
Getting Started with G2

Tutorials
Version 2015

Getting Started with G2 Tutorials, Version 2015

December 2015

The information in this publication is subject to change without notice and does not represent a
commitment by Gensym Corporation.

Although this software has been extensively tested, Gensym cannot guarantee error-free
performance in all applications. Accordingly, use of the software is at the customer’s sole risk.

Copyright (c) 1985-2015 Gensym Corporation

All rights reserved. No part of this document may be reproduced, stored in a retrieval system,
translated, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of Gensym Corporation.

Gensym®, G2®, Optegrity®, and ReThink® are registered trademarks of Gensym Corporation.

NeurOn-Line™, Dynamic Scheduling™ G2 Real-Time Expert System™, G2 ActiveXLink™, G2
BeanBuilder™, G2 CORBALink™, G2 Diagnostic Assistant™, G2 Gateway™, G2 GUIDE™,
G2GL™, G2 JavaLink™, G2 ProTools™, GDA™, GFI™, GSI™, ICP™, Integrity™, and SymCure™
are trademarks of Gensym Corporation.

Telewindows is a trademark or registered trademark of Microsoft Corporation in the United States
and/or other countries. Telewindows is used by Gensym Corporation under license from owner.

This software is based in part on the work of the Independent JPEG Group.

Copyright (c) 1998-2002 Daniel Veillard. All Rights Reserved.

SCOR® is a registered trademark of PRTM.

License for Scintilla and SciTE, Copyright 1998-2003 by Neil Hodgson, All Rights Reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/).

All other products or services mentioned in this document are identified by the trademarks or
service marks of their respective companies or organizations, and Gensym Corporation disclaims
any responsibility for specifying which marks are owned by which companies or organizations.

Gensym Corporation
52 Second Avenue
Burlington, MA 01803 USA
Telephone: (781) 265-7100
Fax: (781) 265-7101 Part Number: DOC017-1200

Contents
Preface xi

About these Tutorials xi

Version Information xii

Audience xii

Organization xii

Conventions xiii

Related Documentation xv

Customer Support Services xvii

Chapter 1 Introduction 1

Introduction 1

G2 Strengths 2

G2 Applications 3
Understanding the Significance of Three Key Factors 3
Understanding the Impact of Your Application 4
Successful G2 Applications 5

G2 Industries 6
G2 Industries and Deployed Applications 7
Examples 8

G2 Environment 9
G2 Application Server 10
G2 Telewindows Client 12
G2 Developer’s Utilities 13
G2 Application Products 15

Integration with External Systems 16

Comparison with Other Tools 18

Chapter 2 Basic Skills 21

Goals for Learning the Basic Skills 22

Starting the G2 Server and Connecting the Telewindows Client 22
iii

Working with Knowledge Bases 24
What is a Knowledge Base? 25
What are Modules? 25
Loading a Sample Application 26
Supporting Knowledge Bases 27
Displaying the KB Workspace Menu 28
Hiding the Operator Logbook 29
Viewing the Modules 30
Summary 31

Interacting with Objects 31
What is an Object? 32
Displaying the Object Menu 33
Naming an Object 34
Cloning an Object 35
Deleting an Object 36
Summary 36

Interacting with Workspaces 36
What is a Workspace? 37
Using the KB Workspace Menu 37
Naming a Workspace 38
Hiding and Showing a Workspace 39
Shrink Wrapping a Workspace 40
Moving Objects on a Workspace 40
Operating on a Group of Objects on a Workspace 41
Cloning a Workspace 42
Deleting a Workspace 42
Creating a New Workspace 43
Moving a Workspace 43
Lifting and Dropping Workspaces 43
Using Keyboard Commands on Workspaces 44
Displaying Text on a Workspace 47
Summary 49

Connecting Objects 50
What is a Connection? 50
Connecting Objects 51
Deleting Connections 53
Summary 54

Editing Attributes in Tables 54
What are Attributes? 54
What Types of Attributes Are There? 55
Assigning Values to Attributes 56
Displaying the Attribute Table 57
Editing Attributes 58
Displaying an Attribute Next to an Object 59
Summary 61
iv

Creating a Simple Rule 61
What is a Rule? 62
Performing Actions in a Rule 62
Using Two Different Inferencing Techniques 62
Choosing Between the Four Basic Types of Rules 63
Referring to Attributes in Rules 63
Creating a Rule 64
Recovering from Syntactic Errors 67
Recovering from Other Types of Errors 68
Summary 69

Running and Pausing Applications 69

Saving Applications and Shutting Down G2 71

Summary 72

Solutions 73

Chapter 3 Creating a Schematic Diagram 75

Goals of a Schematic Diagram 75

Loading the Knowledge Base 76

Creating and Deleting Objects Dynamically 76
What is an Action? 76
Using an Action Button to Create an Object 77
Exploring Permanent and Transient Knowledge 78
Making an Object Permanent 80
Using Local Names in Statements 80
Performing Multiple Actions In Order 81
Using Proper Indentation in Statements 81
Using an Action Button to Create a Permanent Object 82
Using an Action Button to Delete Objects on a Workspace 83
Summary 84

Editing a Class Definition 84
What is a Class Definition? 85
Creating a Class Hierarchy 86
Organizing Classes and Instances 88
Displaying a Class Definition 88
Creating an Instance 90
Editing the Icon 90
Editing the Attributes of a Class 92
Changing Manually Overridden Attributes of Instances 93
Editing the Stubs of a Class 94
Summary 96

Creating Connection Stubs Dynamically 97
Executing Actions on Classes of Objects 97
v

Using Methods and Procedures for Sequential Processing 97
What is the Format of a Method or Procedure? 98
Declaring Arguments 101
Declaring Arguments for Methods 102
Calling the Method or Procedure 102
Creating a Method 103
Declaring the Method 104
Creating a User Menu Choice that Starts a Method 105
Summary 106

Summary 106

Solutions 107

Chapter 4 Building a Knowledge Base 109

Goals of the Knowledge Base 110

Loading the Knowledge Base 110

Counting the Number of Connections 110
Creating an Attribute for the Number of Connections 110
Using a Rule to Count the Number of Connections 111
Invoking the Rule by Scanning 113
Highlighting Invoked Rules 113
Testing the Rule 114
Making the Rule More Robust and Efficient 115
Summary 115

Counting Connections for any Office 116
Using the For Prefix to Create a Generic Rule 116
Creating a Generic Rule for the Office Class 117
Summary 117

Using Event-Driven Processing 118
Considering How to Invoke a Rule 118
Detecting the Event of Creating a Connection 119
Detecting the Event of Deleting a Connection 120
Creating a Different Form of Generic Rule 121
Computing Total Cost Per Minute Whenever Number of Connections

Changes 122
Computing Total Cost Per Minute Whenever the Connection Cost

Changes 123
Simulating Total Cost by Scanning 124
Creating an Attribute Display for Every Office 126
Summary 126

Using Data-Driven Processing 127
Using Forward Chaining to Monitor Total Cost and Delete

Connections 127
vi

Creating an Attribute for a Fixed Budget 130
Summary 131

Keeping a History of Total Cost 131
Using Variables and Parameters to Keep a History 132
Using a Parameter to Keep a History of Total Cost 133
Explicitly Allowing Forward Chaining 135
Creating a Subclass of Parameter 136
Showing the G2 Class Hierarchy 138
Summary 140

Creating Subclasses of Offices 141
Creating a Subclass of a User-Defined Class 141
Creating Instances of Each Subclass 143
Verifying that the Rules Apply to the Subclasses 144
Overriding the Default Method of a Class 145
Summary 146

Disabling Rule Highlighting 146

Summary 147

Solutions 148

Chapter 5 Building a User Interface 151

Goals of the User Interface 152

Loading the Knowledge Base 152

Creating a Subworkspace for an Object 152
What is a Subworkspace? 152
Creating a Master Object with a Subworkspace 154
Creating an Object with a Subworkspace Dynamically 155
Summary 156

Displaying Details on the Subworkspace of an Object 157
Creating End User Displays 157
Creating a Readout for the Small Office Master 158
Creating a Readout for the Large Office Master 159
Using Readout Tables to Invoke Rules 160
Creating a Trend Chart that Plots Total Cost 160
Making the Application More Realistic 164
Summary 164

Sending a Message to the Operator 165
Informing the Operator When an Office is Over Budget 165
Informing the Operator About a Specific Office 166
Creating an Action Button for Testing Purposes 167
Creating a Method that Informs the Operator 168
Adding a Wait Statement to a Method 170
vii

Creating a Procedure that Starts a Method 170
Updating the Rule to Start the Procedure 172
Starting a Method 173
Calling a Method 174
Summary 175

Animating Objects 176
Creating a Method that Animates an Office 176
Creating a Loop in a Method 178
Animating the Office When it is Almost Over Budget 179
Using Subsecond Timing for Animation 179
Summary 180

Making Workspaces Attractive and Informative 180
Changing the Color of a Workspace 181
Creating a Workspace Frame 181
Creating Workspace Subclasses 182
Creating Background Graphics for a Workspace 183
Summary 185

Showing Workspaces Programmatically 185
Using an Initially Rule to Show a Workspace on Startup 185
Creating a Button that Iconifies a Workspace 186
Summary 187

Configuring the User Interface 187
What are User Modes? 188
What are User Interface Configurations? 188
Configuring the Office for Developer Mode 189
Configuring the Office for Operator Mode 192
Starting the Application in Operator Mode 193
Summary 194

Running the Prototype 194
Configuring the Schematic in Developer Mode 194
Saving the Prototype 196
Running the Prototype in Operator Mode 196
Simulating an Over Budget Situation 197

Loading the Finished Application 198

Summary 199

Solutions 200

Appendix A Error Handling 205

Common Errors 205
Action Buttons Don’t Work 205
Cannot Enter a Name 205
Connection Attributes Not Updating 205
viii

Rule is Not Being Invoked 206
Procedures and Methods Not Executing 206
Runtime Errors 207

Glossary 209

Index 225
ix

x

Preface
Describes the contents of these tutorials, the audience for these tutorials, and the
style conventions these tutorials use.

About these Tutorials xi

Version Information xii

Audience xii

Organization xii

Conventions xiii

Related Documentation xv

Customer Support Services xvi

About these Tutorials
These tutorials introduce a new G2 user to the basic concepts and techniques for
creating G2 applications.

These tutorials:

• Introduce G2, its features, its application, and its benefits.

• Teach the basic skills for interacting with the G2 environment.

• Teach how to create a schematic diagram.

• Describe how to build a simple knowledge base.

• Describe how to build a simple user interface.

• Provides error handling guidelines.

Throughout the tutorials, you will be building a simple application for a video
tele-conferencing application. Each tutorial builds on the previous tutorial to
xi

create a fully operational prototype for a simple video tele-conferencing
application.

Version Information
Getting Started with G2 is designed to operate with G2 Version 6.0. The tutorials
use features of G2 6.0 that do not exist in earlier versions. Also, it does not
incorporate features of G2 Version 7.0 or later.

Audience
Getting Started with G2 is written for the new G2 user, who has no prior experience
with G2. These tutorials not only teach new users the basics of using G2, they also
introduce basic object-oriented programming concepts.

The tutorials cover similar topics to that of the G2 Part I course, taught by
Gensym’s Educational Services Department. While the course presents a
somewhat broader range of topics than these tutorials, the tutorials allow you to
create a single sample application that uses all the features learned.

Organization
These tutorials contain five chapters and one appendix:

Title Description

1 Introduction Gives an overview of G2’s strengths,
general application areas, industry
applications, and the overall G2
environment, including the G2 core,
Telewindows client, G2 modules, and G2
layered products.

2 Basic Skills Teaches the basic skills required for
working with G2: interacting with objects
and workspaces, editing attributes in a
table, creating a simple rule, and running
the application.

3 Creating a
Schematic Diagram

Teaches the basic skills for interactively
creating a schematic diagram of a video
conferencing application.
xii

Conventions
Conventions
This guide uses the following typographic conventions and conventions for
defining system procedures.

Typographic

4 Building a
Knowledge Base

Describes how to create a simple
application that computes the total cost of
a video conferencing office based on the
number of connections and that
dynamically deletes the connections if the
office is over budget.

5 Building a User Interface Shows how to create a simple end user
interface for the video conferencing
prototype that includes subworkspaces of
objects, charts, readouts, messages,
animation, and user modes.

A Error Handling Provides simple guidelines for recovering
from some of the most common errors
that novice G2 users make.

Title Description

Convention Examples Description

g2-window, g2-window-1,
ws-top-level, sys-mod

User-defined and system-defined
G2 class names, instance names,
workspace names, and
module names

history-keeping-spec, temperature User-defined and system-defined
G2 attribute names

true, 1.234, ok, “Burlington, MA” G2 attribute values and values
specified or viewed through
dialogs
xiii

Note Syntax conventions are fully described in the G2 Reference Manual.

Main Menu > Start

KB Workspace > New Object

create subworkspace

Start Procedure

G2 menu choices and button labels

conclude that the x of y ... Text of G2 procedures, methods,
functions, formulas, and
expressions

new-argument User-specified values in
syntax descriptions

text-string Return values of G2 procedures
and methods in syntax
descriptions

File Name, OK, Apply, Cancel,
General, Edit Scroll Area

GUIDE and native dialog fields,
button labels, tabs, and titles

File > Save

Properties

GMS and native menu choices

workspace Glossary terms

c:\Program Files\Gensym\ Windows pathnames

/usr/gensym/g2/kbs UNIX pathnames

spreadsh.kb File names

g2 -kb top.kb Operating system commands

public void main()
gsi_start

Java, C and all other external code

Convention Examples Description
xiv

Related Documentation
Procedure Signatures

A procedure signature is a complete syntactic summary of a procedure or
method. A procedure signature shows values supplied by the user in italics, and
the value (if any) returned by the procedure underlined. Each value is followed by
its type:

g2-clone-and-transfer-objects
(list: class item-list, to-workspace: class kb-workspace,
delta-x: integer, delta-y: integer)

-> transferred-items: g2-list

Related Documentation

G2 Core Technology

• G2 Bundle Release Notes

• Getting Started with G2 Tutorials

• G2 Reference Manual

• G2 Language Reference Card

• G2 Developer’s Guide

• G2 System Procedures Reference Manual

• G2 System Procedures Reference Card

• G2 Class Reference Manual

• Telewindows User’s Guide

• G2 Gateway Bridge Developer’s Guide

G2 Utilities

• G2 ProTools User’s Guide

• G2 Foundation Resources User’s Guide

• G2 Menu System User’s Guide

• G2 XL Spreadsheet User’s Guide

• G2 Dynamic Displays User’s Guide

• G2 Developer’s Interface User’s Guide

• G2 OnLine Documentation Developer’s Guide

• G2 OnLine Documentation User’s Guide
xv

• G2 GUIDE User’s Guide

• G2 GUIDE/UIL Procedures Reference Manual

G2 Developers’ Utilities

• Business Process Management System Users’ Guide

• Business Rules Management System User’s Guide

• G2 Reporting Engine User’s Guide

• G2 Web User’s Guide

• G2 Event and Data Processing User’s Guide

• G2 Run-Time Library User’s Guide

• G2 Event Manager User’s Guide

• G2 Dialog Utility User’s Guide

• G2 Data Source Manager User’s Guide

• G2 Data Point Manager User’s Guide

• G2 Engineering Unit Conversion User’s Guide

• G2 Error Handling Foundation User’s Guide

• G2 Relation Browser User’s Guide

Bridges and External Systems

• G2 ActiveXLink User’s Guide

• G2 CORBALink User’s Guide

• G2 Database Bridge User’s Guide

• G2-ODBC Bridge Release Notes

• G2-Oracle Bridge Release Notes

• G2-Sybase Bridge Release Notes

• G2 JMail Bridge User’s Guide

• G2 Java Socket Manager User’s Guide

• G2 JMSLink User’s Guide

• G2 OPCLink User’s Guide

• G2 PI Bridge User’s Guide

• G2-SNMP Bridge User’s Guide
xvi

Customer Support Services
• G2 CORBALink User’s Guide

• G2 WebLink User’s Guide

G2 JavaLink

• G2 JavaLink User’s Guide

• G2 DownloadInterfaces User’s Guide

• G2 Bean Builder User’s Guide

G2 Diagnostic Assistant

• GDA User’s Guide

• GDA Reference Manual

• GDA API Reference

Customer Support Services
You can obtain help with this or any Gensym product from Gensym Customer
Support. Help is available online, by telephone, by fax, and by email.

To obtain customer support online:

 Access G2 HelpLink at www.gensym-support.com.

You will be asked to log in to an existing account or create a new account if
necessary. G2 HelpLink allows you to:

• Register your question with Customer Support by creating an Issue.

• Query, link to, and review existing issues.

• Share issues with other users in your group.

• Query for Bugs, Suggestions, and Resolutions.

To obtain customer support by telephone, fax, or email:

 Use the following numbers and addresses:

Americas Europe, Middle-East, Africa (EMEA)

Phone (781) 265-7301 +31-71-5682622

Fax (781) 265-7255 +31-71-5682621

Email service@gensym.com service-ema@gensym.com
xvii

xviii

1

Introduction
Gives an overview of G2’s strengths, general application areas, industry
applications, and the overall G2 environment, including the G2 core,
Telewindows client, G2 modules, and G2 layered products.

Introduction 1

G2 Strengths 2

G2 Applications 3

G2 Industries 6

G2 Environment 9

Integration with External Systems 16

Comparison with Other Tools 18

Introduction
G2 is a powerful object-oriented development and deployment environment for
managing and optimizing dynamic, complex decision support and control
applications that leverage intelligent system technologies.

G2 allows application developers to express objects, rules, methods, and
procedures, using structured natural language so application developers can
readily understand, test, and modify models. G2 allows organizations to apply
the knowledge in these models dynamically to their operations to reach
conclusions, provide advice, and take actions in real time or simulated real time.
1

G2 applications can follow multiple lines of reasoning and analyze large amounts
of data and numerous trends concurrently. G2 applications can maintain an
understanding of the behavior of processes over time and the currency of
information, both of which are critical for real-time decision support and control.

You use G2 to bring real-time intelligence to your mission-critical operations. G2
lets you rapidly deliver intelligent solutions that dramatically improve the
consistency, efficiency, flexibility, and quality of your operations and the time to
market of your products and services.

G2 Strengths
G2’s major strengths lie in its ability to perform these capabilities:

Capability Description

Abnormal event
detection

Continuously monitor multiple asynchronous
events and data streams simultaneously in real
time

Rule-based reasoning Turn complex data into useful information by
reasoning about it, using object models, rules,
and empirical knowledge (heuristics)

Intelligent decision
support

Diagnose problems quickly, provide intelligent
advice to operators, and guide operators
through standard operating procedures

Advanced control
and optimization

Maintain optimal operating conditions based on
constraints, anticipate problems, and take the
right action in a timely manner

Dynamic scheduling Dynamically coordinate and schedule activities,
equipment, resources, and information through
a complex process
2

G2 Applications
G2 Applications
G2 supports a wide range of applications and industries. Before you begin
planning and developing your G2 application, it is useful to understand how
your particular application relates to existing G2 applications.

One place to begin is to consider the relative importance of three key factors in
your application. Secondly, it is helpful to understand the impact your
application will have at various levels in your organization. Finally, you might
want to identify your application with similar, successful G2 applications in a
variety of industries.

Understanding the Significance of Three Key
Factors

To better understand how to fit G2’s capabilities with your application, it is useful
to ask yourself the following three questions:

Q Does my application have to integrate with external systems?

For example, does your application have read or write data from or to a database,
receive values from or control PLCs or DCSs, or create native end user interfaces?

Q Does my domain require user interaction, possibly somewhere on the network?

For example, do operators need to view and possibly control your process
through an end user interface, or do managers need to view process information
while the process is running?

Q Does my environment have a well-defined physical representation?

For example, does your process consist of physical objects or processes that
represent well-defined tasks, or does your process manipulate physical objects or
data structures during processing.

If you answer yes to all of these questions, then you will probably be using a large
portion of G2’s capabilities. However, your particular application might
emphasize some capabilities over others. Most G2 applications consist of at least
some data integration, some user interface and networking capabilities, and some
physical representation of the process. In all cases, G2 handles all three aspects of
the application seamlessly: data integration, user interface, and graphical
representation.
3

Understanding the Impact of Your Application

Obtaining buy-in for your application is critical to its success within your
organization. To assist you, as a G2 application developer, in obtaining buy-in, it
is useful to think about the goals of your application along three dimensions:

• Strategic — High-level corporate goals, such as profitability, yield,
throughput, quality control, or energy efficiency.

• Tactical — Mid-range solutions that support strategic goals, such as process
monitoring, operator decision support, alarm validation, standard operating
procedure enforcement, statistical process control (SPC), or statistical quality
control (SQC).

• Operational — Specific implementation of the tactical goals, for example,
rule-based reasoning, model-based reasoning, heuristics, or time-based
reasoning.

To ensure success, it is important to focus at the correct level, depending on the
audience:

• During the development phase, when you are justifying the G2 application to
high-level managers and decision-makers, you need to focus on strategic
goals.

• When you are working with mid-range managers to determine which aspect
of the overall process the application should focus on initially and
downstream, you need to focus on the tactical goals.

• When you are determining how to implement the tactical goals in G2 to
support end user requirements as well as future development, you need to
focus on the operational goals.
4

G2 Applications
Successful G2 Applications

G2 supports a wide range of applications that span across a variety of industries.
One useful way to understand your application is to map it to existing successful
G2 applications. This table lists existing, successful G2 application by its strategic
goal and supporting tactical solutions:

Strategic G2 Applications and Tactical Solutions

Strategic Goals Tactical Solutions

Production Management • Process monitoring

• Abnormal situation analysis and
diagnostics

• Operator decision support

• Alarm management

• Production coordination

• Manufacturing execution system (MES)
execution

• Energy management

• Environmental management

• Maintenance management

Intelligent Process Management
and Optimization

• Optimization of throughput, yield, and
efficiency

• Statistical quality control (SQC)

• Closed-loop control

• Statistical analysis and control (SPC)

• Grade change optimization

• Process verification

• Plant-wide optimization

Product and Process Transition
Management

• Abnormal situation management

• Startup/shutdown management

• Standard operating procedures (SOPs)
enforcement
5

G2 Industries
G2 has been deployed in a wide range of industries throughout the world. In
planning your application, it can be helpful to understand where the application
fits into the overall spectrum of deployed G2 applications, by industry. These
industries fall into four major categories:

• Continuous manufacturing — Material flows continuously from process to
process.

• Discrete manufacturing — Individual units flow one at a time from process
to process.

• Batch manufacturing — A batch of material or individual units flow from
process to process.

• Telecommunications — Data flows over data, wire, or wireless networks.

Network Fault Management • Managing availability of business
applications and underlying network

• Managing availability of overall network

• Managing availability of a subset of
network devices

Business Process Management • Business process modeling and
reengineering (BPR)

• Executive operational decision support

• Billing and auditing management

Strategic G2 Applications and Tactical Solutions

Strategic Goals Tactical Solutions
6

G2 Industries
G2 Industries and Deployed Applications

This table shows the industries in which G2 has successfully been deployed,
examples of each, and application areas for that industry:

If you are in an industry other than one of the industries listed above, you might
need to do a little more work to understand how you will deploy G2 to solve your
particular problem. However, in most cases, you will find that your industry
and/or application has significant overlap with existing successful G2
installations.

G2 Industries and Deployed G2 Applications

Industry Examples Deployed G2 Applications

Continuous
manufacturing

Food, pharmaceuticals,
metal and mining,
cement, chemical and
petrochemical, oil and
gas pipeline, pulp and
paper, utilities

• Advanced control and
optimization

• Scheduling

• Abnormal situation
management

• Energy management

• Emissions management

• Business process
modeling

Batch
manufacturing

Food, pharmaceuticals,
metals, cement

• Batch management

• Scheduling

Discrete
manufacturing

Automotive, electronics • Scheduling

• Shop floor control

Communications Data networks, ATM,
phone, wireline and
broadline, wireless,
satellite

• Application availability
and fault management

• Network fault
management

• Device fault management
7

Examples

The next diagram shows examples of G2 applications in various industries:

Oil Refinery Process Management

• Quality control

• Process control

• Closed-loop control

Shipping Port Design

• Simulation modeling to maximize
efficiency of port design

Auto Manufacturing Prototyping

• Flexible manufacturing of
prototypes

• Open cell controllers

• Part tracking

• Tool management

• Operator decision support

Satellite Communications Management

• Complex network management

Pharmaceutical Materials Management

• Intelligent tracking and scheduling

• Automated storage and retrieval

• Inventory management

• Regulatory compliance for tracking
batch record information

• Reduced cycle time

• Optimization of materials handling

Continuous Manufacturing Discrete Manufacturing

Batch Manufacturing

Communications

Food Production Management

• Product consistency

• Reduced waste

• Quality control

• SCADA

• Statistical process control

• Recipe management

• Intelligent decision support

Metal Manufacturing Materials
Handling Management

• Increased throughput

• Improved materials handling

Telecom Management Support

• Network management
status

• Automatic fault correction

• Intelligent decision support

Other
8

G2 Environment
G2 Environment
G2 is a intelligent real-time system (IRTS) for developing and deploying
mission-critical, client/server applications. To describe the environment in
layman’s terms, G2 allows you to create “objects” that:

• Represent your process, both graphically and conceptually.

• Reason about the relationships between these objects and the environment in
general, including simulated and historical data.

• Maintain a continuous awareness of the current process.

• “Think” in real time and “make the right decision” based on the current
evidence, including directly controlling the process.

• Interact with end users as required, for example, to send an alarm.

A G2 application can be distributed over a wide network of clients, using its own
graphical user interface (GUI) or using some other GUI standard such as Java,
Windows, or Visual Basic.

The G2 environment consists of four major areas:

• G2 application server — A complete development environment that provides
the full range of features needed to develop and deploy intelligent real-time
applications.

• G2 Telewindows client — A remote G2 process that allows remote users to
access the server application over a network.

• G2 developer’s utilities — Optional components of the G2 application server
that allow you to perform specific functions.

• G2 application products — Layered applications built on top of G2 that
support application development in specific domains.
9

G2 Application Server

The G2 application server, also called the G2 core, provides the full range of
features needed to develop and deploy intelligent real-time applications. The G2
core bridges the gap between a traditional application server and an intelligent
application as this diagram shows:

Object-oriented
programming

Networked
distribution

Integrated
user interface

Simulation

Graphical and
dynamic

Rule-based
reasoning

Time
management

Integrated
intelligent

technologies

Application Server

Flexible
development
environment

+Intelligent Real-Time System

G2 Application Server

Connectivity
Natural language

procedural statements

Single-threaded and
multi-threaded processing
10

G2 Environment
The G2 application server provides these features, using these implementation
techniques:

Features and Implementation of G2 Application Server

Feature Implementation

Complete object-oriented
programming environment

Objects, classes, methods, inheritance, multiple
inheritance, encapsulation, polymorphism

Rule-based reasoning Event detection, decision trees, data-driven
processing, forward and backward chaining,
scanning, generic reasoning over classes

Time management Continuous processing, time-stamping, historical
data, update intervals, wait states, temporal
reasoning

Fully integrated networked
distribution

Client/server architecture, integrated network tools

Connectivity Bridges to numerous standard databases, process
control systems, files, and end user development
environments

Graphical and dynamic Icons, schematics, animation, class libraries

Natural language
procedural statements

Syntax-guided text editor; local declarations; begin-
end statements; case statements; if-then-else
statements; looping; repeat statements; return values;
nested procedure statements, error handling

Single-threaded and multi-
threaded processing

Standard procedural statements for single-threaded
processing; wait, allow other processing, and do in
parallel statements for multi-threaded processing

Fully integrated user
interface

Menus, dialogs, spreadsheets, localization

User interface Windows, Java, X Windows displays

Integrated intelligent
technologies

Fuzzy logic, neural networks

Simulation Periodic signals, formulas, functions

Flexible development
environment

Modular, configurable, rapid prototyping and
continuous improvement capabilities
11

G2 Telewindows Client

G2 clients can access the G2 application server in a completely seamless manner
through a Telewindows client application, which is a remote G2 process that
allows remote users on the network to access the server application. Telewindows
client simply logs in to the G2 server from another machine. The client can view
or manipulate the application as if he or she were sitting in front of the server’s
terminal. The G2 application developer determines how much access the
Telewindows client has to the application.

On Windows platforms, Telewindows Next Generation (twng.exe) provides a
Windows user interface for G2 developers. G2 also provides a rich set of tools for
developing Windows user interfaces for end user applications, including menus
and toolbars, standard and custom dialogs, a variety of Windows views,
including tree views, shortcut bars, chart views, property grids, and workspace
views, and tabbed MDI mode.

This diagram shows the seamless integration of Telewindows clients to the G2
application server, where each client might see a different view of the application:

G2 Application Server

Telewindows Clients

Seamless Client/Server Integration
12

G2 Environment
G2 Developer’s Utilities

G2 developer’s utilities are components of the G2 application server that allow
you to perform specific functions, such as user interface development or event
management. This table describes each of the G2 Developer’s Utilities:

G2 Developer’s Utility Descriptions

G2 Run-Time Library
(GRTL)

A common set of utility functions, an object
model, and user interface development tools to
provide a consistent object model, including
application configuration, localization,
repositories. GRTL also provides a fully
functional and extensible end user interface for
decision management applications.

G2 Event Manager (GEVM) Event management tools, including tools for
creating operator message browsers and a
blackboard of internal event states.

G2 Web (GWEB) Out-of-the-box Web pages, SOAP services, WSDL
support, as well as classes and APIs enabling G2
to implement an HTTP server and serve HTML
pages, XML structures, SOAP services,
G2GL/BPMS processes, and files.

G2 Reporting Engine
(GRPE)

Out-of-the-box reports, classes, and APIs to
define reports and charts, and dialogs to
configure and visualize them. GRPE supports
collecting values from CSV files, databases, or G2
items, displaying values in Telewindows Next
Generation, and exporting values to CSV files,
Excel, databases, and G2 items.

G2 Dialog Utility (GDU) A set of APIs for building static and dynamic
custom Windows dialogs.

Business Process
Management System
(BPMS)

Extensions to the G2 Graphical Language (G2GL)
including palettes and Windows dialogs for all
G2GL blocks, subclasses of G2GL processes, tools
for invoking detection, test, and response
processes for domain objects, and pre-defined
Web services that can be called from a G2GL
process, including OS processes, sending email,
interacting with databases and files, generating
SymCure events, and invoking BRMS rules.
13

Business Rules
Management System
(BRMS)

An environment for editing, organizing,
analyzing, and executing business rules. You
define business rules for a class of G2 objects in a
given category. A business rule consists of one or
more conditions and actions, which you define
interactively based on the class. You invoke rules
programmatically by invoking all rules in one or
more categories for a set of G2 objects.

G2 Event and Data
Processing (GEDP)

A multi-purpose graphical language to express a
flow of data, perform calculations, execute
functions, and generate messages and events.
GEDP flow diagrams are typically used to
analyze numeric values, detect patterns, generate
event states, and trigger diagnostic logic, for
example, using SymCure.

G2 Data Source Manager
(GDSM)

Classes and APIs for managing network
connections.

G2 Data Point Manager
(GDPM)

Functionality for configuring, logging, replaying,
and simulating datapoints, typically related to
external sensors such as temperature, pressure,
and flow.

G2 Engineering Unit
Conversion (GEUC)

Tools for specifying the engineering units for
entering and displaying values, as well as a large
number of synonyms for those conversions in
both the English and metric systems.

G2 Error Handling
Foundation (GERR)

Tools that provide a common approach for
dealing with errors, including logging them and
reporting them.

G2 Relation Browser
(GRLB)

Tools for displaying G2 relations and user-
defined relations in a graphical layout.

G2 Developer’s Utility Descriptions
14

G2 Environment
G2 Application Products

G2 offers a number of application products, which are layered products built on
top of G2 that support development in specific domains. This table describes each
G2 layered product:

Layered Product Description

Optegrity An extensible software platform for abnormal
condition management applications for the
process manufacturing industries. Optegrity
applications help ensure sustained operational
performance and continuous availability of
production assets. Its applications detect and
resolve abnormal process conditions before they
disrupt productivity and threaten quality and
profitability.

Integrity A G2-based software platform that provides
advanced capabilities for real-time fault and
procedure management applications. Once on
line, Integrity applications can help manage
distributed, multi-vendor enterprise systems by
automatically detecting and diagnosing network
or other operational failures.

ReThink A graphical modeling and simulation toolkit for
business process and workflow simulation,
analysis, and automation. e-SCOR is built on top
of ReThink, so developers can use all the
capabilities of ReThink to customize e-SCOR.

e-SCOR An extensible software platform that enables
businesses to design and manage complex,
dynamic supply chains. Based on the Supply
Council's SCOR industry-independent standard,
e-SCOR allows organizations to analyze their
current supply chains and perform what-if
simulations to predict the performance of new
supply-chain configurations.
15

Integration with External Systems
G2 integrates many different software technologies together in one package, not
only intelligent system technologies for which G2 is well-known but more
conventional technologies — object technology, knowledge-base technology, data
interfaces, graphical user interfaces, and application server support. Through a
wide range of off-the-shelf bridge products, G2 and the applications built on it get
data from a wide variety of data sources — databases, control systems, and
various real-time data sources. You can also use G2 Gateway to build custom
bridges, using the C programming language.

This table summarizes the G2 bridges that provide integration with external
systems:

NeurOn-line (NOL) Graphical block language for producing online
neural-network models that predict, control, and
optimize complex, non-linear processes. Real-
time applications include soft-sensing for
predicting product quality, mode-based sensor
validation, set-point optimization and diagnosis.
With NeurOn-Line, manufacturers improve
efficiency, product quality and yields.

G2 Diagnostic Assistant
(GDA)

Graphical block language that enables data
monitoring, filtering, and diagnostics, statistical
process control, alarm management,
combinatorial and fuzzy logic, closed-loop
control.

Layered Product Description

G2 Bridge Description

Databases

G2-Oracle Bridge Provides communication with Oracle.

G2-Sybase Bridge Provides communication with Sybase.

G2-ODBC Bridge Provides communication with any relational
database on any platform for which there is an
ODBC driver.
16

Integration with External Systems
Applications built on G2 are portable and interoperate across many computer
platforms, including workstations from Sun Microsystems, Hewlett-Packard, and
IBM, as well as PCs by many different manufacturers running under Windows.
G2 supports Windows and UNIX platforms.

Devices and Data Historians

G2-PI Bridge Provides communication with the PI data
historian.

G2-OPC Client Bridge
(OLE for Process Control)

Provides communication with data supplied by
any OPC-compliant server.

Distributed Object and Networking Standards and Protocols

G2 ActiveXLink Provides communication with Microsoft
ActiveX/COM.

G2 JavaLink Provides communication with Java/RMI.

G2 Java Mail Bridge Provides communication with JavaMail (JMail).

G2 JMSLink Provides communication with Java Message
Service (JMS).

G2 Java Socket Manager Provides communication with Java Sockets.

G2 Java SNMP Provides communication with Java Simple
Network Management Protocol (SNMP).

G2 CORBALink Provides communication with Common Object
Request Broker Architecture (CORBA).

G2-HLA Bridge Provides communication with High Level
Architecture (HLA), an integrated architecture
that provides a common architecture for
Modeling and Simulation (M & S).

G2 WebLink Provides communication with HTTP, the protocol
of the World Wide Web.

Core G2 Provides integration with Web services, SOAP,
HTTP, and TCP/IP sockets.

G2 Bridge Description
17

Comparison with Other Tools
G2 is a complete object-oriented environment for developing and deploying
intelligent applications. Unlike other approaches, you will find that G2 shortens
the time to completion of applications by supporting your entire project life-style
— from design, to development, simulation, deployment, through ongoing
maintenance. One tool, G2, fully and effectively supports each step in the project.

Traditional tools, such as C, C++, or Computer Aided Software Engineering
(CASE) are most useful during the earliest stages of a development and
deployment project. As the project moves to later stages, such as testing,
deployment, and maintenance, the effectiveness and development productivity of
traditional tools rapidly decrease.

G2 is a comprehensive development and deployment environment that supports
and shortens your entire project life cycle. How does G2 support the entire
application life cycle?

The key lies in G2’s seamless integration of the technologies you need for rapid
development and deployment. G2’s technologies are integrated to provide you a
rich and complete environment for developing and deploying your intelligent
applications. G2’s technologies include:

• Concurrent real-time execution

• Object-oriented design

Design and Rapid
Prototyping

G2 vs. Traditional Development and Scope of Project Life Cycles

Scope of G2

Start G2 Project

Rapid Incremental
Development

Simulation Testing

Deployment

Maintenance

Detailed Design and
Specification

Programming
(Large Team)

Testing and
Revision

Deployment

Scope of
C++ Tools

Scope of
Case Tools

Start Traditional Project
18

Comparison with Other Tools
• Interactive graphics

• Rules, procedures, and methods

• Structured natural language

• Dynamic modeling and simulation

• Distributed processing and client/server networking

• Connectivity with online data
19

20

2

Basic Skills
Teaches the basic skills required for working with G2: interacting with objects and
workspaces, editing attributes in a table, creating a simple rule, and running the
application.

Goals for Learning the Basic Skills 22

Starting the G2 Server and Connecting the Telewindows Client 22

Working with Knowledge Bases 24

Interacting with Objects 31

Interacting with Workspaces 36

Connecting Objects 50

Editing Attributes in Tables 54

Creating a Simple Rule 62

Running and Pausing Applications 70

Saving Applications and Shutting Down G2 72

Summary 73

Solutions 74
21

Goals for Learning the Basic Skills
In this tutorial, you will learn the basic skills needed for working with G2,
including:

• Loading G2.

• Working with knowledge bases.

• Interacting with objects.

• Interacting with workspaces.

• Connecting objects.

• Editing attributes in tables.

• Creating a simple rule.

• Running and pausing applications.

• Saving applications and shutting down G2.

Note The examples shown in this tutorial assume you are working on a Windows
platform.

Starting the G2 Server and Connecting
the Telewindows Client

In this lesson, you will learn how to start the G2 server process on your platform
and connect the Telewindows client.

You start the G2 server from a batch file or shell script, which sets up the various
environment variables required to create an application.

By default, the G2 server window appears. You can also run the server in the
background with no window by using the -no-window command-line option.

Typically, you create applications by connecting to the G2 server through the
Telewindows client. On Windows, you use the Telewindows Next Generation
(twng.exe) client, which provides a Windows user interface for building G2
applications. The G2 server can be running on either a Windows machine or a
UNIX machine.

Telewindows automatically connects to the G2 server running on the local
machine on port 1111. You can also use command-line options to connect to a G2
server running on another machine and/or port.
22

Starting the G2 Server and Connecting the Telewindows Client
To start the G2 server on a Windows platform:

 Choose Start > Programs > Gensym G2 2011 > Start G2 Server.

To start the G2 server on a UNIX platform:

 In a UNIX shell, change to the g2 subdirectory of your G2 installation
directory and enter the command StartServer.

The main window of the G2 server process appears:

On Windows, the G2 server icon appears in the system tray: You can connect
Telewindows to the server and shut down the server using the popup menu on
this icon.

To connect Telewindows Next Generation to G2 on a Windows platform:

 Choose Start > Programs > Gensym G2 2011 > Telewindows Next Generation.

To connect Telewindows to G2 on a UNIX platform:

 In a UNIX shell, change to the g2 subdirectory of your G2 installation
directory and enter the command tw.
23

The Telewindows client window appears:

Working with Knowledge Bases
In this lesson, you will learn how to:

• Load a G2 application.

• Use the basic G2 menus.

• Delete the Operator Logbook.

• Show the module hierarchy.
24

Working with Knowledge Bases
What is a Knowledge Base?

G2 applications are stored in knowledge bases. A knowledge base, or KB, is an
ASCII file with a .kb extension that contains all the information your application
needs to run. G2 applications can have a single file or many files.

Knowledge comes in many forms in G2:

• Objects represent the physical systems in your application and the
connections between them.

• Definitions describe the common features of the objects.

• Rules, methods, and procedures describe the behavior of the objects in the
real-time environment.

• Graphical user interface (GUI) components enable end users to interact with
the application.

What are Modules?

G2 applications typically consist of numerous KB files, each of which contains one
or more modules. A module is a set of related information contained in the KB.
For example, an application might have two modules, one for the object
definitions, expert system rules, and procedures that describe behaviors, and
another for the graphical user interface components.

Use modules to organize your application and reuse existing knowledge across
G2 applications.

Depending on the needs of the application, some modules can be independent
modules, which means they can run without any other KB files in the application,
while other modules are dependent modules, which means they require
additional information contained in one or more other modules to run.

G2 represents the modules of an application in a module hierarchy to show the
module dependencies. The module at the top of the hierarchy is called the top-
level module. If the application has lower-level modules, the top-level module is
necessarily a dependent module. Modules at the bottom of the module hierarchy
are necessarily independent modules, because they do not depend on any other
module in the hierarchy.

You typically name the KB file so that it corresponds to the name of the top-level
module in the KB.

You use the G2 Foundation Resource (GFR) module to help manage your
modules in an application, for example, which modules G2 initializes first and
which modules determine the overall behavior of the application.
25

This figure shows several different module configurations of a video conferencing
application:

Loading a Sample Application

In this lesson, you will load a sample knowledge base that defines a single
module called basic-skills. This module contains a single object representation of
an office site. The definition of the object is not immediately visible.

To load the sample application:

1 Choose File > Load KB.

2 Navigate to the \g2\kbs\tutors directory and open ch2.kb.

Video application consists of a single
module and a single KB file.

Video application consists of three
modules, all contained in a single KB file,
video.kb. The KB consists of one
dependent module, video, and two
independent modules, defs and gui.

Video application consists of three
modules, each of which is contained in its
own KB file. The KB file names
correspond to the module names.

video.kb

video.kb

video.kb

video

video

video

defs

defs

gui

gui

defs.kb gui.kb

independent
modules

dependent
modules
26

Working with Knowledge Bases
When G2 finishes loading the KB, Telewindows has these contents:

The KB Workspace window is a workspace where you create objects. The icon on
the workspace is an object, which is a graphical representation of a piece of
knowledge. The area behind the workspace is the background on which you
create workspaces. The area in the background at the top right is another
workspace called the Operator Logbook where G2 displays system messages.

Supporting Knowledge Bases

These tutorials come with a set of knowledge bases, which provide the starting
point for developing the video conferencing application, as well as the solutions
to the tutorials contained in each chapter.
27

The supporting KB files are:

Throughout the tutorials, you are asked to save your work in a .kb file that
corresponds to the file names above, with your initials appended to them. You
can use your KB as the starting point for each subsequent tutorial, or you can use
the solution KBs as the starting points.

Displaying the KB Workspace Menu

G2 has a number of different menus that allow you to perform a variety of
operations. You have already seen the Main Menu, which is the control center for
the overall knowledge base. Each workspace also has a menu, called the
KB Workspace menu, which you will learn about in more detail later in this
tutorial. Each object also has a menu, which you will also learn about later. For
now, you will simply display the KB Workspace menu.

This file... Contains...

ch2.kb The starting point for the video conferencing
application, which you load at the beginning
of Basic Skills.

ch2soln.kb The solution to the Basic Skills tutorial.

ch3.kb The starting point for the tutorial located in
Creating a Schematic Diagram.

ch3soln.kb The solution to the Creating a Schematic
Diagram tutorial.

ch4.kb The starting point for the tutorial located in
Building a Knowledge Base.

ch4soln.kb The solution to the tutorial located in Building
a Knowledge Base.

ch5.kb The starting point for the tutorial located in
Building a User Interface.

solution.kb The solution to the tutorial located in Building
a User Interface. This KB provides a complete
solution for the entire set of Getting Started
tutorials.
28

Working with Knowledge Bases
To display the KB Workspace menu:

 Right-click the workspace background.

You use the KB Workspace menu to:

• Create objects of different types, including rules, procedures, and user
interface objects.

• Create definitions of objects.

• Manipulate the workspace itself, for example, hide it, move it, print it, and
delete it.

• Specify information about the workspace, such as its name and its visual
representation.

Hiding the Operator Logbook

The Operator Logbook is where G2 displays system messages, such as
information about saving and loading files. It consists of one or more Logbook
pages. In general, you do not need to have the Logbook pages showing during KB
development. If G2 needs to display a message to the operator, it will
automatically show the Operator Logbook.

For information about the Operator Logbook, see Runtime Errors.
29

To hide the Operator Logbook

 Click the close button on the Operator Logbook page.

Viewing the Modules

Each workspace in the application must be assigned to a specific module. You
manually assign certain workspaces to a particular module, while G2
automatically assigns other workspaces to a default module.

You use the Inspect facility to view the modules in an application. The Inspect
facility allows you to locate objects in the knowledge base and display
information about its contents.

In the Basic Skills application, the workspace you see is assigned to the basic-skills
module.

To show the module hierarchy:

1 Choose Tools > Inspect.

Tip Many menu choices are also available from the G2 Main Menu, which you
access by right-clicking the background of the G2 window.

G2 displays the text editor for the Inspect facility:
30

Interacting with Objects
The prompts at the bottom of the editor show the commands you can enter in
the syntax-guided text editor. You enter commands by clicking on the
prompts at the bottom of the Inspect workspace. Each time you click on a
prompt, G2 updates the prompts to show the next set of options.

2 Click on the phrases at the bottom of the editor to enter this command:

show on a workspace the module hierarchy

First click show on a workspace; then click the module hierarchy.

3 When you have finished entering the command, press Ctrl+Enter or click the
Save and Exit button in the toolbar.

G2 displays the module hierarchy for the Basic Skills application on a
temporary workspace:

In this case, the module hierarchy consists of a single module named
basic-skills.

4 Delete the temporary workspace.

Summary

In this lesson, you learned how to:

• Display the G2 Main Menu.

• Use the Load KB command to load a knowledge base.

• Display the KB Workspace menu and object menu.

• Delete the Operator Logbook workspace.

• Use the Inspect command to show all the modules in the knowledge base.

Interacting with Objects
In this lesson, you will learn how to:

• Display an object’s menu.

• Name an object, using the G2 text editor.

• Make a copy of an object.

• Delete an object.

result

Inspect command
31

What is an Object?

G2 is an object-oriented development environment. This means that G2
represents knowledge as objects in the application. However, the item class is the
root of the G2 class hierarchy that you can customize to capture your domain
knowledge, and object is a subclass in the item class hierarchy.

In keeping with object-oriented terminology, this document uses the term object
to refer to all entities that have a graphical representation, and that includes kb-
workspaces and the entities that are on kb-workspaces. To make the class of an
object, and its specific instances clear, this documentation uses a sans serif type
face to refer to them. For instance: office-1 is an instance of the office class.

An object is a piece of information that contains all related knowledge in one
location. An object contains all the data that defines the object and all the
operations that the object can perform. In object-oriented terms, an object’s data
are called its attributes, and an object’s operations are called its methods.

An object has particular attributes based on its type. In object-oriented terms, an
object’s type is called its class. For example, the attributes of a video conferencing
office might be its location, network type, number of connected sites, and
connection status.

Using object-oriented techniques, you can create classes of objects that share
characteristics with other classes. This technique is called inheritance, where the
subclass of an object inherits the characteristics of its superior classes, including
all of its attributes and methods. In the subclass, you describe only the unique
features of the class. You will learn more about inheritance later.

A G2 application describes the behaviors of its objects, reasons about those
objects, and provides expertise about those objects in a real-time environment. For
example, in a video conferencing application, you might describe the behaviors of
an office when it is actively connected to another office, and you might reason
about whether the office is over budget while it is connected in real time.

Each object in the knowledge base has an icon representation. This means you can
use objects to communicate information graphically to the end user, for example,
by animating the icon to reflect its status. You can create your own icon
representation of an object, or you can use one of the many available icons in the
G2 icon library.

In G2, almost all knowledge is represented as an object, including:

• The physical systems.

• The connections between systems.

• The rules and procedures that describe the behavior of the systems.

• The workspaces on which objects exist.

• The graphical user interface elements of the application.
32

Interacting with Objects
Displaying the Object Menu

You interact with the office object by using its menu, called the object menu. The
object menu lets you perform various operations on the object, including naming,
cloning (copying), and deleting the object.

Almost any interactive operation that you can perform on an object by using its
menu, you can also perform programmatically by using G2’s real-time
procedural language. For example, you might create a rule or procedure that
automatically deletes an object from the knowledge base under certain
conditions.

To display the object menu:

 Right-click the office object.

The popup menu for the object appears:

You can perform various operations on the office, including:

• Displaying a table of attributes for the object.

• Naming the object.

• Cloning the object, which means making an exact copy of the object.

• Deleting the object.

• Transferring the object to another workspace.

• Specifying the characteristics of the object in its table.

Subworkspaces represent a powerful way of organizing knowledge in your
application. They also allow you to present different levels of detail to end users
33

of the application. You will learn more about subworkspaces in Building a
User Interface.

Naming an Object

You can refer to objects directly by their name, or you can refer to them
generically by their class. You name an object to identify it uniquely among other
objects in the same class.

The name of any object in G2 must be a symbol, which is a string of alpha-
numeric characters with no spaces. The G2 convention is to use a dash in place of
a space in all names, for example, office-1. Symbols are not case-sensitive.

Note All names in G2 must be unique. Thus, you cannot use the same symbol for any
two objects in G2.

To name an object:

1 Right-click the office object to display its menu.

2 Choose name.

G2 displays the single-line text editor for entering the name of the object:

Similar to the text editor for the Inspect facility, this text editor indicates the
type of information you can enter to name the object.

Notice the word none at the bottom of the editor. This is the default name.

Note Whenever you do not want to enter any value in the text editor, use the word
none or cancel the text editor.

3 Enter office-1 as the name.

You can use the Backspace key to delete characters if you make a mistake. You
can also use the arrow keys to move the cursor.
34

Interacting with Objects
4 Press Enter or click the Save and Exit button to accept the name.

G2 displays the object name below the icon:

Object names always appear in all upper-case letters in G2. However, we typically
refer to them informally in lower case, for example, office-1.

Cloning an Object

You can interactively create copies of any G2 object by cloning the object. To clone
an object means to create a duplicate of the original object except for the name and
its uuid (universal identifier) attribute. You can also clone objects
programmatically.

Clone objects as a way of reusing large pieces of knowledge throughout your
application.

To clone an object:

1 Display the object menu and choose clone.

The cloned object is now attached to your mouse pointer.

2 Move the mouse to the desired location and click to place the object on the
workspace.

Typically, you name cloned objects to distinguish them in the KB. You identify
cloned objects by their class, as well as by their name.

To identify each object:

1 Name the cloned object office-2.

2 Display the object menu for office-1 and then for office-2.

Notice that the object menu shows the name of the object class, which is office,
as opposed to its specific name.

3 Choose table from each object’s menu to display each object’s attribute table.

Each object has an associated table of attribute names and values, which you
will learn more about later. For now, notice that the title of each object’s table
indicates the name of the object, as well as its class.

4 Hide each object’s table by clicking on the title of the table.
35

Deleting an Object

You might need to delete an object in a knowledge base. Deleting an object
removes it permanently from the knowledge base. Again, you can delete objects
interactively, using a menu, or programmatically.

Note There is no undo operation for deleting objects.

To delete an object:

1 Choose delete from the object’s menu.

2 Click OK to confirm the deletion.

Summary

In this lesson, you learned how to use:

• The name menu choice to name an object.

• The clone menu choice to make a copy of an object.

• The delete menu choice to delete an object.

Interacting with Workspaces
In this lesson, you will learn how to:

• Display the menu for a workspace.

• Name a workspace.

• Show and hide a workspace.

• Shrink wrap a workspace.

• Move objects on a workspace.

• Operate on a group of objects on a workspace.

• Clone a workspace.

• Delete a workspace.

• Create a new workspace.

• Move a workspace.

• Lift and drop a workspace.

• Use keyboard commands on workspace.

• Display text on a workspace.
36

Interacting with Workspaces
What is a Workspace?

Most G2 objects are located on a workspace. A workspace is an area of the
knowledge base that contains other objects. A workspace is itself an object, which
means you can reason about it in the same way you can reason about other
objects. You use workspaces for two major purposes:

• To organize knowledge in your application.

• To display an end user interface for your application.

Workspaces represent a convenient way of storing and displaying information in
your knowledge base. Applications often display and animate workspaces to
communicate information to end users about the application. You typically use
names and color to identify workspaces in a knowledge base.

You use workspaces for other purposes in G2, as well. For example, when you
load a KB and when you enter the name of an object, you are interacting with
special system-defined workspaces.

The icon representation of any object must reside on a workspace. However,
objects do not always have to reside on a workspace to exist in the knowledge
base or to be reasoned about. You will learn more about this in a later tutorial
when you learn about transient knowledge.

Using the KB Workspace Menu

You manipulate workspaces by using the KB Workspace menu. You can also
manipulate workspaces by using keyboard commands, for example, to scale or
move a workspace.

Because most objects in G2 are located on a workspace, you also use the KB
Workspace menu to create different types of G2 objects. For example, you use the
KB Workspace menu to create definitions of subclasses of objects.

To display the KB Workspace menu:

 Right-click the workspace background.

G2 displays the KB Workspace at the location of the mouse.
37

Here is the KB Workspace menu, with labels that describe the two basic categories
of menu choices:

Naming a Workspace

You name a workspace to identify it in the knowledge base and to reason about it
programmatically. The workspace name also provides a convenient label for the
workspace. Finally, you name a workspace so that you can hide it and then show
it again, using a menu choice.

Note You cannot show an unnamed workspace directly from a menu choice.

Name only a small number of workspaces in your application and use named
workspaces and subworkspace hierarchies to navigate to other workspaces in the
application.

Remember, workspace names must be unique symbols, which means you must
use hyphens in place of spaces.

To name a workspace:

1 Display the KB Workspace menu for the workspace that contains the office
and choose Name.

2 Enter basic-skills as the name of the workspace in the text editor that appears.

Use these menu choices to create

Use these menu choices to

various types of G2 objects.

operate on the workspace.
38

Interacting with Workspaces
The name appears on the workspace in all capital letters: BASIC-SKILLS. We
often refer to workspace names as proper names, for example, the Basic Skills
workspace.

Here is the Basic Skills workspace:

Hiding and Showing a Workspace

G2 applications typically contain numerous workspaces, some of which might be
visible and others of which might be hidden at any one time.

To hide a workspace:

 Choose Hide Workspace from the KB Workspace menu or click the close
button in the upper-right corner of the window.

The workspace disappears from view.

You can also iconify the workspace by clicking the iconify button, in which case
the workspace window is iconified at the bottom of the window.
39

To show a named workspace:

1 From the top-level menu, choose Workspace > Get Workspace.

You can also choose Get Workspace from the G2 Main Menu.

A list of all named workspaces in the KB appears, including user-defined and
system-defined workspaces. For example, the Message Board is a system-
defined workspace that displays operator messages.

2 Choose basic-skills from the list of named workspaces to show it.

Shrink Wrapping a Workspace

You can adjust the borders of a workspace to minimize its size by shrink
wrapping the workspace. Shrink wrapping a workspace is a convenient way of
saving space in your G2 window.

To shrink wrap a workspace:

 Choose Workspace > Shrink Wrap.

Tip Most menu choices in the Workspace menu are also available in the
KB Workspace menu, which you access by right-clicking the workspace
background. When using the top-level Workspace menu, you must first select the
workspace on which you want to perform the action.

The edges of the workspace adjust to contain just the office and the workspace
name.

Moving Objects on a Workspace

You move objects on a workspace by dragging. You can also move objects on a
workspace programmatically.

To drag an object means to place the mouse over an object, hold down the mouse
button while moving the object to a new location on the workspace, then lift the
mouse button to place the object on the workspace.

When you drag an object on a workspace, the workspace borders automatically
adjust to accommodate the object.

To move an object on a workspace:

 Drag the office down and to the right on the workspace, then move it back to
the middle of the workspace.

The workspace borders adjust to accommodate the object so that the workspace
looks like it did before you shrink wrapped it. If you drag the object beyond the
borders of the workspace, the workspace window displays scroll bars.
40

Interacting with Workspaces
You can drag any object on a workspace in this way, including the workspace
title, to expand the workspace borders.

Operating on a Group of Objects on a Workspace

You might want to operate on a group of objects on a workspace, for example, to
move them, clone them, transfer them, delete them, align them, or distribute
them.

To operate on a group of objects:

1 Create several instances of the office class on the workspace by cloning the
existing office.

For example:

2 Drag the mouse cursor to select the group of object in the rectangle, or click an
object to select it, then use SHIFT + click to add or remove objects to or from
the selection.

3 Right-click one of the selected objects to display a popup menu for the
selection, choose Clone to attach the group of objects to the mouse, then move
the cloned group of objects to a new location on the workspace and click to
place the objects on the workspace:

The cloned objects are still selected as a group.

4 Drag the cloned objects to a new location and click to place them.

5 With two or more objects selected, choose Align on one of the selected objects,
then choose Top to align the tops of the objects.

6 With three or more objects selected, choose Distribute on one of the selected
objects, then choose Horizontally to distribute the objects horizontally.
41

7 Choose Delete on one of the objects to delete the group of objects and click OK
to confirm.

Note Be sure to leave the original office on the workspace.

8 Shrink wrap the workspace and adjust the borders so that the office is in the
middle of the workspace again.

Cloning a Workspace

Similar to the way you clone an object, you can clone an entire workspace
interactively or programmatically. The cloned workspace contains duplicates of
everything located on the original workspace. The cloned workspace is unnamed,
as are the cloned objects, because G2 requires that the names of all objects and
workspaces be unique.

Clone workspaces to save time when you develop applications. Cloned
workspaces provide a starting point for describing new knowledge based on
existing knowledge.

To clone a workspace:

1 With the workspace selected, choose Workspace > Clone Workspace.

G2 creates an exact duplicate of the Basic Skills workspace and places it next
to the existing workspace. Notice that neither the workspace nor the office has
a name.

2 Choose Workspace > Get Workspace to verify that the cloned workspace is
not in the list of named workspaces.

3 Name the cloned workspace clone.

4 Hide the cloned workspace.

The Basic Skills workspace is still visible.

5 Show the clone workspace, which now appears in the list of named
workspaces.

Deleting a Workspace

Just as you might need to delete an object, you might need to delete a workspace,
either interactively or programmatically. Deleting a workspace permanently
deletes the workspace and all its contents from the knowledge base.
42

Interacting with Workspaces
To delete a cloned workspace:

1 With the workspace selected, choose Workspace > Delete Workspace on the
cloned workspace to delete it.

G2 always asks for confirmation before it deletes a workspaces that contains
objects.

2 Click OK to confirm the deletion.

Creating a New Workspace

You can create new workspaces interactively or programmatically.

To create a new workspace:

1 Choose Workspace > New Workspace.

The New Workspace menu choice is also available in the G2 Main Menu.

G2 creates a new workspace and places it in the center of the G2 window.

2 Name the new workspace my-workspace.

Moving a Workspace

If a workspace is visible, you can move it to a new location in the G2 window by
dragging it with the mouse.

To move a workspace by dragging:

 Drag My Workspace up and to the right so that it partially covers the Basic
Skills workspace.

Lifting and Dropping Workspaces

You often have many workspaces stacked on top of each other in the G2 window.
You can bring a workspace to the foreground or drop a workspace to the bottom
of the stack to make other workspaces visible.

To lift a workspace to the top:

1 Click anywhere in the Basic Skills workspace, including the title bar.

2 Repeat this operation to lift My Workspace to the top.

Sometimes you don’t know what workspaces exist at the bottom of the stack. In
this case, you can drop the top workspace to the bottom of the stack to reveal the
lower workspaces.
43

To drop a workspace to the bottom:

1 Drag My Workspace so that it completely covers the Basic Skills workspace.

2 Position your mouse pointer over My Workspace.

3 Choose Workspace > Drop to Bottom to expose the Basic Skills workspace.

Using Keyboard Commands on Workspaces

You can perform many operations on workspaces by using keyboard commands,
including some operations that are not available on the KB Workspace menu.

For example, you can lift workspaces to the top and drop them to the bottom,
using keyboard commands. You can also move workspaces incrementally, as well
as shrink and grow workspaces incrementally, using keyboard commands.

To lift and drop workspaces by using keyboard commands:

1 Drag the workspaces so that they are partially overlapping and both are
visible.

2 Position the mouse pointer over each workspace and enter Ctrl + t to lift each
workspace to the top of the stack.

3 Position the mouse pointer over each workspace and enter Ctrl + v to drop
each workspace to the bottom of the stack.

4 Position the mouse pointer over the top workspace and enter Ctrl + i to
circulate the top workspace to the bottom of the stack.

5 Position the mouse pointer over the top workspace and enter Ctrl + p to
circulate the bottom workspace to the top of the stack.

Note Circulating two workspaces has the same effect as lifting and dropping two
workspaces. However, circulating more than two workspaces cycles through the
stack, lifting or dropping each workspace, one level at a time.

To move a workspace by using keyboard commands:

1 Position the mouse pointer over a workspace and enter Ctrl + r several times
to move the workspace incrementally to the right.

2 Position the mouse pointer over the same workspace and enter Ctrl + l several
times to move the workspace incrementally to the left.

3 Position the mouse pointer over a workspace and enter Ctrl + u several times
to move the workspace incrementally up.

4 Position the mouse pointer over the same workspace and enter Ctrl + d
several times to move the workspace incrementally down.
44

Interacting with Workspaces
To adjust the size of a workspace by using keyboard commands:

1 Position the mouse pointer over a workspace and enter Ctrl + s several times
to make the workspace incrementally smaller.

2 Position the mouse pointer over the same workspace and enter Ctrl + b
several times to make the workspace incrementally bigger.

3 Position the mouse pointer over a workspace and enter Ctrl + q to shrink the
workspace to one-quarter its size.

4 Position the mouse pointer over the same workspace and enter Ctrl + f to
display the workspace at full size.

5 Position the mouse pointer over a workspace and enter Ctrl + n several times
to narrow the workspace incrementally.

6 Position the mouse pointer over the same workspace and enter Ctrl + w
several times to widen the workspace incrementally.

To display help for keyboard commands that manipulate workspaces:

1 Position your mouse pointer over a workspace and enter Ctrl + ?.

G2 displays a help screen for all keyboard commands that operate on
workspaces:
45

2 Hide the help screen by clicking on the background and choosing Delete
Workspace.

3 Now, delete My Workspace.

Here is a summary of the keyboard commands for workspaces:

Ctrl + r

Ctrl + u

Ctrl + l

Ctrl + d

Ctrl + s
Ctrl + b

Ctrl + q

Ctrl + w Ctrl + nCtrl + f

Ctrl + v

Ctrl + t

Ctrl + i

Ctrl + p

quarter

small
big

full size narrowwide

lift to top

drop to bottom circulate down

circulate up

Keyboard Commands for Workspaces

Ctrl + r

Ctrl + u

Ctrl + l

Ctrl + d

Ctrl + s
Ctrl + b

Ctrl + q

Ctrl + w Ctrl + nCtrl + f

Ctrl + v

Ctrl + t

Ctrl + i

Ctrl + p

quarter

small
big

full size narrowwide

lift to top

drop to bottom circulate down

circulate up
46

Interacting with Workspaces
Displaying Text on a Workspace

You often need to label parts of a workspace to provide documentation for
developers, as well as end users. One way is to use free text to label information
on a workspace. You can change the color of the free text to make it more
attractive.

In a real application, you do not typically hard-wire text into an application,
especially if the application is going to be translated into another language for
local use. Instead, you use the G2 Foundation Resources (GFR) to create text keys,
which are symbols that G2 substitutes with actual text when the KB runs. You can
use this feature to translate text and messages into other languages, as well as to
perform dynamic text substitutions at run time.

For more information on GFR, see the G2 Foundation Resources User’s Guide.

To display free text on a workspace:

1 Choose Workspace > New Free Text on the Basic Skills workspace to display a
menu of free text options.

You can choose to create text with a border or without by choosing either
free-text or borderless-free-text:

2 Choose free-text to display the text editor:
47

3 Enter the following text in the text editor: a sample application.

4 Press Ctrl + Enter or click the Save and Exit command to attach the text to the
mouse pointer.

Tip You press Enter to accept text in the single-line text editor, and you press
Ctrl + Enter to accept text in the normal text editor.

5 Position the text at the top-right of the workspace and click to place it.

By default, free text has a black border, black text, and a white background:

You can change the color of any part of the free text to make it more attractive.

To change the colors of free text:

1 Right-click the border of the free text and choose color.

Hint If you click too close to the text, you will display the text editor for editing the
text. Cancel the editor and try again.

You can change the background, border, or text color of the text.

2 Change each of these colors for the free text by clicking the desired menu
choice, then choosing a color.

To display all the available colors in the G2 color palette, click More on the
palette.
48

Interacting with Workspaces
The workspace now looks something like this:

Summary

In this lesson, you learned how to:

• Use the Name command to name a workspace.

• Use the Hide Workspace command to hide a workspace.

• Use the Get Workspace command to display a named workspace.

• Use the Shrink Wrap command to adjust the borders of a workspace to fit the
objects.

• Move objects on a workspace by dragging to adjust the borders of the
workspace automatically.

• Perform various operations on a group of objects on a workspace.

• Use the Clone Workspace command to make a copy of a workspace and all its
contents.

• Use the Delete Workspace command to delete a workspace.

• Use the New Workspace command to create a new workspace.

• Move a workspace by dragging.

• Lift a workspace to the top and drop it to the bottom.
49

• Use various keyboard commands on a workspace to lift and drop it, shrink
and grow it, and so on, and display the help menu for workspace commands.

• Use the New Free Text command to display text on a workspace.

Connecting Objects
In this lesson, you will learn how to:

• Connect objects together, using connections and connection stubs.

• Delete connections between objects.

What is a Connection?

A connection is a graphical link between two objects. You use connections in a G2
application to represent visually how objects are related. For example, in a video
conferencing application, you might use connections to show which offices have
video conferencing capability with other offices. In an application that monitors
the flow of a liquid though a tank, you might use connections to represent the
physical pipes between the tanks.

Use connections to reason about the objects they are connecting.

For example, in a video conferencing application, you could determine the
number of connected offices by counting the graphical connections for any one
office. In an application that monitors the flow of liquid in a tank, you could
reason about the volume of the liquid in the tank based on the intake and output
flow through the connections.

A connection is a G2 object, just like the objects it is connecting, which means it
has certain characteristics and behaviors. Because connections are objects, they
can also contain information, for example, the current value of the data that is
flowing from one object to another. You can also use connections to communicate
information to the end user. For example, you might cause the connection
between offices to flash when two sites are online with each other, or you might
change the color of a connection between two tanks when liquid is flowing from
one tank to another.

G2 also supports a related construct called a relation, which is a non-graphical
“connection” between two or more objects. A relation represents a conceptual
relationship between objects, which you can create and delete as part of
processing and which you can use to reason about objects. For example, you
might create a relation between all the video conferencing offices to enable
reasoning about all the offices, although they might not all be physically
connected.
50

Connecting Objects
Connecting Objects

You will notice that the office has a connection coming out of the right side of the
icon. A connection that is attached to one object but is not yet connected to
another object is called a stub. Certain objects contain connection stubs as part of
their definition, in which case the stubs always appears on the icon. Other objects
allow you to create stubs interactively.

Connections can have a direction of flow. When a connection has direction, you
can only connect objects in the proper order. Also, you can reason about objects
based on the connections that are flowing into or out of an object.

You can create and delete connections interactively and programmatically.

One way of connecting two objects interactively is to drag a connection stub
directly into another object.

To connect two objects directly:

1 Clone office-1 and place the cloned object directly to the right of the current
office.

2 Name the new office office-2.

3 Click the stub from office-1, move your mouse pointer until it is directly over
the center of the office-2 icon, and click to connect the two objects:

4 To verify that the objects are connected, move one of the connected objects on
the workspace.

If the objects are connected, the connection moves with the object, automatically
creating bends in the connection:

Another way of connecting two objects is to connect a stub directly to the stub of
another object.
51

To connect two objects by connecting stubs:

1 Clone office-1, name the new office office-3, and place the new office directly
above office-2.

2 Click the stub leading out of office-3 and move the mouse pointer down and
to the right.

G2 automatically creates a bend in the connection.

3 Click again to create a second bend in the connection and position the stub
directly over the stub of office-2.

4 Click once more to connect the two stubs together.

5 Verify that the two offices are connected by dragging one of the offices.

The new diagram looks similar to this:

Once an object has connections, you can clone the object to create a new object
with default stubs.

To create a new object with default stubs by cloning:

1 Clone office-2 to create office-4 and place it directly above office-1 and directly
to the left of office-3.

Notice that the new office has two default stubs.

2 Connect office-4 to office-3 by connecting the stub to the object.

3 Connect office-4 to office-1 by creating two bends in the connection and
connecting the two stubs.
52

Connecting Objects
The offices should be connected in a closed rectangular pattern similar to this:

Deleting Connections

You might have to delete the connection between two objects. When you delete
two connected objects, the stubs remain on the previously connected objects.

To delete the connection between two objects:

1 Click the connection between office-1 and office-2 to display the menu for the
connection.

2 Choose Delete to delete the connection.

Notice that the connection stubs remain on the icons:

You typically delete unconnected stubs on objects to avoid confusion.

To delete a connection stub:

1 Click on the stub leading out of office-1, move the mouse pointer to the
middle of the icon, and click to delete the stub.

2 Repeat this operation for the stub leading out of office-2.
53

The schematic should now look like this:

Summary

In this lesson, you learned how to:

• Connect two objects by dragging a connection into another object.

• Connect two objects by dragging a stub into the stub of another object.

• Create bends in a connection by clicking.

• Clone a connected object to create an object with default stubs.

• Delete a connection between two objects.

• Delete stubs on an object.

Editing Attributes in Tables
In this lesson, you will learn how to:

• Edit simple attributes by editing them in the attributes table.

• Show and hide the attribute table.

• Use editing commands in the text editor.

• Edit attributes by cutting, pasting, and deleting text.

• Display an attribute of an object next to the icon.

What are Attributes?

G2 objects have certain characteristics that make them unique. These
characteristics are called attributes. For example, if the object is an office, the
attributes might include the office location and phone number. Every object that
is a type of office has these attributes. What make each office unique are the
values you assign to the attributes of each office.
54

Editing Attributes in Tables
Use attributes to store a wide variety of knowledge in an application, including
data values, as well as other objects.

For example, certain attributes might contain single values, such as address or
number of connections. Other attributes might contain a history of values of a
particular type, for example, a history of the total cost of the office based on its
connections. Still other attributes might contain lists of objects that are related in
some way to the object, for example, a list of objects that represent each video
conferencing connection. The ability to define a wide variety of types of attributes
provides great flexibility in describing object characteristics in G2.

Why do you need attributes in G2? To reason about their values in real time and
infer new values under various conditions. For example, you might have an
attribute that computes the total cost of a video conferencing office based on
various other attributes of the office. You might reason about the total cost to infer
whether the site is over budget, thereby providing expertise to an operator
responsible for monitoring the video conferencing operations of a business.

What Types of Attributes Are There?

Object in G2 have system-defined attributes, which are attributes that G2 defines.
For example, a workspace has an attribute called background-color, which defines
its color. Object that are derived from a user-defined class, for example, the office
class, can have user-defined attributes, which are attributes that you define for
the entire class and its subclasses.

User-defined attribute values can be untyped, in which case the value is any
alpha-numeric sequence of characters, without spaces. Another name for an
untyped attribute is a simple attribute. The default value of a simple attribute is
the symbol none.

Attribute values can also be typed, in which case G2 validates the type of data
when the value is specified, either interactively or programmatically. You specify
the type of attribute when you declare the attribute in the class definition.

Always use the most restrictive type possible when you declare attributes in a
class. For example, if the value of an attribute is always an integer, declare its type
to be an integer, not a quantity, which includes both integers and floating point
values. This practice is called strong typing and is recommended for optimal
performance.
55

G2 supports these data types:

• Integers

• Floating point numbers

• Quantities (integers or floating point numbers)

• Symbols

• Logical values (true or false)

• Fuzzy truth values (truth values with uncertainty)

• Text strings

• Sequences

• Structures

Assigning Values to Attributes

An application assigns values to attributes in a variety of ways, including:

• Supplying values interactively through a table.

• Supplying values programmatically, using procedural statements.

• Inferring values under certain conditions, using rules.

• Specifying default values in the definition of the object class.

• Computing values based on other values.

• Simulating values.

• Obtaining values from external data sources.

You will learn how to assign values, using most of these techniques.
56

Editing Attributes in Tables
Displaying the Attribute Table

Every object in G2 has an attribute table that lists all of its attributes and
corresponding values.

To display the attribute table for an object:

1 Right-click office-1 to display its menu and choose table.

Tip You can also double-click the object to display its table.

You will see an attribute table that looks like this, where the title of the table
indicates the name of the object and its type:

Every object contains three standard attributes, as well as any class-specific
attributes for the object. The three class-specific attributes have been defined
to be symbols, but no default value has been specified. G2, therefore, supplies
the symbol g2 as the default values for these attributes.

The standard attributes include:

• Notes, which is where G2 displays system messages and errors about the
object.

• Item configuration, which you use for configuring how the object behaves
in different user modes.

• Names, which displays the name of the object.

Attribute names are also symbols, which means they appear in expressions
with hyphens in place of spaces, for example, network-type.

Note When you reason about attributes in rules and procedural statements, you use
the symbolic attribute name, rather than the name of the attribute as it appears
in the table.
57

2 Display the table for another office.

Notice that unlike object menus, you can view more than one attribute table at
a time. This makes it convenient to compare the attributes of different objects.

You can shrink a table just as you can shrink a workspace to preserve space on
the screen.

3 Use the Ctrl + s command to shrink one of the attribute tables, then use the
Ctrl + f command to make it full size again.

Editing Attributes

To edit the attributes of an object, you use the G2 text editor. Depending on the
data type of the attribute, G2 validates the value as you enter it. The attributes of
the office are symbolic types, which means you can enter any symbol. If you enter
a non-symbolic value, G2 gives you this message in the editor:

This cannot be parsed.

To edit the values of simple attributes:

1 Display the table for office-1.

2 Click the value of the address attribute and enter burlington in the text editor
that appears.

3 Click the value of the phone attribute and enter any phone number.

4 Click the value of the network-type attribute and enter T1.

The table looks similar to this:

Use the toolbar buttons in the text editor to cut, copy, and paste text, and use
the Backspace or Delete key to delete text.

5 Hide the attribute table by clicking the close button.

6 Enter values for the address attribute of the other offices.
58

Editing Attributes in Tables
Displaying an Attribute Next to an Object

It is often useful to display attribute values next to the icon of an object to provide
information about the object. These are called attribute displays. You might want
to do this for static information, such as the name of the object or its status, or you
might want to show information that changes over time, such as the total cost of a
video conferencing office or the volume of liquid in a tank.

If the attribute is editable, you can edit it directly from the icon rather than
through the table. You can also show the name of the attribute with its value as an
attribute display.

Note In a real application, you typically only use attribute displays during the
development phase; for performance reasons, you hide attribute displays when
you deploy an application.

When you are using attribute displays, you often hide the name of the object.

To hide the name of an object:

1 Right-click the name of each office to display its menu:

2 Choose hide name.

Now you can add an attribute display and move it to below the icon.
59

To show an attribute next to an object:

1 Display the attribute table for office-1.

2 Right-click the value of the address attribute to display a menu:

3 Choose show attribute display.

G2 displays the value of the attribute above and to the right of the icon.

4 Show the names of all the other offices as attribute displays.

You can move the attribute displays to a new location by dragging them. The
attribute displays stay with the icon whenever you move the icon.

5 Move the attribute displays to just below each icon by dragging.

The diagram should look something like this:

When your icon has an attribute display, you can edit the attribute directly from
the attribute display, rather than through the object’s table.

To edit an attribute display directly:

 Double-click an attribute display to display the text editor and edit the value.

You can add the name of the attribute next to its value.
60

Creating a Simple Rule
To add the name of an attribute next to its value:

1 Right-click the attribute display to display its menu.

2 Choose add name of attribute to add the name and center the attribute display
below the icon.

The icon looks something like this:

You can also remove the name of the attribute from the attribute display.

To remove the attribute name from a display:

 Right-click the attribute display and choose delete name of attribute, and
center the attribute display.

You hide an attribute display by choosing hide attribute display.

Summary

In this lesson, you learned how to:

• Use the Table menu choice to display the attribute table for an object.

• Use the text editor to edit the attributes of an object.

• Use the Show Attribute Display menu choice to display and edit attribute
values with objects.

Creating a Simple Rule
In this lesson, you will learn how to:

• Use the syntax-guided text editor to create a rule.

• Refer to attributes within a rule.

• Create a simple rule that animates an object when the user moves the object
on a workspace.

• Perform simple error handling techniques.
61

What is a Rule?

The heart of any expert system is its ability to reason about the knowledge it
contains. Along with procedures and methods, G2 uses rules to reason about the
knowledge contained in the application. A rule is a special kind of statement that
tests conditions and draws conclusions.

Rules have two parts:

• The first part, called the antecedent, tests a condition.

• The second part, called the consequent, draws a conclusion.

For example, the antecedent of a rule might be:

if the total-cost of office-1 > 100

which tests to see if the total cost is above a certain threshold. The consequent of
this rule might be:

then conclude that the status of office-1 is over-budget

which concludes the value of the status attribute of the office.

When a rule is invoked, G2 evaluates the rule by testing the condition in the
antecedent to see whether it is true. If the condition is true, G2 executes the
actions in the consequent.

Performing Actions in a Rule

A rule can perform any type of action in its consequent, for example:

• Concluding values for attributes.

• Dynamically creating or deleting objects and connections.

• Showing or hiding a workspace.

• Animating icons.

• Invoking specific categories of rules.

You will learn more about actions in Creating a Schematic Diagram.

Using Two Different Inferencing Techniques

When a rule concludes a value for an attribute as a result of testing a condition,
we refer to this mechanism as inferencing. As a result, the internal G2 mechanism
that invokes rules is called the inference engine.
62

Creating a Simple Rule
G2 provides two basic inferencing mechanisms, using rules:

• Event-driven processing, whereby G2 makes inferences by responding to
real-time events, for example, moving an object on a workspace, receiving a
value from a data source, or failing to receive a value.

• Data-driven processing, whereby G2 makes inferences by detecting changes
in attribute values of objects, for example, due to the periodic updating of a
real-time signal or the user entering a value in an end-user display.

Depending on the needs of the application, you create different types of rules to
perform one of these basic types of inferencing.

Choosing Between the Four Basic Types of Rules

Depending on the type of inferencing you want the rule to perform, you use one
of four basic types of rules:

• If rules perform data-driven processing by testing the condition in the
antecedent and taking the actions in the consequent if the condition is true.

• Whenever rules perform event-driven processing by detecting the event in
the antecendent and taking the actions in the consequent whenever G2 detects
the event.

• Unconditionally rules perform data-driven or event-driven processing by
taking the action in the consequent automatically whenever G2 invokes the
rule by whatever means.

• Initially rules perform event-driven processing by invoking the rule
whenever you start your knowledge base.

In addition to the four basic types of rules, a when rule is another variation on a
whenever rule, and a for rule is the generic form of any of the basic types of rules.

Referring to Attributes in Rules

You typically refer to the attributes of objects in rules. In the example used earlier,
you might create a rule that tests to see whether the total-cost attribute of the
object named office-1 is above a certain threshold. You will create this rule in a
later tutorial.

To refer to this attribute, you use the following English-like construct:

As you can see, the construct for referring to the attributes of objects in a rule
requires two reserved words: the and of. A reserved word is a symbol in the G2
language that you can only use in the context of the G2 statement; you cannot use

the total-cost of office-1
63

a reserved word as the name of an object class or as the name of an attribute.
Other reserved words include the various types of rules, such as if and whenever.

Creating a Rule

To create a rule, you use the natural language text editor, a feature of the G2 text
editor that prompts you at each stage with the proper syntax as you construct the
rule. You use the natural language text editor when you edit any type of object
that uses G2’s procedural language.

In this lesson, you will create a rule that animates a region of the office icon
whenever the user moves the icon on the workspace. Thus, this rule is an example
of event detection: the rule will be invoked whenever G2 detects movement of
the office icon. Other examples of event detection include creating and deleting
connections, and receiving and failing to receive a value.

You create rules on workspaces, therefore you use the KB Workspace menu to
create the rule. First you will create the antecedent, then you will create the
consequent.

To create the antecedent of a rule:

1 Choose Workspace > New Rule on the Basic Skills workspace.

The editor shows the available rules from which to choose:

Since the rule detects an event, you will create a whenever rule.
64

Creating a Simple Rule
2 Click the word whenever at the bottom of the text editor to insert it into the
type-in area above.

G2 displays a different set of prompts:

Notice that the rule now accepts any object name as the next part of the rule.

3 Enter the characters office- to display a new set of prompts.

Not only does G2 display the syntax of the rule, but it also displays any user-
defined objects that exist in the knowledge base.
65

4 Click office-1 to insert it in the rule.

G2 now displays the possible events that the whenever rule can detect:

For example, a whenever rule can detect when an attribute receives a value or
fails to receive a value. Our rule will detect the movement of the object on the
workspace.

5 Use the prompts to enter the following event in the rule:

is moved by the user

Tip You can also enter Ctrl + Space to display a list of possible completions for the
word at the current cursor position. Use the arrow keys to choose the word and
press Enter to insert it into the text.

At this point, G2 allows you to add other events to the antecedent of the rule,
using “and” or “or” logic, or to begin the consequent. You will proceed with the
consequent of the rule, which will transiently change the color of the icon to red.
The icon will revert to its original black color when G2 is reset.

When you change the color of an icon, you must refer to a particular named
region of a system-defined attribute called icon-color. You will change the status
region, thus the syntax for referring to this attribute is: the status icon-color.
66

Creating a Simple Rule
To create the consequent of a rule:

1 Click the then prompt to begin the consequent of the rule.

G2 now lists all of the possible actions that the rule can take when the event
occurs. Our rule will change the color of a certain region of the icon, using the
change action.

2 Use the prompts to help you enter the following consequent in the rule:

change the status icon-color of office-1 to red

The rule is now complete.

3 Press Enter to complete the rule.

G2 attaches the rule to the mouse.

4 Click to place the rule on the workspace.

The rule should look like this:

whenever office-1 is moved by the user then
change the status icon-color of office-1 to red

Recovering from Syntactic Errors

G2 helps you prevent many types of syntactic errors in all types of statements,
such as rules, procedures, and methods. If you do not enter the correct syntax in
the natural language text editor, G2 indicates that there is an error and does not
allow you to accept the edits.

To simulate and recover from a syntactic error in the text editor:

1 Click just to the right of the word to on the text of the rule you just created to
display the text editor.

Tip Notice that G2 places your mouse pointer at the exact location at which you
clicked the text of the rule.

2 Use the Backspace key to delete up to the letter “o” in the word to.
67

3 Enter a space character as if you were trying to begin typing another word.

G2 displays an error message indicating that the syntax you have typed is
illegal:

When G2 cannot interpret a statement you have entered, it displays an X at
the location of the syntax error and indicates the error with red highlighting
and a message.

4 Backspace to delete the space and enter the letter “o” and the word “red”.

Recovering from Other Types of Errors

In addition to helping prevent syntactic errors, G2 helps you prevent other types
of errors by displaying the status of an object in its notes attribute. If the object
contains no errors, G2 displays a status value of OK in the notes attribute of the
object. If the object contains an error, the notes attribute indicates the source of the
error.

Tip If a rule is not being invoked as you expect, always check its notes to verify
whether it has any errors.
68

Running and Pausing Applications
To simulate and recover from an error:

1 Edit the text of the rule to specify the office named office-5, which does not
exist.

2 Right-click the rule and choose table from the menu to display the rule’s table.

The notes attribute of the rule indicates that the object referenced in the rule
does not exist:

3 Edit the rule to refer to office-1 again.

4 Display the table again and verify that the status of the rule is OK.

Summary

In this lesson, you learned how to:

• Use the New Rule menu choice to create a whenever rule that detects the
event of moving an object on a workspace.

• Use the change action to transiently change the color of an icon.

• Use the reserved word the to refer to attributes in statements.

• Recover from syntax errors in the text editor.

• Determine if other types of errors exist by viewing the notes attribute.

Running and Pausing Applications
In this lesson, you will learn how to:

• Run, pause, and resume the application.

• Invoke a whenever rule that detects the movement of an object on a
workspace.

Now, you will test the rule to see if G2 detects the event.
69

To test the rule:

1 Move office-1 on the workspace.

What happens?

Nothing happens! Why? Because the knowledge base is not currently
running.

2 Display the Run menu in the top-level menu bar.

Notice the first menu choice is Start. This means that the application is not
currently running. In fact, it has never been running since you loaded the
application!

As you have seen, you can perform numerous operations in G2, even when
the knowledge base is not running. However, as you also just saw, G2 cannot
invoke rules unless the application is running.

Note For the inference engine to invoke rules and draw conclusions, G2 must be
running.

3 Choose Start to start G2 running.

Tip You can also control the status of the application from the G2 Main Menu.

4 Now move office-1 on the workspace.

Remember that office-1 is the office in the lower-left corner of the connected
offices.

Does the icon color change? This time it does. G2 detects the event, invokes
the rule, and performs the action.

5 Choose Run > Restart to restart the application.

Restarting the application sets all objects back to their default state. In this
case, resetting changes the icon color back to black.

6 Pause the application by choosing Run > Pause.

7 Try moving the object again.

Nothing happens. Again, G2 cannot invoke the rule while the knowledge base
is paused.

8 Start the application running again by choosing Run > Resume.

Notice that G2 automatically changes the icon color because it already
detected the event.
70

Saving Applications and Shutting Down G2
Note G2 can detect events while the knowledge base is paused; however, it cannot
perform any actions.

9 Finally, try moving one of the other offices.

Nothing happens because the rule is written specifically for office-1. In a later
tutorial, you will learn how to write generic rules that apply to all offices of a
particular class.

Saving Applications and Shutting Down G2
To make your knowledge base permanent, you must save it to a KB file. When
you do this, it is safe to shut down G2. Later, you can start G2 again and load your
application.

To save your application:

1 Choose File > Save KB.

G2 displays the name of the current module and the default filename.

Notice that G2 can still save the KB while it is running; it saves the knowledge
as of the current time.

2 Edit the filename to append your initials to the KB file named ch2.kb and
press Enter or click End.

3 Click OK to confirm the save.

G2 reports its progress as it saves the file.

Before you shut down G2, you should verify that G2 saved your KB by checking
your KB directory.

By default, you cannot shut down the G2 server from the menu bar. To do so, you
must switch to administrator mode. You can, however, shut down G2 from the
G2 Main Menu. To shut down G2 from the menu, G2 must be paused.

To shut down G2:

 Pause G2, then choose File > Shut Down G2 and click OK to confirm.

You can also shut down G2 by right-clicking the G2 server icon in the system tray
and choosing Shut Down G2.
71

Summary
In this tutorial, you learned:

• How to run, pause, and shut down G2.

• How to load and save applications.

• That G2 applications are stored in knowledge bases that consist of modules.

• How to show the module hierarchy, using the Inspect facility.

• About objects and their attributes.

• How to refer to attributes in rules.

• How to interact with objects, using the object menu.

• How to interact with workspaces, using the KB Workspace menu and
keyboard commands.

• How to use the G2 text editor to edit values of attributes.

• How to add attribute displays to objects and edit them.

• How to use connections to create graphical relationships between objects.

• About the different kinds of rules and inferencing techniques.

• How to use the natural language text editor to create a rule that detects the
event of moving an object on a workspace and animates an icon.

• About some basic error handling techniques.

• How to save the KB and shut down G2.
72

Solutions
Solutions
The Basic Skills workspace looks like this:
73

74

3

Creating a
Schematic Diagram
Teaches the basic skills for interactively creating a schematic diagram of a video
conferencing application.

Goals of a Schematic Diagram 75

Loading the Knowledge Base 76

Creating and Deleting Objects Dynamically 76

Editing a Class Definition 84

Creating Connection Stubs Dynamically 97

Summary 106

Solutions 107

Goals of a Schematic Diagram
In this tutorial, you will begin to use G2’s procedural programming language to
create a schematic diagram of a video conferencing application. Specifically, the
application will:

• Create and delete office sites interactively

• Add connections to office sites interactively

The application will enable end users to dynamically create a schematic diagram
according to the needs of the application. Different users of the application can
access the same knowledge base to create different layouts of the schematic
diagram, without having to rewrite any code.
75

Loading the Knowledge Base
You will start from the Basic Skills tutorial you loaded at the beginning of the first
tutorial and build on this application to create a schematic diagram.

To load the sample application:

1 Load G2.

2 Load ch3.kb.

This KB is similar to the Basic Skills KB you created in the previous tutorial except
that there is only one office and there is no rule.

Creating and Deleting Objects Dynamically
In this lesson, you will learn how to:

• Create an action button that dynamically creates an object

• Use the Inspect facility to locate transient knowledge

• Programmatically transfer objects to a workspace and make them permanent

• Create an action button that deletes all objects on a workspace

What is an Action?

In the first tutorial, you saw how to delete an object interactively by using the
object menu. You also saw how to create and delete connections interactively by
connecting stubs.

You use actions to create and delete objects and connections programmatically.

An action is a type of G2 statement that executes an activity on an object or on the
G2 environment in general. You learned about actions in the Basic Skills tutorial
when you created a rule that changed the color of the icon when it was moved on
a workspace. In the rule, you used the change action to change the color of an
icon dynamically.

You use G2 actions in numerous places in an application:

• In the consequents of rules

• In buttons that perform a sequence of actions

• In procedures and methods that execute procedural statements

• In user menu choices that perform custom operations on classes of objects
76

Creating and Deleting Objects Dynamically
In general, you use G2 actions anywhere in the application where you want to
control the behavior of objects or control the execution of the knowledge base
itself. For example, you use actions to:

• Assign values to objects, using the conclude action

• Create and delete objects and connections, using the create and delete actions

• Change the value of an attribute, using the change action

• Send a message to the operator, using the post action

• Show or hide a workspace, using the show and hide actions

• Move or animate an object on a workspace, using the move, transfer, or rotate
actions

• Cause specific categories of rules to execute, using the invoke action

• Control the execution of various parts of the knowledge base, using the start,
invoke, activate, deactivate, reset knowledge-base, and pause knowledge-
base actions

Using an Action Button to Create an Object

Suppose you want to create an object dynamically with some kind of gesture. You
might create an action button to perform this operation. An action button is a G2
object that executes a sequence of actions when the user clicks on the button.

In this lesson, you will create an action button that invokes the create action to
create an object dynamically based on its class. The button will create an office
object.

Action buttons execute only when G2 is running. Therefore, to specify the
attributes of the action button, G2 must be paused.

To use an action button to create an object:

1 Choose Workspace > New Button > action-button to create an action button.

2 Right-click the button to display its menu and choose table to show its table.

The attributes you need to specify are:

• Label, which determines the button label to display

• Action, which determines the actions to perform

3 Edit the label attribute to be "Create Office".
77

The label requires a text string, which is another G2 data type. The text data
type is a sequence of alpha-numeric characters that can include spaces and
that requires quotation marks enclosing the characters. Strings are case
sensitive, whereas symbols are not.

Note As noted in the previous lesson, you typically do not hard-wire text into an
application, such as button labels. Instead, you use the G2 Foundation
Resources (GFR) module to provide text keys, which are symbols that G2
substitutes with actual text when the application is running.

4 Use the syntax-guided text editor to edit the action attribute and specify the
following action:

create an office

The create action creates an object of a particular class.

The button now looks like this:

5 Hide the table and start running G2.

6 Test the button by clicking on it once.

What happens?

Nothing appears to have happened! However, let’s explore further to see what
actually happened behind the scenes.

Exploring Permanent and Transient Knowledge

An object is part of the permanent knowledge in the KB when:

• It has been created interactively and still retains its automatic permanent
status.

• It has been created programmatically, transferred to a workspace, and made
permanent with the make permanent action.

A permanent object must be on a workspace. The office icon on the Schematic
Diagram workspace is an example of a permanent object.

An object is part of the transient knowledge in the KB when:

• It has been created programmatically but not made permanent.

• It has been made transient through the make transient action.
78

Creating and Deleting Objects Dynamically
A transient object may be on or off a workspace. The office that you created by
using the action button is an example of a transient object; it exists in the
knowledge base but is not permanent.

The difference between permanent and transient objects is what G2 does with
them when you reset the knowledge base. G2 deletes transient objects when you
reset the KB, whereas G2 retains permanent objects when you reset the KB.

You can locate transient objects by using the Inspect facility. Now, you will verify
that G2 actually did create an office through the create action in the button.

To use the Inspect facility to locate a transient object:

1 Choose Tools > Inspect and enter the following command:

show on a workspace every office

This command creates a temporary representation of every object that is a
type of office:

2 Right-click the second office representation and choose table.

G2 displays the table for the existing office on the Schematic Diagram, whose
attributes have already been specified.

3 Right-click the second office representation again and choose go to original.

G2 places the mouse pointer on the office located on the Schematic Diagram
workspace.

4 On the Inspect workspace, display the table for the first office representation.

The attributes in the table are unspecified because the object was just created.

5 Click on the first office representation again to display its menu.
79

Notice that this office does not have a go to original menu choice. Why? Because
this office does not have an icon representation yet. The office exists in the
knowledge base, but it does not yet exist on any workspace.

As mentioned earlier, when you reset the knowledge base, G2 deletes transient
objects.

To verify that G2 deletes transient objects:

1 Reset G2.

The Inspect workspace should still be visible. Notice that G2 deleted the first
office representation because it was transient. Only the permanent office
representation now exists on the Inspect workspace, which is the office on the
Schematic Diagram workspace.

2 Hide the Inspect workspace.

Making an Object Permanent

When you create an object programmatically in G2 and want the object to be a
permanent part of the knowledge base, you use these two additional actions:

• The make permanent action, which makes the object permanent

• The transfer action, which transfers an object to a workspace at a particular
location

Similarly, when you delete permanent objects from the knowledge base, you use
the make transient action to make the object transient before you delete it.

When you use the transfer action, you can transfer most objects that exist in the
knowledge base, either permanent or transient. You transfer the object to a named
workspace, which you specify following the reserved word to. You can also
transfer an object to the current workspace on which the button is located by
using the this workspace expression. You specify the x,y coordinates of the
workspace location following the reserved word at. For example, this action
transfers office-1 to the workspace named schematic-diagram-2 at the coordinates
50,50:

transfer office-1 to schematic-diagram-2 at (50,50)

When you use the make permanent action, you place between the reserved words
make and permanent the transient object to make permanent. However, how do
you refer to a transient object? You do this by using a local name.

Using Local Names in Statements

When you use actions that operate on transient objects, you use a local name to
refer to the object in succeeding statements. A local name is a symbol that
represents the object locally within the scope of the compound statement, in this
80

Creating and Deleting Objects Dynamically
case, the action of a button. You also use local names in rules, methods, and
procedures.

Tip We recommend that you always use this convention for local names in
statements: the local name should be a one to three letter symbol in all upper case
letters, which corresponds to the name of the object it represents.

When declaring local names in statements, you place the local name after the class
name that the local name represents. In this action statement, O is a local name
that represents an object that is a type of office:

create an office O

Once you have established a local name for an object within an action statement,
you can refer to the object locally within the compound statement to make it
permanent. This statement makes the office object whose local name is O a
permanent part of the knowledge base:

make O permanent

Performing Multiple Actions In Order

Often, you use action buttons to execute multiple actions. When you create an
action button with more than one action, you must precede the actions with an
in order clause. An in order clause indicates that G2 should execute the actions in
sequence.

Whenever you use an in order clause, each statement must be separated by the
reserved word and. By convention, you place the word and at the end of a
statement and you indent each statement under the in order clause, as follows:

in order
statement and
statement and
statement

Using Proper Indentation in Statements

Whenever you use the text editor to enter statements such as actions, rules,
methods, or procedures in the text editor, you should indent them so they are
easier to read; however, procedure compilation and execution are not affected by
format. The general rules for indentation are:

• Always place each procedural statement alone on its own line.

• Always indent procedural statements under its syntactic element.

• Always place the separator between statements.

• If a statement is too long for one line, insert a line feed and indent the line.
81

In the syntax shown above for performing multiple actions in the action statement
of an action button, the rules apply as follows: the in order statement begins a new
procedural statement, thus it appears on its own line; the sequential statements
appear indented under the in order statement on their own line; and the and
separator appears at the end of each statement.

You indent statements in the text editor by using these text editor commands:

Using an Action Button to Create a Permanent
Object

Now you will update the action button to make an office a permanent part of the
knowledge base. The action will use the transfer action to transfer the office object
to a random location on the current workspace.

You use the G2 random function to generate random x,y coordinates for the
location of the office on the workspace. The random function takes two
arguments, the lower and upper bounds of the random number.

To update the action button to make an object permanent:

1 Edit the action attribute of the Create Office button to specify the following
sequence of actions:

in order
create an office O and
transfer O to this workspace at

(random (-300,300),
random (-300,300)) and

make O permanent

Notice that the statement follows the rules of indentation outlined in Using
Proper Indentation in Statements. Notice also that the text editor highlights
balanced parentheses.

2 Test the action button again.

Hint Remember, G2 must be running to execute the action of an action button.

This time, G2 makes the object permanent and transfers it to the workspace at
a random location.

3 Reset the KB to verify that the object survives because now it is permanent.

Command Result

Ctrl + j or Return Inserts a line feed in the statement

Tab Inserts five spaces in the statement
82

Creating and Deleting Objects Dynamically
You have now created an action button that dynamically creates an object, which
is a permanent part of your knowledge base.

Using an Action Button to Delete Objects on a
Workspace

You might want to create an action button that deletes all the objects on a
workspace. You use the G2 delete action to delete objects programmatically.
Remember, before you can delete an object, you must make the object transient by
using the make transient action.

You indicate the objects you want to make transient and delete by providing a G2
expression that refers to a set of objects. For example, you might want to delete
every object on a workspace or every object connected to a particular object. You
use the every clause to refer to all members of a class. You use the clause upon
followed by the name of a workspace or this workspace to delete objects on a
particular workspace. For example, this action deletes every instance of the office
class on the workspace named schematic-2:

delete every office upon schematic-2

Now you will create an action button that deletes every office on the current
workspace.

To use an action button to delete all the objects on a workspace:

1 Create a new action button by choosing Workspace > New Button >
action-button.

Shortcut You can also clone the Create Office action button.

2 Specify the button label as "Delete All".

3 Specify the action as follows:

in order
make every office upon this workspace transient and
delete every office upon this workspace

The button looks like this:

4 Test the button.

G2 deletes all the offices on the workspace.
83

To save the application:

 Save the KB to a new file named ch3.kb, with your initials appended to the
end of the filename.

Summary

In this lesson, you learned how to use:

• The Workspace > New Button menu choice to create an action button that
executes a sequence of actions

• The create action to create a transient object

• The make permanent action to make transient objects permanent

• The transfer action to transfer an object to a workspace

• The random function to generate random numbers

• The this workspace statement to refer to the current workspace

• Local names within action statements to refer to transient objects

• The in order statement to execute multiple actions sequentially

• Proper indentation when entering statements in the text editor

• The make transient action to make permanent objects transient

• The delete action to delete transient objects

• The every statement to refer to every member of a class

Editing a Class Definition
In this lesson, you will learn how to:

• Show the class definition of an object

• Edit the attributes of a class

• Change manually edited attributes of a class

• Change the icon of a class

• Edit the default stubs of a class
84

Editing a Class Definition
What is a Class Definition?

So far you have been interacting with objects in the knowledge base. You learned
how to create and delete them interactively and programmatically, edit their
attributes through the table, and connect them interactively. Now you will
explore how an object gets its definition from its associated class.

Every object is an instance of some other object, called its class. In object-oriented
terms, an instance represents just one occurrence of potentially many occurrences
of a class. Thus, an object has only a single class, whereas a class can have many
instances.

Why do you create class definitions for objects? The main reason is to eliminate
redundancy in a knowledge base; you create the class definition only once, and
you specify the unique attribute values in each instance. Another reason for
creating class definitions is to avoid mistakes when you specify the attributes of
an instance; each instance of a class has the same attribute specification by default.

You declare the common characteristics of each instance in the class definition.
Typically, you declare:

• The class name of the class

• The superior class or classes from which the class inherits its default
characteristics (attributes) and behaviors (methods)

• The class-specific attributes of the class, including their default values and
data types

• The icon representation of each instance, if the class has one

• The default stubs on each instance of the class

Each instance has the same icon, stubs, and attributes. However, each instance has
a different name and has different attribute values.
85

The following figure illustrates the relationship between classes and instances:

In this figure, the office class definition describes the common characteristics of its
instances, for example, the address attribute. Each instance inherits its definition
from its class. Each instance has the same icon but a different name and different
attribute values.

Just as an instance obtains its definition from its class, a class obtains its definition
from other classes by means of inheritance, which you were introduced to in the
previous tutorial. A class can inherit its definition from built-in G2 classes or from
user-defined classes. The root, or highest-level, G2 class from which user-defined
classes inherit their definitions is the item class.

You will learn more about the available G2 classes from which user-defined
classes can inherit their definitions in Building a Knowledge Base.

Creating a Class Hierarchy

Because classes can inherit their characteristics from user-extensible classes, you
can use object-oriented programming techniques to encapsulate knowledge at
the appropriate level in your class hierarchy. To encapsulate knowledge means to
organize related knowledge together in a single object so it can be shared with
other objects. Using encapsulation, objects that share existing knowledge can hide
the complexity in their definition. The class hierarchy describes how classes at
each level inherit their definitions from existing classes.

office

office-1

office-4

office-3

office-2

address

boston
chicago

houston

san-francisco

Classes and Instances

class definition

instances

class name

class-specific-attribute

attribute value

name
86

Editing a Class Definition
Create class hierarchies to reuse information and avoid redundancy in an
application.

G2’s class system is based on multiple inheritance, which means that a class can
inherit from one or more direct-superior classes. A class that is located above
another class in the hierarchy is called a superior class. A class that is located
below another class is called a subclass.

This figure shows one possible user-defined single-inheritance class hierarchy
where the office class inherits from the system-defined class, object, and the direct
subclasses of office are small-office, medium-office, and large-office.

In this figure, the office superior class defines two attributes that encapsulate
information about offices in general: address and network-type. Each subclass is a
kind of office and defines a single additional attribute and default value, which
describes the unique characteristics of each subclass. Each subclass encapsulates
the knowledge about offices in general by inheriting its definition from the office
class.

Once you have created a class definition that has a class name and an acceptable
set of direct superior classes, you can create instances of the class, either
interactively, using a menu choice, or dynamically, using an action.

office

small-office

Address
Network-type

#-employees = 50

large-office

#-employees = 200

medium-office

#-employees = 100

Classes and Subclasses

class-specific-attributes

superior class

Subclass

Class-specific

attributes
87

Organizing Classes and Instances

You typically keep class definitions separate from their instances in an
application. This might mean keeping classes and instances on separate
workspaces. It can also mean creating separate modules for classes and instances.

If the class definitions are located in a separate module in the knowledge base, the
class definitions must be loaded before the instances of the class. Because G2 loads
the module hierarchy from the bottom up, this means that the module that
contains the instances of a class must be located above the module that contains
the class definitions. In other words, the definition module must be required,
directly or indirectly, by the instance module. The fact that object instances get
their definitions from classes is precisely why some modules are dependent on
other modules in the hierarchy, as this figure shows:

Displaying a Class Definition

Now you will look at the class definition for the office class. The definition is
located on another workspace of the Basic Skills application.

The three basic attributes of a class definition are:

• Class-name, which specifies the name of the class

• Direct-superior-classes, which defines the class or classes from which the
class inherits its definition

• Class-specific-attributes, which defines the unique attributes of the class,
including the default values and the data types

video
If the video module contains instances of classes which are

defined contained in the defs module, the video module

must be located above the defs module in the module
hierarchy.

defs

Class Definitions and Modules
88

Editing a Class Definition
To display the class definition for the office:

1 Choose Workspace > Get Workspace to display the Definitions workspace.

You will see the class definition for the office:

2 Display the table for the office class definition.

Tip With the cursor over the table, use Ctrl + b to make the table bigger until the
attributes are legible or use Ctrl + f to make it full size.

Here is a partial table for the office class definition:

The office class has a single direct superior class, the object class, and defines
three class-specific attributes.
89

You only need to specify the unique attributes of the class in the class-
specific-attributes; the other attributes are inherited from the superior class.

3 Hide the table for the class definition.

Creating an Instance

In a previous lesson, you learned how to create an instance of a class
programmatically, using an action button. Now you will create an instance
interactively by using a menu choice.

To create an instance of a class:

 Choose create instance from the class definition menu and click to place the
instance on the workspace.

The instance looks exactly like the instances you created programmatically by
using the action button:

Editing the Icon

The class definition also defines the icon for each instance of the class. By default,
the class inherits the icon definition of the closest superior on the class inheritance
path. You can also create a new icon for a class, or you can copy the icon
definition of an existing G2 class from the icon class library.

The G2 Icon Editor allows you to define complex icons that consist of multiple
layers and regions. An icon region consists of one or more layers. An icon layer
consists of any number of graphical elements of the same color. By naming icon
regions, you can animate icon layers when the application runs, as you did in the
Basic Skills tutorial by using a rule.
90

Editing a Class Definition
To edit the icon for a class:

1 Choose edit icon from the class definition menu to see the Icon Editor
workspace:

Each layer also has a color and can have a bitmap image. By default, the name
of each layer is the same as its color.

Notice the status layer. The name of the region associated with the status
layer is the same as the layer. In the Basic Skills tutorial, you created a rule
that animated the status icon region when you moved the icon on the
workspace.

Fully specified icon

Icon region

specification

Cursor

position

Icon regions

Icon Editor

buttons

Icon

dimensions

Buttons for creating

graphical elements
91

2 Click on each layer of the icon and notice the definition of each layer in the
icon region specification area.

The status layer is one of the layers with a region name.

3 Click on the status layer, then click on the value of the color attribute of the
layer.

G2 displays a color palette for choosing the color of all graphic elements in the
layer.

4 Choose a new color for the status layer of the office icon.

5 Click the End button to accept the changes.

Notice that the existing office immediately inherits the new icon definition.

6 Change the color of the status region back to the foreground color, which is
black.

Editing the Attributes of a Class

You declare the class-specific attributes of a class in the class definition. As
mentioned earlier, in general, whenever you declare the attributes of a class, you
should declare them with the most restrictive data type for maximum
performance.

When you add new class-specific attributes to a class definition, the instances of
the class update automatically to include the new attributes.

When you edit certain types of attributes, such as the class-specific-attributes
attribute, G2 displays a text editor with scroll bars. In a scrollable text editor, you
can simply press Enter to move to the next line, as opposed to using the Ctrl + j
command. To accept the edits in a scrollable text editor, use the Ctrl + Enter
command.

To edit the attributes of a class definition:

1 Display the table for the office class definition.

2 Edit the class-specific-attributes to specify a default value of T1 for the
network-type as follows:

network-type is a symbol, initially is T1;

First you enter the data type for the attribute, then you enter the default value.
Use the syntax-guided editor to help you enter the specification.

Hint Notice that each attribute is separated by a semi-colon (;). Thus, you must
enter a semi-colon after the network-type attribute specification. You do not
need a semi-colon after the last attribute.
92

Editing a Class Definition
3 Press Enter and declare a new attribute named number-of-employees, which
is a type of integer.

4 Use Ctrl + Enter to accept the edits.

The partial table for the office class definition should look like this:

5 Display the table for the existing office on the Definitions workspace to verify
that the attributes in the table reflect the newly declared class-specific
attributes.

The table for the office should look like this:

Changing Manually Overridden Attributes of
Instances

As you just saw, when you edit the default value of an attribute in the class-
specific-attributes of a class definition, G2 automatically updates the attributes of
all its instances.

However, suppose you were to manually override the attribute value of an object
by editing the table. For example, suppose you had manually specified the
network-type of the office before you updated the class specific attributes. Should
93

G2 change these manually overridden values or not? By default, G2 does not
automatically update attributes whose values have been manually overridden.

To change manually overridden attributes, you use the change attribute in the
table for the class definition.

To verify that manually overridden attributes do not update:

1 Edit the value of the number-of-employees attribute of the office instance on
the Schematic Diagram workspace by editing its table.

Choose a value other than 1 or 0.

2 Edit the class-specific-attributes of the office class definition to provide a
default value of 1 for the number-of-employees attribute.

You use the initially is syntax to specify the default value.

The table for the office instance remains unchanged; G2 did not update the
number-of-employees attribute because its value has been manually overridden.

Now you will use the change attribute to update manually overridden attributes.

To change manually overridden attributes of a class:

1 Display the table for the office class definition.

Notice the change attribute in the table.

2 Use the syntax-guided text editor to enter the following command in the
change attribute to update all instances of the class to use the new definition:

change the attribute number-of-employees of each instance
to the default value

The number-of-employees attribute in the table for the office instance is
automatically updated to reflect the default value specified in the class definition.

Editing the Stubs of a Class

The class definition for a class with an iconic representation also declares the
default stubs for each instance of the class. You declare the default stubs of a class
to provide a way of connecting object instances without requiring that you create
the stubs first.

A stub can specify numerous characteristics, including its:

• Connection style: orthogonal or diagonal

• Line pattern: solid, dash, dot, long dash, short dash, course dot, fine dot

• Connection arrows: arrow, diamond, triangle, circle, open, filled, thick, thin,
wide, narrow, small, large

• Port name, which is the name of the connection
94

Editing a Class Definition
• Direction: input or output

• Class type: any subclass of the connection class

An orthogonal connection style means the connection is either vertical or
horizontal, with possible vertices. A diagonal connection style means the
connection is at any diagonal angle. If you do not specify the connection style, G2
uses an orthogonal connection style.

The office defines a single unnamed stub that uses an orthogonal connection style
by default. You will now edit the existing stub to be a diagonal stub coming out of
the top of the icon.

To edit the stubs of a class definition, you initialize the system-defined stubs
attribute in the attribute-initializations attribute of the class definition.

To edit the stubs of a class definition:

1 Display the table for the office class definition.

Notice the attribute named attribute-initializations, which specifies a default
initialization for the stubs attribute. Also notice the initializable-system-
attributes attribute, which names the stubs attribute as one of the two system
attributes of the object class whose values you can initialize.

The current attribute-initializations specification creates an orthogonal
connection, by default, on the right side of the icon, as follows:

stubs: a connection located at right 35

2 Edit the attribute-initializations attribute to create a diagonal connection stub
coming out of the top of the icon, as follows:

stubs: a connection located at top 15 with style diagonal

Notice that just as G2 does not update manually overridden attributes of
existing instances when you edit the class definition, G2 does not update the
default stubs of the existing instances either.

3 Create a new instance to see the new stub.

Notice that the connection is now leading out of the top of the icon:

4 Drag the connection and notice that you can move it in any diagonal direction.
95

5 To drop the connection, double click the mouse or use the Ctrl + a command.

The icon looks something like this:

6 Delete the existing instance with the original orthogonal stub definition.

Just as you can use the change attribute of the class definition to update manually
overridden attributes of existing instances, you can use the change attribute to
update the default stubs of existing instances. To do this, first you use the change
attribute to delete the existing stubs on any instance, then you use the change
attribute to add a connection stub of the desired type at the new location on any
instance.

To save the application:

 Save the KB to the file named ch3.kb, with your initials appended to the end
of the filename.

Summary

In this lesson, you learned how to:

• View the class definition for an instance of a class

• View the direct-superior-classes attribute of a class to determine its type

• Use the create instance menu choice on a class definition to create an instance
of a class

• Use the edit icon menu choice for a class to edit its icon

• Edit the class-specific-attributes attribute of a class to specify its attributes

• Edit the attribute-initializations attribute of a class to initialize the Stubs
attribute

• Use the initializable-system-attributes attribute of a class definition to
determine the names of system-defined attributes you can initialize
96

Creating Connection Stubs Dynamically
Creating Connection Stubs Dynamically
In this lesson, you will learn how to:

• Create a method that programmatically creates a connection stub on an object

• Create a user menu choice that starts the method

Executing Actions on Classes of Objects

In the previous lesson, you edited the class definition to define the default stubs
for a class. Suppose you wanted to allow the end user of an application to add
stubs to instances of a particular class interactively. Recall from a previous lesson
that you use the create action to create objects and connections programmatically.

In an earlier lesson, you used an action button to execute a sequence of actions to
create and delete objects on a workspace. To add connections to an object
interactively, you execute a similar sequence of actions. However, rather than
using an action button to execute the actions, you can create a user menu choice
associated with each instance of the class, which appears on its menu.

A user menu choice specifies a sequence of actions that G2 performs on specific
instances of a class when the user selects the user-defined menu choice. You
define a user menu choice for a class of objects. For example, you might create a
user menu choice called create connection for the office class, which
programmatically creates a connection stub at a particular location. In this way,
you allow the end user of your application to add connection stubs interactively.

Using Methods and Procedures for Sequential
Processing

As you saw in a previous lesson, you often need to execute a sequence of actions
to perform the desired operation, such as creating an object. A user menu choice is
similar to an action button in that you specify a sequence of actions in the action
attribute, using the in order statement.

However, if the sequence of actions is complex, you typically create a method or
procedure that performs the sequential processing of the action button or user
menu choice. A method is a named object associated with a particular class that
executes a sequence of actions when the application starts the method. A
procedure is the same as a method except that it is not associated with any class.

Use procedures and methods to manipulate objects and their relationships in real
time as the core repository of knowledge in your application.

You can define the same method for different classes, each of which executes a
specific set of actions for all instances of a class. Furthermore, just as objects
97

inherit their attributes and icons from superior classes in the class hierarchy,
objects also inherit their methods from their superior classes. Thus, you can create
subclasses that obtain their methods from their superior class, or you can override
the definition of the method in the subclass.

For example, the office class might define a method that computes its budget. You
might define several subclasses of the office class, all but one of which computes
its budget based on the default method. However, the home office might define
its own method for computing budget, which is unique.

Use methods to encapsulate the behavior of classes across the class hierarchy.

You use the start action to start a method or procedure anywhere that G2 allows
actions. Remember that you can use G2 actions in the consequents of rules and in
action buttons, as well as in user menu choices.

In this lesson, you will create a method that programmatically creates a
connection stub for an object. You will then create a user menu choice for the
office class that starts the method.

What is the Format of a Method or Procedure?

Suppose you were to create a generic sequence of actions that executes the actions
of the Create Office action button. Recall that the Create Office action button
performed these actions in order: create an office, transfer the office to a
workspace, and make the office permanent. To create a generic sequence of
actions associated with a particular class, you create a method. To create a generic
sequence of actions not associated with any class, you create a procedure.

Here is a generic procedure that executes the same actions as the action button
you created earlier and then posts a message to the Message Board:

create-office (confirmation-string: text)
O: class office;
begin

create an office O;
transfer O to this workspace at

(random(-300,300), random(-300,300));
make O permanent;
post confirmation-string

end

Method or Procedure Name

The method name or procedure name is the name you specify when you
programmatically execute the method or procedure, in this example,
create-office.
98

Creating Connection Stubs Dynamically
Argument List

The argument list specifies the objects or values that are passed to the method or
procedure by the caller.

The format of a method is almost identical to that of a procedure with the
exception of the argument list. For a method, the first argument in the argument
list is always an instance of the class to which the method applies.

For example, here is an initialization method for objects of class office:

initialize(office: class office)
begin

conclude that the number-of-employees of office = 25
end

Local Name Declarations

The local name declarations is a list of variables that the method or procedure
uses locally in the body. If the local name refers to an object, as in the procedure, it
has this format:

name: class class-name

For example:

O: class office

If the local name refers to a data type, it has this format:

name: data-type

For example:

N: integer

G2 supports these value types in local name declarations for procedures and
methods:

• quantity: a floating point number or an integer

• float: a floating point number

• integer: an integer

• symbol: a sequence of alpha-numeric characters with no spaces

• text: a sequence of alpha-numeric characters surrounded by quotes, with
spaces as needed

• truth-value: the symbol true or false
99

• sequence: a list of values. For example:

sequence(1, the symbol one, 1.0)

• structure: a list of name-value pairs. For example:

structure(corporation: the symbol gensym, street-number: 125)

For maximum efficiency, use strong typing when you declare the local names of
procedures and methods.

Method or Procedure Body

The method body or procedure body is where you specify the sequence of
actions that the method or procedure executes. Notice that the body starts with a
begin statement and ends with an end statement. Also, statements in the body are
separated by semi-colons (;). Contrast this to an action button in which each
action is separated by the reserved word and.

Procedures and methods are designed to be extremely flexible in what they can
do. In fact, procedures and methods support many of the same structures as
standard programming languages, such as looping, if-then statements, and
case statements.

In addition, procedures and methods allow for multi-threaded processing in a
real-time environment by supporting wait statement, allow other processing
statements, and do in parallel statements.

You use methods anywhere in your application that requires complex sequential
and iterative processing for a particular class. You use procedures to perform the
same kind of processing but not associated with any class.

To take full advantage of G2’s object-oriented capabilities, always create methods
rather than procedures whenever you want the application to perform sequential
processing on classes of objects.

Rules for Proper Indentation of Methods and Procedures

When you enter statements in the method or procedure body, you should follow
these conventions for proper indentation:

• Begin-end statements should appear on their own line.

• Nested begin-end statements should be indented to the next level of
indentation.

• Sequential statements within a begin-end statement should appear indented
under the begin statement.
100

Creating Connection Stubs Dynamically
• The semi-colon separator should separate statements.

• If a sequential statement within a begin-end statement is too long to fit on one
line, enter a line feed and indent to the next level of indentation.

For general information about the rules of proper indentation, see Using Proper
Indentation in Statements.

Declaring Arguments

One of the powerful features of methods and procedures is the ability to pass
arguments to the method or procedure when it starts. This means you can write a
method or procedure that performs a generic operation and pass it specific
arguments each time you start it to perform specific functions.

You might want the procedure to create an office on a particular workspace,
rather than on the current workspace. To do this, you would rewrite the
procedure to pass the name of the workspace as an argument to the procedure.
You would then refer to the argument in the body of the procedure.

Here is a procedure that takes a workspace as an argument:

create-office (W: class kb-workspace)
O: class office;
begin

create an office O;
transfer O to W at (random(-300,300),

random(-300,300));
make O permanent;

end

This procedure transfers the office to W, a workspace, which is the argument to
the procedure.

Notice that the format of an argument list is the same as the format of the local
name declaration. In this example, the argument W is an instance of the kb-
workspace class, which is the built-in class for workspaces.

For maximum efficiency, use strong typing when you declare the arguments to
procedures and methods.

When you start the procedure, you supply a specific workspace as the argument.
101

Declaring Arguments for Methods

The argument list for a method is similar to that of a procedure with one
important exception:

All methods require at least one argument, which is an instance of the class to
which the method applies. If there are multiple arguments, the class name argument
must be the first argument.

For example, suppose you were to create a method for the office class that
computed its budget based on the number of employees. The first argument to
the method would be the class to which the method applies, as follows:

compute-budget (office: class office)
begin

. . .
end

Any other arguments to the method would follow the class name argument. G2
allows you to define more than one same-named method for a class as long as the
number of arguments differ.

Calling the Method or Procedure

You use the call statement to start a method or procedure. The argument list
follows the method or procedure name.

For example, to call the create-office procedure shown earlier, you might use this
statement:

call create-office(schematic-diagram)

This statement creates an office on the workspace named schematic-diagram. You
could create an office on any workspace simply by starting the procedure with a
different workspace name as the argument.

You start a method by using the call action with the name of the specific instance
to which the method applies as its first argument. For example, this statement
starts the compute-budget method for an instance of the office class:

call compute-budget (office-1)

G2 determines what method to call by looking at each class in the class
inheritance path of the first argument, starting with the first class. It calls the
method of the first class it encounters that defines a method with that name and
same number of arguments as there are in the method call.
102

Creating Connection Stubs Dynamically
Creating a Method

You will now create a method that programmatically creates a connection for an
instance of the office class. The same method applies to all instances of the office
class. In a later tutorial, you will create unique methods for different subclasses of
the office class.

Because you are creating a method rather than a procedure, the first argument to
the method is an instance of the class.

The method will execute the following actions in order:

• Create a connection

• Make the connection permanent

To create a method:

1 On the Definitions workspace, choose Workspace > New Definition >
procedure > method to create a method.

2 Choose edit to edit the method or double-click the method.

3 Enter create-connection as the name of the method.

The type of the first argument to any method is always the class to which the
method applies, in this case, the office class.

4 Enter the argument list as follows:

(office: class office)

The method will add a connection to the object and make the connection
permanent; therefore, you will declare the connection as a local name of the
method. The built-in class name for connections is the connection class.

5 Enter the local name declaration as follows:

C: class connection;

Notice that the local name declaration must end in a semi-colon.

The body of the method will use the create action to create a connection and
the make permanent action to make the connection permanent. The syntax for
programmatically creating a connection is similar to the syntax for the system-
defined stubs attribute of a class definition.
103

6 Enter the body of the method as follows:

begin
create a connection C connected to office newly locating it at top

at the position given by random (40) with style diagonal;
make C permanent;

end

G2 updates the attribute display for the method to show the qualified name of
the method:

The qualified name of a method concatenates the class name and the method
name, using double colons, as follows:

office::create-connection

Office is the class to which the method applies, and create-connection is the name
of the method.

Declaring the Method

You must define a method-declaration for each uniquely-named method
definition. If you fail to do so, each method definition without a method
declaration with the same name has this warning in its notes attribute:

note there is no method declaration defined with this name

To create a method declaration:

1 Choose Workspace > New Definition > Procedure > method-declaration to
create the method declaration.

2 Edit the names attribute in the table for the method declaration to be the
method name you entered when you created a uniquely-named method, in
this case, create-connection.
104

Creating Connection Stubs Dynamically
The method declaration looks like this:

Creating a User Menu Choice that Starts a Method

Now that you have defined a method that creates a connection for any object, you
will use the start action to start the method as the action for a user menu choice.
You define a user menu choice for a specific class of objects. To refer to the object
associated with the user menu choice, you use the item.

To create a user menu choice that starts a method:

1 On the Definitions workspace, choose Workspace > New Definition >
user-menu-choice to create a user menu choice.

2 Edit the attribute display for the user menu choice, whose default value is
none, to be create-connection.

This symbol is the name of the user menu choice that will appear in the object
menu.

3 Display the table for the user menu choice.

4 Edit the action attribute to start the create-connection method, as follows:

start create-connection (the item)

Notice that you do not need to refer to the class-qualified method name when
you start the method; G2 determines which method is defined for which class
by looking at the first argument to the method.

5 Edit the applicable-class attribute to specify office as the class to which the
user menu choice applies.

6 Display the menu for one of the office instances on the Schematic Diagram
workspace to verify that the user menu choice appears.

Hint G2 must be running to update the user menu choices of an object.

7 Test the user menu choice by choosing it.

G2 creates a connection in a random location on top of the icon.
105

The final method should look like this:

create-connection (office: class office)
C: class connection;
begin

create a connection C connected to office newly locating it at top
at the position given by random (40) with style diagonal;

make C permanent;
end

To save the application:

 Save the KB to the file named ch3.kb, with your initials appended to the end
of the filename.

Summary

In this lesson, you learned how to:

• Use the New Definition > procedure > method or procedure menu choice to
create a new method or procedure

• Use the New Definition > procedure > method-declaration menu choice to
create a new method declaration

• Declare the arguments to a method or procedure

• Declare local names in a method or procedure

• Use the begin and end procedure statements to declare the body of a method
or procedure

• Use the call statement to start the execution of a method or procedure

Summary
In this tutorial, you learned:

• How to use action buttons to create and delete objects interactively

• How to edit the class definition of an object to update its attributes, icon, and
stubs

• How to update the instances of a class, using the change attribute

• How to use the create, transfer, and delete actions

• About permanent and transient objects and how to use the make permanent
and make transient actions

• How to perform sequential processing, using the in order statement, methods,
and procedures
106

Solutions
• How to start a method or procedure programmatically with arguments

• How to declare a method in the application

Solutions
The Schematic Diagram workspace looks like this:
107

The Definitions workspace looks like this:
108

4

Building a
Knowledge Base
Describes how to create a simple application that computes the total cost of a video
conferencing office based on the number of connections and that dynamically
deletes the connections if the office is over budget.

Goals of the Knowledge Base 110

Loading the Knowledge Base 110

Counting the Number of Connections 110

Counting Connections for any Office 116

Using Event-Driven Processing 118

Using Data-Driven Processing 127

Keeping a History of Total Cost 131

Creating Subclasses of Offices 141

Disabling Rule Highlighting 146

Summary 147

Solutions 148
109

Goals of the Knowledge Base
In the previous tutorial, you created a schematic diagram for a video conferencing
application. In this tutorial, you will begin to build a knowledge base that:

• Computes the number of connections of each office

• Computes the total cost of each office based on the number of connections and
a fixed cost per minute

• Monitors total cost to determine if an office is over budget

• Deletes the connections when an office is over budget

Because this is not a real application, G2 will simulate total cost by incrementing
its value by a fixed cost per minute. Thus, you can think of this application as a
prototype for a real video conferencing application, which would compute total
cost based on real-time video conferencing connection data.

Loading the Knowledge Base
You will start from the finished Schematic tutorial and build on this knowledge
base.

To load the schematic diagram:

 Load the KB named ch3.kb that has your initials appended to it or load the
KB named ch4.kb to load the solution KB that is the starting point for this
tutorial.

Counting the Number of Connections
In this lesson, you will learn how to:

• Create a class-specific attribute that is an integer

• Create a rule that concludes the number of connections for an object

• Invoke the rule by scanning

Creating an Attribute for the Number of Connections

You can connect each video conferencing office to any number of other offices.
The total cost of each office depends on the number of connected offices. Thus, to
compute the total cost of each office, you must first compute the number of
connections.

To compute the number of connections for an office, you will create an attribute of
the office class to hold the value. Whereas in the previous tutorial you entered the
110

Counting the Number of Connections
attribute values in the table, you will now use G2’s inference engine to compute
the number of connections. Because the number of connections must always be an
integer, you will add type checking to the attribute by declaring its data type to
be an integer.

Always use type checking when you declare attributes to ensure that the
inference engine always computes values of the proper type.

To declare an attribute that keeps track of the number of connections:

1 Display the Definitions workspace.

2 Edit the class definition for the office class to create a class-specific attribute
named number-of-connections, which is an integer, as follows:

number-of-connections is an integer

Hint Remember, class-specific attributes are separated by a semi-colon, and you
can accept the edits by using the Ctrl + Enter command.

Notice that when you accept the edits, G2 automatically inserts a default
value in the class-specific-attributes specification. G2 does this whenever you
declare a data type for an attribute, without explicitly declaring a default
value.

3 Verify that the office instance on the Schematic Diagram workspace has the
new attribute in its table:

Using a Rule to Count the Number of Connections

Now that the office defines an attribute to hold the number of connections, you
can use G2’s inference engine to compute the value of this attribute based on the
number of physical connections to each office. You use a numeric expression,
the count of each, to count the number of connections for an office. You use the
conclude action to conclude the value of an attribute. You will write a rule that
111

concludes the value for a particular office regardless of any conditions being met.
Therefore, you will use an unconditionally rule.

Tip In general, you keep rules and object definitions on separate workspaces in an
application.

To create a rule that counts the number of connections for a particular office:

1 Create a new workspace named rules-workspace.

Note Because the word rules is a reserved word in G2, you cannot create a
workspace named rules.

2 Choose Workspace > New Rule to create a new rule.

3 Create a rule that unconditionally concludes that the number-of-connections
of an office named office-1 equals the count of each connection for the office.

Use the syntax-guided text editor to help you determine the syntax of the rule.

Hint You use the conclude action to conclude a value for an attribute. You refer to
attributes by using the reserved word the, followed by the symbolic name of
the attribute, followed by the reserved word of, followed by the name of the
object, for example, the number-of-connections of office-1.

You use the equal sign to conclude a value for the number of connections
attribute because you declared it to be an integer.

The rule should look like this:

unconditionally conclude that the number-of-connections of office-1 =
the count of each connection connected to office-1

Before you can test the rule, you need to create an office named office-1. If you do
not create the office first, G2 will produce an error when you invoke the rule.

To create an office:

 On the Schematic Diagram workspace, use the Create Office button to create
an office named office-1.
112

Counting the Number of Connections
Invoking the Rule by Scanning

Now you need to invoke the rule to test whether the number of connections
actually updates. The simplest way of testing a rule is by scanning the rule at a
periodic interval. G2 invokes the rule at each scan interval.

While scanning rules is not always the most efficient way of invoking a rule,
scanning is an easy way of testing a rule to verify that it performs the actions in
the consequent as intended. Applications also use scanning when it is important
to test the current value of an attribute or in alarm situations to monitor rules that
would otherwise not be invoked.

For maximum efficiency, avoid scanning rules in real applications, except when
absolutely necessary.

To invoke a rule by scanning:

1 Right-click the rule to display its menu, then choose table.

Hint If you click on the text of the rule, you will open the text editor for editing the
rule. If this happens, cancel the editor and try clicking on the border again.

2 Edit the attribute named scan-interval to be 2 seconds.

The inference engine begins scanning the rule immediately every two seconds
when G2 is running.

3 Start G2 running.

Let’s explore what is happening by showing when G2 is invoking the rule.

Highlighting Invoked Rules

You can cause G2 to highlight rules as they are invoked, which gives a visual
indicator each time the rule is invoked. Highlighting invoked rules can be useful
when you test rules. However, in large applications, highlighting invoked rules
can degrade performance significantly; therefore, we recommend that you only
highlight invoked rules for testing purposes.

To highlight invoked rules:

 Choose Run > Run Options > Highlight Invoked Rules.

The rule now flashes each time it is invoked, which is every two seconds.
113

Testing the Rule

Now you will test the rule by interactively adding and deleting connections.

To test the rule:

1 Display the Schematic Diagram workspace and display the table for office-1.

Notice that G2 has computed the number of connections to be 1. Leave the
table visible while you interactively connect additional offices.

2 Create two additional offices, using the action button.

3 Connect each of the two offices to office-1, using the stubs.

Each time you connect an office, the number-of-connections attribute changes
to reflect the current number of connections. Notice that the number does not
update immediately upon creating the connection; it updates after G2 scans
the rule, which happens once every two seconds.

When both offices are connected, the number-of-connections attribute is 3,
which includes the two connections attached to the other offices and the one
connection stub.

4 Create and connect another office to office-1.

The number-of-connections attribute increases by one.

5 Delete a connection and notice the value of the number-of-connections
attribute.

Nothing happens. This is because the connection stub is still attached to the
object.

6 Drag the connection stub into the office.

The number-of-connections attribute decreases by one.

7 Connect the disconnected office to another office on the diagram and display
the table for that office.

The number-of-connections attribute does not change. This is because the rule
is written specifically for the office named office-1.
114

Counting the Number of Connections
Making the Rule More Robust and Efficient

G2 is concluding a value for the number-of-connections attribute of a particular
office every two seconds, regardless of whether the connection stub is attached to
another office and regardless of whether the number of connections changes.
Thus, you need to:

• Make the rule more robust by:

– Concluding the number of connections for any office

– Computing the number of connections based on the existence of actual
connections, not just connection stubs

• Make the rule more efficient by invoking it only when the number of
connections changes

You will improve the rule in the next lesson.

To save the application:

 Save the KB to a new file named ch4.kb, with your initials appended to the
end of the filename.

Summary

In this lesson, you created a rule that counts the number of connections for an
office, which you invoked by scanning.

You learned how to:

• Edit the class-specific-attributes of a class definition to use is an integer to
declare an attribute that performs type checking

• Create an unconditionally rule that concludes a value for an integer attribute

• Use the conclude action to assign a value to an attribute

• Use the expression the count of each to count the number of connections of an
object

• Use the scan-interval attribute of a rule to invoke the rule at a periodic interval

• Use the Run > Run Options > Highlight Invoked Rules menu choice to
highlight rules each time they are invoked
115

Counting Connections for any Office
In this lesson, you will learn how to:

• Create generic rules that execute actions for any member of a class

• Create a rule that counts the number of actual connections between offices

Using the For Prefix to Create a Generic Rule

You can turn any rule into a generic rule that applies to:

• Any instance of a class

• One or more instances of a class that meet certain criteria, for example:

– On a given workspace

– Connected to another object

– Nearest to another object

Always write generic rules that reason over entire classes of objects at any level in
the class hierarchy, to simplify development and maintenance, avoid
redundancy, and reuse rules in other applications.

To create a generic rule, you use the for prefix in front of the rule, followed by an
expression that refers to a set of objects of a particular class. When you create a
generic rule, you typically also use a local name in the rule to reference the class
within the context of the rule. Local names in rules are similar to local names in
action statements, methods, and procedures.

For example, to create a generic rule that applies to any instance of the office class,
the for prefix looks like this, where O is the local name:

for any office O

As another example, in an application that monitors the flow of liquid through a
tank, you might create a generic rule that applies to any pump connected at the
input of any tank, as follows:

for any pump P connected at the input of any tank T

To follow proper indentation conventions for generic rules, place the for prefix
alone on its own line with the text of the rule indented below the prefix.
116

Counting Connections for any Office
Creating a Generic Rule for the Office Class

Now you will update the rule that concludes the number of connections to make
the rule apply to any office.

To edit a rule to make it generic:

1 Click on the text of the rule to edit it.

2 Add a for prefix and a local name before the word unconditionally to make the
rule apply to any instance of the office class.

3 Edit the body of the rule to refer to the local name.

4 Further edit the rule so that it concludes a value based on the count of each
office connected to any office, as opposed to the count of each connection.

The rule should look like this:

for any office O
unconditionally conclude that the number-of-connections of O =

the count of each office connected to O

Now you can test the rule.

To test the rule:

1 Connect various offices together on the Schematic Diagram workspace.

2 Display the table for any office and verify the number of connections.

3 Delete a connection between two offices.

The next time the rule scans, the number of connections decreases by one
because the office is no longer connected.

The rule is now much more robust because it applies to any office and it counts
only actual connections, not connection stubs.

To save the application:

 Save the KB to the file named ch4.kb, with your initials appended to the end
of the filename.

Summary

In this lesson, you created a generic rule that applies to any office, which counts
the number of actual connections.

You learned how to use:

• A for prefix to create a generic rule that applies to all instances of a class

• An unconditionally rule that concludes a value for an object regardless of any
conditions being met
117

Using Event-Driven Processing
In this lesson, you will learn how to:

• Use event-driven processing to compute the number of connections whenever
a connection is created or deleted

• Use an alternate form of a generic rule

• Use event-driven processing to compute the total cost per minute based on the
number of connections, whenever the number of connections receives a value

• Simulate total cost by periodically updating the value, using a scan interval

• Add an attribute display to the office class definition, which shows the total
cost attribute next to each office

Considering How to Invoke a Rule

In the previous lesson, you created an unconditionally rule that G2 invokes by
using a scan interval. Scanning represents one way in which G2 invokes rules.
However, scanning is generally not the most efficient way to invoke rules in G2.
In large applications, scanning every rule in the knowledge base could hinder
performance considerably. Now you will consider a more efficient way to invoke
the rule that concludes the number of connections.

In the Basic Skills tutorial, you were introduced to the two basic ways in which G2
invokes rules:

• Event-driven processing, which invokes rules when G2 detects an event

• Data-driven processing, which invokes rules when an attribute receives a
value

Let’s ask some important questions about the rule that concludes a value for the
number-of-connections attribute to determine how it should be invoked:

• Under what conditions should G2 invoke this rule to ensure that the number
of connections is accurate?

• When does the knowledge base need to know the value of the number of
connections?

• What event can you think of that might trigger the invocation of this rule?

You might have come to the conclusion that a more efficient way of invoking this
rule is to conclude a value for the number of connections only when the number
of connections changes. When does the number of connections change?
Whenever the user creates or deletes a connection.

Thus, you could rewrite the rule to conclude a value for the number of
connections only when G2 detects the event of creating and deleting connections.
118

Using Event-Driven Processing
This is an example of event-driven processing, which you implement by using a
whenever rule.

To minimize processing and ensure accuracy, always use the most efficient way
of invoking a rule that maintains robustness.

Detecting the Event of Creating a Connection

Now you will rewrite the rule to respond to the event of creating a connection.
The event expression is connected to detects when a connection is created.

You can use the is connected to syntax to detect when any office is connected to
any other office as follows:

for any office O1
for any office O2

whenever O1 is connected to O2 then
. . .

Notice that the generic rule has two for clauses to distinguish between the two
offices. The for clauses do not require any separator. In this example, the rule
detects the event for O1 only; it does not detect the event for O2.

You can also use the is connected to syntax to detect when any connection is
connected to any office as follows:

for any connection C
for any office O

whenever C is connected to O then
. . .

In this case, the rule detects the event for both offices O that are connected to the
connection C. Because you want every office to compute its number-of-
connections attribute when a connection is created or deleted, you will use the
second form of the rule.

First, you will create a generic rule that detects when any connection is connected
to any office; therefore, the generic rule must refer to two different local names.

To rewrite a rule to respond to the event of creating a connection:

1 Edit the generic portion of the rule to refer to any connection and any office,
using two different for clauses and two different local names.

2 Edit the rule to make it a whenever rule.

3 Use the syntax-guided text editor to enter the event expression that detects
when a connection is created.

4 Display the table for the rule and notice that the scan-interval is automatically
set to none so that the rule no longer scans.
119

You cannot have a scan interval on a whenever rule; the rule is invoked when
the event is detected.

5 Create a borderless free text next to the rule that indicates when the rule is
invoked.

The rule should look like this:

for any connection C
for any office O

whenever C is connected to O then
conclude that the number-of-connections of O =

the count of each office connected to O

Now you can test the rule.

To test the rule:

 On the Schematic Diagram workspace, create connections between several
offices.

Notice when the rule highlights. Whenever you interactively create a connection,
G2 detects the event, invokes the rule, and immediately concludes a value for the
number of connections. If you look very closely when the rule highlights, you can
see that the rule is actually firing twice, once for each office. Also, notice that now
there is no delay in concluding the value. Recall that previously when G2 invoked
the rule by using a scan interval, the value only changed when the rule was
scanned.

Thus, the whenever rule is more efficient, because it only invokes the rule when a
connection is created. The whenever rule is also more robust because it concludes
a value immediately whenever the number of connections changes.

Detecting the Event of Deleting a Connection

You also want the number of connections to be updated to reflect the current
number of connections whenever a connection is deleted. Thus, you must create
another rule that detects the event of deleting a connection, using the event
expression is disconnected from.

You cannot use the is disconnected from syntax to detect when any connection is
connected to any office. Therefore, you must detect whenever any office is
disconnected from any other office as follows:

for any office O1
for any office O2

whenever O1 is disconnected from O2 then
. . .

This rule is invoked once for each office that is disconnected. Deleting a
connection between two offices invokes the rule twice.
120

Using Event-Driven Processing
To create a rule that sets connections when offices are disconnected:

1 Create a generic rule that refers to any two offices, using two different for
clauses and two different local names.

2 Make the rule a whenever rule to respond to the event of disconnecting one
office from another office.

3 Create a borderless free text next to the rule that indicates when the rule is
invoked.

The rule should look like this:

for any office O1
for any office O2

whenever O1 is disconnected from O2 then
conclude that the number-of-connections of O1 =

the count of each office connected to O1

Now test the rule.

To test the rule:

1 On the Schematic Diagram, create two offices and display the table for one
office.

The number-of-connections attribute is initially 0.

2 Now connect the two offices.

The number-of-connections attribute goes from 0 to 1.

3 Delete the connection between the two offices.

The number-of-connections attribute goes back to 0. The new rule fires
immediately upon deleting the connection, which sets the number-of-
connections attribute for each office back to 0.

Creating a Different Form of Generic Rule

In the previous two rules, you used two for clauses to refer to two different local
names to make the rules generic. You can also write a generic rule by referring to
the local names within the body of the rule. For example, the following whenever
rule antecedent is equivalent to the one given above, which detects a connection
event between a connection and an office:

whenever any connection C is connected to any office O

This form of a generic rule is identical to the other form, which uses a for clause.
121

To rewrite generic rules to use the alternate generic form:

 Remove the for clauses from each of the two whenever rules that detect
connection events and refer to the local names in the body of the rule.

The rules should look like this:

whenever any connection C is connected to any office O then
conclude that the number-of-connections of O =

the count of each office connected to O

whenever any office O1 is disconnected from any office O2 then
conclude that the number-of-connections of O1 =

the count of each office connected to O1

Computing Total Cost Per Minute Whenever
Number of Connections Changes

In the video conferencing prototype, you will simulate the total cost of an office
based on the number of connected offices and a fixed connection cost per minute.
Thus, to compute total cost, you first need to compute the total connection cost
per minute, which is equal to the fixed cost times the number of connections.

What kind of rule can you write that will conclude a value for the total cost per
minute based on the number of connections? You can create a whenever rule that
G2 invokes whenever the number of connections changes, using the receives a
value event expression.

To compute total cost per minute whenever number of connections changes:

1 On the Definitions workspace, edit the class definition of the office class to
define an attribute named connection-cost-per-minute, which is a quantity
with a default value of 0.1.

A quantity data type allows you to enter either floating point numbers or
integers.

2 Add another attribute named total-cost-per-minute, whose value is a float.

3 On the Rules Workspace, create a generic rule that concludes the total cost per
minute whenever the number of connections changes.

The total cost per minute is the product of the number of connections and the
connection cost per minute

Hint Use the for prefix to create a generic whenever rule that responds to the event
of receiving a value, using the receives a value expression.

4 Create a borderless free text next to the rule that indicates when the rule is
invoked.
122

Using Event-Driven Processing
The rule should look like this:

for any office O
whenever the number-of-connections of O receives a value then

conclude that the total-cost-per-minute of O =
the number-of-connections of O *

the connection-cost-per-minute of O

Now you will test the rule.

To test the rule:

 Add and delete connections for an office and verify that the total-cost-per-
minute attribute reflects the current number of connections.

Notice that the total cost per minute updates whenever you add or delete
connections.

Computing Total Cost Per Minute Whenever the
Connection Cost Changes

Suppose you wanted to enter a different connection cost per minute for a
particular office. Would the total cost per minute of the office update to reflect the
change? No, it would not, because the whenever rule only detects when the value
of number-of-connections attribute changes, and it never updates the value of
connection-cost-per-minute attribute.

To make the rule more robust still, you must detect when the value of the
connection-cost-per-minute attribute changes as well.

You can detect multiple events with a whenever rule by using the word or
between the conditions in the antecedent. G2 detects whenever any of the
conditions is true. To detect whenever all conditions in the antecedent are true,
you use the words and when between multiple conditions in the antecedent.

To compute total cost per minute when connection cost per minute changes:

 Edit the whenever rule to detect when the number-of-connections or the
connection-cost-per-minute attribute changes.

The rule should look like this:

for any office O
whenever the number-of-connections of O receives a value or

the connection-cost-per-minute of O receives a value then
conclude that the total-cost-per-minute of O =

the number-of-connections of O *
the connection-cost-per-minute of O

Now test the rule.
123

To test the rule:

 Edit the value of connection-cost-per-minute attribute in the table of any
office.

The value of the total-cost-per-minute attribute now reflects the current value of
the connection-cost-per-minute attribute.

Here is the table for an office whose connection cost per minute has been edited:

Simulating Total Cost by Scanning

Now you will simulate the total cost of each office by incrementing its value by
the total cost per minute. You will use a scan interval to increment the value. In a
real application, you would compute total cost based on the real-time video
conferencing connection data.

Use scanning as a way of simulating the behavior of real-time applications during
the development phase.

To simulate the total cost:

1 On the Definitions workspace, edit the class-specific-attributes attribute of the
office class to create an attribute named total-cost, which has the quantity data
type and whose default value is 0.

2 Create a new generic rule on the Rules Workspace that unconditionally
concludes that the total cost of any office is the current value of total cost plus
the total cost per minute.

Hint Remember to make the rule generic for all instances of the office class.

3 Edit the table for the rule to give it a scan interval of 2 seconds.

4 Show the attribute display and attribute name for the scan interval.

total-cost-per-minute =
connection-cost-per-minute *
number-of-connections
124

Using Event-Driven Processing
The rule should look like this:

for any office O
unconditionally conclude that the total-cost of O =

the total-cost of O + the total-cost-per-minute of O

Now you can test the rule.

To test the rule:

1 Connect a number of offices to a central office.

2 Display the table for the central office and notice the value of the total-cost
attribute.

3 Be sure to use the highlight invoked rules run option to verify that G2 is
invoking the rule.

The total cost increments once every two seconds by a factor of the total cost
per minute:

Hint If the total cost is not incrementing and the rule is not being invoked, make
sure G2 is running.

4 Now delete all of the connections.

The number of connections goes to zero, and the total cost stops incrementing
because the total cost per minute also goes to zero.
125

Creating an Attribute Display for Every Office

It is often useful to display the value of an attribute next to the icon each time you
create an instance. You can create an attribute display for every instance of a class
by editing the attribute-initializations attribute in the class definition. To do this,
you initialize the system-defined attribute named attribute-displays.

Note While attribute displays can be useful during the development phase of an
application, you do not usually use attribute displays when you deploy an
application, for reasons of efficiency.

To add total cost as an attribute display for every instance of the office class:

1 On the Definitions workspace, display the table for the office class definition.

Notice the initializable-system-attributes attribute, which includes the
attribute-displays system-defined attribute.

2 Edit the attribute-initializations attribute to create an attribute display for the
total cost attribute, as follows:

attribute-displays: total-cost at standard position

3 Delete all the offices on the schematic diagram and create a new diagram of
connected offices.

The total cost attribute display appears next to every office and indicates the
current value of the total cost attribute:

To save the application:

 Save the KB to the file named ch4.kb, with your initials appended to the end
of the filename.

Summary

In this lesson, you edited the rule that concludes the number of connections to be
a whenever rule, which G2 invokes whenever you create or delete a connection.
You also created a whenever rule that concludes the total cost per minute, based
126

Using Data-Driven Processing
on the number of connections and the connection cost per minute. You then
created a rule that simulated total cost by scanning. Finally, you created an
attribute display for the total cost of every instance of the office class.

You learned how to use:

• A whenever rule to invoke a rule, using event detection

• The expressions is connected to and is disconnected from to detect the event
of creating and deleting a connection

• Two generic for clauses to refer to two distinct classes and local names within
a rule

• An alternate form of a generic rule that refers to the local names within the
body of the rule

• The event expression receives a value to detect when an attribute value
changes

• The scan-interval attribute of a rule to simulate incrementing the value of an
attribute

• The attribute-initializations attribute of a class definition to initialize the
system-defined attribute-displays attribute, which creates an attribute display
next to every instance of a class

Using Data-Driven Processing
In this lesson, you will learn how to:

• Use data-driven processing to forward chain to a rule that monitors the total
cost of each office, which checks if it is over budget

• Dynamically delete all connections when an office is over budget

• Create attributes for fixed values in the knowledge base

Using Forward Chaining to Monitor Total Cost and
Delete Connections

Now that the office computes total cost, you can create a rule that compares the
total cost against a fixed budget to determine whether an office is over budget. If
the office is over the fixed budget amount, the rule will dynamically delete all of
the office’s connections.

Again you must consider how G2 will invoke the rule. The total cost of an office
increments once every two seconds. When should you invoke the rule that
monitors total cost? To make the rule both efficient and accurate, you should
invoke the rule each time the value of total cost changes.
127

How do you do this in G2? When the value of any attribute in the antecedent of
the rule changes, G2 automatically invokes the rule through a mechanism called
forward chaining. To do this, you write an if rule that checks to see if the total cost
is over a certain value. When the value of the total cost attribute changes, as it will
every two seconds, G2 automatically invokes the rule that monitors total cost.

Use forward chaining to invoke rules that only need to be invoked when an
attribute value changes.

Note that forward chaining represents only one way in which G2 uses data-
driven processing to invoke rules.

Now you will create a rule that G2 invokes by forward chaining when the value
of the total cost changes.

To create a rule that monitors total cost by using forward chaining:

1 Create a new rule on the Rules Workspace whose antecedent checks to see if
the total cost of any office is over a fixed budget amount of 10.

Hint Use an if rule and remember to make the rule generic for all offices.

2 In the consequent of the rule, delete every connection connected to the office
that is over budget.

Hint Remember, before you can delete a connection you must make the connection
transient, using the make transient action. You use the every clause to refer to
every connection connected to an office. You must also perform the actions in
a particular order, using the in order statement. You use the delete action to
delete every connection connected to an office.

3 Create a borderless free text that indicates that the rule is invoked via forward
chaining when the value of total cost changes.

The rule should look like this:

for any office O
if the total-cost of O > 10 then

in order
make every connection connected to O transient and

delete every connection connected to O
128

Using Data-Driven Processing
Now you can test the rule.

To test the rule:

1 Delete all the connections to existing offices on the Schematic Diagram
workspace and connect several offices to a central office.

Notice the value of the total cost of each office.

2 Be sure to highlight invoked rules so you can see when G2 invokes the rule
that monitors total cost.

3 Make the Rules Workspace and Schematic Diagram workspace visible at the
same time.

Tip You can shrink both workspaces to make them both visible.

4 Pause and resume G2 and notice what happens to the total cost.

G2 only scans rules when it is running.

The total cost of the central office increases incrementally by the amount of the
total cost per minute, which depends on the number of connections. Each time the
total cost changes, G2 forward chains to the rule that monitors total cost, which
causes the rule to highlight.

When the value of the total cost attribute exceeds the budget you specified, in this
case, 10, G2 takes the action in the consequent of the rule, which deletes the
connections between the central office and all other offices.
129

Creating an Attribute for a Fixed Budget

In general, you create attributes for every value that a rule references, including
fixed values. In the rule that monitors total cost, for example, you would create an
attribute for the fixed budget amount, rather than referring to a specific value.

You create attributes for fixed values in an application for several reasons:

• To specify different values for each instance, as needed

• To provide a way of changing the value while the application is running

• To keep the application as generic as possible

You will now edit the rule that monitors total cost to refer to the budget.

To refer to the budget as an attribute in the rule:

1 Edit the class-specific-attributes attribute of the office class to create an
attribute named budget, whose default value is 100.

2 Edit the rule to test the total-cost against the budget attribute, rather than a
fixed number.

The table for an office looks like this:

The rule should look like this:

for any office O
if the total-cost of O > the budget of O then

in order
make every connection connected to O transient and

delete every connection connected to O

Now test the rule.
130

Keeping a History of Total Cost
To test the rule:

1 Delete all the offices on the schematic diagram and create and connect some
new offices to a central office.

2 Edit the value of the budget attribute of the central office to be a number
smaller than 100, such as 10.

You edit the budget for testing purposes so you do not have to wait until the total
cost exceeds 100.

The behavior should be identical to the rule you just tested.

To save the application:

 Save the KB to the file named ch4.kb, with your initials appended to the end
of the filename.

Summary

In this lesson, you created a rule that uses forward chaining to monitor total cost
and delete every connection if the total cost exceeds the budget.

You learned how to use:

• An if rule that is invoked via forward chaining when the value of the attribute
in the antecedent of the rule changes

• The expression every connection connected to to refer to every connection
connected to an object

• An attribute in place of a fixed value in a rule to keep the rule generic

Keeping a History of Total Cost
In this lesson, you will learn how to:

• Create an attribute that keeps a history of the total cost

• Create a subclass of the G2 parameter class, which allows forward chaining
and keeps a history
131

Using Variables and Parameters to Keep a History

You might want to keep a history of the total cost of each video conferencing
office. You keep a history of an attribute’s value for numerous reasons such as:

• Plotting data on a graph

• Logging and reporting

• Computing statistical information

• Performing temporal reasoning, which allows you to reason about objects
over time

In G2, you use a special type of object to keep a history of values over time, called
a parameter. You specify how long you want G2 to keep a history, and you can
specify a default value. You can also use a similar type of object called a variable,
which keeps a history and allows you to connect to real-time data.

Use variables and parameters when you need to reason about objects over time.

Variables and parameters are two of the many built-in G2 classes, which you can
use to describe your real-world objects. Just as G2 supports numerous data types
for standard attributes, G2 also supports the same data types for variables and
parameters. Thus, you can create a class-specific attribute that is a quantity (float
or integer), float, integer, logical, symbolic, or text variable or parameter.

Variables and parameters are themselves objects. Thus, when you define a class-
specific attribute to be a kind of variable or parameter, you are creating an object
within an object, called a subobject. In object-oriented terms, an object that
contains another object is called a composite object. Creating objects that contain
other objects is another example of encapsulation, whereby you keep the
complexity of an object hidden from other objects in the application.

A subobject has its own set of attributes, which you can view and edit by
displaying the subtable for the object. A subtable is a table associated with a
subobject, which is embedded in the object’s table.
132

Keeping a History of Total Cost
This figure illustrates the concepts of objects, subobjects, and subtables:

Use composite objects to organize knowledge in an application and take full
advantage of the object-oriented nature of G2.

Using a Parameter to Keep a History of Total Cost

Now you will edit the definition of total cost in the office class to make the
attribute be a kind of parameter. You use the is given by expression in the
definition of the attribute to indicate that the attribute’s value is an instance of a
variable or parameter. In this case, you will specify the attribute to be given by an
instance of the quantitative-parameter class, which is a parameter that keeps a
history of floating point numbers or integers.

You specify the size of the history in the parameter’s subtable, based on the
number of points or the age of the data. You can also specify a default value for
the parameter.

To create an attribute of the office that is a parameter:

1 Edit the class-specific-attributes attribute of the office class to declare the total-
cost attribute to be given by a kind of quantitative parameter, using the
following syntax:

total-cost is given by a quantitative-parameter, initially is given by a
quantitative-parameter

2 Create a new office on the Schematic Diagram workspace.

3 Display the table for the new office and click on the value of the total-cost
attribute.

parameter-1
subtableoffice-1

object

table

a parameter

table

subtable
Subobject

office-1
133

G2 displays a menu that allows you to display the subtable for the parameter:

4 Choose subtable to display the subtable for the quantitative parameter
subobject:

By default, the parameter does not keep a history.
134

Keeping a History of Total Cost
5 Use the syntax-guided text editor to edit the history-keeping-spec attribute to
specify that the parameter should keep a history of the last 100 points, as
follows:

keep history with maximum number of data points = 100

6 Connect another office to the existing office and observe the behavior.

What happens? When the total cost of the office exceeds the budget now, nothing
happens! Also notice that the rule that monitors total cost never highlights.

Note G2 does not automatically forward chain to quantitative, integer, float, or text
variables or parameters. You must explicitly edit the definition of these types of
parameters and variables to allow forward chaining.

Explicitly Allowing Forward Chaining

The default value of the options attribute for variables and parameters differs
depending on the data type of the variable or parameter:

You will now update the subtable of the quantitative parameter to allow forward
chaining.

To edit the subtable of the parameter to allow forward chaining:

1 Display the table for an office.

2 Display the subtable for the total cost parameter and notice the attribute
named options.

The default value is do not forward chain. This default tells G2 not to forward
chain to rules that refer to this parameter in its antecedent. Thus, G2 does not
invoke the rule that monitors total cost, even though the value of the
parameter is changing.

This type of
variable or parameter...

Has this default value
for the options attribute...

quantitative, integer,
float, text

do not forward chain

logical, symbolic do forward chain
135

3 Edit the options attribute to be do forward chain.

The subtable looks like this:

4 Restart the knowledge base, reconnect the offices, and observe the behavior
now.

The total cost of every office now resets to 0 because it is a quantitative parameter.
The rule that monitors total cost now highlights every time total cost receives a
new value. When the total cost exceeds the budget, G2 deletes the connections.

Creating a Subclass of Parameter

What happens when the value of total cost exceeds the budget in one of the other
offices or if you delete the current offices on the Schematic Diagram workspace
and you create new offices?

Because you edited the definition of the total cost parameter in the subtable for a
particular office, no other office has the do forward chain option specified and no
other office currently keeps a history. Of course, what you want is for every office
to forward chain to the rule that monitors total cost and for every office to keep a
history.

Just as you can create an office class that is a subclass of the built-in G2 object
class, you can create a subclass of any built-in G2 variable or parameter class. You
can specify default values for the system-defined options-for-parameter and
history-keeping-spec attributes of the subclass. You can then define total cost to
be given by the subclass, rather than the built-in G2 class.

Just like any class, variables and parameters have an icon representation in G2,
which you can create by creating an instance of the class. You can also create an
instance of a built-in G2 class by using the Workspace > New Object menu choice.
136

Keeping a History of Total Cost
Create subclasses of built-in G2 classes such as variables and parameters to
extend the G2 object library.

To update the total cost attribute to be a subclass of parameter:

1 On the Definitions workspace, choose KB Workspace > New Definition >
class-definition > class-definition to create a new class definition.

Note You use the class-definition menu choice to create user-defined subclasses of
any G2 class, including objects, connections, messages, parameters, rules, and
workspaces. The other types of definition objects are obsolete and exist for
compatibility with earlier releases only.

2 Display the table for the class definition.

3 Specify the class-name to be quantity-param to give some indication of its
type.

4 Specify the direct-superior-classes attribute to be quantitative-parameter.

Notice that when you specify the direct superior classes of a class definition, G2
automatically fills in the class-inheritance-path attribute. The class inheritance
path indicates all the classes from which a class inherits its definition and the
order in which they are inherited. Should conflicts arise, the first class in the list
takes precedence. As you can see, the quantity-param class inherits first from
itself, then from its direct superior class, then from the parameter class, and so on,
until it reaches the highest-level G2 class, which is the item class. You will explore
the G2 class hierarchy more in a moment.

First you need to specify the default options and history keeping specification for
the parameter subclass. To specify the default value of a system-defined attribute,
you use the attribute-initializations attribute.

Notice that the table for the quantity parameter class definition also defines an
attribute named initializable-system-attributes. This attribute indicates the names
of system attributes whose values you can initialize for the class. For this
parameter, you will specify attribute initializations for the options-for-parameter
and history-keeping-spec system attributes.
137

To specify the default options and history of the parameter class:

1 Edit the attribute-initializations attribute to specify the default options as
follows:

options-for-parameter: do forward chain;

2 Continue editing the attribute initializations to specify the default value for
the history keeping spec as follows:

history-keeping-spec for variable-or-parameter: keep history with
maximum number of data points = 100

Hint Attribute initializations are separated by semi-colons.

3 Edit the class-specific-attributes attribute of the office class to declare the total-
cost attribute to be given by quantity-param, rather than quantitative-
parameter.

Now you can test the new definition.

To test the new object class definition:

1 Delete all the current offices on the Schematic Diagram workspace.

2 Create a new diagram with several connected sites and observe the behavior.

G2 deletes the connections when the total cost exceeds the budget.

3 To verify that all offices forward chain to the rule that monitors total cost,
create a new diagram in which several offices are connected to one office, and
several other offices are connected to another office.

G2 deletes the connections between the first office whose total cost exceeds the
budget, then it deletes the connections between the second office whose total cost
exceeds the budget. Thus, all offices forward chain to the rule that monitors total
cost.

Showing the G2 Class Hierarchy

You can specify a built-in G2 class as the superior class of a user-defined class
definition. For example, we specified the object class as the direct superior class of
the office class, and you specified the quantitative-parameter class as the direct
superior class of the quantity-param class.

Certain built-in G2 classes, such as variable and parameter classes, are subclasses
of the object class. Other G2 classes are subclasses of the item class, which is the
highest class in the G2 class hierarchy. In fact, most of the objects you create when
you click on a G2 menu choice are G2 items, as opposed to G2 objects. For
138

Keeping a History of Total Cost
example, a workspace, a rule, and a method are all items in G2 terminology.
However, keep in mind that in object-oriented terms, all G2 items are considered
objects.

In addition to creating user-defined classes that inherit from the object class or
any subclass of the object class, you can create user-defined classes that inherit
from the item class or subclasses of the item class. For example, you might want to
create a subclass of the rule class with a default scan interval of 2 seconds so that
every rule of that class has a scan interval.

To see the classes from which a class definition can inherit its definition, use the
Inspect facility to display the G2 class hierarchy.

To show the G2 class hierarchy:

1 Choose Tools > Inspect and enter the following command:

show on a workspace the class hierarchy of object
139

G2 shows the numerous built-in classes from which a user-defined class can
inherit its definition. The hierarchy also includes the two user-defined classes,
office and quantity-param, which appear with a box around them to
distinguish them from the built-in classes.

Notice the built-in variable and parameter classes, as well as classes that allow
you to define lists and arrays, which are two other types of G2 data structures
that allow you to store multiple pieces of information in a single attribute slot.
A list has a variable length and an array has a fixed length.

2 Delete the object class hierarchy workspace.

3 Now use Inspect to show the class hierarchy of the item class.

The class hierarchy for the item class includes the hierarchy for the object
class, plus all of the built-in classes you create by using menu choices. For
example, free text, procedures, workspaces, and rules are all subclasses of the
item class.

4 Delete the temporary workspace.

To save the application:

 Save the KB to the file named ch4.kb, with your initials appended to the end
of the filename.

Summary

In this lesson, you created a subclass of parameter that keeps a history of the total
cost of an office and forward chains to a rule that monitors total cost.

You learned how to use:

• The is given by syntax in the class-specific-attributes of a class definition to
specify that an attribute is given by a variable or parameter

• The options attribute of a parameter to specify whether the parameter forward
chains to rules that reference the parameter in their antecedent

• The history-keeping-spec attribute of a parameter to specify how the
parameter keeps a history

• The Workspace > New Definition > class-definition > class-definition menu
choice to create a subclass of the quantitative parameter class

• The attribute-initializations attribute of a class to specify default options and
history keeping spec for a subclass of parameter

• The Inspect facility to view the G2 class hierarchy
140

Creating Subclasses of Offices
Creating Subclasses of Offices
In this lesson, you will learn how to:

• Create subclasses of objects with different default attribute values and
different icons

• Create buttons that dynamically create instances of each subclass

• Apply reasoning at the appropriate level in the class hierarchy

Creating a Subclass of a User-Defined Class

Just as you created a subclass of the built-in object class to create an office class
and you created a subclass of the built-in parameter class to create a quantity
parameter subclass, you can create a subclass of the user-defined office class.

Create subclasses of user-defined classes to organize knowledge in an application,
extend the user-defined object library, and reuse existing class definitions
throughout an application.

You create subclasses of user-defined classes for two general purposes:

• Generalization or abstraction — to define similar information in one location,
which subclasses inherit automatically; the attributes of the class are an
abstraction of the common characteristics of a set of subclasses:

vehicle

boatplanecar
141

• Differentiation or specialization — to create subclasses of a common class to
define exceptions and special cases:

For example, you created a single class named office, which generalizes the
common attributes and methods of a video conferencing office. Because all video
conferencing offices require the same set of attributes for computing the number
of connections and total cost, and the same method for creating connections for
the office, you defined these attributes and methods on a single class, the office
class.

Now, suppose you wanted to differentiate offices from one another, for example,
by size, where small offices have a smaller budget than large offices. You can
easily do this by creating subclasses of office.

When defining subclasses, define only the unique characteristics and behaviors of
the subclass, such as new attributes, unique default values for existing attributes,
unique icons, and unique methods.

Now you will create two subclasses of the office class that define different default
values for budget and different icons.

To create two subclasses of the office class with unique icons and defaults:

1 On the Definitions workspace, create a class definition named small-office,
whose direct superior class is the office class.

2 Create another class definition named large-office, also a subclass of the office
class.

3 Edit the icon of one of the classes to make the status icon layer a different
color.

Use the edit icon menu choice on the class definition to edit its icon. For more
information on editing icons, see Editing the Icon.

4 Edit the class definition of each of subclass to specify a default value of 100 for
the budget attribute of the small office and a default value of 200 for the same
attribute of the large office.

vehicle

boatplanecar

speed-boat
142

Creating Subclasses of Offices
Hint Remember that you override the default value of an existing attribute of a
class in the attribute-initializations attribute of the class. Use the initially is
syntax to specify the default value.

5 To verify that the icons and budget attributes are unique, create an instance of
each class on the Definitions workspace by selecting create instance from the
class-definition tables:

To create subclasses of the office class, all you had to define were the unique
features of the subclass, in this case, the icon and the default value of a single
attribute, budget. The subclasses inherited the rest of their class definitions from
their superior class.

Creating Instances of Each Subclass

Currently, you have a single action button, which creates an instance of the office
class. Now that you have created subclasses of office, there is no longer a need for
an action button that creates an instance of the office class. Instead, you now need
two specific action buttons, which create instances of the small office and the large
143

office classes. Thus, when an action refers to a specific class, you must reference
the subclass directly.

To create two action buttons that create instances of each subclass of office:

1 On the Schematic Diagram workspace, edit the Create Office action button to
create an instance of the small-office and label the action button Create Small
Office:

2 Create another action button labelled Create Large Office that creates an
instance of the large-office:

The most efficient way to do this is to clone the existing action button and edit
the label and action.

3 Test each action button and verify that the icons and budgets are unique.

Verifying that the Rules Apply to the Subclasses

When you create subclasses of user-defined objects, you must consider at what
level in the hierarchy you will reason about the objects in the class.

To avoid redundancy in rules, always reason about the highest class in the
hierarchy that makes sense.

In the video conferencing prototype, you have created a number of rules that
apply to the office class. Because small office and large office are both subclasses
of the office class, these rules will continue to work for the subclasses. Similarly,
you created a method that creates a connection for the office class, which you
called by using a user menu choice. The method also continues to work for both
subclasses because the method is inherited by each subclass.

Thus, in this application, it is not only unnecessary but also inefficient to reference
each subclass because doing so would require twice as many rules and methods.

To verify that the rules and methods continue to work for the subclasses:

1 Create and connect a number of offices of different types and run the
prototype.

G2 deletes the connections of small offices when their total cost reaches 100,
and G2 deletes the connections of large offices when their total cost reaches
200. Thus, the rules continue to work for both subclasses without
modification.
144

Creating Subclasses of Offices
2 Create a connection by choosing create connection.

The method that each subclass calls when you choose the create connection
user menu choice continues to work for both subclasses. Thus, methods are
also inherited by the subclasses of an object.

Overriding the Default Method of a Class

Suppose you wanted the behavior of a subclass to be slightly different from that
of its superior class. You can create a new method of the same name to define the
unique behavior of the subclass. For example, you might want the method that
creates a connection for a small office to create the connection on the right of the
icon, rather than on top.

To override the default method of a class:

1 Choose Workspace > New Definition > procedure > method to create a new
method on the Definitions workspace.

2 Copy and paste the definition of the existing method named create-
connection into the definition of the new method, which will also be called
create-connection.

3 Edit the argument to the new method to refer to the small office class, rather
than the office class.

4 Edit the body of the method to make the connection lead out of the right side
of the icon, rather than the top.

The class-qualified name of the method is small-office::create-connection.

5 Create a new small office on the Schematic Diagram workspace and add a
connection by choosing create connection.

The new connection for a small office is coming out of the right side of the icon,
whereas the new connection for a large office is coming out of the top. This is
because the large office inherits its create-connection method from the office
class, while the small office has redefined its create-connection method.

Imagine if you had created numerous subclasses of office. Editing the behavior of
a single subclass would simply be a matter of creating a unique method for the
subclass. The unique method can also execute the method of the default class as
part of its definition.
145

To save the application:

 Save the KB to the file named ch4.kb, with your initials appended to the end
of the filename.

Summary

In this lesson, you created two subclasses of the office class with unique default
values for budget and a unique icon. You created action buttons that create
instances of each subclass, and you created a specific method for one of the
subclasses to override the default behavior.

You learned how to:

• Use the Workspace > New Definition > class-definition > class-definition
menu choice to create a new class definition that is a subclass of an existing
user-defined class

• Use the attribute-initializations attribute of the class definition to override the
default value of an attribute of the direct superior class

• Use action buttons to create instances of specific subclasses by referring to the
subclass in the action attribute

• Refer to the superior class of a class hierarchy in rules and methods so the
rules and methods apply to all subclasses in the same way

• Specify a subclass as the first argument to a method to override the default
behavior of a subclass

Disabling Rule Highlighting
Because you are finished testing the knowledge base itself, you can disable rule
highlighting for the next phase of the tutorial, which is building a user interface.

To disable rule highlighting:

 If you haven’t already, disable rule highlighting by choosing Run >
Run Options > Do Not Highlight Invoked Rules.
146

Summary
Summary
In this tutorial, you learned:

• How to use the is a syntax to create class-specific attributes that perform type
checking, the initially syntax to create class-specific attributes with default
values, and the is given by syntax to create class-specific attributes that
contain instances of a class

• How to keep a history of attribute values by using variables and parameters

• How to create a subclass of variable or parameter with specific options and
history keeping spec

• How to conclude a value for an attribute, using the conclude action

• How to count the number of connections for an object, using the numeric
expression the count of each

• How to invoke rules by scanning for testing and simulation purposes

• How to highlight invoked rules for testing purposes

• When to use generic rules and how you create them, using the for prefix

• How to use the event expressions is connected to, is disconnected from, and
receives a value to use event-driven processing to invoke rules

• About data-driven processing and forward chaining to invoke if rules that
monitor the value of an attribute against a fixed value

• How to dynamically delete all connections, using the delete action

• How to create an attribute display for all instances of a class by initializing the
attribute-displays system attribute

• About the built-in G2 classes and about the class hierarchy of the built-in
object class and item class

• How to create subclasses of user-defined classes and override their attribute
value defaults, icons, and methods
147

Solutions
The Definitions workspace looks like this:
148

Solutions
The Rules Workspace looks like this:
149

The Schematic Diagram workspace looks like this:
150

5

Building a
User Interface
Shows how to create a simple end user interface for the video conferencing
prototype that includes subworkspaces of objects, charts, readouts, messages,
animation, and user modes.

Goals of the User Interface 152

Loading the Knowledge Base 152

Creating a Subworkspace for an Object 152

Displaying Details on the Subworkspace of an Object 157

Sending a Message to the Operator 165

Animating Objects 176

Making Workspaces Attractive and Informative 180

Showing Workspaces Programmatically 185

Configuring the User Interface 187

Running the Prototype 194

Loading the Finished Application 198

Summary 199

Solutions 200
151

Goals of the User Interface
In the previous tutorial, you created a knowledge base for a video conferencing
prototype that monitors total cost, determines whether an office is over budget,
and if so, automatically deletes the connections. In this tutorial, you will build a
simple user interface that:

• Creates a hierarchical view of the application by creating a subworkspace for
each office that contains details about the office.

• Provides visual indicators of the value of total cost over time.

• Informs the operator when an office is over budget.

• Animates an office when its total cost is approaching the budget.

• Configures the behavior of offices for different classes of users.

Loading the Knowledge Base
You will start from the finished tutorial you created in the previous tutorial and
build on this application to create a user interface.

To load the knowledge base:

 Load the KB named ch4.kb that has your initials appended to it or load the
KB named ch5.kb to load the solution KB that is the starting point for this
tutorial.

Creating a Subworkspace for an Object
In this lesson, you will learn how to:

• Create a subworkspace for an object.

• Dynamically create an object with a subworkspace by cloning a master object
that defines a subworkspace.

What is a Subworkspace?

In the previous tutorial, you learned how to create a composite object in G2 by
creating an attribute of an object that is given by a variable or parameter.

Now you will learn another way to create a composite object by creating a
subworkspace of an object. A subworkspace is a workspace that is associated
with a particular object and is “below” the workspace on which the object resides.
152

Creating a Subworkspace for an Object
You use subworkspaces to create:

• Hierarchical views of an application, where the details of an object are hidden
on its subworkspace.

• A workspace hierarchy, where you use button objects to navigate to different
workspaces and submenus in an application.

• Activatable subworkspaces on which you place scanned rules, which you
activate and deactivate when certain conditions are met.

This picture illustrates two of the three main uses of subworkspace:

Create subworkspaces to encapsulate knowledge by hiding complexity on the
subworkspace of an object.

Just as you can create a class hierarchy by inheriting definitions from superior
classes, you can create an object hierarchy by creating subworkspaces of objects.
The subworkspace of an object can contain an object with a subworkspace, and so
on, to create a workspace hierarchy that is many levels deep.

An object with a subworkspace is called a superior object, because it is located
above the subworkspace in the object hierarchy.

object

subworkspace

Hierarchical Views

rules
definitions
schematic

top menu

Classes
UI Objects

definitions menu

schematic diagram

Workspace Hierarchy

rules
button

subworkspace

subworkspace

subworkspace
153

Creating a Master Object with a Subworkspace

The goal of the end user interface is to enable the end user to create an action
button that programmatically creates an office with a subworkspace. To create an
object with a subworkspace programmatically, first you create a master object,
then you interactively create a subworkspace for the master. Once you have
defined the master, you create instances by programmatically cloning the master.
The cloned instance automatically has a subworkspace.

To create a master object with a subworkspace:

1 On the Definitions workspace, create an instance of the small-office class and
an instance of the large-office class.

2 Display the menu for the small office.

3 Choose create subworkspace.

G2 creates a subworkspace associated with the object.

4 Use free text to label the subworkspace details.

5 Create a subworkspace for the large office instance, clone the free text from
the subworkspace of the small office, and place it on the subworkspace of the
large office.

6 Hide the subworkspaces.

7 Name the small office small-office-master and the name large office large-
office-master.

Now you will go to the subworkspace.
154

Creating a Subworkspace for an Object
To go to the subworkspace:

1 Choose go to subworkspace on each master office to display the
subworkspaces again.

The small office master, large office master, and their subworkspace look like
this:

2 Hide the subworkspaces.

Creating an Object with a Subworkspace
Dynamically

To create an object with a subworkspace dynamically, you use the create by
cloning action, which creates an instance of a class by cloning a master object.
Cloning the master object also clones its subworkspace and all the objects on it.
You will now edit the buttons that dynamically create each type of office to create
the offices by cloning the masters.
155

To create instances of each type of office by cloning each master office:

1 On the Schematic Diagram workspace, edit the button that creates an instance
of the small office class to use the create by cloning action, to clone the small-
office-master:

Use the syntax-guided text editor to help you. The syntax should look like
this:

create a small-office O by cloning small-office-master

2 Edit the button that creates a large office to clone the large-office-master:

3 Test the buttons and verify that each type of office now has a subworkspace.

4 Hide the subworkspaces.

The action attribute of the Create Small Office button should look like this:

in order
create a small-office O by cloning small-office-master and

transfer O to this workspace at
(random (-300, 300), random (-300, 300)) and

make O permanent

To save the application:

 Save the KB to a new file named ch5.kb, with your initials appended to the
end of the filename.

Summary

In this lesson, you created action buttons that create offices with subworkspaces
by cloning a master.

You learned how to use:

• The create subworkspace menu choice on an object to create a subworkspace
of the superior object.

• The create by cloning action to create an instance of a class by cloning an
existing instance with a subworkspace.
156

Displaying Details on the Subworkspace of an Object
Displaying Details on the Subworkspace of an
Object

In this lesson, you will learn how to:

• Create end user displays on the subworkspace of an object that show the
details of the object.

• Create a readout that shows the value of an attribute.

• Create a trend chart that displays the history of an attribute value over time.

Creating End User Displays

An end user interface typically includes end user displays, which provide visual
representations of real-time numeric data that the knowledge base receives and
computes. G2 supports numerous types of end user displays:

• Readout tables display numeric data in a small table.

• Digital clocks display the current G2 time in a small table.

• Dials and meters display numeric data in a circular dial or a vertical meter.

• Trend charts and graphs plot historical data over time.

You often create end user displays on the subworkspace of an object to
encapsulate the details of the object. To display the details about an object, the end
user simply displays the subworkspace of the object. However, you can also
create end user displays on any workspace in the application.

Use displays to provide visual feedback to the end user about real-time data and
the status of the overall application.

End user displays update their values according to their update interval, which
you specify. The update interval tells G2 how often to update the current value of
the display.

In general, the update interval of a display is independent of the interval at which
the knowledge base updates the corresponding data values. Thus, you might
have a parameter attribute that is receiving a value from a rule once every two
seconds and a trend chart that is displaying the parameter value once every five
seconds. G2 displays the current value of the parameter as of the current time
interval of the display.

Note There is one exception to this rule. You can use readout tables to control the
interval at which a variable attribute updates its value. If the readout table is
visible, the update interval of the readout table can cause G2 to update the value
of the variable attribute. This is another example of forward chaining.
157

Creating a Readout for the Small Office Master

You might want to create a visual indicator of the number of connections for a
particular office. You could place this indicator on the subworkspace of the object
to encapsulate details about the object.

You create the display on the subworkspace of each master office. As mentioned
earlier, the object whose attribute values you are displaying is the superior object
of the workspace, because the object is above the subworkspace in the object
hierarchy. To refer to the superior object of a subworkspace, use the expression
the item superior to.

To create a readout on the subworkspace of the small office master:

1 Display the subworkspace of the small-office-master on the Definitions
workspace.

2 Choose Workspace > New Display > readout-table > readout-table to create a
readout table end user display.

3 Display the table for the readout.

4 Edit the expression-to-display attribute to refer to the number-of-connections
attribute of the object superior to the current workspace.

Hint Use the syntax-guided text editor to help you enter the expression. You refer
to the object that is superior to the subworkspace as the item superior to, and
you refer to the subworkspace as this workspace.

The expression-to-display attribute should look like this:

the number-of-connections of the item superior to this workspace

The default label for the readout is the expression to display, which you can
edit.

5 Edit the label-to-display attribute to be "Number of Connections".

6 Edit the display-update-interval attribute to be 2 seconds so that the readout
table updates at the same interval at which the data updates.

7 Hide the table and the subworkspace.

Now you can test the readout table by interactively creating small offices.
158

Displaying Details on the Subworkspace of an Object
To test the readout table for the small office:

1 On the Schematic Diagram workspace, create and connect several small
offices.

2 Display the subworkspace of one of the offices and verify that the readout is
accurate.

G2 updates the readout once every two seconds to show the number of current
connections:

Creating a Readout for the Large Office Master

Now that you have tested the readout for the small office master, you can clone
the readout and place it on the subworkspace of the large office master.

To create a readout on the subworkspace of the large office master:

1 On the Definitions workspace, display the subworkspace of the small office
master and the large office master.

2 Clone the readout from the subworkspace of the small office master and place
it on the subworkspace of the large office master.

Notice that the same generic action applies to both subclasses because the
reference is to the item superior to this workspace.

3 Hide both subworkspaces.

Now test the readout table for the large office master.

To test the readout table for the large office:

1 On the Schematic Diagram workspace, create and connect several large
offices.

2 Display the subworkspace of one of the offices and verify that the readout is
accurate.

3 Hide the subworkspace.

Choose go to subworkspace to display the subworkspace.
159

Using Readout Tables to Invoke Rules

Currently, the number-of-connections attribute of the office is a simple typed
attribute. If the number-of-connections attribute of the office class were given by a
parameter or variable, you could use the readout table to invoke the rule that
computes the number of connections of an office by forward chaining. Just as G2
forward chains to the rule that breaks existing connections when the total cost
receives a value, G2 would forward chain to the rule that computes the number of
connections each time the readout table updates.

However, you can only use a readout table to invoke rules by forward chaining
when the readout table is visible. Thus, in this prototype, it does not make sense to
invoke the rule this way, because most of the time the subworkspace is not
visible.

Creating a Trend Chart that Plots Total Cost

One of the primary reasons for keeping a history of data values in an application
is to provide visual feedback about current and historical data to the end user. G2
supports two basic ways of plotting historical data:

• Trend charts, which plot any number of data values and give complete
control over the layout of the chart.

• Graphs, which only plot a single value and give you less control.

A trend chart consists of numerous subobjects, which define various information
about the trend chart. Each trend chart has:

• One or more plots, which are the data values to plot.

• One or more value axes, which are the vertical axis of each plot.

• A time axis, which is the horizontal axis.

• One or more point formats, which are the graphical elements at each data
point for each plot.

• One or more connector formats, which are the lines between the points for
each plot.

• A trend chart format, which controls the background color of the chart.

In the video conferencing prototype, you might want to plot the total cost of an
office over time and place the plot on the subworkspace of the office.
160

Displaying Details on the Subworkspace of an Object
To create a trend chart on the subworkspace of the small office master:

1 On the Definitions workspace, display the subworkspace of the small office
master.

2 With the subworkspace selected, choose Workspace > New Display >
trend-chart to create a trend chart on the subworkspace:

3 Display the table for the trend chart and edit the title attribute to be Total Cost.

You will use a single plot to display the total cost of an office over time.

To specify the plot for a trend chart:

1 Choose plots > subtable from the trend chart menu to display the subtable for
the plot.

Note You can also display the subtable for a plot by displaying the table for the
trend chart, clicking on the value of the plots attribute, and choosing the
subtables menu choice. This menu shows two menu choices, Plot Defaults
and Plot #1.

2 To plot the value of the total-cost attribute, edit the expression attribute to
refer to the object that is superior to the current workspace.

Hint The syntax for this expression is similar to that of the readout table you
created earlier.

3 To avoid displaying the expression in the trend chart, edit the include-in-
legend? attribute to be no by choosing change to "no" for the attribute.

4 Edit the update-interval attribute to be 2 seconds so that the chart updates
with the same frequency that the values change.

By default, the value axis is floating, which means the vertical axis adjusts as the
data values plot. Next, you will create a fixed value axis that corresponds to the
maximum budget for the office.
161

To edit the value axis for a trend chart:

1 Display the menu for the trend chart and choose value axes > subtable.

2 Edit the range-mode attribute to be fixed.

3 Edit the range-bounds attribute to be from 0 to 100, which is the range of
allowable values for total cost before a small office is over budget.

Now, you will update the background color of the trend chart.

To update the background color of a trend chart:

1 To edit the default background color of the trend chart, choose trend chart
format subtable.

2 Edit the data-window-background-color attribute to be any G2 color.

Hint Click the color prompt in the editor to see the names of available colors.

3 Hide the detail subworkspace of the small office master.

Next, you will test the trend chart.

To test the trend chart:

1 On the Schematic Diagram workspace, create and connect several small
offices.

2 Edit the connection cost per minute of one of the offices to be 10 to increment
total cost more rapidly and to see the plot.

3 Display the subworkspace of this office to verify that the total cost is plotting
on the trend chart.
162

Displaying Details on the Subworkspace of an Object
Your diagram might look something like this:

4 Hide the subworkspaces and reset G2.

Finally, you can clone the trend chart for the large office master.

To create a trend chart on the subworkspace of the large office master:

1 On the Definitions workspace, clone the trend chart from the subworkspace of
the small office master and place it on the subworkspace of the large office
master.

2 Edit the value axis of the trend chart on the subworkspace of the large office
master to specify a range bounds of 0 to 200.

3 Test the trend chart for the large offices by creating and connecting several
large offices on the Schematic Diagram and showing the subworkspace.

4 Hide the subworkspaces and reset G2.
163

Making the Application More Realistic

Until now you have tested the prototype by deleting the connections between
offices when the total cost exceeded a relatively small number. Now you will
update the default budgets for each type of office to be a larger number to see the
effect over time.

To update the default budget for each office type and the related trend charts:

1 In the class definition for the small-office class, edit the attribute-initializations
attribute to specify a default budget of 1000.

2 Edit the default budget for the large office to be 2000.

3 Update the range bounds in the value axes for the trend charts associated with
each master office to reflect the new budget limits.

4 On the Schematic Diagram workspace, create and connect some large and
small offices and show the subworkspaces to see the plots over time.

5 Hide the subworkspaces and reset G2.

The trend charts now plot data over a longer period of time.

To save the application:

 Save the KB to the file named ch5.kb, with your initials appended to the end
of the filename.

Summary

In this lesson, you created subworkspaces for each type of office and placed a
readout table and a trend chart on the subworkspaces.

You learned how to use:

• The Workspace > New Display > readout-table menu choice to create a
readout table display that shows the current value of an attribute of an object.

• Use the Workspace > New Display > trend-chart menu choice to create a
trend chart, which plots the current value of an attribute over time.

• Use the plots, value axes, and trend chart format subtable menu choices of the
trend chart to edit the plot, the axes, and the background color.
164

Sending a Message to the Operator
Sending a Message to the Operator
In this lesson, you will learn how to:

• Send a message on the Message Board to the operator.

• Create a method that sends a message for both types of offices.

• Cause G2 to wait for a specified period of time before executing the next
statement.

Informing the Operator When an Office is Over
Budget

An important part of an end user interface is communicating with the operator by
sending messages. G2 supports numerous types of messaging:

• Sending a message to the Message Board, which is a special workspace on
which G2 displays messages that you send by using the post action.

• Sending a message to a workspace by using the inform on action.

• Creating subclasses of the built-in message class, which you can dynamically
create and display.

• Creating communication objects, using the G2 Foundation Resources (GFR)
module, which determine how different user modes handle communications.

• Creating operator messages, using the G2 Event Management (GEVM)
module, which allows you to create operator messages and Message Browsers
for displaying and interacting with a variety of types of operator messages.

In general, you use the inform action and subclasses of message only during the
development phase of your application for testing purposes. In a real application,
you use GFR or GEVM to create communications objects, which present different
types of messages to the user, depending on the user mode. For example, in
operator mode, you might present a message in a dialog, whereas in developer
mode, you might present a different type of message, which is more meaningful
to a developer.

You can also use GEVM to create an internal blackboard of event states, about
which you can perform event detection, for example, using the G2 Event and Data
Processing (GEVM) module, and/or diagnostic reasoning, using the G2 SymCure
module.

In this prototype, you will inform the operator when the office is over budget by
sending a message to the Message Board.
165

To inform the operator when an office is over budget:

 Edit the rule on the Rules Workspace that checks to see if a site is over budget
by adding a post statement before the rule deletes the connections.

The post statement should inform the operator for the next number of seconds
that the office is over budget. You specify the text of the post statement as a string
with no embedded line feeds. Also, remember to use the reserved word and
between actions in the rule.

The rule should look like this:

for any office O
if the total-cost of O > the budget of O then in order

post for the next 5 seconds "the office is over budget" and
make every connection connected to O transient and
delete every connection connected to O

Now test the rule.

To test the rule:

1 Override the budget of one of the offices so you do not have to wait for the
total cost to exceed 1000.

2 Create and connect several small offices and observe the behavior when the
total cost exceeds the budget.

G2 deletes the connections and displays a message on the Message Board that
tells the end user that the office is over budget:

3 Reset G2.

Informing the Operator About a Specific Office

The text of the message can include any expression, which G2 evaluates when it
displays the message. For example, the message can refer to the name of the object
or any of its attributes, using the reserved word the. To use an expression in the
text of a message, you enclose the expression in square brackets ([]).

To refer to a specific office by its address:

 Edit the post statement in the rule to refer to the address attribute of the office
as an expression.

Hint You refer to an attribute of an object in an expression like this: [the address of
my-office].
166

Sending a Message to the Operator
The rule should look like this:

for any office O
if the total-cost of O > the budget of O then in order

post for the next 5 seconds "the [the address of O] office
is over budget" and

make every connection connected to O transient and
delete every connection connected to O

Now test the rule.

To test the rule:

1 Create several offices, edit the address of one of the offices in the table, and
edit the budget of one of the offices to be 10.

2 Connect several offices to the office whose address you specified.

G2 displays a message that refers to the particular office by its address when
the office is over budget:

3 Reset G2.

Notice that the text string of the message contains no line feeds or tabs; the text
wraps to the next line. In a text string, if you enter a line return or a tab as part of
the text string, they appear as part of the message.

Creating an Action Button for Testing Purposes

You can create an action button for testing purposes that temporarily changes the
budget of every office to 10. To do this, you use the change the text of action,
which temporarily changes the text of an attribute of an object to a new string.
When you reset the KB, the attribute value reverts to its default value.

Note You can conclude a value directly into any system-defined attribute by using the
attribute access feature of G2. Because this feature involves more complex data
structures, you will not learn about this feature here. However, note that using
the change the text of action to conclude the value of a system-defined attribute is
not the recommended technique.
167

To create an action button that overrides the budget:

1 With the Schematic Diagram workspace selected, choose Workspace >
New Button > action-button to create a button.

2 Edit the label attribute to be "Override Budget".

3 Edit the action attribute to use the change the text of action to change the text
of the budget attribute of one or more offices.

For example:

change the text of the budget of every office upon this workspace to "100"

Creating a Method that Informs the Operator

As you can see, the rule that checks to see whether an office is over budget is
becoming somewhat complicated: it sends a message, makes the connections
transient, and deletes the connections.

To take a more object-oriented approach, you could create a method for the office
that performs the actions of the rule. You could create a single method or multiple
methods, one for each distinct task. The consequent of the rule would then start
the method or methods. By creating methods for the actions in the consequent of a
rule you:

• Encapsulate information in one place, which helps to organize the knowledge
base.

• Make the actions generic so that other objects can use them.

To create a method for the office class that informs the operator:

1 Create a new method on the Definitions workspace by choosing Workspace >
New Definition > procedure > method.

2 Create a method named send-message for the office class.

Thus, the first argument to the method is office.

3 In the body of the method, add an inform statement that indicates an office is
over budget, using an expression.

Shortcut You can use the same inform statement that you specified in the rule by
pasting the text of the rule directly into the text of the method while you are
editing the method.

4 Create a method declaration for the send-message method by choosing
Workspace > New Definition > procedure > method-declaration.

5 Update the rule so that it starts the send-message method for any office,
rather than informing the operator.
168

Sending a Message to the Operator
Tip By convention, you should use all upper case letters for embedded procedures or
methods within a rule, or within another procedure or method. That way, it is
easy to scan the code to identify embedded procedures and methods.

The rule should look like this:

for any office O
if the total-cost of O > budget of O then in order

start send-message(O) and
make every connection connected to O transient and
delete every connection connected to O

The method should look similar to this:

send message (O: class office)
begin

post for the next 5 seconds that "the [the address of O] office
is over budget

end

Here are the method and method declaration that allow an office to send a
message:

Now test the rule.

To test the rule:

1 Create several small offices, specify the address and budget for one of the
offices, and connect several offices to that office.

The results should be identical to the previous test; G2 now invokes the
method rather than informing the operator in the rule.

2 Test the rule for a large office to ensure that the method works for both
subclasses of office.

3 Reset G2.

Note To further encapsulate the knowledge, you could also create a method named
delete-connections, which performs the last two actions of the rule.
169

Adding a Wait Statement to a Method

You might have noticed that the message G2 displays when an office is over
budget is slightly delayed. This is because G2 invokes the actions in the rule as
fast as possible in the order specified. Thus, first it starts the method and then it
makes the connections transient and deletes them. However, starting a method
does not guarantee that G2 will execute the actions of the method before it
executes the other actions in the rule; starting simply begins executing the
method.

To control the timing of execution of statements within methods and procedures,
you use the wait action, which causes G2 to wait some number of seconds before
executing the next statement. Because methods and procedures guarantee that
each statement is executed in order, you can control the exact timing of any
action.

Caution In a real application, you should avoid using wait statements as much as possible,
because the state of the KB can change radically after a wait state. To ensure
consistency, you must validate the state of the KB after each wait state, which is
very inefficient.

To edit the method to add a wait statement:

1 Edit the send-message method to cause G2 to wait for two seconds after it
sends the message.

2 Create several offices, specify the address and budget for one of the offices,
and connect several offices to that office.

Does G2 wait before deleting the connection? It does not appear to.

3 Change the wait statement to wait for 10 seconds as opposed to 2 seconds.

G2 still does not wait. Let’s explore why not.

The method should look like this:

send-message (O: class office)
begin

post for the next 5 seconds that
"the [the address of O] office is over budget;

wait for 2 seconds
end

Creating a Procedure that Starts a Method

When G2 executes the actions in the consequent of a rule, it executes them as fast
as possible in the order specified. However, the start action begins executing the
method and does not wait for the method to complete. To control more precisely
170

Sending a Message to the Operator
the order in which G2 takes the actions in the consequent of a rule, you can create
a procedure that executes all the actions in the consequent of the rule. The
consequent of the rule then starts the procedure.

Here are the actions that the procedure will execute as they appear in the
consequent of the rule:

start send-message (O) and
make every connection connected to O transient and
delete every connection connected to O

Several key differences exist between the syntax of rules and procedures:

• In a rule, you separate statements with an and, whereas in a procedure, you
separate statements with a semi-colon.

• In a rule, you use the word every to refer to every instance of a class, whereas
in a procedure, you create a local name for use with a for each statement and a
do loop to iterate over each instance of a class.

For example, to rewrite the two every statements in the rule, the procedure syntax
would look like this:

for C = each connection connected to O
do

make C transient;
delete C;

end

In this statement, C is a local name, which you declare in the local name
declarations of the procedure, and O is the argument to the procedure.

Now you will create a procedure that starts the send-message method and
deletes all the connections. When a procedure or method starts another procedure
or method as one of its actions, the procedure or method that is being started is
called an embedded procedure or method.

To create a procedure that executes a sequence of actions:

1 With the Definitions workspace selected, choose Workspace > New Definition
> procedure > procedure to create a new procedure.

2 Name the procedure take-over-budget-actions.

3 Declare a local name C, which is a type of the connection class.

This local name will represent the connections to delete.

4 In the body of the procedure, start the send-message method for the office
that is the argument to the procedure.

Thus, the procedure has an embedded method.
171

5 After sending the message to the operator, delete each connection connected
to the office by first making the connection transient and then deleting the
connection.

Use the for each syntax shown above for the statement.

The procedure should look like this:

take-over-budget-actions (O: class office)
C: class connection;
begin

start send-message(O);
for C = each connection connected to O do

make C transient;
delete C

end
end

Updating the Rule to Start the Procedure

Now you will update the rule that checks for over budget status to start the
take-over-budget-actions.

To start a procedure in the consequent of a rule:

 Edit the consequent of the rule that tests whether an office is over budget to
delete the actions and start the take-over-budget-actions procedure.

You use the start action to start the procedure with the office as its argument.
Remember, you do not need the in order statement in the rule.

Shortcut You can paste the name of the procedure directly into the rule by dragging your
cursor over the name of the procedure while editing the rule.

Notice that the procedure name appears in the rule in upper case.

The rule now looks like this:

for any office O
if the total-cost of O > the budget of O then

start take-over-budget-actions(O)

Now you can test the rule to ensure that the application still works.

To test the rule:

1 Create several small offices, specify the address and budget for one of the
offices, and connect several offices to that office.

2 Reset G2.
172

Sending a Message to the Operator
The results should be identical to the previous test; G2 now executes the
procedure rather than executing the actions in the consequent of the rule.

However, you will notice that G2 still does not wait after it sends the message
before it deletes the connections. Recall, we added a wait statement to the send-
message method. Finally, you will edit the procedure to cause G2 to wait.

Starting a Method

Let’s look at how G2 is executing the actions in the rule, the procedure, and the
method. This diagram shows the rule that checks for over budget status; the
procedure that starts the method and deletes the connections; and the method
that sends the message and waits for 2 seconds:

G2 executes statements in procedures and methods in order. However, the start
action simply starts the method. Once the method is started, G2 immediately
executes the next procedure statement; it does not wait for the method to
complete before it executes the next statement. Thus, in the example above, the
wait statement in the method does not necessarily execute before G2 deletes the
connections.

(1) G2 invokes this rule by forward
chaining when the value of total-cost
changes. When total-cost exceeds
budget, the rule starts the procedure.

(2) The procedure starts the send-
message method and immediately
executes the next statement, which loops
over all the connections, makes them
transient, and deletes them.

(3) The method sends a message to
the operator and waits for two
seconds.

for any office O
if the total-cost of O > the budget of O

then start
take-over-budget-actions(O)

take-over-budget-actions (O: class office)
C: class connection;
begin

start send-message(O);
for C = each connection connected to O do

make C transient;
delete C

end
end

send message (O: class office)
begin

post for the next 5 seconds
"the [the address of O] office
is over budget";

wait for 2 seconds
end
173

Calling a Method

You can control whether or not G2 finishes executing all the actions in an
embedded procedure or method before it begins executing the next statement by
using the call action, as opposed to the start action.

One difference between the start action and the call statement is:

• The start action executes the embedded procedure or method and
immediately returns control to the calling procedure or method.

• The call statement executes the embedded procedure or method and only
returns control to the calling procedure or method when the entire embedded
procedure or method has finished executing.

Another difference between the start action and the call statement is:

You can only use the call statement in a procedure, not a rule.

This is why you could not originally use the call action to start the method
directly from the rule. Instead, you needed to create a procedure to invoke the
method, using the call statement, and start the procedure from the rule.

Now you will edit the procedure that calls the send-message method to use the
call statement instead of the start action.

To start a method by using the call action:

1 Edit the take-over-budget-actions procedure to start the send-message
method by using the call statement.

2 Create several small offices, specify the address and budget for one of the
offices, and connect several offices to that office.

3 Reset G2.

G2 detects when the office is over budget, sends a message to the Message Board,
waits for two seconds, and then deletes the connections.
174

Sending a Message to the Operator
This diagram shows how the rule, procedure, and method interact now:

To save the application:

 Save the KB to the file named ch5.kb, with your initials appended to the end
of the filename.

Summary

In this lesson, you created a method that informs the operator when an office is
over budget and waits before deleting the connections. You also created a
procedure that calls the method and deletes the connections.

You learned how to:

• Use the post action to send a message to the operator.

• Use an expression within the text of a post statement that refers to an attribute
of an object.

• Encapsulate an inform statement in a method and start the method in a rule.

(1) G2 invokes this rule by forward
chaining when the value of total-cost
changes. If total-cost exceeds budget,
the rule starts the procedure.

(3) The procedure immediately calls the
send-message method, which sends a
message to the operator and waits for
two seconds.

(4) When all the statements in the
method have executed, it returns
control to the calling procedure, which
makes the connections transient and
deletes them.

for any office O
if the total-cost of O > the budget of O

then start
take-over-budget-actions(O)

take-over-budget-actions (O: class office)
C: class connection;
begin

call send-message(O);
for C = each connection connected to O do

make C transient;
delete C

end
end

send message (O: class office)
begin

post for the next 5 seconds
"the [the address of O] office
is over budget";

wait for 2 seconds
end

(2) G2 starts the take-over-budget-
actions procedure.
175

• Use the wait action to control the timing of sequential statements within a
method.

• Encapsulate knowledge and control the order of execution and the timing of
events by creating a procedure that executes the actions in the consequent of a
rule.

• Use the for each statement with a do loop within a procedure to refer
generically to each instance of a class by looping.

• Use the call statement to execute an embedded method from within a
procedure, which causes G2 to finish executing all the statements in the
embedded method before passing control back to the procedure.

Animating Objects
In this lesson, you will learn how to:

• Create a method that animates an object by looping.

• Create a rule that starts the animation method under certain conditions.

• Use subsecond timing to make the animation more realistic.

Creating a Method that Animates an Office

Another way to communicate with the end user is to animate objects. In G2, you
animate an object by creating a method that repeatedly changes the color of its
icon or moves the icon, waits a split second, then changes the color or moves the
object again. The effect is an object whose icon animates.

For example, you might want to animate an office when the total cost is
approaching the budget, thereby providing a visual indicator to the end user that
an office is about to be over budget.

To create a method that animates each type of office:

1 On the Definitions workspace, create a method called animate-icon for the
small-office class.

2 Specify the body of the method to perform these actions:

• Change the status icon-color to red.

• Wait 1 second.

• Change the status icon-color to its original color.
176

Animating Objects
3 Create a method declaration for the animate-icon method.

The method for the small office should look similar to this:

animate-icon(O: class small-office)
begin

change the status icon-color of O to red;
wait for 1 second;
change the status icon-color of O to salmon

end

Now test the method.

To test the method:

1 On the Definitions workspace, create an action button that starts the method
for the small office master.

G2 turns the status icon region red for a second, then changes it back to its
original color.

2 Clone the small-office::animate-icon method to create a method for the large
office class that changes the color of the status icon region to red and then
back to its original color.

3 Clone the action button that tests the animation of the small office master to
create an action button that tests the animation of the large office master.

G2 turns the status icon region red for a second, then changes it back to its
original color.

Here are the two methods, the method declaration, and the two action buttons for
testing the methods:

The expression attribute for the animate small office action button looks like this:

start animate-icon(small-office-master)
177

Creating a Loop in a Method

To create real animation, you need to repeat the statements in the method so that
the colors appear to flash. To do this, you use the repeat statement to execute the
statements in a loop. A repeat statement starts with the word repeat and ends
with the word end.

Typically, you add an exit if statement after the last statement in the repeat loop to
cause the looping to stop under certain conditions. For example, when you
animate the office icon, you want the animation to stop when the total cost of the
office exceeds the budget and the connections are broken.

To add a repeat statement to the animation methods:

1 Edit the small-office::animate-icon method to add a repeat statement just after
the begin statement.

2 Add another wait statement after the last change statement so that G2 waits
before changing the icon color back to red.

3 Add an exit if statement after the last change statement that causes G2 to exit
the loop if the total cost of the office is greater than the budget.

4 Add an end statement after the last exit it statement to end the loop.

5 Edit the large-office::animate-icon method to add the same set of statements.

The method for the small office should look like this:

animate-icon(O: class small-office)
begin

repeat
change the status icon-color of O to red;
wait for 1 second;
change the status icon-color of O to salmon;
wait for 1 second;
exit if the total-cost of O > the budget of O

end
end

Now you can test the methods.

To test the methods:

1 Click each action button.

G2 animates the offices indefinitely.

2 Restart G2 to stop the methods from executing.
178

Animating Objects
Animating the Office When it is Almost Over Budget

Now that you have created a method that animates each type of office, you can
create a rule that animates the office when the total cost is approaching the
budget. For example, you might start the animation method when the total cost is
50 dollars less than the budget.

To create a rule that animates the office when total cost is close to the budget:

1 On the Rules Workspace, create a new rule that starts the animate-icon
method for any office when the total cost of the office is 50 dollars less than
the budget.

Hint Make the rule generic. The antecedent of the rule tests to see if the total cost is
greater than the budget minus 50. The consequent of the rule starts the
animation method for a particular office. The rule is invoked by forward
chaining when the total cost receives a value.

2 Use free text to label the rule to indicate how it is invoked.

3 Test the rule.

The rule is invoked by forward chaining each time the total cost of an office
changes. When the total cost of any office is 50 dollars less than the budget, the
office begins to animate. When the total cost exceeds the budget and the
connections are broken, animation stops.

The rule should look like this:

for any office O
if the total-cost of O > (the budget of O - 50) then start animate-icon(O)

Using Subsecond Timing for Animation

To make the animation more realistic, you can use subsecond timing to control
the timing of wait statements in methods and procedures, down to a fraction of a
second.

By default, G2 schedules its actions at one second intervals. Thus, to use
subsecond timing, you must specify:

• A subsecond wait period in a method or procedure.

• A subsecond minimum scheduling interval in the Timing Parameters system
table.

G2 defines numerous system tables that allow you to control the default behavior
of various aspects of the G2 environment, such as timing parameters, fonts, log
files, and the text editor.
179

To use subsecond timing to animate an icon:

1 Edit the animate-icon method for each subclass to specify .1 seconds in each
wait statement.

2 Choose Edit > System Tables > Timing Parameters to display the system table
that controls the default timing parameters in G2.

This table allows you to control the default behavior of various timing
parameters, including the minimum scheduling interval. Notice that the
minimum scheduling interval is 1 second, by default.

3 Edit the minimum-scheduling-interval attribute to be .1 seconds.

4 Test the animation by clicking the animation buttons on the Definitions
workspace.

G2 now animates the icons at a much faster interval when the offices are about to
be over budget.

To save the application:

 Save the KB to the file named ch5.kb, with your initials appended to the end
of the filename.

Summary

In this lesson, you created a method that animates the office icon, using
subsecond timing, when the total cost is approaching the budget.

You learned how to use:

• A repeat statement in conjunction with a wait statement to cause an object to
animate by looping.

• An exit if statement to determine when a repeat loop finishes executing.

• The Timing Parameters system table to specify the minimum-scheduling-
interval attribute to be a number less than one, to use subsecond timing.

Making Workspaces Attractive and Informative
In this lesson, you will learn how to:

• Change the background color of a workspace.

• Add frames to a workspace.

• Add background graphics to a workspace.
180

Making Workspaces Attractive and Informative
Changing the Color of a Workspace

You can change the background color of any workspace to:

• Make end user workspaces more attractive.

• Identify different types of workspaces by their color.

For example, you might want your end user workspaces to be one color, your
workspaces that act as menus and submenus to be another color, and your
workspaces that contain rules and definitions to be a different color.

Workspaces have two special colors: background and foreground. The
background color of a workspace is the color of the workspace itself. The
foreground color of a workspace includes all objects whose color is not otherwise
specified, for example, free text, button text, and connections.

To change the background color of a workspaces:

1 With the Schematic Diagram workspace selected, choose Workspace > Color
> background-color to display a palette of colors.

2 Click the More button to display the full color palette.

3 Change the background color to another color.

Tip You typically choose neutral pastel colors for the background of end user
workspaces.

4 Change the background color of the Definitions and Rules Workspace
workspaces to be another color.

Creating a Workspace Frame

You can create borders around a workspace to make it more attractive. A
workspace border is called a frame style. A frame style consists of any number of
borders of different colors and pixel widths.

To create a frame style for the Schematic Diagram workspace:

1 Select the Definitions workspace and choose Workspace > New Definition >
frame-style-definition to create a new frame style.

2 Display the table for the frame style and specify its name to be green-frame.
181

3 Edit the description-of-frame attribute to specify three borders as follows:

border 2 black, 2 aquamarine, 1 black

4 Select the Schematic Diagram workspace and choose Workspace > Table to
show its table.

5 Edit the frame-style attribute to refer to the green-frame.

The workspace now uses the green frame style as its border:

Creating Workspace Subclasses

Suppose you wanted to use the same color and frame style for different types of
workspaces in an application. For example, you might use one color scheme for
rules and definitions, and another color scheme for the end user workspaces. This
technique makes it easy to tell the type of workspace you are viewing.

You can create a class definition that is a subclass of the kb-workspace class,
which specifies the default color and frame style for the workspace.

Each time you create a new workspace, you would create a workspace of the
appropriate subclass so that all your workspaces look consistent.

To create a definition workspace subclass with a default color:

1 On the Definitions workspace, create a class definition whose direct superior
class is the kb-workspace class.

For example, you might create a workspace subclass named definition-wksp
on which you place class definitions, methods and procedures, user menu
choice definitions, and so on.

2 Using the attribute-initializations attribute, specify the background-color
system-defined initializable attribute.

For example:

background-color: antique-white

Now you can make another workspace for definitions relating to graphics, using
the user-defined workspace class.
182

Making Workspaces Attractive and Informative
To create a definition workspace:

1 Choose Workspace > New Workspace > kb workspace to display a menu for
choosing the workspace class:

2 Choose definition-wksp to create an instance of the user-defined workspace
class.

3 Name the workspace graphics-definition.

4 Rename the existing definitions workspace class-definitions.

5 Transfer the frame style definition named green-frame from the Definitions
workspace to the Graphics Definitions workspace.

Creating Background Graphics for a Workspace

You can add a bitmap image as the background of any workspace. You define the
background image by creating an image definition, which specifies the name of
the image and a filename of JPEG, GIF, or XMB image.

You can use background graphics to make a workspace more interesting or to
provide information to the end user. For example, you might use an image of a
map to indicate the approximate location of video conferencing offices around the
world.

To add a map to the Schematic Diagram workspace:

1 Select the Graphics Definitions workspace and choose Workspace >
New Definition > image-definition to create a new background graphic image
definition.

2 Display the table for the image definition and edit names to be world.

3 Edit the file-name-of-image attribute to specify a string that specifies the
complete pathname of the world.gif file.

This file is located in the kbs subdirectory of your G2 directory.

For example, on Windows, the pathname would be:

"c:\Program Files\gensym\g2-2011\g2\kbs\demos\world.gif"

4 Display the table for the Schematic Diagram workspace.
183

5 Edit the background-images attribute to refer to the name of the image
definition and its x,y location on the workspace, as follows:

world at (0,0)

This specification locates the image in the center of the workspace.

6 Move the title and buttons on the Schematic Diagram workspace so they are
aligned with the top of the image.

The Schematic Diagram workspace now allows the end user to place offices at
various locations around the map:

To save the application:

 Save the KB to the file named ch5.kb, with your initials appended to the end
of the filename.
184

Showing Workspaces Programmatically
Summary

In this lesson, you made the application more visually attractive and informative
by adding color, borders, and background graphics to the workspaces.

You learned how to:

• Use the Color menu choice for a workspace to change its background and
foreground colors.

• Use the Workspace > New Definition > frame-style-definition menu choice
and the frame-style attribute of a workspace to create a border around a
workspace.

• Use the Workspace > New Definition > image-definition menu choice and the
background-images attribute of a workspace to add background graphics to a
workspace.

• Create a subclass of kb-workspace that defines a default background color.

Showing Workspaces Programmatically
In this lesson, you will learn how to:

• Use a rule to display a workspace upon startup.

• Display a workspace at a particular location on a screen at a particular scale.

Using an Initially Rule to Show a Workspace on
Startup

In an end user environment, you typically want to show the end user workspace
automatically upon startup.

One way to perform actions automatically upon startup is to use an initially rule.
An initially rule indicates all of the actions that G2 is to perform when the user
starts the application running.

In a real application, you use the G2 Foundation Resources (GFR) module to
create a startup object that determines the startup behavior of every module in the
KB and the order in which each module starts.

You can show a workspace programmatically at any location on the window and
at any scale by using the show action. To specify the location of any object on a
workspace, you provide the x and y coordinates. You refer to the center of the
window by using (0,0).
185

To create an initially rule that shows the Schematic Diagram workspace:

1 On the Rules Workspace, create a new rule that initially displays the
workspace named schematic-diagram at the center of the screen at three-
quarter scale.

Hint Use the syntax-guided text editor to help you with the syntax of the show
action. You can show a named workspace at an x,y location in the screen, and
you can show a named workspace at three-quarter scale.

Label the rule to indicate how it is invoked and place it at the top of the
workspace.

2 Hide all the workspaces of the application.

3 Restart the knowledge base to test the rule.

G2 displays the end user workspace in the middle of the screen at three-quarter
scale.

The initially rule should look like this:

initially
show schematic-diagram at (0,0) in the screen and
show schematic-diagram at three-quarter scale

Creating a Button that Iconifies a Workspace

You can use the show action to create an action button that scales a workspace
and “iconifies” a workspace by showing it at a very small scale.

To create an action button that iconifies the Schematic Diagram workspace:

1 Create a new action button on the Schematic Diagram workspace that shows
the current workspace at 10% of its current size:

Hint You can use the show action to show a workspace scaled by its current scale
times a number.
186

Configuring the User Interface
2 Test the action button.

G2 shrinks the workspace to 10% of its size:

3 Restart the application to display the workspace at three-quarter size again.

The action of the button should look like this:

show this workspace scaled by its current scale times .1

To save the application:

 Save the KB to the file named ch5.kb, with your initials appended to the end
of the filename.

Summary

In this lesson, you created a rule that shows the end user workspace when you
start the application, and you created a button that “iconifies” the workspace.

You learned how to use:

• An initially rule to show a workspace upon startup.

• The show action to show a workspace at a particular location on the window
and at a particular scale.

• An action button to show a workspace at a particular scale.

Configuring the User Interface
In this lesson, you will learn how to:

• Create different user modes for different classes of users.

• Configure the behavior of objects depending on the user mode.

• Create action buttons to switch the user mode.

• Use an initially rule to start the application in a particular mode.
187

What are User Modes?

The last step in building an end user interface for an application is to configure
the behavior of the knowledge base for the various classes of users. For example,
the video conferencing application might support three classes of users:

• Administrators, who are the developers of the application.

• Developers, who are the users that configure the layout of the video
conferencing schematic and specify the attributes of the offices.

• Users, who are the end users that monitor the application and display
information about each office while the application it is running.

Thus, you might think of creating three modes in which the application operates:

• Administrator mode, where users can perform any G2 operation.

• Developer mode, where users can configure the layout of the schematic
diagram, display the subworkspace of an office, and edit its table.

• Operator mode, where users can just display the subworkspace of an office.

These user modes determine the actions the user can perform on various objects,
the visible attributes of an object, and the behavior of the overall application.

Typically, you only allow the administrator to change the user mode. You switch
between the various modes by using the Tools > Change Mode menu choice.

The only built-in mode in G2 is administrator mode. You create the other modes
according to the needs of the application.

What are User Interface Configurations?

You can configure the behavior of any class of objects or the overall KB in
different user modes by specifying user interface configurations. You specify the
three types of user interface configuration statements in different locations to
configure different aspects of the KB, as this table describes:

This type of
configuration statement...

Configures
the behavior of... And you specify it in...

Instance configuration Each instance of a class The class definition

Item configuration Specific G2 items The item

KB configuration The overall KB The KB Configurations
system table
188

Configuring the User Interface
You can configure various aspects of class instances, specific objects, or the overall
knowledge base, including:

• The visible attributes.

• The available menu choices.

• The available “non-menu choices,” such as moving an object or displaying its
menu.

• The behavior of mouse clicks and keyboard commands.

• The behavior of an object when you select it.

• Whether objects snap to a grid on a workspace.

For example, in developer mode, you might want the user to be able to display
the table for an office but not to transfer the office to another workspace. Further,
in developer mode, only the user configurable attributes and attributes shown in
end user displays need to be visible in the table. Thus, you might want to restrict
the “internal” attributes such as connection-cost-per-minute and total-cost-per-
minute.

In operator mode, you might not want the user to be able to move an office on the
workspace. Furthermore, you might not want the user to be able to display the
menu for an office at all. Instead, you might want the end user to be able to click
on an office to display its subworkspace.

In administrator mode, nothing would be restricted.

Always define user interface configurations so that they restrict functionality
incrementally with each user mode and always define one more that has no
restrictions.

Configuring the Office for Developer Mode

In developer mode, you want the user to be able to do the following and only the
following:

• Display the table for an office.

• Show the subworkspace of an office.

• Delete an office.

• Create a connection for an office.

To do this, you specify an instance configuration for the office class.
189

Configuring the Menu Choices of Every Instance

First, you will configure the available menu choices.

To configure the available menu choices for all offices in developer mode:

1 On the Definitions workspace, display the table for the office class definition.

Notice that the table has an item-configuration and an instance-configuration
attribute:

• You use instance-configuration to specify the behavior of all instances of
the class.

• You use item-configuration to specify the behavior of the class definition
object itself.

2 Use the syntax-guided text editor to edit the instance-configurations attribute
as follows:

configure the user interface as follows:
when in developer mode:

menu choices for office include: table, delete, create-connection,
go-to-subworkspace

Now you will change the mode to see the effect.

To change the mode to developer mode:

 To change the mode, choose Tools > Change Mode, edit the g2-user-mode
attribute to be developer, and click End.

Shortcut You can also use the Ctrl + y command to display the login panel on which you
can change the user mode.

You define the available user modes by specifying a configuration statement, as
you just did.

Now you can test the application in developer mode.
190

Configuring the User Interface
To test the application in developer mode:

1 Display the menu for the office instance on the Definitions workspace.

The menu includes three of the menu choices mentioned in the configuration
statement: table, delete, and create-connection:

2 Display the table for the small-office-master object.

The menu includes the three menu choices you specified in the instance
configuration, as well as the go to subworkspace menu choice, because the
subclass defines a subworkspace.

Configuring the Attributes of Every Instance

Now you will limit the attributes that are visible in the table.

To configure the visible attributes in the table for all offices in developer mode:

1 Update the instance configuration statement for the office class to exclude the
two internal attributes, as follows:

attributes visible for office exclude: connection-cost-per-minute,
total-cost-per-minute

Hint Configuration statements are separated by a semi-colon.

2 Display the table for the small office master.
191

The table excludes the attributes you specified in the configuration statement:

Configuring the Office for Operator Mode

In operator mode, you want the user to be able to do the following and only the
following:

Display the subworkspace of the office by clicking the object

To do this, you update the instance configuration for the office class to specify the
behavior when you are in operator mode.

Configuring the Menu Choices of Every Instance

First, you will configure the menu choices.

To configure the menu choices for all offices in operator mode:

1 Edit the instance-configuration attribute for the office class to configure the
selection behavior in operator mode, as follows:

when in operator mode:
selecting any office implies go-to-subworkspace

The other options for the selection behavior of an object include naming the
object, cloning the object, and showing the table for the object.

2 Switch to operator mode.

Hint Remember, you can use Tools > Change Mode or Ctrl + y.

3 Click on the small-office-master object on the Definitions workspace.

G2 automatically displays the subworkspace of the office.
192

Configuring the User Interface
Configuring the “Non-Menu” Choices of Every Instance

Now you will further restrict the user interface to disallow any “non-menu
choices,” such as moving the object.

To configure the non-menu choices for all offices in operator mode:

1 Edit the instance-configuration attribute for the office class to restrict non-
menu choices to allow nothing, as follows:

non-menu choices for office include: nothing

This configuration statement means that you cannot perform any “non-menu”
operation on the office, such as displaying its menu or moving the object.

2 Try moving the small office master.

G2 disallows moving the office in operator mode.

Starting the Application in Operator Mode

In addition to displaying the Schematic Diagram workspace upon startup, you
might want the application to start in operator mode. The G2 server and each
connected Telewindows client has an associated g2-window object, which keeps
track of various information, including the G2 user mode of the window. You can
refer to the current window by using the expression this window, or you can refer
to every window by using every g2-window.

To start the application in operator mode:

1 Edit the initially rule on the Rules Workspace to change the text of the
g2-user-mode attribute of every g2-window to "operator".

2 Restart the KB and verify that you are in operator mode.

You should not be able to move any offices on the workspace, and, when you
click on an office, G2 displays its subworkspace.

The initially rule should look like this:

initially
show schematic-diagram at (0, 0) in the screen and
show schematic-diagram at three-quarter scale and
change the text of the g2-user-mode of every g2-window to "operator"

Now save the application after hiding all the application workspaces.

To save the application:

 Hide all the workspaces except the one with the user mode buttons and save
the KB to the file named ch5.kb, with your initials appended to the end of the
filename.
193

Summary

In this lesson, you configured the user interface for operator mode and developer
mode, you created action buttons to change the mode, and you updated the
initially rule to change the user mode on startup.

You learned how to use:

• The instance-configurations attribute of a class to specify the behavior of each
instance of the class in various user modes.

• The configure the user interface as follows: statement in an instance
configuration to configure the menu choices, attributes visible, selecting, and
non-menu choices instance configurations.

• The change the text of action to change the user mode of every G2 window
upon startup.

Running the Prototype
In this lesson, you will:

• Run the prototype in developer mode.

• Run the prototype in operator mode.

• Save and load the finished prototype.

Configuring the Schematic in Developer Mode

First you will configure the layout of the video conferencing schematic diagram in
developer mode and configure the attributes of each office.

To run the prototype in developer mode:

1 Start the application running.

2 Choose Tools > User Mode > Developer to switch to developer mode.

3 Create a number of offices on the Schematic Diagram workspace.

4 Configure the address attribute of all offices by editing their tables.

You must configure the address of each office because the KB must evaluate
this attribute when it is running when an office is over budget.
194

Running the Prototype
When G2 evaluates an attribute that has no value (none), it generates this runtime
error: The attribute attribute-name exists in object, but the attribute contained
nothing, causing this reference to fail.

To avoid having to specify a value for each office attribute, you can add default
values in the class-specific attribute declaration of the class as shown in the
tutorial kbs.

5 Create connections as desired by choosing create connection and connect the
offices together.

If you connect the offices while G2 is running, G2 begins computing the
number of connections and the total cost right away.

6 Connect the offices together.

7 Reset G2 to reset the total cost of each office to zero.

Your schematic diagram might look something like this:
195

Saving the Prototype

You have now created the end user schematic diagram for a particular video
conferencing application. You could create different layouts of the schematic
diagram and save them in different knowledge bases to run different versions of
the same application.

To save the application:

 Save the KB to the file named ch5.kb, with your initials appended to the end
of the filename.

Running the Prototype in Operator Mode

Now you will run the fully configured prototype in operator mode.

To run the prototype in operator mode:

1 Start the application.

G2 displays the Schematic Diagram in the center of the window and switches
to operator mode. The connected offices compute the number of connections
and begin computing total cost.

2 Click an office to display its subworkspace.

G2 shows the number of connected offices and plots the total cost over time.
196

Running the Prototype
Your application might look something like this:

Simulating an Over Budget Situation

To simulate an over budget situation, you can edit the budget of one of the offices
to see the results.

To simulate an over budget situation:

 Switch to Developer mode and edit the budget of the central office to be a
small number such as 20.

G2 animates the office prior to being over budget to warn the operator. G2 then
displays a message indicating which office is over budget and deletes the
connections. The rest of the application continues to run until eventually all the
sites are over budget.
197

Your application might look something like this:

Loading the Finished Application
You might want to rerun the application from its original state before the
connections were deleted. You can do this by loading the finished application
from the point at which you saved it.

To load the original application:

 Load the file named ch5.kb with your initials appended to it to restore your
completed application or load the file named solution.kb to load the
solution KB for the entire Getting Started with G2 Tutorials.

You can now test the application again using different budget constraints.
198

Summary
Summary
In this tutorial, you learned how to:

• Create hierarchical views of an application by creating subworkspaces of
objects.

• Dynamically create an object with a subworkspace by using the create by
cloning action to clone a master object.

• Create and configure a trend chart to display the history of an attribute value
over time.

• Create a readout table that reports the current value of an attribute.

• Create a method that sends a message to the operator on the Message Board,
using the post action.

• Create a procedure that calls a method, using the call action to more finely
control the timing of events.

• Create a method that animates an object, by using the change action, the wait
action, the repeat statement, and subsecond timing.

• Make workspaces visually attractive and informative by changing the
background color, adding frame styles, and creating image definitions for
background graphics.

• Create different user modes for different classes of users, using instance
configurations, and configure the behavior of objects based on the user mode.

• Switch the user mode, using several different techniques: the Tools > Change
Mode menu choice, the Ctrl + y command, and the change the text of action.

• Use an initially rule and the show action to display a workspace at a particular
location in the window upon startup.

• Change the user mode on startup, using an initially rule and the change the
text of action for every g2-window.

• Create a button that “iconifies” a workspace, using the show action.
199

Solutions
The Schematic Diagram workspace looks like this:
200

Solutions
The Class Definitions workspace looks like this:
201

The Graphics Definitions workspace looks like this:
202

Solutions
The Rules Workspace looks like this:
203

204

A

Error Handling
Provides simple guidelines for recovering from some of the most common errors
that novice G2 users make.

Common Errors 205

Common Errors
This appendix lists some common errors and how to recover from them.

Action Buttons Don’t Work

Make sure that G2 is running by choosing Main Menu > Start or Resume.

Cannot Enter a Name

Make sure that the name has hyphens in place of spaces. All object names must be
unique symbols in G2, for example, basic-skills-workspace. Also, make sure that
the name is not a reserved word in G2, such as rule.

Connection Attributes Not Updating

If an object has an attribute that is based on a connection existing and that
attribute is not updating, be sure that the object is actually connected to another
object. Sometimes, objects can appear to be connected when in fact they are not.
205

To test to see if two objects are connected:

 Move one of the objects to verify that the connection moves with the object.

Also, connection attributes might not be updating because the rule and/or
procedure or method that is controlling the updating might not be correct.

For more information, see Rule is Not Being Invoked and Procedures and
Methods Not Executing.

Rule is Not Being Invoked

To verify if a rule is being invoked:

 Choose Main Menu > Run Options > Highlight Invoked Rules.

If the rule does not highlight when you think it should, do one or more of the
following:

• Check the notes attribute in the rule’s table to see if there are any errors.

• If the rule is supposed to be invoked by scanning, verify that the rule has a
value for the scan-interval attribute in the rule’s table.

• If the rule is supposed to be invoked by event detection, verify that the
antecedent of the rule is a valid event.

• If the rule is supposed to be invoked by forward chaining, verify that the
attribute in the antecedent of the rule is invokable by forward chaining. In
general, simple attributes are automatically invokable by forward chaining. If
the attribute is a parameter or variable, ensure that the parameter or variable
specifies do forward chain as one of its options.

• If the rule is not being invoked for the desired class of objects, verify that all
references symbols such as attribute names, class names, and local variables
are correct. This includes the for prefix for creating a generic rule and
references to attributes of objects within the rule.
206

Common Errors
Procedures and Methods Not Executing

If a procedure or method is not executing when you think it should, do one or
more of the following:

• Check the notes attribute in the procedure or method’s table to see if there are
any errors.

• If the method is not being invoked for the desired class of objects, verify that
the first argument to the method is the class to which the method applies and
ensure that the method has a method declaration.

• If the procedure or method is not performing the actions you expect, verify
that all references to symbols such as attribute names, class names, and local
names are correct.

Runtime Errors

G2 helps to prevent most types of errors during the development process. For
example, when you are editing the text of any statement, such as a rule, method,
or procedure, G2 prevents you from making syntactic errors as you type.

For an example of this type of error, see Recovering from Syntactic Errors.

G2 detects other types of errors by displaying messages in the notes attribute of
the object. For example, if you create a rule that refers to an object that does not
exist, G2 indicates this in the notes attribute of the rule.

For an example of this type of error, see Recovering from Other Types of Errors.

In some cases, G2 cannot detect an error ahead of time. In this case, G2 displays an
error on the Operator Logbook. These types of errors are known as runtime
errors because G2 detects them at runtime, that is, when G2 is running.

For example, suppose you have an expression within a method that refers to the
value of an attribute, which has not been specified. When G2 evaluates the
expression, it generates a runtime error indicating that the value of the attribute
has not been specified.

An example of this in the Getting Started tutorials is the send-message method,
which refers to the value of the address attribute of an office as an expression in
square brackets ([]) within an inform statement. If you do not specify a value for
the address attribute of an office and the send-message method is invoked for
that office, G2 generates a runtime error indicating that the address attribute has
no value.

Tip You can prevent many runtime errors by providing default values for all
attributes when you declare them in the class definition.
207

208

Glossary

A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z
A

abstraction: See generalization.

action: A type of G2 statement that programmatically performs an operation on
an object or on the G2 environment in general. G2 supports numerous types of
actions, for example, creating and deleting objects, concluding values for
attributes, and showing and hiding workspaces.

action-button: A G2 button that performs a sequence of actions when the user
clicks the button.

activatable-subworkspaces: A subworkspace of an object on which you place
scanned rules, which you activate and deactivate programmatically when certain
conditions are met. You use activatable subworkspaces to enable and disable
entire portions of your diagram.

administrator-mode: The only built-in user mode, where users can perform any
G2 operation.

allow-other-processing-statement: A procedural statement that allows other
processes to occur while the procedure is executing.

animate: To change the color of an object’s icon or move the icon, then wait a split
second, then change the color or move the object again, repeatedly. To perform
animation you use subsecond timing and the wait action.

antecedent: The first part of any rule, which tests a condition.

application: Another term for a G2 knowledge base.

argument-list: In a method or procedure, the objects or values that the method or
procedure requires to evaluate. In a method, the first argument in the argument
list is always the class of objects to which the method applies.

array: A G2 data structure that allows you to store multiple pieces of data in a
single attribute slot. The length of an array varies depending on the number of
elements in the array.

attribute: A unique characteristic of an object. In object-oriented terms, attributes
represent an object’s data. You declare the attributes of an object in the class
definition, and you specify attribute values in the instance.
209

attribute-display: An attribute value displayed next to the icon, with or without
the attribute name.

attribute-table: A display that lists all of an object’s attributes, which you can edit.

B

background: The gray area of the G2 window that is behind the workspaces. You
click the background to display the G2 Main Menu. The only type of object you
can place on the G2 background is a workspace.

background color: The color of the area of the workspace on which you place
objects.

begin statement: Marks the beginning of the body of a procedure or method. A
begin statement must appear with an end statement.

C

call action: Executes an embedded procedure or method and does not return
control to the calling procedure or method until the entire embedded procedure
or method has finished executing. Compare with start action.

case statement: A procedural programming statement that allows you to test an
attribute against multiple possible values.

change action: A G2 action that dynamically changes various aspects of the
knowledge base, for example, the color of an icon or the text of an attribute.

change attribute: An attribute of a class definition that allows you to change
manually overridden attribute values of instances so they correspond to an
updated class definition. G2 does not automatically change manually overridden
attribute or stubs of existing instances whose class definition has been updated.

change the text of action: A G2 action that changes the text of an attribute to a
new string.

class: An object-oriented term for a “template” that defines the common
characteristics (attributes) and behaviors (methods) of its instances. A class can
inherit its definition from a built-in G2 class or user-defined class.

class definition: A built-in G2 object that lets you define the common
characteristics of each instance of the class. You specify the class name, the class-
specific attributes, the icon, and the stubs in the class definition. You also specify
the user interface configurations of instances in the class definition. For example,
you use class definitions to create subclasses of objects, connections, variables,
and workspaces. See also subclass.

class hierarchy: A representation of a set of related classes that describes how the
classes at each level inherit their definitions from other classes. See inheritance.
210

class name: The name of a class of objects. When you create an object
dynamically, you create it by using the create action and by specifying the class
name.

class-specific attributes: The attributes of a class, which you declare in the class
definition. The class-specific attribute declarations include the attribute name, the
default value, and the data type or subobject class, for example, a variable or
parameter.

clone: To create an exact duplicate of the original object except for the name. You
can clone objects interactively or programmatically.

composite object: An object-oriented term for an object that contains another
object. G2 supports two ways of creating composite objects: attributes of objects
that contain subobjects, such as variables or parameters, and objects that define
subworkspaces.

configuration: See user interface configuration.

connection: A graphical link between two or more objects. You use connections in
a G2 application to represent visually how objects are related. You can reason
about objects based on their connections. See also stub.

connector formats: In a trend chart, the lines between the points for each plot.

consequent: The second part of a rule, which draws a conclusion when the
condition in the antecedent is satisfied. See also antecedent.

create action: A G2 action that dynamically creates an object based on its class.

create by cloning action: A G2 action that creates an instance of a class by cloning
a master object. One reason for creating objects by cloning is to create objects with
subworkspaces dynamically.

D

data type: A description of the type of value. The available data types are:
integers, floating point numbers, quantity (integer or float), symbols, logical
values (true or false), fuzzy truth values, and text strings. You can specify data
types in the class-specific attributes of a class definition, in the arguments of
methods and procedures, and in the local names of methods and procedures.

data-driven processing: One way in which G2 invoke rules. When the value of an
attribute referenced in the antecedent of a rule changes, G2 invokes the rule, using
data-driven processing. For example, when a real-time signal updates or when
the user enters a value in an end user display, G2 invokes rules that refer to the
attribute whose value has changed. See also event-driven processing.

definition: See class definition.

delete action: A G2 action that deletes objects programmatically. To delete an
object, you must first make it transient by using the make transient action.
211

dependent module: A module that requires additional information contained in
one or more other modules to run. Specifically, a dependent module contains
instances of classes defined in another module. See also independent module.

developer mode: A user-defined mode in which users can configure the layout of
a schematic diagram, display the subworkspace of an object, and edit certain
attributes in tables.

diagonal connection style: A type of connection that connects objects with
diagonal lines. Contrast with orthogonal connection style.

dial: An end user display that displays numeric data in a circular dial.

differentiation: A technique for creating subclasses in a class hierarchy, whereby
the subclasses define exceptions and special cases. Also known as specialization.

digital clocks: An end user display that shows the current G2 time.

direction of flow: The direction in which information flows between connected
objects. You can reason about connected objects based on whether the connection
is an input or output connection.

display: A visual representation of real-time numeric data that the knowledge
base receives or computes. You use displays to create an end user interface for an
application.

do in parallel statement: A procedural statement that allows G2 to execute
multiple procedural statements simultaneously. Also known as parallel processing.

do loop: A procedural programming statement that iterates over a set of instances
of a class. You define a do loop within a for statement in a procedure or method.

drag: To hold down the mouse button while moving the mouse to a new location,
then to lift the mouse button to place an object on a workspace or to place text in a
text box.

dynamically: See programmatically.

E

embedded procedure or method: A procedure or method that another procedure
or method starts as one of the calling procedure or method’s actions.

end statement: Marks the end of the body of a procedure or method. An end
statement must appear with a begin statement.

encapsulation: An object-oriented term that means to organize related
knowledge together in an object and to keep the details of an object hidden from
other objects. You encapsulate knowledge by creating subclasses, subobjects, and
subworkspaces.

end user display: See display.
212

event detection: When G2 responds to a certain set of prescribed events, such as
moving an object on a workspace, creating or deleting connections, and receiving
or failing to receive a value. You use a whenever rule to perform event detection.

event-driven processing: One way in which G2 invokes a rule by responding to
real-time events. For example, G2 can detect these events to trigger a rule, using
event-driven processing: moving an object on a workspace, receiving a value
from a data source or failing to receive a value, and creating and deleting an
object or connection. See also event detection and data-driven processing.

every clause: In a rule, a statement that allows you to refer to all members of a
class. You cannot use an every statement in a procedure or method; you use a for
loop instead.

exit if statement: A procedure statement that you place after the last statement in
a repeat loop to cause the looping to stop under certain conditions.

F

for each statement: A procedural programming statement that refers to all
members of a class of objects that meet a certain criteria. G2 iterates over the set,
using a do loop.

for prefix: A prefix for any type of rule that makes the rule apply to all members
of a class that meet a certain criteria. See also generic rule.

foreground color: The color of all objects on a workspace whose color is not
otherwise specified, for example, free text, button text, and connections.

forward chaining: A mechanism for invoking if rules, whereby G2 invokes the
rule each time the value of the attribute in the antecedent changes. Forward
chaining is one example of data-driven processing.

frame style: An object that describes the border of a workspace.

free text: An object that you use for labeling a workspace.

G

G2 application server: The G2 software development environment that provides
the full range of features needed to develop and deploy intelligent real-time
applications. The G2 application server bridges the gap between a traditional
application server, an intelligent application, and a client. See also G2 utility.

G2 core: See G2 application server.

G2 Dialog Utility (GDU): A G2 module that provides tools for creating custom
Windows dialogs.

G2 Error Handling Foundation (GERR): A G2 module that provides tools for
error and communication handling.
213

G2 Foundation Resources (GFR): A G2 module that provides module
management, messaging, localization, and communications handling for large
applications.

G2 Menu System (GMS): A G2 module that allows you to create a standard top
menu bar.

G2 Online Documentation (GOLD): A G2 module that supports online
documentation, context-sensitive help, and online search capabilities from within
G2. GOLD launches an external browser that displays HTML files.

G2 Run-Time Library (GRTL): A G2 module that provides tools for managing
large applications and building user interfaces.

G2 User Interface Development Environment (GUIDE): A G2 module that
supports the creation of end user dialogs.

G2 User Interface Library (UIL): A supporting module of GUIDE that allows
programmatic controls over end user interactions.

G2 utility: Optional components of the G2 application server that allow you to
perform specific functions

G2 XL Spreadsheet (GXL): A G2 module that provides a spreadsheet-like display
for entering and displaying tabular data.

generalization: A technique for creating subclasses in a class hierarchy, whereby
you define similar information in a single class, which subclasses inherit
automatically. See also differentiation.

generic rule: A rule that applies to any instance of a class or one or more instances
of a class that meet certain criteria, for example, on a given workspace, connected
to another object, or nearest to another object. To create a generic rule, you use the
for prefix.

graphical user interface (GUI): G2 objects that enable end users to interact with
and view the running application. Action buttons, trend charts, and readout
tables are examples of graphical user interface components.

graph: A type of display that plots a single attribute value over time.

H

hierarchical view: A technique for organizing an application where the details of
objects are hidden on their subworkspaces. See also composite object.

I

icon: A graphical representation of an object. Every permanent item in G2 has an
icon representation.
214

Icon Editor: A tool that lets you define complex icons for objects that consist of
multiple layers and regions, which you can animate.

icon layer: An area of an icon that consists of any number of graphical elements of
the same color. Any number of icon layers can form an icon region.

icon region: One or more icon layers that specify a name. You can change the
color of an icon region dynamically.

if rule: A type of rule that performs data-driven processing by testing the
condition in the antecedent and taking the actions in the consequent if the
condition is true.

if-then statement: A procedural programming statement that allows you to test
conditions within the program and take actions based on the conditions being
met.

image definition: An object that specifies the name of a bitmap image and a
filename, which you can use as the background of a workspace.

in order clause: Indicates how G2 should execute a sequence of actions; G2
executes them in the order specified. You use an in order clause in several places
in G2, including rules, action buttons, and user menu choices.

independent module: A module that contains all the information it needs to run
in a single module. Specifically, an independent module contains class definitions
for instances contained in the module. See also dependent module.

inference engine: The internal G2 mechanism that invokes rules. See inferencing.

inferencing: A mechanism whereby rules infer attribute values when certain
conditions are met. See rule.

inform action: A G2 action that sends messages to the Message Board or to a
workspace.

inheritance: An object-oriented term that describes the mechanism whereby
classes of objects obtain their definitions from other classes. You only need to
define the unique attributes and methods of a subclass; the subclass inherits all
the attributes and methods of the superior class. See class hierarchy.

initially rule: A type of rule that performs event-driven processing by invoking
the rule when the user starts the application running.

Inspect facility: A feature that allows you to locate objects in the knowledge base
and view various hierarchies, for example, the module hierarchy, the class
hierarchy, or the workspace hierarchy.

instance: An object-oriented term that refers to the individual members of a class.
See also object.

instance configuration: A type of user interface configuration that specifies the
behavior of each instance of a class in different user modes. See also item
configuration.
215

intelligent real-time system (IRTS): A software environment, such as G2, for
developing and deploying intelligent, mission-critical, client/server applications.

invoke: To evaluate a rule by testing the antecedent of the rule. When G2 invokes
a rule, it tests the antecedent of the rule and takes the actions in the consequent of
the rule when the antecedent is true. G2 can invoke rules, using event-driven
processing and data-driven processing, depending on the type of rule.

is given by expression: An expression that allows you to declare a class-specific
attribute of a class that is an instances of another class. An object with an attribute
that is given by another object is one example of a composite object. See composite
object.

item: A class of objects that encompasses all built-in G2 classes, including
workspaces, definition classes, rules, methods, and procedures. User-defined
classes can inherit their definitions from the item class or any subclass of item.
While many instances of classes in G2 are actually items, for example,
workspaces, rules, procedures, and methods, we typically refer to them in object-
oriented terms as objects, rather than items. See also object.

item configuration: A type of user interface configuration that specifies the
behavior of a particular object in different user modes. See also instance
configuration.

K

KB: See knowledge base.

KB configuration: A type of user interface configuration that specifies the
behavior of the overall KB in different user modes. See also item configuration and
instance configuration.

KB Workspace menu: A menu that allows you to manipulate workspaces and
create objects on workspaces. You use this menu to create objects such as class
definitions, rules, methods, procedures, and displays.

knowledge base: An ASCII file with a .kb extension that contains all the
information your application needs to run. A knowledge base consists of one or
more modules.

L

layered products: Applications built on top of G2 that support development in
specific domains.

list: A G2 data structure that allows you to store multiple pieces of data in a single
attribute slot. A list has a fixed length and allows you to refer to any of its
elements.
216

localization: The translation of an application into another language for local use.
In G2, you use the G2 Foundation Resources (GFR) module to provide text keys
instead of hard-wired text, which G2 substitutes with actual text when the KB
runs. You can also use this feature to perform dynamic substitution of text.

local name: A symbol that a statement uses locally. You use local names in many
places in G2, including rules, methods, procedures, and action buttons. See also
local name declaration.

local name declaration: A list of symbols that a method or procedure uses locally
in the method or procedure body.

looping: A procedural programming technique that allows you to repeat a
statement until a condition is met. See repeat statement and do loop.

M

make permanent action: A G2 action that makes an object a permanent part of the
KB. When you create an object dynamically, you must make it permanent for it to
be saved in the knowledge base. See also permanent knowledge, transient
knowledge, and make transient action.

make transient action: A G2 action that makes an object transient. When you
delete an object dynamically, you must first make it transient. See also transient
knowledge, permanent knowledge, and make permanent action.

master object: An object that you clone dynamically to create an instance of a
class with a fully configured subworkspace. See create by cloning action.

Message Board: A special workspace on which G2 displays messages, which you
send by using the inform action.

message: An object that allows you to create text, which you can use to
communicate with the operator.

meter: An end user display that shows numeric data in a vertical bar format.

method: A named object associated with a particular class that executes a
sequence of actions when the application starts the method. In object-oriented
terms, a method represents the object’s behaviors.

method body: The part of a method where you specify the sequence of actions
that the method executes. The method body starts with a begin statement and
ends with an end statement.

method declaration: A type of definition object that establishes the name of each
method that exits in the knowledge base.

method name: The name you specify when you invoke the start action to execute
an object’s method.

module: A set of related information contained in a KB. A knowledge base must
define at least one module. A module that does not require any other modules is
217

an independent module, and a module that requires one or more other modules
to run is a dependent module. See also module hierarchy.

module hierarchy: A representation of a set of related modules that describes the
dependencies between modules. Modules that are located above other modules in
the hierarchy depend on modules that are lower in the hierarchy.

N

name: A symbol that identifies an object in a knowledge base. Class names must
be unique; however, object names do not.

natural language text editor: A feature of the G2 text editor that prompts you at
each stage as you edit a statement that requires syntax, for example, a rule,
method, or procedure.

notes: A built-in attribute of any object where G2 displays system messages and
errors about the object.

O

object: A piece of information that contains all related knowledge in one location.
In object-oriented terms, an object contains all the data (attributes) and behaviors
(methods) that completely describe the object. In G2, you use objects to represent
the physical systems in your application and the connections between those
systems.

object class: A built-in class from which most user-defined classes inherit their
definition. See also item.

object hierarchy: A representation of a set of related objects that describes how
the objects at each level are related. You create an object hierarchy by creating
subworkspaces of objects or by creating attributes of objects that contain other
objects, such as variables and parameters. See also composite object.

object menu: A menu that you use to interact with an object. The object menu
allows you to perform numerous operations on an object, including delete, clone,
and create a subworkspace. You can also define user-defined menu choices on the
object menu for instances of a class. You display the object menu by clicking on
any object. See also user menu choice.

object-oriented: A software development environment that represents certain
kinds of knowledge as objects. G2 is an object-oriented development environment
for real-time applications. Object-oriented programming has numerous features
including: classes, inheritance, instances, encapsulation, attributes, methods, and
composite objects. The benefits of object-oriented design are also numerous: faster
development time, easier to maintain, scalability, adaptability to other
applications, and reduced cost.
218

operate on area: A workspace operation that lets you perform operations on a
group of objects, such as move, clone, or delete.

Operator Logbook: An area of the screen where G2 displays system messages
and errors.

orthogonal connection style: A type of connection that connects objects with
either vertical or horizontal lines, with possible bends in the connection.

P

parallel processing: See do in parallel statement.

parameter: A built-in G2 class that keeps a history of values over time. See also
variable.

permanent knowledge: Knowledge that exists in the knowledge base and is
located on a workspace. G2 retains permanent knowledge when you reset the
knowledge base. See also transient knowledge.

plot: In a trend chart, the data value to plot. A trend chart can contain multiple
plots.

point format: In a trend chart, a graphical element at each data point for each plot.

procedure: A named object that executes a sequence of actions when the
application starts the procedure. A procedure is independent of any class. See also
method and start action.

procedure body: The part of a procedure where you specify the sequence of
actions that the procedure executes, which starts with a begin statement and ends
with an end statement.

procedure name: The name you specify when you invoke the start action to
execute the procedure.

programmatically: A technique for performing operations on objects and the G2
environment that uses G2’s real-time procedural programming language.

prototype: A model of a real application that simulates the real-time
environment.

Q

qualified name: The name of a method, which concatenates the class name and
the method name, using double colons. The class-qualified name indicates which
specific method an object should execute when the application starts the method.
For example, small-office::create-connection.

quantity: A G2 data type that is either a floating point number or an integer.
219

R

readout table: An end user display that displays numeric data in a small table.

relation: A non-graphical “connection” between two or more objects. See also
connection.

repeat statement: A procedure statement that executes actions in a loop.

reserved word: A symbol that is part of the G2 environment, which you cannot
use as the name of an object or attribute. Reserved words include any G2 syntax
element or built-in class name, for example, rule, method, class, object, the,
create, and so on.

rule: An object that tests conditions and draws conclusions. G2 invokes rules in
one of two ways, depending on the kind of rule: using event-driven processing or
using data-driven processing. Rules represent the heart of G2’s inference engine.

runtime error: An error that is displayed on the Operator Logbook while G2 is
running. Many runtime errors occur because a default value has not been
specified for an attribute whose value is evaluated at runtime.

S

scan: To invoke a rule at a periodic interval, which you specify.

scrapbook: A G2 workspace that holds text you copy and cut from the G2 text
editor.

scrollable text editor: A text editor with scroll bars, which you get when you edit
certain types of attributes. To move to the next line in a scrollable text editor, press
Enter. To accept the edits in a scrollable text editor, use the Ctrl + Enter command.

show action: A G2 action that displays a workspace programmatically at any
location on the screen and at any scale.

shrink wrap: To adjust the borders of a workspace to minimize its size.

simple attribute: See untyped attribute.

specialization: See differentiation.

start: To evaluate a method for a specific object with specific arguments or to
execute a procedure with specific arguments. See also start action.

start action: A G2 action that starts a method or procedure. The start action
executes the embedded procedure or method and immediately returns control to
the calling procedure or method.

strong typing: A technique whereby you always declare an attribute value, using
the most restrictive data type possible.
220

stub: A connection attached to one object but not yet attached to another object.
You specify the default stubs for a class in the class definition.

subclass: An object-oriented term for a class that is located below another class in
the class hierarchy.

subobject: An object that contains another object, such as an attribute of an object
that contains a variable or parameter or an object that defines a subworkspace. See
also composite object.

subsecond timing: A way of controlling the timing of any procedural statement
down to any fraction of a second. You use subsecond timing to do animation.

subtable: A table associated with a subobject, which is embedded in the object’s
table.

subworkspace: A workspace associated with an object. See also composite object.

superior class: A class from which a subclass inherits its definition. A superior
class is located above another class in the class hierarchy. See also object hierarchy.

superior object: An object that defines a subworkspace or an object that defines
an embedded object in an attribute.

symbol: A G2 data type that is a string of alpha-numeric characters with no
spaces. All names must be symbols in G2, including class names, object names,
attribute names, method names, and procedure names.

syntax-guided text editor: See natural language text editor.

system-defined attribute: An attribute that G2 defines for items, for example, the
Background-color of a workspace.

system tables: A set of default parameters that determine the behavior of various
aspects of the G2 environment, including fonts, colors, log files, the text editor,
and timing.

T

temporal reasoning: A technique for reasoning about objects over time by
looking at a history of attribute values. You use variables and parameters to
perform temporal reasoning in G2.

Telewindows: A client application that provides remote access to the G2 server
by users on a network. You use Telewindows in a concurrent team development
environment, as well as in a client/server deployment environment.

Telewindows Next Generation: A Windows user interface for G2 developers and
end users. G2 provides a rich set of tools for developing Windows user interfaces
for end user applications, including menus and toolbars, standard and custom
dialogs, a variety of Windows views, including tree views, shortcut bars, chart
views, property grids, and workspace views, and tabbed MDI mode.
221

text: A data type that is a sequence of alpha-numeric characters, which can
include spaces, and which requires quotation marks surrounding the characters.

text editor: A special workspace for entering values into attributes and editing the
text of procedural statements, such as rules, methods, and procedures. See also
scrollable text editor.

the clause: A reserved word that allows you to refer to an attribute of an object in
an expression. For example, the Network-type of office-1 refers to the attribute
named Network-type for the object named office-1.

the item expression: An expression that refers to the current item. For example,
you use the item in the action of a user menu choice to refer to the object with the
user menu choice.

the item superior to expression: An expression that refers to the item that is
above another item in the object hierarchy. For example, you use this expression
to refer to an object that defines a subworkspace.

this workspace expression: An expression that refers to the current workspace.
For example, you use this expression in the action of an action button to create an
object on the workspace on which the action button exists.

time axis: The horizontal axis of a trend chart.

top-level module: The module at the top of the module hierarchy.

transfer action: A G2 action that programmatically moves an object from its
current workspace to another workspace at a particular location. When you create
objects dynamically by using the create action, you must transfer them to a
workspace after you make them permanent by using the make permanent action.

transient knowledge: Knowledge that exists but is not a permanent part of the
knowledge base. G2 deletes transient knowledge when you reset G2. When you
create an object programmatically, G2 creates a transient item. To make an item
permanent, you use the make permanent action. Before you can delete an item
programmatically, you must make it transient by using the make transient action.
See also permanent knowledge.

trend chart: An end user display that plots a history of any number of data values
and gives complete control over the layout of the chart.

trend chart format: In a trend chart, a subobject that controls the background
color of the chart.

type checking: A technique for validating the data type of an attribute when the
value is supplied, either by G2 or by the user. You declare an attribute to have
type checking in the class definition.

typed attribute: An attribute that specifies a data type and performs type
checking.
222

U

unconditionally rule: A type of rule that performs data-driven or event-driven
processing by taking the action in the consequent automatically whenever the
rule is invoked.

untyped attribute: An attribute with no data type that performs no type checking.
The value of an untyped attribute can be any alpha-numeric sequence of
characters, without spaces.

update interval: The interval at which G2 updates a data value or the current
value of a display.

user-defined attributes: Attributes that users declare in the class definition. See
also system-defined attribute.

user interface configuration: A statement that configures the behavior of any
class of objects or the overall KB for different user modes. See also item
configuration and instance configuration.

user menu choice: A menu choice associated with each instance of a class that
appears in the object menu. A user menu choice specifies a sequence of actions
that G2 performs on a particular object when the user chooses the user-defined
menu choice.

user mode: A designation of the class of users of an application, which
determines the actions the user can perform on various objects and the behavior
of the overall environment. See also user interface configuration.

V

value axis: In a trend chart, the vertical axis of each plot.

value: A unique setting for the attribute of an instance. Attribute values can be
typed or untyped. You specify attribute values in an instance.

variable: A built-in G2 class that keeps a history of values over time and allows
you to connect to real-time data.

W

wait statements: A procedure statement that causes G2 to wait a period of time
before it executes the next statement.

when rule: A type of rule that performs event-driven processing by invoking the
rule when the expression in the antecedent is true.

whenever rule: A type of rule that performs event-driven processing by detecting
the event in the antecedent and taking the actions in the consequent when G2
detects the event.
223

workspace: An area of the knowledge base that contains objects and that sits on
the background of the G2 window. You create objects and definitions on a
workspace by using the KB Workspace menu.

workspace hierarchy: A representation of a set of related workspaces that
describes how the workspaces at each level are related. You create a workspace
hierarchy by creating subworkspaces of objects. See also composite object.
224

Index
 @ A B C D E F G H I J K L M
 # N O P Q R S T U V W X Y Z
Symbols
... in text editor
[] in statements

A
abstraction
action attribute

in action buttons
in user menu choices

action buttons
creating

permanent objects, using
transient objects, using

deleting objects, using
iconifying a workspace, using
testing applications, using

action-button menu choice
actions

introduction to
performing

in order
in rules
on classes of objects

activatable subworkspaces
add name of attribute menu choice
and reserved word
animation

animating objects, using
creating methods for
using subsecond timing for

antecedents, of rules
applicable-class attribute
applications

video conferencing
argument lists

declaring
first argument for methods
for procedures and methods

of procedures and methods
attribute access
attribute displays
creating for classes of objects
displaying with objects

attribute tables
displaying

attribute-initializations attribute
initializing

attribute displays
stubs
user-defined attributes

attributes
assigning values to
changing manually overridden
class-specific
concluding values for
declaring

as given by a parameter
for computed values

displaying values of
editing

in tables
simple
using action buttons

introduction to
of objects
referencing in rules
types of

B
background graphics
background, G2
background-color

attribute
menu choice

begin statement
borderless-free-text class

C
C, C++, comparison with G2
case statements
CASE tools, comparison with G2
change action
225

Change Mode menu choice
class definitions

attribute displays of
class-specific attributes of
displaying
editing
icons of
introduction to
organizing into modules
stubs of

class hierarchy
creating for objects
showing for G2

class name
class-definition menu choice
classes

creating instances
interactively
programmatically

creating rules for instances of
executing actions on
introduction to
overriding default methods of

Class-inheritance-path attribute
Class-name attribute
class-specific attributes
Class-specific-attributes attribute
clone menu choice
Clone Workspace menu choice
color menu choice
colors

changing
for icons, programmatically
for workspaces, interactively

composite objects
conclude action
configurations

See also user interface configurations
configuring

diagrams
instances

introduction to
connected to statement
connection class
connection styles

diagonal
orthogonal

connections
counting
creating interactively
deleting
226
interactively
programmatically

detecting
when connected
when deleted

introduction to
stubs

creating interactively
creating programmatically
deleting interactively

connector formats
consequents, of rules
create instance menu choice
create subworkspace menu choice
Ctrl + j command

inserting line feed, using
customer support services

D
data types
data-driven processing
data-window-background-color attribute
delete menu choice
delete name of attribute menu choice
Delete Workspace menu choice
dependent modules
description-of-frame attribute
dials
differentiation
digital clocks
direction of flow
direct-superior-classes attribute
displays
display-update-interval attribute
do in parallel statements
do loop
Do Not Highlight Invoked Rules menu choice
dragging objects
Drop to Bottom menu choice
dynamic

See programmatic

E
edit icon menu choice
editor

natural language
embedded procedures and methods
encapsulation

using classes
using methods

end statement
end user displays
errors

common
in Notes attribute
runtime
syntactic

event detection
event-driven processing
every statement
expression-to-display attribute

F
file-name-of-image attribute
float data type
for each statement
for prefix, in rules
forward chaining

data-driven processing, using
explicitly allowing in parameters and

variables
frames, workspace
frame-style attribute
frame-style-definition menu choice
free-text class

G
G2

integration with other technologies
overview of
pausing
running
showing the class hierarchy of
shutting down
starting server

G2 Foundation Resources (GFR)
communicating with users, using
localizing text, using
managing modules, using
starting an application, using

G2-user-mode attribute
GDI

See G2 Developer? Interface
generalization
generic rules

using alternate form
using for prefix
Get Workspace menu choice
GFR

See G2 Foundation Resources
GMS

See G2 Menu System
go to original menu choice
go to subworkspace menu choice
GOLD

See G2 Online Documentation
graphs
GUIDE

See G2 User Interface Development
Environment

GXL
See G2 XL Spreadsheet

H
hide attribute display menu choice
hide name menu choice
Hide Workspace menu choice
hierarchical views
Highlight Invoked Rules menu choice
history

creating attributes that keep
plotting on trend charts
using variables and parameters to keep

history-keeping-spec attribute

I
Icon Editor
icons

changing colors of
editing
of classes
of objects

if rules
forward chaining, using
introduction to

if-then statements
Include-in-legend? attribute
indentation

of methods and procedures
rules for

independent modules
inference engine
inferencing
inform the operator statement
227

inheritance
initializable-system-attributes attribute

for subclasses of parameters
for user-defined classes

initially rules
introduction to
showing workspaces on startup, using

Inspect menu choice
locating transient objects, using
showing the class hierarchy, using
showing the module hierarchy, using

instance configurations
instance-configuration attribute
instances

See also objects
creating

for subclasses
interactively

introduction to
organizing into modules

integer data type
invoking rules
is connected to event expression
is disconnected from event expression
is given by statement
item class
item configurations
item-configuration attribute
items

K
KB configurations
.kb files

video conferencing application
KB tutorials

KB files for
loading

KB Workspace menu
KBs

See knowledge bases
kb-workspace class
knowledge bases

introduction to
loading
pausing
running
saving
starting in particular user modes
video conferencing application
228
working with

L
label attribute
label-to-display attribute
line feeds

inserting in statements
lists
Load KB menu choice
loading

knowledge bases
local names

declaring for procedures and methods
using in statements

Logbook, Operator
loops

M
master objects
menus

See also user menu choices
KB Workspace
object

Message Board
messages

sending to operators
using expression in

meters
method declarations
method menu choice
method-declaration menu choice
methods

animating objects, using
body of
calling
creating
declaring

arguments for
first argument for
using method declarations

errors in
format of
informing the operator, using
introduction to
local name declarations of
looping in
name of
of objects

overriding for classes
sending a message, using
sequential processing, using
starting

example of
from a procedure

waiting between actions in
minimum-scheduling-interval attribute
modes, user
modules

introduction to
organizing knowledge in
samples for video conferencing

application
viewing

N
Name menu choice

KB Workspace menu
name menu choice

object menu
names attribute
natural language text editor
New Free Text menu choice
New Object menu choice
New Rule menu choice
New Workspace menu choice
non-menu choices

configuring
Notes attribute

displaying in table

O
object class

inheriting definition from
showing class hierarchy of

object hierarchy
object menu
object-oriented development environment
objects

animating
cloning

interactively
programmatically

connecting
introduction to
using stubs

creating
interactively
permanent
programmatically
using action buttons

deleting
interactively
programmatically
using action buttons

interacting with
introduction to
making

permanent
transient

moving on workspaces
naming
operating on groups of
subworkspaces of

of reserved word
Operator Logbook

hiding
runtime errors in

operators, informing
options attribute

P
parameter class
parameters

creating subclasses of
keeping a history, using

Pause menu choice
permanent knowledge
plots
plots menu choice
point formats
procedures

body of
declaring arguments for
errors in
format of
introduction to
local name declarations of
name of
sequential processing, using
starting

from rules
methods, using

programmatic
prototypes
229

Q
quantitative-parameter class
quantity data type

R
random function
range-bounds attribute
range-mode attribute
readout tables

creating
invoking rules, using

readout-table menu choice
receives a value event expression
relations
reserved words
Restart menu choice
Resume menu choice
rules

animating objects in
counting connections, using
creating
disabling highlighting for
errors in
forward chaining in
generic

creating for classes of objects
creating, using alternate form
creating, using for prefix

highlighting invoked
if
inferencing techniques for
initially
introduction to
invoking

by scanning
techniques for
using data-driven processing
using event-driven processing
using readout tables

making robust and efficient
performing actions in
referencing

attributes in
superior objects in

simple
types of
unconditionally
when
whenever
230
Run menu
runtime errors

S
Save KB menu choice
scan-interval attribute
scanning

invoking rules by
simulating real-time data by

sequential processing
show attribute display menu choice
shrink wrapping
Shut Down G2 menu choice
simple attributes

editing
introduction to

simulation, of real-time data
specialization
start action
Start menu choice
starting, methods and procedures
statements

performing multiple actions in order in
using proper indentation in

strong typing
stubs

connecting objects, using
creating programmatically
editing for classes
introduction to

stubs attribute
subclasses

creating
for parameters
for user-defined classes

creating class hierarchies, using
of objects

subobjects
subsecond timing
subtable menu choice
subtables
subworkspaces

creating
for objects
interactively
programmatically

creating end user interface objects on
superior classes

creating class hierarchies, using

of objects
superior objects
symbol data type
symbols
syntax-guided text editor
system tables
system-defined attributes

T
table menu choice
tables

displaying
tabs

inserting in statements
Telewindows

starting client
temporal reasoning
text

displaying on workspaces
text data type

in Label attribute
in local name declarations

text editor
ellipses (...) in
indenting statements in
introduction to
natural language
recovering from errors in
scrollable

the count of each statement
the item superior to expression
the reserved word
then reserved word
this workspace statement
time axes
Timing Parameters system table
top-level directory

video conferencing application
top-level module
transient knowledge
trend chart format subtable menu choice
trend chart formats
trend charts
trend-chart menu choice
truth-value data type
tutorials

KB files for
loading

type checking
typed attributes

U
UIL

See G2 User Interface Library
unconditionally rules

concluding values, using
introduction to

untyped attributes
update interval
update-interval attribute
user interface configurations
user menu choices

creating
introduction to

user modes
introduction to

user-defined attributes
user-menu-choice menu choice

V
value axes
value axes menu choice
values, of attributes
variables
video conferencing application

knowledge bases of
loading
module configurations of
top-level directory of

W
wait statements
when rules
whenever rules

creating
introduction to
performing event-driven processing, using

workspace hierarchy
workspaces

background graphics for
changing colors of
cloning
creating
deleting
displaying text on
dropping
231

frames for
hiding
iconifying
interacting with
introduction to
keyboard commands for
lifting
making attractive and informative
moving

objects on
to new location

naming
operating on groups of objects on
showing

interactively
on startup
programmatically

shrink wrapping
subclasses of
232

	Contents
	Preface
	About these Tutorials
	Version Information
	Audience
	Organization
	Conventions
	Related Documentation
	Customer Support Services

	Introduction
	Introduction
	G2 Strengths
	G2 Applications
	Understanding the Significance of Three Key Factors
	Understanding the Impact of Your Application
	Successful G2 Applications

	G2 Industries
	G2 Industries and Deployed Applications
	Examples

	G2 Environment
	G2 Application Server
	G2 Telewindows Client
	G2 Developer’s Utilities
	G2 Application Products

	Integration with External Systems
	Comparison with Other Tools

	Basic Skills
	Goals for Learning the Basic Skills
	Starting the G2 Server and Connecting the Telewindows Client
	Working with Knowledge Bases
	What is a Knowledge Base?
	What are Modules?
	Loading a Sample Application
	Supporting Knowledge Bases
	Displaying the KB Workspace Menu
	Hiding the Operator Logbook
	Viewing the Modules
	Summary

	Interacting with Objects
	What is an Object?
	Displaying the Object Menu
	Naming an Object
	Cloning an Object
	Deleting an Object
	Summary

	Interacting with Workspaces
	What is a Workspace?
	Using the KB Workspace Menu
	Naming a Workspace
	Hiding and Showing a Workspace
	Shrink Wrapping a Workspace
	Moving Objects on a Workspace
	Operating on a Group of Objects on a Workspace
	Cloning a Workspace
	Deleting a Workspace
	Creating a New Workspace
	Moving a Workspace
	Lifting and Dropping Workspaces
	Using Keyboard Commands on Workspaces
	Displaying Text on a Workspace
	Summary

	Connecting Objects
	What is a Connection?
	Connecting Objects
	Deleting Connections
	Summary

	Editing Attributes in Tables
	What are Attributes?
	What Types of Attributes Are There?
	Assigning Values to Attributes
	Displaying the Attribute Table
	Editing Attributes
	Displaying an Attribute Next to an Object
	Summary

	Creating a Simple Rule
	What is a Rule?
	Performing Actions in a Rule
	Using Two Different Inferencing Techniques
	Choosing Between the Four Basic Types of Rules
	Referring to Attributes in Rules
	Creating a Rule
	Recovering from Syntactic Errors
	Recovering from Other Types of Errors
	Summary

	Running and Pausing Applications
	Saving Applications and Shutting Down G2
	Summary
	Solutions

	Creating a Schematic Diagram
	Goals of a Schematic Diagram
	Loading the Knowledge Base
	Creating and Deleting Objects Dynamically
	What is an Action?
	Using an Action Button to Create an Object
	Exploring Permanent and Transient Knowledge
	Making an Object Permanent
	Using Local Names in Statements
	Performing Multiple Actions In Order
	Using Proper Indentation in Statements
	Using an Action Button to Create a Permanent Object
	Using an Action Button to Delete Objects on a Workspace
	Summary

	Editing a Class Definition
	What is a Class Definition?
	Creating a Class Hierarchy
	Organizing Classes and Instances
	Displaying a Class Definition
	Creating an Instance
	Editing the Icon
	Editing the Attributes of a Class
	Changing Manually Overridden Attributes of Instances
	Editing the Stubs of a Class
	Summary

	Creating Connection Stubs Dynamically
	Executing Actions on Classes of Objects
	Using Methods and Procedures for Sequential Processing
	What is the Format of a Method or Procedure?
	Declaring Arguments
	Declaring Arguments for Methods
	Calling the Method or Procedure
	Creating a Method
	Declaring the Method
	Creating a User Menu Choice that Starts a Method
	Summary

	Summary
	Solutions

	Building a Knowledge Base
	Goals of the Knowledge Base
	Loading the Knowledge Base
	Counting the Number of Connections
	Creating an Attribute for the Number of Connections
	Using a Rule to Count the Number of Connections
	Invoking the Rule by Scanning
	Highlighting Invoked Rules
	Testing the Rule
	Making the Rule More Robust and Efficient
	Summary

	Counting Connections for any Office
	Using the For Prefix to Create a Generic Rule
	Creating a Generic Rule for the Office Class
	Summary

	Using Event-Driven Processing
	Considering How to Invoke a Rule
	Detecting the Event of Creating a Connection
	Detecting the Event of Deleting a Connection
	Creating a Different Form of Generic Rule
	Computing Total Cost Per Minute Whenever Number of Connections Changes
	Computing Total Cost Per Minute Whenever the Connection Cost Changes
	Simulating Total Cost by Scanning
	Creating an Attribute Display for Every Office
	Summary

	Using Data-Driven Processing
	Using Forward Chaining to Monitor Total Cost and Delete Connections
	Creating an Attribute for a Fixed Budget
	Summary

	Keeping a History of Total Cost
	Using Variables and Parameters to Keep a History
	Using a Parameter to Keep a History of Total Cost
	Explicitly Allowing Forward Chaining
	Creating a Subclass of Parameter
	Showing the G2 Class Hierarchy
	Summary

	Creating Subclasses of Offices
	Creating a Subclass of a User-Defined Class
	Creating Instances of Each Subclass
	Verifying that the Rules Apply to the Subclasses
	Overriding the Default Method of a Class
	Summary

	Disabling Rule Highlighting
	Summary
	Solutions

	Building a User Interface
	Goals of the User Interface
	Loading the Knowledge Base
	Creating a Subworkspace for an Object
	What is a Subworkspace?
	Creating a Master Object with a Subworkspace
	Creating an Object with a Subworkspace Dynamically
	Summary

	Displaying Details on the Subworkspace of an Object
	Creating End User Displays
	Creating a Readout for the Small Office Master
	Creating a Readout for the Large Office Master
	Using Readout Tables to Invoke Rules
	Creating a Trend Chart that Plots Total Cost
	Making the Application More Realistic
	Summary

	Sending a Message to the Operator
	Informing the Operator When an Office is Over Budget
	Informing the Operator About a Specific Office
	Creating an Action Button for Testing Purposes
	Creating a Method that Informs the Operator
	Adding a Wait Statement to a Method
	Creating a Procedure that Starts a Method
	Updating the Rule to Start the Procedure
	Starting a Method
	Calling a Method
	Summary

	Animating Objects
	Creating a Method that Animates an Office
	Creating a Loop in a Method
	Animating the Office When it is Almost Over Budget
	Using Subsecond Timing for Animation
	Summary

	Making Workspaces Attractive and Informative
	Changing the Color of a Workspace
	Creating a Workspace Frame
	Creating Workspace Subclasses
	Creating Background Graphics for a Workspace
	Summary

	Showing Workspaces Programmatically
	Using an Initially Rule to Show a Workspace on Startup
	Creating a Button that Iconifies a Workspace
	Summary

	Configuring the User Interface
	What are User Modes?
	What are User Interface Configurations?
	Configuring the Office for Developer Mode
	Configuring the Office for Operator Mode
	Starting the Application in Operator Mode
	Summary

	Running the Prototype
	Configuring the Schematic in Developer Mode
	Saving the Prototype
	Running the Prototype in Operator Mode
	Simulating an Over Budget Situation

	Loading the Finished Application
	Summary
	Solutions

	Error Handling
	Common Errors
	Action Buttons Don’t Work
	Cannot Enter a Name
	Connection Attributes Not Updating
	Rule is Not Being Invoked
	Procedures and Methods Not Executing
	Runtime Errors

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

