for a Popup Menu 68
Specifying a Popup Menu Header 69

Displaying Popup Menus 70
Using gms-popup-subscriber to Display a Popup Menu 70
Using G2 Configurations to Display a Popup Menu 71
vii

Chapter 7 Writing and Using Callback Procedures 75

Introduction 75

Types of GMS Callback Procedures 76

Invoking a Procedure Upon Menu Selection 76

Using Activation Callback Arguments 77
Obtaining the G2 Window 78
Obtaining the Initiating Item for a Popup Menu 78
Obtaining Menu Entries and Attribute Values 79

Providing Additional Data to an Activation Callback 81
Storing Information in Template Keys 81
Using Template Keys to Access Information 82
Other Strategies for Providing Data to a Callback 82
Distributing Data over Multiple Menu Templates 83

Specifying a Default Activation Callback 83

Invoking a Procedure When a Menu is Displayed or Hidden 84

Invoking a Procedure on Selection and Unselection 85

Chapter 8 Dynamically Defining and Changing Menus 87

Introduction 87

Dynamically Constructed Menu Specifications 88
Specifying a Dynamic Menu 88
Attributes of Dynamic Templates 90

Dynamic Menu Compilation and Display 91

Panel Constructor Procedure Syntax 91

Writing a Panel Constructor 92
Specifying Labels for Templates in Dynamic Panels 94

Using Template Lists 94

Defining and Displaying a Dynamic Cascade Menu 94

Defining and Displaying a Dynamic Popup Menu 95

Dynamic Menus and Callback Procedures 96

Reducing Dynamic Menu Overhead 96
Constructing Dynamic Menus at Compilation Time 97
Reusing Dynamically Constructed Templates 97

Dynamically Switching between Applications 98
Switching Menu Bars 99
viii

Chapter 9 Including Additional Features in a Menu 101

Introduction 101

Divider Templates 102
Separators 102
Breaks 103
Justifiers 103

Specifying Additional Menu Entry Properties 104
Specifying a Dialog Entry on a Menu Entry Label 104
Specifying a Menu Entry Accelerator Label 104
Specifying Help Information 105

Placing Menu Specifications on Multiple Workspaces 106
Using Connection Posts to Distribute Menu Specifications 106
Using SubPanel Containers to Distribute Menu Specifications 106

Extending Menu Specifications across Modules 108

Creating Reusable Cascade Menus 110

Part III Controlling GMS 113

Chapter 10 Controlling Access to Menus 115

Introduction 115

Controlling Access to Menus 116
Locking All Menus Against User Input 116
Disabling and Enabling Menu Entries 117
Restricting Menus in Specified User Modes 118

Undisplaying All Menus 120

Chapter 11 Controlling the Appearance of Icons 121

Introduction 121

Specifying a Menu Entry Icon 122
Controlling Icon Color 123

Configuring a GMS Icon 124
Attributes of a GMS Icon Specification 125
Default Highlightable Icon Colors 127
Specifying Highlightable Icon Colors 128
Other Uses for Highlightable Icons 128

Specifying Icon Scaling 128
Avoiding Icon Scaling Entirely 129
Controlling Icon Scaling 130
ix

Making Additional Room for an Icon 131

Chapter 12 Internationalizing GMS Menus 133

Introduction 133

Making Menu Text International 134

Specifying that GMS is to Use GFR 135

Specifying the Language of Translation 135

Specifying the Translation Dictionary 136

The GMS Text Resources 136

Internationalizing Extensible Menus 137

Internationalizing Dynamic Menus 137

Chapter 13 Configuring Global GMS Characteristics 139

Introduction 139

Attributes of a Global Settings Object 140

Managing Global Settings 141
Global Settings for Multiple Applications 142

Specifying Global Settings 143
Specifying Automatic GMS Startup 143
Preserving the Compiled Resource on Reset 143
Specifying the Maximum Number of Entries 144
Suppressing Global Consistency Checking 144
Specifying Internationalization 145

Chapter 14 Customizing the GMS Interface to the User 147

Introduction 147

User Preferences Objects 148

Managing User Preferences 152
Obtaining the Current User Preferences Object 152
Creating a User Preferences Object 152
Registering Individual User Preferences 153
Specifying Generic User Preferences 153
Searching for User Preferences 154
Changing the User Preferences Currently in Effect 154

Specifying User Preferences 154
Specifying Font and Separator Size 154
Controlling Help Information 155
x

Controlling Colors 155
Specifying Menu Navigation Modes 156
Controlling Menu Blinking 156
Designating an Initial Menu Bar 157
Raising the Menu Bar to the Top 157
Specifying Internationalization 157

Chapter 15 Specifying the Interface between GMS and G2 159

Introduction 159

Accessing GMS Resources from Outside GMS 160
Accessing the Compiled Resource 160
Executing a Callback Procedure 161

Implementing Keyboard Accelerators 162

Handling Mouse Events for Popup Menus 162
Configuring GMS to Handle Mouse Events 163
Managing a Popup from a Mouse Tracking Procedure 163

Chapter 16 Managing GMS Programmatically 165

Introduction 165

Compiling and Building Menus 166
Compiling Menus 166
Building Menus 168

Changing Global Settings 168

Managing User Preferences 169
Changing User Preferences 169

Resetting GMS without Resetting G2 170

Part IV Appendixes 171

Appendix A GMS API Reference 173

Appendix B GMS Common Names and Formal Names 183

Glossary 185

Index 193
xi

xii

Preface
Describes this user’s guide and the conventions that it uses.

About this Guide xiii

Audience xiv

Organization xiv

A Note About the API xvi

Conventions xvii

Related Documentation xviii

Customer Support Services xx

About this Guide
This guide contains complete information about the G2 Menu System (GMS) and
shows you how to use GMS at any supported level. This guide:

• Introduces the G2 Menu System and describes the menus and associated
capabilities that it provides.

• Describes the GMS user interface and shows you how to use it to define
menus graphically.

• Describes the GMS Application Programmer’s Interface (API) and shows you
how to use it to define and manage menus programmatically.

• Lists all GMS API functions and their signatures in a reference dictionary.

• Includes a glossary of all GMS terms and concepts.
xiii

Audience
This guide assumes that you are generally familiar with G2 terminology and
practices but does not require a thorough understanding of G2. If you encounter
G2 terms or concepts that you do not understand, see the G2 Reference Manual.

This guide assumes that you have a general familiarity with menu systems as
seen from the user’s viewpoint. It does not assume an understanding of menu
system internals on any platform.

Organization
This guide contains sixteen chapters, two appendixes, a glossary, and an index, in
five parts:

Title Description

Part I Introduction

1 Overview of the
G2 Menu System

Introduces the G2 Menu System
(GMS) and defines GMS terms and
concepts.

2 Getting Started Describes the requirements for
running GMS, how to install GMS, the
module structure of GMS, and the
GMS Demo.

Part II Creating a Menu

3 Defining a Simple Menu Shows how to define a GMS menu by
cloning GMS template objects, linking
them into a hierarchy that defines the
structure of the menu, setting the
attributes of the template objects, and
defining the actions to be taken when
each menu choice is made.

4 Compiling the
Menu Specification

Shows how to compile and display
menus and how to reference the parts
of a menu.

5 Using Specialized Templates Describes how to use the two
predefined templates provided by
GMS to change the user mode and to
display a named workspace.
xiv

Organization
6 Defining Popup Menus Describes how to create and display
popup menus.

7 Writing and Using
Callback Procedures

Shows how to write GMS callback
procedures and supply them with the
information that they need.

8 Including Additional Features
in a Menu

Shows how to create and modify GMS
menus in real time.

9 Dynamically Defining and
Changing Menus

Shows how to include some additional
features of GMS in your menu. These
features include menu dividers, menu
accelerators, menu help information,
distributing menu specifications over
several workspaces, and creating
reusable menu definitions.

Part III Controlling GMS

10 Controlling Access to Menus Shows how to control access to menus
by locking all menus against user
input, disabling and enabling
individual menu entries, and
restricting menu entries in specified
user modes.

11 Controlling the Appearance of
Icons

Shows how to specify an icon for a
menu entry, and customize its color
and size.

12 Internationalizing GMS Menus Summarizes the techniques for
displaying GMS menus in different
languages, using Gensym Foundation
Resources (GFR) to provide
internationalization.

13 Configuring Global
GMS Characteristics

Shows how to set properties that affect
GMS as a whole such as automatic
GMS startup, preserving the compiled
resource on reset, specifying the
maximum number of menu entries,
suppressing global consistency
checking, and internationalization.

Title Description
xv

A Note About the API
The GMS API, as described in this guide, is not expected to change significantly in
future releases, but exceptions may occur. A detailed description of any changes
will accompany the GMS release that includes them.

Therefore, it is essential that you use GMS exclusively through its API, as
described in this guide. If you bypass the API, you cannot rely on your code to
work in the future, since GMS may change, or in the present, because the code
may not correctly manage the internal operations of GMS.

If GMS does not seem to provide the capabilities that you need, contact Gensym
Customer Support at 1-781-265-7301 (Americas) or +31-71-5682622 (EMEA) for
further information.

14 Customizing the GMS
Interface to the User

Shows how to set GMS properties for
individual G2 users. These properties
include: font and separator size, help
display, text and background colors,
navigation modes, menu blinking,
initial menu, and menu language.

15 Specifying the Interface
between GMS and G2

Shows how to configure GMS to work
with and extend G2 capabilities such
as accessing a compiled resource from
G2, implementing keyboard
accelerators, and handling mouse
events for popup menus.

16 Managing GMS
Programmatically

Shows how to manage
programmatically the internal
operations of GMS. You can use the
techniques described to manage menu
building and compilation, change
global settings, manage user
preferences, and reset GMS without
resetting G2.

Part IV Appendixes

A GMS API Reference Describes all supported GMS API calls
in alphabetical order.

B GMS Common Names
and Formal Names

Gives the common name and the
formal name of every GMS entity.

Title Description
xvi

Conventions
Conventions
This guide uses the following typographic conventions and conventions for
defining system procedures.

Typographic

Convention Examples Description

g2-window, g2-window-1,
ws-top-level, sys-mod

User-defined and system-defined
G2 class names, instance names,
workspace names, and
module names

history-keeping-spec, temperature User-defined and system-defined
G2 attribute names

true, 1.234, ok, “Burlington, MA” G2 attribute values and values
specified or viewed through
dialogs

Main Menu > Start

KB Workspace > New Object

create subworkspace

Start Procedure

G2 menu choices and button labels

conclude that the x of y ... Text of G2 procedures, methods,
functions, formulas, and
expressions

new-argument User-specified values in
syntax descriptions

text-string Return values of G2 procedures
and methods in syntax
descriptions

File Name, OK, Apply, Cancel,
General, Edit Scroll Area

GUIDE and native dialog fields,
button labels, tabs, and titles

File > Save

Properties

GMS and native menu choices

workspace Glossary terms
xvii

Note Syntax conventions are fully described in the G2 Reference Manual.

Procedure Signatures

A procedure signature is a complete syntactic summary of a procedure or
method. A procedure signature shows values supplied by the user in italics, and
the value (if any) returned by the procedure underlined. Each value is followed by
its type:

g2-clone-and-transfer-objects
(list: class item-list, to-workspace: class kb-workspace,
delta-x: integer, delta-y: integer)

-> transferred-items: g2-list

Related Documentation

G2 Core Technology

• G2 Bundle Release Notes

• Getting Started with G2 Tutorials

• G2 Reference Manual

• G2 Language Reference Card

• G2 Developer’s Guide

• G2 System Procedures Reference Manual

c:\Program Files\Gensym\ Windows pathnames

/usr/gensym/g2/kbs UNIX pathnames

spreadsh.kb File names

g2 -kb top.kb Operating system commands

public void main()
gsi_start

Java, C and all other external code

Convention Examples Description
xviii

Related Documentation
• G2 System Procedures Reference Card

• G2 Class Reference Manual

• Telewindows User’s Guide

• G2 Gateway Bridge Developer’s Guide

G2 Utilities

• G2 ProTools User’s Guide

• G2 Foundation Resources User’s Guide

• G2 Menu System User’s Guide

• G2 XL Spreadsheet User’s Guide

• G2 Dynamic Displays User’s Guide

• G2 Developer’s Interface User’s Guide

• G2 OnLine Documentation Developer’s Guide

• G2 OnLine Documentation User’s Guide

• G2 GUIDE User’s Guide

• G2 GUIDE/UIL Procedures Reference Manual

G2 Developers’ Utilities

• Business Process Management System Users’ Guide

• Business Rules Management System User’s Guide

• G2 Reporting Engine User’s Guide

• G2 Web User’s Guide

• G2 Event and Data Processing User’s Guide

• G2 Run-Time Library User’s Guide

• G2 Event Manager User’s Guide

• G2 Dialog Utility User’s Guide

• G2 Data Source Manager User’s Guide

• G2 Data Point Manager User’s Guide

• G2 Engineering Unit Conversion User’s Guide

• G2 Error Handling Foundation User’s Guide

• G2 Relation Browser User’s Guide
xix

Bridges and External Systems

• G2 ActiveXLink User’s Guide

• G2 CORBALink User’s Guide

• G2 Database Bridge User’s Guide

• G2-ODBC Bridge Release Notes

• G2-Oracle Bridge Release Notes

• G2-Sybase Bridge Release Notes

• G2 JMail Bridge User’s Guide

• G2 Java Socket Manager User’s Guide

• G2 JMSLink User’s Guide

• G2 OPCLink User’s Guide

• G2 PI Bridge User’s Guide

• G2-SNMP Bridge User’s Guide

• G2 CORBALink User’s Guide

• G2 WebLink User’s Guide

G2 JavaLink

• G2 JavaLink User’s Guide

• G2 DownloadInterfaces User’s Guide

• G2 Bean Builder User’s Guide

G2 Diagnostic Assistant

• GDA User’s Guide

• GDA Reference Manual

• GDA API Reference
xx

Customer Support Services
Customer Support Services
You can obtain help with this or any Gensym product from Gensym Customer
Support. Help is available online, by telephone, by fax, and by email.

To obtain customer support online:

 Access G2 HelpLink at www.gensym-support.com.

You will be asked to log in to an existing account or create a new account if
necessary. G2 HelpLink allows you to:

• Register your question with Customer Support by creating an Issue.

• Query, link to, and review existing issues.

• Share issues with other users in your group.

• Query for Bugs, Suggestions, and Resolutions.

To obtain customer support by telephone, fax, or email:

 Use the following numbers and addresses:

Americas Europe, Middle-East, Africa (EMEA)

Phone (781) 265-7301 +31-71-5682622

Fax (781) 265-7255 +31-71-5682621

Email service@gensym.com service-ema@gensym.com
xxi

xxii

Part I
Introduction
Chapter 1: Overview of the G2 Menu System

Introduces the G2 Menu System (GMS) and defines GMS terms and concepts.

Chapter 2: Getting Started

Describes the requirements for running GMS, how to install GMS, the module structure of
GMS, and the GMS Demo.
1

2

1

Overview of the
G2 Menu System
 Introduces the G2 Menu System (GMS) and defines GMS terms and concepts.

Introduction 3

What is GMS? 3

GMS Menu Types 4

GMS Menu Entries 7

GMS Menu Customizations 9

Displaying GMS Menus in Telewindows 12

Introduction
This chapter introduces the G2 Menu System (GMS) and defines GMS terms and
concepts. Be sure you are familiar with the information in this chapter before you
read the rest of this guide.

What is GMS?
GMS is a G2 utility that provides the tools to enable you to create menus similar to
the ones you see on PCs. You design these menus using menu specifications.

You can create GMS menus dynamically or save them as permanent parts of your
G2 application. These menus can accept user input from the mouse or keyboard,
and you can update them in real time when data changes in your application.
3

GMS is composed of:

• A graphical user interface for organizing the structure of your menus.

• An Application Programmer’s Interface (API) that enables you to display,
configure, and manipulate menu entries programmatically.

If you want your menu text to appear in a language other than English, you can
use Gensym Foundation Resources (GFR) to internationalize GMS menus.

When you click on an object in G2, the object normally displays a G2 menu. When
you use GMS, you can configure classes of objects to use GMS menus rather than
G2 menus. Classes so configured will display GMS popup menus instead of G2
menus. Classes that are not so configured continue to use G2 menus.

GMS Menu Types
The types of GMS menus include:

• Pulldown menus that are arranged in a menu bar at the top of a G2 window.

• Popup menus that are associated with a G2 item and display when needed.

Both pulldown menus and popup menus can contain cascade menus or “walking
menus” that display choices for a menu entry.

When this guide refers to a GMS menu, the reference applies equally to
pulldown menus, popup menus, and cascade menus.

Popup and cascade menus both appear only when needed. Because they come
and go, this guide refers to popup and cascade menus as transient menus.

Pulldown Menus in Menu Bars

A pulldown menu appears in a horizontal menu bar that extends along the top of
a G2 window, as shown in the following figure.

GMS automatically positions a menu bar at the top of the G2 window. If the
window is not wide enough to show all menu entries in one row, GMS
automatically wraps the menu onto additional rows as needed.
4

GMS Menu Types
GMS automatically positions a transient menu to be near the site of the mouse
click that activated it and to be completely visible within the G2 window. If GMS
cannot display the complete menu at an acceptable location, it automatically
displays the menu with scroll indicators. If you hold the mouse pressed over a
scroll indicator, the menu scrolls to display additional entries.

Menu bars typically remain on display over time. You can use API calls to make
them appear, change, and disappear as needed, but they do not change merely
because you have chosen an entry. A G2 window can contain at most one menu
bar at a time.

By convention, a menu bar:

• Displays additional menu entries that perform actions.

• Contains either a label or an icon, but not both.

• Contains entries that are always enabled.

GMS does not enforce these conventions, However, we recommend that you
follow them for consistency with Windows standards.

Popup Menus

A popup menu is a freestanding menu that can appear anywhere in a G2 window
in response to a mouse click. A popup menu is associated with an item in a G2
window. Any G2 item can be configured to display a GMS popup menu instead
of its G2 menu. An example is shown in the following figure:

Popup menus appear only when they are needed. A popup menu typically
appears in response to a mouse click, and disappears as soon as you have chosen
an entry from the menu or from a cascade menu that is subsidiary to it.

A popup menu can have a title block called a header that describes the purpose of
the menu. Menu bars and cascade menus do not have headers. In the example of a
popup menu, the term “object” is a header for the popup menu.

Header

GMS popup menu
5

Cascade Menus

A cascade menu is a subsidiary menu that appears when you choose a higher-
level menu entry. The presence of a cascade menu in one of the pulldown menu
entries is indicated by a right-pointing arrow. To display the cascade menu, click
on the arrow.

Cascade menus are similar in appearance to popup menus, except that a cascade
menu cannot have a header. Cascade and popup menus follow the same
conventions for marking entries.

A cascade menu appears when you choose a cascading entry from a higher-level
menu. The higher-level menu remains on display after the cascade menu appears.
Cascade menus can contain cascading entries, to a maximum of 256 levels.

When you choose an entry from a cascade menu, the menu and any higher-level
transient menus immediately disappear. If the highest-level menu is a menu bar,
it remains on display unless an API call explicitly removes it.
6

GMS Menu Entries
GMS Menu Entries
Every GMS menu includes one or more menu entries. A menu entry is a
rectangular cell that can contain an entry label, an icon, and/or an accelerator
label, as shown in the following figure:

Components of a Menu Entry

Each menu entry contains one or more of these components:

• Entry label: Text that describes what will happen if you choose the entry.
Examples:

– Open

– Save As

• GMS icon: An icon that denotes the entry’s effect graphically.

• Accelerator label: Indicates a keystroke that has the same effect as choosing
the menu entry. Examples:

– Ctrl+O

– Ctrl+S

Types of Menu Entries

The three types of menu entries are:

• Cascading entry: GMS automatically displays a cascade menu when you
select a cascading entry. GMS automatically marks every cascading entry in a
popup menu with a triangular pointer on the right side.

• Leaf entry: Choosing a leaf entry executes a user-defined procedure, known
as a callback procedure. Such a procedure can either display a dialog that
requests additional information or take an action immediately.

Accelerator label

Entry label

GMS icon
7

Note Only a leaf entry can specify an accelerator label.

• Dialog entry: A leaf entry whose callback procedure displays a dialog is
known as a dialog entry. By convention, the menu designer marks a dialog
entry in a popup menu by suffixing an ellipsis (...) to the entry’s label.
Examples:

– Open...

– Save As...

This guide does not include the ellipsis when referring to the entry label of a
dialog entry.

Selecting and Choosing Menu Entries

To use GMS menus, you use the mouse to select and choose menu entries. When
you select a menu entry, you press the mouse button while the mouse pointer is
over the menu entry or move the mouse pointer over it with the mouse button
already pressed. GMS indicates a selected entry by changing its color.

After you select a menu entry, you can choose it by raising the mouse button with
the mouse pointer still over it. You can also choose a menu entry by clicking the
mouse button while the mouse pointer is over the menu choice.

Enabled and Disabled Menu Entries

A menu entry can be enabled or disabled. For example, you might want to disable
a menu entry if it does not apply to the current situation, such as no object
selected for a rotate menu entry. An enabled menu entry is fully functional.

A disabled menu entry appears but is not selectable and cannot perform its task.
If you select a disabled cascading menu entry, it does not display its cascade
menu. If you choose a disabled leaf entry, it does not execute its callback
procedure.

Adding a Check to a Leaf Entry

You can set any leaf entry in a transient menu to be checked or unchecked. A
checked menu entry has a check mark to the left of its entry label; an unchecked
menu entry has none. You can use check to indicate anything that is useful, such
8

GMS Menu Customizations
as the toggling of a state. You can inform the user that a particular state is
selected, such as a particular user mode, as this figure shows:

Associating Help with a Menu Entry

You can associate a Help label with any menu entry. A Help label provides
information about the entry that can help the user to understand what it does.
When GMS is configured to display Help information, and a menu entry has a
Help label, GMS displays the Help label in a Help bar whenever the menu entry
is selected. The Help bar appears at the bottom of the G2 window, and is visible
only when it is needed.

GMS Menu Customizations
GMS offers several ways to customize menu appearance and behavior.

Using Dividers in Menu Panels

The entries in a GMS menu constitute the menu’s panel. You can separate parts of
a menu’s panel by using menu dividers. There are three types of menu dividers:

• Breaks: By default, a menu bar panel occupies a single row, and a transient
menu panel occupies a single column. You can divide a menu bar into
multiple rows and a transient menu into multiple columns by inserting a
break into the menu before each entry that is to begin a new row or column.

• Separators: By default, the panel of a transient menu has no subdivisions. You
can subdivide a transient menu panel into groups of entries by inserting a

Break
9

separator between any adjacent entries. GMS draws a horizontal line across
the panel between the two entries.

• Justifiers: By default, the entries in a menu bar are left-justified. You can cause
any or all entries to be right-justified by inserting a justifier into the menu
before the first entry that is to be right justified. In the example which follows,
the justifier is placed between the templates for Options and View in the
menu specification. When a break follows a justifier in a menu bar, the new
row is also right-justified.

Choosing a Menu Entry

GMS menus are structured hierarchically. The top of the hierarchy is always a
menu bar or a popup menu. Top-level menu entries might display cascade menus
whose entries, when selected, might display lower-level cascade menus, and so
on. The lowest level of the hierarchy is the leaf entry, which executes the menu
choice when chosen.

GMS supports two standard menu navigation configurations for menus:

• Walking menus: allow you to drag your mouse over a top-level menu entry,
and over any cascade menus to a leaf entry. When you raise the mouse button
over a leaf entry, GMS executes the menu choice.

• Sticky menus: allow you to click on menu entries rather than dragging over
them. Clicking a cascading entry displays its cascade menu. Clicking the entry
again hides the menu. Clicking a leaf entry executes the menu choice.

Walking menus are always available; sticky menus are optional. When sticky
menus are enabled, you can mix the two techniques as desired.

Separator
10

GMS Menu Customizations
Defining GMS Menus Statically or Dynamically

You can define a GMS menu statically or dynamically. A static menu
specification completely defines a menu in advance. A dynamic menu
specification defines a menu only partially: the definition includes templates that
programmatically complete the menu definition just before the menu is
displayed.

A static menu definition is appropriate for menus that are always the same.
Dynamic menus provide more flexibility but are slower because GMS must
construct some or all of each menu immediately before displaying it.

You can use the GMS API to display any statically or dynamically defined menu
in any G2 window at any time. You cannot associate a GMS menu with a
particular workspace but only with a G2 window as a whole.

When you display a menu defined by a dynamic menu specification, GMS by
default compiles and builds the menu immediately before displaying it.

Customizing GMS Menus Globally or for Each User

You can configure GMS to automatically display a menu bar when a user logs in
to G2, either directly or via Telewindows. The menu bar displayed can depend on
the current G2 application and/or the identity of the user.

You can customize the behavior, language, and appearance of GMS menus and
change this customization at any time while running the KB. You can customize:

• The language in which labels appear to the user.

• The font size used in the menus.

• The colors used to indicate menu entries that are selected, disabled, or neither.

• The availability of sticky menus.

• The display of Help bar information.

You can configure appearance per-application, per-user, or both. Thus a G2
application can use GMS to display menus in different languages to different
users in different countries.

GMS provides all standard G2 methods for customizing the user environment.
For example, you can restrict menus based on the user mode of each G2 window.
11

Displaying GMS Menus in Telewindows
G2 provides tools for creating standard end-user interfaces for G2 applications
when viewed through Telewindows. The Native Menu System (NMS) allows
you to create custom pulldown menus and popup menus by:

• Rendering menus created using the GMS as Windows menus, when viewed
through standard Telewindows on a Windows platform.

• Providing an API for creating and manipulating Windows menus, using G2
system procedures.

To create custom menus, the G2 developer can choose to use GMS, which
provides a graphical interface, or G2 system procedures, which provides a
programmatic interface. Both techniques support standard menu features such as
menu bars, submenus, and popup menus.

While you can use the NMS API to implement almost everything that you can
implement using GMS, GMS provides a more intuitive, graphical environment
for defining menus. In addition, it provides built-in tools that the NMS API
requires specific programming to accomplish. Which approach you use depends
on your preference.

To use native GMS menus, you simply load a KB that defines GMS menus; the
menus automatically render as standard Windows menus when viewed through
Telewindows. You can also choose to display GMS menus in Telewindows, using
their classic G2 interface.

For examples of native GMS menus and other information on how to use native
GMS menus, see Windows Menus in the G2 Reference Manual.
12

2

Getting Started
Describes the requirements for running GMS, how to install GMS, the module
structure of GMS, and the GMS Demo.

Introduction 13

Installing GMS 14

GMS Modules 15

The GMS Demo KB 15

Introduction
GMS is a G2 utility that provides the tools to enable you to create menus similar to
the ones you see on PCs. This chapter describes the requirements for running
GMS and describes the GMS Demo.
13

Installing GMS
GMS is provided as the module gms.kb in the utils subdirectory of the kbs
directory under the g2 directory.

To install GMS:

 Merge gms.kb into an existing KB manually by choosing Merge KB from the
Main Menu.

or

 Merge gms.kb into another KB automatically by specifying it as a directly
required module in the KB’s Module Information Table.

You can merge GMS into any modularized knowledge base that does not
duplicate a name used by GMS. All GMS names start with the prefix gms-.

GMS works only when G2 is running. After merging GMS, restart G2.

Requirements for Running GMS

GMS contains a table of version information accessible from the GMS Top Level
workspace. To view this information, click on the copyright symbol () in the title
section of the GMS Top Level workspace. The table contains information
including the minimum version of G2 in which the current version of GMS
will run.

To view the version information:

1 Display the GMS Top Level workspace.

2 Click the copyright symbol () in the title section.

or

 gms-get-version
()
-> current-version: text

Returns the current version of GMS, for example, 8.0 Rev. 0.

Starting GMS

GMS works only when G2 is running. After merging GMS, restart G2.

To start GMS:

 Restart G2.
14

GMS Modules
GMS Modules
The following table describes the GMS modules.

The following Inspect workspace illustrates the GMS module hierarchy:

The GMS Demo KB
GMS provides a demo KB in a file called gmsdemo.kb, also found in the kbs
directory. The demo KB loads GMS as a required module and contains examples
of all GMS capabilities.

On the GMS demo KB you can view online various GMS capabilities as you read
about them in the documentation. As you browse the demo KB, you can see how
to construct menus and how to define their behaviors by setting attributes and
using API calls.

Module File Name Contents

gms gms.kb Definitions and API support
to enable you to create GMS
menus

sys-mod sys-mod.kb System procedure library

gfr gfr.kb Tools to internationalize
your GMS menus

uilroot uilroot.kb Definitions and API support
for navigation buttons
15

The chapters of this guide are arranged to cover the material in approximately the
same order as the demo. The introduction to each chapter mentions the name of
the demo where examples of the current topic can be found.

Note Be sure you are in developer mode when you use the GMS demo KB. If you are
not in developer mode, clicking buttons will display tables rather than access the
demos.

When you load the demo KB and start G2, the GMS Demo workspace appears.
The workspace name is gmsdemo-top-level and it is labelled “GMS DEMO.” It
contains a list of the demos, plus two submenus for popup menus and the API.
There is a readme section explaining that the demos are arranged by increasing
difficulty.

The following figure shows the GMS demo top level workspace:
16

The GMS Demo KB
Using the Demo KB

To activate a GMS demo:

 Click the appropriate DEMO button.

Any workspaces relating to other demos disappear.

To dismiss the GMS Demo workspace or any demo subworkspace:

 Choose Hide Workspace from the workspace’s G2 menu.

To redisplay the GMS Demo workspace:

 Choose Main Menu > Get Workspace > gmsdemo-top-level.

Navigating a Demo

When you click a DEMO button in the GMS DEMO workspace, the following
workspace appears showing the five menu buttons that are common to all the
demos:

Clicking each of the five buttons displays a subworkspace that relates to the
demo:

• About this demo: General information about the purpose of the demo.

• Settings: The global settings and user preferences in effect for the demo.

• Instructions: Specific instructions for executing the demo.

• Resources: The GMS menu specification(s) of the menu(s) that the demo
displays.

• Callbacks: The procedure(s) that GMS calls when you choose menu entries
while running the demo.
17

18

Part II
Creating a Menu
Chapter 3: Defining a Simple Menu

Shows how to define a GMS menu by cloning GMS template objects, linking them into a
hierarchy that defines the structure of the menu, setting the attributes of the template objects,
and defining the actions to be taken when each menu choice is made.

Chapter 4: Compiling the Menu Specification

Shows how to compile and display menus and how to reference the parts of a menu.

Chapter 5: Using Specialized Templates

Describes how to use the two predefined templates provided by GMS to change the user mode
and to display a named workspace.

Chapter 6: Defining Popup Menus

Describes how to create and display popup menus.

Chapter 7: Writing and Using Callback Procedures

Shows how to write GMS callback procedures and supply them with the information that they
need.
19

Chapter 8: Dynamically Defining and Changing Menus

Shows how to create and modify GMS menus in real time.

Chapter 9: Including Additional Features in a Menu

Shows how to include some additional features of GMS in your menu. These features include
menu dividers, menu accelerators, menu help information, distributing menu specifications
over several workspaces, and creating reusable menu definitions.
20

3

Defining a Simple Menu
Shows how to define a GMS menu by cloning GMS template objects, linking them
into a hierarchy that defines the structure of the menu, setting the attributes of the
template objects, and defining the actions to be taken when each menu choice is
made.

Introduction 22

Components of a Menu Specification 22

Displaying the GMS Palette 25

Creating Menu Templates 30

Using Root Templates 31

Using Entry Templates 32

Using Connections 32

Specifying Menu Properties 35

Accessing a Menu Entry’s Properties Programmatically 44

Specifying the Effect of Choosing a Leaf Entry 46
21

Introduction
This chapter shows you how to build a GMS menu, using a GMS menu
specification. The process has five stages:

• First you create a GMS menu specification by cloning template objects from
the GMS palette.

• Then you then use specialized connection stubs to connect the templates into
a hierarchy that defines the structure of the menu.

• You fill in the attributes for the template objects to define the behavior of
the menu.

• You write callback procedures that define the action to be taken when each
menu choice is selected.

• You add special GMS features to the menu.

As you work on your menu specification, you can move between the stages.
Building a menu specification is iterative.

The principles described in this chapter apply to all GMS menu specifications. For
simplicity, the chapter focuses on static menu specifications. Dynamically
Defining and Changing Menus, describes techniques for specifying GMS menus
dynamically.

To see online examples of the concepts covered in this chapter:

1 Load the gmsdemo.kb from the kbs directory.

2 Choose the demo called A Simple Menu Bar.

Components of a Menu Specification
A GMS menu specification is a tree of objects called template objects linked
together with GMS connections. GMS template objects are usually
called templates.

• One of these templates, called the Root template, forms the root of the tree
and contains attributes that affect the menu as a whole.

• The root template has one or more child templates, called Cascade Menu
templates representing top-level menu entries.

• Each Cascade Menu template has one or more child templates, each
representing a lower level menu entry. These child templates define the
cascade menu.

• Templates that represent leaf entries have no child templates.
22

Components of a Menu Specification
Two types of connections link these templates together:

• A submenu connection links a parent template to its first child template.

• A peer connection links two sibling templates.

A GMS menu specification begins with a root template which can be a a Menu Bar
template or a Popup Menu template. This root template is linked by a submenu
connection to a Cascade Menu template that defines the first entry in the menu
bar or popup.

The only difference between the specification of a menu bar and the specification
of a popup menu is the type of root template used. For a menu bar use a Menu
Bar template and for a Popup menu use a Popup Menu template.

The remaining entries in the top level of a menu specification are Cascade Menu
Templates. These templates are connected by peer menu connections in the same
order in which the entries appear in the top level of the menu.

Each Cascade Menu template in the menu is connected by a submenu connection
to the first entry in its cascade menu. This entry is connected by a peer menu
connection to one or more entries linked by additional peer menu connections.
This structure can continue recursively to a maximum of 256 levels of nested
menus.

The graphical part of a menu specification defines the menu’s structure, but does
not specify the contents and behavior of the individual menu entries. All such
information is supplied in the same way, by setting attribute values of the
template objects that constitute the menu definition. These attributes, and the
required values for each, are described in Specifying Menu Properties.

Root
template

Submenu
connections

Peer connection

Cascade templates

Leaf entry template
23

Example of a GMS Menu Specification

The following two figures show the structure of a typical menu bar and all of its
associated cascade menus.

The first figure shows the menu bar with a pulldown menu selected along with a
cascade menu that further defines the selections for the Rotate menu entry.

The second figure is a GMS menu specification showing the complete structure of
the pulldown menus in this menu bar example. Observe the mapping between
the menu structure and the graphical display of it in the GMS menu specification.

‘
Menu Bar template Cascade Menu template

Cascade Menu templates

Leaf Entry template
24

Displaying the GMS Palette
Displaying the GMS Palette
GMS provides all template objects on a palette called the GMS Palette.

To access the GMS Palette:

 Choose Maine Menu > Get Workspace > gms-top-level.

The following figure shows the GMS Palette. You can display a help label for each
template object by holding the mouse button down while the mouse cursor is
over the object.

The following table contains an illustration and a brief description of each
template on the GMS palette.
25

GMS Template Objects

Icon Template Description

GMS Text Resources

Text resource group The text resource group
contains the menu translations
for your menus. The default
text resource is English. For
more information see
Internationalizing GMS
Menus.

Initiating Entries

Menu Bar template

The root template for a menu
bar of pulldown menus. The
template displays a menu bar.
Clone this template first in the
upper-left of your graphical
menu specification for a menu
bar. For more information see
Components of a Menu
Specification.

Popup Menu template The root template for a popup
menu. The template displays a
popup menu. Clone this
template first in the upper left
of your graphical menu
specification for a popup
menu. For more information
see Components of a Menu
Specification.

Dynamic Popup template The root template for a
dynamic popup menu. The
clock on the template indicates
that this is a dynamic template.
Clone this template to create a
dynamic popup menu. For
more information see
Dynamically Defining and
Changing Menus.
26

Displaying the GMS Palette
Cascading Entries

Cascade Menu template The template for top-level
menu entries in a static menu.
For more information see
Components of a Menu
Specification.

Dynamic Cascade template The template for top-level
menu entries in a dynamic
menu. For more information
see Defining and Displaying a
Dynamic Popup Menu.

Reusable Panel template The template for cascade menu
entries that you intend to use
for more than one menu entry.
For example, you might want
to use up and down options for
two menu entries. For more
information see Creating
Reusable Cascade Menus.

Switch Menu Bar template A special case of dynamic
cascade menu that enables you
to switch between all compiled
GMS menu bars. For more
information see Switching
Menu Bars.

Built-in G2 Menu template Allows you to create one of the
built-in G2 menus. This menu
entry is only supported in
Telewindows.

Leaf Entries

Leaf Entry template A final menu choice that
executes a callback procedure.

GMS Template Objects

Icon Template Description
27

Show Workspace template A menu entry that displays a
named target workspace. For
more information see
Displaying a Workspace.

Change User Mode template A menu entry that changes
user mode (administrator,
developer, browser, user, and
others). For more information
see Changing the User Mode.

Non Text Entries

Separator template Displays a divider line
between menu entries in a
column.

Break template Splits a single column into two
columns.

Right Justifier template When placed in a menu bar,
aligns all entries after it to the
right side of the menu bar.

Place Holder Specifies a connection between
two menu entries in a panel
that spans two modules. For
more information see
Extending Menu Specifications
across Modules.

Diagram Utilities

SubPanel Container Indicates that part of a menu
specification resides on a
subworkspace. For more
information see Using
SubPanel Containers to
Distribute Menu
Specifications.

GMS Template Objects

Icon Template Description
28

Creating Menu Templates
Creating Menu Templates
To create a GMS menu specification, you clone template objects from the GMS
Palette, connect them to specify the menu’s structure, and set attributes of the
cloned templates as needed to define the properties of the constituent menus and
menu entries. You don’t have to completely define the structure before you set
template attributes; you can go through many iterations of these tasks as you
work on the menu specification.

You can create a GMS menu specification on any workspace. An application can
contain any number of menu specifications on any number of workspaces.

Submenu Connection Post Enables you to extend entries
joined by a submenu
connection across workspaces.
For more information see
Using SubPanel Containers to
Distribute Menu
Specifications.

Peer Menu Connection Post Enables you to extend entries
joined by a peer menu
connection across workspaces
or modules. For more
informations see Using
Connection Posts to Distribute
Menu Specifications.

Settings / Preferences

Global Setting Specifies the GMS behavior for
the entire G2 window or
application. For more
informations see Configuring
Global GMS Characteristics.

User Preference Enables you to specify the
GMS settings for individual
users. For more informations
see Customizing the GMS
Interface to the User.

GMS Template Objects

Icon Template Description
29

You can plan your menu(s) in advance, or you can clone, connect, reconnect, and
delete template objects at any time, and change their attribute values as desired.
You can ask GMS to recompile a menu specification at any time.

Thus, you can develop menu specifications iteratively, building them, testing
them, modifying them, and immediately testing them again. GMS signals any
compilation and execution errors. By default, G2 reports any signalled error in the
Operator Logbook.

To clone template objects from the palette to a workspace:

1 Click the mouse button over the template.

A copy of the template appears, attached to the mouse pointer.

2 Move the mouse cursor to the desired location on the workspace.

3 Click the mouse button to place the template on the workspace.

The template transfers to the workspace at the location you chose or at the nearest
grid position if the snap grid is on.

Any workspace that contains one or more GMS template objects is called a GMS
workspace. You can set GMS to position template objects on a GMS workspace to
appear only at vertices of a regular grid. Such a grid is called a snap grid.

Note Before enabling a snap grid, place a template object on a GMS workspace.

To set a snap grid on a GMS workspace:

 Choose KB Workspace > GMS Grid On.

The snap grid is not visible on the workspace, but it affects the positioning of all
GMS template objects. When you clone a template to the workspace, or move any
template on the workspace, GMS adjusts the template to appear at the nearest
point on the snap grid. Existing templates are unaffected unless you move them.

Once you set a snap grid on a workspace, the grid remains on until the next time
you reset G2.

Note You can use the snap grid in any mode except administrator mode.

Using Root Templates
A GMS menu specification begins with a unique object called the root template.
This template defines the menu as a whole; it does not correspond to any visible
menu entry. GMS provides two types of root templates that are used in static
menu specifications and a specialized root template used in dynamic menu
30

Using Entry Templates
specifications. For information on dynamic menus see Dynamically Defining and
Changing Menus.

The Menu Bar Template

Use a Menu Bar template to initiate a menu bar specification for a pulldown
menu. This template contains the attributes necessary to define a menu bar.

The Popup Menu Template

Use a Popup Menu template to initiate a menu specification for a popup menu.

For information on how to create a popup menu, see Defining Popup Menus.

Using Entry Templates
A menu specification contains an entry template for every entry in every menu.
GMS provides several types of entry templates. The two that are most useful in
static menu specifications are:

Cascade Menu Template

The cascade menu template defines an entry that displays a cascade menu when
selected (a cascading entry).

Leaf Entry Template

The leaf entry template defines an entry that executes a callback procedure when
chosen (a leaf entry).
31

Using Connections
GMS provides two types of connection for linking template objects into a menu
specification: the submenu connection and the peer menu connection. The two
types of connections have different colors; peer connections are green, while
submenu connections are yellow.

Submenu Connection

A submenu connection connects two adjacent entries that represent a parent-child
or superior-subordinate relationship in a menu structure, specifically connecting:

• A root template to the first menu template in its menu specification.

• A cascade menu template to the first entry template in its cascading menu.

Peer Menu Connection

Connects two adjacent entries in a sibling relationship at the same level in a menu
specification. You use a peer menu connection to connect two adjacent cascade
menu templates or two adjacent leaf entry templates.

Managing Connection Stubs

Every root template (except dynamic popup) on the GMS Palette has one
connection stub, an output stub of class submenu-connection. However, entry
and divider templates on the palette do not have connection stubs, because GMS
cannot anticipate which stubs you will need in a given menu specification.

Instead, you create stubs when you need them and remove any that you do not
use by choosing commands from templates’ G2 menus. You can use these
commands in any order that is convenient to provide the connection stubs you
need and remove any that you do not use.

To add submenu connection stubs to a cloned template object:

 Choose add submenu stubs from the template’s menu.

A submenu connection stub appears centered on each side of the template. The
stubs are directed:

• The stubs on the top and left are input stubs.

• The stubs on the right and bottom are output stubs.

You can use these stubs as needed and ignore any that you do not need.
32

Using Connections
To add peer menu connection stubs to a cloned template object:

 Choose add peer stubs from the template’s menu.

A peer menu connection stub appears centered on each side of the template. The
stubs are directed:

• The stubs on the top and left are input stubs.

• The stubs on the right and bottom are output stubs.

You can use these stubs as needed and ignore any that you do not need.

To remove unused connection stubs from a cloned template object:

 Choose remove stubs from the template’s menu.

All unused connection stubs disappear from the template object. Stubs on other
templates are unaffected.

To remove unused connection stubs from all templates in a menu specification:

 Choose remove stubs from the menu of the specification’s root template.

All unused connection stubs disappear from every template object in the
specification. Stubs on other specifications are unaffected.

To connect the templates into a menu specification:

1 Use stub management commands to make connection stubs appear on
templates as needed.

2 Connect the templates as needed to establish the desired structure. You can
attach a connection to a template anywhere, whether or not a connection stub
exists there.

3 Remove any unused connection stubs.

Note GMS does not let you mix peer and submenu connections, so you cannot create an
illegal structure.
33

The following diagram identifies the connections in a menu specification. The
root entry connects to the first cascade entry template, using a submenu
connection. The first cascade entry template connects horizontally to the second
cascade entry template, using a peer menu connection. These cascading entry
templates connect to the first entries in their menus, using submenu connections.
Leaf entries further down the menu structure connect to each other using peer
menu connections.

Specifying Menu Properties
To define a menu’s properties, you set attributes as needed in the template objects
that define the menu. When you do not want to define some component of a
menu entry, such as its label or its icon, specify the relevant attribute value as
none.

Attributes of a Root Template

The attribute settings of the root template determine the behavior and appearance
of the entire menu. The following attribute table describes the attributes that are
common to the Menu bar template and the Popup menu template, the two root
templates used for static menus.

Using attribute settings you can restrict a menu’s use, define the menu’s
appearance, set access keys, provide help information, enable or disable the menu
on display, and set default behavior for menu choices.

Submenu
connection

Peer menu
connections

Peer menu
connection

Submenu
connection
34

Specifying Menu Properties
Attribute Description

gms-restricted-
modes

Lists the user modes in which this menu is
displayed or lists modes in which this menu is
not displayed.

Allowable values: One or more symbols

Default value: A symbol-array with an initial value of G2.

Notes: To restrict the menu when a user is in a given
mode, specify the mode as a symbol. To restrict
an entry when the user is not in a not in a given
mode, specify the mode as a symbol prefixed
by a tilde (~). For information on using the
tilde see .

gms-index Unique index number for this template object.

Allowable values: Not user settable.

Default value: 0

Notes: You may access the gms-index but do not
change its value. For more information see
Referencing Menus and Menu Entries.

gms-user-key Holds any value assigned by the user and can
be used to access the template.

Allowable values: Any symbol or value

Default value: none
35

gms-text-resource-
group

Specifies the text resource group that GMS will
use for translations.

Allowable values: The name of any gms-text-resource-group

Default value: none

Notes: For more information see Specifying the
Translation Dictionary.

gms-label Specifies the menu label for the entire menu
specification.

Allowable values: A quoted string or any GFR symbol that will be
used to translate the text.

Default value: none

Notes: Can be used to refer to the specification as a
whole. Is seen in the header of a popup menu.
For information on using GFR symbols see
Internationalizing GMS Menus.

gms-help-label Specifies the help information which will
appear in the Help bar at the bottom of the G2
window.

Allowable values: A quoted string or any GFR symbol that will be
used to translate the text.

Default value: none

Notes: Help information will appear when the menu
entry is selected and GMS is configured to
display Help. Controlling Help Information.

Attribute Description
36

Specifying Menu Properties
gms-activation-
callback

Specifies the default callback procedure which
runs when a user chooses a menu entry which
does not have a value for gms-activation-
callback.

Allowable values: A symbol naming a gms-activation-callback
procedure.

Default value: none

Notes: For more information see Specifying a Default
Activation Callback.

gms-initially-
enabled

Specifies whether the menu is initially enabled
or disabled.

Allowable values: true, false

Default value: true

Notes: Disabling the root template disables the entire
menu.

gms-posting-
callback

Specifies the procedure which runs when a
menu is displayed or hidden. Can be used to
customize a menu’s appearance and to restore
it to the default state.

Allowable values: A symbol naming a gms-posting-callback
procedure.

Default value: none

Notes: For more information see Invoking a Procedure
When a Menu is Displayed or Hidden.

Attribute Description
37

Additional Attribute for Popup Menus

In addition to the attributes shown above, the popup-menu-template has the
following attribute:

Notes on the Root Template’s Properties

The Root Template’s Menu Label

A GMS menu specification has a label called a menu label. A menu specification’s
label is an attribute of the specification’s root template.

A root template has an attribute display that shows the template’s label. On the
palette, the value shown is none. When you clone a root template, you can change
its label by editing the attribute display or by editing the template’s gms-label
attribute.

The Root Template’s Key

Some situations require a menu to have an arbitrary associated value of some
type. To provide for these cases, a root template has an attribute called a key, to
which you can assign any value. When you use the GMS API, you can use this
value to reference the root template.

To assign a key to the menu specification:

 Edit the root template’s gms-user-key attribute to specify the desired key.

Attributes of a Menu Entry Template

The following attribute table describes the attributes that are common to the
Cascade Menu template and the Leaf entry template, two entry templates
commonly used in menus.

Using attribute settings you can restrict a menu item’s use, define its appearance,
set access keys, set its language, provide help information, enable or disable the
menu on display, and set the action which occurs when this choice is made.

Attribute Description

gms-show-header Specifies if a popup menu displays a header
above the entries in its panel. Contains the label
given by the gms-label attribute. By default, no
header is displayed.

Allowable values: true, false

Default value: false
38

Specifying Menu Properties
Attribute Description

gms-restricted-
modes

Lists the user modes in which this menu entry
is displayed or lists modes in which this menu
entry is not displayed.

Allowable values: One or more symbols

Default value: A symbol-array with an initial value of G2.

Notes: To restrict the menu entry when a user is in a
given mode, specify the mode as a symbol. To
restrict an entry when the user is not in a not in
a given mode, specify the mode as a symbol
prefixed by a tilde (~). For information on
using the tilde see .

gms-index Unique index number for this template object.

Allowable values: Not user settable.

Default value: 0

Notes: You may access the gms-index but do not
change its value. For more information see
Referencing Menus and Menu Entries.

gms-user-key Holds any value assigned by the user and can
be used to access the menu entry.

Allowable values: Any symbol or value

Default value: none
39

gms-text-resource-
group

Specifies the text resource group that GMS will
use to translate this menu entry.

Allowable values: The name of any gms-text-resource-group

Default value: none

Notes: For more information see Specifying the
Translation Dictionary.

gms-label Specifies the menu label for this menu entry.

Allowable values: A quoted string or any GFR symbol that will be
used to translate the text.

Default value: none

Notes: Can be used to refer to the menu entry.

gms-help-label The help information which will appear in the
Help bar at the bottom of the G2 window when
a user selects this menu entry.

Allowable values: A quoted string or any GFR symbol that will be
used to translate the text.

Default value: none

Notes: Help information will appear when the menu
entry is selected and GMS is configured to
display Help. For more information on
displaying Help text see Controlling Help
Information.

gms-activation-
callback

For a Cascade entry, specifies the default
callback procedure which runs when a user
chooses a menu entry which does not have a
value for gms-activation-callback. For a leaf
entry, specifies the callback procedure which
runs when a user chooses the menu entry.

Attribute Description
40

Specifying Menu Properties
Allowable values: A symbol naming a gms-activation-callback
procedure.

Default value: none

Notes: For more information see Specifying a Default
Activation Callback.

gms-inline-icon-
class

Specifies the class of the menu entry icon.

Allowable values: A symbol naming any subclass of gms-icon

Default value: none

Notes: The icon of the specified class will appear to
the left of the menu entry label whenever the
entry is visible to the user. For more
information see Specifying a Menu Entry Icon.

gms-inline-icon-
description

Contains an instance of the class which holds
the attributes necessary for configuring an
icon’s appearance.

Allowable values: class gms-icon-specification

Default value: none

Notes: Use this attribute to change the appearance of
the entry’s icon from the default. For more
information seeConfiguring a GMS Icon.

gms-initially-
enabled

Specifies that the menu is initially enabled.

Allowable values: true, false

Default value: true

Attribute Description
41

Additional Attribute of a Cascade Menu Template

In addition to the attributes shown in the table of attributes for Entry templates, a
Cascade Entry Menu template has the following attribute:

gms-selection-
callback

Specifies the procedure which runs when a
menu item is selected. Can be used to
customize a menu’s appearance and to restore
it to the default state.

Allowable values: A symbol naming a gms-selection-callback
procedure

Default value: none

Notes: For more information see Invoking a Procedure
on Selection and Unselection.

Attribute Description

Attribute Description

gms-posting-
callback

Specifies the procedure which runs when a
menu is displayed or hidden. Can be used to
customize a menu’s appearance and to restore
it to the default state.

Allowable values: A symbol naming a gms-posting-callback
procedure.

Default value: none

Notes: For more information see Invoking a Procedure
When a Menu is Displayed or Hidden.
42

Specifying Menu Properties
Additional Attributes of a Leaf Entry Template

In addition to the attributes shown in the table of attributes for Entry templates, a
Leaf Entry template has the following attributes:

Attribute Description

gms-accelerator-
label

Specifies an accelerator label for the entry.

Allowable values: A quoted string or any GFR symbol that will be
used to translate the text.

Default value: none

Notes: The accelerator label that you specify will
appear to the right of the menu entry label
whenever the entry is visible to the user. For
more information see Specifying a Menu Entry
Accelerator Label.

gms-initially-
checked

Specifies if the menu entry has a check mark to
its right when first displayed.

Allowable values: true, false

Default value: false

Notes: For more information see Specifying Menu
Entry Initial States.

gms-lock-during-
callback

Specifies if the menu entry is locked against
user input when a callback procedure is
executing.

Allowable values: true, false

Default value: false

Notes: For more information see Locking All Menus
Against User Input.
43

Accessing a Menu Entry’s Properties
Programmatically

Any property which can be accessed through the attribute table can also be
accessed programmatically either through ordinary G2 procedures or through the
GMS API.

Accessing a Menu Entry’s Label

Like root templates, every entry template has an attribute display of its gms-label
attribute that shows the entry’s label. On the palette, the value shown is none.
When you clone an entry template, you can change its label by editing the
attribute display or by accessing the entry template’s table and editing the
attribute there. In addition, a menu entry’s label can be changed
programmatically using the API.

To change the label of a menu entry:

 gms-set-label
(handle: integer, menu-index: integer, label: text)

Sets the label of the entry referenced by menu-index in the window
referenced by handle to be label. The label must be a quoted string. To
specify no label, give an empty string.

To obtain the label of a menu entry:

 gms-get-label
(handle: integer, menu-index: integer)
-> label: text

Returns the label of the entry referenced by menu-index in the window
referenced by handle. If the entry has no label, the call returns an empty
string.

Note that these functions manipulate labels as text, not as GFR symbols. If your
menu uses GFR to provide internationalization, use GFR calls as needed to
translate labels. See Internationalizing GMS Menus, for further information, and
the G2 Foundation Resources User’s Guide for complete information.

Specifying Menu Entry Initial States

When GMS displays a menu, each entry in the menu can be enabled or disabled.
When GMS displays a transient menu, each leaf entry in the menu can be checked
or unchecked. You can:

• Toggle these states as needed using API calls, as described under Disabling
and Enabling Menu Entries and below.
44

Accessing a Menu Entry’s Properties Programmatically
• Set attributes in each menu entry template to define the enablement and
checking that exists initially, prior to any change by an API call.

To specify the initial enabled/disabled state of a menu entry:

 Edit the entry template’s gms-initially-enabled attribute to contain true (the
default) if the entry is initially enabled, or false if it is initially disabled.

To specify the initial checked/unchecked state of a menu entry:

 Edit the entry template’s gms-initially-checked attribute to contain true if the
entry is initially checked, or false (the default) if it is initially unchecked.

Checking and Unchecking Menu Entries

You can programmatically place or remove a check in front of an entry in a
transient menu in any window at any time using an API call. Checking a menu
entry has no functional effect on the entry, it is purely a convenience for the user.

To check a menu entry:

 gms-check-entry
(handle: integer, menu-index: integer)

Checks the menu entry referenced by menu-index in the window
referenced by handle. If the entry is already checked, the call has no effect.

To uncheck a menu entry:

 gms-uncheck-entry
(handle: integer, menu-index: integer)

Unchecks the menu entry referenced by menu-index in the window
referenced by handle. If the entry is already unchecked, the call has no
effect.

To determine if an entry is checked:

 gms-entry-is-checked
(handle: integer, menu-index: integer)
-> status: truth-value

Returns true if the menu entry referenced by menu-index in the window
referenced by handle is checked, and false otherwise.

In some groups of menu entries only one entry can be checked at a given time.
This type of entry is called a radio entry. It is also possible to check any one entry
of a specified group of entries and at the same time uncheck any previously
checked entry in the book.
45

To check one radio entry in a group and uncheck another:

 gms-check-radio-entry
(handle: integer, check-index: integer, radio-start-index: integer,
 radio-end-index: integer)

where:

check-index is the index of the entry to be checked.

radio-start-index is the index of the first entry in the group.

radio-end-index is the index of the last entry in the group.

check-index, radio-start-index, and radio-end-index must reference menu
entries on the same panel. The menu entry specified by check-index will be
checked and any previously checked entry between the last two will be
unchecked.

Specifying the Effect of Choosing a Leaf Entry
To have an effect when chosen, a leaf entry invokes a user-defined procedure
known as a callback procedure. This procedure must take three arguments that
GMS passes to it when it is called, as described under Invoking a Procedure Upon
Menu Selection.

To specify the callback procedure for a leaf entry:

 Edit the entry template’s gms-activation-callback attribute to contain the name
of the procedure to call.

GMS calls the specified procedure whenever the menu entry is chosen. If you do
not specify a callback procedure for a leaf entry, GMS searches for a default
callback procedure when the entry is chosen, as described under Specifying a
Default Activation Callback.
46

4

Compiling the
Menu Specification
Shows how to compile and display menus and how to reference the parts of a
menu.

Introduction 47

How GMS Compiles Menu Specifications 47

Displaying Compiled Menus 50

Referencing Menus and Menu Entries 51

Displaying and Undisplaying Menu Bars 52

Introduction
After you have defined a menu using the techniques described in the previous
chapter, you compile the menu in order to use it. This chapter describes what
happens when you compile a GMS Menu. It also covers how to compile and
display menus and how to reference the parts of a menu.

How GMS Compiles Menu Specifications
GMS does not display menus by reading information directly from their
specifications. To improve performance, GMS compiles all menu specifications.
The GMS compiler is native to GMS. It is not the same as the G2 compiler.
47

The following diagram summarizes what happens when you compile a menu. It
is explained in the sections that follow.

The Menu Translation

The result of compiling a menu specification is called a menu translation. GMS
keeps all menu translations in a repository called the compiled resource. At most
one compiled resource exists, which holds every existing menu translation.

By default, GMS automatically:

• Deletes the compiled resource whenever G2 resets.

• Compiles all menu specifications whenever G2 starts and no compiled
resource exists.

Caution The compiled resource is for internal use only by GMS. You never need to
examine it, and you must never modify it in any way.
48

How GMS Compiles Menu Specifications
The Menu Instance

A menu translation in the compiled resource is not a displayable menu, but a
representation that GMS can use to build a displayable menu. In order to display
a menu in a window, GMS must build the menu itself. A menu that GMS builds
from data in the compiled resource is called a menu instance.

Every menu instance is bound to a particular G2 window and can be displayed
only in that window. Thus, a separate menu instance exists for every menu
translation in every G2 window.

The Handle

When GMS builds a menu for a window, it first assigns the window an
identifying integer called a handle. GMS uses a window’s handle to manage the
relationship of the window to any GMS menu(s) displayed within it.

A menu instance does not duplicate the information in the underlying menu
translation in the compiled resource. The information remains in the compiled
resource, and the menu instance makes it available in the context of a particular
window.

By default, GMS automatically:

• Invalidates all handles and deletes all menu instances whenever G2 resets or
menus are compiled.

• Assigns every G2 window a handle, and builds an instance of every defined
menu for every window, whenever menus are compiled.

• Assigns a handle and builds a complete set of menus for any G2 window that
is subsequently connected via Telewindows.

Compiling One or All Menus

You can ask GMS to compile or recompile any or all menu specifications at any
time. When GMS compiles one or more menu specifications, it:

• Deletes any existing compiled resource.

• Invalidates any existing window handles and deletes any existing menu
instances.

• Creates a new compiled resource that contains compilations of the menu
specifications.

By default, GMS then assigns every G2 window a handle and builds an instance
of every menu translation for every window. You can change this default using
techniques described under Compiling and Building Menus.
49

To compile a menu specification:

 Choose compile tree from the menu of the menu specification’s root template.

To compile all menu specifications:

 Choose compile all from the menu of any menu specification’s root template.

GMS describes any compilation errors by signalling an error and cancelling
compilation. For more information about compiling GMS menus see Compiling
Menus.

Displaying Compiled Menus
When GMS displays a menu, it obtains the necessary information from the
compiled resource for the menu instance, not the menu specification. After GMS
has compiled a menu specification, you can delete the specification without
affecting the display or use of the menu.

You cannot display a menu that has not been compiled. If you change a compiled
menu specification but do not recompile it, GMS will continue to use the existing
menu instance, and the change(s) will have no effect.

GMS displays a cascade menu automatically when its cascade entry is selected,
and undisplays any transient menus automatically when the user has chosen a
leaf entry. No programmer action is necessary in these cases.

The procedures described in this chapter apply to the display of all GMS menus.
For simplicity, the chapter focuses on displaying static menus. Instructions for
displaying dynamically defined menus appear in Dynamically Defining and
Changing Menus.

GMS Handles for G2 Windows

To display a menu in a G2 window, GMS needs more information than the
g2-window class provides. To provide this information without redefining the
g2-window class, GMS maintains a separate data structure called a gms-handle for
every G2 window.

When you program GMS, you never need to access the data in a gms-handle.
Such data is only for internal use by GMS. Each G2 window is assigned a handle.
When you need to refer to the window in a GMS API call, you pass the procedure
the window’s handle. GMS uses the handle to retrieve the appropriate
gms-window.

GMS maps transparently between gms-handles and the windows they represent.
Thus, you can ignore gms-handles when you program GMS and think in terms of
windows only.
50

Referencing Menus and Menu Entries
You can use any standard G2 technique to obtain the G2 window in which you
want to display menus. GMS provides API calls for mapping between windows
and their handles:

To get the GMS handle for a G2 window:

 gms-get-handle-for-window
(window: class g2-window)
-> handle: integer

Returns the handle associated with a G2 window or -1 if the window has
no handle.

To get the G2 window for a GMS handle:

 gms-get-window-for-handle
(handle: integer)
-> window: class g2-window

Returns the G2 window associated with a handle. If handle is not a valid
handle, GMS signals an error.

Referencing Menus and Menu Entries
When you operate on a menu as a whole or on an individual menu entry, you
must indicate to GMS the menu or menu entry of interest by supplying an
argument to an API call.

This argument cannot be the relevant template object itself, because GMS uses
template objects only as inputs to the GMS compiler. Rather, you must identify
the menu or entry of interest by giving a value that GMS can use to identify the
menu or entry within the compiled resource.

Menu Indexes

When GMS compiles a menu specification, it assigns a positive integer called a
menu index to every root and entry template in the specification. Every menu
index is unique, since every template in an application has its own index number.

The compiler sets the gms-index attribute of every root and entry template to be
that template’s menu index number. You can access that attribute to obtain the
index, but you must not change its value. The compiler also stores a template’s
menu index in the compiled resource.

Mapping between User Keys and Menu Indexes

GMS provides menu templates with an attribute called a key, to which you can
assign any value.You can use this key to reference the menu template through the
API. Since menu indexes are compiler generated, you need some way to obtain
51

them after the compiler has generated them. The standard technique is to give
each template whose index you will need a unique key. You can then use the
procedures provided by the GMS API to map between menu keys and indexes.

To get the menu index for a menu key:

 gms-get-index-for-key
(handle: integer, key: value)
-> menu-index: integer

Returns the menu index of the entry referenced by key, or -1 if no such
entry exists. If key is not unique, the call returns the index of some entry
having that key.

If you are pulling down dynamic menus, your menu index does not
reference different menu entries on different windows.

To get the menu key for a menu index:

 gms-get-key-for-index
(handle: integer, index: integer)
-> key: value

Returns the key of the entry referenced by index, or false if the entry does
not exist or has no key.

If you are pulling down dynamic menus, your menu index does not
reference different menu entries on different windows.

These calls obtain information from the compiled resource, so they work even if
you deleted the menu specification after compiling it. If the specification still
exists, you can use any standard G2 technique to obtain a template’s key from its
gms-user-key attribute.

Displaying and Undisplaying Menu Bars
Menu bars appear and disappear only in response to API calls.

To display a menu bar:

 gms-display-menu-bar
(handle: integer, menu-index: integer)

Displays the menu bar referenced by menu-index at the top of the G2
window referenced by handle.
52

Displaying and Undisplaying Menu Bars
To undisplay a menu bar:

 gms-hide-menu-bar
(handle: integer)

Undisplays the menu bar currently displayed in the G2 window
referenced by handle. If no menu bar is visible, the call has no effect.

To redisplay a menu bar:

 gms-redisplay-menu-bar
(handle: integer)

Redisplays the menu bar most recently displayed in the G2 window
referenced by handle. If no menu bar was ever displayed in the window,
the call has no effect.

To obtain the menu bar of a G2 window:

 gms-get-menu-bar-index
(handle: integer)
-> menu-index: integer

Returns the index of the menu bar currently on display in the G2 window
referenced by handle, or -1 if no such menu bar exists.

To obtain the current height of the menu bar of a G2 window:

 gms-get-current-menu-bar-height
(handle: integer)

Returns the number of pixels in a menu bar on the G2 window. If no menu
bar is visible, get-current-menu-bar-height returns 0. Use the current menu
bar height to determine, for example, where to place a dialog just below
the current menu bar without obscuring the menu bar.
53

54

5

Using Specialized
Templates
Describes how to use the two predefined templates provided by GMS to change the
user mode and to display a named workspace.

Introduction 55

Predefined Leaf Templates 56

Changing the User Mode 57

Displaying a Workspace 58

Creating Built-in G2 Menus 64

Introduction
GMS contains two predefined leaf entry templates for tasks that users frequently
need to perform. One template is for changing the user mode, and the other is for
displaying a named workspace. The code for the activation callbacks is already
included in the templates so it is not necessary to write callback procedures when
using these templates.

GMS also provides a template for displaying one of the built-in G2 menus in
Telewindows on Windows platforms.

To see online examples of the concepts covered in this chapter:

1 Load the gmsdemo.kb from the kbs directory.

2 Choose the demo called Using Specialized Templates.
55

Predefined Leaf Templates
The two predefined templates provided by GMS are:

• Change User Mode template: Changes the user mode to a specified mode.

• Show Workspace template: Displays a workspace at a specified location.

The figure below shows a menu specification containing both Change User Mode
Templates and Show Workspace Templates.

The Change User Mode template and the Show Workspace template are
subclasses of the Leaf Entry template. Each has:

• Code for carrying out the operation characteristic of the template.

• Class-specific attributes that specify exactly what the operation should do.

Since the predefined leaf templates do not use callback procedures to perform
their operations, you can customize them by defining a callback procedure, as
with any Leaf Entry template. When you specify a callback procedure for a
predefined leaf template, the template first performs its characteristic operation,
then it invokes the callback procedure.

The GMS compiler includes the attributes of the two predefined templates in the
compiled resource. Therefore, you can delete a predefined leaf template after you
have compiled the menu specification that contains it.

Caution Do not create subclasses of GMS template objects that use class-specific attributes
to hold information for use by callback procedures. For further information, see
Providing Additional Data to an Activation Callback.

GMS also includes a predefined template called a Switch Menu Bar template for
switching among currently available menu bars, as described under Switching
Menu Bars.
56

Changing the User Mode
Changing the User Mode
A Change User Mode template behaves just like a leaf entry template except it
generates a leaf entry that changes the user mode to a mode specified in the
template. When a Change User Mode entry exists in a menu and the user mode
that it specifies is the current user mode, GMS automatically checks the menu
entry.

Change User Mode Template Attributes

In addition to the attributes belonging to all Leaf Entry templates, as described in
Attributes of a Menu Entry Template and Additional Attributes of a Leaf Entry
Template, a Change User Mode template has the following attribute.

To use a Change User Mode template in a menu specification:

1 Include the Change User Mode template in a menu specification exactly as
you would any Leaf Entry template.

2 Edit the template’s label attribute to specify the desired user mode.

3 Edit the template’s gms-target-user-mode attribute to specify the desired
user mode.

If the Change User Mode template specifies a callback procedure, choosing the
entry first changes the user mode then invokes the procedure. If the template does
not define a callback procedure, GMS does not search for a default callback
procedure, as it would for an ordinary Leaf Entry template: it continues executing
without notification or error.

Attribute Description

gms-target-user-
mode

A symbol naming the mode to switch to.

Allowable values: Any symbol representing a user mode

Default value: administrator
57

Displaying a Workspace
A Show Workspace template is Leaf Entry template that:

• Defines additional attributes that specify the identity and desired appearance
of a workspace that is to be displayed.

• Uses a predefined callback procedure to display the workspace.

A Show Workspace template is actually an interface to the G2 show workspace
action. That action provides a variety of techniques for displaying a workspace at
a given location and scale in a G2 window. You can use a Show Workspace
template to achieve most of the effects of the show workspace action.

To use a Show Workspace template in a menu specification

1 Include the template in the specification exactly as you would a Leaf Entry
template.

2 Edit the template’s gms-display-target to specify the name of the workspace to
display.

3 Edit the various display coordinates to designate the display scale and where
the workspace should appear in the window.

If the Show Workspace template specifies a callback procedure, choosing the
entry first displays the workspace, then invokes the procedure. If the template
does not define a callback procedure, GMS does not search for a default callback
procedure, as it would for an ordinary Leaf Entry template; instead, it continues
executing without notification or error.

Show Workspace Template Attributes

In addition to the attributes belonging to all Leaf Entry templates, as described in
Attributes of a Menu Entry Template and Additional Attributes of a Leaf Entry
Template, a Show Workspace template has the following attributes.
58

Displaying a Workspace
Attribute Description

gms-display-target Specifies the workspace to be displayed.

Allowable values: A symbol that names a workspace, the superior
item of a subworkspace, or an item that exists
on a workspace.

Default value: none

gms-view-scale Specifies the scale at which to display the
workspace.

Allowable values: A float value indicating a scale factor, or none

Default value: none

gms-window-
symbolic-location

A symbol that specifies a point in the window.

Allowable values: top-left-corner, top-center, top-right-corner,
right-center, bottom-right-corner, bottom center,
bottom-left-corner, left-center, center

Default value: none

gms-window-x-
location

gms-window-y-
location

A coordinate pair, implemented as two integer
attributes, that specifies a point in the window.

Allowable values: Any two integers

Default values: none
59

gms-window-x-
offset

gms-window-y-
offset

A coordinate pair, implemented as two integer
attributes, that specifies an offset from a
window location.

Allowable values: Any two integers

Default values: none

gms-workspace-
symbolic-location

A symbol that specifies a point on the
workspace.

Allowable values: top-left-corner, top-center, top-right-corner,
right-center, bottom-right-corner, bottom center,
bottom-left-corner, left-center, center

Default value: none

gms-workspace-x-
location

gms-workspace-y-
location

A coordinate pair, implemented as two integer
attributes, that specifies a point on the
workspace.

Allowable values: Any two integers

Default values: none

gms-workspace-x-
offset

gms-workspace-y-
offset

A coordinate pair, implemented as two integer
attributes, that specifies an offset from a
workspace location.

Allowable values: Any two integers

Default values: none

Attribute Description
60

Displaying a Workspace
The rest of this section shows you how to use these attributes to tell GMS what
workspace to display and how to display it.

Specifying the Workspace to Display

To specify the workspace to display:

 Set gms-display-target to a symbol that names one of the following:

• A workspace: GMS displays the workspace.

• The superior item of a subworkspace: GMS displays the subworkspace.

• An item that exists on a workspace: GMS displays the workspace that
contains the item.

To select the workspace to display, GMS first searches all named workspaces,
then all items that have subworkspaces, then all items on workspaces, and
displays the first matching workspace that it encounters. If GMS cannot find a
matching workspace, it signals an error.

Specifying the Display Scale

To specify the scale at which to display the workspace:

 Set gms-view-scale to a float that gives the scale, or to none.

If you specify a float, G2 displays the workspace scaled by that value, up to a
maximum of 4.0 times its normal size. Specifying 1.0 displays the workspace at
normal size. Specifying none displays the workspace at the scale at which it was
most recently displayed, or at normal size if the workspace has never been
displayed.

Specifying a gms-view-scale value has the same effect as specifying the scale in a
show workspace scaled by scale action.

gms-allow-for-
menu-bar

A truth-value specifying whether to consider
the presence of the menu bar displayed on the
window. If set to true, all window location
specifications relative to the top of the window
(top-left, top-center, or top-right) are considered
relative to the bottom of the menu bar.

Allowable values: true or false

Default value: false

Attribute Description
61

Specifying the Workspace Location

Except for gms-display-target and gms-view-scale, all Show Workspace template
attributes exist to tell G2 where to display the workspace. This section refers to
such attributes as location attributes.

Despite the multiplicity of location attributes, the information G2 needs is actually
simple: one point on the G2 window, and one point on the workspace. G2
displays the workspace so that the two specified points appear at the same
location on the screen. This section refers to the two points as display points.

You can specify display points in two different ways:

• Symbolically, by giving a symbol that specifies a point on the edge or at the
center of the window or workspace.

• Numerically, by giving a pair of integers that specify any point in the window
or workspace.

The two specification techniques work in the same way for windows and for
workspaces. You can specify one display point symbolically and the other
numerically, or you can use the same technique for both.

Conflicting Display Point Specifications

The possibility of specifying a display point symbolically or numerically permits
you to give conflicting specifications. To prevent ambiguity, a symbolic display
point specification takes precedence over a numeric specification.

Missing Display Point Specifications

If you specify a window display point symbolically, and do not specify a
workspace display point, the workspace display point defaults to the window
display point.

In all other cases, if you fail to supply both a window display point and a
workspace display point, the workspace appears where it did the last time it was
displayed. If the workspace was never displayed, G2 provides default window
and workspace display points.

Specifying a Display Point Symbolically

You can specify a window or workspace display point symbolically by giving one
of the values top-left-corner, top-center, top-right-corner, right-center, bottom-right-
corner, bottom center, bottom-left-corner, left-center, or center. Each of these
describes a point along the edge, or at the center, of the window or workspace.

To specify a window display point symbolically:

 Set gms-window-symbolic-location to be one of the values: top-left-corner, top-
center, top-right-corner, right-center, bottom-right-corner, bottom center,
bottom-left-corner, left-center, or center.
62

Displaying a Workspace
To specify a workspace display point symbolically:

 Set gms-workspace-symbolic-location to be one of the values: top-left-corner,
top-center, top-right-corner, right-center, bottom-right-corner, bottom center,
bottom-left-corner, or left-center.

If you specify either display point as none (the default), GMS looks for a numeric
specification of that display point.

Note To keep the current menu bar visible while displaying other workspaces relative
to the top of the window, use a template’s gms-allow-for-menu-bar attribute.

Specifying a Display Point Numerically

You can specify a window or workspace display point numerically by giving a
pair of integers that designate the X and Y coordinates of the point. GMS looks for
a numeric specification of a display point only when the symbolic specification
for that point is none.

To specify a window display point numerically:

 Set gms-window-x-location and gms-window-y-location to be integers that
specify the X and Y coordinates of the point.

To specify a workspace display point numerically:

 Set gms-workspace-x-location and gms-workspace-y-location to be integers
that specify the X and Y coordinates of the point.

If you specify either coordinate as none, GMS treats both positions as being none,
and obtains a default display point from G2.

Specifying a Location Offset

You can modify a display point specified symbolically or numerically by
specifying a numeric offset. The offset consists of a pair of integers. One specifies
an X offset, the other a Y offset.

When you specify an offset to a symbolic display point, GMS first converts the
location to equivalent X and Y coordinates. When you specify an offset to a
numeric display point, GMS already has the X and Y coordinates.

To implement an offset, GMS adds the X and/or Y offsets to the X and/or Y
coordinates of the original display point. GMS uses the result as the display point.

To specify a window display point offset:

 Set gms-window-x-offset and gms-window-y-offset to be integers that specify
the X and Y offsets of the point.
63

To specify a workspace display point offset:

 Set gms-workspace-x-offset and gms-workspace-y-offset to be integers that
specify the X and Y offsets of the point.

You specify either or both offsets as none. The effect is the same as if you had
specified the offset as 0.

Creating Built-in G2 Menus
You can use a gms-builtin-template to create one of the built-in G2 menus. The
built-in menu only works in Telewindows Next Generation (twng.exe); the menu
choice is grayed out in classic G2 and Telewindows (tw.exe).

To specify which built-in menu to create, configure the gms-label attribute to be
one of these text values: "file", "edit", "view", "toolbars", "run", "tools", "window",
"run-options", "package-preparation", "system-tables", or "help".

To localize the built-in menu text, configure the gms-builtin-designator attribute to
be one of these symbols: file, edit, view, toolbars, run, tools, window, run-options,
package-preparation, system-tables, or help. When gms-builtin-designator is
specified as a symbol, specify the gms-label as a symbol, which is a GFR key for
localizing the built-in menu text.

Here is a menu specification that includes two built-in G2 menu templates, the
Window menu and the Help menu:

A: Menu Bar Template
B: Cascade Template
C: Built-in Template

A

B C C
64

Creating Built-in G2 Menus
Here are the two built-in G2 menus in Telewindows:
65

66

6

Defining Popup Menus
Describes how to create and display popup menus.

Introduction 67

Defining a Popup Menu 68

Displaying Popup Menus 70

Introduction
A popup menu is a freestanding menu that can appear anywhere in a G2 window
in response to a mouse click. A popup menu is associated with an item in a G2
window. Any G2 item can be configured to display a GMS popup menu instead
of its G2 menu.

A popup menu typically appears when the user clicks the mouse on an item and
disappears as soon as the user selects a leaf entry from the menu or from a
cascade menu that it contains. The item on which the user clicks is called the
initiating item.

A popup menu can have a title block called a header that describes the purpose of
the menu.

A popup menu can contain cascading entries like any other menu. You can
display popup menus automatically or through the API. To display popup menus
automatically, you use gms-popup-subscriber as a mixin class for the initiating
object. GMS then handles all of the mouse gestures automatically. Otherwise, the
program developer can handle the mouse gestures and use the API to post the
menu at the appropriate location.
67

The figure below shows a popup menu:

To see online examples of the concepts covered in this chapter:

1 Load the gmsdemo.kb from the kbs directory.

2 Press the navigation button next to the label POPUP MENUS.

This displays a list of the demos pertaining to popup menus. There are two
demos in this section that illustrate the concepts covered in this chapter.

3 Choose the following demos:

• Simple Popup Menus

• Posting Menus for Items

Defining a Popup Menu
You define a GMS popup menu in a manner similar to the way you define a GMS
Menu Bar:

• Create a GMS menu specification for the popup menu.

• Set the attributes of the root template to specify if the popup menu will
display a header.

Creating a Menu Specification for a Popup Menu

You create the menu specification for a popup menu the same way you create any
menu specification except that you use the Popup Menu template for the root
specification. The Popup Menu template in the next figure has been given the
gms-label popup-root.
68

Defining a Popup Menu
To create a GMS menu specification for a popup menu:

1 Clone a Popup Menu template and place it on a workspace.

2 Clone Cascade Menu templates and Leaf Entry templates as needed and
attach them to the Root template and to each other, using the appropriate
connections.

3 Give all of the Leaf Entry templates labels by editing the attribute display of
gms-label on each template.

The value of the gms-label attribute should be either a string, which appears
on the menu, or a symbol which GFR will uses to translate the label.

4 On the table for the root template, specify the attribute gms-user-key as a
symbol.

Specifying a Popup Menu Header

You can set a popup menu to display a header above the entries in its panel. The
header contains the label of the menu, which is given by the gms-label attribute of
its root template. The popup in the following figure has a header:

To specify the header of a popup menu:

 Edit the root template’s gms-label attribute to specify the desired text
as either:

• A quoted string that gives the text literally.

• A GFR symbol.

Specifying this text does not cause the popup menu to have a header. It only
defines the text of the header.

To specify that a popup menu displays a header:

 Edit the root template’s gms-show-header attribute to have the value true.

To specify that a popup menu does not display a header:

 Edit the root template’s gms-show-header attribute to have the value false
(the default).

Popup header
69

Displaying Popup Menus
A GMS popup menu typically appears because the user clicked the mouse on an
item. This item is called the initiating item. The popup menu disappears
automatically when the user selects a leaf entry from the menu or a subsidiary
cascade menu. If the user of the popup menu decides to take none of the menu
choices, clicking on the header dismisses the menu.

G2 includes a predefined popup menu capability that operates below the level of
GMS. When you use GMS, you can configure objects to display GMS popups
rather than G2 popups. GMS offers three ways to associate a GMS popup menu
with an item:

• Include the mixin gms-popup-subscriber in the item’s class definition, as
described in Using gms-popup-subscriber to Display a Popup Menu.

• Use G2 item configurations to invoke either the procedure gms-display-
popup-menu or gms-display-popup-menu-at-last-event-location when the user
clicks on the item, as described in Using G2 Configurations to Display a
Popup Menu.

• Configure GMS to handle mouse events, as described under Handling Mouse
Events for Popup Menus, This technique provides customized mouse-event
handling, but requires some programming.

Using gms-popup-subscriber to Display a
Popup Menu

GMS provides a mixin class called gms-popup-subscriber that you can include in
a class definition. Clicking an instance of a class that inherits gms-popup-
subscriber causes GMS to display a popup menu.

To use gms-popup-subscriber to associate a GMS popup menu with a class:

1 On the table for the class definition of the initiating object, give the attribute
direct-superior-classes the additional class gms-popup-subscriber.

This mixin adds the attribute gms-popup-pointer to the class definition.

2 Edit the attribute-initializations of the class to read:

gms-popup-pointer initially is popup-key

where popup-key is the key of the root template of a popup menu.

This makes an association between the gms-user-key on the root template of the
popup menu and the class of the object. Whenever the user clicks the mouse on an
instance of the class, GMS displays the popup menu whose root template
specifies popup-key as its gms-user-key. If no such menu exists, GMS signals
an error.
70

Displaying Popup Menus
When the user clicks a leaf entry selected through a GMS popup displayed via
gms-popup-subscriber, GMS automatically includes the initiating item in the
arguments to the leaf entry’s callback procedure.

Accessing G2 Tables and Modifying G2 Attributes

Since the gms-popup-subscriber mixin substitutes GMS menus for G2 menus, you
cannot directly edit the table of an item that inherits gms-popup-subscriber.
However, the table and its attributes remain accessible in other ways.

To edit the table of an item that inherits gms-popup-subscriber:

 Use Inspect to obtain the instance and display its table.

To modify programmatically an item that inherits gms-popup-subscriber:

 Use the conclude and change actions, as with any G2 item.

To provide G2 menu capabilities in a GMS menu:

 Define GMS menu entries and callback procedures as needed to provide the
same effect as the G2 menu entries.

Using G2 Configurations to Display a Popup Menu

GMS provides two API calls that display a popup menu. You can use either of
these calls in conjunction with G2 configurations to display a popup menu. The
calls are:

gms-display-popup-menu
(handle: integer, menu-index: integer, x: integer, y: integer,
 initiating-item: item-or-value)

Displays the popup menu referenced by menu-index in the G2 window
referenced by handle at window coordinates (x, y). GMS passes initiating-
item to any callback procedure that is invoked via the popup menu.

You can set initiating-item to be the item that the user clicked to display
the popup. If you don’t need to pass this item to a callback procedure,
specify a dummy value of false. Do not specify any other dummy value,
or GMS signals an error.

gms-display-popup-menu-at-last-event-location
(handle: integer, menu-index: integer, initiating-item: item-or-value)

Displays the popup menu referenced by menu-index in the G2 window
referenced by handle at the coordinates of the last event in the window.
The gms-display-popup-menu-at-last-event-location determines the last
event like the system procedures g2-last-input-event and g2-last-input-
event-info. The gms-display-popup-menu-at-last-event-location procedure
uses g2-last-input-event-info to determine the coordinates of the location
for posting the menu.
71

GMS passes initiating-item to any callback procedure that is invoked via
the popup menu.

You can set initiating-item to be the item that the user clicked to display
the popup. If you do not need to pass this item to a callback procedure,
specify a dummy value of false. Do not specify any other dummy value,
or GMS signals an error.

Typically, you would use this procedure to post a menu in response to a
mouse click by the user. To post a menu when the user selects an item, the
item must have a configuration clause that specifies a procedure that calls
gms-display-popup-menu-at-last-event-location, as in the following
example:

selecting any item implies post-menu

where post-menu is a user-menu-choice that does the following:

start my-posting-procedure (the item, this window);

my-posting-procedure (InitiatingItm: class item, Win: class g2-window)
GMSHandle: integer;
PopupMenuIndex: integer;
begin

GMSHandle = call gms-get-handle-for-window (Win);
PopupMenuIndex = call gms-get-index-for-key

(the symbol POPUP-MENU);
call gms-display-popup-menu-at-last-event-location (GMSHandle,
PopupMenuIndex, InitiatingItm);

end

To use G2 configurations to associate a GMS popup menu with a class:

1 Create a User Menu Choice that calls a procedure that calls either gms-
display-popup-menu or gms-display-popup-menu-at-last-event-location and
passes it appropriate arguments, as in the previous example.

2 Configure the class that is to use GMS popup menus to execute the User Menu
Choice in response to a mouse-up event. Use either of the configuration
clauses:

• releasing any mouse button on...

• selecting any item...

Caution Call gms-display-popup-menu and gms-display-popup-menu-at-last-event-
location only in response to a mouse-up event, or while the mouse button is
already raised. If you call gms-display-popup-menu or gms-display-popup-menu-
at-last-event-location in response to a mouse-down event, or while the mouse
button is already depressed, GMS will be unable to detect the mouse state and
will be corrupted. To recover from this error, reset G2 or call gms-reset, as
described under Resetting GMS without Resetting G2.
72

Displaying Popup Menus
To display a popup menu in response to a mouse-down event, or while the mouse
button is already depressed, use gms-manage-popup-menu as described under
Handling Mouse Events for Popup Menus.
73

74

7

Writing and Using
Callback Procedures
Shows how to write GMS callback procedures and supply them with the
information that they need.

Introduction 75

Types of GMS Callback Procedures 76

Invoking a Procedure Upon Menu Selection 76

Using Activation Callback Arguments 77

Providing Additional Data to an Activation Callback 81

Specifying a Default Activation Callback 83

Invoking a Procedure When a Menu is Displayed or Hidden 84

Invoking a Procedure on Selection and Unselection 85

Introduction
The purpose of any menu system is to execute procedures when the user chooses
leaf entries from menus. All other menu system features exist to make the choice
as easy and as useful as possible under changing conditions and in different
environments.

This chapter shows you how to write GMS callback procedures and supply them
with the information that they need. For simplicity, the chapter focuses on
callback procedures invoked from static menus. Dynamically Defining and
Changing Menus, describes some additional considerations that apply with
dynamically defined menus.
75

To see online examples of the concepts covered in this chapter:

1 Load the gmsdemo.kb from the kbs subdirectory in the utils directory under
the g2 directory.

2 Choose the demo called Callbacks.

Types of GMS Callback Procedures
• Activation callback procedure: A G2 procedure that is called when the user

selects a GMS menu leaf entry. The activation callback procedure associated
with a particular menu entry is specified by the gms-activation-callback
attribute of the entry’s template object, as described under Specifying the
Effect of Choosing a Leaf Entry. The syntax of an activation callback
procedure is described in Invoking a Procedure Upon Menu Selection.

• Posting callback procedure: Allows you to dynamically configure any
statically defined menu bar or transient menu. GMS invokes this procedure
immediately before it displays the menu, and again immediately after it hides
the menu. The posting callback procedure associated with a particular menu
is specified by the gms-posting-callback attribute of the root template or
cascading menu template as described under Invoking a Procedure When a
Menu is Displayed or Hidden.

• Selection callback procedure: Allows you to take an action when a statically
defined menu entry is selected or unselected. A selection callback procedure is
similar to a posting callback procedure, except that it is called on selection and
unselection rather than on display and undisplay. The selection callback
procedure associated with a particular menu entry is specified by the
gms-selection-callback attribute of the entry’s template object, as described in
Invoking a Procedure on Selection and Unselection.

Invoking a Procedure Upon Menu Selection
Syntactically, a callback procedure is an ordinary G2 procedure. Its only special
property is that it accepts specific arguments supplied by GMS. The activation
callback invokes a procedure when the user selects a GMS menu leaf entry. The
synax for this callback is:

procedure-name
(handle: integer, activation-info: item-or-value, menu-index: integer)
76

Using Activation Callback Arguments
The procedure-name can be any unique name. The arguments are:

Every activation callback must take exactly these three arguments; you cannot
omit any of them or define any in addition to them. This chapter refers to the
three arguments that GMS passes to a callback procedure as callback arguments.

A callback procedure is free to ignore any or all callback arguments, and to make
any desired use of them. Typically, a callback procedure uses its arguments to
determine what action to take.

Caution When an activation callback procedure returns, GMS automatically deletes the
activation-info. Do not try to use the activation-info outside the context of the
callback procedure invocation that received it.

Using Activation Callback Arguments
The three activation callback arguments specify the complete context within
which a callback procedure was invoked. This context is the callback procedure’s
activation context. That context consists of:

• The G2 window containing the menu from which the call originated.

• For a callback procedure accessed through a popup menu, the value of the
initiating item that the user clicked to display the popup.

• The top-level menu entry that the user selected.

• Any cascading entries that the user selected while navigating to a leaf entry.

• The leaf entry that the user chose in order to invoke the callback procedure.

This section shows you how to use GMS API calls to obtain activation context
information from callback arguments. You cannot retrieve such information
directly from the arguments, because GMS stores it in coded form. Use API calls
exclusively.

Argument Description

handle The handle of the window that contains the
menu from which the call originates

activation-info An object containing detailed information
about the context of the call

menu-index The menu index of the leaf entry from which
the call originates
77

Once you have the needed data from callback arguments, you can use the data as
appropriate in the callback procedure.

Obtaining the G2 Window

The handle argument to a callback procedure represents the G2 window
containing the menu through which the callback procedure was invoked.

To get the G2 window for a handle:

 gms-get-window-for-handle
(handle: integer)
-> window: class g2-window

Returns the G2 window associated with a handle. If handle is not a valid
handle, GMS signals an error.

You can now use standard G2 techniques to retrieve information from window,
and use this information as needed in the callback procedure.

Obtaining the Initiating Item for a Popup Menu

When you use gms-display-popup-menu or gms-manage-popup-menu to display
a popup menu, the last argument to the call, initiating-item, can be the item that
the user clicked to display the popup, or a dummy value of false, as described
under Using G2 Configurations to Display a Popup Menu.

When an item displays a popup menu automatically via the gms-popup-
subscriber mixin (Displaying Popup Menus), the GMS mechanism that displays
the popup automatically supplies the item that the user clicked, just as if it had
been provided explicitly as an initiating-item.

In either case, when a callback procedure is invoked through a popup menu or a
subsidiary cascade menu, the initiating item exists in the activation-info argument
to the callback procedure.

To obtain the initiating item from an activation path:

 gms-get-item-initiating-popup
(activation-info: item-or-value)
-> initiating-item: class item-or-value

Returns the item that the user clicked to display the popup menu, or the
dummy value false if the popup was displayed by a call to gms-display-
popup-menu or gms-manage-popup-menu that specified false as the
initiating-item.

You can now use standard G2 techniques to retrieve information from initiating-
item, and use this information as needed in the callback procedure.
78

Using Activation Callback Arguments
Obtaining Menu Entries and Attribute Values

The activation-info argument to a callback procedure specifies the complete path
the user navigated from a top-level menu to a leaf entry. This path consists of:

• The top-level menu entry.

• Every cascading menu entry that the user selected (if any).

• The leaf entry that the user chose.

An activation path does not contain templates, because the templates might not
exist when the callback procedure is invoked. Instead it contains a sequence of
menu indexes. You can use these indexes to retrieve information about all menu
entries on the path. GMS obtains this information from the compiled resource.

Menu Levels

The menu indexes in an activation path are ordered by menu level. The value of
menu level is an integer that indicates how deeply a menu is nested within a
higher level menu. A top-level menu, whether a menu bar or a popup, has a menu
level of 0; a cascade menu derived from a top level menu has a menu level of 1; a
cascade menu derived from a level 1 menu has a level of 2; and so on.

Thus the level 0 menu index in an activation path is the index of the top-level
menu; the level 1 menu index is the index of the first cascade menu (if any); and
so on. If the relevant template objects exist, these indexes are the values assigned
by the compiler to their gms-index attributes, as described under Menu Indexes.

The last index in an activation path is the index of the leaf entry that invoked the
callback procedure. For convenience, this index also appears separately as the
menu-index argument to the callback procedure.

Obtaining Menu Indexes from an Activation Path

GMS provides the following two functions for using menu levels to retrieve menu
indexes from an activation path:

To obtain the level of the leaf entry in an activation path:

 gms-get-activation-level
(activation-info: item-or-value)
-> level: integer

Returns the menu level of the entry that invoked the callback procedure.

To obtain the menu index at a specified level of an activation path:

 gms-get-activation-index
(activation-info: item-or-value, menu-level: integer)
-> index: integer
79

Returns the menu index of the menu entry at level menu-level, or -1 if no
such entry exists (because menu-level was out of range).

Note Gms-get-activation-level and gms-get-activation-index are functions, not
procedures.

Obtaining Menu Entry Attributes in an Activation Context

Once you have the index of a menu entry, you can use it to obtain the value of any
attribute of the entry. These values were originally specified in the template object
that defined the entry. GMS retrieves them from the compiled resource.

To obtain the value of a menu entry attribute from the compiled resource:

 gms-get-activation-property
(activation-info: item-or-value, menu-index: integer,
 property-name: symbol)
-> property-value: item-or-value

Returns the value of property-name in the menu or menu entry specified
by menu-index in the activation-info.

Obtaining All Cascade Menu Entries

Once you have obtained the index of a cascading menu entry from an activation
path, you can obtain the indexes of all entries in the cascade menu.

To obtain a list of all cascade menu entry indexes:

 gms-return-submenu-entries
(handle: integer, menu-index: integer, index-list: class integer-list)

Given the index of a cascade menu entry, obtains the indexes of all menu
entries in the cascade menu.

Note that gms-return-submenu-entries provides a list of menu indexes by
modifying an existing list, rather than creating and returning a new one. In this

Argument Description

handle The handle that is the first argument to the
callback procedure.

menu-index The index of a cascading menu entry that is
referenced in the activation path.

index-list An integer-list to which GMS appends the
indexes of all entries in the cascade menu.
80

Providing Additional Data to an Activation Callback
way the application programmer is in control of the list and it is in no danger of
being deleted by GMS.

Caution Be sure to explicitly delete every index-list after you no longer need it. If you fail
to do this, the accumulation of undeleted lists will eventually consume all
available storage, and G2 will cease to function.

You can also call gms-return-submenu-entries outside of an activation context, as
described under Accessing the Compiled Resource.

Providing Additional Data to an Activation
Callback

Many situations require an activation callback procedure to have more data
available than the attributes of GMS template objects provide. Two approaches to
supplying data to an activation callback procedure are:

• Store the information in the keys of template objects.

• Use template object keys to access information in non-template objects.

You could create a subclass of Leaf Entry template, give it class-specific attributes
as needed, and give the attributes values that supply the information that a
callback procedure requires.

Caution This technique is not guaranteed to work with future releases of GMS, and
therefore should not be used.

The rest of this section describes supported techniques for supplying data to an
activation callback procedure.

Storing Information in Template Keys

The GMS compiler includes predefined Leaf Entry template attributes in the
compiled resource, so any information you store in them is directly available to an
activation callback procedure.

If the data to be provided is a single value that is always the same, you can make
that value the key of each menu entry to which it applies. This technique can be
used to make one callback procedure serve many related leaf entries.

For example, suppose a menu offers a choice of colors by example: each leaf entry
contains an unlabeled icon that illustrates the color that the entry represents.

The key of each such entry could be a symbol that describes the entry’s color in a
way that is useful programmatically. All of the entries could use the same
81

callback procedure, which would retrieve the key from the entry and use it to set
the desired color programmatically.

To retrieve a key:

 Use gms-get-activation-property specifying the symbol gms-user-key as the
property-name.

Using Template Keys to Access Information

If the data to be provided to an activation callback procedure consists of more
than one value, or is not always the same, the simplest technique is usually:

1 Store the data in some way that allows it to be retrieved via some identifying
value.

2 Make that identifying value the key of the template that invokes the callback
procedure.

The callback procedure first retrieves the key, using gms-get-activation-property,
then uses standard G2 techniques to obtain the data that it identifies. Because a
key can be of any type, this technique is very flexible. For example, it could be a
symbol that names an object, or an integer that designates an array element. The
following example is of a callback procedure that retrieves the class name of an
object to create from the gms-user-key.

gmsd-callback-create-item-and-attach-to-mouse
(GMSUserHandle: integer, ActivationInfo: item-or-value, ActivationIndex: integer)

DesiredClassName: symbol;
Itm: class item;
Win: class g2-window;
Label: text;
begin

Label = call gms-get-activation-property (ActivationInfo, ActivationIndex,
the symbol GMS-LABEL);

inform the operator that "You chose [Label]";
DesiredClassName = call gms-get-activation-property (ActivationInfo,

ActivationIndex, the symbol GMS-USER-KEY);
Win = call gms-get-window-for-handle (GMSUserHandle);
create an instance Itm of the class named by DesiredClassName;
transfer Itm to the mouse of Win;

end

Other Strategies for Providing Data to a Callback

Nothing requires you to use a key value to provide data to a callback procedure.
You can use any template object attribute in any way that works.

For example, if a menu offered a choice of colors by naming them rather than by
showing colored icons, a callback procedure could determine what color to set by
82

Specifying a Default Activation Callback
looking at the label of the leaf entry that called it. The label would then represent
the color to both the user and the application.

You can also combine the above strategies. This technique can provide a callback
procedure with convenient access to sets of data that have different volatilities.

Distributing Data over Multiple Menu Templates

The preceding examples refer only to leaf entry keys, but the activation-info
argument to a callback procedure contains the indexes of all entries that the user
selected on the way to the leaf entry. You can use the techniques described in this
section to retrieve the keys (or other attributes) of any of these entries, and use
them as needed.

You can use this capability to factor data needed by the callback procedure(s) of
multiple leaf entries to a cascade template that is superior to all of the entries. If
the data does not apply to every part of the subtree, you can specify lower-level
data that shadows the higher-level data as needed.

Specifying a Default Activation Callback
You can define a default activation callback procedure for any menu specification
and for any subtree within a menu specification. This procedure is the value of the
gms-activation-callback attribute of the relevant root template or cascading entry
template.

If the user chooses a leaf entry that does not specify an activation callback
procedure, GMS searches up the menu hierarchy for a default procedure.

• If the leaf entry is in a cascade menu, the search begins with the cascading
entry that displayed the menu, and proceeds through any higher-level
cascading entries.

• If no cascading entry defines a callback procedure, or the leaf entry is in a top-
level menu, GMS looks for a callback procedure defined in the root template.

If GMS encounters a callback procedure definition during this search, it invokes
the procedure. If GMS does not find any callback procedure, it signals an error.

This search pattern allows you to define a callback procedure for many leaf
entries by specifying it as the callback procedure of a template that is superior to
them all. If the procedure does not apply to every leaf entry in the subtree, you
can specify callback procedures at lower entries that shadow the higher-level
procedure as needed.

To specify a default activation callback procedure for a menu:

 Edit the gms-activation-callback attribute of the parent template of the menu
to contain the name of the procedure to call.
83

Invoking a Procedure When a Menu is
Displayed or Hidden

A posting callback procedure can use GMS API calls to modify the appearance of
a menu in any way, and to take any other action that might be appropriate. When
the procedure is invoked before a menu is displayed, it can customize the
appearance of the menu to reflect conditions at the time of the call. When it is
invoked after a menu is hidden, it can restore the menu to a standard state. A
posting callback procedure cannot add or delete menu entries: it can only change
the appearance of entries already defined.

Syntactically a posting callback is an ordinary G2 procedure. It receives the same
three arguments as an ordinary callback procedure, as described under Invoking
a Procedure Upon Menu Selection, plus an additional argument that tells whether
the procedure has been called before the display or after the undisplay of the
menu. The signature of a posting callback procedure is:

procedure-name
(handle: integer, activation-info: item-or-value, menu-index: integer,
 display-status: truth-value)

The procedure-name can be any unique name. The arguments are:

A posting callback procedure can use the same techniques, and is subject to the
same warnings, as an ordinary callback procedure. If you call gms-get-activation-
level on the activation-info, the result is the level of the index of the menu or
cascading entry from which the call originates.

Argument Description

handle The handle of the window that will or did
display the menu to which the call applies

activation-info An object containing detailed information about
the context of the call

menu-index The index of the top-level menu or cascading
entry from which the call originates

display-status Tells whether the procedure has been called
before menu display (true) or after menu
undisplay (false)
84

Invoking a Procedure on Selection and Unselection
Caution To avoid unexpected errors from the menu system, write your posting callbacks
so that they do not enter wait states. Actions that will cause a procedure to enter a
wait state are allow other processing, collect data, wait, and do in parallel. Avoid
the use of these actions and any procedure which uses them. If there is no
alternative, use gms-lock-menus and gms-unlock-menus to lock the menus while
the posting callback is running.

To specify a posting callback procedure for a menu:

1 Edit the root template or cascading entry template’s gms-posting-callback
attribute to specify a symbol that is the name of the procedure.

2 Edit the gms-additional-posting-callback of any extensible stub (a Place Holder
or a Peer Menu connection post) to specify a symbol that names the
procedure.

Because a posting callback procedure is not required for a menu to function
correctly, if you do not define a posting callback procedure, GMS does not search
for a default procedure, and continues executing without notification or error.

Invoking a Procedure on Selection
and Unselection

You can take any useful action when a statically defined menu entry is selected or
unselected by specifying a selection callback procedure for the entry. A selection
callback procedure is similar to a posting callback procedure, except that it is
called on selection (selection-status is true) and unselection (selection-status is
false) rather than on display and undisplay.

Syntactically a selection callback is identical to a posting callback procedure. Its
last argument that tells whether the procedure has been called before the selection
or after the unselection of the menu. The signature of a selection callback
procedure is:

procedure-name
(handle: integer, activation-info: item-or-value, menu-index: integer,
 selection-status: truth-value)
85

The procedure-name can be any unique name. The arguments are:

Caution To avoid unexpected errors in the menu system, write your selection callbacks so
that they do not enter wait states. Actions that will cause a procedure to enter a
wait state are allow other processing, collect data, wait, and do in parallel. Avoid
the use of these actions and any procedure which uses them. If there is no
alternative, use gms-lock-menus and gms-unlock-menus to lock the menus while
the selection callback is running.

When a cascading menu entry has both a selection and a posting callback
procedure, and the user selects the entry, GMS calls first the selection and then the
posting callback procedure. When the user unselects the entry, GMS calls first the
posting and then the selection callback procedure.

To specify a selection callback procedure for a menu entry:

 Edit the menu entry template’s gms-selection-callback attribute to specify a
symbol that is the name of the procedure.

Because a selection callback procedure is not required for a menu to function
correctly, if you do not define a selection callback procedure, GMS does not
search for a default procedure, and continues executing without notification or
error.

When GMS invokes a callback procedure, it passes the procedure three
arguments that give the complete context of the invocation. GMS supplies various
procedures that you can use to access this context and obtain any information
about it that the callback procedure needs.

Argument Description

handle The handle of the window that will or did
display the menu to which the call applies

activation-info An object containing detailed information about
the context of the call

menu-index The index of the top-level menu or cascading
entry from which the call originates

selection-status Tells whether the procedure has been called
before menu selection (true) or after menu
unselection (false)
86

8

Dynamically Defining
and Changing Menus
Shows how to create and modify GMS menus in real time.

Introduction 87

Dynamically Constructed Menu Specifications 88

Dynamic Menu Compilation and Display 91

Panel Constructor Procedure Syntax 91

Writing a Panel Constructor 92

Using Template Lists 94

Defining and Displaying a Dynamic Cascade Menu 94

Defining and Displaying a Dynamic Popup Menu 95

Dynamic Menus and Callback Procedures 96

Reducing Dynamic Menu Overhead 96

Dynamically Switching between Applications 98

Introduction
The techniques described in the previous chapters show you how to specify GMS
menus statically, and how to check, disable, and restrict menu entries
programmatically. These capabilities may not be adequate to deal with situations
and requirements that change unpredictably.
87

GMS provides a variety of techniques that allow you to cope with unpredictably
changing conditions. You can use these techniques to:

• Change the label of any menu entry in any G2 window at any time.

• Invoke a procedure whenever a menu is displayed or undisplayed.

• Invoke a procedure whenever a menu entry is selected or unselected.

• Dynamically define the contents of a popup menu.

• Dynamically define the contents of a cascade menu.

• Extend a menu by loading specifications in additional modules.

To see online examples of the concepts covered in this chapter:

1 Load the gmsdemo.kb from the kbs directory.

2 Choose the demo called Dynamic Menus.

This demo shows how to generate a menu at run time without specifying the
structure in advance.

3 Choose the demo called Multiple Menu Bars.

This demo shows how to use the Switch Menu Bar template to provide access
to multiple menu bars, possibly from different applications, in a single
environment. The menus can therefore be specified in different modules.

Dynamically Constructed Menu Specifications
To provide for unpredictable situations, GMS allows you to completely define
any popup or cascade menu programmatically. Dynamically defined popup and
cascade menus are generically called dynamic menus.

Statically defined menus are preferable wherever they can be used, because they
are faster. Dynamic menus are preferable when the need for real-time menu
construction is paramount, because you can reconstruct them as needed to reflect
current conditions.

Specifying a Dynamic Menu

Whether you specify a GMS menu statically or dynamically, the end result is the
same: a menu specification that is input to the GMS compiler. The difference is in
the techniques used for creating the menu specification.

To define a static menu, you first clone a root template or cascading entry
template, then connect the template to additional templates as needed to define
the menu.
88

Dynamically Constructed Menu Specifications
To define a dynamic menu, you begin in the same way, by cloning a root or
cascading entry template from the GMS Palette. A dynamic popup menu
specification begins with a Dynamic Popup template; a dynamic cascade menu is
specified with a Dynamic Cascade template. These two types of templates are
generically called dynamic templates.

A dynamic template does not connect to any subsidiary templates. Instead, it
specifies a G2 procedure called a panel constructor. When you ask GMS to
display a dynamically defined menu, GMS calls the panel constructor specified
by the menu’s template object. The constructor returns a list of template objects
that specify the contents of the desired menu. Such a list is called a template list.

• The templates in a template list are the same as they would be in an
equivalent static menu specification, except that they are constructed using
the G2 create and conclude actions. Such templates are called dynamically
constructed templates.

• The sequential ordering defined by list membership replaces the sequential
ordering defined with Peer Menu Connections in a static menu specification.

To compile a panel in a static menu specification, GMS traverses a sequence of
cloned templates linked by connections. To compile a panel in a dynamic menu
specification, GMS traverses a sequence of dynamically constructed templates
linked by membership in a list. If the templates are the same, the resulting menu
is the same.

Thus dynamic menu specification is a form of automatic code generation. All you
need to do is clone dynamic templates from the GMS Palette and supply
appropriate panel constructors for them. GMS does the rest.

Note Be careful not to confuse dynamic templates with dynamically constructed
templates. Dynamic templates use panel constructors to define menus.
Dynamically constructed templates are created by panel constructors and define
menu entries.
89

Attributes of Dynamic Templates

The attributes of Dynamic Popup templates and Dynamic Cascade templates are
identical to their static counterparts with the addition of attributes that specify the
panel constructor function and control the deletion of dynamically constructed
templates. These attributes are described in the following table.

Attribute Description

gms-preconstruct-
panel

Specifies that GMS reconstruct the menu every
time it is displayed. If true, specifies that GMs
constructs the menu at compile time.

Allowable values: true or false

Default value: false

Notes: For more information about constructing
dynamic menus see Constructing Dynamic
Menus at Compilation Time.

gms-subpanel-
constructor

Specifies the name of the panel constructor for
GMS to use to build this menu.

Allowable values: The name of any gms panel constructor
function

Default value: g2

gms-reclaim-
templates

Specifies that dynamic templates are saved for
later use after they are displayed. If false, the
templates are deleted and recreated when
needed.

Allowable values: true or false

Default value: true

Notes: For additional information see Reusing
Dynamically Constructed Templates.
90

Dynamic Menu Compilation and Display
Dynamic Menu Compilation and Display
By default, GMS completely constructs a dynamic menu from scratch every time
the menu is to be displayed. The steps for constructing and displaying a dynamic
menu are:

1 Call the panel constructor to obtain a template list that defines the menu.

2 Compile the template list into a menu translation.

3 Store the menu translation in the compiled resource.

4 Use the information in the compiled resource to build a menu instance.

5 Display the menu in a G2 window.

By default, GMS completely deletes a dynamic menu after any callback procedure
invoked through the menu has returned. The steps for deleting a dynamic menu
are:

1 Delete the menu instance.

2 Delete the menu translation from the compiled resource.

3 Delete all templates in the template list.

4 Delete the template list itself.

By default, GMS repeats this sequence in its entirety every time it displays and
undisplays a dynamic menu. Such repetition can be time-consuming, particularly
if you repeatedly select and unselect the same dynamic cascading menu entry.

GMS provides techniques for reducing the overhead of repeatedly reconstructing
dynamic menus, as described under Reducing Dynamic Menu Overhead.

Panel Constructor Procedure Syntax
Syntactically, a panel constructor is an ordinary G2 procedure. It receives the
same three arguments as an ordinary callback procedure, as described under
Invoking a Procedure Upon Menu Selection, plus an additional argument that the
constructor uses to return a dynamic menu specification. The signature of a panel
constructor is:

procedure-name
(handle: integer, activation-info: class gms-activation-info,
 menu-index: integer, template-list: class item-list)
91

The procedure-name can be any unique name. The arguments are:

Every panel constructor must take exactly these four arguments: you cannot omit
any of them or define any in addition to them. This chapter refers to the first three
arguments that GMS passes to a panel constructor as constructor arguments.

A panel constructor can use the same techniques and is subject to the same
warnings, as an ordinary callback procedure, as described in Writing and Using
Callback Procedures. If you call gms-get-activation-level on the activation-info,
the result is the level of the template that called the panel constructor.

A panel constructor is free to ignore any or all constructor arguments, and to
make any desired use of them. Typically a constructor uses its arguments to
determine what to include in the menu it constructs. The techniques by which a
constructor obtains necessary information and uses it to determine what panel to
construct are not part of GMS.

To specify a menu, a constructor defines the constituent templates, and puts them
into the template-list. The zeroth element of the list holds the template for the
topmost menu entry, the first element, the template for the next entry, and so on.
Thus a panel constructor returns a menu specification by modifying an existing
list, rather than creating and returning a new one.

Writing a Panel Constructor
The general technique for specifying an entry in a dynamic menu is:

1 Determine what the entry should consist of.

2 Use the create action to create an appropriate template object.

Argument Description

handle The handle of the window in which the
dynamically constructed menu will be
displayed.

activation-info An object containing detailed information
about the context of the call to the panel
constructor.

menu-index The menu index of the cascading entry from
which the call originates

template-list An empty item list for holding dynamically
constructed templates.
92

Writing a Panel Constructor
3 Use conclude actions to assign values to template attributes as needed.

4 Append or insert the element into the template list.

A panel constructor does not have to execute this sequence as a whole for each
template: it can define a template list in any order that works. All that matters is
that the list contain a complete and correct panel specification when the
constructor returns. If the GMS compiler cannot compile a template list, GMS
signals an error.

Caution To avoid unexpected errors in the menu system, write your panel constructor so
that it does not enter wait states. Actions that will cause a procedure to enter a
wait state are allow other processing, collect data, wait, and do in parallel. Avoid
the use of these actions and any procedure which uses them. If there is no
alternative, use gms-lock-menus and gms-unlock-menus to lock the menus while
the panel constructor is running.

You can include a dynamic template in any menu, including one that was itself
defined by a dynamic template, and so on to a maximum of 256 levels. When you
nest dynamic templates, GMS does not construct the submenus when it
constructs the menu that contains them: it waits until a submenu must be
displayed, and constructs it then.

The following procedure is an example of a panel constructor.

gms-construct-subclass-panel (GMSUserHandle: integer,
ActivationInfo: item-or-value, Index: integer, TemplatesList: class item-list)

SelectedOnWindow: truth-value;
MCT: class gms-choice-template;
CDT: class gms-dynamic-cascade-template;
ClassName, SubClassName: symbol;
Label: text;
X: integer = 0;
begin

Label = call gms-get-activation-property (ActivationInfo, Index,
the symbol GMS-LABEL);

ClassName = symbol(Label);
{inform the operator that "Constructing panel for class: [Label]";}
for SubClassName = each symbol that is an inferior-class of ClassName do

X = x + 1;
if there exists a symbol that is an inferior-class of SubClassName then begin

create a gms-dynamic-cascade-template CDT;
conclude that the gms-label of CDT = "[SubClassName]";
conclude that the gms-reclaim-templates of CDT = true;
insert CDT at the end of TemplatesList;
conclude that the gms-subpanel-constructor of CDT =

the symbol gms-construct-subclass-panel;
end else begin

create a gms-choice-template MCT;
conclude that the gms-label of MCT = "[SubClassName]";
93

insert MCT at the end of TemplatesList;
end;
exit if x > 15;

end;
end

Specifying Labels for Templates in Dynamic Panels

If you are using the internationalization features of GFR, you have two options for
specifying labels in the templates that are added to the template list in the panel
constructor:

• Continue to use GFR symbols (as described in Internationalizing GMS
Menus).

Continuing to use GFR symbols is advisable if the templates are reused in any
way for different windows.

• Specify the labels as text.

If a template is used only once, you can insert the translated label text directly,
because the language for the labels is unambiguously determined from the
window where the current constructor is being used.

Using Template Lists
GMS assumes that it has complete control over template lists, and can create,
modify, and delete them at will. Therefore, you should never do anything with a
template list except to populate it with templates during execution of the panel
constructor that received the list from GMS.

After a panel constructor returns, and GMS has compiled the panel specification
in the template list, GMS:

• Always empties the template list.

• Optionally deletes the templates that the list contains.

To avoid the overhead of repeatedly creating the same templates, you can set
GMS to not delete dynamically constructed templates, then reuse the templates in
subsequent invocations of any panel constructor, as described under Reusing
Dynamically Constructed Templates.

Defining and Displaying a Dynamic
Cascade Menu

At the top level, defining a dynamic cascade menu is the same as defining a static
cascade menu, except that you use a different entry template, a Dynamic Cascade
94

Defining and Displaying a Dynamic Popup Menu
template. This template has the same attributes as an ordinary Cascade Menu
template, plus attributes that specify the panel constructor function and control
the deletion of dynamically constructed templates.

To define a dynamic cascade menu:

1 Clone a Dynamic Cascade template from the GMS Palette to a workspace.

2 Set attributes of this template as needed for any cascade menu, as described in
Defining a Simple Menu..

3 Set the gms-subpanel-constructor of the template to specify the appropriate
panel constructor.

4 Include the template in a menu specification just as you would any cascading
menu entry.

GMS automatically creates and displays a dynamic cascade menu whenever you
select its cascading menu entry. No special action is needed.

Defining and Displaying a Dynamic
Popup Menu

At the top level, defining a dynamic popup menu is the same as defining a static
popup menu, except that you use a different root template: a Dynamic Popup
template. This template has the same attributes as an ordinary Popup Menu
template, plus attributes that specify the panel constructor function and control
the deletion of dynamically constructed templates. These attributes are shown in
the following table.

To define a dynamic popup menu:

1 Clone a Dynamic Popup template from the GMS Palette to a workspace.

2 Set attributes of this template as needed for any popup menu, as described in
Defining Popup Menus.

3 Set the gms-subpanel-constructor of the template to specify the appropriate
panel constructor.

Displaying a dynamic popup is the same as displaying an ordinary popup.

To display a dynamic popup menu:

 Use gms-display-popup-menu, as described under Using G2 Configurations to
Display a Popup Menu.

or
95

 Use the gms-popup-subscriber mixin, as described under Using gms-popup-
subscriber to Display a Popup Menu.

or

 Use the techniques described under Configuring GMS to Handle Mouse
Events.

Note In a static menu GMS automatically checks and unchecks menu entries on a
gms-change-mode-template. In a dynamic menu, the checking and unchecking of
gms-change-mode-template menu entries does not happen automatically. It is
done using the API procedures gms-check-menu-entry, gms-uncheck-menu-
entry, and gms-menu-entry-is-checked. For more information on these
procedures see Checking and Unchecking Menu Entries.

Dynamic Menus and Callback Procedures
From the viewpoint of a callback procedure, static and dynamic menus are
identical. Every callback procedure technique works in the same way with either
type of menu. This invariance exists because:

• A menu translation is the same whether it was compiled from a static or a
dynamic menu specification.

• All menu-specific information in a callback procedure’s activation context is
drawn from the compiled resource.

The GMS compiler generates new menu indexes each time it recompiles a
dynamic menu, and may not use the same index values from one compilation to
the next. Therefore a callback procedure that is invoked repeatedly from the same
dynamic menu must not assume that the menu indexes in callback arguments are
the same from call to call.

GMS deletes the menu translation for a dynamic menu as soon as the menu is
undisplayed. Therefore a dynamic menu index value obtained from an activation
path should never be used outside the context of the callback procedure
invocation that obtained the value.

Reducing Dynamic Menu Overhead
The overhead of repeatedly constructing and reconstructing a dynamic menu can
be considerable, as described under Dynamic Menu Compilation and Display.
GMS offers two techniques for reducing such overhead:

• You can construct a dynamic menu on compilation rather than on display.
96

Reducing Dynamic Menu Overhead
• You can reuse dynamically constructed templates in successive panel
constructor invocations.

Constructing Dynamic Menus at Compilation Time

By default, GMS reconstructs a dynamic menu every time the menu is displayed.
In some cases, a menu changes only under conditions that require the menu to be
recompiled in any case.

For example, consider a menu that is frequently redefined while an application is
under development, but does not change while the application is in use.
Reconstructing such a menu for every display is unnecessary. The menu needs to
be constructed only when GMS compiles it. This technique is called
preconstruction. A menu that uses it is a preconstructed menu.

To set GMS to preconstruct a dynamic menu:

1 Define the menu as described in this chapter.

2 Set the dynamic template’s gms-preconstruct-panel attribute to true.

When GMS compiles the menu, it will:

• Call the panel constructor to obtain a dynamic menu specification.

• Compile the specification.

• Add the translation to the compiled resource.

GMS thereafter handles the menu exactly as it does a statically defined menu.
Thus a preconstructed menu is really not a static or a dynamic menu, but a hybrid
of the two, having some of the properties of each.

Reusing Dynamically Constructed Templates

By default, every construction of a dynamic menu is independent of every other.
In many cases, successive displays of a dynamic menu have much in common.
Recreating every template in such a menu’s specification is unnecessary. Only
templates that change from one display to the next need to be recreated.

To avoid redundant template creation, you can set GMS to not delete dynamically
constructed templates after using them. You can then reuse the templates as
needed, rather than recreating them from scratch each time a dynamic menu is to
be displayed. You can specify whether dynamic templates are saved or deleted
separately for each dynamic menu.

To set GMS to save dynamically constructed templates for a dynamic menu:

 Set the dynamic template’s gms-reclaim-templates attribute to false.
97

GMS will not delete dynamically constructed templates returned to the dynamic
template by its panel constructor. GMS will still delete the template list that
contains the templates: only the templates themselves are preserved.

To reuse a dynamically constructed template:

 Use standard G2 techniques to obtain the template and reuse it as needed in a
panel constructor; this constructor need not be the same one that originally
constructed the template.

Memory Management Considerations

Reusing dynamically constructed templates can result in faster construction of
dynamic menus, but it brings with it a responsibility for memory management
that does not arise when GMS deletes such templates automatically.

When GMS deletes dynamically constructed templates, you do not need to worry
about memory management. When GMS saves such templates, you must be sure
to delete them, and any other objects that you create to help keep track of them, as
soon as they are no longer needed. If you fail to do this, the accumulation of
undeleted objects will eventually consume all available storage, and G2 will cease
to function.

Caution When you reuse dynamically constructed templates, perfect storage management
is essential! You must make absolutely certain that your code does not allow
objects to accumulate without limit.

Dynamically Switching between Applications
When more than one G2 application is loaded simultaneously, and each can
display a menu bar, the user typically needs a way to switch from one menu bar
to another, and thus from one application to another. The Switch Menu Bar
template, shown below, provides this capability.

In general, every G2 application that uses a GMS menu bar and might be loaded
along with another such application should provide the ability to switch menu
bars by including a Switch Menu Bar template in its menu bar. Otherwise a user
who enters the application by switching to its menu bar will not be able to leave
conveniently.
98

Dynamically Switching between Applications
Switching Menu Bars

The Switch Menu Bar template is a subclass of Dynamic Cascade template. When
selected, the template calls a panel constructor that:

1 Obtains all compiled menu bars from the compiled resource.

2 Extracts the menu label (the value of gms-label) and the menu index
(gms-index) from the root template of each menu bar.

3 Creates a cascade menu that contains a leaf entry for each menu bar. This
entry:

• Has an entry label that is the label of the menu bar.

• When chosen, calls gms-display-menu-bar to display the menu bar in the
window that displays the Switch Menu Bar template.

To include a Switch Menu Bar template in a menu specification:

 Clone the Switch Menu Bar template from the GMS Palette and include it in
the specification, as with any dynamic cascade template.
99

100

9

Including Additional
Features in a Menu
Shows how to include some additional features of GMS in your menu. These
features include menu dividers, menu accelerators, menu help information,
distributing menu specifications over several workspaces, and creating reusable
menu definitions.

Introduction 101

Divider Templates 102

Specifying Additional Menu Entry Properties 104

Placing Menu Specifications on Multiple Workspaces 106

Extending Menu Specifications across Modules 108

Creating Reusable Cascade Menus 110

Introduction
This chapter describes how to add some additional features to your GMS menu.
You learn how to change the appearance of a menu by adding divider templates
to the menu specification. You begin to specialize each menu entry by showing
that the entry leads to a dialog, adding menu accelerators, and adding help text.
You learn how to distribute menu specifications over more than one workspace
and how to reuse the same menu definition in several menus.

The concepts in this chapter are covered separately in several demos.
101

To see online examples of the concepts covered in this chapter:

1 Load the gmsdemo.kb from the kbs directory.

2 Choose the following demos:

• A Complex Menu Bar

• User Extensibility

• Reusable Panels

Divider Templates
GMS menus can contain one or more of the following dividers to customize the
menu appearance.

Separators

Separators draw horizontal lines between transient menu entries as shown in the
following figure:

To achieve this, use a Separator template (shown below). Place a Separator
template between two entry templates in a transient menu specification to tell
GMS to place a horizontal line between the two entries.
102

Divider Templates
Breaks

Breaks divide menu bars into rows and transient menus into columns as shown
in the following figure:

To achieve this, use a Break template (shown below). Place a Break template
between two entry templates to tell GMS to display the second entry at the
beginning of a new row in a menu bar or the top of a new column in a transient
menu.

When you put a break template between two entry templates in a transient menu,
GMS displays the entry following the break template at the top of a new column
in the menu’s panel. GMS can optionally separate the columns with a vertical line.

To specify that GMS should not represent a break in a transient menu by
drawing a vertical line:

 Verify that the break template’s gms-show-vertical-bar attribute has the value
false (the default).

To specify that GMS should represent a break in a transient menu by drawing a
vertical line:

 Edit the break template’s gms-show-vertical-bar attribute to have the
value true.

The gms-show-vertical-bar attribute has no effect on a break in a menu bar.

Justifiers

Justifiers cause menu bar entries to be right-justified as shown in the
following figure:

To achieve this, use a Right Justifier template (shown below). Place a Right
Justifier template between two entry templates in a menu bar specification to tell
GMS to right-justify the entries that are specified after the template. If the window
103

is resized to be of a smaller width than will accommodate the entire menu bar,
GMS will rearrange the entries into multiple rows so that they are all accessible.

Specifying Additional Menu Entry Properties
In Defining a Simple Menu you learned to specify whether a menu entry is
initially enabled, and/or initially checked. You also learned to specify the effect of
choosing a leaf entry. In this section, you learn to specify additional menu entry
properties.

Specifying a Dialog Entry on a Menu Entry Label

A dialog entry is a leaf entry that posts a dialog when chosen. By convention in
standard menu systems, the label of a dialog entry is followed by an ellipsis (...).

The G2 text editor uses an ellipsis to indicate the site of a syntax error. You must
therefore specify an ellipsis in a dialog entry label using the G2 escape character,
@. For example, if you want a label to read “Save As...” you enter “Save As@.@.@.
”

The text editor strips escape characters when it closes. If you again edit a label that
has an ellipsis, replace the stripped escape characters before you close the editor.

Specifying a Menu Entry Accelerator Label

A menu entry accelerator label is a text string that describes the corresponding
accelerator in some way. An accelerator is a keystroke that has the same effect as
choosing a menu entry. Typing the keystroke executes the same user-defined
procedure that choosing the menu entry executes.

The techniques that bind an accelerator to a user-defined procedure are not part
of GMS: they are standard G2 techniques. For an example, see Implementing
Keyboard Accelerators.

Note GMS does not require any menu entry to have an associated accelerator, nor does
GMS require a menu entry with an associated accelerator to contain an
accelerator label.
104

Specifying Additional Menu Entry Properties
To specify an accelerator label in a menu entry:

 Edit the entry template’s gms-accelerator-label attribute to specify the desired
accelerator label as either:

• A quoted string that gives the text literally.

• A GFR symbol.

The accelerator label that you specify will appear to the right of the menu entry
label whenever the entry is visible to the user.

Specifying Help Information

Menu entry Help information is a text string that provides information about the
entry in addition to that provided by its entry label.

To specify Help information for a menu entry:

 Edit the entry template’s gms-help-label attribute to specify the desired Help
information as either:

• A quoted string that gives the text literally.

• A GFR symbol.

The specified information will appear in the Help bar at the bottom of the G2
window whenever the menu entry is selected and GMS is configured to display
Help information. You can turn Help information on and off, and control the font
in which GMS displays it.

To configure GMS to display Help information you edit the attribute table of the
User Preference object for the G2 window in which the help information is
displayed. For more information on the User Preference object, see Managing
User Preferences.

To set GMS to display Help information:

1 Set gms-show-help-message to be true.

The default setting is false, so Help information is not shown unless the
system is specially configured to display it.

2 Set gms-priority to be a higher number than that of any of the other preference
objects. For more information on setting the priority of user preference objects
see Specifying Generic User Preferences.

To specify the font size used to display Help information:

 Set gms-help-message-fontsize to be small, large, or extra-large.
105

Placing Menu Specifications on Multiple
Workspaces

You do not have to define a menu specification on a single workspace: you can
distribute it across as many workspaces as you like. GMS offers two techniques
that facilitate distributed menu specifications: connection posts and SubPanel
Containers. These techniques are particularly helpful with a complicated menu
specification that contains many levels of cascading entries.

Using Connection Posts to Distribute Menu
Specifications

The GMS Palette provides connection posts for both types of GMS connection.
You can use these to distribute a menu specification onto subworkspaces. The
connection posts are:

• Submenu Connection Post: Links a Submenu Connection across workspaces.

• Peer Menu Connection Post: Links a Peer Menu Connection across
workspaces.

You can also use a Peer Menu Connection Post to distribute a menu specification
across modules, as described under Extending Menu Specifications across
Modules.

To distribute a menu specification using connection posts:

 Use connection posts from the GMS Palette in conjunction with standard G2
techniques for distributing a G2 diagram across workspaces.

Using SubPanel Containers to Distribute Menu
Specifications

The GMS palette contains a template called a SubPanel Container that provides a
subworkspace for holding part of a menu specification. SubPanel Containers have
no functional significance. They are purely a representational convenience.
106

Placing Menu Specifications on Multiple Workspaces
The following figure shows a walking menu for the “Items” pulldown menu. The
last two panels of the walking menu are specified on subworkspaces using
SubPanel Containers.

The graphical menu specification appears on three workspaces, as shown in the
following figure:

This partial view of the top level
menu shows connections to three
subworkspaces using SubPanel
Connections Posts.

The four menu entries for “Objects”
appear on a subworkspace.

The four menu entries for “List”
appear on a second
subworkspace, giving the menu
specification three levels.
107

To distribute a menu specification using a SubPanel Container:

1 Clone a SubPanel Container to the workspace that contains the menu
specification.

2 Use a Submenu Connection to connect the existing menu specification to the
SubPanel Container.

3 Create a subworkspace for the SubPanel Container.

4 Open the subworkspace for the SubPanel Container.

The subworkspace contains a generic connection post that you can use like a
Submenu Connection Post to continue the menu specification. Alternatively, you
can substitute an actual Submenu Connection Post.

To add a Submenu Connection Post to a SubPanel Container subworkspace:

1 Clone a Submenu Connection Post to the subworkspace.

2 Copy the value of the superior-connection attribute of the predefined
connection post to the superior-connection attribute of the Submenu
Connection Post.

3 Delete the predefined connection post from the subworkspace.

You can nest SubPanel Containers to any depth, provided that the resulting
specification does not have more than 256 levels.

Extending Menu Specifications across Modules
In some G2 applications, completely defining a menu in one module is
inconvenient or impossible. For example, consider a proprietary module that is to
be extended by users in ways that cannot be anticipated. The users cannot change
the module, because it is proprietary, but they must be able add to its menus, or
they will not be able to extend its capabilities conveniently.

To provide for such situations, GMS allows you to extend a menu specification
across modules using extensible stubs. There are two template objects for
extending your menu specification across modules:

• Place Holder allows you to extend a menu specification across two modules.
It specifies a connection between two menu entries in a panel. The connection
spans two modules.
108

Extending Menu Specifications across Modules
• Peer Menu Connection Post that is connected to the last entry on the right
side of a menu specification.

Both of these stubs must be given Names in order for them to be “continued” in
another module. When the GMS compiler encounters an unresolved stub, it
ignores the stub, just as it would a dangling connection stub. Thus you can use
stubs to provide optional hooks for extending menu specifications. A menu
specification that uses this technique is called an extensible menu specification.

To create an extensible menu specification:

1 Begin the menu specification as you would any GMS menu specification.

2 Perform one of these actions:

• Hook up a Place Holder within the definition of a menu panel.

• Connect the last entry in a menu specification to a Peer Menu
Connection Post.

3 Give the stub a unique name.

To continue an extensible menu specification in another module:

1 In the module that defines the extension to the specification, perform one of
these actions:

• Create a Place Holder and change its gms-compiled-stub-name attribute to
the name of the Place Holder in the panel.

• Create a Peer Menu Connection Post that has the name of an unresolved
post on the specification that is to be extended.

2 Connect the stub to the first entry to be added by the module.

3 Define the rest of the menu as you would in any menu specification.

The menu specification in the second module can again contain a Place Holder or
end with a uniquely named Peer Menu Connection Post, which may or may not
be continued in a third module, and so on through any number of modules.

Note This technique works only with Peer Menu Connection Posts: you cannot include
an unresolved Submenu Connection Post in a menu specification. The GMS
compiler will signal an error if it encounters such a post.
109

Creating Reusable Cascade Menus
Sometimes a cascade menu is useful in more than one place in a menu
specification. For example, a menu that offers a choice of colors might be useful
for setting text color, foreground color, background color, and various other
colors.

You could define a separate, identical cascade menu for each color setting, but
such redundant effort would be wasteful.

GMS provides a Reusable Panel template that you can use to include the same
cascade menu in a menu specification as many times as you like.

In the following figure, a popup menu enables you to select colors for
background, borders, and text. The color selections are the same for all three
menu entries. These entries are specified in a reusable panel.
110

Creating Reusable Cascade Menus
The menu specifications use the Reusable Panel template, which uses submenu
connections to attach to the reusable cascade menus.

To use a cascade menu more than once in a menu specification:

1 Clone a Reusable Panel template to a subworkspace.

2 Use Submenu Connections to connect the template to every cascading entry
that is to display the reusable cascade menu. To avoid complex many-to-one
connections, use Submenu Connection Posts.

3 Define the reusable cascade menu as a submenu of the Reusable Panel
template. The connection between the reusable template and the first entry in
the cascade menu is a Submenu Connection, not a Peer Menu Connection.

The cascading menu will appear in the menu whenever the user selects any
cascading entry whose template connects to the Reusable Panel template.

This is a partial view of the menu entries
that comprise the color palette for the
background, border, and text colors.

The submenu connections point to a Reusable Menu
template, which uses a Submenu Connection Post to point to
a reusable cascade. menus.
111

112

Part III
Controlling GMS
Chapter 10: Controlling Access to Menus

Shows how to control access to menus by locking all menus against user input, disabling and
enabling individual menu entries, and restricting menu entries in specified user modes.

Chapter 11: Controlling the Appearance of Icons

Shows how to specify an icon for a menu entry, and customize its color and size.

Chapter 12: Internationalizing GMS Menus

Summarizes the techniques for displaying GMS menus in different languages, using Gensym
Foundation Resources (GFR) to provide internationalization.

Chapter 13: Configuring Global GMS Characteristics

Shows how to set properties that affect GMS as a whole such as automatic GMS startup,
preserving the compiled resource on reset, specifying the maximum number of menu entries,
suppressing global consistency checking, and internationalization.

Chapter 14: Customizing the GMS Interface to the User

Shows how to set GMS properties for individual G2 users. These properties include: font and
separator size, help display, text and background colors, navigation modes, menu blinking,
initial menu, and menu language.
113

Chapter 15: Specifying the Interface between GMS and G2

Shows how to configure GMS to work with and extend G2 capabilities such as accessing a
compiled resource from G2, implementing keyboard accelerators, and handling mouse events
for popup menus.

Chapter 16: Managing GMS Programmatically

Shows how to manage programmatically the internal operations of GMS. You can use the
techniques described to manage menu building and compilation, change global settings,
manage user preferences, and reset GMS without resetting G2.
114

10
Controlling
Access to Menus
Shows how to control access to menus by locking all menus against user input,
disabling and enabling individual menu entries, and restricting menu entries in
specified user modes.

Introduction 115

Controlling Access to Menus 116

Undisplaying All Menus 120

Introduction
This chapter introduces three methods of controlling access to menus.

To see online examples of the concepts covered in this chapter:

1 Load the gmsdemo.kb from the kbs directory.

2 Choose the demo called User Mode Restrictions.

This demo shows one of the methods of controlling access to menus.
115

Controlling Access to Menus
GMS provides a variety of API calls that poll and set the accessibility of menus
and menu entries. The calls control:

• Locking all menus against user input.

• Disabling and enabling individual menu entries.

• Restricting menu entries in specified user modes.

The dimensions of locking, disabling, and restricting are orthogonal. They can be
changed independently of one another and do not modify each other’s effects in
any way.

Locking All Menus Against User Input

You can lock all GMS menus in a G2 window against user input at any time.
While menus are locked, GMS discards all mouse events:

• Moving or clicking the mouse over a menu entry does nothing.

• Clicking an object that would otherwise display a popup menu does nothing.

When you unlock menus, mouse input resumes. When you lock or unlock
menus, the appearance of the menus does not change, and any transient menus
that are visible remain on display.

You can use menu locking to prevent the user from choosing menu commands
while an application is in the process of loading or initializing, or is performing
some function that precludes asynchronous user input.

By default, GMS menus remain active while a callback procedure executes. In
some cases, menus should be locked during callback procedure execution, to
prevent additional menu selections from changing the environment that the
procedure assumes.

To lock menus during execution of a callback procedure:

 Edit the entry template’s gms-lock-during-callback attribute to have the
value true.

To lock all GMS menus in a G2 window:

 gms-lock-menus
(handle: integer)

Locks the menus of the window referenced by handle. If the menus are
already locked, the call has no effect.
116

Controlling Access to Menus
To unlock all GMS menus in a window:

 gms-unlock-menus
(handle: integer)

Unlocks the menus of the window referenced by handle. If the menus are
already unlocked, the call has no effect.

To determine whether menus are locked:

 gms-menu-is-locked
(handle: integer)
-> status: truth-value

Returns true if the menus of the window referenced by handle are locked,
and false otherwise.

Disabling and Enabling Menu Entries

You can disable or enable any menu entry in any window at any time. An
enabled menu entry is fully functional. A disabled menu entry is only partly
functional:

• Selecting a disabled cascading entry does not display its cascade menu.

• Choosing a disabled leaf entry does not execute its callback procedure.

When you disable an entry, GMS changes its color for the duration of the
disablement. You can specify the color that GMS uses, as described under Default
Highlightable Icon Colors.

To disable a menu entry:

 gms-disable-entry
(handle: integer, menu-index: integer)

Disables the menu entry referenced by menu-index in the window
referenced by handle. If the entry is already disabled, the call has no effect.

To enable a menu entry:

 gms-enable-entry
(handle: integer, menu-index: integer)

Enables the menu entry referenced by menu-index in the window
referenced by handle. If the entry is already enabled, the call has no effect.
117

To determine if an entry is disabled:

 gms-entry-is-disabled
(handle: integer, menu-index: integer)
-> status: truth-value

Returns true if the menu entry referenced by menu-index in the window
referenced by handle is disabled, and false otherwise.

Restricting Menus in Specified User Modes

You can disable individual menu entries on a per-user-mode basis at any time.
When you restrict an entry for a user mode, GMS disables the entry in any G2
window where that mode is the current user mode. When you unrestrict an entry
for a user mode, you return it to normal function relative to that mode.

When different windows that display a restricted entry are in different user
modes, the effect of the restriction depends on the user mode of each window.
Thus a restricted entry can be disabled in one window, and enabled in another.

You can restrict or unrestrict a menu entry for any user mode, and for any
number of user modes. Calls that specify restrictions or unrestrictions that are
already in effect execute without error and have no effect.

You can specify a restriction either positively or negatively:

• A positive specification restricts an entry when the user is in a specified mode.
To give such a restriction, specify the mode as a symbol.

• A negative specification restricts an entry when the user is not in a specified
mode. To give such a restriction, specify the mode as a symbol prefixed by a
tilde (~).

Caution The symbol tilde (~) is not a valid character for symbol names. You must
therefore specify a tilde in the text editor using the G2 escape character @. For
example, if you want to use the symbol ~developer in your procedure, you
must enter @~developer in the text editor.
118

Controlling Access to Menus
To restrict a menu entry:

 gms-restrict-entry
(menu-index: integer, mode-restriction: symbol)

Restricts the menu entry referenced by menu-index as specified by mode-
restriction. For example:

gms-restrict-entry (1, the symbol developer)

restricts the menu entry whose index is 1 such that the entry is disabled in
any G2 window whose user mode is developer. Conversely:

gms-restrict-entry (1, the symbol ~developer)

restricts the menu entry whose index is 1 such that the entry is disabled in
any G2 window whose user mode is not developer.

You can call gms-restrict-entry as many times as needed to restrict all user modes
for which restriction is desired.

Calling gms-restrict-entry on a root template will have the following effect on the
menus:

• If the current menu that is currently displayed becomes inaccessible as a result
of adding the restriction, it will be hidden.

• Access to a menu bar through a switch menu panel is restricted.

If the menu later becomes accessible, either through a mode change or through a
call to gms-unrestrict-entry, the menu bar will again be displayed.

To unrestrict a menu entry:

 gms-unrestrict-entry
(menu-index: integer, mode-restriction: symbol)

Unrestricts the menu entry referenced by menu-index as specified by
mode-restriction. The effect is to undo the effect of the analogous call to
gms-restrict-entry. For example:

gms-unrestrict-entry (1, the symbol developer)

unrestricts the menu entry whose index is 1 such that the entry is not
disabled due to restriction in any G2 window whose user mode is
developer. Conversely:

gms-unrestrict-entry (1, the symbol ~developer)

unrestricts the menu entry whose index is 1 such that the entry is not
disabled due to restriction in any G2 window whose user mode is not
developer.

You can call gms-unrestrict-entry as many times as needed to unrestrict all
user modes for which restriction is not desired.
119

To determine if an entry is restricted:

 gms-entry-is-restricted
(menu-index: integer, mode-restriction: symbol)
-> status: truth-value

Returns true if the menu entry referenced by menu-index is currently
restricted as specified by mode-restriction, and false otherwise. For
example, after executing:

gms-restrict-entry (1, the symbol developer)

the call:

gms-entry-is-restricted (1, the symbol developer)

returns true. Conversely, after executing:

gms-unrestrict-entry (1, the symbol ~developer)

the call:

gms-entry-is-restricted (1, the symbol ~developer)

returns false.

Undisplaying All Menus
GMS cannot detect a mouse event that was not initiated over a GMS menu. Hence
clicking the mouse outside of any menu has no effect on any transient menus that
are on display. Some applications need to undisplay all transient menus when the
user clicks outside of any menu.

To undisplay all transient GMS menus:

 gms-dismiss
(handle: integer)

Undisplays all transient menus on the window referenced by handle. If no
transient menus are currently displayed in the window, gms-dismiss has
no effect. Calling gms-dismiss does not affect menu bars.
120

11
Controlling the
Appearance of Icons
Shows how to specify an icon for a menu entry, and customize its color and size.

Introduction 121

Specifying a Menu Entry Icon 122

Configuring a GMS Icon 124

Specifying Icon Scaling 128

Making Additional Room for an Icon 131

Introduction
A menu entry icon is a G2 icon that appears next to the entry’s label and denotes
the entry’s effect graphically. You can include an icon in any GMS menu entry.

This chapter shows you how to specify an icon for a menu entry, and customize
its color and size.

In order to customize the color or scaling of a GMS icon, you must understand
GMS icon configuration in general, as described in Configuring a GMS Icon.

To see online examples of the concepts covered in this chapter:

1 Load the gmsdemo.kb from the kbs directory.

2 Choose the demo called Displaying Icons.
121

Specifying a Menu Entry Icon
Unlike G2 icons that represent objects, menu entry icons have no functional
significance: they are purely illustrative. The menu entries in the next figure have
icons as well as accelerator labels.

GMS provides the predefined class gms-icon for use in defining GMS icons. Every
GMS icon is an instance of a subclass of gms-icon. The subclass definition defines
the icon in its icon-description attribute, as with any G2 class.

GMS creates GMS icon instances as needed to display to the user. All you need to
do is define a gms-icon subclass, and reference it in the entry template of each
menu entry that uses the icon. You can define GMS icon subclasses on any
workspace.

You do not have to use a direct or single descendent of gms-icon to specify a
menu entry icon. You can define intermediate subclasses and use multiple
inheritance as needed to create families of related icon definitions. For simplicity,
this section assumes that your definition is a direct descendent of gms-icon.

To define a menu entry icon class:

1 Choose KB Workspace > New Definition > class-definition > object-definition.

2 Edit the class-name attribute to be any desired name.

You use this name to reference the icon class in entry template definitions that
use the icon.

3 Edit the direct-superior-classes attribute to include gms-icon.
122

Specifying a Menu Entry Icon
To define the image definition to be used in the icon:

1 Choose KB Workspace > New Definition > image-definition.

2 Edit the following attributes of the image definition:

• Edit the name attribute to be any desired name.

• Give the file-name-of-image attribute a string value containing the
pathname of the image definition.

3 Choose edit icon from the menu of the class definition.

4 Delete all layers of the default icon.

5 Provide the name of the image.

To specify a menu entry icon class for an entry template:

 Edit the entry template’s gms-inline-icon-class attribute to specify the desired
icon class.

The icon of the class that you specify will appear to the left of the menu entry label
whenever the entry is visible to the user.

Controlling Icon Color

A GMS icon defined as a direct descendent of gms-icon has the colors specified in
its icon description under all circumstances. You cannot use the change the icon
color action to change GMS icon colors, because GMS does not provide direct
access to icon instances.

However, you can use techniques described in this chapter to define a GMS icon
class that uses a metacolor that changes color automatically. The metacolor can
take on different colors depending on whether an entry that uses the icon class is
selected, unselected, or disabled.

A class of GMS icons that can change color is called a highlightable icon class,
and an icon of such a class is a highlightable icon.

To define a GMS icon class that changes color:

1 Create a new object definition as described above.

2 Include gms-highlightable-icon rather than gms-icon as the new class’s
direct-superior-classes.

3 Give the class an icon description that specifies one or more layers whose
metacolor is foreground.

GMS changes the color of a highlightable icon by changing the color of all
layers whose metacolor is foreground.
123

Caution When you define a highlightable icon, you must specify one or more layers
whose metacolor is foreground in the icon description. Otherwise GMS will
attempt to set the color of an unused metacolor, and G2 will signal an error.

4 Proceed as described in Configuring a GMS Icon below.

Configuring a GMS Icon
The attributes that control the color and scaling of a GMS icon are not part of the
gms-highlightable-icon subclass that defines the icon. Defining them in the icon
subclass would force every menu entry to use a given GMS icon class in the same
way. To provide greater flexibility, the attributes that configure GMS icon
appearance are defined separately by each template that uses the icon.

The necessary attributes could be specified in the template object itself, but this
practice would burden every template with many attributes that typically are not
needed. To prevent this:

1 A template object has only one attribute that relates to icon configuration:
gms-inline-icon-description.

2 A separate class, gms-icon-specification, defines all icon configuration
attributes.

3 A template that needs icon configuration includes a gms-icon-specification as
the value of its gms-inline-icon-description attribute.

4 Attributes in the gms-icon-specification specify any special configuration
applicable to the icon.

The instructions in this section tell you how to set up and access a gms-icon-
specification.

To prepare to configure a menu entry’s GMS icon:

1 Open the table of the template object that defines the entry.

The template’s gms-inline-icon-class attribute specifies the class of the icon.
The template’s gms-inline-icon-description attribute has the value none.

2 Click on the gms-inline-icon-description attribute somewhere away from the
current value of the attribute (none).

A G2 menu appears.

3 Select add optional-subtable > gms-icon-specification.

The subtable of a gms-icon-specification appears.

4 Edit subtable attributes as desired.
124

Configuring a GMS Icon
The value of gms-inline-icon-description is now a gms-icon-specification.

To reconfigure a menu entry’s GMS icon:

1 Open the table of the template object that defines the entry.

The template’s gms-inline-icon-class attribute specifies the class of the icon.
The template’s gms-inline-icon-description attribute has the value a gms-icon-
specification.

2 Click on the gms-inline-icon-description attribute.

A G2 menu appears.

3 Choose subtable.

The subtable of the gms-icon-specification appears.

4 Edit subtable attributes as desired.

Attributes of a GMS Icon Specification

The attributes of a gms icon specification are shown in the following table:

Attribute Description

gms-icon-
subclasses-exist

Specifies if icon subclasses have been defined
for use with the three font sizes which can be
used in menus.

Allowable values: true or false

Default value: false

Notes: For more information on subclassing icons see
Providing Different Icons for Different Fonts.

gms-maximize-icon Controls font scaling by allowing GMS to
enlarge an icon’s size.

Allowable values: true or false

Default value: false
125

gms-preserve-ratio Controls font scaling by directing GMS to
preserve the icon’s aspect ratio when it scales
the icon.

Allowable values: true or false

Default value: false

 gms-do-not-reduce-
width

Controls font scaling by directing GMS to
preserve the width of an icon that is too wide,
and to make the menu entry wider as needed
to contain the icon.

Allowable values: true or false

Default value: false

gms-do-not-reduce-
height

Controls font scaling by directing GMS to
preserve the height of an icon that is too tall,
and to make the menu entry taller as needed to
contain the icon.

Allowable values: true or false

Default value: false

 gms-no-margin-for-
check

Specifies if GMS should leave room on the left
of the menu entry for a check mark, the default,
or if that space can be used for the icon.

Allowable values: true or false

Default value: false

Notes: For more information see Making Additional
Room for an Icon.

Attribute Description
126

Configuring a GMS Icon
The rest of this chapter refers to a gms-icon-specification as an icon configuration
object, and assumes that such an object exists for each menu entry template for
which icon configuration is needed.

Default Highlightable Icon Colors

If you use a highlightable icon in a menu entry, and do not do anything to specify
the color(s) that its foreground layer(s) should have, GMS uses the text colors
defined in the current User Preferences object.

gms-icon-normal-
color

Specifies the color of the icon’s foreground
layer in a menu entry that is enabled and not
selected.

Allowable values: Any G2 color

Default value: none

gms-icon-
highlighted-color

Specifies the color of the icon’s foreground
layer in a selected menu entry.

Allowable values: Any G2 color

Default value: none

gms-icon-disabled-
color

Specifies the color of the icon’s foreground
layer in a disabled menu entry.

Allowable values: Any G2 color

Default value: none

Attribute Description

When the menu entry is... GMS sets the foreground color to... Default...

Enabled but not selected gms-normal-text-color black

Selected gms-highlighted-text-color white

Disabled gms-disabled-text-color gray
127

Specifying Highlightable Icon Colors

You can also specify foreground colors that differ from the text colors defined in
the current User Preferences object.

To specify the foreground color of layer(s) when an entry is enabled but not
selected:

 Specify the color as the value of the icon configuration object’s gms-icon-
normal-color attribute.

To specify the foreground color of layer(s) when an entry is selected:

 Specify the color as the value of the icon configuration object’s gms-icon-
highlighted-color attribute.

To specify the foreground color of layer(s) when an entry is disabled:

 Specify the color as the value of the icon configuration object’s gms-icon-
disabled-color attribute.

Any or all of the colors you choose can be the same color. You can specify any
icon color attribute as none (the default). GMS then defaults to the relevant text
color, as listed in the previous table.

Other Uses for Highlightable Icons

You do not have to use the foreground color of a highlightable icon to indicate the
menu entry state. For example, suppose you needed a menu that offered a choice
of colors by showing examples of them. You could:

• Define a gms-highlightable-icon subclass that is a square whose color is
foreground.

• Use this icon class for all leaf entries in the menu.

• Use icon color attributes differently in each leaf entry to give its icon the
appropriate color.

Specifying Icon Scaling
By default, GMS shrinks a GMS icon as needed to fit into the space available in the
menu entry that contains the icon. If such scaling does not provide an acceptable
appearance, you can use techniques described in this chapter to scale the icon in
ways that provide better results.
128

Specifying Icon Scaling
The space available to hold a GMS icon varies with the font size of the menu entry
that uses the icon, as follows:

By default, GMS fits an icon into the space available for it as follows:

• When the icon can fit into the available space, GMS shows the icon without
scaling it.

• When an icon is larger than the available space, GMS shrinks the length
and/or width of the icon as needed to fit into the space.

These defaults usually produce an acceptable appearance, but sometimes they do
not:

• Shrinking an icon causes loss of resolution that may obscure an icon’s details.

• Shrinking length and width separately distorts an icon’s aspect ratio.

• An icon smaller than the available space does not expand to take advantage of
the space.

GMS offers a variety of techniques you can use to control GMS icon scaling. With
these techniques, you can give an acceptable appearance to almost any icon. Be
sure you have read Configuring a GMS Icon before you proceed.

Avoiding Icon Scaling Entirely

The simplest way to control icon scaling is to make it unnecessary. GMS does not
need to scale an icon when the icon fits into the available space. If you know that
your application will use only one font size, and can supply an icon that fits into
the space indicated for that size, as shown in the previous table, you do not need
to worry about scaling, because none will occur.

Providing Different Icons for Different Fonts

GMS allows you to avoid icon scaling by supplying three different gms-
highlightable-icon subclasses, one for each font size. Each time GMS displays a
menu entry that uses per-font icon classes, GMS uses the class that is correct for
the font then in use. A set of per-font icon classes is called an icon family.

When the menu entry font size is... The space available for an icon is...

Small 18x18 workspace units

Large 23x23 workspace units

Extra Large 33x33 workspace units
129

GMS recognizes icon families by their names. Each name begins with the value of
the gms-inline-icon-class attribute of the template that uses the classes,
suffixed by:

• -small for the icon class to use when the font is Small.

• -large for the icon class to use when the font is Large.

• -xlarge for the icon class to use when the font is Extra-Large.

To specify that a menu entry displays different icons with different fonts:

1 Define three subclasses of gms-highlightable-icon named iconclass-small,
iconclass-large, and iconclass-xlarge, where iconclass is any unique G2
symbol.

2 Define an icon for each of the three icon classes such that iconclass-small has
an icon whose size is  18x18, iconclass-large has an icon 23x23, and
iconclass-xlarge has an icon 33x33.

3 Make iconclass the value of the gms-inline-icon-class attribute of the template
that uses the icon family.

4 Set the icon configuration object’s gms-icon-subclasses-exist attribute to
be true.

GMS will now use the specified icon class with each font, switching automatically
whenever the font changes. If you specify an icon that is larger than the space
available when its font is in use, GMS scales the icon just as it would an icon that
is not part of an icon family.

Controlling Icon Scaling

GMS provides four configuration object attributes that you can use to control icon
scaling. By default, each of them is false.

Set this attribute to true... To get this effect...

gms-maximize-icon GMS can scale the icon by enlarging it as
well as by shrinking it.

gms-preserve-ratio GMS does not change an icon’s aspect ratio
when it scales the icon.

gms-do-not-reduce-width GMS does not reduce the width of an icon
that is too wide, but makes the menu entry
wider as needed to contain the icon.

gms-do-not-reduce-height GMS does not reduce the height of an icon
that is too tall, but makes the menu entry
taller as needed to contain the icon.
130

Making Additional Room for an Icon
You can set these attributes in any combination to specify exactly the scaling
behavior that you want.

Making Additional Room for an Icon
Ordinarily, GMS reserves space on the left side of a menu entry to hold a check
mark. When you know that the entries in a menu will never be checked, you can
tell GMS to make this space available to hold an icon.

To configure GMS to not reserve space for a check mark in a menu entry

 Set the configuration object’s gms-no-margin-for-check attribute to true.

In general, if you set this attribute to true for one menu entry, you should set it for
all entries in that menu, or the contents of the entries will not be aligned on
the left.
131

132

12
Internationalizing
GMS Menus
Summarizes the techniques for displaying GMS menus in different languages,
using Gensym Foundation Resources (GFR) to provide internationalization.

Introduction 133

Making Menu Text International 134

Specifying that GMS is to Use GFR 135

Specifying the Language of Translation 135

Specifying the Translation Dictionary 136

The GMS Text Resources 136

Internationalizing Extensible Menus 137

Internationalizing Dynamic Menus 137

Introduction
GMS menu entries typically convey information textually, and so must be in some
language. If your application must run in different language environments, you
can use Gensym Foundation Resources (GFR) to provide internationalization.

GFR allows you to specify text values as symbols called GFR symbols instead of
strings. When GMS is configured to use GFR, and encounters a GFR symbol in a
menu specification, GMS passes the symbol to GFR, which returns a string
appropriate to the current language environment. GMS then uses that string as if
it had appeared literally in the menu specification.
133

To see online examples of the concepts covered in this chapter:

1 Load the gmsdemo.kb from the kbs directory.

2 Choose the demo called Language Support.

Making Menu Text International
Menu entry labels, accelerator labels, and Help labels all convey information
textually, and so must be in some language. If your application runs in only one
language environment, you do not need to internationalize its menus. You can
type text strings directly into GMS menu specifications.

If your application must run in different language environments, you can use
Gensym Foundation Resources (GFR) to provide internationalization. GFR allows
you to specify text values as GFR symbols instead of strings.

When GMS encounters a GFR symbol in a menu specification, it passes the
symbol to GFR, which returns a string appropriate to the current language
environment. GMS then uses that string as if it had appeared literally in the menu
specification.

You can also use GFR as a convenience to avoid wiring strings into menu
specifications. Such use can be convenient when labels are volatile, or when many
menu entries use the same label. It is also a good practice generally; analogous to
defining constants symbolically rather than wiring their values directly into code.

Note When you use GFR, you should specify all text in all menu specifications, using
GFR symbols only. If you try to compile a menu specification that uses both text
strings and GFR symbols to define textual information, GMS posts a warning or
signals an error, as described under Suppressing Global Consistency Checking. If
you mix text strings and GFR symbols, you must turn off global consistency
checking.

In order to provide a translation of a GFR symbol, GFR needs three pieces of
information:

• The translation dictionary in which the symbol is defined.

• The language into which to translate the symbol.

• The symbol itself.

For complete information on GFR, see the G2 Foundation Resources User’s Guide.
This section assumes you are familiar with GFR, and shows you how to configure
GMS to use it.
134

Specifying that GMS is to Use GFR
Specifying that GMS is to Use GFR
The gms-use-translations attribute of the current Global Settings object controls
whether GMS uses GFR to provide internationalization. For information about
the global settings object see Configuring Global GMS Characteristics.

To specify that GMS does not use GFR to provide internationalization:

 Specify gms-use-translations in the current Global Settings object as false (the
default).

All labels in menus must be strings. GMS will signal an error if it tries to compile
a menu that uses a GFR symbol as a label.

To specify that GMS uses GFR to provide internationalization:

 Specify gms-use-translations in the current Global Settings object as true.

All labels in menus must be GFR symbols. GMS will signal an error if it tries to
compile a menu that uses a string as a label.

Specifying the Language of Translation
When gms-use-translations is true, you must specify a language of translation for
every user, either individually or by default.

To specify the default language into which GFR symbols are translated:

 Set gms-default-language in the current Global Settings object to specify the
language.

To specify the language into which GFR symbols are translated for a user:

 Set gms-language in the User Preferences object applicable to the user to
specify the language.

In addition to the name of a language, you may also specify that GMS use the
default language for the window.

To specify that the language to be used is the language of the window:

 Set gms-language in the User Preferences object applicable to the user to the
symbol window-or-system-default.

Using this symbol causes GFR to obtain the language through a call to
gfr-language, using as an argument the window that the user is logged in on. If a
window-specific language is designated for the window, gfr-language returns
that language. If not, this function returns the value of the current-language
attribute of the Language Parameters system table.
135

Specifying the Translation Dictionary
A GMS translation dictionary is called a resource group (gfr-text-resource-group).
You can define any number of resource groups, and use them as needed in menu
specifications.

You can specify a resource group for any template in a menu specification. That
resource group then applies to all parts of the menu specification that are
subordinate to the template and that do not specify a resource group of their own.
Lower-level specifications shadow higher-level specifications.

To specify a resource group in a menu specification:

 Edit the gms-text-resource-group attribute of the relevant template object to
name the resource group.

When gms-use-translations is true, every template object must have a resource
group specified for it, either explicitly or by inheritance from a higher level of the
menu specification. Thus every root template must specify a resource group.

The GMS Text Resources
To display the English gms-text-resources, click on the gms-text-resources icon
on the GMS top level workspace. This is the local text resource for GMS. It
contains symbols and translations for all help labels on the GMS palette and for
all error messages. For more information about using local text resources see the
G2 Foundation Resources User’s Guide.

To view the gms-text resources:

1 Display the table for the English gms-text resources.

2 Set the value of the attribute gfr-file-location to a text string, giving the
pathname of a file where the resource can be saved to or loaded from. It is not
necessary to create the file, because GMS will do that.

3 Choose write resource to file on the menu for the English gms-text resources.

This will place a copy of the text resource in the file you designated.

4 Use any appropriate text editor to read the file.
136

Internationalizing Extensible Menus
Internationalizing Extensible Menus
You can use Peer Menu Connection Posts to extend a menu specification across
modules, as described under Extending Menu Specifications across Modules.
When you use this technique, resource group specifications apply just as they
would if the whole menu specification existed in one module.

When a menu specification extends across module boundaries, the module that
contains the higher-level part of the menu is typically proprietary, while the
module that contains the extensions to the specification is not.

In such a case, the resource group that the proprietary part of the specification
uses is typically proprietary also, and therefore cannot be modified. The module
that defines the menu extensions will then need to define a resource group of its
own to define the translations that it needs, and use that group to shadow the
proprietary resource group used by the proprietary module.

Internationalizing Dynamic Menus
No special GFR considerations apply to dynamic menus. You can use
internationalization in dynamically defined menus exactly as you can in statically
defined menus.

Alternatively, you can optionally perform the translation yourself and specify
labels as text directly. However, Gensym recommends that you use GFR when
reusing dynamic menu templates in different menus.

If you are using a dynamic menu template only once, you can specify labels as text
directly. The text for the labels is then unambiguous since there is a unique
language associated with every window.
137

138

13
Configuring Global
GMS Characteristics
Shows how to set properties that affect GMS as a whole such as automatic GMS
startup, preserving the compiled resource on reset, specifying the maximum
number of menu entries, suppressing global consistency checking, and
internationalization.

Introduction 139

Attributes of a Global Settings Object 140

Managing Global Settings 141

Specifying Global Settings 143

Introduction
Most GMS behavior is defined in menu specifications. Some higher-level GMS
properties do not apply to any particular menu, but to GMS overall. Those
properties are called global settings. All GMS global settings are specified by
attributes of a Global Settings Object.

The following figure shows a Global Settings Object:

This chapter describes all GMS global settings, and shows you how to use them to
configure GMS.
139

To see online examples of the concepts covered in this chapter:

1 Load the gmsdemo.kb from the kbs directory.

2 Look at the Global Settings object that is part of each example in the
GMS Demo.

Attributes of a Global Settings Object
The class-specific attributes of a Global Settings object are:

Attribute Description

gms-priority Sets the priority that GMS uses to select which
Global Settings object to put into effect.

Allowable values: Any nonnegative integer

Default value: 0

gms-initiate-
automatically

Specifies whether GMS creates and displays
menus automatically when G2 starts.

Allowable values: true, false

Default value: true

gms-keep-compiled-
resource

Specifies whether GMS keeps compiled
resources.

Allowable values: true, false

Default value: false

gms-use-
translations

Specifies whether GMS uses GFR to
internationalize menus.

Allowable values: true, false

Default value: false
140

Managing Global Settings
Managing Global Settings
GMS predefines one Global Settings object, called the default global settings
object. This object specifies default global settings that are useful in many
situations. All attributes of the default global settings object have the values
shown in the previous table for Global Settings objects generally.

If the default global settings do not provide what you need, you can create your
own Global Settings object and give its attributes the needed values.

gms-default-
language

When gms-use-translations is true, specifies
the language to translate to when the user has
specified no other.

Allowable values: Any G2 language for which GFR translations
are defined.

Default value: none

gms-maximum-
entries-count

The largest number of menu entries that the
GMS compiler should be prepared to compile.

Allowable values: Any positive integer

Default value: 300

gms-check-for-
global-consistency

Whether GMS should syntax-check menu
specifications before compiling them.

Allowable values: true, false

Default value: true

gms-inactive-keys Specifies a list of menu keys for those items
that should not be displayed when the menu is
displayed.

Allowable values: any value -array

Default value: a value-array

Attribute Description
141

To create a new Global Settings object:

 Clone a Global Settings object from the GMS palette to any workspace.

or

 Use the create action to create an instance of gms-global-settings
programmatically.

To specify global settings:

 Edit attributes of the Global Settings object.

or

 Use the conclude action to specify the desired settings programmatically.

When more than one Global Settings object exists, GMS uses the one whose
gms-priority attribute had the highest value when GMS compiled the menus
currently in use. This object is called the Current Global Settings object, and the
values of its attributes are the current global settings.

To indicate the desired Global Settings object to GMS:

 Give the object a gms-priority higher than that of any other Global Settings
object.

Changes to global settings may require GMS to recompile menus. Therefore GMS
does not put such changes into effect immediately. When GMS compiles menus, it
locates the Global Settings object with the highest priority, puts its settings into
effect, and compiles the menus in that context.

To put the highest-priority Global Settings object into effect:

 Compile menus as described under Compiling Menus.

If more than one Global Settings object with the highest priority exists, GMS uses
one of the objects and ignores the others.

To change a global setting that is currently in effect:

1 Make the desired setting the value of the appropriate attribute of the current
Global Settings object.

2 Compile menus as described under Compiling Menus.

Global Settings for Multiple Applications

When you load two or more applications that use GMS into G2, and each of them
contains a Global Settings object, one of the objects must have a higher priority
than any other, or GMS will be unable to determine which settings to use when it
compiles menus.
142

Specifying Global Settings
The details of inter-application negotiation of global settings are not part of GMS:
You can use any standard G2 technique that results in a unique highest-priority
Global Settings object. Two common approaches are:

• Predefine a precedence order by giving different priorities to different Global
Settings objects in the various applications.

• Dynamically select the desired global settings by changing Global Settings
object priorities immediately before compiling menus.

Specifying Global Settings
The gms-initiate-automatically attribute controls GMS startup. The rest of this
chapter shows you how to specify the various global settings to configure GMS. A
reference to a particular setting refers to the value of the relevant attribute in the
current Global Settings object.

Specifying Automatic GMS Startup

By default, GMS automatically compiles menus if necessary, assigns a handle to
every G2 window, and builds menus for every G2 window, as soon as you start
G2. GMS can also display an initial menu bar, as described under Designating an
Initial Menu Bar.

Alternatively, you can configure GMS to do nothing when G2 starts, then manage
the details of GMS startup explicitly using techniques described under Compiling
and Building Menus.

To specify that GMS is to start automatically when G2 starts:

 Specify gms-initiate-automatically as true (the default).

To specify that GMS is to do nothing when G2 starts:

 Specify gms-initiate-automatically as false.

Preserving the Compiled Resource on Reset

The gms-keep-compiled-resource attribute controls whether GMS preserves or
discards the compiled resources on reset or restart. By default, GMS discards the
compiled resource whenever you reset G2. If GMS is configured to start
automatically, as described under Specifying Automatic GMS Startup, it will
recompile all menus next time you start G2, resulting in a new compiled resource.

If you know that discarding the compiled resource when you reset G2 would
serve no purpose, you can configure GMS to preserve the compiled resource
on reset.
143

To specify that GMS is to keep the compiled resource when G2 is reset:

 Specify gms-keep-compiled-resource as true.

To specify that GMS is to discard the compiled resource when G2 is reset:

 Specify gms-keep-compiled-resource as false (the default).

In order to keep the compiled resource, GMS transfers the object that implements
the resource to the workspace that contains the Global Settings object that is
currently in effect, then makes the object permanent.

GMS always invalidates all handles and deletes all menu instances when you
reset G2, regardless of the value of gms-keep-compiled-resource. If GMS is
configured to start automatically, it assigns new handles and rebuilds menus next
time G2 starts.

Specifying the Maximum Number of Entries

When GMS compiles menus, it allocates space to hold various tables that it needs
during compilation. If these tables are too small to hold all entries being
compiled, GMS must obtain more space and rebuild all of the tables. Such
rebuilding wastes time.

You can prevent GMS from having to rebuild tables during compilation by telling
it how many menu entries to be prepared to compile. GMS then allocates
sufficient table space in advance, removing any need for rebuilding.

To specify the maximum number of entries that GMS should expect to compile:

 Specify gms-maximum-entries-count to be an integer that gives the number
of entries.

The number you specify should not be very much higher than necessary, because
the table space needed for each menu entry is relatively large. Allocating many
unnecessary table entries therefore wastes space.

Suppressing Global Consistency Checking

When GMS compiles menus, it checks for inconsistencies between the menu
specifications and the global settings currently in effect. Such an inconsistency is
called a global inconsistency.

For example, if gms-use-translations is true in the current Global Settings object
(indicating that GMS uses GFR to translate textual information), all text
information should be specified as GFR symbols rather than as text strings. The
presence of a text string in a menu specification is therefore a global
inconsistency.

By default, GMS checks all menu specifications for global inconsistencies before it
begins compilation. If any are found, GMS signals an error and cancels
144

Specifying Global Settings
compilation. By default, the error text is posted on the Operator Logbook. If you
are sure that no global inconsistencies exist, you can suppress global consistency
checking, resulting in faster compilation.

To suppress global consistency checking:

 Specify gms-check-for-global-consistency as false.

To receive global consistency checking:

 Specify gms-check-for-global-consistency as true (the default).

If a global inconsistency exists, and you have suppressed global inconsistency
checking, the GMS compiler will signal an error when it encounters the
inconsistency.

Specifying Internationalization

Several factors, including the global settings gms-use-translations and gms-
default-language, control GMS internationalization. For information on
internationalizing GMS menus, refer to Internationalizing GMS Menus.
145

146

14
Customizing the GMS
Interface to the User
Shows how to set GMS properties for individual G2 users. These properties
include: font and separator size, help display, text and background colors,
navigation modes, menu blinking, initial menu, and menu language.

Introduction 147

User Preferences Objects 148

Managing User Preferences 152

Specifying User Preferences 154

Introduction
Menu specifications and global settings establish GMS properties that are the
same for all users. You can customize some GMS properties to be different for
different users. GMS properties that you can customize on a per-user basis are
called user preferences. All GMS user preferences are specified by attributes of a
User Preferences Object. The following figure shows a Global Settings Object.

User preferences control the way GMS menus appear to the user. They are similar
in many ways to global settings, and in some cases can override them. When
several users log in to the same G2, GMS customizes the menus that each user
sees as specified by the preferences applicable to that user.
147

This chapter describes all GMS user preferences, and shows you how to use them
to customize GMS to meet the requirements of individual users. Refer to the GMS
Demo called Configurations for illustrations of the concepts covered in this
chapter.

To see online examples of the concepts covered in this chapter:

1 Load the gmsdemo.kb from the kbs directory.

2 Choose the demo called Configurations.

User Preferences Objects
The class-specific attributes of a User Preferences object are:

Attribute Description

gms-priority Sets the priority that GMS uses to select which
User Preferences object to put into effect.

Allowable values: Any nonnegative integer

Default value: 0

gms-applicability Specifies the scope of the User Preferences
object.

Allowable values: by-registration, default

Default value: by-registration
148

User Preferences Objects
gms-language When gms-use-translations is true in the
current global settings, specifies the language
to translate to.

Allowable values: Any G2 language for which GFR translations
are defined or the symbol window-or-system-
default. Using window-or-system-default as the
value for gms-language sets the language to
the window-specific language designated for
the window or the current-language specified
in the Language Parameters system table.

Default value: english

gms-font-size Specifies the font size in which all menu entries
are displayed.

Allowable values: small, large, extra-large

Default value: large

gms-normal-text-
color

Specifies the color of the text in a menu entry
that is neither selected nor disabled.

Allowable values: Any G2 color

Default value: black

gms-normal-
background-color

Specifies the color of the background in a menu
entry that is neither selected nor disabled.

Allowable values: Any G2 color

Default value: white

Attribute Description
149

gms-highlighted-
text-color

Specifies the color of the text in a selected
menu entry.

Allowable values: Any G2 color

Default value: white

gms-highlighted-
background-color

Specifies the color of the background in a
selected menu entry.

Allowable values: Any G2 color

Default value: medium-blue

gms-disabled-text-
color

Specifies the color of the text in a disabled
menu entry.

Allowable values: Any G2 color

Default value: gray

gms-header-
background-color

Specifies the color of the background in a
popup menu header.

Allowable values: Any G2 color

Default value: black

gms-header-text-
color

Specifies the color of the text in a popup menu
header.

Allowable values: Any G2 color

Default value: light-goldenrod-yellow

Attribute Description
150

User Preferences Objects
gms-sticky-menus Specifies that sticky menus are available.

Allowable values: true, false

Default value: true

gms-show-help-
message

Sets GMS to display the Help label of any
menu entry that has one whenever that entry
becomes selected.

Allowable values: true, false

Default value: false

gms-help-message-
fontsize

Specifies the font size in which Help labels are
displayed in the help bar.

Allowable values: small, large, extra-large

Default value: large

gms-blinks-on-
activation

Sets the number of times a chosen menu entry
blinks before the effect of the choice begins.

Allowable values: Any nonnegative integer

Default value: 0

gms-initial-menu-
bar

A symbol that is the key of the menu bar that
GMS should display when the user first logs in.

Allowable values: Any symbol, true, false, or none

Default value: none

Attribute Description
151

Managing User Preferences
GMS predefines one User Preferences object, called the system default
preferences object. This object specifies system default preferences that give
good results when no other preferences apply to a user. All attributes of the
system default preferences object have the values shown in the previous table for
User Preferences objects generally.

Obtaining the Current User Preferences Object

The current User Preference object holds the setting that are presently in place in a
given G2 window.

To obtain the current User Preferences object:

 gms-get-current-preference
(handle: integer)
-> prefs: class gms-preferences

Obtains the current User Preferences object for the G2 window referenced
by handle.

Creating a User Preferences Object

If the system default preferences do not provide what you need, you can create
your own User Preferences object and give its attributes the needed values.

gms-raise-menu-
bar-interval

An integer specifying the number of seconds
after which the menu bar is raised to the top of
the workspace stack.

Allowable values: Any nonnegative integer

Default value: 0

gms-separator-
height

The height occupied by a separator in a
transient menu.

Allowable values: default, or an integer not less than 6

Default value: default

Attribute Description
152

Managing User Preferences
To create a new User Preferences object:

 Clone a User Preferences object from the GMS palette to any workspace.

or

 Use the create action to create an instance of gms-preferences
programmatically.

To specify user preferences:

 Edit attributes of the User Preferences object to specify the desired
preferences.

or

 Use the conclude action to specify the desired preferences programmatically.

Registering Individual User Preferences

After you create and customize a User Preferences object, you can specify that the
preferences it specifies apply to an individual user. GMS binds a user to a
Preferences Object via the user’s login name.

To specify that a User Preferences object applies to a particular user:

 Set the gms-applicability of the object to be by-registration (the default).

or

 gms-register-preferences-for-user
(prefs: class gms-preferences, user: symbol)

Specifies that the user preferences specified by prefs are in effect for the
user whose login name is user.

Any number of users can register for the same User Preferences object. No user
can be registered for more than one at a time. When a user already registered for
one User Preferences object registers for another, GMS automatically unregisters
the user from the previous object. You can also unregister a user from any User
Preferences object.

To specify that no User Preferences object applies to a particular user:

 Call gms-register-preferences-for-user specifying prefs as
gms-default-configuration and user as the login name of the user.

Specifying Generic User Preferences

You can also specify a generic user preferences object. This object shadows the
system default preferences object, and supplies user preferences for all users who
are not registered for any other preferences object.
153

To specify a generic User Preferences object:

 Set the gms-applicability of the object to be default.

Multiple objects can exist whose gms-applicability is default. You can use the
gms-priority attribute to indicate the object GMS uses.

To indicate the User Preferences object to use when more than one exists:

 Give the object a gms-priority higher than that of any other User Preferences
object.

When more than one object exists with the highest priority, GMS chooses one at
random.

Searching for User Preferences

When more than one User Preferences object exists, GMS searches for the correct
object to use. The order of the search is:

1 Look for a User Preferences object for which the current user is registered.

2 Look for a generic User Preferences object. If more than one exists, use the one
with the highest priority, or one selected at random from among those with
the highest priority.

3 Use the system default preferences object.

Changing the User Preferences Currently in Effect

You can change user preferences in various ways while the user is logged in, as
described under Managing User Preferences.

Specifying User Preferences
You cannot change the system default preferences. The rest of this chapter shows
you how to specify generic or individual user preferences. A reference to
particular preference refers to the value of the relevant attribute in the applicable
User Preferences object.

Specifying Font and Separator Size

You can specify the font in which GMS displays menu entries, and the height of
any separators that appear between them.

To specify the font size used to display menu entries:

 Set gms-font-size to be small, large, or extra-large.
154

Specifying User Preferences
To specify the height of separators between menu entries:

 Set gms-separator-height to be either default or an integer not less than 6.

Specifying default tells GMS to make separators the same height as a menu entry.
That height depends on the setting of gms-font-size. Specifying a positive integer
tells GMS to give separators the indicated height in workspace units.

Caution If you set the gms-separator-height to be any value other than the default, and a
separator exists on a panel that is a candidate for scrolling, the panel will not
scroll.

Controlling Help Information

You can turn Help information on and off, and control the font in which GMS
displays it.

To set GMS to display Help information:

1 Set gms-show-help-message to be true.

2 Set gms-priority to be a higher number than that of any of the other preference
objects.

To set GMS to not display Help information:

 Set gms-show-help-message to be false (the default).

To specify the font size used to display Help information:

 Set gms-help-message-fontsize to be small, large, or extra-large.

Controlling Colors

You can control the text and background colors of menu entries and popup menu
headers. Menu entry colors can vary depending on whether the entry is
unselected, selected, or disabled. The following table lists each user preference
that controls color, its default, and the color that it controls:

Preference Default Description

gms-normal-text-
color

black The color of the text in a menu
entry that is neither selected nor
disabled.

gms-normal-
background-color

white The color of the background in a
menu entry that is neither selected
nor disabled.
155

Specifying Menu Navigation Modes

GMS provides two menu navigation modes, called walking menus and sticky
menus, as described under Choosing a Menu Entry. Walking menus are always
available. Sticky menus are optional.

To specify that sticky menus are available:

 Set gms-sticky-menus to be true (the default).

To specify that sticky menus are not available:

 Set gms-sticky-menus to be false.

Controlling Menu Blinking

By default, GMS undisplays transient menus and invokes a leaf entry’s callback
procedure as soon as you choose the entry. You can set GMS to first blink a
chosen menu entry one or more times.

To specify that GMS does not blink a chosen menu entry:

 Set gms-blinks-on-activation to be 0 (the default).

To specify that GMS blinks a chosen menu entry:

 Set gms-blinks-on-activation to be a positive integer indicating the number
of blinks.

gms-highlighted-
text-color

white The color of the text in a selected
menu entry.

gms-highlighted-
background-color

medium-
blue

The color of the background in a
selected menu entry.

gms-disabled-text-
color

gray The color of the text in a disabled
menu entry.

gms-header-text-
color

light-
goldenrod
-yellow

The color of the text in a popup
menu header.

gms-header-
background-color

black The color of the background in a
popup menu header.

Preference Default Description
156

Specifying User Preferences
Designating an Initial Menu Bar

You can set GMS to display a particular menu bar to the user whenever G2 starts.

To specify that GMS does not display a menu bar on startup:

 Set gms-initial-menu-bar to be false or none (the default).

This setting does not prevent a subsequent API call from showing a menu bar. It
specifies only that GMS does not do so automatically on startup.

To specify that GMS displays a designated menu bar on startup:

 Set gms-initial-menu-bar to be the key of the root object of the relevant menu
specification.

If no menu bar has the specified key, GMS does not display any menu bar, just as
if the value were false or none.

To specify that GMS displays a randomly selected menu bar on startup:

 Set gms-initial-menu-bar to be true.

This setting is appropriate when only one menu bar is defined, because only one
application is loaded, and the user wants to use the application without needing
any information about GMS internals.

Raising the Menu Bar to the Top

Displaying other workspaces in a window may obscure any menu bar in that
particular window. Obscuring a menu bar may make it inaccessible. You may
specify an interval, in seconds, at which GMS displays the menu bar on top of all
other workspaces.

To specify that GMS should raise the menu bar to the top regularly:

 Set gms-menu-bar-raise-interval to be any non-negative integer.

If you specify 0 for this attribute, GMS does not perform this function.

Specifying Internationalization

Several factors, including the user preference gms-language, control GMS
internationalization. For information on internationalizing GMS menus, see
Internationalizing GMS Menus.
157

158

15
Specifying the Interface
between GMS and G2
Shows how to configure GMS to work with and extend G2 capabilities such as
accessing a compiled resource from G2, implementing keyboard accelerators, and
handling mouse events for popup menus.

Introduction 159

Accessing GMS Resources from Outside GMS 160

Implementing Keyboard Accelerators 162

Handling Mouse Events for Popup Menus 162

Introduction
Most aspects of the interface between GMS and G2 are handled automatically by
GMS. However, some tasks require explicit programming to configure GMS to
work with G2 as desired. Those tasks involve:

• Accessing GMS resources in code running outside of GMS.

• Implementing keyboard accelerators.

• Handling mouse events for popup menus.

This chapter shows you how to configure GMS to have the desired behavior in
each of these areas.
159

To see online examples of the concepts covered in this chapter:

1 Load the gmsdemo.kb from the kbs directory.

2 Choose the Implementing Accelerators demo in the USING THE API section
of the GMS demo KB.

This demo shows how a developer can implement menu accelerators by using
G2 configurations to map keystrokes to execute callbacks.

3 Choose the Advanced Popups demo in the POPUP MENUS section of the
GMS demo KB.

This demo shows how a developer can negotiate user mouse gestures on an
object and still use GMS to post menus when appropriate.

Accessing GMS Resources from Outside GMS
In most cases:

• The information in the compiled resource is used either by GMS to display
menus, or by callback procedures that need to determine what action to take.

• Callback procedures are invoked by GMS when the user chooses a leaf item in
a GMS menu.

However, some situations require G2 code running outside of GMS to access the
compiled resource and/or execute a callback procedure. This section shows you
how to obtain such access.

Accessing the Compiled Resource

When a callback procedure needs information from a compiled resource, it
obtains the information by using gms-get-activation-property, as described under
Obtaining Menu Entry Attributes in an Activation Context. Code that runs
outside of an activation context cannot use this call, because:

• The call obtains the requested information from an activation path that GMS
passed to the callback procedure.

• An activation path ceases to be valid as soon as the callback procedure that
received the path returns.

Therefore, GMS provides calls that can obtain information directly from the
compiled resource, without the intermediary of an activation path.
160

Accessing GMS Resources from Outside GMS
To obtain information about properties from the compiled resource:

 gms-get-property
(handle: integer, menu-index: integer, property-name: symbol)
-> property-value: item-or-value

Returns the value of property-name in the menu or menu entry specified
by menu-index in the compiled resource. The handle argument is provided
for compatibility with future releases. Specify the value 0 (zero).

You can use gms-get-property to display any attribute that is in an object attribute
list or table. You cannot use gms-get-property to access information about the
dynamically created part of a dynamic menu specification. Such information
exists only transiently, and is deleted as soon as GMS no longer needs it.

To obtain information about menu structure from the compiled resource use the
procedure gms-return-submenu-entries as described in Obtaining All Cascade
Menu Entries.

Executing a Callback Procedure

Using a keyboard accelerator requires G2 to execute the same callback procedure
that GMS would execute if the user selected some GMS menu leaf entry. A button
or a rule also may have reason to execute a callback procedure.

Such execution requires the callback procedure to receive the standard callback
procedure arguments, which only GMS can construct. GMS therefore provides an
API call that can execute any callback procedure and provide it with the
arguments that it expects.

To execute a callback procedure from code running outside GMS:

 gms-execute-activation-callback
(handle: integer, menu-index: integer)

Executes the callback procedure of the menu entry referenced by menu-
index in the context of the window referenced by handle. The menu-index
must reference a menu entry defined in a static menu specification.

You cannot use gms-execute-activation-callback to execute the callback
procedure of an entry that is defined in a Reusable Panel template, or in any
submenu descended from such a template, because such an entry does not have a
unique activation path unless the user has explicitly navigated to it with
the mouse.
161

Implementing Keyboard Accelerators
Specifying a keyboard accelerator is largely a matter of writing G2 code. This code
binds a keystroke to a call to gms-execute-activation-callback. For details:

• Examine the Implementing Accelerators demo in the USING THE API section
of the GMS demo KB.

• Consult the G2 Reference Manual for additional information as needed.

To implement a keyboard accelerator:

1 Create a User Menu Choice whose action invokes gms-execute-activation-
callback, either directly or by starting a procedure.

2 Specify the applicable-class of the User Menu Choice to be the class for which
the accelerator is to work.

3 Configure the class referenced in applicable-class to bind the desired
keystroke to the User Menu Choice.

Handling Mouse Events for Popup Menus
A GMS popup menu appears in response to an API call. The call typically occurs
because the user clicked the mouse on an object. A popup menu disappears
automatically when the user selects a leaf entry from the menu or a subsidiary
cascade menu.

G2 includes a predefined popup menu capability that operates below the level of
GMS. When you use GMS, you can configure objects to display GMS popups
rather than G2 popups. GMS offers three ways to associate a GMS popup menu
with an item:

• Use G2 item configurations to invoke the procedure gms-display-popup-menu
when the user clicks on the item, as described under Using G2 Configurations
to Display a Popup Menu.

• Include the mixin gms-popup-subscriber in the item’s class definition, as
described under Using gms-popup-subscriber to Display a Popup Menu.

• Configure GMS to handle mouse events, as described in this section.

In order to configure GMS to handle mouse events, you should:

• Understand G2 mouse tracking, as described in the G2 Reference Manual.

• Examine the Advanced Popups demo in the GMS demo KB.
162

Handling Mouse Events for Popup Menus
Configuring GMS to Handle Mouse Events

Displaying, navigating, selecting, and choosing from a popup menu require GMS
to handle mouse events obtained from G2. GMS uses the procedure gms-track-
menu to handle mouse events.

G2 mouse tracking allows you to associate a procedure with an item such that all
mouse events starting with mouse-down on that item and continuing until the
next mouse-up are passed to invocations of that procedure.

You can write your own tracking procedure to handle mouse events. You may
need to use GMS facilities to display popup menus while your tracking procedure
is active. In order for GMS popup menus to function properly while the mouse is
down and your tracking procedure is handling mouse events, your tracking
procedure must forward every mouse event to GMS by calling gms-track-menu.

Managing a Popup from a Mouse Tracking
Procedure

GMS provides two API calls for handling mouse events for popup menus:

• gms-manage-popup-menu

• gms-track-menu

The signature for gms-manage-popup-menu is:

gms-manage-popup-menu
(handle: integer, menu-index: integer, X: integer, Y: integer,
 initiating-item: item-or-value)

Displays the popup menu referenced by menu-index in the G2 window
referenced by handle at window coordinates (X, Y). GMS passes initiating-
item to any callback procedure that is invoked via the popup menu.

You can set initiating-item to be item that the user clicked to display the
popup. If you don’t need to pass this item to a callback procedure, specify a
dummy value of false. Do not specify any other dummy value, or GMS will
signal an error.

Caution Call gms-manage-popup-menu only in response to a mouse-down event, or while
the mouse button is already down. If you call gms-manage-popup-menu in
response to a mouse-up event, or while the mouse button is already up, GMS will
be unable to detect the mouse state, and will be corrupted.
To recover from this error, reset G2 or call gms-reset, as described under
Resetting GMS without Resetting G2.

After calling gms-manage-popup-menu, all further tracking events must be
forwarded to gms-track-menu, until the mouse button is released. Failure to do so
163

will result in GMS malfunctioning. For example, if you have a tracking procedure
that handles mouse events on your item and want to display a popup menu, then
it must be as follows:

my-tracking-procedure
(Event: symbol, Win : class g2-window, Itm1 : item-or-value,
Itm2 : item-or-value, WinX : integer, WinY : integer, Time : integer,
Kbd : integer)

begin
 if (Event = the symbol START-TRACKING) then begin

...
call gms-manage-popup-menu (Handle, PopupIndex, WinX, WinY, false);
...
return

end;
...
call gms-track-menu (Event, Win, Itm1, Itm2, WinX, WinY, Time, Kbd);

end

The gms-track-menu procedure is an ordinary mouse tracking procedure, such as
those described in the G2 Reference Manual.

To display a popup menu in response to a mouse-up event, or while the mouse
button is already up, use gms-display-popup-menu as described under Using G2
Configurations to Display a Popup Menu.
164

16
Managing GMS
Programmatically
Shows how to manage programmatically the internal operations of GMS. You can
use the techniques described to manage menu building and compilation, change
global settings, manage user preferences, and reset GMS without resetting G2.

Introduction 165

Compiling and Building Menus 166

Changing Global Settings 168

Managing User Preferences 169

Resetting GMS without Resetting G2 170

Introduction
This chapter shows you how to manage programmatically the internal operations
of GMS. You can use the techniques described to gain a finer-grained control over
what GMS does than is possible using the techniques described in the previous
chapters.

Use the information in this chapter if all of the following are true when you
use GMS:

• GMS does not start automatically when G2 starts, as described under
Specifying Automatic GMS Startup.

• Global settings change while GMS is in use.

• User preferences change while a given user is logged in.

• GMS needs to be reset at times when G2 is not reset.
165

If your use of GMS requires one or more of these not to be true, use the techniques
described in this chapter to provide the GMS behavior that you need.

Compiling and Building Menus
When you reset G2, GMS always invalidates all window handles and deletes all
menu instances. Unless gms-keep-compiled-resource is true in the current Global
Settings object, GMS also deletes the compiled resource, if any.

When you start G2, and gms-initiate-automatically is true in the current Global
Settings object, GMS does the following.

1 If no compiled resource exists, compile all menus as specified by the attributes
of the current Global Settings object.

2 Assign a handle to every G2 window.

3 Build an instance of every menu in the compiled resource for every G2
window.

4 For every user whose current User Preferences object so specifies, display an
initial menu bar in the user’s G2 window.

When gms-initiate-automatically is false, and you start G2, GMS does nothing. The
actions listed then occur only in response to explicit GMS API calls and/or
choices in the G2 menus of GMS objects. The rest of this section describes those
calls and choices, and their various effects.

Compiling Menus

You can use G2 menu choices and/or GMS API calls to compile any or all menu
specifications. The API call to compile menus is:

gms-compile
(specs: item-or-value, window: class g2-window, build?: truth-value)

Compiles the menu specifications indicated by specs. Calling
gms-compile:

– Deletes the compiled resource, if any.

– Invalidates any window handles.

– Deletes any menu instances.

– Creates a new compiled resource containing translations of the
compiled menus.
166

Compiling and Building Menus
Note To save compiled resources created by GMS, you must save all modules in the
KB. This ensures that the state of the GMS templates is consistent with the
compiled resources.

You can also compile one or all menu specifications by choosing commands from
a root template’s G2 menu.

To compile a single menu specification:

 Choose compile tree from the G2 menu of the menu specification’s root
template.

or

 Call gms-compile giving the menu specification’s root template as the value
of specs.

To compile several menu specifications:

1 Create an item list that contains the specifications to be compiled.

2 Call gms-compile giving the item list as the value of specs.

To compile all menu specifications:

 Choose compile all from the G2 menu of any menu specification’s root
template.

or

 Call gms-compile giving specs the value true.

Argument Description

specs A single menu specification, a list of menu
specifications, or true, indicating
compilation of all existing specifications.

window A G2 window. If you specify build? as true,
GMS builds menus for the window after
compilation is complete. Otherwise give
window the value gfr-default-window.

build? If true, GMS calls gms-create-menu to
build menus for window after the
compilation is complete.
167

Building Menus

If you call gms-compile giving build? the value true, GMS automatically builds
menus for the window designated by window after compilation is complete. You
can also ask for menu building explicitly.

To build menus for a window:

 gms-create-menu
(window: class g2-window)
-> handle: integer

The call does the following:

– If no compiled resource exists, calls gms-compile to compile all menu
specifications.

– Assigns a handle to window, replacing any previously assigned.

– Builds menus for the window. The call builds a menu for every menu
translation in the compiled resource.

To delete all menu instances for a window:

 gms-delete-menu
(handle: integer)
-> success?: truth-value

If handle is a valid window handle, gms-delete-menu:

– Deletes all menu instances for the window referenced by handle.

– Makes handle invalid.

– Returns true.

If handle is not a valid window handle, gms-delete-menu:

– Returns false.

– Does not signal an error.

Changing Global Settings
When you compile menus, the current global settings become part of the
compiled resource. Making changes to global settings therefore requires you to
recompile all menu specifications.

To change a global setting that is currently in effect:

1 Set the attributes of the Global Settings object to specify the desired settings.

2 Compile menus as described under Compiling Menus.
168

Managing User Preferences
Managing User Preferences
When GMS builds menus for a G2 window, it:

• Obtains the current User Preferences object for the user logged into that
window.

• Includes in each menu instance the preferences specified by the User
Preferences object.

• Associates the preferences object with the G2 window.

When GMS obtains and uses a User Preferences object, the identity of the user is
significant only for determining which object to obtain. GMS thereafter manages
user preferences by referencing the G2 window with which they are associated,
not the user whose preferences they are.

To obtain the current User Preferences object:

 gms-get-current-preference
(handle: integer)
-> prefs: class gms-preferences

Obtains the current User Preferences object for the G2 window referenced
by handle.

Changing User Preferences

When you change the current User Preferences object, or register the user for a
different User preference’s object, the change does not take effect immediately:
the previous preferences still exist in the menu instances, and the same User
Preferences object is still associated with the G2 window.

Rebuilding menus inherently puts the new preferences into effect. You can also
put new preferences into effect by modifying the existing menu instances,
avoiding the overhead of rebuilding them. The new preferences can be specified
by changing the current User Preferences object, or putting by another into effect.

To put changes to the current User Preferences object into effect:

 gms-refresh-from-preferences
(handle: integer)

Updates the user preferences for the window referenced by handle as
needed to reflect the current User Preferences object.
169

To put a different User Preferences object into effect:

 gms-switch-preferences
(handle: integer, preferences: class gms-user-preferences)

Makes preferences the User Preferences object for the window referenced
by handle, putting the preferences that it specifies into effect, and
associates the object with the window. The object does not have to meet
the criteria by which GMS selects a current User Preferences object
automatically.

Switching preferences does not replace the User Preferences object for which the
user is currently registered. Next time GMS rebuilds menus, that object will again
take effect.

Resetting GMS without Resetting G2
Sometimes it is convenient to reset GMS without resetting G2. For example, the
various menu specifications, global preferences, and user preferences may have
changed so much that completely initializing GMS is more convenient than
putting the changes into effect one by one, yet G2 may contain transient
information that must not be lost.

To reset GMS without resetting G2:

 gms-reset
(delete-compiled-resource: truth-value, window: class g2-window)

Resets GMS exactly as would happen if G2 were reset, but does not affect
the rest of G2. If delete-compiled-resource is false, the reset does not affect
the compiled resource (if any).

The window argument exists for compatibility with future releases of
GMS. Specify the value gfr-default-window.
170

Part IV
Appendixes
Appendix A: GMS API Reference

Describes all supported GMS API calls in alphabetical order.

Appendix B: GMS Common Names and Formal Names

Gives the common name and the formal name of every GMS entity.
171

172

A

GMS API Reference
Describes all supported GMS API calls in alphabetical order.

gms-check-entry
(handle: integer, menu-index: integer)

Checks the menu entry referenced by menu-index in the window referenced
by handle. If the entry is already checked, the call has no effect.

gms-check-radio-entry
(handle: integer, CheckIndex: integer, RadioStartIndex: integer,
 RadioEndIndex: integer)

Allows you to check any one entry of a specified group. It will uncheck any
previously checked entry in the group.

CheckIndex, RadioStartIndex, and RadioEndIndex must reference menu entries
on the same panel. The menu entry specified by CheckIndex will be checked
and any previously checked entry between the last two will be unchecked.

gms-compile
(specs: item-or-value, window: class g2-window, build?: truth-value)

Compiles the menu specifications indicated by specs.
173

gms-create-menu
(window: class g2-window)
-> handle: integer

• If no compiled resource exists, calls gms-compile to compile all menu
specifications.

• Assigns a handle to window, replacing any handle previously assigned.

• Builds menus for the window. The call builds a menu for every menu
translation in the compiled resource.

gms-delete-menu
(handle: integer)
-> success?: truth-value

If handle is a valid window handle, gms-delete-menu:

• Deletes all menu instances for the window referenced by handle.

• Makes handle invalid.

• Returns true.

If handle is not a valid window handle, gms-delete-menu:

• Returns false.

• Does not signal an error.

gms-disable-entry
(handle: integer, menu-index: integer)

Disables the menu entry referenced by menu-index in the window referenced
by handle. If the entry is already disabled, the call has no effect.

Argument Description

specs A single menu specification, a list of menu
specifications, or true, indicating
compilation of all existing specifications.

window The g2-window from which this call is
initiated. If there is none, then pass
gfr-default-window.

build? If true, GMS calls gms-create-menu to build
menus for all windows after the compilation
is complete.
174

gms-dismiss
(handle: integer)

Undisplays all transient menus on the window referenced by handle. If no
transient menus are currently displayed in the window, gms-dismiss has no
effect. Calling gms-dismiss has no effect on menu bars.

gms-display-menu-bar
(handle: integer, menu-index: integer)

Displays the menu bar referenced by menu-index at the top of the G2 window
referenced by handle.

gms-display-popup-menu
(handle: integer, menu-index: integer, x: integer, y: integer,
 initiating-item: item-or-value)

Displays the popup menu referenced by menu-index in the G2 window
referenced by handle at window coordinates (x, y). GMS passes initiating-item
to any callback procedure that is invoked via the popup menu.

You can set initiating-item to be the item that the user clicked to display the
popup. If you do not need to pass this item to a callback procedure, specify a
dummy value of false. If you pass a dummy value other than false for
initiating-item, GMS signals an error.

gms-display-popup-menu-at-last-event-location
(handle: integer, menu-index: integer, initiating-item: item-or-value)

Displays the popup menu referenced by menu-index in the G2 window
referenced by handle at the coordinates of the last event in the window.

The gms-display-popup-menu-at-last-event-location determines the last event
like the system procedures g2-last-input-event and g2-last-input-event-info.
The gms-display-popup-menu-at-last-event-location procedure uses g2-last-
input-event-info to determine the coordinates of the location for posting the
menu.

GMS passes initiating-item to any callback procedure that is invoked via the
popup menu.

You can set initiating-item to be the item that the user clicked to display the
popup. If you do not need to pass this item to a callback procedure, specify a
dummy value of false. If you pass a dummy value other than false for
initiating-item, GMS signals an error.

gms-enable-entry
(handle: integer, menu-index: integer)

Enables the menu entry referenced by menu-index in the window referenced
by handle. If the entry is already enabled, the call has no effect.
175

gms-entry-is-checked
(handle: integer, menu-index: integer)
-> status: truth-value

Returns true if the menu entry referenced by menu-index in the window
referenced by handle is checked, and false otherwise.

gms-entry-is-disabled
(handle: integer, menu-index: integer)
-> status: truth-value

Returns true if the menu entry referenced by menu-index in the window
referenced by handle is disabled, and false otherwise.

gms-entry-is-restricted
(menu-index: integer, mode-restriction: symbol)
-> status: truth-value

Returns true if the menu entry referenced by menu-index is currently
restricted as specified by mode-restriction, and false otherwise.

gms-execute-activation-callback
(handle: integer, menu-index: integer)

Executes the callback procedure of the menu entry referenced by menu-index
in the context of the window referenced by handle. The menu-index must
reference a menu entry defined in a static menu specification. It must also be
contained in the hierarchy of the menu bar being currently displayed on the
window referenced by handle.

gms-get-activation-index
(activation-info: item-or-value, menu-level: integer)
-> index: integer

Returns the menu index of the menu entry at level menu-level in the current
activation, or -1 of no such entry exists (because menu-level was out of range).

Note gms-get-activation-index is a function, not a procedure.

gms-get-activation-level
(activation-info: class gms-activation-info)
-> level: integer

Returns the menu level of the entry that invoked the callback procedure.

Note Gms-get-activation-level is a function, not a procedure.
176

gms-get-activation-property
(activation-info: item-or-value, menu-index: integer, property-name: symbol)
-> property-value: item-or-value

Returns the value of property-name in the menu or menu entry specified by
menu-index in the activation-info.

gms-get-current-menu-bar-height
(handle: integer)

Returns the number of pixels in a menu bar on the G2 window. If no menu bar
is visible, get-current-menu-bar-height returns 0. Use the current menu bar
height to determine, for example, where to place a dialog just below the
current menu bar without obscuring the menu bar.

gms-get-current-preference
(handle: integer)
-> prefs: class gms-preferences

Obtains the current User Preferences object for the G2 window referenced by
handle.

gms-get-handle-for-window
(window: class g2-window)
-> handle: integer

Returns the handle associated with a G2 window, or -1 if the window has no
handle.

gms-get-index-for-key
(handle: integer, key: value)
-> menu-index: integer

Returns the menu index of the entry referenced by key, or -1 if no such entry
exists. If key is not unique, the call returns the index of a specified entry
having that key.

If you are pulling down dynamic menus, your menu index does not reference
different menu entries on different windows. See also gms-get-key-for-index.

gms-get-item-initiating-popup
(activation-info: item-or-value)
-> initiating-item: class item-or-value

Returns the item that the user clicked to display the popup menu, or the
dummy value false if the popup was displayed by a call to gms-display-
popup-menu or gms-manage-popup-menu that specified false as the
initiating-item.
177

gms-get-key-for-index
(handle: integer, index: integer)
-> key: value

Returns the key of the entry referenced by index, or false if the entry does not
exist or has no key.

If you are pulling down dynamic menus, your menu index will no longer
reference different menu entries on different windows. See also gms-get-
index-for-key.

gms-get-label
(handle: integer, menu-index: integer)
-> label: text

Returns the label of the entry referenced by menu-index in the window
referenced by handle. If the entry has no label, the call returns an empty string.

gms-get-menu-bar-index
(handle: integer)
-> menu-index: integer

Returns the index of the menu bar currently on display in the G2 window
referenced by handle, or -1 if no such menu bar exists.

gms-get-native-id-for-key
(key: symbol, window: g2-window)
-> handle: integer

Returns the integer handle for a native menu item. The key is typically the
gms-user-key of a gms-template. When referring to native GMS menus, use
this API procedure instead of gms-get-index-for-key to return a handle to the
native menu item.

gms-get-property
(handle: integer, menu-index: integer, property-name: symbol)
-> property-value: value

Returns the value of property-name in the menu or menu entry specified by
menu-index in the window referenced by handle. If the entry referenced by
menu-index has been statically compiled, you can pass 0 for handle. You can
use gms-get-property to access any attribute that is in an object attribute list or
table.

gms-get-version()
-> current-version: text

Returns the current version of GMS, for example, 8.0 Rev. 0.
178

gms-get-window-for-handle
(handle: integer)
-> window: class g2-window

Returns the G2 window associated with a handle. If handle is not a valid
handle, GMS signals an error.

gms-hide-menu-bar
(handle: integer)

Undisplays the menu bar currently displayed in the G2 window referenced by
handle. If no menu bar is visible, the call has no effect.

gms-lock-menus
(handle: integer)

Locks the menus of the window referenced by handle. If the menus are
already locked, the call has no effect.

gms-manage-popup-menu
(handle: integer, menu-index: integer, X: integer, Y: integer,
 initiating-item: item-or-value)

Displays the popup menu referenced by menu-index in the G2 window
referenced by handle at window coordinates (X, Y). GMS passes initiating-
item to any callback procedure that is invoked via the popup menu.

You can set initiating-item to be item that the user clicked to display the
popup. If you don’t need to pass this item to a callback procedure, specify a
dummy value of false. Do not specify any other dummy value, or GMS will
signal an error.

gms-menu-is-locked
(handle: integer)
-> status: truth-value

Returns true if the menus of the window referenced by handle are locked, and
false otherwise.

gms-redisplay-menu-bar
(handle: integer)

Redisplays the menu bar most recently displayed in the G2 window
referenced by handle. If no menu bar was ever displayed in the window, the
call has no effect.

gms-refresh-from-preferences
(handle: integer)

Updates the user preferences for the window referenced by handle as needed
to reflect the current User Preferences object.
179

gms-register-preferences-for-user
(prefs: class gms-preferences, user: symbol)

Specifies that the user preferences specified by prefs are in effect for the user
whose login name is user.

gms-reset
(delete-compiled-resource: truth-value, window: class g2-window)

Resets GMS exactly as would happen if G2 were reset, but does not affect the
rest of G2. If delete-compiled-resource is false, the reset does not affect the
compiled resource (if any).

The window argument exists for compatibility with future releases of GMS.
Specify the value gfr-default-window.

gms-restrict-entry
(menu-index: integer, mode-restriction: symbol)

Restricts the menu entry referenced by menu-index as specified by mode-
restriction. You can call gms-restrict-menu-entry as many times as needed to
restrict all user modes for which restriction is desired.

gms-return-submenu-entries
(handle: integer, menu-index: integer, index-list: class integer-list)

Given the index of a cascade menu entry, obtains the indexes of all menu
entries in the cascade menu.

gms-set-label
(handle: integer, menu-index: integer, label: text)

Sets the label of the entry referenced by menu-index in the window referenced
by handle to be label. The label must be a quoted string: call GFR to translate
any GFR symbol. To specify no label, give an empty string.

gms-switch-preferences
(handle: integer, preferences: class gms-user-preferences)

Makes preferences the User Preferences object for the window referenced by
handle, putting the preferences that it specifies into effect, and associates the
object with the window. The object does not have to meet the criteria by which
GMS selects a current User Preferences object automatically.

Argument Description

handle The GMS handle of a G2 window.

menu-index The index of a cascading menu entry.

index-list An integer-list to which GMS appends the
indexes of all entries in the cascade menu.
180

gms-uncheck-entry
(handle: integer, menu-index: integer)

Unchecks the menu entry referenced by menu-index in the window referenced
by handle. If the entry is already unchecked, the call has no effect.

gms-unlock-menus
(handle: integer)

Unlocks the menus of the window referenced by handle. If the menus are
already unlocked, the call has no effect.

gms-unrestrict-entry
(menu-index: integer, mode-restriction: symbol)

Unrestricts the menu entry referenced by menu-index as specified by mode-
restriction. The effect is to undo the effect of the analogous call to gms-restrict-
menu-entry. You can call gms-unrestrict-menu-entry as many times as needed
to unrestrict all user modes for which restriction is not desired.
181

182

B

GMS Common Names
and Formal Names
Gives the common name and the formal name of every GMS entity.

Common Name Formal Name

Accelerator label gms-accl-text

Built-in G2 Menu template gms-builtin-template

Break Template gms-break-template

Cascade Menu Template gms-cascade-template

Change User Mode Template gms-change-user-mode-template

Dynamic Cascade Template gms-dynamic-cascade-template

Dynamic Popup Template gms-dynamic-popup-template

Global Settings object gms-global-settings

GMS Icon gms-icon
gms-highlightable-icon

Help label gms-help-textl

Icon Configuration object gms-icon-specification

Key gms-user-key

Label See the particular type of label.
183

Leaf Entry Template gms-choice-template

Menu Bar Template gms-menu-bar-template

menu entry label gms-label

Peer Menu Connection gms-peer-menu-connection

Peer Menu Connection Post gms-peer-menu-connection-post

Placeholder gms-placeholder-stub

Popup Menu Template gms-popup-menu-template

Right Justifier Template gms-right-justifier

Reusable Panel Template gms-reusable-panel-template

Separator Template gms-separator-template

Show Workspace Template gms-show-workspace-template

Switch Menu Bar Template gms-switch-bar-template

Submenu Connection gms-sub-menu-connection

Submenu Connection Post gms-sub-menu-connection-post

SubPanel Container gms-subpanel

User Preferences object gms-preferences

Common Name Formal Name
184

Glossary
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z
A

accelerator: A keystroke that has the same effect as choosing a menu entry: typing
the keystroke executes the same user-defined procedure that choosing the menu
entry executes.

accelerator label: A label that indicates a keystroke that has the same effect as
choosing the menu entry. Examples: Control-O, Alt-S.

activation callback procedure: A user-defined procedure that executes when you
choose a leaf entry.

activation context: The complete context within which a callback procedure was
invoked.

B

break: A divider that formats a menu bar into multiple rows, and a transient
menu into multiple columns.

Break Template: A template that appears between two entry templates to tell
GMS to display the second entry at the beginning a new row (menu bar) or the
top of a new column (transient menu).

C

callback arguments: The three standard arguments that GMS passes to every
callback procedure.

cascade menu: A subsidiary menu that appears when you select a higher-level
menu entry.

Cascade Menu Template: A template that defines a cascading entry.

cascading entry: A menu entry that displays a cascade menu when selected.

Change User Mode Template: A template that changes the user mode to a
specified mode.

checked menu entry: A menu entry that has a check mark to the left of its entry
label.

choose: To raise the mouse button over a selected menu entry. Choosing a leaf
entry executes the associated callback procedure.
185

compiled resource: A repository in which GMS keeps all menu translations. At
most one compiled resource exists at a given time.

constructor arguments: The first three arguments that GMS passes to a panel
constructor.

current global settings: The global settings specified by the current Global
Settings object.

current Global Settings object: The Global Settings object that is in effect when
GMS compiles menus.

D

default global settings: The global settings specified by the current default Global
Settings object.

default Global Settings object: A predefined Global Settings object that GMS
uses when no other has been defined.

dialog entry: A leaf entry whose callback procedure displays a dialog.

disabled menu entry: A menu entry that can be selected, but is otherwise
inactive.

display points: A pair of points, one on a G2 window, the other on a workspace,
that specify where a Show Workspace Template displays a workspace.

dividers: Generic term for breaks, justifiers, and separators.

dynamic menu specification: A menu specification that defines a menu only
partially, and includes templates that programmatically complete the menu
definition just before the menu is displayed

dynamic menus: Generic term for dynamically defined popup and cascade
menus.

Dynamic Cascade Template: A template similar to a Cascade Menu Template,
with additional attributes that control dynamic menu construction.

Dynamic Popup Template: A root template similar to a Popup Menu Template,
with additional attributes that control dynamic menu construction.

dynamic templates: Generic term for Dynamic Popup Templates and Dynamic
Cascade Templates.

dynamically constructed templates: Templates constructed using the G2 create
and conclude actions for use in a dynamic menu specification.
186

E

enabled menu entry: A fully functional menu entry, as distinct from a disabled
menu entry.

Entry label: Text that describes what will happen if you choose a menu entry,
specified using the gms-label attribute of an entry template. Examples: Open,
Save As.

Entry templates: Generic term for Cascade Menu Templates and Leaf Entry
Templates.

extensible menu specification: A menu specification that uses Peer Menu
Connection Posts to provide optional hooks for extending the menu.

G

generic user preferences object: A User Preferences object that shadows the
system default preferences object, and supplies user preferences for all users who
are not registered for any other preferences object.

GFR symbol: A symbol that represents a text string. When GMS encounters a
GFR symbol in a menu specification, it passes the symbol to GFR, which returns a
string appropriate to the current language environment.

global inconsistency: An inconsistency between a menu specification and the
global settings in effect when the specification is compiled.

global settings: GMS properties do not apply to any particular menu, but to GMS
overall.

Global Settings object: An object that specifies a collection of global settings.

GMS icon: An icon that appears next to a menu entry label and denotes the menu
entry’s effect graphically.

GMS menus: Generic term for menu bars, popup menus, and cascade menus
displayed by GMS

GMS Palette: A palette that contains master copies of all GMS template objects.

H

handle: An integer that GMS assigns to a G2 window to represent the window in
GMS API calls.

header: A title block that appears above the panel of a popup menu and displays
the menu label of the popup menu specification’s root template. This label
typically describes the menu’s origin or purpose. Menu bars and cascade menus
do not have headers.
187

Help bar: A bar that appears at the bottom of the G2 window to display Help
labels as the user selects menu entries.

Help label: A label that provides information intended to help the user
understand what a menu entry does.

highlightable icon: A GMS icon that can change colors depending on the
selection status of the menu entry that contains the icon.

I

icon configuration object: An object that specifies non-default scaling and color
attributes for a GMS icon.

icon family: A set of per-font icon classes. Each time GMS displays a menu entry
that uses per-font icon classes, GMS uses the class that is correct for the font then
in use.

initiating item: The item that the user clicked to display a popup menu.

J

justifier: A divider in a menu bar specification that causes all subsequent menu
entries in the bar to be right justified. When a break follows a justifier in a menu
bar, the new row is also right-justified.

K

key: An attribute (gms-user-key) of a root or entry template that identifies the
menu or entry and/or associates information with it.

L

label: Any text string that forms part of a menu definition. Sometimes used as a
convenient shorthand for the “menu label” of a root template or the “entry label”
of an entry template.

leaf entry: A menu entry that, when chosen, executes a user-defined procedure.

Leaf Entry Template: A template that defines a leaf entry.

location attributes: Attributes of a Show Workspace Template that define its
display points.

lock menus: To set GMS to discard all mouse input, preventing the user from
selecting or choosing menu entries.
188

M

menu bar: A horizontal menu that extends along the top of a G2 window.

Menu Bar Template: A root template that defines a menu bar.

menu entry: A rectangular cell in a menu that can contain an entry label, a GMS
icon, and an accelerator label. All of these components are optional.

menu index: An identifying integer assigned to a menu or menu entry by the
GMS compiler. The compiler includes the index in the compiled resource, and
makes it the value of the gms-index attribute of the relevant template.

menu instance: A menu that GMS builds for a particular G2 window from data in
the compiled resource.

menu label: Text that identifies a menu as a whole, specified using the gms-label
attribute of a root template.

menu level: An integer that indicates how deeply a menu is nested within higher-
level menus.

menu specification: Generic term for a static menu specification or a dynamic
menu specification.

menu translation: The compiled form of a menu specification, produced by the
GMS compiler and stored in the compiled resource.

P

panel: The entries in a GMS menu, occupying either one or more rows (menu bar)
or one or more columns (transient menu).

panel constructor: A procedure called when the user selects a dynamic menu
entry, or when a preconstructed menu is compiled. The procedure constructs and
returns a specification for a transient menu.

Peer Menu Connection: A connection that links two adjacent entry or divider
templates in a menu.

Popup Menu: A freestanding menu that can appear anywhere in a G2 window in
response to a mouse click.

Popup Menu Template: A template that defines a popup menu.

posting callback procedure: A procedure that GMS calls whenever a particular
menu is displayed or hidden.

preconstructed menu: A menu defined by a panel constructor at compilation time
rather than at display time.
189

preconstruction: The practice of constructing a dynamic menu once when its
specification is compiled, rather than reconstructing it every time it is to be
displayed.

R

resource group: A GMS translation dictionary.

restricted menu entry: An entry that becomes disabled whenever the G2 window
that displays it is in a specified user mode or modes.

Reusable Panel Template: A template permits a cascade menu appear in more
than one place in a menu specification.

Right Justifier Template: A template that appears between two entry templates
in a menu bar specification to tell GMS to right-justify the entries that are
specified after the template.

root template: A template that represents the menu as a whole. It does not
correspond to any particular menu entry.

S

select: To depress the mouse button over an object, or to move the mouse over it
with the mouse button already depressed. Selecting an enabled cascading entry
displays its cascade menu.

selection callback procedure: A procedure that GMS calls whenever a particular
menu entry is selected or unselected.

separator: A horizontal divider that separates the panel of a transient menu into
two sections.

Separator Template: A template placed between two entry templates to tell GMS
to draw a horizontal line in the menu between the two entries that they specify.

Show Workspace Template: A template that displays a workspace at a specified
location.

snap grid: An invisible grid on a GMS workspace. When a workspace has a snap
grid, GMS positions new and moved template objects to appear at vertices of the
grid.

static menu specification: A menu specification that completely defines a menu
in advance of its compilation and display.

Sticky menus: A menu navigation mode in which a cascade menu appears when
a cascading menu entry is chosen.

Submenu Connection: Connects a root template to the first entry template in its
menu, or a cascading entry template to the first entry template in its cascade
menu.
190

SubPanel Container: A template that provides a subworkspace for holding part
of a menu specification.

Switch Menu Bar Template: A predefined subclass of Dynamic Cascade
Template that displays the labels of all compiled menu bars, and allows the user
to choose which should be the current menu bar.

system default preferences: The user preferences specified by the current system
default preferences object.

system default preferences object: A predefined User Preferences object that
provides preferences for users to whom no other User Preferences object applies.

T

template list: A list of GMS templates passed to and populated by a panel
constructor for use in specifying a dynamic menu.

template objects: Predefined GMS objects that appear on the GMS Palette and
can be cloned for use in constructing menu specifications.

template: A template object.

transient menus: Generic term for popup menus and cascade menus.

U

unchecked menu entry: A menu entry that does not have a check mark to the left
of its entry label.

unlock menus: To set GMS to again accept mouse input, allowing the user to
select and choose menu entries.

unrestricted menu entry: An entry whose enablement is independent of the user
mode of the G2 window that displays the entry.

User Preferences object: An object that specifies a collection of user preferences.

user preferences: GMS properties that can be customized on a per-user basis.

W

Walking menus: A menu navigation mode in which a cascade menu appears
when an enabled cascading menu entry is selected, and disappears when that or
any other entry is chosen.
191

192

Index
 @ A B C D E F G H I J K L M
 # N O P Q R S T U V W X Y Z
Symbols
... (ellipses)

in dialog entries

A
accelerator labels

menu entry component
specifying

accelerators, keyboard
activation callback procedures

callback procedure type
activation context

of callback procedures
activation path

obtaining information from
add peer stubs menu choice
API

reference
using in GMS

attributes
of a Cascade Menu template
of a Dynamic Cascade template
of a Dynamic Popup template
of a GMS icon specification object
of a Leaf Entry template
of a Menu Bar template
of a Menu entry template
of a Popup Menu template
of a Root template
of dynamic templates

B
Break template

description
example of

Built-in G2 Menu template
description
C
callback procedures

arguments for
for dynamic menus
introduction to
invoking

upon selection and unselection
when menus are displayed or hidden

providing additional data for
specifying
specifying default
syntax for
types of
using for leaf entries

Cascade Menu template
attributes of
description
using

cascade menus
Cascade Menu template
defining and displaying dynamically
example of
menu entry type
obtaining from activation path
reusing

Change User Mode template
attributes
changing user mode, using
description

checked menu entry
example of
specifying initial state of

child objects
choosing, menu entries
colors

of menus
of peer connections
of submenu connections

compile all menu choice
compile tree menu choice
compiled resources

repository for menu translation
compiling
193

all menu specifications
menu specifications

description
manually
programmatically

the current menu specification
configurations

displaying popup menus, using
connecting

templates
connections

peer menu connections
stubs
submenu connections
using

constructor arguments
of panel constructors

customer support services

D
demo KB

activating
gmsdemo.kb

navigating
developer mode
dialog entry

ellipses (...) in
menu entry type

dialogs, placing below menu bars
disabling menu entries
display points, workspace
Divider templates

Break
Right Justifier
Separator

dividers
breaks
justifiers
separators
templates for

Dynamic Cascade template
attributes of
description
using

dynamic menu specification
dynamic menus

compiling and displaying
defined
example of creating
internationalizing
194
introduction to
panel constructor procedure for
reducing overhead for

Dynamic Popup template
attributes of
description
using

dynamic templates
attributes of

E
enabling menu entries
entry label
Entry template

creating
types of

extending menus across modules
extensible menu specifications

internationalizing

G
G2

menus
G2 Foundation Resources (GFR)

internationalizing GMS menus, using
text values as symbols, using
using with GMS

g2-window class
gfr-file-location attribute
global settings

changing current setting
compiled resources
consistency checking
default
for multiple applications
introduction to
managing
maximum entries
specifying

manually
programmatically

startup
Global Settings object

attributes of
creating
description

GMS
gmsdemo.kb

installing
managing programmatically
module hierarchy
modules of
names, common and formal
overview of
palette
requirements for
resetting
starting
version information
workspace

GMS and G2
accessing compiled resources outside GMS
executing callback procedures
keyboard accelerators
mouse events
popup menus
specifying the interface between

gms.kb

gms-accelerator-label attribute
of leaf entry templates

description
specifying

gms-activation-callback attribute
of menu entry templates
of root templates
specifying callback for leaf entry
specifying default callback procedure

gms-additional-posting-callback attribute
gms-allow-for-menu-bar attribute
gms-applicability attribute
gms-blinks-on-activation attribute
gms-check-entry API
gms-check-for-global-consistency attribute

of global settings object
specifying

gms-check-radio-entry API
gms-compile API
gms-compiled-stub-name attribute
gms-create-menu API
gms-default-language attribute

of global settings object
description
specifying

gms-delete-menu API
gmsdemo.kb

gms-disabled-text-color attribute
of user preferences object

description
using for default icon color
gms-disable-entry API
gms-dismiss API
gms-display-menu-bar API
gms-display-popup-menu API

caution when using
displaying popups, using

gms-display-popup-menu-at-last-event-
location API

caution when using
displaying popup menus, using

gms-display-target attribute
gms-do-not-reduce-height attribute

description
using

gms-do-not-reduce-width attribute
description
using

gms-enable-entry API
gms-entry-is-checked API
gms-entry-is-disabled API
gms-entry-is-restricted API
gms-execute-activation-callback API
gms-font-size attribute
gms-get-activation-index API
gms-get-activation-level API
gms-get-activation-property API
gms-get-current-menu-bar-height API
gms-get-current-preferences API

managing user preferences
using

gms-get-handle-for-window API
gms-get-index-for-key API
gms-get-item-initiating-popup API
gms-get-key-for-index API
gms-get-label API
gms-get-menu-bar-index API
gms-get-property API
gms-get-version API
gms-get-window-for-handle API

obtaining G2 window for callback
gms-global-settings class
gms-handle class
gms-header-background-color attribute
gms-header-text-color attribute
gms-help-label attribute

of menu entry templates
of root templates

gms-help-message-fontsize attribute
gms-hide-menu-bar API
gms-highlightable-icon class
gms-highlighted-background-color attribute
195

of user preferences object
gms-highlighted-text-color attribute

of user preferences object
using for default icon color

gms-icon subclass
gms-icon-disabled-color attribute

description
using

gms-icon-highlighted-color attribute
description
using

gms-icon-normal-color attribute
description
using

gms-icon-specification object
attributes
using

gms-icon-subclasses-exist attribute
gms-inactive-keys attribute
gms-index attribute

of menu entry templates
of root templates
set by compiler

gms-initially-checked attribute
of leaf entry templates

description
using

gms-initially-enabled attribute
of menu entry templates
of root templates

gms-initial-menu-bar attribute
gms-initiate-automatically attribute

of global settings object
description
specifying

gms-inline-icon-class attribute
of menu entry templates

description
using

gms-inline-icon-description attribute
of menu entry templates

description
using

gms-keep-compiled-resource attribute
of global settings object

description
specifying

gms-label attribute
of menu entry templates
of root templates
specifying
196
for popup menus
gms-language attribute
gms-lock-during-callback attribute

of leaf entry templates
description
using

gms-lock-menus API
gms-manage-popup-menu API
gms-maximize-icon attribute

description
using

gms-maximum-entries-count attribute
of global settings object
specifying

gms-menus-are-locked API
gms-no-margin-for-check attribute

description
using

gms-normal-background-color attribute
gms-normal-text-color attribute

of user preferences object
description
using for default icon color

gms-popup-subscriber mixin
gms-posting-callback attribute

of cascade menu templates
of root templates

gms-preconstruct-panel attribute
of dynamic popup templates

gms-preferences class
gms-preserve-ratio attribute

description
using

gms-priority attribute
of global settings object
of user preferences object
specifying global settings objects, using

gms-raise-menu-bar-interval attribute
gms-reclaim-templates attribute

of dynamic popup templates
gms-redisplay-menu-bar API
gms-refresh-from-preferences API
gms-register-preferences-for-user API
gms-reset API
gms-restricted-modes attribute

of menu entry templates
of root templates

gms-restrict-entry API
gms-return-submenu-entries API
gms-selection-callback attribute

of menu entry templates

description
specifying
using

gms-separator-height attribute
gms-set-label API
gms-show-headers attribute

of popup menu template
description
using

gms-show-help-message attribute
gms-show-vertical-bar attribute
gms-sticky-menus attribute
gms-subpanel-constructor attribute

of dynamic popup templates
gms-switch-preferences API
gms-target-user-mode attribute
gms-text-resource-group attribute

of menu entry templates
of root templates
using

gms-text-resources class
gms-top-level workspace
gms-uncheck-entry API
gms-unlock-menus API
gms-unrestrict-entry API
gms-user-key attribute

of menu entry templates
of root templates

description
using

gms-use-translations attribute
of global settings object
specifying that GMS uses GFR, using

gms-view-scale attribute
gms-window-symbolic-location attribute
gms-window-x-location attribute
gms-window-x-offset attribute
gms-window-y-location attribute
gms-window-y-offset attribute
gms-workspace-symbolic-location attribute
gms-workspace-x-location attribute
gms-workspace-x-offset attribute
gms-workspace-y-location attribute
gms-workspace-y-offset attribute

H
handle, for a window
headers

in popup menus
displaying
hiding
specifying

height of current menu bar
help

controlling display of
specifying for menu entries
viewing for menu entries

Help Bar
associating with menu entries
displaying
specifying font size for

highlightable icon class

I
icon configuration object
icons

avoiding scaling
configuring
controlling colors of
making room for additional
menu entry component
reconfiguring
scaling
specifying for menu entries
using in menus

initiating items
obtaining for callback procedures
popup menus

internationalization
specifying

language
menu
translation dictionary

K
keyboard accelerators
keys

of Menu Entry templates
of Root templates

L
labels

of Menu Entry templates
of Root templates

leaf entry
menu entry type
197

templates for
Leaf Entry template

attributes of
description
using

location attributes, workspace

M
menu bar

creating
displaying and hiding
example of
height of current

Menu Bar template
attributes of
description

menu entry
accelerator labels for
accessing properties programmatically
check mark for
checking
components of
dialog entry for
disabling and enabling
help for
initial state

specifying manually
specifying programmatically

label, accessing
obtaining attributes of
properties of
restricting and unrestricting
types of
unchecking

Menu Entry template
attributes of
label of

menu indexes
assigned to templates
mapping between user keys and
obtaining from activation path

menu instances
menu label
menu specifications

building
dynamically
manually

compiling
manually
198
overview of
programmatically
results of

components of
connections and connection posts of
dynamic
example
extending across modules
internationalizing, using GFR
menu indexes of
static

menu translations
menus

accessibility of
appearance of
breaks in
cascade menus
colors of
customizing

globally
individual
per user

dismissing all
displaying compiled
dividers in
dynamic
font size of
GMS palette, for creating
help in
hierarchy
internationalizing, using GFR
justifying entries
language of
level of
locking and unlocking
menu bar
menu entries

description of
referencing

menu handle
menu panel
menu specifications

building dynamically
building manually
components of
example
extending across modules
Root templates

menu translations
native
navigation styles of

popup menus
pulldown menus
separators in
sticky menus

customizing
description
using

techniques for defining
types of
walking menus

description
using

modules, GMS
mouse operations

selecting and choosing menu entries using

O
Operator Logbook

P
panel constructor procedures

for dynamic menus
guidelines for writing
syntax for

Peer Menu connection posts
connecting multiple workspaces, using
description
extending menu specifications, using
posting callback procedures, using

peer menu connections
adding stubs
menu specification component
using

pixels
in height of current menu bar

Place Holder template
description
extending menu specifications using

place holders
extending menu specifications, using
Place Holder template
posting callback procedures, using

Popup Menu template
attributes of
description
root template
using

popup menus
creating a menu specification for
defining

manually
programmatically

displaying
manually
programmatically

displaying headers
example of
hiding headers
introduction to
Popup Menu template
specifying headers for

posting callback procedures
callback procedure type
invoking when menus are displayed or

hidden
preconstructed menu
procedures, callback
properties

of menu entries
of Root templates

pulldown menu
example of

R
remove stubs menu choice

for menu entry templates
for root templates

resetting GMS
resource groups

GFR
GMS

restricting menu entries, by user mode
Reusable Panel template

description
using

right justification
Right Justifier template

description
example of

Root template
attributes of
compiling
creating
key of
label of
menu specification component
properties of
199

S
scroll indicators, on menus
selecting, menu entries
selection callback procedures

callback procedure type
invoking when menus are selected or

unselected
Separator template

description
example of

Show Workspace template
attributes
description
displaying workspaces, using
specifying

location
scale
target

snap grid
static menu specification
sticky menus

using
stubs

adding
input
managing
output
removing

from all template objects
from individual template objects

Submenu connection posts
adding to subpanel containers
description
distributing menu specifications, using

submenu connections
linking parent and first child template
using

SubPanel Container template
description
using

superior-connection attribute
Switch Menu Bar template

description

T
Telewindows

displaying native GMS menus in
template keys

accessing information in
200
storing information in
template lists

specifying menu contents of
using

templates
Cascade Menu
Change User Mode template
cloning from palette
connecting
divider templates
Dynamic Cascade template
Dynamic Popup template
entry templates
for dynamic menus
for static menus
GMS palette of
in menu specifications
Leaf Entry
Menu Bar
Popup Menu
predefined
Show Workspace template
snapping to a grid

Text Resource group
description
using

transient menus

U
unchecked menu entry

example of
specifying initial state of

user modes
restricting menu entries, using

user preferences
customizing
managing

manually
programmatically

raising menu bar to top
specifying

font and separator size
help information
initial menu bar
internationalization
menu blinking
menu navigation modes
programmatically
text and background colors

User Preferences object
attributes of
creating
description
generic
obtaining current
registering
searching for

W
walking menus

using
windows

displaying menus on particular
obtaining for callback procedures

workspaces
GMS
multiple

menu specifications on
subpanel containers on

write resource to file menu choice
201

202

	Contents Summary
	Contents
	Preface
	About this Guide
	Audience
	Organization
	A Note About the API
	Conventions
	Related Documentation
	Customer Support Services

	Introduction
	Overview of the G2 Menu System
	Introduction
	What is GMS?
	GMS Menu Types
	Pulldown Menus in Menu Bars
	Popup Menus
	Cascade Menus

	GMS Menu Entries
	Components of a Menu Entry
	Types of Menu Entries
	Selecting and Choosing Menu Entries
	Enabled and Disabled Menu Entries
	Adding a Check to a Leaf Entry
	Associating Help with a Menu Entry

	GMS Menu Customizations
	Using Dividers in Menu Panels
	Choosing a Menu Entry
	Defining GMS Menus Statically or Dynamically
	Customizing GMS Menus Globally or for Each User

	Displaying GMS Menus in Telewindows

	Getting Started
	Introduction
	Installing GMS
	Requirements for Running GMS
	Starting GMS

	GMS Modules
	The GMS Demo KB
	Using the Demo KB
	Navigating a Demo

	Creating a Menu
	Defining a Simple Menu
	Introduction
	Components of a Menu Specification
	Example of a GMS Menu Specification

	Displaying the GMS Palette
	Creating Menu Templates
	Using Root Templates
	The Menu Bar Template
	The Popup Menu Template

	Using Entry Templates
	Cascade Menu Template
	Leaf Entry Template

	Using Connections
	Submenu Connection
	Peer Menu Connection
	Managing Connection Stubs

	Specifying Menu Properties
	Attributes of a Root Template
	Additional Attribute for Popup Menus
	Notes on the Root Template’s Properties
	Attributes of a Menu Entry Template
	Additional Attribute of a Cascade Menu Template
	Additional Attributes of a Leaf Entry Template

	Accessing a Menu Entry’s Properties Programmatically
	Accessing a Menu Entry’s Label
	Specifying Menu Entry Initial States
	Checking and Unchecking Menu Entries

	Specifying the Effect of Choosing a Leaf Entry

	Compiling the Menu Specification
	Introduction
	How GMS Compiles Menu Specifications
	The Menu Translation
	The Menu Instance
	The Handle
	Compiling One or All Menus

	Displaying Compiled Menus
	GMS Handles for G2 Windows

	Referencing Menus and Menu Entries
	Menu Indexes
	Mapping between User Keys and Menu Indexes

	Displaying and Undisplaying Menu Bars

	Using Specialized Templates
	Introduction
	Predefined Leaf Templates
	Changing the User Mode
	Change User Mode Template Attributes

	Displaying a Workspace
	Show Workspace Template Attributes
	Specifying the Workspace to Display
	Specifying the Display Scale
	Specifying the Workspace Location

	Creating Built-in G2 Menus

	Defining Popup Menus
	Introduction
	Defining a Popup Menu
	Creating a Menu Specification for a Popup Menu
	Specifying a Popup Menu Header

	Displaying Popup Menus
	Using gms-popup-subscriber to Display a Popup Menu
	Using G2 Configurations to Display a Popup Menu

	Writing and Using Callback Procedures
	Introduction
	Types of GMS Callback Procedures
	Invoking a Procedure Upon Menu Selection
	Using Activation Callback Arguments
	Obtaining the G2 Window
	Obtaining the Initiating Item for a Popup Menu
	Obtaining Menu Entries and Attribute Values

	Providing Additional Data to an Activation Callback
	Storing Information in Template Keys
	Using Template Keys to Access Information
	Other Strategies for Providing Data to a Callback
	Distributing Data over Multiple Menu Templates

	Specifying a Default Activation Callback
	Invoking a Procedure When a Menu is Displayed or Hidden
	Invoking a Procedure on Selection and Unselection

	Dynamically Defining and Changing Menus
	Introduction
	Dynamically Constructed Menu Specifications
	Specifying a Dynamic Menu
	Attributes of Dynamic Templates

	Dynamic Menu Compilation and Display
	Panel Constructor Procedure Syntax
	Writing a Panel Constructor
	Specifying Labels for Templates in Dynamic Panels

	Using Template Lists
	Defining and Displaying a Dynamic Cascade Menu
	Defining and Displaying a Dynamic Popup Menu
	Dynamic Menus and Callback Procedures
	Reducing Dynamic Menu Overhead
	Constructing Dynamic Menus at Compilation Time
	Reusing Dynamically Constructed Templates

	Dynamically Switching between Applications
	Switching Menu Bars

	Including Additional Features in a Menu
	Introduction
	Divider Templates
	Separators
	Breaks
	Justifiers

	Specifying Additional Menu Entry Properties
	Specifying a Dialog Entry on a Menu Entry Label
	Specifying a Menu Entry Accelerator Label
	Specifying Help Information

	Placing Menu Specifications on Multiple Workspaces
	Using Connection Posts to Distribute Menu Specifications
	Using SubPanel Containers to Distribute Menu Specifications

	Extending Menu Specifications across Modules
	Creating Reusable Cascade Menus

	Controlling GMS
	Controlling Access to Menus
	Introduction
	Controlling Access to Menus
	Locking All Menus Against User Input
	Disabling and Enabling Menu Entries
	Restricting Menus in Specified User Modes

	Undisplaying All Menus

	Controlling the Appearance of Icons
	Introduction
	Specifying a Menu Entry Icon
	Controlling Icon Color

	Configuring a GMS Icon
	Attributes of a GMS Icon Specification
	Default Highlightable Icon Colors
	Specifying Highlightable Icon Colors
	Other Uses for Highlightable Icons

	Specifying Icon Scaling
	Avoiding Icon Scaling Entirely
	Controlling Icon Scaling

	Making Additional Room for an Icon

	Internationalizing GMS Menus
	Introduction
	Making Menu Text International
	Specifying that GMS is to Use GFR
	Specifying the Language of Translation
	Specifying the Translation Dictionary
	The GMS Text Resources
	Internationalizing Extensible Menus
	Internationalizing Dynamic Menus

	Configuring Global GMS Characteristics
	Introduction
	Attributes of a Global Settings Object
	Managing Global Settings
	Global Settings for Multiple Applications

	Specifying Global Settings
	Specifying Automatic GMS Startup
	Preserving the Compiled Resource on Reset
	Specifying the Maximum Number of Entries
	Suppressing Global Consistency Checking
	Specifying Internationalization

	Customizing the GMS Interface to the User
	Introduction
	User Preferences Objects
	Managing User Preferences
	Obtaining the Current User Preferences Object
	Creating a User Preferences Object
	Registering Individual User Preferences
	Specifying Generic User Preferences
	Searching for User Preferences
	Changing the User Preferences Currently in Effect

	Specifying User Preferences
	Specifying Font and Separator Size
	Controlling Help Information
	Controlling Colors
	Specifying Menu Navigation Modes
	Controlling Menu Blinking
	Designating an Initial Menu Bar
	Raising the Menu Bar to the Top
	Specifying Internationalization

	Specifying the Interface between GMS and G2
	Introduction
	Accessing GMS Resources from Outside GMS
	Accessing the Compiled Resource
	Executing a Callback Procedure

	Implementing Keyboard Accelerators
	Handling Mouse Events for Popup Menus
	Configuring GMS to Handle Mouse Events
	Managing a Popup from a Mouse Tracking Procedure

	Managing GMS Programmatically
	Introduction
	Compiling and Building Menus
	Compiling Menus
	Building Menus

	Changing Global Settings
	Managing User Preferences
	Changing User Preferences

	Resetting GMS without Resetting G2

	Appendixes
	GMS API Reference
	GMS Common Names and Formal Names

	Glossary
	A
	B
	C
	D
	E
	G
	H
	I
	J
	K
	L
	M
	P
	R
	S
	T
	U
	W

	Index
	Symbols
	A
	B
	C
	D
	E
	G
	H
	I
	K
	L
	M
	O
	P
	R
	S
	T
	U
	W

