G2

Reference Manual
Version 2015

G2 PLATFORM

G2 Reference Manual, Version 2015
November 2018

The information in this publication is subject to change without notice and does not represent a
commitment by Gensym Corporation.

Although this software has been extensively tested, Gensym cannot guarantee error-free
performance in all applications. Accordingly, use of the software is at the customer’s sole risk.

Copyright (c) 1985-2018 Gensym Corporation

All rights reserved. No part of this document may be reproduced, stored in a retrieval system,
translated, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of Gensym Corporation.

Gensym®, G2®, Optegrity®, and ReThink® are registered trademarks of Gensym Corporation.

NeurOn-Line™, Dynamic Scheduling™ G2 Real-Time Expert System™, G2 ActiveXLink™, G2
BeanBuilder™, G2 CORBALink™, G2 Diagnostic Assistant™, G2 Gateway™, G2 GUIDE™,
G2GL™, G2 JavaLink™, G2 ProTools™, GDA™, GFI™, GSI™, ICP™, Integrity™, and SymCure™
are trademarks of Gensym Corporation.

Telewindows is a trademark or registered trademark of Microsoft Corporation in the United States
and/ or other countries. Telewindows is used by Gensym Corporation under license from owner.

This software is based in part on the work of the Independent JPEG Group.

Copyright (c) 1998-2002 Daniel Veillard. All Rights Reserved.

SCOR® is a registered trademark of PRTM.

License for Scintilla and SciTE, Copyright 1998-2003 by Neil Hodgson, All Rights Reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/).

All other products or services mentioned in this document are identified by the trademarks or
service marks of their respective companies or organizations, and Gensym Corporation disclaims
any responsibility for specifying which marks are owned by which companies or organizations.

Gensym Corporation

52 Second Avenue

Burlington, MA 01803 USA

Telephone: (781) 265-7100

Fax: (781) 265-7101 Part Number: DOC014-1200

Contents Summary

Part |
Chapter 1

Chapter 2

Part Il

Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7

Chapter 8

Part Il
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15

Chapter 16

Preface Ixxi

Introduction to G2 1

Overview of G2 3

The Developer’s Environment 35

Global G2 Components 69
Knowledge Bases 71
Workspaces 123

Modularized KBs 165

System Tables 199
Configurations 291

G2-Windows 349

Knowledge Representation
Values and Types 379

G2 Iltems 407

Attributes and Tables 453

Attribute Access Facility 479

Classes and Class Hierarchy 497

Definitions 535
Variables and Parameters 607

Lists and Arrays 657

377

Chapter 17
Chapter 18

Chapter 19

Part IV

Chapter 20
Chapter 21
Chapter 22
Chapter 23
Chapter 24
Chapter 25
Chapter 26
Chapter 27
Chapter 28
Chapter 29

Chapter 30

Part V

Chapter 31
Chapter 32
Chapter 33

Chapter 34

Hash Tables and Priority Queues 691
Connections 703

Relations 737

Computational Capabilities 769
Actions 771

Expressions 825

Procedures 865

Methods 921

Rules, Inferencing, and Chaining 957
Formulas 1007

Text Parsing and Manipulation 1011
XML Parsing 1041

Functions 1049

Publish/Subscribe Facility 1079

G2 Graphical Language (G2GL) 1101

User Interface Components 1187
Buttons 1189
Text Items 1207

User Menu Choices 1213

External Images 1219

Chapter 35 Messages 1227

Chapter 36 Readout Tables, Dials, and Meters 1233
Chapter 37 Freeform Tables 1245

Chapter 38 Charts 1259

Chapter 39 Graphs 1275

Chapter 40 Trend Charts 1287

Chapter 41 Windows Menus 1347

Chapter 42 Windows Dialogs 1381

Chapter 43 Custom Windows Dialogs 1403

Chapter 44 Windows Views, Panes, and Ul Features 1547

Part VI Editors and Facilities 1597

Chapter 45 The Text Editor 1599

Chapter 46 The Icon Editor and Icon Management 1637
Chapter 47 The Inspect Facility 1679

Chapter 48 Natural Language Facilities 1709

Chapter 49 G2 Character Support 1739

Part VI Debugging and Optimization 1753
Chapter 50 Error Handling 1755
Chapter 51 Debugging and Tracing 1771

Chapter 52 Explanation Facilities 1799

Vi

Chapter 53
Chapter 54
Chapter 55

Chapter 56

Part VIII
Chapter 57

Chapter 58

Part IX

Chapter 59
Chapter 60
Chapter 61
Chapter 62
Chapter 63
Chapter 64
Chapter 65
Chapter 66
Chapter 67
Chapter 68

Chapter 69

Part X

Profiling and KB Performance 1811
G2-Meters 1841
Memory Management 1851

Task Scheduling 1875

Application Deployment 1887
Package Preparation 1889

Licensing and Authorization 1899

Networking and Interfacing 1919
Network Security 1921

Secure Communication and Authentication (SSL) 1925
Telewindows Support 1931

G2-to-G2 Interface 1943

G2 Gateway 1985

Interfacing with COM Applications 1991
Interfacing with Java Applications 1995
Interfacing with Web Services 1997
Interfacing with TCP/IP Sockets 2007
Foreign Functions 2009

Windows Services 2025

Appendixes 2033

Vii

Appendix A Launching a G2 Process 2035

Appendix B Reserved Symbols 2123

Appendix C Mouse Gestures, Key Bindings, and Shortcut Keys 2135
Appendix D Syntax Conventions 2147

Appendix E G2 KBs and GIF Files 2157

Appendix F Superseded Practices 2169

Glossary 2173

Index 2203

viii

Contents

Part |

Chapter 1

Preface Ixxi

About this Manual Ixxi
Audience Ixxi

Organization Ixxii
Conventions Ixxvii

Related Documentation Ixxix

Customer Support Services Ixxxi

Introduction to G2 1

Overview of G2 3

Introduction 3

Basic Components 4
Knowledge Bases 4
Workspaces 5
Modules 7
Classes and Class Hierarchy 8
Knowledge Representation 11
Configurations 12
System Tables 12
G2 Windows 12
G2 Developer’s Environment 13

Computational Capabilities 14

Procedures, Methods, and Rules 14

Expressions 14

Actions 14

Formulas 15

Text and XML Parsing 15
Functions 15

System Procedures 15

G2 Graphical Language 16

Extensible and Graphical Components

17

Chapter 2

Ilcons 19
Images 19
Textual ltems 20

Custom User Interfaces 21

Editors and Facilities 22
Text Editor 22
Icon Editor 23
Inspect Facility 24
Natural Language Facilities 24
G2 Character Support 25

Development and Deployment 25
Compilation 25
Error Handling and Debugging 25
Explanation Facilities 26
Profiling a KB 26

G2 Meters and Memory Management 26

Task Scheduling 26
Package Preparation 26
Licensing and Authorization 27

Networking and Interfacing 27
Network Security 27
Telewindows 27
G2-t0-G2 Interface 28
G2 Gateway 28
ltem Passing 28
Publish/Subscribe 29
Java Interface 29
Foreign Functions Support 29
G2 as Data Service 29

Additional Capabilities and Information 29
G2 Utilities 30

G2 Developer’s Utilities 31

G2 Bridges 33

The Developer’s Environment 35
Introduction 36

Capturing Knowledge in a Knowledge Base
Using Computational Features in G2 36

Starting G2 37
The G2 Title Block 37

36

Customizing the Gensym Background 38
Interacting with the G2 Server Icon on Windows Platforms 39

Exiting from G2 40
Interacting with G2 40

G2 Window Styles 41
Window-Style Menu Examples 42
Window-Style Workspace Examples 42
Window-Style Attribute Table Examples 43
Specifying Window Styles 43
Editing Title Bar Text 45

Using Menus to Operate the Current KB 47
Using Menus to Operate on an Item in the KB 48
Using Menus to Affect the Developer’s Environment 48
Choices on the Main Menu 48
Choices on the Miscellany Menu 49

Navigating KB Knowledge 52
Notifying the User of Errors 52

Working with the Operator Logbook 52
Hiding and Showing Logbook Pages 53
Limiting the Number and Size of Logbook Pages 54
Navigating to an Item Referenced in an Operator Logbook Message
Navigating to the Procedure Code That Causes an Error 57
Shadowing the Operator Logbook Message Handler 57

Working with the Message Board Workspace 59
Shadowing the Message Board Message Handler 59

Organizing KB Knowledge 60
Distinguishing Functional Behavior by Class 60
Using Workspaces to Organize KB Knowledge 61
Partitioning Knowledge into Modules 61

Planning Your Work 62
Configuring the Default Developer’s Environment 62
Prototyping or Engineering 62
Identifying Roles for Workspaces 62
Identifying the User Interface Paradigm 63
User Interface Utilities 64
Other Developer Utilities 64
Identifying Data Servers for Variables 64
Using Timekeeping Features 66
Establishing Naming Conventions 68
Considering Natural Language Support 68

55

Xi

Part Il Global G2 Components 69

Chapter3 Knowledge Bases 71

Introduction 72

Contents of a KB 73
ltems 73
System Tables 73

Operating the Current KB 73
The Initial Contents of a KB 73
Clearing the Current KB 74
Starting the Current KB 74
Pausing and Resuming the Current KB 75
Resetting the Current KB 75
Restarting the Current KB 76
Determining the Run-State of the Current KB 76

Saving Your KB Knowledge 80
Saving the Current KB 80
Saving a Modularized KB 81
Saving an Unmodularized KB 82
Backup Copies of KB Files 83
Platform File Systems and KB File Names 83
Using Comments 84
Using Change Logging for Version Control 84
Performing “Diff” Operations 92
Saving a Running Current KB 93
Using System Procedures that Pause G2 before Saving Your KB 94
Saving the State of Workspaces 94
Supporting Source-Code Control Systems 94

Loading a KB 95
Using the Load KB Dialog 96
Loading the KB File 98
Using Wildcards in Filenames when Loading a KB 98
Selecting Options when Loading a KB File 99
Searching for KB Files 101

Saving Permanent and Transient Data in Snapshot KBs 101
Saving a KB Snapshot File 102
Contents of a KB Snapshot File 102
Naming Conventions for KB Snapshot Files 103
Warmbooting a KB Snapshot File 103
Creating Warmboot Procedures 104
Warmbooting with Catch-Up 105

Merging a KB File 107

Xii

Chapter 4

Working with Duplicate Items in KBs 108
Duplicate Definitional ltems 109
Duplicate Class-Definitions 110

Detecting Conflicting Class-Definitions 111
Automatically Resolving Conflicting Class-Definitions 112

Manually Resolving Conflicting Class-Definitions 114
G2 Notification of Conflicting Class-Definitions 114
Responding to Conflict Workspaces 115
Examples of Manual Conflict Resolution 116

Workspaces 123

Introduction 124

Kinds of Workspaces 125
Common Features of Workspaces 126
KB Workspaces 126
Other Workspaces 126

Working with Workspaces 127
Operating on an Area of a Workspace Interactively 128
Operating on an Area of a Workspace Programmatically 132
Cloning a Workspace 132
Deleting a Workspace 133
Disabling and Enabling a Workspace 133
Hiding and Showing a Workspace 134
Scaling a Workspace 135
Positioning a Workspace within its Window 135

Positioning Items upon a Workspace 137
Using the Workspace Origin 138
Displaying the Visible Portion of a Workspace 138
Specifying Margins within the Border of a Workspace 138
Shrink Wrapping the Size of a Workspace 139

Creating and Using a Workspace Hierarchy 139
Creating a Subworkspace for an ltem 139
Making a Workspace the Subworkspace of an ltem 140
Displaying the Workspace Hierarchy 141
Determining Whether a Subworkspace Exists 141
Referring to Subworkspaces Programmatically 142
Configuring Items Based on the Workspace Hierarchy 142

Organizing Knowledge in Subworkspaces by Using Connection

Posts 142
Associating Top-Level Workspaces with Modules 144

Activating and Deactivating Workspaces 145
Activating Top-Level Workspaces 145

xiii

Chapter 5

Xiv

Activating and Deactivating a Subworkspace 146

Printing a Workspace 147
Printing Multiple Pages 147
Generating Encapsulated PostScript Files 147
Generating JPEG Files 148
Printing a Workspace on a Color PostScript Printer 148
Printing Workspaces without Borders 148
Using Double Buffering 148

Setting the Color of Workspaces 149
Creating Custom Workspace Borders 150

Using a Graphic as a Background Image 151
Specifying the Center of the Background Image 152
Using Tiled Workspace Backgrounds 154
Displaying More Than One Background Image 155
Saving the Background Image in the KB 155
Other Considerations for Using Background Images 155

The Kb-Workspace Class 156
Using View-Preferences 158
Actions That Apply to KB Workspaces 162
Expressions That Refer to KB Workspaces 162

Modularized KBs 165

Introduction 165

Understanding Modules 166
The Module Hierarchy 167
Modules and System Tables 168
Modules and Items 169

Creating, Populating, and Saving Modules 169
Naming Conventions for Modules 169
Naming the Top-Level Module 170
Associating ltems with a Module 171
Saving a Module in a Separate KB File 171

Creating a Module Hierarchy 173
Creating a Top-Level Module 173
Creating a New Module 173
Declaring Directly Required Modules 176
Rules for Consistent Modularization 177
Checking for Consistent Modularization 179
Saving the Module Hierarchy 180
Deleting a Module 182
Determining Programmatically Whether a Module is Loaded

184

Chapter 6

Obtaining Information about Modules 184
Displaying the Module Hierarchy 184
Displaying Module Information System Tables 187
Displaying the Module Assignment of ltems 188
Obtaining the Containing Module for ltems Programmatically 189

Working with Modularized KBs 189
Loading a Modularized KB 189
Merging a Modularized KB into the Current KB 191

Using a Module Search Path to Load KB Files 194
Specifying a Module Search Path 195
Module Search Path Syntax 195
How G2 Searches for KB Modules 197

Using a Module Map File to Load and Save a KB 197
Locating the Module Map File 197
Adding Entries to the Module Map File 198

System Tables 199

Introduction 200

Using System Tables 200
Changing System Tables Values Interactively 201
Changing System Table Values Programmatically 202

Color Parameters 203
Controlling the Menu Order of Colors 203
Specifying the Colors on the First Color Menu 204
Defining the Colors on the Second Color Menu 204
Specifying the Number of Columns for the First Color Menu 204
Specifying the Number of Columns for the Second Color Menu 205
Indicating Whether to Dismiss the Color Menu 205
Class-Specific Attributes of Color Parameters 205

Data Server Parameters 206
Specifying a Data Server Alias 206
Specifying Data Service Scheduling Priority 207
Turning on G2 Meters 207
Class-Specific Attributes of Data Server Parameters 208

Debugging Parameters 209
Controlling Error and Warning Message Displays 209
Specifying Debugging Trace Messages 210
Specifying Breakpoints for Debugging 210
Specifying Single-Stepping through Source Code 211
Enabling Tracing and Breakpoints for Debugging 212
Displaying the Procedure Invocation Hierarchy while Paused 213
Enabling the Display of Disassembled Code 214

XV

Saving Tracing Data to a File 214
Specifying the Display Interval for Explanation Data 214
Class-Specific Attributes of Debugging Parameters 215

Drawing Parameters 217
Specifying Scheduled Drawing 217
Specifying the Paint Drawing Mode 218
Controlling the Set of Rendering Colors 219
Editing the Color Used for Selection 222
Displaying a Visible Grid on Workspaces 222
Interactively Resizing Objects and Changing Connection Vertices 224
Class-Specific Attributes of Drawing Parameters 225

Editor Parameters 227
Specifying the Maximum Number of Names to Show 227
Defining the Minimum Text Editor Width 227
Specifying Whether to Enable Author Recording 227
Edit Operations Menus and Buttons 227
Controlling the Display of Calling Signatures 227
Displaying the Native Text Editor 228
Class-Specific Attributes of Editor Parameters 228

Fonts 231
Class-Specific Attributes of Fonts 231

G2 Graphical Language (G2GL) Parameters 233

Inference Engine Parameters 236
Limiting the Depth of Recursion 236
Defining the Timeout for Getting a Variable Value 236
Specifying the Timeout for Rule Completion 237
Specifying the Retry Interval for a Variable Value 237
Specifying the Fuzzy Truth Threshold 237
Class-Specific Attributes of the Inference Engine Parameters 238

KB Configuration 239
Specifying Item Configurations for the KB 239
Restricting Main Menu Options 239
Providing or Restricting Global Keyboard Commands 240
Setting the Initial User Mode for a KB 240
Noting Your Optional Modules 240
Simulating Optional Modules 240
Class-Specific Attributes of KB Configuration 241

Language Parameters 243
Specifying the Current Language 243
Using a Text-Conversion-Style 243
Class-Specific Attributes of Language Parameters 244

Logbook Parameters 244

XVi

Defining the Logbook Page Size 244

Specifying the Margin for Logbook Messages 244
Defining Where to Position Logbook Pages 245
Specifying Where to Position the Logbook 245
Controlling How Many Logbook Pages to Show 245
Controlling the Number of Logbook Pages 246
Displaying the Native Logbook 246

Include Date in Messages 247

Default Docking Position 247

Class-Specific Attributes for Logbook Parameters 247

Log File Parameters 251
Saving a Log File 251
Specifying the Log File Directory Location 252
Specifying a Log File Root Name 253
Specifying the Current Log File 253
Defining When to Close a Log File 254
Defining When to Back Up Log Files 254
Class-Specific Attributes of Log File Parameters 255

Menu Parameters 257
Specifying How to Align Menu Choices 257
Allowing Multiple Menus to Display 257
Allowing Walking Menus 257
Controlling the Display of Developer Menu Bar 258
Class-Specific Attributes of Menu Parameters 259

Message Board Parameters 260
Defining the Minimum Display Interval 260
Displaying the Native Message Board 260
Class-Specific Attributes of Message Board Parameters 261

Miscellaneous Parameters 263
Defining Whether to Repeat the Random Function 263
Specifying the Workspace Margin 263
Starting a KB Automatically After KB Load 263
Determining the KB Run State 264
Enabling the Explanation Facilities 264
Determining Connection Caching 264
Determining Connection Inactivity 264
Changing the Backward Compatibility 265
Displaying the Native G2 Login and Change Mode Dialogs 267
Confirming Run State Changes 267
Use Unicode for Filenames 267
Class-Specific Attributes of Miscellaneous Parameters 268

Module Information 271
Specifying a Module File Name 271
Specifying the Top-Level Module 272

Xvii

Chapter 7

Xviii

Specifying the Required Modules 272
Class-Specific Attributes of Module Information 272

Printer Setup 273
Specifying the Printing Details 273
Specifying the Printer Page Layout 274
Specifying How to Spool the Print File 276
Controlling the Printing Priority 277
Determining the Print File Format 277
Printing a Workspace without Borders 278
Class-Specific Attributes of Printer Setup 278

Saving Parameters 279
Defining the Priority for KB Saving 280
Identifying the Current KB 280
Identifying the KB File Name 280
Adding Comments to a KB 280
Viewing KB Version Information 281
Using KB Change Logging 281
Class-Specific Attributes of Saving Parameters 284

Server Parameters 285
Specifying a Module Search Path 286
Controlling Edits to Read-Only Module Files 286
Specifying the Default Window-Style 286
Determining if G2 is Secure 286
Class-Specific Attributes of Server Parameters 287

Simulation Parameters 288

Timing Parameters 288
Defining the Scheduler Mode 288
Specifying the Minimum Scheduling Interval 289
Specifying the G2-Meter Lag Time 290
Specifying the Interface Mode to Use 291
Adjusting the G2 Clock 291
Controlling the Foreign Function Timeout Interval 292
Controlling Foreign Image Reconnection 292
Setting the Uninterrupted Procedure Limit 292
Scheduling Attribute Table Updates 292
Class-Specific Attributes of Timing Parameters 293

Configurations 297

Introduction 298

Declaring Configurations for ltems 298
Kinds of Configuration Statements 299
Scope of Configurations 301
Precedence of Configurations 301

Example of the Scope of Configurations 301
How G2 Searches for Applicable Configurations 304
Instance Configurations and Definition ltems 306

Configuring the User Interface of ltems 306
Specifying the Applicable User Modes 307
Specifying Appropriate Operations for the Target Class 307

Configuring Menu Choices and Attributes in Tables 308
Configuring Attributes That Appear in Tables 309
Configuring Menu Choices 309
Configuring Non-Menu Choices 309
Configuring Table Menu Choices 311
Configuring Attribute Displays 312

Configuring Keystrokes 313
Constraints on Configuring Keystrokes 313
Considering the Target of a Configured Action 314
Example of Configuring Keystrokes 314

Configuring Mouse Gestures 314
Syntax Summary 316
Example 317
Associating Selection with a Menu Choice or User Menu Choice 318
Associating a Mouse Click with the Miscellany Menu 318
Associating a Mouse Click with an Operation 319
Associating a Mouse-Wheel Event with an Operation 320
Associating a Mouse Click with a Mouse-Tracking Procedure 320
Coding the Mouse-Tracking Procedure 321
Example of Mouse-Tracking Procedure 326
Conflicts between Mouse-Tracking and Other User Interface

Operations 328

Constraining the Movement of ltems 328
Aligning Items to an Invisible Rectangle 329
Aligning Items on an Invisible Grid 329

Configuring the User Interface of Proprietary ltems 330

Configuring Access to and from Other G2, G2 Gateway, and Telewindows
Processes 331
Allowing or Prohibiting Network Access 332
Allowing Read and Write Access 333
Allowing Execute Access 333
Allowing Inform Access 333

Configuring Properties of Items 334
Specifying the Scope of the Declared Properties 335
Specifying Exceptions to the Declared Properties 335
Declaring a Procedure to be Inlined 335

Xix

Declaring a Method to be Inlined 336

Declaring ltems as Stable Hierarchy 336

Declaring an ltem Independent for All Compilations 337
Declaring an ltem Stable for Dependent Compilations 337
Declaring an Activatable Subworkspace for an Item 338
Declaring Subworkspace Connection Posts for Items 338
Disallowing Manual Connections for an Iltem 339

Including Comments in Configurations 339
Describing Configurations 340

Declaring User Modes in Configurations 340
Associating User Modes with G2-Window ltems 341
Associating User Modes and Users 342
Example of Configuring the User Interface of an Item 342
Obtaining the Attributes Visible for a User Mode Programmatically 345

Declaring Generic and Exception Configurations 347
Combining Configurations 347
Combining Cooperatively 348
Combining Additionally 348
Combining Absolutely 350

Configuring the G2 Main Menu and Global Key Bindings and Shortcuts 351
Configuring the G2 Main Menu 351
Restricting Help 353
Keyboard Command Restrictions 353

Using Configurations in Modularized KBs 354

Chapter8 G2-Windows 355

Introduction 356
Windows and G2-Windows 356

Using Local Windows and Remote Windows 357
Representing Local and Remote Windows 357
Special Properties of Local and Remote Windows 357

Displaying Independent Views of the Current KB 358

The G2-Window Class 361
Attributes of the G2-Window Class 361
Hidden Attributes 368

Working with G2-Windows 370
Accessing the G2-Window Item Associated with Your Interaction with
G2 370
Overriding the Default Window Style 370
Determining When G2 Associates a G2-Window with a Window 370

XX

Part Il

Chapter 9

Determining Whether the Connection is Local or Remote 371
Determining the G2 User Name for a G2-Window 371
Determining the Login Name at the Operating System 372
Determining the User Mode 372

Determining the Remote Host Name 372

Determining the Time of Connection 373

Determining the Operating System Type 373

Controlling the Mouse Cursor 373

Expressions that Refer to G2-Window Items 374

Specifying the Appearance of the G2 Window 374
Specifying the Resolution and Magnification 375
Identifying the Dimensions of the G2 Window 375
Identifying the Resolution of the G2 Window 376

Rerouting a Telewindow 376
Setting up Access to Telewindows 377
Reporting Errors 377

Supporting a Window-Specific Language 377

Using the Login Dialog 379
Displaying the Login Dialog 379
Determining Default Values in the Login Dialog 380

Logging Login Activities 380
Writing the Login Handlers 380
Registering the Login Handler 381

Associating an Existing G2-Window with a Telewindow 381

Knowledge Representation 383

Values and Types 385
Introduction 385

Using Values Stored in Items 386
Using Attribute Values 386
Using Text Attribute Values of Items 387
Using Values Given by Variables and Parameters 387
Checking for the Existence of an Attribute Value 387
Using Local Names for Values 388
Expiration of Variable Values 388

Distinguishing Value Types 388
Complex Types 389
Declaring Types 389

XXi

Working with General Types 390
Using the ltem-or-Value Type 391
Using the Value Type 391
Using the Quantity Type 391

Working with Specific Types 391
Using the Integer Type 391
Using the Long Type 392
Using the Float Type 392
Working with Exceptional Float Values 393
Coercing Numeric Values 394
Using Units of Measure for Numeric Values 394
Using the Symbol Type 395
Using the Text Type 397
Using the Truth-Value Type 400

Representing Time Values 400
Time as an Integer 400
Time as a Float 401
Time as a String 402

Working with Composite Types 402
Using the Structure Type 402
Structure Functions 403
Structure Expressions 405
Using the Sequence Type 406
Sequence Functions 407
Sequence Expressions 410

Using Structures and Sequences in User-Defined Classes 411
Comparing Structures and ltems 411
Comparing Sequences and Lists 412

Chapter 10 G2 ltems 413

Introduction 413
Logical Components of Items 414
Understanding ltem Inheritance 416

Understanding the Knowledge Contained in Items 417
Identifying the Knowledge in Attributes 417
Identifying the Knowledge Not Stored in Attributes 417
Identifying the Status Knowledge of ltems 417
Identifying the Superior and Subordinate Relationships among Items
422

Iltem Representation 423
Identifying the G2 Color Palette 423
Identifying the Color Attributes of Items 425

xxXii

Chapter 11

Actions That Affect Item Appearance 426

Locating Items upon a Workspace 426
Layering Items upon the Same Workspace 427
Distinguishing Permanent, Transient, and Current Knowledge 428

Working with Items Interactively 432
Using Item Menus 432
Common Item Menu Choices 433
Changing the Size of an Item 434
Cloning an Item 435
Cloning Specific Knowledge 436
Changing the Text Alignment of an Item 437
Changing the Color of an ltem 437
Deleting an Item 439
Describing an ltem 439
Describing the Configuration of an Item 440
Showing Unsaved Attributes 440
Lifting to the Top and Dropping to the Bottom 441
Naming an Iltem 441
Showing and Hiding an Item Name Box Programmatically 443
Rotating and Reflecting an Iltem 443
Displaying the Tables for an ltem 444
Transferring Iltems to Another Workspace 444

Iltem Expressions 445
Referring by Item Name 445
Referring through a Symbolic Expression 445
Referring by Variable or Parameter Name 445
Referring by Workspace Location 445
Referring by Identity 446
Referring by Association with an Event or Location 446
Referring by Item Evaluation 447

Referring to Other Item Knowledge 448
Referring to the Name and Class 448
Referring to the Superior Item 448
Referring to the Workspaces Associated with an ltem 449
Referring to the Relationships of an Item 449
Referring to the Size of an Item 451
Referring to Degrees of Rotation 452
Referring to the Position of an ltem 452

The Item Class 454

System Procedures for Working with Item Groups 456

Attributes and Tables 459
Introduction 460

xXiii

Attribute Contents 460
Distinguishing System- and User-Defined Attributes 460

Using Attribute-Tables and Hidden-Attributes-Tables 461
Displaying an Attribute Table for an ltem 462
Updating Attribute Tables 463
Using Attribute Menus on an Attribute Table 464

Adding Attribute Displays to Attribute Tables 470
Defining Attribute Displays in Class Definitions 471
Manipulating an Attribute Display from its Menu 471
Adding or Removing Attribute Displays Programmatically 472

Loading Attribute Values from an Attribute File 475
Using the Authors Attribute 475

Using Indexed Attributes 476
Performance Considerations 476
Expressions for Indexed Attributes 476

Using Universal Unique Identifiers 477
Uniqueness within a G2 Process 477
Changing a UUID at Load Time 478
Displaying the UUID of Every ltem 478
Connections and UUIDs 479

Using Other Special-Purpose Attributes 479
Formatting Attributes 479
Evaluation Attributes 479

Actions That Affect Attributes 480
Changing an Item Name 480
Concluding Attribute Values 480

Expressions That Refer to Attributes 480
Referring to Attributes by Name 480
Referring to Attributes through a Symbolic Expression 481
Iterating Over User-Defined Attributes 481
Referring to the Text Attribute of an Item 481
Referring to an Attribute That is an Instance of an Object 482
Referring to an Attribute Given by a Variable or Parameter 482
Referring to an Untyped Attribute That Contains an Object 483
Referring Indirectly Using a Symbol 483
Referring to the Parent Attribute Name of a Subobject 484

Chapter 12 Attribute Access Facility 485

Introduction 485
Accessing System-Defined Attributes 486

XXiv

Attribute Access Terminology 487

Attribute Descriptions 488
Obtaining Class Descriptions 488
Differences between the Value and Text of an Attribute 489
Hidden Attributes 492
Composite Attributes 494

Referencing System-Defined Attributes 494
Creating Subattribute References 495
Tips for Using Subattribute References 500
Concluding Values Directly or Incrementally 501

Attribute Access System Procedures 502

Chapter 13 Classes and Class Hierarchy 503
Introduction 504

The G2 Class Hierarchy 504
ltems and Classes 504
Methods 505
Inheritance 505

System-Defined Classes 507
Varieties of System-Defined Classes 507
Instantiating System-Defined Classes 508

Viewing the Class Hierarchy with the Inspect Facility 508

User-Defined Classes 509
Extending G2’s Machinery with User-Defined Classes 509
Representing Knowledge with User-Defined Classes 509
Creating User-Defined Classes 509
Instantiating User-Defined Classes 511

Inheritance in Class Hierarchies 512
Direct-Superior-Classes Attribute 513
Class-Inheritance-Path Attribute 513

Single Inheritance 513
Inheritance of Default Values 514
Inheritance of Methods 516
Duplicate Attributes 516

Multiple Inheritance 520
Multiple Inheritance and Class Inheritance Paths 520
Linearizing Multiple Inheritance 521

How G2 Linearizes Multiple Inheritance 522
The G2 Linearization Algorithm 522
Linearizing Two Superior Classes 523

XXV

Linearizing Several Superior Classes 525
Linearizing Networks of Classes 527

Why G2 Linearizes As It Does 528
Ideal Linearization 528
Feasible Linearization 529
G2 Linearization 529

lllegal Patterns of Multiple Inheritance 529
Disordered Multiple Inheritance 530
Meaningless Multiple Inheritance 531

Viewing Multiple Inheritance with the Inspect Facility 532

Default Values in Multiple Inheritance 533
Inheriting a Default Value from a Direct Superior 534
Overriding the Default Value of a Direct Superior 535
Overriding an Inherited Value with an Explicit Value 536
Inheriting Default Values for Stubs 536

Duplicate Attributes in Multiple Inheritance 537
Defining Classes in Bottom-up Order 539
Deleting a Class Definition 539

Planning a Class Hierarchy 540

Chapter 14 Definitions 541

Introduction 542
Terminology 543
Overview of the Class Definition Process 543

Creating Class Definitions 544
Storing Definitions on Workspaces 544

Class Definition Attributes 545
Formatting the Text of Attributes 547
Order of Attributes in Tables 548

Configuring Class Definitions 548
Specifying the Item Configuration 548
Providing a Class Name 549
Specifying the Superior Class(es) 549
Specifying Instance Configurations 552
Determining the Class Inheritance Path 552
Determining the Initializable System Attributes 552
Determining the Inherited User-Defined Attributes 553
Defining and Initializing Class-Specific Attributes 554
Specifying Default Values for Inherited Attributes 562

XXVi

Specifying Instantiability 566
Effects of Setting Instantiability Attributes 566
Order of Classes in the G2 Menu Hierarchy 567
Uninstantiable Subclasses 568

Specifying an Icon 568
System-Defined and User-Defined Icons 568
Icon Inheritance 569
Using the Icon Editor 569

Creating Object Classes 570
System-Defined Object Attributes 570
Specifying Attribute Displays 572
Specifying Connection Stubs 573
Specifying Other Object Class Attributes 580

Creating Connection Classes 583
System-Defined Connection Attributes 583
Defining Connection Regions 584
Specifying a Stub Length 585
Defining the Junction Block to Use 585

Creating Connection Post Classes 587
System-Defined Connection Post Attribute 588
Specifying the Superior Connection 588

Creating Message Classes 588
System-Defined Message Attribute 589
Specifying Default Message Properties 590

Using Specialized Definitions 591
Class Inheritance and Class Definition Types 592
Creating an Object Definition 593
Creating a Connection Definition 594
Creating a Message Definition 595

Customizing Definition Classes 595
Creating New Classes Programmatically 597

Changing Definitions 597
Using the Change Attribute 598
Changing Definitions with the Conclude Action 602
Effect on Subclasses and Instances 603
Effect on Procedure Statements and Other Items 607

Merging Classes 609
Merging Definitions of the Same Type 609
Merging Classes Defined on Definitions of Different Types 610
Completing a Merge 610

Deleting a Definition 611

XXVii

Chapter 15 Variables and Parameters 613

Introduction 614

Comparing Variables and Parameters 614
Parameter Features 614
Variable Features 615
Memory Considerations 615
Summary of Variable and Parameter Differences 616

Variables, Parameters, and Rules 617

Obtaining Values for Variables 617
Obtaining Unrequested Values 618
Obtaining Requested Values 618
Handling a Variable Failure 620

Obtaining Values for Parameters 621

Creating Variables and Parameters 621
Specifying Forward and Backward Chaining 622
Forward Chaining on Unchanged Variables and Parameters 623
Defining Debugging and Tracing 623
Specifying the Type 623
Specifying an Initial Value 624
Obtaining the Last Recorded Value 625
Specifying Whether to Keep a History of Values 626
Specifying a Validity Interval 626
Creating a Specific Formula 629
Specifying Simulation Details 629
Determining the Initial Simulation Value 629
Specifying a Data Server 629
Specifying a Default Update Interval 630

History Keeping in G2 630
Storing and Accessing History Values 631
Collection Time 631
Saving a Maximum Number of Data Points 632
Saving Data Points over a Maximum Time Period 632
Saving a Maximum Number of Data Points over a Specific Time Period
633
Specifying a Minimum Interval between History Data Points 633
Working with History Keeping Using Attribute Access 635

History Expressions 637
Obtaining a History Value 638
Computing the Number of History Datapoints 639
Computing the Average History Value 639
Computing the Sum of Values in Histories 640
Computing the Integral 640

XXViii

Chapter 16

Computing the Interpolated Value 641
Computing Maximum and Minimum Values 642
Computing the Rate of Change 642

Computing the Standard Deviation 643
Concluding the History Directly 644

Actions to Use with Variables and Parameters 645
Concluding an Attribute Variable to Have No Value 645
Concluding Values for Variables and Parameters 645

Variable and Parameter Rules 648
Whenever a Variable or Parameter Receives a Value 648
Whenever a Variable Fails to Receive a Value 648
Whenever a Variable Loses Its Value 648

Variable and Parameter Expressions 648
Directly Referring to a Variable or Parameter 649
Using the Value of Expression 650
Using the Has a Value Expression 650
Using Current Value Expressions 650
Obtaining the Simulated Value of a Variable or Parameter 651
Obtaining the Collection Time for a Variable or Parameter 652
Obtaining the Expiration Time for a Variable 652
Referring to a Variable or Parameter That Gives the Value of an Attribute
653
Referring to a Time Interval Ending with the Collection Time 653

The Variable and Parameter Classes 654
Common Attributes 656
Variable-Specific Attributes 658
Value-Structure and History Hidden Attributes 659

Describing Variables and Parameters 660

Lists and Arrays 663

Introduction 664
KB Saving of Permanent Lists and Arrays 664
Lists and Sequences 664

Comparing Lists and Arrays 665
Choosing Lists 665
Choosing Arrays 665
List or Array Contents 666
Effect of Run States on Lists and Arrays 667
Summary of List and Array Differences 668

Creating Lists and Arrays 668
Setting the Array Length 669
Defining the Element Type 669

XXiX

XXX

Allowing Duplicate List Elements 669
Providing Initial Values for Array Elements 669
Using Permanent-Membership Lists and Arrays 671

Populating a List 673
Inserting Based on Element Location 674
Inserting at the Beginning or End of a List 674
Inserting Before or After an Existing Element 674
Inserting into Lists with Duplicate Elements 675

Removing List Elements 675
Removing a Particular List Element 676
Removing Using an Element Index 676
Removing a Type of List Element 676

Populating an Array 677
Changing the Initial Values of an Array 677
Iterating over an Array 677
Using an Attribute File 678

Replacing List and Array Elements 678
Using Change 678
Using Conclude 678
Altering the Length of an Array 679
Changing Elements to Have No Values 679
Data Seeking and Event Updating 680

Iterating over Lists and Arrays 680
Iterating According to Element Type 681
Iterating over Lists For a Particular Item 682
Specifying a Relative List Position 682
Allowing Other Processing During List and Array Iteration

Using Other List and Array Expressions 683
Accessing List or Array Elements by Index 683
Performing Computations over Sets of Elements 684
Testing for List Membership 685
Obtaining the Number of List Elements 686
Finding the Length of an Array 686

Accessing Lists or Arrays That are Object Attributes 686
Changing Attribute List and Array Elements 687

Copying Lists and Arrays 688
g2-list-sequence 688
g2-array-sequence 688

Representing Sparse Arrays 689
Representing Matrixes with Arrays 690

Using System Procedures with Lists, Arrays, and Matrixes 690

682

Chapter 17

Chapter 18

The List and Array Classes 692
Creating Subclasses of Lists and Arrays 693
Class-Specific Attributes 694

Describing Lists and Arrays 696

Hash Tables and Priority Queues 697

Introduction 697

Hash-Table Class 698
Hidden Attributes 699
Application Programmer’s Interface 700
Example: Hash Tables 700

Priority-Queue Class 703
Hidden Attributes 703
Application Programmer’s Interface 704
Example: Priority Queue 704

Connections 709

Introduction 710
Properties of Connections 710
Controlling Connection Caching 711

Connecting to Objects 711
Creating a Connection 712
Connecting Objects 713

Using Connections 713
Drawing Orthogonal Connections 713
Drawing Diagonal Connections 714
Changing Connection Vertices 716
Using Connection Arrowheads 717
Connecting to Objects without Stubs 718
Defining Connectedness 719
Disallowing Connections 720
Determining the Item Count for Connections 720
Deleting Stubs and Connections Interactively 721
Deleting Stubs and Connections Programmatically 721
Connection Layering 721

Using Junction Blocks 722
Creating Junction Blocks 722
Creating a Junction Block Subclass 723

Using Connection Posts 723
Creating Connection Posts on Subworkspaces Automatically 724

XXXi

Chapter 19

XXXii

Creating a Connection Post Subclass 725

Using Connection Expressions 726
Referring to Connected ltems 726
Referring to Input or Output Stubs 727
Referring to Port Names 727
Referring to the End of a Connection 728
Referring to the Connection Class 728

Iterating over Connections 729

Using Actions with Connections 730
Changing the Stripe-Color 730
Creating Transient Connections 730
Creating a Connection on One Side of an Object 732
Creating a Directional Connection 732
Creating a Connection with Vertices 732
Creating an Existing Connection Programmatically 734
Making a Transient Connection Permanent 735
Deleting a Connection 736

Detecting Connection and Disconnection Events 736
Generic Connection and Disconnection Events 736
Direct Connection and Disconnection Events 737

System Procedures for Connections 737

Functions for Connections 738
Checking Connection Information 738
Detecting Connectedness 739

Describing Connections 741

Relations 743

Introduction 744
Using Relation Definitions and Relations 744

Creating a Relation Definition 745
Choosing a Relation Name 745

Using Permanent Relations 746
Understanding How G2 Saves Relations 746
Complying to Permanency 747
Restoring Permanent Relations 747

Specifying the Cardinality of Relations 748
Defining an Inverse Relation 749

Defining a Symmetric Relation 751

Creating a Relation 752
Using Conclude to Create Relations 752
Example of Creating a Relation between Two ltems 753
Example of Creating a Relation between an Item and a Class 754
Using a Sequence to Conclude a Relation 755

Removing a Relation 756
Removing Relations by Deleting Items 757

Replacing a Relation 757
Using the Now Syntax 757
Example of Replacing a One-to-One Relation 758
Example of Replacing Multiple One-to-One Relations 759
Example of Replacing a Many-to-One Relation 760
Example of Replacing a One-to-Many Relation 761

Invoking Rules Using Relations 761
Using Whenever Rules to Detect Relatedness 762
Using Whenever Rules to Detect Cessation of Relations 762
Invoking Rules When a Relation is Created 762
Invoking Rules When a Relation is Deleted 763
Invoking Rules That Test Whether a Relation Exists 764
Invoking Rules That Refer to Items with Relations 764
Invoking Rules That Refer to Variables with Relations 765

Working with Transient Items 765
Working with Deactivated and Disabled Iltems 766

Updating Relations While a KB is Running 766
Updating the First Class and Second Class 766
Updating the Type of Relation 767
Updating Symmetric Relations 767
Updating Relations While Executing Procedures 767
Updating a Relation While a Rule is Executing 767
Updating a Relation When Saving a KB Snapshot File 768

Expressions Involving Relations 768
Event Expressions 768
Logical Expressions 768
Relation Participation Expressions 768
Generic Item References 770

The Relation Class 771
Describing the Items That Participate in a Relation 773

XXXiii

Part IV

Chapter 20

Chapter 21

XXXiV

Computational Capabilities 775

Actions 777

Introduction 778

Executing Actions 778
Executing Actions in Procedures 779
Executing Actions in Other Contexts 779
Executing Iterative Actions 779
Further Information 780

Dictionary of Actions 780
abort 781
activate 783
change 784
conclude 789
create 792
deactivate 794
delete 795
focus 797
halt 798
hide 800
inform 802
insert 805
invoke 806
make 807
move 810
pause 811
post 812
print 813
remove 814
reset 815
rotate 816
set 817
show 818
shut down g2 824
start 825
transfer 827
update 830

Expressions 831
Introduction 832
Forming an Expression 832

Evaluating Expressions 832
Never Obtaining a Value 833

Chapter 22

Not Obtaining a Value at this Time 833
Finding a Type Mismatch 833

Determining When Expressions Expire 834
Understanding Transactions and Transaction Scopes 834

Using Generic Reference Expressions 835
Including a Generic Reference Qualifier Expression 836
Using Quantifiers 836
Embedded Generic Reference Expressions 838

Using Class-Qualified Names 838

Using Local Names in Expressions 839
Implicit Use 839
Explicit Use 840
Class or Attribute Name Use 840

Using Literals 841

Using Operators in Expressions 841
Using Arithmetic Operators 842
Using Logical Operators 846
Using Relational Operators 849
Producing Fuzzy Truth Values from Relational Operations
Using the Concatenation Operator 853

Producing a Symbol Value 857
Referring to a Superior or Inferior Class 857

Referring to Items or Values 858
Existence of an Item or Value 858
There Exists 858
Class or Type of Item or Value 859
By Generic Reference 860
Conditional Evaluation 861
Value Expressions 861
Current Value of an Expression 863
By lterating Over a Set 865

Referring to the Current Time 866
Current Subsecond Time 867
Current Time by Time Unit 867
Current System Time 868
Current Day of the Week 868

Referring to Specific ltems 869

Procedures 871

Introduction 872

850

XXXV

XXXVi

Procedure Syntax 872
Local Names in Procedures 873
Procedure Header Syntax 874
Local Declarations Syntax 875
Procedure Body Syntax 876
Error Handler Syntax 877
Comments 878

Defining a Procedure 878

Compiling a Procedure with Error-Location Information 879
Procedure Attributes 879

Sample Procedure 880

Using Procedures 882
Invoking a Procedure 882
Passing Arguments to a Procedure 882
Using the Procedure Signature Prompts in the Editor 883
Accessing Variables in a Procedure 884
Memory Management in Procedures 884
Allowing Other Processing 885
Limiting Procedure Execution Time 887
Setting Procedure Priority 887
Debugging a Procedure 888
Displaying the Invocation Hierarchy of a Procedure 888
Inlining a Procedure 889
Creating Procedure Invocations 893
Aborting a Runaway Procedure 894
Expressions for Procedures 894

Procedures and Rules 896

Dictionary of Procedure Statements 898
allow other processing 899
assignment (=) 900
begin-end 901
call 902
case 904
collect data 906
do in parallel 908
exitif 910
for 911
goto 916
if-then 917
on error 919
repeat 921
return 922
signal 923

wait 925

Chapter 23 Methods 927

Introduction 927

About Methods 928
Methods and Procedures 928
The Vessel Example 929
Filling Vessels Using Procedures 929
Filling Vessels Using Methods 930
Encapsulation 931
Duplicate Methods 931
Inheriting Methods 931
Defining Methods 932

Designing a Class Hierarchy 932
Implementing a Class Hierarchy 934

Creating Method Declarations 935
Flagging Call Next Method Requirements 936

Defining a Method 936
Method Attributes 937

Describing a Collection of Methods 938

Invoking a Method 939
Invoking a Method Generically 939
Invoking a Method Directly 940
Invoking a Superior Method 942

Duplicate Methods 943
Duplicate and Superior Methods 943

Inlining a Method 944
Inlining Restrictions 944
Declaring a Method as Inlineable 944
Recompiling an Inlineable Method 945
Testing for an Inlined Method 946

Considerations for Multiple Inheritance 946

Locking Mechanism for Objects 949
Example: Calling a Synchronized Method from a Procedure 951
Example: Calling a Synchronized Method from the Same Method 955
Detecting and Releasing Deadlocks 957
Example: Detecting and Releasing Deadlocks Using an Error
Handler 958
Example: Detecting and Releasing Deadlocks with No Error
Handler 961

XXXVii

Chapter 24

XXXViii

Rules, Inferencing, and Chaining 963

Introduction 963

Creating a Rule 965
Displaying the Table for a Rule 966
Cloning a Rule 966
Changing the Font Size of a Rule 966

Coding the Text of a Rule 967
Coding the Antecedent 967
Coding the Consequent 967

Kinds of Rules 969
If Rules 969
Initially Rules 970
Unconditionally Rules 972
When Rules 972
Whenever Rules 973

Event Expressions 973

Using Whenever Rules 976
Event Expressions in Whenever Rules 976
Multiple Invocations Result in a Single Firing 976
Reducing the Number of Invocations per Firing 977
Coalescing Multiple Whenever Rule Invocations 977
Whenever Rule Design Requirements 978
Possible Event Sequences 978
Reporting Every Value 979

Specifying the Scope of the Rule 979
Creating Specific Rules 980
Creating Generic Rules 980

Invoking Rules 985
Forward Chaining 986
Backward Chaining 989
Activating the Parent Workspace of a Rule 994
Detecting Events 994
Scanning Rules 995
Focusing on Rules and Invoking Rules by Category 996

Debugging Rules 999
Debugging and Tracing Rules 999
Highlighting Rules 999

Understanding Rule Invocation and Execution 1000
Prioritizing Rules 1000
Setting the Timeout Interval for a Rule 1002
Creating and Managing Rule Invocations 1002

Chapter 25

Chapter 26

Evaluating the Antecedent 1003
Executing Actions in the Consequent in Parallel 1003
Executing Actions in the Consequent Sequentially 1005

The Rule Class 1007
Actions That Manipulate Rules 1011
Expressions That Refer to Rules 1012

Formulas 1013

Introduction 1013
Creating Generic Formulas 1014

Creating Specific Formulas 1014

Text Parsing and Manipulation 1017

Introduction 1017
G2 Text Manipulation Functions 1018
G2 Conventions for Manipulating Text 1018

Ordinary Text Manipulation Functions 1019
Obtaining Text Length 1019
Testing for a Substring 1019
Locating a Substring 1019
Obtaining a Substring 1020
Inserting a Substring 1020
Replacing One Substring with Another 1020
Deleting a Substring 1021
Capitalizing Text 1021
Converting Text to Uppercase 1021
Converting Text to Lowercase 1021
Testing for a Quantity 1021

Regular Expression Syntax 1022
Character Classes 1023
Precedence 1025

Text Functions Using Regular Expressions 1026
Locating a Substring Using a Regular Expression 1026
Extracting a Substring Using a Regular Expression 1027
Replacing a Substring Using a Regular Expression 1027

Parsing Strings into Tokens 1027
Specifying the Syntax for Extracting Tokens 1028
Locating Tokens in a String 1030
Extracting Tokens from a String 1031

G2 Character Representation 1032

XXXiX

Chapter 27

Chapter 28

x|

Working with Multiple Character Sets 1032

Working with Text Conversion Styles 1032
Naming the Conversion Style 1033
Determining the External Character Set to Use 1033
Using a Replacement Character 1034
Specifying the Han-Unification Mode 1034
Specifying the External Line Separator 1035
Using a Custom Text Conversion Style 1036
Using the Default Text Conversion Style 1036

Character Set Conversion Functions 1038
Converting Character Codes to Unicode Text 1038
Converting Text to Unicode Character Codes 1038
Comparing Text 1039
Exporting Unicode Text 1040
Importing Unicode Text 1040
Determining Unicode Digits 1040
Determining Lowercase Characters 1041
Determining Readable Digits 1041
Determining Readable Digits in Radix 1041
Determining Titlecase Characters 1042
Determining Uppercase Characters 1042
Obtaining a Readable Symbol from Text 1042
Obtaining a Readable Text 1043
Converting a Value into a Readable Representation 1043
Converting Characters to Lowercase 1043
Converting Characters to Titlecase 1043
Converting Characters to Uppercase 1044
Transforming Text for Unicode Comparison 1044
Transforming Text for G2 4.0 Comparison 1045

XML Parsing 1047

Introduction 1047

Providing the XML Code as Text 1048
SAX-Parser Class 1049

SAX Callback Procedure 1052
Example 1054

Functions 1055
Introduction 1055
Invoking Functions 1056

Executing Functions 1056

User-Defined Functions 1056

Tabular Functions of One Argument 1058
Naming the Tabular Function 1061
Sorting the Items in the Table 1061
Interpolating Function Values 1061
Adding and Deleting Values and Arguments 1062
Changing Tabular Functions Programmatically 1066

System-Defined Functions 1066
Arithmetic Functions 1067
Vector Functions 1073
Attribute Access Functions 1073
Bitwise Functions 1074
Call-Function Function 1075
Character Manipulation Functions 1076
Connection Functions 1076
Format-Numeric-Text Function 1076
Great-Circle-Distance Function 1077
Quantity Function 1078
Symbol Function 1079
Text-to-Symbol Function 1079
Rgb-Symbol Function 1080
Text Functions 1081
Time Functions 1081

Chapter 29 Publish/Subscribe Facility 1085
Introduction 1085
Application Programmer’s Interface 1086
Registering Callbacks Remotely 1086

Examples 1087

Example: Subscribing to Attribute Changes 1087

Example: Deregistering Subscriptions 1089

Example: Subscribing to Deletion Events 1090

Example: Subscribing to Workspace Events 1091

Example: Subscribing to Variable Events 1094

Example: Subscribing to Custom Events 1096

Example: Registering Callbacks Remotely Over a Network
Interface 1098

Example: Registering Callbacks Remotely Over a G2 Gateway
Bridge 1102

Chapter 30 G2 Graphical Language (G2GL) 1107

Introduction 1107

Terms and Concepts 1109

Creating G2GL Processes 1109
Using G2GL within the Business Process Management System
Module 1110
Summary of G2GL Activities 1111
Creating a G2GL Process 1114
Creating Local and Argument Variables 1116
G2GL Expressions 1118
G2GL Statements 1120
Assigning Values 1123
Returning Values 1125
Interacting with G2 Items 1126
Using Flow-Related Activities 1128
Defining Scopes and Handlers 1136
Miscellaneous Activities 1142
Debugging 1143
Summary of Differences Between G2GL and BPEL Activities 1144

Communicating Between G2GL Processes 1145
Invocation 1146
BPEL Compliance 1149
Creating Processes that Communicate 1150
Handling Message Events 1160
Handling Faults 1161
Invoking Web Service Operations 1161
Example: Credit Rating Partner Processes 1162

Interacting with G2GL Processes 1168
Compiling G2GL Processes 1168
Executing G2GL Processes 1170
Managing G2GL Process Instances 1176
Debugging G2GL Processes 1177
Configuring G2GL 1186
Exporting G2GL Processes as XML 1186
Importing G2GL Processes from XML Documents 1187

PartV User Interface Components 1193

Chapter 31 Buttons 1195

Introduction 1195

Types of Buttons 1196
Subclassing Buttons 1196

Creating Buttons 1196
Common Attributes of Buttons 1197

xlii

Providing a Label for the Button 1198
Representing the Variable or Parameter 1198

Action Buttons 1198
Entering the Actions to Execute 1199
Controlling the Scheduling Priority 1199
Class-Specific Attributes 1200

Check Boxes 1200
Specifying the Activation Value 1201
Specifying the On and Off Values 1201
Class-Specific Attributes 1202

Radio Buttons 1203
Specifying the Value Upon Activation 1203
Defining the Selected Value 1204
Class-Specific Attributes 1204

Sliders 1204
Specifying the Activation Value 1205
Setting the Minimum and Maximum Values 1205
Specifying When to Update a Value 1205
Specifying When to Show a Value 1205
Class-Specific Attributes 1206

Type-in Boxes 1207
Specifying the Activation Value 1207
Specifying the Formatting Style 1207
Defining the Selection Status 1208
Specifying Editor Options 1208
Showing Editor Prompts 1209
Class-Specific Attributes 1211

Chapter 32 Text Iltems 1213

Introduction 1213

Using Free Text to Label Your KB 1213
Creating Free Text 1214
Changing the Color of Free Text 1214
Changing the Font of Free Text 1215

Using Text Inserters to Insert Text into the Text Editor 1215
Creating and Editing a Text Inserter 1215
Using Text Inserters from the Scrapbook 1216
Using Text Inserters to Insert Text 1217

Chapter 33 User Menu Choices 1219

Introduction 1219

xliii

Chapter 34

Chapter 35

Chapter 36

xliv

Working with User Menu Choices 1219
Labelling the Menu Choice 1220
Defining the Applicable Class 1221
Controlling When the Menu Choice is Available 1221
Specifying the Action to Execute 1221
Specifying the Scheduling Priority 1222
User Menu Choice Attributes 1222

External Images 1225

Introduction 1225

Supported Graphics Formats 1226

Working with External Images 1227

Creating an Image Definition 1227

Specifying the Name of the Image 1229
Specifying the Pathname of the Image File 1229
Using an Image ina KB 1230

Saving an Image with a KB 1230
Advantages and Disadvantages 1230
Omitting the Pathname of an Image Saved with a KB 1231

Updating an Image in a KB 1231

Messages 1233

Introduction 1233

Using Messages 1233
Creating a Message 1233
Creating a New Message Class 1234

Using Actions with Messages 1235
Changing the Color Attributes of Message Properties 1236
Changing the Text of a Message 1236
Concluding Message Text into a Variable or Parameter 1236
Creating and Transferring Transient Messages 1237
Deleting Transient Messages 1237

Readout Tables, Dials, and Meters 1239

Introduction 1239

Working with Displays 1240
Specifying Tracing and Breakpoints 1241
Specifying the Display Expression 1241
Specifying the Update Interval 1241

Specifying the Display Update after G2 Start-Up 1241

Defining the Update Priority 1241

Specifying Simulated Value Display 1241

Common Attributes of Readout Tables, Dials, and Meters 1242

Readout Tables 1243
Digital Clocks 1244
Specifying the Label to Display 1244
Specifying the Display Format 1245
Reading the Current Value 1246
Class-Specific Attributes of Readout Tables 1246

Dials and Meters 1247
Setting the Meter’s Lower Value 1248
Determining the Meter’s Dial Increment 1248
Class-Specific Attributes of Dials and Meters 1249

Chapter 37 Freeform Tables 1251

Introduction 1251

Creating a Freeform Table 1251
Specifying the Table Size 1252
Specifying Default Formats for Table Cells 1252
Determining the Default Evaluation Settings 1253

Formatting Freeform Tables 1253
Expressions for Freeform Table Cells 1254

Changing Formatting Attributes 1254

Changing Evaluation Settings 1256
Entering Evaluation Settings 1256
Data Seeking Evaluation Settings 1258
Event-Updating Evaluation Settings 1259
Scanning Evaluation Settings 1260
Debugging and Tracing Evaluation Settings 1261
Scheduling Evaluation Settings 1262
Other Evaluation Settings 1262

Changing Freeform Tables Programmatically 1263
The Freeform Table Class 1263

Chapter 38 Charts 1265

Introduction 1265

Using Charts 1266
Chart Styles 1266
Specifying the Chart Style 1268

xlv

Chapter 39

Chapter 40

xlvi

Sizing a Chart 1268
Defining the Data Series for the Chart 1268

Displaying and Updating a Chart 1269

Using Chart Annotations 1269
Default Chart Annotations 1271
Axis Component Attributes 1272
Chart Component Attributes 1273
Data Point Component Attributes 1273
Data Series Component Attributes 1278
Defining the Line Colors 1279

Updating Charts Programmatically 1279
The Chart Class 1279

Graphs 1281

Introduction 1281

Creating a Graph 1282
Sizing a Graph 1285
Specifying the Data Window Time Span 1286
Specifying Numerical Bounds for the Value Axis
Specifying Graph Scrolling 1288
Defining the Graph Percentage to Extend 1288
Specifying Whether Grid Lines are Visible 1289
Defining the Interval between Tickmarks 1289

Specifying the Number and Style of Grid Lines 1289

Defining a Graph’s Background Color 1290
Specifying the Expression to Display 1290
Specifying the Graph Label 1291

Using Grid Lines and Tickmark Labels in Graphs 1291

Trend Charts 1293

Introduction 1294
About Trend Charts 1294

Compound Attributes 1298
Accessing Component Subtables 1299
Selecting Compound-Attribute Value Views 1301
Changing Compound Attributes 1303
Using Component References 1304
Setting Component Defaults 1304

Configuring Trend Charts 1306
Creating a Trend Chart 1306
Sizing a Trend Chart 1307

Summarizing Trend Chart Attributes 1307

Configuring Plots 1310
Defining Where to Obtain History Values 1312
Specifying the Value Axis for the Plot 1312
Specifying the Point Format 1313
Specifying the Connector Format 1313
Defining the Update Interval 1314
Specifying the Activation Interval 1314
Specifying the Update Priority Level 1314
Specifying Data Seeking Capabilities 1315
Using Simulated History Values 1315
Specifying Event Updates 1315
Defining the Debugging Level 1315
Entering an Expression 1316
Summarizing Plot Attributes 1316

Configuring Value Axes 1319
Displaying the Value Axis 1320
Specifying the Value Range 1320
Specifying Range Limits 1321
Defining the Range Slack Percentage 1322
Specifying the Label Frequency 1322
Displaying Labels as Percentages 1322
Specifying the Significant Digits for Labels 1323
Showing Grid Lines 1323
Adding Extra Grid Lines 1323
Displaying a Baseline 1324
Specifying the Baseline Color 1324
Summarizing Value Axis Attributes 1324

Configuring the Time Axis 1328
Defining the Data Window Time Span 1328
Specifying How Long to Maintain Local History 1329
Specifying the Last Plot Value 1330
Updating the Trend Chart Data 1330
Specifying How Data Scrolls 1330
Shifting the Data Window 1331
Displaying Current Real-Time Clock Labels 1331
Displaying Negative Offset Labels 1331
Defining the Label Frequency 1332
Specifying the Label Alignment 1332
Summarizing Time Axis Attributes 1333

Configuring Point Formats 1337
Displaying Markers 1338
Specifying the Marker Style 1338
Defining the Marker Frequency 1338
The Effect of Markers on Trend Chart Drawing 1338

xlvii

Summarizing Point Format Attributes 1338

Configuring Connector Formats 1340
Displaying Connectors 1341
Specifying How Connectors are Drawn 1341
Specifying the Connector Line Width 1342
Displaying Block Shading 1342
Summarizing Connector Format Attributes 1343

Configuring the Trend Chart Format 1345
Displaying an Outer Border 1345
Displaying a Data Window Border 1345
Adding a Trend Chart Legend 1346
Providing a Trend Chart Title 1346
Summarizing Trend Chart Format Attributes 1346

Working with Trend Charts 1349
Updating Trend Charts 1349
How Plots are Drawn 1349
Causes of Redrawing and Reformatting 1349

System Procedures for Trend Charts 1350
Trend Chart Attributes Reference 1350

Chapter 41 Windows Menus 1353
Introduction 1353
Comparison between Native GMS, Classic GMS, and NMS Menus 1354

Using Native G2 Menu System (GMS) Menus 1355
Example: Alternate GMS Menu Bar 1356
Example: GMS Popup Menu 1358
Example: GMS Localization 1359
Example: GMS Dynamic Menus 1362
Example: GMS Menu Icons 1365
Example: Built-in G2 Menu 1367

Using the Native Menu System APl 1368
Using the NMS API to Create Menus and Toolbars 1369
Examples 1373

Displaying Classic GMS Menus in Telewindows 1381
GMS and NMS Menus and the G2 Run State 1382

Demos 1383
gms-native-multiple-menubar-demo.kb 1383
gms-native-large-menu-demo.kb 1384
gms-native-popup-demo.kb 1384
gms-native-language-demo.kb 1384

xlviii

Chapter 42

Chapter 43

nmsdemo.kb 1385

Windows Dialogs 1387

Introduction 1387

Running the Dialogs Demo 1388

Posting Basic Dialogs 1393

Posting Query Dialogs 1394

Posting Notification Dialogs 1394

Posting Delay Notification Dialogs 1395

Viewing the Source Workspace for Basic Dialogs 1396
Posting Custom Dialogs 1397

Viewing the Source Workspace for Custom Dialogs 1399
Posting Messages to an Alert Queue 1404

Viewing the Source Workspace for the Alert Queue 1406

Custom Windows Dialogs 1409

Introduction 1410

Posting a Custom Dialog 1412
Dialog Specification 1413
Dialog Component Structure 1418
Example: Posting a Simple Dialog 1426
Example: Creating Groups of Controls 1428

Dialog Callbacks 1430
Response Actions 1430
Dialog Update Callback 1431
Example: Dialog Update Callback 1432
Dialog Dismissed Callback 1433
Example: Dialog Dismissed Callback 1433
Generic Dialog Callback 1434
Example: Generic Dialog Callback 1435

Modifying a Custom Dialog 1436
Modify Specification 1437
Control Actions 1437
Example: Modifying a Custom Dialog 1439

Querying a Dialog 1440

Dialog Controls 1441
calendar 1442

xlix

check-box 1444
checkable-list-box 1447
color-picker 1450
combo-box 1454
duration 1458
full-color-picker 1460
grid-view 1463

group 1483

image 1485

label 1487

list-box 1489
masked-edit 1493
progress-bar 1496
push-button 1498
radio-button 1502

slider 1505

spinner 1506

tab-frame 1509
tabular-view 1514
text-box 1525
time-of-day 1529
toggle-button 1533
tree-view-combo-box 1535
Example: Modifying a Tree-View-Combo-Box 1537
track-bar 1538
workspace 1539
Summary of Control Values 1541

Win32 Control Types 1546
WIN32 Window Style Symbols 1546
WIN32 Static Control Style Symbols 1547
WIN32 Edit Style Symbols 1549
WIN32 Button Style Symbols 1549
WIN32 Combo-Box Style Symbols 1550
WIN32 Spinner Style Symbols 1551
WIN32 Tabular-View Style Symbols 1552

Chapter 44 Windows Views, Panes, and Ul Features 1553

Introduction 1554

Using Chart Views 1554
Creating a Simple Chart 1557
Creating a Simple Bar Chart 1557
Creating a Simple Chart and Table 1558
Populating a Chart View 1558
Displaying Annotations 1561
Exporting a Chart View 1561

Printing a Chart View 1561
Deleting a Chart View 1562
Example Callback: Chart View 1562

Using HTML Views 1563
Creating an HTML View 1563
Going to a Web Page 1564
Destroying an HTML View 1565
Example Callback: HTML View 1565

Using HTML Help 1566
Displaying a Topic 1567
Displaying the Table of Contents 1568
Displaying the Index 1569
Displaying Popup Help 1569

Using Property Grid 1570

Using Shortcut Bars 1571
Creating a Shortcut Bar 1572
Using the Listbar Style 1573
Displaying Arbitrary Views in a Listbar Style Shortcut Bar 1575
Example Callback: Shortcut Bar 1579
Interacting with Items in the Shortcut Bar 1580
Changing the Icon Size 1581
Disabling and Enabling a Shortcut Bar 1582
Clearing a Shortcut Bar 1582
Destroying a Shortcut Bar 1583

Using Tree Views 1583
Creating a Tree View 1583
Creating the Tree View as a Dialog Control 1585
Populating a Tree View 1586
Showing and Hiding a Tree View 1589
Selecting Items in a Tree View 1590
Clearing a Tree View 1590
Destroying a Tree View 1591
Example Callback: Tree View 1591

Using Status Bars 1593
Using Workspace Views 1594
Using Tabbed MDI Mode 1596

Part VI Editors and Facilities 1603

Chapter 45 The Text Editor 1605

Introduction 1606
Text Editor Features 1608

Opening the Text Editor 1608
Setting the Minimum Width of the Editing Area 1609
Configuring Editor Menu and Button Options 1610

Entering Text 1612
Entering Text within the Text Editor 1613
Entering Text by Selecting Visible Text 1615
Entering a Class Name 1615
Using Text Editor Procedure and Function Signature Prompting 1618
Undoing and Redoing the Last Edit 1619
Correcting Errors in the Editor 1619
Ending the Editing Session 1619

Using the Search Facility 1620
Using the Scrollable Text Editor 1623

Using the Clipboard and Scrapbook 1624
Interacting with the Scrapbook Directly 1625
Controlling the Amount of Text in the Scrapbook 1625

Performing Other Edit Operations 1626

Cutting/Pasting between G2 and Other Applications 1627
Using the Clipboard for Text Exchange 1628
Displaying Unicode Characters 1629

Using Unicode and Special Characters 1630
Entering Unicode Character Codes 1631
Entering Special Characters 1632

Keystroke Commands 1635
Displaying Help 1635
Moving the Cursor 1636
Cutting, Copying, and Pasting Text 1637
Selecting Text 1638
Deleting Text 1638
Inserting Tabs and Line Breaks 1639
Controlling the Editing Session 1639
Inserting Prompts by using the Keyboard 1640

Text Editor Buttons 1640

Chapter 46 The Icon Editor and lcon Management 1643

Introduction 1644
Composition of an Icon 1644
Starting the Icon Editor 1645

Parts of the Icon Editor 1646
Layers Pad 1646
Icon Viewer 1647
Layer Indicators 1647
Other Indicators 1648
Drawing Buttons 1648
Command Buttons 1649

Defining Icons 1650
Starting an Icon Definition 1651
Controlling Icon Size and Shape 1651
Controlling Icon Viewer Magnification 1652
Working with Layers 1652
Specifying Colors 1653

Creating Graphics 1654
Drawing Points 1654
Drawing Lines 1654
Drawing Segmented Lines 1655
Drawing Arcs 1655
Drawing Rectangles 1655
Drawing Circles 1656
Drawing Polygons 1656
Toggling Filled and Outlined Graphics 1656
Deleting Graphics 1657
Moving Graphics 1657
Reshaping Graphics 1658

Defining Text Components 1658

Applying a Stipple Pattern 1659
Stippled Header 1659
Stippled-Area Elements 1660
Displaying and Printing Stippled Icons 1661

Programmatic Access to Stipples 1662
Stipples in the Icon Editor 1663

Including Externally Created Images 1664
Image Size and Icon Size 1664
Image Position 1665

Defining Regions 1666

Chapter 47

liv

Creating Groups 1666
Saving and Canceling Changes 1667
Tips for Working with lcons 1668

Editing Icons Textually 1668
Icon Description Language Example 1668
Icon Description Language Grammar 1671
Using the Icon and Text Editors Together 1673

Specifying an Icon Background Layer 1674
Specifying a Background Image 1674
Specifying a Background Color 1675

Animated Icons 1676

Defining and Using Icon Variables 1677
Specifying Graphical Positions with Icon Variables 1677
Specifying Text Components with Icon Variables 1678
Specifying Image Components with Icon Variables 1680
Specifying Locations with Expressions 1681
Manual Layer Positioning and Icon Variables 1681
Errors in Icon Variable Specifications 1681

Animating Icons 1682
Changing Width and Height 1682
Referencing Icon Variables 1682
Replacing Icon Variable Values 1683
Replacing Icon Variable Text 1683
Merging Icon Variable Values 1683
Conveniently Merging New and Default Values 1684

The Inspect Facility 1685

Introduction 1686

Using the Inspect Facility 1687
Interacting with Items on the Inspect Workspace 1689

Showing Items on a Workspace 1690
Syntax 1690
Showing Items and Classes 1690

Showing Items with Unsaved Permanent Changes 1692
Showing the Workspace Hierarchy 1694
Showing the Class Hierarchy 1695
Showing the Module Hierarchy 1696
Showing Procedure Caller and Calling Hierarchies 1696
Showing the Procedure Invocation Hierarchy 1697
Showing Method Definition Hierarchies 1699

Chapter 48

Writing Items to a File 1700
Syntax 1701
Writing Items 1701
Writing a Class Hierarchy 1702

Locating Items in Your KB 1702

Displaying Item Tables 1702
Syntax 1703
Determining How to Display the Table 1703
Specifying Which Attributes to Display in the Table 1703
Interacting with the Table 1704

Replacing Text in Items 1704
Syntax 1704
Replacing Text 1705
Replacing Text That is Not Grammatically Correct 1706

Highlighting Text 1707
Checking for Consistent Modularization 1707

Recompiling Items 1708
Syntax 1708

Filtering Classes of ltems 1708
Filtering Items Based on a Truth-Value Expression 1709
Filtering Items That Contain Specific Text 1709
Filtering Items That Contain Notes 1709
Filtering Items Based on the Item Status 1710
Filtering Items Based on the Value of an Attribute 1710
Filtering Items Based on Their Category or Focal Class 1710
Filtering Items Based on Their Workspace 1711
Filtering Items Based on Their Module 1711
Filtering Items That Do Not Meet Specified Criteria 1711

Version Control 1712
Inspect Command History (Enterprise only) 1713

Natural Language Facilities 1715

Introduction 1715
Using G2 Fonts 1716

Using the Natural Language Facilities 1717
Setting the Current Language 1717
Setting a Default Language for a G2 Session 1719
Setting a Language for the Current Window 1719
Supporting Multiple Languages ina KB 1719

Localizing Menu Choices and G2 Facilities 1720

Using Language Translations for Localization 1721
Specifying a Context 1722

Localizing the Text and Icon Editor Buttons 1723
Localizing the Login Dialog 1724

Using European Languages 1726
Available Translations 1727

Using the Japanese, Korean, Chinese, and Thai Language Facilities 1728
Using Windows Character-Input Methods 1728
Specifying a Han Character-Style Preference 1728
Using the Japanese Language Facilities 1730
Using the Korean Language Facilities 1735
Using the Chinese Language Facilities 1740
Using the Thai Language Facilities 1741

Using the Russian Language Facilities 1741

Chapter 49 G2 Character Support 1745

Introduction 1745

Unicode Character Support 1746
Non-Unicode Character Support 1746

Defining the Gensym Character Set 1747
Subset of ASCII Character Set and Special Characters 1748
Other Standard Character Sets 1748

Using Escape Characters 1749
Using the ~ Escape Character 1750
Using the @ Escape Character 1750
Using the \ Escape Character 1751

Encoding ASCII Characters and Special Characters 1751
Encoding a Tab Character 1754

Encoding Japanese Characters 1754
Encoding Korean Characters 1756
Encoding Russian Characters 1756

Translating from the Gensym Character Set 1757

Part VI Debugging and Optimization 1759

Chapter 50 Error Handling 1761

Introduction 1762
Superseded Error Handling Techniques 1762

lvi

Chapter 51

G2 Error Handling Concepts 1763
G2 Error Classes 1763
Defining an Error Handler 1764

Handling Errors in a Procedure 1765
Obtaining Source Information From the Error Object 1766
Synchronous and Asynchronous Error Handling 1766
Default Handler Example 1767
Block Error Handler Example 1768

Error Object Memory Management 1769
Reusing Error Objects 1770
Handling Non-Procedural Errors 1770

Signaling Errors in a Procedure 1770
Signaling the Default Error Handler 1771
Signalling a Block Error Handler 1772

Shadowing the Default Error Handler 1773
Creating a User-Defined Default Error Handler 1774

Mixing Error Handling Techniques 1775

Debugging and Tracing 1777

Introduction 1778
Displaying Error and Warning Messages 1778

Obtaining Procedure Source-Code Error Location Information 1780
Controlling the Creation of Error-Location Information 1780
Obtaining Error-Location Information from the Logbook 1781
Obtaining Error-Location Information from the Error Object 1782
Procedure Statements That Divert Error Location 1783
Go-to-Source-Code Errors 1785

Displaying Trace Messages 1785
Saving Tracing Data to a File 1788
Specifying Breakpoints and Tracing 1789

Using Dynamic Breakpoints 1792
Setting Dynamic Breakpoints in the Client 1792
Setting Dynamic Breakpoints in the Server 1794

Stepping Through Procedure Source Code 1796
Stepping Through Procedure Source Code 1798

Removing Tracing and Breakpoints 1801

Ivii

Chapter 52

Chapter 53

Iviii

Showing Disassembled Code 1802
Obtaining Information from Abort Workspaces 1802

Writing Logbook Messages to a Log File 1803

Explanation Facilities 1805
Introduction 1805

Example KB in the Demos Directory 1806
Enabling the Explanation Facilities 1806

Displaying Current Chaining and Rule Invocation 1807
Statically Displaying One-Level of Chaining for a Variable 1808
Dynamically Displaying Backward Chaining for a Variable 1809
Dynamically Displaying Generic Rule Invocations for an Object 1809
Dynamically Displaying the Invocations of a Rule 1810
Delaying Dynamic Display Updates 1811

Displaying Explanation Trees of Cached Chaining and Rule Invocation
Knowledge 1812
Caching Explanation Data 1812
Creating Explanation Items 1813
Displaying Explanations 1814
Understanding Explanation Trees 1814
Deleting Explanations 1815

Profiling and KB Performance 1817
Introduction 1817

Profiling the Execution of Your KB 1817
Techniques for Profiling 1818
Understanding the Profiling Process 1819
Identifying Resource Requirements for Profiling 1819
Using System Procedures for Profiling 1819
Collecting Profile Data 1820
Creating a Copy of the Collected Profile Data in G2 1820
Identifying the Contents of a System-Profile-Information 1821
Profiling Executable Items and Activities 1828
Resetting Profile Data in G2 1828
Identifying Your Profiling Strategy 1829
Reporting the Contents of a System-Profile-Information 1830
Analyzing Profiling Data 1832

Using Compilation Configurations 1832
Stability Configurations 1832
Declaring the Configurations 1833
Understanding Compiled Attributes 1833

Chapter 54

Chapter 55

Validating References at Run-Time 1834

Understanding Compilation Dependencies 1835

Declaring Procedures and Methods as Inlineable 1836
Declaring ltems as Stable-Hierarchy 1837

Declaring ltems Stable-for-Dependent-Compilations 1838
Declaring ltems Independent-for-All-Compilations 1841
Changing Items That Have Compilation Configurations 1842

G2-Meters 1847

Introduction 1847

Working with G2-Meters 1848

Enabling and Disabling G2 Meter Service 1848
Specifying the Meter Lag Time 1849

Creating G2-Meters 1850

Disabling and Enabling Individual G2-Meters 1851

Interpreting G2-Meters That Measure Memory 1851
G2-Meter and Operating System Measurements 1851
Approximations in Memory Meter Readings 1852

Types of G2-Meters 1852
Instance-Creation-Count-as-Float 1853
Memory-Size 1853
Memory-Usage 1853
Memory-Available 1853
Region-N-Memory-Size 1854
Region-N-Memory-Usage 1854
Region-N-Memory-Available 1854
Clock-Tick-Length 1854
Maximum-Clock-Tick-Length 1854
Percent-Run-Time 1854
Simulator-Time-Lag 1855
Priority-N-Scheduler-Time-Lag 1855

Memory Management 1857
Introduction 1858

Managing KB Data Memory 1858

G2 and System Services 1859
Determining System Adequacy 1859

G2, RAM, and Virtual Memory 1859
Determining RAM Requirements 1859

lix

Chapter 56

Introduction to G2 Memory Management 1860

Memory Management Problems 1860
Insufficient Memory Allocation 1861
Unlimited Memory Consumption 1861

Memory Management During Development 1861
G2 Memory Regions 1862

Measuring G2 Memory Usage 1862
Generating the Maximum Memory Allocation 1863
Measuring the Maximum Memory Allocation 1865

Determining Region 1 and Region 2 Memory Requirements 1868
Excess Memory Preallocation 1868
Safety Factors 1868
Allocating Less Than the Default 1869

Restricting Region 3 Memory 1869

Specifying G2 Memory Allocation 1869
Specifying Memory in the G2 Command Line 1870
Specifying Memory with UNIX Environment Variables 1871
Specifying Memory with Windows Environment Variables 1872

Causes of Unbounded Memory Requirements 1873
Unnecessary Retention of Storage 1873
Failure to Delete Transient Items 1873

Correcting Unbounded Memory Requirements 1874
Checking Region 1 Memory Increases 1875
Checking Region 2 Memory Increases 1878
If All Else Fails 1879

Task Scheduling 1881

Introduction 1881

The Main Processing Cycle 1882
Ticking the G2 Clock 1882
Major Events in the Processing Cycle 1883

The G2 Scheduler 1883
Wait States 1884
Task Scheduling 1884
Procedural versus Rule-Based Tasks 1886
Default Task Priorities 1887
Optimizing Task Scheduling 1888

Part VIl Application Deployment 1893

Chapter 57 Package Preparation 1895
Introduction 1895

Preparing a KB for Customer Distribution 1896
Saving a Copy of the Source KB 1896
Entering Package Preparation Mode 1897

Text Stripping Items 1897
Removing KB Change Logging and Version Information 1899

Making Workspaces Proprietary 1899
Creating a Proprietary KB 1900
Creating and Configuring Proprietary ltems 1901
Completing Proprietary Workspaces 1902

Distributing a Proprietary Application Package 1903

Chapter 58 Licensing and Authorization 1905
Introduction 1905

G2 Licensing 1905
G2 License Types 1906
G2 License Options 1907
Finding License Types and Options ina KB 1908

G2 Authorization and the g2.ok File 1908
How G2 Locates the g2.0k File 1909
Description of the g2.0k File 1909
How G2 Uses the g2.ok File 1910

Authorizing Users at a Secure Site 1910
How G2 Uses a Secure g2.0k File 1911
Secure G2 OK File Syntax 1911
Version Element 1912
User Name and Password Syntax 1912
Secure G2 OK File Example 1913
Adding User Elements to the Authorization File Interactively 1913
Specifying a Password in a G2 Authorization File 1914
Updating the g2.ok File 1915
Changing User Passwords Interactively 1918
Localizing the G2 Password Change Dialog 1919

Telewindows Licensing Structure 1921
Floating Telewindows 1922
Dedicated Telewindows 1923

Ixi

Part IX

Chapter 59

Chapter 60

Chapter 61

Chapter 62

Ixii

Simulating License Types 1923

Networking and Interfacing 1925

Network Security 1927
Introduction 1927
Determining the Level of Network Security 1927

Defining Network Security for a KB 1928
Using Configuration Statements for Network Access 1928
Allowing or Prohibiting Connect Access 1929

Secure Communication and Authentication (SSL) 1931

Introduction 1932

Encrypting Communication between G2 and Telewindows 1932
Encrypting Communication between G2 and G2 Gateway 1933
Connecting to Sockets with SSL Security 1935

Telewindows Support 1937

Introduction 1937

Accepting a Connection from a Telewindows Process 1938
Displaying the Telewindow 1938
Connecting with a G2 that is Not Secure 1939
Connecting with a Secure G2 1939
Logging Login Activities 1940
Accepting a Password 1941
Associating the Telewindow with a G2-Window ltem 1941
Establishing a Window Style for Your Telewindows Process 1942

Logging Out from a Secure G2 1943
Closing a Telewindows Connection 1943

Rerouting Telewindows Connections 1944
Rerouting a Telewindows Session to a Secure G2 1945
Using System Procedures 1946
Using G2 Window Attributes 1946
Applications that Reroute Telewindows Connections 1946

G2-to-G2 Interface 1949

Introduction 1949

Using the G2-to-G2 Interface to Exchange Data 1950

Using the G2-to-G2 Interface 1951
Creating Data Interface Objects 1951
Naming the Interface Object 1952
Identifying Attributes 1952
Setting the Warning Message Level 1952
Defining the Connection Details 1953
Setting the Interface Timeout Interval 1954
Obtaining the Current Connection Status 1955
Starting the G2 Processes 1956
Activating Data Interface Objects 1956
The G2-to-G2-Data-Interface Class 1956
Creating Data Interface Subclasses 1957

Using Remote Data Service 1958
Creating a G2-to-G2 Variable 1958
Examples of Remote Data Service 1959

Using Remote Procedure Calls 1961
Creating and Declaring a Remote Procedure 1962
Using an Alternative Procedure Name 1963
Invoking Remote Procedures 1964

Value and ltem Passing Arguments and Return Types for RPCs 1965
Considerations for Item Passing 1967

Value Passing 1968
Configuring the KB for Value Passing 1969
Example of Passing an Integer Value 1970
Example of Passing a Structure Value 1970

Passing an Item as a Network Handle 1971
Configuring the KB for Item Passing as a Network Handle 1971
Example of Obtaining a Network Handle 1972
Example of Passing an Item as a Handle 1973

Passing Variables and Parameters 1973
Passing a Variable or Parameter as a Copy or Handle 1974
Passing the Current Value of a Variable or Parameter 1974

Passing User- and System-Defined Classes 1975
Configuring the KB for Passing an Item with Attributes 1976
Passing a Copy of any Item 1977
Including and Excluding Attributes 1979
Passing an Item Including User-Defined Attributes 1979
Passing an Item Excluding User-Defined Attributes 1980
Passing Attributes with Object Values 1981
Passing an Iltem with System-Defined Attributes 1982
Passing Both User- and System-Defined Attributes 1984

Ixiii

Passing an ltem with Attributes and a Handle 1984
Specifying One or More Remaining Arguments 1984
Passing Network Handles as the Class in RPCs 1985
Passing UUIDs Referring to Items in RPCs 1988

Chapter 63 G2 Gateway 1991

Introduction 1991
Using G2 Gateway to Exchange Data 1992

Using GSI Interface Objects 1993
Creating a GSlI Interface Object 1993
Locating GSI Interface Objects on Activatable Subworkspaces 1993

Creating GSI Variables 1994
Specifying the GSI Interface Name 1994
Determining the Status of the Variable 1994

Using GSI Message Servers 1995

Chapter 64 Interfacing with COM Applications 1997
Introduction 1997
Using the G2Gateway Control 1998
Managing G2 Iltems 1999
Using the WorkspaceView ActiveX Control 1999

Chapter 65 Interfacing with Java Applications 2001
Introduction 2001
Ui-Client-Interface 2002
Ui-Client-ltem and Ui-Client-Session 2002

Chapter 66 Interfacing with Web Services 2003

Introduction 2003

Web Services 2004
Web Service Messages 2004
Importing Web Service Descriptions 2005
Invoking Web Service Operations 2006
Invoking Web Service Operations from G2GL 2008

HTTP 2009
Listening for HTTP Requests 2009
Sending a Web Request 2010

Ixiv

Chapter 67

Chapter 68

Chapter 69

SOAP 2010
Sending a SOAP Request 2011

Interfacing with TCP/IP Sockets 2013
Introduction 2013

TCP/IP Socket Communication 2013

Socket I/O 2014

Foreign Functions 2015
Introduction 2015

Foreign Functions Examples 2016
Creating a Sample Foreign Image 2017
Calling the Sample Foreign Functions 2017

Using Foreign Functions 2018

Creating a Foreign Function Template File 2019
C and C++ Data Types and Character Conversion 2020

Using the Overlay Utility through the Makefile 2022
Completing the Makefile Global Variables 2023
Running the Makefile 2024

Starting and Connecting to the Foreign Image 2024
Starting the Foreign Image as an External Process 2024
Connecting to an External Process Foreign Image 2025
Starting a Foreign Image from within G2 2025
Connecting to a Foreign Image with a G2-Init File 2026

Declaring a Foreign Function in a KB 2026
Providing the Name of the C Function 2027
Setting the Timeout Interval 2028
Handling Possible Name Collisions 2028

Using a Foreign Function 2028

Disconnecting from the External Foreign Function 2029

Windows Services 2031
Introduction 2031
Running GService 2032

Examples 2037
Examples of Using GService with a Bridge Process 2037
Examples of Using GService with a G2 Process 2038

Ixv

Part X Appendixes 2039

Appendix A Launching a G2 Process 2041

Introduction 2043

Starting the G2 Process 2043

Writing Standard Output Messages to a Log File 2044
Writing Network 1/0O Tracing Messages to a File 2044

Using an Initialization File 2045
Coding an Initialization File 2045

Using Command-Line Options 2048
Supported Command-Line Characters 2049
Using Environment Variables 2049

Dictionary of Command-Line Options 2043
background 2045
cert 2046
cjk-language 2047
default-language 2048
display 2050
do-not-catch-aborts 2052
exit-on-abort 2053
fonts 2054
fullscreen 2056
g2passwdexe 2057
geometry 2058
height 2060
help 2061
icon 2062
init 2063
init-string 2065
kb 2066
kfepindex, kfepkojin, and kfepmain 2068
language 2070
local-window 2072
log 2073
magnification 2074
manually-resolving-conflicts 2075
module-map 2077
module-search-path 2078
name 2080
netinfo 2081
network 2082
never-start 2083

Ixvi

Appendix B

Appendix C

no-backing-store 2084
no-log 2086

no-tray 2087
no-window 2088

ok 2089

password 2091
private-colormap 2092
regserver 2094
resolution 2096
rgn1imt 2097
rgn2imt 2099
rgn3imt 2101
screenlock 2103
secure 2104

start 2105

tcpipexact 2106
tcpport 2107

ui 2109

unregserver 2110
user-mode 2112
user-name 2113
vilok 2114

verbose 2116

width 2117

window 2118
window-style 2119
x-magnification and y-magnification 2120
x-resolution and y-resolution 2122

Reserved Symbols 2129

Introduction 2130

List of Reserved Words 2130
Reserved Words in the G2 Language 2131
Reserved Ordinary System-Defined Attributes 2132
Reserved Hidden System-Defined Attributes 2137

Generating a List of System-Defined Attributes 2138

Mouse Gestures, Key Bindings, and Shortcut Keys 2141

Introduction 2141
Mouse Gestures for Selection 2142
Mouse Gestures for Interacting with Selections 2143

Mouse Gestures for Interacting with Workspaces 2144

Ixvii

Key Bindings for Scrolling Workspace Views 2145
General Key Bindings 2146

General Shortcut Keys 2147

Shortcut Keys for Workspaces 2148

Changes from Earlier G2 Versions 2151

Appendix D Syntax Conventions 2153

Introduction 2153
Syntax Notation 2153

User-Specified Terms 2154
Value Expression Terms 2155
Literal Value Terms 2155
Item Expression Terms 2156
Attribute Reference Terms 2157
Iltem Name Terms 2157
Class Name Terms 2157
Attribute Name Terms 2158
Other Expression Terms 2159
Other Literal Terms 2161

Appendix E G2 KBs and GIF Files 2163
Introduction 2163
Demonstration KBs 2164
Sample KBs 2165
Tutorial KBs 2166
Utility KBs 2167
GIF Files 2169

Appendix F Superseded Practices 2175
Introduction 2175
Attribute Files 2176

Drawing Modes 2176
Unscheduled Drawing 2176
XOR Drawing Mode 2177

G2 File Interface (GFI) 2177
G2 Simulator 2177

Ixviii

Icon Position and Size Attributes 2177

OLE Drag and Drop 2178

Glossary 2179

Index 2209

Ixix

Ixx

Preface

Describes this manual and the conventions that it uses.

About this Manual Ixxi
Audience Ixxi

Organization Ixxii
Conventions Ixxvii

Related Documentation Ixxix

Customer Support Services Ixxxi

About this Manual

This reference manual presents G2, a development environment for creating
intelligent, real-time, knowledge-based applications.

Audience

This manual is written for G2 application developers and system integrators. It

addresses the application developer or system integrator as you, and refers to a
G2 end-user as the user.

This manual assumes that you have done one or more of the following;:
* Taken one or more G2 courses provided by Gensym.
® Gone through the Getting Started with G2 Tutorials.

®* Otherwise become somewhat familiar with G2.

Ixxi

Organization

This manual contains the following chapters and appendixes:

Title Description
PartI Introduction to G2
1 Overview of G2 Presents a summary of and orientation to
G2’s major features.
2 The Developer’s Introduces features and strategies for
Environment developing a G2-based application.
PartII Global G2 Components
3 Knowledge Bases Shows how to work with the current KB,
save the current KB, and load a KB.
4 Workspaces Shows how to use workspaces to organize
your KB’s items.
5 Modularized KBs Describes how to partition your KB into
modules.
6 System Tables Describes the use of system tables to set
global preferences.
7 Configurations Describes how configurations override the
default behavior of items.
8 G2-Windows Describes how G2 associates g2-window
items with visible windows.
Part III Knowledge Representation
9 Values and Types Describes the role of values and types in a
knowledge base.
10 G2 Items Presents the characteristics that are
common to all G2 items.
11 Attributes and Tables Shows you how to use item attributes and
the attribute tables that display them.
12 Attribute Presents the capabilities of the attribute
Access FacilityAttribute access facility.
Access Facility

Ixxii

Organization

Title Description
13 Classes and Describes the principles, structure, and
Class Hierarchy use of the G2 class hierarchy.
14 Definitions Describes class definitions and shows you
how to use them.
15 Variables and Parameters Describes variables and parameters and
how to use them within a KB.
16 Lists and Arrays Describes how to use lists and arrays.
17 Hash Tables and Priority =~ Describes how to use hash tables and
Queues priority queues.
18 Connections Describes connections, connection posts,
and junction blocks.
19 Relations Describes how to associate items in a non-
graphical way.
Part IV Computational Capabilities
20 Actions Describes each G2 action and shows you
how to use it.
21 Expressions Describes the purpose and syntax of each
G2 expression.
22 Procedures Shows how to define, customize, and use
G2 procedures.
23 Methods Shows how to define and use G2 methods.
24 Rules, Inferencing, and Describes how G2 invokes rules to
Chaining perform actions.
25 Formulas Describes generic and specific formulas
and their use.
26 Text Parsing Describes capabilities for manipulating
and Manipulation text and substrings, parsing and
tokenizing text using regular expressions,
and interconverting text between the
Gensym and Unicode character sets.
27 XML Parsing Describes how to parse XML code and

make callbacks to user-defined
procedures.

Ixxiii

Title Description
28 Functions Lists system-defined functions and
describes how to create new functions.
29 Publish/Subscribe Facility =~ Describes how to use the
publish/subscribe facility for event
subcription.
30 G2 Graphical Language Describes G2GL, a graphical language for
(G2GL) describing processes.
Part VI User Interface Components
31 Buttons Describes action and radio buttons, check
boxes, sliders, and type-in boxes.
32 Text Items Describes how to create text items and
how to use text inserts.
33 User Menu Choices Describes how to define application-
specific menu choices.
34 External Images Explains how to use external images in
workspace backgrounds and icons.
35 Messages Describes how to work with messages.
36 Readout Tables, Dials, and = Describes the display items readout tables,
Meters dials, and meters.
37 Freeform Tables Describes how to use freeform table
display items.
38 Charts Presents chart styles and graphs, and
show you how to use them.
39 Graphs Presents chart styles and graphs, and
show you how to use them.
40 Trend Charts An introduction to and description of
trend charts and their use.
41 Windows Menus Describes how GMS menus display as
native menus in Telewindows.
42 Windows Dialogs Provides examples of basic and custom

Ixxiv

Windows dialogs.

Organization

Title Description

43 Custom Windows Dialogs Describes the API procedures for creating
custom Windows dialogs.

44 Windows Views, Panes, Describes the API procedures for creating

and UI Features Windows views.
Part VII Editors and Facilities

45 The Text Editor Describes how to create text items and
how to use text inserters.

46 The Icon Editor and Icon Describes the G2 Icon Editor and its icon-

Management description language.

47 The Inspect Facility Describes how to use the Inspect facility to
search for items.

48 Natural Describes the facilities for using non-

Language Facilities English languages in a KB.

49 G2 Character Support Presents a description of the G2 character

support through Unicode.
Part VIII Debugging & Optimization

50 Error Handling Describes the G2 error-handling
capabilities.

51 Debugging and Tracing Describes G2 facilities that can assist in
debugging your KB.

52 Explanation Facilities Describes the facilities that collect and
display data about rules and formulas and
the objects they reference.

53 Profiling and Describes techniques for evaluating and

KB Performance improving KB performance.

54 G2-Meters Shows how to create, configure, and use
G2-meters.

55 Memory Management Describes G2’s memory regions and
shows how to manage them.

56 Task Scheduling Describes the G2 scheduler, the G2 clock,

and task queues.

Ixxv

Title

Description

Part IX Application Deployment
57 Package Preparation Describes removing a KB’s source code
and making a proprietary KB.
58 Licensing and Presents licensing and authorization for
Authorization G2.
Part X Networking and Interfacing
59 Network Security Describes how to limit network access to a
KB.
61 Telewindows Support Describes G2’s features that support
Telewindows connections.
62 G2-t0-G2 Interface Describes how to connect two G2
processes and pass data between them.
63 G2 Gateway Describes the system-defined items that
permit GSI interfacing.
65 Interfacing with Describes the system-defined items that
Java Applications allow communication with Java
appliations.
68 Foreign Functions Describes how to call C or C++ foreign
functions from within G2.
69 Windows Services Describes how to run G2 and G2 bridges
as a service under Windows.
Part XI Appendixes
A Launching a G2 Process Describes techniques, command-line
options, and environment variables that
can launch and configure the startup and
execution of a G2 process.
B Reserved Symbols Explains and lists G2’s reserved symbols.
C Mouse Gestures, Key Presents all default keystrokes for
Bindings, and operating G2 interactively.
Shortcut Keys

Ixxvi

Conventions

Description

Title
D Syntax Conventions
E G2 KBs and GIF Files
F Superseded Practices
Conventions

Describes the notation and user-specified
terms used in G2 syntax.

Describes the demonstration, sample, and
utility KBs, and the GIF files that ship with
G2.

Describes G2 capabilities that are obsolete
and may not be supported indefinitely.

This guide uses the following typographic conventions and conventions for

defining system procedures.
Typographic

Convention Examples

Description

g2-window, g2-window-1,
ws-top-level, sys-mod

User-defined and system-defined
G2 class names, instance names,
workspace names, and

module names

history-keeping-spec, temperature

User-defined and system-defined
G2 attribute names

true, 1.234, ok, “Burlington, MA”

G2 attribute values and values
specified or viewed through
dialogs

Main Menu > Start
KB Workspace > New Object
create subworkspace

Start Procedure

G2 menu choices and button labels

conclude that the x of y ...

Text of G2 procedures, methods,
functions, formulas, and
expressions

new-argument

User-specified values in
syntax descriptions

Ixxvii

Convention Examples

Description

text-string

Return values of G2 procedures
and methods in syntax
descriptions

File Name, OK, Apply, Cancel,
General, Edit Scroll Area

GUIDE and native dialog fields,
button labels, tabs, and titles

File > Save GMS and native menu choices
Properties
workspace Glossary terms

c:\Program Files\Gensym\

Windows pathnames

/usr/gensym/g2/kbs

UNIX pathnames

spreadsh. kb

File names

g2 -kb top.kb

Operating system commands

public void main() Java, C and all other external code

gsi start

Note Syntax conventions are fully described in the G2 Reference Manual.

Procedure Signatures

A procedure signature is a complete syntactic summary of a procedure or
method. A procedure signature shows values supplied by the user in italics, and
the value (if any) returned by the procedure underlined. Each value is followed by
its type:

g2-clone-and-transfer-objects
(list: class item-list, to-workspace: class kb-workspace,
delta-x: integer, delta-y: integer)
-> transferred-items: g2-list

Ixxviii

Related Documentation

Related Documentation

G2 Core Technology

G2 Bundle Release Notes

Getting Started with G2 Tutorials

G2 Reference Manual

G2 Language Reference Card

G2 Developer’s Guide

G2 System Procedures Reference Manual
G2 System Procedures Reference Card
G2 Class Reference Manual
Telewindows User’s Guide

G2 Gateway Bridge Developer’s Guide

G2 Utilities

G2 ProTools User’s Guide

G2 Foundation Resources User’s Guide

G2 Menu System User’s Guide

G2 XL Spreadsheet User’s Guide

G2 Dynamic Displays User’s Guide

G2 Developer’s Interface User’s Guide

G2 OnLine Documentation Developer’s Guide
G2 OnLine Documentation User’s Guide

G2 GUIDE User’s Guide

G2 GUIDE/UIL Procedures Reference Manual

G2 Developers’ Utilities

Business Process Management System Users” Guide
Business Rules Management System User’s Guide
G2 Reporting Engine User’s Guide

G2 Web User’s Guide

G2 Event and Data Processing User’s Guide

Ixxix

G2 Run-Time Library User’s Guide

G2 Event Manager User’s Guide

G2 Dialog Utility User’s Guide

G2 Data Source Manager User’s Guide

G2 Data Point Manager User’s Guide

G2 Engineering Unit Conversion User’s Guide
G2 Error Handling Foundation User’s Guide

G2 Relation Browser User’s Guide

Bridges and External Systems

G2 ActiveXLink User’s Guide
G2 CORBALink User’s Guide
G2 Database Bridge User’s Guide
G2-ODBC Bridge Release Notes
G2-Oracle Bridge Release Notes
G2-Sybase Bridge Release Notes
G2 |Mail Bridge User’s Guide
G2 Java Socket Manager User’s Guide
G2 [MSLink User’s Guide

G2 OPCLink User’s Guide

G2 PI Bridge User’s Guide
G2-SNMP Bridge User’s Guide
G2 CORBALink User’s Guide
G2 WebLink User’s Guide

G2 JavalLink

Ixxx

G2 JavaLink User’s Guide
G2 DownloadInterfaces User’s Guide
G2 Bean Builder User’s Guide

Customer Support Services

G2 Diagnostic Assistant
* GDA User’s Guide

® GDA Reference Manual

* GDA API Reference

Customer Support Services

You can obtain help with this or any Gensym product from Gensym Customer
Support. Help is available online, by telephone, by fax, and by email.

To obtain customer support online:
2 Access G2 HelpLink at www.gensym-support . com.

You will be asked to log in to an existing account or create a new account if
necessary. G2 HelpLink allows you to:

Register your question with Customer Support by creating an Issue.

* Query, link to, and review existing issues.

® Share issues with other users in your group.

* Query for Bugs, Suggestions, and Resolutions.

To obtain customer support by telephone, fax, or email:

> Use the following numbers and addresses:

Americas Europe, Middle-East, Africa (EMEA)
Phone (781) 265-7301 +31-71-5682622
Fax (781) 265-7255 +31-71-5682621
Email servicel@gensym.com service-emalgensym.com

Ixxxi

Ixxxii

Introduction to G2

Chapter 1: Overview of G2

Presents a summary of and orientation to G2’s major features.

Chapter 2: The Developer’s Environment

Introduces features and strategies for developing a G2-based application.

Overview of G2

Presents a summary of and orientation to G2's major features.

Introduction 3

Basic Components 4

Computational Capabilities 14

G2 Graphical Language 16

Extensible and Graphical Components 17
Custom User Interfaces 21

Editors and Facilities 22

Development and Deployment 25
Networking and Interfacing 27

Additional Capabilities and Information 29
G2 Utilities 30

G2 Developer’s Utilities 31

G2 Bridges 33

gensym.

Introduction

G2 is a complete development environment for creating and deploying intelligent
real-time applications. You can use G2 to develop applications that solve many
problems commonly encountered in business, scientific, and industrial markets.

While G2 is flexible enough to use for almost any intelligent application, G2 users
typically apply G2’s capabilities to complex situations that require:

* Monitoring, diagnosis, and alarm handling.

® Scheduling and logistics.

® Supervisory and advanced control.

® Process design, simulation, and re-engineering.
* Intelligent network management.

* Decision support for enterprise-wide operations.

This overview does not attempt to provide detailed descriptions of G2’s many
features, nor does it offer technical insight into the underlying capabilities of G2.
The remainder of this manual accomplishes those tasks. Instead, the overview
provides an orientation to G2 that does two things:

® Presents a top-level view of the major features of the G2 development
environment.

® Provides a reference for each main topic.
For a more extensive overview of G2 than this chapter provides, see:

* G2 for Application Developers: An Introduction. This document is available on
request from Gensym. It provides a technical overview suitable for evaluating
G2's applicability to particular needs.

® G2 Developer’s Guide. This guide is included in the G2 Core Technology
documentation kit and online. It provides guidelines and techniques for using
G2 to develop knowledge-based applications.

Basic Components

G2 provides a complete, graphical development environment for modeling,
designing, building, and deploying intelligent applications. To create a G2
application, you interact with a number of basic components.

Knowledge Bases

An application you develop in G2 is called a knowledge base, or KB. You create a
new KB by adding items to the current G2 and then saving your work in one or
more KB files. You can load an existing KB, then edit its contents or use it as
needed.

A KB can be running, paused, or stopped. When a KB is running, reasoning and
computation occur. When a KB is paused, transient data is maintained, but
processing halts. While G2 is running, you can load a KB programmatically and

Basic Components

can save a KB either interactively or programmatically. G2 must be paused or
reset to load a KB interactively.

Knowledge bases are described in Knowledge Bases.

All components of a KB exist as items which have attributes. Items can appear
graphically as icons. For information on items, see G2 Items.

Workspaces

G2 calls the blank pages upon which you create, maintain, and organize items
workspaces. A KB can contain one or many workspaces. The items upon
workspaces are capable of having their own subsidiary workspaces. Thus, you
can create a logical hierarchy of items and workspaces to group and organize
your KB data.

Workspaces can contain anything from text messages to entire schematics that
model real-time activity.

This workspace contains a single simple message:

a kb-workspace

begin recycling protocol

This workspace displays part of a networking schematic from a
telecommunications application:

MAIN-NETWOR

GZ-DIAGNOSTIC-SYSTEM-1

<

IRMA-LINK-A1 WAK-B
CRT-A1 —
[=
IBM-3093-4 A MOD-A3 =

DECNET-

j— =
‘L
PRT-A1 |@ MOD-AS DECNET-B1

3274 AT TERM-SERWY-B1
-~ MOD-AB

CRT-AZ
oo
MOD-AT LIME-AB-1
==y —
] (oo P (&2 P

To display and capture workspace knowledge, you can scale and print all
workspaces. Among other things, you can:

® Scale workspaces up to four times their full size, or down to a very small size,
in effect iconizing the workspace.

* Hide workspaces.

* Print workspaces using PostScript files, or encapsulated PostScript files if the
workspace is no larger than one physical sheet of paper.

* Print workspaces onto arbitrarily large paper sizes.

Workspaces are described in Workspaces.

Basic Components

Modules

You can develop a large KB from smaller, more manageable pieces called
modules. Each module contains a set of related items that together comprise a KB.

You might begin to build an application by populating an empty KB, organizing
the knowledge that pertains to certain classes of items into different modules. For
example, you could define a module for class definitions, define another module
for instances of the classes, and define a third module for executable items that
manipulate class instances as represented in the following figure.

modular knowledge base

executable-items module class-definitions module

whenever the rental-status A

of any property P
. PROPERTY REMTALS CORPORATE
receives a value

then start process(P)

class-instances module

B =
VT * W W N o
PROCESS PROPERTY.PROCESS | | | | | | |

Modules facilitate modular development and reusability. When several
developers are working on a single application, each can work on a separate
module These can later be combined to form the entire application. Class
definitions and other knowledge can be saved in a single module and used across
multiple applications.

Using modules you can:

* Specify an alternate search path for locating module KB files.

® Locate items on a per module basis, using the Inspect facility.

* Analyze the module consistency of a KB, using the Inspect facility.

® Delete all related workspaces when deleting a module.

* Merge, delete, and save modules programmatically, using system procedures.

For a complete description of using modules, see Modularized KBs.

Classes and Class Hierarchy

G2 development is based on object-oriented design. Knowledge representation is
maintained and extended through classes in the G2 class hierarchy.

G2 includes a large set of system-defined classes, many of which you can use as
the foundation of customized, user-defined classes. You can add to the G2 class
hierarchy through the use of its extensible classes. Every class within the G2 class
hierarchy is either a system- or user-defined class.

The next figure shows a small portion of the G2 class hierarchy as displayed by
the Inspect facility, G2’s tool for accessing and browsing KB knowledge. The
hierarchy begins with the item class on the left, which is the highest class level,
and extends to the right. All classes shown are system-defined classes.

Basic Components

b— CONMECTION —t G2GL-5TAMND LRD-COMMNECTION
G2GL-LIMNK-COMMECT ION

DEFAULT-JURCT IOM

COMNKNECTION-POST

GE-EXTEMNSION ———————————————— G-I INDon
;I;;;-:NT-SESSION DEFAULT-ERFCR
G2-EFFOR G2FPC ERFOR
SYMBOL-LIST
ITEM-LIST
— G é |
Ga-LIsT VALUE-LIST TEXT-LIST

TRUTH-WOLUE-LIST
QUL T ITV -LIS T

S¥MEOL-aFFRLY
TEXT-0FRLY
TRUTH - A LUE-ARRAY
QUL T ITV -aFRLY

HiasH-TAELE
PRIORITY-QUEUE

ITEM-0FRLY
E B-RAALY 7 WiLLUE -0FRAY

L

Ga-wARILELE

SENSOR
GFI-DATL-SERYICE
G51-DATL-SERYICE
G2-TO-G2-DATe-5ERVICE

WA |8E LE-OFR-P 0F A METER G2-METER-DATL-SERYICE

8 AP LRSER LOGIC AL-PARLMETER
GFI-OUTPUT-INTERF AGE QUILNT ITAL TIVE-P LR METER —
GFI-INFUT-INTERF 0.CE FARAMETER v MEOLIC -PARLMETER

TEXTPARAMETER

METU/ORK- INTERF ACE —————————— 2:';':"’::;’;‘13; — UI-CLIENT- INTERF 0.CE
GaGL-ACT IVITY - WITH-EQDY —

WiRILELE

L

— OBJECT

G2-FOREIGN-CBJECT — G2-JAWL-BEAN

GEGELFLOM-JOIN
GE2GLFRECEIVE
G2GLFEPLY
GEGL-IN WO HE
GEELPICK
GEGELFICK-JOIN
GEGEL-5WITCH-FORK
GRELEWITEH-JOIN
G2GELWHILE

— G2GLACTIVITY G2GL-FLOW-SPLIT
GEGLFLOW-SIGHAL
GEGLFLOW-GATE
GEGLASSIGN
GE2GEL-THROW
GEGELWAIT
G2GEL-COMPENSE ATE
GEGLEMPTY
GRGELDD
GEGELFETURN
GEGLEBRELK

— G2GL-OBJECT GEGLEXIT

GaGL-CoLL

ITEM —Q

GEGL-DEFIMITION ——————————— G2GL-PROCESS
G2GL-MESS AGE

G2GL-PORT-TVPE-DEFIMITION

G2GL-P AFTHER-LIMK-TYPE-DE FINIT 10N

G2GL-5TAND AFD-THRE A0-TORKEM

G2GL-PROCESS-IMS TANCE

GaGL-waRILELE
G2GL-SER YW ICE-SWITCH

GG L-COMMURNICAT ION-PORT

Ga2GL-ARG-WARIAELE
GaGL-LoC ol -y 0RIAELE
G2GL-P ORTHER-LINK-W AR AELE
GEGL-CORFELATION- WARIABLE

L

10

Classes have attributes, which define the inherited and locally defined properties
of the class. G2 maintains class attributes within attribute tables. Here is the
iconic representation and the attribute table of a G2 integer variable class:

@ an integer-variable
Options | do not forward chain, breadth first backward
chain

Motes | Gk

ltem canfiguration | none

Mames | none

Tracing and breakpoints | default

Datatype | integer

Initial walue | nane

Lastrecorded value | novalue

History keeping spec | do not keep history

Yalidity interval | supplied

Formula | none

Simulation details | no simulation formula yet

Initial value for simulation | default

Cata server | inference engine

Default update interval [none

Classes may have associated methods. These define the operations characteristic
of each class. Methods allow generic operations to be implemented in class-
specific ways (polymorphism). Code that invokes a method needs only to know
the method’s name: the details of how to perform the operation exist in the
method, not in the code that invokes it (encapsulation).

G2 permits multiple inheritance in its class hierarchy: any user-defined class can
inherit the attributes and methods of any number of superior classes. To facilitate
modular design, classes can inherit attributes with identical names that are
defined by different superior classes.

Basic Components

The G2 class hierarchy is presented in Classes and Class Hierarchy. The ability to
extend the class hierarchy to create custom classes is described in Definitions.

Attributes and their tables are covered in Attributes and Tables. Programmatic
access to G2 system-defined attributes and their data structures is described in
Attribute Access Facility.

Methods are described in Methods.

Knowledge Representation

Items are the fundamental data structures within G2 that you use to represent
knowledge. You use items to collect and organize knowledge about real objects,
processes, and relationships. Items are described in G2 Items.

G2 represents knowledge within items as values, which are data structures that
are generated as the result of expression evaluations and are associated with item
attributes. G2 supports a variety of value types including integers, floats, text
values, truth values, symbols, and composite types. These are described in Values

and Types.

G2 supports a variety of other types of knowledge representation:

® Variables and parameters, which keep histories of values, described in
Variables and Parameters.

* Lists and arrays, which consist of a series of elements of a particular type,
described in Lists and Arrays.

* Hash tables, which consist of a collection of key-value pairs, and priority
queues, which consist of a collection of items, each with a priority, described
in Hash Tables and Priority Queues.

® Connections, which are graphical items that create a logical relationship
between two or more, objects, described in Connections.

* Relations, which are non-graphical items that create a logical relationship
between two or more, objects, described in Relations.

11

12

Configurations

G2 provides a unique capability, called configurations, for creating KB user
modes and controlling the behavior of KB items. You can use configurations to
define the behavior of single items, or hierarchically to specify the behavior of
groups and classes of items that you designate in various ways.

Typical uses of configurations include:
* Adding capabilities and restrictions of many different kinds to any item.
* Defining how items respond to particular user actions, such as mouse clicks.

* Allowing and prohibiting network access to an entire KB, or to any of its
individual components.

Configurations are explained in Configurations.

System Tables

G2 provides system tables that define global parameters applicable to an entire
KB, including parameters related to KB configuration, modules, menus, editor,
fonts, color, drawing, printer setup, saving, G2 server, data server, inference
engine, language, logbook, message board, log file, simulation, G2 graphical
language, timing, and debugging.

For details, see System Tables.

G2 Windows

A G2 window represents knowledge about the window within which you interact
with G2. G2 can automatically associate a G2 window item either with the local
G2 window or with a remote G2 window, which is the window displayed by a
Telewindows connected to your G2. A G2 window provides a variety of
information, including connected users, language, user mode, and so on.

For details, see G2-Windows.

Basic Components

G2 Developer’s Environment

G2 provides a rich development environment for building application, which
includes:

® Menus, which provide access to G2’s interactive capabilities. You can access
G2 menus by clicking the G2 window background, any workspace, an
individual item. Here are some examples of menus:

Main menu from the

background area Item menu KB Workspace menu

G2 G2 Server - [NORWALK-N800C-2:1111] - 0] x|
bain Menu 4
Start
MNew ‘Workspace KB ‘Workspace E
Get VWorkspace » Mew Ohject 4
Inspect Mew Rule
Load KB Mew Display 3
Merge KB Mew Definition >
Save KB Mew Free Text »
System Tables » o Mew Button »
Run Options . class definition Name
Change Mode table QL-AGENT Clone YWorkspace
Miscellary » | |transfer Table
clone Calor >
rotatefreflect » Mowve
change size Hide Workspace
color 4 Lift to Top
delete Crop to Bottom
lift to top Shrink Wrap
drop to hottom Celete YWorkspace
disahle Disable
describe Main Menu »
table of hidden attributes Describe
show unsaved attributes Table Of Hidden Attributes
describe configuration Describe Configuration
create subworkspace Print To Server

* G2 Message Board, which displays user-generated messages.
® G2 Operator Logbook, which displays system-generated messages and errors.

For more information, see The Developer’s Environment.

13

Computational Capabilities

14

At the core of the developer’s environment lies G2’s structured natural language.
G2 uses this language in all programmatic statements. Since the G2 language is
similar to ordinary human language, it is easier to read statements that are
written in the G2 language than it is to read other programming languages.

For example, the following rule scans all refrigerators as G2 executes, tests each
one for a specified temperature condition, and performs an action on any
refrigerator for which the condition is true:

if the temperature of any refrigerator R > 40 degrees
then start adjust-temperature-procedure(R)

For a summary of the G2 programming language, see the G2 Language Reference
Card.

Procedures, Methods, and Rules

Programmatic control over a KB and its corresponding real-time external events
occurs within:

®* Procedures, covered in Procedures.
® Methods, described in Methods.

® Rules, presented in Rules, Inferencing, and Chaining.

Each of these items contains G2 statements. Statements consist of expressions;
expressions can include actions.

Expressions

You can use G2 expressions to:
* Obtain information about items.
® Specify actions to be executed on items.

Expressions are described in Expressions.

Actions

You can use G2 actions to perform many different tasks, including;:

* Creating, moving, deleting, and showing items.

* Controlling the position of any workspace in the current G2 window.
® Accessing the position of items upon a workspace.

* Obtaining the current size of any item.

Computational Capabilities

Actions describes all actions.

Formulas

G2 provides formulas for creating equations that provide values for a variable or
parameter. G2 computes a formula only when a value is needed. Formulas are
described in Formulas.

Text and XML Parsing

G2 provides a variety of functions and expressions for manipulating and parsing
text strings, described in Text Parsing and Manipulation.

G2 also provides a facility for parsing XML code and executing user-defined
callbacks, using the SAX (Simple API for XML) standard, described in XML

Parsing.

Functions

G2 provides the ability to define user-defined functions, which are named
operations that return a value, with or without an argument. Functions are similar
to procedures except they are invoked differently. G2 also defines a set of system-
defined functions for a variety of operations including arithmetic, character
manipulation, time operations, and more.

Functions are described in Functions.

System Procedures

System procedures are a group of G2-provided procedures, contained in the
sys-mod. kb file. G2 includes hundreds of system procedures.

You use system procedures by merging or requiring the sys-mod. kb file into your
current KB, and then calling system procedures as needed from user-defined
code.

System procedures let you complete a variety of different tasks, and, in some
cases, provide a programmatic access to items that is unavailable through
expressions or actions.

Using system procedures, you can:

® Obtain and set various graphical properties of any KB item.

® Manipulate item and workspace layering.

® Obtain an item’s system predicate status (permanent, transient, or showing).

® Determine the position of any item.

15

® Register items for item passing.

* Perform profiling operations.

® Sort lists and arrays directly or through keys.
® Determine memory usage.

G2 system procedures are described in the G2 System Procedures Reference Manual
and the G2 System Procedures Reference Card.

G2 Graphical Language

16

The G2 Graphical Language (G2GL) allows the execution of processes, including
business, industrial, and general reasoning processes, directly within G2. It
provides a self-contained graphical programming environment for the
specification of any type of process, which fully integrates with G2.

The process activities are generally based on the Business Process Execution
Language for Web Services (BPEL4WS or BPEL for short) language. BPEL is an
industry initiative, now managed by OASIS, to establish an effective standard
framework for describing and defining high-level business processes that are
offered as Web services.

G2GL provides a tightly integrated environment for developing business
processes that includes process modeling, compilation, execution, debugging,
and animation. G2GL supports importing and exporting processes, based on the
BPEL4WS XML specification.

G2GL provides a variety of process activities for expressing the logic of the
process, including activities that perform sequential processing, branching and
concurrency, synchronization, and looping. G2GL supports most BPEL activities,
as well as activities beyond those within the BPEL specification including waiting,
debugging, and breakpoints. A G2GL process can include local variables for
holding data. G2GL activities use G2GL expressions, which are similar to G2
expressions.

G2GL provides communication between two linked partner processes. A partner
is a series of connected elements that mediate communication between two linked
partners.

G2GL allows for scope activities, which have bodies that specify subprocesses.
You can also have scope-like fault, alarm event, or message event handlers.

Extensible and Graphical Components

For example, this figure shows a G2GL process execution with a breakpoint:

T G2GL Execution Display Y] 4

the SWITCH-FORK-EX-1 G2GL-PROCESS,
version B

KEEP-GOING [E] true

I [E]o
g hreakpoint at entry activity

M Switch For]
<)]

Assign
(Switch oin]

Return
M

For information using G2GL, see G2 Graphical Language (G2GL).

Extensible and Graphical Components

The G2 environment is both graphical and extensible. Almost everything in G2
has a graphical representation. You can use system-defined display items to show
the state of your application as it changes over time, and system-defined buttons
to send commands to G2 or the outside world. You can extend G2’s graphics in
various ways to provide a customized visual environment.

17

Dial ———

Meter

18

Digital clock Type-in box Radio buttons

o5 ™~ | [10 Jan 2000 23450 pm.| | lyPe here: | choose one:

dkdd O

@)
C

Q.75

0.0
(4 R} _ / 47.5
43.0
0.25 az5
40.0
0.0 2:32:00 p.m. 2:34:00 p.m.
- secondithe current time)

Trend chart

The preceding figure shows some system-defined and user-defined display items.
G2 provides and allows you to customize many such items, including:

Radio buttons, type-in boxes, check-boxes
User menu choices

Readout displays and digital clocks
Meters and dials

Charts, graphs, and trend charts

You can use system procedures to get information about, and then change, many
graphical aspects of items, as described in System Procedures.

For details on these graphical components, see:

Buttons.

User Menu Choices

Readout Tables, Dials, and Meters.

Freeform Tables.

Extensible and Graphical Components

® Charts.
® Graphs.

* Trend Charts.

Ilcons

All G2 items are represented graphically or textually. The iconic representation of
items supports a full range of colors. G2’s Paint drawing mode permits
polychrome icons to overlap and maintain their color. G2 includes a large palette
of system-defined colors that you can apply to various KB items, including
workspaces, icons, and textual items. Some examples of system-defined icons are:

[=2
L [E k
 — T EE

g2-to-g2-data-interface

i

class-definition g2-list image-definition
~ — — —
= I gy %
procedure g2-array model-definition user-menu-choice
logical-variable relation quantitative- connection-post
parameter

For information on creating and modifying icons, see The Icon Editor and Icon

Management.

Images

G2 supports the use of JPEG, X Bit Map (XBM) and Graphics Interchange Format
(GIF) images within a KB. The G2 Icon Editor, which you can use to create new
icons or edit existing ones, allows you to use images as icon components, where
they appear in monochrome.

19

20

You can also use images to provide full-color workspace backgrounds. The
following workspace has a frame style defined by a frame-style-definition and a
color background image:

. R
ecomme to our aute show
- A= — |

For information on importing and using externally defined images, see External

Images.

Textual Items

Textual items, such as messages and free text, use an outline font technology,
making fonts more readable at smaller scales, and providing enhanced
typographical detail for larger font sizes.

For information on creating textual items, see Text Items and Messages.

Custom User Interfaces

Custom User Interfaces

G2 provides extensive tools for building custom Windows user interfaces for
display in Telewindows, including;:

* Custom menus, including menu bars, popup menus, localization, dynamic
menus, and callbacks.

For details, see Windows Menus.

* Basic Windows dialogs, including basic, query, notification, file, and print
dialogs.

For details, see Windows Dialogs.

* Custom Windows dialogs, including posting, modifying, and querying
custom dialogs, callbacks, with numerous standard windows controls such as
text, buttons, lists, color, time and date, progress bars, tabular views,
grouping, images, and workspaces.

For details, see Custom Windows Dialogs.

* Windows views, including chart views, HTML views, shortcut bars, and
tree views.

For details, see Windows Views, Panes, and Ul Features.

21

Here is an example of a custom user interface that shows some of these features:

Tw Mill Native User Interface Demonstration = |EI |i|
{ Fle Edit View Layout Go Project MilDemo Workspace Tools Window Help
BHa X @t v A R | User Mode - fiaerewfl
; e : |
igh | By By B mm|E e S A e 2 (GO S iED EE S |
uJiaaator BEal [™ GRTL-DEMO Mill Process Diagram Object _|o] x|
= [G2i Ui Demo
& System Models
=& Demo Process Maps
- =-[E] MILL-PROCESS-DIAGRA %
& Logic -
& Object Models
#-f& System Settings I —g ||||||||
A
N b I I O I
Machining Center il
 Configuration
Status: (- OffLine (& On-Line
Maximum Inventory: I] :I
X Offset [-15 =]
Y Offset |5 =
Metrics
Process Start Time: |3'91
Process End Time: I‘mI1
Process Time: Im
Mumber Of Objects In Queue: I1
Total Part Processed: |9
oK | Apply | Cancel
A

Editors and Facilities

G2 provides various editors and facilities for interacting with text, icons, the

overall KB, languages, and characters.

Text Editor

G2 includes two text editors, the standard Text Editor for entering and editing
limited amounts of texts, such as item names and short statements, and the
scrollable Text Editor. Both editors are described in The Text Editor.

22

Editors and Facilities

For information about the Windows text editor available through Telewindows,
see the Telewindows User’s Guide.

The scrollable Text Editor is useful with multi-line text entries, such as
procedures, methods, and complex configurations. For example:

Text Editor for the [TEM-CONFIGURATION of KB-COMFIGURATION

Cancel I configure the user interface as follows:
unless in administrator mode;
attributes visible for item exclude additionally: item-configuration;
attributes visible for kb-restrictions exclude: main-menu-user-restrictions,
keyboard-command-restrictions, initial-gZ-user-mode-for-this-ki;
menu choices for item exclude additionally; describe-configuration

[T»

End

4]

none comment
configure the user interface

set up network access

restrict proprietary items

declare properties
declare properties of

Ilcon Editor

Icon Editor allows you to define a class icon with graphic tools. The Icon Editor
converts the resulting graphical description into G2 code, and sets this code as the
value of the icon-description attribute of the class definition. The Icon Editor is
described in The Icon Editor and Icon Management.

23

Inspect Facility

The Inspect facility allows you to search a knowledge base (KB) for items based
on their type, class, attributes, and location. The Inspect Facility is described in
The Inspect Facility.

Natural Language Facilities

G2’s natural language facilities let you create your own menu translations for
non-European languages. Additionally, G2 includes a language. k1 KB with
several complete sets of European language menu translations, as shown here:

LANGUAGE.KL

TG HAVE THE MENUS OF YOUR KB APPEAR IN THE LANGUAGE OF YOUR CHOICE:
1) Merge this knowledge library into your KB.

2) Deletz any unwanted features (such as translations for other languages).

3 Select System Tables from the Main Menu.

4] Select language-parameters from the Systern Tables menu.

5 Modity the Current language field by <licking on the name of the current language.

8] Select "any language" and then the language of your choice.

E DUTCH-LANGUAGE-TRANSLATIONS
Iﬂ FRENCH-LANGUAGE-TRANSLATIONS
E GERMAN-LANGUAGE-TRANSLATIONS
E ITALIAN-LANGUAGE-TRANSLATIONS
IEI SPANISH-LANGUAGE-TRANSLATIONS
E SWEDISH-LANGUAGE-TRANSLATONS

E MISCELLANECUS-DEFINITICNS

E SPECIAL-CHARACTERS

E JAPANESE-LANGUAGE-INFORMATION
E KOREAN-LANGUAGE-INFORMATICN

E CHANGE-LANGUAGE-CONTRC L-PANEL

Please modify any of the translations in LANGIUAGE KL as you wish.

|E| Clone (glick on the button) to maks a new language

Every G2 license includes the:

European language facilities.
Japanese language facilities.
Korean language facilities.
Chinese language facilities.

Russian language facilities.

Japanese, Korean, and Chinese outline fonts require additional authorization. For
details, see Natural Language Facilities.

Development and Deployment

G2 Character Support

G2 character representation is provided by the Unicode Worldwide Character
Standard, which supports the storage, exchange, processing, and display of text
for most of the world’s modern and classical written languages. Supported
characters cover the principal languages of the Americas, Europe, Middle East,
Africa, India, Asia, and Pacifica. G2 character support is described in

G2 Character Support.

Development and Deployment

G2 provides an incremental development and deployment environment. As
development progresses, you can add capabilities to your KB at virtually any
stage of the development cycle. Techniques and guidelines for G2 application
development and deployment appear in the G2 Developer’s Guide.

For a detailed overview of the G2 development environment, see The Developer’s
Environment.

Compilation

Compilation occurs each time you select the End button or type Ctrl-Enter when
editing a procedure, rule, function, or any attribute containing a compatible
expression in the text editor.

You can use configuration statements to declare certain items as stable-for-
dependent-compilations. Declaring items this way informs G2 that certain parts of
the item’s knowledge will not change, letting G2 compile dependent items more
efficiently. In large KBs, the more items you can declare as stable, the more
performance will improve.

Error Handling and Debugging

G2 supports various error handling capabilities, including a system-defined class
for errors, error handling statements within procedures for catching, signalling,
and handling errors. For details, see Error Handling.

G2 provides various debugging capabilities, including displaying error and
warning messages, displaying source-code error location, displaying trace
messages, setting breakpoints and dynamic breakpoints, stepping through
procedure code, displaying disassembled code for procedures, methods, and
rules, and writing G2-state information and logbook messages to a file. For
details, see Debugging and Tracing.

25

26

Explanation Facilities

G2’s explanation facilities allow you to display including forward and backward
chaining for a variable, invocations of backward-chaining rules for a variable,
invocations of rules for an object that contain a generic reference to that object,
invocations of a particular rule. For details, see Explanation Facilities.

Profiling a KB

As KB development nears completion, you can use the KB profiling facility to
collect and analyze data about its performance during execution. After you
identify which parts of your KB can benefit from further optimization, you can
apply compilation configurations to help G2 to compile those parts more
efficiently.

A complete description of G2 compilation and profiling appears in Profiling and
KB Performance.

G2 Meters and Memory Management

G2 meters are specialized quantitative variables that monitor G2 and compute
statistics about its performance, such as how much memory it is using, and how
fast it is processing. For details, see G2-Meters.

G2 provides various tools for managing and allocating memory. For details, see
Memory Management.

Task Scheduling

G2 supports subsecond time. You can specify a subsecond time interval that
affects the G2 clock and thus the scheduler, certain intervals, and history
collection specifications. To allow subsecond timing, G2 represents time as a float,
rather than an integer.

The G2 scheduler directs task processing in G2. While a user never interacts with
it directly, the scheduler controls all of the activity that the user sees, as well as
many of G2’s background activities. The scheduler is the G2 time keeper and task
master; it is responsible for scheduling and prioritizing all tasks, executing tasks
between clock ticks, and ticking the G2 clock.

For information about scheduling and time, see Task Scheduling.

Package Preparation

When deploying an application, you use G2’s package preparation tools to
remove source code and make a KB proprietary. You do this by marking items for
text stripping, removing change logging and version information, and
configuring proprietary workspaces. For details, see Package Preparation.

Networking and Interfacing

Licensing and Authorization

G2 provides licenses for offline and online use, and for development and
deployment environments. It provides separate licensing for the Telewindows
client, using dedicated or floating licenses.

You can configure G2 to be secure, which requires users to login with a password.
You can also limit network access to a KB.

For details, see Licensing and Authorization and Network Security.

Networking and Interfacing

G2 offers these network and interfacing capabilities:

* Network security

* Telewindows

* (G2-to-G2 interface

* G2 Gateway (GSI)

* [tem passing
® Publish/subscribe

¢ Java interface

* Foreign functions support

®* (G2 as data service

Network Security

You can secure a KB from unauthorized network access through the use of special
network-oriented configuration statements.

Using configurations, you can apply network security at any level you need to
permit or disallow KB access across a network connection. Network security is
described in Configurations.

Telewindows

Telewindows allows more than one user to access the same G2 independently.
Each Telewindows user can open a telewindow, or remote view, into a running
G2 process. Telewindows provides a client-server based capability in which a
single G2 process, acting as a server, executes a KB, to which any number of
authorized Telewindows clients users can connect. On Windows platforms,
Telewindows provides a standard, Windows-based developer and end user
interface for G2 applications.

27

28

For information about Telewindows, see Telewindows Support, and the
Telewindows User’s Guide.

G2-to-G2 Interface

The G2-t0-G2 interface lets two or more G2 processes connect for the purpose of
exchanging data. G2 supports the TCP/IP protocol only.

Once two systems are connected, you can:

* Use aremote G2 as the data server of one or more variables.
* Exchange various types of data, including any value.

® Pass entire items and their user- or system-defined attributes.

G2 also permits the dragging of single items between two G2 or Telewindows
processes on Windows platforms.

For information about using the G2-to-G2 interface, see G2-to-G2 Interface.

G2 Gateway

The G2 Gateway standard interface (GSI) is a network-oriented toolkit used for
developing software interfaces, or bridges, between G2 and other, external
systems. G2 Gateway allows KBs to exchange various types of data between a G2
process and the bridge.

The G2 Gateway bridge is itself a process that communicates with G2 over the
TCP/IP protocol, using a gsi-interface item.

For information about using G2 Gateway, see G2 Gateway, and the G2 Gateway
Bridge Developer’s Guide.

Item Passing

Item passing is supported across the G2-to-G2 and the G2 Gateway interfaces,
through the use of remote procedure calls. G2 supports item passing by allowing
you to:

* Pass any KB item by reference, using a network handle.

® Pass entire items, including complex items that contain attributes given by
objects such as variables and parameters, or attributes that consist of lists or
arrays of values or items.

Several system procedures support item passing. For details on item passing and
the procedures that support it, see G2-to-G2 Interface. Information about item
passing is also available in the G2 Gateway Bridge Developer’s Guide.

Additional Capabilities and Information

Publish/Subscribe

G2 provides a publish/subscribe facility, which allows application developers to
implement scalable, distributed applications that can respond dynamically to
changes in the application, including changes in item attribute values, item
deletion or creation, and custom events.

For information, see Publish/Subscribe Facility

Java Interface

G2 JavaLink provides a set of Java components and classes that you can use to
communicate with Java/RMI applications.

For information on the Java interface classes and references for more information,
see Interfacing with Java Applications.

Foreign Functions Support

G2 supports the use of foreign functions, which are functions written in C or C++
that you can call from within your KB as if they were local functions. The foreign
function interface is platform-independent. You can start a foreign function either
as an external process, or as a spawned process from within a KB.

To use foreign functions, you collect existing C source files into an executable
foreign image to which G2 connects. Gensym provides sample files to help you
create and use a foreign image.

Foreign functions and images are described in Foreign Functions.

G2 as Data Service

GService allows you to install and manage G2 and G2 bridges as services under
Windows. You may use this utility to install any number of G2 or bridge
processes as services as long as you provide a unique service name for each
installed service. GService runs each service as a separate process.

For information on running GService as well as examples, see Windows Services.

Additional Capabilities and Information

G2 provides the following additional capabilities and information in appendices:
* Command-line options

G2 provides a variety of command-line options for use when launching the
G2 server, which are described in the Appendix A, Launching a G2 Process.

® G2reserved words

29

G2 reserved words are symbols that cannot serve as a user-defined name in
G2. For a complete list of reserved words, see Appendix B, Reserved Symbols.

Mouse gestures, key bindings, and shortcut keys

G2 supports standard mouse gestures for selection, where “standard” implies
the Windows standard. They also support a number of other mouse gestures,
key bindings, and shortcut keys for interacting with selection, workspaces,
and items. G2 uses a selection style user interface where commands apply to
the current selection. For the complete list, see Appendix C, Mouse Gestures,
Key Bindings, and Shortcut Keys.

Syntax conventions

For a description of the notation and user-specified terms used to describe the
G2 language, see Appendix D, Syntax Conventions.

G2 KBs

For a list of the demonstration, sample, tutorial, utility, and graphics files that
are included with G2, see Appendix E, G2 KBs and GIF Files.

Superseded practices

For a description of the G2 features that have been superseded, see
Appendix F, Superseded Practices.

G2 Utilities

30

G2 provides a number of utilities for developers to achieve uniformity,
compatibility, and reliability in their applications. The G2 utilities are:

G2 ProTools (ProTools) — Provides advanced G2 developer tools for
speeding up development, testing, debugging, documenting, and
deployment. See the G2 ProTools User’s Guide.

G2 Foundation Resources (GFR) — Establishes standard approaches to
several important design and implementation issues commonly encountered
in building inter-operable modules. GFR helps to assure the compatibility of
modules with modules written by other authors who also use GFR. See the
G2 Menu System User’s Guide.

G2 User Interface Development Environment/User Interface Library
(GUIDE/UIL) — Provides a library of user interface components from which
you can build dialogs from pre-built components. GUIDE includes a basic
button library for navigation buttons. Once you have built a GUIDE
application, you can remove the development modules of GUIDE from the
application. See the G2 GUIDE User’s Guide and G2 GUIDE/UIL Procedures
Reference Manual.

G2 Developer’s Utilities

G2 Menu System (GMS) — Provides a way of implementing menu bars. All
applications that need menu bars and popup menus in G2 should use GMS.
See the G2 Menu System User’s Guide.

G2 Dynamic Displays (GDD) — Provides a number of attractive dials,
meters, and displays, based on G2 power icons, which you can use directly or
as direct superior classes. Use GDD to enhance the visual appeal of your
application. See the G2 Dynamic Displays User’s Guide.

G2 Developer’s Interface (GDI) — Provides menu templates and dialogs for
standard menu layout and menu- based activities. You can use GDI as the
basis for developing your own custom menu layout, or simply use one of the
many useful GDI dialogs for selecting files, printing, manipulating modules,
and the like. GDI is based on GMS and GUIDE. See the G2 Developer’s Interface
User’s Guide.

G2 XL Spreadsheet (GXL) — Provides a way of creating scrolling tabular
displays for viewing and editing a wide variety of lists, arrays, and complex
data structures. See the G2 XL Spreadsheet Reference Manual.

G2 OnLine Documentation (GOLD) — Provides a set of related modules that
implement online documentation based on external browsers and HTML.
GOLD is the standard way to deliver context-sensitive help and to access
documentation via keyword, index, and table-of-contents searches. See the
G2 OnLine Documentation User’s Guide and G2 OnLine Documentation
Developer’s Guide.

G2 Developer’s Utilities

G2 provides the following developer’s utilities, which provide a consistent
development framework for building G2 decision management applications:

Business Process Management System (BPMS) — Provides a user interface,
classes, methods, and built-in services that are based on the G2 Graphical
Language (G2GL). See the Business Process Management System Users” Guide.

G2 Business Rules and Management System (BRMS) — Provides a
mechanism for easily editing, organizing, analyzing, and executing complex
business rules. See the Business Rules Management System User’s Guide.

G2 Web Services (GWEB) defines out-of-the-box Web pages and SOAP
services, as well as classes and APIs enabling G2 to implement an HTTP

server and serve HTML pages, XML structures, SOAP services, and files. See
the G2 Web User’s Guide.

G2 Reporting and Processing Engine (GRPE) provides a consistent approach
for defining reports and charts, collecting values, displaying tabular values in
reports, and charting those values. See the G2 Reporting Engine User’s Guide.

31

32

G2 Event and Data Processing (GEDP) is a multi-purpose graphical language
composed of graphical blocks that can be connected together to express a flow
of data, perform calculations, execute functions, generate messages, and
events. See the G2 Event and Data Processing User’s Guide.

G2 Event Manager (GEVM) provides tools that support highly scalable,
distributed operator-advisory applications by providing an event “black
board” and alarm management capabilities, as well as associated message
queues, message browsers, and logging. See the G2 Event Manager User’s
Guide.

G2 Run-Time Library (GRTL) provides a wide variety of development tools
for the runtime environment. These include support for object models, which
includes object keys, event notification, and support for localization,
configuration files, command-line options, publish/subscribe, XML, and a
variety of general runtime utilities. See the G2 Run-Time Library User’s Guide.

G2 Dialog Utility (GDU) extends the custom Windows dialog functionality
that G2 provides to enable the rapid building and deployment of native
Windows dialogs. This module also includes the G2 Dialog Conversion
Utility (GDUC), which generates custom Windows dialog specifications from
GUIDE/UIL dialogs and the G2 Dialog Configuration Editor (GDUE), which
provides a native Windows editor for a native Windows dialog specification.
See the G2 Dialog Utility User’s Guide.

G2 Data Source Manager (GDSM) provides tools for managing network
connections and for pooling connections to improve throughput in large-scale
applications, including UIL and native configuration dialogs. See the G2 Data
Source Manager User’s Guide.

G2 Data Point Manager (GDPM) provides functionality to configure, log,
replay, and simulate datapoints, typically related to external sensors such as
temperature, pressure, and flow. These external values are represented in
GDPM as external datapoints and obtain their values typically via an OPC or
PI interface and bridge. G2 Data Point Manager User’s Guide.

G2 Engineering Unit Conversion (GEUC) provides a way of specifying the
engineering units for entering and displaying values, as well as a large
number of synonyms for those conversions in both the English and metric
systems. G2 Engineering Unit Conversion User’s Guide.

G2 Error Handling Foundation (GERR) provides tools for error handling as
an extension to G2 error and G2 Foundation Resources (GFR). See the G2 Error
Handling Foundation User’s Guide.

G2 Relation Browser (GRLB) provides tools for displaying related items in a
graphical layout. See the G2 Relation Browser User’s Guide.

G2 Bridges

G2 Bridges

G2 provides the following bridges for communication with external systems
and standards:

Databases:

G2-Oracle Bridge — Provides communication with Oracle. See the
G2-Oracle Bridge Release Notes.

G2-Sybase Bridge — Provides communication with Sybase. See the
G2-Sybase Bridge Release Notes.

G2-ODBC Bridge — Provides communication with any relational
database on any platform for which there is an ODBC driver. See the
G2-ODBC Bridge Release Notes.

For general information, see the G2 Database Bridge User’s Guide.

Devices and data historians:

G2-PI Bridge — Provides communication with the PI data historian. See
the G2-PI Bridge User’s Guide.

G2-OPC Client Bridge (OLE for Process Control) — Provides
communication with data supplied by any OPC-compliant server. See the
G2 OPClLink User’s Guide.

Distributed object standards and protocols:

G2 ActiveXLink — Provides communication with Microsoft
ActiveX/COM. See the G2 ActiveXLink User’s Guide.

G2 JavaLink — Provides communication with Java/RMI. See the
G2 JavaLink User’s Guide, G2 DownloadInterfaces User’s Guide, and G2 Bean
Builder User’s Guide.

G2 JMail Bridge — Provides communication with JavaMail (JMail). See
the G2 JMail Bridge User’s Guide.

G2 JMSLink — Provides communication with Java Message Service
(JMS). See the G2 [MSLink User’s Guide.

G2-SNMP Bridge — Provides communication with devices that support
the Java SNMP (Simple Network Management Protocol). See the
G2-SNMP Bridge User’s Guide.

G2 Java Socket Manager — Provides communication with Java Sockets.
See the G2 Java Socket Manager User’s Guide.

G2 CORBALink — Provides communication with CORBA. See the
G2 CORBALink User’s Guide.

33

34

G2 WebLink — Provides communication with HTTP, the protocol of the
World Wide Web. See the G2 WebLink User’s Guide.

G2-HLA Bridge — Provides an interface to the Modeling and Simulation
(M & S) High Level Architecture (HLA). See the G2-HLA Bridge Users’
Guide.

The Developer’s
Environment

Introduces features and strategies for developing a G2-based application.

Introduction 36

Capturing Knowledge in a Knowledge Base 36
Using Computational Features in G2 36
Starting G2 37

Exiting from G2 40

Interacting with G2 40

G2 Window Styles 41

Using Menus to Operate the Current KB 47
Navigating KB Knowledge 52

Notifying the User of Errors 52

Working with the Operator Logbook 52
Working with the Message Board Workspace 59
Organizing KB Knowledge 60

Planning Your Work 62

gensym.

35

Introduction

This chapter shows you how to interact with G2 as an application developer, and
how to design an application that uses G2’s major computational features.

Capturing Knowledge in a Knowledge Base

You implement a G2 application by using G2 to develop one or more knowledge
bases (KBs). These KBs will be delivered with G2 licenses (and perhaps with other
Gensym products) to provide an intelligent solution, dedicated or distributed, to
a knowledge-management need.

G2’s developer’s environment refers to the default set of features that are
available when you use G2 under a development license. You use these features
to define items, as well as their properties and behaviors, and to organize them
into a knowledge base (or KB). We use the word knowledge to mean information
that is structured and specified so that a running G2 can reason about it.

The set of knowledge that a running G2 contains is called the current KB. After
G2 starts, it always has a current KB. That is, a portion of G2’s memory is always
reserved to hold the items that currently represent the knowledge you have
collected and organized. At all times, the current KB contains a set of system
tables, which represent your current preferences for how G2 works with the KB.

G2 executes, or runs, the current KB. You can start, pause, resume, reset, and
restart (that is, reset and start as one command) the current KB.

You can save the current KB’s knowledge into a new or existing KB file, or, more
typically, into multiple KB files which capture your KB knowledge in
configurable modules. G2 does not alter KB files until you save the current KB
into it.

You can also load or merge a KB into G2 from a KB file that you previously saved.
You can load one KB, or more than one KB, into G2 at the same time.

For more information about the features of KBs, see Knowledge Bases.

Using Computational Features in G2

36

You interactively operate the overall execution of the current KB, while G2
automatically maintains the KB’s execution-related knowledge. By execution-
related knowledge we mean the current knowledge of the KB items, the
communications status of interface items to external systems, and the state of each
executable item that has been invoked. G2’s executable items include procedures
and methods, rules, action buttons, and user menu choices.

The G2 scheduler schedules and manages all of the activities required to execute
the current KB. The scheduler has settable properties, many of which reside in the

Starti

Starting G2

Timing Parameters system table. G2’s scheduler also queries the real time via
your computer’s own clock.

The G2 inference engine and other G2 components perform the KB’s rules,
provide data service for the KB’s variables, call foreign functions in other

processes, and support remote procedure calls (RPCs) to and from other
processes across your computer’s network.

ng G2

For details on starting G2, see Appendix A, Launching a G2 Process.

For platform-dependent information, see the readme-g2.html file and the
G2 Bundle Release Notes.

The G2 Title Block

By default, G2 displays a title block during startup, as the following figure
shows:

Gensym G2

G2E with GSI™
Version 8.3 Rev. 0 Intel NT
Host: NORWALK-N800C-2; TCP/IP Port: 1117;

This software is exclusively licensed for use by Gensym Corporate Internal
Copyright © 1987 - 2006 Gensym Corporation.
All Rights Reserved.

Although this software has been extensively tested, Gensym cannot guarantee error-free

performance in all applications. Accardingly, use of the software is at the customer's sole
risk.

The use of this software and related documentation is restricted under the terms of a
separate license agreement. Each copy of this software may be used only on a single

designated CPL. This software is property of Gensym Corparation and may not be copied or
used except as specified in the license agreement.

U5 GOVERMMEMNT BESTRICTED RIGHTS: Use, duplication, or disclosure by the
Gowernment is subject to restrictions as set forth in subparagraph (c) (1) (i) of the Rights in
Technical Data and Computer Software clause at DFARS 232.227-7013, Gensym Corp, 52
Second Avenue, Burlington, M4 01803-4411 - (781) 265-7100 - http/fwwar.gensym.camd

The title block displays:

The version of G2.

37

Note

* Your platform (or combination of computer model and operating system),
identified when G2 was installed.

®* The network identifier for the host machine.

® The TCP/IP port number on which this G2 listens for connections from other
processes across your network.

® The machine ID of the host machine (unless a site license is in use).

* The expiration date of the license (unless a permanent license is in use).

For information about displaying the G2 title block, see Displaying the Title Block.

Customizing the Gensym Background

By default, G2 and Telewindows display a light gray background. You can
change the background color and pattern of your local window to a solid color or
to a gray-and-white tiling pattern derived from an image file you specify. The
image file must contain fewer than 128x128 pixels.

To change the background pattern of your local window to a solid color:

= Launch your G2 or Telewindows process with the -background command-
line option followed by a color symbol.

Examples are:
g2 -background red

tw -background dark-slate-blue

To change the background pattern of your local window to a gray-and-white
tiling pattern:

= Launch your G2 or Telewindows process with the -background command-
line option followed by the file path of a GIF or XBM image file.

Examples are:
g2 -background /home/ghf/gifs/tile.gif
tw -background C:\development\kbs\system.xbm

If you find that your full-color image file does not result in an acceptable pattern,
try reducing the image to black and white by applying a graphics program
technique such as ordered dithering before you import the image into your G2 or
Telewindows process.

G2 and Telewindows display the default gray pattern when you specify a color
that is not in the G2 color palette, or when you specify a file that is not in GIF or
XBM format or contains more than 16,384 pixels.

Starting G2

Interacting with the G2 Server Icon on Windows
Platforms

On Windows platforms, when the G2 server is running, an icon appears in the
taskbar notification area. The tool tip shows the host and port of the G2 server, for
example, TCP_IP:host:1111. The icon has a popup menu with these choices:

* Connect Telewindows, which locates Telewindows in the registry and
automatically connects a Telewindows session to the G2 server.

® Shut Down G2, which shuts down the G2 server and any connected
Telewindows sessions.

If Telewindows Next Generation (twng.exe) is registered, the Connect
Telewindows menu choice uses that. If it cannot find Telewindows Next
Generation, it uses the registry location of Telewindows (tw.exe).

This figure shows the icon with its menu:

Connect Telewindows
Shut Down G2

The G2 server icon looks like this, depending on the G2 run state:

el O i

running reset paused

Telewindows Next Generation and Telewindows are both registered
automatically when you install the G2 Bundle. However, if G2 cannot find either
Telewindows for some reason, you can run the -regserver command-line
option.

To connect Telewindows instead of Telewindows Next Generation when using
the Connect Telewindows menu choice, you can run the ~unregserver
command-line option to unregister Telewindows Next Generation. For details,

See regserver.

To start G2 without the icon, use the -no-tray command-line option.

Note When running G2 as a service, you must start G2 with the -no-tray command-
line option to suppress the icon; otherwise, an error occurs when you start G2 as a
service.

39

Exiting from G2

You can quit G2 only if it is paused or reset.

To quit from G2:
= Choose Main Menu > Miscellany > Shut Down G2.

The G2 process closes its window and terminates execution.

Interacting with G2

40

After G2 starts, you can:

* Begin entering new knowledge interactively,
* Joad a stored KB file, then

* Work with the loaded knowledge.

G2 provides a highly interactive, graphical, and customizable environment for
collecting and organizing knowledge:

* Itis graphically interactive because you use your computer’s keyboard and
mouse to work with items that are visible on the screen.

* Itis customizable because G2 supports three window styles and provides
several groups of features that suppress or replace the default behavior of the
KB’s items and of the menus and non-menu operations of the developer’s
environment itself.

By default, after selecting an item that appears on the screen, you choose from a
menu. The menu lists operations that are relevant to that item. You can also select
from other menus that affect developer’s environment settings, such as whether
G2 displays long menus or short menus or automatically highlights invoked
rules.

In various ways you can customize how the application’s users, and how other
G2 developers, work with the items in the current KB:

®* You can code your KB so that it programmatically changes the appearance
and features of the items that the user interacts with.

® You can also declare configurations on items that refer to a user mode, which
is an identifier that specifies a level of access or degree of functionality that is
associated with particular users.

For details, see Actions and Configurations.

G2 Window Styles

G2 Window Styles

G2 G2 Server - [NORWALK-N800C-2:1111] o e

hain Menu B3
Start

MNew Workspace
Inspect

Load KB

Merge KB

Save KB

System Tables »
Bun Options »
Change Mode
Miscellany >

The style of the Main Menu above is called standard. It is the default window
style. G2 supports two other styles: a large version of the standard style called
standard-large and the G2 style before version 6.0, g2-5.x. Your style choice
determines the appearance of workspaces, menu and attribute tables, text and
icon edit boxes, and temporary workspaces such as Inspect workspaces. Item
icons are unaffected by window style.

The standard window styles are characterized by:

® A blue title bar which displays either its Workspace’s name, if it has one, or
the class of the workspace, unhyphenated, with mixed case (e.g., its menu-
style text not its prior attribute-table header style text), and a delete/hide
button. Selecting the button hides workspaces, and deletes tables, edit boxes,
and temporary workspaces. Clicking outside the button brings the item to the
top of the display hierarchy.

* A light-gray background, except for workspaces which, by default, have a
white background.

41

Window-Style Menu Examples

Here is the Main Menu shown in the three styles:

standard standard-large g2-5.x
Etaﬂw) Start Start
e orespace
Inspect ° New Workspace New Workspace
Load KB Inspect Inspect
Merge KB Load KB Load KB
Save KB
Systern Tables » glergT(léB Merge KB
Run Options » ave Save KB
CUTIED W0 ShEEm Ueles System Tables »
Miscellany — » Run Options » RY oo
Change Mode un Lptions >
Miscellany > Change Mode
Miscellany (8

Window-Style Workspace Examples

Here are examples of workspaces in the three window styles, as well as a
standard-style workspace that has a user-defined frame-style which replaces the
title bar:

STANDARD-WS, a kb-workspace x| STANDARD-LARGE-WS, a kb-workspace EX

show standard show standard Iargel
show g2-5.x workspace E
STANDARD-WITH-FRAME-STYLE

G2 Window Styles

Window-Style Attribute Table Examples

This example shows an attribute table in the three styles:

standard standard-large g2-5.x
COLUMMN, an element 3 | COLUMN, an elem... B3
i COLUMN, an element
Motes | QK Motes | Ok
Itern configuration | none Itern configuration | none Notes | OK
MNames | COLUMP Marmes | COLUMN])
Style | doric Style | doric Item configuration | none

Names | COLUMN

Style | doric

Specifying Window Styles

G2 provides you with the ability to control the window style at several levels. The
options are to:

® Use the default window style, which is standard.

® Specify the default window style for the G2 process by setting the system
table Server Parameters g2-window-style attribute. This sets the window-style
for the G2 process.

You can edit this attribute either interactively, programmatically, or by using
the -window-style command-line option when you launch G2.

The g2-window-style attribute setting persists in the G2 process until you
explicitly change it because, unlike other system tables, the Server Parameters
table does not lose its non-default attribute values when the KB is cleared.

® Specify the window style for a particular KB by setting the system table
Miscellaneous Parameters default-window-style attribute. This sets the
window style for the KB, overriding the Server Parameters setting and the
default setting for the KB.

Using the new standard and standard-large window styles with KBs or
modules that were saved in G2 5.x. could break them. To avoid this, you
should set the window-style to g2-5x. To preserve maximum compatibility
with KBs previously saved in G2 5.1 or earlier, G2 automatically sets the
default-window-style to g2-5x whenever you load a 5.x KB or module.
Although not recommended, you can override this setting.

® Specify the window style for the Telewindows connection or local G2 window
by setting the system table This Window g2-window-style attribute. This sets

43

44

Note

the window style for the g2-window item associated with your interaction
with G2, making it possible for each process that is interacting with G2 to
establish its own window style.

The order of precedence for the window style setting is:
1 The Telewindows connection or local G2 window.
2 AKB.

3 The G2 process.

4 G2 default, which is standard.

If any of the above is set to default, G2 uses the window style setting of the next
item down.

For example:

* If the local G2 window (1) and the KB (2) are set to default, and the G2 process
(3) is set to g2-5.x, then G2 will use the g2-5.x window style.

® If the local G2 window (1) is standard-large, the KB (2) is default, and the G2
process (3) is g2-5.x, G2 will use the standard-large window style.

Setting the window-style affects newly created windows only. It does not affect
existing windows.

Establishing a Default Window Style for the G2 Process

You change the default style for the G2 process by editing the g2-window-style
attribute of the Server Parameters system table. You can edit this attribute either
interactively, programmatically, or by using the ~window-style command-line
option when you launch G2. You can also launch Telewindows, using this
command-line option.

You can also specify this command-line option when launching a Telewindows
process. For more information, see the Telewindows User’s Guide.

To specify the default window style interactively:

1 Select Main Menu > System Tables > Server Parameters.

2 Edit the g2-window-style attribute to one of these four values:
default, standard-large, g2-5.x, or standard

To specify the default window style by using a command-line option:

= Launch G2 with the -window-style command-line.

For example:

g2 -window-style standard-large

G2 Window Styles

Overriding the Default Window Style for a Particular KB

You specify the window style for a particular KB by setting the system table
Miscellaneous Parameters default-window-style attribute.

To specify the window style for a KB:
1 Select Main Menu > System Tables > Miscellaneous Parameters.
2 Edit the default-window-style attribute to one of these four values:

default, standard-large, g2-5.x, or standard

Overriding the Default Window Style for the Current Window

You specify the window style for the Telewindows connection or local G2
window by setting the system table This Window g2-window-style attribute.

To specify the window style for your interaction with G2:

1 Select Main Menu > System Tables > This Window to access the g2-window
associated with your G2 or Telewindows process.

2 Edit the g2-window-style attribute on your g2-window item to one of these
four values:

default, standard-large, g2-5.x, or standard

Editing Title Bar Text

You can edit the text of the title bar by editing the title-bar-text attribute of a
kb-workspace. The text can be entered as a string, with quotes, or as an expression
to display the workspace name, class, or table header. When no name exists, the
expression can use a default.

Here are some examples:
* "My Workspace Title" shows the text My Workspace Title.
* ""shows a blank title bar.

* the name if any otherwise "unnamed" shows the workspace name, if any, or
the text unnamed.

* the name if any otherwise the class shows the workspace name, if any, or the
class name, the default.

If a workspace does not show a title bar, this attribute has no effect.

You can override this attribute for user-defined subclasses of kb-workspace. You
can get and set the exported internal representation of the title-bar-text attribute,
using the attribute access facility.

45

46

Syntax
The syntax for title-bar-text has this format:

default |
simple-option |
conditional-option [if any, otherwise simple-option]

The symbol default indicates that G2 should use its default setting, which you
cannot currently change. The default is equivalent to the name if any, otherwise
the class. In a future release, we may allow the default setting to be changed by
the user.

simple-option is one of:
string | the class | the table header
The string option displays the literal text string in title bar.

The phrase the class displays the workspace class name in the title bar, which is
formatted without hyphens and in title case, that is, with initial capitalization and
most other characters in lowercase, except KB, which always appears in upper
case.

The phrase the table header displays the table header of the workspace in the title
bar. This is the same text that would appear in the header of a table for the
workspace.

conditional-option is:

the name
The phrase the name displays the workspace name, if any, in the title bar. If there
is more than one name, the first name is used. If there are no names, then the title

bar is blank, unless an addition option is specified, using the phrase if any,
otherwise simple-option.

Note that you cannot include expressions to evaluate in any of the options, using
the [] syntax.

Attribute Access

You can get and set values for the title-bar-text internal attribute, using the
attribute access facility. You can set the value by using a simple conclude
statement or by concluding the value into a sequence. You must use a sequence
when concluding the value, using a phrase such as the name if any otherwise
"unnamed". Otherwise, the use of sequences is optional.

For more information about using this facility, see Attribute Access Facility.

Using Menus to Operate the Current KB

The attribute access format for setting the title-bar-text attribute value is one of the

following:
Title Bar Value Type Setting Attribute Access Value
Blank conclude that the title-bar-text does not exist
Text string conclude that the title-bar-text = string
Class name, table conclude that the title-bar-text = the symbol
header, name class
conclude that the title-bar-text = the symbol
table-header
conclude that the title-bar-text = the symbol
name
Empty sequence conclude that the title-bar-text does not exist
Text, class name, table conclude that the title-bar-text =
header, name as a sequence(string)
sequence conclude that the title-bar-text = sequence(the

symbol class)

conclude that the title-bar-text = sequence(the
symbol table-header)

conclude that the title-bar-text = sequence(the
symbol name)

the name if any conclude that the title-bar-text is
otherwise simple-option sequence(the symbol name, "unnamed")

Using Menus to Operate the Current KB

After G2 has started and if the current KB contains knowledge that you want to
work with, you can operate the KB, which means to use G2’s default menus to
start, pause, resume, reset, or restart the current KB.

Because you can easily operate the current KB, you can quickly test and
determine the effects of changes in the KB's items. Note, also, that you can make
many changes to your KB's items, including in the definitions of classes, while
the KB is running. For more information, see Knowledge Bases.

Starting the current KB causes G2 to perform several standard tasks, all related to
activating some or all of the KB’s knowledge. Activating an item causes G2 to do
something with it, based on the item’s class. Activation of items is described in

Workspaces.

47

48

Note To perform an operation programmatically means that you perform it by invoking

an executable item. To perform an operation programmatically requires that the
current KB is running.

Pausing and resuming the current KB does just that. No knowledge about the
status of executing items is lost due to pausing the KB.

Resetting the KB means to restore all knowledge in the KB to its initial state.

Restarting the KB means to reset the KB then start it, in one command.

Using Menus to Operate on an Item in the KB

By default, you use menus to interact with items in the current KB. We say

“by default,” because you can use configurations to suppress the display of any
default menu or any default menu choice available in the developer’s
environment.

To work interactively with a particular item in the current KB, click the mouse on
the item to display its menu. The menu choices that are common to the KB’s items
are described under Using Item Menus.

Using Menus to Affect the Developer’s Environment

You also use menus to interact with the G2 developer’s environment. To change a
feature or setting in the developer’s environment, select from the G2 Main Menu
and from the Miscellany menu.

To display the G2 Main Menu:
= C(lick the mouse on the background of the G2 window.

Choices on the Main Menu

By default, the G2 Main Menu displays these choices:
* Change Mode: Displays the login dialog.

* Get Workspace: Brings an existing kb-workspace to the top of the display
hierarchy.

* Inspect: Opens the Inspect facility.

* Load KB, Merge KB, and Save KB: Loads or merges a KB or save the
current KB.

* Miscellany: Displays the Miscellany menu.

* New Workspace: Creates a new kb-workspace.

Using Menus to Operate the Current KB

Run Options: Displays a menu from which you can select options that affect
how G2 runs the current KB.

System Tables: Displays a menu from which you can select the system tables
for the top-level module.

Start, Pause, Resume, Reset, and/or Restart: Changes the G2 run state,
depending on the current state.

Choices on the Miscellany Menu

By default, the Miscellany menu displays these choices:

Clear KB: Clears the current KB.

Create New Module: Creates a new module in the current KB.

Connect to Foreign Image/Disconnect from Foreign Image: Connects this G2
to or disconnects this G2 from a separately developed C or C++ program.

Delete Module: Deletes a module from the current KB.

Enter Package Preparation Mode and Simulate Package Preparation Mode:
Enters or simulates G2’s package preparation mode.

Load Attribute File: Loads a file, called an attributes file, that populates the
attributes of existing items in the current KB. Attribute files are a superseded
capability. For more information see Appendix F, Superseded Practices.

Neatly Stack Windows: Relocates the currently displayed application
windows, or workspaces, into a cascading arrangement.

Network Info: Displays this G2 process’s network information.

New Title Block: Display G2’s title block.

Short Menus/Long Menus: Selects long menus or short menus.

Shut Down G2: Exits G2.

Write G2 Stats: Creates a statistics file related to memory usage.

Clearing the KB

Clearing the current KB means to delete all knowledge from the current KB and to
reset all system tables, except the Server Parameters system table, to their default
values.

Creating a New Module and Deleting a Module

Creating a new module means to add a new module item and its associated set of
system tables to the current KB’s module hierarchy. This module cannot serve as
the current KB’s top-level module. Deleting a module means deleting a module

49

50

item, and, optionally, the workspaces associated with the module. For more
information about modules, see Modularized KBs.

Connecting to and Disconnecting from a Foreign Image

Connecting to a foreign image means to establish a network connection with a
running executable image, whose procedures the current KB’s procedures can
invoke. Disconnecting from a foreign image means to break a network connection
that was previously established. For more information, see Foreign Functions.

Entering or Simulating Package Preparation Mode

Entering package preparation mode means to set G2’s developer’s environment
so that you can prepare the current KB for customer distribution. Simulating
package preparation mode means to set G2's developer’s environment so that
your G2 behaves as if it were authorized to run the proprietary current KB.

For more information about using these menu choices, see Package Preparation.

Neatly Stacking Windows

Neatly stacking windows means to relocate the current KB’s visible workspaces
so that they appear to cascade from the upper left corner of G2's window.
Displaying Network Information

Displaying network information means to display the host name and TCP/IP
port number on which this G2 listens for connections from other processes across
your network. This information also appears in the G2 title block.

You can start G2 with the network information in the title bar of the window by
using a command-line option. For details, see name.

Displaying the Title Block

This means to display G2’s title block, as shown in Starting G2.

Selecting Long or Short Menus

By default, G2’s developer’s environment presents all menu choices on long
menus. You can alternatively select G2’s default menu choices from short menus,
which display more of the default choices in submenus.

The next figure shows the default G2 menus when long menus and short menus
are in effect. Notice in the figure that selecting long menus or short menus affects
the display of the Main Menu, the Miscellany submenu, and the KB Workspace
menu, but does not affect the display of the item’s menu.

Using Menus to Operate the Current KB

Default long menus are on top with their equivalent short menus below them.

Main Menu B3 hain kMenu b space
Start Zhort Menus Mew Ohject »
Mew Workspace Create Mew Module Mew Rule o] Galls]
Inspect Mew Title Elock Mew Display » _
Load KB Meathy Stack Windows Mew Definition » table
Merge KB Metwork. Info Mew Free Text » transfer
Zave KB Connect To Foreign Image Mew Button » e
Zystem Tables » Disconnect From Foreign Image Mame clone
FBun Cptions » Load Attribute File Clone WWorkspace rotatea’reﬂtlect r
Change Mode Clear KB Tahle change size
Miscellany > Shut Down G2 Color » color L
Enter Package Preparation Mode Move ‘?e'ete
: Enter Simulate Proprietary Mode Hide “Workspace lift to top
hain kMenu | x| Lit to Top dlrop to bottom
Start Drop to Bottom d|sablle
Mew Waorkspace Shrink Wrap describe
Inspect Long Menus Delete Workspace table of hidden attributes
LoadMerge/Save » Create MNew Module Disable show unsaved attributes
Change Mode System Tables > Main Menu > describe configuration
Miscellany » Run Options 3 Operate On Area create subworkspace
Mew Title Block Describe
MNeatly Stack Windows Table Of Hidden Attributes
MNetwork Info Describe Configuration
Connect To Foreign Image Prirt
Disconnect From Foreign Image logical variable | x|
Load Attribute File table
Clear KB transfer
Zhut Down G2 Mew Ohject » name
Enter Package Preparation Mode Mew Rule clone
Enter Simulate Proprietary Mode Mew Display » rotate/reflect »
Mew Definition » change size
Mew Free Text w» color 4
Mew Button » delete
Move lift to top
Hide ‘“Workspace drop to bottom
Disable disahle
Miscellany » describe
hain kMenu .4 table of hidden attributes
Operate On Area show unsaved attributes
describe configuration
create subworkspace

To use long menus to interact with G2:

= Select Main Menu > Miscellany > Long Menus.

To use short menus to interact with G2:

= Select Main Menu > Miscellany > Short Menus.

Shutting Down G2

Shutting down G2 means to exit G2. Shutting down causes G2 to interrupt and
end all its processing, close any open files, and release its resources to your
computer’s operating system.

51

Navigating KB Knowledge

After the current KB contains some number of items, you will need a convenient
way to navigate the KB's class and workspace hierarchies and to find particular
items. G2’s Inspect facility, another feature of G2’s developer’s environment,
provides this capability.

The Inspect facility is described in The Inspect Facility.

Notifying the User of Errors

An error condition is any unintended or unexpected discrepancy that occurs
while G2 is handling information. G2 can detect some error conditions whether
the current KB is running or not.

In general, G2 responds to error conditions by invoking an error handler.
An error handler manages error signals and produces error messages,
if necessary.

G2 includes a default error handler. When the current KB is reset or paused, G2's
default error handler responds to most error conditions by posting a message on
the Operator Logbook. After you start the current KB, if an error condition occurs,
G2 responds by invoking either its default error handler or a custom error
handler defined in the current KB.

G2 error handling is described in Error Handling.

Working with the Operator Logbook

52

The Operator Logbook is a collection of workspaces that receive error messages
from G2’s default error handler. The Operator Logbook appears as a set of pages,
each of which can contain one or more error and informational messages
produced by G2.

The next figure shows one Operator Logbook page. Notice that each page has a
header that displays today’s date and a page number. Clicking the mouse on one
of the two triangles causes G2 to display either the preceding or subsequent
Logbook page.

Working with the Operator Logbook

Cperator Logbook 10 Jan 2000 ¥ A Page 21— Page number

#2 41459 pm. Errorn

Cannot change the text of the names of Page navigation buttons
COMMNECT-DEFINITIONS. An error, "This
cannaot be parsed’, was reported at line 1,
"above”

The fallowing text is not valid for this attribute;

——— Logbook message
ahove

Operation: change the text of the names of
CONNECT-DEFINITIONS to "abowe”

Activity: change texd action

Wyithin: the action of ACTION-BUTTON-XXX-2,
invoked by action button selection

Note Operator Logbook messages are internal to G2, rather than being posted by the
user, and therefore are not included in the values of expressions such as the count
of each message.

By default, the Operator Logbook displays as a native pane in Telewindows. For
more information, see Displaying the Native Logbook.

Hiding and Showing Logbook Pages

You can specify Logbook pages interactively or programmatically.

Specifying Logbook Pages on a G2-Window

The g2-window class includes the show-operator-logbook-in-this-window?
attribute, whose value is yes (the default) or no. Leaving the value of this attribute
as yes causes the Operator Logbook to be displayed as specified in the Logbook
Parameters system table.

Changing the attribute value to no for a window hides all existing Operator
Logbook pages in that window. Subsequent messages are recorded in the
logbook, but all pages remain hidden. Changing the value to yes again shows
logbook pages as specified in the Logbook Parameters system table. The pages
look as they would if they had never been hidden.

53

54

To hide and show operator logbook pages:

= Edit the window’s table or use the conclude action to set the show-operator-
logbook-in-this-window? attribute of the relevant G2 window to yes to display
pages or no to hide them.

For example, the following procedures programmatically show and hide the
Operator Logbook pages in the g2-window for the user ghw:

hide-pages(window: class g2-window)
begin
if the g2-window-user-name-in-operating-system of window = "ghw"
then conclude that the show-operator-logbook-in-this-window@? of
window is false
end
show-pages(window: class g2-window)
begin
if the g2-window-user-name-in-operating-system of window = "ghw"
then conclude that the show-operator-logbook-in-this-window@? of
window is true
end

Specifying Using the Hide and Show Actions

To execute the show and hide actions on logbook pages:

1 Enable the executable item containing the show or hide statement to refer to
inactive items by setting the may-refer-to-inactive-items attribute of the
evaluation-attributes attribute to true. You can do this from the hidden
attributes table of the executable item.

2 Execute hide every log-book page or show every log-book page.

Limiting the Number and Size of Logbook Pages

You can conserve G2’s use of memory (specifically, its region 1 memory) by
keeping fewer Operator Logbook pages in memory, and by limiting the number
of logbook messages allowed per page. The number of Operator Logbook pages
can quickly accumulate, because G2 automatically writes a message to the
Operator Logbook workspace each time you start, pause, or reset the current KB.

To limit the number of Operator Logbook pages:

= Set the maximum-number-of-pages-to-keep-in-memory attribute in the
Logbook Parameters system table to a small number, such as 4 or 5.

To limit the size of Operator Logbook pages:

= Set the width-for-pages and height-for-pages attributes in the Logbook
Parameters system table.

Note

Working with the Operator Logbook

Navigating to an Item Referenced in an Operator
Logbook Message

Each Operator Logbook message that references at least one item in the current
KB includes the go to referenced item menu choice. Selecting go to referenced
item causes G2 to display the workspace that contains the item referenced in the
message, and displays the referenced item (shown within its own workspace) in
the center of the window.

The go to referenced item menu choice appears only if the Operator Logbook
message references an item on a workspace that is not configured to be
proprietary. Package Preparation describes proprietary workspaces.

Use the go to referenced item menu choice with care. As shown below, G2
relocates the referenced item’s parent workspace so that the item appears at the
center of the window. This might disrupt the visual organization of a KB whose
workspaces have been carefully positioned. G2 also displays that item’s parent
workspace at its full scale, as described under Scaling a Workspace.Before
selecting go to referenced item, your window might appear like the top grouping;
and after selecting go to referenced item, G2 displays the referenced action button
at the center of the window.

55

5, & kb-workspace Operator Logbook 11 Jan 2000 ¥ A Page 15

#33 8:3R:28 am. Error

=
= | start go-to-test(]l Mo tem named HIDE-ALL-PAGES exists.
 — |
Operation; fetch HIDE-ALL-PAGES
GO-TO-TEST Activity: call statement
Wyithin: GO-TO-TEST()
B3 Ahborting procedure stack from GO-TO-TEST().
bar message
tahle
GF3-CONMECTION transfer
clone
activate the subworkspace delete

go to referenced item
go to surrounding source code
table of hidden atiributes

Operator Loghook 11 Jan 2000 W A Page 15

#33 83628 am. Erron
Mo itern named HIDE-ALL-PAGES exists.

Operation; fetch HIDE-ALL-PAGES

Activity: call statement

Wyithin: GO-TO-TEST()

Aborting procedure stack fram GO-TO-TEST().

TEST-WS, a kb-workspace

| start go-to-test(]l

GO-TO-TEST

Working with the Operator Logbook

If you select an Operator Logbook message that references more than one item,
the go to referenced item menu choice leads to a submenu, from which you can
choose a particular item, as shown in this figure:

V3, a kb-workspace Operator Loghook 11 Jan 2000 ¥ A Page 15

#40 90819 am. Error

Attempting to activate GSI-COMMECTICON which
has no subworkspace.

% start go—to—test(]l
 —

GO-TO-TEST Operation: activate the subworkspace of GSI-
COMNMECTION
B Activity: activate action
Within: the action of ACTION-BUTTON-KXK-3,
=L invoked by action button selection

G5I-CONMECTION

activate the subworkspace

message

referenced-items
go o referenced item w | GSI-connection
tahle of hidden attributes | the action of ACTION-BUTTON-XXK-3

If an Operator Logbook message does not refer to an item, G2 does not offer the
go to referenced item menu choice in the message’s menu.

Navigating to the Procedure Code That Causes
an Error

By default, G2 generates compiled-code to source-code identification information
when it compiles your procedure code. When your procedure code causes an
error, you can select the go to source menu choice from the message. G2 then
opens a text editor on the procedure, and places a cursor within the statement that
caused the error. For the details of this facility see Obtaining Procedure Source-
Code Error Location Information.

Shadowing the Operator Logbook Message Handler

When G2 posts a message to the Operator Logbook, it does so by calling an
Operator Logbook message handler and passing it the message. The system-
defined handler posts the message to the logbook.

57

58

Note

You can shadow the system-defined handler with any procedure that takes one
argument of type text. Such a procedure is called a user-defined Operator
Logbook message handler. Once registered, such a handler receives all messages
that would otherwise go to the system-defined handler and be posted to the
Operator Logbook. Such messages do not appear on the logbook, and are not
recorded in the log file, if any.

If any activity of a user-defined Operator Logbook message handler causes G2 to
post a message to the Operator Logbook, the request goes to the system-defined
handler, which posts the message as if no user-defined handler had been
registered.

Resetting G2 does not affect handler shadowing: any handler registered remains
in effect when G2 restarts.

The following procedures provide low-level operator logbook message handling.
More sophisticated techniques are available through GFR. See the G2 Foundation
Resources User’s Guide for details.

To register a logbook message handler:

= g2-register-logbook-message-handler
(procedure: class procedure)

Registers the procedure to handle all logbook messages.

To deregister a logbook message handler:

= g2-deregister-logbook-message-handler

()

Deregisters the currently registered logbook message handler. The system-
defined handler is again in effect.

To get the logbook message handler:

= g2-get-logbhook-message-handler
()

-> {handler: class procedure | false: truth-value}

Returns the procedure currently registered as the logbook message handler,
or false if none is registered.

Each of these procedures is described in more detail in the G2 System Procedures
Reference Manual.

Working with the Message Board Workspace

Working with the Message Board Workspace

Note

The Message Board is a system generated workspace (not a kb-workspace) that
G2 creates automatically the first time that G2 executes a post or inform the
operator action.

G2 automatically activates the Message Board when it is created, and it remains
active whether the current KB is running or paused.

The currently installed Message Board Parameters system table determines the
size and settings for the Message Board.

By default, the Message Board displays as a native pane in Telewindows. For
more information, see Displaying the Native Message Board.

Shadowing the Message Board Message Handler

When G2 posts a message to the Message Board, it does so by calling a Message
Board message handler and passing it the message. The system-defined handler
posts the message to the board. The posted messages are deleted when you reset
G2. The messages on the Message Board, but not the Message Board itself, can be
manually transferred to a kb-workspace.

You can shadow the system-defined handler with any procedure that takes one
argument of type text. Such a procedure is called a user-defined Message Board
message handler. Once registered, such a handler receives all messages that
would otherwise go to the system-defined handler and be posted to the Message
Board.

If any activity of a user-defined Message Board message handler causes G2 to
post a message to the board, the request goes to the system-defined Message
Board handler, which posts the message as if no user-defined handler were in
effect.

A user-defined Message Board message handler can itself post messages to the
Message Board. G2 passes such a request to the system-defined handler, which
posts the message just as if no user-defined handler had been registered.

Resetting G2 does not affect handler shadowing: any handler registered remains
in effect when G2 restarts.

The following procedures provide low-level message board message handling.
More sophisticated techniques are available through GFR. See the G2 Foundation
Resources User’s Guide for details.

59

To register a message board handler:

= g2-register-message-board-message-handler
(procedure: class procedure)

Registers the procedure or method to handle all message board errors.

To deregister a message board handler:

= g2-deregister-message-board-message-handler

()

Deregisters the currently registered message board message handler.

To get the message board handler:

= g2-get-message-board-message-handler

()

-> handler: class procedure | false: truth-value

Returns the procedure or method currently registered as the message board
message handler, or false if none is registered.

Each of these procedures is described in more detail in the G2 System Procedures
Reference Manual.

Organizing KB Knowledge

60

As you add knowledge to your KB, you will find it important to organize that
knowledge in various ways and for different purposes.

G2 provides three ways to organize knowledge globally in a KB: by class,

by workspace, and by module. Each of these organizing techniques is global,
because you can reference each item in your KB only by its class, only by its
location within the KB’s workspace hierarchy, or only by its association with a
module.

Distinguishing Functional Behavior by Class

Use the organization of the classes defined in your KB as a primary determinant
of how your KB behaves. That is, your KB’s programmatic behavior should take
advantage of the object-oriented feature of inheritance that is built into G2’s class
hierarchy. Because a G2 developer has control over the organization of only the
KB’s user-defined classes, it is especially important that the organization of these
classes reflect your application’s functional requirements.

A standard way to use the class-orientation of your KB’s items is to use methods.
By coding your KB’s programmatic activities as methods, you can reuse the
procedural knowledge that is associated with a more generic class as you define

Organizing KB Knowledge

the procedure knowledge required for a more specific class. For more information
about using G2’s methods, see Methods.

You can also use the inheritance paths defined in the KB’s class hierarchy to
configure the behavior of the KB’s items. Instance configurations affect the default
behavior of the KB’s items, based on each item’s class. For more information
about instance configurations, see Configurations.

Using Workspaces to Organize KB Knowledge

For your own convenience, you can organize your KB's items into collections by
placing each upon a workspace (that is, upon items of the kb-workspace class).

A workspace both contains a set of items (some of which can have their own
subworkspaces) and establishes their arrangement as a set when the workspace is
displayed. For more information, see Workspaces.

Although you can organize your KB’s items in any manner you prefer, you
should develop guidelines for how you arrange your KB’s items among a set of
workspaces.

For instance, if you are developing your KB to use methods as the primary
programmatic items, you might create one workspace for each user-defined class.
Upon this workspace you might place:

® The definition item for the class.
* Each method that you define for the class.
® The rules that refer only to instances of the class.

® Free texts and other items that contain the unchanging information for this
workspace’s methods and rules.

Partitioning Knowledge into Modules

G2 supports a further level of organization for your knowledge base, called
modules. Each module is an item that is associated with its own set of system
tables and with one or more top-level workspaces. Partitioning a large knowledge
base into modules allows you and others to develop and maintain the modules in
a more manageable fashion.

After you create a module in the current KB, you can save, as a unit, the module
item, its system tables, its associated workspaces, and all items below those
workspaces in the KB’s workspace hierarchy, into a distinct KB file.

You can design your modules to have well-defined dependencies upon each
other, or to have no dependencies upon each other at all (other than directly
required module dependencies). For more information, see Modularized KBs.

61

Planning Your Work

62

G2 offers many features that support building real-time applications. As you
design your G2-based application, you must evaluate how to put these features to
work. This section takes a broad view of G2’s features and indicates why and how
they are relevant to your work as an application developer.

Configuring the Default Developer’s Environment

As you develop your KB, keep in mind that you can customize the interface to the
KB’s items either by suppressing or by supplementing the default features of G2’s
developer’s environment. G2 allows you to accomplish this by declaring
configurations that are stored with your KB.

Whether you do this, and to what degree, depends upon the intended users of
your KB. For instance, you might develop a set of KBs for use only by other G2
developers; whereas, another G2 developer might develop a set of KBs that are
intended to work together as a complete application. The features that another G2
developer requires (such as editing procedures, changing the definitions of
classes, and so on) are probably inappropriate to deliver to users of most
applications.

Prototyping or Engineering

You can use G2 to very quickly develop a working prototype of an application.
G2 easily supports a prototyping development approach to developing your
application. G2’s key features, such as its syntax-driven Text Editor, its
structured-English programming language, its iconic and object-oriented class
hierarchy, and its incremental development environment, all support rapid
development and deployment of applications. You can complete your work in a
small fraction of the time required using other software development
technologies.

However, your application will also benefit from your taking a more disciplined,
engineering-oriented approach to your application development project. For
instance, developing a robust class hierarchy, with the associated data servers,
methods, rules, and configurations that support the application’s items, can
consume a significant portion of a project’s time and effort.

Identifying Roles for Workspaces

You can create a set of workspaces where you capture and organize the
definitions and items that form the backbone of your application. Typically, these
workspaces should not be available to the application’s users.

Thus, while designing your application’s user interface, you must determine how
to use workspaces to display the KB’s knowledge to the application’s users. For

Planning Your Work

instance, your KB might be designed to contain static workspaces: workspaces of
fixed sizes and with more or less fixed relationships to each other. The application
uses these workspaces as the areas within with to display the KB’s knowledge
and within which to allow user interaction.

Alternatively, you could design your KB to create and display workspaces and
their contents dynamically. That is, the stored KB that you deliver as the
application might not include any static, user-visible workspaces at all. Rather, at
run-time the application creates the workspaces that the user must see based only
on run-time conditions.

Identifying the User Interface Paradigm

Your application can utilize the user interface features of the G2 developer’s
environment, or you can develop a different user interface paradigm. That is,
your KB can display menus for its items in the same manner as G2 does by
default. Or, you can design new kinds of operations and items that implement the
same features in what is called a direct-manipulation paradigm.

One approach is to create items that display their primary knowledge graphically
and directly. For many kinds of applications, you can create items with which the
user interacts directly, without the need for selecting commands from menus.

For example, assume that you have developed a class of items that can be the
target of three operations: move this item, create a copy of this item, and delete
this item. You can use G2 actions and configurations to accomplish this, without
requiring the use of a menu-based interface. That is, you can configure the items
to respond to these user actions:

* Move this item operation: When the user clicks the mouse pointer over an
item, attach that item to the mouse pointer. Drop the item upon the workspace
where the user next clicks the mouse.

* Create a copy of this item operation: When the user clicks the mouse pointer
over an item while also holding down the Shift key, create a copy of that item
and attach it to the mouse pointer. Drop the new item upon the workspace
where the user next clicks the mouse.

* Delete this item operation: When the user clicks the mouse pointer over an
item while also holding down the Control key, delete that item.

Under this interface paradigm, where the user drops the item, such as within a
particular workspace, can also signify an operation on that item.

63

64

User Interface Utilities

G2 includes a number of utilities that provide specific user interface capabilities:

GUIDE/UIL helps you implement your application’s dialogs, navigation
buttons, and data validation features with its own time-saving graphical
interface. For information see the G2 GUIDE User’s Guide and the

G2 GUIDE/UIL Procedures Reference Manual.

G2 Menu System (GMS) provides extensive capabilities for defining menu
bars that appear on workspaces and popup menus associated with items. For
information see the G2 Menu System User’s Guide.

G2 Dynamic Displays (GDD) provides a number of attractive dials, meters,
and displays, based on G2 power icons, which you can use directly or as
direct superior classes. For more information, see the G2 Dynamic Displays
User’s Guide.

G2 Developer’s Interface (GDI) enables you to develop a Windows-like GUI
using classic G2 capabilities. For information see the G2 Developer’s Interface
User’s Guide.

G2 XL Spreadsheet (GXL) enables you to develop scrolling tabular displays
for viewing and editing lists, arrays, and complex data structures. For more
information see the G2 XL Spreadsheet User’s Guide.

G2 Online Documentation (GOLD) is a set of related modules that implement
online documentation and context-sensitive help, based on external browsers
and HTML. For more information, see the G2 OnLine Documentation User’s
Guide and the G2 OnLine Documentation Developer’s Guide.

Other Developer Utilities

G2 provides a number of other useful utilities for the G2 developer:

G2 ProTools provides advanced G2 developer tools for speeding up
development, testing, debugging, documenting, and deployment.

G2 Foundation Resources (GFR) establishes standard approaches to several
important design and implementation issues commonly encountered in
building inter-operable modules. GFR helps to assure the compatibility of
modules with modules written by other authors who also use GFR.

Identifying Data Servers for Variables

Typically, the variables in your KB represent a data point, or series of data points,
collected over regular time intervals. Also, some variables represent data points
that are collected outside of G2. One important part of the design of your G2-
based application is to identify the sources of data, or data servers, for each class
of variables in your KB.

Planning Your Work

Variables can have either internal or external data servers. External data service is
a more complex task for your KB to perform than internal data service. For this
reason, determining the minimum number of variables that must use an external
data server is also a key design decision.

For more information about variables, see Variables and Parameters.

Using Internal Data Servers

G2’s internal data servers are the G2 inference engine and the G2 Simulator. If a
variable’s data server is the inference engine, G2 allows the variable to receive a
new value via conclude actions (including those that result from chaining among
rules) and from specific formula items. If a variable receives data service from the
simulator, G2 associates the variable with a simulation formula, which provides
its value.

When a variable has been defined to receive internal data service, your KB can
dynamically alternate its service between the G2 inference engine and the G2
Simulator. This allows your KB to respond more flexibly to situations in which a
simulated value is just as useful to the application as a value obtained from
another source.

The G2 Simulator is a superseded capability. For more information, see
Appendix F, Superseded Practices.

Using External Data Servers

G2’s external data servers are other G2 processes, G2 Gateway bridge
applications, and GFI files. If a variable receives external data service, your KB
cannot dynamically change its data service. However, your KB can conclude the
value of an internally data-served variable from another variable that is externally
data-served.

External data service takes place asynchronously to the rest of your KB's
processing; thus, the activity that your KB must perform to accommodate external
data service is inherently more complex than internal data service. For instance,
to support external data service, you must create and include interface items in
your KB.

For more information, see G2-to-G2 Interface, G2 Gateway, and the G2 Gateway
Bridge Developer’s Guide. GFI is a superseded capability. For information about it,
see Appendix F, Superseded Practices.

65

66

Using Timekeeping Features

Keeping time is central to how G2 performs its tasks. G2 has awareness of three
streams of time: real-time, scheduled time, and simulated time.

Querying the Real Time

After G2 starts and as long as it runs, G2 has awareness of the real time. G2 has
this awareness by querying your computer’s own clock. G2 uses the capabilities
of your computer’s operating system to perform these queries. G2 has as precise a
grasp of the real time as your computer and its operating system provide.

Scheduling G2’s Work

G2 schedules its own work, and the work it performs when running the

current KB, using a second time stream. You can adjust the granularity of this
time stream in the minimum-scheduling-interval attribute of your KB’s Timing
Parameters system table. Its granularity determines how often G2 checks whether
there is more work for it to do.

G2 manages its own work by dividing it into tasks, by assigning a priority to each
task, and by scheduling a given set of prioritized tasks to be performed at a
particular point in future time. G2 calculates that future point in time as the
current time plus a multiple of the minimum scheduling interval.

G2 performs only the work that has been scheduled for the current scheduling
interval. After G2 performs that work, G2 waits, by default, for the remainder of
the minimum scheduling interval (if any) to pass, then it begins performing the
tasks scheduled for the next interval.

G2 keeps this time using the G2 clock. G2 increments the G2 clock each time it
moves from one minimum scheduling interval to the next.

G2 manages its work in this way, because it must manage several threads
(independently running G2 tasks) of data processing that take place more or less
simultaneously. The tasks that G2 must constantly schedule and perform include,
but are not limited to:

* Responding to input from the user.

® Performing each procedure that has been started.

® Performing a procedure that has been called by a started procedure.

® Checking whether a running procedure has exceeded its execution time limit.
* Invoking each rule that is defined to be scanned during this time interval.

* Invoking a rule due to detecting an event.

* Invoking a rule due to chaining.

® Determining whether any variable’s value has expired.

Planning Your Work

® Determining whether any variable expects a new value.
* Inputting data received from an external data server.

Thus, you can set your KB’s knowledge so that G2 checks more often or less often
whether there is new work waiting to be done.

Determining the Minimum Scheduling Interval

You determine the right minimum scheduling interval for your KB by
determining the minimum interval of real time that is significant to your
application. For instance, perhaps one class of variables in your KB must be
updated as often as once per 0.5 seconds, but none of its rules must be invoked
more often than once per 0.5 seconds. Thus, for this KB there is no need to set the
minimum scheduling interval to a value less than 0.5 seconds. For this KB, doing
so would increase G2's own overhead while adding no more capability to the
KB’s time-based processing.

You can also adjust the rate at which this second time stream elapses. The
scheduler-mode attribute of the Timing Parameters system table contains this
setting. Specifically, this determines whether G2 waits for the entire minimum
scheduling interval to elapse, before moving on to its set of tasks that are
scheduled for the next interval.

Use this feature to cause G2 to run your KB unconstrained by the granularity of
the minimum scheduling interval. For a KB whose processing does not depend,
or depends only minimally, upon the occurrence of events upon which G2 must
wait an entire minimum scheduling interval, setting the KB to run in the as fast
as possible scheduler mode allows G2 to move from minimum scheduling
interval to interval (and thereby increment the G2 clock) as fast as G2 can perform
its scheduled work without waiting for real-time based events.

For more information about the G2 scheduler and the G2 clock, see Task
Scheduling.

Establishing Simulated Time

G2 can also maintain a distinct time stream for each simulation model item
defined in the KB. Your KB can establish a distinct current time for each
simulation model, to allow the G2 Simulator to represent the occurrence of events
independently of the real time. You use G2 system procedures to set and
manipulate the time streams of simulation models.

The granularity at which G2 increments this time stream is determined by the
default-simulation-time-increment attribute of the Simulation Parameters system
table. The rate at which G2 allows this time stream to elapse is determined by the
scheduler-mode attribute of the Timing Parameters system table.

The G2 Simulator is a superseded capability. For more information, see
Appendix F, Superseded Practices.

67

68

Establishing Naming Conventions

As for applications coded in other programming languages, you must assign
names and identifiers to many entities in your KB, and you should establish
conventions for how you derive and assign those names.

G2 allows more than one item to have the same name. However, G2 requires that
each user-defined class and relation definition have a unique name.

If you are developing a modularized KB, you might prefer to establish module-
based naming conventions for classes, attribute names, user interface items,
procedures, and methods.

For more information about naming conventions, see the G2 Developer’s Guide.

Considering Natural Language Support

As you use G2 to implement an application, you can configure G2’s developer’s
environment to display G2’s default menu choices and to display the default text
of buttons in the Text Editor and other G2 facilities, using a particular natural
language.

You can also use the features of G2's Text Editor to enter a text value that contains
any character in any natural language that G2 supports. Using this feature, you
can also define language-specific versions of each of your application’s custom
menu choices.

You can make this Text Editor feature available to your application’s users,
so that they can enter text into the application in a particular language (English or
not), or in any language that G2 supports.

These features are described in Natural Language Facilities.

You can also use ASCII characters to signify any character in any natural
language that G2 supports. This scheme for signifying non-English characters is
defined as the Gensym character set, which is described in G2 Character Support.
Use the Gensym character set to specify text outside of G2 that must be input to
G2, and to translate text containing non-English characters that G2 outputs for use
by other applications.

Also, Telewindows users can connect to G2 and can operate its current KB such
that each displayed Telewindow displays its menu text and G2’s system-defined
text in a distinct G2-supported natural language. This feature is described in
G2-Windows, and in Telewindows Support.

Global G2
Components

Chapter 3: Knowledge Bases

Shows how to work with the current KB, save the current KB, and load a KB.

Chapter 4: Workspaces

Shows how to use workspaces to organize your KB’s items.

Chapter 5: Modularized KBs

Describes how to partition your KB into modules.

Chapter 6: System Tables

Describes the use of system tables to set global preferences.

Chapter 7: Configurations

Describes how configurations override the default behavior of items.

Chapter 8: G2-Windows

Describes how G2 associates g2-window items with visible windows.

69

70

Knowledge Bases

Shows how to work with the current KB, save the current KB, and load a KB.

Introduction 72

Contents ofa KB 73

Operating the Current KB 73

Saving Your KB Knowledge 80

Loading a KB 95

Saving Permanent and Transient Data in Snapshot KBs 101
Merging a KB File 107

Working with Duplicate Items in KBs 108

Detecting Conflicting Class-Definitions 111

Automatically Resolving Conflicting Class-Definitions 112

Manually Resolving Conflicting Class-Definitions 114

gensym.

7

Introduction

72

A knowledge base, or KB, is the container in which you collect and organize a set
of knowledge about real or virtual entities.

A KB contains knowledge in the form of items which have attributes. Attributes
can also be items as well as simple or component values. The items in a KB
represent a set of application knowledge. G2 Items describes the purposes and
features of items.

A running G2 process provides an interactive environment that a developer uses
to work with knowledge bases. The Developer’s Environment describes the
features provided by the G2 developer’s environment.

You use G2 to work with a KB as follows:

* A running G2 process reserves part of its memory to contain one KB, called
the current KB. A G2 process always works with one and only one
current KB.

®* You can direct G2 to save the KB into one or more files called KB files.

A KB can contain executable items, which are items that specify actions that G2
performs on the information contained in the KB.

You use the G2 developer’s environment to operate a KB. To operate a KB means
to start, pause, resume, reset, and restart the KB. You can operate your KB
programmatically, for example, within rules and procedures.

You work with the current KB and with KB files in these ways:

®* You can load a previously saved KB file, so that it replaces the contents of the
current KB.

® You can merge the contents of a saved KB file into the current KB.

® You can clear the current KB by removing all application knowledge from it.
® You can save the current KB to KB files that G2 stores on a storage device.

* You can commit and update source-code controlled files in the current KB.

® You can capture the current KB, along with all its run-time information, to a
snapshot file.

* You can warmboot a KB from a KB snapshot file to run a captured KB as if
resumed at the time its snapshot file was written.

There are other ways to work with a modularized KB, such as saving the top-level
module to a file. Modular KBs are described in Modularized KBs.

Finally, each KB module has a set of system tables. These tables store preferences
that affect how G2 uses the KB’s application knowledge when the KB is loaded.

Contents of a KB

Contents of a KB

A KB contains knowledge in the form of items which have attributes. A KB itself
is not an item.

Items

A KB can contain any number of items, subject to the memory and disk storage
limitations of your computer.

The items in a KB can represent both permanent and transient knowledge. For a
description of how items represent knowledge, see Understanding the
Knowledge Contained in Items.

System Tables

Each KB contains at least one set of system tables. System tables contain
information that determines the default behavior of a G2 process. You can specify
new values for many system table parameters, or you can use the default values.
For a description of each system table and their attributes, see System Tables.

The system tables that are currently active for a KB are called the installed system
tables. The behavior of G2’s run-time environment is largely defined by the set of
installed system tables.

A modularized KB can contain more than one set of system tables when the KB
consists of more than one module. Each module has its own set of system tables.

* If you save a modularized KB into separate KB files, each KB file contains its
own set of system tables.

* If you save an inconsistently modularized KB into a single file, or if you
intentionally save a modularized KB into a single file, the KB file contains one
set of system tables for each module in the KB.

For more information on modularized KBs, see Working with Modularized KBs.

Operating the Current KB
A running G2 process always contains a KB, called the current KB, in its memory.

You operate the current KB by starting, pausing, resuming, resetting, or restarting
it. You can operate the current KB by using the G2 menus or programmatically.

The Initial Contents of a KB

By default, a new G2 process contains the following system-defined items:

* A g2-window item associated with the G2 process.

73

Caution

74

* A g2-window item for each connected Telewindows process, if any.
* A ui-client-session item for each connected G2 JavaLink process, if any.
* A complete set of system tables.

When a new G2 process starts, G2 initializes all the attributes of the system-table
and window items to their default values. You can customize the attributes of
these items, and you can add knowledge to the KB by interactively creating items.
When your KB contains executable items, you can programmatically add and
change KB knowledge.

You can save your KB at any point. When you next load your KB, G2 restores
your customized settings and added KB knowledge.

Clearing the Current KB

Sometimes you may wish to clear the knowledge you have added to the current
KB, and begin KB development again. The clear action reverts the contents of the
current KB back to its initial set of system-table and window items. The attribute
values of these items regain their default values with the exception of the Server
Parameters system table which retains its non-default values because it is
associated with the G2 process and not with a particular KB.

Clearing the current KB cannot be undone. To save the knowledge in the current
KB before clearing it, you must save it to one or more KB files.

To clear the current KB:
= Select Main Menu > Miscellany > Clear KB.

A clear-KB action is implicit when you specify a KB load because G2
automatically clears the current KB before loading the new one. When you merge
a KB, the current KB is not cleared.

Starting the Current KB

Starting the current KB initializes all executable items so they can run. You can
start the current KB after launching a new G2 process or after resetting the KB.
After you start the current KB, it continues to run until you pause, reset, or
restart it.

To start the current KB:
= Select Main Menu > Start.

Operating the Current KB

Pausing and Resuming the Current KB

Pausing a KB means temporarily suspending the execution of all items. You can
pause the current KB only if it is already running.

You can still create items and interact with them in most ways when a KB is
paused. However, certain interactions are restricted when a KB is paused.

Once you have paused a KB, you can resume running it to continue execution.
You can pause and resume a KB interactively or programmatically.

To pause the current KB interactively:

= Select Main Menu > Pause.

To pause the current KB programmatically:

= Execute the pause knowledge-base action.

To resume a paused KB:

=> Select Main Menu > Resume.

To resume the current KB programmatically:

= Execute the resume knowledge-base action.

Resetting the Current KB

Resetting the current KB:

* Stops the knowledge base from running.

® Reinitializes all variable and parameter values.
® Returns all items to their initial positions.

® Restores the default colors of all items.

® Deletes any transient items.

® Removes any relation instances that you have established, unless the relations
are permanent.

You can reset the current KB at any time.

To reset the current KB interactively:

= Select Main Menu > Reset.

To reset the current KB programmatically:

= Execute the reset knowledge-base action.

75

76

Restarting the Current KB

Restarting the current KB starts the KB again as if it had been reset. Restarting is
the same as selecting Main Menu > Reset, then selecting Main Menu > Start, in
succession.

To restart the current KB:

= Select Main Menu > Restart.

Determining the Run-State of the Current KB

Because G2 executes, or runs, the current KB, we refer to the current KB’s
run-state. Run-states affect the contents of a KB.

The next table summarizes how menu choices on the Main Menu affect the current
KB run-state:

Main Menu Resulting
Choice Purpose Run-State
Start Start executing the current KB after it is Running

loaded or reset.

Pause Stop executing the current KB, but allow Paused
execution to be resumed.

Resume Continue executing a paused current KB. Running

Reset Initialize all information in the current KB. Initial /
Reset

Restart Reset and start executing a current KB thatis Running

already running or paused.

G2 displays only the Main Menu choices that are valid for the current run-state.
For instance, if the current KB is paused, the Main Menu displays the Restart,
Resume, and Reset choices, but not the Start and Pause choices.

Operating the Current KB

This diagram shows the Main Menu choices that transition between run-states.

Reset
— 3 ™ Initial/Reset Note:
Selecting Restart is
equivalent to selecting
Start Reset, then selecting

Start.

Running

i Pause Resume
Paused

By default, G2 does not confirm run-state changes. Set the confirm-run-state-
changes attribute in the Miscellaneous Parameters system table to yes to post a
confirmation dialog for any attempt to start, restart, reset, resume, or pause G2.

The Initial/Reset Run-State

In the initial/reset run-state, a KB is ready for running. In this run-state, you can
interactively change all knowledge in the KB.

In this run-state, a KB contains only permanent knowledge. For a description of
permanent items and their initialized state, see G2 Items.

From the initial /reset run-state, a KB can transition only to the running run-state.

The Running Run-State

In the running run-state, G2 is performing the tasks specified in the current KB.
G2 detects events that occur in real time, performs actions specified in rules,
executes procedures, seeks data for variables, and so on. G2 performs these tasks
as a series of operations dispatched and controlled by the scheduler, as described
in Task Scheduling.

When the KB is running, it can contain both updated permanent knowledge and
transient knowledge. Transient knowledge consists of a KB's transient items and
the transient information associated with permanent items. For a description of
transient items and the transient information associated with permanent items,
see G2 Items.

From the running run-state, a KB can transition to the initial /reset run-state or to
the paused run-state.

77

The Paused Run-State

In the paused run-state, G2 suspends the execution of all tasks specified by the
KB. G2 retains all information about updated permanent and transient
knowledge. When in this state, you can resume running, at which time G2
continues performing suspended tasks.

From the paused run-state, a KB can transition to the initial /reset run-state or to
the running run-state.

Summary of Run-States

For each part of a KB’s knowledge, the following table summarizes its condition
under each run-state:

Status of Knowledge During Each Run-State

Item Knowledge

Initial/Reset

Running

Paused

Attributes of Initial: Contain Contain most Contain most
items default values. recently assigned recently assigned
Reset: contain the values. values.
most recently
assigned values.
Variables Values revert to Conclude initial Have current
initial values. values when values, collection
activated. times, etc. (as
Do not have applicable)
collection times, After activation, PP)
expiration times, have current
simulation values, values, collection
histories, or times, etc. (as
simulation histories applicable).
(as applicable).
Parameters Values revert to After activation, Have current

initial values.

Do not have
histories.

have current
values.

values.

Arrays and lists

Can have contents
if permanent.

Can have contents.

Can have contents.

Relation Can exist if Can exist. Can exist.
instances permanent.
Transient items Do not exist. Can exist. Can exist.

78

Operating the Current KB

Status of Knowledge During Each Run-State

Item Knowledge Initial/Reset Running Paused

Rules, Do notexecute, and Execute. Do not execute, but
procedures, cannot resume can be resumed.
formulas, and previous execution.

functions

Definitions Can be edited. Can be edited. Can be edited.
User-interface Show a menu when Operational. Show a menu
items, such as, clicked. when clicked.
buttons

Internal and Neither dataservice Alldataserviceand Data service does

external data
service and
polling

nor polling takes
place; external data
service connection
closed; new
external data
service connection
not allowed.

polling takes place;
new external data
service connection
allowed.

not take place;
polling paused;
external data
service paused;
new external data
service connection
allowed.

Item registration ~ No new New registrations ~ New registrations

status for external registrations; allowed; existing allowed; existing

data service existing registrations registrations
registrations retained. retained.
removed.

Internal and Neither takes place. Both take place. Message input;

external message

service

message output
paused.

The G2 Simulator, which can provide simulation values and simulation histories,
is a superseded capability. For more information, see Appendix F, Superseded
Practices.

79

Saving Your KB Knowledge

80

When you add knowledge to a KB, you should save it periodically to a
knowledge base consisting of one or more files. Each module is saved in its own
KB file. By default, the KB data that is saved in your knowledge base does not
include transient knowledge; instead, it is the permanent knowledge that persists
after a reset action has deleted runtime transient knowledge.

The mode most frequently used for saving KB knowledge is saving permanent
data to modular KB files. G2 also supplies a system procedure you can use to save
both the transient and permanent data in your running KB to a single file called a
KB snapshot file. Permanent and transient knowledge is described in
Distinguishing Permanent, Transient, and Current Knowledge. Information on
saving a KB snapshot file is given in Saving Permanent and Transient Data in

Snapshot KBs.

G2 saves your KB modules in a compressed format consisting of ASCII characters.
KB files are fully portable across all G2-supported platforms.

The capability to save a KB depends upon the license associated with your G2
product. For information about G2 licenses, see Licensing and Authorization.

Saving the Current KB

You can save the current KB interactively or programmatically. You can save it
whether it is running, paused, or reset.

To save the current KB programmatically:

= Use the saving system procedures described in KB and Module Operations in
the G2 System Procedures Reference Manual.

To save the current KB interactively:
= Select Main Menu > Save KB.

The Save dialog that appears differs depending on whether your current KB is
modularized or unmodualized. To be minimally modularized, a KB must have
one named module, and all top-level workspaces must be assigned to

that module.

You name a module by editing the top-level-module attribute of the Module
Information system table, and you assign top-level workspaces by editing the
module-assignment attribute of kb-workspaces. To organize your KB into
separate modules, see Creating a Module Hierarchy.

Tip

Saving Your KB Knowledge

Saving a Modularized KB

If the current KB was loaded from saved KB files, each module’s Saving
Parameters system table includes the current-file-for-module attribute, which tells
you the file path from which the module was loaded.

You save a modularized KB in the Save dialog.

To save a modularized KB:

=> save module module-name as (default-quoted-file-path by default)
[{overriding-file-name-symbol | overriding-quoted-file-path}]
[, including all required modules]
[, using clear text]

The syntax in the first line is required; the other three lines contain
optional phrases. When using clear text, the saved KB is in XML format using the
.xml extension.

The following example Save dialogs are based on saving a newly developed
modularized KB. The top-level module is named space, and space has a single
required module called definitions. By default, the save dialog for an unsaved KB
comes up with syntax to save the top-level module of your current KB to a file
path that is either your home directory or the directory from which you launched
G2. For example, the following unedited dialog saves the top-level module space
to a default file path:

Text Editor for File Command

_Gancel |

Cancel Save module SPACE as ("ChgZ\spacexml” by default),
using clear text

, including all required modules

, commit after saving with log message
End

Paste

J

Place KB modules you do not wish to have overwritten in read-only directories,
and set your module search path to include all of the pathnames of your KB
directories.

To save a required module instead of the top-level module:

=> Edit the module-name and default-quoted-file-path in the first line of the edit box
to another module name and another file path.

81

82

This example saves the definitions module to another file path:

Text Editor for File Command

Cancel Save module DEFINITIONS as ("Ikbs\definitions,kb" by
default)

Undo
any file-name
any string

To specify alternative file paths using overriding grammar:
1 In the save dialog, place your cursor after the closing parenthesis.
2 Type in an alternative file name or an alternative quoted file path.

For example:

Text Editor for File Command

_Cancel |
undo|
_End |
_Paste |

Cancel Zave module SPACE as ("ChgZispace.kh" by default)
“Ikbs\space-backupkb”

Undo
, including all required modules

End

Paste

Although G2 allows you to enter any file-name extension, it actually saves your
modules using the .kb extension (or .xml if clear text is used).

To additionally save all required modules:

> Select the including all required modules phrase.

Saving an Unmodularized KB

You save a modularized KB in the Save dialog,.

To save an unmodularized KB:
=> save current KB as (quoted-file-path by default)
[{overriding-file-name-symbol | overriding-quoted-file-path}]

You can accept the default-quoted-file-path in the edit box or edit it to another file
path. Alternatively you can supply an overriding file-name symbol or quoted file
path by typing it after the right parenthesis in the edit box.

Saving Your KB Knowledge

For example:

Text Editor for File Command

Cancel | | Save current KB as ("Chgzighwekh” by default)nl
amy symbol
any file-name
amy string
End

Paste I

Backup Copies of KB Files

When G2 writes a KB module to a filename that already exists in the same
directory, it first appends a tilde (~) to the existing file before saving the
current KB.

For example, suppose you save a module to a file named classes. kb. If you later
save a module to that same filename and directory, G2 changes the original file to
classes.kb~ and saves the current module to classes.kb. G2 saves only one
backup copy.

Platform File Systems and KB File Names

A KB's filename must be acceptable to the file system that stores the KB, and to
the G2 dialogs that load, save, and merge KBs. To insure that KB filenames work
under all conditions, they should:

® Contain only the characters A-Z, a-z, 0-9, dot (.) and underscore (_).

* Have at most eight characters in the filename proper, followed by a dot and a
suffix of at most three characters.

® Use the dot character only to indicate a suffix.

Filenames that conform to the described syntax work anywhere. Depending on
the uses of your KB, you may be able to relax these restrictions, but you should do
so only if you are certain that no incompatibility with an unanticipated use can
occur. For example, hyphens (-) can appear in a KB filename if the KB will never
be stored on CD-ROM, where the ISO 9660 standard precludes them; and blank
spaces in file and directory names are supported by the NTFS and FAT32 file
systems on Windows platforms, but the parsing methods on Unix platforms
discourage their use.

83

84

Using Comments

You can add comments to a KB by editing an attribute of the Saving Parameters
system table. See Adding Comments to a KB.

Using Change Logging for Version Control

G2 provides a comprehensive version control system, which leverages the G2
change log facility, to allow:

* Tagging attributes of G2 objects that support change logging (for example,
procedures, rules, class definitions) within a module, as well as tagging all the
attributes that support change logging of all items in a module.

® Reverting change-loggable attributes of individual items or of all items in a
module to a previous revision. Note that this only works on items that still
exist; G2 does not preserve the change log of deleted items.

* Deleting change log entries.

* Commenting change log entries.

For information on... See...

Enabling change logging fora KB~ Using KB Change Logging.

System procedures you can use for Version Control in the G2 System
version control Procedures Reference Manual.

Using the Inspect facility for Version Control.
version control

Saving Your KB Knowledge

The following examples refer to the following item named my-umc, whose
change log shows edits to the names, label, action, and applicable-class attributes
of the item, including three revisions of the label attribute:

r—— | post-hello-waorld

=

M- LINAC

¥ Temporary Workspace ' I] 5|

Attribute | Revision | Yalue Module Version | Timestamp Author | Tags

Lahel | 2 nost-hello-world | 63 7Feb z007 2:09pm. | nrs none

Applicableclass | 0 ohject B3 7Feb z007 2:09pm. | nrs none

Action | D nost "Hello world" | 63 7Feb z007 208 p.m. | nrs none

Lahel | 1 do-action B3 7Feb z007 208 p.m. | nrs none

Lahel | O do-something B3 7Febz007 208 pm. | nrs none

MNames | 0 WA= LINIC B3 7Feh 2007 307 pm. | nrs none

Tagging Change Log Entries

Here is a generic procedure that tags the change log entry of an item with a given
identifier:

tag-change-log-entry (item: class item, attribute-name: symbol, identifier: structure,
new-tag: symbol)
resulting-struct: structure;

begin
resulting-struct = call g2-tag-change-log-entry(item, attribute-name, identifier,
new-tag);
post "[resulting-struct]"
end

This action button tags the change log entry for the names attribute of my-umc
with the given timestamp with the symbol G283R0:

start tag-change-log-entry(my-umc, the
=1 Add Tag | symbol names, structure(timestamp:

= structure(year, 2007, month: 2, date: 7,
minutes; 7, hours: 12+3]], the symbol
TAG-CHANGE-LOG-ENTRY Giza3R0)

85

86

Here is the resulting change log and message board:

Ty Temporary Workspace 1ol x|
Attribute | Revision | Walue Maodule Version | Timestamp Author | Tags
Label | 2 post-hello-world | B3 7Feb 2007 209p.m. | nrs none
Applicable class | O object 63 7Feb 2007 209p.m. | nrs none
Action | 0 post "Hellowarld" | B3 7Feb 2007 208 pm. | nrs none
Label |1 do-action 63 7Feb 2007 208 pm. | nrs none
Label | O do-something B3 7Feb 2007 208 pm. | nrs none

Mames | O MWY-LIMC G3 7Feb 2007 307 pm. | nrs (5z83R0

REVISION: 0,

MIONTH: Z,
DATE: 7,
HOLIRS: 15,

#86 31351 pam.
[ATTRIBUTE: the symbol NAMES,

COMMENT: ™,

TAGS: sequence (the symbol GZ83R0),
TEXT-VALUE: "MY-LIMC",
MODULE-VERSIOMN: 63,
TIMESTAMP: structure (YEAR: 2007,

MINUTES: 73,
AUTHOR: the symbol MES)

structure

Getting Change Log Entries

Here is a generic procedure that posts the change log entry for an attribute of an
item with a given identifier:

post-change-log-entry (item: class item, attribute-name: symbol, tag: structure)
result: structure;

begin

result = call g2-get-change-log-entry (item, attribute-name, tag);
post "[result]"

end

This action button gets the change log entry for the names attribute of my-umc
tagged with the symbol G283R0:

[=="11
1

i3
=

POST-CHANGE-LOG-ENTRY

. start post-change-log-entry(rmy-umc, the
Find By Tagl symbol names, structureltag: the symbol

Gz83R0))

Here is the resulting message board:

#86 31351 p.m. structure
[ATTRIBUTE: the symbol NAMES,
REVISION: 0,

COMMENT: ™,
TAGS sequence (the symbol GZ83R0),
TEXT-WALUE: "MY-URC",
MODULE-YERSION: B3,
TIMESTAMP: structure (YEAR: 2007,
MONTH: 2,
DATE: 7,
HOURS: 15,
MIMUTES: 7,
AUTHOR: the symbaol MES)

Saving Your KB Knowledge

This action button gets the change log entry for revision 2 of the label attribute of

my-umc:

. . start post-change-log-entry(my-umc, the
Find By Revision| symbol label, structure(revision: 2))

Here is the resulting message board:

#589 FE1:00 pm. structure
[ATTRIBUTE: the symbal LABEL,
REVISION: 2,

COMMENT: ™,
TAGS sequence (),
TEXT-YALUE: "post-hello-world”,
MODULE-YERSION: B3,
TIMESTAMP: structure (YEAR: 2007,
MOMTH: 2,
DATE: 7,
HOURS: 15,
MIMUTES: 9),

AUTHCR: the symbol MES)

Deleting Change Log Entry Tags

Here is a generic procedure that deletes the change log tag for an attribute of an

item:

delete-change-log-tag (item: class item, attribute-name: symbol, new-tag: symbol)

resulting-struct: structure;
begin

resulting-struct = call g2-delete-change-log-tag(item, attribute-name, new-tag);

post "[resulting-struct]"
end

87

This action button deletes the change log entry tag G283R0 for the names
attribute of my-umc:

s==| Delete Tag
— Action start delete-change-log-tagimy-umc, the

DELETE-CHANGE-LOG-TAG symbol names, the symbol G283R0)

Here is the resulting change log and message board:

¥ Temporary Workspace 5 P[] 51
Attribute | Revision | Yalue Module Version | Timestamp Author | Tags
Lahel | 2 nost-hello-world | 63 7Feb z007 2:09pm. | nrs none
Applicableclass | 0 ohject B3 7Feb z007 2:09pm. | nrs none
Action | D nost "Hello world" | 63 7Feb z007 208 p.m. | nrs none
Lahel | 1 do-action B3 7Feb z007 208 p.m. | nrs none
Lahel | O do-something B3 7Febz007 208 pm. | nrs none
Mames | 0 WAY-LINIC B3 7Feh 2007 307 pm. | nrs (none

#100 40918 pm. structure
[ATTRIBUTE: the symbol NAMES,
REVISION: 0,

COMMENT: ™,
TAGS: sequence (),
TEXT-WALUE: "MY-LIMC",
MODULE-YERSION: 63,
TIMESTAMP: structure (YEAR: z007,
MONTH: 2,
DATE: 7,
HOURS: 15,
MINUTES: 7,
AUTHOR: the symbol MES)

Deleting Change Log Entries

Here is a generic procedure that deletes a change log entry for an attribute of an
item with a given identifier:

delete-change-log-entry (item: class item, attribute-name: symbol, identifier: structure)
succeeded: truth-value;
begin
succeeded = call g2-delete-change-log-entry(item, attribute-name, identifier);
if succeeded then
post "deleting entry succeeded!"
else
post "deleting entry failed!"
end

Saving Your KB Knowledge

This action button deletes revision 2 of the change log entry for the label attribute
of my-umc:

start delete-change-log-entry(my-umc, the
—= Delete Change Log Entry symbol label, structure(revision: 2))
s
 — |

DELETE-CHAMNGE-LOG-ENTRY

Here is the resulting change log:

T Temporary Workspace 4 ;|g|5|
Attribute | Rewision | Yalue hodule Yersion | Timestamp Author | Tags
Applicable class | 0 object 63 7Feb 2007 309 p.m. | nrs none
Action | D post "Hello world" | 63 7Feh 2007 308 p.m. | nrs none
Lahel | 1 do-action B3 7Feh 2007 3:08 p.m. | nrs none
Lahel | D do-something B3 7Feh 2007 3:08 p.m. | nrs none
Mames | 0 W= LINAC B3 7Feh 2007 3:07 p.m. | nrs none

Commenting Change Log Entries

This action button adds a comment to revision 1 of the label attribute change log
entry for my-umc:

start gZ-set-change-log-entry-comment|my-
Set Change Log Commentl umc, the symhbal label, structure(revision: 1],
"Changed label to do-action”)

Here is a generic procedure that adds a comment to a change log entry for an
attribute of an item with a given identifier:

post-change-log-entry-comment(item: class item, attribute-name: symbol,
id: structure)

comment: text;

begin
comment = call g2-get-change-log-entry-comment(item, attribute-name, id);
post "[comment]"

end

This action button adds a comment to revision 1 of the change log entry for the
label attribute of my-umc:

start post-change-log-entry-comment(my-

= Post Change Log Comment ume, the symbal lahel, structure(revision: 1])

g
—3
|

POST-CHAMGE-LOG-ENTRY-COMMENT

89

90

Here is the resulting message board:

#36 32812 pm. Changed label to do-
action

Reverting Change Log Entries

Here is a generic procedure that reverts the change log entry for an attribute of an
item with a given identifier:

revert-change-log-entry (item: class item, attribute-name: symbol, identifier: structure)
resulting-struct: structure;
begin
resulting-struct = call g2-revert-change-log-entry(item, attribute-name, identifier);
post "[resulting-struct]”
end

This action button reverts the label attribute of my-umc to revision 0:

=" . start reveri-change-log-entry{my-umc, the
= Revert Attribute symbol label, structure({revision: 0))

REVERT-CHANGE-LOG-EMNTRY

Saving Your KB Knowledge

Here is the resulting change log and message board, thereby adding a new entry
to the change log;:

Wy Temporary Workspace 1Ol x|
Attribute | Revision | Yalue Madule Yersian | Timestamp Authar | Tags
(Lahel |3 do-something B3 7Feb 2007 3:34p.m. | nrs none
Applicableclass | 0 ohject B3 7Feb 2007 2:09p.m. | nrs none
Action | D nost "Hello world" | 63 7Feb 2007 2:08 p.m. | nrs none
Lahel | 1 do-action B3 7Feb 2007 2:08 p.m. | nrs none
Lahel | O do-something B3 7Feb 2007 2:08 p.m. | nrs none
Mames | 0 b= LINIC B3 7Feb 2007 3:.07 p.m. | nrs none

#99 33426 pm. structure
[ATTRIBUTE: the symbal LABEL,
REVISION: 0,

COMMENT: ™,
TAGS sequence (),
TEXT-YALUE: "do-something”,
MODULE-YERSION: B3,
TIMESTAMP: structure (YEAR: 2007,
MOMNTH: 2,
DATE: 7,
HOURS: 15,
MIMUTES: 8),
AUTHCR: the symbol MES)

Tagging All ltems in a Module
This action button tags the current version of all attributes of all items in the

module named top with the symbol G283B0:

start g2-tag-moduleithe symbal top,
Tag Whole Module| ~sirucuref), the symbol G2a3R0)

Here is the resulting change log for my-umc:

T Temporary Workspace =10l
Adttribute | Revision | Walue Module Versian | Timestamp Authar | Aags
Lahel |3 do-something B3 7Feh 2007 3:34pm. | nrs 3za3R0
Applicableclass | 0 ohject B3 7Feh 2007 2:09pm. | nrs 3za3R0
Action | D nost "Hello world" | 63 7Feh 2007 2:08 p.m. | nrs 3za3R0
Lahel | 1 do-action B3 7Feh 2007 2:08 p.m. | nrs none
Lahel | O do-something B3 7Febz007 2:08 pm. | nrs none
Mames | 0 WAY-LINIC B3 7Feh 2007 3:07 pm. | nrs @ZBBF@

91

92

Performing “Diff” Operations

You can perform a “diff” operation on two texts or two change log entries.

For information on the system procedures you can use for text “diff” operations,
see Version Control.

For example, this action button performs a “diff” on the change log for put-up-
text-box-dialog:

Do Diff Testl

start do-diff-test{put-up-text-hox-dialog, this
window]

This procedure calls spawn-diff, which performs a “diff”, and show-results, which
displays the results in a text box within a custom dialog:

do-diff-test (item-to-diff: class item, g2-win: class g2-window)
whole-diff-text: text;
begin
whole-diff-text = call spawn-diff(item-to-diff);
call show-results(whole-diff-text, g2-win)
end

This procedure calls g2-diff-texts on revision 0 and revision 1 of an item, and
returns the diff-output of the return structure:

spawn-diff (item-to-diff: class item) = (text)

all-diffs: value;

user-name: value;

ndiffs: integer;

result: structure;

v0, v1, whole-diff-text: text;

begin
all-diffs = the change-log of item-to-diff;
ndiffs = the number of elements in all-diffs;

user-name = call g2-name-for-item(item-to-diff);

if ndiffs = 0 then
post "[user-name] has no change-log"
else if ndiffs = 1 then
post "[user-name] has only one revision; cannot diff"
else
post "[user-name] has [ndiffs] revisions total";
v0 = the text-value of all-diffs[0];
v1 = the text-value of all-diffs[1];
result = call g2-diff-texts(v1, v0);
whole-diff-text = the diff-output of result;
return whole-diff-text
end

Saving Your KB Knowledge

Here is the result of doing the “diff” test on put-up-text-box-dialog:

Ty Diff Results — 10| x|

Comparing files Mol26.tmp and MFT127.TMP ;l
el 26 thp
windows-newline, uniz-newling, windows-text: text;

w AFT127. TMP
windows-newline, uniz-newline, windows-text: text;
background-color: spmbol = the symbol white;

s

e Mol 26.tmp

unis-newline = character-codes-to-text(sequence(10]);

windows-text = fid-and-replace-pattermfunis-newling, windaws-newline,
whole-diff-text, 1, length-of-textwhole-diff-text])];

e AFT127 THP
unis-newline = character-codes-to-text(sequence(10]);
if length-of-text{whole-diff-test] > 1 then
windowsg-text = find-and-replace-pattem(uniz-newling, windows-nevline,
whole-diff-text, 1, length-of-test[whole-diff-text
)
else begin
background-color = the symbol light-grey;
windows-test = "<no diffs found:"';
end;

siennee

el 26 thp

left: 10, top: 10, anchar: the symbal top-left-battom-right,

contrakwalue: structure(test-value: windows-text, background-calor the syrmbol
white, selection: 0);

w AFT127. TMP
left: 10, top: 10, anchor: the syrmbal top-left-battam-right,
controlvalue: structure(test-value: windows-test, backaround-color;
background-color, selection: 0]);

sz

Ok Cancel

Saving a Running Current KB

If you save a KB while it is running, G2 saves the permanent knowledge in the KB
as of that moment in time, regardless of any changes made to the knowledge
thereafter. The G2 scheduler allows KB processing to take place normally; G2
tasks of a higher priority take place before G2 tasks of lower priorities.

In addition, when G2 starts to save the KB, it delays any KB processing that
changes any part of the permanent knowledge, such as deleting a workspace,
until the KB is completely and successfully saved. It also postpones all other
processing of lower priority than the delayed processing until the save is
complete. In this way, G2 preserves consistency in the current KB.

The G2 scheduler manages the task of saving a KB while it is running. The
scheduler sets the priority of tasks based on the value of the default-priority-for-
runtime-saving attribute in the Saving Parameters system table.

93

94

Note The default value of the default-priority-for-runtime-saving attribute is priority 8,

Tip

Note

which causes saving while running to execute as a relatively low priority task,
known as a background task.

For example, when you save a KB while it is running, G2 processes rules
normally, because the default priority for processing rules is priority 1.

Using System Procedures that Pause G2 before
Saving Your KB
There are three system procedures in sys-mod.kb that save your KB by first

pausing G2, saving your KB, and then resuming G2. Refer to KB and Module
Operations in the G2 System Procedures Reference Manual.

Saving the State of Workspaces

A KB file or KB snapshot file stores the following information about your
KB workspaces:

® The scale and absolute position within the G2 window.
* Which workspaces are visible.

® The back-to-front ordering of the visible workspaces.

For more information about how G2 manages the appearance of workspaces in
windows, see the Positioning a Workspace within its Window.

Supporting Source-Code Control Systems

When you save a KB to the same KB file from which it was loaded, G2 updates
only a portion of the KB file itself. This allows an industry-standard source-code
control system (SCC) to detect which characters in the updated file represent the
most recent changes.

When checking out a KB file using a SCCS, do not use keyword expansion;
otherwise, the KB file will be corrupted. For example, if you use the RCS
application, specify the ~ko argument when checking out a KB file.

Loading a KB

Loading a KB

Note

Note

Loading a knowledge base means replacing the current KB with knowledge read
from any KB files.

When you load a KB, G2 replaces the entire current KB with the new KB.

G2 loads a KB by reading from saved KB files. Saving KBs is described in Saving
Your KB Knowledge and Saving Permanent and Transient Data in Snapshot KBs.

The procedure for loading a KB file and a KB snapshot file are essentially the
same, except for the options that you might want to specify, as outlined in
Selecting Options when Loading a KB File.

Also, after loading a KB snapshot file, you can warmboot your KB. For
information on warmbooting, see Warmbooting a KB Snapshot File.

To load a KB file interactively:

1 Pause or reset the KB by selecting Pause or Reset from the Main Menu.
2 Select Main Menu > Load KB.

G2 displays the Load KB dialog, described in the next section.

To load a KB file programmatically:

2 Use the KB-loading system procedures described in KB and Module
Operations in the G2 System Procedures Reference Manual.

As G2 loads a KB file, it displays a table that informs you of its progress. The
display also shows this progress as a percentage. It does not indicate the real size
of the KB being loaded.

You can load KB files that you saved using previous versions of G2. However,
you cannot always load KB files that you save using a later version of G2 into a
previous version. See the G2 Bundle Release Notes for version-specific backward-
compatibility details.

You can also load a KB file by using an initialization file. For details see Using an
Initialization File.

95

Using the Load KB Dialog

When you load a KB file interactively, G2 displays the Load KB dialog, as shown
in the next figure:

Directory status area
Current KB directory

Option check boxes
Edit box

Text Editor for File Command

Cancel | |C:\Program/Files\Gensyyﬁz-B.BrD\gz‘/\\|

_ Undo_| C:\Program FiIe;XG/ensym\gZ-BJrO\gy

0 Directories, 0 Files

il [] start afterwards ["] never start afterwards
ﬂl [] warmboot afterwards [] warmboot afterwards with catch-up feature
Paste ["] merge in this KB ["] merge in this KB and install its system tables

[7] bring formats up-to-date automatically resolve conflicts

any symbol

any file-name

any directony-name
any float

amy string

any number

STt A g S S e

B -]

Grammar categories

Selectable syntax
and selectable syntax

characters

The first time you use the Load KB dialog, G2 displays in the edit area the
directory from which you launched the G2 process. Thereafter, the default
directory is the directory pathname most recently specified in a successfully
executed Load KB, Merge KB, or Save KB operation.

By default, the automatically resolve conflicts option is selected so that
intermodual class-definition differences are automatically resolved by G2.
Resolving such conflicts by hand is not recommended because it is very time
consuming; however, the option is deselectable.

In this dialog, you can navigate to any directory where KB files are stored. You
can enter the name of the KB file to load, or select it from the list of files that
appears at the bottom of the dialog.

96

Loading a KB

To display the contents of a directory:

= Enter a pathname in the edit area, including a trailing delimiter character, and
click End.

or

> Enter a pathname in the edit area, without a trailing delimiter character, and
press Return.

The trailing delimiter character depends on your platform: / on UNIX platforms
and \ on Windows platforms.

G2 displays a list of subdirectories and KB filenames contained in the specified
directory. This figure shows how the Load KB dialog displays these lists:

Text Editor for File Command

Cancel | |C:\Program FiIes\Gensym\gz-B.BrD\gz‘J\\|

_ Undo_| C:\Program Files\Gensymig2-8. 3r0\g2\
0 Directories, 0 Files

il [] start afterwards ["] never start afterwards

pdate | 7] warmboot afterwards [] warmboot afterwards with catch-up feature
Past hE G . .
&I ["] merge in this KB ["] merge in this KB and install its system tables
[7] bring formats up-to-date automatically resolve conflicts
any symbol : examples'
any file-name ; et
any directory-name % fontsh
any float ! khsh
amy string %
any number =
[
$]
{ o
R !
i 7
wavdemo.kh

At this point, you can select a KB file to load or another subdirectory. If you select
a subdirectory, continue following the above procedure until you find the desired
KB file.

Note G2 cannot load an empty file or a file that is not a KB file. If you attempt this, G2
signals an error.

97

98

Loading the KB File

To load the specified KB file:
= C(lick End or press Return in the Load KB dialog.
If G2 contains a resident KB, it will be cleared before the new KB is loaded.

If the resident KB has unsaved permanent changes, G2 generates this
confirmation dialog to notify you of the unsaved changes:

Replace existing KB with modules as shown?

I OK I Cancel

You can select the Cancel button and save the current KB before loading a new
KB, or you can press the OK button to clear the resident KB and load a new KB.
When G2 loads the new KB it reports on its load progress.

When loading is complete, G2 presents the contents of the loaded KB in the state
in which it was saved. For information on what G2 saves in KB files and KB
snapshot files, see Saving Your KB Knowledge.

In addition, G2 does the following;:
® Sets the initial-value attributes of variables and the values of parameters.

* Displays some portion of each workspace that was visible when the KB was
saved. G2 displays these workspaces in each G2 window that is connected to
the G2 process. If the size of the G2 window is smaller than the size of the
window at the time the KB was saved, G2 adjusts the absolute locations of the
workspaces so that some portion of each workspace is visible.

After you load a KB file, the current KB contains the permanent knowledge that
was stored in that file. For information on how items represent permanent
knowledge, see Understanding the Knowledge Contained in Items.

Using Wildcards in Filenames when Loading a KB

You can enter a wildcard in the filename when loading a KB file. G2 displays a list
of names that meet the specified criteria.

For instance, you can enter kb*s.kb to display a list of all KB files in the current
directory, whose file names begin with the characters “kb” and end with the
characters “s . kb”.

Loading a KB

To use wildcards in the filename, use combinations of the following characters:

Wildcard Character/ Purpose Example
* (asterisk) Entering kb*s matches the files or
directories named kbfiles and
Matches zero or more
kbs.
characters
? (question mark) Entering kbfile? matches the files
directori d kbfil d
Matches any one character oF cuectories hame thesan
kbfilez.
{abc} (braces) Entering kb{ef}iles matches the

files or directories named kbfiles

Matches one occurrence of the and kbeiles.

character a or b or ¢, where g, b,
and c each represents a
character

{abc}* (braces and asterisk) Entering kb{xyz}*files matches the
files or directories named kbfiles

Matches zero or more ,
and kbzzzfiles.

occurrences of the character a
or b or ¢; where g, b, and ¢ each
represents a character

! (exclamation point) Entering kbfile!{s!} matches the file

Escape (ESC) character allows or directory named Kbfile{s}.

use of other characters in the
wildcard name

You can also use these characters in the text of the argument passed to the
g2-files-in-directory and g2-subdirectories-in-directory system procedures, as
described in File Operations in the G2 System Procedures Reference Manual.

Selecting Options when Loading a KB File

You can modify how G2 loads the selected KB file by selecting one or more
options on the Load KB dialog. To select a loading option, check its
associated box.

Notice that the check boxes appear in pairs. For example, merge in this KB and
merge in this KB and install its system tables pertain only to merging a KB file.
You should not select both options in a pair at the same time.

99

This table explains each option on the Load KB dialog;:

Load KB Option

Description

start afterwards

Begin running the new KB immediately after loading the
KB file into a G2 that is in the initial / reset state.

Selecting this option overrides the setting of the start-KB-
after-load? attribute in the Miscellaneous Parameters
system table of the loaded KB.

never start afterwards

Do not begin running the new KB after loading the KB file.

Selecting this option overrides the setting of the start-KB-
after-load? attribute in the Miscellaneous Parameters
system table of the loaded KB.

warmboot afterwards

When loading a KB snapshot file, resumes running the KB
from the point at which it was saved. This option has no
effect if you are loading a normal KB file.

For more information, see Warmbooting a KB Snapshot
File.

warmboot afterwards
with catch-up feature

When loading a KB snapshot file, sets the scheduler’s
internal current time to the current time saved in the
snapshot file, and the scheduler-mode attribute of the
Timing Parameters system to as fast as possible.

This option has no effect if you are loading a normal KB
file.

For more information, see Warmbooting a KB Snapshot
File.

merge in this KB

Merges the contents of the KB into the current KB. This is
described in detail in Merging a KB File.

merge in this KB and
install its system
tables

Merges the contents of the KB into the current KB, and
makes the merged module’s system tables the installed
system tables. This is described in Merging a KB File.

100

Saving Permanent and Transient Data in Snapshot KBs

Load KB Option Description

bring formats up-to- Applies the formatting defaults, which are specific to the

date current version of G2, to all loaded items. For example, the
width of text items are based on system-defined defaults
that might vary from version to version.

Note: Selecting this option can significantly affect the
appearance and layout of items when loading them into
new G2 versions. In general, we do not recommended
selecting this option unless you want to mix items
developed under different G2 versions.

automatically resolve ~ When loading a modularized KB, G2 automatically checks

conflicts for conflicts among class-definitions contained in the KB,
and in any directly and indirectly required modules that
G2 also loads. This option is selected by default.

Using the automatically resolve conflicts feature is
described in Detecting Conflicting Class-Definitions.

Searching for KB Files

When loading knowledge bases, G2 searches for module files in the specified
directory and in the current G2 directory. The filename extension must be
specified and it must be .kb or .kl. G2's module-saving scheme ensures that a
directory has only one knowledge base with a particular base name and proper
file extension. It does this by appending a tilde (~) to the backup copy. See Backup
Copies of KB Files for more information. If you specify a file that is not a G2
knowledge base, G2 posts an error message to the Logbook.

Note The use of .KL and .kl files (known as knowledge libraries) is obsolete except for
certain libraries supplied by Gensym to assist in localization, as described in
Natural Language Facilities.

You can specify the home directory pathname for a G2 process using the G2 HOME
environment variable. If no such specification exists, the home directory is the
directory from which you launched G2.

Saving Permanent and Transient Data in
Snapshot KBs

You can save and reload all of a KB’s permanent and transient knowledge,
including the real-time data associated with the G2 run-time environment, by

101

102

Note

saving a KB snapshot file and reloading the snapshot KB with the warmboot
option selected.

Saving a KB Snapshot File

G2 saves your snaphot KB knowledge in a single file.

To save a KB to a snapshot file:

= Execute the g2-snapshot or the g2-snapshot-without-other-processing system
procedure, as described in KB and Module Operations in the G2 System
Procedures Reference Manual.

G2 does not save a KB in which the attribute table of a transient item resides on a
permanent workspace separate from the transient item.

The g2-snapshot system procedure writes the snapshot file with data as of the
moment that it is invoked. It does this despite the fact that the task of writing the
snapshot file allows interrupts for other processing. Thus, even if you modify or
delete significant portions of a KB after invoking g2-snapshot, G2 writes that
knowledge into the KB snapshot file as it existed at the time the procedure was
invoked.

The g2-snapshot-without-other-processing saves your snapshot KB by first
pausing G2, saving your KB, and then resuming G2.

See Warmbooting a KB Snapshot File for information about how to load KB
snapshot file and resume running a KB from it.

Contents of a KB Snapshot File
A KB snapshot file records:

* All information necessary to present the KB as if it had been reset at the time
of the snapshot, including information necessary to undo changes that are
normally undone when a KB is reset.

* All transient items except transient g2-windows not on a workspace.

® The current values, collection times, expiration times, and histories of all
variables and parameters when present.

® The simulation values and histories of all variables when present.
® The activation status of all KB workspaces.
* All instances of dynamic relations.

® The contents of all lists and arrays.

Saving Permanent and Transient Data in Snapshot KBs

The G2 Simulator, which can provide simulation values and simulation histories,
is a superseded capability. For more information, see Appendix F, Superseded
Practices.

A KB snapshot file does not record:
® The current executing status of rules, button items and display items.
® Procedure invocations and their associated information.

® The Operator Logbook, the Message Board, menus, temporary workspaces, or
tables, such as Inspect tables and attribute tables that have not been
transferred to a workspace.

Naming Conventions for KB Snapshot Files

Snapshot filenames must include the .kb extension. In addition, you should
follow naming conventions that distinguish snapshot files from KB files, such as
including the suffix -snapshot in the filename. To identify the time at which the
snapshot was saved, you might also prefer to include a timestamp in the filename,
for example, monitoring-snapshot-29may2000-02-14-23.kb.

Warmbooting a KB Snapshot File

When loading a KB snapshot file, you must select one of the warmbooting
afterwards options on the Load KB dialog to restore the snapshot file to its run-
time state.

G2 loads and automatically resumes running the current KB as if it had merely
been paused. This is called warmbooting. Loading a KB snapshot file restores
both the stored KB’s knowledge and the real-time data that existed at the time
when the KB snapshot file was saved.

If you do not select the warmbooting afterwards check box when loading a KB
snapshot file, G2 discards the run-time data that was loaded. The result is the
same as if you had loaded a standard KB file.

To warmboot a KB snapshot file:

> Select the warmbooting afterwards option in the Load KB dialog.

To warmboot a KB snapshot file programmatically:

=2 Invoke the g2-warmboot-kb system procedure, as described in KB and
Module Operations in the G2 System Procedures Reference Manual.

As when loading a KB file, when warmbooting a KB snapshot file, G2 sets the
scheduler’s current time to the current real time. When G2 resumes processing, G2
schedules its processing according to the value of the scheduler-mode attribute in
the Timing Parameters system table of the loaded KB snapshot file.

103

104

After loading a KB snapshot file, G2 runs the current KB somewhat differently
from its default behavior, as follows:

1 After the warmboot, G2 invokes no initially rules.
2 G2looks for a procedure named warmboot, and executes it, if it exists.

3 After G2 has finished executing any warmboot procedure, it resumes
executing all scanned rules.

Creating Warmboot Procedures

Warmbooting cannot automatically restore the context of procedures and rules
that were executing when a KB snapshot file was written. To restore such context,
you can provide one or more procedures called warmboot procedures. For
example, you might want restart a procedure that was invoked just before the
moment when the KB snapshot file was saved. You can accomplish this by using
a warmboot procedure.

When the KB in a snapshot file contains a procedure whose name is warmboot, G2
invokes that procedure before beginning execution of the file. This invocation
provides a hook that you can use to take whatever action is necessary to restore
the needed context. If no procedure named warmboot exists, G2 continues
without error. A modularized KB can also contain warmboot procedures that are
not named warmboot, as described under Modular Warmboot Procedures.

Non-Modular Warmboot Procedures

When a KB is not modularized, or when one warmboot procedure suffices for all
modules, you can provide a procedure named warmboot that does what is
needed. This procedure must take no arguments and return no values.

Code the warmboot procedure so that it specifies a set of actions that are
appropriate to execute after the KB snapshot file is warmbooted. For example, the
sample warmboot procedure shown below duplicates some operations performed
when the KB starts, but performs other operations that depend on state
information saved as part of the KB snapshot file.

warmboot ()
ND : class node ;
WS : class kb-workspace = the subworkspace of mill-welcome-screen;
begin
{ Notify the user that warmbooting has occurred. }
show WS;
post "Warm restart of MILL application”;

{ Update the saved-state display for each manufacturing station. }
for ND = each node upon WS
do
call reset-graphics (ND);
if the status of ND is processing then

Caution

Saving Permanent and Transient Data in Snapshot KBs

start process-material (ND) after
max (0, the process-end-time of ND - the current time);
end;

{ Display the menu bar and resume "production" of raw material items. }

hide WS;

start developer-package-initialization-rules ();

show the subworkspace of mill-process-diagram-object with its top left
corner 2 units to the right of and 40 units below the top left corner of
the screen ;

start process-material (warehouse);

end

Modular Warmboot Procedures

When a KB contains modules that need to define their own warmboot
procedures, some mechanism is needed that invokes them all in the correct order.
You could write a procedure named warmboot that does this, but GFR provides a
more general capability: it contains a system-defined procedure named warmboot
that automatically executes any other warmboot procedures.

When you warmboot a snapshot of a KB that includes GFR, G2 invokes GFR’s
warmboot procedure just as it would a user-defined procedure with that name.
The GFR procedure scans the KB for items of class gfr-startup-object, each of
which can define a warmboot procedure for a module, and executes the
procedures specified by the items in the order defined by the module hierarchy.

A warmboot procedure for use with GFR has a different signature than a
procedure named warmboot, but otherwise does the same types of things in the
same ways that a non-modular warmboot procedure does, as described under
Non-Modular Warmboot Procedures. For further information about modular
warmboot procedures, see the chapter on managing modules in the G2 Foundation
Resources User’s Guide.

If a KB contains more than one procedure named warmboot, the duplicate names
could cause G2 to invoke the wrong one. Therefore, a KB that requires GFR must
use GFR to execute any warmboot procedures, and must not contain any
procedure named warmboot except the one supplied by GFR.

Warmbooting with Catch-Up

G2’s default behavior for initializing a warmbooted KB snapshot file might not be
appropriate for a KB that is designed to run continuously. For this reason, you can
direct G2 to warmboot a KB so that its processing can catch up from the current
time saved in the snapshot file to the current real time.

105

106

To catch up to the current real time when warmbooting:

> Select the warmboot afterwards with catch-up feature option in the Load
KB dialog.

G2 initializes the KB snapshot file as follows:

® (G2 sets the scheduler’s internal current time setting to the current time saved
in the KB snapshot file.

* (G2 sets the scheduler-mode attribute in the resulting current KB’s Timing
Parameters system table to as fast as possible.

After warmbooting a KB in this manner, and after the scheduler’s current time
catches up to become equal to the current real time, your KB should reset the
scheduler-mode attribute to the value real time. If your KB does not reset the
scheduler-mode attribute, then G2 continues to run with a setting of as fast as
possible.

To reset the scheduler mode to use real time processing after a warmboot:

1 Create a procedure that changes the scheduler-mode attribute in the KB’s
Timing system table from as fast as possible to real time when the scheduler’s
current time is greater than or equal to the current real time.

For example, the following procedure restores the scheduler-mode attribute
to the value at the time the KB snapshot file was saved. This procedure
assumes that the warmbooted KB includes a text parameter named text-
parameter-holding-saved-scheduler-mode, whose value is equal to the value
of the scheduler-mode attribute in the Timing Parameters system table at the
time the KB was saved to its snapshot file.

change-to-real-time-when-caught-up()
begin
repeat
wait for the current real time = the current time;
exit if the current time >= the current real time;
end;
change the text of the scheduler-mode of timing-parameters
to the current value of
text-parameter-holding-saved-scheduler-mode;
end

2 Create a warmboot procedure so that it starts change-to-real-time-when-
caught-up.

G2 executes warmboot when warmbooting the KB. For example:

warmboot()
begin

start change-to-real-time-when-caught-up ();

end

Merging a KB File

3 Warmboot the KB snapshot file selecting the warmboot afterwards with
catch-up feature option.

After G2 warmboots the KB, when the scheduler’s current time becomes equal to
the current real time, the change-to-real-time-when-caught-up procedure restores
the value of the scheduler-mode attribute in the Timing Parameters system table.

For a KB that is warmbooted in this manner, if you reset the resulting current KB,
G2 resets the scheduler-mode attribute to its value that is saved in the KB
snapshot file.

Note You cannot use the warmboot afterwards with catch-up feature option to
warmboot KB snapshot files saved under G2 Version 3.0 revision 0 or earlier.

Merging a KB File

Merging a KB file means adding the knowledge in that KB file to the current KB.
Merging a KB is similar to loading a KB, as described under Loading a KB. The
same syntax and options applies to both operations. When KBs merge, the KB that
is already loaded is called the primary KB, and the KB that is merged into it is
called the secondary KB.

You merge one secondary KB at a time into the primary KB. If the secondary KB is
a modularized KB, G2 also merges the KB files that contain modules that are
directly required by the secondary KB. This is described in Merging a
Modularized KB into the Current KB.

When you merge one KB into another, G2 checks that the class-definitions in the
two KBs are consistent. G2 provides a variety of techniques for resolving
inconsistencies between merged KBs, as described in Detecting Conflicting Class-
Definitions.

When two KBs are merged:

® The resulting KB contains all the information in both knowledge bases, except
where conflicting class-definitions required changes.

* The visible workspaces from the secondary KB appear behind the visible
workspaces of the primary KB.

* By default, the system tables of the primary KB remain in effect. You can
choose to install the system tables of the secondary KB, thus replacing the
currently installed system tables.

107

Note Loadinga modularized KB actually performs a merge operation for each module

that the loaded KB file directly requires. Thus, the entire discussion of merging
KB files applies also to loading modularized KB files. For more information, see
Working with Modularized KBs.

To merge a KB file interactively:

1 Pause or reset the current KB by selecting Pause or Reset from the
Main Menu.

2 Select Main Menu > Merge KB.

G2 displays the Load KB dialog with the merge in this KB option
automatically selected.

3 Navigate the directory structure and specify the filename to merge in the
same manner as when you load a KB.

For information on interacting with the Load KB dialog, using wildcards in
filenames, and specifying options, see Loading a KB.

To install system tables when merging a KB file interactively:

=> Follow the preceding instructions, but choose the merge in this KB and install
its system tables option in the Load KB dialog.

To merge a KB file programmatically:

= Execute the g2-merge-kb or g2-merge-kb-ex system procedure, as described
in KB and Module Operations in the G2 System Procedures Reference Manual.

G2 reports its progress as it merges the KB. It does not indicate the real size of the
KB being merged.

To merge a KB file using an initialization file.

= See Using an Initialization File.

Working with Duplicate Iltems in KBs

108

Most items store their names in the names attribute of the item. Some items store
their name in an equivalent class-specific attribute. For example, the relation-
name attribute stores the name of a relation. Items have the same name if their
names attributes, or their class-specific equivalents, contains the same name.

Items that have the same name are called duplicate items. To detect duplicate
items, G2 considers only their names; the items may or may not have the same
class type or be functionally equivalent.

Note

Caution

Working with Duplicate Items in KBs

Duplicate Definitional Items

Definitional items include all definitions that you create interactively from the
KB Workspace > New Definition menu, as well as a rule, which you create from
the New Rule menu.

G2 allows a KB to contain duplicate definitional items for anything except class-
definitions, which includes the following definitional items:

external-simulation-definition
procedure
foreign-function-declaration
image-definition
frame-style-definition

relation

function-definition
remote-procedure-declaration
generic-formula

rule

tabular-function-of-1-arg
language-translation
units-of-measure-declaration
method

user-menu-choice

tokenizer
text-conversion-style

G2 does not check method declarations for consistency.

When you merge a KB with a duplicate definitional item for anything except a
class-definition, G2 creates duplicate items in the KB.

When you merge a KB with a duplicate definitional item for anything except a
class-definition, using the automatically resolve conflicts option, G2 deletes the
duplicate item from the merged KB.

Where duplicate items exist in a KB, G2 places a warning in the Notes attribute of
each item having the duplicate name, and posts no other notification. Here is an
example of the notes attribute for two items with the same name:

OK, and note that this is one of 2 distinct items named input-1

When duplicate items exist and more than one of the items satisfies a reference,
which item G2 chooses is not predictable. The choice may not be the same from
one reference to the next, which can cause unintentional results.

109

110

To find items with the same name:
1 Select Main Menu > Inspect.
2 Enter this command in the Inspect edit box:
show on a workspace every item with notes
3 For the items returned that have the note:
this is one of integer items named name
enter this command in the Inspect edit box:

show on a workspace every item | such that
the names of | exists and the names of | is name

Duplicate Class-Definitions

Class-definitions have the same name if their class-name attribute contains the
same name. Class-definitions that have the same name are called duplicate
definitions. To detect duplicate definitions, G2 looks only at the names of the
classes they define; the definitions may or may not have the same type or be
functionally equivalent.

Within a G2 process every class name must be unique. The G2 compiler does not
allow you to specify an existing class name in the class-name attribute of a class-
definition. However, class-definitions with duplicate names can occur when KBs
contain modules not developed in the same G2 process, or when additional
modules are merged into the current KB.

G2 generates backup class-definitions when writing a KB module. It saves all
user-defined class-definitions that determine the inheritance of the items in the
module, even when the definitions do not reside in the module. These class-
definitions are called backup definitions, and G2 uses them to determine the
inheritance of items in the module and to notice differences between the backup
definition and a same-named class-definition in another module.

When a KB module that contains a class-definition is merged into a G2 process
that already contains a class-definition of the same name, the existing class-
definition is called the primary definition, and the class-definition being merged
in is called the secondary definition.

At load time, G2 avoids all duplicate class-definitions in one of several ways, as
described in the rest of this chapter.

Identical Duplicate Definitions
G2 considers two class-definitions to be identical definitions when they:

* Are of the same type (class-definition, object-definition, connection-definition,
or message-definition).

Detecting Conflicting Class-Definitions

®* Have the same name, attributes, and initial and default values.
* Specify their attributes in the same order.

When two class-definitions are identical, their attribute tables look exactly the
same. The value of an attribute that can contain multiple terms, such as class-
specific-attributes, must list the same terms in the same order to be considered
identical.

When two KB modules contain identical class-definitions, and one KB is merged
into the other, the secondary definition is redundant. G2 therefore:

® Deletes the secondary definition. G2 also deletes any subworkspace hierarchy
of the class-definition.

* Converts any instances of the deleted definition to be instances of the primary
definition; the instances are otherwise unaffected.

The deletion of the secondary class-definition prevents it from existing as a
duplicate class-definition in the combined KB. Since the class-definitions were
identical, and the converted instances are unchanged, the deletion and conversion
have no functional effect, so G2 does not post any notification that it has occurred.

Nonidentical Duplicate Definitions

When two KB modules contain duplicate class-definitions that are not identical,
the definitions are in conflict: neither can be deleted in favor of the other without
risking functional change. The rest of this chapter describes such situations and
shows you what to do about them.

Detecting Conflicting Class-Definitions

In order to understand conflicting definitions and their resolution, you need to
understand G2 classes, as described in Classes and Class Hierarchy, and G2
definitions for extending the class hierarchy, as described in Definitions. The rest
of this chapter assumes that you understand those topics.

When you merge one KB module into another, either in the process of loading a
multi-module KB or explicitly merging an additional module, G2 checks that each
class-definition in the merging module is consistent with those in the resident KB
modules. A merging KB module is consistent with the resident modules if it has
no class-definitions with duplicate names, or if every duplicate class-definition is
identical to the resident class-definition of the same name. Identical pairs of class-
definitions are handled as described under Identical Duplicate Definitions.

If a secondary definition has a name that is also used in the resident KB modules,
but has differing attributes, conflicting definitions exist. This section shows you
how such conflicts can be resolved.

111

Automatically Resolving Conflicting
Class-Definitions

112

You can direct G2 to resolve conflicts among definitions of classes automatically.
This ability is sometimes referred to as automerge. The automatically resolve
conflicts option on the Load KB dialog and Merge KB dialog determines whether
G2 automatically resolves class-definition conflicts. By default, this option is
selected because it is very time consuming to resolve them yourself.

To resolve conflicts automatically when loading and merging KBs:

= Make sure that the automatically resolve conflicts option in the Load KB
dialog or Merge KB dialog is selected.

When merging KBs or loading modularized KBs with automerge selected, G2
checks each pair of conflicting definitions to see whether they can be merged
automatically.

* Two definitions of the same type can be automerged if they have the same
foundation classes OR no instances of the secondary definition exist.

* A class defined on an object-definition, connection-definition, or message-
definition can be automerged into a class defined on a class-definition if they
have the same foundation classes OR no instances of the secondary
definition exist.

* A class defined on a class-definition cannot be automerged into a class defined
on an object-definition, connection-definition, or message-definition, even if
they have the same foundation classes.

When G2 automerges two KBs, it does the following for each pair of classes that
can be merged automatically:

® For each attribute that differs, G2 changes the attribute in the secondary
definition to be equivalent to its corresponding attribute in the primary
definition.

* In the secondary definition item, G2 opens the change attribute and executes:
merge all instances and subclasses into definition for primary-definition

* After G2 automerges two definitions, it deletes the secondary definition.

Automatically Resolving Conflicting Class-Definitions

Automerging a class defined on a object-definition, connection-definition, or
message-definition into a class defined on a class-definition cannot be done by
directly transferring attributes, because the syntax differs in the two types of
definition. G2 carries out such a merge by changing the syntax of the information
in the secondary definition as needed to fit into a class-definition.

Automerging two definitions resolves every difference between the primary and
secondary definitions in favor of the primary definition:

Attributes defined in the secondary definition but not the primary definition
disappear from subclasses and instances of the secondary definition.

Attributes defined in the primary definition but not the secondary definition
are added to subclasses and instances of the secondary definition.

Attributes that exist in both definitions but have different properties use the
properties in the primary definition. Subclasses and instances of the
secondary definition change accordingly.

For a successfully merged pair of class-definitions with duplicate names, G2
displays a message on the Logbook. For example:

Operator Loghook 13 Jan 2000 ¥ A Page 2

#6 104739 am. Automatically deleting

definition BESIDEMCE-FROM-TT, whose
instances, if any, were merged into the class
defined by RESIDENCE,

If all conflicting definitions can be merged automatically, the KBs themselves
have been successfully automerged. If any pair of definitions cannot be
automerged, G2 treats them as it does all conflicting definitions during an
ordinary merge, as described in the next section.

113

Manually Resolving Conflicting
Class-Definitions

We recommend that you take advantage of G2’s automerge facility which is
selected by default on the Load KB and Merge KB dialogs. This section explains
what happens when you turn off automerge or, when automerging, G2
encounters an unmergable conflict.

G2 Notification of Conflicting Class-Definitions

G2 does the following when it detects conflicting class-definitions:

* Displays a messages in the Operator Logbook indicating that conflicting
definitions exist. For example:

#6 102331 am. Done merging "C:\gz\top.xml"|

#7 102331 am. The KB "Chg2itopxml”
contains a class definition that differs from an
estahlished (existing) definition. A conflict
report workspace has been created for this.

* Changes the name in the class-name attribute of the secondary definition.
This also changes the class name for all instances of that class that are being
merged. The new secondary name has the form:

primary-name-from-module

where primary-name is the original name of the definition, and module is the
module in which the secondary definition exists.

® Creates a conflict workspace. The workspace displays the tables of the two
conflicting definitions, with the primary definition on the left., highlights the
corresponding attributes in the two conflicting definitions whose values are
not equivalent.

114

Manually Resolving Conflicting Class-Definitions

This figure shows the contents of a typical conflict workspace:

This text identifies the module that contains
the newly added conflicting definition.

This text offers suggestions
for changing the definitions.

Attributes that differ

RESIDENCE-CLA

NAME-CONFLICT

CONFLICT REPORT! The merged-in KB "Chg2ittaml' contained a
definition for RESIDENCE that differed from an established [existing)

You may wish to edit one or both of the tables below
in the tables have been highlighted. |If the tables bec

definition. The class from the merged-in KB has been renar

RESIDENCE-FROM-TT. (lf you keep this new name, you =

update rules, formulas, eto., appropriately)

Definition for RESIDENCE.

1 instance.

ed
ould

except for the class names, you may merge one of tr
other by editing the CHANGE slat. Type or select "n
instances and subclasses inte definition for <other ¢ls
to read the loghook notes when you do this. You st
this workspace when you are done with it

Det

ition for RESIDENCE-FROM-TT. O instances.

RESIDENCE, a RESIDENCE-FROM-TT, a¢ definition
Mates | OK Motes [OK
Authors | ghe (12 Jan 2000 11:09 am.) \auﬁmrs ghwr (13 Jan 2000 1037 am.)
Change lag | 0 entries Chan}g\log 0 entries

ltern configuration

configure the

Clazs name

inteface as foll aws:

rezidence

Direct superior clazzes

Class speciic attributes

Instance configu ration

ohbject

Change

| nztantiate

ves

Include inmenus

yas

Clazz inhentance path

rezidence, ohject, tem

Inherited attributes

none

Initializakle sy stern attributes

Attribute initializations

| zon description

attribute dizplay s,
stubs

clazz-name at standard

attribute -display =

po=ition

inherited

Class name | residence-from -t

ohject

Direct zuperior clazzes

Clazs speciic attributes [

Instance configu ration | none

Change | none

Instantiate | yes

Includein menus | ves

Claz= inherntance path | rezidence-from-tt, object, item

Inhertted sttributes | none

Initializable =y ztem attributes | attribute-dizplay s,

stubz

Attribute initializations
| con description | inhertad

Responding to Conflict Workspaces

The existence of unresolved conflicts among merged KBs does not prevent G2
from running the resulting KB, but the results may not be what was intended
when the KBs were designed. To insure correct results, all conflicts should be
resolved, and the previously conflicting definitions merged into one.

Most conflicts are easily resolved, because they result from minor
incompatibilities. In such cases, the answer is usually to change the attributes in

115

116

the secondary definition and leave the attributes in the primary definition intact,
but this approach is not required.

The attribute tables on a conflict workspace are real tables: any change to them
changes the corresponding definition. Using a conflict workspace to eliminate
conflicts and merge definitions is exactly the same as merging two definitions
independently of KB merging. The conflict workspace just provides a convenient
interface to the process.

To merge definitions with minor incompatibilities:

= Follow the directions under Merging Classes, using the tables on the conflict
workspace rather than opening separate copies of the definitions” tables.

Some conflicts are not so easily resolved, because they are unusual or complex in
some way. The next section contains examples of various conflicts and shows you
what to do about them.

Examples of Manual Conflict Resolution

This section describes various types of conflicts that can arise when you merge
inconsistent KBs and shows you how to resolve each of them.
Completely New Version of the Same Class-Definition

Assume that the conflicting definitions are related: one definition is a completely
new version of the other, and that the new version must replace the old version.

If the secondary definition contains the new version, follow these steps:

1 Edit the attributes in the definition already in the current KB. Edit the
definition so that its attributes are equivalent to the secondary definition’s
attributes.

2 Use the change attribute’s merge option on the secondary class to merge all
instances and subclasses of the secondary class into the primary class.

3 Unless you have a specific use for it, delete the secondary definition.

4 Delete the conflict workspace.

Name Conflicts between Independent Class-Definitions

Assume the conflicting definitions are not related: the two definitions are
intended to define distinct classes in your KB. For example, two different
developers might have accidentally given two definitions the same name. To
resolve this conflict, change the class-name attribute in one or both of the
definitions.

Unless the direct-superior-classes attributes in the two definitions have the same
foundation class, you cannot accomplish this form of conflict resolution by using

Manually Resolving Conflicting Class-Definitions

the Merge KB command’s automatic conflict resolution feature. For more
information, see Unresolvable Conflicts between Class-Definitions.

Separate Development of Groups of Attributes

Assume the conflicting definitions are related. Further, assume that two
developers made independent changes to separate copies of a shared definition.
However, in this case, each developer added distinct sets of information to the
definition, such as distinct class-specific attributes.

To resolve this conflict:

1 For each pair of corresponding attributes in the conflicting definitions,
determine which version you intend to keep.

2 Edit the definition already in the current KB so that its attributes contain the
values you want to retain.

3 Use the change attribute’s merge option on the secondary class to merge all
instances and subclasses of the secondary class into the primary class.

4 Unless you have a specific use for it, delete the secondary definition.

5 Delete the conflict workspace.

Separate Development of Specific Attribute Values

Assume that the conflicting definitions are related and that two developers made
independent changes to separate copies of a shared definition. More specifically,
assume that each developer simply assigned different default values within the
same set of class-specific attributes.

To resolve this conflict, for each pair of corresponding attributes in the conflicting
definition, first determine which value in each differing attribute you intend to
keep. Next, follow Steps 2 through 5 listed in Separate Development of Groups of
Attributes.

Conflict Due to Upgrading to a New G2 Version

Assume that the merged KB contains a definition whose name is the same as a
system-defined class name. This is possible only if the merged KB was developed
under an older version of G2.

117

118

In this case, G2 displays a conflict workspace containing only one attribute table,
as shown in this figure for an object definition that defines a server-parameters
class:

SERVER-PARAMETERS-CLASS-MAME-CONFLICT, a kh-workspace

SERVER-PARAMETERS-CLASS-NAME-
CONFLICT

CONFLICT REPORT! When the KB 'l:\server.kb" was saved ouf, it
contained a definition for SERVER-PARAMETERS, which has since
become a built-in class or type. Because of this, the class from the
KB has been renamed SERVER-PARAMETERS-FROM-SERVER.
You should update rules, formulas, etc., appropriately. (You may
delete this workspace when you are done looking at it.)

Definition for SERVER-PARAMETERS-FROM-SERVER. 1 instance.

SERVER-PARAMETERS-FROM-SERVER, an
object-definition

Motes | OK
Authors | unknown (13 Jan 2000 7:39 p.m.)

Change log | 0 entries

Class name | server-parameters-from-server

Direct superior classes | object

Class specific atiributes | occasion is a symbol, initialy is g2

Instance configuration | none

Change | none

Instantiate | yes

Include in menus | yes

Class inheritance path | server-parameters-from-server, ohject, item

Inherited attributes | none

Attribute initializations | none

lcon description | inherited

Attribute displays | inherited
Stubs | inherited

To resolve this conflict, simply edit the name in the definition item’s class-name
attribute. Instance items based on the edited definition item automatically inherit
the changed class name.

Manually Resolving Conflicting Class-Definitions

Conflict between Original and External Definitions

When writing a KB module, G2 saves all user-defined class-definitions that
determine the inheritance of the items that reside in the module, whether or not
the needed class-definitions also reside in the module. These class-definitions are
called backup definitions.

If you later merge a module containing an external class-definition with the
module containing the original, G2 compares the two definitions. If they are
identical, G2 merges the external class-definition into the original, then deletes the
backup. This is the normal course of events.

If the external definition is not identical to the definition of the same name found
in the required module, G2 creates a conflict workspace for the two definitions, as
with any conflict. Proceed as described under Manually Resolving Conflicting
Class-Definitions.

If no definition of the same name as the external definition exists in any required
module, G2 creates a new workspace named backup-definitions-for-module-name,
where module-name is the name of the module associated with the backup
definition. G2 places the backup definition on this workspace. The backup
definition is thereafter a real definition, identical except in location with the
missing original, and can be used as any definition can be.

Differences between Class-Specific Attributes

The possible differences between two class-specific attribute declarations in a
definition include:

* In one definition, the attribute is untyped, and in the other definition, the
attribute is untyped and has a default value. For example, these two
declarations conflict:

vehicle-identifier
vehicle-identifier initially is V103

* A difference exists in the declared type of the attribute in the two definition
items. For example, these two declarations conflict:

vehicle-identifier is an integer, initially is 0
vehicle-identifier is a symbol, initially is V103

* In one definition, the attribute is declared to be an instance of a particular
class, and in the other definition, the attribute is declared to be an instance of a
different class. For example, these two declarations conflict:

vehicle-identifier is an instance of a custom-message

vehicle-identifier is an instance of a borderless-free-text

* In one definition, the attribute is declared to be an instance of some class, and
in the other definition, the attribute is declared is given by any class of
variable or parameter.

119

120

Unresolvable Conflicts between Class-Definitions

Some conflicts between definitions cannot be resolved, either manually or
automatically, by editing those items. In these cases, the conflicting definitions
must remain distinct. Instead, you must make more significant changes to your
class hierarchy.

Suppose two definitions have the same name but specify different superior
classes. If those superior classes have different foundation classes, and each of the
conflicting classes has at least one instance, the conflict between the two
definitions cannot be resolved.

To illustrate, assume that different G2 developers have created two different but
related modules. One module contains a class-definition named scheduling-
information, whose superior class is the system-defined class free-text. The other
module contains a scheduling-information class-definition whose superior class is
the system-defined class freeform-table. Finally, assume that each KB has at least
one item that is an instance of the scheduling-information class.

These two Inspect workspaces show the class hierarchies for the two scheduling-
information definition items:

show on a workspace the class hierarchy of
scheduling-information

SCHEDULING-INFORMATION, a class-
definition

ITEM FREE-TEXT

show on a workspace the class hierarchy of
scheduling-information

SCHEDULING-INFORMATICHN, a class-

ITEM definition

FREEFORM-TABLE

Manually Resolving Conflicting Class-Definitions

After merging the KBs with the automatically resolve conflicts option selected,
G2 displays the following conflict workspace:

HEDULING-INFORMATION-C

NAME-CONFLICT

CONFLICT REPCRT! The merged-in KB "Clg2ybb xml" contained a
definition for SCHEDULING-INFORMATION that differed from an
established (existing) definition. The class from the merged-in KB
has been renamed STCHEDULING-INFORMATION-FROM-BB. (If
you keep this new name, you should update rules, formulas, ete.,
appropriately)

You may wish to edit one or both of the tables below. Dif
in the tables have been highlighted. If the tables become |
except for the olass names, you may merge one of them in
other by editing the CHANGE slot. Type or selact "'merge
instances and subclasses into definition for <other classs"
te read the logbook notes when you do this. Yeou should
this workspace when you are done with it.

Definition for SCHEDULING-INFORMATION-FROM-BE. O

Definition for SCHEDULING-INFORMATIOM. 2 instances.

HEDULING-INFORMATION, a

Motes

QK

Authors

ghws (14 Jan 2000 10:22 2m)

Change log

O entries

ltern configurstion

none

Clazs name

Direct superiar claszes

Clazs specific attributes

zcheduling-infarm ation

Instance configu ration

Change

| n=tantiate

yes

Include in menus

yes

Clazs inhentance path

scheduling-infarmation, free-text, item

Inherited sttributes

none

Initializakle =y stem attributes

defaut-tesxt-hox-calors

Attribute initializations

none

| con description

inherted

instances.

SCHEDULING-INFORMATION-FROM-BB, a class-

Motes

definition

QK

Authors

ahws (14 Jan 2000 10:20am.)

Change log

O entries

ltern configuration

none

Clazz name

Direct zuperior clazzes

Clazz =peciic attributes

scheduling-information-from-kk

freefom takle

none

Instance configu ration

none

Change

none

| n=tantiate

=

Include in menus

yew

Clazs inhertance path

scheduling-infomaation -frorm -bh, freefam -
table, item

Inherited sttributes

none

I nitislizable =y stem attributes

table-zize,
default-cell-fomat,
default-evaluation-zetting

Attribute initializations

none

| zon description

inhertad

The conflict workspace shows that only the direct-superior-classes attribute
differs in the two versions of scheduling-information. The conflict between these
two definitions cannot be resolved, because G2 does not allow you to change the
class of an instance whose foundation class is free-text into an instance whose
foundation class is not free-text, or one of its system-defined subclasses.

121

122

Workspaces

Shows how to use workspaces to organize your KB’s items.

Introduction 124

Kinds of Workspaces 125

Working with Workspaces 127

Positioning Items upon a Workspace 137
Creating and Using a Workspace Hierarchy 139
Activating and Deactivating Workspaces 145
Printing a Workspace 147

Setting the Color of Workspaces 149

Creating Custom Workspace Borders 150

Using a Graphic as a Background Image 151

The Kb-Workspace Class 156

gensym.

123

Introduction

124

Workspaces are fundamental building blocks for constructing a knowledge base
(KB). Each workspace organizes a set of items within a region. You can also link
these regions together to form hierarchies of regions, called

workspace hierarchies.

You use workspaces primarily to collect and to contain other items:

* A workspace forms a two-dimensional region upon which you place items
interactively or programmatically. An item has an absolute location within the
coordinate system of its parent workspace. The items upon the same
workspace also have a spatial relationship to each other.

* Many operations on a workspace also affect the items upon it, for example:
- Cloning a workspace creates copies of the items upon that workspace.

- Changing the scale of a workspace changes the scale at which G2 displays
all the items upon that workspace.

- Deleting a workspace deletes all items on that workspace, as well as all
workspaces in the workspace subhierarchy. Items that depend on deleted
class-definitions for their inheritance are also deleted, regardless of their
workspace or module assignments.

Workspaces also serve other important purposes:

* (G2 displays all KB knowledge on workspaces. Note: The display of attribute
tables are an exception.

® You can print workspaces. Note: You cannot print individual items.

* You can associate a hierarchy of workspaces, and the items they contain, with
a module.

® You can configure in similar ways items that are located within the same part
of the workspace hierarchy.

® You can declare a workspace as proprietary by using special configuration
statements to affect the behavior of the items in the hierarchy.

* A G2 process’s local G2 window and the Telewindows connected to that
process can each display independent sets of workspaces, and each can
display any workspace at a different scale and at a different position within its
own window.

In addition, you can create, delete, scale, clone, display, hide, and configure any
workspace. You can also associate custom borders and custom background
images with any workspace.

Kinds of Workspaces

Kinds of Workspaces

Within the G2 developer’s environment, you work with several kinds of
workspaces. This figure shows a variety of workspace types.

TRAMNSPORTATION, a kb-workspace

VEHICLE-DEFIMITIONS, a kb-workspace subworkspace of WYEHICLES

vehicle, object, item #36 23226 pm. Erron

Operator Loghook 25 May 2000 W & Page 26
] obfct
A

GEMERIC-YEHICLE Mo item named BOAT-INSTAMCE exists.
YWEHICLE

‘ ' Activity: executing the expression-to-display
CAR-YEHICLE wehicle Within: the expression-to-display of DIAL-XXX-Z8
A:ar, vehicle, object, item Local MNames:

‘ no local names available

BOAT-YEHICLE

CAR BOAT ||#37 23226 pm. Pause while running KB. You
may resume, reset, or restart,

BOAT, a class-definition
Motes | OK
Authors | ghw (29 3ep 1999 1:54p.m.)
Change log | 0 entries

the vehicle-count of ltem configuration | none

transfer 25
Class name | boat Cancel | Al

lindo any unreserved-symbol
INSPECT-5, a temporany-\workspace any workspace-name
any variable-or-parameter-name
show on a workspace the class hierarchy of any object-name
boat any procedure-name
any item-name
Paste I any class

Text Editor for the action of an action-hutton

ITEM

OBJECT —| VEHICLE, a class-definition |—| BOAT,

Inherited attributes | none

Initializahle system attributes | attribute-display
stubs

Attribute initializations | none

R N DO B e P Tl e P

125

126

Note

Common Features of Workspaces

Some common features of workspaces are:

* Each workspace appears as a rectangle.

* Each workspace has a background and border.
* Workspaces can appear on top of each other.

* (G2 displays each workspace at its default size or at a factor of its default size.

KB Workspaces

One kind of workspace, called a KB workspace, is designed to be a permanent
part of your KB. A KB workspace is an item of the system-defined class named
kb-workspace.

KB workspaces are the only workspaces that can contain other items. KB
workspaces are also the only workspaces that you can save into a KB file.

Your KB can contain any number of KB workspaces. Any item, except another
workspace, can reside upon a KB workspace. You can create, delete, show, hide,
change the color of, scale, move, clone, activate and deactivate, and print KB
workspaces.

G2 offers actions that manipulate KB workspaces. You can refer to KB workspaces
in expressions. For more information, see Actions That Apply to KB Workspaces
and Expressions That Refer to KB Workspaces.

Throughout this chapter and throughout this guide, we typically refer to items of
the kb-workspace class as workspaces. We differentiate KB workspaces from other
kinds of workspaces only when required for clarity.

Other Workspaces

The G2 developer’s environment displays other kinds of workspaces, as well.
These workspaces appear as you open and interact with G2 editors and facilities,
and as you make choices from G2 menus.

These workspaces are not items, and you cannot save them into a KB file. You
cannot refer to these workspaces in actions or statements.

Working with Workspaces

The other kinds of workspaces are:

Type of Workspace Description

Operator Logbook Displays error messages and informational
messages from G2.

Inspect workspace Displays the results of Inspect commands.
Text Editor Displays editing sessions.
workspace

Class List workspace Presents lists of classes, items, or other entities
for entering in the Text Editor.

Message Board Displays messages from inform and post
actions.

Scrapbook workspace Contains pieces of text used for insertion in the
Text Editor.

Icon Editor Displays Icon Editor sessions.
workspace

The Developer’s Environment, describes how to interact with several of these
workspaces.

Working with Workspaces

The following operations are common to all workspaces.

To create a workspace interactively:
= Choose Main Menu > New Workspace.

When you create a new workspace, it is not associated with any other item. This
type of workspace is called a top-level workspace.

When you create a new workspace interactively, G2 displays its center at the
current center of the G2 process’s window.

To create a workspace programmatically:
= create a kb-workspace

G2 does not automatically display a workspace that is created programmatically.
To display a new workspace programmatically, use the show action.

To display a workspace’s menu:

=> C(lick on the background of the workspace.

127

128

This menu is called the KB Workspace menu.

To move a workspace using the mouse:

= With the mouse pointer on the workspace background, depress any mouse
button and move the mouse.

To display a workspace on top of all other workspaces:

1 Click on the background of the workspace to display its menu.
2 Choose Lift to Top.

or, for standard-style workspaces:

= C(Click the title bar outside of the hide button.

To display a workspace beneath all other workspaces:
1 Click on the background of the workspace to display its menu.
2 Choose Drop to Bottom.

To minimize the extent of the workspace borders:
1 Click on the background of the workspace to display its menu.
2 Choose Shrink Wrap.

To produce a cascade display of all displayed workspaces:
= Choose Main Menu > Miscellany > Neatly Stack Windows.

You can also use several system-defined keystroke commands to affect the
position and scale of any workspace. For information on these commands, see
Appendix C, Mouse Gestures, Key Bindings, and Shortcut Keys.

Operating on an Area of a Workspace Interactively

You can work with a group of items in the same workspace. The behavior
depends on whether you are using standard or classic user interface mode.

Using Standard Selection

When running G2 in standard user interface mode (-ui standard), you use
standard selection to select a group of items, then work on the group by choosing
from the menu for the selection. You can move, clone, transfer, align, distribute,
and delete all items in the selection.

When aligning items, at least two items must be selected. When distributing
items, at least three items must be selected. The outermost two items are
unchanged, and the remaining inner items are positioned between the outermost
items such that the space between any two items is constant.

Working with Workspaces

For more information about working with selections, see Mouse Gestures for
Selection and Mouse Gestures for Interacting with Selections.

To work with a group of items on a workspace, using standard selection:

1 Drag in the open area of a workspace to select a group of items within a
bounding box.

2 Mouse right on any item to display the popup menu for the selection.
3 Choose the operation for the selection.

This figure shows a selection and the popup menu for the selection:

selection E3
move

clone
transfer

align »
distribute w
delete

selection F4 selection F3

move

clone

transfer

align left

distribute » |left/right center g | horizontally

delete right delete vertically
top
top/bottom center
hottom

129

130

Using Operate on Area in G2 Classic

When running G2 in classic user interface mode (-ui classic), you use the
Operate on Area menu choice to select items by drawing an area box around
items on a workspace, then work with the group as you would for a single item.

To work with a group of items on a workspace, using Operate on Area:

1 Choose KB Workspace > Operate on Area.

This dialog box appears:
Select operation on area after moving its
edges and corners
Move Clone Transfer
Left L/R Center Right
Top T/B Center Bottom
Delete Quit
Area box

2 If the dialog box is obscuring the items you want to select, move the dialog

box out of the way.

3 Position the area box to surround the items of interest.

a To change the size of the area box, click the mouse on a side and drag the
side in or out to shrink or stretch the area box on that side, or click the
mouse on a corner to drag the corner out or in to pull two sides at once.

b To move the area box itself, place the mouse pointer anywhere inside the
area box (not on the black lines themselves), and drag the area box with
the mouse.

An item must be entirely within the inside edge of the area box to be included
in the area, although its name box may be partially or entirely outside of the

area box.

Working with Workspaces

4 DPress the appropriate button:

Button Description

Move Attaches everything enclosed in the area box to
your cursor. Move to the new location and click
to place.

Clone Clones all of the items in the area box and
attaches them to your cursor. Move to a new
location and click to place.

Transfer Attaches everything in the area box to your
cursor. Move your cursor to another workspace
and click to locate the items there.

Left Aligns the left sides of the items in the area box
with the left side of the leftmost item.

L/R Center Aligns the left-to-right centers of the items in the
area box.

Right Aligns the right sides of the items in the area box
with the right side of the rightmost item.

Top Aligns the tops of the items in the area box with
the top of the topmost item.

T/B Center Aligns the top-to-bottom centers of the items in
the area box.

Bottom Aligns the bottoms of the items in the box with
the bottom of the bottom-most item.

Delete Deletes all of the items in the area box. G2
prompts you to confirm this operation.

Quit Stops the Operate On Area operation. The area

box and dialog box disappear. You can also quit
by pressing Control + a or by starting another
activity in another area.

131

132

Note

Operating on an Area of a Workspace
Programmatically

Several system procedures provide the programmatic equivalent of most of the
interactive Operate on Area choices:

* g2-clear-movement-limits
* g2-get-movement-limits
* g2-set-movement-limits

These procedures are described in Movement Limit Operations in the G2 System
Procedures Reference Manual.

Cloning a Workspace

You can clone a workspace to copy the contents of the cloned workspace to
another workspace. G2 copies all items contained on the workspace, including the
subworkspaces of those items, the items on those subworkspaces, and so on.
Cloning workspaces is a convenient technique for quickly developing groups of
items.

To clone a workspace interactively:
= Choose the Clone Workspace choice from the KB Workspace menu.

When you create a new workspace interactively by cloning, G2 displays the
origin of the new workspace at the center of the window.

To clone a workspace programmatically:
=> create a kb-workspace by cloning kb-workspace

G2 does not automatically display a workspace that is created by cloning
programmatically. To display a new workspace programmatically, use the
show action.

After cloning a workspace, G2 leaves the resulting cloned items with the same
status as if those items had been cloned individually. For example, a cloned rule is
left with a status of incomplete, and a cloned class-definition has no class name.
For more information about the status of an item, see Identifying the Status
Knowledge of Items.

If you clone a subworkspace whose top-level workspace is associated with a
module, G2 automatically specifies the module-assignment attribute in the new
top-level workspace as the name of that module.

Caution

Note

Working with Workspaces

Deleting a Workspace

When you delete a workspace, you delete all items upon the workspace itself, the
subworkspaces of those items, and so on. You also delete the dependent class-
definitions and instances in the class hierarchy of a deleted class-definitions
regardless of their workspace or module assignments.

If the workspace contains items that require confirmation for deletion, G2
displays a confirmation dialog before deleting the workspace. If the workspace
contains only items that do not require confirmation for deletion, G2 deletes the
workspace without confirmation. For example, if the workspace contains only a
name box or a table other than a display, G2 deletes the workspace without
confirmation.

To delete a workspace interactively:

= Choose the Delete Workspace choice from the KB Workspace menu.

To delete a workspace programmatically:

> delete kb-workspace {without permanence checks}

Disabling and Enabling a Workspace

When you disable a workspace, G2 behaves as if all the items on or below the
disabled workspace in the workspace hierarchy do not exist. However, class
definitions that reside upon a disabled workspace or upon a subworkspace under
its workspace hierarchy remain in effect.

A disabled workspace can still be referenced and is included in existence checks
in a KB such as the count of each kb-workspace.

Just as for any disabled item, the fact that a workspace is disabled is part of the
knowledge stored in a saved KB file. A disabled workspace remains disabled
until you enable it. You can disable both top-level workspaces and
subworkspaces.

To disable an enabled workspace:

= Choose Disable from its menu.

To enable an disabled workspace:

= Choose Enable from its menu.

133

134

Hiding and Showing a Workspace

Hiding a workspace means to stop displaying it. Showing it means to display the
workspace again. You can hide and show a workspace interactively or
programmatically.

Hiding a Workspace

To hide a workspace interactively:
= C(lick the hide button on the right side of the workspace title bar
or

= Choose Hide Workspace from the KB Workspace menu.

To hide a workspace programmatically:
=> hide kb-workspace

You can hide the workspace of an item, the subworkspace of an item, the
workspace of an item on the superior workspace of an item, and the current
workspace. For more information, see hide.

Showing a Workspace

The technique for showing a workspace depends on whether the workspace is
named and whether it is a subworkspace.

To show a named workspace interactively:

= Choose Main Menu > Get Workspace, and select the workspace by name
from the resulting submenu.

To show an unnamed workspace interactively:

> Use the Inspect facility to find it, by searching for an item on the workspace or
by searching for all workspaces that meet a particular criteria.

To show the subworkspace of an item interactively:

= Choose the go to subworkspace menu option for the item.

To show the superior workspace of a subworkspace interactively:

=2 Choose Go To Superior from the KB Workspace menu of a subworkspace.

To show a workspace programmatically:
= show kb-workspace

You can show programmatically any named workspace, the subworkspace of an
item, the workspace of an item that is superior to an item, and any workspace that

Working with Workspaces

you can describe using a generic reference. You can also show a workspace at a
particular scale and position. For more information, see show.

To ensure that a portion of the workspace is always visible, use the g2-ui-show-
workspace system procedure. For details, see User Interface Operations.

Scaling a Workspace

G2 displays a workspace according to its current scale. By default, the current
scale of a new workspace is the normalized scale for the G2 process, which G2
determines by calculating the ratio of workspace units per pixel of resolution on
your computer’s monitor.

The absolute size in which a workspace appears when displayed at full scale
depends upon the settings specified for the -magnification and -resolution
command-line options when the G2 process was launched. See Appendix A,
Launching a G2 Process, for more information.

G2 displays each workspace at some factor greater than or less than its full scale.
You can enlarge and shrink the size of a workspace by using keystroke
commands or programmatically. G2 scales a workspace up or down to a
maximum or minimum size.

To enlarge the size of a workspace interactively:

=> Place the cursor within a workspace, and press Control + b or Control + 4
repeatedly.

To shrink the size of a workspace interactively:
= Place the cursor within a workspace, and press Control + s repeatedly.

See Appendix C, Mouse Gestures, Key Bindings, and Shortcut Keys for a list of all
keystroke commands that affect the display of workspaces.

To change the size of a workspace programmatically:
= show kb-workspace scaled by
For a complete description of this syntax, see show.

The scale at which G2 displays a workspace is specific to the window in which the
user is viewing the current KB. For more information, see Displaying
Independent Views of the Current KB.

Positioning a Workspace within its Window

You can move a workspace within its G2 window by specifying a new location for
its origin with respect to the current center of the window. G2 considers the
current center of the window to be the location (0,0).

135

136

Note that the window’s current center can change from moment to moment, as
you resize the window by using the controls provided by your computer’s
window manager software.

For example, assume that you have created the workspace shown in the figure
below. The workspace contains an action button that moves the workspace to the
center of the window:

67 G2 server

KB Workspace

show this warkspace at (0,0) in the screen

Positioning ltems upon a Workspace

The figure on the left below shows the G2 window after operating-system
resizing. The figure on the right shows the same window after the show action
has been executed.

61 G2 Server _ o] x] 62 G2 server - zofx]

KB Workspace

— |

show this workspacs show this workspace at (0,0) in the screen

Positioning Items upon a Workspace

Each workspace defines its own two-dimensional x, y coordinate system
measured in workspace units. Each workspace unit corresponds to some number
of pixels of resolution on your computer’s display device. By default, G2 displays
workspaces at 75 workspace units per inch.

Tip You can set the ratio of workspace units per inch and the ratio of workspace units
per pixel on your display device when you launch G2. See the description of G2’s
-magnification and -resolution command-line options in Appendix A,
Launching a G2 Process.

137

138

Using the Workspace Origin

The workspace origin is defined as the location (0,0). When you create a new
workspace interactively, G2 displays it with its origin at the current center of the
G2 window.

You specify the locations of items on a workspace as coordinates with respect to
the origin. For example, this action moves an item within its own workspace so
that its center is at the location 100 workspace right of the origin and 200
workspace units below the origin:

move my-object to (100,-200)

You can specify a location up to 16,777,215 workspace units away from the
workspace origin.

Displaying the Visible Portion of a Workspace

The extent of a workspace is the visible portion of is two-dimensional region. The
extent of a workspace is always rectangular. When you display a workspace, you
are displaying its extent.

The origin of a new workspace is also the center point of its extent. However, after
you add items to the workspace, and after you shrink wrap it one or more times,
its origin might no longer be the same location as the center of its extent.

It is also possible for the origin of a workspace to lie outside the visible portion of
the workspace. Even when the origin is no longer within the visible portion of the
workspace’s two-dimensional region, you still refer to locations upon the
workspace with respect to the origin.

Specifying Margins within the Border of
a Workspace

G2 adds a number of extra workspace units, or margins, between the outermost
items upon a workspace and its borders. As you move or transfer items to
workspace regions outside of the workspace margins, G2 automatically adjusts
the borders of the workspace outward.

G2 moves the workspace borders outward only when you move items to
locations that are outside the current margins.

The workspace-margin attribute of a workspace determines the number of
workspace units that G2 automatically maintains between any items that reside
upon the workspace and each workspace edge.

Creating and Using a Workspace Hierarchy

Shrink Wrapping the Size of a Workspace

As stated above, G2 automatically adjusts the borders of a workspace outward as
you move and transfer items outside its current margins. G2 does not
automatically adjust the borders inward as you move items within the workspace
margins.

To adjust the borders of a workspace so they just fit the items on the workspace is
called shrink wrapping.

To shrink wrap a workspace interactively:

= Choose the Shrink Wrap choice from the KB Workspace menu.

To shrink wrap a workspace programmatically:
=> change the size of kb-workspace to minimum

An item whose representation is transparent does not appear on the workspace.
However, such an item occupies a region within the workspace. When shrink
wrapping a workspace, G2 maintains the workspace margin outside any
transparent item.

Creating and Using a Workspace Hierarchy

Each top-level workspace, the items it contains, the subworkspaces of those items,
and so on, form a pattern called a workspace hierarchy. Each workspace
hierarchy forms a tree, with the top-level workspace at the root of the tree.

Only KB workspaces and the items they contain can participate in a
workspace hierarchy.

Creating a Subworkspace for an Item

Most items can optionally have an associated child workspace, called a
subworkspace. An item’s subworkspace can contain other items. Use the
subworkspace of an item to collect other items that have some relationship to that
item. For example, you can create a variable that has a subworkspace containing
the rules that conclude a new current value for the variable. An item can have
only one subworkspace.

To create a new subworkspace for an item interactively:
= Choose the create subworkspace choice from the item’s menu.

This menu choice creates a new workspace and automatically makes it the
subworkspace of the selected item. G2 automatically displays the new workspace
with its center at the current center of the window.

139

140

After the subworkspace of an item exists, the create subworkspace choice no
longer appears on the item’s menu.

To go to the subworkspace of an item:

= Choose go to subworkspace on an item with a subworkspace.

To create a new subworkspace for an item programmatically:
= Execute these actions in this order:

create item,;
create kb-workspace;
make kb-workspace the subworkspace of item

For example:

create an item-list L1;
create a kb-workspace W;
make W the subworkspace of L1

G2 does not automatically display a new subworkspace that is created
programmatically. To display a new subworkspace programmatically, use the
show action. This procedure code creates a new item-list, creates a new
workspace, and makes the workspace the subworkspace of the item-list:

create-list-with-subworkspace()
SUB-WS: class kb-workspace;
IL: class item-list;
begin
create an item-list IL;
transfer IL to list-workspace;
conclude that the names of IL is concerto-item-list;
make IL permanent;

create a kb-workspace SUB-WS;
conclude that the names of SUB-WS is concerto-subworkspace;

make SUB-WS the subworkspace of IL;
make SUB-WS permanent;
end

Making a Workspace the Subworkspace of an ltem

Using the make action, you can make an existing top-level workspace the
subworkspace of an item, and you can change the association of a subworkspace
from one item to another item. A workspace must be transient before you execute
these actions.

To make a workspace the subworkspace of an item:

= make kb-workspace the subworkspace of item

Creating and Using a Workspace Hierarchy

These code examples make workspaces the subworkspaces of items:

make top-level-workspace transient;

make top-level-workspace the subworkspace of mineral506;

change the name of top-level-workspace to the symbol mineral506-subworkspace;
make mineral506-subworkspace permanent

make the subworkspace of item1 transient;
make the subworkspace of item1 the subworkspace of item2;
make the subworkspace of item2 permanent

Note The transfer action does not change the item association of a subworkspace.
However, if the target item already has a subworkspace you can use the transfer
or delete actions to remove the item from the target item.

For details, see make and transfer.

Displaying the Workspace Hierarchy

Each top-level workspace in your KB has a distinct workspace hierarchy. You can
use the Inspect facility to view the current workspace hierarchies.

To display the workspace hierarchy:
= show on a workspace the workspace hierarchy [of item]

This figure shows an example of a workspace hierarchy consisting of one top-
level workspace and two subworkspaces:

INSPECT-9, a temporary-workspace

show on a workspace the workspace
hierarchy of list-workspace

MUSIC-ITEM-LIST-SUBWORKSPACE, a CONCERTO-IN-C-SUBWORKSPACE, akb-
LIST-WORKSPACE, a kb-works pace | kb-morkspace subworkspace of MUSIC- workspace subworkspace of CONCERTO-
ITEM-LIST IN-C

Determining Whether a Subworkspace Exists

An item has an implicit, system-defined relationship with its subworkspace,
which you can determine interactively or programmatically.

To determine whether a subworkspace exists interactively:

= Display its menu to see if it includes the go to subworkspace choice.

141

142

To determine whether an item has a subworkspace programmatically:

= Using the expression the subworkspace of item exists, which returns a
truth-value.

Referring to Subworkspaces Programmatically

To refer to the subworkspace of an item:

= the subworkspace of item

To refer to the superior item of a subworkspace:

=> the superior item of subworkspace

Configuring Items Based on the Workspace
Hierarchy

You can declare configurations in the item-configuration attributes of a workspace
to customize the behavior of items for particular categories of users.

Item configurations declared in one workspace can also pertain to all items below
that item in the workspace hierarchy. Thus, the workspace hierarchy can serve as
a framework for controlling the behavior of whole regions of KB knowledge. For
more information about using item configurations, see Configurations.

Organizing Knowledge in Subworkspaces by Using
Connection Posts

You can make the relationship between an item and its subworkspace explicit by
using connections and connection posts.

To make the relationship between an item and its subworkspace explicit:
= Create a class definition that declares the following instance configuration:
declare properties as follows : subworkspace-connection-posts

When you create an instance of this user-defined class, the subworkspace of the
new instance automatically contains a connection post for each stub defined in the
class definition or for each connection that the instance receives from a connection
post.

Creating and Using a Workspace Hierarchy

This figure shows an instance of a user-defined class named component-
subassembly. This definition declares two stubs for each instance.

SUBASSEMBLY

Instance configuration declare properties as follows:
subworkspace-connection-posts

Stubs a network-wire located at left 10;
a network-wire located at right 10

COMPONENT-SUBASSEMBLY

@

MY—COMPONENTSUBASSEMBLY

G2 automatically places a
connection post on the
subworkspace for each
defined stub.

The definition also declares this instance configuration:
declare properties as follows : subworkspace-connection-posts

As a result, for each instance of this class with a subworkspace, G2 automatically
places permanent connection post items on the subworkspace for each declared
stub in the definition. G2 also positions the connection posts within the
subworkspace relative to the location of the stubs on the instance.

In this example, each connection drawn between a stub on the instance and any
connection post is automatically associated with one of the connection posts on
the subworkspace of the instance. G2 associates each connection in the superior-
connection attribute of the appropriate subworkspace connection post.

If the class definition does not declare stubs, and you interactively create a
connection by dragging a stub from a connection post into the instance, G2
automatically creates connection post items on the subworkspace of the instance
when you create the subworkspace. G2 locates the connection posts on the
subworkspace relative to the location of the connections on the instance.

143

144

The following figure illustrates this situation:

SUBASSEMBLY

Instance configuration declare properties as follows:
subworkspace-connection-posts

Stubs none

COMPOMENT-SUBASSEMBLY

® '

MY-COMPONENT-5UBASSEMBLY WY-CLUSTOM-CONMNECTION-POST

L G2 automatically places one connection post on this subworkspace,
because the instance has received one connection from a connection post

The figure shows a new version of the component-subassembly definition that
does not declare stubs. After you make a connection between the custom
connection post and the instance, and then create a subworkspace for the
instance, G2 automatically creates and places a connection post on the
subworkspace, and places it relative to the position of the connection on

the instance.

Associating Top-Level Workspaces with Modules

By assigning a top-level workspace to a module, you can associate a set of items
with a module. Dividing a large KB into modules is the recommended way to
organize the knowledge in your KB and to facilitate knowledge reuse.

To learn how to use top-level workspaces to identify the items associated with a
module, see Associating Items with a Module.

Activating and Deactivating Workspaces

Activating and Deactivating Workspaces

Note

To activate a workspace means to declare the items upon that workspace as
available to participate in KB processing. G2 activates enabled workspaces and
subworkspaces automatically when you start or restart the current KB, and when
you programmatically activate an activatable subworkspace.

The primary effect of activating a workspace is to cause G2 to invoke all initially
rules upon them. The invocation of initially rules is described in Activating the
Parent Workspace of a Rule.

Activating a workspace also activates all enabled items that reside upon the
workspace. The activation status of an item determines whether it is active. In
general, the activation status of an item propagates from its top-level workspace.
For example, if you create an item on an active and enabled workspace, the item
and its subworkspace are also active and enabled.

The activation status of an item is distinct from whether it is enabled or disabled,
which depends only on whether you have selected the enable and disable choices
for the item. By default, a workspace is enabled until you interactively disable it
using the disable menu choice. When you disable an item, the workspaces in the
hierarchy below the item are no longer active.

Activating Top-Level Workspaces

Each time you start or restart the current KB, G2 automatically does the following;:
1 Activates each enabled top-level workspace.

2 Propagates the activation status of each top-level workspace to each item
below it in its own workspace hierarchy.

After the current KB has started or restarted, when a top-level workspace
becomes enabled, all enabled items below it in its own workspace hierarchy also
become activated.

All types of definitions (for example, class definitions and relation definitions)
remain in effect regardless of their activation status and regardless of whether
they are enabled or disabled. This means that you can instantiate definitions that
are inactive or disabled.

Executable items, for example, rules and procedures, must be enabled and
activated to be eligible to be invoked.

145

146

Note

Activating and Deactivating a Subworkspace

Many system-defined items are capable of having a subworkspace, as described
in Creating a Subworkspace for an Item. Subworkspaces inherit the activation
status from the top-level workspace. If both the workspace and the item for which
you create a subworkspace are both enabled and active, the subworkspace of the
item is also enabled and active.

An activatable subworkspace is the subworkspace of an item whose parent item
has been configured using this configuration statement:

declare properties as follows : activatable-subworkspace

You specify this statement in an item-configuration or instance-configuration
attribute, as described in Configurations.

An activatable subworkspace does not inherit its activation status from the top-
level workspace. Instead, you must activate an activatable subworkspace
programmatically, using the activate and deactivate actions.

When you deactivate the subworkspace of an item, G2 behaves as though the
items upon the subworkspace do not exist. All items upon the subworkspace are
no longer active. The subworkspace itself, however, can still be referenced and is
included in existence checks such as the count of each kb-workspace.

Activating and deactivating activatable subworkspaces programmatically
provides a technique for enabling and disabling portions of a KB. By activating
and deactivating appropriate portions of the workspace hierarchy, you can
implement modes in your application, activating those branches which are
relevant to the current mode while deactivating branches used to model
competing modes.

How Activating and Deactivating Affects Items

When you first create an activatable subworkspace, it is active. Subsequently
resetting or restarting the KB renders the subworkspace deactivated and it must
then be activated programmatically.

When you activate an activatable subworkspace, G2 invokes all initially rules upon
that subworkspace, and resets variables and parameters that have initial values to
those values. Default attribute values changed since instantiation are not reset.

When you deactivate an activatable subworkspace, G2 ignores the non-definition
items that it and its subworkspaces contain, until that subworkspace is again
activated. Variables and parameters are reset to their initial values. Deactivating a
subworkspace also deactivates all of its subworkspaces automatically.

You activate and deactivate activatable subworkspaces programmatically by
using the activate and deactivate actions. For a description of these actions, see
activate and deactivate.

Printing a Workspace

Printing a Workspace

Note

Tip

G2 can produce a print file that contains the image of a workspace. G2 only
supports PostScript print files.

When connecting to G2 through Telewindows, you can print directly to a native
printer from the client. For details, see the Telewindows User’s Guide.

To print a workspace:
= Select KB Workspace > Print.

G2 produces a print file subject to the current settings in the installed Printer
Setup system table described in Printer Setup.

Printing Multiple Pages

When the print output for a workspace extends across multiple pages, each
printed page includes a page index, indicating which part of the whole print job is
the current page. For instance, if you are printing page 3 of 4 pages, the page
index marker looks like this:

The page index shown here is for illustrative purposes only and is several times
larger than what actually appears in the lower-left hand corner of the print
output. The page index appears beyond the print area and does not affect the
print image.

Generating Encapsulated PostScript Files

To generate an encapsulated PostScript file for printing a workspace:

=> Configure the printing-file-format attribute of the installed Printer Setup
system table to be encapsulated postscript.

Since the encapsulated PostScript convention requires that an image take up only
one page, choosing this file format causes G2 to scale the image of the workspace
to fit onto a single sheet of paper.

An EPS print file contains both a graphics image and information about the height
and width of that image. For this reason, you can import the image in an EPS
print file into another document.

147

148

Note

However, if you print a workspace whose image must span more than one
physical page, based on the current settings in the page-layout attribute, then G2
writes that file as a standard, not encapsulated, PostScript print file. The image
contained in such a print file cannot, by definition, conform to the requirements
for encapsulated PostScript.

Generating JPEG Files

To generate an JPEG picture file for printing a workspace:

=> Configure the printing-file-format attribute of the installed Printer Setup
system table to be jpeg.

Choosing this file format causes G2 to ignore all page settings and generate a
JPEG picture with the same width and height of the workspace.

Printing a Workspace on a Color PostScript Printer

To produce a PostScript print file that prints on a color PostScript printer:

> Configure the color conversion detail to full-color in the printing-details
attribute of the installed Printer Setup system table.

The next time you print a workspace, G2 creates a PostScript print file that
contains the appropriate color information.

The image-palette attribute in the Color Parameters system table does not affect
whether printed output appears in color, black-and-white, or gray-scale.

Printing Workspaces without Borders

The page-economy-mode attribute in the Printer Setup system table allows you to
print workspaces without borders. When this attribute is set to yes, G2 prints the
workspace without borders, unless there is a frame style defined for the
workspace. Also, G2 does not print blank pages and suppresses the multipage
indicator. Use this option to save paper when printing workspaces.

For details, see Printer Setup.

Using Double Buffering

Workspaces support “double buffering,” which means G2 and Telewindows first
draw intermediate display updates to an offscreen bitmap, then copy the final
bitmap contents to the screen. This technique can reduce flickering when
updating workspaces.

Setting the Color of Workspaces

To support this feature, workspaces provide the prefer-buffered-drawing attribute,
with values yes or no. If the value is yes, then G2 and Telewindows try to use the
“double buffering” approach to rendering images, whenever possible.

Setting the Color of Workspaces

Workspaces have two color attributes, foreground-color and background-color,
where:

* The foreground color determines the color of items on this workspace that do
not specify a local color. The default foreground color for a workspace is the
color black.

* The background color is the color in which the background of the workspace
appears. The default background color for a workspace is the color white.

The foreground color of a workspace also determines the value of the metacolor
foreground for an item upon the workspace. Typically, the color setting for
attribute displays of items, and for the text and border of items with a text box,
such as rules, is foreground.

The background color of a workspace also determines the value of the metacolor
transparent for any item upon the workspace. Typically, the background color
setting for items with a text box, such as rules, is set to transparent.

To set the workspace color interactively:

= Select KB Workspace > Color > background-color | foreground-color > color.

To set the workspace color programmatically:

=> change the color-attribute-name of kb-workspace to
{color-name | symbolic-expression}

For example:
change the background-color of my-workspace to salmon

You can also provide a symbol of the form RGBrrggbb as a valid color name,
where rr, gg, bb, are the 8-bit hex values for red, green, and blue. For details, see
Other Literal Terms.

149

Creating Custom Workspace Borders

150

Note

You can create custom borders for workspaces by using a frame-style-definition.
The definition specifies the color of the border and its thickness in workspace
units. A workspace with a frame-style definition does not have a title bar.

The default borders of a kb-workspace, as well as borders created by using a
frame-style-definition are not included in the item-width and item-height of a
kb-workspace.

To create a frame-style definition:
= Choose KB Workspace > New Definition > frame-style-definition.

Associate a frame-style definition with a workspace by entering its name in the
frame-style attribute for the workspace.

A frame-style definition has one class-specific attribute, description-of-frame, in
which you enter one or more clauses that define the display characteristics of the
workspace border. Use a semicolon to separate clauses in a description-of-frame
attribute.

For example, to declare a border with two stripes, enter a statement like this:
border 10 gold , 5 forest-green

The statement must specify an integer value or expression, which represents the
thickness in workspace units of one border section. Enter a system-defined color
name, or select a color name from the color menu. Use a comma to separate any
two border stripe descriptions. You can specify more than one border clause.

Using a Graphic as a Background Image

The next figure shows a workspace whose frame-style definition has a border
with two differently colored sections:

1

BLUE-YELLOYW-BORDER

BLUE-YELLOW-BORDER, a frame-style-definiti. B3

Motes

QK.

Authors

ghw (26 May 2000 1:43 p.m.)

Change log

0 entries

Item configuration

noneg

[Names

BLUE-YELLOYW-BORDER

Description of frame

horder 10 slate-blue, 5 vyellow

The first color specified in the first border clause refers to the outermost stripe in

the border.

Note When you change the scale of a workspace, G2 does not scale the borders defined
by a frame-style definition; G2 only resizes them. As you scale the workspace, G2
redraws the border to fit around the workspace, but the thickness in workspace
units of the border does not change.

When a workspace is not selected, the frame-style turns gray.

Using a Graphic as a Background Image

You can specify that a workspace display a graphics image as its background. To
reference the image, enter the name of an image-definition in the background-
images attribute for the workspace. Image definitions support .jpeg, .gif, and
.xmb file types. For more information about image definitions, see External

Images.

The image definition must refer to a file that contains the bitmap graphics data.
The image definition bitmap itself can be up to 65,536 by 65,536 pixels in size.

For example, to include the image referenced in the image definition named
world-map, enter the following statement in the background-images attribute:

world-map at (10,10)

151

152

In this statement, the x and y coordinates direct G2 to place the center of the
image 10 workspace units above and 10 workspace units to the right of the
workspace origin.

Various GIFs that can be used as workspace background images are available in
the G2 demos directory, as described under GIF Files.

Specifying the Center of the Background Image

The x, y coordinates in the background-images attribute identify where G2 places
the center of the image. G2 positions the center of the image with respect to the
center of the workspace’s extent; it does not position the image with respect to the
workspace origin.

If you do not specify x, y coordinates in the background-images attribute:

* G2 places the center of the background image at the center of the workspace’s
displayed extent.

* G2 automatically updates the background-images attribute to include the x, y
coordinates within the workspace’s extent where the image’s center
was placed.

Using a Graphic as a Background Image

For example, the figure on the next page shows two versions of a workspace that
contains six items: before and after including a background image.

¥ position 143
% position 213

KY-POSITION-0BJECT CBJECTA

% * position 131
% position 100

ESCHER-KMOT

CBJECT-2

* position 136
update x and y positions % position -3

CBJECT-3

¥ position 143
% position 213

KY-POSITION-0BJECT

B

ESCHER-KMOT

CBJECTA

* position 131
% position 100

CBJECT-2

* position 136

% position -3
CBJECT-3
Motes | Gk
Item configuration | none
Mames | KNOT

Warkspace margin | 30

Background colar | white

Foreground color | black

Background images | escher-knot at (5,88)

Frame style | none

Module assignment | unspecified

The three items on the right half of each workspace display their respective item-
x-positions and item-y-positions in attribute displays. The attribute displays
indicate that the workspace origin is not within its extent.

153

154

After entering the name of an image definition in the workspace background-
images attribute, with no x, y coordinates included, G2 changes this workspace
by automatically:

* Placing the center of the image at the center of the workspace’s
displayed extent.

* Expanding the workspace’s extent, as necessary, to allow the entire image to
display, while allowing for the margins.

* Updating the background-images attribute to include the x, y coordinates for
the location of the image’s center.

Using Tiled Workspace Backgrounds

You can use tiled images as the background of a workspace by configuring the
background-images attribute of a workspace, using this syntax:

image-name tiled [at (X,y)]
where:
image-name is the name of an image-definition object.

By default, the image is tiled at the center of the workspace, at (0, 0). You can
also specify the x, y coordinates at which to tile the image.

Here is an example of a tiled workspace background:

Note

Using a Graphic as a Background Image

Displaying More Than One Background Image

You can display more than one image in the background of a workspace. To do
this, enter a statement in the background-images attribute, such as:

world-map at (10,10), map-legend at (100,100)

If you specify more than one image definition in the background-images attribute,
and if the extents of the images overlap, G2 displays image definitions at the end
of the list on top of those at the beginning of the list.

Saving the Background Image in the KB

You can save the graphics data that comprise the background image when you
save your KB file. To do so, specify yes as the value of the save-image-data-with-
kb attribute of the image definition referenced in the background-images
attribute. Doing so prevents you from inadvertently separating the image data
from your KB when you move the KB to another system, but doing so also
increases the size of your KB file when next saved.

Other Considerations for Using Background Images

As you work with background images for your workspaces, keep these
considerations in mind:

* (G2 always displays the entire image stored in the image file. When you add or
change the background image of a workspace, G2 automatically enlarges the
workspace so that the bitmap graphics image fits within it.

* If the bitmap graphics image does not fill the workspace extent, the remainder
of the workspace extent appears in the background color.

* When shrink-wrapping a workspace, G2 does not hide or crop any portion of
the background image.

* After you add a new reference to an image definition in the background-
images attribute, and if that image is in color, then the first time G2 displays
the image, its colors might not appear in the colors you expect. If so, set the
image-palette attribute in the Drawing Parameters system table to extended-
colors, rather than standard-colors.

* If your KB contains a workspace that uses a background image that is not
saved in your KB file, that KB is inherently incomplete. Thus, when you load
the KB on another computer, the bitmap graphics data file(s) to which the
background image refers must accompany the KB on the new computer.

155

Be aware that G2 reads the bitmap graphics file referenced in an image definition
for a background image in only three situations:

* When G2 loads the KB, if the image’s graphics data are not already saved as
part of the KB itself.

* When you finish editing the name of an image definition in the background-
images attribute of the workspace.

* When the KB invokes the g2-refresh-image-definition system procedure.

The Kb-Workspace Class

A KB workspace is an item of the system-defined kb-workspace class.

A workspace has its own unique representation which depends on the window
style defined for your interaction with G2. Its appearance is not iconic.

The following table summarizes the class-specific attributes of the kb-workspace

class:

Attribute

Description

workspace-margin

Allowable values:
Default value:

Notes:

background-color

Allowable values:

Default value:

foreground-color

Allowable values:

Default value:

Distance in workspace units between the outermost items
on the workspace and the innermost stripe of the
workspace border.

Any integer, zero (0) or greater
30 workspace units

See Specifying Margins within the Border of a Workspace.

The background color of the workspace
Any available color symbol.

white

The foreground color of the workspace
Any available color symbol.

black

Attribute

The Kb-Workspace Class

Description

background-images

Allowable values:

Default value:

Notes:

frame-style

Allowable values:

Default value:

Notes:

title-bar-text

Allowable values:

Default value:

Notes:

view-preferences

Allowable values:
Default value:

Notes:

Names of one or more image definitions, each of which
specifies a graphics image that appears as the workspace
background.

none
Name of any image definition item

none

See Using a Graphic as a Background Image.

Name of a frame-style definition, which determines a
reusable, custom border for this workspace.

none
Name of any frame-style definition

none

See Creating Custom Workspace Borders.

The text to display in the title bar, which can be a string,
with quotes, or as an expression to display the workspace
name, class, or table header.

default | string | the class | the table header |
the name [if any, otherwise, string | the class |
the table header]

default

See Editing Title Bar Text.

Controls the display behavior when programmatically
showing workspaces in the server and client, using the
show action.

none | fixed size | unselectable
none

See Using View-Preferences.

157

Attribute Description
prefer-buffered- Determines whether the workspace uses double-buffering
drawing to reduce flickering.

Allowable values: yes

no

Default value: no

Notes: See Using Double Buffering.

module-assignment Name of the parent module of this top-level workspace.

Allowable values: unspecified

Name of any module in the current KB

Default value: unspecified

Notes: See Associating Top-Level Workspaces with Modules.

Using View-Preferences

The view-preferences attribute has these options:

Note

158

none, the default, which allows the workspace to be selected in the server and
the window to be resized in the client.

unselectable, which prevents the workspace from ever being selected, either
programmatically or interactively, or from affecting the current selection in
the server.

By making a workspace unselectable, you are preventing menu bar operations
on the workspace in the Telewindows client. Making the workspace
unselectable does not affect the ability to interactively select the workspace by
clicking its title bar.

fixed size, which prevents the window containing the workspace from
changing size when programmatically showing it in the client. Instead, if the
workspace size becomes larger than the window, the window displays scroll
bars. Note that the user can still resize the window interactively.

The Kb-Workspace Class

You can specify none, or any combination of unselectable and/ or fixed size.
When concluding a value for this attribute programmatically, you conclude the
value as a structure with this syntax:

structure (unselectable: truth-value, fixed-size: truth-value)

The view preferences are applied to the view created when a workspace is shown.

Example: Setting View-Preferences to Unselectable

In this example, ws-1 sets the view-preferences to none, the default, by setting
unselectable to false. Clicking the Show WS-1 button shows ws-1, which also
selects it because unselectable is false. This figure shows the workspaces in the
G2 server.

WIEW-PREFEREMCES

VIEW-PREFERENCES

show ws-1

Show WS-1

in order show ws-2 at three-quarter scale and
Show WS-2| " show ws-2 at full scale

%l WS-1is selected.

WS-1 View preferences none

conclude that the view-preferences of this
Unselectable=false| ..orkspace - structure(unselectable: false)

conclude that the wiew-preferences of this
Unselectable=true workspace = structure(unselectable: true)

159

Now, ws-1 sets the view-preferences to unselectable by concluding that
unselectable is true. Clicking the Show WS-1 button shows ws-1, but it does not
select the workspace because unselectable is true. This figure shows the
workspaces in the server.

WIEW-PREFEREMNCES

VIEW-PREFERENCES

Show Ws-1| >

in order show ws-2 at three-quarter scale and
Show WS-2| show ws-2 at full scale

x| WS-1 is not selected.

WS-1 Wiew preferences Unselectable

conclude that the view-preferences of this
Unselectable=false| "yorkspace - structure(unselectable: false)

conclude that the view-preferences of this
Unselectable=true| yorkspace = structure(unselectable: true)

160

The Kb-Workspace Class

Example: Setting View-Preferences to Fixed Size

This figure shows the workspaces in the Telewindows client. In this example,
ws-2 sets the view-preferences to none, the default. Clicking the Show WS-2
button shows ws-2 at three-quarter scale, then at full scale again. The window
containing the workspace resizes to fit the workspace each time the workspace is
scaled, because fixed-size is false.

=|ofx|

VIEW-PREFERENCES

show ws-1

Show WS-1

in order show ws-2 at three-guarter scale and
Show WS-2| show ws-2 at full scale

i |EI|£| The window containing

WS-2 resizes each time
the workspace is scaled.

WS-2 Wiew preferences none

: A conclude that the view-preferences of this
Fixed Size=false workspace = structure(fixed-size: false)

. . conclude that the view-preferences of this
Fixed SIZE=TI'I.IE| workspace = structure(fixed-size: true]

161

162

Now, ws-1 sets the view-preferences to fixed size by concluding that fixed-size is
true. Clicking the Show WS-2 button shows ws-2 at three-quarter scale, then at
full scale again. However, this time, the window containing the workspace does
not resize to fit the workspace, because fixed-size is true. This figure shows the
workspaces in the Telewindows client.

Tw VIEW-PREFEREN _ o] x|
VIEW-PREFERENCES

Show Ws-1| >

in order show ws-Z at three-quarter scale and
Show WS-2| showws-z at full scale

= |EI |i| The window containing WS-2
ﬂ remains a fixed size when
the workspace is scaled.
conclude that the wiew-preferences of

; l
S|Ze=fa|59| workspace = structure(fixed-size: false |
A

conclude that the view-preferences of t

warkspace = structure(fized-size: trui]lﬂ
| B

Actions That Apply to KB Workspaces

You can use the show and hide actions to control workspaces programmatically.
For more information about these actions, see hide, and show.

Size=true

Expressions That Refer to KB Workspaces

You can use the following expressions for KB workspaces.

To refer to whether a workspace has been activated:

= kb-workspace has [not] been activated
-> truth-value

The expression produces a truth-value that indicates whether the specified
workspace is activated. For example:

for any help-button B
if the subworkspace W of B exists and W has been activated
then start evaluate-status-of(B)

The Kb-Workspace Class

To refer to the workspace of an item:

= the workspace [local-name] of item
-> kb-workspace

For example, this expression brings the parent workspace of the specified item to
the top of the display hierarchy:

hide the workspace of pump-1

If the specified item does not have a parent workspace, evaluating this expression
causes G2 to signal an error. To prevent this, use this expression with the exists
expression, as follows:

for any item X
if the workspace of X exists and the name of X is CUSTOM then
conclude that the status of X is OK

This generic if rule checks each item that is upon a workspace, and for each such
item whose name is custom, sets its status attribute to the symbol ok.

To refer to the subworkspace of an item:

= the subworkspace [local-name] of item
-> kb-workspace

This expression produces the workspace that is the subworkspace of the specified
item. For example:

show the subworkspace of pump-1

If the specified item does not have a subworkspace, evaluating this expression
causes G2 to signal an error. To prevent this, use this expression with the exists
expression, as follows:

for any custom-object O
if the subworkspace of O exists and the name of O is custom
then conclude that the status of O is OK

This generic if rule identifies each custom-object that has a subworkspace and, for
each that does and whose name also is custom, sets its status attribute to the
symbol ok.

To refer to an item upon a particular workspace:

=> the class-name [local-name] upon kb-workspace
-> item

With the the quantifier, this generic reference expression produces the one and
only item of the specified class that resides upon the specified workspace. With
the any quantifier, this expression produces the set of items of the specified class
that reside upon the specified workspace. For example:

move the help-button upon this workspace by (100,100)

163

164

Modularized KBs

Describes how to partition your KB into modules.

Introduction 165

Understanding Modules 166

Creating, Populating, and Saving Modules 169
Creating a Module Hierarchy 173

Obtaining Information about Modules 184

Working with Modularized KBs 189

Using a Module Search Path to Load KB Files 194
Using a Module Map File to Load and Save a KB 197

gensym.

Introduction

You can develop a large knowledge base (KB) from smaller, more manageable
pieces called modules. Each module contains a set of related items that together
comprise a KB. You define a module in the Module Information system table. We
recommend that you design and implement your application to use modules.

One module can directly require another. For example, a module that contains
instances of user-defined classes would directly require modules that contain the
definitions for those classes. When you load a KB file that contains a module, G2
automatically loads all required modules.

165

Developers on an application team can develop modules more or less
independently of one another. Also, you can design your modules so that you can
use them to build more than one application.

By organizing items into modules, you can:
® Store items associated with each module into a separate KB.

* Add or change knowledge in each module independently of the
other modules.

® Reload the complete KB by loading all required modules.
* Merge modules from one KB into a different KB.
You can work with modules both interactively and programmatically.

Modules affect many aspects of a G2 application, and information about them
appears in various places in the G2 documentation. This chapter describes the
essential techniques for using modules and module hierarchies. Additional
information appears as follows:

* The Getting Started with G2 Tutorials introduce modules and provide exercises
that show you how to use them.

® The G2 Developer’s Guide describes techniques and guidelines for using
modules and module hierarchies effectively in complex situations.

® The G2 Foundation Resources User’s Guide describes additional capabilities for
module management that are available in GFR.

Understanding Modules

166

A module identifies a set of items that represents a component of a larger KB.
You can work with modules in a flexible manner, as follows:

1 Start by building an application without modules.

2 Create modules and associate the items in the KB with those modules

3 Save the KB into separate KB files, with one module per file.

For details about how to do this, see Creating, Populating, and Saving Modules.

You might begin to build an application by populating an empty KB, organizing
the knowledge that pertains to certain classes of items into different modules.

Understanding Modules

For example, you could define a module for class definitions, define another
module for instances of the classes, and define a third module for executable
items that manipulate class instances, as this figure shows:

Class-definitions module

Knowledge Base

whenever the rental-status A

of any property P
. PROPERTY RENTALS CORPORATE
receives a value

then start process(P)

2 =
i » A A & VN
PROCESS PROPERTY::PROCESS | | | | | | | |
\ \
Executable-items module Class-instances module

You can create a module and associate it with a set of items, regardless of whether
the KB is reset, running, or paused.

Once you have modularized your KB and saved these modules into separate KB
files, you can load individual modules, and merge other modules into the current
KB. For information about loading and merging KBs, see Working with
Modularized KBs.

For large applications, you typically create a module hierarchy by defining
modules that directly require other modules. This is explained next.

The Module Hierarchy

To create a module hierarchy, you must have a top-level module, which is the
root of the module hierarchy. To form the hierarchy, you define modules in the
hierarchy to directly require one or more other modules.

Defining a module to directly require another module means that G2
automatically loads the directly required module before loading the module that
depends on it. In this manner, you can load an entire application by loading a
single top-level module.

167

168

The following diagram illustrates the relationships among the modules in a
module hierarchy:

mod-0 Top-level module
mod-1 mod-2 Directly required
modules for mod-0

==l==

mod-3 || mod-5 mod-4 || mod-6

_ Directly required
modules for mod-1
and mod-2

A module that directly requires another module can function independently from
its directly required modules. However, you must define a module to directly
require another module when:

® A class definition contained in one module has the definition of one or more
superior classes contained in another module.

* Anitem contained in one module is an instance of a class definition contained
in another module.

In the figure above, for example, mod-0 might contain items that are instances of
classes defined in definitions assigned to mod-1. In this case, you must define
mod-0 to directly require mod-1.

A KB that includes a module hierarchy is called a modularized KB. When saving
a modularized KB, you save the modules into separate files. If a KB is not
consistently modularized according to the criteria outlined in Rules for Consistent

Modularization, it is considered unmodularized. G2 saves unmodularized KB
modules into a single KB file.

For more information about how to create and save a module hierarchy, see
Creating a Module Hierarchy.

Modules and System Tables

Each module that you create or load has its own set of system tables. You define
each module in the Module Information system table, including its name and its
directly required modules.

When you load a KB, G2 installs a set of system tables for each module contained
in the KB. After loading is complete, the set of system tables associated with the
top-level module defines much of the functionality for all the modules in the
current KB.

Creating, Populating, and Saving Modules

If you create a new module, G2 automatically creates a new set of system tables
and associates them with the new module. If you delete a module from the
current KB, G2 automatically deletes its associated system tables. When you save
a module, G2 also saves its associated system tables in the KB file.

There is one system table, the Server Parameters system table, which is not
associated with any module. Only one Server Parameters system table exists in a
G2 process. It is created by G2’s initialization process when you first launch G2
and remains in residence throughout the G2 process, even when you clear and
load KBs. You use this system table to specify preferences that pertain to your G2
process independent of the resident KB. For more details, see Server Parameters.

Modules and ltems

You associate items in a KB with a module by assigning that module to one or
more top-level workspaces in the KB. This causes that workspace, all items upon
that workspace, and all items below them in the workspace hierarchy to be
associated with that module.

For information on assigning items to a module, see Associating Items with a
Module.

Creating, Populating, and Saving Modules

The basic tasks for working with modules are:

* Naming the top-level module, which creates a new empty module.
® Associating items with the module.

* Saving the module in a KB file.

For information about creating and saving a hierarchy of modules, see Creating a
Module Hierarchy.

Naming Conventions for Modules

When naming the top level or other modules, we recommend following the
standard naming conventions described in Platform File Systems and KB File
Names.

169

170

Note

Naming the Top-Level Module

The first step in creating a module hierarchy is to name the top-level module. This
is true whether you are creating modules in an empty KB, or in a KB that already
contains items.

Naming the top-level module creates a module of that name in the current KB. If
you want the current KB to have a single module only, all you have to do to create
the module is to name it and assign all top-level workspaces to it.

You can name the top-level module interactively or programmatically.

To name the top-level module interactively:

1 Open the Module Information system table by choosing Main Menu >
System Tables > Module Information.

2 Enter the name of the top-level module in the top-level-module attribute:

WODULE-INFORMATION

Text Editor for the TOP-LEVEL-MCDUL.ER

I Mot QK
Cancel Autljoer:

none
any unreserved-symbol

Changelog | 0 entries

unspecified Itemn configuration | none

hodule file name | default

Top level module E¥lgkslloiitde!

Directly required modules | none

kodule annotations | none

You can enter any unreserved symbol as the name of the top-level module.

To name the top-level module programmatically:

= conclude that the top-level-module of module-information
= the symbol module-name

where module-name is the symbolic name of the module.

If you have named a top-level module in the current KB, each time you create a
new top-level workspace, G2 automatically assigns the workspace to the top-level
module.

If you delete a module from the current KB, you can optionally delete all the
workspaces associated with that module. For more information, see Deleting a
Module.

Tip

Note

Creating, Populating, and Saving Modules

Associating Items with a Module

After creating a module, you typically associate the module with a set of items in
the current KB. You do this by associating the module with one or more top-level
KB workspaces. G2 associates the module with these workspaces and with all
items below the workspaces in the workspace hierarchies.

To associate a module with a top-level workspace interactively:
1 Open the table for a top-level workspace.
2 Enter the name of a module in the module-assignment attribute.

You can enter only one module name in this attribute.

To associate a module with a top-level workspace programmatically:

= conclude that the module-assignment of kb-workspace
is module-name

where module-name is the name of the module to which you wish to assign
kb-workspace.

You can assign more than one top-level KB workspace to the same module.
However, we recommend that you assign only one top-level workspace to a
module. By observing this convention, your modularized KBs have a predictable
structure, and are more convenient to work with.

If the current KB has a top-level module, and you add a new top-level workspace
to the current KB, G2 automatically sets its module-assignment attribute to the
name of the top-level module.

Saving a Module in a Separate KB File

When your KB contains a single top-level module, you can save the module in its
own KB file. For information about saving a modularized KB, see Saving the
Module Hierarchy.

You can save modules interactively or programmatically.

G2 does not accept the wildcard characters *, ?, {, and } in filenames, file
extensions, or version numbers. They are allowed in pathnames. The following
tilenames would not be accepted in the editor and would generate an error when
given to a system procedure: mod* . kb, mod.k*b, *. kb, and *.*. This pathname is
accepted on UNIX: /home/user/*/mod. kb.

171

To save a module in a file interactively:

1 Select Main Menu > Save KB.
G2 displays a special workspace for saving KBs, which shows:
* The name of the top-level module to save.
® The default directory path in which it will save the KB file.

® The default KB filename, which is based on the name of the top-level
module.

The following figure shows the save KB workspace that G2 displays when
saving the methods module:

Text Editor for File Cormmand

Cancel | | Save module METHODS as ("Chgz2inethads.kh" by default)hl

any symbol
any file-name

any string
End

Paste I

, including all required modules

2 At this point you can:

* Enter a new default directory path and filename of the KB file into which
you want to save the module.

* Enter just a new filename.

* Accept the default filename.

Tip We recommend that you name the KB file using the same name as the module it
contains. This is especially critical when saving modularized KB, as explained in
Specifying the Filename of a Saved Module.

To save a module programmatically:

=2 Use the g2-save-module system procedure, as described in KB and Module
Operations in the G2 System Procedures Reference Manual.

You can programmatically save a module, even while the current KB is running.

172

Creating a Module Hierarchy

Creating a Module Hierarchy

Typically, for large applications, you will want to create a module hierarchy to
organize your KB.

In general, a module hierarchy consists of one top-level module and multiple
directly required modules below the top-level module, where each submodule
can also directly require one or more modules.

For information on when one module must directly require another module, see
The Module Hierarchy.

The general steps for creating a module hierarchy are:
Create a top-level module.

Create one or more additional modules.

1
2
3 Declare the directly required modules for each module in the KB.
4 Check for consistent modularization.

5

Save the modularized KB into separate KB files.

The following sections outline these steps in detail.

Creating a Top-Level Module

The first step for creating a module hierarchy is to name the top-level module.
This is described in Naming the Top-Level Module.

Naming the top-level module creates a single top-level module for the KB. The
next step is to create additional modules in the current KB.

Creating a New Module

To create a module hierarchy, you must create additional modules in the current
KB. Once you have created these modules, you can declared them to be directly
required by the top-level module, as well as by other modules in the hierarchy.

173

174

Creating a New Module Interactively

You can create a new module interactively or programmatically.
To create a new module interactively:

1 Select Main Menu > Miscellany > Create New Module.

G2 displays the Module Information system table for the new module:

Text Editor for the TOP-LEVEL-MODUL. BT [MODULE-INFORMATION

Motes | Ok
ﬂl Authors | none

any unreserved-symbol

Change log | 0 entries

unspecified ltem configuration | none

Module file name | default

Taop level module EtsEIlilD

Directly required modules | none

MModule annotations | none

2 Enter the name of the new module in the top-level-module attribute of the new
Module Information system table.

Creating a New Module Programmatically

G2 includes a system procedure for creating a module programmatically.

To create a new module programmatically:

= g2-create-module
(module-name: symbol)

where module-name is the name of the module in your current KB that you wish to
create programmatically.

The module-name cannot:

* Duplicate the name of an existing module.
* Beareserved word in G2.

* Be the symbol unspecified.

On successful execution, g2-create-module creates a set of system tables for the
new module. The top-level-module attribute of the Module Information system
table is module-name. All other attributes have default values.

Creating a Module Hierarchy

The next procedure creates a new module based on the symbolic name passed as
its argument, and assigns the kb-workspace to the new module:

create-module(module-name: symbol, ws: class kb-workspace)
begin

call g2-create-module(module-name);

conclude that the module-assignment of ws = module-name
end

System Tables Associated with a New Module

When you create a new non-top-level module interactively or programmatically,
G2 creates a set of twenty associated system tables for the new module. However,
these system tables are not installed in the current KB; with the exception of some
module-specific attributes, only the system tables of the top-level module are in
effect for the current KB.

To display the system tables for all loaded modules:
= Choose Main Menu > Inspect and enter this command:

show on a workspace every system-table

To display a particular system table subclass for all loaded modules:
= Choose Main Menu > Inspect and enter this command:
show on a workspace every system-table-subclass

For example, the next illustration shows an Inspect workspace for show on a
workspace every module-information. The KB has three defined modules: a top-
level module named top-level and two additional modules named required-1 and
required-2. The Module Information representation for the top-level module is
unique in that it does not display the module name.

175

Only representations of non-top-level modules are identified by the name of
the module:

Inspect-b

Hide | show on a workspace every module-

information
Searchtook 0 seconds. 3 itemswere found.
Rerun - : .
Filter | every module-information
Edit ”
ltems to examine | 3

ltems examined sofar | 3

Mumber of items found | 3

MODULE-INFORMATION for module
required-2

MODULE-INFORMATION for module
required-1

MODULE-INFORMATION

Declaring Directly Required Modules

For each module that requires other modules, you must assign the name of the
required module to the directly-required-modules attribute in its associated
Module Information system table. A module can directly require one or more
other modules.

For example, suppose your current KB contains a top-level module named top,
and suppose you create a new module named classes, which you want to be
below the module top in the hierarchy.

To declare a directly required module of a module interactively:

1 Open the Module Information system table for the module that requires
another module.

2 Enter the name of the directly required module or modules in the directly-
required-modules attribute.

To declare one or more directly required modules programmatically:

= Use the conclude action to change the directly-required-modules attribute of a
specific Module Information system table.

176

Creating a Module Hierarchy

For example:

change-required-modules-for-module(module-name: symbol,
required-modules: sequence)
MI: class module-information;
begin
if there exists a module-information M| such that
(the top-level-module of MI = module-name)
then conclude that the directly-required-modules of Ml =
required-modules
end

Use this technique to create a module hierarchy with module branches, as shown
in the figure in The Module Hierarchy.

Rules for Consistent Modularization

If the current KB contains one or more modules, those modules must conform to
G2’s rules for consistent modularization, as follows:

Every module must be named in its own Module Information system table.

The module hierarchy must include one and only one top-level module. All
modules other than the top-level module must be either directly or indirectly
required by the top-level module.

Every top-level workspace must be assigned to an existing module.
An item and its attribute table must reside in the same module.

The attribute table of a transient item cannot reside on a permanent
workspace that does not also contain the transient item.

An instance of a class must appear in either the same module as its class
definition, or in a module that is above it in the module hierarchy. An instance
of a class cannot appear in a module that is below its definition in the
hierarchy.

The dependencies among modules must not be cyclic. A cyclic dependency
occurs when a module higher in the hierarchy directly requires another
module lower in the hierarchy, but the higher module is also directly required
by a module lower in the hierarchy.

177

178

Tip

The diagram below shows an illegal cyclic dependency formed by the chain
of references:

a-module £ b-module £ a-module

Inspect-4 | %]

show on a workspace the module hierarchy

a-module

| b-module ” c-module |

| a-madule |

MODULE-INFORMATION

Motes | Ok, and note that the module hierarchy has
the following cycle: A-MODULE-- B-
MODULE--A-MODULE

Authors | ghw (26 hay 2000 401 pam.)

Change log | 0 entries

ltem canfiguration | none

hodule file name | default

Top level module | a-module

Directly required modules | b-module, c-module

lodule annotations | none

You can eliminate this cycle by moving the items in a-module that are referenced
in b-module to another module.

When G2 detects that the modules in the current KB violate any of the rules for
consistent modularization, G2 signals an error and adds information to the notes
attributes of the nonconforming modules, nonconforming top-level workspaces,
and so on, as shown in the previous figure.

As you develop the current KB’s module hierarchy, you should regularly check
the notes attributes of your items.

G2 validates the consistency of modules in the current KB only. G2 does not
compare the knowledge in the currently loaded modules with the knowledge
stored in KB files that are not loaded. This means that if you load a KB file and
another developer happens to save a change to the same KB file, G2 cannot detect
whether that change affects its consistency with other modules until they are
next loaded.

Creating a Module Hierarchy

G2 does not evaluate the consistency and completeness of all references within
the KB that cross module boundaries. For instance, G2 does not validate the
existence of procedures and functions that are referenced but not contained in the
same module. These and other execution linkage references play no role in how
G2 validates the consistency of a module hierarchy.

Checking for Consistent Modularization

G2 checks that the current KB is consistently modularized when you attempt to
save the KB or any module in the KB. As you work with your current KB, you can
also check for consistent modularization, using Inspect. You can also check for
consistent modularization programmatically, using a system procedure.

To check for consistent modularization interactively:
= Choose Main Menu > Inspect and enter this command:

check for consistent modularization

To check for consistent modularization programmatically:

= g2-check-for-consistent-modularization

()

-> return-value: sequence

For information on the return value, see KB and Module Operations in the
G2 System Procedures Reference Manual.

When you issue the check for consistent modularization command, Inspect
displays an Inspect workspace and places on it any messages that describe why
the current KB is not consistently modularized.

179

180

The following figure shows an Inspect workspace with two messages, produced
after executing the check for consistent modularization command:

Inspect-7

Hide check for consistent modularization

Search took 0 seconds. 0 items were found.

Filter

Rerun

Edit

lterns to examine | O

EE

lterms examined sofar | 0

Mumber of items found [0

Workspaces belong to modules that are not
reguired by the KB; see the installed module-
information system table for further information.

Maodules that exist are not required by the KB;
see the installed module-information system
table for further information.

In this figure, the messages from Inspect report that the current KB contains at
least one top-level KB workspace whose module-assignment attribute has the
value unspecified, and that at least one module exists in the KB that is not
required by any other module.

To respond to these messages:

® You can use Inspect to find the workspaces whose module-assignment
attribute has the value unspecified. Then, either enter a module assignment
for that workspace or delete it.

® Use Inspect to view the module hierarchy. Then, for each module that is not
presently required, determine whether it belongs in this KB’s module
hierarchy. If so, include the module name in the directly-required-modules
attribute of the Module Information system table associated with the module
that requires it.

Saving the Module Hierarchy

When saving a modularized KB, G2 saves each module in its own KB file. You can
choose to save individual modules or all modules in the hierarchy, either
interactively or programmatically.

See also Saving Your KB Knowledge for information on choosing a KB format,
saving a KB, and unsavable-module change protection.

Note

Creating a Module Hierarchy

To save an entire module hierarchy into separate KB files:
1 Choose Main Menu > Pause.
2 Choose Main Menu > Save KB.

3 In the save KB workspace, include the including all required modules
statement in the save module ... as command.

For a description of the default module name and filename that G2 provides,
as well as requirements for specifying the KB filename, see Specifying the
Filename of a Saved Module.

G2 displays a list of all the modules it will save with a confirmation message.

4 C(Click OK to save the modules.

To save an individual module in a module hierarchy:
1 Choose Main Menu > Save KB.

2 Edit the name of the module in the save module ... as command that appears
to specify the name of the module to save.

3 Edit the associated filename to correspond to the module name you are
saving.
To save a module hierarchy programmatically:

= Use the g2-save-module and g2-save-module-without-other-processing
system procedures, as described in KB and Module Operations in the
G2 System Procedures Reference Manual.

If any directly or indirectly required module was not loaded from an existing KB
file, then when you specify the ,including all required modules phrase in the

save module ... as command, G2 creates new KB files with names based on the
combination of:

* The module name in the top-level-module attribute of each module’s
associated Module Information system table.

® The entries in the module map file, if it exists.

The module map file, if it exists, also determines how G2 saves modules into
corresponding modularized KB files. See Using a Module Map File to Load and
Save a KB for more information.

Specifying the Filename of a Saved Module

When saving a module that is directly required by other modules, you should
save it to a filename that is the same as the module name. This allows G2 to find
the directly required module’s associated KB file by using G2’s default

search techniques.

181

182

If you choose to store the module in a KB file with a different name, then in order
for G2 to locate that module’s KB file when loading or merging it later as a
directly required module, you must also create a module map file. The module
map file associates a module name with either a directory path or a KB file path.
See Using a Module Map File to Load and Save a KB.

When saving a module, G2 offers defaults as follows:

* If you created the top-level module using an empty KB, G2 offers the name of
the top-level module as the default KB filename used to save the
specified module.

® If the current KB was loaded from an existing KB file, G2 offers the existing
filename as the default KB filename used to save the specified module. This
allows you change the module name of the top-level module without affecting
the default KB filename in which the top-level module will next be saved.

Saving an Inconsistently Modularized KB

If the current KB is inconsistently modularized, you cannot save any of its
modules into separate KB files. Instead, when you attempt to save the current KB,
G2 displays a warning message, such as the following, and only permits you to
save the entire KB into a single KB file.

Text Editor for File Command

Cancel I {Comment; WARNIMNG: since this KB is not consistenthy
modularized, you may only save the KB in a single file!

See loghook messages for further information.}

Save current KB as ("Chg2VALL-ghw.kh" by default)

End
any symbol

any file-name
Paste I any string

By default, G2 stores this KB file in a file whose name begins with the ALL- prefix
and ends with the name of the current KB’s top-level module.

Deleting a Module

Deleting a module means removing the module, all of its associated system
tables, and, optionally, all its associated items from the current KB. Recall that
items are associated with a module based on the module assignment of the
workspace on which the items reside. Deleting a module does not mean deleting
the KB file in which a particular module is stored.

Creating a Module Hierarchy

To delete a module from the current KB interactively:
1 Choose Main Menu > Miscellany > Delete Module.
2 From the choose a module to delete menu, select a module to delete.

G2 displays this dialog:

Delete module MODULE-C? (Choose All' to
delete all associated workspaces as well.)

I ok | Al | cancel |

3 Do one of the following:

® C(lick the OK button to delete only the selected module and its associated
set of system tables.

* (lick the All button to delete the selected module, its associated set of
system tables, and all KB workspaces assigned to that module.

Note If you attempt to delete a module that is required by the KB, G2 displays an
appropriate warning on the confirmation dialog.

To delete a module from the current KB programmatically:

=2 Execute the g2-delete-module system procedure, as described in KB and
Module Operations in the G2 System Procedures Reference Manual.

Note If you delete the top-level module from the current KB, G2 replaces all installed
system tables with new system tables and initializes their attributes to system-
defined default values.

183

Determining Programmatically Whether a Module
is Loaded

You can use an if rule or an if statement in a procedure to determine whether a
particular module exists in the current KB. This procedure accepts a module name
as its argument to check whether it is the top-level-module:

check-module(module-name: symbol)
begin
if the top-level-module of module-information = module-name
then post "Module [module-name] is installed as the top-level-module
of this KB."
else post "Module [module-name] is not the top-level-module
of this KB. The top-level-module is
[the top-level-module of module-information]."
end

Obtaining Information about Modules

184

Note

You can use the Inspect facility to show the module hierarchy of the current KB.
You can perform operations on modules from the module hierarchy display. You
can also display all Module Information system tables in the current KB.

At the item level, you can display the module assignment of a workspace or the
items that reside upon it. You can also programmatically obtain the containing-
module of an item.

Displaying the Module Hierarchy

You can display the module hierarchy of the current KB or of a particular module
in the KB.

The module hierarchy shown in the Inspect workspace represents only the
network of references to module names found in the directly-required-modules
attributes of the Module Information system tables.

The module hierarchy does not indicate whether top-level workspaces are
assigned to a particular module.

To display the module hierarchy of the current KB:
= Choose Main Menu > Inspect and enter this command:

show on a workspace the module hierarchy

Obtaining Information about Modules

Entering this command causes G2 to display an Inspect workspace containing a
diagram of the complete module hierarchy, such as:

Inspect-9 | x|

show on a workspace the module hierarchy

a-module

| b-madule | | c-madule |

| d-module |

In this module hierarchy, a-module is the top-level module.

To display the module hierarchy for a particular module:
= Choose Main Menu > Inspect and enter a command such as:
show on a workspace the module hierarchy of module-c

Entering this command causes G2 to display an Inspect workspace containing a
partial module hierarchy, such as:

Inspect-10 x|

show on a workspace the module hierarchy
of c-module

| c-module |

d-module

185

186

To perform operations on a module in the hierarchy:

1

2
3
4
5

Click on the representation of the module in the hierarchy to display
this menu:

Inspect-10 x|

show on a workspace the module hierarchy

of c-module
| c-module |
table

| d-modul describe

tahle of hidden attributes
show unsaved attributes
hide

Select table to display the Module Information system table for the module.
Select describe to describe the module by using the Describe facility.
Select table of hidden attributes to display a table of virtual attributes.

Select hide to hide the short representation of the module in the hierarchy.

If a module hierarchy contains modules that are directly required by more than
one module, G2 displays the subhierarchy for the module only once. In the other
locations in the hierarchy that require the module, G2 displays only the directly
required module, not its submodules.

Obtaining Information about Modules

For example, if you show the workspace hierarchy for some KBs, you see that the
sys-mod module is directly required by more than one module. However, G2
displays sys-mod’s directly required modules only once, to the far left.

Inspect-12

show on a workspace the module hierarchy

mill

| sys-mod | | gms |

| uilrootl | sys-mod |

Displaying Module Information System Tables

You can use Inspect to display short representations of the Module Information
system tables of all loaded modules.

To display the Module Information system tables for all modules:
= Choose Main Menu > Inspect and enter this command:

show on a workspace every module-information

187

G2 displays a workspace such as the following:

Inspect-14

Hide show on a workspace every module-
information

Searchtook 0 seconds. 4items were found.

Rerun

Edit

Filter | ewery module-infarmation

bk

ltems to examine | 4

ltems examined sofar | 4

Mumber of items found | 4

MODULE-INFORMATION for module
shared-methods

MODULE-INFORMATION for module
custom-methods

MODULE-INFORMATION for module
classes

System table associated

MODULE-INFORMATION | ———1— with the top-level module.

In this Inspect workspace, the Module Information whose short representation
does not identify a module is associated with the top-level module.

Displaying the Module Assignment of Items

If an item resides upon a workspace that is assigned to a module, you can display
that module assignment.

To display the module assignment of an item:
1 Click any item to display its menu.
2 Select describe to describe the item, using the Describe facility.

If the item resides upon a workspace that is assigned to a module, its
description includes a line such as:

This is assigned to module my-module.

3 Select Delete Workspace or click on the hide-workspace button to close
the item.

188

Working with Modularized KBs

Choosing the workspace Describe menu option reveals its module assignment,
which is also available in the module-assignment attribute of the workspace
attribute table and on the table of hidden attributes for the item. You can access
the hidden attributes by choosing the table of hidden attributes menu choice from
the item menu.

Obtaining the Containing Module for Items
Programmatically

To obtain the containing module of an item programmatically:

=>» the containing-module of item
-> symbol

Returns a symbol value of the module name.

Working with Modularized KBs

A modularized KB contains one or more modules. When you save a modularized
KB file, G2 saves one module per file.

As explained below, if the current KB contains modules that are inconsistently
modularized, and you save the KB, G2 requires that the entire current KB and all
its modules be saved into one KB file. In this case, the KB file contains knowledge
about more than one module.

Loading a Modularized KB

If you direct G2, interactively or programmatically, to load a KB file, G2 first
attempts to load all KB files that the specified KB directly or indirectly requires.
Indirectly required KB files are files that contain modules that are directly
required by submodules in the hierarchy.

When loading a KB, G2 does the following, in this order:

1 Traces down the module hierarchy of the top-level module in the specified KB
until it finds a KB whose module does not directly require another module.

2 Loads that KB.
3 Loads, in turn, the KB that directly requires the KB already loaded.

4 Continues marching up the hierarchy until it loads all directly required
modules of the top-level module.

189

190

Tip

The following figure indicates the order in which G2 loads the modularized KBs
that are directly and indirectly required by the top-level module named top:

Inspect-13

show on a workspace the module hierarchy

@)
(3)%(2)

| classes | | custom-methods |

(1)

| shared-methods |

No matter how many modules directly require a particular module, G2 loads that
module only once.

Loading Modularized KBs and Detecting Conflicts

After you direct G2 to load a modularized KB, as G2 loads the modularized KBs
that form a particular module hierarchy, G2 actually performs one load operation
and one or more merge operations. First, G2 loads the KB whose module requires
no other modules, then G2 merges one or more KBs into the current KB.

Because G2 actually performs merge operations to load the second through last
KBs into the current KB, it is possible for G2 to detect conflicts among the
definitions found in the various KBs. Therefore, when loading a KB that directly
require modules in other KBs, it is recommended that the automatically resolve
conflicts box in the Load KB dialog is selected. This option is selected by default
because resolving conflicts by hand is difficult and time consuming,.

For information on whether to select the automatically resolve conflicts check box
and how to respond to a conflict workspace, see Detecting Conflicting Class-
Definitions.

Tip

Working with Modularized KBs

Loading a Particular Version of a KB File

Your application development team might work with different versions of the
same KB file, with each version stored in different directories. If a KB directly
requires a module located in a particular version of another KB, you can use
either of two techniques to ensure that a particular KB file is loaded:

* Define a module search path, to specify the order in which G2 searches a list
of directories for KB files to load. See Using a Module Search Path to Load KB
Files.

* Create a module map file, to associate a directly required module’s name with
a KB file of the same name in a particular directory, or even with a particular
KB filename. See Using a Module Map File to Load and Save a KB.

Automatic Loading of Directly Required Modules

When a module stored in one KB directly requires a module stored in another KB,
and you load the first KB, G2 automatically loads the directly required module’s
KB first, loads the requiring KB next, and so on, until the specified KB is loaded.

By default, G2 looks for a KB file with the same name as the directly required
module. For example, if you load a KB that contains a module named top, and top
directly requires another module named classes, then G2 attempts to find the
module by searching for and loading a KB file named classes.kb in the same
directory where the KB file containing the module top resides.

You can optionally use a module map file or module search path, to direct G2
where to find directly required modules. For more information about using a
module map file, see Using a Module Map File to Load and Save a KB. For more
information about using a module search path, see Using a Module Search Path to
Load KB Files.

Merging a Modularized KB into the Current KB

Merging any KB file means to read a stored KB and to add its knowledge to the
current KB. You can merge any KB into the current KB.

To merge a KB interactively:
= Chose Main Menu > Merge KB.
G2 automatically selects the Merge in this KB option in the save KB workspace.

To merge a KB programmatically:

=2 Invoke the g2-merge-kb or g2-merge-kb-ex system procedure, as described in
KB and Module Operations in the G2 System Procedures Reference Manual.

191

Merging Directly Required Modules

When you merge a modularized KB, G2 automatically merges other KBs that the
specified KB directly or indirectly requires. This is also true when you load a KB
that requires other modules. G2 selects the other KBs to merge as described in
Loading a Modularized KB.

Installing System Tables of a Merged Modularized KB

When you merge a KB, you can either install or not install its system tables into
the current KB. Installing the system tables of a merged KB causes the module
described in the Module Information system table of the merged KB to become
the top-level module in the resulting current KB.

To install the system tables of a merged KB, check the merge in this KB and install
its system tables check box, as shown in this figure:

Text Editor for File Command

Cancel | | Cigzikbsidefinitionssm |

__Undo_ | Jibtiabikbs

(contents unknown)

[T] start afterwards [T] never start afterwards

[] warmboot afterwards [] warmboot afterwards with catch-up feature
ﬂl merge in this KB merge in this KB and install its system tables

[7] bring formats up-to-date automatically resolve conflicts

any symbol

any file-name

any directory-name

If you merge a modularized KB without installing its system tables, the resulting
KB contains the merged modules, but they may not participate in the current KB’s
module hierarchy.

192

Working with Modularized KBs

For example, if the current KB contains no top-level module, after merging a KB
without installing its system tables, the Inspect facility shows that there is no
module hierarchy, because there is no top-level module:

Inspect-1&

show on a workspace the module hierarchy

MNo module hierarchy exists, because the top-evel module
is unnamed.

Top-Level Module-Information System Table:

Modules not required by the KB:

| uilroat | | sys-mad | | gms |

Because the resulting KB has no top-level module, the merged modules are not
directly required, and the resulting KB is inconsistently modularized.

If the current KB contains modules, the result of merging a KB and installing its
system tables depends upon whether the current KB already has a top-level
module, as follows:

* If the current KB contains modules but no top-level module, the current KB is
not consistently modularized. When you merge a KB and install its system
tables, the top-level module in the merged KB becomes the top-level module.
The current KB remains inconsistently modularized.

* If the current KB contains modules including a top-level module, and you
merge a KB and install its system tables:

- G2 uninstalls the installed set of system tables. The uninstalled system
tables remain in the current KB and remain associated with the same
module.

- G2 installs the system tables associated with the top-level module in the
merged KB. This means that the top-level module in the merged KB
becomes the top-level module in the current KB.

Ignoring Modules with Duplicate Names

If a merged KB directly requires a module with the same module name as a
module already in the current KB, G2 does not attempt to load that module again.
G2 ignores the second and subsequent attempts to load a module with the same
name, even if those modularized KBs reside in different directories.

193

When G2 ignores merging a module in this fashion, G2 places a message on the
Operator Logbook, such as the example that follows:

Operator Loghook 30 May 2000 W A Page 7

#18 10:30:52 am. Skipping module 3¥3-
MOD, since it is already present.

#19 10:50:52 am. Merging "Gikhsitestkh”
into current KB

In this example, if your current KB is modularized and contains the module
uilroot, and you merge another KB whose top-level module classes also directly
or indirectly requires a module named uilroot, G2 does not attempt to merge
another KB, which may be located in the same directory, and which also contains
a module named uilroot.

Merging a Particular Version of a KB

As explained in Loading a Particular Version of a KB File, you can also merge a
particular version of a KB by defining a module search path or creating a module
map file.

For more information, see Using a Module Search Path to Load KB Files and
Using a Module Map File to Load and Save a KB.

Using a Module Search Path to Load KB Files

194

Tip

By default, when loading a KB whose module directly requires other modules, G2
searches in the same directory as the loaded KB for the files containing the
other modules.

You can also load KB files that are located in other directories. When structuring
your KB directories in this way, you might want to specify a module search path.
A module search path is a list of directories that G2 searches to find the KB file
containing a directly required module.

Specifying a module search path can be especially helpful if you load or merge KB
files for which there are multiple copies stored in different directories. In this
situation, you specify a module search path to direct G2 to load or merge a
particular version of the KB file, if it exists in one directory rather than in

another directory.

Tip

Using a Module Search Path to Load KB Files

G2 consults the list of directories in the module search path in these situations:

* If the current KB is modularized and G2 cannot find a directly required
modularized KB file in the directory from which the current KB was loaded.

* If the current KB is empty and G2 cannot find a directly required KB in the
directory that contains the KB file that you directed G2 to load.

On Windows platforms, you can start the G2 server with a batch file to load a
default module search path. For details, see the readme-g2.html file.

Specifying a Module Search Path

There are three ways you can direct a G2 process to use a module search path to
locate KB files.

* Include the -module-search-path option in the command line that launches
the G2 process. Specify a list of directory paths as the argument to this option.
The -module-search-path command-line option is described in module-

search-path.

* Before starting G2, use the appropriate operating system command to define
and set the G2 MODULE SEARCH PATH environment variable. Specify a list of
directory paths as its value.

* Atany time after G2 is launched, specify a module search path in the module-
search-path attribute of the Server Parameters system table.

Module Search Path Syntax

A module search path specified on the command line or with an environment
variable is a quoted text value containing one or more directory paths with blank-
space characters separating directory paths. A module search path specified with
the module-search-path attribute on the Server Parameters system table is one or
more quoted directory paths separated with commas.

When specifying the module search path on the command line or with an
environment variable, special syntax is provided to support directory and file
names that contain blank spaces. Blank spaces in file paths are fairly common on
Windows platforms and are supported by the NTFS and FAT32 file system built
on top of DOS. Unix also allows spaces, but its parsing methods have discouraged
their use. You do not need to use the special syntax when specifying path names
with spaces for the module-search-path attribute on the Server Parameters system
table.

To specify a file path that contains blank spaces:

= Enclose the path in single forward quotes (apostrophes); do not use the
backquote character.

195

You can use the single-quote delimiters for both the Windows and Unix styles of
file paths. Although it is not necessary, you can enclose file paths without spaces
in single quotes. Paths with embedded apostrophes are supported, but a path that
has both an embedded space and an embedded apostrophe is not supported.

Some examples of supported search paths specified for the module-search-path
attribute of the Server Parameters system table are:

"/home/user/kbs/", "/gensym/kbs"

"C:\Program Files\Gensym\g2-2011\g2\kbs\demo\"
"\\serverl\Program Files\Gensym\g2-2011\g2\kbs\demo\"
"\kbs\current-release\", "D:\product\marketing kbs\"
"/home/user kbs/", "/gensym/kbs"

Examples of supported module search paths specified on the command line or
with the environment variable are:

"/home/user/kbs/ /gensym/kbs"
"'C:\Program Files\demo\kbs'"
"'"\\serverl\Program Files\Gensym\g2-2011\g2\kbs\demo\""
"\kbs\current-release\ 'D:\product\marketing kbs\'"
"' /home/user kbs/' '/gensym/kbs'"
This path is not supported:
"'"\Program Files\doc’s-kbs\'"

Here are example command scripts you can use on a UNIX platform to start a G2
process that searches for KBs in two directories other than the current directory:

Start G2 and specify two directories in its
module search path
g2 -module-search-path "/dev/g2-mods/ /usr/kmm/g2-mods"

or

Start G2 and specify two directories in its
module search path
setenv G2 MODULE SEARCH PATH "/g2-mods/ /usr/kmm/g2-mods"

g2

196

Using a Module Map File to Load and Save a KB

How G2 Searches for KB Modules

When you load a new top-level KB, G2 searches the directories listed in the
module search path, as follows:

1

G2 determines whether the directly-required-modules attribute in that KB's
Module Information system table refers to other KBs.

a If so, G2 searches for the directly required KB file in the directory that
contains the top-level KB file.

b If G2 does not find the directly required KB file in the top-level KB file’s
directory, G2 searches, in order, each directory specified in the module
search path.

When G2 finds a KB file of the correct name, G2 determines whether it, in
turn, directly requires other KB files, then follows Steps 1a and 1b to locate
that KB file.

If G2 cannot find either the top-level KB file or its directly required KB file(s),
using Steps 1 through 2, G2 searches the directory that was current when you
launched G2. If G2 does not find the KB file in this directory, G2 reports

an error.

Using a Module Map File to Load and Save a KB

When you work with KB files whose filenames are not the same as the names of
the modules they contain, you can create a module map file to associate a module
name with a particular KB file. If this file exists, G2 consults it to find the KB file
that contains a particular module.

Locating the Module Map File

If you create a module map file, it must be named g2 .mm. When a G2 process
starts, it searches for the module map file, as follows:

1

If you include the -module-map option in the command line to start G2, G2
searches for the file at the fully qualified file pathname that is specified as an
argument to the option.

If you do not include the -module-map option in the command line to start G2,
G2 checks whether a G2 MODULE MAP environment variable is defined. If such
an environment variable exists, G2 attempts to open g2 .mm under the
directory path assigned to that variable.

If G2 locates no g2 .mm file using Steps 1 and 2, G2 attempts to open g2 .mm
located in the directory that was current when you launched G2.

197

198

Tip The -module-map command-line option is described in module-map.

Adding Entries to the Module Map File

Use any text editor to create a module map file. It should contain only ASCII text.

Each line in the module map file associates the name of a module contained in a
KB with either a fully qualified directory path or a fully qualified file path. Use
one or more blank spaces to separate the module name from its associated
directory path or file path.

When specifying a directory path, include a trailing directory delimiter character:

For this platform... Use this delimiter...
Windows \
UNIX /

For example, a module map file that describes two KBs that reside on a Windows
platform could contain:

vehicle-root C:\Program Files\Gensym\g2-2011\kbs\modules\vh.kb
vehicle-classes C:\Program Files\Gensym\g2-2011\kbs\shared\

The first line specifies that G2 loads, merges, and saves the module named
vehicle-root using the file C: \Program Files\Gensym\g2-2011\kbs\modules\
vh.kb. The second line specifies that G2 must load, merge, or save the module
named vehicle-classes using a KB file of the same name (vehicle-classes.kb)
under the directory C:\Program Files\Gensym\g2-2011\kbs\shared\ .

System Tables

Describes the use of system tables to set global preferences.

Introduction 200

Using System Tables 200

Color Parameters 202

Data Server Parameters 205
Debugging Parameters 208
Drawing Parameters 216

Editor Parameters 226

Fonts 230

G2 Graphical Language (G2GL) Parameters 232
Inference Engine Parameters 234
KB Configuration 237

Language Parameters 241
Logbook Parameters 242

Log File Parameters 249

Menu Parameters 254

Message Board Parameters 257
Miscellaneous Parameters 260
Module Information 268

Printer Setup 270

Saving Parameters 276

199

Server Parameters 281
Simulation Parameters 284

Timing Parameters 284

Introduction

System tables define certain global defaults applicable to an entire KB, similar to
the Preferences you can set in many applications. The attributes in a system table
affect the settings of related system parameters.

This chapter describes all system tables in alphabetical order.

Using System Tables

200

Every KB has one set of system tables in effect at a given time. G2 refers to these as
the installed system tables.

In a new KB, the installed system tables contain the default values that G2
provides for each system table attribute. If you change one or more system table
attributes and then save your KB, the modified system tables are saved as a
permanent part of the KB’s knowledge. G2 installs these system tables when you
next load the KB.

Each module in a KB has an associated set of system tables which includes an
instance of every system table except the Servers Parameters system table. There
is only one Servers Parameters system table per KB which is created by G2’s
initialization process and is associated with the top-level module. The set of
system tables for the top-level module is the installed set.

Two reasons why modules include their own set of system tables are:

* Every module is capable of being the top-level module, and therefore requires
a complete set of system tables.

® The critical information G2 needs to know about a module is contained in the
Module Information system table.

For a description of the Module Information system table, see Module
Information.

Using System Tables

You can replace one set of installed system tables with another by merging in a
KB. If you merge a KB module into an existing KB, one of the options on the
KB Merge menu is:

merge in this KB and install its system tables

Choosing this option causes G2 to install the system tables of the merged KB,
overriding those of the existing KB. The overridden system tables are still present
in the KB, but their attributes are no longer in effect. You can search for system
tables in your KB by using the Inspect facility. For more information on merging
KB files with system tables, see Merging a KB File.

You can also start G2 with one or more optional command-line options that let
you specify a module map file or a module search path. Using either of these
command-line options can affect the values of the Module Information system
table.

For information about using the module map file, or module search path
command-line options, see module-map and module-search-path. For a
description of creating a module map file, see Using a Module Map File to Load
and Save a KB.

Changing System Tables Values Interactively

To access the installed set of system tables:

= Choose Main Menu > System Tables. This menu appears:

System Tables

This “Window

Debugging Parameters
Timing Parameters
Inference Engine Parameters
Data Server Parameters
GZGL Parameters
Simulation Parameters

KB Configuration

Printer Setup

Message Board Parameters
Loghook Parameters

Log File Parameters
Color Parameters
Language Parameters
Fonts

Editar Parameters

Menu Parameters
Miscellaneous Parameters
Drawing Parameters
Saving Parameters
Module Information
Server Parameters

201

When you select a system table, G2 displays its attributes and the values for those
attributes. Unlike most items, system tables are not associated with a workspace
and display directly on the Gensym background area.

Changing System Table Values Programmatically

You can use the conclude action to change the value of most system table
attributes. For example, to change the default font size for the Text Editor, enter a
statement such as:

conclude that the font-for-editing of fonts is extra-large

Information about the types and read and write access of system-defined
attributes is available in the G2 Class Reference Manual.

Color Parameters

The Color Parameters system table lets you control which colors appear in the
background- and foreground-color menus of G2, and the order in which those
colors appear.

To display the color menu of a workspace:
= Choose KB Workspace > Color > foreground-or-background-color.

where foreground-or-background-color is either background-color or foreground-
color. Both choices have the same color selections. The color menus appear in
other locations within G2, such as the Icon Editor.

Controlling the Menu Order of Colors

The color-menu-ordering attribute controls the menu ordering. By default, the
system-defined set of colors is ordered this way on the color menus:

This value... Arranges the colors...

hue By hue. For example, greens are grouped together,
reds are grouped together, blues are grouped together,
and so on.

intensity From light to dark.

alphabetic Alphabetically, according to the color names.

202

Color Parameters

Specifying the Colors on the First Color Menu

The color-on-1st-level-color-menu attribute specifies what colors appear on the
first level menu as follows:

This value... Provides...
color-name, Any color from the G2 color set. Enter the names of the
color-name... color in the order of your choice to construct your own

color set. G2 accepts some variations in spelling. For
example, you can enter grey instead of gray.

You can also provide a symbol of the form RGBrrggbb
as a valid color name, where rr, gg, bb, are the 8-bit hex
values for red, green, and blue. For details, see Other
Literal Terms.

standard-set A subset of the G2 color set consisting of:

aquamarine, black, blue, brown, dark gray, gray, green, light
gray, orange, purple, red, white, yellow

all The full G2 color set as they appear:

transparent, foreground, black, dim gray, dark gray, gray,
light gray, white, pink, Indian red, salmon, brown, orange,
red, tan, gold, coral, sienna, wheat, medium goldenrod,
khaki, goldenrod, yellow, green yellow, pale green, forest
green, lime green, green, aquamarine, medium
aquamarine, light blue, turquoise, cadet blue, cyan, sky
blue, slate blue, medium blue, blue, medium orchid, dark
slate blue, thistle, plum, purple, violet, magenta, maroon,
and violet red.

The colors are arranged by hue, since that is the
default for the color-menu-ordering attribute

Defining the Colors on the Second Color Menu

The color-on-2nd-level-color-menu attribute defines what colors appear on the
second level menu. Specify this attribute as you would for the first level color
menu.

Specifying the Number of Columns for the First
Color Menu

The number-of-columns-for-1st-level-color-menu attribute determines the number
of columns, up to 7, that you want the menu to contain.

203

Specifying the Number of Columns for the Second
Color Menu

The number-of-columns-for-2nd-level-color-menu attribute determines the
number of columns, up to 7, that you want the menu to contain.

Indicating Whether to Dismiss the Color Menu

The dismiss-color-menu-after-choosing? attribute indicates whether the color
menu remains displayed after you pick a color.

Class-Specific Attributes of Color Parameters

The class-specific attributes of the Color Parameters system table are:

Attribute Description
color-menu- Controls the order in which colors are displayed in menus.
ordering

Allowable values: {hue | intensity | alphabetic}

Default value: hue

colors-on-1st-level- Controls which colors appear in the first level color
color-menu menus.

Allowable values: {color-name [, ...] | standard-set | all | none}

Default value: standard-set

colors-on-2nd-level- Lets you create a subset of colors from the first level colors
color-menu menu. It has the same syntax as the color-on-1st-level-
color-menu attribute.

Allowable values: {color-name [, ...] | standard-set | all | none}

Default value: all

204

Attribute

Data Server Parameters

Description

number-of-columns-
for-1st-level-color-
menu

Allowable values:

Default value:

number-of-columns-
for-2nd-level-color-
menu

Allowable values:

Default value:

dismiss-color-
menu-after-
choosing?

Allowable values:

Default value:

Controls the number of columns to display the 1st level
color menu.

1-7

1

Controls the number of columns to display the 2nd level
color menu.

1-7

3

Specifies how you want to dismiss menus. If yes, G2
dismisses the menus immediately. If no, all of the menus
are left up, and you must dismiss them manually.

{yes | no}

yes

Data Server Parameters

The Data Server Parameters system table lets you control data service.

Specifying a Data Server Alias

The data-server-aliases attribute lets you substitute an alternate name for one or
more data servers. For example, you could use this attribute to create aliases for
each of the available data servers. The syntax for defining a data server alias is:

symbolic-expression implies service through
{inference engine |
g2 [simulator | meter | data server] |
gfi data server |
gsi data server}

205

206

An example is:

robot-controller implies service through gsi data server, process-computers
implies service through gsi data server

GFI and the G2 Simulator are superseded capabilities. For more information, see
Appendix F, Superseded Practices.

More than one alias can imply service through the same data server. Thus, both
robot-controller and process-computers imply service through the G2 Gateway
data server.

Once an alias exists, you can use it in the data-server attribute of a variable to
indicate where G2 obtains a new current value for a variable, though G2 does not
include a Text Editor prompt for any aliases.

Specifying Data Service Scheduling Priority

The priority-of-data-service attribute specifies the default priority at which G2
schedules data server requests.

For more information about scheduling, see Task Scheduling.

Turning on G2 Meters

The g2-meter-data-service-on? attribute determines whether variables that have
G2-meter as their data server receive values.

Although meters use only a small fraction of the available processing time, you
may want to deactivate them when the KB does not need them. To do this, set this
attribute to no. To activate any enabled meters, set this attribute to yes.

If a KB has enabled G2 meter variables and this attribute is set to no, G2 signals an
error. Disable any G2 meter variables to prevent that error.

For a complete description of using G2 meters, see G2-Meters.

Data Server Parameters

Class-Specific Attributes of Data Server Parameters

The class-specific attributes of the Data Server Parameters system table are:

Attribute

Description

data-server-aliases

Allowable values:

Default value:

priority-of-data-
service

Allowable values:

Default value:

g2-meter-data-
service-on?

Allowable values:

Default value:

Specifies which data server is implied by each data server
alias.

dataserver-alias-symbol implies data service through
{inference engine |

g2 simulator |

g2 meter |

g2 data server |

gfi data server |

gsi data server}

GFI and the G2 Simulator are superseded capabilities. For
further information, see Appendix F, Superseded
Practices.

none

Determines the priority at which tasks are scheduled to
service data servers, by specifying an integer between 1
and 10. The highest priority is 1.

1-10
4

Controls whether G2 meter variables receive values.
yes

no

no

207

Debugging Parameters

208

The Debugging Parameters system table controls the kind of error feedback G2
provides while a KB is running. The following sections summarize the debugging
behavior that is specified by the attributes on the Debugging Parameters system
table. For information on how to use these attributes for debugging your KB, see
Debugging and Tracing.

G2 saves the values of these attributes with the KB: warning-message-level,
tracing-message-level, breakpoint-level, source-stepping-level, show-procedure-
invocation-hierarchy-at-pause-from-breakpoint, disassembler-enabled?, and
tracing-file.

Controlling Error and Warning Message Displays

The warning-message-level attribute controls the error and warning messages
that G2 displays in the operator logbook while a KB is running.

This value... Informs G2 to...
0 Not to display any warning or error messages.
1 Display error messages, and display warning

messages when G2 encounters problems in a KB, such
as a rule that it cannot interpret.

2 Display error messages, and display all level 1
warning messages, plus warning messages about
missing information such as a non-existent variable
reference from a data server.

3 Display all error messages, and display level 2
warning messages, plus messages about conditions
that are interesting but do not necessarily indicate
that something is wrong. For example, a level 3
message can inform you that a particular reference in
a rule does not denote an existing item, but this may
not be a problem. Rather, it may be an expected side
effect of the rule.

Debugging Parameters

Specifying Debugging Trace Messages

The tracing-message-level attribute controls the trace messages that G2 displays
in the operator logbook. Trace messages tell you what steps G2 is taking to
evaluate procedures, methods, rules, formulas, and display expressions.

This value... Informs G2 to...
0 Not display any trace messages.
1 Display messages each time G2 begins or finishes

evaluating a procedure, rule, etc.

2 Display messages for major steps; for example, when
evaluating the antecedent of rules and when
evaluating actions in procedures, methods, rules,
formulas, and expressions.

3 Display messages at every step.

Specifying Breakpoints for Debugging

The breakpoint-level attribute tells G2 to halt a running KB at particular times,
called breakpoints, to display a trace message, and to wait for you to
acknowledge the message.

The messages that G2 displays at breakpoints are identical to those of the
corresponding level of trace messages. At a breakpoint, however, in addition to
displaying the trace message, G2 halts and displays a dialog like this:

Invoking-rule RULE-XXX-30.

if the dimensions of any field F >= 10000
then insert F at the end of field-list

Disable debuggingl I Continuel Pause

209

210

G2 cannot continue until you click one of the buttons:

This button... Has this effect...

Disable debugging Changes the value of the tracing-and-breakpoints-
enabled? attribute to no, and continues running
without tracing or breakpoints.

Pause Pauses G2 so that you can view the trace
messages and examine other changes in the state
of your kb. You can also view the current
procedure invocation hierarchy.

Continue Resumes G2. This is the default. Select it by
pressing the Return key.

The commands Load KB, Merge KB, Clear KB, Reset G2, Restart G2, and Delete
Module are not available while G2 is paused at a breakpoint.

Because G2 stops at breakpoints, it does not run in real time when breakpoints are
set. Thus, you should never set breakpoints when G2 is controlling an application
in real time. Breakpoints are convenient, however, when you are running a
simulation that does not run in real time, because you can halt as long as you like
at a breakpoint without altering the simulation behavior.

When you use breakpoint debugging, it is best to change to simulated time. This
has the effect of suspending the real-time clock during debugging. For more
information about using simulated time, see Timing Parameters.

G2 also supports dynamic breakpoints in the Telewindows client. For more
information, see the Telewindows User’s Guide.

The G2 Simulator, which can provide simulation that does not run in real time, is
a superseded capability. For more information, see Appendix F, Superseded
Practices.

Specifying Single-Stepping through Source Code

The source-stepping-level attribute controls whether single-stepping through
procedure source code is enabled. When G2 is single-stepping through source
code, before the next line of source code is executed, it performs a similar action as
when a halt action is executed. In the Telewindows client, the standard Windows
debugger appears, and in the server, a dialog appears that shows the source code
around the line of source code G2 is about to execute, the line numbers, the
contents of the stack, and the local variable bindings.

Debugging Parameters

This value... Informs G2 to...
0 Not allow single-stepping though source code.
1 Allow single-stepping though source code.

For more information, see Stepping Through Procedure Source Code.

Enabling Tracing and Breakpoints for Debugging

Specitying yes for tracing-and-breakpoints-enabled? enables tracing and
breakpoint functionality. This attribute provides a convenient way of turning
tracing and breakpoints on and off without editing the attributes that specify
what items should be traced and at what level they should be traced.

The specification of what and how items should be traced and paused is
determined for the entire KB by the values of the tracing-message-level,
breakpoint-level, and source-stepping-level attributes of the Debugging
Parameters system table; for individual items it is determined by the tracing-and-
breakpoints attribute of the items.

The tracing-and-breakpoints-enabled? attribute is not savable, so each time you
load a KB it has its default value of no. By default, G2 does not stop for any
breakpoints and does not display any trace messages.

See Displaying Trace Messages and Specifying Breakpoints and Tracing on how
to use tracing and breakpoints for debugging your kb.

21

Displaying the Procedure Invocation Hierarchy
while Paused

When G2 halts at a breakpoint, it displays a dialog like this:

About to execute the following operation.
Operation: conclude that the DIMENSIONS
of FF = 30000
Activity: conclude action
Within: FIELD::INITIALIZE(FF)

<- START-FIELD-OPERATIONS()
Local Names:

FIELD: class field = FF Break on exit.

FIELD:INITIALIZE, a method

Disable debuggingl I Continuel Pause

The show-procedure-invocation-hierarchy-at-pause-from-breakpoint attribute
controls whether Pause on the breakpoint dialog runs the Inspect command
show on a workspace the procedure invocation hierarchy. The Inspect command
will be run when this attribute is yes, the default value.

To display the procedure-invocation hierarchy:
= C(lick the Pause button on the breakpoint dialog.

Here is an example of a procedure-invocation hierarchy display:

TOP-LEVEL

START-FIELD-OPERATIONS()
F: class field = FF

FIELD:IMITIALIZE(FF)
FIELD: class field = FF

See Specifying Breakpoints for Debugging for more information about debugging
with breakpoints.

212

Debugging Parameters

Enabling the Display of Disassembled Code

The disassembler-enabled? attribute controls whether disassembled code is ever
displayed.

When the disassemble-enabled? attribute is yes, three changes occur to the G2
environment that facilitate debugging:

® The describe menu choice on a procedure, method, or rule shows the
corresponding byte code representation.

® G2 error messages indicate the byte code instruction that was running when
the error was generated.

® The Inspect command show on a workspace the procedure invocation
hierarchy indicates the byte code instruction that is running for every
procedure invocation.

Also see Showing Disassembled Code.

Saving Tracing Data to a File

To write tracing messages to a file, specify a file name as a text-value for the
tracing-file attribute, and set the enable-explanation-controls attribute in the
Miscellaneous Parameters system table to yes. See Saving Tracing Data to a File
for a detailed description.

Specifying the Display Interval for Explanation Data

The dynamic-display-delay-in-milliseconds attribute allows you to specify the
number of milliseconds that dynamically displayed explanation data remains on
display. You can enter an integer between 0 and 6000. The default value is 200.

213

Class-Specific Attributes of Debugging Parameters

The class-specific attributes of the Debugging Parameters system table are:

Attribute

Description

warning-message-
level

Allowable values:

Default value:

tracing-message-
level

Allowable values:

Default value:

breakpoint-level

Allowable values:

Default value:

214

Controls the error and warning messages that G2 displays
while a KB is running,.

{0 (no warning messages) |

1 (kb errors only) |

2 (kb errors and deficiencies) |
3 (kb errors, deficiencies,

and other conditions) }

2 (KB errors and deficiencies)

Specifies the trace messages that G2 displays in the
operator logbook.

{0 (no trace messages) |
1 (trace messages on entry and exit) |
2 (trace messages at major steps) |

3 (trace messages at every step) }

0

(no trace messages)

Tells G2 to halt a running KB at particular times, called
breakpoints, display a trace message, and wait for you to
acknowledge the message.

{0 (no breakpoints) |

1 (breakpoints on entry and exit) |
2 (breakpoints at major steps) |

3 (breakpoints at every step) }

0 (no breakpoints)

Attribute

Debugging Parameters

Description

source-stepping-
level

Allowable values:

Default value:

tracing-and-
breakpoints-
enabled?

Allowable values:

Default value:

show-procedure-
invocation-
hierarchy-at-pause-
from-breakpoint

Allowable values:

Default value:

disassembler-
enabled?

Allowable values:

Default value:

generate-source-
annotation-info

Allowable values:

Tells G2 to allow single stepping though procedure source
code in the standard Windows debugger in the
Telewindows client.

{0 (no source stepping) |
1 (source stepping)

0 (no source stepping)

Controls whether G2 can display messages or set
breakpoints, regardless of the value of any other system
table attribute or the attribute of any item.

{yes | no}

no

Controls whether Pause on the breakpoint dialog runs this
Inspect command: show on a workspace the procedure
invocation hierarchy.

yes, no

yes

Controls whether disassembled code is ever displayed.

yes, no

no

Controls whether source-code annotation information is
generated when you compile your procedures. The
information makes it possible for G2 to show you which
procedure statement is responsible for an error.

yes, no

215

Attribute Description

Default value: yes

tracing-file Names a file to which tracing data is written.
Allowable values: none or a pathname

Default value: none

dynamic-display- Specifies the number of milliseconds that dynamically
delay-in- displayed explanation data remains on display.
milliseconds

Allowable values: 0 -60000
Default value 200

Drawing Parameters

The Drawing Parameters system table accommodates several options that affect
graphical representation and drawing scheduling within G2. The term drawing
refers to the way in which G2 renders all items that display within a KB, such as
tables, workspaces, icons, and messages, to name just a few.

Specifying Scheduled Drawing

The allow-scheduled-drawing? attribute specifies whether drawing is a scheduled
task. Drawing occurs in one of two modes, scheduled drawing mode (the
attribute is yes), or immediate drawing mode (the attribute is no). Scheduled
drawing is the default mode when you start G2. Immediate drawing is a
superseded capability. For more information, see Appendix F, Superseded
Practices.

216

Drawing Parameters

When scheduled drawing is in effect:

* G2 consolidates drawing commands and eliminates unnecessary redraw and
refresh operations.

® You can invoke KB drawing on demand, using the g2-work-on-drawing
system procedure from within any procedure from which you want drawing
to occur on demand.

® The scheduler can allocate large drawing tasks over a longer interval to avoid
delaying computational processing.

In effect, scheduled drawing lets G2 continue other processing while completing
its drawing tasks. This attribute works in conjunction with paint-mode?. If
scheduled drawing is in effect, paint-mode? must be set to yes.

For a complete description of system procedures, see the G2 System Procedures
Reference Manual. For more information about how the scheduler handles
drawing tasks and priorities, see Task Scheduling.

Specifying the Paint Drawing Mode

The paint-mode? attribute specifies whether the Paint drawing mode (the
attribute is yes), or the XOR drawing mode (the attribute is no) is in effect. Paint
mode is the default when you start G2.

XOR mode is a superseded capability. For more information, see Appendix F,
Superseded Practices.

In Paint mode, icons maintain their individual color patterns without distortion if
you place them directly on top of one another. Paint mode supports the use of full
and defined color regardless of where you place an item, as illustrated next:

217

218

Note

Note

Item menu choices let you choose the layering order of items interactively. For a
description of these menu choices, see Lifting to the Top and Dropping to the
Bottom. System procedures let you change the layering order of items
programmatically.

Controlling the Set of Rendering Colors

The image-palette attribute controls the set of colors G2 uses to render workspace
background images, allowing G2 to allocate more colors than usual.

Displaying Colors on Your System

Most color monitors on which G2 runs can display millions of colors. Because of
certain limitations in display hardware or in current window systems, however,
most monitors display only a limited number of colors at one time. Also, other
running applications affect which colors are available to display at any time.

Each application running on your system competes on a first-come-first-served
basis for the use of available colors. Once an application uses a color, fewer colors
are available. If all of the applications running on a display require the same color
palette, no conflict exists. For instance, if you have a system dedicated to running
G2 and start a second G2 process that requires the same color palette, both G2
processes have the colors they require.

If you start an application on your system prior to running G2 and that
application uses many colors, however, it can effectively prevent G2 from
accessing its full color palette.

On PC platforms, the window with the focus (the foreground window under
Windows) is guaranteed to have a full color palette. When G2 is in the
foreground, it will use any colors it requires from other applications. Whenever
you do not display G2 in the focus window, KB colors can be compromised.

Selecting a Color Palette

G2 can display color images from a graphics image file (GIF) file. When a color
image is drawn in a KB, G2 chooses a color from its current color palette that most
closely matches a given pixel of the image, compromising the color if necessary.
As noted in the example above, the G2 color palette may be reduced to fewer
colors because of another application. The image-palette attribute provides a
means of controlling the set of colors from which G2 chooses.

Drawing Parameters

Note On Windows platforms, if the monitor is set to use more than 256 colors, the color
specified in the image-palette attribute is not used, and the GIF file is displayed
with its true colors.

The image-palette attribute lets you select from 5 fixed palettes and 2 custom
(image-specific) palettes as follows:

Available Palettes Description

black and white Images are drawn in black and white, rendering a
pixel as either black if its intensity is below a

certain threshold, or white if it is above a certain
threshold.

The diagram to the left shows a portion of an
image drawn in black and white.

Images are drawn using only the pure gray colors
from the standard G2 palette. Using standard
grays provides a total of 7 shades of gray: black,
dim-gray, dark-gray, gray, light-gray, extra-light-
gray, and white.

In contrast to the black and white diagram, this
figure shows part of the same image drawn with
standard gray.

standard colors Images are drawn using any of the 63 standard
G2 colors. This is the default. Note that since the
standard G2 palette is not uniformly spread over
all colors, G2 may be unable to render some
continuous-tone images satisfactorily.

extended grays Images are drawn using pure shades of gray from
an extended palette of 64 uniformly-spaced grays.

extended colors Images are drawn using an extended palette of
approximately 64 additional colors, spread
uniformly in color space. Use this if you are using
a full-color image as a workspace background
and the colors are not displaying properly.

Using extended colors is generally the best
compromise when you want to display many
disparate images in a single KB.

219

220

Available Palettes

Description

custom grays from
image-definition

custom colors from
image-definition

The black and white and standard choices do not allocate any more colors than
G2 is already using. The extended grays and extended colors choices allocate

This value lets you define the G2 palette
containing the shades of gray that actually appear
in the image-definition you specify.

If the image definition does not exist, or its notes
attribute is not OK, drawing reverts to standard

grays.

This value lets you define the G2 color palette
containing the colors that actually appear in the
image-definition you specify.

If the image definition does not exist, or its notes
attribute is not OK, drawing reverts to standard
colors.

more colors just for images.

The custom grays and custom colors selection provide you with the most control
over the G2 color palette (subject to the display limitations) by letting you specify
an image file whose colors G2 will use. You could, for instance, create an image
file containing a single row of pixels, each pixel being one of the colors you want
the G2 palette to contain. By specifying this image file as a custom colors value in
the image-palette attribute, the G2 color palette would then contain exactly the
colors you wanted it to use. The image itself would not need to be displayed on a

workspace for its colors to be in use.

Drawing Parameters

Editing the Color Used for Selection

By default, when you select an item on a workspace and when you add an item to
the selection, the selected items appear with a green outline to indicate that they
are selected. For example:

KB ‘Workspace

(44
i
[

You can change the colors that G2 uses for selection by editing the primary-
selection-color and secondary-selection-color attributes of the Drawing
Parameters system table.

Displaying a Visible Grid on Workspaces

The alignment-grid attribute controls a visible grid and a snap grid on
KB workspaces.

The snap grid is disabled by default. To enable it, use the following grammar in
the alignment-grid attribute:

grid [, line color: color] [, line pattern: symbol] [, snap to grid]

where grid can be either an integer, giving the spacing in workspace units for both
Xand Y, or a pair on integers (integer, integer) giving spacings for X and Y.
For example:

100, line color: gray, line pattern: long dash, snap to 10
When given as a structure, the syntax is:

structure

(spacing: sequence(integer, integer),
line-color: symbol,

line-pattern: symbol,

snap-to: sequence(integer, integer))

221

222

The default value is:

structure

(spacing: sequence (50,50),
line-color: the symbol foreground,
line-pattern: the symbol coarse-dot)

The visible grid is invisible by default. To view the grid, do one of the following:
® Choose View > Toggle Visible Grid.
* Enter Ctrl + G with the mouse over a KB workspace.

* Execute the toggle-visible-grid system command, using the g2-system-
command system procedure. For details, see g2-system-command in User
Interface Operations in the G2 System Procedures Reference Manual.

* Set the view-preferences of a KB workspace to visible-grid, or conclude the
visible-grid attribute in the view-preferences structure of a KB workspace,
for example:

conclude that the view-preferences of this workspace =
structure(visible-grid: true)

If the snap grid is enabled, and both a constrain moving ... item configuration and
the snap grid apply to a particular item, then the item configuration takes
precedence and the snap grid is ignored.

For example, here is a workspace whose alignment-grid is set to:

100, line color: gray, line pattern: short dash, snap to 10

T KB Workspace o w1
DOMAIN-OBJECT [E]
N &)
) [= the response-logic-counter of domain-
A3sign object + 1
conclude that the response-logic-counter of
Do domain-ohject = n
K
Breakpaint

b

Drawing Parameters

Interactively Resizing Objects and Changing
Connection Vertices

The show-selection-handles attribute allows you to interactively resize objects,
using selection handles on the object. For example:

¥

|

=

You can also interactively change the connection vertices of a connection, using
handles on the connection. For example:

When show-selection-handles is true, the default, selection handles appear and
the change size menu choice does not appear on items. When show-selection-
handles is false, selection handles do not appear and the change size menu choice
appears on items.

223

Class-Specific Attributes of Drawing Parameters

The class-specific attributes of the Drawing Parameters system table are:

Attribute

Description

allow-scheduled-
drawing?

Allowable values:

Default value:

Notes:

paint-mode?

Allowable values:

Default value:

Notes:

image-palette

Allowable values:

Default value:

224

Specifies whether drawing is scheduled (yes) or
immediate (no).

yes
no

yes

Immediate drawing (attribute is no) is a superseded
capability. For more information, see Appendix F,
Superseded Practices.

Determines the default drawing mode: Paint mode (yes)
or XOR mode (no).

yes
no

yes

XOR mode (attribute is no) is a superseded capability. For
more information, see Appendix F, Superseded Practices.

Determines the palette of colors to use for drawing
background images.

{black and white | standard colors | standard grays |
extended colors | extended grays |
custom colors from image-definition |
custom grays from image-definition}

standard colors

Attribute

Drawing Parameters

Description

primary-selection-
color

Allowable values:

Default value:

secondary-
selection-color

Allowable values:

Default value:

alignment-grid

Allowable values:

Default value:

Notes:

show-selection-
handles

Allowable values:
Default value:

Notes:

The color used as the outline to indicate selection.

Any color

green

The color used as the outline for all subsequent selected
items when adding to a selection.

Any color

green

Controls a visible grid and a snap grid on KB workspaces.
structure

structure

(spacing: sequence (50,50),
line-color: the symbol foreground,
line-pattern: the symbol coarse-dot)

See Displaying a Visible Grid on Workspaces.

Allows you to interactively resize objects, using selection
handles on the object.

truth-value
true

See Interactively Resizing Objects and Changing
Connection Vertices.

225

Editor Parameters

226

The Editor Parameters system table lets you customize some aspects of editing in
a KB.

Specifying the Maximum Number of Names to Show

The maximum-number-of-names-in-menus attribute controls the maximum
number of names that G2 displays in prompt menus in the Text Editor.

For example, if this attribute has a value of 7 and you are editing a rule and can
enter an item name, if more than seven names exist in the KB, G2 does not display
any names in the text editor. If you type the letter s and there are seven or fewer
names that begin with s, G2 displays those names.

Defining the Minimum Text Editor Width

The minimum-width-for-edit-box attribute defines the minimum width at which
the Text Editor is displayed.

This attribute is applicable for both editors (scrolling and non-scrolling). The
default value for this attribute is 0. By default, the scrolling editor is
approximately 500 workspace units wide. Setting this attribute to a value greater
than 500 affects the scrolling editor. Setting it to a lesser value has no effect.

Specifying Whether to Enable Author Recording

The author-recording-enabled? attribute specifies whether G2 maintains user
information about changes made to items that include the authors attribute. The
authors attribute appears in a select number of G2 items. For a full description of
the authors attribute, see Using the Authors Attribute.

Edit Operations Menus and Buttons

You can specify whether G2 automatically pops up an edit operations menu or
edit operations buttons when you are entering text in the Text Editor. These
facilities are controlled by the pop-up-edit-operations-menu and buttons-for-edit-
operations attributes.

Controlling the Display of Calling Signatures

By default G2 displays the calling signature of a procedure or function when you
enter the procedure or function name followed by the left parenthesis in the Text
Editor. You can enable and disable this facility through the show-procedures-
signatures attribute.

Editor Parameters

Displaying the Native Text Editor

The prefer-native-text-editor attribute determines whether to use the native
Windows text editor in Telewindows or whether to use the classic G2 Text editor.
By default, Telewindows uses the native text editor.

For information on how to use the native text editor, see Editing Text in Using
Telewindows in the Telewindows User’s Guide.

Class-Specific Attributes of Editor Parameters

The class-specific attributes of the Editor Parameters system table are:

Attribute

Description

maximum-number-
of-names-in-menus

Allowable values:

Default value:

object-name-menus-
in-upper-case?

Allowable values:

Default value:

number-of-spaces-
to-insert-on-a-tab

Allowable values:

Default value:

Controls the maximum number of names that display at
one time in the Text Editor menus.

any positive integer

7

Controls whether G2 displays object names in uppercase
in Text Editor prompts. When these names are displayed
in uppercase, G2 inserts them in text in upper case as well,
when you select them.

{yes | no}

no

Controls the number of spaces that G2 inserts when you
press the Tab key.

integer

4

227

Attribute

Description

maximum-number-
of-undos-to-
remember

Allowable values:

Default value:

maximum-number-
of-scraps-to-keep

Allowable values:

Default value:

minimum-width-for-
edit-box

Allowable values:

Default value:

author-recording-
enabled?

Allowable values:

Default value:

pop-up-edit-
operations menu

Allowable values:

Default value:

228

Specifies how many text editing operations G2 remembers
and allows you to Undo. G2 allows you to undo any of the
available edit operations.

integer

100

Sets the maximum number of text pieces, or scraps, kept
by the G2 text editor as you cut scraps from the text editor
window, or copy them into the scrapbook. Use an integer
to set the number of scraps kept. If you exceed this limit,
the oldest scrap is thrown away.

integer

50

Determines the minimum width of the Text Editor box.

integer

0

Determines whether G2 maintains user information about
changes made to items that include the authors attribute.

{yes | no}

yes

Controls whether the edit operations menu comes up in
the Text Editor when text is selected. This menu contains
these menu choices: cut, copy, paste, delete, insert, move,
and cut and insert.

{yes | no}

yes

Attribute

Editor Parameters

Description

buttons-for-edit-
operations

Allowable values:

Default value:

show-procedure-
signatures?

Allowable values:

Default value:

smart-space-
insertion

Allowable values:

Default value:

prefer-native-editor

Allowable values:

Default value:

Controls whether edit operations buttons appear when
entering text in the Text Editor.

{yes | no}

yes

Determines whether G2 should automatically display the
calling signature of a procedure or function when you
enter the procedure or function name followed by the left
parenthesis in the Text Editor.

{yes | no}

yes

Controls whether or not to insert spaces when pasting
copied text in the classic G2 text editor. The default value
is yes, which inserts a space before and after the pasted
text. To avoid inserting spaces, set the attribute to no.

{yes | no}

yes

Determines the type of text editor to use in Telewindows.
The default value is yes, which uses the Windows text
editor. To use the classic G2 text editor, set prefer-native-
editor to no.

You can also configure this attribute when you launch the
text editor, using the g2-ui-launch-editor system
procedure.

{yes | no}

yes

229

Fonts

The Fonts system table controls which font G2 uses for attribute tables,
statements, free text, editing, and descriptions. G2 supports three font sizes:
small, large, and extra-large.

Note The font-for-attribute-tables and font-for-editing attributes of the Fonts System
Table only affect the text-editor and attribute-table fonts in the g2-5.x window
style. These attributes have no effect on the standard and standard-large window
styles. See G2 Window Styles for a discussion of the three window styles.

Class-Specific Attributes of Fonts

The class-specific attributes of the Fonts system table are:

Attribute

Description

font-for-attribute-
tables

Allowable values:

Default value:

font-for-attribute-
displays

Allowable values:

Default value:

230

Controls the size of the font used for the text on attribute
tables in the g2-5.x window style.

{small | large | extra-large}

large

Controls the size of the font that G2 uses for attribute
displays for all window styles.

{small | large | extra-large}

small

Attribute

Description

font-for-statements

Allowable values:

Default value:

font-for-free-text

Allowable values:

Default value:

font-for-editing

Allowable values:

Default value:

font-for-
descriptions

Allowable values:

Default value:

Controls the size of the font used for the text in statements
for all window styles; thus, this attribute controls how
rules, generic formulas, generic simulation formulas, units
of measure, and procedures appear.

The G2 Simulator, which can use generic simulation
formulas, is a superseded capability. For more
information, see Appendix F, Superseded Practices.

{small | large | extra-large}

large

Controls the size of the font used for free text and
borderless free text for all window styles.

{small | large | extra-large}

large

Controls the size of the font used in Text Editor
workspaces in the g2-5.x window style.

{small | large | extra-large}

large

Controls the size of the font that G2 uses in describing an
item for all window styles.

{small | large | extra-large}

small

Fonts

231

G2 Graphical Language (G2GL) Parameters

For information about G2GL, see G2 Graphical Language (G2GL).

The class-specific attributes of the G2GL Parameters system table are:

Attribute

Description

time-between-time-
slice-for-execution-
of-thread

Allowable values:

Default value:

break-on-all-
execution-faults

Allowable values:

Default value:

suppress-
unspecified-partner-
link-variable-type-
faults

Allowable values:

Default value:

name-of-window-for-
g2gl-execution-
displays

Allowable values:

232

An extra amount time that the G2 scheduler should wait
between time slices for a given G2GL process to run, in
seconds. The default is none, which means no additional
waiting time is required.

integer

none

Whether to show an individual execution display with
appropriately placed breakpoints whenever any kind of
fault occurs in a G2GL process, including system-defined
faults.

yes | no

no

Whether to suppress compilation errors and/or execution
faults when the type of a partner link variable is not
specified. The default value is yes, which means you can
create G2GL processes that communicate, without having
to specify a partner link type. G2GL does not require
partner link types, whereas BPEL does. For more
information, see BPEL Compliance.

yes | no

yes

The name of a g2-window on which to display individual
execution displays. The default is none, which uses every
logged-in window.

symbol

Attribute

G2 Graphical Language (G2GL) Parameters

Description

Default value:

default-scale-for-
execution-displays

Allowable values:

Default value:

compile-texts-for-
execution-displays

Allowable values:

Default value:

time-between-mini-
tracing-steps

Allowable values:

Default value:

time-between-maxi-
tracing-steps

Allowable values:

Default value:

mini-tracing-step-
size

Allowable values:

none

The default scale for individual execution displays.

float

1.0

Whether individual execution displays should show text.
The default value is no, which omits text from individual
execution displays.

yes | no

no

The time between mini tracing steps in individual
execution displays, in seconds. A mini tracing step includes
all but the last step as the thread token moves from one
activity to another.

float

0.02

The time between maxi tracing steps in individual
execution displays. A maxi tracing step is the last or only
step, depending on the mini tracing steps size.

float

0.5

The size of each step when tracing is enabled, in workspace
units. By setting the mini tracing step to a larger number,
all tracing steps become maxi steps.

integer

233

Attribute

Description

Default value:

g2gl-activity-elbow-
room

Allowable values:

Default value:

default-thread-token-
class

Allowable values:

Default value:

default-thread-token-
color

Allowable values:

Default value:

10

The minimum distance between a thread token and an
activity icon, in workspace units.

integer

2

The class used for the thread token icon in individual
execution displays when debugging.

symbol

g2gl-standard-thread-token

The color used for the thread token icon.

symbol

coral

Inference Engine Parameters

The Inference Engine Parameters system table controls computational aspects of
the inference engine.

Limiting the Depth of Recursion

The recursion-limit attribute limits the depth of recursion for user-defined
functions. This limit does not affect procedures at all. If user-defined functions
extend beyond the recursion limit, G2 fails to evaluate the function and displays a
level 1 warning message, indicating that the user-defined function is in an infinite
recursion or that the recursion limit is too low.

234

Inference Engine Parameters

Defining the Timeout for Getting a Variable Value

The timeout-for-variables attribute defines how much time G2 allows before
concluding that it has failed to receive a value for a variable. The default is
30 seconds. Specify none if you do not want variables to time out.

When a variable fails to receive a value, G2 invokes all of the whenever rules
containing fails-to-receive-a-value statements for that variable. For example, if the
variable temperature-sensor-1 fails to receive a value within the time interval that
the timeout-for-variables attribute specifies, G2 invokes the following whenever
rule for that variable:

whenever temperature-sensor-1 fails to receive a value
post "Temperature-sensor-1 is not responding.”

Specifying the Timeout for Rule Completion

The timeout-for-inference-completion attribute specifies the amount of time a rule
has to complete. If the rule does not complete in this time, it is considered failed.
When G2 is evaluating an expression, if a rule cannot be completed immediately
(because a variable does not have a current value and G2 cannot immediately get
one through backward chaining or data service), the rule goes to sleep. G2
temporarily stops evaluating the expressions in the rule. The variable that needs a
value will wake up the expression when the value is available. If the timeout for
the rule occurs before the rule awakens, the rule tries one last time to execute, and
then completes whether or not it succeeds.

This attribute lets you control when inferencing occurs. If rules did not have
timeouts, they could reawaken long after the conditions that cause G2 to invoke
them end.

You can override the timeout-for-inference-completion attribute for a particular
rule with that rule's timeout-for-rule-completion attribute. For example, if you
want one rule to have up to 1 minute to complete, but all other rules to have

30 seconds to complete, set the timeout-for-inference-completion system table
attribute to 30 seconds and the special rule's timeout-for-rule-completion attribute
to 1 minute.

The default is 30 seconds. Specify none if you do not want rules to time out.

Specifying the Retry Interval for a Variable Value

The retry-interval-after-timeout attribute specifies the number of retries for a
variable value. In this context, the term retry refers to when G2 checks to see if a
variable has received a value after it initially fails to receive one. The value of this
attribute determines how long G2 waits before a retry. Note that these guidelines
for variable retry also apply to a GSI variable whose data server is gsi-data-server.

235

Attribute

When the retry-interval-after-timeout attribute has a time interval value, G2
requests a value for the variable immediately when the variable exceeds the time
interval that the timeout-for-variables attribute specifies, and continues to do so
every retry interval. For example, if the retry-interval-after-timeout is 2 minutes,
and a variable fails to receive a value within the timeout-for-variables interval, G2
sends out an additional request every 2 minutes until the variable receives a
value.

Setting this attribute to do-not-retry prevents G2 from retrying a variable.

Specifying the Fuzzy Truth Threshold

The truth-threshold attribute specifies the threshold for fuzzy truth expressions, as
described in Producing Fuzzy Truth Values from Relational Operations.

This attribute can have a value from 0 to 1. Fuzzy truth expressions that evaluate
to less than the threshold are false, while those that are equal to or greater than
the threshold are true. If, for example, the truth-threshold attribute is set to 0.5 and

the antecedent to a rule has a truth value of 0.6, the antecedent is true and the rule
fires. The default truth threshold is 0.8.

Class-Specific Attributes of the Inference Engine
Parameters

The class-specific attributes of the Inference Engine Parameters system table are:

Description

recursion-limit Limits the depth of recursion for user-defined functions.

Allowable values: integer

Default value: 50

timeout-for- Determines how much time G2 allows before concluding

variables

236

that it is has failed to receive a value for a variable.

Allowable values: {time-interval | none}

Default value: 30 seconds

KB Configuration

Attribute Description

timeout-for- Specifies the amount of time a rule has to complete.
inference-

completion

Allowable values: time-interval

Default value: 30 seconds

retry-interval-after- Tells G2 how often to retry for a value after a variable fails

timeout

to receive one.

Allowable values: {time-interval | do not retry}

Default value: 1 minute

truth-threshold Determines the threshold for fuzzy truth expressions.

Allowable values: {number true | true | false}

Default value: .800 true

KB Configuration

The KB Configuration system table acts as the root of the configuration hierarchy
that operates within the workspace hierarchy.

Specifying Item Configurations for the KB

The item-configuration attribute determines the default configurations for the
entire KB. The defaults are as follows:

configure the user interface as follows:
unless in administrator mode:

attributes visible for item exclude additionally: item-configuration;

attributes visible for kb-restrictions exclude:
main-menu-user-restrictions, keyboard-command-restrictions,
initial-g2-user-mode-for-this-kb;

menu choices for item exclude additionally: describe-configuration

You can specify any appropriate configurations that your KB may require. For
more information about available configurations, see Configurations.

237

238

Note

Restricting Main Menu Options

The main-menu-user-restrictions attribute lets you specify which Main Menu
choices, if any, you wish to restrict. For example, you may want your KB to
exclude the change mode menu option in all user modes. Enter this statement to
accomplish this:

unless in administrator mode: main menu choices
exclude absolutely: change mode

Providing or Restricting Global Keyboard
Commands

Use the keyboard-command-restrictions attribute to restrict global or workspace

commands (such as center-origin). An example is:

when in proprietary mode:
global keyboard commands exclude: center-origin

You cannot restrict commands that begin with the Control key, such as
Control + y to display the login dialog.

Setting the Initial User Mode for a KB

You can specify the initial user mode for a KB by entering the mode as the value
of the initial-g2-user-mode-for-this-kb attribute.

Noting Your Optional Modules

The authorized-optional-modules attribute lists the license type, license option,
and any optional modules from your authorization file (g2 .ok) that are currently
available for your machine. For instance, if you purchased an Online license with
a Developer’s option, the value of this attribute will be:

online

You cannot change this attribute.

Simulating Optional Modules

The simulated-optional-modules attribute lets you simulate an optional module
less powerful than the one for which you are licensed.

Typically, you will use this facility to test KB behavior under the license with
which you intend to deploy the application. Simulating an optional license
module remains in effect until you change this attribute value. A simulation mode
is not saved with a KB.

KB Configuration

You can simulate any license option less powerful than your own licensing
options or optional modules that you have purchased. For instance, if you are
developing a KB using a G2 Online license, with the Development option, you can
simulate all of the other less-powerful options: restricted, runtime, or embedded.
Simulating a less powerful license option does not prevent you from accessing the
KB Configuration system table so that you can revert to your license option.

The possible values for this attribute include all of the optional modules that you
can purchase or include with G2, and the various types of licenses available that
are less powerful than your own license option.

Note For a description of license types, license options, and optional modules available
for G2, see your Gensym representative for a copy of the latest price list.

While you can enter more than one selection from the text editor (such as
japanese and runtime), some combinations of choices are invalid. For example,
even though the text-editor permits such an entry, it does not make sense to enter
two values like restricted-use and embedded, because you can simulate only one
optional module at a time.

When you enter an optional module to simulate, the notes attribute of the KB
Configuration system table indicates exactly what license is being simulated,
shown next, for example:

KB-CONFIGURATION

Mates | Ok, and note that G2 is currently simulating a
runtime license far this machine with the
following details. Wyarning: the simulation
does not include CHINESE hecause it is not
licensed. The simulation includes GFI, ICP,
and G31. The simulation does not include AL,
JP, AL, G1, KOREANM, MUPEC, or JAPAMESE.

Note Some Gensym internal-use only option names appear in the notes attribute
during license simulation.

239

Class-Specific Attributes of KB Configuration

The class-specific attributes of the KB Configuration system table are:

Attribute

Description

item-configuration

Allowable values:

Default value:

main-menu-user-
restrictions

Allowable values:

Default value:

keyboard-
command-
restrictions

Allowable values:

Default value:

initial-g2-user-
mode-for-this-kb

Allowable values:

Default value:

240

The KB-level configuration statements.

For a complete description of using configuration
statements, refer to Configurations.

SeeSpecifying Item Configurations for the KB.

Lets you restrict all menu choices on the Main Menu. The
default is none.

For a complete description of using configuration
statements, refer to Configurations.

none

Lets you exclude or include global keyboard commands
while in a user mode.

For a complete description of using configuration
statements, refer to Configurations.

none

Specifies a default user mode for the KB. The default is
none, which means that the user is in administrator mode
(the only system-defined user mode).

For a complete description of user modes, refer to
Configurations.

none

Attribute

Language Parameters

Description

authorized-optional-
modules

Allowable values:

Default value:

simulated-optional-
modules

Allowable values:

Default value:

The modules for which your G2 process is authorized.

none, icp, g1, offline, online, runtime,
restricted-use, embedded, japanese,
korean, dfi, gsi

GFl is a superseded capability. For further information,
see Appendix F, Superseded Practices.

A list of the current license modules.

The optional module(s) to simulate.

do not simulate, none, icp, offline, online,
runtime, restricted-use, embedded, japanese,
korean, dfi, gsi

GFl is a superseded capability. For further information,
see Appendix F, Superseded Practices.

do not simulate

Language Parameters

The Language Parameters system table lets you set the current language for a KB.
The current language may be different than the default language, as described
under Setting the Current Language.

Specifying the Current Language

The current-language attribute specifies the default language for a KB. This
language can be overridden by users accessing G2 through Telewindows and

either specifying another language as a command-line option, or changing the
default language for the G2 window.

For a description of using command-line options, see Appendix A, Launching a

G2 Process. For an explanation of specifying a language for a G2 window, see

Supporting a Window-Specific Language.

241

Attribute

Using a Text-Conversion-Style

You can specify the name of a text-conversion-style item in the attribute of the
same name.

For a complete description of text-conversion-style items, see Working with Text
Conversion Styles.

Class-Specific Attributes of Language Parameters

The class-specific attribute of the Language Parameters system table is:

Description

current-language Specifies which language to use by activating a set of

predefined menu translations within a KB.

Allowable values: {symbol | english | russian | japanese | korean}

Default value: english

text-conversion- Specifies the text-conversion-style item to use for the KB.

style

Allowable values: text-conversion-style: symbol

Default value: none

Logbook Parameters

242

The Logbook Parameters system table controls the size, number, and behavior of
the operator logbook pages.

The first seven attributes of this system table after item-configuration and the
spacing-between-entries attribute are expressed in workspace units, which is one
pixel when the workspace is scaled to full size, and proportionally larger or
smaller when the workspace is scaled up or down.

Defining the Logbook Page Size

The width-for-pages and height-for-pages attributes defines the size of the
logbook pages. The default values are 345 and 400, respectively. Entering a lower
value in either of these attributes reduces the page size, while entering a higher
number increases it.

Logbook Parameters

Specifying the Margin for Logbook Messages

The margin-for-pages attribute specifies the amount of space left at the edge of
messages upon each logbook page.

Defining Where to Position Logbook Pages

The x-offset-for-next-page and y-offset-for-next-page attributes defines where G2
positions each page of the logbook in relation to the previous page.
Specifying Where to Position the Logbook

The x-offset-for-logbook and y-offset-for-logbook attributes specifies where G2
positions each logbook in relation to the G2 window. This diagram illustrates
several of the logbook options:

Y offset for next page Y offset for logbook
X offset
for next‘l (Operator Loghook 16 Mov 2005 ¥ A& Page 1
page Operator Loghook 16 Mov 20035 W A Page 3 |

[— X offset for logbook

#3 1.36:33 pm. Pause while running KEB. You
may resume, reset, or restart.

es.kh"

Controlling How Many Logbook Pages to Show

The maximum-number-of-pages-to-show attribute controls the number of
logbook pages that G2 keeps visible on the screen. G2 always shows at least a
small part of each of these pages on the screen, even if you try manually to move
them off the screen.

243

244

Note

Note

Note

By selecting the up and down arrows at the top of any logbook page, you can turn
the logbook pages that are visible, as well as those that are not visible but in
memory. When you reach the maximum number of pages, G2 hides the oldest
pages, which are those with the smallest numbers.

Controlling the Number of Logbook Pages

The maximum-number-of-pages-to-keep-in-memory attribute controls the number
of logbook pages that G2 keeps in memory, including the pages that are currently
visible at any time.

By selecting the up and down arrows at the top of any logbook page, you can flip
through the logbook pages that are visible and those that are not visible but in
memory. When you reach the maximum number of pages, G2 discards the oldest
pages, which are those with the smallest numbers.

The number-of-pages-to-shed-at-limit attribute determines how many logbook
pages to discard when the maximum-number-of-pages-to-show limit has been
reached.

The value of maximum-number-of-pages-to-keep-in-memory should be always
equal or larger than maximum-number-of-pages-to-show, otherwise G2 will
forcedly align maximum-number-of-pages-to-keep-in-memory with the value of
maximum-number-of-pages-to-show to be able to hold all shown pages in
memory.

Displaying the Native Logbook

The prefer-native-logbook attribute determines whether to use the native G2
logbook in Telewindows or whether to use the G2 classic logbook. By default, the
G2 Operator Logbook appears in a Windows docking pane when viewed through
Telewindows and is docked to the upper-right corner of the overall window.

The default value is yes, except when loading KBs saved in G2 Version 8.1 or
earlier, in which case the value is no.

The native logbook is only supported in Telewindows Next Generation
(twng.exe).

If the lift-logbook-to-top-when-new-pages-are-added? attribute in the Logbook
Parameters system table is no and prefer-native-logbook is yes, the native logbook

Attribute

Logbook Parameters

is initially hidden. When lift-logbook-to-top-when-new-pages-are-added? is yes,
the native logbook is initially visible and is shown whenever a message is added.

The native logbook pane accepts the following keyboard and mouse commands:
® Leftclick — Select message.

® Right click — Display message menu.

* Left drag on unselected area — Select text region.

® Left drag on selected text — Drag and drop text to another application, such
as Word.

® Control + C — Copy selected text.

* Control + A — Select all text.

* Tab — Select next message.

® Shift + Tab — Select previous message.
® Escape — Deselect all.

* Control + - (minus) — Zoom out.

* Control + + (plus) — Zoom in.

* Control + 0 — Normal zoom.

* PageUp, PageDown, Home, End, UpArrow, DownArrow — Scroll the view.

Include Date in Messages

The include-date-in-messages attribute controls whether to include date in
logbook messages. If yes, each message will have current date (year, month, day)
included. If no, only current time (hour, minute, second) is included.

Default Docking Position

The default-docking-position attribute controls the default docking position (top,
bottom, left, right) of the logbook, by default the docking position is right.

Class-Specific Attributes for Logbook Parameters

The class-specific attributes of the Logbook Parameters system table are:

Description

width-for-pages Determines the logbook page width

245

Attribute Description
Allowable values: integer
Default value: 345

height-for-pages

Allowable values:

Default value:

margin-for-pages

Allowable values:

Default value:

x-offset-for-next-
page

Allowable values:

Default value:

y-offset-for-next-
page

Allowable values:

Default value:

246

Determines the logbook page height.
integer

400

Determines the amount of space around the messages that
appear on the logbook.

integer
5

Determines where new pages are horizontally positioned
relative to the previous page.

integer

-5

Determines where new pages are vertically positioned in
relation to the previous page.

integer

-28

Attribute

Logbook Parameters

Description

x-offset-for-logbook

Allowable values:

Default value:

y-offset-for-logbook

Allowable values:

Default value:

maximum-number-
of-pages-to-show

Allowable values:

Default value:

number-of-pages-to-
shed-at-limit

Allowable values:

Default value:

spacing-between-
entries

Allowable values:

Default value:

Determines where the logbook is horizontally positioned
in relation to the G2 window.

integer

10

Determines where the logbook is vertically positioned in
relation to the G2 window.

integer

-10

Controls the number of logbook pages that G2 keeps
visible on the screen.

integer

3

Controls the number of logbook pages that G2 discards
when the maximum number of pages to show has been
reached.

integer

1

Controls the amount of vertical spacing between message
units. Changes to this parameter do not affect existing
messages.

integer

10

247

Attribute

Description

log-inform-
messages?

Allowable values:

Default value:

maximum-number-
of-pages-to-keep-in-
memory

Allowable values:

Default value:

lift-logbook-to-top-
when-new-pages-
are-added?

Allowable values:

Default value:

prefer-native-
logbook

Allowable values:

Default value:

include-date-in-
messages

248

Determines whether inform messages appear on both the
message board and the logbook or just the message board.

When set to no, messages appear only on the message
board.

{yes | no}

no

Controls the number of logbook pages that G2 keeps in
memory, including the pages that are currently visible at
any time.

integer

200

Specifies how G2 adds new pages to the logbook. If yes,
G2 stacks all of the existing logbook pages on top of each
other and puts the new page on top of the stack. If no, G2
staggers the pages so that you can see a part of each one.

{yes | no}

yes

Specifies whether to use the native Windows logbook or
the classic G2 Operator Logbook. If yes, displays the G2
Operator Logbook in a Windows docking pane when
viewed through Telewindows. If no, display the classic G2
Operator Logbook.

{yes | no}

yes

Specifies whether to include date in logbook messages. If
yes, each message will have current date (year, month,
day) included. If no, only current time (hour, minute,
second) is included.

Log File Parameters

Attribute Description
Allowable values: {yes | no}
Default value: no

default-docking-
position

Allowable values:

Default value:

Specifies the default docking position of the logbook.

{top | bottom | left | right}

right

Log File Parameters

The Log File Parameters system table lets you write logbook messages to a file,
called a log file. Messages in the log file have the same format as those on the
logbook page. Although logbook page headers are not included in the file, you
can infer the date of the message from the write date of the file.

Saving a Log File

The log-file-enabled? attribute specifies whether logbook messages should be

written to a log file. Setting this option to yes immediately creates a log file, but
does not begin writing to the file. Instead, it buffers data that will be written to the
file when this option is set back to no.

When this option is yes, G2 begins to buffer messages, regardless of whether G2
is running or whether the tracing-and-debugging-enabled? attribute of the
debugging-parameters system table is set to yes. If you reset, restart, or pause G2,
logbook messages are still buffered as long as log-file-enabled? remains yes.

When you change the option to no, G2 automatically writes the buffered
information to the log file and closes the current log file. Subsequently setting this
option to yes and then to no appends interim data to the original log file, until G2
reaches the limit set in the when-to-close-current-log-file-and-open-next-one
attribute, described in Defining When to Close a Log File. If an error occurs in
locating or writing to the log file, G2 signals an error and sets log-file-enabled? to
no.

249

250

Specifying the Log File Directory Location

The directory-for-log-files attribute specifies the directory in which G2 writes log
files. The default value, default, indicates the directory from which you loaded the
current KB. If you have not started a KB, the default directory is the one from
which you started G2. Enter a directory name as a text value and complete the
pathname with a closing path delimiter as in:

"c:\myname\test-kbs\"
" /home/myname/test-kbs/"

You cannot edit this attribute if the log-file-enabled? attribute is yes.

Specifying a Log File Root Name

The root-name-for-log-files attribute specifies the naming convention G2 uses
when generating each log file and its version number. You can enter a fully
qualified pathname, or a prefix file name as follows:

Value Description

"g2-log-" Specifies that G2 prefaces the log file name with:
"g2-log-" and places the file in the directory specified
in the directory-for-log-files attribute.

file pathname Must be a string specifying that the name contains a
root name (given by you) and a positive number. The
number indicates the number of files already written
plus the current file. It has the form:

root-name number-of-files-written
For example, mylog2 has root name mylog, and the file

is the second of two files written.

You cannot edit this attribute if the log-file-enabled? attribute is set to yes.

Specifying the Current Log File

The current-log-file attribute displays the name of the current log file. You cannot
edit this attribute.

G2 selects the current log file according to the following criteria:

* Ifno log files have yet been written, using the current root and directory
names, the current file has the form root-namel.

* Iflog files have already been written, using the current root and directory
names, the current file has the form:

Log File Parameters

root-name number-of-files-already-written + 1

When G2 reaches the limit specified in the maximum-number-of-log-files attribute,
the next file is: root name1. Subsequent log files have the form shown in the
second bullet. Thus the original files are overwritten.

Defining When to Close a Log File

The when-to-close-current-log-file-and-open-next-one attribute controls when to
close the current log file and create the next file. You can specify that G2 should
close the log file after:

® A specific number of messages.
* A given time interval since the file was opened.

* A specific number of messages or a given time interval since the file was
opened, whichever occurs first.

Examples are:

after 3 minutes

after 100 messages

after 3 minutes or 100 messages, whichever comes first
after 100 messages or 5 minutes, whichever comes first

However, when you set the log-file-enabled? attribute to no, G2 closes the current
log file automatically, regardless of whether the criteria you set has been met. If
you then reset log-file-is-enabled? to yes without changing the directory and root
names, the current log file remains unchanged. G2 then appends the succeeding
messages to the end of the existing log file.

Defining When to Back Up Log Files

The when-to-back-up-current-log-file-other-than-when-closing attribute controls
when G2 should back up the current log file other than when it closes the file.
Backing up closes and reopens the file for appending. You can specify that G2
should back up the log file after a specific number of messages, or after a given
time interval since the file was opened, or both, in either order, whichever occurs
first. Here are examples:

after 3 minutes

after 100 messages

after 3 minutes or 100 messages, whichever comes first
after 100 messages or 5 minutes, whichever comes first

251

Class-Specific Attributes of Log File Parameters

The class-specific attributes of the Log File Parameters system table are:

Attribute

Description

log-file-enabled?

Allowable values:

Default value:

directory-for-log-
files

Allowable values:

Default value:

root-name-for-log-
files

Allowable values:

Default value:

current-log-file

Allowable values:

Default value:

252

Determines whether logbook messages are written to a log
file.

{yes | no}

no

Specifies the directory in which G2 writes log files.

any directory path name as a string
default

default

Specifies the naming convention for log files.

any directory or file path name as a string

llgz_log_ll

The name of the current log file.

current log file name
none

none

Attribute

Log File Parameters

Description

when-to-close-
current-log-file-and-
open-next-one

Allowable values:

Default value:

when-to-back-up-
current-log-file-
other-than-when-
closing

Allowable values:

Default value:

maximum-number-
of-log-files

Allowable values:

Default value:

Controls when to close the current log file and create the
next.

See Defining When to Close a Log File.

after 100 messages or 1 day, whichever comes first

Controls when G2 should back up the current log file
other than when it closes the file.

See Defining When to Back Up Log Files.

never

Specifies the maximum number of log files with the
specified root name that G2 can write to the specified
directory. After G2 reaches the maximum number of files,
the earliest files are overwritten as needed.

any positive integer less than 1000
none

10

253

Menu Parameters

254

Note

The Menu Parameters system table controls how menus are displayed in G2 and
how the menu selections appear within the menu box.

Specifying How to Align Menu Choices

The alignment-for-menu-choices attribute specifies how G2 displays menu
selections. The left value specifies a left-justified display, right specifies a right-
justified display, and center specifies a centered display. The default for this
attribute is left.

The alignment-for-menu-choices attribute only affects the alignment of menu
choices in the g2-5.x window style. This attribute has no effect on the standard
and standard-large window styles. See G2 Window Styles for a discussion of the
three window styles.

Allowing Multiple Menus to Display

The when-to-allow-multiple-menus attribute determines whether you can display
on a workspace more than one copy of the same menu at a time, or whether you
can display more than one menu at a time as follows:

This value... Causes G2 to...

always Allow as many copies of a menu as you want to
position on the workspace by clicking with your
mouse.

never Allow one copy of a menu for one purpose to be

displayed at any given time.

for different Display more than one menu at a time if the menus

selections are for different items. For example, you can display
the Main Menu and the Logbook Page menu at the
same time.

Allowing Walking Menus

The walking-menus? attribute determines whether G2 displays walking menus.
When the menu attribute is set to yes, G2 lets you choose from submenus by
dragging the mouse, leaving the original menu visible. When the attribute is set to
no, you must click on a choice and dismiss the original menu to display a
submenu.

Menu Parameters

The walking-menus? attribute defaults to a value of no for KBs created in
previous versions of G2.

The next figure shows part of the KB Workspace menu with two submenus. This
display results from:

1 Opening the KB Workspace menu.

2 Dragging the mouse pointer to the right-hand portion of the New Display
menu choice. This causes G2 to display the New Display submenu.

3 Dragging the mouse pointer to the readout-table menu choice. This causes G2
to display the next choose a class submenu.

This figure shows walking menus in standard window style. The standard
window styles do not have a title bar on submenus.

KB Workspace
Mew Object r
Mew Fule

readout-table 4| readout-table
dial digital-clock

Mew Display
Mew Definition
Mew Free Text meter

Mew Button trend-chart
Mame chart

Clone “Workspace freeform-tahle
Tahle

Color r
Move

Hide “Workspace

Lift to Tap

Crop to Bottam

Shrink. Wrap

Delete Workspace

Disable

Main Menu r
Operate On Area
Cescribe

Tahle Of Hidden Attributes
Describe Configuration
Print

¥ ¥ YA

Controlling the Display of Developer Menu Bar

The automatically-show-developer-menu-bar attribute allows you to control when
the developer menu bar appears in Telewindows. The default value is on pause,
reset, or initial connection, which displays the developer menu bar when the KB is
paused or reset, and when the initial connection is to G2 occurs. The other options
are: on, which always shows the developer menu bar, and never, which never
shows it.

255

Class-Specific Attributes of Menu Parameters

The class-specific attributes of the Menu Parameters system table are:

Attribute

Description

alignment-for-menu-
choices

Allowable values:

Default value:

when-to-allow-
multiple-menus

Allowable values:

Default value:

walking-menus?

Allowable values:

Default value:

automatically-show-
developer-menu-bar

Allowable values:

Default value:

256

Specifies how G2 displays menu selections.

{left | right | center}
left

Determines whether you can display more than one menu
at a time.

{never | always | for difference selections }

never

Determines whether G2 has walking menus.
{yes | no}

yes

Determines whether the developer menu bar appears in
Telewindows.

on pause, reset, or initial connection | on | never

on pause, reset, or initial connection

Message Board Parameters

Message Board Parameters

Note

Note

The Message Board Parameters system table lets you control the width of the
message board, its height, the amount of spacing between entries, the maximum
number of entries, and whether or not G2 highlights new messages.

These are the class-specific attributes of the Message Board Parameters system
table. The values of the first four attributes after item-configuration are expressed
in workspace units. A workspace unit is one pixel when the workspace is scaled
to full size, and proportionally smaller when the workspace is scaled down.
Changes to this system table do not affect existing items.

Defining the Minimum Display Interval

The minimum-display-interval attribute defines the length of time that the message
appears. If the validity interval of the antecedent of the rule is longer than the
value of this attribute, that is how long the message displays. The default is
indefinite.

If you set the minimum-display-interval to 0, messages appear only for as long as
they are true. However, since the validity interval for some messages can be very
short, you will probably want to set a minimum display interval to give the
operator time to read the message.

Displaying the Native Message Board

The prefer-native-message-board attribute determines whether to use the native
G2 Message Board in Telewindows or whether to use the classic G2 Message
Board. By default, the G2 Message Board appears in a Windows docking pane
when viewed through Telewindows and is docked to the upper right corner of
the overall window.

The default value is yes, except when loading KBs saved in G2 Version 8.1 or
earlier, in which case the value is no.

The native message board is only supported in Telewindows Next Generation
(twng.exe).

The native Message Board pane accepts the following keyboard and mouse
commands:

® Leftclick — Select message.

* Right click — Display message menu, which includes the go to message
origin menu choice.

257

Left drag on unselected area — Select text region.

Left drag on selected text — Drag and drop text to another application, such
as Word.

Control + C — Copy selected text.
Control + A — Select all text.

Tab — Select next message.

Shift + Tab — Select previous message.
Escape — Deselect all.

Control + - (minus) — Zoom out.
Control + + (plus) — Zoom in.

Control + 0 — Normal zoom.

PageUp, PageDown, Home, End, UpArrow, DownArrow — Scroll the view.

Class-Specific Attributes of Message Board
Parameters

The class-specific attributes of the Message Board Parameters system table are:

Attribute Description
initial-width-of- Controls the initial width of the message board. The width
message-board can change to accommodate long messages.

Allowable values: integer

Default value: 345

initial-height-of- Controls the initial height of the message board. The
message-board height changes if it needs to show all of the current
messages.

258

Allowable values: integer

Default value: 400

Attribute

Message Board Parameters

Description

spacing-between-
entries

Allowable values:

Default value:

maximum-number-
of-entries

Allowable values:

Default value:

highlight-new-
messages?

Allowable values:

Default value:

minimum-display-
interval

Allowable values:

Default value:

Controls the amount of vertical spacing between
messages.

integer

10

Controls the maximum number of messages that can
appear on a message board. After G2 reaches the limit set
by this attribute, it deletes the oldest message to make
room for each new message.

integer

10

Controls whether G2 highlights a new message. If yes, G2
highlights each new message for the first second that it
appears on the message board. If no, G2 does not highlight
new messages.

{yes | no}

yes

Indicates how long the message should appear on the
message board after an inform action.

{time-interval | indefinite}

indefinite

259

Attribute Description

prefer-native- Specifies whether to use the native Windows message

message-board board or the classic G2 Message Board. If yes, displays the
G2 Message Board in a Windows docking pane, which is
docked to the upper-right corner of the overall window. If
no, display the classic G2 Message Board.

Allowable values: {yes | no}

Default value: yes

Miscellaneous Parameters

The Miscellaneous Parameters system table lets you control various aspects of
the KB.

Defining Whether to Repeat the Random Function

The repeat-random-function-on-reset? attribute defines whether G2 shuffles the
function upon a KB reset. If the attribute is set to yes, G2 does nothing and the
random function returns the same sequence of random numbers after each reset,
if it has the same argument.

If this attribute is set to no, G2 seeds the random function so that it returns a
different sequence of random numbers after each reset.

Specifying the Workspace Margin

The initial-margin-for-workspaces attribute specifies how close you can place icons
at the edge of a workspace. The margin must be a non-negative integer value,
measured in workspace units. The smaller the integer, the closer to the edge of the
workspace you can place an icon.

Starting a KB Automatically After KB Load

The start-kb-after-load? attribute determines whether G2 starts the KB whenever
it is loaded. G2 automatically starts the KB if this attribute is set to yes and
displays an operator logbook message indicating that the KB has been started
because of the system table setting.

The Load KB option never start afterwards overrides the start-kb-after-load?
setting. For more information on this option and others, see Selecting Options
when Loading a KB File.

260

Miscellaneous Parameters

Determining the KB Run State

The g2-run-state attribute determines the current run state of the KB. It has a
symbol value which can be reset, running, or paused.

KB developers can query the value of this attribute to determine the current run
state of the KB, for example:

initially inform the operator that
"G2 is [the g2-run-state of miscellaneous-parameters]"

Enabling the Explanation Facilities

Specifying yes for the enable-explanation-controls attribute enables you to:
® Statically display one level of forward and backward chaining for a variable.
* Dynamically display:

- Allinvocations of backward-chaining rules for a variable.

- All invocations of rules for an item that contain a generic reference to that
item.

- All invocations of a particular rule.

® Cache explanation data for variables, parameters, and rules and create
explanation items that display the data on explanation trees.

Determining Connection Caching

The connection-caching-enabled? attribute determines whether graphical
connections between items should be cached.

G2 caches connections when this attribute is set to yes. Caching makes
expressions that reference connections execute faster, but causes connection
changes to take longer. When this attribute is set to no. G2 does not cache
connections and connection expressions take longer, but changing connections is
faster.

Either behavior may be preferable, depending on your particular application. See
Controlling Connection Caching for more information.

Determining Connection Inactivity

The dead-connection-timeout attribute lets you configure the amount of seconds
necessary to declare a Telewindows client that is not responding to G2 server as
dead (inactive). This situation could happen due to network problems. Valid
values for this parameter are positive integers greater than 0 and default value is
200.

261

262

Tip

It is possible to close such connections and free resources by setting disconnect-
dead-connections? attribute value to yes.

It is important to remark that the condition for inactive connections is evaluated
each 30 seconds. This means that although we set a dead-connection-timeout
value of 10 seconds it could take up to 30 seconds more to mark it as dead.

Changing the Backward Compatibility

The backward-compatibility-features attribute lets you revert certain changes
made in G2 since previous versions.

The changes that you can revert by completing this attribute are:
* ignore duplicate list element error
* extra vertices in g2-get-connection-vertices

* inconsistent behavior of move in configurations

By default, loading a KB created by an earlier version of G2 changes the value of
this attribute to include both of these options.

Ignoring Duplicate List Element Error

The ignore-duplicate-list-element-error value causes G2 to disregard a change
made to the insert action. The change to the action causes G2 to signal an error
any time an attempt is made to insert duplicate elements into a list that disallows
them.

List items can allow or disallow duplicate elements. In previous G2 releases,
attempting to insert a duplicate element into list items that disallowed them
caused G2 to signal an error unless the insert action specified an element location
of either:

¢ at the beginning of the list.
¢ atthe end of the list.

Attempting to insert duplicate elements into a list that disallows them now causes
G2 to signal an error consistently. This change of behavior can affect existing KBs.

Entering the value ignore duplicate list element error essentially reverses the
change to the insert action for list elements to its previous behavior. Use this value
if your KB relies on the previous behavior.

Returning Additional Connection Vertices

In previous G2 versions, the g2-get-connection-vertices system procedure
returned the exact number of vertices of which a connection consisted. The
purpose of this system procedure is to populate a list with the connection vertices

Miscellaneous Parameters

of an existing connection, and then to use that list with the create connection
action. The create action, however, does not require or expect the exact number of
vertices. Instead, it requires only a minimum number of vertices. To recreate a
connection, the create connection action determines the last one or two vertices
from the position of the item to which a connection is being joined.

The g2-get-connection-vertices system procedure currently returns the minimum
number of vertices that the create connection action requires. However, existing
KBs may rely on the previous behavior or having the system procedure return the
exact number of vertices. Specifying the value:

extra vertices in g2-get-connection-vertices

in the backwards-compatibility-features attribute causes the system procedure to
behave as it did in previous releases.

For more information about... See...
Inserting elements into lists Inserting into Lists with Duplicate
Elements

Creating connections using the Creating an Existing Connection
g2-get-connection-vertices Programmatically
system procedure

The g2-get-connection-vertices G2 System Procedures Reference
system procedure Manual

Configuring “Implies Move” for Workspaces

In previous releases, configuring the item configuration of a workspace as
selecting any item implies move resulted in inconsistent behavior, depending on
the selected item. If the selected item restricted the move menu choice, then
selecting the item moved the workspace rather than the item. In general, all items
that are transferable, that is, all items that have the transfer menu choice, as well
as all connections, exhibit this behavior, whereby selecting the item moved the
workspace instead of the item.

The current version of G2 changes the behavior when the item configuration of a
workspace is configured as selecting any item implies move. Now, selecting any
item moves the item, not the workspace, regardless of whether the move menu
choice has been restricted for the item.

To revert to the previous behavior, add the following option to the backward-
compatibility-features attribute:

inconsistent behavior of move in configurations

263

264

Displaying the Native G2 Login and Change Mode
Dialogs

The prefer-native-login-dialog attribute determines whether to use the native
Windows G2 Login and Change Mode dialogs in Telewindows or whether to use
the classic G2 dialogs. By default, Telewindows uses the native dialogs.

Confirming Run State Changes

The confirm-run-state-changes attribute determines whether G2 posts a
confirmation dialog for any attempt to start, restart, reset, resume, or pause G2.
The dialog is posted on the window where the request was made. The default
is no.

Use Unicode for Filenames

The use-unicode-for-filenames? parameter value yes makes G2 system
procedures that deals with file operation capable of using g2-strings to specify
filenames. This option should always work for supported Windows and usual
Linux configurations, allowing the user to call these functions with Unicode
characters:

file-exists = call g2-file-exists ("c:\ B A txt")

The value no means that characters in the filename will be 8-bit and implies the
user will have to know the encoding used by the OS for non-ascii character
filenames:

file-exists = call g2-file-exists(export-text("c:\ B & .txt", sjis))

The above example will not work if the encoding in the file system is not SJIS
(Shift-JIS).

Miscellaneous Parameters

Class-Specific Attributes of Miscellaneous
Parameters

The class-specific attributes of the Miscellaneous Parameters system table are:

Attribute

Description

repeat-random-
function-on-reset?

Allowable values:

Default value:

initial-margin-for-
workspaces

Allowable values:

Default value:

start-kb-after-load?

Allowable values:

Default value:

g2-run-state

Allowable values:

Default value:

Controls whether the random function is scrambled when
G2 is reset.

{yes | no}

no

Controls the size of the margin for workspaces.

integer

30

Controls whether G2 is started immediately after loading
a KB. If this attribute is set to yes, G2 is started after
loading the KB.

{yes | no}

no

Determines the run state of the current KB.

{reset | running | paused}

reset

265

Attribute

Description

backward-
compatibility-
features

Allowable values:

Default value:

show-uuids-in-
attribute-tables

Allowable values:

Default value:

enable-explanation-
controls

Allowable values:

Default value:

connection-caching-
enabled

Allowable values:

Default value

prefer-native-login-
dialog

Allowable values:

266

Lets you disregard certain changes made in recent G2
releases.

{none | ignore duplicate list element error |
extra vertices in g2-get-connection-vertices}

none

Controls whether the uuid attribute of all items should be

displayed on attribute tables. By default, the value of this

attribute is no, and G2 displays only the uuid attributes of
items that inherit from unique-identification class.

{yes | no}

no

Enables the explanation facilities which statically and
dynamically display the invocation of rules for variables
and parameters.

{yes | no}

no

Determines whether graphical connections are cached.

{yes | no}

no

Determines the type of G2 Login and Change Mode
dialogs to use in Telewindows. The default value is yes,
which uses the Windows dialogs. To use the classic G2
dialogs, set prefer-native-login-dialog to no.

{yes | no}

Attribute

Miscellaneous Parameters

Description

Default value:

confirm-run-state-
changes

Allowable values:

Default value:

float-to-text-default-
format

Allowable values:

Default value:

float-to-text-default-
precision

Allowable values:

Default value:

allow-only-one-
table-display-for-
item?

Allowable values:

Default value

yes

Determines whether G2 posts a confirmation dialog for
any attempt to start, restart, reset, resume, or pause G2.

{yes | no}

no

Determines the float-to-text format. default is compatible
with G2 8.x. For more explanation on float formats, please
refer to system procedure g2-float-to-text in G2 System
Procedures Reference Manual

{default | float | exponent | best | force-zero}

default

Specifies either the number of digits to the right of the
decimal point, or the significant digits, depending on the
output-format value (not applicable in default and force-
zero format).

0-16
3

Determines whether G2 should use only one display for
each item per window. By default, showing the table of an
item will always bring new tables. Using this new option,
now exist opened tables were reused if user tried to show
the table of an item.

{yes | no}

no

267

Module Information

268

The Module Information system table lets you define a top-level module for
your KB.

Modules are a convenient method of saving small KBs that typically contain
distinct and manageable pieces of a larger KB’s knowledge. For example, in a
development environment with several G2 developers, one developer could be
creating the class hierarchy, while another was creating procedures and methods
for those classes. Using modules, each developer could save his or her work in a
module, and then, using a top-level module, combine the modules into a single,
modularized KB.

A Module Information system table exists for each module you create, because
every module has associated with it a unique set of system tables. You can install
only one set of system tables, and therefore only a single Module Information
system table, in a KB at one time.

For a complete description of using modules, and the role that system tables play
within them, see Modules and System Tables.

Specifying a Module File Name

The module-file-name attribute specifies the pathname of a KB file in which to
save the module. When the value is default, the module file name is the value of
the top-level-module attribute with a . kb extension, which G2 saves in the
directory specified when you save the KB.

When the value is other than default, it should be a file name to use when the
module is saved. Note that this file name is not synchronized with the module
name, which is generally not recommended. Therefore, we recommend that you
use the default value, which is default.

If you want to override the module file name with a name other than the top-level
module name, specify a relative or fully qualified path name as the name, entered
as text in quotation marks (" "). However, be aware that if you do this and you
later decide to include the module file in a different module hierarchy in a new
location, you are responsible for manually changing the names of all relevant
module files.

Specifying the Top-Level Module

The top-level-module attribute specifies the module KB that is at the top of the
module hierarchy. G2 loads the system tables associated with the top level
module. Usually, the top level module requires other modules, specified in the
next attribute.

Module Information

Specifying the Required Modules

The directly-required-modules attribute specifies the modules that the top level
module requires directly. A module requires another because of definitions that
are contained in the required module.

Class-Specific Attributes of Module Information

The class-specific attributes of the Module Information system table are:

Attribute

Description

module-file-name

Allowable values:

Default value:

top-level-module

Allowable values:

Default value:

directly-required-
modules

Allowable values:

Default value:

Specifies the name of the module, either as the pathname
and file name where the module and its system table
information are stored, or default.

“filename”
default

default

Specifies the top-level module for the KB. G2 uses the
name you specify when identifying modules to load into
the hierarchy.

symbol
unspecified

unspecified

Lists the modules, if any, required by the module named
as the top-level-module in this table. The required modules
are loaded in order as they are listed for this attribute.

any valid module name

none

269

Attribute

Description

module-annotations You can add any information you wish to this savable

attribute as long as it conforms to the allowable attribute
syntax.

Allowable values: [, symbol is value] | none

For example:

track-inventory-procedure is undefined;
list-of-stable-workspaces is sequence
(the symbol class-definitions-ws, the symbol method-ws)

Default value: none

Printer Setup

270

You can print one or more workspaces directly from within G2. The Printer Setup
system table controls how G2 produces printed images of workspaces for output
on PostScript or PostScript-compatible printers, or to JPEG picture files'.

Specifying the Printing Details
The printing-details attribute controls these aspects of printing:

* workspace scaling

® color conversion

Workspace Scaling

The workspace scaling setting controls the scale at which G2 creates workspaces
for printing, as in this example:

workspace scaling: 100 workspace units per inch

If you choose scale-to-fit-single-page and the workspace is very large, the
workspace items may be illegible when you print them, because of their very
small size. If a workspace cannot fit on to a single printed page, G2 automatically
prints different parts of the workspace on separate pages, in order of left to right
and top to bottom. By attaching the printed pages together, you can assemble a
paper display of your entire KB.

1.JPEG support was added since April 2013 release.

Tip

Printer Setup

Color Conversion

The color conversion setting controls how G2 converts colors for printing.
Possible values are:

Color Conversion Setting Result

black-and-white Prints the workspace in black and white.
grays Prints the workspace in shades of gray.
full-color Prints the workspace in color when you use

a color PostScript printer.

An example is:

color conversion: black-and-white

Before printing a workspace with a full-color background image on a non-color
printer, change the color conversion setting to black-and-white. Setting color
conversion in this way reduces the size of the image data in the resulting

print file.

Specifying the Printer Page Layout

The page-layout attribute lets you specify six different print settings:

Page-Layout Setting Description

Paper size Any valid page size, as the next section
describes.

Paper orientation portrait
landscape

Left margin Any number of inches or centimeters. You

can specify the unit. For example, you can
specify 0.75 inch or 3 centimeter. The
default value is 0.5 inch.

Top margin Same as those specified for Left margin.
Right margin Same as those specified for Left margin.
Bottom margin Same as those specified for Left margin.

271

Paper-Size Setting

You can specify the dimensions of the physical page that receives the output from
the next print job. You can enter either the absolute page dimensions in inches,
centimeters, feet, or millimeters, or specify a standard paper size (such as letter,
legal, ledger, A3, and so on).

To be valid, a paper-size setting must be at least 1.0” by 1.0” of printable area plus
the dimensions of the margins and an allowance for portrait or landscape
orientation.

The names and dimensions of the standard paper sizes that you can specify are:
* letter (8.5" by 11.0")

* legal (8.5" by 14.0")

* ledger (11.0" by 17.0")

* a0,al, a2 a3, a4, a5

* b0, b1, b2, b3, b4, b5

This example shows how to specify the page-layout attribute, including an
absolute page size:

Text Editor for the page-layout of PRINTER-SETUP

Canoel I Paper size: 11 inches by 13 inches;
Paper arientation: portrait;
Linde I Left margin: 0.5 inch;

Top margin: 0.5 inch;
Right margin: 0.% inch;
Bottam margin: 0.5 inch

inches

Paste

pasie|

PEINTER-SETUP

Motes | OK
Authors | dwr (24 Apr 1996 12:41 p.m.), guide

Change log | 0 entries

lter configuration | none

Printing details | Workspace scaling: 100 workspace units per
inch;
Color conversion: black-and-white

Page layout IaGhEgEaGCR
Paper orientation: portrait;
Left margin; 0.5 inch;

Top margi ;
Right margin inch;
Bottom margin: 0.5 inch

272

Printer Setup

Specifying How to Spool the Print File

The print-spooling attribute lets you specify three spooling settings:

Spooling Setting Description

Spooled filename The directory to which directory G2 writes
template the print job file.

Spool file to printer Determines whether to spool print file. This

feature is currently not supported.

Printer identification Destination printer.

G2 only prints your print job file if your system is configured to spool files to a
printer. Otherwise, G2 creates the print job file, but you must spool that file to
the printer.

Spooled-Filename-Template Setting

The default for this setting is the directory from which you start G2. You can
override the default by specifying a different directory pathname. By default, G2
names the file:

print-*.ps

where the asterisk represents a number that G2 increments each time it creates a
new print file to form a unique name. The first file you print is named print-1.ps,
the second print-2.ps, and so on. If you edit the spooled-filename-template setting
to write the file to another directory or to use a different file name, remember to
keep the asterisk (*) in the name; otherwise G2 does not uniquely name each file.

Spool-File-to-Printer Setting

If the value of this specification is yes, G2 automatically sends the resulting print
job to your printer, discarding the print job after printing is complete. If the value
is no, you must queue the print job manually. G2 does not know how to spool to
the printer on all platforms. This feature is not currently supported.

Printer-ldentification Setting

Specifies the name of the printer on which you want to print. This specification is
useful when multiple printers are connected to your computer or network. G2
displays the string "unknown" if your computer is not connected to a printer.

An example on UNIX is:

Spooled filename template: "/usr/g2/print.ps";
Spool file to printer: no;
Printer identification: "unknown"

273

Controlling the Printing Priority

The printing-priority attribute lets you control the KB background printing priority.
The default priority is 8. For more information about scheduling and priorities,
see The G2 Scheduler.

Note The system procedure, g2-work-on-printing, lets you further control background
printing. For more information, see the G2 System Procedures Reference Manual.

Determining the Print File Format

Three print file formats are available: postscript, encapsulated postscript and jpeg.
The default format is postscript.

For more information about these two formats, see Printing a Workspace.

Printing a Workspace without Borders

The page-economy-mode attribute allows you to print workspaces without
borders. When this attribute is set to yes, G2 does not print workspace borders
unless there is a frame style defined for the workspace. Also, G2 does not print
blank pages and suppresses the multipage indicator. Use this option to save
paper when printing workspaces.

Class-Specific Attributes of Printer Setup

The class-specific attributes of the Printer Setup system table are:

Attribute Description
printing-details Controls the scaling of workspace size to paper and color
conversion.

Allowable values: ~ See description following table.

Default value: ~ Workspace scaling: 100 workspace units per inch;
Color conversion: black-and-white

274

Attribute

Printer Setup

Description

page-layout

Allowable values:

Default value:

print-spooling

Allowable values:

Default value:

print-priority

Allowable values:

Default value:

printing-file-format

Allowable values:

Default value:

Controls the page layout for the printer.
See description following table.

Paper size: letter;

Paper orientation: portrait;
Left margin: 0.5 inch;

Top margin: 0.5 inch;
Right margin: 0.5 inch;
Bottom margin: 0.5 inch

Controls the default file specification, spooling
capabilities, and printer information.

See description following this table.

Spooled filename template: ‘print-*.ps’;
Spool file to printer: no;
Printer identification: ‘unknown’

The default priority at which G2 services print requests.
1-10
8

Determines whether to print a PostScript or Encapsulated
PostScript format.

postscript
encapsulated postscript

ipeg

postscript

275

Attribute Description
page-economy- Determines whether to print a workspace with or without
mode borders.

Allowable values: yes, no

Default value: no

Saving Parameters

276

Note

G2 uses the attributes on the Saving Parameters system table to display current
file information for the KB module, and to determine the change logging behavior
that module.

Defining the Priority for KB Saving

The default-priority-for-runtime-saving attribute defines the priority at which G2
schedules the task of saving a KB while it is running.

This is not the default priority for the g2-save-kb or g2-snapshot system
procedures, nor is it the priority at which a KB save operation occurs while the KB
is reset or paused.

You can set the default priority at any value from 1 - 10. For a description of
scheduling tasks and priorities in G2, see The G2 Scheduler.

Identifying the Current KB

The identifier-of-basis-kb attribute displays this information about a module file:
® The base file name.
* The machine ID of the platform it was saved from.

®* The date and time when the module file was saved.

Identifying the KB File Name

The filename-of-basis-kb attribute displays the full pathname of a module file.

Adding Comments to a KB

You can add comments to your KB in the kb-file-comments attribute. This
attribute accepts text, but does not require quotation marks (").

Saving Parameters

To add comments to a KB:
1 Choose Main Menu > System Tables > Saving Parameters.
2 Edit the KB-file-comments attribute.

You can add whatever comments you wish to this attribute. Your comments are
saved at the beginning of the KB file as lines of readable text preceded by a
semicolon. The next example shows two comments in the Saving Parameters
kb-file-comments attribute. The author has preceded each comment with the date:

KB file comment | 6/16/2000: This is atest KB to demonstrate
kb-change-logging and comments,
Comments for a KB let you document global
issues.

BA17/2000; Added a new initialby rule to LOGS
module for changing colar at startup.

Viewing KB Version Information

The kb-version-information-for-change-logging attribute of each module provides
version information for that module (or KB) when change logging is enabled.

You cannot edit this attribute, though you can query it for informational
purposes.

Using KB Change Logging
You can keep a record of certain changes made to a KB during processing. This

facility is called KB change logging.

The enable-KB-change-logging? attribute is a truth value, whose default is no.
Changing the value to yes enables change logging.

You enable KB change logging for any module (or a KB if it is not yet
modularized) to track each change made to the system tables and definitional
items. Definitional items include rules and all of the items you can create from the
KB Workspace New Definition menu.

To enable change logging for the top-level module:
1 Choose Main Menu > System Tables > Saving Parameters.
2 Change the value of the enable-KB-change-logging attribute to yes.

When KB change logging is enabled in a given module, only edits made
interactively through the text editor to the attributes of definitional items and
system tables in that module are recorded in those items” change-log attribute.
You can review and revert changes at any time.

277

278

Logging Changes in All Modules

To enable change logging for all modules, the following procedure iterates over
each Saving Parameters system table and changes the value of its enable-KB-
change-logging? attribute to yes (true).

start-change-logging()
SP: class saving-parameters;
begin
for SP = each saving-parameters do
conclude that the enable-kb-change-logging of SP is true
end
end

In addition to keeping previous attribute values, the change log also saves the
author, the date, and the version of the KB or module at the time of the edit.

Tracking KB Versions

When KB change logging is enabled, G2 keeps track of relevant changes by
assigning a KB version number. Whenever a KB or module is saved, G2
increments the current version number. Changes to the attributes of definitional
items in the module or KB then correspond to their appropriate version.

KB version information is also stored in the Saving Parameters system table in the
kb-version-information-for-change-logging attribute. The next example shows the
portion of the Savings Parameter system table where KB version information
appears:

Enahle KB change logging | yes

k.B wersion information for change logging | Yersion 2 (31 May 2000 8:40am.);
“ersion 1(31 May 2000 8:39 am.)

Viewing the Change Log for an Item

The number of changes made to each system table and definitional item in a
module appear in the item’s change-log attribute as a number of entries. For
example, if you edit a rule twice, the value of the rule’s change-log attribute will
be 2 entries. You cannot edit the value of the change-log attribute; it is for purely
informational purposes.

If the value of the change-log attribute is greater than one, you can view the item
change log.

When editing an item produces no changes to the item, G2 does not add an entry
to the change log.

To see an item’s change log:
1 Open the item attribute table.

2 Click on the name of the change-log attribute to display its submenu.

3 Choose view change log.

Saving Parameters

The following example shows the change log display of a class-definition.

T FIELD, a class-del

=101 x|

Motes | OK

Authors

nrs (31 Jan 2007 214 pum.)

Change log | 4 entries

Ty Temporary Workspace ;|g|5|
Attribute | Revision | Walue | Module Version | Timestamp Authar | Tags

Instantiate | O no 7 31 Jan 2007 Z:14pm. | nrs none

Cirect superior classes | 1 item |7 31 Jan 2007 213 pm. | nrs none
Cirect superior classes | 0 object | 7 31 Jan 2007 210 p.m. | nrs none
Class name | 0 field |7 31 Jan 2007 2:10 pumn. | nrs none

Each change log entry consists of:

Attribute — The name of the changed attribute.

Revision — The revision number for the change.

Value — The value of the attribute for that revision.

Module Version — When change-logging is enabled on a particular module,

each time the module is saved, it is given a unique version number. The

module version and corresponding date and time of the save are visible in the
Saving Parameters system table.

Timestamp — The date and time of the edit.

Author — The user name of the author.

Tags — User-defined tags.

You can also access change-log information programmatically and use text “diff”
tools on change log entries. For more information, see Application

Deployment Operations in the G2 System Procedures Reference Manual.

For information on using the Inspect facility for version control, see Version

Control.

Reverting Item Changes

Using the change log, you can restore former attribute values at any time.

To revert a change to an item:

1

Open the change log for the item whose value you wish to revert.

2 Edit the attribute value you want to change.

3 Delete the text of the attribute value.

279

4 Select the text of the change log attribute value that you wish to restore. The
text is inserted into the editor.

5 Click End.

For information about removing change logging and version information before
deploying and distributing your KB, see Removing KB Change Logging and
Version Information.

Class-Specific Attributes of Saving Parameters

The class-specific attributes of the Saving Parameters system table are given in the
table below. Only attributes that have an Allowable values description are user-

editable. The Default value specification for each attribute is the value the attribute
has when G2 is initialized for the start of a new G2 process or after the current KB

is cleared.

Attribute

Description

default-priority-for-
runtime-saving

Allowable values:

Default value:

identifier-of-basis-
kb

Default value:

filename-of-basis-kb

Default value:

KB-file-comment

Allowable values:

Default value:

280

Allows you to specify the priority for the task of saving
your running KB.

1-10
8

Provides three items of information for a module file: the
base file name, the machine ID of the platform the module
was saved on, and the time of the save.

none when starting a new G2 process
new-kb after clearing the current KB

Displays the file path for the module.

none

Allows you to enter any comment you wish to save with
the current KB.

any text

blank

Server Parameters

Attribute Description
enable-KB-change- Use this attribute to specify whether you want change
logging logging to be in effect for the KB.

Allowable values: no | yes

Default value: no

KB-version- Displays version information about the KB when change
information-for- logging is in effect.
change-logging

Default value: none

current-file-for- Shows the file path of the currently loaded module file.

module

Default value: none

Server Parameters

From the Server Parameters system table you can specify preferences that pertain
to your G2 process independent of the resident KB. Your preferences persist in the
G2 process until you explicitly change them because, unlike other system tables,
the Server Parameters table does not lose its non-default attribute values when
the KB is cleared. The table is created by G2’s initialization process when you first
launch G2 and remains in residence throughout the G2 process. It is not saved
with the KB.

To access the Server Parameters system table:

= Choose Main Menu > System Tables > Server Parameters.

Specifying a Module Search Path

By editing the module-search-path attribute, you specify what file directories G2
searches for locating your required KB modules. This attribute accepts quoted file
paths separated by commas, or it accepts the value none.

For example:

281

282

"lhome/user/support-modules/”, "/development/required-kbs"

For complete module-search-path syntax, see Module Search Path Syntax.

Controlling Edits to Read-Only Module Files

The restrict-edits-to-read-only-files attribute enables or disables G2’s editing-
prohibition and warning behavior when editing is attempted on a read-only
module file. The module-file-is-read-only attribute of the module’s Saving
Parameters system table tells you whether a module file is read-only.

You specify G2’s behavior by editing the unsavable-change-protection and
default-unsavable-change-protection attributes of the Savings Parameter system
tables.

When restrict-edits-to-read-only-files is set to yes, G2 enforces your preferences.
When this attribute is no, G2 will neither prohibit nor warn when there is an
attempt to edit a read-only module.

Specifying the Default Window-Style

You specify the default window-style for the G2 process by editing the
g2-window-style attribute. The syntax for this attribute is:

default | standard-large | g2-5.x | standard

Specifying default is the same as specifying standard because standard is G2’s
default window style. You override this default by editing the g2-window-style
attribute of the g2-window item associated with your local G2 process or your
Telewindows process, as described in Overriding the Default Window Style for
the Current Window. Alternatively, you can edit the G2 window style field of
your login dialog.

Determining if G2 is Secure

The hidden attribute named g2-is-secure allows you can test for a truth-value to
determine whether or not a G2 is secure. This attribute is read-only, which means
that you can access it but not set it via a conclude action.

To view the attribute interactively, choose Inspect, then enter show on a
workspace server-parameters, choose table of hidden attributes, and view the
value of g2-is-secure.

Programmatically or in a readout-table, use this expression to determine the value
of the hidden attribute:

the g2-is-secure of server-parameters

Class-Specific Attributes of Server Parameters

The class-specific attributes of the Server Parameters system table are all user-

Server Parameters

editable. They are:

Attribute

Description

module-search-path

Allowable values:

Default value:

restrict-edits-to-
read-only-files

Allowable values:

Default value:

g2-window-style

Allowable values:

Default value:

g2-is-secure

Allowable values:

Default value:

Determines the directories G2 searches to locate required-
module files.

The value none or one or more quoted file paths separated
by commas. For example: "/home/user/test-kbs",
"/development/current”

The file path(s) given by your -module-search-path
command-line option or environment variable, or the file
path from which G2 was launched.

Enables and disables G2’s editing-prohibition and
warning behavior when editing is attempted on a read-
only module.

yes | no

no

Determines the default window-style for a G2 process.
default | standard-large | g2-5x | standard
default

Determines whether G2 is secure. This attribute is a
hidden and read-only.

true | false

false

283

Simulation Parameters

The Simulation Parameters system table controls the G2 Simulator, a superseded
capability. By default, the G2 Simulator is off. For information about the G2
Simulator, see Appendix F, Superseded Practices.

Timing Parameters

284

Note

The Timing Parameters system table controls several scheduler settings and other
computational parameters.

Defining the Scheduler Mode

The scheduling-mode attribute defines the timing mode of the scheduler (how the
G2 clock ticks), and how tasks are scheduled. G2 has three scheduler modes:

* real time
* simulated time

* as fast as possible

A clock tick is a measure of time within G2 that may or may not be equivalent to
one second of real time. The relationship between a clock tick and real time is
determined by the value of the scheduler-mode attribute.

Real Time

If the scheduler mode is real time, a clock tick corresponds to one second of real
time. If G2 completes all of the tasks that are scheduled for a particular second
before the second ends, G2 waits until the second is over before starting to process
tasks scheduled for the next second.

If G2 has tasks left over at the end of a second, it begins processing tasks
scheduled for the next second, anyway. When this happens, G2 schedules the
remaining old tasks with the tasks scheduled for the new second, preserving the
priority of all tasks, and preserving temporal ordering within priorities. G2
performs tasks from the previous second before it performs tasks with an equal
priority from the next second. It does not, however, perform lower priority tasks
from the previous second before higher priority tasks from the next second. The
default mode is real time.

Simulated Time

Simulated time always attempts to match real time. However, when running in
simulated time, G2 completes all of the tasks scheduled for one second before
moving on to the tasks scheduled for the next second. As a result, a second of

Caution

Timing Parameters

simulated time may last longer than a second of real time. Consequently, the
simulator clock may run slower than the real-time clock.

If you pause a KB, reach a breakpoint, or suspend G2, the simulated time stops.
When you resume, the simulated time does not leap ahead to match real time.
Thus, simulated time lags behind real time as a result of such interruptions.

As Fast As Possible

When the scheduler-mode is set to as-fast-as-possible, and all tasks in the current
task queue are complete, the scheduler checks to see if tasks are scheduled on the
future task queue. If tasks are scheduled, the scheduler ticks the clock forward all
the way to the time of the next scheduled task and starts its execution cycle. If no
tasks are in the future task queue, the scheduler becomes idle and does not tick
the clock until tasks appear on the future task queue. For more information about
the scheduler and the current and future task queues, see Task Scheduling.

As fast as possible time is a convenient scheduler mode for discrete event
simulations, so that tests that might otherwise require hours to complete require
only minutes.

The G2 clock has a limit of 17 calendar years. Reaching that limit, for example
when running simulations using the as fast as possible mode, will abort G2.

Specifying the Minimum Scheduling Interval

The minimum-scheduling-interval attribute specifies the length of time for a clock
tick, which determines how long the scheduler has to perform tasks between
clock ticks. The default value is the time interval 1 second. Possible values for the
attribute are any non-negative-number time interval, or continuous.

If you are entering a time interval (rather than continuous as the interval), the
interval value must be a multiple of a second or must divide evenly into a second.
If you enter another kind of value, G2 rounds the value up to the next valid
minimum scheduling interval. For example, if you enter .333 seconds as the
minimum scheduling interval, G2 rounds that number up to .334 upon
completing the edit. Entering .666 seconds causes G2 to behave as if the value
were 1.0, rounding it to 1 second.

The minimum value is .002 (2 milliseconds). Setting a lower value for the
minimum scheduling interval means you can take advantage of faster machine
speeds. It also means the gap between the minimum value for this attribute and a
value of continuous is much less.

When the minimum-scheduling-interval attribute is set to a time interval, the
scheduler advances the G2 clock by multiples of that amount (for instance, .333
seconds, or 1 second). When a time interval is in effect, G2 rounds the execution
times of scheduled tasks up to the next clock tick. For example, if the current

285

286

subsecond time is 5.0, and the minimum-scheduling-interval is set to 0.25 seconds,
G2 schedules the action start update report after 0.6 seconds to run at 5.75
seconds, current subsecond time.

If the interval is continuous, the scheduler ticks the clock at the task schedule
times, and remains idle between those tasks. Continuous scheduling incurs clock
ticks of various lengths, as tasks are scheduled. For example, if the scheduler ticks
the clock, completes the tasks on the current task queue, and then sees that there
is something scheduled on the future task queue in .2 seconds, the clock ticks at
that time. Conversely, if nothing is scheduled on the future task queue for 5
minutes after the current task completes, the scheduler does not tick the clock
until then.

Specifying the G2-Meter Lag Time

The meter-lag-time attribute tells G2 how many seconds of data to use when
computing values for G2 meters.

Frequently, performance values are expressed in events per second or are
measured in seconds. For example, a G2 meter can track the number of formulas
G2 evaluates each second, or how long a clock tick actually lasts in terms of
seconds. G2 meters can compute such values for the most recent clock tick, or
they can compute values based on an average result of recent clock ticks. The
meter-lag-time attribute controls how many seconds worth of data G2 uses in
evaluating each meter.

The meter-lag-time attribute holds a value of 0 seconds or any longer time
interval. If it holds O seconds, G2 meters reflect only the activity in the most
recently completed clock tick. As its value increases, the values of G2 meters
change more smoothly over time.

G2 computes lagged values as follows:

new lagged value = (1-PB) * previous lagged value
+ (B * current value)

where: Is equal to min (1.0, clock tick length / meter
lag time)

This is an Euler approximation of first-order delay. Note that if the meter lag time
is zero or is less than the latest clock tick length, then B = 1.0, and the new lagged
value = the current value, with no lag.

Timing Parameters

Specifying the Interface Mode to Use

The interface-mode attribute specifies which interface mode G2 uses, as follows:

This interface mode... Causes G2 to...

always service interface Make responding to the mouse and

first keyboard a priority over all scheduled
events.

interruptible interface Give an equal share of computing time to

service the keyboard and mouse, the Inference
Engine, the G2 Simulator and other data
servers.

The G2 Simulator is a superseded
capability. For more information, see
Appendix F, Superseded Practices.

Adjusting the G2 Clock

The clock-adjustment-in-minutes attribute adjusts G2's clock as follows:

This clock adjustment... Causes G2 to...

positive number Set the clock forward to a value derived by
adding the specified positive number of
minutes to the current real time.

negative number Set the clock backward to a value derived
by adding the specified negative number of
minutes from the current real time.

0 Leave the clock unchanged.

Setting the clock-adjustment-in-minutes to a positive or negative number sets the
clock but does not cause any of the events that where scheduled during that
adjustment period to occur.

Controlling the Foreign Function Timeout Interval

The foreign-function-timeout-interval attribute controls the interval of time that G2
waits for a return value after calling a foreign function. If the interval is exceeded,
G2 signals an error. Specify an integer to represent the interval in seconds.

287

288

Note Setting the timeout-interval attribute of an individual foreign function definition

overrides the value set for the foreign-function-timeout-interval attribute of the
Timing Parameters system table for that function.

Controlling Foreign Image Reconnection

The reconnect-to-foreign-image-after-timeout? attribute controls whether G2
reconnects to a foreign image (a group of foreign functions) after the foreign
function timeout interval expires. If the value for this attribute is yes, G2 makes a
single attempt to reconnect to the foreign image. If the value is no, G2 does not
attempt to reconnect.

Setting the Uninterrupted Procedure Limit

The uninterrupted-procedure-execution-limit attribute sets a limit on the amount of
execution time a procedure can use without entering a wait state that allows other
processing to occur. Specify an integer to represent the number of seconds, or
none. The actual limit for this attribute is 24 hours. Note that setting the execution
time limit locally for a procedure overrides the limit set for this attribute.

G2 maintains a tally of the cumulative execution time per invocation of each
executing procedure.

Scheduling Attribute Table Updates

By default, attribute tables are updated whenever a change occurs in the value of
an attribute or to the class-specific attributes of the defining class. When attribute
changes are occurring at a very fast rate, continuous attribute-table updates place
a considerable load on G2, its clients, and the network between them.

You can direct G2 to update attribute tables only at specific intervals instead of
continuously. G2 defers updates until the specified interval of time has elapsed,
then updates the table with the latest changes, thus avoiding the overhead of
updating intermediate value changes.

Timing Parameters

Class-Specific Attributes of Timing Parameters

The class-specific attributes of the Timing Parameters system table are:

Attribute

Description

scheduler-mode

Allowable values:

Default value:

minimum-
scheduling-interval

Allowable values:

Default value:

milliseconds-to-
sleep-when-idle

Allowable values:

Default value:

meter-lag-time

Allowable values:

Default value:

interface-mode

Allowable values:

Default value:

The current mode in which the scheduler is running.
{real time | simulated time | as fast as possible}

real time

The length of the G2 clock tick.

{subsecond-interval | continuous}

1 second

Controls the interval of time, in milliseconds, that G2
sleeps while the G2 process is idle.

any positive integer
use default

use default

The number of seconds of data to use when computing G2
meter values.

time-interval

10 seconds

Specifies which interface mode G2 uses.

{interruptible interface service |
always service interface first}

interruptible interface service

289

Attribute

Description

clock-adjustment-in-
minutes

Allowable values:

Default value:

foreign-function-
timeout-interval

Allowable values:

Default value:

reconnect-to-
foreign-image-after-
timeout?

Allowable values:

Default value:

uninterrupted-
procedure-
execution-limit

Allowable values:

Default value:

attribute-display-
update-interval

Allowable values:

Default value:

290

The number of minutes to adjust G2’s clock.

integer

0

The interval of time that G2 waits for a return value after
calling a foreign function.

{none | time-interval}

30 seconds

Whether G2 reconnects to a foreign image (a group of
foreign functions) after the foreign function timeout
interval expires.

{yes | no}

no

A limit on the amount of execution time a procedure can
use without entering a wait state that allows other
processing to occur.

{time-interval | none}

30 seconds

Specifies the frequency with which to update attribute
tables.

continuous | float (between 0.0 seconds and 0.5 seconds)

continuous

Configurations

Describes how configurations override the default behavior of items.

Introduction 292

Declaring Configurations for ltems 292

Configuring the User Interface of ltems 300

Configuring Menu Choices and Attributes in Tables 302
Configuring Keystrokes 307

Configuring Mouse Gestures 308

Constraining the Movement of ltems 322

Configuring the User Interface of Proprietary ltems 324

Configuring Access to and from Other G2, G2 Gateway, and Telewindows
Processes 325

Configuring Properties of Items 328

Including Comments in Configurations 333

Describing Configurations 334

Declaring User Modes in Configurations 334

Declaring Generic and Exception Configurations 341

Configuring the G2 Main Menu and Global Key Bindings and Shortcuts 345
Using Configurations in Modularized KBs 348

gensym.

291

Introduction

Note

Configurations are declarations that determine the interactive behavior and
certain other properties of items. Using configurations you can:

* Customize how items respond to mouse clicks and to drag-and-drop
mouse operations.

* Assign custom keystrokes to G2 commands and operations.
® Customize which choices appear on the menus of items.

* Customize which attributes appear in the tables of items, as well as which
choices appear on the menus of those tables.

® Prohibit and allow access to items, and to the entire KB, by other G2 processes,
by G2 Gateway bridge processes, and by Telewindows processes.

* Enable or disable compilation properties, and other miscellaneous properties,
of items.

* Add comments to items.

For instance, you can use configurations to restrict how any item of a particular
class responds to being selected, or to restrict access to the proprietary knowledge
within your KB.

Most importantly, you use configurations to associate specialized behaviors with
different categories of users, namely, end users, developers, and administrators.

The current KB’s configurations are in effect at all times, regardless of whether it
is running, paused, or reset.

Declaring Configurations for Items

292

You declare configurations for items by entering configuration statements in their
item-configuration and instance-configuration attributes.

You use an item configuration to customize the behavior of an item, based on its
location within the current KB’s workspace hierarchy. You declare an item
configuration by entering configuration statements into the item-configuration
attribute of an item. Items of every class have an item-configuration attribute.

You use an instance configuration to customize the behavior of a class of items,
based on the position of their class in the KB’s class hierarchy. You declare an
instance configuration by entering configuration statements into the instance-
configuration attribute of a class definition.

Only class definitions have an instance-configuration attribute. Therefore, you can
use instance configurations only to customize items of user-defined classes.

Declaring Configurations for ltems

The next figure shows a configuration statement. It declares that clicking the
mouse on any class definition causes G2 to create an instance of the class.

configure the user-interface as follows:
when in developer mode:
pressing any mouse button on any class-definition
implies create-instance

You can also declare global configurations by entering them in the KB
Configuration system table. Some configurations exist there by default, which
you can change as you require.

Kinds of Configuration Statements

An item-configuration or instance-configuration attribute can contain one or more
configuration statements. There are five general types of configuration
statements, summarized in the following table. For information on cooperative
combinations, see Combining Cooperatively.

Support
Configuration Cooperative
Statement Combinations? Purpose
configure the user Yes Determines how an item responds to
interface as follows interactive operations.
restrict proprietary Yes Determines how a proprietary item
items as follows responds to interactive operations and
certain programmatic operations.
set up network No Determines access to an item (or to the
access as follows entire KB) by other G2 process and by G2

Gateway bridge and Telewindows
processes; effects read, write, execute,
inform for items and the entire KB, and
connect access to the G2 process.

293

Support
Configuration Cooperative
Statement Combinations? Purpose

declare properties ... No Declares an item as: disabled, text-stripped,

as follows stable-for-dependent-compilations,
independent-for-all compilations,
stable-hierarchy, inlineable, or not.

In instance configurations, configures
items to support: activatable-
subworkspace, external-simulation,
manual-connections, or subworkspace-
connection-posts.

The editor prompts include optimizable
configuration syntax, but it no longer has
any effect in G2. The grammar is
maintained in order to prevent older KBs
from incurring compilation errors.

The G2 Simulator, which can provide
external simulation, is a superseded
capability. For more information, see
Appendix F, Superseded Practices.

comment as follows No Declares comment text in a configuration.

A configuration statement can have more than one clause. Within one
configuration statement, use a semicolon (;) to separate the statement’s clauses.
Do not append a semicolon to the last configuration statement.

Configurations propagate through your KB's class and workspace hierarchies.
Thus, there is no need to specify configurations in each item of your KB.

Note The item-configuration and instance-configuration attributes are compiled
attributes. G2 saves a compiled version of the attribute’s text in the item, not the
exact text that you enter.

294

Declaring Configurations for ltems

Scope of Configurations

The scope of a configuration means the items to which it applies.

Items can inherit the configurations that are declared for items higher in the class
and workspace hierarchies. Thus, one configuration can apply to many items in
your KB. For example, the following configuration statement optimizes the
compilation of all tracked-vehicle items in a KB:

declare properties of any tracked-vehicle as follows :
stable-for-dependent-compilations

Different configurations can overlap, such as when you declare configurations on
two items on the same branch of the KB’s workspace hierarchy. Thus, more than
one configuration can also apply to the same item.

You can also declare a configuration that applies to only one item. Such a
configuration is not inherited down the class or workspace hierarchies. In the
configuration statement, instead of naming the class of items that the
configuration applies to, include the this item phrase. For example:

declare properties of this item as follows :
stable-for-dependent-compilations

Precedence of Configurations

If two configurations apply to the same item, it is possible that they declare
conflicting behaviors for that item. For example, one configuration declared for
any item of the vehicle class might declare that each vehicle item must respond to
a mouse click by rotating, and another configuration declared for the vehicle item
named security-vehicle might declare that it not respond to mouse-clicks at all.

In this situation, G2 uses a predictable mechanism to determine which of two or
more conflicting configurations to use. G2’s precedence rules for configurations
are based on the current KB’s class and workspace hierarchies. By default, if
configurations for an item conflict, G2 uses the configuration declared closest to
the target item in the class and workspace hierarchy, and ignores the conflicting
configurations.

Example of the Scope of Configurations

The following example illustrates how the KB’s class and workspace hierarchies
determine the scope of an item configuration. Consider a KB that monitors
vehicles. Assume that one of the KB’s top-level workspaces is named Top Level,
and that it contains two navigation button items, Definitions and Schematic, each
of which has a subworkspace of the same name.

295

The Schematic navigation button declares an item configuration, which optimizes
the compilation of the navigation button itself, and all items below it in the
workspace hierarchy. Thus, by default, all items on the Schematic workspace are
automatically optimized for compilation.

The scope of an item
configuration stored in this item...

Definitions

Schematic DEFINITIONS

declare properties as follows:

stable-for-dependent-compilations
Classes CLASSES
Relations
Methods Instance configuration configure the user interface as follows:

cars unless in adminstrator mode:
menu choices for car-class exclude
additionally: rotate, reflect, change-size
CAR-CLASS
Direct superior classes car-class
SERVICE-CARS
SCHEMATIC
trucks i j
CAR-CLASS-1 SERVICE-CAR-1
o 0 ﬁ TRUCK-CLASS Direct superior classes truck-class
REFRIDGERATION-TRUCKS
TRUCK-CLASS-1 REFRIDGERATION-TRUCK-1
. wotre /N
ROADWAY

...includes these items and all items below
them in the workspace hierarchy.

The next figure shows that an instance configuration stored in a class definition

applies to all items of that class and to all items of any subclass of that class. In this
way, one instance configuration can affect a large set of items.

296

The figure shows that an instance configuration declared in the car-class

Declaring Configurations for ltems

definition applies to all instances of car-class and to all items of the service-cars
class, which is a subclass of car-class. The instance configuration restricts the
menu choices to exclude rotate, reflect, and change size. Thus, the two cars on the
Schematic workspace both inherit the configuration in the car-class definition.

— The scope of an instance configuration
that refers to car-class, stored in this

Definitions
Schematic

declare properties as follows:
stahle-for-dependent-compilations
Classes

Relations
Methods

definition...

CAR-CLASS-1 SERVICE GAR-1
0o © cfuin.

TRUCK-CLASS-1

ootk &

REFRIDGERATION-TRUCK-1

!

menu choices for car-class exclude

additionally: rotate, reflect, change-size
A Direct superior classes car-class

SERVICE-CARS

trucks i i
TRUCK'CLASSA Direct superior classes truck-class

REFRIDGERATION-TRUCKS

roadways i i

ROADWAY

s Ins\ance configuration configure the user interface as follows:
i unless in adminstrator mode:

—— ...includes this item, which is an
instance of car-class . . .

L ...and includes all items, such

as this, which are instances of
a subclass of the configured class.

297

298

How G2 Searches for Applicable Configurations

When an item is the target of a user gesture, before G2 performs the operation
associated with that user gesture, G2 must determine which configurations apply
to the item at that particular moment in time. To do so, G2 searches in the
following order for configuration statements in the following items:

1 Configuration statements in the item-configuration attribute of the item.

2 Configuration statements in the item-configuration attribute of each item that
is above the current item in the workspace hierarchy.

If the item that declares the configuration is contained in an attribute of some
other item, G2 searches all workspaces above the item containing the
configured item.

3 Configuration statements in the item-configuration attribute of the KB
Configuration system table.

4 If the class of the item is user-defined, configuration statements in the
instance-configuration attribute of the class definition that defines the
item’s class.

5 If the class of the item is user-defined, for each definition item that declares a
class in the class-inheritance-path attribute of the class definition,
configuration statements in the instance-configuration attribute of that
definition item.

Given the KB shown in the previous figures, the following figure shows how G2
searches for the configurations that apply when a user clicks the mouse on
car-class-1. G2 reacts to this user gesture as follows:

1 Checks whether the item-configuration attribute of the car-class contains
configuration statements.

2 Checks whether any configuration statements apply to car-class-1 in the item-
configuration attribute of the schematic workspace.

3 Checks the Schematic navigation button for an item-configuration.

4 Checks the Top Level workspace for an item-configuration, which is the
superior item of the workspace hierarchy for car-class-1.

5 Checks whether any configurations declared in the item-configuration
attribute of the KB Configuration system table apply to car-class-1.

6 Finally, since the car-class class is user-defined, G2 checks whether the
instance-configuration attribute of the car-class definition contains
configuration statements that apply to car-class-1.

Declaring Configurations for ltems

Items Searched for Configurations that Apply to Car-Class

[] item class hierarchy
of car-class

[1 object

(6) [] car-class

[l service-cars

workspace hierarchy
of car-class-1

4) top-level
definitions-button 3) schematic-
button
definitions (2) schematics
5 |
[]
hide-button up-button
M
truck-class-1 refrigeration-truck-1 service-car-1 car-class-1

Because the direct superior class of car-class is object class, which is a foundation
class, G2 stops searching for additional instance configurations. (A foundation
class is a G2 system-defined class that can be the direct superior class of a user-
defined class.) Otherwise, G2 would search for any instance configuration
declared in the definitions of all user-defined superior classes of car-class.

As stated in Precedence of Configurations, if two configuration statements, or
clauses within a configuration statement conflict for an item, the last statement or
clause takes precedence.

299

Instance Configurations and Definition Iltems

An instance configuration does not apply to the class-definition item itself, nor to
the class-definition items that define subclasses of the configured class.

For example, in the figure below, an instance configuration declared in the pipe
class-definition includes in its scope all instances of the pipe class and all instances
of the pressurized-pipe and refrigerated-pipe classes. However, the scope of that
instance configuration does not include the class-definitions themselves.

IMNSPECT-19, a temporary-workspace

show on a workspace the class hierarchy of
pipe

PRESSURIZED-PIPE, a class-definition

ITEM

OBJECT —| PIPE, a class-definition |—E

REFRIGERATED-PIPE, a class-definition

PIPE, a class-definition
MNotes | Ok

Authors | ghw (31 May 2000 11:02 am.)

Change log | 4 entries

Itern configuration | none

Class name | pipe

Direct superior classes | object

Class specific attributes | none

Instance configuration | configure the user interface as follows:
when inuser mode:
menu choices for pipe exclude absolutehy:
drop-to-hottom

Configuring the User Interface of ltems

300

You configure how one or more items respond to interactive operations with a
statement that begins with this phrase:

configure the user interface as follows :

Each configure the user interface as follows statement incorporates clauses that
fall into four distinct categories:

* Configuring menu choices and attributes in tables.
* Configuring mouse clicks.
* Constraining movement.

* Configuring keystrokes.

Note

Configuring the User Interface of Items

Specifying the Applicable User Modes

Each configure the user interface as follows statement must include at least one
user modes clause. This clause names one or more user modes under which the
configuration does or does not apply.

Use the when in phrase to list the user modes that apply to a set of configuration
clauses. Use the unless in phrase in a user modes clause to list the user modes that
do not apply to a set of configuration clauses. For example:

configure the user interface as follows :
when in developer or end-user mode : { inclusive }

unless in administrator, developer, or end-user mode : { exclusive }

As shown above, when specifying only two user modes, separate the mode
identifiers with the or reserved word. When specifying three or more modes,
separate the identifiers with commas, and include the reserved word or before the
last identifier.

You cannot specify a configure the user interface as follows statement that applies
only under administrator mode. You can specify configurations that apply when
not in administrator mode. This prevents you from unintentionally restricting
access to a portion of your own KB.

Declaring User Modes in Configurations provides more information about user
modes. Describing Configurations provides more information about configuring
the user interface in the various user modes, including a complete example.

Specifying Appropriate Operations for the Target
Class

If a clause in a configure the user interface as follows statement refers to a menu
choice, attribute, or low-level G2 operation that is not appropriate for the class of
the target item, G2 ignores that reference in the configuration clause.

For example, suppose you create this configuration statement:

configure the user interface as follows :
unless in developer mode :
menu choices for rule or custom-object exclude : hide

During the KB's processing, G2 ignores the reference to the rule class in the menu
choices for rule exclude clause, because hide is not one of the system-defined
menu choices for the rule class. However, G2 does not ignore the entire clause,
because hide could be a user-menu-choice for the user-defined custom-object
class.

301

Configuring Menu Choices and Attributes
in Tables

The following clauses affects which menu choices can appear, which attributes
and table menu choices can appear in an attribute table, and which non-menu
choices can appear for an item:

302

Clause

Purpose

attributes visible for

menu choices for

non-menu choices for

table menu choices for

Configures which of an item’s attributes are
displayed in the item’s table.

Configures which system-defined menu
choices and user-menu-choices are displayed
in the item’s menu.

Configures which system-defined interactive
operations for an item, for example, move,
scale, show, click-to-edit, and so on.

Configures which menu choices are available
when you select attributes in an item’s table.

These four clauses have a similar syntax:

* Each applies to one or more classes of items.

* Each supports cooperative combinations with similar clauses in other
configuration statements or in other configurations, as explained in
Combining Configurations.

* Each clause can specify that nothing is included or excluded.

For example, the following configuration statement might appear in the instance-
configuration attribute of the definition for the petro-valve class. The statement
summarizes the kinds of features that you can configure with these four clauses:

configure the user interface as follows :
when in developer or end-user mode :
attributes visible for any petro-valve include additionally :
notes, names, current-status ;

menu choices for any petro-valve include additionally :
diagnose-error-condition, show-status ;

non-menu choices for any petro-valve exclude additionally :
move-object, click-to-edit, full-editor,
option-buttons-for-edit-in-place,
menus-for-edit-in-place, do-not-clear-text-for-edit-in-place ;

Configuring Menu Choices and Attributes in Tables

{ This clause configures the table menu choices for the item's
entire table. }
table menu choices for any petro-valve exclude additionally :
transfer

{ This clause configures the table menu choices for a particular
attribute in the item's table. }

table menu choices for the notes of any petro-valve exclude
additionally : show-attribute-display

Configuring Attributes That Appear in Tables

In the developer’s environment, every G2 class defines a set of attributes for items
based on that class. Use the attributes visible for clause to determine the attributes
that appear in the attribute tables for a set of items identified by class. For
example:

configure the user interface as follows :
when in developer or end-user mode :
attributes visible for any petro-valve include :
notes, names, current-status

In the Text Editor, when you specify the attributes visible for clause, G2 prompts
you to specify which attributes to include or exclude. The Text Editor presents the
following prompts:

* any system-defined-attribute-name: Selecting this prompt displays a list of all
system-defined attributes for all system-defined classes.

* any attribute-name: Selecting this prompt displays a list of system-defined
attributes.

Configuring Menu Choices

Each G2 class has a system-defined set of menu choices. Use the menu choices for
clause to list the menu choices to include or exclude from the menus of a set of
items identified by class. For example:

configure the user interface as follows :
when in developer or end-user mode :
menu choices for any petro-valve include :
diagnose-error-condition, show-status

Configuring Non-Menu Choices

Each G2 system-defined class has a system-defined set of non-menu-based
operations. Non-menu choices are operations that are not performed in response
to the user’s selections from menus, such as selecting items, dragging the mouse,
input from the keyboard, and other user gestures like showing, hiding, resizing,
and scaling workspaces.

303

For example, to restrict the ability to use standard mouse gestures to copy items,
you can exclude non-menu options for selecting an object and selecting an area.
When items are restricted in this way, the user cannot execute any commands that
apply to the current selection.

These are the non-menu choices that you can configure:

This non-menu option... Provides the ability to...

select-object Left-click an item to select it.

select-area Drag in the open area of a workspace to select
all items in the rectangular area.

move-object Move an item by selecting it with the mouse
and dragging.

move-objects-beyond- Move an item further than the current
workspace-margin workspace edge to expand the
workspace size.

move-connection Click on a connection and move the
connection on the workspace.

move-workspace Move the workspace in the current window.
Excluding this option prevents the user from
moving the workspace.

move-workspaces- Move the workspace beyond the current
beyond-window-margin window margin.

show-workspace Show a workspace. Excluding this choice
removes named workspaces from the list of
workspaces available by choosing
Main Menu > get-workspace.

scale-workspace Scaling a workspace. Excluding this choice
prevents the user from scaling the workspace
with keystrokes such as Control + b and
Control +s.

click-to-edit Enter the Text Editor automatically when a
user selects, for example, an attribute value.
Excluding this option presents a menu from
which the user can choose to edit.

full-editor Invoke the Text Editor when editing an
attribute value. Excluding this option causes
G2 to invoke a partial editor in place.

304

Configuring Menu Choices and Attributes in Tables

This non-menu option... Provides the ability to...

option-buttons-for-edit- Remove buttons from a partial in-place editor

in-place when the full-editor option is being excluded.
This option thus works in conjunction with
excluding the full-editor, further restricting
editing capabilities.

menus-for-edit-in-place Remove the edit in place menu.

do-not-clear-text-for- Remove the text when editing in place.
edit-in-place
allow-selection-of- Select text from a location outside of the Text

outside-text-from-editor Editor and to use that text in the current
editing session. Excluding this option
prevents the user from sliding over a piece of
G2 text and have it appear in the editor.

allow-selection-of-text Permit text to be selected.

Use the non-menu choices for clause to list one or more non-menu choices to
allow or prohibit for a set of items identified by class. For example:

configure the user interface as follows :
when in developer or end-user mode :
non-menu choices for any petro-valve exclude :
move-object, click-to-edit, full-editor,
option-buttons-for-edit-in-place,
menus-for-edit-in-place, do-not-clear-text-for-edit-in-place

You cannot use the non-menu choices for clause to add a custom non-menu choice
for a class of items.

Configuring Table Menu Choices

In the developer’s environment, after you display an item’s table, you can click
the mouse on the table to display a table menu. Use the table menu choices for
clause to name one or more system-defined menu choices to include or exclude
from the menu of an item’s table. For example:

configure the user interface as follows :
when in developer or end-user mode :
{ This clause configures the table menu choices for the item's
entire table. }
table menu choices for any petro-valve exclude additionally :
transfer

305

306

Note

Because some table menu choices apply only to the attribute shown on the row
where the mouse was clicked, you can also use the table menu choices for clause
to include or exclude attribute-specific table menu choices. For example:

configure the user interface as follows :
when in developer or end-user mode :
{ This clause configures the table menu choices for a particular
attribute in the item's table. }
table menu choices for the notes of any petro-valve exclude
additionally :
show-attribute-display

Configuring Attribute Displays

You can restrict access to the attribute displays of items. Unless you restrict access
to these displays, users can click on them to open the Text Editor and edit the
attribute values themselves.

To do so, specify a configuration clause that names table-item, an internal class
that defines the characteristics of attribute displays. You can restrict attribute-
display access for a single item, for all the items on a workspace, or for all the
items in the KB. You do this by editing the item-configuration attribute of an item,
a workspace, or the Kb Configuration system table.

For example, to restrict attribute-display edit access to all the items on a
workspace, enter this statement in the item-configuration attribute of the
workspace:

configure the user interface as follows:
unless in administrator mode:
selecting any table-item does nothing

Adding this phrase to the statement above also prohibits the movement of the
attribute displays:

non-menu choices for table-item exclude: move-object

Item configurations are propagated down the KB workspace hierarchy. For
example, entering table-item configurations on an item with a subworkspace
makes any items on the subworkspace, as well as any existing items further down
the workspace hierarchy, subject to the item configuration.

To restrict edit access to attributes from the attribute-table of all instances of a
class, enter this statement in the instance-configuration attribute of the
class-definition:

configure the user interface as follows:
unless in admnistrator mode:
table menu choices for any class include: nothing

Configuring Keystrokes

Configuring Keystrokes

The typing ... implies clause associates keystrokes with G2 operations. When the
user displays the Help screen (by typing CTRL + /) the Help information includes
any keystroke associations currently in effect.

Use a typing ... implies clause to configure:

* Alphabetic and numeric keys, optionally modified by any combination of the
ALT, CTRL, or SHIFT keys.

® The function keys F1 through F12, modified or unmodified.

® The cursor-movement keys (left-arrow, right-arrow, up-arrow, down-arrow),
modified or unmodified.

* Other named keys (insert, delete, home, end, page-up, page-down), modified
or unmodified.

A typing ... implies clause can associate a keystroke with an operation that targets
one item, more than one item, or no items.

You can configure a keystroke to invoke a user menu choice or any of G2’s
system-defined menu choices.

You can bind printable characters, for example, to execute a menu choice by
pressing a single character or to prevent displaying the table for an item when
pressing the space bar.

Constraints on Configuring Keystrokes

You cannot use configurations to associate certain keystrokes that are intercepted
by your platform’s window manager.

For example, Microsoft Windows traps several keystrokes. You cannot associate
the following keystrokes with a G2 operation when using the typing ... implies
clause:

ALT + ESC

ALT + TAB

ALT + -

ALT + SHIFT + TAB
ALT + [SPACE]
CTRL + ESC

You can configure other standard Windows accelerator keystrokes by using the
typing ... implies clause.

Note that when configuring printable characters without any modifier keys, the
character bindings are not valid when the text editor is active.

307

Considering the Target of a Configured Action

When you use the typing ... implies clause to associate a keystroke with an action,
consider whether the action requires a target item. A keystroke can apply to:

® A particular item, for example, any kb-workspace.

® The current KB as a whole or the current G2 environment, depending on the
G2 operation, in which case, the clause contains no target item.

When a configured action applies to an item, a user must move the mouse pointer
over the target item before executing the keystroke.

Example of Configuring Keystrokes

The first clause below associates a keyboard keystroke with a G2 operation that
applies to a workspace; the second associates a character with the G2 operation
that presents the New Object menu; the third associates a keystroke with the G2
operation that resets the current KB; and the fourth prevents attribute table of an
item from displaying when the user presses the Space bar.

{ target is any kb-workspace }
typing alt + f on any kb-workspace implies full-scale ;

{ target is the entire KB }
typing n implies new-object;

{ target is the G2 developer’s environment }
typing f1 implies reset

{ target is the entire KB }
typing space does nothing

Configuring Mouse Gestures

308

Note

These clauses declare an association between a mouse gesture and a low-level G2
operation or user menu choice. A mouse gesture includes selecting an item,
pressing and releasing the mouse, clicking or double-clicking the mouse, rolling
the mouse wheel, dragging the mouse, or hovering the mouse.

The pressing item configuration clause is invoked for either a mouse-down event
or a double-click event. To configure two different actions for a single-click and a
double-click event, ensure that the double-clicking clause appears after the
pressing clause in the item configuration statement. That way, the double-clicking
clause takes precedence when determining the behavior for the double-click
event.

Configuring Mouse Gestures

When you display the Help screen (by typing CTRL + /), the Help information
describes any mouse-click associations currently in effect.

Clause Purpose

selecting ... implies Associates selecting an item of the specified
class (or classes) with a system-defined menu
choice, a user-menu-choice, or a null
operation.

pressing ... implies Associates pressing a mouse button with a
system-defined menu choice, a user-menu-
choice, or a system-defined non-menu
operation.

releasing ... implies Associates releasing a mouse button with a
system-defined menu choice, a user-menu-
choice, or a non-menu operation.

clicking ... implies Associates clicking (pressing and releasing) a
mouse button with a system-defined menu
choice, a user-menu-choice, or a system-
defined non-menu operation.

double-clicking ... Associates double-clicking (pressing and

implies releasing twice quickly) a mouse button with
a system-defined menu choice, a user-menu-
choice, or a system-defined non-menu
operation.

rolling ... implies Associates rolling the mouse wheel with a
system-defined menu choice, a user-menu-
choice, or a system-defined non-menu
operation.

pressing ... on ... starts Invokes a procedure that tracks movement of
the mouse, to support state-based operations
such as drag-and-drop.

hovering ... implies Associates hovering the mouse over an item
of the specified class with a system-defined
menu choice, a user-menu-choice, or a
system-defined non-menu operation.

309

Note You cannot use configurations to associate certain mouse clicks that are
intercepted by your platform’s window manager. For example, holding down the
ALT key and left-clicking is meaningful for the HP-Vue window manager on
Hewlett-Packard 9000 Series workstations.

Syntax Summary

The item-configurations syntax for mouse gestures are:
selecting [on any class] implies action

pressing [modifiers+] (any | the (left | middle | right)) mouse button
[on any class] implies action

releasing [modifiers+] (any | the (left | middle | right)) mouse button
[on any class] implies action

clicking [modifiers+] (any | the (left | middle | right)) mouse button
[on any class] implies action

double-clicking [modifiers+] (any | the (left | middle | right)) mouse button
[on any class] implies action

rolling [modifiers+] the mouse wheel (forward | backward)
[over any class] implies action

pressing on [modifiers+] (any | the (left | middle | right)) mouse button
[on any class] implies action

hovering [modifiers+] the mouse [over any class]
{implies action | does nothing}

where:
* modifiers are control, alt, or shift modifier keys.

® class is the class name to which the item configuration applies, which
is optional.

® action is the action to perform when the event occurs.

Statement Description

selecting...implies Pressing and releasing the left mouse
button on an item.

pressing...implies Pressing the mouse button down.

releasing...implies Lifting the mouse button up.

310

Configuring Mouse Gestures

Statement Description

clicking...implies Pressing the mouse button down and up
without moving the mouse, within some
tolerance.

double-clicking...implies Pressing, releasing, and pressing the same

button without moving the mouse much
and within the time limit for double clicks
as set by the window system (typically
300-500ms).

rolling...implies Moving the mouse wheel forward or

backward, where forward means rolling
the wheel towards the front of the mouse.

hovering...implies When the mouse does not move more

than a certain amount for a period of time,
which is determined by the operating
system. On Windows, the default is 4
pixels and 400 milliseconds, respectively.

Example

This example configures the user interface in all modes except administrator,
as follows:

Holding down the CTRL key and left-clicking any item displays its table.
Left-clicking any icon clones the icon.

Double-clicking any item displays its table.

With the right mouse button, double-clicking any item displays its table.
With the middle mouse button, double-clicking any item displays its table.
Rolling the mouse wheel forward scrolls the workspace up.

Holding down the CTRL key and rolling the mouse wheel forward scrolls the
workspace left.

configure the user interface as follows:
unless in administrator mode:
pressing control+the left mouse button implies table;
clicking the left mouse button on any icon implies clone;
double-clicking on any item implies table;
double-clicking the right mouse button on any item implies table;
double-clicking control+the middle mouse button on any item implies table;
rolling the mouse wheel forward implies scroll-up;
rolling control+the mouse wheel forward implies scroll-left

311

312

Tip

Associating Selection with a Menu Choice or User
Menu Choice

Use the selecting ... implies clause to configure selection operations that apply to
one item.

Selection means the pair of mouse clicks, mouse-down and mouse-up, which
occur in order over the same item.

For example, the following configuration statement associates the system-defined
create-subworkspace operation with selecting an item of the conveyor-station
class:

selecting any conveyor-station implies
create-subworkspace

You should differentiate between the selecting ... implies clause, which is
appropriate for configuring operations directed at one item, such as create-by-
cloning, and the typing ... implies clause, which is appropriate for configuring
operations not directed at any particular item, such as save-KB.

You can also specify a selecting ... absolutely implies clause to override all other
configurations that use a selecting ... implies clause for the specified class in the
same hierarchy. G2 resolves configurations in the same hierarchy with selecting ..
. absolutely implies clauses that conflict according to G2’s precedence rules for
configurations.

For example, the following configuration statement, which associates the system-
defined go-to-subworkspace operation with selecting an item of the navigate-
down-button class, overrides any other conflicting configurations in the
configured item’s hierarchy:

selecting any navigate-down-button absolutely implies
go-to-subworkspace

Associating a Mouse Click with the Miscellany Menu

Use the selecting ... implies miscellany clause to control the display of the Main
Miscellany or Workspace Miscellany menus.

The Workspace Miscellany Menu is a short-menu version of the Workspace
Menu. It omits some menu choices that are on the Workspace Menu such as the
new-item, move, hide, disable, and operate-on-area menu choices. When the class
reference in the configuration clause names a workspace class, the clause governs
the display of the Workspace Miscellany Menu.

Here is an example:

selecting any definition-workspace implies miscellany

Configuring Mouse Gestures

When the class reference in the configuration clause names a non-workspace
class, the clause governs the Main Miscellany Menu. For example:

selecting any special-object imples miscellany

Associating a Mouse Click with an Operation

You can associate the following types of mouse clicks with an operation, using the
following configuration statements:

* pressing ... implies associates a mouse-down event with an operation.
* releasing ... implies associates a mouse-up event with an operation.

® clicking ... implies associates a mouse-up and mouse-down event with an
operation.

* double-clicking ... implies associates mouse-down, mouse-up, mouse-down
events done in quick succession, with an operation.

For each statement, you can specify the following mouse clicks:
* any mouse button
¢ left mouse button, middle mouse button, or right mouse button

* Any combination of the control, alt, or shift modifier keys with any mouse
button.

You can associate the mouse-down, mouse-up, mouse-click, or mouse-double-
click events with an operation that is targeted on:

® The current item:
pressing the right mouse button on this item does nothing
releasing the right mouse button on this item implies lift-to-top

* Anitem of any class:
clicking the left mouse button on any kb-workspace implies hide-workspace
pressing the right mouse button on any workspace implies select-area

* Not an item, such as the G2 window’s background tiling pattern:
double-clicking any mouse button implies inspect

In the Text Editor, when you specify any mouse click with an operation, G2
prompts you to enter the name of a user menu choice, or to select from a list of
system-defined menu choices, system-defined workspace-oriented operations,
and system-defined KB-wide operations.

313

314

Associating a Mouse-Wheel Event with an
Operation

Use the rolling ... implies clause to configure mouse wheel events with an
operation. The configuration clause can include:

¢ rolling the mouse wheel forward, that is, toward the front of the mouse.
¢ rolling the mouse wheel backward, that is, toward the back of the mouse.
You can associate the mouse-wheel event with an operation that is targeted on:
® The current item:

rolling the mouse wheel forward on this item implies lift-to-top
* Anitem of any class:

rolling the mouse wheel forward on any kb-workspace implies scroll-down
rolling the mouse wheel backward on any kb-workspace implies scroll-up

* Not an item, such as the G2 window’s background tiling pattern:
rolling the mouse wheel backward implies inspect

You can include any combination of the control, alt, or shift modifier keys, for
example:

rolling control+the mouse wheel forward implies scroll-left
rolling control+the mouse wheel backward implies scroll-right

Associating a Mouse Click with a Mouse-Tracking
Procedure

Use the pressing ... on ... starts clause to declare that mouse clicks on items of one
or more classes cause G2 to call a user-defined mouse-tracking procedure. You
code this procedure to respond to a change in the mouse pointer’s location within
a particular window, until the next mouse-click event within that window.

This allows your KB to support state-based, user-interface operations, including
drag-and-drop operations such as a simple drawing command and opening and
selecting from pulldown menus.

For example, you can code a phrase like this:

pressing any mouse button on any custom-object starts
track-mouse-over-custom-object as the mouse tracks over any item

This phrase causes G2 to call the track-mouse-over-custom-object procedure after
the user depresses any mouse button over any custom-object, and to call that
procedure again each time the mouse pointer passes over any other item in G2’s
own window.

Note

Configuring Mouse Gestures

You can also code a phrase like this:

pressing control + any mouse button on any custom-object starts
track-mouse-over-custom-object as the mouse tracks
continuously over any item

This phrase causes G2 to call the track-mouse-over-custom-object procedure after
the user simultaneously depresses Control and any mouse button over any
custom-object; to call that procedure again each time the workstation’s window
manager updates the mouse position; and to call the procedure again each time
the mouse pointer passes over any other item in G2’s own window.

You can specify the following mouse clicks in a pressing on ... starts clause:
* any mouse button
* left mouse button, middle mouse button, or right mouse button

* Any combination of the control, alt, or shift modifier keys with any mouse
button.

The clause must refer to:

* A trigger-class: G2 calls your mouse-tracking-procedure when the user clicks
the mouse on an item of this class.

A tracked-class: G2 calls your mouse-tracking-procedure when the mouse
pointer passes onto, off of, or continuously over items of this list of classes.

* A mouse-tracking-procedure: A user-defined procedure (must be of the
procedure class) that G2 calls to respond to the triggering mouse-click-event
and to the mouse pointer’s subsequent movement onto, off of, or over items of
the tracked-class.

You cannot specify an item of the method or method-declaration class as the

mouse-tracking-procedure. However, your mouse-tracking procedure can call or
start a method.

Coding the Mouse-Tracking Procedure

Your mouse-tracking procedure must conform to the following syntax:

mouse-tracking-procedure
(event: symbol , tracked-window: class g2-window,
trigger-item: item-or-value, tracked-item: item-or-value,
x-mouse-position: integer, y-mouse-position: integer,
event-timing-in-milliseconds: integer, state-of-modifier-keys: integer)

315

Argument

Description

event

tracked-window

trigger-item

tracked-item

x-mouse-position

y-mouse-position

316

Is one of:

® The symbol start-tracking
® The symbol enter

® The symbol motion

® The symbol leave

® The symbol stop-tracking

Represents the g2-window item that is
associated with the window in which G2
tracks the mouse.

Note: It is possible that the tracked-window
argument of a user mouse-tracking
procedure does not exist. If your mouse-
tracking procedure uses this argument, the
procedure should first check for its existence,
using a statement such as if tracked-window
exists. If your procedure does not perform
this check, logging out of Telewindows or
deleting a g2-window while a user mouse-
tracking procedure is active can cause G2 to
signal a stack error.

Represents the item over which the mouse is
pressed first, or the value false if that item
has been deleted.

Represents the item the mouse is entering or
leaving, or the value false if that item has
been deleted. tracked-item also can be the
value false if the mouse is entering or leaving
a non-item component of the G2 environment
(such as an Operator Logbook page).

Represents the x position of the mouse, in the
coordinate system of the workspace.

Represents the y position of the mouse, in the
coordinate system of the workspace.

Configuring Mouse Gestures

Argument Description
event-timing-in- Represents the time-stamp in milliseconds of
milliseconds the mouse-click-event. Use this value to

determine the time interval in milliseconds
between consecutive mouse-click-events, such
as to determine a double-click. By design, this
value reaches integer overflow and wraps to
zero every few hours.

state-of-modifier- Represents the pressed-or-released state of

keys the three modifier keys (Alt, Control, and
Shift). Only the least significant three bits of
this value are meaningful. G2 returns values
in the range 0 (zero) to 7 (seven), as presented
in the next table.

Position of Modifier Keys

Alt Control Shift Return Value
Up Up Up 0

Up Up Down 1

Up Down Up 2

Up Down Down 3

Down Up Up 4

Down Up Down

Down Down Up 6

Down Down Down 7

You must code your mouse-tracking procedure to respond to these events:

* start-tracking event: When the configured mouse-click-event occurs over an
item of trigger-class.

* enter event: When the mouse pointer passes onto any item of tracked-class.

* motion event: (If the configuration includes the continuously keyword) when
the host platform’s window manager notifies G2 with a new location of the
mouse pointer.

* leave event: When the mouse pointer passes off of any item of tracked-class.

317

318

Note

stop-tracking event: When the user releases the mouse button.

abort-tracking event: When the user interrupts mouse-tracking by pressing
Control + a.

When the configured mouse-click-event occurs over any trigger-class item,
G2 automatically calls the mouse-tracking-procedure, the first time, and passes
to it:

The symbol start-tracking.

The g2-window item that is associated with the window in which the mouse-
click-event occurred.

The item over which the mouse was pressed.

The item over which the mouse was pressed (again).
The x, y position of the mouse-pointer.

The timing of this mouse-click-event in milliseconds.

The position of the modifier keys (Alt, Control, and Shift) as a three-bit
integer.

G2 does not call the mouse-tracking procedure if a mouse-click event occurs over
a disabled item.

For each tracked-class item onto which the mouse pointer passes, G2
automatically calls the mouse-tracking-procedure again, and passes to it:

The symbol enter.

The g2-window item that is associated with the window in which the enter
event occurred.

The original item over which the mouse was pressed.
The item over which the enter event occurred.

The x, y position of the mouse pointer, with respect to the workspace of the
item over which the enter event occurred.

The timing of this mouse-click-event in milliseconds.

The position of the modifier keys (Alt, Control, and Shift) as a three-bit
integer.

For each tracked-class item from which the mouse pointer passes, G2
automatically calls the mouse-tracking-procedure again, and passes to it:

The symbol leave.

The g2-window item that is associated with the window in which the leave
event occurred.

Configuring Mouse Gestures

The original item over which the mouse was pressed.
The item over which the leave event occurred.

The x, y position of the mouse pointer, with respect to the workspace of the
item over which the leave event occurred.

The timing of this mouse-click-event in milliseconds.

The position of the modifier keys (Alt, Control, and Shift) as a three-bit
integer.

When the user releases the mouse button, G2 automatically calls the mouse-
tracking-procedure again, and passes to it:

The symbol stop-tracking.

The g2-window item that is associated with the window in which the mouse-
click event occurred.

The original item over which the mouse was pressed.
The item currently under the mouse-pointer.

The x, y position of the mouse-pointer, with respect to the workspace of the
item over which the stop-tracking event occurred.

The timing of this mouse-click-event in milliseconds.

The position of the modifier keys (Alt, Control, and Shift) as a three-bit
integer.

If the configuration specifies the phrase continuously over, then for each tracked-
item over which the mouse pointer passes, G2 automatically calls the mouse-
tracking-procedure each time the workstation’s window manager updates the
mouse position. When G2 calls the mouse-tracking-procedure, G2 passes to it:

The symbol motion.

The g2-window item that is associated with the window in which the motion
event occurred.

The original item over which the mouse was pressed.
The item over which the motion event occurred.

The x, y position of the mouse pointer, with respect to the workspace of the
item over which the motion event occurred.

The timing of this mouse-click-event in milliseconds.

The position of the modifier keys (Alt, Control, and Shift) as a three-bit
integer.

319

Example of Mouse-Tracking Procedure

For example, suppose you have a pull-down-menu class, whose instances are
related to instances of the pull-down-menu-choice class. You can use a
configuration statement with a pressing ... on ... starts clause, as follows, to
implement operations that support selection of pulldown menu choices:

configure the user interface as follows :
unless in administrator mode :
pressing alt + any mouse button on any pull-down-menu starts
start-procedure use-pull-down-menu as the mouse tracks over
any pull-down-menu-choice or pull-down-menu

Including this pressing ... on ... starts clause in the configuration requires that
you write a procedure named use-pull-down-menu, as follows:

use-pull-down-menu (event : symbol, tracked-window : class g2-window,
trigger-item : item-or-value, tracked-item : item-or-value,
X-mouse-position : integer, y-mouse-position : integer,
event-time-stamp : integer, keys-mask : integer) = ()

begin
{ Respond to the four mouse-tracking procedure events ... }
case (event) of
START-TRACKING :
begin
call highlight-a-pull-down-menu (trigger-item) ;
call select-a-pull-down-menu (trigger-item) ;
end ;

ENTER:
{ First, verify that a "tracked-item" value was returned }
if tracked-item has a current value then
begin
{ Second, perform this operation only if the "tracked-item"
still exists. }
if tracked-item exists then
call highlight-a-choice-on-pull-down-menu
(tracked-item) ;
end ;

MOTION :
{ This case is necessary only if the relevant configuration
statement specifies "continuously over". }

{ First, verify that a "tracked-item" value was returned }
if tracked-item has a current value then
begin
{ Second, perform this operation only if the "tracked-item
still exists. }
if tracked-item exists then
call display-menu-for-traversed-item (tracked-item) ;

end ;

320

Configuring Mouse Gestures

LEAVE :
{ First, verify that a "tracked-item" value was returned }
if tracked-item has a current value then
begin
{ Second, perform this operation only if the "tracked-item"
still exists. }
if tracked-item exists then
call unhighlight-a-choice-on-pull-down-menu
(tracked-item) ;
end ;

STOP-TRACKING :

{ First, verify that a "tracked-item" value was returned }

if tracked-item has a current value then

begin
{ Second, perform this operation only if the "tracked-item"
still exists. }
if tracked-item exists then
case (the class of tracked-item) of
pull-down-menu-choice :
{ Perform this operation only if the "tracked-item"
still exists. }
if tracked-item exists
call select-choice-on-pull-down-menu
(tracked-item) ;
otherwise :
{ If mouse-up event occurs over other than a
pull-down-menu-choice ... }
call unselect-the-selected-pull-down-menu () ;
end { case of }
end { begin }

ABORT-TRACKING :
{ This procedure does not support responding to aborts
(the Control + a keypress) during mouse-tracking. }
begin
end
end { case of }
end { begin }

In this sample procedure, notice that:

* When the user releases the mouse button, the mouse might not appear over an
item of the tracked-class. Therefore, code under the stop-tracking: case must
discriminate between items of applicable and non-applicable classes.

® In each situation in which G2 can return a tracked-item, the mouse-tracking
procedure must check, first, that G2actually returned a value, and second, that
the tracked-item still exists.

* If the trigger-item and the tracked-item are the same item, your KB might cause
that item to be deleted after the start-tracking event but before the enter, leave,

321

or stop-tracking events. In this case, G2 passes no value for the trigger-item
argument.

Note If the mouse button is released over the tracked-window’s background tiling

pattern, G2 supplies the g2-window that is associated with this process window
(belonging to G2 or Telewindows) as the value for tracked-item and returns x-
mouse-position and y-mouse-position as zero (0).

If tracked-item was deleted during mouse-tracking, trigger-item is passed as the
value false for all subsequent mouse-tracking events.

If tracked-item was deleted between when G2 detects the enter and leave events,
the tracked-item argument has the value false for the leave event.

Conflicts between Mouse-Tracking and Other User
Interface Operations

Other user-interface operations can also occur after mouse-tracking has begun
and before mouse-tracking ends. For example, the KB’s processing can perform a
transfer ... to the mouse action after mouse-tracking processing has begun; after
the user executes mouse-down to drop the item, the mouse-tracking processing
resumes.

Constraining the Movement of Items

322

These two clauses restrict where you can move items upon a workspace:

Clause Purpose

constrain moving ... Limits the movement of an item to an

to the rectangle invisible rectang]le.

constrain moving ... Limits where an item can be moved upon its
such that the item workspace.

aligns on a grid

These constrain moving clauses do not restrict:
* The placement of cloned items on a workspace.
* The placement of items transferred to a workspace.

* The movement of items within an operate on area region.

Note

Tip

Constraining the Movement of Items

You cannot use this configuration statement for workspaces, because the
coordinate systems are workspace coordinates. Use this configuration for items
upon a workspace.

Aligning Items to an Invisible Rectangle

The constrain moving ... to the rectangle clause restricts moving an item to within
an invisible rectangle whose left, right, top, and bottom edges you specify.

Specify the four edges of the invisible rectangle as x, iy coordinates upon the
workspace. For example, the following clause restricts moving upright-beam
items outside of a particular region of a workspace that displays the floor-plan of
a building;:

constrain moving any upright-beam to the rectangle (-100, 100, -100, 100)

Aligning Items on an Invisible Grid

The constrain moving ... such that the item aligns on a grid clause specifies an
invisible grid within the workspace. G2 forces placement of items of the specified
class at the intersection points on this grid. This capability is similar to the snap
feature in software packages for drawing schematic diagrams.

G2 measures the spacing between the intersection points on this grid in
G2 workspace units. G2 uses the center of the item as the reference point for
alignment.

For example, the following clause restricts placement of upright-beam items in a
workspace that displays the floor-plan of a building:

constrain moving any upright-beam
such that the item aligns on the grid (50, 50)

In this example, assume that the x-grid-length and y-grid-length attributes of floor-
plan have the value 50, which represents a length in G2 workspace units. As you
use the mouse to move an upright-beam within a workspace, G2 changes the
item’s location within its workspace only after the mouse moves at least 50
workspace units, either horizontally or vertically.

The G2 system procedures g2-set-movement-limits, g2-get-movement-limits, and
g2-clear-movement-limits also programmatically restrict an item’s movement
within a workspace.

323

Configuring the User Interface of Proprietary
Items

324

Tip

G2 allows you to identify a workspace as proprietary. A proprietary workspace
and the items below it in the KB’s workspace hierarchy are called proprietary
items. You can use configurations to restrict access to proprietary items. For more
information about creating a proprietary KB, see Package Preparation.

G2 defines the proprietary status of workspaces independently of the user mode
of the g2-window that is associated with the current process window (for G2 or
Telewindows). Because of this, you can configure proprietary items
independently of any user modes declared in the KB’s configurations. By making
a workspace proprietary, you can effectively lock that workspace’s items from
any access whatsoever, including access by a programmatic action that isn’t
associated with a user mode.

Use the restrict proprietary items as follows statement to configure proprietary
items. This statement supports these configuration clauses:

menu choices for table menu choices for
non-menu choices for pressing ... implies
selecting ... implies pressing ... on ... starts
attributes visible for releasing ... implies
typing ... implies

These clauses conform to the same syntax, and have the same limitations, as
described for the configure the user interface as follows statement, described in
Configuring the User Interface of Items.

For example, the following configuration statement restricts the menu choices
and non-menu choices available for proprietary tracked-vehicle items, which are
tracked-vehicles placed under any proprietary workspace in the KB’s workspace
hierarchy:

restrict proprietary items as follows :
menu choices for tracked-vehicle include additionally :
create-instance ;
non-menu choices for tracked-vehicle include :
nothing

Configuring Access to and from Other G2, G2 Gateway, and Telewindows Processes

Configuring Access to and from Other G2,
G2 Gateway, and Telewindows Processes

Use the set up network access as follows configuration statement to allow or
prohibit access to the entire KB or to one or more items in the KB, by other G2
processes, by G2 Gateway bridge processes, and by Telewindows processes.

Use the set up network access as follows statement as summarized in this table:

Type of
Access Short Description Relevant Items or Classes
read Other G2 processes can use KB-wide, items of any system-
items in the current KB as a defined class, or items of any user-
source of data service for defined class.
variables in their own
current KBs. Not applicable to
G2 Gateway or Telewindows.
write Other G2 processes can set a KB-wide, variables of user-defined
new current value of a variable classes that mix in either the g2-to-
of a user-defined class. Not g2-data-service or gsi-data-service
applicable to G2 Gateway or ~ class.
Telewindows.
execute Other G2 processes or G2 Items of the procedure class.
Gateway bridge processes can
call a G2 procedure in the
current KB.
inform Other G2 processes can target Items of user-defined classes that mix
an inform action on a variable in the g2-to-g2-data-service class.
of a user-defined class. Though the editor permits you allow
or prohibit inform access to or from
G2 Gateway, such access is
inappropriate, because there is no
way for G2 Gateway to inform a
G2 process.
connect Other G2 processes, G2 KB-wide only: Include a setup

Gateway and Telewindows
processes can connect to this
G2 process.

network access as follows
configuration statement only in the
item-configuration attribute of the KB
Configuration system table.

325

326

Note

Note

Allowing or Prohibiting Network Access

By default, all G2 processes, G2 Gateway, and Telewindows allow network access
to the current KB. You can allow or prohibit all access to the current KB by other
G2 processes, G2 Gateway, and Telewindows.

Because network access applies to the entire KB, you must include a global
configuration statement such as the following in the item-configuration attribute
of the KB Configuration system table.

To prohibit network access to a KB:

= Enter a configuration statement in the KB Configuration system table such as:

set up network access as follows :
prohibit connect access by g2 and gsi and telewindows

G2 does not allow this configuration statement in any other item-configuration or
instance-configuration attribute.

To prohibit access to G2 Gateway, you must use the symbol gsi. Also, prohibiting
connect access by G2 Gateway prevents G2 Gateway from initiating a connection
to G2, but it does not prevent G2 from connecting to G2 Gateway through a
gsi-interface item in G2.

Allowing connect access permits another G2 process, G2 Gateway, or
Telewindows to establish a connection with this G2 process. Because connect
access applies to the entire KB, it restricts or enables all items in the current KB.

To allow or restrict connect access:

= Include a configuration statement in the item-configuration attribute of the
KB Configuration system table such as:

set up network access as follows :
allow connect access by g2 and telewindows

Because connect access does not apply to particular items, G2 does not support
the absolutely keyword for this phrase.

Note

Configuring Access to and from Other G2, G2 Gateway, and Telewindows Processes

Allowing Read and Write Access

Allowing read and write access permits other G2 processes to access items in the
G2 granting the access:

* Allowing read access to a set of items in the current KB permits those items to
be the source of values for variables in the current KB of the other G2 process.

* Allowing write access to a set of variables in the current KB permits the other
G2 process to set those variables” values with set actions.

Variables of a user-defined class that mixes in g2-to-g2-data-service are
candidates for allowing write access.

To restrict read or write access to items by other G2 processes:
= Enter a configuration statement such as:

set up network access as follows :
prohibit read or write access to any vehicle by g2

Allowing Execute Access

Allowing execute access to procedures in the current KB permits another G2 or a
G2 Gateway bridge to invoke them using a Remote Procedure Call (RPC).

To restrict execute access:

=> Enter a configuration statement such as:

set up network access as follows :
prohibit execute access to update-vehicle-direction by g2 and gsi

Prohibiting execute access on a rule that can be activated by forward chaining
from a variable does not stop the rule from firing. To do this, you must instead
declare a configuration that prohibits access to the variable.

Allowing Inform Access

Allowing inform access to variables in the current KB permits another G2 process
to pass messages to those variables through an inform action.

To restrict inform access to items:
<> Enter a configuration statement such as:

set up network access as follows :
prohibit inform access to any custom-message-receiving-variable by g2

327

Configuring Properties of Iltems

You can declare that an item has one or more properties, using the statement.
declare properties ... as follows

® These item properties relate to optimization and the compilation of rules,
procedures, and certain system-defined attributes:

inlineable Whether the procedure or method can be
inlined.
stable-hierarchy For methods and related-items, stable-

hierarchy implies that neither the class-
hierarchy nor the method will be

specialized.
independent-for-all- For items with compilation dependencies on
compilations other items, whether compilation of the

item’s attributes depends on the stability of
those other items

stable-for-dependent- Whether an item is the basis for the stability
compilations of other items that have a compilation
dependency on it

® These item properties relate to subworkspaces:

activatable- Whether an item’s subworkspace can be
subworkspace activated and deactivated (using the
activate and deactivate actions)

subworkspace- Whether an item can be connected to other
connnection-posts items on its subworkspace via connection
posts on the subworkspace

* This property relates only to items that are using connections:

manual-connections ~ Whether the user can interactively draw
connections to or from an item

328

Configuring Properties of Items

Specifying the Scope of the Declared Properties

You specify declare configuration statements that have different scopes, as shown
in these examples:

{ Scope: Follow the KB's workspace hierarchy or class hierarchy ... }
declare properties as follows :
inlineable ;

{ Scope: Only the configured item is affected by the configuration. }
declare properties of this item as follows :
independent-for-all-compilations ;

{ Scope: Within the KB's workspace hierarchy or class hierarchy, any item
of the specified class(es) are to be affected by the configuration. }
declare properties of any tracked-vehicle as follows :
stable-for-dependent-compilations

Specifying Exceptions to the Declared Properties

To specify a statement that represents an exception to a declare statement found
in a configuration placed on an item higher in the hierarchy, begin the statement
with the phrase:

declare properties ... as follows : not ...

Examples:

declare properties as follows :
not inlineable ;

declare properties for this item as follows :
not stable-for-dependent-compilations

declare properties for any tracked-vehicle as follows :
not independent-for-all-compilations

Declaring a Procedure to be Inlined

An inlined procedure is one whose compiled code is embedded in any compiled
code that calls the procedure. Inlining a procedure improves performance by
eliminating the need to execute a call when the procedure is invoked: control
instead passes directly to the embedded code for the procedure. The trade-off is
increased compiled code size due to redundant inlined copies of the procedure.

When you inline a procedure, you must also use the configuration clause:
stable-for-dependent-compilation.

By default, all items in the current KB are configured as:

declare properties as follows :
not inlineable

329

330

To declare that a procedure can be inlined:
= Add this item configuration to the procedure:

declare properties as follows : inlineable,
stable-for-dependent-compilations

Inlining a procedure is further described in Using Compilation Configurations.

Declaring a Method to be Inlined

An inlined method is identical to an inlined procedure: its compiled code is
embedded in any compiled code that calls the method. When you inline a
method, you must also include the configuration clauses stable-hierarchy and
stable-for-dependent-compilations.

A method of stable-hierarchy guarantees that a more specialized method will not
be added below the current method in the method hierarchy. If the method
includes return values, the stable-hierarchy declaration additionally guarantees
the return value types.

By default, all items in the current KB are configured as:

declare properties as follows :
not inlineable

To declare that a method can be inlined:
= Add this item configuration to the method:

declare properties as follows : inlineable, stable-hierarchy,
stable-for-dependent-compilations

Inlining a method is further described in Using Compilation Configurations.

Declaring Items as Stable Hierarchy

Declaring an item as stable-hierarchy indicates that neither the class hierarchy of
the item, nor the item itself, will be specialized. If a method is declared with
stable-hierarchy, then G2 may be able to compile more efficiently the procedures
or methods that call the inlined method.

You can also declare classes as stable-hierarchy, which may let G2 compile any
methods of that class more efficiently.

By default, all items in the current KB are configured as:

declare properties as follows :
not stable-hierarchy

To declare an item to have a stable hierarchy:

= Add this configuration statement to the item:

Configuring Properties of Items

declare properties as follows :
stable-hierarchy

Note This statement must be used when declaring a method as inlineable.

Using the stable hierarchy configuration is further described in Using
Compilation Configurations.

Declaring an Item Independent for All Compilations

Declaring an item as independent-for-all-compilations means that the item’s
knowledge does not depend on the knowledge in any other item in the KB. This
allows G2 to compile that item more efficiently.

By default, all items in the current KB are configured as:

declare properties as follows :
not independent-for-all-compilations

To declare an item independent for all compilations:
= Add this configuration statement to the item:

declare properties as follows :
independent-for-all-compilations

This feature is described in detail under Using Compilation Configurations.

Declaring an Item Stable for Dependent
Compilations

Declaring an item as stable-for-dependent-compilations means that certain parts
of the item’s knowledge will not change during the KB’s processing. This allows
G2 to compile more efficiently other items that depend on that knowledge.

By default, all items in the current KB are configured as:

declare properties as follows :
not stable-for-dependent-compilations

To declare an item as stable for dependent compilations:
= Add this configuration statement to the item:

declare properties as follows :
stable-for-dependent-compilations

This feature is described in detail in Using Compilation Configurations.

331

332

Note

Note

Declaring an Activatable Subworkspace for an ltem

Most G2 classes can support an activatable subworkspace. Activatable
subworkspaces support the programmatic activation and deactivation. You use
the activate and deactivate actions to activate and deactivate an activatable
subworkspace. By default, all items in the current KB are configured as:

declare properties as follows :
not activatable-subworkspace

To declare that an item supports an activatable subworkspace:
= Add this configuration statement to the item:

declare properties as follows :
activatable-subworkspace

If items of the configured definition item’s class do not support creating an
associated subworkspace, G2 ignores that declare properties as follows :
activatable-subworkspace configuration statement.

Declaring Subworkspace Connection Posts
for Items

If items of a class can have a subworkspace, and (for a user-defined class) if the
icon-description attribute of the class’s definition defines connection stubs, you
can configure items of that class so that G2 automatically creates permanent
connection-posts on the subworkspaces of items of that class.

Through an item’s subworkspace connection-posts, you can connect the item of
the configured class to items on the subworkspace. Using subworkspace
connection-posts is described in Creating Connection Posts on Subworkspaces

Automatically.
By default, this property is configured as:

declare properties as follows :
not subworkspace-connection-posts

To declare that an item supports subworkspace connection posts:
= Add this configuration statement to the item:

declare properties as follows :
subworkspace-connection-posts

If the configured items do not have a subworkspace, G2 ignores the declare
properties as follows : subworkspace-connection-posts configuration statement.

Note

Including Comments in Configurations

Disallowing Manual Connections for an ltem

For any subclass that is defined to support connections, you can prohibit KB users
from drawing connections interactively to or from items of that class, except
where pre-existing stubs exist.

By default, this property is configured as:

declare properties as follows :
manual-connections

To declare that an item disallows manual connections:
= Add this configuration statement to the item:

declare properties as follows :
not manual-connections

If items of the configured class do not support manual connections, G2 ignores
that declare properties as follows : manual-connections configuration statement.

Including Comments in Configurations

Tip

G2 allows you to store tagged text as comments in item configurations and
instance configurations. Each comment has a tag symbol and an associated text
string, such as:

comment as follows :

configuration-purpose : "A comment describing this configuration's
purpose" ,

author-of-configuration : "HCC" |
configuration-last-modified : "18 Jul 1997" ,
latest-benchmark-statistics-load : "3.243",
latest-benchmark-statistics-save : "5.56" ,
latest-benchmark-statistics-run : "14.8973"

A comment as follows statement can contain one or more symbols, each of which
identifies a string that contains the text of the comment.

The symbol can represent a keyword that is significant for your application; the
text can represent textual information that identifies a significant fact or feature
for the items within the scope of that configuration.

This feature is intended to support comments consisting of free-form text. For
example, you can assign symbols for use as search keywords.

333

Describing Configurations

Tip

By default, when you click the mouse on an item of any system-defined or user-
defined class, the menu that appears includes the describe configuration choice.

Selecting describe configuration presents a table that lists the configurations that
apply to that item. For example, after creating a new connection post, select
describe configuration from its menu. G2 displays a table like the one shown
below:

LT =T

Item configuration for CONMNECTION-POST-XKx-32
Item configuration on CONNECTION-POST-XXX-32 none

Item configuration on KB-\WORKSPACE-XXX-33: none

Item configuration on the KEB:

configure the user interface as follows:

unless in administrator mode:
attributes visible for item exclude additionally: item-configuration;
attributes wisible for kb-restrictions exclude: main-menu-user-restrictions,
keyhoard-command-restrictions, initial-gz-user-mode-for-this-kb;
menu choices for item exclude additionally; describe-configuration

Instance configuration on CONMECTION-POST: none

Instance configuration on CBJECT: none

This table lists all configuration statements that G2 finds applying to this item.
Each entry indicates whether its statements are stored in an item configuration or
instance configuration. The entry at the top shows the statements that have
highest precedence; the entry at the bottom shows the statements that have lowest
precedence.

As you develop configurations in your KB, use describe configuration to trace
which configurations actually apply to a particular item.

Declaring User Modes in Configurations

334

Certain configuration statements declare categories of usage, or user modes, for
your KB. Specifically, you refer to user modes in the configure the user interface
as follows statement, as described in Configuring the User Interface of Items.

Each user mode can represent a style of interaction with the KB’s knowledge. The
meaning of each style depends on how your application organizes its knowledge.

For instance, if your application organizes its knowledge into concentric layers of
knowledge, for example, with outer layers representing unrestricted knowledge
and inner layers representing restricted knowledge, each user mode can represent
a security level into one or more layers of the KB’s knowledge.

Alternatively, if your application organizes its knowledge according to the roles
of those that work with the application, perhaps distinguishing among

Tip

Declaring User Modes in Configurations

developers, users, and site administrators, each user mode can represent the set of
workspaces accessible to persons acting in a particular role.

You declare a user mode simply by referencing it in a configure the user interface
as follows statement in an item configuration or instance configuration. Your KB’s
configurations can declare as many user modes as your application requires.

Associating User Modes with G2-Window Items

G2 associates a user mode not with an individual user, but rather with a
particular window. This is because the value of each g2-window item’s g2-user-
mode attribute indicates the user mode in effect for the window with which it is
associated.

Recall that launching a G2 process causes G2 to create one g2-window item.
G2 automatically associates this g2-window item with the visible window
(produced by the workstation’s window manager software) that displays the
contents of the current KB.

Finally, recall that when a user starts or connects to a G2 process that uses a secure
G2 authorization file, G2 presents the login dialog, in which the user enters a user
name and optionally a user mode, default language, and so on. In this case, G2
first verifies that the specified combination of user name and user mode are
registered in the G2 authorization file. If they are, G2 creates a g2-window item
and sets the value of its g2-user-mode attribute to the user mode indicated in the
login dialog.

When logged into a secure G2 with a KB loaded, the user can only change to a
user mode that is explicitly mentioned in a configuration statement in the KB. If
the user attempts to change to a user mode that is not explicitly mentioned in the
KB, an error occurs in the editor indicating the user mode is unknown, even if the
specified user mode has been authorized for that user in the OK file.

See G2-Windows for more information about g2-window items and their relation
to visible windows. See the Telewindows User’s Guide for more information about
starting and operating Telewindows.

Unless your G2 process is using a secure G2 authorization file, the g2-user-mode
attribute of each g2-window item that G2 creates has the default value
administrator. The administrator user mode is always declared and in use while a
G2 process is running.

335

336

Note

Tip

The window associated with a g2-window item whose g2-user-mode attribute
contains the value administrator can access and display all the knowledge in the
current KB. To prevent you from mistakenly restricting access to your own KB,
you cannot use configurations to affect the behavior of items under
administrator mode.

Associating User Modes and Users

If your KB uses configurations that declare user modes, you must consider how to
associate each user of the KB with a user mode. If you require the users of your G2
application to login, G2 can automatically associate an appropriate user mode
with each user account. For more information, see G2-Windows.

The knowledge in the G2 authorization file, typically named g2. ok, determines
whether users log into G2 or not. The G2 site administrator is responsible for
maintaining the g2. ok file. For more information, see the readme-g2.html file
and the G2 Bundle Release Notes.

If users do not login to your G2, your KB must be responsible for associating users
with user modes. Given this design, your KB could provide a dialog that allows
the user to switch among alternative views of the KB’s knowledge.

Example of Configuring the User Interface of
an ltem

You can understand how configurations work by following a simple example.
The example shows you how to configure a symbol-list so that it behaves
differently when appearing in different windows associated with g2-window
items that have different settings in their respective g2-user-mode attributes.

This example also illustrates G2’s rules of precedence for configurations, in that
you will store configurations in items at different levels in the KB's class and
workspace hierarchies.

Declaring User Modes in Configurations

This example uses action buttons to change the target g2-window item’s g2-user-
mode attribute: one action button for administrator mode and one for end-user
mode. The figure below shows how you should define each action button.

USER-MODE-BUTTONS, a kh-workspace

. conclude that the gZ-user-maode of this
adminstrator mo'del window = the symbol administrator

conclude that the gZ-user-mode of this
end-user model window = the symbol end-user

To configure the user interface of an item:

1
2

Start the current KB.

Click the mouse on your action button to change the user mode of this
G2 window to administrator.

Create a new workspace.

Create a symbol-list on the workspace named my-symbol-list by choosing
KB Workspace > New Object > g2-list > value-list > symbol-list.

Open the table for the symbol-list, and edit its name to my-symbol-list.

In my-symbol-list’s table, notice that you can modify the allow-duplicate-
elements attribute by selecting the change-to-no and change-to-yes table
menu choices.

In the table for the symbol-list, select describe configuration.

G2 lists the configurations in effect for the item, as follows:

* No item configurations currently apply for my-symbol-list.

* No item configurations apply for my-symbol-list’s parent workspace.

* The KB Configuration system table contains G2's default KB-wide item
configurations.

Hide my-symbol-list’s table by clicking the mouse in the table’s title bar.

Click the action button to change the user mode setting for this g2-window
item to end-user.

Open my-symbol-list’s table again.

Notice that the item’s item-configuration attribute does not appear. This is
because, after you launch G2 with an empty current KB (or after you clear the

337

338

10
1"
12

13

14

15

current KB), G2 includes the following configuration statement in the
item-configuration attribute of the KB Configuration system table:

KB-COMNFIGUERATION

Motes | Ok

Authors | none

Change log | 0 entries

Item configuration | configure the user interface as follows;

unless in administrator mode:
attributes visible for item exclude additionalby:
item-configuration;
attributes visible for kb-restrictions exclude:
main-menu-user-restrictions, keyboard-
command-restrictions, initial-gZ-user-mode-
for-this-kh;
menu choices far item exclude additionally;
describe-configuration

Authorized optional modules | onling, |, jp, al

Simulated optional modules | dao not simulate

Hide my-symbol-list’s table again, and change the user mode to administrator.
Display the table for the workspace that contains my-symbol-list.

In this table, edit the item-configuration attribute so that it contains:

configure the user interface as follows :
when in end-user mode:
attributes visible for g2-list exclude additionally :
element-type;
table menu choices for the allow-duplicate-elements of any
g2-list exclude :
change-to-no, change-to-yes, edit

Change the user mode to end-user, then display my-symbol-list’s table again.

Notice that neither the item-configuration attribute nor the element-type
attribute appears. This is due to the item configuration you added to my-
symbol-list’s parent workspace. Due to the item configuration you added to
my-symbol-list, you cannot modify the item’s allow-duplicate-elements
attribute.

Change the user mode to administrator, and display my-symbol-list's menu.

Notice that the describe configuration menu choice appears in the item’s
menu.

Change the user mode to end-user, and again display my-symbol-list's menu.

Now notice that the describe configuration menu choice does not appear. This
demonstrates how a configuration placed at a more specific level in your KB's
class or workspace hierarchy overrides a configuration placed at a more
general level in that hierarchy.

Declaring User Modes in Configurations

Obtaining the Attributes Visible for a User Mode
Programmatically

To obtain the attributes that are visible for an item in a particular user mode:

= g2-get-attributes-visible-in-mode
(class-or-item: item-or-value, user-mode: symbol)
-> list-of-attributes: sequence

As an example, the geo-classic automobile class defines its instance-configuration
attribute as follows:

configure the user interface as follows:
when in inventory-checker mode:
attributes visible for geo-classic exclude absolutely: test-case

To obtain a list of visible attributes for a particular user mode:

get-attributes-in-mode (geo-classic-instance: class geo-classic)
value-for-mode: sequence;

begin
value-for-mode =
call g2-get-attributes-visible-in-mode(geo-classic-instance,
the symbol inventory-checker);
change the text of message1 to "[value-for-mode]"
end

339

This procedure returns and displays the returned sequence containing the
attributes visible in the inventory-checker user mode. Notice that the system
procedure returns all of the attributes that a class inherits from every class in its
inheritance path, including those that are displayed on the table of hidden
attributes for an item:

MESSAGE-BOARD

#30 23730 pn. sequence (the symbol
FOUNDATION-CLASS,
the symbaol CLASS,
the symbaol ULID,
the symbol LAYER-POSITION,
the symbol FOLLOWING-ITER-IM-
WORKEPACE-LAYERING,
the symbol POSITIOMN-IM-WORKSPACE,
the symbol RELATIOMNIHIPS,
the symbol ITEM-MNOTES,
the symbol COMTAIMING-MODULE,
the symbol ITEM-ACTIVE,
the symbaol ITEM-STATUS,
the symbol ATTRIBUTE-DISPLAY-ITEMS,
the symbol MAME-BOX-ITEM,
the symbol ICON-YARIABLES,
the symbol 1CON-COLOR,
the symbol ICON-REFLECTION,
the symbol ICON-HEADING,
the symbol ITEM-COLOR-PATTERN,
the symbaol SIZE-IN-\WORKSPACE,
the symbol CURREMT-ATTRIBUTE-DISPLAYS,
the symbaol MNAME-BOX,
the symbaol TRANSIENT,
the symbaol MAMNUALLY-DISABLED@?,
the symbol PERMANENT,
the symbol DO-NOT-STRIP-TEXT-MARK,
the symbol STRIP-TEXT-MAREK,
the symbol REPRESEMNTATION-TYPE,
the symbol TABLE-HEADER,
the symbal ITEM-WIDTH,
the symbol ITEM-HEIGHT,
the symbol ITEM-Y-POSITION,
the symbol ITEM-X-POSITION,
the symbaol NOTES,
the symbaol MAMES,
the symbol YEHICLE-ID-MUMBER,
the symbol AUTO-COLOR)

For information about hidden attributes, see Hidden Attributes.

Note All configurations that exist for an item, through item- and instance-
configurations, and proprietary settings, remain in effect during attribute access
operations.

340

Declaring Generic and Exception Configurations

Declaring Generic and Exception
Configurations

After you enter configurations that apply very generally within your KB, you
might find that you must configure a unique behavior for some subset of the KB’s
items or for particular items. These configurations represent exceptions to your
KB’s more generally applicable configurations.

For example, in the KB shown in the figures in Example of the Scope of
Configurations, assume that:

® Anitem configuration stored in the Top Level workspace prohibits network
access to the navigation buttons labelled Definitions and Schematic, those
buttons” subworkspaces, and all items contained in those subworkspaces.

* Anitem configuration stored in the Schematic workspace allows network
access to the items car-class-1 and service-car-1, and so on.

Following G2’s rules of precedence for configurations, among the configurations
that apply to car-class-1, the item configuration stored in the schematic
workspace overrides the item configuration stored in the top-level workspace.

You can also store configurations with a smaller scope that supplement
configurations with a larger scope. This allows you to declare a unique behavior
for a subset of items, without affecting the configurations for all other items in
your KB.

Combining Configurations

As described in Precedence of Configurations, given two configurations that each
affect some feature of an item in two distinct ways, G2 applies only the
configuration with the higher precedence to the item.

However, you can use G2’s precedence rules for configurations in a more
complex manner. Consider the user gesture of clicking the mouse on an item to
display its menu. Do you prefer to show all menu choices configured for the
menu or just those mentioned in the first menu configuration that G2 finds in its
search up the class and workspace hierarchies? The same question arises for
which attributes to show when displaying an item’s table.

G2 allows fine control over these cases by using the phrases include, include
additionally, and exclude absolutely.

341

342

Combining Cooperatively

You can use two configuration statements, configure the user interface as follows
and restrict proprietary items as follows, to define configurations that G2 applies
in a cooperative manner. These two kinds of statements configure the interactive
behavior of an item.

You can also use these statements to configure a feature for a set of items without
overriding the configurations on the same feature that are of a lower precedence.

To illustrate, suppose you create a KB that represents the foundation software
layer for applications built by G2 developers, with these requirements:

* Your KB must define new user-defined, item classes, and you must declare a
set of default user-interface characteristics for those new classes, using
instance configurations. Your instance configurations prohibit the display of
system-defined menu choices (and perhaps also configure new user menu
choices) for items of your new classes.

® Other G2 developers must define new subclasses based on the new classes
you provide. The other developers must also be able to add their own instance
configurations in definitions of their own new subclasses. These
configurations will configure their own user menu choices.

* The other developers’ configurations must be allowed to supplement the
configurations that you have defined for your new classes. You want to
prevent the other developers from adding configurations to their own
subclasses that conflict with the configurations you provided, but you must
allow the other developers to add their own configurations that are particular
for the subclasses that they will define.

G2 supports this kind of application development scenario by allowing you to
declare configurations that cooperate with other configurations without being
overridden.

Combining Additionally

A configure the user interface as follows or restrict proprietary items as follows
statement can additionally include or exclude one or more user-interface features
for the target item.

Including Additionally

This instance configuration statement causes the menus for conveyor-station
items to present only two of the menu choices (delete and create-subworkspace)
already defined for that class:

configure the user interface as follows:
when in end-user mode:
menu choices for conveyor-station include:
delete, create-subworkspace

Declaring Generic and Exception Configurations

For a more specific class, you could enter the following instance configuration
statement that additionally includes another menu choice (table):

configure the user interface as follows:
when in end-user mode:
menu choices for conveyor-station include additionally:
table

The statement declares that, in addition to any menu choices included in
configurations for conveyor-station items at more general levels in the KB’s class
or workspace hierarchies, the table menu choice is additionally available for items
at this level and at more specific levels in those hierarchies.

Excluding Additionally

A configuration statement can additionally exclude a capability for a set of items.
To do so, use the exclude additionally phrase in the clauses of a configure the user
interface as follows statement or restrict proprietary items as follows statement.

For example, the following statement causes the menus of conveyor-station items
to present all but two of the menu choices already defined for that class:

configure the user interface as follows:
when in end-user mode:
menu choices for conveyor-station exclude:
clone, show-status

For a more specific class, you could enter the following statement that removes
other menu choices:

configure the user interface as follows:
when in end-user mode:
menu choices for conveyor-station exclude additionally:
table

The statement declares that, in addition to any menu choices excluded in
configurations for conveyor-station items that are declared at a more general level
in the KB’s class or workspace hierarchies, the table menu choice is also not
available for items at this level and at more specific levels in those hierarchies.

343

344

Implementing Localized Exceptions

You can use configuration statements with additionally clauses to alternately
include and exclude system-defined or custom features of items at progressively
more specific positions in your KB’s class and workspace hierarchies. These
nested configurations represent localized exceptions to configurations declared
higher in those hierarchies. To do this use:

* An additionally configuration at a given position in the KB’s class or
workspace hierarchy combines with the configuration(s) in force at that
position that contains an includes or excludes phrase.

* Any number of additionally configurations can combine with the
configuration(s) in force that contains an includes or excludes phrase.

* An additionally configuration overrides a conflicting additionally
configuration(s) at a higher position in the KB’s class or workspace hierarchy,
subject to G2’s rules of precedence for configurations.

Combining Absolutely

You might want to prevent other G2 developers from restoring a particular
feature that you have excluded for some set of items. For this reason, you can
declare a configuration statement that absolutely excludes a capability.

To do so, include the exclude absolutely phrase in a configuration statement, as
follows:

configure the user interface as follows:
when in end-user mode:
menu choices for conveyor-station exclude absolutely:
delete, create-subworkspace ;
selecting any conveyor-station absolutely implies:
move

Because absolutely configurations cannot be overridden or supplemented, the
statement above restricts conveyor-station items so that, when a user interacts
with this KB via a window whose associated g2-window contains the value end-
user in its G2-user-mode attribute:

* The delete and create subworkspace menu choices are never available for the
target conveyor-station items.

® Selecting any of the target conveyor-station items always initiates an
interactive move operation.

An absolutely configuration on a particular item feature does not combine
cooperatively with other additionally configurations on the same feature. Instead,
an absolutely configuration overrides all other configurations that include or
exclude the same feature for the same item(s), regardless of where you place the
absolutely configuration in the KB’s class or workspace hierarchies. Further, you
cannot supplement an absolutely configuration for a particular item feature and

Configuring the G2 Main Menu and Global Key Bindings and Shortcuts

for a particular set of items by other additionally configurations on the same
feature.

Note You cannot specify a configuration statement that absolutely includes some item
behavior.

An absolutely configuration is particularly valuable when securing a
proprietary KB, since otherwise a user could restore access to the KB’s proprietary
knowledge.

Configuring the G2 Main Menu and Global
Key Bindings and Shortcuts

Two attributes of the KB Configuration system table allow you to configure menu
choices available on or under G2’s Main Menu, and to configure access to G2’s
system-defined global key bindings and shortcut keys.

Configuring the G2 Main Menu

The main-menu-user-restrictions attribute can contain configuration statements
that explicitly include or exclude choices that are, by default, available on the
Main Menu or one of its System Tables, Run Options, or Miscellany submenus.

345

This figure shows the Main Menu choices that you can configure in this attribute:

Text Editor for the main-menu-user-restrictions of k

Cancel | unless in administrator mode: main menu choices include:nl

Undo anmy symkal start
pause
resume rezet
restart rizcellamy
new-workspace

getworkspace

Paste | wiew-option &
inzpect
lozd-rmerge-z ave
load-k
merge-kh
save-kh
zyztem-tables
run-aptions
change-mode
long-menus=
short-rnenus
create-new-module
delete module
naw-title-hlock
neatly-stackwindows
netwaork-info
cloze telewindows-connecton
log-out
change-paszword
reinstall-authorize d-uzsers
connecttoforeign-image
dizcannectfrorm fareign-image
load-attribu te file
clear-khb
shut-down g2
turn-on-all-explanation-caching
turn-off-all-explanation-caching
enter-pack age-preparation-rnode
leawe -package-preparation-moda
=trip-tests -now
mak ewarks paces-propnetany now
flu zh-change-logfar-entire-kk
enter-simulate-proprietary-mode
leawe -zimulate-proprietany-mode
do-not-highlight-invoked-rules
highlightinvoked-rules
enable-allitems
remove-tracing-and-breakpoints
laun ch-online-help
update file
editfile
uneditfile
camit-file
revert-file

If a user gesture results in selecting a choice that, by default, appears on the Main
Menu, G2 searches for relevant configurations throughout the configurations
search path, then searches for a relevant configuration in the main-menu-user-
restrictions attribute.

346

Configuring the G2 Main Menu and Global Key Bindings and Shortcuts

Restricting Help

When using the G2 Online Documentation (GOLD) utility, the Main Menu can
include a Help option. Typically, the Help option appears automatically when
GOLD is loaded, but it is actually triggered by the presence of this procedure:

g2-launch-online-help (win: class g2-window)

Whenever a g2-launch-online-help procedure exists, with a single g2-window
argument, you can configure the Main Menu to exclude the Help choice.

To restrict the Help menu choice on the Main Menu:
=> Enter this configuration statement:

configure the user-interface as follows:
unless in administrator mode:
main menu choices exclude additionally: launch-online-help

Keyboard Command Restrictions

The keyboard-command-restrictions attribute can contain configuration
statements that explicitly allow or disallow the use of global keyboard
commands. These commands are designed, by default, to be available in almost
all contexts.

347

This figure shows the global keyboard commands that you can configure in
this attribute:

Text Editor for the keyboard-command-restrictions of KB-CONFIGURATI.. 1
Cancel I unless in administrator mode: global keyboard commands
include:;
Undo I -
pause
lifi-to-top
drop-to-hottom
refresh
help
Paste I full-scale
normalized-full-scale
circulate-up

circulate-down
shift-left-ten-percent
shift-up-ten-percent
shift-right-ten-percent
shift-down-ten-percent
shift-left-one-percent
shift-up-one-percent
shift-right-one-percent
shift-down-one-percent
center-origin
scale-to-fit
maximum-scale-to-fit
twenty-percent-smaller
twenty-percent-higger
twenty-percent-narrower
twenty-percent-wider
ane-guarter-the-scale
four-times-the-scale

Using Configurations in Modularized KBs

As explained in Working with Modularized KBs, if your current KB is
modularized, G2 installs into the current KB only the system tables loaded from
the KB file that contains the top-level module. This means that any configurations
you declare in the KB Configuration system tables in KB files that contain directly
required modules are not installed.

Therefore, when organizing the configurations used in a modularized KB,
you should:

* Declare all the relevant configurations for all directly and indirectly required
modules, in the KB Configuration system table of the top-level module.

® Include knowledge that copies and assigns configurations from the KB
Configuration system tables of directly required modules into the KB
Configuration system table installed in the current KB.

348

G2-Windows

Describes how G2 associates g2-window items with visible windows.

Introduction 350

Windows and G2-Windows 350

Using Local Windows and Remote Windows 351
Displaying Independent Views of the Current KB 352
The G2-Window Class 355

Working with G2-Windows 364

Expressions that Refer to G2-Window ltems 368
Specifying the Appearance of the G2 Window 368
Rerouting a Telewindow 370

Supporting a Window-Specific Language 371
Using the Login Dialog 373

Logging Login Activities 374

Associating an Existing G2-Window with a Telewindow 375

gensym.

349

Introduction

A g2-window is an item of the g2-window class. Within G2, a g2-window item
represents knowledge about the window within which you interact with G2.

G2 can automatically associate a g2-window item either with your G2 window
(the local window) or with the window displayed by a Telewindows connected to
your G2 (a remote window).

Telewindows is a Gensym product that allows you to connect to a running G2
process, and to view and interact with the contents of its current KB. For
information about Telewindows, see the Telewindows User’s Guide.

Your KB can use the information in g2-window items to:
® Monitor the connections of the KB's users.

* Display the text of the KB, using a language translation appropriate for
each user.

A window is a distinct display of information on a computer screen. The features
of a window are determined by the window manager software installed on that
computer. Commercially available window manager products include
OpenWindows from Sun Microsystems, Motif from the Open Software
Foundation, and the Windows product line from Microsoft Corporation.

Windows and G2-Windows

350

Window-system windows and g2-window items are sometimes confused with
one another. Their purposes and relationship are as follows:

* A window is a display area on the screen that the operating system creates
and manages on behalf of a client application such as G2.

* A g2-window is a G2 item that G2 uses to track a window that the operating
system maintains on G2’s behalf.

A g2-window acts in two ways:

* Asaninternal billboard that makes information about the corresponding
window available within G2.

®* Asacommand interface to the computer’s window system: changing some
attributes of a g2-window item causes G2 to tell the window system to
correspondingly change the window itself.

A g2-window item provides the only interface through which an executing KB
can poll and change a window within which G2 appears. The rest of the interface
to the window system is platform-dependent, and is hidden within G2. Thus a
g2-window item provides a platform-independent interface to the native
window system.

Using Local Windows and Remote Windows

Be careful not to confuse a window-system window with the g2-window item that
represents it within G2. To keep the distinction clear, this book always refers to
the latter explicitly as a g2-window, omitting the special font except in

code examples.

Using Local Windows and Remote Windows

A G2 can display its current KB in a local window. A G2’s local window appears,
by default, on the same machine where the process is running. When you launch
a G2 process, use the -display command-line option to cause the new G2’s local
window to appear on another computer. You can also start a G2 with no local
window, using the -no-window command-line option. These options are
described in Appendix A, Launching a G2 Process.

A G2 can display its current KB in one or more remote windows, or telewindows.
To a G2 process, a remote window is the window belonging to a Telewindows
process that has successfully connected to it. After accepting the connection, the
G2 displays its current KB in the Telewindows process’s own window.
Telewindows Support describes the G2 features that accept and manage
connections from Telewindows processes.

Representing Local and Remote Windows

When a G2 starts, by default it displays the current KB in a local window.

By default, it also automatically creates a new g2-window item and associates it
with that local window. Within G2, this g2-window item represents the visible
window in which G2 displays the current KB. Thus, the KB can use the
g2-window item’s knowledge about the properties of the windows in which the
KB’s contents appear.

When a G2 accepts a connection from a Telewindows, it automatically creates a
new g2-window item and associates it with the Telewindows window. When that
Telewindows disconnects from a G2, that G2 automatically deletes its associated
g2-window item.

Special Properties of Local and Remote Windows

A g2-window item that G2 creates automatically, for use as either a local or a
remote (Telewindows) window, has several unique characteristics:

® It does not reside upon any KB workspace.

* [t’s status is neither permanent nor transient, and cannot be changed using the
make permanent or make transient actions.

* [t persists unchanged when a KB is reset, as with a permanent item.

* Jtis not saved when a KB is saved, as with a transient item.

351

Tip

Because the local g2-window is not saved with a KB, changes to its attributes
remain in effect only during the current invocation of G2. Loading a KB does not
restore any customized g2-window attributes that were in effect when the KB
was saved.

You can customize a g2-window by specifying various command-line options
when you invoke G2, as described in Appendix A, Launching a G2 Process, or
Telewindows, as described in the Telewindows User’s Guide.

Displaying Independent Views of the
Current KB

352

Each window that a G2 uses to display the current KB shows a distinct view of the
KB. Each window:

* Displays a distinct set of the KB workspaces of the current KB, each at a
position and scale that is distinct for this window.

® Has its own Scrapbook workspace.
® Has its own Text Editor and Inspect workspaces.

Otherwise, each window associated with or connected to a G2 process displays
the same instance of the Operator Logbook and Message Board, and of everything
else contained in the current KB.

If the same KB workspace is visible in two windows that are associated with or
connected to a G2, the items upon that workspace appear the same size (allowing
for any difference in workspace scale in the two windows), the same color, and at
the same x, y location within that workspace. Further, if the same item is visible in
those two windows, and the user at one window moves that item, changes its
color, or otherwise update its knowledge, that change is also visible in the other
window.

In the next figure, two telewindows connected to the same G2 are also displaying
the same workspace. When an operation in the first window moves the G2 list
item upon the workspace, that item also appears to move in the second window.
Thus, depending on how your KB is organized, two users working separately at
two windows connected to the same G2 process, can interact independently with
the same current KB.

Displaying Independent Views of the Current KB

window-1 window-2
Move MY-LIST to the rightl Move MY-LIST to the rightl
by 25 workspace units. by 25 workspace units.

— = =
- b -

— = = |
- b d -

(=] = (=]

SN

=
n

TELEWINDOWS TELEW INDOWS

One way to differentiate the operations that two simultaneously connected users
can perform within the same current KB, is to use configurations. See
Configurations for more information.

The next figure illustrates the relationship between:

* A G2 process.

® Its local window.

* Four g2-window items upon a workspace in the G2’s current KB.
® Three Telewindows processes and their respective windows.

The top part of the diagram shows a schematic view of four workstations,
as follows:

® One workstation is running G2, and three other workstations are running
Telewindows.

® The G2 has its own local window, which displays its own view of the
current KB.

® Because each Telewindows process is connected to the G2, each has a window
that can simultaneously display a distinct view of the current KB.

353

|: TELEWINDOW-3

TELEWINDOWS

TELEWINDOW-2 [TELEWINDOW-1
@ TELEMWY INDOWY S D TELEMY MDY S
e a—
Network ‘ ‘
connections
G2
Fa—

LOCAL-WINDOW

This workspace
contains ... G2-WINDOW-ITEMS

GE-W INDOWW-F OR-TELEWINDCW-1 G2 |ND OW-F OR-LO CA LW INDC W

G2WINDOW-FOR-TELEWINDOW-2 G2 INDOWW-F OF-TELEWINDOW -2

In the top part of the diagram, note that the display in the windows telewindow-1
and telewindow-3 are the same, and the display in telewindow-2 and in the G2
process’s local window are the same. This reflects the fact that a G2 can display a
different set of the current KB’s workspaces in each window that the G2 is
serving. Further, for each window that a G2 serves, G2 can display a given
workspace at a different location within the window and at a different scale.

In the bottom part of the diagram, the G2’s local window shows a KB workspace
named g2-window-items, which contains four g2-window items. One of these

354

The G2-Window Class

g2-windows is associated with the G2’s own local window, and each of the other
three is associated with a window produced by a Telewindows process that is
connected to the G2.

The G2-Window Class

A g2-window item is an instance of the g2-window class. Its direct-superior classes
are g2-extension and ui-client-item. This Inspect workspace shows the class
hierarchy of the g2-window class and its icon:

INSPECT-1

show on a workspace the class hierarchy of |
g2-window

Ge-WINDOW WORKSPACE-VIEW

UI-CLIEMT-ITEM
ITEM {
OBJECT ————— GZ-EXTENSION

Ge-WINDOW

Notice that, by default, the icon of a g2-window item displays a stub for a
connection of class network-wire, which is a system-defined subclass
of connection.

Your KB can draw connections between a g2-window item and other items. For
instance, such a connection can indicate visually the portion of the current KB that
a particular G2 user or Telewindows user is working with.

For information on the ui-client-item class, see Interfacing with Java Applications.

Attributes of the G2-Window Class

The next table summarizes the class-specific attributes of the g2-window class:

Attribute Description
g2-user-name Identifier under which an authorized user logs into a
secure G2.

Allowable values: none, or any other series of characters (only alphanumeric

characters are recommended)

Default value: none

Notes: After establishing that a G2 user or Telewindows user is
authorized, a secure G2 sets this attribute to the value
specified in the User Name field of the login dialog.

355

Attribute

Description

g2-connection-
status

Allowable values:

Default value:

Notes:

g2-routing-
information

Allowable values:

Default value:

g2-user-mode

Allowable values:

Default value:

Notes:

g2-window-style

Allowable values:
Default value:

Notes:

356

Whether this g2-window item is associated with the
window of either this G2 or a connected Telewindows
process. (Read-only)

connected
connection-closed

Determined by whether this g2-window item was created
automatically by G2 as the resulting of starting G2 or of
receiving a connection from a Telewindows process, or
whether this g2-window already exists in the current KB
independently of any connection to visible windows

See Determining When G2 Associates a G2-Window with

a Window.

This attribute is reserved for future use.

Not applicable
Not applicable

User mode currently in effect for this g2-window item.
administrator or any application-defined user mode

administrator, or value of initial-g2-user-mode-for-this-kb
attribute in the KB Configuration system table

See Determining the User Mode.

Allows you to specify the window style you prefer for
your interaction with G2.

default | standard | standard-large | g2-5.x
default

See G2 Window Styles.

Attribute

The G2-Window Class

Description

g2-window-specific-
language

Allowable values:

Default value:

Notes:

g2-window-
management-type

Allowable values:

Default value:

Notes:

g2-window-x

Allowable values:
Default value:

Notes:

Name of a language translation item that determines, for
the window associated with this g2-window item, the
language of the text that G2 presents in system-defined
menu choices, Text Editor buttons, and so on.

english

japanese

korean

Name of any language-translation item in the current KB.

english

The value of this attribute overrides, for this g2-window,
the setting for the entire KB found in the current-language
attribute of the current KB’s Language Parameters system
table. See Supporting a Window-Specific Language.

Whether this g2-window item is the client of a G2 process
or a Telewindows process. (Read-Only)

local
remote

Determined by the event that triggered the creation of this
g2-window item: local if created automatically after the G2
is launched, or remote if associated with a successful
connection between the G2 and a Telewindows.

See Determining Whether the Connection is Local
or Remote.

The x location of the window associated with this
g2-window item. (Read-only)

integer
0

The value is always 0.

357

Attribute

Description

g2-window-y

Allowable values:
Default value:

Notes:

g2-window-width

Allowable values:

Default value:

Notes:

g2-window-height

Allowable values:

Default value:

Notes:

g2-window-x-
resolution

Allowable values:
Default value:

Notes:

358

The y location of the window associated with this
g2-window item. (Read-only)

integer
0

The value is always 0.

Width in pixels of the window associated with this
g2-window item. (Read-only)

0 to the maximum width in pixels of the user’s
workstation screen.

90% of the maximum width in pixels of the user’s
workstation screen

See Identifying the Dimensions of the G2 Window.

Height in pixels of the window associated with this
g2-window item. (Read-only)

0 to the maximum height in pixels of the user’s
workstation screen

90% of the maximum height in pixels of the user’s
workstation screen

See Identifying the Dimensions of the G2 Window.

Horizontal resolution in pixels per inch of the window

associated with this g2-window item. (Read-only)
50 to 200
75

See Identifying the Resolution of the G2 Window.

The G2-Window Class

Attribute Description
g2-window-y- Vertical resolution in pixels per inch of the window
resolution associated with this g2-window item. (Read-only)

Allowable values:
Default value:

Notes:

g2-window-remote-
host-name

Allowable values:

Default value:

Notes:

g2-window-user-
name-in-operating-
system

Allowable values:

Default value:

Notes:

50 to 200
75

See Identifying the Resolution of the G2 Window.

A string containing the network ID of the workstation
from which the connected Telewindows process
(associated with this g2-window item) was launched.
(Read-only)

Determined by the range of network IDs permitted by
your network.

Determined by the event that triggered the creation of this
g2-window item: an actual workstation’s network ID if
associated with a successful connection between the G2
process and a Telewindows process, otherwise none.

See Determining the Remote Host Name.

A string containing the operating-system login ID under
which the connected Telewindows process (associated
with this g2-window item) was launched. (Read-only)

Determined by the range of login IDs permitted by your
operating system.

Determined by the event that triggered the creation of this
g2-window item: an actual user’s login ID if associated
with a successful connection between the G2 process and a
Telewindows process, otherwise none.

See Determining the Login Name at the Operating System.

On the HP UX 11 platform only, changing users (su) does
not update this attribute. Its value remains the original
user.

359

Attribute

Description

g2-window-time-of-
last-connection

Allowable values:

Default value:

Notes:

g2-window-initial-
window-
configuration-string

Allowable values:
Default value:

Notes:

g2-window-reroute-
problem-report

Allowable values:

Default value:

g2-window-
operating-system-
type

Allowable values:
Default value:

Notes:

360

Date and time when this G2 associated this g2-window
item with either this local G2 window, or with this
telewindow. (Read-only)

Any time-stamp supported by the operating system under
which the associated G2 (for a local G2 window) or
associated Telewindows (for a telewindow) runs.

Not applicable

See Determining the Time of Connection.

A text value meaningful to your application; it is settable
only by the g2-reroute-window system procedure for a
reroutable Telewindows connection.

Any G2 text string.
none

See Setting up Access to Telewindows.

Message returned from an unsuccessful rerouting of a
telewindow. (Read-only)

Not applicable
Not applicable

A symbol designating the type of operating system under
which the G2 window is running. (Read-only)

Any symbol.

No default value.

See Determining the Operating System Type.

Attribute

The G2-Window Class

Description

show-operator-
logbook-in-this-
window?

Allowable values:
Default value:

Notes:

Whether the operator logbook is or is not displayed in the
g2-window. When the value is yes, the logbook is
displayed as specified in the Logbook Parameters system
table.

yes, no
yes

See Hiding and Showing Logbook Pages.

361

Attribute

Description

g2-window-user-is-
valid

Allowable values:
Default value

Notes:

g2-window-mode-is-
valid

Allowable values:

Default value

Notes:

A truth value that indicates whether the user is
authorized. (Read-only)

true, false
false

See Licensing and Authorization

A truth value that indicates whether the user mode is
valid.(Read-only)

true, false

false

See Licensing and Authorization

Hidden Attributes

The g2-window class defines the following hidden attributes:

Attribute

Description

selected-window- A handle to the selected MDI child view in the

handle

native window.

Allowable values: integer

Default value: 0

362

Notes: See Window Handles and Views in User
Interface Operations in the G2 System
Procedures Reference Manual.

Attribute

The G2-Window Class

Description

window-handles

Allowable values:

Default value:

Notes:

mouse-cursor

Allowable values:

Default value:

Notes:

g2-window-client-
version

A sequence of handles to all MDI child views
in the native window.

sequence

sequence()

See Window Handles and Views in User
Interface Operations in the G2 System
Procedures Reference Manual.

A symbol that describes the icon used for the
mouse Cursor.

default, arrow, cross, hand, help, i-beam,
circle-slash, size-all, size-ne-sw, size-ns,
size-nw-se, size-we, up-arrow, wait

default

See Controlling the Mouse Cursor.

A structure that provides the following
information about the Telewindows client
version:

structure
(program: symbol, {G2, TW, or TWNG}
major-version-number: integer,
minor-version-number: integer,
revision: integer,
build-identification-string: text)

If the g2-window is not associated with any
client, the value is an empty structure.

For example:

structure

(PROGRAM: the symbol TWNG,
MAJOR-VERSION-NUMBER: 8,
MINOR-VERSION-NUMBER: 2, REVISION: 1,
BUILD-IDENTIFICATION-STRING: "IC22")

363

Working with G2-Windows

364

A g2-window item has attributes that report various information about the
window with which it is associated, including that window’s connection status.
Your KB can use this information to capture information about when your
application is in use, from what locations, and by whom.

Accessing the G2-Window Item Associated with
Your Interaction with G2

To access the g2-window associated with your Telewindows connection or

local G2 window:

= Choose Main Menu > System Tables > This Window.

The table of the g2-window item that is associated with your interaction with G2
is displayed.

Overriding the Default Window Style

The default window style for the G2 process is determined by the g2-window-style
attribute of the Server Parameters system table. You can specify a different
window style for your interaction with the G2 process by editing the g2-window-
style attribute of your g2-window item.

You edit the g2-window-style attribute to one of these four values: default,
standard, standard-large, or g2-5.x. The g2-window-style of the Server Parameters
system table determines your window-style when you specify default.

You can also use the g2-window-style field of the login dialog for specifying your
window-style preference.

See G2 Window Styles for information on window styles.

Determining When G2 Associates a G2-Window with
a Window

The g2-connection-status attribute indicates whether the g2-window is associated
with any window, local or remote. This attribute is updated only by G2.

After a G2 creates a new g2-window item, G2 sets the value of its g2-connection-
status attribute to connected. Your KB can detect when this value is set, and thus
detect when a new g2-window item is created. For instance, this whenever rule
detects when G2 creates a new g2-window item by detecting when the
g2-window-connection-status attribute of any g2-window receives a value:

whenever the g2-connection-status of any g2-window G
receives a value

Note

Working with G2-Windows

then inform the operator that
"User [the g2-user-name of G] has logged into the application.”

Determining Whether the Connection is Local
or Remote

If the g2-connection-status attribute of a g2-window item has the value
connected, then the g2-window-management-type attribute indicates whether the
associated window is local or remote. G2 assigns a value to this attribute only
after it has associated a window with the new g2-window item.

When G2 creates a new g2-window item, the value of its g2-window-
management-type attribute is none. Until the g2-window-management-type
attribute has a value, any references to it will fail. Thus, before you refer in an
expression to the value of g2-window item’s g2-window-management-type
attribute, first check whether its value exists.

For example, the following procedure statement performs processing based on
whether the g2-window-management-type of a G2 window (in this case, passed as
the window argument to this procedure) has the value local:

if the g2-window-management-type of window exists
and the g2-window-management-type of window is local
then ...

Determining the G2 User Name for a G2-Window

For the g2-window item associated with a G2 process’s local window, a G2 that is
not secure initializes the g2-user-name attribute based on the login name of the
person who launched the G2. A secure G2 initializes the g2-user-name attribute
based on the login name under which you log into G2.

For the g2-window item associated with a telewindow, a G2 that is not secure
initializes the g2-user-name attribute based on the operating system login ID of
the person who launched the Telewindows process. A secure G2 initializes the
g2-user-name attribute based on the login name under which you log into G2.

G2 also uses the value of this attribute when updating the authors attribute of
items whose knowledge is changed. If the g2-user-name attribute displays the
value none, G2 uses the operating system login ID of the person who launched
either the G2 or Telewindows process.

After the g2-window is associated with a local or remote window, the user
working at that window can also change this attribute interactively at any time by
editing the User Name field in the login dialog. See Using the Login Dialog.

A Telewindows user logging into a secure G2 must supply a user name in the
login dialog and can optionally supply a user mode. If the supplied combination

365

366

Tip

of user name and user mode is authorized and after completing the connection
with the Telewindows process, G2 creates a new g2-window item in the KB and
assigns that user name and user mode to the new item’s g2-user-name and
g2-user-mode attributes. G2 also sets the g2-window-user-is-valid and g2-window-
mode-is-valid attributes to true when the user name and mode are valid.

Determining the Login Name at the
Operating System

For a g2-window item associated with a connected telewindow, the g2-window-
user-name-in-operating-system attribute shows the login ID (or account name)
under which the Telewindows process was launched.

Determining the User Mode

If the initial-g2-user-mode-for-this-kb attribute in the KB Configuration system
table has the value none, then when a new g2-window is created, G2 initializes
the g2-window’s g2-user-mode attribute to the value administrator.

If the initial-g2-user-mode-for-this-kb attribute in the KB Configuration system
table has a value other than none, then when G2 creates a new g2-window item,
(G2 also initializes the g2-user-mode attribute to that value.

After G2 associates a g2-window item with a local or remote window, the user
working at that window can use the login dialog to change the value of the
g2-user-mode attribute of that g2-window. See Using the Login Dialog.

A Telewindows user logging into a secure G2 must supply a user name in the
login dialog and can optionally supply a user mode. If the supplied combination
of user name and user mode is authorized, then after completing the connection
with the Telewindows process, G2 creates a new g2-window item and assigns
that user name and user mode into the g2-user-name and g2-user-mode
attributes of the new g2-window item. G2 also sets the g2-window-user-is-valid
and g2-window-mode-is-valid attributes to true when the user name and mode
are valid.

Determining the Remote Host Name

G2 initializes g2-window-remote-host-name attribute of a new g2-window item to
the value none.

For a g2-window associated with a remote window, G2 automatically assigns the
g2-window-remote-host-name attribute to the host name (established by the
network administrator) of the computer from which a Telewindows user has
connected to the G2.

Working with G2-Windows

Determining the Time of Connection

For a g2-window associated with a local window, the g2-window-time-of-last-
connection attribute shows the date and time at which this user launched this G2.

For a g2-window associated with a remote window, the g2-window-time-of-last-
connection attribute shows the date and time when the Telewindows user
connected to this G2.

Determining the Operating System Type

The value of the g2-window-operating-system-type attribute is a symbol that
indicates the type of the operating system on which the G2 window is running.
The allowable values vary as different operating systems and versions become or
cease to be supported by their manufacturers or G2.

Controlling the Mouse Cursor

The g2-window class has a new hidden attribute named mouse-cursor, whose
value is a symbol with these possible values:

Symbol Icon
default %
arrow I
Cross +
hand {hy
help e
i-beam T
circle-slash S
size-all &

367

Symbol Icon

size-ne-sw v
size-ns 1
size-nw-se "
size-we —
up-arrow 1
wait

Note The icons have a somewhat different appearance on Windows and UNIX
platforms.

Expressions that Refer to G2-Window Items

Because a g2-window is an item, your KB can use item reference expressions to
refer to it and can use attribute reference expression to refer to its attributes.

The this window expression refers to the g2-window that is associated with the
window in which a user-initiated event takes place. You can specify this
expression only in the action attribute of an action button or user menu choice.

The power of the this window expression is to associate a g2-window, and
therefore the set of knowledge it contains, with the initiation of a thread of
processing. Thus, your application can associate a particular user-initiated event
with a login account (in the g2-window’s g2-window-user-name-in-operating-
system attribute), computer identification (in the g2-remote-host-name attribute),
current language (in the g2-window-specific-language attribute), and so on.

Specifying the Appearance of the G2 Window

Each g2-window item has read-only attributes that report the associated
window’s height and width in pixels, resolution in pixels per inch, and
magnification.

368

Tip

Tip

Specifying the Appearance of the G2 Window

G2 displays a window, using these defaults:

® Height in pixels of 90% of the screen’s height in pixels, and width in pixels of
90% of the screen’s width in pixels.

® Resolution of 75 pixels per inch.
® Magnification of one G2 workspace unit per pixel.

You can initialize these attributes by specifying command-line options when you
launch a new G2 process or Telewindows process.

Specifying the Resolution and Magnification

The -magnification command-line option specifies the default magnification for
KB workspaces at full scale. The optional -resolution command-line option
informs a G2 process about the resolution (in pixels per inch) of the monitor on
which the window appears. Together, these options determine the absolute size at
which G2 displays a window on a given display device for a given platform.

By combining the settings of these two options properly, you can launch G2
processes on different computers having display devices of different resolutions
and display the same KB at the same (or very nearly the same) absolute size.
Alternatively, by specifying other settings in these options, you can launch a G2
process that displays a KB at the highest resolution allowed on a particular
display device.

For a description of the ~resolutionand -magnification command-line options

resolution, and magnification.

For example, if you use this command to launch a G2 process:
g2 -resolution 75 -magnification 1.0
it is equivalent to this command line:

g2 -resolution 100 -magnification 0.75

For best results, consider the dot pitch (that is, the ratio of width to height) of the
pixels produced on the display devices on your G2 application’s delivery
platform.

Identifying the Dimensions of the G2 Window

The g2-window-height and g2-window-width attributes report the dimensions, in
workspace units, of the G2 window.

369

Tip

Note

These attributes are read-only, but you can refer to them in expressions. For
example, this show action displays a KB workspace at a scale that has a particular
ratio of height to width:

{ Scale a kb-workspace on a g2-window of arbitrary size
to maintain the same relative size as if displayed on a window
of 1036 by 810 workspace units. }

show help-workspace scaled by its current scale times
min ((the g2-window-width of this window / 1036) ,
(the g2-window-height of this window / 810))

You can initialize the g2-window-height and g2-window-width attributes of a new
G2 window associated with a local window by using the ~height and -width
command-line options. For more information about these options, see height and
width.

Otherwise, G2 automatically updates these attributes whenever you use the host
window manager to resize the local or remote window associated with the G2.

When you launch a G2 process, you can specify the -~fullscreen command-line
option to display the new G2’s local window at full-screen size.

Identifying the Resolution of the G2 Window

The g2-window-x-resolution and g2-window-y-resolution attributes report the
resolution (in pixels per inch) at which G2 displays the window associated with
this g2-window item.

These attributes are read-only. The associated window’s resolution does not
change during the window’s existence.

You can initialize the g2-window-x-resolution and g2-window-y-resolution
attributes of a new g2-window item associated with a local window by using the
-resolution command-line option, or by using the -x-resolution and
-y-resolution pair of command-line options.

See also Appendix A, Launching a G2 Process for more information about these
options.

Rerouting a Telewindow

370

A g2-window item has attributes that support switching or rerouting a
telewindow, as described in Rerouting Telewindows Connections.

A G2 process reroutes a telewindow by passing its connection to another G2.
A G2 reroutes a telewindow by executing the g2-reroute-window system

Supporting a Window-Specific Language

procedure. For more information, see the description of g2-reroute-window in the
G2 System Procedures Reference Manual.

Tip The KB file twtour. kb, a sample KB shipped with your G2 product, demonstrates
the features that a G2 application should support when rerouting a telewindow.
See the Telewindows User’s Guide for information about twtour. kb.

Setting up Access to Telewindows

The g2-window-initial-window-configuration-string attribute contains a text value
that the KB, running in a G2 that receives a reroutable Telewindows connection,
uses to set up access for the user to that KB. This attribute is only used by the
g2-reroute-window system procedure.

For instance, in a G2 application designed to support access by users via
reroutable telewindows, the KB running on one G2 can hand off a user’s
processing to another KB running on another G2. The initiating KB can log the
user (via Telewindows) into another G2 and pass to its KB a g2-window-initial-
window-configuration-string value that represents the state of that user’s activity
within the application.

For more information, see the description of the g2-reroute-window system
procedure in the G2 System Procedures Reference Manual.

Reporting Errors

The g2-window-reroute-problem-report attribute is a read-only attribute that
presents to a G2 an error message that returns from an unsuccessful rerouting of a
telewindow to another G2. This capability of G2 is described under Rerouting
Telewindows Connections.

Supporting a Window-Specific Language

Language translation items contain text that replaces the system-defined text that
appears in G2 menu choices, Text Editor buttons, and so on. A KB that contains
more than one language translation item can display G2's own text, as well as
user-defined text, in more than one natural language.

The setting of the current-language attribute in the Language Parameters system
table determines which of the current KB’s language translation items governs the
display of G2’s system-defined text. For more information, see Using Language
Translations for Localization.

For a current KB that contains more than one language translation item, the KB
can programmatically associate a distinct language translation with each window
that is associated with or connected this G2. The g2-window-specific-language

371

372

attribute of a g2-window item identifies the language translation that G2 is using
to display system-defined text in that g2-window’s associated window.

When you launch G2, use the -language command-line option to set the value of
the g2-window-specific-language attribute of the g2-window item associated with
G2’s own local window.

Also, when a user launches a Telewindows process, that user can also specify a
-language command-line option:

* If the user is connecting to a secure G2, specifying this option sets the value of
the G2 Window Specific Language field shown in the login dialog. If the user
successfully logs in, this field’s setting determines the value of the g2-window-
specific-language attribute of the g2-window item associated with the new
Telewindows process’s own window.

® If the user is connecting to a G2 that is not secure, specifying this option
determines only the value of the g2-window-specific-language attribute of the
g2-window item associated with the new Telewindows process’s
own window.

The g2-window-specific-language attribute of a new g2-window item interacts
with the current-language attribute of the Language Parameters system table
as follows:

* When the value of the g2-window-specific-language attribute is none, G2’s
system-defined menu choices appear in the language named in the current-
language attribute of the Language Parameters system table.

* When the value of the g2-window-specific-language attribute is other than
none, the language named in the g2-window-specific-language attribute
overrides the setting of the current-language attribute of the Language
Parameters system table.

This feature is especially useful for a KB that users access via telewindows. Based
on the Telewindows user’s login ID, the KB can assign the name of a particular
language translation to the g2-window-specific-language attribute of the
g2-window item associated with that Telewindows process’s own window. As a
result, multiple users can simultaneously interact with the same KB, but view the
text portion of the KB’s context in different languages.

Using the Login Dialog

Using the Login Dialog

G2’s login dialog allows a secure G2 to gather the information required to
authorize each user who attempts to connect to a running G2 process:

IUser Zettings Editor

Cancel I Please modify user settings.

User name | none

End
i Password

(32 usermode | administrator

(32 window name or class | g2-window

Gz window specific language | none

After a user has logged into a secure G2, G2 updates attributes in the g2-window
item that G2 associated with the window that the user sees:

* (2 assigns the specified user name into the g2-user-name attribute.
* (G2 assigns the specified G2 user mode into the g2-user-mode attribute.

* (G2 assigns the specified window-specific language into the g2-window-
specific-language attribute.

For a G2 installation that does not rely on a secure authorization file, a G2 user or
Telewindows user can easily display the login dialog and use it to change
attributes in the g2-window item associated with the window at which he or she
is working,.

By default, the Login Dialog displays as a native pane in Telewindows. For more
information, see Displaying the Native G2 Login and Change Mode Dialogs.

Displaying the Login Dialog

A secure G2 displays the login dialog in G2’s local window (if present) each time
it is launched, and in a remote window each time a Telewindows user attempts a
connection. For a description of how a secure G2 relies on the login dialog, see
Accepting a Connection from a Telewindows Process.

In a G2 that is not secure, the user must explicitly display the login dialog by
choosing Main Menu > Change Mode or by entering CTRL + y. Doing this is one
way for a G2 or Telewindows user to change interactively the values of the g2-
user-name, g2-user-mode, and g2-window-specific-language attributes for the
g2-window item that is associated with the window at which he or she is
working.

373

Determining Default Values in the Login Dialog

Your KB can determine the default values of some fields in the login dialog. For
example, if the initial-g2-user-mode-for-this-kb attribute in the KB Configuration
system table has a value other than none, G2 initializes the G2 User Mode field in
the login dialog to that value. Also, the current-language attribute of the
Language Parameters system table determines the default value of the G2
Window Specific Language field in the login dialog.

Notice that the fields in the login dialog correspond to attributes of the g2-window
class, as follows:

Field in Login Dialog Attribute of G2-Window Class
User name g2-user-name
Password Not applicable
G2 user mode g2-user-mode
G2 window name or class Not applicable
G2 window specific language g2-window-specific-language

Logging Login Activities

374

This feature allows you to run a user-defined login handler whenever a user logs
into your secure G2. You must register this procedure with G2, using the system
procedure g2-system-register-login-handler. See the G2 System Procedures
Reference Manual for a description of this system procedure. You can then use
your login handler to perform whatever operations you wish on successful or
failed logins.

Changing a user’s password is not considered a login event and will not call your
login handler.
Writing the Login Handlers

The login handler must accept a structure as an argument. The structure, which is
returned by the system login function, has the following attributes:

Attribute Value

success true if the login succeeded, false
otherwise.

system The symbol tw for Telewindows.

Associating an Existing G2-Window with a Telewindow

Attribute Value

status A symbol describing the event.

user-name A symbol.

user-mode A symbol.

network-info The icp-connection-name string for
connections over the network and false
otherwise.

The icp-connection-name string provides information about the protocol of the
connection and the hostname of the machine attempting to connect.

The login handler may use this information in any way necessary. The following
example shows a login handler that simply prints the information in the structure
to the message board:

default-login-handler(login-information: structure)
msg: text;
begin
if (the success of login-information)
then msg = "succeeded"
else msg = "didn’t happen [the status of login-information];
post "Login [msg] in system [the system of login-information]
for user: [the user-name of login-information]
in mode: [the user-mode of login information]
from [the network-info of login-information]"
end

Registering the Login Handler

Before it can be called, the login handler must be registered with G2. To do this,
use the system procedure g2-system-register-login-handler. Please refer to the
G2 System Procedures Reference Manual for information about this procedure.

Associating an Existing G2-Window with
a Telewindow

G2 supports the practice of associating a g2-window item that is created and
maintained by your application, with the window that a Telewindows process
opens after connecting to a G2 process. After the Telewindows process connects
to G2, the Telewindows user can specify the name of an existing g2-window item,
or the name of a user-defined subclass of the g2-window class, in the login dialog’s
G2 Window Name or Class field.

375

376

If the Telewindows user specifies a name that G2 finds is also the name of an
existing g2-window item (or of an existing item whose class is a subclass of the
g2-window class), then G2 initializes that item’s attributes and associates it with
the Telewindows process’s own window.

On the other hand, if G2 finds that the name is also the name of a subclass of the
g2-window class, then G2 automatically creates a new item of that class, initializes
its attributes, and associates it with the Telewindows process’s own window.

Note that it might limit the robustness of your application to require users to
supply the name of a g2-window item (or of a subclass of the g2-window class)
in the login dialog, after also supplying a user name, user mode, and optionally,
a window-specific language.

Knowledge
Representation

Chapter 9: Values and Types

Describes the role of values and types in a knowledge base.

Chapter 10: G2 Items

Presents the characteristics that are common to all G2 items.

Chapter 11: Attributes and Tables

Shows you how to use item attributes and the attribute tables that display them.

Chapter 12: Attribute Access Facility

Presents the capabilities of the attribute access facility.

Chapter 13: Classes and Class Hierarchy

Describes the principles, structure, and use of the G2 class hierarchy.

Chapter 14: Definitions

Describes class definitions and shows you how to use them.

Chapter 15: Variables and Parameters

Describes variables and parameters and how to use them within a KB.

Chapter 16: Lists and Arrays

Describes how to use lists and arrays.

377

Chapter 17: Hash Tables and Priority Queues

Describes how to use hash tables and priority queues.

Chapter 18: Connections

Describes connections, connection posts, and junction blocks.

Chapter 19: Relations

Describes how to associate items in a non-graphical way.

378

Values and Types

Describes the role of values and types in a knowledge base.

Introduction 379

Using Values Stored in Items 380
Distinguishing Value Types 382
Working with General Types 384
Working with Specific Types 385
Representing Time Values 394
Working with Composite Types 396

Using Structures and Sequences in User-Defined Classes 405

gensym.

Introduction

A value is a piece of knowledge of a particular G2 type. Values consist of data
structures that are generated as the result of expression evaluations and are
associated with item attributes.

Values have a type, which can be:
* integer

* long

* float

e text

379

® truth-value
* symbol

* sequence
® structure

As the current knowledge base runs, it obtains values from entities such as the
knowledge stored in user-defined and system-defined attributes and the local
names and other values within the text attributes of executable items, such as
procedures and rules.

Using Values Stored in Items

380

Your KB'’s activities work primarily with values stored in item attributes.
Attributes can be user-defined to capture the values of user-defined items, or they
can be system-defined and specify such item knowledge as the location of the
item upon its workspace, its relations and connections, its current attribute
displays, the value of variables and parameters, and so on. In some cases, the KB
uses the value in one attribute to assign the value of another attribute. In other
cases, the KB obtains values to write them to external files or to pass them to
external processes, such as G2 Gateway bridge applications.

For description of the kinds of information that are part of an item’s knowledge,
see Understanding the Knowledge Contained in Items.

Using Attribute Values

An item stores values in its attributes. An attribute might also have no value, in
which case G2 displays the symbol none as its value in an attribute table.

You can use the conclude and change actions to update the values of all user-
defined attributes and most system-defined attributes as follows:

Use this action... For system-defined attributes that are...

conclude that the x of y = value Value-writable

change the text of the x of y to Text-writable
"text-value"

Each chapter of this manual that describes a system-defined class includes a
section describing the characteristics of each system-defined attribute. Check
there to find which attributes you can edit. Refer to the G2 Class Reference Manual
for information about whether an attribute is value- or text-writable.

Using Values Stored in Items

Using Text Attribute Values of Items

Some items include a text value, which is distinct from other attributes. This text
attribute appears in the attribute table of relevant items without an attribute name
called text, but is referred to programmatically with the expression the text of y,
where y is any item of these classes:

®* Rules

® Procedures

®* Methods

* Message

* Free text

® Borderless free text

* Word inserters

® Character inserters

® Character sequence inserter

For information on rules, procedures, and methods, see Rules, Inferencing, and
Chaining, Procedures, and Methods.

For more information about messages and each free text, borderless free text,
word inserter, character inserter, or character sequence inserters see Messages
and Text Items.

The text attribute of an item always stores a value of type text. For more
information about text values, see Using the Text Type.

Using Values Given by Variables and Parameters

Each variable and parameter has a last-recorded-value attribute that is handled
differently from its other attributes. See Variables and Parameters for more
information.

Checking for the Existence of an Attribute Value

The attributes of items can hold values, a subobject, or nothing which appears
as none.

You can determine whether an item attribute has a value by using the following
expressions:

* exists
* has avalue

* has a current value

381

For more information about these expressions, see Expressions.

Using Local Names for Values

Your KB can also declare and manipulate values that are not part of any item’s
knowledge and that exist only when the current KB is running. For instance, you
can use local names to represent values used only within one rule or procedure.
See Using Local Names in Expressions.

Expiration of Variable Values

The value of each instance of a variable has an expiration time, which is the time
interval after which G2 must perform data seeking to obtain a valid value. The
expiration time can be never, indicating that the value is valid indefinitely.

The expiration time of a variable is determined by its validity-interval attribute. If a
variable value expires, and is then required by an expression referring to that
value, G2 attempts to obtain a new value to replace the expired one.

The expiration time of variable values also affects the expiration time of the
expressions in which those values participate. G2 must compare the expiration
time of a value used in a computation, such as in a rule or procedure, with the
time required to complete the execution of a rule or procedure that uses that
value. If a value expires before G2 can finish performing all portions of a rule or
procedure that refers to that value, G2 must perform data seeking to obtain a new
current value that replaces the expired value. How G2 data seeks for the values of
variables is explained in Obtaining Values for Variables.

Distinguishing Value Types

382

All G2 values have a type, which determines the valid operations in which the
value can participate. The G2 types, which are categorized into general, specific,
and composite types, are:

General Types Specific Types Composite Types
item-or-value integer sequence
value float structure
quantity symbol

text

truth-value

long

Distinguishing Value Types

G2 organizes these types into a type hierarchy, with the item-or-value type as the
root type. The following figure summarizes the relationships among the item-or-
value type and its subtypes:

item-or-value

(G2 class hierarchy)

| | | | | |
quantity symbol text truth-value sequence structure
|
| | |

integer long float

This figure also shows that the item-or-value type is the parent of the item class.
Conceptually, G2 items are values whose type is class item. The item class, and
the rest of the system-defined classes in G2’s class hierarchy, are described in
Classes and Class Hierarchy.

Every attribute has a particular type, and is described in the G2 Class Reference
Manual.

Declaring a type for a user-defined attribute in a class definition is optional.
However, we recommend that you always use the most-specific type possible.
The declared type of an attribute restricts the values you can store in that attribute
and determines the valid operations for the attribute value.

Complex Types

As shown by some of the type specifications in the G2 Class Reference Manual, G2
internally uses arbitrarily complex types formed by using Boolean expressions to
combine the types described in this chapter. You cannot assign a complex type to
user-defined attributes, which can use only the types described in this chapter.

Declaring Types

You can declare that a piece of knowledge is of any type in these contexts:

* A class definition, for user-defined, class-specific attributes.

383

® A procedure or method, for return values or local names.

These items contain values of the given types:

This type... Is used in these items...

item-or-value g2-list and g2-array items, whose elements
contain values of type item-or-value, excluding
sequences and structures.

value value-list and value-array items, whose elements
contain values of type value, excluding
sequences and structures.

quantity quantitative-variable, quantitative-parameter,
quantity-list, and quantity-array items.

integer integer-variable, integer-parameter, integer-list,
and integer-array items.

long long-variable, long-parameter, long-list, and
long-array items.

float float-variable, float-parameter, float-list, and
float-array items.

symbol symbolic-variable, symbolic-parameter, symbol-
list, and symbol-array items.

text text-variable, text-parameter, text-list, and text-
array items.

truth-value logical-variable, logical-parameter, truth-value-
list, and truth-value-array items.

Working with General Types

384

The G2 general types are:
* item-or-value

* value

* quantity

For those familiar with C, all values in G2 are implemented as pointers to data
structures containing explicit type tags. All attributes and local names contain
these pointers, so that G2 can always determine a specific type from the

value itself.

Working with Specific Types

Values declared as a general type specify that the value held in the local name or
attribute will be one of the specific types that is a subtype of the general type. For
example, if a local name is specified as a quantity, its value will be either an integer
or a float, which are the subtypes of quantity.

Using the Iltem-or-Value Type

A value of type item-or-value represents a piece of information into which your
KB can assign either an item or a value of a general, specific, or composite type.

Declaring a value of type item-or-value can add flexibility to some kinds of KB
processing. Given a value of type item-or-value, your KB must determine the
value’s class or specific type before using it in a class-specific or type-specific
expression.

Using the Value Type

A value of type value represents a piece of information that your KB can interpret
as a number (that is, a quantity value, a float value, an integer value, or an long
value), a symbol value, a text value, a truth-value value, a sequence, or a structure.

Using the Quantity Type

A value of type quantity represents a number that your KB can interpret as either
type integer, long or float, depending on the processing context. This flexibility
can be an advantage for some kinds of KB processing.

You can also assign a quantity value into a piece of knowledge declared with type
quantity. After performing this assignment, however, for your KB to use the value
that the assigned quantity now references, your KB must first use an expression to
determine the specific type of the referenced value, integer or float. The KB can
then use the referenced value in an expression or action.

Working with Specific Types

The G2 specific types are integer, long, float, symbol, text, and truth-value. Each
value that your KB directly manipulates has a specific type. Your KB cannot
create user-defined specific types.

For example, when you declare a local name in a procedure with the type integer,
an action or procedure statement can assign into that local name only a value that
meets the requirements for integer numbers.

Using the Integer Type

A value of type integer represents an integral number.

385

386

Note

Note

In G2 Standard (32-bit), G2 integer values are signed with 30-bit precision. A G2
integer value can range from -536870912 to 536870911, that is, from -2 to (2% - 1).

In G2 Enterprise (64-bit), G2 integer values are signed with 61-bit precision. A G2
integer value can range from -1152921504606846976 to 1152921504606846975, that
is, from -20 to (20 - 1).

For actions that update the value of an integer value, G2 does not check for
integer overflow or underflow because of the performance penalty such checking
would impose.

KB saved by G2 Enterprise with G2 integer values which exceeded the value
range of G2 Standard, will loose its original value when loading in G2 Standard.
To prevent loosing of integer values in this case, it's recommended to use the new

long type.

Using the Long Type

A value of type long represents an integral number. G2 long values are signed
with full 64-bit precision. A G2 long value can range from -9223372036854775808
to 9223372036854775807, that is, from -2% to (203 - 1).

For actions that update the value of an long value, G2 does not check for integer
overflow or underflow because of the performance penalty such checking would
impose.

The G2 long type is a native implementation which uses the underlying 64-bit
arithmetic CPU instructs to do all the 64-bit computations (even in 32-bit G2
Standard). However, it takes more memory spaces (16 bytes per long value) than
the integer type (4 bytes in G2 Standard and 8 bytes in G2 Enterprise), and the
performance may not be as good as the integer type.

In G2 2011, the G2 long type is undocumented. And it’s not a native
implementation, instead, using 32-bit arithmetic instructs to simulate 64-bit
computing, therefore very slow.

Using the Float Type

A value of type float represents a real number with a floating-point
representation. Due to the limitations of the floating-point representation for real
numbers, it is possible for a particular float value to represent an approximation of
a real number. This only occurs for very large and very small numbers.

Note

Working with Specific Types

Float values in G2 are signed, with a 64-bit, double-precision floating-point
representation. On most platforms that G2 supports, a float value can range from
+1.79 x 10%%8 to +2.22 x 103% with approximately 16 digits of precision.

G2 restores and manipulates float values in conformance with the IEEE’s Standard
for Binary Floating-Point Arithmetic (ANSI/IEEE Standard 754-1985). For G2 to
conform to this standard, the computer on which G2 runs must also support

that standard.

Working with Exceptional Float Values

Arithmetic operations on float values can result in these exceptional float values:

Exceptional Display of

Float Value Value in G2 Causes

Negative infinity -Inf Negative overflow; divide a
negative value of any
numeric type by zero
(0 or 0.0)

Positive infinity +Inf Positive overflow; divide a
positive value of any
numeric type by zero
(0 or 0.0)

Not a number NaN Divide zero (0 or 0.0) by zero

The ANSI/IEEE Standard 754-1985 document specifies how exceptional floating
point values participate in arithmetic operations. G2 conforms to this standard on
platforms that support it.

For example, in a numeric expression, if an exceptional float value participates in
any G2 arithmetic operation in that expression, G2 evaluates that expression as
that same exceptional float value. Also, in a truth-value expression, if an
exceptional float value participates in a comparison operation in that expression,
G2 evaluates that expression as false.

In cases where on other platforms G2 would produce an exceptional float value,
on the Alpha OSF platform, instead G2 signals the error “A floating point
exception has occurred.”

387

388

Tip

Coercing Numeric Values

Some G2 arithmetic and relational operators require G2 to coerce an integer value
to a float value. This means that G2 automatically creates a temporary copy of a
value in a different type, for use in evaluating an expression.

For example, in an expression that compares an integer value to a float value, G2
automatically coerces the integer value to a float value, then compares the
two values.

For the details about how G2 coerces numeric values when applying arithmetic
and relational operators, see Coercion of Values Returned from Arithmetic

Operators.

Using Units of Measure for Numeric Values

You can create your own set of symbols to represent units of measure, such as
meters, pounds, and liters, that G2 does not provide. You define these symbols in
a units-of-measure-declaration item.

In a numeric value, such as in an attribute that stores a number or in a variable
whose value is an integer or float value, you can use the symbols defined in a
units of measure declaration. Doing so indicates that the numeric value
represents a measurement.

A value’s unit of measure symbols only affect how G2 displays that numeric
value. When G2 assigns a value that uses a user-defined unit of measure into an
attribute, procedure local name, or variable or parameter, that value’s unit of
measure is also assigned.

To create a unit of measure:
1 Choose KB Workspace > New Definition > units-of-measure-declaration.

G2 automatically invokes the Text Editor for you to declare the unit:

Text Editor for the text of an units-of-.. B4

Cancel I

units of measure are :

Paste I

Tip

Working with Specific Types

2 Enter the symbol of your choice, with an optional singular version of the term,
using this syntax:

units of measure are:
{plural-unit-of-measure-symbol
[singular (single-unit-of-measure-symbol)]} [,...]

For example, this units-of-measure declaration declares meters and centimeters:

units of measure are:
meters (singular meter), centimeters (singular centimeter)

After you declare one or more units of measure, they appear after a numeric
expression in the Text Editor prompts for:

* The initially is statement in a class definition, for attributes without a type.
* The value of any instantiated item attribute, after you enter a value.

* The data-type attribute of quantitative, integer, and float variables
and parameters.

* The initial-value attribute of quantity, float, and integer variables
and parameters.

Using the Symbol Type

A symbol value contains a series of characters, each of which is a member of the
Unicode character set. For more information about the Unicode character set, see
G2 Character Support.

Use symbol values to represent identifiers: names of items, attributes, classes,
and types.

All characters in a symbol value are uppercase unless you quote them using the at
sign (@) character. When creating a symbol value, the first character can consist of
any Unicode character set.

Working with Characters in a Symbol Value

The Unicode character set supports alphabetic and ideographic characters from
most of the world’s modern and classical languages. For a discussion of Unicode,
see G2 Character Support.

When creating a symbol value, the first character can consist of any Unicode
character. All characters in a symbol value are uppercase unless you quote them.

To quote any character, precede it with the at sign (@) character in the Text Editor.

Symbols can include lowercase characters from supported Unicode languages by
quoting the characters. You can quote any Unicode character.

389

Each of these characters requires quoting to be included in a symbol:

1" #$ & ()*+,/;<=>?@
[17{]}~O™M®-¢gE¥»«j¢f

These characters also require quoting:

Enter this character... By...

Tab Pressing the Tab key one or more times. Each
time you press the Tab key in the editor, G2
inserts the number of spaces designated in the
number-of-spaces-to-insert-on-a-tab attribute of
the Editor Parameters system table.

Space character Pressing the space bar.
Line separator Entering the Unicode character x2028.

Paragraph separator ~ Entering the Unicode character x2029.

Note For information about entering Unicode characters, see Entering Unicode
Character Codes.

If you begin a symbol value with a period (.) or a number (0 - 9), it must also
include at least one alphabetic character or quote one of its numeric characters or
any of the Unicode character set symbol, punctuation, or special characters. The
hyphen (-), underscore (_), period (.) , and apostrophe (') characters are
exceptions, which do not require quoting,.

Some examples of valid and invalid symbols are:

Valid Symbols Invalid Symbols
@!7 777

123 123

- "$

12@3

my-object

@my-object

390

Working with Specific Types

G2 always ignores the case of all unquoted alphabetic characters. For example, in
the next procedure, G2 always executes the post action, as shown in the message
displayed:

gds-compare-symbols()
symbol1, symbol2: symbol;
begin

symbol1 = the symbol ABC@ def@x;

symbol2 = the symbol abc@ DEF@x;

if symbol1 = symbol2 then

post "the value of symbol [symbol1] and symbol [symbol2]
is the same."

end

#3 210:35 pm. the value of symbol ABC
CEFx and symbol ABC DEFx
i3 the same.

When entering special characters in the Text Editor, first quote the character using
the at sign (@), and then press Alt + i, followed by the special character you
require. In this procedure example, the trademark symbol is available by entering
Alt+it

Using the Text Type

A text value contains a series of characters, each of which must be a member of
the Unicode character set. For more information about the Unicode character set,
see G2 Character Support.

Use text values to contain any sequence of characters, including case-sensitive

alphabetic characters. The maximum number of characters in a text value is
1000000.

Working with Characters in a Text Value

G2 allows any character from the Unicode character set in a text value. The case of
characters is significant. G2 retains, displays, and prints the case of all alphabetic
characters.

G2 allows quoted characters in a text value, though quoting is unnecessary for all
characters in the Unicode character set, except:

* The at sign (@); enter two at sign characters (@@) to include one at sign (@)
character in the text string.

* Double quotes ("); otherwise, this character delimits a literal text value.

* Left bracket ([); otherwise, remaining characters after a left bracket signify a
literal value.

391

392

Specifying a literal text value is described in Evaluating Expressions. For a
description of the concatenation operation on text values, see Using the
Concatenation Operator.

The following procedure demonstrate-equal-texts demonstrates these facts about
text values:

® G2 retains the case of alphabetic characters in a text value.
® Itis redundant to quote a character other than @, ", and [in a text value.
For example:

demonstrate-equal-texts()

{ Notice the unnecessarily quoted character in the value of text3. Also notice
that the text values displayed in the post action retain the case of their
alphabetic characters. }

text1: text = "ABCabc";

text2: text = "XYZxyz";

text3: text = "[text1]+@+[text2]";
text4: text = "[text1]++[text2];

begin
{ This post action always executes. }
if text3 = text4 then
post "The values of text1 [text1] and text4 [text4] are equivalent.”
end

Formatting Text Values

You can include a newline character in a literal text value to format lengthy text.
The way to include a newline character depends on whether you are editing the
text in a non-scrolling editor, such as for messages and other free text items, or a
scrolling editor, such as for procedures and methods.

To enter a newline character in a text value in a non-scrolling editor:

= Press Control + j anywhere within the quoted text value that you want a
newline to appear.

Working with Specific Types

This example illustrates the use of Control + j newline sequences in a
free-text item:

This is a free-text item with a long text
to illustrate how to enter Control +
commands to create newline characters.

In this example, a Control + j sequence
has been entered at the end of each
line of text.

Note Any newline characters that you enter to format text values are stored as Unicode
line separator characters. Such newline characters do not, therefore, translate into
ASCII newline character values when exporting text from G2.

To enter a newline character in a text value within a scrolling editor:

=2 Press Return anywhere within the quoted text value that you want a newline
to appear.

Getting Unicode Character Codes

You can get the Unicode character code of a single character in a text by including
a zero-based index in square brackets following the text. This construct returns
the equivalent of the text-to-character-codes function but for a single character.
For details, see Converting Character Codes to Unicode Text.

To determine the character code of a text character:
> text [integer]

For example, this procedure returns the Unicode character code of a character in a
text:

get-character-code(ixt: text, index: integer)
t: text;
c: integer;
begin
t="[txt]";
¢ = t[index];
post "[c]";
end

This action returns 116, which represents the character code for the letter “t”, the
first (Oth) character in the text:

start get-character-code("text", 0)

393

Tip

Tip

Using the Truth-Value Type

A value of type truth-value represents a degree of certainty in the truth of a
condition, comparison, or assertion. Your KB can use values of type truth-value to
implement a reasoning strategy based on the principles of either boolean logic or
fuzzy logic.

A value of type truth-value ranges from -1.0 true (completely false) to +1.0 true
(completely true).

G2 displays a truth-value of -1.0 true simply as false, and displays a truth-value
of +1.0 true simply as true. In this case the displayed values true and false
represent truth-values, not symbols.

In a truth-value expression that includes a relational operator, by specifying a
fuzzy truth band subexpression, you can produce a fuzzy truth value, whose
decimal value is greater than -1.0 true and less than +1.0 true.

For example, the following conclude action assigns a value into a truth-value
attribute of an item of a user-defined class, based on the result of evaluating the
expression (the volume-in-liters of tank-1 > 100) (+- 25):

conclude that the truth-value-attribute of my-object =
(the volume-in-liters of tank-1 >100) (+- 25)

In this example, the subexpression (+- 25) signifies a fuzzy truth band. The
degree to which the volume-in-liters of tank-1 is greater than, equal to, or less than
the value 100, determines the fuzzy truth value that G2 assigns to the Truth-value-
attribute of my-object.

For the details about specifying fuzzy truth band expressions, see Producing
Fuzzy Truth Values from Relational Operations.

Representing Time Values

394

G2 offers three formats for representing time: as an integer, as a float, and as a text
string. Each of these has advantages and disadvantages, as described in this
section. The difference between integer and float time is significant whenever
time intervals greater than 17 years are required.

Time as an Integer

G2 time functions, non-subsecond time expressions, and G2’s internal scheduler
encode time as an integer representing a number of seconds. This technique is
convenient and fast, but cannot represent an interval greater than 17 years

Representing Time Values

because the integer overflows. This restriction can cause problems in several
contexts, such as:

* A G2 application runs continuously for more than 17 years.
* A simulation proceeds for more than 17 years of simulated time.
* Schedule projections extend more than 17 years into the future.

The results when integer time overflows are unpredictable. Most applications will
never encounter the 17-year limit of integer time. When time values greater than
17 years may occur, use float time, as described in Time as a Float. For more
information about integer time, see:

* Time functions: See Time Functions.

* Time expressions:

— See History Expressions.

— See Referring to the Current Time.

® Scheduling: Task Scheduling.

Time as a Float

G2 provides system procedures that encode time as a 64-bit float representing a
number of seconds. The G2 expression the current subsecond [real] time also
returns time as a float, as described Expressions.

Float time provides effectively unlimited capacity, but processing float values is
slower than processing integer values. When time values in excess of 17 years are
required, use float time rather than integer time. G2 itself cannot be changed to
use float time rather than integer time internally, because doing so would cause
existing applications to fail.

Information about float time appears in the following locations:

® The system procedures that manipulate float time are described in Time
Information Operations in the G2 System Procedures Reference Manual.

* The expression the current subsecond [real] time is described in Referring to
the Current Time.

395

Time as a String

Neither integer time nor float time provide good human readability. G2 provides
several formats for representing time as a string. Each of these formats is
optimized for a different purpose. The available formats are:

* Timestamp format: dd mon yyyy hh:mm x.m. This format designates a point in
time. It appears in the authors attribute, and in displays of times where the
format is specified to be as a timestamp.

* Interval format: dd days, hh hours, mm minutes, and ss seconds. This format is
used in the validity attribute of a variable.

* Calendar format: mm/dd/yyyy/ hh:mm:ss x.m. This format can be used as
needed in applications to represent a point in time.

System procedures that manipulate string time are described in the G2 System
Procedures Reference Manual.

Working with Composite Types

396

The G2 composite types are structure and sequence. Composite types are those
that are composed of one or more values of any general, specific, or composite
type. G2 represents system-defined attributes whose values consist of complex
data structures with structures and sequences.

A sequence is a list-like value that can contain any item or value, including other
sequences and structures.

A structure consists of one or more pairs of names and values. The values of a
name/value pair can consist of other structures or sequences. Use structures to
represent item attributes and their values. A structure requires an even number
of arguments.

For more information about working with sequences and structures, see Attribute
Access Facility.

Using the Structure Type

A structure value type consists of a set of subattribute name and value pairs,
separated by a colon (). All name-value subattribute pairs are separated with a
comma (,) in this construct:

structure ([subattribute-name: value [,...]])

As an example, this value is the structure returned for the history-keeping-spec
attribute of a variable:

structure
(maximum-number-of-data-points: 10,
minimume-interval-between-data-points: 6000)

Working with Composite Types

Structures, which can have a virtually unlimited number of name-value
subattributes (up to 523,263), including zero, are functionally similar to items. As
such, you can access their attributes by:

® Using standard attribute grammar such as:
the identity of x

® [terating over their attribute names, using an expression such as:
for symbol = each symbol that is an attribute name of x do...

® Add or change the value of an attribute in a structure using the function
change-attribute ().

* Remove an attribute from a structure, using the function remove-attribute ().
The function structure () creates and returns new structures.

Because structures consist of name and value pairs, they require an even number
of arguments. The values of attributes of type structure can be any item or value,
including other structures and sequences.

When the subattribute of a structure consists of an item, and that item is deleted
from the KB, the attribute name remains within the structure, but has a value of
none.

Structure Functions

Use these functions for working with structures:

To create a new structure with given attribute values:

=>» structure
(attribute-name: item-or-value [,...])
-> structure

Creates a new structure containing the given attributes associated with their
corresponding values.

For example:
structure (measured-item: tank-10, temp: the temp of tank-10)

When concluding new values using the structure () function, omitting one or
more subattributes replaces their current value with none. For example, if the
history-keeping-spec attribute of a float-variable float-var-1 is currently:

keep history with maximum number of data points =
100 and maximum age of data points = 2 hours

then the value of that attribute is expressed as:

structure(maximum-number-of-data-points: 100,
maximum-age-of-data-points: 7200)

397

Concluding a new value for the number of data points with an expression such as:

conclude that the history-keeping-spec of float-var-1 =
structure (maximum-number-of-data-points: 50)

results in the value changing to this:
structure(maximum-number-of-data-points: 50)

To change one or more subattributes without changing other subattributes to the
value none, use the change-attribute function or a subattribute reference to
conclude a new value. For example, this expression:

conclude that
the maximum-number-of-data-points of
the history-keeping-spec of float-var-1 = 50

changes the value of one subattribute, without changing others.

To create a new structure with given evaluated attribute values:

=> evaluated-structure
(symbol-expression, item-or-value [,...])
-> structure

Creates a new structure containing the given attributes associated with their
corresponding values. The difference between this function and the

structure () function is that this function evaluates the expressions giving the
attribute names, while structure () uses the names given explicitly in the form.

To create a new structure with a changed attribute:

= change-attribute
(structure, attribute-name, item-or-value)
-> structure

Creates a new structure containing all of the same attributes and values in the
given structure, but with the given attribute-name containing the given item-
or-value.

If the attribute did not exist within the argument structure, the new attribute
is added to the end of that structure. If the attribute already exists within the
argument structure, the function changes its value, but keeps its position in
the original attribute order of the structure.

To create a new structure with a changed evaluated attribute:

= change-evaluated-attribute
(structure, symbol-expression, item-or-value)
-> structure

Creates a new structure containing all of the same attributes and values in the
argument structure, but with the given symbol-expression containing the given
item-or-value.

398

Note

Working with Composite Types

This is the same operation as change-attribute(), except for the attribute name
being given by an evaluated expression instead of using the name given
explicitly in the form.

To create a new structure with a removed attribute:

= remove-attribute

(structure, attribute-name)
-> structure

Creates a new structure containing all of the same attributes and values in the
argument structure, but with the named attribute removed. If the named
attribute was not in the argument, the function returns an exact copy of the
argument structure.

To create a new structure with a removed evaluated attribute:

= remove-evaluated-attribute

(structure, symbol-expression)
-> structure

Creates a new structure containing all of the same attributes and values in the
argument structure, but with the named attribute removed. If the named
attribute was not in the argument structure, the function returns an exact copy
of the argument structure.

Structure Expressions
Use the following expressions to access structures.

To return an attribute value:

= the attribute-name [local-name] of structure

Returns the value associated with the attribute name within the given
structure. If no such attribute exists within the structure, or the attribute
contains none, G2 signals an error.

If you have explicitly defined an attribute name to be lowercase by using quote
characters (@), G2 signals an error of you omit the quote characters when
accessing the attribute name.

To return an attribute value named by a symbolic expression:

= the {class-name | type } that is an attribute of structure named by

symbolic-expression

Returns the value associated with the attribute named by the symbolic-
expression. If no such attribute exists within the structure, or the attribute
contains none, G2 signals an error.

399

400

To return the attribute names within a structure:

= each symbol [local-name] that is an attribute name of structure

Returns the symbols that name attributes within the structure.

This code fragment contains an example of each expression:

identification: structure =
structure(corporation: the symbol acme, id: "456GL900")
S: symbol;

{ Post the value of the corporation attribute.}
post "[the corporation of identification]";

{ Post the value of the id attribute. }

conclude that id-symbolic-parameter = the symbol id;

post "[the text that is an attribute of identification named by
id-symbolic-parameter]";

{ Post each attribute name. }
for S = each symbol that is an attribute NAME of identification do post "[S]" end;

Using the Sequence Type

A sequence value type is a list-like entity that can contain any item or value,
including other sequences and structures. Sequences can have a virtually
unlimited number of elements (up to 1,046,526), including zero. Each sequence
element is separated with a comma (,) in this construct:

sequence ([item-or-value [,...]])

The next example shows the sequence representing a portion of the item-
configuration attribute value.

sequence (the symbol developer, the symbol user)

Sequences are functionally similar to lists. As such, you can access their
elements by:

Iterating over each element within a sequence.

Adding to the beginning or end of a sequence using the functions insert-at-
beginning () and insert-at-end ().

Inserting after a particular item or value in a sequence, using the insert-after ()
function.

Inserting before or after an element at a particular index in the sequence using
the functions insert-before-element (), insert-after-element ().

Using an element index ([0]) to address an element directly.

Note

Working with Composite Types

When referencing and using sequences, remember that, unlike lists and array
items, sequences are values. While you can use sequences in some list and array
expressions, you pass sequence values as a copy, rather than as a reference, and
change their values using the sequence functions.

Deleting an item contained in a sequence changes the element value to none, but
does not decrease the number of elements.

Sequence Functions
Use these functions to create and manipulate sequences.

To return a new sequence containing the given elements:

= sequence
(item-or-value [,...])

-> sequernce

Returns a new sequence containing the given elements. Sequences may
contain from zero to 1,046,526 elements.

For example:

get-debug (P:class procedure) = (sequence)
SEQ: sequence;

begin
SEQ = sequence (the tracing-and-breakpoints-of P);
return SEQ

end

To return a new sequence one element shorter than the given sequence:
= remove

(sequence, integer)

-> sequence

Returns a new sequence one element shorter than the given sequence, where
the element at the given index has been removed. The first element is at index
0. If there is no element at the given index, an error is signalled.

To return a new sequence whose first element is the given item-or-value:

= insert-at-beginning
(sequence, item-or-value)
-> sequence

Returns a new sequence whose first element is the given item-or-value, and
whose remaining elements are all elements in the given sequence.

401

402

To return a new sequence with specific elements inserted:

= insert-at-end
(sequence, item-or-value)

-> sequerice

Returns a new sequence whose elements are those in the given sequence, but
which also contains an additional last element which is the given item-or-
value. This operation is generally faster than insert-at-beginning for
incrementally collecting large sequences.

Sequences are stored as data arrays (not items), potentially with some empty
elements at the end of the array as the sizes of data structures are rounded up
to allocated sizes. In many cases, elements added to the end of sequences may
be filled into these empty locations without having to shift the previous
elements in the sequence.

To return a new sequence with inserted arguments:

=> insert-after
(sequence, item-or-value, item-or-value)
-> sequence

Returns a new sequence with the same elements as the argument sequence,
but with the second argument inserted after the first occurrence of the third
argument within the sequence.

To return a new sequence with inserted elements before a given index:

= insert-before-element
(sequence, integer, item-or-value)
-> sequence

Returns a new sequence with the same elements as the argument sequence,
but with the third argument inserted into the sequence at the index given as
the second argument.

The allowable range for the index argument of a sequence is:
-1 to (number of elements - 1)

This operation can insert the new item-or-value as the new first element, new
last element, or at any location within the sequence.

If an index is given outside of this range, an error is signalled.

Working with Composite Types

To return a new sequence with inserted elements after a given index:

= insert-after-element
(sequence, integer, item-or-value)
-> sequence

Returns a new sequence with the same elements as the argument sequence,
but with the third argument inserted into the sequence immediately after the
index given as the second argument.

The allowable range for the index argument of a sequence is:
-1 to (number of elements - 1)

This operation can insert the new item-or-value as the new first element, new
last element, or at any location within the sequence. If an index is given
outside of this range, an error is signalled.

To change a single element of a sequence:

= change-element
(sequence, integer, item-or-value)
-> sequence

Returns a new sequence with the same elements as the argument sequence,
but with the value at the index location changed to the given item-or-value.
The first element is at index 0, and it is an error if the index is larger than the
current size of the given sequence.

To concatenate two or more sequences:

=> concatenate
(sequence, sequence [,...])

-> sequence

Returns a new sequence containing the combined elements of the argument
sequences, with all elements of those sequences concatenated in order to form
the new sequence.

To get a portion of a sequence:

= portion
(sequence, integer, integer)
-> sequence

Returns a new sequence containing a portion of the elements of the argument
sequence. The first integer argument is the index at which to start copying,
and the second integer argument is the number of elements to return in the
new sequence.

403

404

Sequence Expressions

Use these expressions to access sequences:

To obtain a particular element in a sequence:
2> {sequence} [integer]

Returns the nth item-or-value in the given sequence, where integer is a zero-based
index.

To iterate over elements in a sequence:

2> the {class-name | type} [local-name] in {sequence}
-> [item | integer | float | symbol | text | truth-value | structure | sequence]

Returns each element of the given type found within the sequence.

To return an element of a particular type from a sequence:
=> the {first | second | next to last | last {class-name | type} in {sequence}

Returns the element of the given type at the described position within the
sequence.

To determine whether an item-or-value is a member of a sequence:
2> {item-or-value} is [not] a member of {sequence}
Returns whether or not the given item-or-value is a member of the sequence.

When testing for membership in a sequence, G2 ignores the alphabetic case when
comparing two text values and ignores the type when comparing two quantity
values. For example:

® The text string “Text” is a member of the sequence that contains “text”.

* The float 2.0 is a member of the sequence that contains the integer 2.

To determine the number of elements in a sequence:
=> the number of elements in {sequence}

Returns the number of elements in the given sequence.

Using Structures and Sequences in User-Defined Classes

Using Structures and Sequences in
User-Defined Classes

You can use structures and sequences as user-defined attribute values in class
definitions. Unlike the general and specific G2 value types (quantity, integer, float,
and so on), both structures and sequences can consist of multiple values:

® Sequences can contain values of items and all value types, including other
sequences and structures.

® Structures can have values of items and all value types, including other
structures and sequences.

While structures and sequences offer similar functionality to lists and other items,
they consume considerably less memory. If your class-specific attributes do not
require the full capabilities that items provide, we recommend that you use:

® Structures to represent items.

® Sequences to provide list-like functionality.

Comparing Structures and ltems

The fundamental properties of structures and items are:

Property Structures Items

Has iconic representation

Has methods

Has inheritance

Can save as permanent knowledge
Consists of attributes and values v

Can conclude values into attributes

(\
DN N N N N NN

Has fixed set of attributes defined by a
class definition

Has arbitrary set of attributes that can be v

added to and removed from per instance

Must be created and deleted explicitly v
Requires minimum memory v

Memory and existence are managed v
automatically

405

406

Comparing Sequences and Lists

The fundamental properties of sequences and lists are:

Property Sequences Lists
Has iconic representation v
Requires minimum memory v
Can save elements as permanent KB v v
knowledge
Can have elements of structures and v
sequences

v v

Programmatically manipulate elements

G2 ltems

Presents the characteristics that are common to all G2 items.

Introduction 407

Logical Components of ltems 408

Understanding Item Inheritance 410

Understanding the Knowledge Contained in Items 411
Iltem Representation 417

Locating Items upon a Workspace 420

Working with Items Interactively 426

Iltem Expressions 439

Referring to Other Item Knowledge 442

The ltem Class 448

System Procedures for Working with ltem Groups 450

gensym.

Introduction

Items are the fundamental data structures within G2 that you use to represent
knowledge. You use items to collect and organize knowledge about real objects,
processes, and relationships. You use G2 to collect and organize a set of items in a
knowledge base (KB). The items in a KB represent a set of application knowledge.

407

Each item represents knowledge that has a distinct identity, that persists, and
which you can reference directly or indirectly. Each item also represents a set of
knowledge that has a particular pattern or template, based on its class. G2's
object-oriented support for defining items enables you to design custom classes
and to create as many items of each class as required.

As you develop a KB, you work with items interactively by creating them,
naming them, moving and transferring them upon workspaces, and so on. When
G2 runs the current KB, the KB’s own processing works with items by reasoning
about them programmatically in actions, rules, procedures, functions, and
formulas.

Note To perform an operation programmatically means that you perform it by
executing a G2 executable item, such as an action button, rule, procedure,
method, and so on. To perform an operation programmatically, the current KB
must be running.

Items play the role of objects in other object-oriented programming languages.
For historical reasons, G2 uses the term itern rather than object.

Logical Components of Items

Through its class inheritance, each item contains information that enables it to
represent various kinds of knowledge. Internally, every item consists of several
logical components, which may be accessible interactively, programmatically,

or both:

Logical Component Description

table attributes The attributes of an item that are displayed in its
attribute table.

hidden attributes The internal attributes of an item that are
displayed on its table of hidden attributes.
These attributes have been made accessible
through the attribute-access facility.

status Information about whether an item is one of

several pre-defined states: ok, incomplete, or
bad. The status of an item also includes
information such as whether the item is
permanent or transient, enabled or disabled,
activated or deactivated.

408

Logical Component

Logical Components of Iltems

Description

position

The workspace x and y coordinates of an item
upon a workspace. You can return the integer
value representing an item’s position, using the
expressions:

the item-x-position of item
the item-y-position of item

size

The width and height of the icon of an item in
workspace units. You can return the integer
value representing an item’s width and height,
using the expressions:

the item-width of item
the item-height of item

representation

The color or color-pattern of an item. For
example, you can interactively or
programmatically change the background-color
of a workspace. Similarly, you can change the
color of the named regions of an item’s icon, or
for textual items, such as messages, the text
color or size.

The logical components of items are further described in Understanding the
Knowledge Contained in Items and Item Representation.

You work with items interactively using the G2 developer’s environment. By
default, when you click the mouse on an item, it displays its menu. An item menu
presents operations that you can apply to that item.

You can display the values stored in the attributes of an item by displaying the
item table. Each table shows the name and class of the item, its list of attributes,
and the current value of each attribute. You can also display the current value of a
particular attribute by creating an attribute display, which appears next to the
item itself upon a workspace.

409

Understanding Item Inheritance

410

Each item is an instance of a class. An item’s class defines the template for the
knowledge it can contain. Each class is associated with at least one parent, or
superior, class. A class can also have subclasses, whose definitions are based on
the definitions of their parent classes. For further information see Classes and
Class Hierarchy.

An item’s class defines its set of attributes. Each attribute can contain a value, or
piece of knowledge. Most of the knowledge that your KB manipulates resides in
the attributes of the KB’s items.

All items are instances of some subclass of the item class, which is the root class in
the system-defined class hierarchy. The item class defines three attributes, notes,
names, and item-configuration, which all subclasses of the item class inherit. By
definition, each item in your KB has these attributes.

The next figure shows a workspace that contains one value-list and an instance of
a user-defined class. Both the value-list and the pipe item inherit their top-three
attributes from item class:

= O
|
PIPE-DIMENSIONS, a value-list E3 | FILTER-PIPEZZ, a pipe | x|
Motes | DK Motes | QK
ltem configuration | none [tem canfiguration | none
Mames | PIPE-DIMENSIOMNS Mames | FILTER-PIPEZ3
Elementiype | value Lining | copper

Allow duplicate elements | yes

Listis permanent | no

There are items of some system-defined classes that do not use the names
attribute, but rather define a class-specific attribute to contain the item’s identifier.

For instance, because a procedure can be invoked, as well as referenced for its
attribute values, its name is based on the declaration found in its text. Similarly,
because a relation definition establishes two relationships, a relation and an
inverse relation, it uses the class-specific relation-name attribute instead of the
names attribute.

Understanding the Knowledge Contained in Items

Understanding the Knowledge Contained
in ltems

Each item represents a set of knowledge whose template is based on its class. An
item’s set of attributes represents such a template. However, each item also
contains other information that G2 maintains, such as its status and relationships
with other items.

Identifying the Knowledge in Attributes

The class of an item determines its set of attributes. An item’s attributes contain
knowledge in a form that is easy to work with. Attributes are described in detail
in Attributes and Tables.

Identifying the Knowledge Not Stored in Attributes

Items of some classes can contain one or more values that are distinct from the
items” attributes. For instance, a variable or parameter can contain a value, and
can be defined to also contain history datapoint values. Also, lists and arrays can
contain values and references to other items in their elements. See the appropriate
chapter for more information about the knowledge that these items can contain.

Further, items also include a set of hidden attributes, which are those that do not
appear in an attribute table, and include:

® The item name box.
* Attribute display.

® Relationships.

* Containing module.

For more information about hidden attributes, see Attribute Access Facility.
Obtaining the relationships in which an item is participating is described in
Referring to the Relationships of an Item.

Identifying the Status Knowledge of Items

Items also contain several kinds of status knowledge:

® Permanent/transient: Whether the item is retained in the current KB after you
reset or reset it.

® Active/inactive: Whether other items in the KB can reference the item. This is
determined by whether the item’s parent workspace has been activated.

411

412

* Enabled/disabled: Whether the item can be activated. This is determined by
whether you have interactively selected enable or disable from the
item’s menu.

* Participation: Whether the item’s attributes contain enough information, or
the right information, to participate in processing.

G2 automatically maintains each item’s status knowledge.

Permanent/Transient Status

At a given moment, each item in the current KB is either permanent or transient.
The permanent/transient status of items is user-settable, but only
programmatically.

A permanent item continues to exist in the current KB after the KB is reset or
restarted. When you save the current KB to a file, only the KB’s permanent items
are stored in the KB file.

A transient item does not continue to exist in the current KB after the KB is reset
or restarted. Likewise, a KB that has been loaded but not yet started contains no
transient items. When you save the current KB to a file, the KB’s transient items
are not stored in the KB file.

After being created interactively, an item is permanent. For instance, any item
that you create by selecting from the KB Workspace > New Object menu is a
permanent item.

When you create an item programmatically, using the create action, that item
is transient.

To make an item permanent:

= make permanent item

To make an item transient:
= make transient item

For instance, this rule creates a new transaction message and makes it permanent:

for any transaction T
if the status of T is not message-sent
then in order
create a transaction-message TM and
conclude that the status of TM is unsent
and make TM permanent

Changing the permanent/transient status of an item causes G2 to propagate the
new status to all items below it in the workspace hierarchy.

Understanding the Knowledge Contained in Items

Note You cannot make a permanent item the subordinate item of a transient item. For

Note

instance, you cannot transfer a permanent item to a transient workspace, and you
cannot make a permanent workspace the subworkspace of a transient item.

G2 provides the g2-system-predicate system procedure to obtain any item’s
permanent/transient status:

To determine if an item is permanent or transient programmatically:

= g2-system-predicate
(item-to-check: item-or-value; predicate: symbol)
-> permanent-transient-showing

Returns a truth-value indicating the predicate you pass to the procedure,
which can be permanent, transient, or showing.

Active/lnactive Status

The active or inactive status of an item indicates whether G2 has activated it.
When an item is inactive, it cannot be referenced by other items.

You can only set the active/inactive status of activatable subworkspaces. You
perform this action programmatically.

To activate an activatable subworkspace programmatically:
= Use the activate and deactivate actions.

When you start or restart the current KB, G2 automatically activates all enabled
top-level workspaces, then automatically propagates those workspaces’
active/inactive status to all items below them in the KB’s workspace hierarchy.
All enabled items on active workspaces are activated.

When you deactivate the subworkspace of an item, G2 behaves as though the
items upon the subworkspace do not exist. All items upon the subworkspace are
no longer active. The subworkspace itself, however, can still be referenced and is
included in existence checks such as the count of each kb-workspace.

For more information about how G2 activates workspaces, see Activating and
Deactivating Workspaces.

In addition, G2 cannot activate these items:
* Disabled items.
* Jtems whose status is bad.

* Items directly or indirectly subordinate to a non-activatable item (see
Identifying the Superior and Subordinate Relationships among Items).

413

414

Only an active variable can have a current value and a history. Only an active list
or array can contain values in its elements.

Referencing Inactive Definitions

If a class definition is not active, the class that it defines continues to exist.
Likewise, relation instances continue to exist even when the relation definitions
on which they are based become inactive.

Enabled/Disabled Status

The enabled/ disabled status of an item refers to whether the item can be
activated. By default, when you create an item interactively, it is enabled and can
thus be activated.

You can disable an item interactively or programmatically. Once disabled, an
item is effectively deactivated, and its activation status is inactive. Changing the
enabled/disabled status of an item propagates to the items below it in the KB
workspace hierarchy. Enabling or disabling a workspace affects the items that
reside upon it, causing them all to become deactivated. Enabling one or more
items that reside upon a disabled workspace has no effect until the workspace
status is active and enabled.

To change the enabled/disabled status of an item interactively:

=> Select enable or disable from the item’s menu.

To enable all disabled items in the current KB:

= Select Main Menu > Run Options > Enable All Items.

To change the enabled/disabled status of an item programmatically:

= g2-system-command
(command: symbol, win: class g2-window, item: class item,
attribute: symbol)

where:
command is enable or disable.
For details, see the G2 System Procedures Reference Manual.

You can change an item’s enabled/ disabled status at any time, regardless of the
KB’s run-state. Changing this status does not affect the item’s other status values.

When you enable an item, G2 immediately activates the item, unless there is
another item above it in the workspace hierarchy that is not activated. If the
enabled item is an activatable subworkspace, it is activated only when it is the
target of an activate action.

When you disable an item, G2 cannot activate it, even if the item meets all other
criteria for activation.

Understanding the Knowledge Contained in Items

When you save the current KB, G2 also saves the knowledge of which items are
disabled. Thus, items will continue to be disabled after you next load that KB.

Participation Status

The status of an item can be ok, incomplete, or bad and reflects whether the item
knowledge is valid for KB participation. G2 changes the participation status of an
item appropriately as the knowledge an item contains is updated.

The ok, incomplete, or bad status of each item appears in its notes attribute. The
next table summarizes the meaning of each setting:

Item Status Description

ok All attributes have valid values, and a sufficient
number of attributes have values to permit the
item to participate in the KB’s processing.

incomplete At least one attribute, whose setting is required
for the item to participate in KB processing,
requires a different value.

bad At least one attribute does not have a
valid value.

For example, after you create a new class definition, G2 initializes the status of the
item to incomplete until you specify new values for the item’s class-name and
direct-superior-classes attributes.

The notes attribute of an item can also contain other useful information. For
example, the status of an item may be ok, but if the item resides upon a disabled
workspace, it cannot participate in KB processing. Such a status is displayed in
the item notes attribute with a message such as:

OK, but some superior item is either DISABLED or not OK.

Because G2 reports the participation status of an item in the notes attribute, you
can reference this status in expressions. For instance, when debugging your KB,
use the Inspect facility to construct a command like this:

show on a workspace every acid-bath-tank whose item-status is incomplete
or
show on a workspace every help-organizer with notes

These commands display items whose notes attribute does not contain the
value ok.

The notes attribute is a composite attribute, as described in Attribute
Access Facility. You can refer directly to the status information of active items that

415

416

the notes attribute contains by referring to the item-status of an item, and to the
actual notes of an item using the item-notes.

To refer to the item-status of an item:

= the item-status of item
->{OK | INCOMPLETE | BAD}

To refer to the item-notes of an item:

= the item-notes of item
->{none | sequence ([text],...]]}

Identifying the Superior and Subordinate
Relationships among Items

An item’s knowledge includes whether it has a superior or subordinate
relationship to other items. G2 considers information about the following
relationships to be part of an item’s knowledge:

® The relationship between a KB workspace and the items upon it.
® The relationship between an item and its subworkspace.

® The relationship between an item and the object that is contained in an
attribute; this includes an attribute that is an instance of an object or given by a
variable or parameter.

Tip You can use expressions to refer to the item that is superior or subordinate to

another item. See Referring to the Superior Item.

G2 propagates knowledge from item to item along the lines of the superior and
subordinate relationships, including:

® The active/inactive, permanent/transient, and enabled/disabled status
of items.

® The item configurations.

Iltem Representation

Item Representation

Note

The visible portion of an item’s knowledge is called its representation. An item’s
representation is determined by the representation style of its class, for example,
its icon, text box, workspace, table, chart, and so on.

The representation of an item (other than connections) always occupies a
rectangular region on the screen, even if the visible portion of the representation
is not rectangular.

The following figure displays some item-representation styles:

&

DISTRICT

read-out

class-definition icon attribute table

user-defined district icons
with connection

]

action button 0.0

| start initializeldistrict-a3)

DISTRICT-AS, a district | x|

Motes | QK

Item configuration | none
MNames | DISTRICT-AS
Area | 570000

- trend chart

display 10 &, B:54:00 am.

|the current month | B |

message text-box

rule text-box

if the area of any district D <= 50000 then

district-ab exceeds 500,000 insert D at the beginning of district-list

Identifying the G2 Color Palette

G2 supports a large set of colors. G2 displays its color palette when you select
color on the menus of items. You can assign any supported color to any color
attribute of an item, or to any region of the icon of a system-defined or user-
defined class.

417

The G2 color palette provides these colors:

antique white
beige

brown

cyan

dim gray
forest green
gray

indian red
lavender

light goldenrod
light pink

lime green
maroon
medium goldenrod
pale goldenrod
pink

purple

sienna

smoke
turquoise

wheat

aguamarine

black

cadet blue

dark gray

extra light gray

gold

green

ivory

light blue

light goldenrod yellow
light steel blue

linen

medium aquamarine
medium orchid

pale green

plum

red

sky blue

tan

violet

white

azure
blue

coral

dark slate blue
floral white
goldenrod
green yellow
khaki

light cyan

light gray

light yellow
magenta
medium blue
orange

pale turquoise
powder blue
salmon

slate blue
thistle

violet red

yellow

Note

Iltem Representation

The G2 color palette also includes the metacolors foreground, background, and
transparent. Each metacolor assigns a color value for an item’s color attribute by
referring to a color attribute of another item:

* A metacolor of foreground means that the actual color is determined by the
color value of the foreground color attribute of the item’s parent workspace.

* A metacolor of background means that the actual color is determined by the
color value of the background color attribute of the item’s parent workspace.

® The metacolor transparent means exactly that: whatever you assign to this
metacolor becomes transparent. Any item beneath a transparent item or icon
becomes visible.

You can select and drag a transparent item. Any visible knowledge that is
behind the transparent item, or other entity with color, is visible.

You cannot set the background-color color attribute of a workspace
to transparent.

Identifying the Color Attributes of Items

Each representation style has a corresponding set of color attributes. A color
attribute is a component of an item’s representation that can appear in a
distinct color.

Each item representation presents a set of color attributes:
® The icon representation has the icon-color color attribute.

® The text box representation has the text-color, border-color, and background-
color color attributes.

* The workspace representation has the foreground-color and background-color
color attributes.

® The connection representation has the stripe-color color attribute.

Other item representations do not have settable color attributes.

The icon-color color attribute of an item is distinct from the color regions defined
for its icon. For more information about icon color regions, see Composition of an
Icon.

The settings of an item’s color attributes are part of its knowledge. You can set the
color attributes of items interactively or programmatically.

To set a color region of an item interactively:

= Select the color choice on the item’s menu as described in Changing the Color
of an Item.

419

Actions That Affect Item Appearance
G2 provides the following actions that change an item color or pattern:

To change a color attribute of an item:

= change the color-attribute-name of item to
{color-name | symbolic-expression}

To change a color pattern of an item:

= change the color-pattern of item so that
{color-attribute-name is color-name} [, ...]

For items with an iconic representation, you can programmatically set the icon-
color region as well as any other user-defined icon color-region.

To change an icon region of an item:
=> change the region-name icon-color of item to color-name

You can provide a symbol of the form RGBrrggbb as a valid color name, where rr,
gg, bb, are the 8-bit hex values for red, green, and blue. For details, see Other
Literal Terms.

Locating Items upon a Workspace

420

Note

The location of each item upon its parent workspace is part of its knowledge.
Note that some items do not reside upon a workspace, yet they are still part of the
KB’s knowledge.

The location of a workspace within a G2 window is part of its knowledge.

G2 maintains information about whether a workspace is being displayed, and at
what scale, on a per-window basis; it does not maintain this information in the
workspace item. For more information about the relationships among workspaces
and the windows of G2 and Telewindows processes, see G2-Windows.

Note

Locating Items upon a Workspace

Layering Iltems upon the Same Workspace

Item layering refers to how G2 draws the representations of items in a top-to-
bottom manner upon a workspace. The layering of an item is part of
its knowledge.

G2 includes two drawing modes, Paint and XOR. The XOR drawing mode is a
superseded capability. Your KB should use only the Paint drawing mode,
described in Drawing Parameters. For further information, see Appendix F,
Superseded Practices.

When Paint drawing mode is in effect and the representations of two items
intersect, G2 displays those items so that they overlap. Each item’s item layer
position determines which item appears on top. Each item upon a workspace has
a unique item layer position, which is an integer value of zero or higher that

G2 sets and maintains. An item whose item layer position is zero appears on top
of all other items upon that workspace.

In the next example, at the bottom of the overlapping-items workspace, the
messages created by the execution of report-item-layer-positions procedure report
the item layer positions of the other four items on the workspace. The item layer
positions correspond to the overlapping appearances of the items’ representations
on the workspace.

report-item-layer-positions()

ITEM: class item;

M: class message;

SYM: symbol;

POS: integer;

begin

for ITEM = each item upon overlapping-items
do

SYM = call g2-name-for-item(ITEM);
POS= call g2-get-item-layer-position(ITEM);
create a message M;

transfer M to overlapping-items at
(-325 + (20 * the count of each message upon
overlapping-items),
100 - (50 * the count of each message upon
overlapping-items));
change the text of M to "the item layer position for [SYM] is [POS]."
end
end

421

422

Note

OYERLAPPING-ITEMS, a kb-workspace

@ ITEM-ADDED-FIRST

ITEM-ADDED-SECOND

. . . ITEM-ADDED-THIRD
unconditionally post "displaying item

positions'

B2 [TEM-ADDED-FOURTH

the item layer position for ITEM-ADDED-FOURTH
is 1.

the item layer position for ITEM-ADDED-THIRD
is 4.

the item layer position for ITENM-ADDED-SECOND
iz 7.

the item layer position for ITEM-ADDED-FIRST is
10.

In general, when you add or transfer an item to a workspace, that item appears on
top of all other items already on that workspace. The first item placed upon a new
workspace has an item layer position of zero. This is true whether you create the
item on that workspace or transfer the item from another workspace. As the set of
items on a workspace changes, G2 automatically adjusts the item layer position
values of the items that remain in the workspace.

Other entities displayed on a workspace, such as its name box or an attribute
table, also have their own item layer positions. For this reason, at any one point in
time, the item layer positions of the items on your workspace might not include
the value zero or be consecutive.

Your application should not rely on the absolute value of any item’s item layer
position. Rather, your application should rely on the relative differences among
the layer positions of items.

Distinguishing Permanent, Transient, and Current
Knowledge
After you reset G2, the current KB contains only one version of each item’s

knowledge: its permanent knowledge. An item’s permanent knowledge is the set
of attribute values, status values, and item relationships that are in effect when G2

Locating ltems upon a Workspace

is reset. When you interactively create an item or change the value of an attribute
when G2 is reset, G2 adds that item or value to the permanent knowledge of the
current KB. G2 saves only permanent knowledge to a KB file, unless you direct G2
to save a snapshot file of your KB.

After you start the current KB, you can add both transient knowledge and
permanent knowledge to the current KB. Transient knowledge is removed from
the current KB when G2 is reset. The transient and permanent knowledge that
exists in the current KB when G2 is running or paused is known collectively as
current knowledge. G2 uses only the current knowledge when it is running
your KB.

When G2 is running, you create transient knowledge by creating transient items,
relationships, and array and list elements; and by changing attribute values using
the change and change the text of actions.

Here are some actions that produce transient knowledge:
change the text of the length of cable45 to "15.3"
create a generator

change the name of the generator upon this workspace
to the symbol test-generator-9

conclude that the list-is-permanent of accounting-list is false;
insert 5 at the beginning of accounting-list

You create permanent knowledge by creating permanent items, relationships,
and array and list elements; and by changing attribute values interactively, by
executing the conclude action, and by executing the change and change the text
of actions followed by a make itern permanent action.

Here are some actions that produce permanent knowledge:
conclude that the length of cable45 = 15.3

change the text of the length of cable45 to "15.3";
make cable45 permanent

create a generator G;
make G permanent

conclude that the names of the generator upon this workspace
= the symbol bozo

How Using Change Actions Effects the Current Knowledge of the KB

In a running G2 session, the first time you change an attribute’s value using the
change or change the text of action, G2 first copies its permanent value to an
internal attribute and then applies the change to the attribute. The new attribute
value is transient because the saved permanent value will be reinstated when G2
is reset.

423

424

Note Once you have made a transient change to an attribute value, G2 will reinstate the
original permanent value even if you execute subsequent permanent change
actions on the attribute within the running G2 session.

In the following example, the value of the length of cable45 will revert to 15.3
upon a even though a transient change action has been followed by a permanent
conclude action within a running G2 session:

conclude that the length of cable45 = 15.3;
change the text of the length of cable45 to "0";
conclude that the length of cable45 = 2000

An Example Using Permanent and Transient Knowledge

To demonstrate how an item’s permanent and transient knowledge differ:

1
2
3

Reset the current KB.
Create a new workspace by selecting Main Menu > New Workspace.

Create a new action button and place it upon a workspace by selecting
KB Workspace > New Button > action-button.

Because you created this new button interactively, you added a permanent
item to the current KB. The default value of the new button’s attribute, its
default color, and its subordinate relationship to its parent workspace are
pieces of the new button’s permanent knowledge.

Open the new button’s attribute table by selecting table from its menu.
Edit the name of the button to be my-permanent-name.

Editing the button’s name interactively updates the button’s permanent
knowledge.

Edit the action attribute of the button to:

change the name of my-permanent-name
to the symbol my-transient-name

With attribute displays, your workspace should now look similar to this:

a kb-workspace

ak
_l MY-PERMANENT-MAME

change the name of my-permanent-name to
the symbol my-transient-name

Locating Items upon a Workspace

7 Start the current KB by selecting Main Menu > Start.
8 Press the new action button.

This causes G2 to perform the button’s action, which updates the display of
the value of its names attribute in the table and adds a note to the action
button indicating that the item my-permanent-name does not exist:

a kb-workspace

0K, and note that the item my-permanent-
| name does not exist
WY-TRANSIENT-NAME
change the name of my-permanent-name to
the symhbol my-transient-name

Executing this action updates the button’s current knowledge with transient
data, but not its permanent knowledge. By pressing the button, you invoke a
change action, which performs a transient programmatic change to the item’s
knowledge.

9 To confirm this, reset the KB again by selecting Main Menu > Reset.

Notice that resetting the current KB causes G2 to update the display of the
button’s names attribute in the table and to remove the note about the item
not existing. It again shows the value my-permanent-name, part of the
button’s permanent knowledge.

425

Working with Items Interactively

426

When G2 is running, part of its memory contains all the items in the current KB.
By default, when you start G2, the current KB is empty. You use the developer’s
environment to add items to the current KB. After you add some number of items,
you save the current KB into a KB file. Working with the current KB and with KB
files is described in Knowledge Bases.

To place items on a workspace interactively:
1 Create a new workspace by selecting Main Menu > New Workspace.
G2 creates a new empty workspace.

2 To add an item to this workspace, click on the workspace background and
select one of the menu choices on the KB Workspace menu that begins with
the word New.

For example, to create a variable:

a Select the New Object menu choice.

b Select g2-variable from the choose a class submenu.

¢ Choose logical-variable from the choose a class submenu.

G2 automatically creates a new logical variable item and attaches its icon to
the mouse pointer.

3 Position the mouse and click to place the icon on the workspace.
The new item now resides upon that workspace.

When you create an item interactively, you see it appear on the screen. Items have
different kinds of appearances, such as icons or text boxes. Each kind of item
appearance is called its representation. For a description of the kinds of item
representations in G2, see Item Representation.

To learn more about working with workspaces, see Workspaces.

Using Item Menus

You perform an operation on an item interactively by selecting a choice from
its menu.

To open an item’s menu:

= Click the mouse on the item.

Working with Items Interactively

As the next figure shows, clicking the mouse on an item causes G2 to display the
item’s menu over or near the item. The title bar of an item’s menu shows the

item’s class.

G35l interface | x|
tahle

transfer

name

clone

rotate/reflect >
change size

color »
delete

lift to top

drop to bottom

disahle

describe

tahle of hidden attributes
show unsaved attributes
describe configuration
create subworkspace

To dismiss an item’s menu:
=> (lick the mouse on the title bar of the menu.

G2 automatically positions and scales a menu so that it is entirely visible within
the G2 process’s window.

Common ltem Menu Choices

This table lists several interactive operations that are common to most classes
of items:

Menu Choice Description

change size Open a workspace that lets you resize the item.

Note: This menu choice is only available when
the show-selection-handles attribute in the
Drawing Parameters system table is false.

clone Create a new copy of the item.
color Change a color setting.

create subworkspace Create a new workspace that is subordinate to
this item.

427

428

Menu Choice

Description

delete
describe

describe
configuration

enable
disable

lift to top
drop to bottom

name

rotate/reflect

show unsaved
attributes

table

table of hidden
attributes

transfer

Remove this item from the current KB.
Display the Describe workspace for this item.

Display the inheritance of configurations for
this item.

Allow or disallow this item to participate in the
KB’s processing.

Display the item so that it is on top of all other
items upon this workspace; display the item so
that it is beneath all other items upon this
workspace.

Edit the name of this item.

Rotate the item’s representation in increments
of 90 degrees; display the item’s representation
with mirrored appearance.

Display the table for the item with permanently
changed attributes highlighted.

Display the item’s attribute table.

Display the item’s hidden attributes table.

Allow you to drag the item to another
workspace.

Changing the Size of an Item

By default, items have selection handles when you select them. To resize an item,

drag the selection handles. For example:

Note

Working with Items Interactively

The show-selection-handles attribute of the Drawing Parameters system table
determines whether selection handles appear on items. By default,
show-selection-handles is true, which shows selection handles. When
show-selection-handles is false, selection handles do not appear; instead, the
change size menu choice appears in the item menu for changing the size.

Selecting the change size menu choice opens a dialog that you use to change the
size of this item’s representation. G2 encloses the item in a rectangle with a thick
border. To change the size of an item, move any edge or corner of the rectangle,
then press the Update Now button.

For example, this figure shows how you can enlarge an icon:

M

Edges and corners
. Ry
Done moving ecdges and corners? GSI have been moved.

Cancel || Yes |

Restore to Normal Sizel Update Nowl

a temporary-workspace B

(2)
The icon image has
been updated.

a temporary-workspace

Done moving edges and corners? E

=
Cancel | I Yes | &
El=

Restore to Normal Sizel Update Nowl

When you finish changing the size, either:
* C(lick the Cancel button to revert the item’s representation to its previous size.

® C(lick the Yes button to retain the change you made.

Every G2 item has a maximum size limit, beyond which the change size option
has no effect.

Cloning an Item

Cloning an item means to make a copy of it and all its knowledge. You can clone
items interactively or programmatically.

429

430

To clone an item interactively:
1 Select the clone choice on its menu.

This causes G2 to create a copy of the selected item