
G2 XL Spreadsheet

User’s Guide
Version 2015

G2 XL Spreadsheet User’s Guide, Version 2015

December 2015

The information in this publication is subject to change without notice and does not represent a
commitment by Gensym Corporation.

Although this software has been extensively tested, Gensym cannot guarantee error-free
performance in all applications. Accordingly, use of the software is at the customer’s sole risk.

Copyright (c) 1985-2015 Gensym Corporation

All rights reserved. No part of this document may be reproduced, stored in a retrieval system,
translated, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of Gensym Corporation.

Gensym®, G2®, Optegrity®, and ReThink® are registered trademarks of Gensym Corporation.

NeurOn-Line™, Dynamic Scheduling™ G2 Real-Time Expert System™, G2 ActiveXLink™, G2
BeanBuilder™, G2 CORBALink™, G2 Diagnostic Assistant™, G2 Gateway™, G2 GUIDE™,
G2GL™, G2 JavaLink™, G2 ProTools™, GDA™, GFI™, GSI™, ICP™, Integrity™, and SymCure™
are trademarks of Gensym Corporation.

Telewindows is a trademark or registered trademark of Microsoft Corporation in the United States
and/or other countries. Telewindows is used by Gensym Corporation under license from owner.

This software is based in part on the work of the Independent JPEG Group.

Copyright (c) 1998-2002 Daniel Veillard. All Rights Reserved.

SCOR® is a registered trademark of PRTM.

License for Scintilla and SciTE, Copyright 1998-2003 by Neil Hodgson, All Rights Reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/).

All other products or services mentioned in this document are identified by the trademarks or
service marks of their respective companies or organizations, and Gensym Corporation disclaims
any responsibility for specifying which marks are owned by which companies or organizations.

Gensym Corporation
52 Second Avenue
Burlington, MA 01803 USA
Telephone: (781) 265-7100
Fax: (781) 265-7101 Part Number: DOC027-1200

Contents Summary
Preface xv

Part I Using GXL 1

Chapter 1 Introduction to GXL 3

Chapter 2 Getting Started 21

Chapter 3 Using Spreadsheet Views 49

Chapter 4 Using the Formula Bar 89

Chapter 5 Working with Specifications 101

Chapter 6 Customizing the Toolbar 135

Chapter 7 Programming GXL 147

Part II API Reference 171

Chapter 8 Creation and Deletion Operations 173

Chapter 9 Loading and Unloading Data 195

Chapter 10 Accessing Spreadsheet and View Properties 217

Chapter 11 Setting Spreadsheet and View Properties 257

Chapter 12 Additional View Procedures 277

Chapter 13 Row and Column Operations 287

Chapter 14 Toolbar Procedures 301
iii

Chapter 15 Tabular Edit Operations 313

Part III Appendix and Glossary 325

Appendix A GXL Memory Requirements 327

Glossary 329

Index 333
iv

Contents
Preface xv

About this Guide xv

Audience xvi

Organization xvi

A Note About the API xvii

Conventions xviii

Related Documentation xix

Customer Support Services xxii

Part I Using GXL 1

Chapter 1 Introduction to GXL 3

What Is GXL? 4
GXL and Telewindows 4

GXL Features 5

GXL Specifications 5

The GXL Spreadsheet 6
Spreadsheet Cells 7
Cell Data Types 7

The GXL Spreadsheet View 8

Cell Groups 9
Cell Groups and GXL Specifications 9
Cell Groups and Spreadsheets 11
Cell Groups and Spreadsheet Views 12

Relationship between GXL Spreadsheets and Views 13

GXL Spreadsheet Data Storage 14

GXL Edit Sessions 14

GXL and Conventional Spreadsheets 15
v

Editing G2 Lists and Arrays 17

Application Programmer’s Interface to GXL 17

GXL Demo KB 19

GXL Online Documentation 20

Chapter 2 Getting Started 21

Installing GXL 21

GXL Required Modules 22
Requirements for Running GXL 23
Starting GXL 23
Choosing a User Mode 23

Considerations and Restrictions 24
Drawing Parameters 24
Timing Parameters 24
Cloning Restrictions 24
Programming Restrictions with G2 Actions 25

Accessing GXL Features 25

The GXL Demo KB 27
Removing the Demo Module 29

Using Online Help 29
Accessing Online Documentation 30

Using GXL to Edit G2 Lists and Arrays 30
Spreadsheet View of G2 Lists and Arrays 32
Editing a G2 Array 33
Saving Spreadsheet Edits to the Array 36

Creating a Custom Spreadsheet and View 38
The GXL Specification 39
Building a Specification Layout 42
Defining Spreadsheet and View Properties 43
Customizing the Toolbar Display 46
Creating the Spreadsheet 47
Displaying the Spreadsheet View 47

Chapter 3 Using Spreadsheet Views 49

Introduction 50

Scrolling a View 52
Dynamic Display of Scroll Bars 54
Multiple Scroll Bars 55

Selecting Areas on the Spreadsheet View 55
vi

Selecting Data Cells 56
Selecting Multiple Cells 57
Extending Cell Selections 58
Selecting Rows and Columns 58
Selecting Multiple Rows or Columns 59
Selecting the Entire Spreadsheet 60

Navigating the Spreadsheet 61

Working with Data Cells 62
How Data Cell Values are Displayed 63
Entering Values into Cells 64
Editing Operations 64
Creating an Empty Cell 64
Ending an Edit 65
Validating Data Input 65

Moving the Editor within a Cell Group 66
Using the Enter Key to Move the Editor 66
Using the Tab Key to Move the Editor 67

Saving Changes to the Spreadsheet View 67
Making Your Edits the Initial Value of an Array 68

The Spreadsheet Toolbar 68

Saving Spreadsheet Data to a File 71
How GXL Saves Selections to a File 72

Loading Data from a File into a Spreadsheet View 74
How GXL Loads the Data into the Spreadsheet 75

Adding and Deleting Rows on the Spreadsheet 76
Deleting Rows 78

Adding and Deleting Columns on a Spreadsheet 78
Adding Columns 79
Deleting Columns 80

Changing the Color Patterns of Cells 81

Cutting, Copying, and Pasting 82
Cutting Data from the Spreadsheet 82
Copying Data from the Spreadsheet 83
Pasting Cut or Copied Data 83

Reversing the Last Toolbar Operation 84

Sorting Spreadsheet Data 85

Other Operations on Views 87
Moving or Transferring Views 87
Deleting Views 87
vii

Cloning Views 87

Chapter 4 Using the Formula Bar 89

Introduction 89

How Formulas Work in GXL 90

GXL Formula Syntax 90
Considerations 91

Entering a Formula 92
Error Handling 94

Applying a Formula to Multiple Cells 94
Order of Calculation 95
Examples 95

Using Built-in Functions 97

Creating Your Own Functions 98

Chapter 5 Working with Specifications 101

Introduction 102

The GLX Specification Layout 104
Cell Group Specifications 105
Cell Groups and Spreadsheet Views 106

Building a Specification 107

Specification Objects 108
The Root Specification Object 109
Row and Column Controllers 114
Cell Group Specification Objects 115

Defining Spreadsheet and View Properties 121

Initializing Cell Group Data 124
Numbering Row and Column Selector Cells 124
Labeling Column Headers 125
Localizing Column Header Text 125

Customizing the Appearance of Floating Point Numbers 125

Customizing the Data Display in Cells 127
Displaying More Information in Views 129

Assigning Color Patterns to Cells 131

Controlling Cell Selection Behavior 131
Customizing Selection Behavior 132

Displaying View Areas 132
viii

Scrolling in View Areas 133
Locating the Mouse on a View 133

Chapter 6 Customizing the Toolbar 135

Introduction 135

Controlling the Toolbar Width 136

Changing the Display of Tools 136

Changing the Order of Tools Displayed 138

Including Your Own Buttons in the Toolbar 138
Subclassing gxl-toolbar-button 139
Creating Methods for Your Button 139
Adding the Custom Button to the Toolbar 141

Creating a Custom Button 141
Defining the Custom Button Class 142
Creating Methods for the Acknowledge Button 144

Chapter 7 Programming GXL 147

Introduction 148

Controlling GXL Editing Programmatically 148
Controlling the Display of Rows and Columns 148

Managing Spreadsheet Data Storage 149
Internal Data Storage 149
External Data Storage 150

Manipulating a Spreadsheet Programmatically 150

User Procedures Called by GXL 152

Initialization Procedures 152
Specifying an Initialization Procedure 153

Reinitialization Procedures 154
Specifying a Reinitialization Procedure 155

Validation Procedures 155
Specifying a Validation Procedure 155

Cell Callback Procedures 157
Callback Restrictions 157
Specifying a Callback Procedure 157
Activating and Deactivating Cell Callbacks 159

Selection Callback Procedures 159
Specifying a Selection Callback Procedure 159
ix

Return and Tab Key Handler Procedures 161
Specifying a Return and Tab Key Handler 162

Scrolling Callback Procedures 163
Specifying a Scrolling Callback Procedure 163

Matrix Extension Procedures 164
Specifying a Matrix Extension Procedure 164

External Data and Color Server Procedures 165
Specifying External Data and Color Server Procedures 165

Assigning Views to G2 Windows 167

The Application Programmer’s Interface 167
Accessing the API 169

Part II API Reference 171

Chapter 8 Creation and Deletion Operations 173

Introduction 174

gxl-clone-spreadsheet 175

gxl-collect-specification 176

gxl-create-and-display-simple-spreadsheet 178

gxl-create-and-display-spreadsheet-view 180

gxl-create-spreadsheet 181

gxl-create-spreadsheet-from-collected-specification 182

gxl-create-spreadsheet-view 184

gxl-create-spreadsheet-view-from-collected-specification 186

gxl-delete-spreadsheet 188

gxl-delete-view 189

gxl-layout-specification 190

gxl-make-spreadsheet-permanent 192

gxl-make-spreadsheet-view-permanent 194

Chapter 9 Loading and Unloading Data 195

Introduction 195

gxl-load-data-into-cell-group 197
x

gxl-load-data-into-defined-area 199

gxl-unload-data-from-cell-group 204

gxl-unload-data-from-defined-area 206

gxl-save-spreadsheet-area-to-stream 213

Chapter 10 Accessing Spreadsheet and View Properties 217

Introduction 218

gxl-get-cell-color 220

gxl-get-cell-contents 221

gxl-get-cell-group-coordinates 222

gxl-get-cell-group-dimensions 225

gxl-get-cell-group-initialization-data 226

gxl-get-cell-group-layout 227

gxl-get-cell-group-procedure-attribute 228

gxl-get-cell-group-visible-dimensions 230

gxl-get-cell-type-of-group 232

gxl-get-float-format-of-group-on-view 233

gxl-get-group-number-at-coordinates 236

gxl-get-protection-of-group-on-view 238

gxl-get-selected-column-range 239

gxl-get-selected-row-range 240

gxl-get-selection-limits 241

gxl-get-size-attributes-of-cells-in-view 243

gxl-get-specification-object 245

gxl-get-specification-of-spreadsheet 247

gxl-get-spreadsheet-dimensions 248

gxl-get-spreadsheet-of-view 249

gxl-get-version 250

gxl-get-views-of-spreadsheet 251

gxl-get-workspace-location-of-cell 252

gxl-get-workspace-location-of-cell-group 254
xi

Chapter 11 Setting Spreadsheet and View Properties 257

Introduction 258

gxl-set-all-color-patterns-to-default 259

gxl-set-cell-contents 260

gxl-set-cell-group-procedure-attribute 262

gxl-set-color-pattern-of-cell 264

gxl-set-color-pattern-of-cell-to-default 266

gxl-set-editor-buttons 267

gxl-set-editor-scrolling 268

gxl-set-float-format-of-group-on-view 269

gxl-set-group-column-header 271

gxl-set-protection-on-entire-view 273

gxl-set-protection-of-group-on-view 274

Chapter 12 Additional View Procedures 277

Introduction 277

gxl-move-spreadsheet-view 278

gxl-refresh-all-views 280

gxl-scroll-to-column-in-view 281

gxl-scroll-to-row-in-view 283

gxl-set-selection-limits 285

Chapter 13 Row and Column Operations 287

Introduction 287

gxl-add-columns 289

gxl-add-rows 291

gxl-permute-rows 293

gxl-remove-columns 295

gxl-remove-rows 296

gxl-sort 297

gxl-sort-and-return-permutations 299
xii

Chapter 14 Toolbar Procedures 301

Introduction 302

gxl-add-accoutrement-to-view 303

gxl-add-built-in-tools-to-toolbar 304

gxl-add-toolbar-to-view 305

gxl-add-tool-to-toolbar 307

gxl-backup-area-into-undo-buffer 308

gxl-get-toolbar-of view 309

gxl-get-undo-buffer 310

gxl-restore-area-from-undo-buffer 311

Chapter 15 Tabular Edit Operations 313

Introduction 313

gxl-apply-tabular-edit 315

gxl-edit-simple-tabular-object 317

gxl-edit-spreadsheet 319

gxl-get-view-of-pushbutton 320

gxl-set-pushbutton-callback 321

gxl-set-pushbutton-label 323

gxl-wait-for-pushbuttons-on-view 324

Part III Appendix and Glossary 325

Appendix A GXL Memory Requirements 327

Glossary 329

Index 333
xiii

xiv

Preface
Describes this guide and the conventions that it uses.

About this Guide xv

Audience xvi

Organization xvi

A Note About the API xvii

Conventions xviii

Related Documentation xix

Customer Support Services xxii

About this Guide
This guide contains complete information about the G2 Spreadsheet utility (GXL),
and shows you how to use the module at any supported level. This guide:

• Introduces GXL and describes the functions, classes and associated
capabilities that it provides.

• Provides specific instructions for using GXL.

• Describes the GXL application programmer’s interface (API), and shows you
how to use it to create and manipulate spreadsheets programmatically.

• Lists all GXL API functions in a reference dictionary.
xv

Audience
This guide assumes that you are generally familiar with G2 terminology and
practices, but does not require a deep understanding of G2. If you encounter G2
terms or concepts that you do not understand, see the G2 Reference Manual.

This guide assumes that you have a general familiarity with spreadsheet systems
as seen from the user’s viewpoint. It does not assume an understanding of the
internal operations of GXL.

Organization
This guide contains fifteen chapters, divided into two parts, and an appendix:

Title Description

Part I Using GXL

1 Introduction to GXL Describes the features of the G2 XL
Spreadsheet utility and the basic concepts
of GXL spreadsheets and views.

2 Getting Started Describes how to install the GXL utility
and introduces the features available from
the top-level workspace.

3 Using Spreadsheet Views Describes the parts of a spreadsheet view
and user interactions with the view.

4 Using the Formula Bar Introduces formulas and provides
instructions for using formulas to
calculate values in GXL spreadsheets.

5 Working with
Specifications

Describes how to build and use GXL
specifications to create spreadsheets and
views.

6 Customizing the Toolbar Describes how to customize the GXL
toolbar display and how to include
custom buttons on the toolbar.

7 Programming GXL Describes the programmatic interfaces to
GXL.
xvi

A Note About the API
A Note About the API
The G2 XL Spreadsheet API, as described in this guide, is not expected to change
significantly, but there may be exceptions. A detailed description of any changes
will accompany the GXL release that includes them.

Therefore, it is essential that you use GXL exclusively through its API, as
described in this guide. If you bypass the API, you cannot rely on your code to
work in the future, since GXL may change, or in the present, because your code
may not correctly manage the internal operations of GXL.

Part II API Reference

8 Creation and
Deletion Operations

Describes the API procedures for creating
and deleting GXL spreadsheets
and views.

9 Loading and Unloading
Data

Describes the API procedures for loading
and unloading spreadsheet data.

10 Accessing Spreadsheet and
View Properties

Describes the API procedures for
accessing GXL spreadsheet and view
properties.

11 Setting Spreadsheet and
View Properties

Describes the API procedures for setting
GXL spreadsheet and view properties.

12 Additional View
Procedures

Describes miscellaneous API procedures
related to GXL views.

13 Row and Column
Operations

Describes the API methods for adding and
deleting rows and columns, and API
procedures for sorting.

14 Toolbar Procedures Describes the API procedures for
managing the appearance of toolbars on
GXL spreadsheet views.

15 Tabular Edit Operations Describes the API procedures for
launching and managing GXL edit
sessions.

Part III Appendix and Glossary

A GXL Memory
Requirements

Describes the memory requirements for
GXL.

Title Description
xvii

If GXL does not seem to provide the capabilities that you need, contact Gensym
Customer Support directly at 1-781-265-7301 (Americas) or +31-71-5682622
(EMEA) for further information.

Conventions
This guide uses the following typographic conventions and conventions for
defining system procedures.

Typographic

Convention Examples Description

g2-window, g2-window-1,
ws-top-level, sys-mod

User-defined and system-defined
G2 class names, instance names,
workspace names, and
module names

history-keeping-spec, temperature User-defined and system-defined
G2 attribute names

true, 1.234, ok, “Burlington, MA” G2 attribute values and values
specified or viewed through
dialogs

Main Menu > Start

KB Workspace > New Object

create subworkspace

Start Procedure

G2 menu choices and button labels

conclude that the x of y ... Text of G2 procedures, methods,
functions, formulas, and
expressions

new-argument User-specified values in
syntax descriptions

text-string Return values of G2 procedures
and methods in syntax
descriptions

File Name, OK, Apply, Cancel,
General, Edit Scroll Area

GUIDE and native dialog fields,
button labels, tabs, and titles
xviii

Related Documentation
Note Syntax conventions are fully described in the G2 Reference Manual.

Procedure Signatures

A procedure signature is a complete syntactic summary of a procedure or
method. A procedure signature shows values supplied by the user in italics, and
the value (if any) returned by the procedure underlined. Each value is followed by
its type:

g2-clone-and-transfer-objects
(list: class item-list, to-workspace: class kb-workspace,
delta-x: integer, delta-y: integer)

-> transferred-items: g2-list

Related Documentation

G2 Core Technology

• G2 Bundle Release Notes

• Getting Started with G2 Tutorials

• G2 Reference Manual

• G2 Language Reference Card

• G2 Developer’s Guide

• G2 System Procedures Reference Manual

File > Save

Properties

GMS and native menu choices

workspace Glossary terms

c:\Program Files\Gensym\ Windows pathnames

/usr/gensym/g2/kbs UNIX pathnames

spreadsh.kb File names

g2 -kb top.kb Operating system commands

public void main()
gsi_start

Java, C and all other external code

Convention Examples Description
xix

• G2 System Procedures Reference Card

• G2 Class Reference Manual

• Telewindows User’s Guide

• G2 Gateway Bridge Developer’s Guide

G2 Utilities

• G2 ProTools User’s Guide

• G2 Foundation Resources User’s Guide

• G2 Menu System User’s Guide

• G2 XL Spreadsheet User’s Guide

• G2 Dynamic Displays User’s Guide

• G2 Developer’s Interface User’s Guide

• G2 OnLine Documentation Developer’s Guide

• G2 OnLine Documentation User’s Guide

• G2 GUIDE User’s Guide

• G2 GUIDE/UIL Procedures Reference Manual

G2 Developers’ Utilities

• Business Process Management System Users’ Guide

• Business Rules Management System User’s Guide

• G2 Reporting Engine User’s Guide

• G2 Web User’s Guide

• G2 Event and Data Processing User’s Guide

• G2 Run-Time Library User’s Guide

• G2 Event Manager User’s Guide

• G2 Dialog Utility User’s Guide

• G2 Data Source Manager User’s Guide

• G2 Data Point Manager User’s Guide

• G2 Engineering Unit Conversion User’s Guide

• G2 Error Handling Foundation User’s Guide

• G2 Relation Browser User’s Guide
xx

Related Documentation
Bridges and External Systems

• G2 ActiveXLink User’s Guide

• G2 CORBALink User’s Guide

• G2 Database Bridge User’s Guide

• G2-ODBC Bridge Release Notes

• G2-Oracle Bridge Release Notes

• G2-Sybase Bridge Release Notes

• G2 JMail Bridge User’s Guide

• G2 Java Socket Manager User’s Guide

• G2 JMSLink User’s Guide

• G2 OPCLink User’s Guide

• G2 PI Bridge User’s Guide

• G2-SNMP Bridge User’s Guide

• G2 CORBALink User’s Guide

• G2 WebLink User’s Guide

G2 JavaLink

• G2 JavaLink User’s Guide

• G2 DownloadInterfaces User’s Guide

• G2 Bean Builder User’s Guide

G2 Diagnostic Assistant

• GDA User’s Guide

• GDA Reference Manual

• GDA API Reference
xxi

Customer Support Services
You can obtain help with this or any Gensym product from Gensym Customer
Support. Help is available online, by telephone, by fax, and by email.

To obtain customer support online:

 Access G2 HelpLink at www.gensym-support.com.

You will be asked to log in to an existing account or create a new account if
necessary. G2 HelpLink allows you to:

• Register your question with Customer Support by creating an Issue.

• Query, link to, and review existing issues.

• Share issues with other users in your group.

• Query for Bugs, Suggestions, and Resolutions.

To obtain customer support by telephone, fax, or email:

 Use the following numbers and addresses:

Americas Europe, Middle-East, Africa (EMEA)

Phone (781) 265-7301 +31-71-5682622

Fax (781) 265-7255 +31-71-5682621

Email service@gensym.com service-ema@gensym.com
xxii

Part I
Using GXL
Chapter 1: Introduction to GXL

Describes the features of the G2 XL Spreadsheet utility and the basic concepts of GXL
spreadsheets and views.

Chapter 2: Getting Started

Describes how to install the GXL utility and introduces the features available from the top-
level workspace.

Chapter 3: Using Spreadsheet Views

Describes the parts of a spreadsheet view and user interactions with the view.

Chapter 4: Using the Formula Bar

Introduces formulas and provides instructions for using formulas to calculate values in GXL
spreadsheets.

Chapter 5: Working with Specifications

Describes how to build and use GXL specifications to create spreadsheets and views.

Chapter 6: Customizing the Toolbar

Describes how to customize the GXL toolbar display and how to include custom buttons on
the toolbar.

Chapter 7: Programming GXL

Describes the programmatic interfaces to GXL.
1

2

1

Introduction to GXL
Describes the features of the G2 XL Spreadsheet utility and the basic concepts of
GXL spreadsheets and views.

What Is GXL? 4

GXL Features 5

GXL Specifications 5

The GXL Spreadsheet 6

The GXL Spreadsheet View 8

Cell Groups 9

Relationship between GXL Spreadsheets and Views 13

GXL Spreadsheet Data Storage 14

GXL Edit Sessions 14

GXL and Conventional Spreadsheets 15

Editing G2 Lists and Arrays 17

Application Programmer’s Interface to GXL 17

GXL Demo KB 19

GXL Online Documentation 20
3

What Is GXL?
The G2 XL Spreadsheet, or GXL, is a G2 utility module that allows you to create,
display, and edit tabular data in familiar spreadsheet style. The following figure is
an example of a view of a GXL spreadsheet.

You can create GXL displays dynamically or save them as permanent parts of
your G2 application on any G2 workspace. These displays can accept user input
from the mouse or keyboard, and you can update the displays in real time when
data changes in your application. You can also dynamically construct GXL views
on UIL dialogs, and use them for multiple-column input.

GXL and Telewindows

GXL has been designed with Gensym’s Telewindows client-server architecture in
mind. Several users can view the data in a single spreadsheet simultaneously.
Each view of the spreadsheet can be scrolled independently, display different
numbers of rows and columns, have different editing privileges, have toolbars
containing different tools, and use different local languages.
4

GXL Features
GXL Features
GXL features include:

• G2 list and array editing with GXL spreadsheet views.

• Specifications for defining GXL spreadsheets and views.

• Application programmer’s interface (API) to GXL.

All GXL features are available from the GXL top-level workspace:

GXL Specifications
A specification is a graphical layout of objects that serves as a template for
creating GXL spreadsheets and views. The following example illustrates a simple
GXL specification:

GXL editing feature

GXL palette of
specification objects

API to GXL
5

Based on the layout of specification objects, their class, and their attribute values,
a specification defines a GXL spreadsheet and a view of the spreadsheet.

Specification objects define two categories of attributes: those related to the
spreadsheet and those related to its view. As the following figure illustrates, GXL
first references the spreadsheet properties of the specification to create the
spreadsheet, then references the view properties to create a view of the
spreadsheet.

You build a specification on a workspace by cloning specification objects from the
GXL top-level workspace. For information on creating spreadsheet specifications,
see Working with Specifications.

The GXL Spreadsheet

Spreadsheet properties

Spreadsheet

View properties

Specification

1

2

View

Data

The GXL spreadsheet, the central object in GXL, is an instance of the class
gxl-spreadsheet. A GXL spreadsheet contains data that is stored as a two-
dimensional grid. You can create a GXL spreadsheet manually from a
spreadsheet specification or programmatically by calling API procedures.
6

The GXL Spreadsheet
Spreadsheet Cells

Each data location in the spreadsheet is referred to as a cell, where row (R) and
column (C) coordinates define the location within the two-dimensional grid. The
row and column numbering of GXL spreadsheets always begins at 0. As the
following figure illustrates, you can refer to a:

• Single cell (R7C6)

• Single row of cells (R1)

• Single column of cells (C1)

• Range of cells (R3C6::R5C9)

• Range of rows (R8::R9)

• Range of columns (C3::C4)

Every GXL spreadsheet has definite row and column dimensions, and the
maximum size is 65535 rows and 65535 columns. Memory requirements are
discussed in Appendix A, GXL Memory Requirements.

Cell Data Types

Each cell in a spreadsheet has a specific data type, which dictates the valid
contents of the cell. Valid data types are:

• Floats

• Integers

• Quantities (floats or integers)

0 1 2 3 4 5 6 7 8 9

Columns

Rows

0
1

2
3

4
5

6

7
8

9

R1

C1

R3C6::R5C9

R7C6

C3::C4

R8::R9
7

• Symbols

• Text

• Truth-values

A cell can also be empty and contain no value.

The GXL Spreadsheet View
A spreadsheet view is the graphical user interface to the data contained in a
spreadsheet. A view displays:

• The data in the cells of the spreadsheet.

• Tools that enable you to interact with the data in the spreadsheet.

For example:

For information on using GXL tools to interact with spreadsheet data, see Using
Spreadsheet Views.

You can customize GXL views by specifying various properties of the cell group
specification objects, such as cell dimensions, font size, color pattern, and editing
privileges. Typically, a spreadsheet view displays a subset of the cells in a
spreadsheet. By scrolling the view you can see any data cell within a cell group of
the spreadsheet. For information on specifying specification properties that define
a spreadsheet view, see Working with Specifications.

Toolbar

Scroll bar

Scroll bar

Data cell
8

Cell Groups
Cell Groups
A cell group defines a rectangular section of the spreadsheet, in which all cells
have the same data type and respond in a particular way to user input. The
division of a spreadsheet into cell groups is similar to the panes of a window, for
example:

Notice that:

• Cell groups are always numbered left to right and top to bottom, starting
from 0.

• All cell groups that are aligned top-to-bottom have the same number of
columns.

• Cell groups that are side-by-side have the same number of rows.

When interacting with GXL programmatically, you always refer to a cell group by
its number.

Cell Groups and GXL Specifications

The GXL palette of spreadsheet specifications contains a set of specification
objects, of which six are cell group specification objects:

0

3

6

1

4

7

2

8

5

Cell group
specification objects
9

These are the cell group specification objects:

Cell Group Specification Description

Cells within a Data Cell Group accept and
display a particular type of data, which
can be integers, text, symbols, floats, truth-
values, or quantities.

Cells within a Row Selector cell group are
used for selecting rows of the spreadsheet
and are usually numbered.

Cells within Column Selector cell group
are used for selecting entire columns of
the spreadsheet and are usually
numbered.

Cells within a Column Header cell group
are used for specifying a label for one or
more columns of the spreadsheet.

Cells within a Global Selector cell group
are used for selecting the entire
spreadsheet.

Cells within a Disabled Group fill areas of
the spreadsheet that do not respond to
user input and contain no data.
10

Cell Groups
Cell Groups and Spreadsheets

When building a specification, you construct a rectangular grid of cell group
specification objects that define the corresponding arrangement of cell groups
within the spreadsheet, as the following figure illustrates:

In this example, the cell group specification layout relates to the spreadsheet as
follows:

• The Global Selector specification (0) defines characteristics of the first cell of
the spreadsheet (R0C0).

• The Column Selector specification (1) defines characteristics of the second
through tenth spreadsheet cells in the first row of the spreadsheet
(R0C1::R0C9).

• The Row Selector specification (2) defines characteristics of the first
spreadsheet cell in the second through tenth rows of the spreadsheet
(R1C0::R9C0).

• The Data Cell Group specification (3) defines characteristics of a 10X10 grid of
spreadsheet cells (R1C1:: R9C9).

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6

7
8

9

0 1

2 3

Cell group specifications

Corresponding spreadsheet cell groups

Spreadsheet

Spreadsheet properties

0 1

2 3
11

Cell Groups and Spreadsheet Views

To understand how cell groups relate to a view of a particular spreadsheet,
consider the following figure:

The cell group specification layout relates to the cell groups of the spreadsheet
view as follows:

• The Global Selector specification (0) defines characteristics of cell group 0,
which contains a single global selector cell.

• The Column Selector specification (1) defines characteristics of cell group 1,
which contains column selector cells.

• The Row Selector specification (2) defines characteristics of cell group 2,
which contains row selector cells.

• The Data Cell Group specification (3) defines characteristics of cell group 3,
which contains float data cells.

Global selector
cell

Row
selector cells

Spreadsheet Specification

Spreadsheet View

Spreadsheet

Float data cells

Column
selector cells

Spreadsheet properties

View properties

0 1

2 3

0 1

2 3
12

Relationship between GXL Spreadsheets and Views
For information on creating GXL specifications, see Working with Specifications.

Relationship between GXL Spreadsheets
and Views

To support multiple clients, GXL distinguishes the spreadsheet, which is the G2
object that contains the data, from the view, which is the graphical user interface
to the data that is presented to the user. A one-to-many relationship exists
between spreadsheets and views, as illustrated in the following figure:

Multiple views can appear on the same or different G2 windows, and no limit
exists to the number of views of a single spreadsheet.

However, because all the views of a spreadsheet share a common data source, all
updates to the data in the spreadsheet are immediately reflected in each view.
Values entered in one view are automatically propagated to all views of the same
spreadsheet. This model of client-server interactions is suitable when changes in
the data are to be displayed simultaneously for all clients.

A view of spreadsheet-1

Another view of spreadsheet-1

Spreadsheet-1, a GXL spreadsheet
13

GXL Spreadsheet Data Storage
The data in a spreadsheet and its views are synchronized. If a user enters data into
a view, this data is immediately stored in the spreadsheet and simultaneously
propagated to all views. By default, a spreadsheet stores internally the data it
displays. However, it can obtain the data it needs through user-supplied
procedures. These two modes of data storage have different performance and
memory characteristics. For a discussion on GXL data storage, see Managing
Spreadsheet Data Storage.

GXL Edit Sessions
In some cases, you might want to use the spreadsheet in a mode where changes to
the data are not carried out until the user specifically decides to commit a batch of
changes. In this mode, data modifications are held in a buffer, enabling the user to
cancel out of the changes, without affecting the original data. This mode of
operation is called an edit session.

As the following figure illustrates, GXL provides an edit-session mode by creating
a transient spreadsheet, which serves as a buffer to manage these edit sessions.

When you edit the spreadsheet, GXL creates a transient editing copy of the
spreadsheet by cloning and displays a view of the cloned spreadsheet. You make
changes to the editing copy of the spreadsheet through this view. If you choose to
commit the changes, GXL transfers the data from the editing copy to the original
spreadsheet. If you cancel the edit, GXL simply deletes the editing copy and its
view.

Original
spreadsheet

Editing copyCommit edits

Clone spreadsheet

User edit session on view
14

GXL and Conventional Spreadsheets
You can also set up an edit session on a data source that is not a spreadsheet, as
the following figure illustrates:

Here, you could use one or more G2 objects as data sources, such as a text list and
a float array. Using the programmatic interface to GXL, you begin the edit session
by creating a spreadsheet with appropriate dimensions and then loading the data
from the data sources.

The user then launches a view of the spreadsheet, enabling the user to alter the
data in the spreadsheet. When the user commits the edit, you programmatically
copy the data back to the original data sources and delete the spreadsheet and its
view.

For information on data storage options when using GXL, see Managing
Spreadsheet Data Storage.

GXL and Conventional Spreadsheets
GXL supports many operations that allow you to manually or programmatically
change the spreadsheet structure and values. You can:

• Add and remove rows and columns.

• Cut, copy, and paste.

• Use formulas.

• Read and write data to files.

Data sources

Create spreadsheet
and load data

Editing copy

Commit edits

User edit session on view
15

While many of the features of GXL are similar to conventional spreadsheets, a
number of important differences exist between GXL and conventional
spreadsheets:

• In GXL, formulas are not stored as part of the spreadsheet’s permanent data
structure. The use of formulas is limited to one-time calculation of cell values.
Because formulas are not stored, a cell whose value has been calculated from
other cells does not automatically update when those cells receive new values.

• A GXL spreadsheet has a definite size which is first established when the
spreadsheet is created. The user must specifically add or remove rows and
columns to modify the dimensions of the spreadsheet.

• Cells in GXL spreadsheets always have one of the following G2 data types:
value, quantity, text, symbol, truth-value, float or integer. Although multiple
cell types can be used in a single spreadsheet, they cannot be randomly
interspersed.

• Within a single scrolling area, all cells must have the same height and width.
You cannot dynamically resize cells on a view after the view is created. If data
does not fit into a cell, GXL displays a truncation of the cell’s data.

• In GXL, the cells that enumerate the rows and columns are stored as part of
the spreadsheet’s data, rather than being a part of a permanent “frame”
outside of the spreadsheet. Inclusion of these cells is optional. This gives you
the flexibility to specify the exact appearance of a spreadsheet view.
16

Editing G2 Lists and Arrays
Editing G2 Lists and Arrays
Using the editing feature of GXL, you can view and edit G2 lists and arrays. When
the GXL editing feature is active, choosing edit from a G2 list or array menu
displays a view similar to the following:

If the list or array does not contain any data elements, GXL displays a view with
an empty data cell.

The GXL editing feature is available from the GXL top-level workspace.

Application Programmer’s Interface to GXL
All programmatic interactions with GXL take place through a small set of public
procedures, classes, and attributes. Collectively, these items are referred to as the
application programmer’s interface (API).

Using the GXL application programmer’s interface within G2 procedures, you
can programmatically create spreadsheet views, populate them with data, and
display them on one or more G2 windows. For example, ReThink® uses GXL to

G2 value array

For information on... See...

Editing G2 lists and arrays with
GXL spreadsheet views

Using GXL to Edit G2 Lists and
Arrays

Using GXL spreadsheet view tools
to interact with list and array data

Using Spreadsheet Views
17

display summary reports of various statistics associated with model processes, as
this figure shows:

Workspaces containing the GXL programmer’s interface of procedures and
methods are available from the GXL top-level workspace.

For complete descriptions of these procedures and methods, see the
corresponding chapters in Part II, API Reference.
18

GXL Demo KB
GXL Demo KB
GXL provides a demo KB, which contains examples of GXL capabilities:

The examples show how GXL spreadsheets and views are constructed and how
their behaviors are defined by setting attributes and using calls to API
procedures. For information on installing the gxldemo KB and viewing the GXL
examples, see The GXL Demo KB.
19

GXL Online Documentation
Using the G2 OnLine Documentation (GOLD) utility, you can view GXL
documentation on a Web browser from G2, as the following figure illustrates:

A separate module, GOLDUI, provides the user interface for setting up and using
GOLD. See the G2 OnLine Documentation User’s Guide for instructions on installing
and setting up GOLD for online viewing of GXL documentation.
20

2

Getting Started
Describes how to install the GXL utility and introduces the features available from
the top-level workspace.

Installing GXL 21

GXL Required Modules 22

Considerations and Restrictions 24

Accessing GXL Features 25

The GXL Demo KB 27

Using Online Help 29

Using GXL to Edit G2 Lists and Arrays 30

Creating a Custom Spreadsheet and View 38

Installing GXL
The G2 XL Spreadsheet (GXL) is a knowledge base (KB) module, whose name is
gxl. All components of GXL are identified by either the public gxl- prefix or
private _gxl- prefix.

You install GXL by merging it into any modularized knowledge base. When you
merge GXL, its required modules are automatically loaded into G2.

The filename of the GXL utility is gxl.kb. The default location of this KB is the
utils subdirectory of the kbs directory under the g2 directory.
21

To merge GXL into your KB:

1 Pause or reset your KB.

2 Choose Merge KB from the Main Menu to display the Load KB workspace.

The merge in this KB option is enabled on the workspace.

3 Specify the location of the gxl.kb file and click End.

Tip When merging GXL, let G2 resolve conflicts by enabling the automatically resolve
conflicts option.

When you merge GXL into your KB, it is not a required module unless it is
specified in the Module Information table of your KB.

To make GXL a required module:

1 Choose Main Menu > System Tables > Module Information.

2 Specify GXL as a directly required module of the appropriate existing module
of your KB.

For more information on merging KBs and making a KB a required module, see
the G2 Reference Manual.

GXL Required Modules
When you merge GXL into your KB, its required modules are automatically
loaded into G2. The following table describes these modules:

Note These module dependencies are subject to change in future versions of GXL.

Module File Name Contents

gxl gxl.kb Definitions and API support for the G2
XL Spreadsheet utility.

gfr gfr.kb Definitions and API support for the G2
Foundation Resources (GFR) utility.

sys-mod sys-mod.kb The library of G2 system procedures.

uilroot uilroot.kb Definitions and API support for
navigation buttons.
22

GXL Required Modules
This is the module hierarchy:

Requirements for Running GXL

The GXL module contains a table of version information that includes the
minimum version of G2 in which the current version of GXL will run. This table
of version information is available from the GXL top-level workspace:

To view the version information:

1 Choose Main Menu > Get Workspace > gxl-top-level.

2 Click the copyright symbol () in the title section.

Starting GXL

GXL works only when G2 is running. After merging GXL, resume or start G2.

To start GXL:

 Choose Resume or Start from the Main Menu.

Choosing a User Mode

You can use any mode user mode with GXL. GXL functions work the same in
Administrator mode as in Developer mode.

Click here to display
version information.
23

Considerations and Restrictions

Drawing Parameters

To ensure the proper operation of GXL, you should verify the value for the
drawing parameters that allow scheduled drawings and enable paint mode.
These parameters are located in the Drawing Parameters system table.

To verify the drawing parameter settings:

1 Choose Main Menu > System Tables > Drawing Parameters to display the
table.

2 Verify the values for the following parameters:

If necessary, change the value to yes.

Timing Parameters

To ensure optimum scrolling, you should set the minimal scheduling interval to
either 0.1 or 0.05 seconds. The default is 1 second. This parameter is located in the
Timing Parameters system table.

To change the minimal scheduling interval setting:

1 Choose Main Menu > System Tables > Timing Parameters to display the table.

2 Change the value of minimum-scheduling-interval to either 0.1 or 0.05 seconds.

Cloning Restrictions

Caution Certain cloning operations can corrupt your GXL application.

GXL does not support cloning of views. If you clone a view using Operate on
Area or clone the workspace of the view, the cloned view will not function
properly. When working with GXL:

• Do not clone any GXL item when G2 is reset.

• Do not clone GXL items by cloning a workspace containing GXL objects.

• Do not clone spreadsheet views.

Drawing Parameter Value

allow-scheduled-drawing yes

paint-mode yes
24

Accessing GXL Features
Any of these actions will cause the relationships between specifications,
spreadsheets, and views to become corrupted. These corruptions, if they occur,
can only be repaired by deleting the affected items.

Programming Restrictions with G2 Actions

When you work with GXL programmatically, certain restrictions apply to the
following G2 actions:

• Making GXL spreadsheets and views permanent.

• Deleting spreadsheets and views.

• Moving spreadsheet views.

In all cases you should use the API to GXL rather than the G2 action.

The following table lists the API to call to perform the appropriate action:

Accessing GXL Features
After merging GXL and starting G2, you can access these GXL features from the
GXL top-level workspace:

• GXL array and list editing.

• The Application Programmer’s Interface to GXL.

• The palette of GXL specification objects for building custom spreadsheets
and views.

To... Call this API...

Make a spreadsheet permanent gxl-make-spreadsheet-permanent

Make a view permanent gxl-make-spreadsheet-view-
permanent

Delete a spreadsheet gxl-delete-spreadsheet

Delete a view gxl-delete-view

Move a spreadsheet view gxl-move-spreadsheet-view
25

To display the GXL top-level workspace:

 Choose Main Menu > Get Workspace > gxl-top-level.

For information on... See...

Array and list editing Using GXL to Edit G2 Lists and Arrays

GXL Programmers
Interface

Part II, API Reference

Spreadsheet Specifications Creating a Custom Spreadsheet and View

Working with Specifications

Click here to activate GXL
editing feature.

GXL palette of
specification objects

Click here to access
the API to GXL.
26

The GXL Demo KB
The GXL Demo KB
GXL provides a KB of examples that cover the main features of GXL. This KB,
named gxldemo.kb, is located in the G2 utils subdirectory in the kbs directory
under the g2 directory.

To view the GXL examples:

1 Merge gxldemo.kb into your KB.

2 Resume G2.

After resuming G2, the GXL demonstrations workspace appears:

This workspace contains the following subworkspaces:

Topic Contents

Introduction Description of the demo KB.

Editing Built-In G2 Classes Example describing how to activate
the editing feature and instances of the
lists and arrays you can edit with GXL.
27

To review a topic:

 Click the button next to the topic you want to view.

As you browse the demo KB, you can see how to construct GXL spreadsheets and
views and how to define certain behaviors by setting attributes and using API
calls.

Note Be sure you are in a non-administrator mode when you use the gxldemo KB.
Otherwise, clicking a button displays a menu rather than the example workspace.

To close the GXL examples workspace:

 Choose Hide Workspace from the workspace menu.

Creating Simple Spreadsheets Example showing how you can edit
data structures with GXL and how to
use the GXL formula bar.

Spreadsheets and Views Example describing the distinction
between spreadsheets and views and
showing how specifications are used
to create different views of the same
data.

Custom Spreadsheet
Specifications

Example showing how attributes of
the specification objects define views
of spreadsheet data.

Simple Programmatic
Manipulations

Walk-through example of API
procedures that create a view of a
spreadsheet, load it with data, and
manipulate the view.

Custom Button Example Example showing how to create a
custom button for the GXL toolbar.

Initialization, Validation,
and Callback Procedures

Examples of callback procedures that
respond to cell creation, cell selection,
data entry, and data display.

Large Data Sets Example describing how to display
large sets of data using GXL’s “on
demand” mode.

Topic Contents
28

Using Online Help
To redisplay the GXL examples workspace:

 Choose Main Menu > Get Workspace > gxldemo.

Removing the Demo Module

Since the GXL module of examples is not a required module, you may delete the
it when you finish viewing the GXL examples.

To delete the GXL examples module:

1 Choose Main Menu > Miscellany > Delete Module to display a menu of the
modules currently loaded in G2:

2 Choose gxldemo.

The following dialog appears:

3 Click All to delete the module and all its associated workspaces.

Using Online Help
You can view GXL documentation online. Using the G2 OnLine Documentation
(GOLD) utility, you can access GXL documentation from G2 and view it on a Web
browser.

GOLD provides online viewing of HTML (HyperText Markup Language) files,
which correspond to the printed product documentation. HTML files are
standard files, which any HTML browser on any platform can display.

Using GOLD, you can:

• Display the table of contents or index of a book.

• Search the indexes of all available books for help topics.

• Display context-sensitive help on a particular item.
29

The browser of choice launches automatically to display the online help. Once the
desired online file appears in the browser, you can navigate around the entire
online documentation set by using:

• Hypertext, or “hot” links imbedded in the displayed document.

• Navigation buttons of the online document.

• Browser navigation buttons.

A separate module, GOLDUI, provides the user interface for setting up and using
GOLD. For detailed instructions on installing the goldui KB and setting up GOLD
for viewing GXL documentation online, see the G2 OnLine Documentation User’s
Guide.

Accessing Online Documentation

When G2 is running, you can access the online documentation associated with
GXL in the following ways:

• Choose Help from the G2 Main Menu.

• Position your cursor on a GXL item and press the F1 key for context-sensitive
help.

Note For context-sensitive help to work correctly, the user mode can be any mode
except administrator.

Using GXL to Edit G2 Lists and Arrays

One of the simplest applications of GXL spreadsheets is for editing
system-defined classes of G2 lists and arrays. Using GXL spreadsheets,
you can edit any of the following classes:

G2 Lists G2 Arrays

value-list value-array

symbol-list symbol-array

text-list text-array

truth-value-list truth-value-array

quantity-list quantity-array

float-list float-array
30

Using GXL to Edit G2 Lists and Arrays
Note To edit item-list or item-array classes with GXL, each element in the item-list or
item-array must be one of the other listed classes.

For information on G2 lists and arrays, see the G2 Reference Manual.

To enable GXL editing for G2 lists and arrays:

1 Get the gxl-top-level workspace.

2 Click the check box labelled array and list editing, as follows:

Note GXL features work only when G2 is running.

integer-list integer-array

item-list item-array

G2 Lists G2 Arrays

Click check
box to activate
GXL editing
feature.
31

Spreadsheet View of G2 Lists and Arrays

When the GXL editing feature is active, choosing edit from the menu of a G2 list
or array displays a spreadsheet view, similar to the following:

The main parts of the view display are:

Row-Column
indicator

Row selector
cell

Formula bar

Data cell

Toolbar

Spreadsheet Item Description

Toolbar The toolbar contains a set of icon tools that
allow you to manipulate and change the
data in the spreadsheet view.

Row-Column indicator This tool serves as a navigation aid by
displaying information related to the
location and type of cells in the
spreadsheet.

Formula bar This tool allows you to calculate cell
values, using mathematical operations,
built-in G2 functions, or functions you
define.

Row selector cell This is a special cell that allows you to
select an entire row.

Data cell The Data cell accepts and displays data of
the type conforming to the array or list
type: integers, floats, quantities, text,
symbols, truth-values, G2 values.
32

Using GXL to Edit G2 Lists and Arrays
For detailed descriptions of the parts of a spreadsheet view, see Using
Spreadsheet Views.

Editing a G2 Array

The following example shows how to edit a G2 float array, using GXL. After
creating a G2 float array on a workspace, you display and edit the array using a
GXL spreadsheet.

To create a G2 float array:

 Choose New Object > g2 array > value-array > quantity-array > float-array
from the KB Workspace menu.

For information about how to create instances of G2 classes, see the G2 Reference
Manual.

To edit a G2 array:

 Choose edit from the float array menu to display the spreadsheet view.

Entering Data into the Spreadsheet

Note For complete information on interacting with a GXL spreadsheet view, see Using
Spreadsheet Views.

OK and Apply buttons These buttons save the edits made in the
spreadsheet view. The OK button also
ends the edit session and closes the view.

Cancel button This button closes the view. The
spreadsheet returns to the original data of
the cells, canceling any updates.

Spreadsheet Item Description
33

To enter data:

1 Click the data cell, which opens the in-line editor on the cell.

For example:

2 Type any float in the edit field.

Hint The standard G2 editor keyboard shortcuts work when entering data into a
cell; for example, Control - A aborts the edit. While the editor is open, pressing
Control - ? displays the valid keyboard shortcuts.

3 Finish editing the cell by pressing Enter to accept your input.

Click the data cell
to open the in-line editor.
34

Using GXL to Edit G2 Lists and Arrays
Adding Rows to the Spreadsheet

To add a second and subsequent elements to the float array, you must add new
rows to the spreadsheet.

To add a row to the spreadsheet:

1 Click the first row selector cell to select the row.

For example:

Selecting a row activates the following toolbar buttons:

2 Click the Insert Row After button.

Click the row selector
cell to select the row.

Insert Row After

Delete Row

Insert Row Above
35

GXL adds a new row to the spreadsheet, for example:

You can now enter a value into the second row.

If you make a mistake entering data, you can select the cell again and make the
necessary correction. However, if you enter the wrong data type, the edit is not
accepted.

For complete instructions on using GXL tools to input or update list and array
values, see Using Spreadsheet Views.

Saving Spreadsheet Edits to the Array

During an edit session, your changes are stored in a buffer area. For any changes
to take effect, you must save your edits. Saving your edits:

• Changes the dimension of the array to the current number of rows of the
spreadsheet view.

• Assigns the values from the spreadsheet to the array.

To save the updates to the float array:

 Click either the OK button or the Apply button.

Button Action

Choosing OK ends the edit session and closes the view,

Choosing Apply keeps the view open, allowing further
edits.
36

Using GXL to Edit G2 Lists and Arrays
If you do not want to save your edits to the float array, click the Cancel button.

Making Your Edits the Initial Value of the Array

Clicking OK or Apply when editing the float array displays the following dialog:

If you want your edits to persist after resetting or restarting G2, you must make
the values you have entered into the spreadsheet the initial values of the float
array.

• If you choose Yes, GXL copies the values from the spreadsheet into the array
as the initial values. The array contains these initial elements the next time
you reset or restart G2.

• If you choose No, the values from the spreadsheet become the current values
of the array, but the initial values of the array are not affected.

Note For information on programmatic control of the GXL editing feature, see
Controlling GXL Editing Programmatically.
37

Creating a Custom Spreadsheet and View
To create a spreadsheet or a view, you construct a graphical layout of GXL
specification objects. The specification layout serves as the template for defining
and creating both a spreadsheet and a spreadsheet view.

Suppose you want to create a spreadsheet with the following view:

This spreadsheet view has the following characteristics:

• The first row contains column labels.

• The second row contains column selector cells.

• The first column is 50 pixels wide and contains row selector cells.

• The second column is 180 pixels wide and contains text cells.

• There is a 1-column by 20-row grid of text cells, of which five rows are visible.

• There is a 10-column by 20-row grid of symbol cells, of which four columns
and five rows are visible.

• Each column of symbol cells is 80 pixels wide.

• Because rows and columns cannot be deleted, the toolbar does not include the
delete row and delete column buttons.
38

Creating a Custom Spreadsheet and View
You build a specification on a workspace by cloning and connecting GXL
specification objects, which are located on the GXL top-level workspace.

The GXL Specification

A specification layout consists of:

Specification
Objects

Cell Group
Specification
Objects

One root specification that defines certain
properties of the spreadsheet as a whole.

A column controller for each column of cell
groups. Each column controller defines
properties that apply to all cell groups
connected to it vertically on the specification
layout.
39

The cell group specifications are laid out in a rectangular grid that corresponds to
the arrangement of cell groups within the spreadsheet. A specification layout
must always have a full rectangular grid of cell group specification objects.

This is the layout of the spreadsheet specification that defines the view example:

Notice that cell groups are always numbered left to right and top to bottom,
starting from 0.

A row controller for each horizontal row of
cell groups. Each row controller defines
properties that apply to all cell groups
connected to it horizontally on the
specification layout.

A cell group specification object for each cell
group. Each cell group specification defines
the properties of all cells within the particular
group.

Cell Group Specifications

Column Controllers

Root Specification

Row Controllers

1 2

3 4

6

5

7 8

0

40

Creating a Custom Spreadsheet and View
Looking at the specification layout and view examples again, notice that each cell
group specification object corresponds to a particular area of the view.

Attributes of a particular cell group define properties of the corresponding area of
the spreadsheet view.

Looking at the view example, also notice that:

• Cell groups that are side-by-side have the same number of rows.

• Cell groups that are aligned top-to-bottom have the same number of columns,
with the exception of column headers, which can straddle all columns of a cell
group.

The row controller and column controller specifications control the number of
rows and columns.

To create a spreadsheet and view:

1 Build a specification layout.

2 Define the properties of the spreadsheet and view.

3 Customize the toolbar, if necessary.

4 Create the spreadsheet object.

5 Display the spreadsheet view.

For complete information on specification objects and their attributes, see
Working with Specifications.

0 1 2
3 4

6

5

7 8
41

Building a Specification Layout

When building a specification layout, remember that the specification defines
both the spreadsheet and a view of the spreadsheet. The attributes of the
specification objects define two categories of attributes: those related to the
spreadsheet and those related to its view.

To construct a specification layout:

1 Create a new workspace to contain the specification.

2 Get the workspace named gxl-top-level, which contains the palette of
specification objects.

3 Clone the following objects from the palette onto the new workspace:

• One root specification

• Three column controller

• Three row controller

• Two disabled cell groups (groups 0 and 3)

• Two column headers (groups 1 and 2)

• Two column selectors (groups 4 and 5)

• One row selector (group 6)

• Two data cell groups (groups 7 and 8)

4 Connect the objects as shown in the example.

5 Align the connected objects.

To connect specification stubs:

1 Click one of the connection stubs.

When you move the mouse, the connection stub follows the cursor.

2 Position the stub directly over the adjacent stub.

3 Click once more to connect the two stubs together.

Caution When connecting specification objects, you must use existing stubs.
Do not drag the connector directly into another object.

To Align the specification objects:

 Choose arrange from the root specification menu.
42

Creating a Custom Spreadsheet and View
Your specification layout should look like this:

Defining Spreadsheet and View Properties

After you construct the layout, you need to specify the attribute values that define
the properties of the spreadsheet and view.

To define the spreadsheet and view properties:

 Click the appropriate specification object and choose table from the menu to
display its attribute table.

When specifying the spreadsheet and view properties, remember:

• The column controller attributes define properties for all cell groups
connected to it vertically on the specification layout.

• The row controller attributes define properties for all cell groups connected to
it horizontally on the specification layout.

0 1 2

3 4 5

6 7 8

Cell Group Specifications

Column ControllersRoot Specification

Row Controllers
43

Specifying Spreadsheet Properties

The following table summarizes the specification attributes controlling the
spreadsheet properties that you must define:

All other attributes of the specification objects related to spreadsheet properties
remain set to their default values.

To specify the total number of columns:

 Change the gxl-total-columns attribute of the third column controller to 10.

To specify the total number of rows of data cells:

 Change the gxl-total-rows attribute of the third row controller to 20.

To specify the width of the columns:

 Edit the gxl-cell-width attribute of the column controllers as follows:

• Change the gxl-cell-width of the first column controller to 50.

• Change the gxl-cell-width of the second column controller to 180.

To specify the valid data type of a cell group:

 Edit the gxl-cell-type attribute of the data cell groups as follows:

• Change the gxl-cell-type of data cell group (7) to text-cell.

• Change the gxl-cell-type of data cell group (8) to symbol-cell.

Specification Object Attribute Description

Column Controller

gxl-total-columns Total number of
columns.

Row Controller

gxl-total-rows Total number of rows.

Data Cell Group

gxl-cell-type Data type of its cells.
44

Creating a Custom Spreadsheet and View
Specifying View Properties

The properties of the view example are:

• The first column, containing row selector cells, is 50 pixels wide.

• The second column is 180 pixels wide.

• Each column of symbol cells is 80 pixels wide, which is the default width.

• The first row contains the column headers “Text Values” and
“Symbol Values.”

• Five rows of text data cells are visible.

• Four columns and five rows of symbol cells are visible.

If the spreadsheet contains more rows or columns of cells than the view can
display, scroll bars appear, enabling you to view all of the cells.

The following table summarizes the specification attributes controlling the view
properties that you must define.

All other attributes of the specification objects related to view properties remain
set to their default values.

To specify the number of the visible columns:

 Change the gxl-visible-columns attribute of the third column controller to 4.

To specify the number of the visible rows:

 Change the gxl-visible-rows attribute of the third row controller to 5.

Specification Object Attribute: Description

Column Controller

gxl-cell-width

gxl-visible-columns

Column width.

Number of visible
columns.

Row Controller

gxl-visible-rows Number of visible
rows.

Column Header

gxl-cell-group-
initialization-data

Column heading.
45

To specify the column headers:

 Edit the gxl-cell-group-initialization-data attribute of the column header cell
groups as follows:

• Change the gxl-cell-group-initialization-data of column header (1) to “Text
Values.”

• Change the gxl-cell-group-initialization-data of column header (2) to
“Symbol Values.”

When specifying the column heading, enclose the text string with double
quotes (“).

Customizing the Toolbar Display

Next, you decide which tools will be available on the spreadsheet view. Because
deleting rows and columns from the spreadsheet is not allowed, you must
remove the Delete Row and Delete Column buttons from the toolbar.

To determine which tools appear on the view:

1 Click the root specification and choose edit spreadsheet tools from the menu.

GXL displays a spreadsheet view that lists the default tools, for example:

2 Select the row containing delete-row and click the Delete Row button on the
toolbar.

3 Select the row containing delete-column and click the Delete Row button on
the toolbar.
46

Creating a Custom Spreadsheet and View
4 Click OK.

GXL displays the following dialog:

5 Click Yes to make your edits the initial state of the tool array.

Creating the Spreadsheet

You create the spreadsheet from the root specification object.

To create the spreadsheet:

 Click the root specification and choose make spreadsheet from the menu.

A spreadsheet object appears to the left of the root specification:

Displaying the Spreadsheet View

You display a view of the spreadsheet, using the spreadsheet object. However,
GXL refers to the specification to define the view.

To display the view of the spreadsheet:

 Click the spreadsheet object, and choose edit from the menu.

Spreadsheet
object
47

Your view display should look like this:

The following table summarizes the location of information related to the creation
of spreadsheet specifications:

For information on... See...

Specification objects and their
attributes

Working with Specifications

Customizing GXL tools Customizing the Toolbar

Creating spreadsheets and views
programmatically

Creation and Deletion Operations
48

3

Using
Spreadsheet Views
Describes the parts of a spreadsheet view and user interactions with the view.

Introduction 50

Scrolling a View 53

Selecting Areas on the Spreadsheet View 56

Navigating the Spreadsheet 62

Working with Data Cells 63

Moving the Editor within a Cell Group 67

Saving Changes to the Spreadsheet View 68

The Spreadsheet Toolbar 69

Saving Spreadsheet Data to a File 72

Loading Data from a File into a Spreadsheet View 75

Adding and Deleting Rows on the Spreadsheet 77

Adding and Deleting Columns on a Spreadsheet 79

Changing the Color Patterns of Cells 82

Cutting, Copying, and Pasting 83

Reversing the Last Toolbar Operation 85

Sorting Spreadsheet Data 86

Other Operations on Views 88
49

Introduction
Using GXL, you can display and edit tabular data in familiar spreadsheet style. A
GXL spreadsheet view consists of various types of cells and a set of tools that
enable you to interact with the view and its data.

The parts of a typical view are illustrated in the following figure:

Row-Column indicator

Toolbar Formula bar Column selector cell

Row selector cell Horizontal scroll bar

Data cell

Vertical scroll bar

Column header cell

Global selector cell

In-line editorDisabled cell
50

Introduction
The following table describes the various types of cells:

The following table describes the spreadsheet tools:

Spreadsheet Item Description

Column header cells These cells provide a label for the contents
of the column. Column headers can
straddle more than one column.

Column/Row
selector cells

These cells allow you to select entire
Columns or rows.

For information on using these cells, see
Selecting Rows and Columns.

Global selector cell This cell allows you to select the entire
spreadsheet.

For information on using this type of cell,
see Selecting the Entire Spreadsheet.

Disabled cell This cell fills areas of the spreadsheet. You
cannot select or edit a disabled cell.

Data cells These cells accept and display spreadsheet
data of the following types: integers,
floats, quantities, text, symbols, truth-
values, and G2 values.

For information on working with these
cells, see Working with Data Cells.

Spreadsheet Item Description

Toolbar The icon menu contains a set of tools that
allow you to manipulate and change the
spreadsheet view.

For a complete listing of GXL spreadsheet
tools and how to use them, see The
Spreadsheet Toolbar.

Row-Column indicator This tool serves as a navigation aid by
displaying information related to the
location and type of cells in the
spreadsheet view.
51

The specific layout of the view is configurable. For example, a view might not
include row and column selector cells, or it might have multiple horizontal and
vertical scroll areas.

Scrolling a View
Scroll bars appear on the view whenever there are more rows or columns in the
spreadsheet than are displayed on the view. The following figure shows the parts
of a scroll bar:

Formula bar This tool allows you to calculate cell
values, using mathematical operations,
built-in G2 functions, or functions you
define.

For complete information on using the
formula bar, see Using the Formula Bar.

Horizontal/Vertical
Scroll bars

Scroll bars appear on the view whenever
there are more rows or columns in the
spreadsheet than are displayed on the
view, enabling you to display any row or
column.

For information on using scroll bars, see
Scrolling a View.

OK and Apply buttons These buttons commit the edits made in
the spreadsheet view. The OK button also
closes the view.

For information on using these buttons,
see Saving Changes to the Spreadsheet
View.

Cancel button This button cancels the edit session and
closes the view.

In-line editor If a data cell is editable, an edit field opens
when the cell is selected, allowing you to
enter or change the data value in the cell.

For information on using the editor, see
Entering Values into Cells.

Spreadsheet Item Description
52

Scrolling a View
Vertical scroll bars control movement through rows and horizontal scroll bars
control movement through columns. You can use the scroll bar four ways:

• Click on either scroll button to increment the scroll position by one row or
column.

• Drag the scroll thumb to a new position to scroll by multiple rows or columns.

When dragging the scroll thumb, the view does not scroll until you release the
scroll thumb at the new position. If a row-column indicator is attached to the
view, it displays the row or column corresponding to the current thumb
position as you move the thumb, helping you to find the right position.

• Click directly on the scroll track to move one page forward or backwards.

• Hold either scroll button down to scroll continuously one row or column at a
time. Scrolling stops when you release the mouse button or reach the limits of
the scroll bar.

Note If you have more than one mouse button, use either button. G2 does not
differentiate between mouse buttons.

A simple view with scroll bars looks like this:

Scroll button

Scroll thumb

Scroll track

Scroll button

A

B

Controls the
display of
rows

Controls the display of columns
53

When you scroll downward using the vertical scroll bar (A), row 1 disappears
and row 6 appears, and the cells appear to shift upward. The column selector cells
remain visible. If you scroll to the right using the horizontal scroll bar (B),
column 1 disappears and column 6 appears, and the cells appear to shift to the
left, for example:

Dynamic Display of Scroll Bars

GXL adds and removes scroll bars dynamically if changing the dimensions of the
spreadsheet makes scrolling necessary or renders it unnecessary. For example, if a
view is configured to display five rows and the spreadsheet contains more than
five rows, a scroll bar appears. If you then delete a number of rows, leaving five or
fewer rows, the scroll bar disappears, as the following figure illustrates.

A

B

Scroll bar appears when the number of
rows exceed the display configuration.

Scroll bar disappears when the number
of rows are equal to or less than the
display configuration.
54

Selecting Areas on the Spreadsheet View
Multiple Scroll Bars

When a view displays multiple horizontal and/or vertical scroll bars, Each scroll
bar has a definite row or column range that determines how far you can scroll.
You cannot scroll beyond the first row/column or the last row/column of the cell
groups associated with the scroll area.

For example, in the following illustration scroll bars A and B control vertical
movement through rows, while scroll bars C and D control horizontal movement
through columns, where:

• A controls movement through the rows of Inputs and Targets in cell groups 6,
7, and 8.

• B controls movement through the rows of Inputs and Targets in cell groups 9,
10, and 11.

• C controls movement through the columns of Inputs (cell groups 4, 7, 10).

• D controls the movement through the columns of Targets (cell groups 5, 8, 11).

GXL does not permit multiple horizontal or vertical scroll bars per cell group, or
scroll bars that span multiple cell groups.

Scrolling in a Telewindows Session

For the best scrolling performance under Telewindows, click on the scroll track to
page forward/backward or move the scroll thumb.

Selecting Areas on the Spreadsheet View
When you want to operate on a cell or group of cells, you must select the cells that
will be the target of your action. You can select:

• A single cell or a rectangular area of cells.

A

B

C D

9

0 1 2

3 4

6

5

7 8

10 11
55

• A single row or column.

• A range of rows or columns.

• The entire spreadsheet.

GXL currently supports only contiguous selection, that is, continuous ranges of
cells, rows, or columns. You cannot, for example, select rows 1, 3, and 5, but you
can select rows 1 through 5.

Different types of cells respond differently to mouse gestures. Data cells, which
include value, quantity, integer, float, text, truth-value, and symbol data types all
behave similarly. Special cells, such as row and column selector cells, column
headers, and global selector cells, have individual behaviors and are different
than data cells.

The selection behavior of a cell also depends on two properties of the cell group to
which a cell belongs: its selectability and its editability.

• If a cell is neither editable nor selectable, clicking or dragging the mouse on
the cell does nothing.

• If a cell is selectable but not editable, you can select the cell, but you can not
edit the contents of the cell.

• If a cell is selectable and editable, certain actions select the cell, and other
actions open the in-line editor.

All cells within a cell group have the same selectability and editability properties.

Selecting Data Cells

In GXL, cells you select either appear as white text on a black background or
appear with a wide blue border. The wide blue border indicates the in-line editor
is active, enabling you to make changes to the contents of the cell. Only one cell in
a G2 window can have an open editor.

To select a single data cell:

 Click the cell.

If the cell is selectable but not editable, it appears as white text on a black
background:

A selected cell
56

Selecting Areas on the Spreadsheet View
If the cell is selectable and editable, the in-line editor opens in the cell:

Selecting Multiple Cells

You can select multiple cells by using either of the following techniques:

• Dragging the mouse.

• Using the Shift key.

Using the Mouse to Select a Range of Cells

Note Dragging the mouse works only if you are selecting a range of cells that are
currently visible in the view.

To select multiple cells by dragging the mouse:

1 Point to the cell at the start of the selection.

2 Press and hold down the mouse button while dragging the pointer to the cell
at the end of the selection.

3 Release the mouse button to mark the end of the selection.

This selects all the cells in the rectangular area delimited by the starting and
ending cells.

Using the Shift Key to Select a Range of Cells

To select multiple cells by using the Shift key:

1 Click the cell that begins the selection to mark the start.

2 Press and hold down the Shift key.

3 Click the cell that ends the selection and release the Shift key.

This shift-click technique selects all the cells in the rectangular area delimited by
the two cells. You may scroll the view after selecting the first cell, thus creating a
selection area that is larger than the original view area.

A selected cell with active
in-line editor
57

Extending Cell Selections

If you already have selected multiple cells and you extend the selection by using
the Shift key, the resulting selection depends on whether the in-line editor is
open.

If the editor is open, selecting another cell with the Shift key results in a
rectangular area of selected cells delimited by the edit cell and the cell where you
clicked; for example:

If the editor is not open, selecting another cell with the Shift key results in a
rectangular area of selected cells that encompasses the previously selected area
and the cell where you clicked; for example:

Selecting Rows and Columns

When row and column selector cells are a part of the spreadsheet view, you can
select rows or columns of cells. Row and column selector cells are normally light

Shift-click here

Result

Shift-click here

Result
58

Selecting Areas on the Spreadsheet View
gray and numbered consecutively. The numbering usually begins with 1 for a cell
group.

Column Header Cells

Column header cells, which provide a label for the contents of the column, can
straddle more than one column. If you select or extend a range of columns that
contains header cells, the header cells are not included in the selection. However,
if a column header is editable, you may select and edit its contents.

To select a row of cells:

 Click the row selector cell of the row you want to select, for example:

To select a column of cells:

 Click the column selector cell of the column you want to select, for example:

Selecting Multiple Rows or Columns

You can select multiple rows or columns by using the Shift key. If there is an open
editor, the edit cell will define one edge of the selected region. You cannot
simultaneously select a mixture of rows and columns.

To select multiple rows or multiple columns:

1 Click the row or column selector cell that marks the start of the selection.

2 Shift-click the row or column selector cell that marks the end the selection.

Click here to select
the entire row.

Click here to select the entire column.
59

The following example shows the result of selecting multiple rows:

To select all of the rows or columns in a view:

1 Click the first row or column selector cell.

2 Shift-click the last row or column selector cell.

Selecting the Entire Spreadsheet

If the spreadsheet contains a global selector cell, you can use this cell to select all
of the rows and columns of cells in the spreadsheet. The global selector cell is
usually in the upper left hand corner of the view.

Disabled Cells

Some spreadsheets use a disabled cell to fill an area of the spreadsheet. These cells
are usually solid light gray. You cannot select or edit a disabled cell.

To select the entire spreadsheet using the global selector:

 Click the global selector cell.

Notice that the global selector cell selects all row and column selector cells and all
data cells. Although the view display does not indicate it, the global selector
includes any disabled cells and column header cells in the selection.

Click here to start.

Shift-click here to end.

Click here

Disabled cell
60

Navigating the Spreadsheet
Navigating the Spreadsheet
The row-column indicator is a GXL tool that displays information related to the
location and type of spreadsheet cells. The row/column numbers in the row-
column indicator are absolute spreadsheet coordinates, which may or may not
match the numbered display of row and column selector cells.

The row-column indicator displays the coordinate location of a single cell in the
format:

RwCx

where w and x represent the absolute row and column location.

In the following example, the coordinate location of the active cell in this
spreadsheet view is row 9, column 5. However, the absolute spreadsheet
coordinate location is row 10, column 6 (R10C6).

The row-column indicator also displays the type of data cell, which in this
example, is a float cell.

When you select a range of cells, the row-column indicator displays the current
selection limits in the format:

RwCx::RyCz

where w, x, y, and z represent row and column numbers.

R10C6 is the absolute location of this cell in the spreadsheet.

Row-Column Indicator
61

For example, the selected range of cells in the following figure begins with the cell
in row 2, column 1, and ends with the cell in row 4, column 2. However, the row-
column indicator specifies the corresponding absolute spreadsheet coordinates of
this selection, which are R3C1 and R5C2, respectively.

Working with Data Cells
Each data cell in a spreadsheet has a specific data type, which dictates the valid
contents of the cell. The cell group to which the data cell belongs determines its
data type. There are seven types of data cells:

• Float cell

• Integer cell

• Quantity cell

• Symbol cell

• Text cell

• Truth-value cell

• Value cell

Quantity cells can accept floats and integers as input. Value cells can accept any
valid data type as input. A cell can also be empty and contain no value.

R3C1 is the start
location of the cell
selection.

R5C2 is the end location of
the cell selection.

Row-Column Indicator
62

Working with Data Cells
How Data Cell Values are Displayed

The value you see displayed in a cell is a formatted representation of the data
actually stored in the spreadsheet. The formatting depends on the type of data
value, as well as the type of cell in which the value is displayed. The following
table describes the rules of formatting values for display:

If the formatted value is too large to fit into the cell, the value is truncated.
Truncations are indicated by ellipses (...). Truncations do not affect the value
actually stored in the spreadsheet. You can see the full value by activating the in-
line editor on the cell.

When you enter values, G2 validates the input based on the type of data and cell
type. For information on data validation, see Validating Data Input.

Value Format

integer Displayed as whole numbers.

Example: 374

float By default, floats whose absolute values are greater than
1.e5 or less than 1.e-4 (excepting 0.0) are displayed in
exponential format (d.ddde±ddd); otherwise, they are
displayed in ddddd.ddd format.

Example: 35.025

symbol Displayed in all upper case letters. The first character is
an alphabetic character.

Example: SMD34-TRUCOLOR

truth-value Displayed in lower case letters.

Example: false

text In text cells, text is displayed without enclosing quotes.

Example: Satellite Office

In value cells, text is displayed with enclosing quotes.

Example: “Satellite Office”
63

Entering Values into Cells

If a cell is selectable and editable, the in-line editor opens an edit field on the cell,
enabling you to enter or change its value.

To enter a value into an editable cell:

1 Click the cell you want to edit.

An edit field opens on the cell and displays the full contents of the cell. The
cursor position, represented by a carat symbol (^), is initially at the end of the
edit field. For example:

2 Enter data by typing keyboard characters.

3 Finish your edit by pressing enter to accept your input.

Editing Operations

The standard G2 editor keyboard shortcuts work when entering data into a cell;
for example, Control - A aborts the edit, Control - J starts a new line. While the
editor is open, pressing Control - ? displays the valid keyboard shortcuts.

You may scroll the view while you are editing a cell. However, if you scroll the
edit field out of view, it cannot receive keyboard input until you scroll it back into
view.

You can move the edit cursor to another position within the field by using either
of the following techniques:

• Point to the position and click the mouse.

• Use the left and right arrow keys.

Creating an Empty Cell

If a cell has a value, you can make it an empty cell by editing the cell’s contents.

To create an empty cell:

 Select the cell and use the backspace key to delete the value.

Note In text cells, there is no visual distinction between empty cells and cells containing
the empty string.
64

Working with Data Cells
Ending an Edit

The following actions end the edit in the selected cell:

Validating Data Input

When you end the edit, G2 validates the new entry and might perform type
coercion to make your data input conform with the cell type. The rules for
validation and coercion by cell type are:

Action Results

Press Enter Pressing Enter finishes the edit and opens
the editor in the cell below the edited cell
within the cell group.

Press the Tab key Pressing the Tab key finishes the edit and
opens the editor in the cell to the right of
the edited cell within the cell group.

Select another cell Selecting another cell finishes the edit and
moves the editor to the new selected cell.

Cell Type Validation Rules and Coercion

quantity
float
integer

Accepts any entry beginning with a numeric
character, and converts the entry to a quantity,
using the quantity function.

• If the result is an integer and the cell is a float
cell, convert the result into a float.

• If the result is a float and the cell is an integer
cell, convert the result to an integer, using the
round function.

symbol Accepts any entry that can be converted into
symbols, using the symbol function.

truth-value Accepts an entry if it is either true or false. Also
valid, the initial characters t(rue) and f(alse).
65

Moving the Editor within a Cell Group
When the in-line editor is active, you can press the Enter key or the Tab key to
advance the editor. As you advance the editor, the view scrolls, if necessary, to
keep the edit cell in the view. When you reach the last cell in the cell group,
pressing Enter or Tab does not advance the editor.

Using the Enter Key to Move the Editor

Pressing the Enter key moves the editor to the cell directly below the current cell.
When you reach the last row of a cell group, pressing the Enter key advances the
editor to the first row of the next column of the cell group, as the following figure
illustrates:

text Accepts any entry, because any series of
characters makes an acceptable string.

value Converts an entry as follows:

• If the entry begins and ends with quote
marks, remove the beginning and ending
quotes and store it as a text string.

• If the entry begins with a numeric digit,
convert it to a float or an integer, using G2’s
quantity function.

• If the entry is true or false, store it as a truth
value.

• Otherwise, convert the entry to a symbol.

If the entry cannot be converted into a symbol
successfully, the entry is not accepted.

Cell Type Validation Rules and Coercion

How the Enter key
advances the editor.
66

Saving Changes to the Spreadsheet View
Using the Tab Key to Move the Editor

Pressing the Tab key advances the editor to the cell directly to the right of the
current cell. When you reach the last column of a cell group, pressing the Tab key
advances the editor to the first column of the next row of the cell group, as the
following figure illustrates:

Saving Changes to the Spreadsheet View

• Changes the dimension of the original spreadsheet to the current number of
rows and columns in the spreadsheet view.

• Updates the values in the spreadsheet from the buffer.

Choosing the OK button also closes the view, while choosing the Apply button
leaves the view display open.

To save data updates to the spreadsheet:

 Click OK or Apply.

Note If you use Apply to save your edits and later use Cancel, the data reverts to the
most recent Apply.

To close the view without saving the updates:

 Click Cancel.

During an edit session, GXL stores your input in a buffer area, as
discussed in GXL Edit Sessions. When you finish updating values in the
cells of the spreadsheet view, you can permanently save these changes to
the spreadsheet, using the OK or Apply button. Selecting either of these
buttons:

How the Tab key
advances the editor.

If you want to close the view without saving the changes, use the Cancel
button.
67

Making Your Edits the Initial Value of an Array

G2 arrays can have initial values that set the array values when G2 is started. If
you want your edits to persist through a G2 reset or restart, you must make the
values you have entered the initial values of the spreadsheet.

Clicking OK or Apply when editing a value array displays the following dialog:

• If you choose Yes, GXL copies the values from the spreadsheet into the array
as the initial values. The array contains these initial elements the next time
you reset or restart G2.

• If you choose No, the values from the spreadsheet become the current values
of the array, but the initial values of the array are not affected.

Note Because the persistence of values in a list are set by the list-is-permanent attribute
of the list, the dialog offering to make your edits the initial values does not appear
when ending an edit session on a list.

The Spreadsheet Toolbar
GXL spreadsheet views usually display a toolbar whose buttons provide an easy
way to:

• Change the dimension of the spreadsheet.

• Load and save data to and from text files.

• Change the colors of cells.

• Sort areas of the spreadsheet.
68

The Spreadsheet Toolbar
The toolbar may contain the full set of GXL spreadsheet tools or an appropriate
subset of these tools. The toolbar can also contain custom tools that meet specific
needs of the GXL view display. Normally, the toolbar is located above the data
area; for example:

Buttons in the toolbar have two states: enabled and disabled. In the disabled state,
the icon symbol for the button appears in light gray, and you cannot select the
button. When the button is enabled, the icon symbol is readily visible and you can
select the button. The state of the button reflects the selection of cells in the
spreadsheet. For example, the Delete Row button is only enabled when one or
more rows are selected.

Each button on the toolbar has a popup help text, which appears when you hold
the mouse button down over the button.

The default GXL toolbar buttons are:

Toolbar

Toolbar
Button Function

Loads data from a file into the selected area.

Saves the current selection to a file.

Applies the chosen color pattern to selected cells.

Specifies the text, background, and border color of cells.
69

Sorts the rows of the selection in ascending order
according to the contents of a key column.

Sorts the rows of the selection in descending order
according to the contents of a key column.

Cuts and transfers the current selection to the clipboard.

Copies the contents of the current selection to the
clipboard.

Copies the contents of the clipboard into the selected
cells.

Reverses the last operation.

Inserts an empty row above the currently selected row.

Inserts an empty row below the currently selected row.

Deletes the selected rows.

Inserts an empty column before the currently selected
column.

Inserts an empty column after the currently selected
column.

Deletes the selected columns.

Toolbar
Button Function
70

Saving Spreadsheet Data to a File
Saving Spreadsheet Data to a File

You can save a rectangular area of data or all of the data in the spreadsheet view.
For information on selecting data, see Selecting Areas on the Spreadsheet View.

The data is saved in comma-separated value (csv) format.

To save a selected area of the spreadsheet data:

1 Select the rectangular area containing the data you want to save.

For example:

Tip To save all data cells in the view, select the first data cell in the upper left
corner and shift-click the last data cell in the lower right corner of the
spreadsheet view.

2 Click the Save to File button.

You use the Save to File button to save spreadsheet data to a file. This
button is active whenever any cell or area of the view is selected.
71

3 Specify the pathname of the file to which you want to save the data in the edit
field of the dialog that appears.

For example:

4 Press Enter to accept the filename.

5 Click OK to save the data to the file.

Here are the contents of the file:

4.5,5.0,5.5
7.5,8.0,8.5
10.5,11.0,11.5

How GXL Saves Selections to a File

The data that GXL saves to a file depends on the area selected in the spreadsheet
view. The previous example showed the result of saving a selected area of data
cells. The following examples show the results of saving selected rows, columns,
and the entire view.

Saving Selected Rows

If you use row selectors to select entire rows of data and save the selection to a
file, the first data element of each row saved is the contents of the row selector
cell. For example, suppose you select rows 2 through 5 to save:

Here are the contents of the file:

2,4.0,4.5,5.0,5.5,6.0,6.5
3,7.0,7.5,8.0,8.5,9.0,9.5
4,10.0,10.5,11.0,11.5,12.0,12.5
72

Saving Spreadsheet Data to a File
Saving Selected Columns

If the view contains both column headers and column selectors, using column
selectors to select data also saves the contents of the column headers. For
example, suppose you select columns 2 through 4:

Here are the contents of the file:

"Inputs","Inputs","Inputs"
2,3,4
1.5,2.0,2.5
4.5,5.0,5.5
7.5,8.0,8.5
10.5,11.0,11.5
13.5,14.0,14.5

Using the column selectors to select entire columns of data saves the contents of
the column headers, as well as the column selectors, along with the data. Notice
that even though the column header straddles the columns in the view, the
header text is repeated for each column saved.

Saving the Entire View

If the global selector is available, you can use this cell to select all cells of the view.
For example:
73

Here are the contents of the file:

,"Inputs","Inputs","Inputs","Inputs","Inputs","Inputs"
,1,2,3,4,5,6
1,1.0,1.5,2.0,2.5,3.0,3.5
2,4.0,4.5,5.0,5.5,6.0,6.5
3,7.0,7.5,8.0,8.5,9.0,9.5
4,10.0,10.5,11.0,11.5,12.0,12.5
5,13.0,13.5,14.0,14.5,15.0,15.5

Notice the first two rows of saved data: the first data element of each row is a
comma (,). This indicates that the first cell is empty. The first cell of the first row
selected is the global selector cell, and the first cell of the second row is a disabled
cell. Neither of these cells contain data values.

Loading Data from a File into a
Spreadsheet View

The file must be in the comma-separated values (csv) format, where:

• Values on the same line are separated by commas, for example:

11.0,12.0,13.0

• Quotation marks enclose text strings, and embedded quotes within text
strings are doubled, for example, the string abc “def” gh is represented as:

"abc ""def"" gh"

• Empty cells are represented by consecutive commas, for example:

20.0,21.0,,23.0,24.0,25.0,,27.0,28.0,29.0

• Lines may contain different numbers of values, for example:

30.0,31.0,32.0,33.0,34.0,35.0,36.0
11.0,13.0,15.0,17.0,19.0
20.0,21.0,,23.0,24.0,25.0,,27.0

To load data from a file:

1 Select the area of the spreadsheet that you want to load with data from the file.

2 Click the Load from File button.

You use the Load from File button to load the contents of a file into a
selected area of a spreadsheet. This button is active whenever any cell or
area of the view is selected.
74

Loading Data from a File into a Spreadsheet View
3 Specify the pathname of the file containing the data you want to load in the
edit field of the dialog that appears.

For example:

4 Press Enter to accept the filename.

5 Click OK to load the data from the file.

Considerations

When using the Load from File button to load data into a spreadsheet:

• Type checking is performed.

• No undo exists for this operation.

How GXL Loads the Data into the Spreadsheet

GXL reads the file to determine its dimensions. During the loading of the file, a
progress dialog appears, which allows you to monitor the progress of the file load
and cancel the file load, if desired.

If the data in the file fits into the selection, the data is entered by row into the
selected area. Any area of the selection that does not receive new values from the
file are cleared.

If the dimensions of the data in the file exceed the selection area, the following
dialog appears:
75

Your options are:

• Click Yes to insert additional rows and columns after the last row and/or
column of the selection.

• Click No to load only the file data that fits into the selected area. Thus, some
data in the file will not be loaded.

• Click Cancel to cancel the load operation.

Adding and Deleting Rows on the Spreadsheet
You use the Insert Row Before, Insert Row After, and Delete Row buttons to add
and remove rows of cells on the spreadsheet view as follows:

These buttons are active whenever one or more rows are selected. You can reverse
the actions of these buttons with the Undo button.

When adding rows to the view, GXL renumbers the rows, if necessary.

If a cell group boundary exists where you want to add a row, remember: GXL
adds the row to the spreadsheet is in the same cell group as the currently selected
row.

The Insert Row Above button inserts a single row before
the currently selected row.

The Insert Row Above button inserts a single row before
the currently selected row

The Delete Row button deletes the currently selected
rows.
76

Adding and Deleting Rows on the Spreadsheet
To add a row to a view:

1 Click the row where you want to add one or more new rows.

The cells in the selected row appear as white text on black background.

For example:

2 Do one of the following:

• Click Insert Row Above to add a new row before the selected row.

• Click Insert Row After to add a new row after the selected row.

The new row is in the same cell group as the selected row, and its cells are initially
empty. If necessary, GXL renumbers the rows; for example:

Target row
Insert row after

Insert row above
77

Deleting Rows

Deleting a row removes the row and its data from the view. You can delete one or
more contiguous rows at a time. If necessary, GXL renumbers the remaining
rows.

Note If you delete all of the rows in a cell group, you cannot add them back
interactively.

To delete a row on a view:

1 Select the row you want to delete.

2 Click the Delete Row button to remove the row from the view.

To make the deletion permanent:

 Click OK or Apply.

Adding and Deleting Columns on a
Spreadsheet

You use the Insert Column before, Insert Column After, and Delete Column
buttons to add and remove columns in the spreadsheet as follows:

These buttons are active whenever one or more columns are selected. You can
reverse the action of these buttons with the Undo button.

When adding columns to the view, GXL renumbers the columns, if necessary.

If a cell group boundary exists where you want to add a column, remember: GXL
adds the column to the spreadsheet in the same cell group as the currently
selected column.

The Insert Column Before Selection button inserts a
single column before the currently selected column.

The Insert Column After Selection button inserts a single
column after the currently selected column.

The Delete Column button deletes the currently selected
columns.
78

Adding and Deleting Columns on a Spreadsheet
Adding Columns

To add a column to a view:

1 Click the column where you want to add one or more new columns.

The cells in the selected column appear as white text on black background, for
example:

2 Do one of the following:

• Click Insert Column Before to add a new column before the selected
column.

• Click Insert Column After to add a new column after the selected column.
79

The new column is in the same cell group as the selected column, and its cells are
initially empty. If necessary, GXL renumbers the columns. For example:

Deleting Columns

Deleting a column removes the column and its data from the view. You can delete
one or more contiguous columns at a time. If necessary, GXL renumbers the
remaining columns.

To delete columns on a view:

1 Select the columns you want to delete.

2 Click the Delete Column button to remove the columns from the view.

To make the deletion permanent:

 Click OK or Apply.

Insert column after

Target column

Insert column before
80

Changing the Color Patterns of Cells
Changing the Color Patterns of Cells
You use these two buttons to change the color pattern of selected cells:

You can specify cell color patterns at any time. The Change Cell Color button is
active whenever one or more cells are selected. You can reverse the action of the
Change Color button with the Undo button.

Caution Never use white text on black background as a color combination in your
spreadsheet. This color pattern is reserved for selected cells.

To specify the color pattern:

1 Click the Specify Color button.

A menu appears with three choices that correspond to the three color regions
of a spreadsheet cell:

2 Choose the region of the cell whose color you want to change.

The G2 standard color palette appears.

3 Choose a color from the color palette.

The selected color becomes the color of the corresponding region on the
Change Color button.

For example, if you select red as the text color, the “T” in the icon of the Change
Color button changes to red:

The Change Cell Color button applies the color pattern
you have chosen to the selected cells.

The Specify Cell Color button specifies the desired text,
background, and border colors of cells.

Text color region

Background color region

Border color region
81

To apply the color pattern to one or more cells:

 Choose the desired cells and click the Change Cell Color button.

Cutting, Copying, and Pasting
You use the Cut, Copy, and Paste buttons to transfer cell contents to and from
spreadsheet cells, using a buffer area known as the GXL clipboard.

Selections can include a single or multiple cells, one or more rows or columns, or
the entire spreadsheet.

In addition to cutting and pasting values within the same spreadsheet, you can
use the clipboard to transfer data between spreadsheets. You can transfer values
cut from one view to another view on the same window. There is one GXL
clipboard per G2 window.

Note When you reset G2, the contents of the clipboard are cleared.

These buttons are active whenever one or more cells are selected. You can reverse
the action of the Cut and Paste buttons with the Undo button.

Cutting Data from the Spreadsheet

To remove data from the spreadsheet:

1 Select the cell or cells whose contents you want to remove.

2 Click the Cut button.

GXL removes the contents of the cells and places the contents on the clipboard.

The Cut button copies the data values and color patterns
of the selected cells to the clipboard and clears the
contents of the current selection, leaving the selected cells
empty.

The Copy button copies the data values and color
patterns of the selected cells to the clipboard.

The Paste button transfers the contents of the clipboard to
the selected cells, overwriting the current contents.
82

Cutting, Copying, and Pasting
Copying Data from the Spreadsheet

To copy data from the spreadsheet:

1 Select the cell or cells whose contents you want to copy.

2 Click the Copy button.

GXL places a copy of the contents on the clipboard.

Pasting Cut or Copied Data

When pasting cut or copied data selections:

• The cell types and data types must be compatible.

• The dimensions of the data must be exactly the same.

GXL displays a warning message if it cannot successfully complete a paste
operation.

Data Compatibility

When you attempt to paste data into a spreadsheet, the formats of the data you
paste must be compatible with the destination cells. You cannot, for example,
paste a text value into an integer cell. However, if you attempt to paste an integer
into a text cell, G2 converts the integer into a text string and the paste will
succeed.

If the cell type or data type on the clipboard is incompatible with the target
selection, a dialog similar to the following appears:
83

Data Dimensions

Data dimensions on the clipboard must match the target dimensions. If the data
dimensions of the paste selection are incompatible with the target dimensions, a
dialog similar to the following appears:

Clicking OK cancels the paste operation.

To paste the cut or copied data:

1 Select the cells where you would like the clipboard data to be inserted.

2 Click the Paste button.

If you select a single target cell and the contents on the clipboard is larger, a dialog
similar to the following appears:

If you click OK, the selected cell becomes the upper left hand corner of the paste
region. GXL copies the contents of the clipboard into the view, beginning with the
selected cell.

Reversing the Last Toolbar Operation

• Adding rows before or after a selected row.

• Deleting rows.

• Adding columns before or after a selected column.

• Deleting columns.

• Sorting in ascending or descending order.

• Cutting a selection.

Most actions performed by toolbar buttons and the formula tool are
reversible. You use the Undo button to reverse the last action you
performed on the spreadsheet. You can undo these actions:
84

Sorting Spreadsheet Data
• Pasting a selection.

• Editing a cell.

• Applying a formula.

The Undo button is active only when an action can be undone.

You cannot undo selecting cells, scrolling, or tabbing the edit field.

Sorting Spreadsheet Data

• If an editor is open on any cell, the column containing the open editor
becomes the key column.

• Otherwise, the left-most column of the selection becomes the key column.

When performing the sort, GXL sorts the values in the key column in ascending
or descending order, depending on which sort button you choose. The values that
are not in the key column undergo the same permutations as the key column.
Thus, the individual rows of the selection are unchanged by the sort, but they
appear in a different order.

When you sort in ascending order, the key column is sorted in the following
order:

1 Empty cells

2 Quantities (floats, integers), in ascending numerical order

3 Truth-values, with false before true

4 Symbols, in alphabetical order

5 Texts, sorted in ascending order as determined by the G2 greater than (>)
operation

Sorting in descending order reverses this order.

You use the Sort Ascending button and Sort Descending button to sort the
rows in a selection so that values in a key column appear in ascending or
descending order.

If the selection includes more than one column, the key column is
determined as follows:
85

For example, consider the following view whose data cells accept any value
(value-cell type):

To sort data in ascending order:

1 Click column 1 to select it.

The selected column becomes the key sort column.

2 Shift-click column 4 to select all the data cells.

3 Click the Sort Ascending button.

Here are the results of the sort:
86

Other Operations on Views
Other Operations on Views

Moving or Transferring Views

You can use Main Menu > Operate on Area tool to:

• Move a view to a new position on its workspace.

• Transfer a view between workspaces.

When using Operate on Area, be sure to enclose all parts of the view within the
selection box. When you move a view on a workspace, G2 must be running. For
more information on Operate on Area, see the G2 Reference Manual.

Deleting Views

You can delete a view by deleting the workspace of the view.

Cloning Views

GXL does not support cloning of views. If you clone a view using Operate on Area or
clone the workspace of the view, the cloned view will not function properly.
87

88

4

Using the Formula Bar
Introduces formulas and provides instructions for using formulas to calculate
values in GXL spreadsheets.

Introduction 89

How Formulas Work in GXL 90

GXL Formula Syntax 90

Entering a Formula 92

Applying a Formula to Multiple Cells 94

Using Built-in Functions 97

Creating Your Own Functions 98

Introduction
TheGXL formula bar allows you to calculate cell values, using mathematical
operations, built-in G2 functions, or functions you define. You can use formulas
to transform or rescale numerical data and to automatically calculate areas of the
spreadsheet.
89

Here is an example of a spreadsheet view that contains a formula bar:

How Formulas Work in GXL
The role of formulas in GXL is more limited than in conventional spreadsheets. In
conventional spreadsheets, formulas define the values of cells in terms of other
cell values; dependencies are automatically updated when cells receive new
values. In contrast, GXL formulas are not part of the definition of cells:

GXL cells contain values, not formulas.

GXL does not remember dependencies between cells in terms of formulas and
cannot update values based on formulas that have been applied in the past.

Even though GXL does not provide true spreadsheet-like formula updating,
formulas can be useful for many types of data manipulation. Additionally,
because GXL provides optional callbacks to user-defined G2 procedures, you can
provide event-based updating of spreadsheet values through callbacks, where
necessary.

GXL Formula Syntax
The syntax of a formula is equivalent to that of a G2 expression. As you enter a
formula, the formula is parsed. If GXL cannot parse the expression you enter,
ellipses (...) appear in the formula. You can not enter the formula until you have
corrected the syntax.

Note Entering Ctrl + A aborts a formula entry.

Formula Bar
90

GXL Formula Syntax
You can refer to single cells, rows, and columns, or ranges of cells, rows, and
columns in formulas. The following table summarizes how you refer to these
spreadsheet elements in formulas, where w, x, y, and z are represent zero-based
row/column indices:

For example, the syntax of the sum of cell (2, 3) and cell (6, 4) would be:

R2C3 + R6C4

When using a function that accepts a cell range, such as the GXL function gxl-sum,
the syntax would be:

gxl-sum (R2C3::R6C4)

Note that the row/column numbers of formulas are absolute spreadsheet
coordinates and are not necessarily the same as the numbers of the row/column
selector cell. The latter are typically numbered from the beginning of a cell group.

Considerations

Make sure that you match dimensions correctly when defining formulas that mix
reference to rows, columns, cells, and ranges. You cannot, for example, add a cell
to a column, divide an area by a row, or multiply a range of columns by a
constant.

However, if a function of a row, column, or range returns a scalar value (a single
value), you can use this function value anywhere a reference to a single cell or a
constant value would be acceptable. For example, you can use the function
gxl-mean, which returns a scalar, in the expression R2C3/gxl-mean(C3).

To refer to a... Enter... For example...

Single cell RwCx R2C3

Single row Rw R2

Single column Cx C3

Range of cells RwCx::RyCz R2C3::R6C4

Range of rows Rw::Ry R2::R6

Range of columns Cx::Cz C3::C4
91

Entering a Formula
Before you can enter a formula, you must first select the target cell whose value is
to be calculated. The cell you select is called the focal cell. You then activate the
formula to enable formula entry. When you activate the formula bar:

• The color of the focal cell and the formula bar changes to cyan.

• The row-column indicator changes to display the following:

Formula: [focal cell coordinates] =

• An editor opens on the formula bar.

For example:

You enter a formula through a combination of typing and selecting cells, rows,
columns, and areas as follows:

• Clicking a cell adds the row/column reference of the cell to the formula.

• Clicking a row or column selector adds the appropriate row or column
reference at the end of the formula.

• Clicking one cell and then shift-clicking another cell adds a range, indicated
by the double colon (::), to the end of the formula.

You cannot select ranges by dragging the mouse.

When selecting ranges, you can select a range of cells or rows or columns.
However, GXL does not allow you to select ranges involving a mixture of cells,
rows, and columns.

Note When you select a cell or a range, the reference to the cell or range is always added
at the end of the formula, even if the text insertion cursor is elsewhere.

Equals button Formula bar

Focal cell
92

Entering a Formula
To enter a formula:

1 Select the focal cell, whose value you want to calculate.

2 Activate the formula bar by clicking either of the following:

• Equals button

• Formula bar

3 Enter the formula in the Formula bar.

4 Press Enter to evaluate the formula.

The result appears in the focal cell.

For example, suppose you want to calculate the selected cell as the sum of several
other cells.

To calculate the sum:

1 Select the focal cell.

2 Click the formula bar or the equals button to enter formula entry mode.

3 Click any cell and type a plus sign (+).

4 Click another cell and type a plus sign (+).

5 Click a final cell.

The formula looks like this:

6 Press Enter to evaluate the formula. The result appears in the focal cell.
93

The following figure illustrates this example:

Error Handling

If GXL cannot evaluate the formula you have entered, it clears the target cell, and
signals an error with an audible beep. You can use the undo button to return the
spreadsheet to its previous state and recover the lost value.

You might also receive a logbook message telling you that there are
inconsistencies in a formula. You can safely ignore this logbook message.

Applying a Formula to Multiple Cells
If you want to apply a formula to more than one cell, begin by selecting a range of
cells. When you enter formula entry mode, the cell in the top left-hand corner of
the selection is highlighted, indicating that it is the focal cell. You enter the formula
as if you were calculating only the value of the focal cell. GXL applies the formula
to all cells in the original selection by interpreting the formula as relative references.

Relative references work in the following way. Suppose the focal cell is RwCx. To
apply this formula to another cell, RyCz, all the row references in the formula are
incremented by (y - w), and all the column references by (z - x).

For example, if R2C4 is the focal cell and you enter the formula R2C2 + R2C3, and
if you apply the same formula to R3C4, GXL will calculate it as R3C2 + R3C3.

Cell coordinates

Clicking on a cell enters its
coordinates into the formula Result displayed in focal cell

1

3

2

1 2 3
94

Applying a Formula to Multiple Cells
Order of Calculation

When the target of a formula is a range of cells, the order of calculation used by
GXL can affect the result. GXL always applies formulas cell-by-cell in a left-to-
right, top-to-bottom manner, as this figure illustrates:

Because of this calculation order, you should generally avoid formulas that place
the result of a calculation into a cell of the spreadsheet that is involved in a range
calculation.

For example, if you want to subtract the mean value of a column from each
element of the column and if R1C1 is the focal cell, you might write
R1C1 = R1C1 - gxl-mean(C1).

For the focal cell, this formula works correctly, but by the time the formula is
applied to row 2 as R2C1 = R2C1 - gxl-mean(C1), the value in R1C1 has changed;
hence the mean of the column will have changed, and the result will not be as
intended. To perform this type of calculation correctly, pre-calculate the column
mean and put the result into another cell.

Examples

Calculating Columns

The following example shows how GXL uses a formula to calculate a column of
cells as the sum of two other columns. In this spreadsheet view of float data cells,
GXL calculates column 4 as the sum of columns 2 and 3.

To calculate a column as the sum of other columns:

1 Select column 4.

2 Click the formula bar or the equals button to enter formula entry mode.

GXL highlights the focal cell, which is R1C4 in the example.

How GXL applies formulas
over a range of cells.
95

3 Enter the formula R1C2 + R1C3.

For example:

4 Press Enter to apply the formula.

In the example GXL applies the formula, R1C2 + R1C3, to column 4.

Here are the results:

Formulating Consecutive Integers

The following example shows how GXL uses a formula to fill a column with
consecutive integers. In this spreadsheet view of integer data cells, GXL fills
column 2 with consecutive integers:

To fill a column with consecutive integers:

1 Enter the integer 0 in R1C1.

2 Select R2C2, and then scroll to expose the last cell in the column, and shift-
select the last cell in the column, so that the remainder of the column is
selected.

3 Click the formula bar or the equals button to enter formula entry mode.

GXL highlights the focal cell, which in the example is R2C2, the first selected
cell.
96

Using Built-in Functions
4 Enter the formula R1C2 + 1.

For example:

5 Press Enter to apply the formula.

GXL fills the cells in column 2 with consecutive integers.

Here are the results:

Using Built-in Functions
You can reference any G2 built-in function in formulas. For a complete list and
description G2’s built-in functions, see the G2 Reference Manual.

Additionally, GXL provides several basic functions that you can applied to ranges
of cells, which include areas, rows, and columns. The following table summarizes
the GXL functions:

Function Name Calculation Performed

gxl-count The number of values in a range.

gxl-maximum The maximum quantity in a range.

gxl-mean The average quantity in a range.

gxl-minimum The minimum quantity in a range.
97

For example, suppose you want to calculate a cell value as the square root of the
mean sum of squares of the cells in column 3. The formula you enter looks like
this:

sqrt(sum-of-squares(C3)/gxl-quantity-count(C3))

Note The sum-of-squares function, a user-defined function, is defined in Creating Your
Own Functions.

When you select a range of cells, only data cells (text cells, integer cells, float cells,
quantity cells, symbol cells, truth-value cells and value cells) within the range are
included in function calculations. Selector cells, column headers, and disabled
cells are ignored.

For example, if a column has 10 total rows and the first row is a column header
and the second row contains column selector cells, then the gxl-count of the
column is 8, not 10.

Creating Your Own Functions
You can add your own functions by creating function definitions in the standard
G2 manner. See the G2 Reference Manual for details on creating function
definitions.

Functions that apply to values in individual cells are straightforward to create.
For example, if you want to define a text-maximum function, you can create the
following function definition:

text-maximum(T1, T2) = (if T1 > T2 then T1 else T2)

You can reference this function in a formula by substituting cell references for T1
and T2, for example:

text-maximum(R2C3, R4C2)

The function is called with the values from the referenced cells.

To create functions that apply to ranges of cells, your function must accept a list of
cell values as its only argument. For example, if you want to create a function that

gxl-quantity-count The number of quantities in a range.

gxl-stdev The standard deviation of the quantities in
a range.

gxl-sum The sum of quantities in a range.

Function Name Calculation Performed
98

Creating Your Own Functions
finds the sum of squares over a range of cells, you create the following function
definition:

sum-of-squares(List) = (the sum over each quantity Q in List of (Q*Q))

You can reference this function in a formula with any valid range arguments, for
example:

sum-of-squares(R1C1::R8C5)
or

sum-of-squares(C1::C5)

Here, GXL converts the range reference into a list of values from the data cells in
the specified range and passes this list to the function for evaluation.

Note Because the order of values in the list is arbitrary, do not create formulas that
depend on the ordering of the list.
99

100

5

Working with
Specifications
Describes how to build and use GXL specifications to create spreadsheets and
views.

Introduction 102

The GLX Specification Layout 104

Building a Specification 107

Specification Objects 108

Defining Spreadsheet and View Properties 121

Initializing Cell Group Data 124

Customizing the Appearance of Floating Point Numbers 125

Customizing the Data Display in Cells 127

Assigning Color Patterns to Cells 131

Controlling Cell Selection Behavior 131

Displaying View Areas 132
101

Introduction
A spreadsheet specification is a graphical layout of objects that serves as a
template for the creation of spreadsheets and views. You build a specification on a
workspace by cloning specification objects from the gxl-top-level workspace. The
following figure illustrates a typical specification:

A specification layout serves the dual purpose of defining a spreadsheet and a
view of the spreadsheet based on the specification objects, their class and their
attribute values.

The attributes of the specification objects split into two non-overlapping
categories:

• Attributes related to spreadsheet properties, such the type of data that a cell
can contain, and whether data is stored in or external to the spreadsheet.

• Attributes related to view properties, such as the number of rows and
columns of visible data, the size and color of the cells and their content, and
whether a cell is selectable and editable.

For example, the gxl-total-rows attribute of a row controller specifies a
spreadsheet property, while the gxl-visible-rows attribute specifies the appearance
of a view.
102

Introduction
The dual nature of a specification is reflected in the order of events when you
create a spreadsheet and then a view of the spreadsheet. As the following figure
illustrates, you first use the specification to create a spreadsheet. Then you use the
spreadsheet and the specification to create a view.

During the first phase, GXL references the spreadsheet properties of the
specification. During the second phase, GXL references the view properties. It is
quite possible to defer setting the view properties of the specification until after
the creation of the spreadsheet.

GXL uses the information contained in a specification only at the time of
spreadsheet or view creation. If you want to create multiple views of a single
spreadsheet, each having a different layout, you can change the view-related
attributes of the specification after creating one view and before creating another.
Alternatively, you may use two different specifications to create alternative
views, as long as each specification has the correct layout, which must be the same
as the specification used to create the spreadsheet.

You may alter a specification manually or programmatically to create different
spreadsheets and views from the same specification. Changing the attributes or
structure of a specification after a spreadsheet or view has been created has no
effect on existing spreadsheets or views. To change the properties of an existing
spreadsheet or view, you must use GXL’s API procedures.

View

Spreadsheet properties

Spreadsheet

View properties

Specification

1

2 data
103

The GLX Specification Layout
You specify the structure of your spreadsheet by constructing a specification
layout. The layout consists of the following GXL specification objects cloned from
the GXL top-level workspace:

A specification layout consists of:

• One root specification. which defines certain properties of the spreadsheet as
a whole. The root specification is connected to the first row and column
controllers.

• A column controller for each column of cell groups. The column controller
specifies the common properties of the cell groups connected to it vertically,
such as the total number of columns in the spreadsheet and the number of
columns visible in the view.

• A row controller for each row of cell groups. The row controller specifies the
common properties of the cell groups connected to it horizontally, such as the
total number of rows in the spreadsheet and the number of rows visible in the
view.

• A cell group specification object for each cell group in the spreadsheet. The
cell group specifications are laid out in a rectangular grid that corresponds to
the arrangement of cell groups within the spreadsheet. All cells within a cell
group have the same value type and respond in a particular way to user
input.

Palette of
Specification
Objects Cell Group

Specification
Objects
104

The GLX Specification Layout
Cell Group Specifications

Cell group specifications define different rectangular areas of the spreadsheet.
Within the specification layout:

• Cell groups are always numbered left to right and top to bottom, starting
from 0.

• Cell groups that are side-by-side have the same number of rows.

• All cell groups that are aligned top-to-bottom have the same number of
columns.

When working with cell groups programmatically, you always refer to a cell
group by its number.

The cell group specifications are laid out in a rectangular grid that corresponds to
the arrangement of cell groups within the spreadsheet. A specification layout
must always have a full rectangular grid of cell group specification objects.

The following figure illustrates a typical specification layout.

Although this specification has an equal number of row and column controllers,
leading to a square grid of cell group specifications, this is not a requirement. As
long as there is at least one row controller and one column controller, there is no
restriction on the number of row and column controllers.

0 1 2

3 4

6

5

0

7 8

2

1

1

0

2

Row Controllers

Column ControllersRoot Specification

Cell Group Specifications
105

Cell Groups and Spreadsheet Views

To understand how cell groups relate to a spreadsheet view, consider the
following spreadsheet view:

Displaying all the data in the spreadsheet, this spreadsheet is composed of four
cell groups. Group 0 is composed of only one cell, a global selector cell. Group 1 is
composed of four column selector cells. Group 2 is a set of row selector cells.
Group 3 is a 5x4 grid of float cells.

The following figure illustrates a slightly more complicated example of cell
groups. In this spreadsheet view, again displaying all the data in the spreadsheet,
you see six cell groups:

In this case, the first three cell groups each contain only one cell. The remaining
three cell groups each have five rows and one column, containing row selector
cells, symbol cells, and value cells, respectively.

Group 0: global selector cell Group 1: column selector cells

Group 2: row selector cells Group 3: float cells

Group 5: value cells

Group 4: symbol cells

Group 3: row selector cells

Group 0: disabled cell Group 2: column header cell

Group 1: column header cell
106

Building a Specification
Building a Specification
You build a spreadsheet specification by cloning specification objects and
arranging them in a layout on your workspace. The GXL top-level workspace
contains a palette of the specification objects:

G2 must be running to clone specification objects from the palette.

Each specification object has a number of attributes, of which some define
characteristics of the spreadsheet and others define characteristics of the view.
You define the properties of the spreadsheet and its view by specifying values for
the attributes.

See Specification Objects for descriptions of the attributes for each specification
object. To check which attributes of an object define spreadsheet properties and
which define view properties, see Defining Spreadsheet and View Properties.

To review an instructional example of building a specification of a GXL
spreadsheet, see Creating a Custom Spreadsheet and View. The gxldemo KB also
contains a number of examples that include different specifications for your
review.

To clone objects from the palette:

1 Click the object you would like to clone.

2 Move the mouse to the desired location on the destination workspace and
click again to deposit the object.

To help you make the correct connections, the connection stubs associated with
row and column controllers and cell group specifications have different cross-
107

sections. G2 only lets you join compatible connection types, preventing you from
making an erroneous connection.

Note When connecting specification objects, you must use existing stubs.

To connect the specification objects:

1 Click one of the connection stubs.

When you move the mouse, the connection stub follows the cursor.

2 Position the stub directly over the adjacent stub.

3 Click once more to connect the two stubs together.

Caution Do not drag the connector directly into another object.

After making all the necessary connections, you can neatly arrange the
specification.

To neatly arrange the specification:

 Choose arrange from the menu of the root specification.

The following figure is an example of a completed specification layout:

Specification Objects
This section discusses the types of objects that make up a specification and their
attributes. In total, there are nine different specification objects. Six of these
specify different types of cell groups, specifically, groups consisting of data cells,
row selectors, column selectors, column headers, disabled cells, and global
selectors. The other three specification objects - root specification, row controller,
and column controller - specify collective properties of cell groups and the
spreadsheet as a whole.
108

Specification Objects
The Root Specification Object

The root specification object defines certain overall properties of the
spreadsheet and spreadsheet view. A root specification is an instance of
the class gxl-root-specification. The following table describes the attributes
of the root specification:

Attribute Description

gxl-spreadsheet-
class

A symbol naming of the class of spreadsheet to
be created.

Allowable values: The symbol gxl-spreadsheet or a symbol
naming a subclass of this class

Default value: The symbol gxl-spreadsheet.

gxl-spreadsheet-
view-class

A symbol naming the class of spreadsheet view
to be created.

Allowable values: The symbol gxl-spreadsheet-view or a symbol
naming a subclass of this class

Default value: The symbol gxl-spreadsheet-view
109

gxl-spreadsheet-
tools

A symbol array containing symbols
representing the tools to be included in the
view.

Allowable values: Any of the following symbols: rc-indicator,
formula-tool, file-save, file-load, insert-row-
before, insert-row-after, delete-row, insert-
column-before, insert-column-after, delete-
column, select-color, cut, copy, paste, undo,
sort-ascending, sort-descending, ok, apply,
cancel; and/or any symbol naming a subclass
of gxl-toolbar-button

Default value: A symbol array containing all the allowable
values

Notes: Choosing edit spreadsheet tools on the menu
of the root specification object displays the
gxl-spreadsheet-tools array in a spreadsheet
view. For details, see Customizing the Toolbar.

gxl-toolbar-width An integer indicating the toolbar width, in
pixels. When set to the default value (0), the
toolbar width equals the width of the view.

Allowable values: Any positive integer

Default value: 0

gxl-selection-
callback

A symbol optionally naming a procedure to be
called whenever cells are selected on a view.

Allowable values: Any symbol naming a procedure, or the
symbol unspecified.

Default value: The symbol unspecified

Notes: Use this attribute to define a callback for every
selection event, rather than using different
callbacks with each cell group.

Attribute Description
110

Specification Objects
gxl-matrix-
extension-
procedure

A symbol optionally naming a procedure to be
called when GXL needs to extend the size of a
matrix. When set to the default, unspecified,
GXL uses the built-in default method.

Allowable values: Any symbol naming a procedure, or the
symbol unspecified

Default value: The symbol unspecified

Notes: For a discussion on using matrix extension
procedures and an example, see Matrix
Extension Procedures.

gxl-cleanup-when-
resizing-matrices

A truth-value that determines whether GXL
deletes orphan vectors when reducing the
length of the spine (item-array, -list) of a
matrix.

Allowable values: true or false

Default value: true

gxl-make-edits-
permanent

A symbol that determines if edits to data in
GXL spreadsheets are permanent. When set to
prompt, a dialog appears, allowing user to
determine if edits are permanent.

Allowable values: The symbol yes, no, or prompt

Default value: The symbol prompt

gxl-store-data-
internally

A truth-value that determines whether to store
data associated with a GXL spreadsheet in the
spreadsheet itself, or to make calls to data
server procedures when data is needed for
display or computation.

Allowable values: true or false

Default value: true

Attribute Description
111

gxl-external-data-
server

A symbol naming a procedure that GXL uses to
determine the value stored in a spreadsheet
cell.

Allowable values: Any symbol naming a procedure that returns
the data value at a specific row, column
position of the spreadsheet, or the symbol
unspecified

Default value: The symbol unspecified

Notes: This attribute is required when gxl-store-data-
internally is set to false; otherwise it is not used.
For a discussion on using an external data
server procedure and an example, see External
Data and Color Server Procedures.

gxl-external-color-
server

A symbol naming a procedure that GXL uses to
determine the colors of a cell of a spreadsheet.

Allowable values: Any symbol naming a procedure that returns
color values for a specific row, column position
of the spreadsheet, or the symbol unspecified

Default value: The symbol unspecified

Notes: This attribute can be used when gxl-store-data-
internally is set to false; otherwise it is not used
For a discussion on using an external color
server procedure and an example, see External
Data and Color Server Procedures.

gxl-scroll-callback A symbol naming a procedure to be called
when a view of the spreadsheet is scrolled.

Allowable values: Any symbol naming a procedure, or the
symbol unspecified

Default value: The symbol unspecified

Attribute Description
112

Specification Objects
Notes: Using an optional scrolling callback is useful
when you are storing the spreadsheet data
externally. For a discussion on using scroll
callbacks and an example, see Scrolling
Callback Procedures.

gxl-allow-non-
standard-row-
heights

A truth-value that determines whether the
minimum row heights of 28, 34, or 46 pixels for
small, large and extra-large fonts, respectively,
should be enforced.

Allowable values: true or false

Default value: false

Notes: For a discussion on using nonstandard cell
heights, see Customizing the Data Display in
Cells.

gxl-return-and-tab-
key-handler

A symbol naming a procedure to be called
when the user finishes editing a cell by
pressing either the tab or return key, which
returns to GXL the row and column of the next
cell to be edited, if any.

Allowable values: A symbol naming a return and tab key
handling procedure, or the symbol unspecified

Default value: The symbol unspecified

Notes: For a discussion return and tab key handling
procedures and an example, see Return and
Tab Key Handler Procedures.

Attribute Description
113

Row and Column Controllers

The column controller and row controller objects specify attributes that
are common to an entire column or row of the spreadsheet, even if the
column or row might include more than one cell group. These controllers
are instances of the classes gxl-column-controller and gxl-row-controller,
respectively.

The attributes of column and row controllers are:

Attribute Description

gxl-visible-rows
gxl-visible-columns

An integer specifying the number of
rows/columns in the cell group that are visible
on the view.

Allowable values: Any positive integer

Default value: 1

gxl-total-rows
gxl-total-columns

An integer specifying the total number of
rows/columns in the cell group.

Allowable values: Any positive integer

Default value: 1

gxl-cell-height An integer giving the cell height in pixels for
the rows in the cell group.

Allowable values: Any integer greater than or equal to 14

Default value: 28
114

Specification Objects
Cell Group Specification Objects

There are six types of cell group specifications:

Notes: You can set cell height larger or smaller than
the standard height for font size. See
Customizing the Data Display in Cells for a
discussion on using nonstandard cell heights.

gxl-cell-width An integer giving the cell width in pixels for
the columns in the cell group.

Allowable values: Any integer greater than or equal to 32

Default value: 80.

Attribute Description

Specification Object Description

Data Cell Group

The Data Cell Group is an instance of the class
gxl-cell-group. This specification defines data
cell properties, including the data type, which
can be one of the following:

integer
float
quantity
symbol
text
truth-value
value

Column Selector

The Column Selector is an instance of the class
gxl-column-counter-cell-group. This
specification defines special cells that have the
property of selecting the entire column
containing the cell when the cell is selected.
These cells are often used to consecutively
number the columns of a spreadsheet.
115

The six cell group specification objects share similar attributes, although not all
cell group types have the complete set of attributes. For example, while all
attributes are available for the data cell group, only the text, background, border,
and font scale attributes are available for the disabled cell group. For a list of
attributes for a particular specification object, see Defining Spreadsheet and View
Properties.

Row Selector

The Row Selector is an instance of the class
gxl-row-counter-cell-group. This specification
defines special cells that have the property of
selecting the entire row containing the cell when
the cell is selected. Cells of this type are often
used to consecutively number the rows of a
spreadsheet.

Column Header

The Column Header is an instance of the class
gxl-column-header-for-cell-group. This
specification defines a special cell that spans the
entire width of the cell group. Use this
specification to create a cell that labels columns
on a view.

Global Selector

The Global Selector is an instance of the class
gxl-global-selector-cell-group. This specification
defines a special cell that has the property of
selecting the entire spreadsheet when the cell is
selected.

Disabled Group

The Disabled Group is an instance of the class
gxl-disabled-cell-group. This specification
defines special cells that cannot contain data and
are neither selectable nor editable. They are
used to fill areas of the spreadsheet that do not
contain data.

Specification Object Description
116

Specification Objects
The following table describes the attributes of cell groups:

Attribute Description

gxl-cell-type A symbol naming the type of cell to be used in
the cell group.

Allowable values: One of the following symbols:
float-cell
integer-cell
quantity-cell
symbol-cell
text-cell
truth-value-cell
value-cell

Default value: The symbol value-cell

gxl-font-size A symbol indicating the font size to be used in
the cells of the cell group.

Allowable values: The symbol small, large, or extra-large

Default value: The symbol small

gxl-default-
background-color

The default background color of the cells
within a cell group in the view.

Allowable values: A symbol representing any G2 standard color

Default value: Symbolic color depends on cell group:

White for data cell and column header groups;
Light-gray for a disabled cell group;
Extra-light-gray for global, row, and column
selector groups

Notes: Use gxl-set-color-pattern-of-cell to override
colors in a spreadsheet view.
117

gxl-default-text-
color

The default text color of the cells within a cell
group in the view.

Allowable values: A symbol representing any G2 standard color

Default value: Symbolic color depends on cell group:

light-gray for disabled cell group;
black for all other cell groups

Notes: Use gxl-set-color-pattern-of-cell to override this
attribute setting.

gxl-default-border-
color

The default border color of the cells within a
cell group in the view.

Allowable values: A symbol representing any G2 standard color

Default value: The symbol black

Notes: Use gxl-set-color-pattern-of-cell to override this
attribute setting.

gxl-cell-group-
initialization-data

A value passed to the initialization procedure.

Allowable values: See Notes

Default value: The symbol unspecified

Notes: For a discussion of this attribute and its values,
see Initializing Cell Group Data.

gxl-cells-are-
selectable

A truth-value indicating the whether the cells
of the cell group will be selectable via the
mouse.

Allowable values: true or false

Default value: true

Attribute Description
118

Specification Objects
gxl-cells-are-
editable

A truth-value indicating the whether the cells
of the cell group will allow manually editing.

Allowable values: true or false

Default value: true

gxl-additional-
validation-
procedure

A symbol optionally naming a procedure used
to validate manual entries.

Allowable values: Any symbol naming a procedure, or the
symbol unspecified

Default value: The symbol unspecified

Notes: For a discussion on validation procedures and
an example, see Validation Procedures.

gxl-initialization-
procedure

A symbol optionally naming a procedure used
to initialize cell values, called when the
spreadsheet is first created.

Allowable values: Any symbol naming a procedure, or the
symbol unspecified

Default value: The symbol unspecified

Notes: For a discussion initialization procedures and
an example, see Initialization Procedures.

gxl-reinitialization-
procedure

A symbol optionally naming a procedure used
to be called when new rows or columns are
added to the cell group, and when rows and
columns are deleted.

Allowable values: Any symbol naming a procedure, or the
symbol unspecified

Default value: The symbol unspecified

Attribute Description
119

Notes: For a discussion on reinstallation procedures,
see Initialization Procedures.

gxl-callback-
procedure

A symbol optionally naming a procedure to be
called when a cell value is set using gxl-set-cell-
contents or through manual entries.

Allowable values: Any symbol naming a procedure, or the
symbol unspecified

Default value: The symbol unspecified

Notes: For a discussion on using callbacks and an
example, see Cell Callback Procedures.

gxl-selection-
callback-procedure

A symbol optionally naming a procedure to be
called when a cell is selected through manual
or programmatic action.

Allowable values: Any symbol naming a procedure, or the
symbol unspecified

Default value: The symbol unspecified

Notes: For a discussion on selection callbacks and an
example, see Selection Callback Procedures.

gxl-float-format An object describing the desired formatting for
floating point numbers in this cell group.

Allowable values: An object of the class gxl-float-formatter

Attribute Description
120

Defining Spreadsheet and View Properties
Defining Spreadsheet and View Properties
The attributes of specification objects define two separate categories of properties:
those related to the spreadsheet and those related to its view. The following table
summarizes which of the specification objects attributes define spreadsheet
properties and which define view properties.

Default value: An object of the class gxl-float-formatter, with
these attributes:

gxl-use-default = true
gxl-minimum-width = 1
gxl-precision = 4
gxl-output-format = the symbol best
gxl-remove-trailing-zeros = true

Notes: For details, see Customizing the Appearance of
Floating Point Numbers.

gxl-font-scale Specifies the magnification of the font as a float
value, where a value less than 1.0 shrinks the
size of the font.

Allowable values: Any positive or negative float number

Default value: 1.0

Notes: For information on using this attribute, see
Customizing the Data Display in Cells.

Attribute Description
121

Specification Object Spreadsheet Attributes View Attributes

Root Specification

gxl-spreadsheet-class

gxl-selection-callback

gxl-matrix-extension-
procedure

gxl-cleanup-when-
resizing-matricies

gxl-make-edits-
permanent

gxl-store-data-internally

gsl-external-data-server

gxl-external-color-
server

gxl-scroll-callback

gxl-spreadsheet-view-
class

gxl-spreadsheet-tools

gxl-toolbar-width

gxl-allow-nonstandard-
row-heights

gxl-return-and-tab-key-
handler

Column Controller

gxl-total-columns gxl-visible-columns

gxl-cell-width

Row Controller

gxl-total-rows gxl-visible-rows

gxl-cell-height
122

Defining Spreadsheet and View Properties
Column Selector

gxl-cell-group-
initialization-data

gxl-initialization-
procedure

gxl-reinitialization-
procedure

gxl-callback-procedure

gxl-selection-callback-
procedure

gxl-cells-are-selectable

gxl-default-background-
color

gxl-default-border-color

gxl-default-text-color

gxl-float-format

gxl-font-scale

gxl-font-size
Row Selector

Global Selector

Column Header

gxl-cell-group-
initialization-data

gxl-callback-procedure

gxl-selection-callback-
procedure

gxl-cells-are-editable

gxl-cells-are-selectable

gxl-default-background-
color

gxl-default-border-color

gxl-default-text-color

gxl-float-format

gxl-font-scale

gxl-font-size

Specification Object Spreadsheet Attributes View Attributes
123

To define the spreadsheet and view properties:

1 Click the appropriate specification object and choose table from the menu to
display its attribute table.

2 Edit the table to specify values for those attributes you want to define.

For descriptions of specific attributes, see Specification Objects.

Initializing Cell Group Data
If you provide your own initialization procedure, the attribute gxl-cell-group-
initialization-data can be any value, which is simply passed to your initializer.

Numbering Row and Column Selector Cells

For row and column selectors, the default initializer is gxl-serial-integer-
initialization. This procedure expects gxl-cell-group-initialization-data to be an
integer, which is 1 by default. The value of the gxl-cell-group-initialization-data
becomes the value in the first row or column selector cell in the view. For
example, if you want the row and column selectors to be numbered serially
starting at 0, then set gxl-cell-group-initialization-data to 0.

Disabled Group

None gxl-default background-
color

gxl-default-border-color

gxl-default-text-color

Data Cell Group

gxl-cell-type

gxl-cell-group-
initialization-data

gxl-additional-
validation-procedure

gxl-initialization-
procedure

gxl-reinitialization-
procedure

gxl-callback-procedure

gxl-selection-callback-
procedure

gxl-cells-are-editable

gxl-cells-are-selectable

gxl-default-background-
color

gxl-default-border-color

gxl-default-text-color

gxl-float-format

gxl-font-scale

gxl-font-size

Specification Object Spreadsheet Attributes View Attributes
124

Customizing the Appearance of Floating Point Numbers
Labeling Column Headers

For column headers, the gxl-cell-group-initialization-data contains the text you
want to put in the column header cell. The value of this attribute is a text string.
When specifying a column heading, enclose the text with double quotes (“).

For details on the use of initialization procedures, see Programming GXL.

Localizing Column Header Text

You can localize column header text before or after creating the spreadsheet. To
do so before creating the spreadsheet, include the localized text in the Column
Header specification object. To do so after creating the spreadsheet, use the gxl-
set-group-column-header procedure.

For details on using the gxl-set-group-column-header procedure, see gxl-set-
group-column-header.

Customizing the Appearance of Floating
Point Numbers

You can specify how floating point numbers appear in views of the spreadsheet
by using the gxl-float-format attribute of cell group specifications. This attribute
contains a subobject with the following attributes:

Attribute Description

gxl-use-default A truth-value indicating if default formatting is
used. If true, the default format described in
The Spreadsheet Toolbar is used, and the
remaining attributes of the float format are
ignored.

Allowable values: true or false

Default value: true

gxl-minimum-width Specifies the minimum number of characters in
the formatted version of float. If the formatted
float value has fewer characters than the
number you specify, the text in the cell is
padded on the left side with space characters.
125

GXL determines the format when creating the view. Once created, existing views
remain unaffected by any changes to its associated specification.

To change the formatting of floats on an existing view:

 Use the API procedure gxl-set-float-format-of-group-on-view.

Allowable values: Any positive integer

Default value: 1

gxl-precision Specifies either the number of digits to the right
of the decimal point or the significant digits,
depending on the gxl-output-format. If the
output format is float or exponent, gxl-precision
indicates the digits to the right of the decimal.
Otherwise, gxl-precision is the number of
significant digits.

Allowable values: Any positive integer

Default value: 4

gxl-output-format Determines the representation of the value. If
this attribute is float, the value is displayed as a
float; if exponent, exponential notation is used;
if best, the value is displayed as an exponent if
the result is too small or large for the specified
precision.

Allowable values: One of the following symbols:
float, exponent, or best

Default value: The symbol best

gxl-remove-trailing-
zeros

A truth-value indicating whether zeros to the
right of the last non-zero digit are to be
stripped.

Allowable values: true or false

Default value: true

Attribute Description
126

Customizing the Data Display in Cells
You can also programmatically change the float format for an existing view, using
the API procedure gxl-set-float-format-of-group-on-view. For a description of this
procedure, see .

Customizing the Data Display in Cells
When GXL creates a spreadsheet view, it sets a minimum cell height to
accommodate the font size as follows:

These specification attributes control the font size and cell height:

• The gxl-cell-height attribute defines the height of the cells displayed for the
cell groups associated with a particular row controller.

• The gxl-font-size attribute determines the size of the font displayed in cells of
a particular cell group.

Even if you define a smaller cell height for a particular font size, the cell height
defaults to the appropriate size. Additionally, if there are different font sizes
within a row, the largest font size determines the height of the cells.

Consider the following specification:

If the font size is... The cell height is...

small 28 pixels

large 34 pixels

extra-large 46 pixels

0 1 2

3 4 5

0 2

1

1

0

127

Given these specification properties:

GXL creates the following spreadsheet view:

You can override this default action by enabling the display of non-standard cell
heights.

To enable the display of non-standard cell heights:

 Change the gxl-allow-non-standard-row-heights attribute of the root
specification to true.

Note If you use a nonstandard height, the last row always defaults to the standard cell
height of the largest font size.

Using the same specification properties of the previous example, GXL creates the
following spreadsheet view when gxl-allow-non-standard-row-heights is true.

Specification Object Attribute Value

row controller (1) gxl-cell-height 28

data cell group (4) gxl-font-size large

data cell group (5) gxl-font-size small

Cell height is 34 pixels

Cell height is 28 pixels

Note: Cell height of final row
accommodates largest font size
128

Customizing the Data Display in Cells
Displaying More Information in Views

Using non-standard cell heights and a scaled font, you can display more rows of
information on a spreadsheet view. The default font magnification is 1.0. You can
make a specific font size appear larger or smaller by adjusting its magnification.

To change the magnification of a font size:

 Set the gxl-font-scale attribute of the cell group to a value that is greater than
or less than 1.0.

For example, given these specification properties:

GXL creates the following spreadsheet view:

As the figure illustrates, a smaller font display results in more white space in the
cell.

By adjusting the gxl-cell-height attribute of the row controller to a smaller pixel
height you can display more rows of information. For example, given these
specification properties:

Specification Object Attribute Value

root-specification gxl-allow-non-standard-
heights

false

data-cell-group (4) gxl-font-size
gxl-font-scale

small
1.0

data-cell-group (5) gxl-font-size
gxl-font-scale

small
0.7

Cell height is 28 pixels

Specification Object Attribute Value

root-specification gxl-allow-non-standard-
heights

true

row-controller (1) gxl-cell-height 14
129

GXL creates the following spreadsheet view:

As you can see, reducing the cell height could result in clipping the bottom of the
text display in a cell. Therefore, use care when setting the cell height and font
magnification.

If you want to pack more information into a small space, try the following
settings:

When non-standard heights are used, there is a small but noticeable cost in speed
when scrolling or refreshing a view.

data-cell-group (4) gxl-font-size
gxl-font-scale

small
1.0

data-cell-group (5) gxl-font-size
gxl-font-scale

small
0.7

Specification Object Attribute Value

Cell height is 14 pixels

Note: Final row defaults to standard cell
height for largest font size

gxl-font-size gxl-font-scale gxl-cell-height

small 1.0 22

small 0.9 20

small 0.8 18

small 0.7 14
130

Assigning Color Patterns to Cells
Assigning Color Patterns to Cells
For each cell in the spreadsheet, you can also specify the color of the data value,
the background, and the border of the cell.

Three attributes of cell groups control the color display. The attributes are:

• gxl-default-text-color, which specifies the color of the data displayed in
the cell.

• gxl-default-background-color, which specifies the background color of the cell.

• gxl-default-border-color, which specifies the border color of the cell.

The colors specified by these attributes apply to all of the cells in the
corresponding cell group. The specified cell colors are displayed in all views of
the cell.

Caution Never use white text on black background as a color combination in your
spreadsheet. This color pattern is reserved for selected cells.

Controlling Cell Selection Behavior
The selection behavior of a cell depends on two properties of the cell group to
which the cell belongs: its selectability and its editability. The cell group attributes
that specify these properties are:

• gxl-cells-are-selectable, which controls selectability.

• gxl-cells-are-editable, which controls editability.

All cells within a cell group have the same selectability and editability properties.
To be editable, a cell must be selectable.

You can programmatically control the selectability and editability of cells with the
following API procedures:

• gxl-set-protection-of-group-on-view sets the editability and selectability of cell
groups on a view.

• gxl-set-protection-on-entire-view sets these properties for all of the cells on a
view.

For descriptions of these procedures, see Setting Spreadsheet and View
Properties.
131

Customizing Selection Behavior

You can customize the selection behavior of cells within a cell group by creating a
selection callback procedure and specifying the procedure name in the
gxl-selection-callback-procedure attribute of the appropriate cell group.

For information on creating and using selection callbacks, see Selection Callback
Procedures.

Displaying View Areas
Row and column controller attributes determine the total number of rows and
columns of a spreadsheet and the number of visible rows and columns of the
view.

The gxl-total-rows and gxl-visible-rows attributes of a row controller object
determine the total number of rows and the number of visible row for all cell
groups connected to it horizontally. The gxl-total-columns and gxl-visible-columns
attributes of a column controller object determine the total number of columns
and the number of visible columns for all cell groups connected to it vertically.

Conceptually, this creates a number of horizontal and vertical view areas
superimposed on the spreadsheet’s data. If a cell is inside both a horizontal and a
vertical view area, it is visible in the view. In the following figure, the shaded cells
are exposed on the view:

The number of rows or columns in the view areas determines how many cells are
shown in a view. It is feasible to have a view area with zero rows and columns,
entirely hiding the contents of a cell group. Or, you may have a view area that
exposes all rows or columns in a cell group, in which case scrolling is
unnecessary. It is even possible to have a view area that is larger than the number

Vertical view areas

Horizontal view areas

0

3

6

1

4

7

2

8

5

132

Displaying View Areas
of rows and columns in the cell group. In this case, disabled cells (colored gray)
are displayed in the view.

Scrolling in View Areas

If the size of a view area is such that it leaves cells hidden, then the view will
include a scroll bar, which enables the user to reposition the view area. In effect,
scrolling shifts the view areas and exposes different cells. Scrolling does not
change the total number of cells visible in each group, which cannot be changed
after a view is created. View areas cannot be scrolled beyond the last row or
column of the cell groups they display.

Note There can be at most one horizontal and one vertical view area per cell group.
Thus, you cannot introduce multiple scroll areas that show different parts of a
single cell group.

As the next figure illustrates, scrolling the top horizontal scroll area down three
positions exposes the last row in cell groups 0, 1, and 2. This view area cannot be
shifted further, and thus cannot expose cell groups 3, 4, and 5.

Because view areas span the entire view either horizontally or vertically, you are
always assured that cells appearing side-by-side in the view are in the same row
of the spreadsheet. Likewise, cells that are vertically aligned in the view are in the
same column of the spreadsheet.

Locating the Mouse on a View

GXL spreadsheet views have two attributes that together provide the cell location
of the mouse. The attributes are:

• gxl-context-help-row

• gxl-context-help-column

Old scroll position

New scroll position
0

3

6

1

4

7

2

8

5

133

These attributes are useful if you are extending the G2 OnLine Documentation
(GOLD) module and writing a custom procedure to add symbolic keys, or
HelpIDs, to the key table used by GOLD for context-sensitive help. For complete
information on extending GOLD for your application, see the G2 OnLine
Documentation User’s Guide.

When a view is passed as the context object, these attributes give the cell location
of the mouse when the user asks for help on the view. In most cases, the attributes
contain a valid row and column.

If the values of gxl-context-help-row and gxl-context-help-column are -1, the
values indicate that the location of the mouse click is out of the current bounds of
the spreadsheet dimensions. Such is the case, for example, when the mouse is
over a disabled cell.
134

6

Customizing
the Toolbar
Describes how to customize the GXL toolbar display and how to include custom
buttons on the toolbar.

Introduction 135

Controlling the Toolbar Width 136

Changing the Display of Tools 136

Changing the Order of Tools Displayed 138

Including Your Own Buttons in the Toolbar 138

Creating a Custom Button 141

Introduction

You can also include your own buttons in the toolbar and create custom buttons.

The root specification object contains the toolbar information for the spreadsheet
specification.

When you create a view, you can specify three aspects of the appearance
of the toolbar:

• The width of the toolbar.

• The tools included in the toolbar.

• The order of the tools in the toolbar.
135

Controlling the Toolbar Width
The gxl-tool-bar-width attribute of the root specification controls the width of the
toolbar, where the width is measured in pixels. When set to the default value, 0,
the width of the toolbar matches the width of the spreadsheet view.

To change the width of the toolbar on a view:

 Change the gxl-tool-bar-width attribute of the root specification to the desired
width, measured in pixels.

Changing the Display of Tools
The edit spreadsheet tools menu choice of the root specification enables you to
change the number of tools displayed on the toolbar, as well as their order.

To change the display of tools on a view:

 Choose edit spreadsheet tools from the root specification menu.

The following view appears:

This view displays an editable list of all built-in tools by symbolic name. They are:

Symbol Tool

rc-indicator Row-column indicator

formula-tool Formula bar and equals button

file-load Load from file button

file-save Save to file button

insert-row-before Insert row before selection button

insert-row-after Insert row after selection button
136

Changing the Display of Tools
You can change the number of tool buttons included in the toolbar by removing
from the list the symbolic entry of the tool you do not want.

To remove entries from the list of built-in tools:

 Select the row containing the entry you want to remove and click the delete
row button.

delete-row Delete row button

insert-column-before Insert column before button

insert-column-after Insert column after button

delete-column Delete column button

select-color Select and apply color buttons

cut Cut button

copy Copy button

paste Paste button

undo Undo button

sort-ascending Sort ascending button

sort-descending Sort descending button

ok OK pushbutton (for edit session)

apply Apply pushbutton (for edit
session)

cancel Cancel pushbutton (for edit
session)

Symbol Tool
137

Changing the Order of Tools Displayed
The tools appear in order horizontally on the toolbar. You can adjust the order in
which the tools appear by changing their order in the list.

To change the order of the tools on the toolbar:

1 Edit rows as necessary and enter the symbolic name of the tool.

Hint Pressing Return advances the cursor and opens the editor on the next row.
The list scrolls forward automatically.

2 When finished, Click OK and make the edits the permanent initial state.

For example, to move the Undo button to appear after the Sort Descending
button, you would:

• Select the row containing the undo symbol and click the cut button.

• Click the delete row button to delete the row.

• Add a row after sort-descending.

• Select the new row and click the paste button to enter undo in the new row.

To verify your changes to the toolbar display:

 Click on the spreadsheet object associated with the root specification to
display the view, and check the number and order of tools displayed.

Including Your Own Buttons in the Toolbar
GXL has an open design that allows you to add your own buttons to the toolbar.
By creating custom buttons, you can add high-level functionality tailored to your
specific purposes. You define the functionality of your button, using G2
subclassing and methods. Before attempting to create your own buttons, you
should be familiar with creating classes, procedures, and methods in G2, as
described in the G2 Reference Manual.

To create a custom toolbar button:

1 Create a subclass of gxl-toolbar-button with an appropriate icon and attributes.

2 Write methods for your class that implement the button functionality and
animation of the button.

3 Add the custom button to the toolbar.

For an example of creating a toolbar button, see Creating a Custom Button.
138

Including Your Own Buttons in the Toolbar
Subclassing gxl-toolbar-button

Creating an Icon

You create an icon for your custom button in the usual manner. To maintain a
consistent look with other buttons, keep the icon height at 32 pixels. You must
retain the named icon regions that are inherited from the parent class:

face
light-shadow
dark-shadow

See the G2 Reference Manual for information on editing the icon.

Adding Help Text

Toolbar buttons can have a help text that appears when the user drags the mouse
pointer over the toolbar button. To add help text to the custom button, you must
use the text resource facility of Gensym Foundation Resources (GFR), which is a
required module of GXL. For information on text resource groups and their use,
see the GFR Reference Manual.

Creating Methods for Your Button

Three methods implement the functionality of a custom button. Their names are:

• gxl-perform-button-function

• gxl-set-button-state

• gxl-reflect-selection-state-in-button

You define the methods with these names for your custom button class.

gxl-perform-button-function

This method is called when the user selects the button. The signature is:

gxl-perform-button-function
(button: class gxl-control-button, spreadsheet: class gxl-spreadsheet,
 view: class gxl-spreadsheet-view, window: class g2-window)

Generally, this method makes calls to the GXL programmer’s interface to find the
selection state of the view, to get and set data, and to interact with other
application objects.

The custom button you create inherits from the class gxl-toolbar-button.
When creating a subclass of gxl-toolbar-button, you follow the usual G2
steps for creating an object definition. In most cases, class-specific
attributes will not be required, but you can add them as needed.
139

Note Do not include a call next method statement in your gxl-perform-button-function
method.

gxl-set-button-state

This method is called in response to a change in the state of the button. The
purpose of this method is to manage the icon colors of the button when the state
of the button changes. The signature is:

gxl-set-button-state
(button: class gxl-control-button, mode: symbol)

where mode s is one of the following symbols:

depress
release
disable

Based on the mode, you can change colors of your button.

When mode is disable, in most cases, you should change the color of icon regions
to the color extra-light-gray, to be consistent with the other buttons on the toolbar.
When the mode is depress or release, you should change the color of icon regions
to the non-disabled colors.

Note You must include a call next method statement in your gxl-set-button-state
method. The next method manages the regions of the icon named light-shadow,
dark-shadow, and face, and sets the gxl-button-state attribute of the button.

gxl-reflect-selection-state-in-button

This method is called each time the user selects cells, rows or columns in the view
associated with the button. The purpose of this method is to enable or disable the
button, depending on the selection state of the view. The signature is:

gxl-reflect-selection-state-in-button
(button: class gxl-control-button, view: class gxl-spreadsheet-view,
 row-is-selected: truth-value, column-is-selected: truth-value,
 cell-is-selected: truth-value, window: class g2-window)

Three arguments summarize the current selection state of the view:

• row-is-selected, which is true if any row is selected.

• column-is-selected, which is true if any column is selected.

• cell-is-selected, which is true if any cell is selected.
140

Creating a Custom Button
You set the state of your button by calling gxl-set-button-state, using the
information contained in these arguments. If required, you can also find out more
details about the selection state of the view, using API functions.

If you do not provide a method by this name, your button will always be enabled.

Note Do not include a call next method statement in the gxl-reflect-selection-state-in-
button method.

Adding the Custom Button to the Toolbar

To add the custom button to the toolbar before creating a view:

 Add the class name to the spreadsheet tools array in the root specification.

You can add the name of the button to the tools array interactively by choosing
edit spreadsheet tools from the root specification menu.

To add the custom button to an existing view:

 Use the API procedure gxl-add-tool-to-toolbar.

Creating a Custom Button
The following example, which is from the Custom Button Example of the
gxldemo KB, creates an Acknowledge button that automatically fills in cells of a
spreadsheet with acknowledgment information. Such a button might be part of a
messaging system.

We begin with a spreadsheet that contains four columns: row selectors, messages,
who responded, and response. For example:
141

The desired behavior is that when a user selects a row containing an
unacknowledged message, the Acknowledge button becomes highlighted.
Selecting the Acknowledge button:

• Fills the Who field with the user name.

• Fills the When field with the current time.

• Unhighlights (disables) the Acknowledge button.

Defining the Custom Button Class

To define the acknowledge button class:

1 Create an object definition.

2 Specify the symbolic class name acknowledge-button.

3 Make gxl-toolbar-button the direct superior class.

4 Add a region to the inherited icon description called icon-symbol.

Do not delete or change the name of any of the inherited icon regions.
Use the characters ACK as the icon symbol.

Adding Help Text

You add help text to the Acknowledge button, using the text resource facility of
Gensym Foundation Resources (GFR). If you do not already have a text resource
object to store text strings used in your application, create one now.

To set up your GFR text resources:

1 Get the GFR top-level workspace and clone the following objects onto your
workspace:

2 Name the text resource group my-resources.

3 Change the gfr-resource-group attribute of the local text resource object to
my-resources.

Text resource group Local text resource
142

Creating a Custom Button
To add a help text string to your button:

1 Get the GXL top-level workspace and make sure that array and list editing is
enabled.

2 Choose edit resource from the menu of the local text resource object.

The following spreadsheet appears:

3 Enter acknowledge-button-help under the column labelled Key and
acknowledge selected message under the column labelled Text.

4 Click OK and save your edits as the permanent values of your local text
resource object.

5 In the attribute initializations of the object definition of the Acknowledge
button, add the following:

gxl-help-text initially is acknowledge-button-help;
gxl-help-resource initially is my-resources

The Acknowledge button now looks like this when you drag the mouse pointer
over the button:

If you create another custom button, you do not need to create another text
resource group or local text resource object; simply add another key-text pair to
the existing local text resource.
143

Creating Methods for the Acknowledge Button

You must create the following methods for the acknowledge-button class:

• gxl-perform-button-function

• gxl-set-button-state

• gxl-reflect-selection-state-in-button

gxl-perform-button-function Example

The gxl-perform-button-function method, which is called when the button is
selected by the user, consists of the following steps:

1 Determine the user name and current time.

2 Determine which rows of the spreadsheet are selected.

3 Iterate over the selected rows and put the responder and time into cells.

4 Refresh the views associated with the spreadsheet.

Note that because gxl-set-cell-contents is being called more than once
consecutively, the update-views argument to this procedure is false, that is, the
views are not redrawn until all the data updates are finished.

gxl-perform-button-function (Button: Class acknowledge-button,
Sheet: class gxl-spreadsheet, View: class gxl-spreadsheet-view,
Win: class g2-window)

FirstRow, LastRow, Row: integer;
Timestamp: text = “[the current real time as a time stamp]”;
Responder: text = the text of the g2-user-name of Win;

begin
FirstRow, LastRow = call gxl-get-selected-row-range (View, Win);
if FirstRow = -1 then return; {No selection}

for Row = FirstRow to LastRow do
call gxl-set-cell-contents (Sheet, Row, 2, Responder, false, Win);
call gxl-set-cell-contents (Sheet, Row, 3, Timestamp, false, Win);

end;
call gxl-refresh-all-views (Sheet, Win);

end
144

Creating a Custom Button
gxl-set-button-state Example

The gxl-set-button-state method is quite simple. When the button is disabled, the
icon-symbol region is colored extra-light-gray, else the icon-symbol is black:

gxl-set-button-state(Button: class acknowledge-button, Mode: symbol

begin
if Mode = the symbol disable
then change the icon-symbol icon-color of Button to extra-light-gray
else change the icon-symbol icon-color of Button to black;
call next method;

end

gxl-reflect-selection-state-in-button Example

The gxl-reflect-selection-state-in-button method is complicated by the
requirement that the Acknowledge button should only be active when a row is
selected that has not already been acknowledged, to prevent a message from
being acknowledged more than once. Therefore, the gxl-reflect-selection-state-in-
button method checks the cell contents in the responder column before setting the
button state:

gxl-reflect-selection-state-in-button (Button: class acknowledge-button,
View: class gxl-spreadsheet-view, RowsSelected: truth-value,
ColsSelected: truth-value, CellsSelected: truth-value, Win: class g2-window)

FirstRow, LastRow, Row: integer;
Responder: text;
Sheet: class gxl-spreadsheet;

begin
if not (RowsSelected)
then call gxl-set-button-state (Button, the symbol disable)
else begin

FirstRow, LastRow = call gxl-get-selected-row-range (View, Win);
Sheet = call gxl-get-spreadsheet-of-view (View, Win);

for Row = FirstRow to LastRow do
Responder = call gxl-get-cell-contents (Sheet, Row, 2, Win);
If Responder /= “!nv”
then begin

call gxl-set-button-state (Button, the symbol disable);
return:

end;
end;
call gxl-set-button-state (Button the symbol release);

end;
end

Note The text “!nv” is returned by gxl-get-cell-contents if the cell is empty.
145

This completes the implementation of the custom button. The following figure
illustrates the results of selecting the Acknowledge button.
146

7

Programming GXL
Describes the programmatic interfaces to GXL.

Introduction 148

Controlling GXL Editing Programmatically 148

Managing Spreadsheet Data Storage 149

Manipulating a Spreadsheet Programmatically 150

User Procedures Called by GXL 152

Initialization Procedures 152

Reinitialization Procedures 154

Validation Procedures 155

Cell Callback Procedures 157

Selection Callback Procedures 159

Return and Tab Key Handler Procedures 161

Scrolling Callback Procedures 163

Matrix Extension Procedures 164

External Data and Color Server Procedures 165

Assigning Views to G2 Windows 167

The Application Programmer’s Interface 167
147

Introduction
You access the full flexibility and power of GXL through its programmatic
interface. This interface has been designed to give complete programmatic access
to all the features of GXL.

Any function that you can access through the user interface, you can also access
programmatically. This gives you, as a G2 developer, the ability to tightly
integrate the spreadsheet into your G2 application.

The programmatic interface to GXL can be divided into two basic categories. The
first category consists of procedures you write that are called by GXL. Examples
include initialization procedures and cell callbacks. The second category, called
the application programmer’s interface (API) to GXL, includes procedures and
methods provided by GXL that you can call at any time.

This chapter describes the various procedures that you provide. Part II, GXL
Reference describes the GXL procedures and methods you can call from your
application.

Controlling GXL Editing Programmatically
You can programmatically control the GXL editing feature as follows:

• To enable editing, conclude that the logical parameter gxl-matrix-and-array-
editing-on = true.

• To disable editing, conclude that the logical parameter gxl-matrix-and-array-
editing-on = false.

If you always want this feature to be active when G2 starts, create a rule that says:

initially conclude gxl-matrix-and-array-editing-on = true.

Controlling the Display of Rows and Columns

When editing G2 lists and arrays, you can control the number of rows and
columns displayed in the spreadsheet view by concluding the desired values into
the following integer parameters:

• gxl-default-rows-for-editing

• gxl-default-columns-for-editing

By default, the value for both parameters equals 5.

You use gxl-default-columns-for-editing only when editing two-dimensional data,
such as a matrix.
148

Managing Spreadsheet Data Storage
Managing Spreadsheet Data Storage
By default, a spreadsheet stores a matrix of values internally. However, you can
also store data externally and programmatically send data to the spreadsheet on
an “as needed” basis.

Internal Data Storage

When a spreadsheet stores data internally, you must programmatically:

• Load data into the spreadsheet from your application, before values can be
displayed.

• Unload or copy data from the spreadsheet, for changes to be reflected in
application objects.

In this mode of operation, the spreadsheet contains a duplicate copy of the
information in the application.

As the following figure illustrates, if your application uses a spreadsheet to edit a
float array, you first create a spreadsheet, then copy the values from the float
array to the spreadsheet. When the user is finished editing the values in the
spreadsheet, you then copy the values back to the float array.

For very large applications, the work of copying the data to the spreadsheet, and
storing the information in duplicate may create a performance or memory
bottleneck.

Float array Spreadsheet

Load data from application
into spreadsheet.

Copy results back
to application object.

View edit session
149

External Data Storage

In the second mode of operation, the spreadsheet contains no data internally.
Instead, the spreadsheet “pulls” data from the application on an as-needed basis,
by calling a data-server procedure that you specify for the gxl-external-data-
server attribute of the root specification. In this mode of operation only a single
copy of the data exists at any time.

As the following figure illustrates, when a cell scrolls into view, the spreadsheet
calls the data-server procedure to determine what value to display in the cell.

In this mode of operation, the memory and time needed to create a copy of the
application’s data is avoided. However, there is extra overhead each time the
spreadsheet needs to access data, so operations like scrolling are somewhat
slower. This should be considered an “advanced” mode of operation because it
requires the user to write more supporting code.

For information on the procedures you must supply if you configure a
spreadsheet specification to obtain its data externally “on demand,” see External
Data and Color Server Procedures.

Manipulating a Spreadsheet Programmatically
Once a spreadsheet has been created, you can programmatically manipulate its
properties, populate it with data, and run callbacks when the user enters data.

The following example shows how some of these techniques are used to create a
spreadsheet whose cell colors reflect the numerical values contained in the
spreadsheet. If the value is less than 50.0, the color will be green, if above 50.0 but
below 100.0, the color will be yellow, and if the value is above 100.0, the color will
be red.

Data-server
procedure

Float array Spreadsheet

Data

Data request

View edit session
150

Manipulating a Spreadsheet Programmatically
First, create the following spreadsheet specification, and name the spreadsheet
specification spec-1:

Using the technique shown in the previous example, remove the OK, Apply and
Cancel buttons from the toolbar that will appear on the view.

Each cell group can name a cell callback procedure, which is a user-written
procedure that GXL calls when data is entered into the cell group (see Cell
Callback Procedures). In this example, the callback procedure named my-callback
has been specified in the data cell group. Here is the callback procedure that
updates the color of the cell based on the value contained in the cell:

my-callback(Sheet: class gxl-spreadsheet, Row: integer,
Column: integer, NewValue: value, Window: class g2-window)

begin
If Val < 50.0 then call gxl-set-color-pattern-of-cell

(Sheet, Row, Column, the symbol green, the symbol
black, the symbol black, true, Window)

else if Val >= 50.0 and Val < 100.0 then call gxl-set-color-
pattern-of-cell (Sheet, Row, Column, the symbol yellow,
the symbol black, the symbol black, true, Window)

else call gxl-set-color-pattern-of-cell(Sheet, Row, Column,
the symbol red, the symbol black, the symbol black,
true, Window)

end

Performing these steps results in a spreadsheet whose cell colors reflect the
magnitude of the values they contain.

gxl-cell-type = float-cell
gxl-callback-procedure = my-callback

gxl-visible-columns = 4
gxl-total-columns = 8

gxl-visible-rows = 4
gxl-total-rows = 8

spec-1
151

Suppose we want to create a view on an existing workspace, workspace-1, and
keep the view as a permanent part of an application. The following code fragment
creates a spreadsheet and a view from spec-1, and makes them permanent:

Sheet = call gxl-create-spreadsheet(spec-1, Win);
transfer Sheet to the workspace of spec-1 at (the item-x-position of

spec-1 - 100, the item-y-position of spec-1)
call gxl-make-spreadsheet-permanent(Sheet, Win);
View = call gxl-create-spreadsheet-view(Sheet, spec-1, workspace-1,

0, 0, Win);
call gxl-make-spreadsheet-view-permanent(View, Win);

The view can be displayed by showing workspace-1 on any G2 window.
Generally, you will create a view for each G2 window where a view is required,
because if you show a single view on multiple windows, the views cannot be
scrolled independently.

User Procedures Called by GXL
You can provide a number of procedures that GXL will call at various stages
during the creation or operation of a spreadsheet. These procedures include:

• Initialization and re-initialization procedures that set cell contents when the
spreadsheet is created, or when dimensions of the spreadsheet are changed.

• Procedures that validate entries into cells.

• Callback procedures, called by GXL when cells are selected, when the
contents of a cell changes, when the user finishes editing a cell, or when views
are scrolled.

• Matrix extension procedures, used if you are unloading data from a
spreadsheet into a matrix.

• Data server procedures, called when the spreadsheet needs to access a cell
value, if the spreadsheet does not store its values internally.

All of these procedures are optional, except data server procedures when a
spreadsheet does not store data internally. If you provide any of these
procedures, you should test your procedures carefully. If there is a run-time error
in your procedure, GXL may not be able to recover and continue processing.

Initialization Procedures
When a spreadsheet is created, you may want to initially fill parts or all of the
spreadsheet with values. For example, you may want to have the days of the
week or times of day entered into a row or column of the spreadsheet. Or, you
may want to initialize a group of integer cells to 0, or default truth-value cells to
true or false.
152

Initialization Procedures
Specifying an Initialization Procedure

The gxl-initialization-procedure attribute of a cell group names the initialization
procedure. Each cell group can have its own initialization procedure that is called
when a spreadsheet is created.

If you use the built-in initialization procedure, gxl-default-initialization, each cell in
the group will be initialized with a standard G2 default value according to the
type of cell in the cell group, as summarized on .

The default value, the symbol unspecified, should be used if you do not provide
an initialization procedure for the group.

To specify an initialization procedure for a cell group:

 Change the gxl-initialization-procedure attribute of the corresponding cell
group specification object to the name of the procedure you want GXL to call.

If you provide your own initialization procedure, the signature of your procedure
must be:

my-initializer
(sheet: class gxl-spreadsheet, group-number: integer,
 init-data: value, first-row: integer, first-col: integer,
 n-rows: integer, n-cols: integer, window: class g2-window)

The arguments passed to your initialization procedure are:

Argument Description

sheet The spreadsheet that is being initialized.

group-number The reference number of the cell group that is
being initialized.

init-data The value specified in the attribute gxl-cell-
group-initialization-data of the cell group
specification object of the cell group being
initialized.

first-row The first row of the uninitialized area of the
cell group.

first-col The first column of the uninitialized area of
the cell group.

n-rows The number of rows in the uninitialized area
of the cell group.
153

For an initialization procedure, the FirstRow, FirstCol, NRows, and NCols
arguments are the starting coordinates and dimensions of the cell group, because
the entire cell group is uninitialized. Inside your procedure, you can use the
spreadsheet, group number, and other arguments, along with GXL’s API to
access properties of the spreadsheet and set values, colors, etc. of the cells in the
cell group.

For example, suppose you want to initialize a cell group with the days of the
week, from Monday through Friday. Assume the spreadsheet has been laid out so
the cell group to contain these values has one row and five columns. Your
initializer procedure should look like this:

days-of-week-initializer(Sheet: class gxl-spreadsheet, GroupNumber:
integer, InitData: value, FirstRow: integer, FirstCol: integer,
NRows: integer, NCols: integer, Win: class g2-window)

begin
call gxl-set-cell-contents(Sheet, FirstRow, FirstCol, “Monday”,

false, Win);
call gxl-set-cell-contents(Sheet, FirstRow, FirstCol + 1, “Tuesday”,

false, Win);
call gxl-set-cell-contents(Sheet, FirstRow, FirstCol + 2, “Wednesday”,

false, Win);
call gxl-set-cell-contents(Sheet, FirstRow, FirstCol + 3, “Thursday”,

false, Win);
call gxl-set-cell-contents(Sheet, FirstRow, FirstCol + 4, “Friday”,

false, Win);
call gxl-refresh-all-views(Sheet, Win);

end

Reinitialization Procedures
You can provide an optional reinitialization procedure that GXL will call
whenever the dimensions of a cell group change by the addition or removal of
rows or columns. By default, anytime GXL adds rows or columns to a
spreadsheet, they are initially empty. Additionally, if there are row or column
selectors, GXL renumbers them, if necessary.

You use a reinitialization procedure whenever you want to initialize the values in
new rows or columns, or perhaps to change values when rows and columns are
deleted.

n-cols The number of columns in the uninitialized
area of the cell group.

window The g2-window originating this call.

Argument Description
154

Validation Procedures
Specifying a Reinitialization Procedure

You specify a reinitialization procedure, using the gxl-reinitialization-procedure
attribute of the appropriate cell group. Each cell group can have its own
reinitialization procedure.

To specify a reinitialization procedure for a cell group:

 Change the gxl-reinitialization-procedure attribute of the corresponding cell
group specification object to the name of the procedure you want GXL to call.

The default value is the symbol unspecified. Once the spreadsheet has been
created from its specification, you can call gxl-set-cell-group-procedure-attribute
to change the reinitialization procedure.

The signature of a reinitialization procedure is the same as an initialization
procedure. You can, in fact, use the same procedure for both initialization and
reinitialization of a cell group if you choose to do so. When a reinitialization
procedure is called, the first-row, first-column, nrows, and ncols arguments
represent the uninitialized area of the cell group (the coordinates of the new rows
or columns). However, if the reinitialization procedure is being called because a
row or column has been deleted, these four arguments are all passed to the
procedure as -1.

Validation Procedures
When a cell receives a manual entry, the entry is automatically validated and
illegal entries are rejected. The acceptable entry depends on the cell type. While
value cells accept any entry, you cannot, for example, enter a text into an integer
cell or a symbol into a truth value cell.

Sometimes, validation by data type is not enough. For example, you may want to
have a text field that only accepts specific text values, such as the names of
specific people working on a project. You may want to enter values from formula
evaluation, or you may want to limit a quantity cell to only accept positive
quantities.

To introduce your own validation, you specify a procedure that GXL will call
after a user has entered a value into a cell, but before GXL actually assigns the
new value to the cell.

Specifying a Validation Procedure

You specify the custom validation procedure that GXL will use to validate the
data input for all cells of a cell group with the gxl-additional-validation-procedure
attribute. Each cell group can have its own validation procedure.
155

To specify an additional validation procedure for a cell group:

 Change the gxl-additional-validation-procedure attribute of the corresponding
cell group to the name of the procedure you want GXL to call.

In a validation procedure, you can:

• Perform any tests on the value, and accept or reject it. If you reject the value,
GXL will optionally post an alert message to the user with a text you provide.

• Return a value different from the value passed to the procedure, which
becomes the value actually put into the cell. You could use this capability to
round off a float value to some fixed precision, to expand abbreviations, etc.

The signature of a validation procedure is:

my-validator
(sheet: class gxl-spreadsheet, row: integer, column: integer,
 new-value: value, window: class g2-window
-> value-or-alert: value, outcome: truth-value

The arguments provided to a validation procedure are:

The values that your procedure must return are:

Argument Description

sheet The spreadsheet that is receiving input from
the user.

row The row of the spreadsheet where the user
input has been received.

column The column of the spreadsheet where the user
input has been received.

new-value The new value that has been input by the
user.

window The g2-window originating this call.

Return Value Description

 value-or-alert The value that is to be placed into the cell, if
the value is accepted, or a text string to be
used as an alert to the user, if the value is not
accepted.

outcome The truth-value indicating whether the value
is accepted, where true indicates that the
value has been validated.
156

Cell Callback Procedures
The first return value is most often the same value that is passed to the procedure,
if the validation passes. If the new value is rejected, you can return a text string
which is posted to the user as a popup dialog. Typically, you advise the user why
the input has been rejected, and inform them of the acceptable values. However, if
you do not want a popup dialog to appear when the value is rejected, return an
empty text string, ““.

Here is a simple validation procedure which only accepts positive integers:

positive-integer-validator(sheet: class gxl-spreadsheet, row: integer,
column: integer, newvalue: value, window: class g2-window) =
(value, truth-value)

begin
if newvalue is not an integer or newvalue <= 0 then return

“A positive integer was expected”, false else return
newvalue, true;

end

GXL always validates the basic value type before calling the user validation
procedure. Therefore, your procedure will receive a NewValue which is
commensurate with the cell type where the data was entered. For a discussion on
data validation, see Validating Data Input.

Cell Callback Procedures
Cell callbacks are procedures you provide to respond to cells receiving new
values. GXL calls these procedures whenever cells receive new values by manual
input or via the API procedure, gxl-set-cell-contents.You can specify a different
callback procedure for each cell group.

Callback Restrictions

When using callback procedures, consider the following restrictions:

• Callbacks are not used when you load data into a spreadsheet via gxl-load-
data-into-defined-area or gxl-load-data-into-cell-group.

• If a user loads data from a file with the Load from File button on the toolbar,
callbacks on the cells are not activated.

• There are no callbacks when cell colors are changed.

Specifying a Callback Procedure

You specify a callback procedure for a cell group before the spreadsheet is created
by naming the procedure, using the gxl-initialization-procedure attribute of a cell
group. Each cell group can have its own initialization procedure that GXL calls
when creating the spreadsheet.
157

To specify the callback of a cell group before a spreadsheet is created:

 Change the gxl-callback attribute of the cell group specification object to the
name of the procedure you want GXL to call

You assign a callback procedure to a cell group, not individual cells. The
signature of a callback procedure is:

my-callback
(sheet: class gxl-spreadsheet, row: integer, column: integer,
 new-value: value, window: class g2-window)

The arguments provided to a callback procedure are:

Inside a callback procedure, you can perform any G2 actions. You may want to
update other cells in the same spreadsheet, or change the colors of the cell that
received the value. Or, you could use the callback to trigger communications with
a user, or do processing in other objects in the KB.

Note While processing is taking place inside your callback, the spreadsheet processing
is suspended. Therefore, in general, you should not place wait states inside your
callback. The safe way to introduce wait states into a callback is to have your
callback start another procedure that contains the wait state.

Changing a Callback Procedure of an Existing Spreadsheet

To change the callback procedure of a cell group for an existing spreadsheet:

 use the API procedure gxl-set-cell-group-procedure-attribute.

Argument Description

sheet The spreadsheet that received a new cell
value.

row The row coordinate of the spreadsheet that
received a new value.

column The column coordinate of the spreadsheet
that received a new value.

new-value The new value now contained by the cell.

window The g2-window originating this call.
158

Selection Callback Procedures
Activating and Deactivating Cell Callbacks

Sometimes, you might want to set cell values without activating the callbacks.
You can dynamically activate or deactivate cell callbacks in a spreadsheet by
changing the gxl-callbacks-enabled attribute of the spreadsheet. By default, this
attribute is true for any spreadsheet.

To deactivate all callbacks for an existing spreadsheet:

 Change the gxl-callbacks-enabled attribute of the spreadsheet to false.

Changing this attribute to true re-activates all callback procedures of the
spreadsheet.

For an example of using a callback procedure, see Manipulating a Spreadsheet
Programmatically.

Selection Callback Procedures
Selection callbacks are procedures you provide to respond when cells are
selected. GXL calls your selection callback procedure in response to:

• Manual selection of one or more cells on a spreadsheet view.

• Programmatic selection, using gxl-set-selection-limits.

Specifying a Selection Callback Procedure

You can specify a different selection callback for each cell group, or specify a
single callback for all selections made anywhere on a view.

To specify a selection callback of a cell group before a spreadsheet is created:

 Change the gxl-selection-callback-procedure attribute of the corresponding
cell group specification object to the name of the procedure you want GXL to
call.

The signature of the selection callback procedure that you provide is:

my-selection-callback
(sheet: class gxl-spreadsheet, view: class gxl-spreadsheet-view,
first-row: integer, first-col: integer, n-rows: integer,
 n-cols: integer, window: class g2-window)
159

The arguments provided to the selection callback procedure are:

When the selection is a single cell or multiple cells within a single cell group, GXL
calls the selection callback once. The arguments to the selection callback provide
information on the extent of the selection.

When the selection spans multiple cell groups, each cell group involved in the
selection receives one call to its selection callback, if it has one. The arguments of
the callback indicate the cells within the cell group that have been selected.

For example, the following spreadsheet view displays a selection as indicated in
black:

Argument Description

sheet The spreadsheet corresponding to the view
where the selection has taken place.

view The view where the selection has taken place.

first-row The first row of the selection within the cell
group requesting this callback.

first-col The first column of the selection within the
cell group requesting this callback.

n-rows The number of rows in the selection within
the cell group requesting this callback.

n-cols The number of columns in the selection
within the cell group requesting this callback.

window The g2-window originating this call.

0 1 2

43

6 7 8

5

0 1 2 3 4 5 6 7 8 9
0
1
2
3
4
5
6
7
8
9
10
11
12
13
160

Return and Tab Key Handler Procedures
The four callbacks are:

• To the selection callback of cell group 4, where:

first-row = 6, first-col = 5, n-rows = 1, n-cols = 1

• To the selection callback of cell group 5, where:

first-row = 6, first-col = 6, n-rows = 1, n-cols = 2

• To the selection callback of cell group 7, where:

first-row = 7, first-col = 5, n-rows = 3, n-cols = 1

• To the selection callback of group 8, where:

first-row = 7, first-col = 6, n-rows = 3, n-cols = 2

To change the selection callback of a cell group for an existing spreadsheet:

 Use the API procedure gxl-set-cell-group-procedure-attribute.

Using a Single Selection Callback on a View

Alternately, you can define a selection callback procedure in the root specification
that GXL calls in response to every selection event on a view of the spreadsheet.

To specify a single selection callback for use with every selection event:

 Change the gxl-selection-callback attribute of the root specification to the
name of the procedure you want GXL to call.

Return and Tab Key Handler Procedures
When a user finishes manually editing a cell using the return key or the tab key,
GXL advances to the next editable cell within the cell group. For a discussion of
the default movement in response to the return key and tab key, see Moving the
Editor within a Cell Group.

To summarize the default movement:

• In response to the return key, GXL advances to the cell directly below the
current cell, unless it is in the last row of a cell group, in which case GXL
advances to the first row of the next column in the cell group.

• In response to the tab key, GXL advances to the next column in the cell group,
or to the first column of the next row in the cell group.

• GXl does not respond to pressing the return or tab keys if the cell is the last
cell in the cell group.

You can override this behavior by providing a return and tab key handler
procedure that explicitly directs GXL to the next editable cell.
161

Note that the only way you can make GXL cross cell group boundaries when
advancing the editor is by providing your own return and tab key handler.

Specifying a Return and Tab Key Handler

You specify a custom return and tab key handler procedure in the root
specification object of a spreadsheet specification.

To specify a return and tab key handler procedure:

 Change the gxl-return-and tab-key-handler attribute of the root specification to
the name of the procedure you want GXL to call.

The signature of the return and tab key handler procedure that you provide is:

my-return-and-tab-key-handler
(sheet: class gxl-spreadsheet, view: class gxl-spreadsheet-view,
key: symbol, row: integer, column: integer, window: class g2-window)
-> (row: integer, column: integer)

The arguments provided to the return and tab key handler procedure are:

The values that your procedure must return are:

Argument Description

sheet The spreadsheet corresponding to the view on
which the return or tab key has been used.

view The view on which the return or tab key has
been used.

key The symbol corresponding to the key used:

return or tab

row The row location of the cell whose edit has
just been completed.

column The column location of the cell whose edit has
just been completed.

window The g2-window originating this call.

Return Value Description

row The row location of the next cell to be edited.

column The column location of the next cell to be
edited
162

Scrolling Callback Procedures
If the editor should not advance to another cell, the procedure should return -1, -1.

Scrolling Callback Procedures
In the root specification, you can name procedure that GXL calls whenever a view
is scrolled to a new position. You use this procedure to respond to scrolling events
in any way necessary in your application.

Specifying a Scrolling Callback Procedure

You specify a custom scrolling callback procedure in the root specification object
of a spreadsheet specification.

To specify a scrolling callback procedure:

 Change the gxl-scroll-callback attribute of a root specification to the name of
the procedure you want GXL to call in response to a scrolling event.

The signature of the scrolling callback procedure that you provide is:

my-scroll-callback
(sheet: class gxl-spreadsheet, view: class gxl-spreadsheet-view,
controller: integer, scroll-area: symbol, scroll-position: integer,
 window: class g2-window)

The arguments provided to the selection callback procedure are:

Argument Description

sheet The spreadsheet corresponding to the View
where the scrolling event occurred.

view The view where the scrolling event occurred.

controller The reference number (starting at 0) of the
row or column controller where the scrolling
event occurred.

scroll-area One of the following symbols:

• row if the view has been scrolled to a new
vertical position.

• column if the view has been scrolled to a
new horizontal position.
163

For example, if we have six cell groups laid out 2 row controllers by 3 column
controllers, then and we scroll cell groups 2 and 5 using the horizontal scroll bar
at the bottom of the group, then the symbol in the call is COLUMN, and the
controller number is 2.

Matrix Extension Procedures
A matrix consists of an item-array or item-list, or “spine,” containing vectors
which constitute the “ribs” of the matrix. Using gxl-unload-data-from-defined-
area or gxl-unload-data-from-cell-group, you can copy data from a spreadsheet
area or cell group into a matrix.

When copying spreadsheet data into a matrix, GXL might have to extend the
matrix to accommodate the data in the spreadsheet. However, GXL does not have
the necessary information to decide what class of vector it should create as ribs of
the extended spine.

For example, even if the spreadsheet contains all integers, it is not clear whether
GXL should create an integer-array or integer-list, or a user-defined subclass of
integer-array or integer-list.

In general, therefore, you need to provide a procedure that GXL can call to extend
a matrix when it is unloading data from the spreadsheet into the matrix. Your
matrix extension procedure must add the proper number and type of arrays or
lists to the spine of the matrix.

Specifying a Matrix Extension Procedure

You specify a custom matrix extension procedure with the gxl-matrix-extension-
procedure attribute of the root specification.

To specify your matrix extension procedure:

 Change the gxl-matrix-extension-procedure attribute of the root specification
to the name of your procedure.

If the gxl-matrix-extension-procedure attribute is set to the symbol unspecified,
GXL will use the most specific type of array (not list) that accommodates the data
contained in the corresponding row or column of the spreadsheet.

scroll-position The reference number (starting with 0) of the
scroll position. The scroll position is 0 if you
are at the top or left side of a scrollable area,
and increments 1 per row or column exposed.

window The g2-window originating this call.

Argument Description
164

External Data and Color Server Procedures
For details on the signature of the procedure you provide, and a discussion on
copying spreadsheet data to a matrix, see Unloading Two-Dimensional (Matrix)
Data.

External Data and Color Server Procedures
GXL spreadsheets can store data internally or depend on the application to
provide data to the spreadsheet on demand. For a discussion on these two modes
of data storage and their performance and memory characteristics, see Managing
Spreadsheet Data Storage.

If you have configured your spreadsheet to obtain its data from the application on
demand (root specification attribute gxl-store-data-internally = false), you must
provide a procedure to get the externally stored value of a cell. You name this
procedure in the gxl-external-data-server attribute of the root specification.

The gxl-external-color-server attribute of the root specification, which specifies a
procedure that gets the color pattern of a cell, can be unspecified.

Specifying External Data and Color Server
Procedures

You specify the custom external data and color server procedures in the root
specification object of a spreadsheet specification.

To specify the external data server and color server:

 Change the following attributes in the root specification to the symbolic
names of the procedures GXL should call.

• gxl-external-data-server

• gxl-external-color-server

External Data Server Procedure

GXL calls the external data server procedure whenever it needs to have the
current value of a cell. This could be when the cell value is displayed, or when the
value is referenced by sorting, or by a formula.

The signature of the external data server procedure that you provide is:

my-data-server
(sheet: class gxl-spreadsheet, row: Integer, column: Integer)
-> (contents: value)
165

The arguments provided to the external data server procedure are:

The value that your procedure must return is:

External Color Server Procedure

GXL calls the color server procedure whenever a cell needs to be displayed on a
view. The procedure returns the background, text and border colors as symbols.

The signature of the external color server procedure that you provide is:

my-color-server
(sheet: class gxl-spreadsheet, row: Integer, column: Integer
-> (background-color: symbol, text-color: symbol, border-color: symbol)

The arguments provided to the external color server procedure are:

Argument Description

sheet The spreadsheet for which the current value is
needed.

row The row location of the cell for which the
value is needed.

column The column location of the cell for which the
value is needed.

Return Value Description

contents The current value for the given Row-Column
location.

Argument Description

sheet The spreadsheet corresponding to the view
whose cell is to be displayed.

row The row location of the cell to be displayed.

column The column location of the cell to be
displayed.
166

Assigning Views to G2 Windows
The values that your procedure must return are:

If you want the default color pattern applied to the cell, your color server should
return the symbols default, default, default.

When returning a color pattern for the cell, you cannot mix a return of default
with other non-default colors.

Assigning Views to G2 Windows
Views are an assembly of objects on a conventional KB workspace. Using
Telewindows, it is possible to show a workspace containing a view on multiple
windows. However, to do so would defeat the purpose of the view, which is that
each client should be able to scroll and perform other operations independently of
other clients. The simple rule to follow is this:

When you need to display data from a spreadsheet on multiple windows,
give each window its own view.

There is one exception: if a view is read-only and cannot scroll, you can safely
show it on multiple windows. In such a case, every client sees the same thing,
eliminating any interference between different clients.

If you use the programmatic interface to GXL, the mechanism for assigning views
to windows is through G2’s show command. You can create any number of views
of a spreadsheet using the API procedure, gxl-create-spreadsheet-view, which is
described on . Then, you simply show the workspace of a particular view on the
desired g2-window.

The Application Programmer’s Interface
All interactions with the spreadsheet module take place through a small set of
specially-designated “public interface” procedures, methods, classes, and
attributes. These items are referred to as the Application Programmer’s Interface
(API).

Return Value Description

background-color The background color of the cell.

text-color The text color of the cell.

border-color The border color of the cell.
167

Because G2 does not have a mechanism to distinguish public and private classes
and attributes, GXL uses a naming convention to help you differentiate the API,
from the internal parts of GXL. The convention is simply this:

Items and attributes whose name begins with the prefix _gxl- are private.
You may not refer to, alter, or subclass any item or attribute whose name
begins with _gxl-.

Only items whose names begin with gxl- are part of the public interface to GXL. A
public class may have private attributes. Unless otherwise documented, public
classes must not be subclassed.

Caution Using the Inspect facility, you may be able to view private items and attributes.
However, you must never refer to these items programmatically or edit them
manually.

The API to GXL consists of G2 procedures and methods, which you access by
writing your own G2 procedures that call these API procedures methods. In some
cases, you may create subclasses of GXL classes, and write methods on your
subclasses. See the G2 Reference Manual for more information about G2
procedures, subclassing and methods.

In some cases, the API allows you to do things you cannot do from the graphical
user interface, for example, overriding the protections on a view, setting cell
values without type checking, and suppressing view updating. Because of these
capabilities, use of the programmatic API requires a greater understanding of the
design concepts of GXL than does manual use. You should be thoroughly familiar
with the nomenclature of GXL, and the basics of specifications, spreadsheets, and
views before using the API.

All API procedures require a g2-window as their last argument. In general, this is
the window where the call originated. The purpose of passing the window is to
identify the client for whom the action is being carried out. User mode, language
and other properties of the client are accessed through the window argument.
When you begin a thread of processing from an action button or user menu
choice, the window is accessible with the this window syntax in the action of the
button or menu choice. Only when you start a procedure through a rule is there a
problem associating a window with a thread of processing. In this case, use gfr-
default-window as the window argument.

Workspaces containing the GXL programmer’s interface of procedures and
methods are available from the GXL top-level workspace.
168

The Application Programmer’s Interface
Accessing the API

You can access the API procedures and methods from the GXL top-level
workspace.

To access the API to GXL:

1 Choose Main Menu > Get Workspace > gxl-top-level.

2 Click the button next to Gxl-Programmers-Interface.

The following subworkspace appears:

3 Click the button next to the category you want to display.

Each category has a corresponding chapters in Part II, which describes each
related API procedure or method in detail.

The API for... Begins on...

Creation and deletion operations

Loading and unloading data

Accessing spreadsheet and view properties

Setting spreadsheet and view properties

Additional view procedures

Row and column operations
169

Toolbar procedures

Tabular edit operations

The API for... Begins on...
170

Part II
API Reference
Chapter 8: Creation and Deletion Operations

Describes the API procedures for creating and deleting GXL spreadsheets and views.

Chapter 9: Loading and Unloading Data

Describes the API procedures for loading and unloading spreadsheet data.

Chapter 10: Accessing Spreadsheet and View Properties

Describes the API procedures for accessing GXL spreadsheet and view properties.

Chapter 11: Setting Spreadsheet and View Properties

Describes the API procedures for accessing GXL spreadsheet and view properties.

Chapter 12: Additional View Procedures

Describes miscellaneous API procedures related to GXL views.

Chapter 13: Row and Column Operations

Describes the API methods for adding and deleting rows and columns, and API procedures
for sorting.
171

Chapter 14: Toolbar Procedures

Describes the API procedures for managing the appearance of toolbars on GXL spreadsheet
views.

Chapter 15: Tabular Edit Operations

Describes the API procedures for launching and managing GXL edit sessions.
172

8

Creation and
Deletion Operations
Describes the API procedures for creating and deleting GXL spreadsheets
and views.

Introduction 174

gxl-clone-spreadsheet 175

gxl-collect-specification 176

gxl-create-and-display-simple-spreadsheet 178

gxl-create-and-display-spreadsheet-view 180

gxl-create-spreadsheet 181

gxl-create-spreadsheet-from-collected-specification 182

gxl-create-spreadsheet-view 184

gxl-create-spreadsheet-view-from-collected-specification 186

gxl-delete-spreadsheet 188

gxl-delete-view 189

gxl-layout-specification 190

gxl-make-spreadsheet-permanent 192

gxl-make-spreadsheet-view-permanent 194
173

Introduction
This chapter describes the procedures of the Application Programmer’s Interface
to GXL that you can use to programmatically create and delete spreadsheets and
views.

The basic procedure for creating a spreadsheet is gxl-create-spreadsheet. Once a
spreadsheet has been created, you can create one or more views using gxl-create-
spreadsheet-view.

Only permanent spreadsheets and views can survive G2 resets. To make a
spreadsheet or view permanent, use the procedures gxl-make-spreadsheet-
permanent or gxl-make-spreadsheet-view-permanent.

You can clone a spreadsheet programmatically, using gxl-clone-spreadsheet.
However, you cannot clone a spreadsheet view.

To create and display a spreadsheet with a simple format in a single step, use gxl-
create-and-display-simple-spreadsheet. To display a view of a given spreadsheet
on a new workspace, use gxl-create-and-display-spreadsheet-view.

To delete a spreadsheet or view programmatically, use the procedures gxl-delete-
spreadsheet and gxl-delete-view.

The following procedures work with specifications as organized sets of lists to
create spreadsheets and views:

• gxl-collect-specification parses an existing specification layout on a workspace
and returns the layout as an organized set of lists.

• gxl-create-spreadsheet-from-collected-specification creates a spreadsheet
from a specification in the form of an organized set of lists.

• gxl-create-spreadsheet-view-from-collected-specification creates a
spreadsheet view from an organized set of lists.

You can also construct a specification on a workspace from an organized set of
lists, using gxl-layout-specification.

See The Application Programmer’s Interface for related information.
174

gxl-clone-spreadsheet
gxl-clone-spreadsheet
Produces a spreadsheet by cloning another spreadsheet.

Synopsis

gxl-clone-spreadsheet
(sheet: class gxl-spreadsheet, window: class g2-window)
-> spreadsheet: class gxl-spreadsheet

Description

This procedure creates a new spreadsheet that has properties derived from the
given sheet:

• The transient dimensions, data values and cell formats in the cloned
spreadsheet are the same as the source spreadsheet.

• The permanent dimensions, data values, and cell formats in the cloned
spreadsheet are the same as the source spreadsheet.

• The cloned spreadsheet does not have any views, even if the source
spreadsheet had one or more views.

• The cloned spreadsheet does not have a name.

Example

The following call creates a spreadsheet named spreadsheet-2, based on
spreadsheet-1:

spreadsheet-2 = call gxl-clone-spreadsheet(spreadsheet-1, win);

Argument Description

sheet The spreadsheet that is to be cloned.

window The g2-window originating this call.

Return Value Description

spreadsheet The spreadsheet created by this call.
175

gxl-collect-specification
Parses a specification layout on a workspace and returns the layout as an
organized set of lists.

Synopsis

gxl-collect-specification
(root-spec: class gxl-root-specification, window: class g2-window)
-> row-controllers: class: item-list, column-controllers: class: item-list,

cell-groups: class: item-list

Description

This procedure creates three item-lists: one each for the cell-groups, row-
controllers, and column-controllers of the particular specification. Starting with
the given root-spec, it checks for connected row-controllers and inserts them in
consecutive order in the row-controllers item-list. Next, it checks for connected
column-controllers, and inserts them in consecutive order in the column-
controllers item-list. Finally, based on the number of row-controllers, it checks for
connected cell-groups in each row and inserts them in order in the gxl item-list.

If the total number of elements in the cell-groups item-list is zero (0) or does not
equal the total number of elements in column-controllers times the total number of
elements in row-controllers, this procedure signals an error (gxl-bad-specification-
structure).

Argument Description

root-spec The root specification whose workspace
layout is returned as a set of lists.

window The g2-window originating this call.

Return Value Description

row-controllers An item list of the row-controllers of the
specification

column-controllers An item list of the column-controllers

cell-groups An item-list of the cell-groups
176

gxl-collect-specification
Example

The following call parses the layout of root-spec-1 and returns item-lists of its row
controllers, column controllers and cell groups.

RowCont, ColCont, CellGroup = call gxl-collect-specification (root-spec-1, win);
177

gxl-create-and-display-simple-spreadsheet
Creates a spreadsheet with one editable area with given dimensions, font size,
and cell type, and displays a view on a window.

Synopsis

gxl-create-and-display-simple-spreadsheet
(cell-type: symbol, total-rows: integer, total-columns: integer,
 visible-rows: integer, visible-columns: integer, cell-width: integer,
 cell-height: integer, font-size: symbol, window: class g2-window)
-> spreadsheet: class gxl-spreadsheet, view: class gxl-spreadsheet-view

Argument Description

cell-type The type of data cell in the editable area,
which can be one of the following symbols:
value-cell, quantity-cell, float-cell, integer-cell,
truth-value-cell, symbol-cell or text-cell

total-rows The number of rows in the spreadsheet.

total-columns The number of columns in the spreadsheet.

visible-rows The number of data rows to show in the view.

visible-columns The number of data columns to show in the
view.

cell-width The width of the cells, in pixels.

cell-height The height of the cells, in pixels.

font-size The font size for the data cells, either the
symbol small, large or extra-large.

window The g2-window where the spreadsheet view
is to be shown.

Return Value Description

spreadsheet The spreadsheet created by this call.

view The view created by this call.
178

gxl-create-and-display-simple-spreadsheet
Description

This procedure creates a spreadsheet that has row selectors in the first column
and column selector cells in the first row, and a single rectangular data area. It
displays a view of the spreadsheet on the given window.

Example

The following example creates the view shown in the figure:

spreadsheet, view = call gxl-create-and-display-simple-spreadsheet
(the symbol float-cell, 4, 10, 5, 5, 80, 28, the symbol small, win);
179

gxl-create-and-display-spreadsheet-view
Creates a spreadsheet view on a new workspace, and shows the workspace on a
window.

Synopsis

gxl-create-and-display-spreadsheet-view
(sheet:class gxl-spreadsheet, root-spec: class gxl-root-specification,
 window: class g2-window)
-> view: class gxl-spreadsheet-view

Description

This procedure creates a workspace and creates a view of the given sheet on the
workspace, and then displays the view on the given window. The arguments to
this function have the same meaning as in gxl-create-spreadsheet. The view is
displayed at the center of the screen.

Example

The following example displays a view of the spreadsheet named spreadsheet-1,
based on the root specification named root-spec-1 on the g2-window win:

view = call gxl-create-spreadsheet-view(spreadsheet-1, root-spec-1, win);

Argument Description

sheet The spreadsheet that contains the data to be
viewed.

root-spec The root of the graphical specification which
describes the spreadsheet view to be created.

window The g2-window where the spreadsheet view
is to be shown.

Return Value Description

view The view created by this call.
180

gxl-create-spreadsheet
gxl-create-spreadsheet
Creates a spreadsheet from a specification.

Synopsis

gxl-create-spreadsheet
(root-spec: class gxl-root-specification, window: class g2-window)
-> spreadsheet: class gxl-spreadsheet

Description

This procedure creates a spreadsheet based on the information contained in a
graphical specification, which consists of a root specification connected to row
and column controllers, which in turn are connected to cell group specifications.
The specification must be well-posed: there must be at least one row controller
and at least one column controller connected to the root specification, and the cell
groups must fall into the rectangular grid established by the row and column
controllers.

This procedure does not create a view of the spreadsheet.

Example

The following example returns a spreadsheet based on the root specification
named root-spec-1:

spreadsheet = call gxl-create-spreadsheet(root-spec-1, win);

Argument Description

root-spec The root of the graphical specification which
describes the spreadsheet to be created.

window The g2-window originating this call.

Return Value Description

spreadsheet The spreadsheet created by this call.
181

gxl-create-spreadsheet-from-collected-
specification

Creates a spreadsheet from a specification in the form of an organized set of lists.

Synopsis

gxl-create-spreadsheet-from-collected-specification
(root-spec: class gxl-root-specification, row-controllers: class: item-list,
column-controllers: class: item-list, cell-groups: class: item-list,
window: class g2-window)
-> spreadsheet: class gxl-spreadsheet

Description

This procedure returns an instance of the spreadsheet class based on the
information provided by the given root-spec, and the item lists of row-controllers,
column-controllers, and cell-groups.

Argument Description

root-spec The root specification containing the
information from which the spreadsheet is
created.

row-controllers The ordered item-list of the row-controllers
associated with the root specification.

column-controllers The ordered item list of the column
controllers associated with the root
specification.

cell-groups The ordered item list of the cell-groups
associated with the root specification.

window The g2-window originating this call.

Return Value Description

spreadsheet The resulting spreadsheet.
182

gxl-create-spreadsheet-from-collected-specification
Example

Given the item-lists of row controllers, column controllers, and cell groups for
root-spec-1, the following call creates the spreadsheet.

sheet = call gxl-create-spreadsheet-from-collected-specification
(root-spec-1, row-item-list, col-item-list, cgroup-item-list, win);
183

gxl-create-spreadsheet-view
Creates a spreadsheet view for an existing spreadsheet based on a specification.

Synopsis

gxl-create-spreadsheet-view
(sheet:class gxl-spreadsheet, root-spec: class gxl-root-specification,
 workspace: class kb-workspace, x: integer, y: integer,
 window: class g2-window)
-> view: class gxl-spreadsheet-view

Description

This procedure creates a view of the given spreadsheet using a graphical
specification. The root-spec argument does not have to be the same specification
that was used to create the spreadsheet, but the specification must have the same
number of row and column controllers as the original specification, otherwise an
error is signalled.

Argument Description

sheet The spreadsheet that contains the data to be
viewed.

root-spec The root of the graphical specification which
describes the spreadsheet view to be created.

workspace The workspace on which the view is to be
placed.

x The horizontal position, in workspace units,
where the first cell of the spreadsheet view is
to be drawn.

y The vertical position, in workspace units,
where the first cell of the spreadsheet view is
to be drawn.

window The g2-window originating this call.

Return Value Description

view The view created by this call.
184

gxl-create-spreadsheet-view
This procedure builds the view on the given workspace, placing the upper left-
hand corner of the first cell at the given (x, y) coordinate. This procedure does not
display the workspace containing the view.

Note This procedure requires that its execution be interrupted to allow other
processing to occur. For more information, see “Allow Other Processing” in
Chapter 21, “Procedures” in the G2 Reference Manual.

Example

The following example builds a view of the spreadsheet named spreadsheet-1 on
workspace-1 starting at the origin, based on the root specification named root-
spec-1:

view = call gxl-create-spreadsheet-view (spreadsheet-1, root-spec-1,
workspace-1, 0, 0, win);
185

gxl-create-spreadsheet-view-from-collected-
specification

Creates a spreadsheet view from an organized set of lists.

Synopsis

gxl-create-spreadsheet-view-from-collected-specification
(sheet: class gxl-spreadsheet, root-spec: class gxl-root-specification,
row-controllers: class: item-list, column-controllers: class: item-list,
cell-groups: class: item-list, workspace: class kb-workspace,
x-origin: integer, y-origin: integer, window: class g2-window)
-> view: class gxl-spreadsheet-view

Argument Description

sheet The spreadsheet for which the view is
created.

root-spec The root-specification of the Sheet

row-controllers The ordered item-list of the row-controllers
associated with the root specification.

column-controllers The ordered item list of the column
controllers associated with the root
specification

cell-groups The ordered item list of the cell-groups
associated with the root specification

workspace The workspace on which the instance of the
spreadsheet view is placed.

x-origin The x origin coordinate on the workspace
that is referenced when constructing the
spreadsheet view.

y-origin The y origin coordinate on the workspace
that is referenced when constructing the
spreadsheet view.

window The g2-window originating this call.
186

gxl-create-spreadsheet-view-from-collected-specification
Description

After creating an instance of the class of view named by the gxl-spreadsheet-view-
class attribute of the given root-spec, this procedure defines and returns the view
based on the information provided.

If the total number of elements in the row-controllers, column-controllers, and cell-
groups do not check out, this procedure signals an error (gxl-bad-specification-
structure).

Example

The following call creates and returns the view of spreadsheet-1 from the layout
specification of root-spec-1:

spreadsheet-view = call gxl-create-spreadsheet-view-from-collected-specification
(spreadsheet-1, root-spec-1, row-item-list, col-item-list,
cgroup-item-list, wkspace,0, 0, win);

Return Value Description

view The resulting spreadsheet view
187

gxl-delete-spreadsheet
Deletes a spreadsheet and all its views.

Synopsis

gxl-delete-spreadsheet
(sheet: class gxl-spreadsheet, window: class g2-window)

Description

This procedure deletes a given sheet and all of its views. The deletion of a view
has the side effect of deleting the workspace of the view if there are no remaining
items on the workspace after the view is deleted. If the spreadsheet or any of its
views are permanent, this call will first make them transient, and then perform
the deletion.

Example

The following call deletes the spreadsheet named spreadsheet-1 and all the views
of spreadsheet-1:

call gxl-delete-spreadsheet(spreadsheet-1, win);

Argument Description

sheet The spreadsheet that is to be deleted.

window The g2-window originating this call.
188

gxl-delete-view
gxl-delete-view
Deletes a view.

Synopsis

gxl-delete-view
(view: class gxl-spreadsheet-view, window: class g2-window)

Description

This procedure deletes a given spreadsheet view. The deletion of a view has the
side effect of deleting the workspace of the view if there are no remaining items
on the workspace after the view is deleted.

If the view is permanent, this procedure will make it transient and then perform
the deletion. This procedure also deletes the toolbar, pushbuttons, indicator and
formula bar associated with the view.

Example

The following call will delete a spreadsheet view-1:

call gxl-delete-view(view-1, win);

Argument Description

view The view that is to be deleted.

window The g2-window originating this call.
189

gxl-layout-specification
Constructs the specification on a workspace from an organized set of lists.

Synopsis

gxl-layout-specification
(root-spec: class gxl-root-specification, row-controllers: class: item-list,
column-controllers: class: item-list, cell-groups: class: item-list,
workspace: class kb-workspace, x-origin: integer, y-origin: integer)

Description

Given the ordered item lists of column-controllers, row-controllers, and cell-
groups for a particular specification, this procedure creates the specification on a
workspace. Beginning with the root-spec, it places the root-specification object on
the Workspace at the location specified by XOrigin, YOrigin. Then it places and
connects the column-controllers, row-controllers, and cell-groups on the
workspace.

Argument Description

root-spec The root specification for which the layout
of specification objects will be constructed
on the Workspace.

row-controllers The ordered item-list of the row-controllers

column-controllers The ordered item list of the column
controllers

cell-groups The ordered item list of the cell-groups

workspace The workspace upon which the specification
layout is constructed

x-origin The x origin coordinate on the workspace
that is referenced when constructing the
specification.

y-origin The y origin coordinate on the workspace
that is referenced when constructing the
specification.
190

gxl-layout-specification
Example

Given the item-lists of root-spec-1, the following call constructs the specification
on a workspace.

new-spec = gxl-layout-specification (root-spec-1, row-item-list,
col-item-list, cellgroup-item-list, workspace-1, 0,0);
191

gxl-make-spreadsheet-permanent
Makes the spreadsheet and its current state persistent.

Synopsis

gxl-make-spreadsheet-permanent
(sheet: class gxl-spreadsheet, window: class g2-window)

Description

Objects that are created programmatically in G2 are transient (non-persistent)
unless they are specifically made permanent. A permanent object will survive a
G2 reset, and can be saved in a KB file. For more information on permanence in
G2, see the G2 Reference Manual.

Calling this procedure makes an instance of a gxl-spreadsheet permanent. In
addition, calling this procedure preserves the current state of the spreadsheet as
the initial state of the spreadsheet. The state of a spreadsheet includes the data,
dimensions, and format information. The initial state of the spreadsheet becomes
the state of the spreadsheet the next time G2 is started. You may call this
procedure with a spreadsheet that is already permanent, as a way to set the initial
state.

If the spreadsheet has views, they are not made permanent by this call.

Example

Suppose we create a spreadsheet named spreadsheet-1, that initially contains 3
rows and 3 columns, and load it with data. Call this state 1.

Now make the following call:

call gxl-make-spreadsheet-permanent(spreadsheet-1, win);

Suppose that we now perform various operations, such as editing data, adding
and deleting rows and columns, sorting; so the spreadsheet is now 2 rows by 6
columns (call it state 2).

Argument Description

sheet The spreadsheet that is to be made
permanent.

window The g2-window originating this call.
192

gxl-make-spreadsheet-permanent
We now reset and start (or restart) G2. When G2 starts, the spreadsheet is back in
state 1. This is illustrated next:

Add data

Further
operations

newly-created 3x3
spreadsheet
(transient)

spreadsheet in
state 1
(transient)

spreadsheet in
state 1(3x3)
(permanent)

spreadsheet
in state 2 (2x6)
(permanent)

gxl-make-
spreadsheet-
permanent

G2 reset/start or save/load
193

gxl-make-spreadsheet-view-permanent
Makes a view permanent, and additionally, calls gxl-make-spreadsheet-
permanent on the spreadsheet associated with the view.

Synopsis

gxl-make-spreadsheet-view-permanent
(view: class gxl-spreadsheet, window: class g2-window)

Description

A view is a collection of G2 items anchored by an instance of a gxl-spreadsheet-
view. This procedure makes a gxl-spreadsheet-view and all of its associated items
permanent. In addition, calling this procedure preserves the current state of the
view as the initial state of the view. The state of a view includes the editability and
selectability of the cell groups and the scroll position. If you restart G2, the state of
the view at the time you made the call to gxl-make-spreadsheet-view-permanent
returns. You may call this procedure with a view that is already permanent, to set
the initial state of the view.

The spreadsheet associated with the view is always made permanent at the same
time as the view is made permanent, to assure consistency between the view and
the spreadsheet.

Example

The following call makes view-1 permanent and preserves its current state as the
initial state:

call gxl-make-spreadsheet-view-permanent(view-1, win);

Argument Description

view The view that is to be made permanent.

window The g2-window originating this call.
194

9

Loading and
Unloading Data
Describes the API procedures for loading and unloading spreadsheet data.

Introduction 195

gxl-load-data-into-cell-group 197

gxl-load-data-into-defined-area 199

gxl-unload-data-from-cell-group 204

gxl-unload-data-from-defined-area 206

gxl-save-spreadsheet-area-to-stream 213

Introduction
This chapter describes the procedures of the Application Programmer’s Interface
to GXL that you can use to programmatically move multiple data items into and
out of the spreadsheet. You can programmatically add data to areas of the
spreadsheet, or copy data from an area of the spreadsheet into a data structure
you provide.

The following procedures load data from a list, array, or matrix into a
spreadsheet:

• gxl-load-data-into-cell-group loads data into a particular cell group.

• gxl-load-data-into-defined-area loads data into any rectangular area of the
spreadsheet.
195

To load data from a file into a spreadsheet:

1 Use the GFR procedure, gfr-load-file-into-list, which is documented in the
G2 Foundation Resources User’s Guide.

2 Load the resulting list into a spreadsheet, using either gxl-load-data-into-cell-
group or gxl-load-data-into-defined-area.

The following procedures copy data from a spreadsheet to a list, array, or matrix:

• gxl-unload-data-from-cell-group copies data from a particular cell group.

• gxl-unload-data-from-defined-area copies data from any rectangular area of
the spreadsheet.

You can save spreadsheet data to a file, using gxl-save-spreadsheet-area-to-
stream.

See The Application Programmer’s Interface for related information.
196

gxl-load-data-into-cell-group
gxl-load-data-into-cell-group
Loads data from a value-array, value-list, or matrix into a specific cell group of a
spreadsheet.

Synopsis

gxl-load-data-into-cell-group
(sheet:class gxl-spreadsheet, group-number: integer,
 values: class object, protocol: symbol, wrapping-data: item-or-value,
 update-views: truth-value, window: class g2-window)

Argument Description

sheet The spreadsheet which is the target of this
call.

group-number The reference number of the cell group that
will be loaded with data.

values A matrix, array or list containing the values
that will be loaded into the cell group. Must
be one of the following types (or a subclass
thereof): item-array, item-list, value-array or
value-list.

protocol A flag to indicate how the data should be
loaded, which can be one of the following
symbols: rowwise, columnwise, rowwise-
wrapping, or columnwise-wrapping.

wrapping-data Additional data indicating how the data
should be wrapped if Protocol is rowwise-
wrapping or columnwise-wrapping. This
argument can be an integer-array or integer-
list (corresponding to whether Values is an
array or list), or the symbol default.

update-views A flag indicating if the views should be
redrawn to reflect the data in the spreadsheet
after the new data is loaded.

window The g2-window originating this call.
197

Description

This procedure allows you to load data from a matrix, array, or list into a
spreadsheet, with various options controlling how the data is placed into the cell
group. The protocols used for loading data in this procedure are the same as in
gxl-load-data-into-defined-area on . When you call this procedure, the effect is the
same as if you called gxl-load-data-into-defined-area with the starting coordinates
of the cell group and the dimensions of the cell group as the first-row, first-col, n-
rows, and n-cols arguments to gxl-load-data-into-defined-area, with the following
difference.

Calling gxl-load-data-into-cell-group establishes an internal relationship between
the data source object values and the cell group. This relationship is used by
gxl-apply-tabular-edit to automatically conclude data values from the spreadsheet
into the data source object when gxl-apply-tabular-edit is called. However, calling
gxl-load-data-into-defined-area directly does not set up a relationship between the
source data object and a cell group.

For a description of the arguments protocol, wrapping-data, and update-views, see
gxl-load-data-into-defined-area on .

This procedure does not cause cell callbacks, if any, to be called.

Example

This example shows how gxl-load-data-into-cell-group can be used in conjunction
with gxl-apply-tabular-edit to load from a source object and then automatically
conclude values back into the source object. For more examples on the use of
loading protocols, see gxl-load-data-into-defined-area on .

Suppose that integer-array-1 = (0, 1, 2, 3, 4, 5, 6, 7, 8). The following calls create a
spreadsheet in which the cell group 3 is an empty 3x3 area of integer cells, and
then loads the data area with the contents of integer-array-1:

spreadsheet-1, view = call gxl-create-and-display-simple-spreadsheet
(the symbol integer-cell, 3, 3, 3, 3, 80, 28, the symbol small, win);
call gxl-load-data-into-cell-group(spreadsheet-1, 3, integer-array-1,
the symbol rowwise-wrapping, the symbol default, true, win);

The rowwise-wrapping flag causes the data to be loaded so that the first row of
cell group 3 is (0, 1, 2), the second row is (3, 4, 5), and the third row is (6, 7, 8).

Now suppose that we manually edit the data in the spreadsheet, changing the
values (0, 1, 2) to (10, 11, 12). The following call will update integer-array-1 so that
integer-array-1 = (10, 11, 12, 3, 4, 5, 6, 7, 8):

call gxl-apply-tabular-edit(spreadsheet-1, win);
198

gxl-load-data-into-defined-area
gxl-load-data-into-defined-area
Loads data from a value-array, value-list, or matrix into a specified area of a
spreadsheet.

Synopsis

gxl-load-data-into-defined-area
(sheet:class gxl-spreadsheet, first-row: integer, first-col: integer,
 n-rows: integer, n-cols: integer, values: class object, protocol: symbol,
 wrappingdata: item-or-value, update-views: truth-value,
 window: class g2-window)

Argument Description

sheet The spreadsheet which is the target of this
call.

first-row The first row into which data is to be loaded.

first-col The first column into which data is to be
loaded.

n-rows The number of rows in the target area.

n-cols The number of columns in the target area.

values A matrix, array or list containing the values
that will be loaded into the cell group. Must
be one of the following types (or a subclass
thereof): item-array, item-list, value-array or
value-list.

protocol A flag to indicate how the data should be
loaded, which can be one of the following
symbols: rowwise, columnwise, rowwise-
wrapping, or columnwise-wrapping.

wrapping-data Additional data indicating how the data
should be wrapped if Protocol is rowwise-
wrapping or columnwise-wrapping. This
argument can be an integer-array or integer-
list (corresponding to whether Values is an
array or list), or the symbol default.
199

Description

This procedure allows you to load data into a rectangular area of a spreadsheet
beginning at cell (first-row, first-col), and containing up to n-rows and n-cols. The
data object values can be a vector of values (a value-array, value-list, or any
subclass of value-array or value-list), or a matrix of values (an item-array or item-
list containing value-arrays or value-lists as its elements). Gxl-load-data-into-
defined-area treats arrays and lists identically, but treats vectors (one-
dimensional data) differently from matrices (two-dimensional data).

If the target area defined in the call overruns either the row or column dimension
of the spreadsheet, then the target area is automatically reduced to fit the
spreadsheet. Data values outside of the target area are never changed, even if the
dimensions of the source data object are larger than the target area. This
procedure will, if necessary, ignore parts of the source data to avoid overrunning
the target area.

If the data provided to this procedure does not fill the target area, the cells in the
target area that were not assigned new values are cleared by this procedure.

Update-views indicates whether or not the views of the spreadsheet (if any)
should be re-drawn after this procedure is complete. Generally, this argument
should be true, unless you are doing several consecutive calls to this procedure (or
another procedure which assigns values or formats to cells), in which case the last
call to this procedure should be followed by a call to gxl-refresh-all-views.

Loading One-Dimensional (Vector) Data

When loading from a value-array or value-list, the protocol argument has four
options: rowwise, columnwise, rowwise-wrapping and columnwise-wrapping:

• If protocol is rowwise, then the values in the vector are placed into the first row
of the target area.

• If the protocol is columnwise, then the values in the vector are placed into the
first column of the target area.

• If the protocol is rowwise-wrapping, the result depends on the wrapping-data
argument as follows:

update-views A flag indicating if the views should be
redrawn to reflect the data in the spreadsheet
after the new data is loaded.

window The g2-window originating this call.

Argument Description
200

gxl-load-data-into-defined-area
• If wrapping-data is the symbol default, then values in the vector are loaded
into the first row of the target area, with any leftover values placed in the
second row of the target area, and further leftover values placed in the
third row of the target area, continuing until the target area is full. If there
are unused values in the data vector after the target area is full, the data
are ignored.

• If wrapping-data is an integer-list or an integer-array, the integers are used
to indicate the number of values from the vector to be placed in each row
of the target area. If there are more elements in the wrapping-data than
rows in the target area, or if the data vector is not long enough to fill a row
as specified by the WrappingData, the remaining elements of wrapping-
data are ignored.

• If the protocol is columnwise-wrapping, the result depends on the wrapping-
data argument as follows:

• If wrapping-data is the symbol default, then values in the vector are loaded
into the first column of the target area, with any leftover values placed in
the second column of the target area, and further leftover values placed in
the third column of the target area, continuing until the target area is full.
If there are unused values in the data vector after the target area is full,
further data are ignored.

• If wrapping-data is an integer-list or an integer-array, the integers are used
to indicate the number of values from the vector to be placed in each
column of the target area. If there are more elements in the wrapping-data
than columns in the target area, or if the data vector is not long enough to
fill a column as specified by the wrapping-data, the remaining elements of
wrapping-data are ignored.

Loading Two-Dimensional (Matrix) Data

When loading from a matrix, the Protocol argument has two options: rowwise and
columnwise:

• If protocol is rowwise, the values from the first vector (value-array or value-
list) in the matrix are placed into the first row of the target area, the values
from the second vector in the matrix are placed into the second row of the
target area, etc. If there are more items in the matrix than rows in the target
area, the data is ignored.

• If protocol is columnwise, the values from the first vector (value-array or
value-list) in the matrix are placed into the first column of the target area, the
values from the second vector in the matrix are placed into the second column
of the target area, etc. If there are more items in the matrix than columns in the
target area, the data is ignored.
201

Examples

Suppose vector-1 = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9), wrapping-data = (4, 2, 4) and matrix-1
= (0, 1, 2, 3; 4, 5; 6, 7, 8, 9), where the semi-colon indicates the end of each vector
contained in the matrix (e.g., matrix-1 is an item-array or item-list containing 3
integer-arrays or integer-lists). Consider an area of a spreadsheet whose
dimensions are 2 rows by 4 columns, starting at 0, 0. Here are the results of several
calls to gxl-load-data-into-defined-area:

Example 1

call gxl-load-data-into-defined-area (spreadsheet-1, 0, 0, 2, 4, vector-1,
the symbol rowwise, the symbol default,true, win);

Example 2

call gxl-load-data-into-defined-area (spreadsheet-1, 0, 0, 2, 4, vector-1,
the symbol columnwise, the symbol default, true, win);

Example 3

call gxl-load-data-into-defined-area (spreadsheet-1, 0, 0, 2, 4, vector-1,
the symbol rowwise-wrapping, the symbol default, true, win);

Example 4

call gxl-load-data-into-defined-area (spreadsheet-1, 0, 0, 2, 4, vector-1,
the symbol columnwise-wrapping, the symbol default, true, win);

Example 5

call gxl-load-data-into-defined-area (spreadsheet-1, 0, 0, 2, 4, matrix-1,
the symbol rowwise, the symbol default, true, win);

0 1 2 3

0

1

0 1 2 3

4 5 6 7

0 2 4 6

1 3 5 7
202

gxl-load-data-into-defined-area
Example 6

call gxl-load-data-into-defined-area (spreadsheet-1, 0, 0, 2, 4, matrix-1,
the symbol columnwise, the symbol default, true, win);

Example 7

call gxl-load-data-into-defined-area (spreadsheet-1, 0, 0, 2, 4, vector-1,
the symbol rowwise-wrapping, wrapping-data, true, win);

Example 8

call gxl-load-data-into-defined-area (spreadsheet-1, 0, 0, 2, 4, vector-1,
the symbol columnwise-wrapping, wrapping-data, true, win);

Note that in examples 7 and 8, the result of loading vector-1 using the wrapping
data is equivalent to the result of using matrix-1. In other words, the vector (0, 1,
2, 3, 4, 5, 6, 7, 8, 9) with the wrapping data (4, 2, 4) is essentially the same as the
matrix (0, 1, 2, 3; 4, 5; 6, 7, 8, 9).

0 1 2 3

4 5

0 4 6

1 5 7

0 1 2 3

4 5

0 4 6

1 5 7
203

gxl-unload-data-from-cell-group
Copies data in a spreadsheet into a value-array, value-list, or matrix provided by
the user.

Synopsis

gxl-unload-data-from-cell-group
(sheet: class gxl-spreadsheet, group-number: integer,
 values: class object, protocol: symbol, wrapping-data: item-or-value,
 window: class g2-window)

Description

This procedure allows you to unload data from a cell group into another data
structure, which may be a matrix (an item-array or item-list whose elements are
value-arrays or value-lists), or a vector (a value-array or value-list). The argument
protocol controls how the data is placed into the target data structure. The

Argument Description

sheet The spreadsheet which is the data source.

group-number The reference number of the cell group whose
data will be copied.

values A matrix, array or list that will receive the
data. Must be one of the following types (or a
subclass thereof): item-array, item-list, value-
array or value-list.

protocol A flag to indicate how the data should be
unloaded, which is one of the following
symbols: rowwise, columnwise, rowwise-
wrapping, or columnwise-wrapping.

wrapping-data An optional integer-array or integer-list,
(corresponding to whether values is an array
or list), which on output will contain the
number of values per row or column, if values
is not a matrix. This argument may only be
used when the protocol is rowwise-wrapping
or columnwise-wrapping. Otherwise, this
argument should be the symbol default.

window The g2-window originating this call.
204

gxl-unload-data-from-cell-group
protocols used for unloading data in this procedure are the same as in gxl-unload-
data-from-defined-area.

When you call this procedure, the effect is the same as if you called gxl-unload-
data-from-defined-area with the starting coordinates of the cell group and the
dimensions of the cell group as the first-row, first-col, n-rows, and n-cols
arguments to gxl-unload-data-from-defined-area.

Example

See gxl-unload-data-from-defined-area.
205

gxl-unload-data-from-defined-area
Copies data from a spreadsheet area into a value-array, value-list, or matrix
provided by the user.

Synopsis

gxl-unload-data-from-defined-area
(sheet: class gxl-spreadsheet, first-row: integer, first-col: integer,
 n-rows: integer, n-cols: integer, values: class object, protocol:
symbol, wrapping-data: item-or-value, window: class g2-window)

Argument Description

sheet The spreadsheet which is the data source.

first-row The first row from which data is to be copied.

first-col The first column from which data is to be
copied.

n-rows The number of rows in the target area of the
spreadsheet.

n-cols The number of columns in the target area of
the spreadsheet.

values A matrix, array or list that will receive the
data. Must be one of the following types (or a
subclass thereof): item-array, item-list, value-
array or value-list.

protocol A flag to indicate how the data should be
unloaded, which is one of the following
symbols: rowwise, columnwise, rowwise-
wrapping, or columnwise-wrapping.

wrapping-data An optional integer-array or integer-list
(corresponding to whether Values is an array
or list), which on output will contain the
number of values per row or column, if Values
is not a matrix. This argument may only be
used when the Protocol is rowwise-wrapping
or columnwise-wrapping. Otherwise, this
argument should be the symbol default.

window The g2-window originating this call.
206

gxl-unload-data-from-defined-area
Description

This procedure is closely related to gxl-load-data-into-defined-area. If you load
data into a spreadsheet using gxl-load-data-into-defined-area (or into a cell group
using gxl-load-data-into-cell-group) using a given protocol and wrapping-data, and
then use this procedure to unload data using the same protocol and wrapping-
data, the format of your data will be unchanged, although containing updates to
the data made in the spreadsheet.

This procedure copies the data contained in a rectangular area of a spreadsheet
beginning at cell (first-row, first-col), and containing up to n-rows and n-cols. If
the area of the spreadsheet defined in the call overruns the dimension of the
spreadsheet, then n-rows and n-cols are automatically reduced to fit the
spreadsheet.

The data object values can be a vector of values (a value-array, value-list, or any
subclass of value-array or value-list), or a matrix of values (an item-array or item-
list containing value-arrays or value-lists or a subclass of these types). Gxl-unload-
data-from-defined-area treats arrays and lists identically, but treats vectors (one-
dimensional data) differently from matrices (two-dimensional data).

Cells that contain no values (empty cells) are handled according to the following
rule:

• Empty cells that would be at the end of the data structure are ignored.

• Embedded empty cells are filled with a default value appropriate to the data
structure that is receiving the data.

The G2 defaults for the seven value types are:

For example, if you are unloading a row of cells that contain the values (0, 1,
<empty>, 3, 4, 5, <empty>, <empty>) into an integer array, on output your
integer array will be the following 6-element vector: (0, 1, 0, 3, 4, 5), where G2’s
default value for integer arrays, 0, replaces the embedded empty cell.

Type Default value

integer 0

float 0.0

quantity 0.0

text ““ (the empty string)

truth-value false

symbol G2

value 0.0
207

Unloading One-Dimensional (Vector) Data

When unloading data into a vector (a value-array or value-list), the Protocol
argument has four options: rowwise, columnwise, rowwise-wrapping and
columnwise-wrapping:

• If Protocol is rowwise, then the values from the first row of the target area are
copied into the vector.

• If the protocol is columnwise, then the values from the first column of the
target area are copied into the vector.

• If the protocol is rowwise-wrapping, the result depends on the wrapping-data
argument, as follows:

• If wrapping-data is the symbol default, then values from the target area of
the spreadsheet are loaded row by row into the vector, with the values in
the first row followed directly by the values in the second row, etc. Empty
cells in all rows up to the last data value in the last row containing data are
replaced by default values. Empty cells beyond the last data value in the
last row containing data within the target area are ignored.

• If wrapping-data is an integer-list or an integer-array, then on output
wrapping-data represents the number of values in each row of data in the
target area. The values from the target area are copied row by row from
the target area. Trailing empty cells in each row are ignored rather than
replaced by default values. Empty rows beyond the last row containing
data are ignored; therefore the number of elements in wrapping-data may
be less than the number of rows in the target area.

• If the protocol is columnwise-wrapping, the result depends on the wrapping-
data argument as follows:

• If wrapping-data is the symbol default, then values from the target area of
the spreadsheet are loaded column by column into the vector, with the
values in the first column followed directly by the values in the second
column, etc. Empty cells in all columns up to the last data value in the last
column containing data are replaced by default values. Empty cells
beyond the last data value in the last column containing data within the
target area are ignored.

• If wrapping-data is an integer-list or an integer-array, then on output
wrapping-data represents the number of values in each column of data in
the target area. The values from the target area are copied column by
column from the target area. Trailing empty cells in each column are
ignored rather than replaced by default values. Empty columns beyond
the last column containing data are ignored; therefore the number of
elements in wrapping-data may be less than the number of columns in the
target area.
208

gxl-unload-data-from-defined-area
Unloading Two-Dimensional (Matrix) Data

A matrix consists of an item-array or item-list, or “spine,” containing vectors
which constitute the “ribs” of the matrix. When you unload a spreadsheet area
into a matrix, the matrix may have to be resized. Special considerations arise
when the dimension of the spine of the matrix needs to be changed.

When the length of the spine is reduced, garbage (items in memory that cannot be
accessed by the KB, except by global searches over all items of a given class) can
be created by orphaning the vectors that were contained in spine before it was
shortened. If you want GXL to delete orphaned vectors, the attribute gxl-cleanup-
when-resizing-matrices of the spreadsheet should be set to true (the default). If
you do not want these vectors to be deleted by GXL, set this attribute to false.

When the length of the spine needs to be increased, new “ribs” need to be created.
However, GXL does not have the information necessary to decide what class of
vector should be created. In general, you need to provide a procedure that can be
called by GXL that adds new “ribs” to the matrix. If this procedure is not
provided, GXL will use the most specific type of array (not list) that
accommodates the data contained in the corresponding row or column of the
spreadsheet.

To provide your own matrix extension procedure, you set the attribute gxl-matrix-
extension-procedure of the spreadsheet to the name of your procedure. To use the
built-in default method for extending matrices, set this attribute to the symbol
unspecified.

The signature of the matrix extension procedure you provide is as follows:

your-procedure-name (matrix: class object, position: integer,
value-type: symbol)

where:

Argument Description

matrix Either an item-list or item-array, and is the
same object as the Values argument passed
to gxl-unload-data-from-defined-area or
gxl-unload-data-from-cell-group.
209

Note You can provide a more general type of vector than required by value-type, for
example, a quantity list if value-type is float. However, providing a more specific
type than required generates an error.

Your matrix extension procedure must add the vector to the spine of the matrix.

When loading a matrix, the Protocol argument has two options: rowwise and
columnwise:

• If protocol is rowwise, the values from the first row of the target area are
copied into the first vector (value-array or value-list) in the matrix, the values
from the second row of the target area are placed into the second vector of the
matrix, etc. If there are empty cells at the end of any row, they are not
included in the values copied into the corresponding vector.

Thus, the length of a vector in the matrix might be less than the number of
columns in the target area. Embedded empty cells are represented by default
values. If there are empty rows after the last row containing data, these rows
are not represented in the matrix. Therefore, on output, the matrix spine
might be shorter than the number of rows in the target area.

• If protocol is columnwise, the values from the first column of the target area
are copied into the first vector (value-array or value-list) in the matrix, the
values from the second column of the target area are placed into the second
vector of the matrix, etc. If there are empty cells at the end of any column, they
are not included in the values copied into the corresponding vector.

Thus, the length of a vector in the matrix might be less than the number of
rows in the target area. Embedded empty cells are represented by default
values. If there are empty columns after the last column containing data, these
columns are not represented in the matrix. Therefore, on output, the matrix
spine might be shorter than the number of columns in the target area.

position An integer which indicates the element
number where a new vector is to be added
to Matrix.

value-type A symbol which represents the type of
values that the new vector must hold, based
on the contents of the spreadsheet. Valid
symbols are:

integer, float, quantity, symbol, text,
truth-value, or value

Argument Description
210

gxl-unload-data-from-defined-area
Examples

Suppose vector-1 is an integer array, wrapping-data is an integer list, and matrix-1
is an item array. Here are the results of several calls to gxl-unload-data-from-
defined-area, where the target area is three rows by four columns, starting at
row 0, column 0, if the data in the area is as follows:

Example 1

call gxl-unload-data-from-defined-area (spreadsheet-1, 0, 0, 3, 4, vector-1,
the symbol rowwise, the symbol default, win);

vector-1 = (0, 1, 2, 3)

Example 2

call gxl-unload-data-from-defined-area (spreadsheet-1, 0, 0, 3, 4, vector-1,
the symbol columnwise, the symbol default, win);

vector-1 = (0, 4)

Example 3

call gxl-unload-data-from-defined-area(spreadsheet-1, 0, 0, 3, 4, vector-1,
the symbol rowwise-wrapping, the symbol default, win);

vector-1 = (0, 1, 2, 3, 4, 5)

Example 4

call gxl-unload-data-from-defined-area(spreadsheet-1, 0, 0, 3, 4, vector-1,
the symbol columnwise-wrapping, the symbol default, win);

vector-1 = (0, 4, 0, 1, 5, 0, 2, 0, 0, 3)

Example 5

call gxl-unload-data-from-defined-area(spreadsheet-1, 0, 0, 3, 4, matrix-1,
the symbol rowwise, the symbol default, win);

matrix-1 = (0, 1, 2, 3; 4 5)

(The semicolon represents the end of each vector contained in the matrix. In
this case, the length of the spine of matrix-1 is 2, its first vector is length 4, and
its second vector is length 2.)

0 1 2 3

4 5
211

Example 6

call gxl-unload-data-from-defined-area(spreadsheet-1, 0, 0, 3, 4, matrix-1,
the symbol columnwise, the symbol default, win);

matrix-1 = (0, 4; 1, 5; 2; 3)

Example 7

call gxl-unload-data-from-defined-area(spreadsheet-1, 0, 0, 3, 4, vector-1,
the symbol rowwise-wrapping, wrapping-data, win);

vector-1 = (0, 1, 2, 3, 4, 5)

wrapping-data = (4, 2)

Example 8

call gxl-unload-data-from-defined-area(spreadsheet-1, 0, 0, 3, 4, vector-1,
the symbol columnwise-wrapping, wrapping-data, win);

vector-1 = (0, 4, 1, 5, 2, 3)

wrapping-data = (2, 2, 1, 1)

Note the similarities between Examples 5 and 6 and Examples 7 and 8.
212

gxl-save-spreadsheet-area-to-stream
gxl-save-spreadsheet-area-to-stream
Writes data in a specific rectangular area of a spreadsheet to a file.

Synopsis

gxl-save-spreadsheet-area-to-stream
(sheet: class gxl-spreadsheet, stream: class g2-stream, separator: text,
 first-row: integer, first-col: integer, n-rows: integer, n-cols: integer,
 progress: class integer-parameter, window: class g2-window)

Description

This procedure allows you write data from a spreadsheet to a file. The first-row,
first-col, n-rows, and n-cols arguments define the rectangular area of the
spreadsheet that is saved by this call. The file that is written must be opened prior
to this call, and is provided as a g2-stream object. For more information on
streams, see the G2 System Procedures Reference Manual. This procedure always

Argument Description

sheet The spreadsheet which is the data source.

stream A g2-stream that was generated by calling
g2-open-file-for-write or g2-open-file-for-read-
and-write.

separator The text used to separate values on a line in
the file

first-row The first row from which data is to be copied.

first-col The first column from which data is to be
copied.

n-rows The number of rows in the target area of the
spreadsheet.

n-cols The number of columns in the target area of
the spreadsheet.

progress An integer parameter that is incremented as
the save proceeds, which can also be used to
interrupt this procedure.

window The g2-window originating this call.
213

saves the data rowwise, and puts a line feed/carriage return at the end of each
row of the spreadsheet’s data that is saved.

The separator is a text character, usually a comma, that is written between each
value that is written on a line in the file. The separator is not written at the
beginning or end of a line. To represent empty cells, consecutive separators are
written with nothing between them.

The printing of text strings follows these rules:

• Texts are enclosed in beginning and ending quotation marks.

• Embedded quotes within text strings are doubled, for example, the string
abc “def” ghi is printed as “abc ““def”” ghi”.

This handling of text values and embedded quotes is compatible with Microsoft
Excel’s comma-separated value (csv) file format.

Because saving a large spreadsheet may take some time, this procedure
periodically allows other processing. Just before allowing other processing, the
progress parameter is updated to indicate the percentage complete of the save.
Progress has a final value of 100 when the save is finished. If you start (rather than
call) this procedure, you can set up a monitor that receives control when progress
is updated, by using a wait until progress receives a value statement.

The other use of the progress parameter is to abort a save in progress. If you delete
progress before the completion of the save, the save is aborted

When you save a spreadsheet area containing a column header, the column
header is written to the file once for each column it spans. For example, if the
column header spans three columns, then the output file will have the text of the
column header written three times consecutively on the line corresponding to the
row of the spreadsheet containing the header.

The Gensym Foundation Resources (GFR) module provides the utilities needed to
read comma-separated text files. For example, the gfr-load-file-into-list procedure
returns file data in a form loadable into a spreadsheet using gxl-load-data-into-
cell-group or gxl-load-data-into-defined-area. For information on gfr-load-file-into-
list, see the G2 Foundation Resources User’s Guide.
214

gxl-save-spreadsheet-area-to-stream
Example

Suppose the following data is stored in a spreadsheet sheet-1, where upper-case
represents symbols:

If progress is an integer-parameter and stream-1 is a g2-stream that has been
opened for writing, then we can make the following call:

call gxl-save-spreadsheet-area-to-stream (sheet-1, stream-1, “,”,
0, 0, 5, 4, Progress, win);

Here is the resulting file:

true, false, , 9.9999999999999987e31

“abc”, ABC, “Bob says ““hi”””,

1, 2, ,

, , 1.234, 4

, , ,

This file can be imported into Microsoft Excel as a comma-separated value file.

true false 1.0e32

abc ABC Bob says “hi”

1 2

1.234 4
215

216

10
Accessing Spreadsheet
and View Properties
Describes the API procedures for accessing GXL spreadsheet and view properties.

Introduction 218

gxl-get-cell-color 220

gxl-get-cell-contents 221

gxl-get-cell-group-coordinates 222

gxl-get-cell-group-dimensions 225

gxl-get-cell-group-initialization-data 226

gxl-get-cell-group-layout 227

gxl-get-cell-group-procedure-attribute 228

gxl-get-cell-group-visible-dimensions 230

gxl-get-cell-type-of-group 232

gxl-get-float-format-of-group-on-view 233

gxl-get-group-number-at-coordinates 236

gxl-get-protection-of-group-on-view 238

gxl-get-selected-column-range 239

gxl-get-selected-row-range 240

gxl-get-selection-limits 241

gxl-get-size-attributes-of-cells-in-view 243

gxl-get-specification-object 245

gxl-get-specification-of-spreadsheet 247

gxl-get-spreadsheet-dimensions 248
217

gxl-get-spreadsheet-of-view 249

gxl-get-version 250

gxl-get-views-of-spreadsheet 251

gxl-get-workspace-location-of-cell 252

gxl-get-workspace-location-of-cell-group 254

Introduction
This chapter describes the procedures of the Application Programmer’s Interface
to GXL that you can use to programmatically access the properties of
spreadsheets and views. See The Application Programmer’s Interface for related
information.

The following table summarizes the information about spreadsheets that you can
obtain programmatically:

To get this spreadsheet property... Use this procedure...

Color pattern of a cell gxl-get-cell-color

Current value stored in a cell gxl-get-cell-contents

Group number of a cell gxl-get-group-number-at-
coordinates

Size of a cell group gxl-get-cell-group-dimensions

Location of a cell group gxl-get-cell-group-coordinates

Initialization data of a cell group gxl-get-cell-group-initialization-
data

Layout of cell groups gxl-get-cell-group-layout

Initialization, validation or
callback procedures associated
with a cell group

gxl-get-cell-group-procedure-
attribute
218

Introduction
The following table summarizes the information about views that you can obtain
programmatically:

You can navigate between spreadsheets and their views, using gxl-get-views-of-
spreadsheet or gxl-get-spreadsheet-of-view.

When you need to set an attribute of a specification object, you can use gxl-get-
specification-object, which retrieves the specification object, based on its position
in the specification layout.

GXL software version information is available through gxl-get-version.

See The Application Programmer’s Interface for related information.

Type of cell associated with a cell
group

gxl-get-cell-type-of-group

Dimensions of the spreadsheet gxl-get-cell-type-of-group

Specification used to create the
spreadsheet

gxl-get-specification-of-
spreadsheet

To get this spreadsheet property... Use this procedure...

To get this view property... Use this procedure...

Visible row-column dimensions of
a cell group

gxl-get-cell-group-visible-
dimensions

Float format specification of a cell
group

gxl-get-float-format-of-group-on-
view

Selectability and editability of a
cell group

gxl-get-protection-of-group-on-
view

Font, height, and width size
attributes of a cell group

gxl-get-size-attributes-of-cells-in-
view

Selected columns gxl-get-selected-column-range

Selected rows gxl-get-selected-row-range

Selected rectangular area gxl-get-selection-limits

Workspace location of a particular
cell for a given view

gxl-get-workspace-location-of-cell

Workspace location of the cell
group for a given view

gxl-get-workspace-location-of-cell-
group
219

gxl-get-cell-color
Returns the color pattern of a cell.

Synopsis

gxl-get-cell-color
(sheet: class gxl-spreadsheet, row: integer, column: integer,
 window: class g2-window)
-> background-color: symbol, text-color: symbol, border-color: symbol

Description

Each cell in the spreadsheet has a color pattern described by its background, text
and border colors. Given a row, column coordinate and a sheet, this procedure
returns these colors. If row or column are out of bounds, this procedure signals an
error (gxl-row-or-column-out-of-bounds).

Example

The following call retrieves the color pattern of the cell located at row 0, column 0
in spreadsheet-1:

background-color, text-color, border-color = call gxl-get-color-pattern-of-cell
(spreadsheet-1, 0, 0, win);

Argument Description

sheet The spreadsheet that is the subject of this call.

row The row coordinate of the cell whose color
pattern is to be returned.

column The column coordinate of the cell whose color
pattern is to be returned.

window The g2-window originating this call.

Return Value Description

background-color The background color of the cell.

text-color The text color of the cell.

border-color The border color of the cell.
220

gxl-get-cell-contents
gxl-get-cell-contents
Returns the value stored in a cell.

Synopsis

gxl-get-cell-contents
(sheet: class gxl-spreadsheet, row: integer, column: integer,
 window: class g2-window)
-> cell-contents: value

Description

Given a row, column coordinate and a sheet, this procedure returns the value
stored in the cell. If the cell is empty, the text string “!nv” is returned. If row or
column are out of bounds, this procedure signals an error (gxl-row-or-column-out-
of-bounds).

Example

The following code segment calls gxl-get-cell-contents to retrieve the value of the
cell located at row 0, column 0 in spreadsheet-1, and informs the operator if it is
empty:

cell-value = call gxl-get-cell-contents(spreadsheet-1, 0, 0, win);
if cell-value = “!nv” then inform the operator that “Cell (0,0) is empty”;

Argument Description

sheet The spreadsheet that is the subject of this
call.

row The row coordinate of the cell whose value
is to be returned.

column The column coordinate of the cell whose
value is to be returned.

window The g2-window originating this call.

Return Value Description

 cell-contents The value stored at the given row/column
location of the spreadsheet.
221

gxl-get-cell-group-coordinates
Returns the starting and ending row/column coordinates of a cell group.

Synopsis

gxl-get-cell-group-coordinates
(sheet: class gxl-spreadsheet, group-number: integer,
 window: class g2-window)
-> first-row: integer, first-col: integer, last-row: integer,

last-col: integer

Description

Each spreadsheet is made of a number of rectangular cell groups. Each of these
groups is referred to by a number that identifies its position in the spreadsheet
specification.

This procedure returns the coordinates of the first cell (the cell in the upper left-
hand corner) in a given cell group, and the coordinates of the last cell in the group
(the cell in the lower right-hand corner). If an invalid group number is given, this
procedure signals an error (gxl-group-number-out-of-bounds).

Argument Description

sheet The spreadsheet that is the subject of this
call.

group-number The reference number of the cell group
whose coordinates are to be determined by
this call.

window The g2-window originating this call.

Return Value Description

first-row The first row of the cell group.

first-col The first column of the cell group.

last-row The last row of the cell group.

last-col The last column of the cell group.
222

gxl-get-cell-group-coordinates
Example

The following spreadsheet specification is used to create spreadsheet-1:

The cell groups in the specification are numbered starting from 0, left-to-right in
consecutive rows of the specification.

The following figure illustrates the corresponding spreadsheet layout of
spreadsheet-1:

Specification for spreadsheet-1

gxl-total-columns = 1

gxl-total-rows = 1

1

10

5 3

0 1 2

3 4 5

6 7 8

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

9

10

11

0 1 2

3 4 5

6 7 8

Layout of spreadsheet-1

First row, first col of
cell group 8

Last row, last col of
cell group 8
223

Note that the row and column numbers are zero-based; therefore, even though
this spreadsheet has 12 rows, the last row number is 11.

The following call determines the coordinates of cell group 8:

first-row, first-col, last-row, last-column = call gxl-get-cell-group-coordinates
(spreadsheet-1, 8, win);

The return values are first-row = 2, first-col = 6, last-row = 11, last-column = 8.
224

gxl-get-cell-group-dimensions
gxl-get-cell-group-dimensions
Returns the number of rows and columns in a cell group.

Synopsis

gxl-get-cell-group-dimensions
(sheet: class gxl-spreadsheet, group-number: integer,
 window: class g2-window)
-> row-count: integer, col-count: integer

Description

This procedure returns the dimensions of a cell group, which is specified by its
group-number. If an invalid group number is given, this procedure signals an
error (gxl-group-number-out-of-bounds).

Example

Using the same example as shown in gxl-get-cell-group-coordinates, the
following call yields the dimensions of cell group 8:

nrows, ncols = call gxl-get-cell-group-dimensions(spreadsheet-1, 8, win);

The result is nrows = 10, ncols = 3.

Argument Description

sheet The spreadsheet that is the subject of this
call.

group-number The reference number of the cell group
whose dimensions are to be determined by
this call.

window The g2-window originating this call.

Return Value Description

row-count The current number of rows in the cell
group.

col-count The current number of columns in the cell
group.
225

gxl-get-cell-group-initialization-data
Returns the initialization data of a cell group.

Synopsis

gxl-get-cell-group-initialization-data
(sheet: class gxl-spreadsheet, group-number: Integer,
window: class g2-window)
-> initialization-data: value

Description

For a given cell group of a spreadsheet, this procedure returns the initialization-
data associated with that cell group. If the given GroupNumber is out of bounds,
this procedure signals an error (gxl-group-number-out-of-bounds).

Example

The following call returns the initialization data of column-header (1) for
spreadsheet-1.

InitData = call gxl-get-cell-group-initialization-data (spreadsheet-1, 1, win);

Argument Description

sheet The spreadsheet that is the target of this call.

group-number The reference number of the cell group
whose initialization data is returned.

window The g2-window originating this call.

Return Value Description

initialization-data The initialization data associated with the
given cell group of the Sheet.
226

gxl-get-cell-group-layout
gxl-get-cell-group-layout
Returns the number of cell groups in the vertical and horizontal directions

Synopsis

gxl-get-cell-group-layout
(sheet: class gxl-spreadsheet, window: class g2-window)
-> vertical-cell-group: integer, horizontal-cell-group: integer

Description

This procedure returns the number of cell groups, as they are arranged vertically
and horizontally, for a given sheet.

Example

The following call returns the layout of cell groups for spreadsheet-1:

NVerticalCellGroups, NHorizontalCellGroups =call gxl-get-cell-group-layout
(spreadsheet-1, win);

The returned values 3, 3, define a cell group layout that has 3 vertical cell groups
and 3 horizontal cell groups.

Argument Description

sheet The spreadsheet that is the target of this call.

window The g2-window originating this call.

Return Value Description

vertical-cell-group The number of items vertically arranged on
the layout associated with the Sheet.

horizontal-cell-group The number of items horizontally arranged
on the layout associated with the Sheet.
227

gxl-get-cell-group-procedure-attribute
Returns the name of any procedures associated with given cell group.

Synopsis

gxl-get-cell-group-procedure-attribute
(sheet: class gxl-spreadsheet, group-number: integer,
procedure-attribute: symbol, window: class g2-window)
-> Procedure: symbol

Description

This procedure returns the symbolic name of the procedure, if any, for the
specified procedure-attribute of a given cell group. Depending on the procedure-
attribute, the procedure can be:

• A special validator for the given cell group.

• An initialization or reinitialization procedure for the given cell group.

Argument Description

sheet The spreadsheet that is the target of this call.

group-number The reference number of the cell group
whose associated procedure is returned

procedure-attribute The symbolic name of the attribute whose
procedure, if any, is returned. Valid
attributes are:

gxl-initialization-procedure
gxl-reinitialization-procedure
gxl-additional-validation-procedure
gxl-callback-procedure
gxl-selection-callback-procedure

window The g2-window originating this call.

Return Value Description

procedure A symbol naming a suitable initialization,
validation or callback procedure associated
with a given cell group of the Sheet, or the
symbol unspecified.
228

gxl-get-cell-group-procedure-attribute
• A callback procedure of the spreadsheet for the given cell group.

• A selection callback procedure for the given cell group.

If the given group-number is out of bounds, this procedure signals an error
(gxl-group-number-out-of-bounds). If the given procedure-attribute is not a valid
attribute, this procedure signals an error (gxl-bad-procedure-attribute).

Example

The following call returns the symbolic name of the procedure for the
gxl-initialization-procedure attribute of the column-header cell group (5)
associated with spreadsheet-1.

ProcedureName = call gxl-get-cell-group-procedure-attribute
(spreadsheet-1, 5, gxl-initialization-procedure, win);

The return value is gxl-serial-integer-initialization, which is the default setting for
this category of cell group.
229

gxl-get-cell-group-visible-dimensions
Returns the visible row/column dimensions of a group on a particular view.

Synopsis

gxl-get-cell-group-visible-dimensions
(view: class gxl-spreadsheet-view, group-number: integer,
window: class g2-window)
-> row: integer, column: integer

Description

This procedure gets the spreadsheet associated with the specified view, and finds
the row- controller and column-controller associated with the specified cell
group.

If both horizontal and vertical scrollable areas exist on the view for the given cell
group, the number of visible rows and columns are returned. If horizontal and
vertical scroll areas do not exist for the given cell group, the procedure returns 0
for the row, column dimensions.

If the given group-number is out of bounds, this procedure signals an error
(gxl-group-number-out-of-bounds).

Argument Description

view The spreadsheet view that is the target of
this call.

group-number The reference number of the cell group
whose visible row/column dimensions are
returned

window The g2-window originating this call.

Return Value Description

row The row dimensions of a cell group on a
particular View.

column The column dimensions of a cell group on a
particular View.
230

gxl-get-cell-group-visible-dimensions
Example

Assuming that the figure displays the current view of spreadsheet-1, the
following call for cell group 8 would return the row-column dimensions of its
visible cells:

Row, Column =call gxl-get-cell-group-visible-dimensions
(spreadsheet-1-view, 8, win);

The returned values would be 5, 4; that is, the visible dimensions of cell group (8)
are 5 rows by 4 columns.

2

4 5

7 8

1

3

0

6

231

gxl-get-cell-type-of-group
Returns the type of cell in a given cell group.

Synopsis

gxl-get-cell-type-of-group
(sheet: class gxl-spreadsheet, group-number: integer,
 window: class g2-window)
-> cell-type: symbol

Description

Each cell group has a specific type of cell which dictates the type of value the cell
can contain. This procedure returns the cell type. This procedure can be used to
determine the value type accepted by the cell.

Example

The following call retrieves the cell type of group 3 in spreadsheet-1:

cell-type = call gxl-get-cell-type-of-group(spreadsheet-1, 3, win);

Argument Description

sheet The spreadsheet that is the subject of this
call.

group-number The reference number of the cell group
whose cell type is to be returned.

window The g2-window originating this call.

Return Value Description

cell-type The cell type of the cell group, which is one
of the following symbols: integer-cell, float-
cell, quantity-cell, text-cell, symbol-cell,
truth-value-cell, value-cell, column-header,
global-selector, disabled-cell, column-
selector, or row-selector.
232

gxl-get-float-format-of-group-on-view
gxl-get-float-format-of-group-on-view
Returns the float format specification for a cell group on a spreadsheet view.

Synopsis

gxl-get-float-format-of-group-on-view
(view: class gxl-spreadsheet-view, group-number: integer,
window: class g2-window)
-> use-default: truth-value, minimum-width: integer,

precision: integer, output-format: symbol,
strip-zeros: truth-value

Argument Description

view The spreadsheet view that is the target of
this call.

group-number The reference number of the cell group
whose float format specification is returned.

window The g2-window originating this call.

Return Value Description

use-default The value true, if default formatting is used

minimum-width Specifies the minimum number of
characters in the formatted version of float.

If the formatted float value has fewer
characters, the text is padded on the left side
with space characters to equal the given
width. If the formatted value has more
characters, the width expands to
accommodate the text without adding any
space characters.
233

Description

This procedure returns the float format of a given cell group on the specified view.
The display format is based on the settings specified in the gxl-float-format
attribute for the cell group.

The return values - minimum-width, precision, output-format, strip-zeros - are the
same as in the G2 system procedure, g2-float-to-text.

precision Specifies either the number of digits to the
right of the decimal point or the significant
digits, depending on the output-format
value.

When the formatted float uses the float or
exponent output-format, precision indicates
the digits to the right of the decimal point.
When using the best output-format,
precision determines the number of
significant digits.

output-format Determines the precision format. Valid
formats are:

• float, which displays the value in a float
format.

• exponent, which displays the value as an
exponent.

• best, which displays the value as a float
or an exponent if the result is either too
small or too large for the specified
precision.

strip-zeros Specifies whether zeros to the right of the
last non-zero digit are stripped, where true
removes trailing zeros.

Return Value Description
234

gxl-get-float-format-of-group-on-view
Example

The following call returns the float format of cell group 4 of view-1:

use-default, minimum-width, precision, output-format,
strip-zeros = call gxl-get-float-formamt-of-group-on-view
(view-1, 4, win);

The returned values are true, 1, 4, best, true. The default float format is used for
values in cell group 4.
235

gxl-get-group-number-at-coordinates
Returns the group number of a cell at given spreadsheet coordinates.

Synopsis

gxl-get-group-number-at-coordinates
(sheet: class gxl-spreadsheet, row: integer, column: integer,
 window: class g2-window)
-> group-number: integer

Description

Each cell in a spreadsheet belongs to exactly one cell group. This procedure
returns the number of the cell group to which a specified cell belongs. If row or
column are out of bounds, this procedure signals an error (gxl-row-or-column-out-
of-bounds).

Example

Using the same example as shown in gxl-get-cell-group-coordinates on , the
following call yields the cell group number of the cell located at row 7, column 6:

group-number = call gxl-get-group-number-at-coordinates
(spreadsheet-1, 7, 6, win);

Argument Description

sheet The spreadsheet that is the subject of this
call.

row The row coordinate of the cell whose group
number is to be returned.

column The column coordinate of the cell whose
group number is to be returned.

window The g2-window originating this call.

Return Value Description

group-number The number of the cell group that contains
the cell at the given row/column
coordinates.
236

gxl-get-group-number-at-coordinates
As the following figure illustrates, the result is group-number = 8, which contains
cells in the rectangular area from (2, 6) to (11, 8).

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

9

10

11

0 1 2

3 4 5

6 7 8

Layout of spreadsheet-1

row 7, col 6
237

gxl-get-protection-of-group-on-view
Returns the selectability and editability permissions of a cell group on a
spreadsheet view.

Synopsis

gxl-get-protection-of-group-on-view
(view: class gxl-spreadsheet-view, group-number: integer,
 window: class g2-window)
-> selectable: truth-value, editable: truth-value

Description

This procedure returns the selectability and editability status of given cell group
for a given spreadsheet view, which are specified by the gxl-cells-are-selectable
and gxl-cells-are-editable attributes of the cell group.

For details on editability and selectability, see .

If the given group-number is out of bounds, this procedure signals an error
(gxl-group-number-out-of-bounds).

Example

If the cells of cell group 7 can be selected and edited, the following call returns
true, true.

select, edit = call gxl-get-protection-of-group-on-view (view-1, 7, win);

Argument Description

view The spreadsheet view that is the target of
this call.

group-number The reference number of the cell group
whose selectability and editability status are
returned.

window The g2-window originating this call.

Return Value Description

selectable true if cell group can be selected.

editable true if cell group can be edited.
238

gxl-get-selected-column-range
gxl-get-selected-column-range
Returns the column numbers of the currently selected columns on a view.

Synopsis

gxl-get-selected-column-range
(view: class gxl-spreadsheet-view, window: class g2-window)
-> first-col: integer, last-col: integer

Description

Cells, rows, or columns may be selected on spreadsheet views. Each view has a
selection state which is independent of the selections on other views of the same
spreadsheet. This procedure returns the first selected column and the last selected
column in a given view. If no columns are selected, the procedure returns -1, -1.

Example

If columns 7 through 10 are selected on view-1, then the following call will return
first-selected-column = 7 and last-selected-column = 10:

first-selected-column, last-selected-column = call gxl-get-selected-column-range
(view-1, win);

Argument Description

view The spreadsheet view that is the subject of
this call.

window The g2-window originating this call.

Return Value Description

first-col The column number of the first column
selected on the view, or -1 if no column is
selected.

last-col The column number of the last column
selected on the view, which may be the
same as the first selected column.
239

gxl-get-selected-row-range
Returns the row numbers of the currently selected rows on a view.

Synopsis

gxl-get-selected-row-range
(view: class gxl-spreadsheet-view, window: class g2-window)
-> first-row: integer, last-row: integer

Description

Cells, rows, or columns may be selected on spreadsheet views. Each view has a
selection state which is independent of the selections on other views of the same
spreadsheet. This procedure returns the first selected row and the last selected
row in a given view. If no rows are selected, the procedure returns -1, -1.

Example

If rows 7 through 10 are selected on view-1, then the following call will return
first-selected-row = 7 and last-selected-row = 10:

first-selected-row, last-selected-row = call gxl-get-selected-row-range
(view-1, win);

Argument Description

view The spreadsheet view that is the subject of
this call.

window The g2-window originating this call.

Return Value Description

 first-row The row number of the first row selected on
the view, or -1 if no row is selected.

last-row The row number of the last row selected on
the view, which may be the same as the first
selected row.
240

gxl-get-selection-limits
gxl-get-selection-limits
Returns the coordinates of the currently selected rectangular area on a view.

Synopsis

gxl-get-selection-limits
(view: class gxl-spreadsheet-view, window: class g2-window)
-> first-cell-row: integer, first-cell-col: integer,

last-cell-row: integer, last-cell-col: integer

Description

Selections are always rectangular areas on a view. This procedure returns the
coordinates of the first selected cell (the cell in the upper left-hand corner of the
selection) and the coordinates of the last selected cell (the cell in the lower right-
hand corner of the selection), which may be the same if a single cell is selected.

If no cells are selected, this procedure returns -1, -1, -1, -1. If a column is selected,
the first row will be 0 and the last row will be the last row of the spreadsheet. If a
row is selected, the first column will be 0 and the last column will be the last
column of the spreadsheet.

Argument Description

view The spreadsheet view that is the subject of
this call.

window The g2-window originating this call.

Return Value Description

first-cell-row The row number of the first cell selected on
the view, or -1 if no cell is selected.

first-cell-col The column number of the first cell selected
on the view or -1 if no cell is selected.

last-cell-row The row number of the last cell selected on
the view, which may be the same as the row
of the first selected cell.

last-cell-col The column number of the last cell selected
on the view, which may be the same as the
column of the first selected cell.
241

Example

If we select cell (1, 1) and then shift-select cell (4, 5) on view-1, thus selecting the
rectangular area delimited by these two cells, then the following call will return
first-row = 1, first-column = 1, last-row = 4, and last-column = 5:

first-row, first-column, last-row, last-column = call gxl-get-selection-limits
(view-1, win);
242

gxl-get-size-attributes-of-cells-in-view
gxl-get-size-attributes-of-cells-in-view
Returns the font size, width, and height of cells in a cell group on a spreadsheet
view.

Synopsis

gxl-get-size-attributes-of-cells-in-view
(view: class gxl-spreadsheet-view, group-number: integer,
Window: class g2-window)
-> width: integer, height: integer, font: symbol

Description

For a given spreadsheet view, this procedure returns the following cell
appearance attributes of the cell group associated with a given group-number:

• Cell width

• Cell height

• Font size

If the cell group associated with the given group-number is out of bounds, this
procedure signals an error (gxl-group-number-out-of-bounds). If no cells are

Argument Description

view The spreadsheet view that is the target of
this call.

group-number The reference number of the cell group
whose cell attributes are returned.

window The g2-window originating this call.

Return Value Description

width The width of the cell in the cell group of the
View

height The height of the cell in the cell group of the
View.

font The size of the font used in the cell group of
the View.
243

visible on the View for the given cell group, this procedure signals an error
(gxl-no-visible-cells).

For a discussion on how the settings of these attributes affect the view display, see
Customizing the Data Display in Cells.

Example

The following call returns the cell width and height, and font size used with cell
group 7:

width, height, font = call gxl-get-size-attributes-of-cells-in-view
(view-1, 7, win);

The returned values are 80, 28, small, that is, the cells of cell group 7 are 80 pixels
wide, 28 pixels high and use small font to display data.
244

gxl-get-specification-object
gxl-get-specification-object
Provides a convenient way to retrieve a given specification object by its position
in a graphical specification.

Synopsis

gxl-get-specification-object
(root-spec: class gxl-root-specification, type: symbol, number: integer,
 window: class g2-window)
-> specification: class gxl-specification-object

Description

This procedure returns a specification object that is part of a graphical
specification connected to a given root-spec. You may use this procedure to get a
specification object when you need to set an attribute in an object that is part of a
specification.

Argument Description

root-spec The root of the graphical specification from
which a connected object is to be retrieved.

type The type of specification object to be
returned, one of the symbols row-controller,
column-controller, or cell-group.

number An integer giving the coordinate of the
specification object to be retrieved

window The g2-window originating this call.

Value Description

specification The specification object of the given type
and location.
245

Example

Consider this specification:

To retrieve the column controller labelled “2”, make the following call:

col-controller-2 = call gxl-get-specification-object (root-spec-1,
the symbol column-controller, 2, win);

To retrieve the cell group labelled “7”, make the following call:

cell-group-7 = call gxl-get-specification-object (root-spec-1,
the symbol cell-group, 7, win);

0 1 2

3 4 5

6 7 8

0

1

2

0 1 2

root-spec-1

Row Controllers

Column Controllers

Cell Groups
246

gxl-get-specification-of-spreadsheet
gxl-get-specification-of-spreadsheet
Returns the specification that was used to create a spreadsheet, if it exists.

Synopsis

gxl-get-specification-of-spreadsheet
(sheet: class gxl-spreadsheet, window: class g2-window)
-> specification: class gxl-root-specification

Description

Spreadsheets are created from specifications, and a spreadsheet retains a pointer
to the root specification object from which it was created. This procedure returns
the specification associated with a spreadsheet. If the specification does not exist,
this procedure signals the error gxl-no-specification. Typically, you would use this
procedure to find an appropriate specification when you want to create a view of
the spreadsheet, if the same specification is to be used to create the view as was
used to create the spreadsheet.

Example

The following call returns the specification associated with spreadsheet-1:

root-spec-1 = call gxl-get-specification-of-spreadsheet(spreadsheet-1, win);

Argument Description

sheet The spreadsheet whose specification is to be
found.

window The g2-window originating this call.

Return Value Description

specification The root specification of the specification
that provided the template for creation of
the spreadsheet.
247

gxl-get-spreadsheet-dimensions
Returns the current size of a spreadsheet.

Synopsis

gxl-get-spreadsheet-dimensions
(sheet: class gxl-spreadsheet, window: class g2-window)
-> rows: integer, cols: integer

Description

This procedure returns the number of rows and columns in a spreadsheet.

Example

The following call determines the dimensions of spreadsheet-1:

nrows, ncolumns = call gxl-get-spreadsheet-dimensions(spreadsheet-1, win);

Argument Description

sheet The spreadsheet that is the subject of this
call.

window The g2-window originating this call.

Return Value Description

 rows The number of rows in the spreadsheet.

 cols The number of columns in the spreadsheet.
248

gxl-get-spreadsheet-of-view
gxl-get-spreadsheet-of-view
Returns the spreadsheet associated with a view.

Synopsis

gxl-get-spreadsheet-of-view
(view: class gxl-spreadsheet-view, window: class g2-window)
-> spreadsheet: class gxl-spreadsheet

Description

Each view has exactly one spreadsheet that serves as the data source for the view.
This procedure returns the spreadsheet associated with a view. If the spreadsheet
does not exist, this procedure signals an error (gxl-no-spreadsheet).

Example

The following call returns the spreadsheet associated with view-1:

spreadsheet-1 = call gxl-get-spreadsheet-of-view(view-1, win);

Argument Description

view The view that is the subject of this call.

window The g2-window originating this call.

Return Value Description

spreadsheet The spreadsheet that is the data source for
the view.
249

gxl-get-version
Returns the version of the GXL module.

Synopsis

gxl-get-version ()
-> version: text, sequence-number: integer

Description

This procedure allows you to find out the version of the gxl module that is
currently loaded. The version is returned as text in the format:

Major.Minor Type Revision

where:

Major is an integer representing the major release number.

Minor is an integer representing the minor release number.

Type is a word describing the type of release, such as Revision, Alpha or Beta.

Revision is an integer representing the revision number.

For example, the first beta release might be:

“7.0 Beta 0a”

The format of this string is subject to change.

The revision can be used to establish the release order of different versions of the
module. This number will increase with each revision of the software.

Example

The following call returns version information about the gxl module:

version, sequence-number = call gxl-get-version();

Return Value Description

 version A text describing the current version of the
module.

 sequence-number A quantity which increments on every
revision of the module.
250

gxl-get-views-of-spreadsheet
gxl-get-views-of-spreadsheet
Returns a list of views associated with a spreadsheet.

Synopsis

gxl-get-views-of-spreadsheet
(sheet: class gxl-spreadsheet, window: class g2-window)
-> views: class item-list

Description

A spreadsheet can have an arbitrary number of views. This procedure returns all
the views associated with a spreadsheet in an item list. If there are no views, the
item list is returned empty.

To determine what windows, if any, a view is displayed upon, you must iterate
over all g2-windows and use the G2 system procedure g2-item-is-showing-on-
window to tell you for each window if the view is visible.

Example

The following call returns the views associated with spreadsheet-1, where views
is type item-list:

views = call gxl-get-views-of-spreadsheet(spreadsheet-1, win);

Argument Description

sheet The spreadsheet whose specification is to be
found.

window The g2-window originating this call.

Return Value Description

views The list of views.
251

gxl-get-workspace-location-of-cell
Returns the left, top, right, and bottom workspace coordinates of a cell displayed
on a spreadsheet view.

Synopsis

gxl-get-workspace-location-of-cell
(view: class gxl-spreadsheet-view, row: integer, column: integer
window: class g2-window)
-> left: integer, top: integer, right: integer, bottom: integer

Description

Based on the row, column coordinate location of a cell on a given spreadsheet
view, this procedure returns the corresponding workspace location of the cell.
The coordinates are measured in pixels, where left, top and right, bottom pairs

Argument Description

view The spreadsheet view that is the target of
this call.

row The row location of a particular cell

column The column location of a particular cell

window The g2-window originating this call.

Return Value Description

left The top left x coordinate workspace location
of a particular cell on the View.

top The top left y coordinate workspace location
of a particular cell on the View.

right The bottom right x coordinate workspace
location of a particular cell on the View.

bottom The bottom right y coordinate workspace
location of a particular cell on the View.
252

gxl-get-workspace-location-of-cell
equal the top left x,y location and bottom right x,y location of the cell on the
workspace.

If the row, column coordinates are out of bounds, this procedure signals an error
(gxl-group-number-out-of-bounds). If no cells are visible on the view for the given
row/column coordinates, this procedure signals an error (gxl-no-visible-cells).

Example

The following call returns the workspace coordinates of the highlighted cell on
view-1, based on its row, column location.

left, top, right, bottom = call gxl-get-workspace-location-of-cell
(view-1, 2, 3, win);

The workspace coordinates are 240, -56, 320, -84

240X, -56Y

320X, -84Y
253

gxl-get-workspace-location-of-cell-group
Returns the left, top, right, and bottom workspace coordinates of a cell group on a
spreadsheet view.

Synopsis

gxl-get-workspace-location-of-cell-group
(view: class gxl-spreadsheet-view, group-number: integer,
window: class g2-window)
-> left: integer, top: integer, right: integer, bottom: integer

Argument Description

view The spreadsheet view that is the target of
this call.

group-number The reference number of the cell group
whose workspace location coordinates are
returned.

window The g2-window originating this call.

Return Value Description

left The top left x coordinate workspace location
of a particular cell group on the View.

top The top left y coordinate workspace location
of a particular cell group on the View.

right The bottom right x coordinate workspace
location of a particular cell group on the
View.

bottom The bottom right y coordinate workspace
location of a particular cell group on the
View.
254

gxl-get-workspace-location-of-cell-group
Description

Use this procedure to get the workspace location of a particular cell group on a
given view, where the left, top pair and right, bottom pair equal the top left x,y
location and bottom right x,y location of the cell group on the workspace.

If the given cell group is out of bounds, this procedure signals an error (gxl-group-
number-out-of-bounds). If the given cell group does not currently exist within a
scrollable area, this procedure signals an error (gxl-no-visible-cell).

Example

The following call returns the coordinate location of cell group 7 on view-1:

left, top, right, bottom = call gxl-get-workspace-location-of-cell-group
(view-1, 7, win);

The returned coordinates are 50, -50, 190, -370
255

256

11
Setting Spreadsheet
and View Properties
Describes the API procedures for setting GXL spreadsheet and view properties.

Introduction 258

gxl-set-all-color-patterns-to-default 259

gxl-set-cell-contents 260

gxl-set-cell-group-procedure-attribute 262

gxl-set-color-pattern-of-cell 264

gxl-set-color-pattern-of-cell-to-default 266

gxl-set-editor-buttons 267

gxl-set-editor-scrolling 268

gxl-set-float-format-of-group-on-view 269

gxl-set-group-column-header 271

gxl-set-protection-on-entire-view 273

gxl-set-protection-of-group-on-view 274
257

Introduction
This chapter describes the procedures of the Application Programmer’s Interface
to GXL that you can use to programmatically to set properties of spreadsheets
and views.

The following table summarizes the properties of spreadsheets and views that
you can set programmatically:

Using gxl-set-cell-group-procedure-attribute, you can specify or change the
procedures associated with initialization, validation, or callbacks of a cell group
for an existing spreadsheet.

You can also set the style of the editor used when editing formulas and cells with
these procedures: gxl-set-editor-buttons and gxl-set-editor-scrolling.

See The Application Programmer’s Interface for related information.

To set this property... Use this procedure...

Contents of a cell gxl-set-cell-contents

Color pattern of a cell gxl-set-color-pattern-of-cell,
gxl-set-color-pattern-of-cell-to-
default

Color patterns of spreadsheet to
their default settings

gxl-set-all-color-patterns-to-default

Contents of a column header cell gxl-set-group-column-header

Display format of floating point
numbers for a cell group on an
existing view

gxl-set-float-format-of-group-on-
view

User access for selecting/editing
cells on a view

gxl-set-protection-of-group-on-
view

gxl-set-protection-on-entire-view
258

gxl-set-all-color-patterns-to-default
gxl-set-all-color-patterns-to-default
Sets all color patterns of a spreadsheet or a view to their default values.

Synopsis

gxl-set-all-color-patterns-to-default
(sheet: class gxl-spreadsheet, window: class g2-window)

Description

This procedure changes the background, border, and text color patterns of all the
views associated with a given sheet to the default color patterns, and then updates
the view displays to reflect the color pattern change.

Example

The following call sets the color patterns of any views associated with
spreadsheet-1 to their default colors:

call gxl-set-all-color-patterns-to-default (spreadsheet-1, win);

Argument Description

sheet The spreadsheet that is the target of this call.

window The g2-window originating this call.
259

gxl-set-cell-contents
Sets the value contained in a cell.

Synopsis

gxl-set-cell-contents
(sheet: class gxl-spreadsheet, row: integer, column: integer, value: value,
update-views: truth-value, window: class g2-window)

Description

This procedure sets the contents of a single cell of a given sheet to value, which can
be an integer, float, text, symbol, or truth-value. No checking is performed to
make sure that the type of value placed into the cell conforms to the type of cell in
the cell group; it is the responsibility of the caller to assure the type of value is
consistent with the cell type. If the cell has an active callback, this procedure
produces a call to the callback.

Caution Do not use this procedure to set the value of column header cells: use gxl-set-
group-column-header on for that purpose.

Normally, you call this procedure with update-views = true. However, if you are
calling this procedure several times in a row, you will significantly improve the
efficiency of your code by setting update-views = false, following the calls to
gxl-set-cell-contents with a single call to gxl-refresh-all-views.

argument Description

sheet The spreadsheet that is the subject of this
call.

row The row coordinate of the cell whose value
is to be set.

column The column coordinate of the cell whose
value is to be set.

value The value to be placed into the cell.

update-views A flag indicating whether the views of the
spreadsheet should be redrawn after the cell
value is set.

window The g2-window originating this call.
260

gxl-set-cell-contents
To clear a cell, you may call this function with value = “!nv”.

If row or column are out of bounds, this procedure signals an error (gxl-row-or-
column-out-of-bounds).

Example

The following call sets the value of the cell located at row 0, column 0 in
spreadsheet-1 to the symbol ABC, and updates the views to reflect this new value:

call gxl-set-cell-contents(spreadsheet-1, 0, 0, the symbol abc, true, win);
261

gxl-set-cell-group-procedure-attribute
Sets any of the initialization, validation, or callback procedures associated with a
cell group.

Synopsis

gxl-set-cell-group-procedure-attribute
(sheet: class gxl-spreadsheet, group-number: integer,
 attribute-name: symbol, new-value: symbol, window: class g2-window)

Description

This procedure sets any of the following procedural attributes of cell groups for a
given sheet: gxl-additional-validation-procedure, gxl-initialization-procedure, gxl-
reinitialization-procedure, gxl-callback-procedure, or gxl-selection-callback-
procedure.

To remove a procedure from a cell group, set the relevant procedural attribute to
unspecified.

Argument Description

sheet The spreadsheet that is the subject of this
call.

group-number The reference to the cell group whose
procedure is to be set.

attribute-name The name of the procedural attribute that is
to be set, which is one of the following
symbols:

gxl-additional-validation-procedure
gxl-initialization-procedure
gxl-reinitialization-procedure
gxl-callback-procedure
gxl-selection-callback-procedure

new-value A symbol naming a suitable initialization,
validation or callback procedure, or the
symbol unspecified.

window The g2-window originating this call.
262

gxl-set-cell-group-procedure-attribute
Example

The following call sets the callback procedure of cell group (2) on spreadsheet-1 to
my-new-callback:

call gxl-set-cell-group-procedure-attribute(spreadsheet-1, 2, the symbol
gxl-callback-procedure, the symbol my-new-callback, win);
263

gxl-set-color-pattern-of-cell
Sets the color pattern of a cell.

Synopsis

gxl-set-color-pattern-of-cell
(sheet: class gxl-spreadsheet, row: integer, column: integer,
 background-color: symbol, text-color: symbol, border-color: symbol,
 update-views: truth-value, window: class g2-window)

Description

Each cell in the spreadsheet has a color pattern described by its background, text
and border colors. The symbols provided to this procedure are selected from the
64 color palette of G2, and do not include the meta-colors foreground and
background.

If you give this procedure an invalid color, it will use white for the background
and black for the text and border colors. If row or column are out of bounds, this
procedure signals an error (gxl-row-or-column-out-of-bounds).

Normally, you call this procedure with update-views = true. However, if you are
calling this procedure several times in a row, you will significantly improve the

Argument Description

sheet The spreadsheet that is the subject of this
call.

row The row coordinate of the cell whose color
pattern is to be changed.

column The column coordinate of the cell whose
color pattern is to be changed.

background-color The desired background color for the cell.

text-color The desired text color for the cell.

border-color The desired border color for the cell.

update-views A flag indicating whether the views of the
spreadsheet should be redrawn after the cell
color is set.

Window The g2-window originating this call.
264

gxl-set-color-pattern-of-cell
efficiency of your code by setting update-views = false, and following the calls to
gxl-set-color-pattern-of-cell with a single call to gxl-refresh-all-views.

Example

The following call sets the color pattern of the cell located at row 0, column 0 in
spreadsheet-1 to background red, text black, and border yellow:

call gxl-set-color-pattern-of-cell(spreadsheet-1, 0, 0, the symbol red,
the symbol black, the symbol yellow, true, win);
265

gxl-set-color-pattern-of-cell-to-default
Sets the color pattern of a cell to the default colors defined for the cell group.

Synopsis

gxl-set-color-pattern-of-cell-to-default
(sheet: class gxl-spreadsheet, row: integer, column: integer,
 window: class g2-window)

Description

Use this procedure if you want to return the color of a cell to the color it had
before any color change operations. This procedure automatically updates views.

Example

The following call returns the color pattern of the cell located at row 0, column 0
in spreadsheet-1 to its original color pattern:

call gxl-set-color-pattern-of-cell-to-default (spreadsheet-1, 0, 0, win);

Argument Description

sheet The spreadsheet that is the subject of this
call.

row The row coordinate of the cell whose color
pattern is to be changed.

column The column coordinate of the cell whose
color pattern is to be changed.

window The g2-window originating this call.
266

gxl-set-editor-buttons
gxl-set-editor-buttons
Determines whether editor buttons are shown on a particular G2 window when
performing in-place cell editing and formula entry.

Synopsis

gxl-set-editor-buttons
(show-buttons: truth-value, window: class g2-window)

Description

This procedure controls whether spreadsheet views should include editor
buttons. The buttons are the cancel, undo, paste, and language-specific buttons
that normally appear at the left side of the editor when editing messages and
procedures in G2. The call only affects the editor behavior on the window
specified by the second argument.

Example

The following call turns on editor buttons on a window named telewindow-1:

call gxl-set-editor-buttons(true, telewindow-1);

To return to the normal appearance of the editor, use the following call:

call gxl-set-editor-buttons (false, telewindow-1);

Argument Description

show-buttons Truth value determining whether to show
editor buttons.

window The g2-window where the editor behavior is
to be set.
267

gxl-set-editor-scrolling
Determines whether the editor displays a vertical scroll bar on a particular G2
window when performing in-place cell editing and formula entry.

Synopsis

gxl-set-editor-scrolling
(use-scrolling: truth-value, window: class g2-window)

Description

This procedure determines whether spreadsheet views should include editor
scrolling. If use-scrolling is true, the editor will show a scroll bar on the right side
of the edit area, making it convenient to edit multi-line cell values. This procedure
only affects the behavior of the editor on the window specified by the second
argument.

Example

The following call turns on editor scrolling on a window named telewindow-1:

call gxl-set-editor-scrolling(true, telewindow-1);

To return to the normal appearance of the editor, use the following call:

call gxl-set-editor-scrolling (false, telewindow-1);

Argument Description

use-scrolling Truth value determining whether or not to
use scrolling.

window The g2-window where the editor behavior is
to be set.
268

gxl-set-float-format-of-group-on-view
gxl-set-float-format-of-group-on-view
Sets the formatting of floating point numbers in cell groups for an existing view.

Synopsis

gxl-set-float-format-of-group-on-view
(View: class gxl-spreadsheet-view, group-number: integer,
 use-default: truth-value, min-width: integer, precision: integer,
 output-format: symbol, strip-zeros: truth-value,
 window: class g2-window)

Description

This procedure sets the visual representation of floats in a given view. The
underlying value is not affected by the formatting. The group-number specifies
the cell group whose formats are to be changed.

If use-default = true, the default format described in The Spreadsheet Toolbar will
be applied. The remaining arguments of the float format are set, but have no effect
on the appearance unless this procedure is called again with use-default = false.

Argument Description

view The view that is the subject of this call.

group-number The reference number of the cell group on
the view whose format information is to be
changed.

use-default A truth-value indicating if default
formatting is to be used.

min-width Specifies the minimum number of
characters in the formatted version of float.

precision Specifies either the number of digits to the
right of the decimal point, or the significant
digits, depending on the output-format.

output-format Determines the representation of the float.

strip-zeros A truth-value indicating whether zeros to
the right of the last non-zero digit are to be
stripped.

window The g2-window originating this call.
269

The remaining arguments of this procedure are the same as in the G2 system
procedure, g2-float-to-text:

• min-width specifies the minimum number of characters in the formatted
value. If the formatted float value has fewer characters than the number you
specify, the text in the cell is padded on the left side with space characters.

• output-format is a symbol indicating the representation of the value. If this
argument is float, the values are displayed as floats; if exponent, exponential
notation is used; if best, values are displayed as an exponent if the result is too
small or large for the specified precision.

• precision indicates the digits to the right of the decimal, if the output-format is
float or exponent. Otherwise, precision is the number of significant digits.

• strip-zeros controls whether zeros to the right of the last non-zero digit are
removed.

After calling this procedure, you must refresh the view for the new format to take
effect.

Example

The following call sets the format of floats in view-1, group 2, to a minimum
width of 1, 6 digits precision, in exponential format, without stripping of trailing
zeros:

call gxl-set-float-format-of-group-on-view (view-1, 2, false, 1, 6,
the symbol exponent, false, win);
270

gxl-set-group-column-header
gxl-set-group-column-header
Sets the value displayed in a column header.

Synopsis

gxl-set-group-column-header
(sheet: class gxl-spreadsheet, group-number: integer, text: text,
 update-views: truth-value, window: class g2-window)

Description

You set the contents of a column header through this procedure, rather than
gxl-set-cell-contents. This procedure uses the group-number to refer to the header,
instead of row/column coordinates. The update-views argument is used in the
same way as in gxl-set-cell-contents. If the group-number is out of bounds, this
procedure signals an error (gxl-group-number-out-of-bounds).

Argument Description

sheet The spreadsheet that is the subject of this
call.

group-number The reference number of the column header
that is to be updated.

text The new text to be displayed in the column
header.

update-views A flag indicating whether the views of the
spreadsheet should be redrawn after the
update.

window The g2-window originating this call.
271

Example

Consider the following spreadsheet specification used to create spreadsheet-1:

Groups 1 and 2 are column headers, so this procedure should only be used with
group-number = 1 or 2.

The following call sets the column header text of group 2 in spreadsheet-1:

call gxl-set-group-column-header (spreadsheet-1, 2, “New Header”,
true, win);

0 1 2

3 4 5

6 7 8
272

gxl-set-protection-on-entire-view
gxl-set-protection-on-entire-view
Sets the editability and selectability properties of a view.

Synopsis

gxl-set-protection-on-entire-view
(view: class gxl-spreadsheet-view, selectable: truth-value,
 editable: truth-value, window: class g2-window)

Description

This procedure allows you to restrict or unrestrict selection and editing of every
cell on a view. The effect of this procedure is equivalent to calling gxl-set-
protection-of-group-on-view for every cell group. For details on editability and
selectability, see .

Example

The following call makes a view read-only:

call gxl-set-protection-on-entire-view(view-1, false, false, win);

Argument Description

view The view that is the subject of this call.

selectable A truth-value indicating whether the cells in
the cell group on the view can be selected
with the mouse.

editable A truth-value indicating whether the cells in
the cell group on the view can be edited by
the user.

window The g2-window originating this call.
273

gxl-set-protection-of-group-on-view
Sets the editability and selectability properties of a cell group on a view.

Synopsis

gxl-set-protection-of-group-on-view
(view: class gxl-spreadsheet-view, group-number: integer,
 selectable: truth-value, editable: truth-value, window: class g2-window)

Description

This procedure allows you to restrict or unrestrict selection and editing of cells on
a given view. Each cell group may have different protection. If cells in a cell group
are selectable, you can click or drag the mouse over them to select them, and then
perform operations from the tool bar such as changing the cell colors, cutting and
copying their values, etc. If a cell group is not editable, you cannot edit the cell
contents. If a cell is neither selectable nor editable, clicking or dragging the mouse
on the cell does nothing.

Cells that are not selectable might still be indirectly selected using row and
column selector cells. If you want to assure that a cell cannot be selected by row
and column selectors, make the associated selector cells are unselectable.

To be editable, a cell must be selectable. Although you are not prevented from
choosing this combination, setting editability to true, while the selectability is
false, is inconsistent. Note that setting the editability and selectability properties
to false does not prevent access to the cell contents programmatically.

Argument Description

view The view that is the subject of this call.

group-number The reference number of the cell group
whose protection properties are to be
changed.

selectable A truth-value indicating whether the cells in
the cell group on the view can be selected
with the mouse.

editable A truth-value indicating whether the cells in
the cell group on the view can be edited by
the user.

window The g2-window originating this call.
274

gxl-set-protection-of-group-on-view
Example

The following call makes cell group 1 uneditable and unselectable, thus making
the cells in group 1 read-only:

call gxl-set-protection-of-group-on-view(view-1, 1, false, false, win);
275

276

12
Additional View
Procedures
Describes miscellaneous API procedures related to GXL views.

Introduction 277

gxl-move-spreadsheet-view 279

gxl-refresh-all-views 281

gxl-scroll-to-column-in-view 282

gxl-scroll-to-row-in-view 284

gxl-set-selection-limits 286

Introduction
This chapter describes the procedures of the Application Programmer’s Interface
to GXL that you can use to programmatically manipulate views:

• gxl-move-spreadsheet-view moves a view on a workspace.

• gxl-refresh-all-views allows you to force re-draws of views, in cases where re-
draws might have been suppressed, especially while loading data into the
spreadsheet.

• gxl-set-selection-limits allows you to select and unselect one or more cells in a
rectangular area on a view.

• gxl-scroll-to-column-in-view and gxl-scroll-to-row-in-view are the
programmatic equivalents to manual scrolling.

See The Application Programmer’s Interface for related information.
277

gxl-move-spreadsheet-view
Programmatically moves a view to a new location on a workspace.

Synopsis

gxl-move-spreadsheet-view
(view: class gxl-spreadsheet-view, delta-x: integer, delta-y: integer,
 window: class g2-window)

Description

This procedure moves a given view by an amount (delta-x, delta-y) on its current
workspace. All items associated with the view (tool bar, pushbuttons, etc.) are
also moved.

Note You cannot transfer a view between workspaces programmatically.

Example

The following call shifts view-1 up 50 pixels and to the left by 100 pixels on the
workspace:

call gxl-move-spreadsheet-view (view-1, -100, 50, win);

Argument Description

view The spreadsheet view that is the subject of
this call.

delta-x The horizontal distance in pixels that the
view should be moved.

delta-y The vertical distance in pixels that the view
should be moved.

Window The g2-window originating this call.
278

gxl-move-spreadsheet-view
The following figure illustrates how view-1 appears before and after moving the
view on the workspace:

View-1 before

View-1 after
279

gxl-refresh-all-views
Forces a redraw of all views associated with a spreadsheet.

Synopsis

gxl-refresh-all-views
(sheet: class gxl-spreadsheet, window: class g2-window)

Description

This procedure forces each view associated with the given Sheet to redraw, using
the current data and cell contents. This procedure needs to be called only if
updating of the views has been explicitly suppressed (update-views = false) when
calling one of the following procedures:

• gxl-set-cell-contents

• gxl-set-color-pattern-of-cell

• gxl-load-data-into-cell-group

• gxl-load-data-into-defined-area

• gxl-set-group-column-header with

The correct technique when you are making calls to these procedures with
update-views = false is to call gxl-refresh-all-views once directly after the calls to
these procedures, so that the work of drawing is only performed once.

Example

The following code fragment provides an example of setting cell values in an area
of the spreadsheet named spreadsheet-1, with UpdateViews = false, and then
updating views:

for i= first-row to last-row do
for j= first-col to last-col do

call gxl-set-cell-contents(spreadsheet-1, i, j, 10*i + j, false, win)
end;

end;
call gxl-refresh-all-views(spreadsheet-1, win);

Argument Description

sheet The spreadsheet that is the subject of this
call.

window The g2-window originating this call.
280

gxl-scroll-to-column-in-view
gxl-scroll-to-column-in-view
Programmatically scrolls a view to expose a given column.

Synopsis

gxl-scroll-to-column-in-view
(view: class gxl-spreadsheet-view, target-column: integer,
 window: class g2-window)

Description

This procedure scrolls so that the target-column is visible on a view. The
target-column will be displayed as the first visible column, if it is possible to scroll
into that position. Otherwise, the view will be scrolled as far as possible,
advancing target-column as far left in the view as possible.

For example, if target-column is the last column of the spreadsheet, it cannot be
advanced beyond the last column of the view, and that is where it will be
displayed as a result of calling this procedure.

Example

Consider the existing spreadsheet view, view-1, which currently displays the first
six columns:

Argument Description

view The view that is to be scrolled.

target-column The column that is to be displayed.

window The g2-window originating this call.
281

To scroll to the fourth column programmatically, you would invoke the following
call:

call gxl-scroll-to-column-in-view(view-1, 5, win);

This is the result:

The columns scroll horizontally, displaying column 4 as the first column.
282

gxl-scroll-to-row-in-view
gxl-scroll-to-row-in-view
Programmatically scrolls a view to expose a given row.

Synopsis

gxl-scroll-to-row-in-view
(view: class gxl-spreadsheet-view, target-row: integer,
window: class g2-window)

Description

This procedure scrolls so that target-row is visible on a view. The target-row will
be displayed as the first visible row, if it is possible to scroll into that position.
Otherwise, the view will be scrolled as far as possible, advancing target-row as far
upward in the view as possible.

For example, if target-row is the last row of the spreadsheet, it cannot be advanced
beyond the last row of the view, and that is where it will be displayed as a result
of calling this procedure.

Example

Consider the existing spreadsheet view, view-1, which currently displays the first
six rows:

Argument Description

view The spreadsheet view that is to be scrolled.

target-row The row that is to be displayed.

window The g2-window originating this call.
283

To scroll to the seventh row programmatically, you would invoke the following
call:

call gxl-scroll-to-row-in-view(view-1, 8, win);

This is the result:
284

gxl-set-selection-limits
gxl-set-selection-limits
Sets the selected area of a view.

Synopsis

gxl-set-selection-limits
(view: class gxl-spreadsheet-view, first-row: integer, first-col: integer,
last-row: integer, last-col: integer, window: class g2-window)

Description

This procedure selects one or more cells in a rectangular area on a view. The area
to select is defined by the first-row, first-col, last-row, and last-col arguments.
When the selection is made, any existing selection is deselected.

To select a single cell, call this procedure with:

first-row = last-row
first-col = last-col

To deselect all cells, call this procedure with

first-row = -1

If the new selection extends to any cell groups that have selection callback
procedures, a call will be made to the selection callback of each cell group affected
by the selection.For details on selection callbacks, see .

Argument Description

view The spreadsheet view for which the
selection is to be made.

first-row The first row of the selected area.

first-col The first column of the selected area.

last-row The last row of the selected area.

last-col The last column of the selected area.

window The g2-window originating this call.
285

Example

The following call selects the area bounded by row 2, column 2 and row 4,
column 4 of view-1:

call gxl-set-selection-limits (view-1, 2, 2, 4, 4, win);

Here is the result:
286

13
Row and Column
Operations
Describes the API methods for adding and deleting rows and columns, and API
procedures for sorting.

Introduction 289

gxl-add-columns 291

gxl-add-rows 293

gxl-permute-rows 295

gxl-remove-columns 297

gxl-remove-rows 298

gxl-sort 299

gxl-sort-and-return-permutations 301

Introduction
This chapter describes the procedures and methods of the Application
Programmer’s Interface to GXL that you can use to programmatically change the
row and column dimensions of a spreadsheet, and perform sorting operations.

Using gxl-add-rows and gxl-add-columns methods, you can add one or more rows
and columns to a spreadsheet at a specific location. Using gxl-remove-rows and
gxl-remove-columns methods, you can delete one of more rows and columns of a
spreadsheet. By default, GXL updates the views and associated scrolling behavior
when adding or deleting rows and columns.
287

For sorting you can use the gxl-sort, gxl-permute-rows, and gxl-sort-and-return-
permutations procedures.

See The Application Programmer’s Interface for related information.
288

gxl-add-columns
gxl-add-columns
Expands the dimension of a spreadsheet by adding one or more columns.

Synopsis

gxl-add-columns
(sheet: class gxl-spreadsheet, Target: integer, columns-to-add: integer,
 mode: symbol, update-views: truth-value, scroll-to: truth-value,
window: class g2-window)

Description

This method adds columns to a spreadsheet. Using the mode argument, you
control the cell group assignment of the new columns. In the case that mode is
before or after, the target argument is a column adjacent to where the new
columns are added. The columns that are added are in the same cell groups as the
cells in the target column, and are either inserted before or after the target
column, as directed by the mode argument.

Argument Description

sheet The spreadsheet that is the subject of this
call.

target The column adjacent to where new columns
are to be inserted, or a group number.

columns-to-add The number of new columns to add to the
spreadsheet.

mode The symbol before, after, or group, which
indicates whether the new columns are to be
added before or after the target, or in a
currently empty group.

update-views A truth-value indicating whether to update
the views after adding the columns.

scroll-to A truth-value indicating whether to update
the scroll area after adding the columns. The
default value for this argument is true.

window The g2-window originating this call.
289

To add columns to a cell group that currently contains no columns, set the mode
argument to the symbol group. In this case, target is the group number of the cell
group where you want to add columns.

The cells in the columns that are added are initially empty. However, if the group
has a reinitialization procedure, it will be called after the columns are added. The
reinitialization procedure can be used to initialize the values of the new columns.
For information on reinitialization procedures, see .

When update-views and scroll-to are set to true, this method refreshes existing
views of the sheet to accommodate the additional columns in the view display,
where update-views redraws the view and scroll-to adjusts the scroll areas of the
view to include the new columns.

Example

Consider a spreadsheet consisting of six cell groups, as shown below. Cell groups
1 and 4 currently have no columns.

The following call adds 1 new column between existing columns 3 and 4, with the
new column belonging to cell groups 0 and 3:

call gxl-add-columns(spreadsheet-1, 3, 1, the symbol after, true, true, win);

If you want to add a column between existing columns 3 and 4 that belongs to cell
groups 2 and 5, you would use the following call:

call gxl-add-columns(spreadsheet-1, 4, 1, the symbol before, true, true, win);

To add seven columns to the currently-empty cell groups 1 and 4, you use the
mode group as follows:

call gxl-add-columns(spreadsheet-1, 1, 7, the symbol group ,true, true, win);

Note that in this call, the second argument could be either group 1 or 4, and the
same result would be achieved, since the number of columns in cell groups 1 and
4 are always the same.

3 5

20Cell group
boundaries

Column 0 1 2 3 4 5
290

gxl-add-rows
gxl-add-rows
Expands the dimension of a spreadsheet by adding one or more rows.

Synopsis

gxl-add-rows
(sheet: class gxl-spreadsheet, target: integer, rows-to-add: integer,
 mode: symbol, update-views: truth-value, scroll-to: truth-value,
window: class g2-window)

Description

This method adds rows to a spreadsheet. Using the mode argument, you control
the cell group assignment of the new rows. If mode is before or after, the target
argument is a row adjacent to where the new rows are added. The rows that are
added are in the same cell groups as the cells in the target row, and are either
inserted before or after the target row, as directed by the mode argument.

To add rows to a cell group that currently contains no rows, set the mode
argument to the symbol group. In this case, target is the group number of the cell
group where you want to add rows.

Argument Description

sheet The spreadsheet that is the subject of this
call.

target The row adjacent to where new rows are to
be inserted, or a group number.

rows-to-add The number of new rows to add to the
spreadsheet.

mode The symbol before, after, or group, which
indicates whether the new rows are to be
added before or after the target, or in a
currently empty group.

update-views A truth-value indicating whether to update
the views after adding the rows.

scroll-to A truth-value indicating whether to update
the scroll area after adding the rows. The
default value for this argument is true.

window The g2-window originating this call.
291

The rows that are added are initially empty. However, if the group has a
reinitialization procedure, it will be called after the rows are added. The
reinitialization procedure can be used to initialize the values of the new rows. For
information on reinitialization procedures, see .

When update-views and scroll-to are set to true, this method refreshes existing
views of the sheet to accommodate the additional rows in the view display, where
update-views redraws the view and scroll-to adjusts the scroll areas of the view to
include the new rows.

Example

Consider a spreadsheet consisting of six cell groups, as shown below. The cell
groups 2 and 3 currently have no rows.

The following call adds 1 new row between existing rows 2 and 3, with the new
row belonging to cell groups 0 and 1:

call gxl-add-rows(spreadsheet-1, 2, 1, the symbol after, true, true, win);

If you want to add a row between existing rows 2 and 3 that belongs to cell
groups 4 and 5, you would use the following call:

call gxl-add-rows(spreadsheet-1, 3, 1, the symbol before, true, true, win);

To add seven rows to the currently-empty groups 2 and 3, you use the mode
group, as follows:

call gxl-add-rows(spreadsheet-1, 2, 7, the symbol group, true, true, win);

Note that in this call, the second argument could be either group 2 or 3, and the
effect is the same, since the number of rows in cell groups 2 and 3 are always the
same.

4 5

10Cell group
boundaries

Row

0

1

2

3

4

292

gxl-permute-rows
gxl-permute-rows
Sorts rows of the target columns according to a given pattern of permutations.

Synopsis

gxl-permute-rows
(sheet: class gxl-spreadsheet, first-row: integer, last-row: integer,
 permutations: class integer-list, target-columns: class integer-list,
 window: class g2-window)

Description

This is a low-level sorting routine that can be used to implement sorting based on
your own sorting criterion. To use this procedure, you first determine the new
row ordering that you want, and represent this order in the permutations list.

The length of the permutations list must equal the number of rows to be sorted,
and it must contain all the integers from 0 to nrows - 1, where:

nrows = last-row -first-row + 1

The order of the integers in this list determines the new order of the rows. If
permutations[n] = m, then data from the m-th row of the target area is placed in
the n-th row of the target area.

Only columns that are part of the target-columns list are included in the sort.
These columns do not have to be consecutive. You must have one or more
columns in target-columns.

Argument Description

sheet The spreadsheet that is the subject of this
call.

first-row The first row of the target area.

last-row The last row of the target area.

permutations An integer list that determines the sorting of
the rows of the target area.

target-columns A list of columns that are to be included in
the sorting operation.

window The g2-window originating this call.
293

Example

Consider a spreadsheet consisting of the entries shown below.

Suppose permutations = (2, 0, 1) and target-columns = (1, 2, 4). The following call
will re-arrange the data in the spreadsheet as shown below:

call gxl-permute-rows(spreadsheet-1, 1, 3, permutations, target-columns, win);

0

1

2

3

0 1 2 3 4 5

a b c d e f

g h i j k l

m n o p q r

s t u v w x

Rows

Columns

a b c d e f

g t u j w l

m h i p k r

s n o v q x

0 1 2 3 4 5

Columns

0

1

2

3

Rows
294

gxl-remove-columns
gxl-remove-columns
Deletes one or more columns from the spreadsheet.

Synopsis

gxl-remove-columns
(sheet: class gxl-spreadsheet, first-col: integer,
columns-to-remove: integer, update-views: truth-value,
window: class g2-window)

Description

This method deletes columns-to-remove columns from a given sheet, starting at
(and including) first-col.

If there are reinitialization procedures for any of the cell groups affected by this
procedure, they are called after the columns are removed. For information on
reinitialization procedures, see .

When update-views = true, this method redraws existing views of the sheet to
remove the deleted columns.

Example

The following call deletes columns 3 and 4 from spreadsheet-1:

call gxl-remove-columns(spreadsheet-1, 3, 2, true, win);

Argument Description

sheet The spreadsheet that is the subject of this
call.

first-col The first column that is to be deleted.

columns-to-remove The number of columns to remove from the
spreadsheet.

update-views A truth-value indicating whether to update
the views after deleting the columns.

window The g2-window originating this call.
295

gxl-remove-rows
Deletes one or more rows from the spreadsheet.

Synopsis

gxl-remove-rows
(sheet: class gxl-spreadsheet, first-row: integer, rows-to-remove: integer,
 update-views: truth-value, window: class g2-window)

Description

This method deletes rows-to-remove rows from a given sheet, starting at (and
including) first-row.

If there are reinitialization procedures for any of the cell groups affected by this
procedure, they are called after the columns are removed. For information on
reinitialization procedures, see .

When update-views = true, this method redraws existing views of the sheet to
remove the deleted rows.

Example

The following call deletes rows 3 and 4 from the spreadsheet named
spreadsheet-1:

call gxl-remove-rows(spreadsheet-1, 3, 2, true, win);

Argument Description

sheet The spreadsheet that is the subject of this
call.

first-row The first row that is to be deleted.

rows-to-remove The number of rows to remove from the
spreadsheet.

update-views A truth-value indicating whether to update
the views after deleting the rows.

window The g2-window originating this call.
296

gxl-sort
gxl-sort
Sorts a range of rows of given target columns by sorting on a key column.

Synopsis

gxl-sort
(sheet: class gxl-spreadsheet, key-column: integer,
 auxiliary-columns: class integer-list, first-row: integer, last-row: integer,
 direction: symbol, window: class g2-window)

Description

This procedure sorts rows in a target area by sorting the key-column into
ascending or descending order. The columns in the auxiliary-columns list are
sorted according to the order of sorting on the key-column. The auxiliary-columns
list may be empty if only the key column is to be sorted. The first-row and last-
row arguments define the row range to be included in the sort.

If direction is the symbol ascending, then the rows of the key-column are sorted in
the following order:

1 Empty cells.

2 Quantities, sorted in ascending order.

3 Truth-values, with false preceding true.

4 Symbols, in alphabetical order.

5 Texts, sorted according to the order given by the G2 greater than (>) operator.

Argument Description

sheet The spreadsheet that is the subject of this
call.

key-column The column that provides the sorting order.

auxiliary-columns Columns that are sorted along with the key
column.

first-row The first row of the target area.

last-row The last row of the target area.

direction Indicates the direction of the sort, either the
symbol ascending or descending.

window The g2-window originating this call.
297

If the sort is descending, the opposite ordering applies.

No second-order sorting is carried out by this procedure; therefore, duplicate
entries appear in arbitrary order.

If you want greater control over the order of sorting, you can use gxl-permute-
rows to carry out arbitrary sorts using criteria you control. See for details.

Example

Consider a spreadsheet consisting of the entries shown in the following figure.

Using column 0 as the key column and using auxiliary-columns = (1, 3), the
following call sorts the columns in ascending order:

call gxl-sort(spreadsheet-1, 0, auxiliary-columns, 0, 3, the symbol ascending, win);

Here are the results of the sort:

Row

32

3

2

0 1

0

1

Column

4 31 2

“xx” 7 8 9

XX 64 5

1210 11

Row

32

3

2

0 1

0

1

Column

4 31 5

“xx” 7 11 9

XX 64 8

1210 2
298

gxl-sort-and-return-permutations
gxl-sort-and-return-permutations
Sorts and returns an integer list of permutations, mapping the sorted results to the
original list.

Synopsis

gxl-sort-and-return-permutations
(sheet: class gxl-spreadsheet, key-column: integer,
auxiliary-columns: class integer-list, first-row: integer, last-row, integer,
direction: symbol, window: class g2-window)
-> permutations: class: integer-list

Description

This procedure, like gxl-sort, sorts rows in a target area by sorting the key-column
into ascending or descending order. The columns in the auxiliary-columns list are
sorted according to the order of sorting on the key-column. See gxl-sort on , which
describes the order of the sort based on the data values in the key and auxiliary
columns.

The auxiliary-columns list may be empty if only the key column is to be sorted.
first-row and last-row define the row range to be included in the sort.

Argument Description

sheet The spreadsheet that is the target of this call.

key-column The column that provides the sorting order.

auxiliary-columns Columns that are sorted along with the key
column.

first-row The first row of the target area.

last-row The last row of the target area.

direction Indicates the direction of the sort, either the
symbol ascending or descending.

window The g2-window originating this call.

Return Value Description

permutations An integer-list of the sorted orders of the
KeyColumn and any auxiliary columns.
299

This procedure returns the results of the sort in the form of an integer-list.

Example

The following call sorts the specified columns of data in spreadsheet-1 and
returns an integer list of the permutations.

permutations = call gxl-sort-and-return-permutations (spreadsheet-1, 2,
aux-columns, 2, 6, descending, win);
300

14
Toolbar Procedures
Describes the API procedures for managing the appearance of toolbars on GXL
spreadsheet views.

Introduction 302

gxl-add-accoutrement-to-view 303

gxl-add-built-in-tools-to-toolbar 304

gxl-add-toolbar-to-view 305

gxl-add-tool-to-toolbar 307

gxl-backup-area-into-undo-buffer 308

gxl-get-toolbar-of view 309

gxl-get-undo-buffer 310

gxl-restore-area-from-undo-buffer 311
301

Introduction
This chapter describes the procedures of the Application Programmer’s Interface
to GXL that allow you to programmatically manage the appearance of toolbars on
spreadsheet views.

Procedures Controlling the Undo Function

The procedures gxl-get-undo-buffer, gxl-backup-area-into-undo-buffer, and gxl-
restore-area-from-undo-buffer provide the interface to the undo function,
allowing programmatic control over undo functions. You can use these
procedures when implementing your own toolbar buttons.

See The Application Programmer’s Interface for related information.

To... Use this procedure...

Create an empty toolbar on the
workspace of a view

gxl-add-toolbar-to-view

Add the built-in buttons to the
toolbar

gxl-add-built-in-tools-to-toolbar

Add your own buttons, or any
individual button to the toolbar

gxl-add-tool-to-toolbar

Add a button or toolbar to an
existing view

gxl-add-accoutrement-to-view

Get a list of buttons of a toolbar on
a given view

gxl-get-toolbar-of view
302

gxl-add-accoutrement-to-view
gxl-add-accoutrement-to-view
Associates an existing button or toolbar with an existing spreadsheet view.

Synopsis

gxl-add-accoutrement-to-view
(view: class item, accoutrement: class item, window: class g2-window)

Description

This procedure associates a given accoutrement to an existing view. The toolbar or
button should already be on the workspace of the view, at the desired position.
Note that if you programmatically create a button, it will not be recognized as
associated with a view until this procedure is called.

Example

The following call associates the custom toolbar, tools-2 to the existing view,
view-2.

call gxl-add-accoutrement-to-view (view-2, tools-2, win)

Argument Description

view The existing spreadsheet view on which you
want to add a button or toolbar.

accoutrement The tool, button, or toolbar you wish to add
to the View.

window The g2-window originating this call.
303

gxl-add-built-in-tools-to-toolbar
Programmatically adds buttons to an existing toolbar.

Synopsis

gxl-add-built-in-tools-to-toolbar
(toolbar: class gxl-toolbar, tools: class symbol-array,
 window: class g2-window)

Description

This procedure adds the buttons specified in the tools array to the specified
toolbar. The buttons are added in the order they appear in tools from left to right
on the toolbar. If necessary, the buttons will be laid out in multiple rows.

Example

The following code fragment adds the cut, copy and paste buttons to toolbar-1:

create a symbol-array tools;
change the array-length of tools to 3;
change tools[0] = the symbol cut;
change tools[1] = the symbol copy;
change tools[2] = the symbol paste;
call gxl-add-built-in-tools-to-toolbar(toolbar-1, tools, win);
delete tools;

Argument Description

toolbar The toolbar to which the buttons should be
added.

tools An array containing one or more of the
following symbols:

file-save, file-load, insert-row-after,
insert-row-before, insert-column-after,
insert-column-before, delete-column,
delete-row, select-color, cut, copy, paste,
undo, sort-ascending, sort-descending,
rc-indicator, formula-tool

window The g2-window originating this call.
304

gxl-add-toolbar-to-view
gxl-add-toolbar-to-view
Adds a toolbar to a view.

Synopsis

gxl-add-toolbar-to-view
(view: class gxl-spreadsheet-view, width: integer, window: class g2-window)
-> toolbar: class gxl-toolbar

Description

This procedure creates an empty toolbar of the given width and places it upon the
workspace of the existing view as follows:

• Places the toolbar above the view and above the associated row-column
indicator and formula bar, if any.

• Aligns the left side of the toolbar with the left side of the view.

• Determines the width of the toolbar from the width argument.

The height of the toolbar is 43 pixels.

To make the width of the toolbar equal to the width of the view, call this
procedure with width = 0.

Once created and populated with buttons, you can move or resize the toolbar
manually or programmatically using G2’s move command or the system
procedure g2-change-size-of-item-per-area.

Although you can have more than one toolbar for a given view, this procedure
will not provide an adequate layout for multiple toolbars.

Argument Description

view The spreadsheet view to which the toolbar is
to be added.

width The desired width of the toolbar, or 0, which
defaults the toolbar width to the width of
the view.

window The g2-window originating this call.

Return Value Description

toolbar The toolbar created by this call.
305

Example

The following call creates an empty toolbar of the default width and places it on
the workspace containing the spreadsheet view named view-1:

call gxl-add-toolbar-to-view (view-1, 0, win);
306

gxl-add-tool-to-toolbar
gxl-add-tool-to-toolbar
Adds a single item to the toolbar.

Synopsis

gxl-add-tool-to-toolbar
(toolbar: class gxl-toolbar, tool: class item, window: class g2-window)

Description

This procedure adds an item to the toolbar, placing it just to the right of the last
tool in the bottom row of tools. If there is insufficient room in the bottom row of
tools for the new tool, the existing tools will be pushed up to start another row of
tools below the others.

To create an attractive layout with a custom tool, your icon should be 32 pixels in
height.

You can adjust the location of a tool once it has been added to the toolbar, using
any G2 method of moving an item.

Example

The following code adds a custom button named my-button to toolbar-1:

call gxl-add-tool-to-toolbar(toolbar-1, my-button, win);

Argument Description

toolbar The toolbar to which the item should be
added.

tool Any item to be added to the toolbar.

window The g2-window originating this call.
307

gxl-backup-area-into-undo-buffer
Fills an undo buffer with data from a given area of the spreadsheet.

Synopsis

gxl-backup-area-into-undo-buffer
(buffer: class gxl-undo-buffer, sheet: class gxl-spreadsheet,
first-row: integer, first-col: integer,last-row: integer, last-col: integer,
 window: class g2-window)

Description

This procedure can be used by custom toolbar buttons to provide undo
functionality. You first retrieve the undo buffer for view using gxl-get-undo-
buffer. Calling gxl-backup-area-into-undo-buffer copies the data and formats from
a spreadsheet area to the buffer. The procedure gxl-restore-area-from-undo-buffer
can then be used to implement the undo functionality, if you do not use the built-
in undo button.

Example

The following code fragment backs up the first five rows and columns of data
associated with the spreadsheet view named view-1:

buffer-1 = call gxl-get-undo-buffer(view-1, win);
spreadsheet-1 = call gxl-get-spreadsheet-of-view(view-1, win);
call gxl-backup-area-into-undo-buffer(buffer-1, spreadsheet-1, 0, 0, 4, 4, win);

Argument Description

buffer The undo buffer that is to be loaded with
data.

sheet The spreadsheet that is providing the data.

first-row The first row of the backup area.

first-col The first column of the backup area.

last-row The last row of the backup area.

last-col The last column of the backup area.

window The g2-window originating this call.
308

gxl-get-toolbar-of view
gxl-get-toolbar-of view
Returns the toolbar associated with a spreadsheet view.

Synopsis

gxl-get-toolbar-of-view
(view: class gxl-spreadsheet-view, window: class g2-window)
-> toolbars: class item-list

Description

This procedure returns an item list containing the toolbar or toolbars associated
with a given view. If the view does not have a toolbar, the returned item list will
be empty. The elements of the item list are of class gxl-toolbar.

You can use this procedure in preparation for adding a custom button to the
toolbar, or programmatically repositioning or resizing it. You may use the G2
system procedures g2-move-from-area-of-workspace and g2-change-size-of-item-
per-area for positioning or resizing the toolbar.

Example

The following call returns toolbars associated with view1, a spreadsheet view:

IL = call gxl-get-toolbar-of-view(view1, win);
for TB = each gxl-toolbar in IL do

inform the operator that “Found a toolbar with width [the item-width of TB],
height [the item-height of TB], and upper-left corner at ([gfr-left(TB)],
[gfr-top(TB)])”;

end;
delete IL;

Argument Description

view The spreadsheet view that is the subject of
this call.

window The g2-window originating this call.

Return Value Description

toolbars An item list containing the toolbars on the
given view.
309

gxl-get-undo-buffer
Returns the undo buffer associated with a view.

Synopsis

gxl-get-undo-buffer
(view: class gxl-spreadsheet-view, window: class g2-window)
-> buffer: class gxl-undo-buffer

Description

This procedure retrieves the undo buffer associated with a given view.

Example

The following call retrieves the undo buffer associated with the spreadsheet view
named view-1:

buffer-1 = call gxl-get-undo-buffer(view-1, win);

Argument Description

view The spreadsheet view whose undo buffer is
to be retrieved.

window The g2-window originating this call.

Return Value Description

buffer The undo buffer associated with the view.
310

gxl-restore-area-from-undo-buffer
gxl-restore-area-from-undo-buffer
Copies the data from the undo buffer back into the spreadsheet location it came
from.

Synopsis

gxl-restore-area-from-undo-buffer
(buffer: class gxl-undo-buffer, sheet: class gxl-spreadsheet,
 window: class g2-window)

Description

This procedure can be used by custom toolbar buttons to provide undo
functionality. Calling gxl-restore-area-from-undo-buffer restores an area of the
spreadsheet that was backed up using gxl-backup-area-into-undo-buffer. The data
and formats are returned to the same area of the spreadsheet.

Example

The following code fragment restores backup data associated with view-1:

buffer-1 = call gxl-get-undo-buffer(view-1, win);
spreadsheet-1 = call gxl-get-spreadsheet-of-view(view-1, win);
call gxl-restore-area-from-undo-buffer(buffer-1, spreadsheet-1, win);

Argument Description

buffer The undo buffer that provides the data for
the undo.

sheet The spreadsheet that is the target of the
undo action.

window The g2-window originating this call.
311

312

15
Tabular Edit
Operations
Describes the API procedures for launching and managing GXL edit sessions.

Introduction 313

gxl-apply-tabular-edit 315

gxl-edit-simple-tabular-object 317

gxl-edit-spreadsheet 319

gxl-get-view-of-pushbutton 320

gxl-set-pushbutton-callback 321

gxl-set-pushbutton-label 323

gxl-wait-for-pushbuttons-on-view 324

Introduction
This chapter describes the procedures of the Application Programmer’s Interface
to GXL that you can use to programmatically set up edit sessions on objects of
various types, including G2 lists and arrays, and spreadsheets. You can use:

• gxl-edit-simple-tabular-object to start an edit session on lists or arrays.

• gxl-edit-spreadsheet to start an edit session on an existing spreadsheet.

If you programmatically launch an edit session, you may use gxl-wait-for-
pushbuttons-on-view to suspend your procedure until the user presses the OK,
Apply or Cancel buttons on the view.
313

To set up the callbacks you want to receive when the user applies the changes
made during the edit session or ends the session, use gxl-set-pushbutton-callback.
If you provide a callback, use gxl-get-view-of-pushbutton to find the view
associated with the button receiving the callback. You may use gxl-apply-tabular-
edit to unload data from cell groups into the data sources that were used when
loading the spreadsheet with data.

See The Application Programmer’s Interface for related information.
314

gxl-apply-tabular-edit
gxl-apply-tabular-edit
Causes data to be unloaded from the spreadsheet back to the source objects.

Synopsis

gxl-apply-tabular-edit
(sheet: class gxl-spreadsheet, window: class g2-window)

Description

This procedure provides a shortcut to unloading data from a given sheet. It causes
data from the spreadsheet to be copied back into objects which originally
provided the data to the spreadsheet. It is used in conjunction with gxl-load-data-
into-cell-group.

When you call gxl-load-data-into-cell-group, the spreadsheet retains a record of
what object provided the data, and the protocol and wrapping data used in
loading the data. If you later call gxl-apply-tabular-edit, and if the data source
object still exists, a call is made to gxl-unload-data-from-cell-group, using the same
protocol and wrapping data. This procedure will unload all cell groups that were
loaded using gxl-load-data-into-cell-group.

This procedure is generally used to end edit sessions and automatically conclude
values back to their source.

Example

The following code illustrates how this procedure is used to unload data that was
loaded using gxl-load-data-into-cell-group (). Assume the existence of a
spreadsheet with two cell groups, where vals-1 is a value-array, wrapping-data-1
is an integer-list, and vals-2 is a symbol-list.

call gxl-load-data-into-cell-group(spreadsheet-1, 0, vals-1,
the symbol columnwise-wrapping, wrapping-data-1, true, win);
call gxl-load-data-into-cell-group(spreadsheet-1, 1, vals-2,
the symbol rowwise, the symbol default, true, win);

Argument Description

sheet The spreadsheet that is the subject of this
call.

window The g2-window originating this call.
315

Vals-1 is now loaded into cell group 0 of spreadsheet-1, and vals-2 is loaded into
cell group 2. Later, perhaps in a different procedure, we can make the following
call:

call gxl-apply-tabular-edit(spreadsheet-1, win);

This call causes the current values in cell group 0 to be unloaded with the protocol
columnwise-wrapping into vals-1 and wrapping-data-1, and the contents of cell
group 1 to be unloaded into vals-2 with the protocol rowwise and wrapping data
default.
316

gxl-edit-simple-tabular-object
gxl-edit-simple-tabular-object
Creates a spreadsheet to edit an array or list and displays a view on a given
window.

Synopsis

gxl-edit-simple-tabular-object
(values: class object, visible-rows: integer, visible-columns: integer,
 Window: class g2-window)

Description

This procedure provides a convenient way to edit G2 arrays and lists using a
default specification that is built into GXL. Using this call, you can only control
the number of rows and columns displayed on the view. The total row/column
dimensions are set by the dimensions of values. When editing vector data, the
visible-columns argument is ignored and the data is always presented in a single
column. If the defaults provided by gxl-edit-simple-tabular-object are not
acceptable, you must create your own specification.

The values argument can be any value list or value array, or an item list or item
array, provided that the items in the item list or array are themselves value lists or
value arrays. If the list or array that is edited is empty, one active cell is provided
on the view.

When an edit is in progress on an object, it cannot be edited by another user.

Argument Description

values A value-list, value-array, item-list or item-
array that is to be edited.

visible-rows The number of rows on the view that is
created by this call.

visible-columns The number of columns on the view that is
created by this call. This argument is
ignored when editing a value array or value
list.

window The g2-window where the view is to be
displayed.
317

Example

If integer-array-1 = (11, 22, 33, 44, 55, 66, 77, 88), then the following call produces
the view depicted below:

call gxl-edit-simple-tabular-object(integer-array-1, 3, 1, win);
318

gxl-edit-spreadsheet
gxl-edit-spreadsheet
Begins an edit session with the given spreadsheet as the data source.

Synopsis

gxl-edit-spreadsheet
(sheet: class gxl-spreadsheet, specification: class gxl-root-specification,
 window: class g2-window)

Description

This procedure provides a convenient way to edit spreadsheets. When you call
this procedure, a clone of sheet is created; and a view of the clone is created using
specification and displayed on Window.

Modifications of the data via the view are stored in the cloned spreadsheet until
you select the OK or Apply buttons on the view, which causes the data in the
cloned spreadsheet to be copied to sheet. If you select the Cancel button on the
view, the cloned spreadsheet is deleted, and the original spreadsheet is
unchanged.

Only one user can edit a given spreadsheet at a time.

Example

The following call starts an edit session on the spreadsheet named spreadsheet-1,
using the specification used in the creation of spreadsheet-1:

specification = call gxl-get-specification-of-spreadsheet(spreadsheet-1, win);
call gxl-edit-spreadsheet(spreadsheet-1, specification, win);

Argument Description

sheet The spreadsheet that is to be edited.

specification A root specification that defines properties
of the view created by this call.

window The g2-window where the view is to be
displayed.
319

gxl-get-view-of-pushbutton
Returns the view associated with a pushbutton.

Synopsis

gxl-get-view-of-pushbutton
(button: class gxl-pushbutton, window: class g2-window)
-> view: item-or-value

Description

This procedure tells you which spreadsheet view, if any, to which a specified
button is associated. It is typically used when you provide your own callback for a
pushbutton. This procedure returns false if there is no view associated with the
button.

Example

The following returns the view associated with the OK button:

view-1 = call gxl-get-view-of-pushbutton(ok-button, win);

Argument Description

button The button that is the subject of this call.

window The g2-window originating this call.

Return Value Description

view The view associated with the button, or
false.
320

gxl-set-pushbutton-callback
gxl-set-pushbutton-callback
Sets the callback procedure for a pushbutton.

Synopsis

gxl-set-pushbutton-callback
(view: class gxl-spreadsheet-view, button-id: text, Callback: symbol,
 window: class g2-window)

Description

Use this procedure when you want to replace the standard callback on the OK,
Apply, and Cancel buttons. This procedure locates the button based on the given
button-id and the associated view. To set the callbacks of the standard OK, Apply
and Cancel buttons on a view, refer to the IDs “OK”, “Apply” and “Cancel”.

You can also use this procedure to set the callback of an existing toolbar button or
custom button. To use this procedure with a custom button, you should set the ID
of the button in the class definition, or on the instance when it is first added to the
toolbar.

The callback you provide must have the following signature:

my-callback (Button: class gxl-pushbutton, Win: class g2-window)

You may set the callback to the symbol unspecified, if you do not want control to
be passed to a callback when the button is selected.

To determine the view associated with the button when your callback is called,
use gxl-get-view-of-pushbutton.

Argument Description

view The view that is associated with the target
button.

button-id The gxl-id attribute of the target button.

callback The name of the procedure that should be
called when the button is selected.

window The g2-window originating this call.
321

Example

The following sets the callback of the OK button associated with view-1 to the
symbol my-callback:

call gxl-set-pushbutton-callback(view-1, “OK”, the symbol my-callback, win);
322

gxl-set-pushbutton-label
gxl-set-pushbutton-label
Sets the label of a pushbutton.

Synopsis

gxl-set-pushbutton-label
(button: class gxl-pushbutton, label: value, fontsize: symbol,
resize:truth-value, window: class g2-window)

Description

This procedure sets the text of the label for a given button. If resize is true, it
adjusts the button size, if necessary, to fit the text. If resize is false, it centers the
label without changing the button size.

Example

The following example sets the label “Respond” to the pushbutton my-button so
that the text fits within the button.

call gxl-set-pushbutton-label(my-button, “Respond”, the symbol small, true, win);

Argument Description

button The pushbutton for which you want to set a
label.

label The text of the label or the symbol default.

fontsize The font size used for the label:
small, large, extra-large.

resize Determines how the label is positioned in
the button.

window The g2-window originating this call.
323

gxl-wait-for-pushbuttons-on-view
Keeps a procedure in a wait state until the OK, Apply, or Cancel button is selected
by the user on a view.

Synopsis

gxl-wait-for-pushbuttons-on-view
(view: class gxl-spreadsheet-view, parameter: class text-parameter,
 window: class g2-window)

Description

This procedure can be used as a convenient way to wait inside a procedure for a
user to finish working on a view. Normally, if you programmatically run an edit
session, you might want to hold onto local variables in your procedure to use
them to manage the end of the edit session.

Calling gxl-wait-for-pushbuttons-on-view puts your procedure into a wait state
that ends when the user selects the OK, Cancel or Apply button on the view. The
text parameter you provide contains the ID of the button (either “OK”, “Apply”
or “Cancel”) when this procedure returns. If the view is deleted while waiting for
gxl-wait-for-pushbuttons-on-view, it will return with the parameter “deleted”.

Example

The following code fragment creates a view for the spreadsheet named
spreadsheet-1, and then waits until a button is selected on the view:

create a text-parameter param;
view-1 = call gxl-create-and-display-spreadsheet-view (spreadsheet-1,

specification-1, win);
call gxl-wait-for-pushbuttons-on-view (view-1, param, win);
inform the operator that “The Id of the button selected was [param]”;

Argument Description

view The view that is the target of this call.

parameter On exit, the value of this parameter is the ID
of the button that was selected on the view.

window The g2-window originating this call.
324

Part III
Appendix
and Glossary
Appendix A: GXL Memory Requirements

Provides formulas for estimating the amount of memory required for spreadsheets and views
of different dimensions.

Glossary
325

326

A

GXL Memory
Requirements
Describes the memory requirements for GXL.

This Appendix provides formulas that you can use to make estimates of the
amount of memory required for spreadsheet and view objects of different
dimensions. The estimates given here are for GXL 5.0 Rev. 0, and are subject to
change in future versions of GXL.

The main variable for spreadsheets in terms of memory requirements is the total
number of cells in the spreadsheet and the type of value stored in the cells. If
NCells is the number of rows times the number of columns in a spreadsheet
storing floats, then the memory required on 32-bit machines is:

Bytes = 6000 + 24*NCells

Thus, the memory requirement for a spreadsheet with 1000 cells containing floats
is approximately 30,000 bytes; for 10,000 cells, 246,000 bytes. More memory is
required for storing symbols and text.

The memory requirement for views is primarily a function of the number of
visible cells, which may be only a small fraction of the total cells in the
spreadsheet. If VCells is the number of visible rows times the number of visible
columns in a view, then the memory required on 32-bit machines is:

Bytes = 16000 + 480*VCells

This estimate includes the memory required for the accoutrements associated
with a view, such as the toolbar, pushbuttons, etc. Thus, the memory requirement
for a view with 100 visible cells is about 64,000 bytes.
327

328

Glossary
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z
A

Application Programmers Interface: The set of procedures, methods, classes, and
attributes designated as “public interface” items of GXL that enable
programmatic creation and manipulation of GXL spreadsheet views within any
G2 application.

C

cell: A cell is a location in the spreadsheet that contains data of a specific G2 value
type. A cell can also be empty, and contain no value. A GXL spreadsheet can have
any number of cells.

cell group specification: The cell group specification object defines the properties
of a cell group. There are six types of cell group specifications: data cell group,
row selector, column selector, column header, disabled group, and global
selector.

cell group: A cell group is a rectangular section of the spreadsheet. Within a cell
group, all cells have the same type. Within a spreadsheet, each cell group can
contain a different value type and can potentially respond differently to user
input.

column controller: The column controller is a specification object that specifies
properties common to each cell group aligned vertically with it.

column header: The column header is a cell group specification object that is used
to create a single cell that spans the entire width of the cell group. Usually, it is
used to label one or more columns of a view.

column selector: The column selector is a cell group specification object that
creates a cell which when selected, selects the entire column containing the cell.
These cells are often used to number the columns of a spreadsheet.

D

data cell group: The data cell group is a specification object that specifies the type
of data that its cells contain. All cells within a data cell group contain the same
type of data: floats, integers, quantities, symbols, texts, truth-values, or values.
329

data type: Each data cell contains a specific G2 value type. The types of data cells
are: value cells, which contain any G2 value type; quantity cells, which contain
floats or integers; float cells, which contain floating point numbers; integer cells,
which contain integers; symbol cells, which contain G2 symbols; truth value cells,
which contain true or false; and text cells, which contain any text string.

disabled group: The disabled group is a specification object that is used to create
cells that cannot contain data and are neither editable nor selectable. They are
used to fill areas of the spreadsheet that do not contain data.

E

edit session: An edit session is a mode of operation in which changes to data are
held in a buffer, enabling the user to cancel the changes, without affecting the
original data.

F

float cell: A type of data cell that accepts and displays float values in decimal or
exponential format.

focal cell: When entering a formula in GXL, the focal cell is the target cell whose
value is to be calculated.

formula bar: The GXL formula bar, is a tool that allows you to calculate cell
values, using mathematical operations, built-in G2 functions, or functions you
define.

G

global selector: The global selector is a cell group specification object that is used
to create cells which when selected, select the entire spreadsheet.

I

integer cell: A type of data cell that accepts and displays integer values.

Q

quantity cell: A type of data cell that accepts and displays float or integer values.

R

root specification: The GXL root specification object defines certain properties of
the spreadsheet and spreadsheet view.
330

row-column indicator: The row-column indicator is a navigation aid which
displays locations of the spreadsheet. The row-column indicator is a tool on the
spreadsheet view that serves as a navigation aid by displaying corresponding
locations in the spreadsheet.

row controller: The row controller is specification object that specifies properties
common to the cell groups aligned horizontally with it.

row selector: The row selector is a cell group specification object that is used to
create cells which when selected, selects the entire row containing the cell. Often,
cells of this type are used to serially number the rows of a spreadsheet.

S

spreadsheet: The central object of GXL, the spreadsheet stores data as a two-
dimensional grid. The data can be any combination of these G2 value types: floats,
integers, quantities, symbols, text, and truth-values.

specification: A specification is a graphical layout of objects that serves as a
template for the creation of spreadsheets and views. The layout of the
specification objects, the classes of objects involved, and the attribute values of the
objects define the specification.

spreadsheet view: The spreadsheet view displays the data contained in a GXL
spreadsheet. Typically, a view displays only a subset of the cells in a spreadsheet.

symbol cell: A type of data cell that accepts and displays symbolic values.

T

text cell: A type of data cell tat accepts and displays text strings.

truth-value cell: A type of data cell that accepts and displays the values true or
false.

V

value cell: A type of data cell that accepts and displays any valid G2 value.

view areas: View areas are horizontal and vertical areas superimposed on the
data of a spreadsheet. If a cell is inside both a horizontal and a vertical view area,
it is visible in the view.
331

332

Index
 @ A B C D E F G H I J K L M
 # N O P Q R S T U V W X Y Z
A
Application Programmer? Interface (API)

creating and deleting spreadsheets and
views

differentiating public and private parts of
GXL

G2 window argument
getting spreadsheet and view information
loading and unloading spreadsheet data
navigating between spreadsheets and their

views
row and column manipulation
setting spreadsheet and view properties
tabular edit operations
toolbar management and manipulation
view manipulation procedures

Apply button
arrays

editing with GXL
enabling

B
buttons

See also custom button
GXL toolbar

C
callback procedures

used in response to
any selection event
cells receiving new values
ending cell edit with return or tab key
requests for data stored externally
scrolling events
selected cells

Cancel button
cell

color pattern assignment
changing
restrictions
cutting, copying, and pasting contents of
data display

controlling
data validation
empty
entering data

correcting mistakes
extending selection
location format
selection behavior

cell group attributes
types

cell callback procedure
example
for existing spreadsheet

changing
deactivating

specifying for cell group
cell group specification objects

attributes
gxl-additional-validation-procedure
gxl-callback-procedure
gxl-cell-group-initialization-data
gxl-cells-are-editable
gxl-cells-are-selectable
gxl-cell-type
gxl-default-background-color
gxl-default-text-color
gxl-float-format
gxl-font-scale
gxl-font-size
gxl-initialization-procedure
gxl-reinitialization-procedure
gxl-selection-callback-procedure

column header
column selector
data cell group
disabled group
floating point number format

customizing
global selector
row selector

cell groups
333

additional validation procedures
specifying

assigning cell color patterns
callback procedures

specifying
changing the font display size
controlling cell selection behavior
data initialization
description
editor movement within
illustration of corresponding view
initialization procedures

specifying
reinitialization procedures

specifying
relationship to

GXL specification
spreadsheet
spreadsheet view

selection behavior
selection callback procedures

specifying
specification objects and attributes

cell height
changing
default height for font size
defined by gxl-cell-height attribute
recommended sizes with font

magnification
cell type

See also data cell
data validation and coercion

change cell color button
clipboard

data transfer between spreadsheet views
cloning operations

GXL restrictions
color pattern

cell group attributes
restrictions
specifying and applying to cells

column controller specification object
attributes

gxl-cell-width
gxl-total-columns
gxl-visible-columns

description
column header specification object

See also cell group specification objects
attributes
initialization data
334
See also cell group specification objects
column selector specification object

See also cell group specification objects
attributes
default initialization procedure
See also cell group specification objects

columns
adding and removing from spreadsheet
manipulating programmatically
selecting
sorting in ascending and descending order

comma-separated values (csv) format
specifications

copy button
custom button

See also GXL toolbar
adding help text

example
adding to toolbar
creating

example
required methods

gxl-perform-button-function
gxl-reflect-selection-state-in-button
gxl-set-button-state

customer support services
cut button

D
data

copying from spreadsheet
cutting from spreadsheet
display

changing font magnification
controlling appearance of
customizing floating point number

appearance
format

entering into cells
correcting mistakes

from a file
loading programmatically

loading from a file
considerations

matrix
loading programmatically
unloading programmatically

pasting into spreadsheet
pasting into spreadsheet views

spreadsheet storage
transferring between spreadsheet views
validation and coercion rules
vector

loading programmatically
unloading programmatically

data cell
cell types
entering values
selection behavior

data cell group specification object
attributes
See also cell group specification objects

delete column button
delete row button
deleting

columns
rows
spreadsheet views

disabled cell
disabled group specification object

See also cell group specification objects
attributes
See also cell group specification objects

drawing parameters
settings for GXL

E
editing

controlling programmatically
data in cells
G2 arrays

controlling row-column display
making edits initial values of

G2 arrays and lists with GXL
enabling

G2 list
limitations

G2 lists
controlling row-column display

GXL spreadsheet
saving changes

editor
See also GXL edit session
movement within cell groups

entering data
correcting mistakes

external color procedure
example
external color server procedure
external data procedure

example
external data server procedure

F
file

loading into spreadsheet
format to use
procedures used

saving selected cells or views to
floating point number

attributes controlling appearance
gxl-minimum-width
gxl-output-format
gxl-precision
gxl-remove-trailing-zeros
gxl-use-default

changing format on existing views
display format
specifying the format for cell group
validation and coercion by cell type

focal cell
font

display size
defaults
scaling

formula bar
See also GXL tools

formulas
See GXL formulas

functions
used with GXL formulas

built-in
user-defined

G
G2 actions

GXL programming restrictions
G2 array

editing with GXL
making edits initial values

G2 list
editing with GXL

limitations
G2 window

assigning spreadsheet views to
global selector cell
335

using
global selector specification object

See also cell group specification objects
attributes
See also cell group specification objects

GXL
and Telewindows
cloning restrictions
module hierarchy
online help
programming restrictions with G2 actions

GXL demo KB
removing the module

GXL edit session
correcting data entry mistakes
entering data in cells
saving edits to G2 items
setting up programmatically

GXL features
accessing
array and list editing

GXL formulas
applying to multiple cells

examples
built-in functions
comparison to conventional spreadsheet

formulas
creating user-defined functions
entering

aborting
error handling
focal cell
order of calculation
specifying a range of cells in
syntax
updating values through callbacks

GXL memory requirements
GXL objects

gxl-cell-group
gxl-column-controller
gxl-column-counter-cell-group
gxl-column-header-for-cell-group
gxl-disabled-cell-group
gxl-global-selector-cell-group
gxl-root-specification
gxl-row-controller
gxl-row-counter-cell-group
gxl-toolbar-button

subclassing to create buttons
GXL procedures
336
See Application Programmers Interface
(API)

GXL spreadsheet
cell data types
cell groups
comparison to conventional spreadsheets
creating a specification for

example
data

getting data stored externally
data cell types
data storage

external
internal

data validation
specifying additional procedure for

cell group
deactivating cell callbacks
defining with specifications

object and attribute summary
description
distinguished from views
examples in gxldemo.kb
getting spreadsheet information

programmatically
initializing with values
programmatic manipulation of

example
reinitialization procedures
relationship to spreadsheet views
selection callback procedures
setting properties of programmatically
using a single selection callback procedure

GXL spreadsheet specification
See specification

GXL spreadsheet view
See spreadsheet view

GXL toolbar
See also GXL tools, toolbar
custom button

adding to toolbar
creating

display
changing

GXL tools
Apply button
Cancel button
formula bar

functions
illustrated
using

in-line editor
OK button
row-column indicator

and GXL formulas
range of cells display

toolbar
built-in tools list
change cell color button
changing the tool display
changing toolbar width
copy button
creating custom buttons
customizing appearance of
cut button
delete column button
delete row button
displaying help text
enabled and disabled states
insert column after selection button
insert column before selection button
insert row after selection button
insert row before selection button
load from file button
managing and manipulating

programmatically
paste button
save to file button
sort ascending button
sort descending button
specify cell color button
undo button

GXL top-level workspace
GXL utility

installing
required modules
requirements for running
version information

gxl.kb

gxl-add-accoutrement-to-view
gxl-add-built-in-tools-to-toolbar
gxl-add-columns
gxl-add-rows
gxl-add-toolbar-to-view
gxl-add-tool-to-toolbar
gxl-apply-tabular-edit
gxl-backup-area-into-undo-buffer
gxl-clone-spreadsheet
gxl-collect-specification
gxl-create-and-display-simple-spreadsheet
gxl-create-and-display-spreadsheet-view
gxl-create-spreadsheet
gxl-create-spreadsheet-from-collected-
specification

gxl-create-spreadsheet-view
gxl-create-spreadsheet-view-from-collected-

specification
gxl-delete-spreadsheet
gxl-delete-view
gxldemo.kb

gxl-edit-simple-tabular-object
gxl-edit-spreadsheet
gxl-get-cell-color
gxl-get-cell-contents
gxl-get-cell-group-coordinates
gxl-get-cell-group-dimensions
gxl-get-cell-group-initialization-data
gxl-get-cell-group-layout
gxl-get-cell-group-procedure-attribute
gxl-get-cell-group-visible-dimensions
gxl-get-cell-type-of-group
gxl-get-float-format-of-group-on-vies
gxl-get-group-number-at-coordinates
gxl-get-protection-of-group-on-view
gxl-get-selected-column-range
gxl-get-selected-row-range
gxl-get-selection-limits
gxl-get-size-attributes-of-cells-in-view
gxl-get-specification-object
gxl-get-specification-of-spreadsheet
gxl-get-spreadsheet-dimensions
gxl-get-spreadsheet-of-view
gxl-get-toolbar-of-view
gxl-get-undo-buffer
gxl-get-version
gxl-get-view-of-pushbutton
gxl-get-views-of-spreadsheet
gxl-get-workspace-location-of-cell
gxl-get-workspace-location-of-cell-group
gxl-layout-specification
gxl-load-data-into-cell-group
gxl-load-data-into-defined-area
gxl-make-spreadsheet-permanent
gxl-make-spreadsheet-view-permanent
gxl-move-spreadsheet-view
gxl-perform-button-function (method)
gxl-permute-rows
gxl-reflect-selection-state-in-button (method)
gxl-refresh-all-views
gxl-remove-columns
gxl-remove-rows
gxl-restore-area-from-undo-buffer
gxl-save-spreadsheet-area-to-stream
337

gxl-scroll-to-column-in-view
gxl-scroll-to-row-in-view
gxl-set-all-color-patterns-to-default
gxl-set-button-state (method)
gxl-set-cell-contents
gxl-set-cell-group-procedure-attribute
gxl-set-color-pattern-of-cell
gxl-set-color-pattern-of-cell-to-default
gxl-set-editor-buttons
gxl-set-editor-scrolling
gxl-set-float-format-of-group-on-view
gxl-set-group-column-header
gxl-set-protection-of-group-on-view
gxl-set-protection-on-entire-view
gxl-set-pushbutton-callback
gxl-set-selection-limits
gxl-sort
gxl-sort-and-return-permutations
gxl-unload-data-from-cell-group
gxl-unload-data-from-defined-area
gxl-wait-for-pushbuttons-on-view

H
help text

adding to toolbar buttons

I
initialization procedure

example of
specifying for cell group

in-line editor
insert column after button
insert column before button
insert row after button
insert row before button
integer

display format

L
load from file button

M
matrix

data
loading programmatically
338
unloading programmatically
extension procedure

specifying
memory requirements

estimating for GXL
methods

required with custom buttons
gxl-perform-button-function
gxl-reflect-selection-state-in-button
gxl-set-button-state

module hierarchy
mouse

attributes for locating on view
moving views

N
navigating between spreadsheets and views

programmatically

O
OK button

P
paste button
procedures

API
accessing spreadsheet and view

properties
creation and deletion of spreadsheets

and views
customizing and manipulating the

toolbar
loading and unloading spreadsheet

data
row and column operations
setting spreadsheet and view

properties
view manipulation

cell callback
changing for existing spreadsheet
deactivating
example of
specifying for cell group

external color server
external data procedure

example of
external data server

initialization
example
specifying for a cell group

matrix extension
specifying

reinitialization
example of
specifying for cell group

return and tab key handler
example of
specifying

scrolling callback
example of
specifying

selection callback
changing for existing spreadsheet
for use with any selection event
specifying for cell group

validation
example of
specifying for cell group

programming GXL
Application Programmer? Interface
assigning views to G2 windows
cell callback procedures
controlling GXL editing feature
external color server procedure
external data server procedure
initialization procedures
managing spreadsheet data storage
manipulating a spreadsheet
matrix extension procedure
reinitialization procedures
return and tab key handler procedures
scrolling callback procedure
selection callback procedures
validation procedures

R
reinitialization procedure

example
See initialization procedure

specifying for cell group
return and tab key handler procedure

example
root specification object

attributes
gxl-all-non-standard-row-heights
gxl-cleanup-when-resizing-matrices
gxl-external-color-server
gxl-external-data-server
gxl-make-edits-permanent
gxl-matrix-extension-procedure
gxl-scroll-callback
gxl-selection-procedure
gxl-spreadsheet-class
gxl-spreadsheet-tools
gxl-spreadsheet-view-class
gxl-store-data-internally
gxl-toolbar-width

description
row

selecting
row controller specification object

attributes
gxl-cell-height
gxl-total-rows
gxl-visible-rows

description
row selector specification object

See also cell group specification objects
attributes
default initialization procedure
See also cell group specification objects

row-column indicator
and GXL formulas

rows
adding and removing from spreadsheet
manipulating programmatically
sorting in ascending and descending order

S
save to file button
scroll bar

description
operating under Telewindows

scrolling
callback procedure
in a spreadsheet view

scrolling callback procedure
example

selection callback procedure
changing for existing spreadsheet
specifying for

any selection event
cell group

shift-click technique
sort ascending button
339

sort descending button
sorting

ordering of values
with API procedures

special cells
selection behavior

specification
assigning cell color patterns

restrictions
building a layout

example
cell groups
changing the font display size
controlling cell selection behavior
creating spreadsheet from

example
defining spreadsheet and view properties

example
description
examples in gxldemo.kb
object and attribute summary
parts of

cell groups
column controller
column header
column selector
data cell group
disabled group
global selector
root specification
row controller
row selector

specify cell color button
spreadsheet view

and Telewindows
assigning views to windows
color pattern assignment

changing
restrictions

columns
adding
deleting

corresponding cell groups illustrated
creating

example
cutting, copying, pasting in
deleting
description
displaying

example
editor movement within a cell group
340
overriding response to return and tab
keys

entering formulas
examples in gxldemo.kb
extending cell selections
getting view information

programmatically
loading data from a file
locating mouse
manipulating views programmatically
moving or transferring
multiple views on G2 windows

guidelines
parts of illustrated
relationship to GXL spreadsheet
rows

adding
deleting

saving data to a file
scrolling with scroll bars
selecting areas of
selection behavior of cells
setting properties of programmatically
sorting data
toolbar
undoing the last operation
using specifications to create

object and attribute summary
validating data
view display areas

scrolling in
symbol

display format

T
Telewindows and spreadsheet views
Telewindows session

recommended scrolling techniques
text

display format
timing parameters

settings for GXL
toolbar

See also GXL tools
built-in tools
customizing
icon buttons

truth value
display format

U
undo button
undo functions

controlling programmatically
gxl-backup-area-into-undo-buffer
gxl-get-undo-buffer
gxl-restore-area-from-undo-buffer

user mode

V
validation procedure

example
specifying for cell group

value
See also data
display format in cells

vector data
loading programmatically
unloading programmatically

view
See spreadsheet view
341

342

	Contents Summary
	Contents
	Preface
	About this Guide
	Audience
	Organization
	A Note About the API
	Conventions
	Related Documentation
	Customer Support Services

	Using GXL
	Introduction to GXL
	What Is GXL?
	GXL and Telewindows

	GXL Features
	GXL Specifications
	The GXL Spreadsheet
	Spreadsheet Cells
	Cell Data Types

	The GXL Spreadsheet View
	Cell Groups
	Cell Groups and GXL Specifications
	Cell Groups and Spreadsheets
	Cell Groups and Spreadsheet Views

	Relationship between GXL Spreadsheets and Views
	GXL Spreadsheet Data Storage
	GXL Edit Sessions
	GXL and Conventional Spreadsheets
	Editing G2 Lists and Arrays
	Application Programmer’s Interface to GXL
	GXL Demo KB
	GXL Online Documentation

	Getting Started
	Installing GXL
	GXL Required Modules
	Requirements for Running GXL
	Starting GXL
	Choosing a User Mode

	Considerations and Restrictions
	Drawing Parameters
	Timing Parameters
	Cloning Restrictions
	Programming Restrictions with G2 Actions

	Accessing GXL Features
	The GXL Demo KB
	Removing the Demo Module

	Using Online Help
	Accessing Online Documentation

	Using GXL to Edit G2 Lists and Arrays
	Spreadsheet View of G2 Lists and Arrays
	Editing a G2 Array
	Saving Spreadsheet Edits to the Array

	Creating a Custom Spreadsheet and View
	The GXL Specification
	Building a Specification Layout
	Defining Spreadsheet and View Properties
	Customizing the Toolbar Display
	Creating the Spreadsheet
	Displaying the Spreadsheet View

	Using Spreadsheet Views
	Introduction
	Scrolling a View
	Dynamic Display of Scroll Bars
	Multiple Scroll Bars

	Selecting Areas on the Spreadsheet View
	Selecting Data Cells
	Selecting Multiple Cells
	Extending Cell Selections
	Selecting Rows and Columns
	Selecting Multiple Rows or Columns
	Selecting the Entire Spreadsheet

	Navigating the Spreadsheet
	Working with Data Cells
	How Data Cell Values are Displayed
	Entering Values into Cells
	Editing Operations
	Creating an Empty Cell
	Ending an Edit
	Validating Data Input

	Moving the Editor within a Cell Group
	Using the Enter Key to Move the Editor
	Using the Tab Key to Move the Editor

	Saving Changes to the Spreadsheet View
	Making Your Edits the Initial Value of an Array

	The Spreadsheet Toolbar
	Saving Spreadsheet Data to a File
	How GXL Saves Selections to a File

	Loading Data from a File into a Spreadsheet View
	How GXL Loads the Data into the Spreadsheet

	Adding and Deleting Rows on the Spreadsheet
	Deleting Rows

	Adding and Deleting Columns on a Spreadsheet
	Adding Columns
	Deleting Columns

	Changing the Color Patterns of Cells
	Cutting, Copying, and Pasting
	Cutting Data from the Spreadsheet
	Copying Data from the Spreadsheet
	Pasting Cut or Copied Data

	Reversing the Last Toolbar Operation
	Sorting Spreadsheet Data
	Other Operations on Views
	Moving or Transferring Views
	Deleting Views
	Cloning Views

	Using the Formula Bar
	Introduction
	How Formulas Work in GXL
	GXL Formula Syntax
	Considerations

	Entering a Formula
	Error Handling

	Applying a Formula to Multiple Cells
	Order of Calculation
	Examples

	Using Built-in Functions
	Creating Your Own Functions

	Working with Specifications
	Introduction
	The GLX Specification Layout
	Cell Group Specifications
	Cell Groups and Spreadsheet Views

	Building a Specification
	Specification Objects
	The Root Specification Object
	Row and Column Controllers
	Cell Group Specification Objects

	Defining Spreadsheet and View Properties
	Initializing Cell Group Data
	Numbering Row and Column Selector Cells
	Labeling Column Headers
	Localizing Column Header Text

	Customizing the Appearance of Floating Point Numbers
	Customizing the Data Display in Cells
	Displaying More Information in Views

	Assigning Color Patterns to Cells
	Controlling Cell Selection Behavior
	Customizing Selection Behavior

	Displaying View Areas
	Scrolling in View Areas
	Locating the Mouse on a View

	Customizing the Toolbar
	Introduction
	Controlling the Toolbar Width
	Changing the Display of Tools
	Changing the Order of Tools Displayed
	Including Your Own Buttons in the Toolbar
	Subclassing gxl-toolbar-button
	Creating Methods for Your Button
	Adding the Custom Button to the Toolbar

	Creating a Custom Button
	Defining the Custom Button Class
	Creating Methods for the Acknowledge Button

	Programming GXL
	Introduction
	Controlling GXL Editing Programmatically
	Controlling the Display of Rows and Columns

	Managing Spreadsheet Data Storage
	Internal Data Storage
	External Data Storage

	Manipulating a Spreadsheet Programmatically
	User Procedures Called by GXL
	Initialization Procedures
	Specifying an Initialization Procedure

	Reinitialization Procedures
	Specifying a Reinitialization Procedure

	Validation Procedures
	Specifying a Validation Procedure

	Cell Callback Procedures
	Callback Restrictions
	Specifying a Callback Procedure
	Activating and Deactivating Cell Callbacks

	Selection Callback Procedures
	Specifying a Selection Callback Procedure

	Return and Tab Key Handler Procedures
	Specifying a Return and Tab Key Handler

	Scrolling Callback Procedures
	Specifying a Scrolling Callback Procedure

	Matrix Extension Procedures
	Specifying a Matrix Extension Procedure

	External Data and Color Server Procedures
	Specifying External Data and Color Server Procedures

	Assigning Views to G2 Windows
	The Application Programmer’s Interface
	Accessing the API

	API Reference
	Creation and Deletion Operations
	Introduction
	gxl-clone-spreadsheet
	gxl-collect-specification
	gxl-create-and-display-simple-spreadsheet
	gxl-create-and-display-spreadsheet-view
	gxl-create-spreadsheet
	gxl-create-spreadsheet-from-collected- specification
	gxl-create-spreadsheet-view
	gxl-create-spreadsheet-view-from-collected- specification
	gxl-delete-spreadsheet
	gxl-delete-view
	gxl-layout-specification
	gxl-make-spreadsheet-permanent
	gxl-make-spreadsheet-view-permanent

	Loading and Unloading Data
	Introduction
	gxl-load-data-into-cell-group
	gxl-load-data-into-defined-area
	gxl-unload-data-from-cell-group
	gxl-unload-data-from-defined-area
	gxl-save-spreadsheet-area-to-stream

	Accessing Spreadsheet and View Properties
	Introduction
	gxl-get-cell-color
	gxl-get-cell-contents
	gxl-get-cell-group-coordinates
	gxl-get-cell-group-dimensions
	gxl-get-cell-group-initialization-data
	gxl-get-cell-group-layout
	gxl-get-cell-group-procedure-attribute
	gxl-get-cell-group-visible-dimensions
	gxl-get-cell-type-of-group
	gxl-get-float-format-of-group-on-view
	gxl-get-group-number-at-coordinates
	gxl-get-protection-of-group-on-view
	gxl-get-selected-column-range
	gxl-get-selected-row-range
	gxl-get-selection-limits
	gxl-get-size-attributes-of-cells-in-view
	gxl-get-specification-object
	gxl-get-specification-of-spreadsheet
	gxl-get-spreadsheet-dimensions
	gxl-get-spreadsheet-of-view
	gxl-get-version
	gxl-get-views-of-spreadsheet
	gxl-get-workspace-location-of-cell
	gxl-get-workspace-location-of-cell-group

	Setting Spreadsheet and View Properties
	Introduction
	gxl-set-all-color-patterns-to-default
	gxl-set-cell-contents
	gxl-set-cell-group-procedure-attribute
	gxl-set-color-pattern-of-cell
	gxl-set-color-pattern-of-cell-to-default
	gxl-set-editor-buttons
	gxl-set-editor-scrolling
	gxl-set-float-format-of-group-on-view
	gxl-set-group-column-header
	gxl-set-protection-on-entire-view
	gxl-set-protection-of-group-on-view

	Additional View Procedures
	Introduction
	gxl-move-spreadsheet-view
	gxl-refresh-all-views
	gxl-scroll-to-column-in-view
	gxl-scroll-to-row-in-view
	gxl-set-selection-limits

	Row and Column Operations
	Introduction
	gxl-add-columns
	gxl-add-rows
	gxl-permute-rows
	gxl-remove-columns
	gxl-remove-rows
	gxl-sort
	gxl-sort-and-return-permutations

	Toolbar Procedures
	Introduction
	gxl-add-accoutrement-to-view
	gxl-add-built-in-tools-to-toolbar
	gxl-add-toolbar-to-view
	gxl-add-tool-to-toolbar
	gxl-backup-area-into-undo-buffer
	gxl-get-toolbar-of view
	gxl-get-undo-buffer
	gxl-restore-area-from-undo-buffer

	Tabular Edit Operations
	Introduction
	gxl-apply-tabular-edit
	gxl-edit-simple-tabular-object
	gxl-edit-spreadsheet
	gxl-get-view-of-pushbutton
	gxl-set-pushbutton-callback
	gxl-set-pushbutton-label
	gxl-wait-for-pushbuttons-on-view

	Appendix and Glossary
	GXL Memory Requirements

	Glossary
	A
	C
	D
	E
	F
	G
	I
	Q
	R
	S
	T
	V

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V

