
G2

Reference Manual
Version 2015

G2 Reference Manual, Version 2015

November 2018

The information in this publication is subject to change without notice and does not represent a
commitment by Gensym Corporation.

Although this software has been extensively tested, Gensym cannot guarantee error-free
performance in all applications. Accordingly, use of the software is at the customer’s sole risk.

Copyright (c) 1985-2018 Gensym Corporation

All rights reserved. No part of this document may be reproduced, stored in a retrieval system,
translated, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of Gensym Corporation.

Gensym®, G2®, Optegrity®, and ReThink® are registered trademarks of Gensym Corporation.

NeurOn-Line™, Dynamic Scheduling™ G2 Real-Time Expert System™, G2 ActiveXLink™, G2
BeanBuilder™, G2 CORBALink™, G2 Diagnostic Assistant™, G2 Gateway™, G2 GUIDE™,
G2GL™, G2 JavaLink™, G2 ProTools™, GDA™, GFI™, GSI™, ICP™, Integrity™, and SymCure™
are trademarks of Gensym Corporation.

Telewindows is a trademark or registered trademark of Microsoft Corporation in the United States
and/or other countries. Telewindows is used by Gensym Corporation under license from owner.

This software is based in part on the work of the Independent JPEG Group.

Copyright (c) 1998-2002 Daniel Veillard. All Rights Reserved.

SCOR® is a registered trademark of PRTM.

License for Scintilla and SciTE, Copyright 1998-2003 by Neil Hodgson, All Rights Reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/).

All other products or services mentioned in this document are identified by the trademarks or
service marks of their respective companies or organizations, and Gensym Corporation disclaims
any responsibility for specifying which marks are owned by which companies or organizations.

Gensym Corporation
52 Second Avenue
Burlington, MA 01803 USA
Telephone: (781) 265-7100
Fax: (781) 265-7101 Part Number: DOC014-1200

Contents Summary
iii

Preface lxxi

Part I Introduction to G2 1

Chapter 1 Overview of G2 3

Chapter 2 The Developer’s Environment 35

Part II Global G2 Components 69

Chapter 3 Knowledge Bases 71

Chapter 4 Workspaces 123

Chapter 5 Modularized KBs 165

Chapter 6 System Tables 199

Chapter 7 Configurations 291

Chapter 8 G2-Windows 349

Part III Knowledge Representation 377

Chapter 9 Values and Types 379

Chapter 10 G2 Items 407

Chapter 11 Attributes and Tables 453

Chapter 12 Attribute Access Facility 479

Chapter 13 Classes and Class Hierarchy 497

Chapter 14 Definitions 535

Chapter 15 Variables and Parameters 607

Chapter 16 Lists and Arrays 657
iv

Chapter 17 Hash Tables and Priority Queues 691

Chapter 18 Connections 703

Chapter 19 Relations 737

Part IV Computational Capabilities 769

Chapter 20 Actions 771

Chapter 21 Expressions 825

Chapter 22 Procedures 865

Chapter 23 Methods 921

Chapter 24 Rules, Inferencing, and Chaining 957

Chapter 25 Formulas 1007

Chapter 26 Text Parsing and Manipulation 1011

Chapter 27 XML Parsing 1041

Chapter 28 Functions 1049

Chapter 29 Publish/Subscribe Facility 1079

Chapter 30 G2 Graphical Language (G2GL) 1101

Part V User Interface Components 1187

Chapter 31 Buttons 1189

Chapter 32 Text Items 1207

Chapter 33 User Menu Choices 1213

Chapter 34 External Images 1219
v

Chapter 35 Messages 1227

Chapter 36 Readout Tables, Dials, and Meters 1233

Chapter 37 Freeform Tables 1245

Chapter 38 Charts 1259

Chapter 39 Graphs 1275

Chapter 40 Trend Charts 1287

Chapter 41 Windows Menus 1347

Chapter 42 Windows Dialogs 1381

Chapter 43 Custom Windows Dialogs 1403

Chapter 44 Windows Views, Panes, and UI Features 1547

Part VI Editors and Facilities 1597

Chapter 45 The Text Editor 1599

Chapter 46 The Icon Editor and Icon Management 1637

Chapter 47 The Inspect Facility 1679

Chapter 48 Natural Language Facilities 1709

Chapter 49 G2 Character Support 1739

Part VII Debugging and Optimization 1753

Chapter 50 Error Handling 1755

Chapter 51 Debugging and Tracing 1771

Chapter 52 Explanation Facilities 1799
vi

Chapter 53 Profiling and KB Performance 1811

Chapter 54 G2-Meters 1841

Chapter 55 Memory Management 1851

Chapter 56 Task Scheduling 1875

Part VIII Application Deployment 1887

Chapter 57 Package Preparation 1889

Chapter 58 Licensing and Authorization 1899

Part IX Networking and Interfacing 1919

Chapter 59 Network Security 1921

Chapter 60 Secure Communication and Authentication (SSL) 1925

Chapter 61 Telewindows Support 1931

Chapter 62 G2-to-G2 Interface 1943

Chapter 63 G2 Gateway 1985

Chapter 64 Interfacing with COM Applications 1991

Chapter 65 Interfacing with Java Applications 1995

Chapter 66 Interfacing with Web Services 1997

Chapter 67 Interfacing with TCP/IP Sockets 2007

Chapter 68 Foreign Functions 2009

Chapter 69 Windows Services 2025

Part X Appendixes 2033
vii

Appendix A Launching a G2 Process 2035

Appendix B Reserved Symbols 2123

Appendix C Mouse Gestures, Key Bindings, and Shortcut Keys 2135

Appendix D Syntax Conventions 2147

Appendix E G2 KBs and GIF Files 2157

Appendix F Superseded Practices 2169

Glossary 2173

Index 2203
viii

Contents
Preface lxxi

About this Manual lxxi

Audience lxxi

Organization lxxii

Conventions lxxvii

Related Documentation lxxix

Customer Support Services lxxxi

Part I Introduction to G2 1

Chapter 1 Overview of G2 3

Introduction 3

Basic Components 4
Knowledge Bases 4
Workspaces 5
Modules 7
Classes and Class Hierarchy 8
Knowledge Representation 11
Configurations 12
System Tables 12
G2 Windows 12
G2 Developer’s Environment 13

Computational Capabilities 14
Procedures, Methods, and Rules 14
Expressions 14
Actions 14
Formulas 15
Text and XML Parsing 15
Functions 15
System Procedures 15

G2 Graphical Language 16

Extensible and Graphical Components 17
ix

Icons 19
Images 19
Textual Items 20

Custom User Interfaces 21

Editors and Facilities 22
Text Editor 22
Icon Editor 23
Inspect Facility 24
Natural Language Facilities 24
G2 Character Support 25

Development and Deployment 25
Compilation 25
Error Handling and Debugging 25
Explanation Facilities 26
Profiling a KB 26
G2 Meters and Memory Management 26
Task Scheduling 26
Package Preparation 26
Licensing and Authorization 27

Networking and Interfacing 27
Network Security 27
Telewindows 27
G2-to-G2 Interface 28
G2 Gateway 28
Item Passing 28
Publish/Subscribe 29
Java Interface 29
Foreign Functions Support 29
G2 as Data Service 29

Additional Capabilities and Information 29

G2 Utilities 30

G2 Developer’s Utilities 31

G2 Bridges 33

Chapter 2 The Developer’s Environment 35

Introduction 36

Capturing Knowledge in a Knowledge Base 36

Using Computational Features in G2 36

Starting G2 37
The G2 Title Block 37
x

Customizing the Gensym Background 38
Interacting with the G2 Server Icon on Windows Platforms 39

Exiting from G2 40

Interacting with G2 40

G2 Window Styles 41
Window-Style Menu Examples 42
Window-Style Workspace Examples 42
Window-Style Attribute Table Examples 43
Specifying Window Styles 43
Editing Title Bar Text 45

Using Menus to Operate the Current KB 47
Using Menus to Operate on an Item in the KB 48
Using Menus to Affect the Developer’s Environment 48
Choices on the Main Menu 48
Choices on the Miscellany Menu 49

Navigating KB Knowledge 52

Notifying the User of Errors 52

Working with the Operator Logbook 52
Hiding and Showing Logbook Pages 53
Limiting the Number and Size of Logbook Pages 54
Navigating to an Item Referenced in an Operator Logbook Message 55
Navigating to the Procedure Code That Causes an Error 57
Shadowing the Operator Logbook Message Handler 57

Working with the Message Board Workspace 59
Shadowing the Message Board Message Handler 59

Organizing KB Knowledge 60
Distinguishing Functional Behavior by Class 60
Using Workspaces to Organize KB Knowledge 61
Partitioning Knowledge into Modules 61

Planning Your Work 62
Configuring the Default Developer’s Environment 62
Prototyping or Engineering 62
Identifying Roles for Workspaces 62
Identifying the User Interface Paradigm 63
User Interface Utilities 64
Other Developer Utilities 64
Identifying Data Servers for Variables 64
Using Timekeeping Features 66
Establishing Naming Conventions 68
Considering Natural Language Support 68
xi

Part II Global G2 Components 69

Chapter 3 Knowledge Bases 71

Introduction 72

Contents of a KB 73
Items 73
System Tables 73

Operating the Current KB 73
The Initial Contents of a KB 73
Clearing the Current KB 74
Starting the Current KB 74
Pausing and Resuming the Current KB 75
Resetting the Current KB 75
Restarting the Current KB 76
Determining the Run-State of the Current KB 76

Saving Your KB Knowledge 80
Saving the Current KB 80
Saving a Modularized KB 81
Saving an Unmodularized KB 82
Backup Copies of KB Files 83
Platform File Systems and KB File Names 83
Using Comments 84
Using Change Logging for Version Control 84
Performing “Diff” Operations 92
Saving a Running Current KB 93
Using System Procedures that Pause G2 before Saving Your KB 94
Saving the State of Workspaces 94
Supporting Source-Code Control Systems 94

Loading a KB 95
Using the Load KB Dialog 96
Loading the KB File 98
Using Wildcards in Filenames when Loading a KB 98
Selecting Options when Loading a KB File 99
Searching for KB Files 101

Saving Permanent and Transient Data in Snapshot KBs 101
Saving a KB Snapshot File 102
Contents of a KB Snapshot File 102
Naming Conventions for KB Snapshot Files 103
Warmbooting a KB Snapshot File 103
Creating Warmboot Procedures 104
Warmbooting with Catch-Up 105

Merging a KB File 107
xii

Working with Duplicate Items in KBs 108
Duplicate Definitional Items 109
Duplicate Class-Definitions 110

Detecting Conflicting Class-Definitions 111

Automatically Resolving Conflicting Class-Definitions 112

Manually Resolving Conflicting Class-Definitions 114
G2 Notification of Conflicting Class-Definitions 114
Responding to Conflict Workspaces 115
Examples of Manual Conflict Resolution 116

Chapter 4 Workspaces 123

Introduction 124

Kinds of Workspaces 125
Common Features of Workspaces 126
KB Workspaces 126
Other Workspaces 126

Working with Workspaces 127
Operating on an Area of a Workspace Interactively 128
Operating on an Area of a Workspace Programmatically 132
Cloning a Workspace 132
Deleting a Workspace 133
Disabling and Enabling a Workspace 133
Hiding and Showing a Workspace 134
Scaling a Workspace 135
Positioning a Workspace within its Window 135

Positioning Items upon a Workspace 137
Using the Workspace Origin 138
Displaying the Visible Portion of a Workspace 138
Specifying Margins within the Border of a Workspace 138
Shrink Wrapping the Size of a Workspace 139

Creating and Using a Workspace Hierarchy 139
Creating a Subworkspace for an Item 139
Making a Workspace the Subworkspace of an Item 140
Displaying the Workspace Hierarchy 141
Determining Whether a Subworkspace Exists 141
Referring to Subworkspaces Programmatically 142
Configuring Items Based on the Workspace Hierarchy 142
Organizing Knowledge in Subworkspaces by Using Connection

Posts 142
Associating Top-Level Workspaces with Modules 144

Activating and Deactivating Workspaces 145
Activating Top-Level Workspaces 145
xiii

Activating and Deactivating a Subworkspace 146

Printing a Workspace 147
Printing Multiple Pages 147
Generating Encapsulated PostScript Files 147
Generating JPEG Files 148
Printing a Workspace on a Color PostScript Printer 148
Printing Workspaces without Borders 148
Using Double Buffering 148

Setting the Color of Workspaces 149

Creating Custom Workspace Borders 150

Using a Graphic as a Background Image 151
Specifying the Center of the Background Image 152
Using Tiled Workspace Backgrounds 154
Displaying More Than One Background Image 155
Saving the Background Image in the KB 155
Other Considerations for Using Background Images 155

The Kb-Workspace Class 156
Using View-Preferences 158
Actions That Apply to KB Workspaces 162
Expressions That Refer to KB Workspaces 162

Chapter 5 Modularized KBs 165

Introduction 165

Understanding Modules 166
The Module Hierarchy 167
Modules and System Tables 168
Modules and Items 169

Creating, Populating, and Saving Modules 169
Naming Conventions for Modules 169
Naming the Top-Level Module 170
Associating Items with a Module 171
Saving a Module in a Separate KB File 171

Creating a Module Hierarchy 173
Creating a Top-Level Module 173
Creating a New Module 173
Declaring Directly Required Modules 176
Rules for Consistent Modularization 177
Checking for Consistent Modularization 179
Saving the Module Hierarchy 180
Deleting a Module 182
Determining Programmatically Whether a Module is Loaded 184
xiv

Obtaining Information about Modules 184
Displaying the Module Hierarchy 184
Displaying Module Information System Tables 187
Displaying the Module Assignment of Items 188
Obtaining the Containing Module for Items Programmatically 189

Working with Modularized KBs 189
Loading a Modularized KB 189
Merging a Modularized KB into the Current KB 191

Using a Module Search Path to Load KB Files 194
Specifying a Module Search Path 195
Module Search Path Syntax 195
How G2 Searches for KB Modules 197

Using a Module Map File to Load and Save a KB 197
Locating the Module Map File 197
Adding Entries to the Module Map File 198

Chapter 6 System Tables 199

Introduction 200

Using System Tables 200
Changing System Tables Values Interactively 201
Changing System Table Values Programmatically 202

Color Parameters 203
Controlling the Menu Order of Colors 203
Specifying the Colors on the First Color Menu 204
Defining the Colors on the Second Color Menu 204
Specifying the Number of Columns for the First Color Menu 204
Specifying the Number of Columns for the Second Color Menu 205
Indicating Whether to Dismiss the Color Menu 205
Class-Specific Attributes of Color Parameters 205

Data Server Parameters 206
Specifying a Data Server Alias 206
Specifying Data Service Scheduling Priority 207
Turning on G2 Meters 207
Class-Specific Attributes of Data Server Parameters 208

Debugging Parameters 209
Controlling Error and Warning Message Displays 209
Specifying Debugging Trace Messages 210
Specifying Breakpoints for Debugging 210
Specifying Single-Stepping through Source Code 211
Enabling Tracing and Breakpoints for Debugging 212
Displaying the Procedure Invocation Hierarchy while Paused 213
Enabling the Display of Disassembled Code 214
xv

Saving Tracing Data to a File 214
Specifying the Display Interval for Explanation Data 214
Class-Specific Attributes of Debugging Parameters 215

Drawing Parameters 217
Specifying Scheduled Drawing 217
Specifying the Paint Drawing Mode 218
Controlling the Set of Rendering Colors 219
Editing the Color Used for Selection 222
Displaying a Visible Grid on Workspaces 222
Interactively Resizing Objects and Changing Connection Vertices 224
Class-Specific Attributes of Drawing Parameters 225

Editor Parameters 227
Specifying the Maximum Number of Names to Show 227
Defining the Minimum Text Editor Width 227
Specifying Whether to Enable Author Recording 227
Edit Operations Menus and Buttons 227
Controlling the Display of Calling Signatures 227
Displaying the Native Text Editor 228
Class-Specific Attributes of Editor Parameters 228

Fonts 231
Class-Specific Attributes of Fonts 231

G2 Graphical Language (G2GL) Parameters 233

Inference Engine Parameters 236
Limiting the Depth of Recursion 236
Defining the Timeout for Getting a Variable Value 236
Specifying the Timeout for Rule Completion 237
Specifying the Retry Interval for a Variable Value 237
Specifying the Fuzzy Truth Threshold 237
Class-Specific Attributes of the Inference Engine Parameters 238

KB Configuration 239
Specifying Item Configurations for the KB 239
Restricting Main Menu Options 239
Providing or Restricting Global Keyboard Commands 240
Setting the Initial User Mode for a KB 240
Noting Your Optional Modules 240
Simulating Optional Modules 240
Class-Specific Attributes of KB Configuration 241

Language Parameters 243
Specifying the Current Language 243
Using a Text-Conversion-Style 243
Class-Specific Attributes of Language Parameters 244

Logbook Parameters 244
xvi

Defining the Logbook Page Size 244
Specifying the Margin for Logbook Messages 244
Defining Where to Position Logbook Pages 245
Specifying Where to Position the Logbook 245
Controlling How Many Logbook Pages to Show 245
Controlling the Number of Logbook Pages 246
Displaying the Native Logbook 246
Include Date in Messages 247
Default Docking Position 247
Class-Specific Attributes for Logbook Parameters 247

Log File Parameters 251
Saving a Log File 251
Specifying the Log File Directory Location 252
Specifying a Log File Root Name 253
Specifying the Current Log File 253
Defining When to Close a Log File 254
Defining When to Back Up Log Files 254
Class-Specific Attributes of Log File Parameters 255

Menu Parameters 257
Specifying How to Align Menu Choices 257
Allowing Multiple Menus to Display 257
Allowing Walking Menus 257
Controlling the Display of Developer Menu Bar 258
Class-Specific Attributes of Menu Parameters 259

Message Board Parameters 260
Defining the Minimum Display Interval 260
Displaying the Native Message Board 260
Class-Specific Attributes of Message Board Parameters 261

Miscellaneous Parameters 263
Defining Whether to Repeat the Random Function 263
Specifying the Workspace Margin 263
Starting a KB Automatically After KB Load 263
Determining the KB Run State 264
Enabling the Explanation Facilities 264
Determining Connection Caching 264
Determining Connection Inactivity 264
Changing the Backward Compatibility 265
Displaying the Native G2 Login and Change Mode Dialogs 267
Confirming Run State Changes 267
Use Unicode for Filenames 267
Class-Specific Attributes of Miscellaneous Parameters 268

Module Information 271
Specifying a Module File Name 271
Specifying the Top-Level Module 272
xvii

Specifying the Required Modules 272
Class-Specific Attributes of Module Information 272

Printer Setup 273
Specifying the Printing Details 273
Specifying the Printer Page Layout 274
Specifying How to Spool the Print File 276
Controlling the Printing Priority 277
Determining the Print File Format 277
Printing a Workspace without Borders 278
Class-Specific Attributes of Printer Setup 278

Saving Parameters 279
Defining the Priority for KB Saving 280
Identifying the Current KB 280
Identifying the KB File Name 280
Adding Comments to a KB 280
Viewing KB Version Information 281
Using KB Change Logging 281
Class-Specific Attributes of Saving Parameters 284

Server Parameters 285
Specifying a Module Search Path 286
Controlling Edits to Read-Only Module Files 286
Specifying the Default Window-Style 286
Determining if G2 is Secure 286
Class-Specific Attributes of Server Parameters 287

Simulation Parameters 288

Timing Parameters 288
Defining the Scheduler Mode 288
Specifying the Minimum Scheduling Interval 289
Specifying the G2-Meter Lag Time 290
Specifying the Interface Mode to Use 291
Adjusting the G2 Clock 291
Controlling the Foreign Function Timeout Interval 292
Controlling Foreign Image Reconnection 292
Setting the Uninterrupted Procedure Limit 292
Scheduling Attribute Table Updates 292
Class-Specific Attributes of Timing Parameters 293

Chapter 7 Configurations 297

Introduction 298

Declaring Configurations for Items 298
Kinds of Configuration Statements 299
Scope of Configurations 301
Precedence of Configurations 301
xviii

Example of the Scope of Configurations 301
How G2 Searches for Applicable Configurations 304
Instance Configurations and Definition Items 306

Configuring the User Interface of Items 306
Specifying the Applicable User Modes 307
Specifying Appropriate Operations for the Target Class 307

Configuring Menu Choices and Attributes in Tables 308
Configuring Attributes That Appear in Tables 309
Configuring Menu Choices 309
Configuring Non-Menu Choices 309
Configuring Table Menu Choices 311
Configuring Attribute Displays 312

Configuring Keystrokes 313
Constraints on Configuring Keystrokes 313
Considering the Target of a Configured Action 314
Example of Configuring Keystrokes 314

Configuring Mouse Gestures 314
Syntax Summary 316
Example 317
Associating Selection with a Menu Choice or User Menu Choice 318
Associating a Mouse Click with the Miscellany Menu 318
Associating a Mouse Click with an Operation 319
Associating a Mouse-Wheel Event with an Operation 320
Associating a Mouse Click with a Mouse-Tracking Procedure 320
Coding the Mouse-Tracking Procedure 321
Example of Mouse-Tracking Procedure 326
Conflicts between Mouse-Tracking and Other User Interface

Operations 328

Constraining the Movement of Items 328
Aligning Items to an Invisible Rectangle 329
Aligning Items on an Invisible Grid 329

Configuring the User Interface of Proprietary Items 330

Configuring Access to and from Other G2, G2 Gateway, and Telewindows
Processes 331

Allowing or Prohibiting Network Access 332
Allowing Read and Write Access 333
Allowing Execute Access 333
Allowing Inform Access 333

Configuring Properties of Items 334
Specifying the Scope of the Declared Properties 335
Specifying Exceptions to the Declared Properties 335
Declaring a Procedure to be Inlined 335
xix

Declaring a Method to be Inlined 336
Declaring Items as Stable Hierarchy 336
Declaring an Item Independent for All Compilations 337
Declaring an Item Stable for Dependent Compilations 337
Declaring an Activatable Subworkspace for an Item 338
Declaring Subworkspace Connection Posts for Items 338
Disallowing Manual Connections for an Item 339

Including Comments in Configurations 339

Describing Configurations 340

Declaring User Modes in Configurations 340
Associating User Modes with G2-Window Items 341
Associating User Modes and Users 342
Example of Configuring the User Interface of an Item 342
Obtaining the Attributes Visible for a User Mode Programmatically 345

Declaring Generic and Exception Configurations 347
Combining Configurations 347
Combining Cooperatively 348
Combining Additionally 348
Combining Absolutely 350

Configuring the G2 Main Menu and Global Key Bindings and Shortcuts 351
Configuring the G2 Main Menu 351
Restricting Help 353
Keyboard Command Restrictions 353

Using Configurations in Modularized KBs 354

Chapter 8 G2-Windows 355

Introduction 356

Windows and G2-Windows 356

Using Local Windows and Remote Windows 357
Representing Local and Remote Windows 357
Special Properties of Local and Remote Windows 357

Displaying Independent Views of the Current KB 358

The G2-Window Class 361
Attributes of the G2-Window Class 361
Hidden Attributes 368

Working with G2-Windows 370
Accessing the G2-Window Item Associated with Your Interaction with

G2 370
Overriding the Default Window Style 370
Determining When G2 Associates a G2-Window with a Window 370
xx

Determining Whether the Connection is Local or Remote 371
Determining the G2 User Name for a G2-Window 371
Determining the Login Name at the Operating System 372
Determining the User Mode 372
Determining the Remote Host Name 372
Determining the Time of Connection 373
Determining the Operating System Type 373
Controlling the Mouse Cursor 373

Expressions that Refer to G2-Window Items 374

Specifying the Appearance of the G2 Window 374
Specifying the Resolution and Magnification 375
Identifying the Dimensions of the G2 Window 375
Identifying the Resolution of the G2 Window 376

Rerouting a Telewindow 376
Setting up Access to Telewindows 377
Reporting Errors 377

Supporting a Window-Specific Language 377

Using the Login Dialog 379
Displaying the Login Dialog 379
Determining Default Values in the Login Dialog 380

Logging Login Activities 380
Writing the Login Handlers 380
Registering the Login Handler 381

Associating an Existing G2-Window with a Telewindow 381

Part III Knowledge Representation 383

Chapter 9 Values and Types 385

Introduction 385

Using Values Stored in Items 386
Using Attribute Values 386
Using Text Attribute Values of Items 387
Using Values Given by Variables and Parameters 387
Checking for the Existence of an Attribute Value 387
Using Local Names for Values 388
Expiration of Variable Values 388

Distinguishing Value Types 388
Complex Types 389
Declaring Types 389
xxi

Working with General Types 390
Using the Item-or-Value Type 391
Using the Value Type 391
Using the Quantity Type 391

Working with Specific Types 391
Using the Integer Type 391
Using the Long Type 392
Using the Float Type 392
Working with Exceptional Float Values 393
Coercing Numeric Values 394
Using Units of Measure for Numeric Values 394
Using the Symbol Type 395
Using the Text Type 397
Using the Truth-Value Type 400

Representing Time Values 400
Time as an Integer 400
Time as a Float 401
Time as a String 402

Working with Composite Types 402
Using the Structure Type 402
Structure Functions 403
Structure Expressions 405
Using the Sequence Type 406
Sequence Functions 407
Sequence Expressions 410

Using Structures and Sequences in User-Defined Classes 411
Comparing Structures and Items 411
Comparing Sequences and Lists 412

Chapter 10 G2 Items 413

Introduction 413

Logical Components of Items 414

Understanding Item Inheritance 416

Understanding the Knowledge Contained in Items 417
Identifying the Knowledge in Attributes 417
Identifying the Knowledge Not Stored in Attributes 417
Identifying the Status Knowledge of Items 417
Identifying the Superior and Subordinate Relationships among Items

422

Item Representation 423
Identifying the G2 Color Palette 423
Identifying the Color Attributes of Items 425
xxii

Actions That Affect Item Appearance 426

Locating Items upon a Workspace 426
Layering Items upon the Same Workspace 427
Distinguishing Permanent, Transient, and Current Knowledge 428

Working with Items Interactively 432
Using Item Menus 432
Common Item Menu Choices 433
Changing the Size of an Item 434
Cloning an Item 435
Cloning Specific Knowledge 436
Changing the Text Alignment of an Item 437
Changing the Color of an Item 437
Deleting an Item 439
Describing an Item 439
Describing the Configuration of an Item 440
Showing Unsaved Attributes 440
Lifting to the Top and Dropping to the Bottom 441
Naming an Item 441
Showing and Hiding an Item Name Box Programmatically 443
Rotating and Reflecting an Item 443
Displaying the Tables for an Item 444
Transferring Items to Another Workspace 444

Item Expressions 445
Referring by Item Name 445
Referring through a Symbolic Expression 445
Referring by Variable or Parameter Name 445
Referring by Workspace Location 445
Referring by Identity 446
Referring by Association with an Event or Location 446
Referring by Item Evaluation 447

Referring to Other Item Knowledge 448
Referring to the Name and Class 448
Referring to the Superior Item 448
Referring to the Workspaces Associated with an Item 449
Referring to the Relationships of an Item 449
Referring to the Size of an Item 451
Referring to Degrees of Rotation 452
Referring to the Position of an Item 452

The Item Class 454

System Procedures for Working with Item Groups 456

Chapter 11 Attributes and Tables 459

Introduction 460
xxiii

Attribute Contents 460
Distinguishing System- and User-Defined Attributes 460

Using Attribute-Tables and Hidden-Attributes-Tables 461
Displaying an Attribute Table for an Item 462
Updating Attribute Tables 463
Using Attribute Menus on an Attribute Table 464

Adding Attribute Displays to Attribute Tables 470
Defining Attribute Displays in Class Definitions 471
Manipulating an Attribute Display from its Menu 471
Adding or Removing Attribute Displays Programmatically 472

Loading Attribute Values from an Attribute File 475

Using the Authors Attribute 475

Using Indexed Attributes 476
Performance Considerations 476
Expressions for Indexed Attributes 476

Using Universal Unique Identifiers 477
Uniqueness within a G2 Process 477
Changing a UUID at Load Time 478
Displaying the UUID of Every Item 478
Connections and UUIDs 479

Using Other Special-Purpose Attributes 479
Formatting Attributes 479
Evaluation Attributes 479

Actions That Affect Attributes 480
Changing an Item Name 480
Concluding Attribute Values 480

Expressions That Refer to Attributes 480
Referring to Attributes by Name 480
Referring to Attributes through a Symbolic Expression 481
Iterating Over User-Defined Attributes 481
Referring to the Text Attribute of an Item 481
Referring to an Attribute That is an Instance of an Object 482
Referring to an Attribute Given by a Variable or Parameter 482
Referring to an Untyped Attribute That Contains an Object 483
Referring Indirectly Using a Symbol 483
Referring to the Parent Attribute Name of a Subobject 484

Chapter 12 Attribute Access Facility 485

Introduction 485

Accessing System-Defined Attributes 486
xxiv

Attribute Access Terminology 487

Attribute Descriptions 488
Obtaining Class Descriptions 488
Differences between the Value and Text of an Attribute 489
Hidden Attributes 492
Composite Attributes 494

Referencing System-Defined Attributes 494
Creating Subattribute References 495
Tips for Using Subattribute References 500
Concluding Values Directly or Incrementally 501

Attribute Access System Procedures 502

Chapter 13 Classes and Class Hierarchy 503

Introduction 504

The G2 Class Hierarchy 504
Items and Classes 504
Methods 505
Inheritance 505

System-Defined Classes 507
Varieties of System-Defined Classes 507
Instantiating System-Defined Classes 508

Viewing the Class Hierarchy with the Inspect Facility 508

User-Defined Classes 509
Extending G2’s Machinery with User-Defined Classes 509
Representing Knowledge with User-Defined Classes 509
Creating User-Defined Classes 509
Instantiating User-Defined Classes 511

Inheritance in Class Hierarchies 512
Direct-Superior-Classes Attribute 513
Class-Inheritance-Path Attribute 513

Single Inheritance 513
Inheritance of Default Values 514
Inheritance of Methods 516
Duplicate Attributes 516

Multiple Inheritance 520
Multiple Inheritance and Class Inheritance Paths 520
Linearizing Multiple Inheritance 521

How G2 Linearizes Multiple Inheritance 522
The G2 Linearization Algorithm 522
Linearizing Two Superior Classes 523
xxv

Linearizing Several Superior Classes 525
Linearizing Networks of Classes 527

Why G2 Linearizes As It Does 528
Ideal Linearization 528
Feasible Linearization 529
G2 Linearization 529

Illegal Patterns of Multiple Inheritance 529
Disordered Multiple Inheritance 530
Meaningless Multiple Inheritance 531

Viewing Multiple Inheritance with the Inspect Facility 532

Default Values in Multiple Inheritance 533
Inheriting a Default Value from a Direct Superior 534
Overriding the Default Value of a Direct Superior 535
Overriding an Inherited Value with an Explicit Value 536
Inheriting Default Values for Stubs 536

Duplicate Attributes in Multiple Inheritance 537

Defining Classes in Bottom-up Order 539

Deleting a Class Definition 539

Planning a Class Hierarchy 540

Chapter 14 Definitions 541

Introduction 542

Terminology 543

Overview of the Class Definition Process 543

Creating Class Definitions 544
Storing Definitions on Workspaces 544

Class Definition Attributes 545
Formatting the Text of Attributes 547
Order of Attributes in Tables 548

Configuring Class Definitions 548
Specifying the Item Configuration 548
Providing a Class Name 549
Specifying the Superior Class(es) 549
Specifying Instance Configurations 552
Determining the Class Inheritance Path 552
Determining the Initializable System Attributes 552
Determining the Inherited User-Defined Attributes 553
Defining and Initializing Class-Specific Attributes 554
Specifying Default Values for Inherited Attributes 562
xxvi

Specifying Instantiability 566
Effects of Setting Instantiability Attributes 566
Order of Classes in the G2 Menu Hierarchy 567
Uninstantiable Subclasses 568

Specifying an Icon 568
System-Defined and User-Defined Icons 568
Icon Inheritance 569
Using the Icon Editor 569

Creating Object Classes 570
System-Defined Object Attributes 570
Specifying Attribute Displays 572
Specifying Connection Stubs 573
Specifying Other Object Class Attributes 580

Creating Connection Classes 583
System-Defined Connection Attributes 583
Defining Connection Regions 584
Specifying a Stub Length 585
Defining the Junction Block to Use 585

Creating Connection Post Classes 587
System-Defined Connection Post Attribute 588
Specifying the Superior Connection 588

Creating Message Classes 588
System-Defined Message Attribute 589
Specifying Default Message Properties 590

Using Specialized Definitions 591
Class Inheritance and Class Definition Types 592
Creating an Object Definition 593
Creating a Connection Definition 594
Creating a Message Definition 595

Customizing Definition Classes 595

Creating New Classes Programmatically 597

Changing Definitions 597
Using the Change Attribute 598
Changing Definitions with the Conclude Action 602
Effect on Subclasses and Instances 603
Effect on Procedure Statements and Other Items 607

Merging Classes 609
Merging Definitions of the Same Type 609
Merging Classes Defined on Definitions of Different Types 610
Completing a Merge 610

Deleting a Definition 611
xxvii

Chapter 15 Variables and Parameters 613

Introduction 614

Comparing Variables and Parameters 614
Parameter Features 614
Variable Features 615
Memory Considerations 615
Summary of Variable and Parameter Differences 616

Variables, Parameters, and Rules 617

Obtaining Values for Variables 617
Obtaining Unrequested Values 618
Obtaining Requested Values 618
Handling a Variable Failure 620

Obtaining Values for Parameters 621

Creating Variables and Parameters 621
Specifying Forward and Backward Chaining 622
Forward Chaining on Unchanged Variables and Parameters 623
Defining Debugging and Tracing 623
Specifying the Type 623
Specifying an Initial Value 624
Obtaining the Last Recorded Value 625
Specifying Whether to Keep a History of Values 626
Specifying a Validity Interval 626
Creating a Specific Formula 629
Specifying Simulation Details 629
Determining the Initial Simulation Value 629
Specifying a Data Server 629
Specifying a Default Update Interval 630

History Keeping in G2 630
Storing and Accessing History Values 631
Collection Time 631
Saving a Maximum Number of Data Points 632
Saving Data Points over a Maximum Time Period 632
Saving a Maximum Number of Data Points over a Specific Time Period

633
Specifying a Minimum Interval between History Data Points 633
Working with History Keeping Using Attribute Access 635

History Expressions 637
Obtaining a History Value 638
Computing the Number of History Datapoints 639
Computing the Average History Value 639
Computing the Sum of Values in Histories 640
Computing the Integral 640
xxviii

Computing the Interpolated Value 641
Computing Maximum and Minimum Values 642
Computing the Rate of Change 642
Computing the Standard Deviation 643
Concluding the History Directly 644

Actions to Use with Variables and Parameters 645
Concluding an Attribute Variable to Have No Value 645
Concluding Values for Variables and Parameters 645

Variable and Parameter Rules 648
Whenever a Variable or Parameter Receives a Value 648
Whenever a Variable Fails to Receive a Value 648
Whenever a Variable Loses Its Value 648

Variable and Parameter Expressions 648
Directly Referring to a Variable or Parameter 649
Using the Value of Expression 650
Using the Has a Value Expression 650
Using Current Value Expressions 650
Obtaining the Simulated Value of a Variable or Parameter 651
Obtaining the Collection Time for a Variable or Parameter 652
Obtaining the Expiration Time for a Variable 652
Referring to a Variable or Parameter That Gives the Value of an Attribute

653
Referring to a Time Interval Ending with the Collection Time 653

The Variable and Parameter Classes 654
Common Attributes 656
Variable-Specific Attributes 658
Value-Structure and History Hidden Attributes 659

Describing Variables and Parameters 660

Chapter 16 Lists and Arrays 663

Introduction 664
KB Saving of Permanent Lists and Arrays 664
Lists and Sequences 664

Comparing Lists and Arrays 665
Choosing Lists 665
Choosing Arrays 665
List or Array Contents 666
Effect of Run States on Lists and Arrays 667
Summary of List and Array Differences 668

Creating Lists and Arrays 668
Setting the Array Length 669
Defining the Element Type 669
xxix

Allowing Duplicate List Elements 669
Providing Initial Values for Array Elements 669
Using Permanent-Membership Lists and Arrays 671

Populating a List 673
Inserting Based on Element Location 674
Inserting at the Beginning or End of a List 674
Inserting Before or After an Existing Element 674
Inserting into Lists with Duplicate Elements 675

Removing List Elements 675
Removing a Particular List Element 676
Removing Using an Element Index 676
Removing a Type of List Element 676

Populating an Array 677
Changing the Initial Values of an Array 677
Iterating over an Array 677
Using an Attribute File 678

Replacing List and Array Elements 678
Using Change 678
Using Conclude 678
Altering the Length of an Array 679
Changing Elements to Have No Values 679
Data Seeking and Event Updating 680

Iterating over Lists and Arrays 680
Iterating According to Element Type 681
Iterating over Lists For a Particular Item 682
Specifying a Relative List Position 682
Allowing Other Processing During List and Array Iteration 682

Using Other List and Array Expressions 683
Accessing List or Array Elements by Index 683
Performing Computations over Sets of Elements 684
Testing for List Membership 685
Obtaining the Number of List Elements 686
Finding the Length of an Array 686

Accessing Lists or Arrays That are Object Attributes 686
Changing Attribute List and Array Elements 687

Copying Lists and Arrays 688
g2-list-sequence 688
g2-array-sequence 688

Representing Sparse Arrays 689

Representing Matrixes with Arrays 690

Using System Procedures with Lists, Arrays, and Matrixes 690
xxx

The List and Array Classes 692
Creating Subclasses of Lists and Arrays 693
Class-Specific Attributes 694

Describing Lists and Arrays 696

Chapter 17 Hash Tables and Priority Queues 697

Introduction 697

Hash-Table Class 698
Hidden Attributes 699
Application Programmer’s Interface 700
Example: Hash Tables 700

Priority-Queue Class 703
Hidden Attributes 703
Application Programmer’s Interface 704
Example: Priority Queue 704

Chapter 18 Connections 709

Introduction 710

Properties of Connections 710

Controlling Connection Caching 711

Connecting to Objects 711
Creating a Connection 712
Connecting Objects 713

Using Connections 713
Drawing Orthogonal Connections 713
Drawing Diagonal Connections 714
Changing Connection Vertices 716
Using Connection Arrowheads 717
Connecting to Objects without Stubs 718
Defining Connectedness 719
Disallowing Connections 720
Determining the Item Count for Connections 720
Deleting Stubs and Connections Interactively 721
Deleting Stubs and Connections Programmatically 721
Connection Layering 721

Using Junction Blocks 722
Creating Junction Blocks 722
Creating a Junction Block Subclass 723

Using Connection Posts 723
Creating Connection Posts on Subworkspaces Automatically 724
xxxi

Creating a Connection Post Subclass 725

Using Connection Expressions 726
Referring to Connected Items 726
Referring to Input or Output Stubs 727
Referring to Port Names 727
Referring to the End of a Connection 728
Referring to the Connection Class 728

Iterating over Connections 729

Using Actions with Connections 730
Changing the Stripe-Color 730
Creating Transient Connections 730
Creating a Connection on One Side of an Object 732
Creating a Directional Connection 732
Creating a Connection with Vertices 732
Creating an Existing Connection Programmatically 734
Making a Transient Connection Permanent 735
Deleting a Connection 736

Detecting Connection and Disconnection Events 736
Generic Connection and Disconnection Events 736
Direct Connection and Disconnection Events 737

System Procedures for Connections 737

Functions for Connections 738
Checking Connection Information 738
Detecting Connectedness 739

Describing Connections 741

Chapter 19 Relations 743

Introduction 744

Using Relation Definitions and Relations 744

Creating a Relation Definition 745
Choosing a Relation Name 745

Using Permanent Relations 746
Understanding How G2 Saves Relations 746
Complying to Permanency 747
Restoring Permanent Relations 747

Specifying the Cardinality of Relations 748

Defining an Inverse Relation 749

Defining a Symmetric Relation 751
xxxii

Creating a Relation 752
Using Conclude to Create Relations 752
Example of Creating a Relation between Two Items 753
Example of Creating a Relation between an Item and a Class 754
Using a Sequence to Conclude a Relation 755

Removing a Relation 756
Removing Relations by Deleting Items 757

Replacing a Relation 757
Using the Now Syntax 757
Example of Replacing a One-to-One Relation 758
Example of Replacing Multiple One-to-One Relations 759
Example of Replacing a Many-to-One Relation 760
Example of Replacing a One-to-Many Relation 761

Invoking Rules Using Relations 761
Using Whenever Rules to Detect Relatedness 762
Using Whenever Rules to Detect Cessation of Relations 762
Invoking Rules When a Relation is Created 762
Invoking Rules When a Relation is Deleted 763
Invoking Rules That Test Whether a Relation Exists 764
Invoking Rules That Refer to Items with Relations 764
Invoking Rules That Refer to Variables with Relations 765

Working with Transient Items 765
Working with Deactivated and Disabled Items 766

Updating Relations While a KB is Running 766
Updating the First Class and Second Class 766
Updating the Type of Relation 767
Updating Symmetric Relations 767
Updating Relations While Executing Procedures 767
Updating a Relation While a Rule is Executing 767
Updating a Relation When Saving a KB Snapshot File 768

Expressions Involving Relations 768
Event Expressions 768
Logical Expressions 768
Relation Participation Expressions 768
Generic Item References 770

The Relation Class 771

Describing the Items That Participate in a Relation 773
xxxiii

Part IV Computational Capabilities 775

Chapter 20 Actions 777

Introduction 778

Executing Actions 778
Executing Actions in Procedures 779
Executing Actions in Other Contexts 779
Executing Iterative Actions 779
Further Information 780

Dictionary of Actions 780
abort 781
activate 783
change 784
conclude 789
create 792
deactivate 794
delete 795
focus 797
halt 798
hide 800
inform 802
insert 805
invoke 806
make 807
move 810
pause 811
post 812
print 813
remove 814
reset 815
rotate 816
set 817
show 818
shut down g2 824
start 825
transfer 827
update 830

Chapter 21 Expressions 831

Introduction 832

Forming an Expression 832

Evaluating Expressions 832
Never Obtaining a Value 833
xxxiv

Not Obtaining a Value at this Time 833
Finding a Type Mismatch 833

Determining When Expressions Expire 834

Understanding Transactions and Transaction Scopes 834

Using Generic Reference Expressions 835
Including a Generic Reference Qualifier Expression 836
Using Quantifiers 836
Embedded Generic Reference Expressions 838

Using Class-Qualified Names 838

Using Local Names in Expressions 839
Implicit Use 839
Explicit Use 840
Class or Attribute Name Use 840

Using Literals 841

Using Operators in Expressions 841
Using Arithmetic Operators 842
Using Logical Operators 846
Using Relational Operators 849
Producing Fuzzy Truth Values from Relational Operations 850
Using the Concatenation Operator 853

Producing a Symbol Value 857

Referring to a Superior or Inferior Class 857

Referring to Items or Values 858
Existence of an Item or Value 858
There Exists 858
Class or Type of Item or Value 859
By Generic Reference 860
Conditional Evaluation 861
Value Expressions 861
Current Value of an Expression 863
By Iterating Over a Set 865

Referring to the Current Time 866
Current Subsecond Time 867
Current Time by Time Unit 867
Current System Time 868
Current Day of the Week 868

Referring to Specific Items 869

Chapter 22 Procedures 871

Introduction 872
xxxv

Procedure Syntax 872
Local Names in Procedures 873
Procedure Header Syntax 874
Local Declarations Syntax 875
Procedure Body Syntax 876
Error Handler Syntax 877
Comments 878

Defining a Procedure 878

Compiling a Procedure with Error-Location Information 879

Procedure Attributes 879

Sample Procedure 880

Using Procedures 882
Invoking a Procedure 882
Passing Arguments to a Procedure 882
Using the Procedure Signature Prompts in the Editor 883
Accessing Variables in a Procedure 884
Memory Management in Procedures 884
Allowing Other Processing 885
Limiting Procedure Execution Time 887
Setting Procedure Priority 887
Debugging a Procedure 888
Displaying the Invocation Hierarchy of a Procedure 888
Inlining a Procedure 889
Creating Procedure Invocations 893
Aborting a Runaway Procedure 894
Expressions for Procedures 894

Procedures and Rules 896

Dictionary of Procedure Statements 898
allow other processing 899
assignment (=) 900
begin-end 901
call 902
case 904
collect data 906
do in parallel 908
exit if 910
for 911
go to 916
if-then 917
on error 919
repeat 921
return 922
signal 923
xxxvi

wait 925

Chapter 23 Methods 927

Introduction 927

About Methods 928
Methods and Procedures 928
The Vessel Example 929
Filling Vessels Using Procedures 929
Filling Vessels Using Methods 930
Encapsulation 931
Duplicate Methods 931
Inheriting Methods 931
Defining Methods 932

Designing a Class Hierarchy 932

Implementing a Class Hierarchy 934

Creating Method Declarations 935
Flagging Call Next Method Requirements 936

Defining a Method 936
Method Attributes 937

Describing a Collection of Methods 938

Invoking a Method 939
Invoking a Method Generically 939
Invoking a Method Directly 940
Invoking a Superior Method 942

Duplicate Methods 943
Duplicate and Superior Methods 943

Inlining a Method 944
Inlining Restrictions 944
Declaring a Method as Inlineable 944
Recompiling an Inlineable Method 945
Testing for an Inlined Method 946

Considerations for Multiple Inheritance 946

Locking Mechanism for Objects 949
Example: Calling a Synchronized Method from a Procedure 951
Example: Calling a Synchronized Method from the Same Method 955
Detecting and Releasing Deadlocks 957
Example: Detecting and Releasing Deadlocks Using an Error

Handler 958
Example: Detecting and Releasing Deadlocks with No Error

Handler 961
xxxvii

Chapter 24 Rules, Inferencing, and Chaining 963

Introduction 963

Creating a Rule 965
Displaying the Table for a Rule 966
Cloning a Rule 966
Changing the Font Size of a Rule 966

Coding the Text of a Rule 967
Coding the Antecedent 967
Coding the Consequent 967

Kinds of Rules 969
If Rules 969
Initially Rules 970
Unconditionally Rules 972
When Rules 972
Whenever Rules 973

Event Expressions 973

Using Whenever Rules 976
Event Expressions in Whenever Rules 976
Multiple Invocations Result in a Single Firing 976
Reducing the Number of Invocations per Firing 977
Coalescing Multiple Whenever Rule Invocations 977
Whenever Rule Design Requirements 978
Possible Event Sequences 978
Reporting Every Value 979

Specifying the Scope of the Rule 979
Creating Specific Rules 980
Creating Generic Rules 980

Invoking Rules 985
Forward Chaining 986
Backward Chaining 989
Activating the Parent Workspace of a Rule 994
Detecting Events 994
Scanning Rules 995
Focusing on Rules and Invoking Rules by Category 996

Debugging Rules 999
Debugging and Tracing Rules 999
Highlighting Rules 999

Understanding Rule Invocation and Execution 1000
Prioritizing Rules 1000
Setting the Timeout Interval for a Rule 1002
Creating and Managing Rule Invocations 1002
xxxviii

Evaluating the Antecedent 1003
Executing Actions in the Consequent in Parallel 1003
Executing Actions in the Consequent Sequentially 1005

The Rule Class 1007
Actions That Manipulate Rules 1011
Expressions That Refer to Rules 1012

Chapter 25 Formulas 1013

Introduction 1013

Creating Generic Formulas 1014

Creating Specific Formulas 1014

Chapter 26 Text Parsing and Manipulation 1017

Introduction 1017

G2 Text Manipulation Functions 1018

G2 Conventions for Manipulating Text 1018

Ordinary Text Manipulation Functions 1019
Obtaining Text Length 1019
Testing for a Substring 1019
Locating a Substring 1019
Obtaining a Substring 1020
Inserting a Substring 1020
Replacing One Substring with Another 1020
Deleting a Substring 1021
Capitalizing Text 1021
Converting Text to Uppercase 1021
Converting Text to Lowercase 1021
Testing for a Quantity 1021

Regular Expression Syntax 1022
Character Classes 1023
Precedence 1025

Text Functions Using Regular Expressions 1026
Locating a Substring Using a Regular Expression 1026
Extracting a Substring Using a Regular Expression 1027
Replacing a Substring Using a Regular Expression 1027

Parsing Strings into Tokens 1027
Specifying the Syntax for Extracting Tokens 1028
Locating Tokens in a String 1030
Extracting Tokens from a String 1031

G2 Character Representation 1032
xxxix

Working with Multiple Character Sets 1032

Working with Text Conversion Styles 1032
Naming the Conversion Style 1033
Determining the External Character Set to Use 1033
Using a Replacement Character 1034
Specifying the Han-Unification Mode 1034
Specifying the External Line Separator 1035
Using a Custom Text Conversion Style 1036
Using the Default Text Conversion Style 1036

Character Set Conversion Functions 1038
Converting Character Codes to Unicode Text 1038
Converting Text to Unicode Character Codes 1038
Comparing Text 1039
Exporting Unicode Text 1040
Importing Unicode Text 1040
Determining Unicode Digits 1040
Determining Lowercase Characters 1041
Determining Readable Digits 1041
Determining Readable Digits in Radix 1041
Determining Titlecase Characters 1042
Determining Uppercase Characters 1042
Obtaining a Readable Symbol from Text 1042
Obtaining a Readable Text 1043
Converting a Value into a Readable Representation 1043
Converting Characters to Lowercase 1043
Converting Characters to Titlecase 1043
Converting Characters to Uppercase 1044
Transforming Text for Unicode Comparison 1044
Transforming Text for G2 4.0 Comparison 1045

Chapter 27 XML Parsing 1047

Introduction 1047

Providing the XML Code as Text 1048

SAX-Parser Class 1049

SAX Callback Procedure 1052

Example 1054

Chapter 28 Functions 1055

Introduction 1055

Invoking Functions 1056

Executing Functions 1056
xl

User-Defined Functions 1056

Tabular Functions of One Argument 1058
Naming the Tabular Function 1061
Sorting the Items in the Table 1061
Interpolating Function Values 1061
Adding and Deleting Values and Arguments 1062
Changing Tabular Functions Programmatically 1066

System-Defined Functions 1066
Arithmetic Functions 1067
Vector Functions 1073
Attribute Access Functions 1073
Bitwise Functions 1074
Call-Function Function 1075
Character Manipulation Functions 1076
Connection Functions 1076
Format-Numeric-Text Function 1076
Great-Circle-Distance Function 1077
Quantity Function 1078
Symbol Function 1079
Text-to-Symbol Function 1079
Rgb-Symbol Function 1080
Text Functions 1081
Time Functions 1081

Chapter 29 Publish/Subscribe Facility 1085

Introduction 1085

Application Programmer’s Interface 1086

Registering Callbacks Remotely 1086

Examples 1087
Example: Subscribing to Attribute Changes 1087
Example: Deregistering Subscriptions 1089
Example: Subscribing to Deletion Events 1090
Example: Subscribing to Workspace Events 1091
Example: Subscribing to Variable Events 1094
Example: Subscribing to Custom Events 1096
Example: Registering Callbacks Remotely Over a Network

Interface 1098
Example: Registering Callbacks Remotely Over a G2 Gateway

Bridge 1102

Chapter 30 G2 Graphical Language (G2GL) 1107

Introduction 1107
xli

Terms and Concepts 1109

Creating G2GL Processes 1109
Using G2GL within the Business Process Management System

Module 1110
Summary of G2GL Activities 1111
Creating a G2GL Process 1114
Creating Local and Argument Variables 1116
G2GL Expressions 1118
G2GL Statements 1120
Assigning Values 1123
Returning Values 1125
Interacting with G2 Items 1126
Using Flow-Related Activities 1128
Defining Scopes and Handlers 1136
Miscellaneous Activities 1142
Debugging 1143
Summary of Differences Between G2GL and BPEL Activities 1144

Communicating Between G2GL Processes 1145
Invocation 1146
BPEL Compliance 1149
Creating Processes that Communicate 1150
Handling Message Events 1160
Handling Faults 1161
Invoking Web Service Operations 1161
Example: Credit Rating Partner Processes 1162

Interacting with G2GL Processes 1168
Compiling G2GL Processes 1168
Executing G2GL Processes 1170
Managing G2GL Process Instances 1176
Debugging G2GL Processes 1177
Configuring G2GL 1186
Exporting G2GL Processes as XML 1186
Importing G2GL Processes from XML Documents 1187

Part V User Interface Components 1193

Chapter 31 Buttons 1195

Introduction 1195

Types of Buttons 1196
Subclassing Buttons 1196

Creating Buttons 1196
Common Attributes of Buttons 1197
xlii

Providing a Label for the Button 1198
Representing the Variable or Parameter 1198

Action Buttons 1198
Entering the Actions to Execute 1199
Controlling the Scheduling Priority 1199
Class-Specific Attributes 1200

Check Boxes 1200
Specifying the Activation Value 1201
Specifying the On and Off Values 1201
Class-Specific Attributes 1202

Radio Buttons 1203
Specifying the Value Upon Activation 1203
Defining the Selected Value 1204
Class-Specific Attributes 1204

Sliders 1204
Specifying the Activation Value 1205
Setting the Minimum and Maximum Values 1205
Specifying When to Update a Value 1205
Specifying When to Show a Value 1205
Class-Specific Attributes 1206

Type-in Boxes 1207
Specifying the Activation Value 1207
Specifying the Formatting Style 1207
Defining the Selection Status 1208
Specifying Editor Options 1208
Showing Editor Prompts 1209
Class-Specific Attributes 1211

Chapter 32 Text Items 1213

Introduction 1213

Using Free Text to Label Your KB 1213
Creating Free Text 1214
Changing the Color of Free Text 1214
Changing the Font of Free Text 1215

Using Text Inserters to Insert Text into the Text Editor 1215
Creating and Editing a Text Inserter 1215
Using Text Inserters from the Scrapbook 1216
Using Text Inserters to Insert Text 1217

Chapter 33 User Menu Choices 1219

Introduction 1219
xliii

Working with User Menu Choices 1219
Labelling the Menu Choice 1220
Defining the Applicable Class 1221
Controlling When the Menu Choice is Available 1221
Specifying the Action to Execute 1221
Specifying the Scheduling Priority 1222
User Menu Choice Attributes 1222

Chapter 34 External Images 1225

Introduction 1225

Supported Graphics Formats 1226

Working with External Images 1227

Creating an Image Definition 1227

Specifying the Name of the Image 1229

Specifying the Pathname of the Image File 1229

Using an Image in a KB 1230

Saving an Image with a KB 1230
Advantages and Disadvantages 1230
Omitting the Pathname of an Image Saved with a KB 1231

Updating an Image in a KB 1231

Chapter 35 Messages 1233

Introduction 1233

Using Messages 1233
Creating a Message 1233
Creating a New Message Class 1234

Using Actions with Messages 1235
Changing the Color Attributes of Message Properties 1236
Changing the Text of a Message 1236
Concluding Message Text into a Variable or Parameter 1236
Creating and Transferring Transient Messages 1237
Deleting Transient Messages 1237

Chapter 36 Readout Tables, Dials, and Meters 1239

Introduction 1239

Working with Displays 1240
Specifying Tracing and Breakpoints 1241
Specifying the Display Expression 1241
Specifying the Update Interval 1241
xliv

Specifying the Display Update after G2 Start-Up 1241
Defining the Update Priority 1241
Specifying Simulated Value Display 1241
Common Attributes of Readout Tables, Dials, and Meters 1242

Readout Tables 1243
Digital Clocks 1244
Specifying the Label to Display 1244
Specifying the Display Format 1245
Reading the Current Value 1246
Class-Specific Attributes of Readout Tables 1246

Dials and Meters 1247
Setting the Meter’s Lower Value 1248
Determining the Meter’s Dial Increment 1248
Class-Specific Attributes of Dials and Meters 1249

Chapter 37 Freeform Tables 1251

Introduction 1251

Creating a Freeform Table 1251
Specifying the Table Size 1252
Specifying Default Formats for Table Cells 1252
Determining the Default Evaluation Settings 1253

Formatting Freeform Tables 1253
Expressions for Freeform Table Cells 1254

Changing Formatting Attributes 1254

Changing Evaluation Settings 1256
Entering Evaluation Settings 1256
Data Seeking Evaluation Settings 1258
Event-Updating Evaluation Settings 1259
Scanning Evaluation Settings 1260
Debugging and Tracing Evaluation Settings 1261
Scheduling Evaluation Settings 1262
Other Evaluation Settings 1262

Changing Freeform Tables Programmatically 1263

The Freeform Table Class 1263

Chapter 38 Charts 1265

Introduction 1265

Using Charts 1266
Chart Styles 1266
Specifying the Chart Style 1268
xlv

Sizing a Chart 1268
Defining the Data Series for the Chart 1268

Displaying and Updating a Chart 1269

Using Chart Annotations 1269
Default Chart Annotations 1271
Axis Component Attributes 1272
Chart Component Attributes 1273
Data Point Component Attributes 1273
Data Series Component Attributes 1278
Defining the Line Colors 1279

Updating Charts Programmatically 1279

The Chart Class 1279

Chapter 39 Graphs 1281

Introduction 1281

Creating a Graph 1282
Sizing a Graph 1285
Specifying the Data Window Time Span 1286
Specifying Numerical Bounds for the Value Axis 1287
Specifying Graph Scrolling 1288
Defining the Graph Percentage to Extend 1288
Specifying Whether Grid Lines are Visible 1289
Defining the Interval between Tickmarks 1289
Specifying the Number and Style of Grid Lines 1289
Defining a Graph’s Background Color 1290
Specifying the Expression to Display 1290
Specifying the Graph Label 1291
Using Grid Lines and Tickmark Labels in Graphs 1291

Chapter 40 Trend Charts 1293

Introduction 1294

About Trend Charts 1294

Compound Attributes 1298
Accessing Component Subtables 1299
Selecting Compound-Attribute Value Views 1301
Changing Compound Attributes 1303
Using Component References 1304
Setting Component Defaults 1304

Configuring Trend Charts 1306
Creating a Trend Chart 1306
Sizing a Trend Chart 1307
xlvi

Summarizing Trend Chart Attributes 1307

Configuring Plots 1310
Defining Where to Obtain History Values 1312
Specifying the Value Axis for the Plot 1312
Specifying the Point Format 1313
Specifying the Connector Format 1313
Defining the Update Interval 1314
Specifying the Activation Interval 1314
Specifying the Update Priority Level 1314
Specifying Data Seeking Capabilities 1315
Using Simulated History Values 1315
Specifying Event Updates 1315
Defining the Debugging Level 1315
Entering an Expression 1316
Summarizing Plot Attributes 1316

Configuring Value Axes 1319
Displaying the Value Axis 1320
Specifying the Value Range 1320
Specifying Range Limits 1321
Defining the Range Slack Percentage 1322
Specifying the Label Frequency 1322
Displaying Labels as Percentages 1322
Specifying the Significant Digits for Labels 1323
Showing Grid Lines 1323
Adding Extra Grid Lines 1323
Displaying a Baseline 1324
Specifying the Baseline Color 1324
Summarizing Value Axis Attributes 1324

Configuring the Time Axis 1328
Defining the Data Window Time Span 1328
Specifying How Long to Maintain Local History 1329
Specifying the Last Plot Value 1330
Updating the Trend Chart Data 1330
Specifying How Data Scrolls 1330
Shifting the Data Window 1331
Displaying Current Real-Time Clock Labels 1331
Displaying Negative Offset Labels 1331
Defining the Label Frequency 1332
Specifying the Label Alignment 1332
Summarizing Time Axis Attributes 1333

Configuring Point Formats 1337
Displaying Markers 1338
Specifying the Marker Style 1338
Defining the Marker Frequency 1338
The Effect of Markers on Trend Chart Drawing 1338
xlvii

Summarizing Point Format Attributes 1338

Configuring Connector Formats 1340
Displaying Connectors 1341
Specifying How Connectors are Drawn 1341
Specifying the Connector Line Width 1342
Displaying Block Shading 1342
Summarizing Connector Format Attributes 1343

Configuring the Trend Chart Format 1345
Displaying an Outer Border 1345
Displaying a Data Window Border 1345
Adding a Trend Chart Legend 1346
Providing a Trend Chart Title 1346
Summarizing Trend Chart Format Attributes 1346

Working with Trend Charts 1349
Updating Trend Charts 1349
How Plots are Drawn 1349
Causes of Redrawing and Reformatting 1349

System Procedures for Trend Charts 1350

Trend Chart Attributes Reference 1350

Chapter 41 Windows Menus 1353

Introduction 1353

Comparison between Native GMS, Classic GMS, and NMS Menus 1354

Using Native G2 Menu System (GMS) Menus 1355
Example: Alternate GMS Menu Bar 1356
Example: GMS Popup Menu 1358
Example: GMS Localization 1359
Example: GMS Dynamic Menus 1362
Example: GMS Menu Icons 1365
Example: Built-in G2 Menu 1367

Using the Native Menu System API 1368
Using the NMS API to Create Menus and Toolbars 1369
Examples 1373

Displaying Classic GMS Menus in Telewindows 1381

GMS and NMS Menus and the G2 Run State 1382

Demos 1383
gms-native-multiple-menubar-demo.kb 1383
gms-native-large-menu-demo.kb 1384
gms-native-popup-demo.kb 1384
gms-native-language-demo.kb 1384
xlviii

nmsdemo.kb 1385

Chapter 42 Windows Dialogs 1387

Introduction 1387

Running the Dialogs Demo 1388

Posting Basic Dialogs 1393

Posting Query Dialogs 1394

Posting Notification Dialogs 1394

Posting Delay Notification Dialogs 1395

Viewing the Source Workspace for Basic Dialogs 1396

Posting Custom Dialogs 1397

Viewing the Source Workspace for Custom Dialogs 1399

Posting Messages to an Alert Queue 1404

Viewing the Source Workspace for the Alert Queue 1406

Chapter 43 Custom Windows Dialogs 1409

Introduction 1410

Posting a Custom Dialog 1412
Dialog Specification 1413
Dialog Component Structure 1418
Example: Posting a Simple Dialog 1426
Example: Creating Groups of Controls 1428

Dialog Callbacks 1430
Response Actions 1430
Dialog Update Callback 1431
Example: Dialog Update Callback 1432
Dialog Dismissed Callback 1433
Example: Dialog Dismissed Callback 1433
Generic Dialog Callback 1434
Example: Generic Dialog Callback 1435

Modifying a Custom Dialog 1436
Modify Specification 1437
Control Actions 1437
Example: Modifying a Custom Dialog 1439

Querying a Dialog 1440

Dialog Controls 1441
calendar 1442
xlix

check-box 1444
checkable-list-box 1447
color-picker 1450
combo-box 1454
duration 1458
full-color-picker 1460
grid-view 1463
group 1483
image 1485
label 1487
list-box 1489
masked-edit 1493
progress-bar 1496
push-button 1498
radio-button 1502
slider 1505
spinner 1506
tab-frame 1509
tabular-view 1514
text-box 1525
time-of-day 1529
toggle-button 1533
tree-view-combo-box 1535
Example: Modifying a Tree-View-Combo-Box 1537
track-bar 1538
workspace 1539
Summary of Control Values 1541

Win32 Control Types 1546
WIN32 Window Style Symbols 1546
WIN32 Static Control Style Symbols 1547
WIN32 Edit Style Symbols 1549
WIN32 Button Style Symbols 1549
WIN32 Combo-Box Style Symbols 1550
WIN32 Spinner Style Symbols 1551
WIN32 Tabular-View Style Symbols 1552

Chapter 44 Windows Views, Panes, and UI Features 1553

Introduction 1554

Using Chart Views 1554
Creating a Simple Chart 1557
Creating a Simple Bar Chart 1557
Creating a Simple Chart and Table 1558
Populating a Chart View 1558
Displaying Annotations 1561
Exporting a Chart View 1561
l

Printing a Chart View 1561
Deleting a Chart View 1562
Example Callback: Chart View 1562

Using HTML Views 1563
Creating an HTML View 1563
Going to a Web Page 1564
Destroying an HTML View 1565
Example Callback: HTML View 1565

Using HTML Help 1566
Displaying a Topic 1567
Displaying the Table of Contents 1568
Displaying the Index 1569
Displaying Popup Help 1569

Using Property Grid 1570

Using Shortcut Bars 1571
Creating a Shortcut Bar 1572
Using the Listbar Style 1573
Displaying Arbitrary Views in a Listbar Style Shortcut Bar 1575
Example Callback: Shortcut Bar 1579
Interacting with Items in the Shortcut Bar 1580
Changing the Icon Size 1581
Disabling and Enabling a Shortcut Bar 1582
Clearing a Shortcut Bar 1582
Destroying a Shortcut Bar 1583

Using Tree Views 1583
Creating a Tree View 1583
Creating the Tree View as a Dialog Control 1585
Populating a Tree View 1586
Showing and Hiding a Tree View 1589
Selecting Items in a Tree View 1590
Clearing a Tree View 1590
Destroying a Tree View 1591
Example Callback: Tree View 1591

Using Status Bars 1593

Using Workspace Views 1594

Using Tabbed MDI Mode 1596
li

Part VI Editors and Facilities 1603

Chapter 45 The Text Editor 1605

Introduction 1606

Text Editor Features 1608

Opening the Text Editor 1608
Setting the Minimum Width of the Editing Area 1609
Configuring Editor Menu and Button Options 1610

Entering Text 1612
Entering Text within the Text Editor 1613
Entering Text by Selecting Visible Text 1615
Entering a Class Name 1615
Using Text Editor Procedure and Function Signature Prompting 1618
Undoing and Redoing the Last Edit 1619
Correcting Errors in the Editor 1619
Ending the Editing Session 1619

Using the Search Facility 1620

Using the Scrollable Text Editor 1623

Using the Clipboard and Scrapbook 1624
Interacting with the Scrapbook Directly 1625
Controlling the Amount of Text in the Scrapbook 1625

Performing Other Edit Operations 1626

Cutting/Pasting between G2 and Other Applications 1627
Using the Clipboard for Text Exchange 1628
Displaying Unicode Characters 1629

Using Unicode and Special Characters 1630
Entering Unicode Character Codes 1631
Entering Special Characters 1632

Keystroke Commands 1635
Displaying Help 1635
Moving the Cursor 1636
Cutting, Copying, and Pasting Text 1637
Selecting Text 1638
Deleting Text 1638
Inserting Tabs and Line Breaks 1639
Controlling the Editing Session 1639
Inserting Prompts by using the Keyboard 1640

Text Editor Buttons 1640
lii

Chapter 46 The Icon Editor and Icon Management 1643

Introduction 1644

Composition of an Icon 1644

Starting the Icon Editor 1645

Parts of the Icon Editor 1646
Layers Pad 1646
Icon Viewer 1647
Layer Indicators 1647
Other Indicators 1648
Drawing Buttons 1648
Command Buttons 1649

Defining Icons 1650
Starting an Icon Definition 1651
Controlling Icon Size and Shape 1651
Controlling Icon Viewer Magnification 1652
Working with Layers 1652
Specifying Colors 1653

Creating Graphics 1654
Drawing Points 1654
Drawing Lines 1654
Drawing Segmented Lines 1655
Drawing Arcs 1655
Drawing Rectangles 1655
Drawing Circles 1656
Drawing Polygons 1656
Toggling Filled and Outlined Graphics 1656
Deleting Graphics 1657
Moving Graphics 1657
Reshaping Graphics 1658

Defining Text Components 1658

Applying a Stipple Pattern 1659
Stippled Header 1659
Stippled-Area Elements 1660
Displaying and Printing Stippled Icons 1661

Programmatic Access to Stipples 1662

Stipples in the Icon Editor 1663

Including Externally Created Images 1664
Image Size and Icon Size 1664
Image Position 1665

Defining Regions 1666
liii

Creating Groups 1666

Saving and Canceling Changes 1667

Tips for Working with Icons 1668

Editing Icons Textually 1668
Icon Description Language Example 1668
Icon Description Language Grammar 1671
Using the Icon and Text Editors Together 1673

Specifying an Icon Background Layer 1674
Specifying a Background Image 1674
Specifying a Background Color 1675

Animated Icons 1676

Defining and Using Icon Variables 1677
Specifying Graphical Positions with Icon Variables 1677
Specifying Text Components with Icon Variables 1678
Specifying Image Components with Icon Variables 1680
Specifying Locations with Expressions 1681
Manual Layer Positioning and Icon Variables 1681
Errors in Icon Variable Specifications 1681

Animating Icons 1682
Changing Width and Height 1682
Referencing Icon Variables 1682
Replacing Icon Variable Values 1683
Replacing Icon Variable Text 1683
Merging Icon Variable Values 1683
Conveniently Merging New and Default Values 1684

Chapter 47 The Inspect Facility 1685

Introduction 1686

Using the Inspect Facility 1687
Interacting with Items on the Inspect Workspace 1689

Showing Items on a Workspace 1690
Syntax 1690
Showing Items and Classes 1690

Showing Items with Unsaved Permanent Changes 1692
Showing the Workspace Hierarchy 1694
Showing the Class Hierarchy 1695
Showing the Module Hierarchy 1696
Showing Procedure Caller and Calling Hierarchies 1696
Showing the Procedure Invocation Hierarchy 1697
Showing Method Definition Hierarchies 1699
liv

Writing Items to a File 1700
Syntax 1701
Writing Items 1701
Writing a Class Hierarchy 1702

Locating Items in Your KB 1702

Displaying Item Tables 1702
Syntax 1703
Determining How to Display the Table 1703
Specifying Which Attributes to Display in the Table 1703
Interacting with the Table 1704

Replacing Text in Items 1704
Syntax 1704
Replacing Text 1705
Replacing Text That is Not Grammatically Correct 1706

Highlighting Text 1707

Checking for Consistent Modularization 1707

Recompiling Items 1708
Syntax 1708

Filtering Classes of Items 1708
Filtering Items Based on a Truth-Value Expression 1709
Filtering Items That Contain Specific Text 1709
Filtering Items That Contain Notes 1709
Filtering Items Based on the Item Status 1710
Filtering Items Based on the Value of an Attribute 1710
Filtering Items Based on Their Category or Focal Class 1710
Filtering Items Based on Their Workspace 1711
Filtering Items Based on Their Module 1711
Filtering Items That Do Not Meet Specified Criteria 1711

Version Control 1712

Inspect Command History (Enterprise only) 1713

Chapter 48 Natural Language Facilities 1715

Introduction 1715

Using G2 Fonts 1716

Using the Natural Language Facilities 1717
Setting the Current Language 1717
Setting a Default Language for a G2 Session 1719
Setting a Language for the Current Window 1719
Supporting Multiple Languages in a KB 1719

Localizing Menu Choices and G2 Facilities 1720
lv

Using Language Translations for Localization 1721
Specifying a Context 1722
Localizing the Text and Icon Editor Buttons 1723
Localizing the Login Dialog 1724

Using European Languages 1726
Available Translations 1727

Using the Japanese, Korean, Chinese, and Thai Language Facilities 1728
Using Windows Character-Input Methods 1728
Specifying a Han Character-Style Preference 1728
Using the Japanese Language Facilities 1730
Using the Korean Language Facilities 1735
Using the Chinese Language Facilities 1740
Using the Thai Language Facilities 1741

Using the Russian Language Facilities 1741

Chapter 49 G2 Character Support 1745

Introduction 1745

Unicode Character Support 1746
Non-Unicode Character Support 1746

Defining the Gensym Character Set 1747
Subset of ASCII Character Set and Special Characters 1748
Other Standard Character Sets 1748

Using Escape Characters 1749
Using the ~ Escape Character 1750
Using the @ Escape Character 1750
Using the \ Escape Character 1751

Encoding ASCII Characters and Special Characters 1751
Encoding a Tab Character 1754

Encoding Japanese Characters 1754

Encoding Korean Characters 1756

Encoding Russian Characters 1756

Translating from the Gensym Character Set 1757

Part VII Debugging and Optimization 1759

Chapter 50 Error Handling 1761

Introduction 1762

Superseded Error Handling Techniques 1762
lvi

G2 Error Handling Concepts 1763

G2 Error Classes 1763

Defining an Error Handler 1764

Handling Errors in a Procedure 1765
Obtaining Source Information From the Error Object 1766
Synchronous and Asynchronous Error Handling 1766
Default Handler Example 1767
Block Error Handler Example 1768

Error Object Memory Management 1769

Reusing Error Objects 1770

Handling Non-Procedural Errors 1770

Signaling Errors in a Procedure 1770
Signaling the Default Error Handler 1771
Signalling a Block Error Handler 1772

Shadowing the Default Error Handler 1773
Creating a User-Defined Default Error Handler 1774

Mixing Error Handling Techniques 1775

Chapter 51 Debugging and Tracing 1777

Introduction 1778

Displaying Error and Warning Messages 1778

Obtaining Procedure Source-Code Error Location Information 1780
Controlling the Creation of Error-Location Information 1780
Obtaining Error-Location Information from the Logbook 1781
Obtaining Error-Location Information from the Error Object 1782
Procedure Statements That Divert Error Location 1783
Go-to-Source-Code Errors 1785

Displaying Trace Messages 1785

Saving Tracing Data to a File 1788

Specifying Breakpoints and Tracing 1789

Using Dynamic Breakpoints 1792
Setting Dynamic Breakpoints in the Client 1792
Setting Dynamic Breakpoints in the Server 1794

Stepping Through Procedure Source Code 1796

Stepping Through Procedure Source Code 1798

Removing Tracing and Breakpoints 1801
lvii

Showing Disassembled Code 1802

Obtaining Information from Abort Workspaces 1802

Writing Logbook Messages to a Log File 1803

Chapter 52 Explanation Facilities 1805

Introduction 1805

Example KB in the Demos Directory 1806

Enabling the Explanation Facilities 1806

Displaying Current Chaining and Rule Invocation 1807
Statically Displaying One-Level of Chaining for a Variable 1808
Dynamically Displaying Backward Chaining for a Variable 1809
Dynamically Displaying Generic Rule Invocations for an Object 1809
Dynamically Displaying the Invocations of a Rule 1810
Delaying Dynamic Display Updates 1811

Displaying Explanation Trees of Cached Chaining and Rule Invocation
Knowledge 1812

Caching Explanation Data 1812
Creating Explanation Items 1813
Displaying Explanations 1814
Understanding Explanation Trees 1814
Deleting Explanations 1815

Chapter 53 Profiling and KB Performance 1817

Introduction 1817

Profiling the Execution of Your KB 1817
Techniques for Profiling 1818
Understanding the Profiling Process 1819
Identifying Resource Requirements for Profiling 1819
Using System Procedures for Profiling 1819
Collecting Profile Data 1820
Creating a Copy of the Collected Profile Data in G2 1820
Identifying the Contents of a System-Profile-Information 1821
Profiling Executable Items and Activities 1828
Resetting Profile Data in G2 1828
Identifying Your Profiling Strategy 1829
Reporting the Contents of a System-Profile-Information 1830
Analyzing Profiling Data 1832

Using Compilation Configurations 1832
Stability Configurations 1832
Declaring the Configurations 1833
Understanding Compiled Attributes 1833
lviii

Validating References at Run-Time 1834
Understanding Compilation Dependencies 1835
Declaring Procedures and Methods as Inlineable 1836
Declaring Items as Stable-Hierarchy 1837
Declaring Items Stable-for-Dependent-Compilations 1838
Declaring Items Independent-for-All-Compilations 1841
Changing Items That Have Compilation Configurations 1842

Chapter 54 G2-Meters 1847

Introduction 1847

Working with G2-Meters 1848

Enabling and Disabling G2 Meter Service 1848

Specifying the Meter Lag Time 1849

Creating G2-Meters 1850

Disabling and Enabling Individual G2-Meters 1851

Interpreting G2-Meters That Measure Memory 1851
G2-Meter and Operating System Measurements 1851
Approximations in Memory Meter Readings 1852

Types of G2-Meters 1852
Instance-Creation-Count-as-Float 1853
Memory-Size 1853
Memory-Usage 1853
Memory-Available 1853
Region-N-Memory-Size 1854
Region-N-Memory-Usage 1854
Region-N-Memory-Available 1854
Clock-Tick-Length 1854
Maximum-Clock-Tick-Length 1854
Percent-Run-Time 1854
Simulator-Time-Lag 1855
Priority-N-Scheduler-Time-Lag 1855

Chapter 55 Memory Management 1857

Introduction 1858

Managing KB Data Memory 1858

G2 and System Services 1859
Determining System Adequacy 1859

G2, RAM, and Virtual Memory 1859
Determining RAM Requirements 1859
lix

Introduction to G2 Memory Management 1860

Memory Management Problems 1860
Insufficient Memory Allocation 1861
Unlimited Memory Consumption 1861

Memory Management During Development 1861

G2 Memory Regions 1862

Measuring G2 Memory Usage 1862
Generating the Maximum Memory Allocation 1863
Measuring the Maximum Memory Allocation 1865

Determining Region 1 and Region 2 Memory Requirements 1868
Excess Memory Preallocation 1868
Safety Factors 1868
Allocating Less Than the Default 1869

Restricting Region 3 Memory 1869

Specifying G2 Memory Allocation 1869
Specifying Memory in the G2 Command Line 1870
Specifying Memory with UNIX Environment Variables 1871
Specifying Memory with Windows Environment Variables 1872

Causes of Unbounded Memory Requirements 1873
Unnecessary Retention of Storage 1873
Failure to Delete Transient Items 1873

Correcting Unbounded Memory Requirements 1874
Checking Region 1 Memory Increases 1875
Checking Region 2 Memory Increases 1878
If All Else Fails 1879

Chapter 56 Task Scheduling 1881

Introduction 1881

The Main Processing Cycle 1882
Ticking the G2 Clock 1882
Major Events in the Processing Cycle 1883

The G2 Scheduler 1883
Wait States 1884
Task Scheduling 1884
Procedural versus Rule-Based Tasks 1886
Default Task Priorities 1887
Optimizing Task Scheduling 1888
lx

Part VIII Application Deployment 1893

Chapter 57 Package Preparation 1895

Introduction 1895

Preparing a KB for Customer Distribution 1896
Saving a Copy of the Source KB 1896
Entering Package Preparation Mode 1897

Text Stripping Items 1897

Removing KB Change Logging and Version Information 1899

Making Workspaces Proprietary 1899
Creating a Proprietary KB 1900
Creating and Configuring Proprietary Items 1901
Completing Proprietary Workspaces 1902

Distributing a Proprietary Application Package 1903

Chapter 58 Licensing and Authorization 1905

Introduction 1905

G2 Licensing 1905
G2 License Types 1906
G2 License Options 1907
Finding License Types and Options in a KB 1908

G2 Authorization and the g2.ok File 1908
How G2 Locates the g2.ok File 1909
Description of the g2.ok File 1909
How G2 Uses the g2.ok File 1910

Authorizing Users at a Secure Site 1910
How G2 Uses a Secure g2.ok File 1911
Secure G2 OK File Syntax 1911
Version Element 1912
User Name and Password Syntax 1912
Secure G2 OK File Example 1913
Adding User Elements to the Authorization File Interactively 1913
Specifying a Password in a G2 Authorization File 1914
Updating the g2.ok File 1915
Changing User Passwords Interactively 1918
Localizing the G2 Password Change Dialog 1919

Telewindows Licensing Structure 1921
Floating Telewindows 1922
Dedicated Telewindows 1923
lxi

Simulating License Types 1923

Part IX Networking and Interfacing 1925

Chapter 59 Network Security 1927

Introduction 1927

Determining the Level of Network Security 1927

Defining Network Security for a KB 1928
Using Configuration Statements for Network Access 1928
Allowing or Prohibiting Connect Access 1929

Chapter 60 Secure Communication and Authentication (SSL) 1931

Introduction 1932

Encrypting Communication between G2 and Telewindows 1932

Encrypting Communication between G2 and G2 Gateway 1933

Connecting to Sockets with SSL Security 1935

Chapter 61 Telewindows Support 1937

Introduction 1937

Accepting a Connection from a Telewindows Process 1938
Displaying the Telewindow 1938
Connecting with a G2 that is Not Secure 1939
Connecting with a Secure G2 1939
Logging Login Activities 1940
Accepting a Password 1941
Associating the Telewindow with a G2-Window Item 1941
Establishing a Window Style for Your Telewindows Process 1942

Logging Out from a Secure G2 1943

Closing a Telewindows Connection 1943

Rerouting Telewindows Connections 1944
Rerouting a Telewindows Session to a Secure G2 1945
Using System Procedures 1946
Using G2 Window Attributes 1946
Applications that Reroute Telewindows Connections 1946

Chapter 62 G2-to-G2 Interface 1949

Introduction 1949
lxii

Using the G2-to-G2 Interface to Exchange Data 1950

Using the G2-to-G2 Interface 1951
Creating Data Interface Objects 1951
Naming the Interface Object 1952
Identifying Attributes 1952
Setting the Warning Message Level 1952
Defining the Connection Details 1953
Setting the Interface Timeout Interval 1954
Obtaining the Current Connection Status 1955
Starting the G2 Processes 1956
Activating Data Interface Objects 1956
The G2-to-G2-Data-Interface Class 1956
Creating Data Interface Subclasses 1957

Using Remote Data Service 1958
Creating a G2-to-G2 Variable 1958
Examples of Remote Data Service 1959

Using Remote Procedure Calls 1961
Creating and Declaring a Remote Procedure 1962
Using an Alternative Procedure Name 1963
Invoking Remote Procedures 1964

Value and Item Passing Arguments and Return Types for RPCs 1965
Considerations for Item Passing 1967

Value Passing 1968
Configuring the KB for Value Passing 1969
Example of Passing an Integer Value 1970
Example of Passing a Structure Value 1970

Passing an Item as a Network Handle 1971
Configuring the KB for Item Passing as a Network Handle 1971
Example of Obtaining a Network Handle 1972
Example of Passing an Item as a Handle 1973

Passing Variables and Parameters 1973
Passing a Variable or Parameter as a Copy or Handle 1974
Passing the Current Value of a Variable or Parameter 1974

Passing User- and System-Defined Classes 1975
Configuring the KB for Passing an Item with Attributes 1976
Passing a Copy of any Item 1977
Including and Excluding Attributes 1979
Passing an Item Including User-Defined Attributes 1979
Passing an Item Excluding User-Defined Attributes 1980
Passing Attributes with Object Values 1981
Passing an Item with System-Defined Attributes 1982
Passing Both User- and System-Defined Attributes 1984
lxiii

Passing an Item with Attributes and a Handle 1984
Specifying One or More Remaining Arguments 1984
Passing Network Handles as the Class in RPCs 1985
Passing UUIDs Referring to Items in RPCs 1988

Chapter 63 G2 Gateway 1991

Introduction 1991

Using G2 Gateway to Exchange Data 1992

Using GSI Interface Objects 1993
Creating a GSI Interface Object 1993
Locating GSI Interface Objects on Activatable Subworkspaces 1993

Creating GSI Variables 1994
Specifying the GSI Interface Name 1994
Determining the Status of the Variable 1994

Using GSI Message Servers 1995

Chapter 64 Interfacing with COM Applications 1997

Introduction 1997

Using the G2Gateway Control 1998

Managing G2 Items 1999

Using the WorkspaceView ActiveX Control 1999

Chapter 65 Interfacing with Java Applications 2001

Introduction 2001

Ui-Client-Interface 2002

Ui-Client-Item and Ui-Client-Session 2002

Chapter 66 Interfacing with Web Services 2003

Introduction 2003

Web Services 2004
Web Service Messages 2004
Importing Web Service Descriptions 2005
Invoking Web Service Operations 2006
Invoking Web Service Operations from G2GL 2008

HTTP 2009
Listening for HTTP Requests 2009
Sending a Web Request 2010
lxiv

SOAP 2010
Sending a SOAP Request 2011

Chapter 67 Interfacing with TCP/IP Sockets 2013

Introduction 2013

TCP/IP Socket Communication 2013

Socket I/O 2014

Chapter 68 Foreign Functions 2015

Introduction 2015

Foreign Functions Examples 2016
Creating a Sample Foreign Image 2017
Calling the Sample Foreign Functions 2017

Using Foreign Functions 2018

Creating a Foreign Function Template File 2019
C and C++ Data Types and Character Conversion 2020

Using the Overlay Utility through the Makefile 2022
Completing the Makefile Global Variables 2023
Running the Makefile 2024

Starting and Connecting to the Foreign Image 2024
Starting the Foreign Image as an External Process 2024
Connecting to an External Process Foreign Image 2025
Starting a Foreign Image from within G2 2025
Connecting to a Foreign Image with a G2-Init File 2026

Declaring a Foreign Function in a KB 2026
Providing the Name of the C Function 2027
Setting the Timeout Interval 2028
Handling Possible Name Collisions 2028

Using a Foreign Function 2028

Disconnecting from the External Foreign Function 2029

Chapter 69 Windows Services 2031

Introduction 2031

Running GService 2032

Examples 2037
Examples of Using GService with a Bridge Process 2037
Examples of Using GService with a G2 Process 2038
lxv

Part X Appendixes 2039

Appendix A Launching a G2 Process 2041

Introduction 2043

Starting the G2 Process 2043

Writing Standard Output Messages to a Log File 2044

Writing Network I/O Tracing Messages to a File 2044

Using an Initialization File 2045
Coding an Initialization File 2045

Using Command-Line Options 2048
Supported Command-Line Characters 2049
Using Environment Variables 2049

Dictionary of Command-Line Options 2043
background 2045
cert 2046
cjk-language 2047
default-language 2048
display 2050
do-not-catch-aborts 2052
exit-on-abort 2053
fonts 2054
fullscreen 2056
g2passwdexe 2057
geometry 2058
height 2060
help 2061
icon 2062
init 2063
init-string 2065
kb 2066
kfepindex, kfepkojin, and kfepmain 2068
language 2070
local-window 2072
log 2073
magnification 2074
manually-resolving-conflicts 2075
module-map 2077
module-search-path 2078
name 2080
netinfo 2081
network 2082
never-start 2083
lxvi

no-backing-store 2084
no-log 2086
no-tray 2087
no-window 2088
ok 2089
password 2091
private-colormap 2092
regserver 2094
resolution 2096
rgn1lmt 2097
rgn2lmt 2099
rgn3lmt 2101
screenlock 2103
secure 2104
start 2105
tcpipexact 2106
tcpport 2107
ui 2109
unregserver 2110
user-mode 2112
user-name 2113
v11ok 2114
verbose 2116
width 2117
window 2118
window-style 2119
x-magnification and y-magnification 2120
x-resolution and y-resolution 2122

Appendix B Reserved Symbols 2129

Introduction 2130

List of Reserved Words 2130
Reserved Words in the G2 Language 2131
Reserved Ordinary System-Defined Attributes 2132
Reserved Hidden System-Defined Attributes 2137

Generating a List of System-Defined Attributes 2138

Appendix C Mouse Gestures, Key Bindings, and Shortcut Keys 2141

Introduction 2141

Mouse Gestures for Selection 2142

Mouse Gestures for Interacting with Selections 2143

Mouse Gestures for Interacting with Workspaces 2144
lxvii

Key Bindings for Scrolling Workspace Views 2145

General Key Bindings 2146

General Shortcut Keys 2147

Shortcut Keys for Workspaces 2148

Changes from Earlier G2 Versions 2151

Appendix D Syntax Conventions 2153

Introduction 2153

Syntax Notation 2153

User-Specified Terms 2154
Value Expression Terms 2155
Literal Value Terms 2155
Item Expression Terms 2156
Attribute Reference Terms 2157
Item Name Terms 2157
Class Name Terms 2157
Attribute Name Terms 2158
Other Expression Terms 2159
Other Literal Terms 2161

Appendix E G2 KBs and GIF Files 2163

Introduction 2163

Demonstration KBs 2164

Sample KBs 2165

Tutorial KBs 2166

Utility KBs 2167

GIF Files 2169

Appendix F Superseded Practices 2175

Introduction 2175

Attribute Files 2176

Drawing Modes 2176
Unscheduled Drawing 2176
XOR Drawing Mode 2177

G2 File Interface (GFI) 2177

G2 Simulator 2177
lxviii

Icon Position and Size Attributes 2177

OLE Drag and Drop 2178

Glossary 2179

Index 2209
lxix

lxx

Preface
Describes this manual and the conventions that it uses.

About this Manual lxxi

Audience lxxi

Organization lxxii

Conventions lxxvii

Related Documentation lxxix

Customer Support Services lxxxi

About this Manual
This reference manual presents G2, a development environment for creating
intelligent, real-time, knowledge-based applications.

Audience
This manual is written for G2 application developers and system integrators. It
addresses the application developer or system integrator as you, and refers to a
G2 end-user as the user.

This manual assumes that you have done one or more of the following:

• Taken one or more G2 courses provided by Gensym.

• Gone through the Getting Started with G2 Tutorials.

• Otherwise become somewhat familiar with G2.
lxxi

Organization
This manual contains the following chapters and appendixes:

Title Description

Part I Introduction to G2

1 Overview of G2 Presents a summary of and orientation to
G2’s major features.

2 The Developer’s
Environment

Introduces features and strategies for
developing a G2-based application.

Part II Global G2 Components

3 Knowledge Bases Shows how to work with the current KB,
save the current KB, and load a KB.

4 Workspaces Shows how to use workspaces to organize
your KB’s items.

5 Modularized KBs Describes how to partition your KB into
modules.

6 System Tables Describes the use of system tables to set
global preferences.

7 Configurations Describes how configurations override the
default behavior of items.

8 G2-Windows Describes how G2 associates g2-window
items with visible windows.

Part III Knowledge Representation

9 Values and Types Describes the role of values and types in a
knowledge base.

10 G2 Items Presents the characteristics that are
common to all G2 items.

11 Attributes and Tables Shows you how to use item attributes and
the attribute tables that display them.

12 Attribute
Access FacilityAttribute
Access Facility

Presents the capabilities of the attribute
access facility.
lxxii

Organization
13 Classes and
Class Hierarchy

Describes the principles, structure, and
use of the G2 class hierarchy.

14 Definitions Describes class definitions and shows you
how to use them.

15 Variables and Parameters Describes variables and parameters and
how to use them within a KB.

16 Lists and Arrays Describes how to use lists and arrays.

17 Hash Tables and Priority
Queues

Describes how to use hash tables and
priority queues.

18 Connections Describes connections, connection posts,
and junction blocks.

19 Relations Describes how to associate items in a non-
graphical way.

Part IV Computational Capabilities

20 Actions Describes each G2 action and shows you
how to use it.

21 Expressions Describes the purpose and syntax of each
G2 expression.

22 Procedures Shows how to define, customize, and use
G2 procedures.

23 Methods Shows how to define and use G2 methods.

24 Rules, Inferencing, and
Chaining

Describes how G2 invokes rules to
perform actions.

25 Formulas Describes generic and specific formulas
and their use.

26 Text Parsing
and Manipulation

Describes capabilities for manipulating
text and substrings, parsing and
tokenizing text using regular expressions,
and interconverting text between the
Gensym and Unicode character sets.

27 XML Parsing Describes how to parse XML code and
make callbacks to user-defined
procedures.

Title Description
lxxiii

28 Functions Lists system-defined functions and
describes how to create new functions.

29 Publish/Subscribe Facility Describes how to use the
publish/subscribe facility for event
subcription.

30 G2 Graphical Language
(G2GL)

Describes G2GL, a graphical language for
describing processes.

Part VI User Interface Components

31 Buttons Describes action and radio buttons, check
boxes, sliders, and type-in boxes.

32 Text Items Describes how to create text items and
how to use text inserts.

33 User Menu Choices Describes how to define application-
specific menu choices.

34 External Images Explains how to use external images in
workspace backgrounds and icons.

35 Messages Describes how to work with messages.

36 Readout Tables, Dials, and
Meters

Describes the display items readout tables,
dials, and meters.

37 Freeform Tables Describes how to use freeform table
display items.

38 Charts Presents chart styles and graphs, and
show you how to use them.

39 Graphs Presents chart styles and graphs, and
show you how to use them.

40 Trend Charts An introduction to and description of
trend charts and their use.

41 Windows Menus Describes how GMS menus display as
native menus in Telewindows.

42 Windows Dialogs Provides examples of basic and custom
Windows dialogs.

Title Description
lxxiv

Organization
43 Custom Windows Dialogs Describes the API procedures for creating
custom Windows dialogs.

44 Windows Views, Panes,
and UI Features

Describes the API procedures for creating
Windows views.

Part VII Editors and Facilities

45 The Text Editor Describes how to create text items and
how to use text inserters.

46 The Icon Editor and Icon
Management

Describes the G2 Icon Editor and its icon-
description language.

47 The Inspect Facility Describes how to use the Inspect facility to
search for items.

48 Natural
Language Facilities

Describes the facilities for using non-
English languages in a KB.

49 G2 Character Support Presents a description of the G2 character
support through Unicode.

Part VIII Debugging & Optimization

50 Error Handling Describes the G2 error-handling
capabilities.

51 Debugging and Tracing Describes G2 facilities that can assist in
debugging your KB.

52 Explanation Facilities Describes the facilities that collect and
display data about rules and formulas and
the objects they reference.

53 Profiling and
KB Performance

Describes techniques for evaluating and
improving KB performance.

54 G2-Meters Shows how to create, configure, and use
G2-meters.

55 Memory Management Describes G2’s memory regions and
shows how to manage them.

56 Task Scheduling Describes the G2 scheduler, the G2 clock,
and task queues.

Title Description
lxxv

Part IX Application Deployment

57 Package Preparation Describes removing a KB’s source code
and making a proprietary KB.

58 Licensing and
Authorization

Presents licensing and authorization for
G2.

Part X Networking and Interfacing

59 Network Security Describes how to limit network access to a
KB.

61 Telewindows Support Describes G2’s features that support
Telewindows connections.

62 G2-to-G2 Interface Describes how to connect two G2
processes and pass data between them.

63 G2 Gateway Describes the system-defined items that
permit GSI interfacing.

65 Interfacing with
Java Applications

Describes the system-defined items that
allow communication with Java
appliations.

68 Foreign Functions Describes how to call C or C++ foreign
functions from within G2.

69 Windows Services Describes how to run G2 and G2 bridges
as a service under Windows.

Part XI Appendixes

A Launching a G2 Process Describes techniques, command-line
options, and environment variables that
can launch and configure the startup and
execution of a G2 process.

B Reserved Symbols Explains and lists G2’s reserved symbols.

C Mouse Gestures, Key
Bindings, and
Shortcut Keys

Presents all default keystrokes for
operating G2 interactively.

Title Description
lxxvi

Conventions
Conventions
This guide uses the following typographic conventions and conventions for
defining system procedures.

Typographic

D Syntax Conventions Describes the notation and user-specified
terms used in G2 syntax.

E G2 KBs and GIF Files Describes the demonstration, sample, and
utility KBs, and the GIF files that ship with
G2.

F Superseded Practices Describes G2 capabilities that are obsolete
and may not be supported indefinitely.

Title Description

Convention Examples Description

g2-window, g2-window-1,
ws-top-level, sys-mod

User-defined and system-defined
G2 class names, instance names,
workspace names, and
module names

history-keeping-spec, temperature User-defined and system-defined
G2 attribute names

true, 1.234, ok, “Burlington, MA” G2 attribute values and values
specified or viewed through
dialogs

Main Menu > Start

KB Workspace > New Object

create subworkspace

Start Procedure

G2 menu choices and button labels

conclude that the x of y ... Text of G2 procedures, methods,
functions, formulas, and
expressions

new-argument User-specified values in
syntax descriptions
lxxvii

Note Syntax conventions are fully described in the G2 Reference Manual.

Procedure Signatures

A procedure signature is a complete syntactic summary of a procedure or
method. A procedure signature shows values supplied by the user in italics, and
the value (if any) returned by the procedure underlined. Each value is followed by
its type:

g2-clone-and-transfer-objects
(list: class item-list, to-workspace: class kb-workspace,
delta-x: integer, delta-y: integer)

-> transferred-items: g2-list

text-string Return values of G2 procedures
and methods in syntax
descriptions

File Name, OK, Apply, Cancel,
General, Edit Scroll Area

GUIDE and native dialog fields,
button labels, tabs, and titles

File > Save

Properties

GMS and native menu choices

workspace Glossary terms

c:\Program Files\Gensym\ Windows pathnames

/usr/gensym/g2/kbs UNIX pathnames

spreadsh.kb File names

g2 -kb top.kb Operating system commands

public void main()
gsi_start

Java, C and all other external code

Convention Examples Description
lxxviii

Related Documentation
Related Documentation

G2 Core Technology

• G2 Bundle Release Notes

• Getting Started with G2 Tutorials

• G2 Reference Manual

• G2 Language Reference Card

• G2 Developer’s Guide

• G2 System Procedures Reference Manual

• G2 System Procedures Reference Card

• G2 Class Reference Manual

• Telewindows User’s Guide

• G2 Gateway Bridge Developer’s Guide

G2 Utilities

• G2 ProTools User’s Guide

• G2 Foundation Resources User’s Guide

• G2 Menu System User’s Guide

• G2 XL Spreadsheet User’s Guide

• G2 Dynamic Displays User’s Guide

• G2 Developer’s Interface User’s Guide

• G2 OnLine Documentation Developer’s Guide

• G2 OnLine Documentation User’s Guide

• G2 GUIDE User’s Guide

• G2 GUIDE/UIL Procedures Reference Manual

G2 Developers’ Utilities

• Business Process Management System Users’ Guide

• Business Rules Management System User’s Guide

• G2 Reporting Engine User’s Guide

• G2 Web User’s Guide

• G2 Event and Data Processing User’s Guide
lxxix

• G2 Run-Time Library User’s Guide

• G2 Event Manager User’s Guide

• G2 Dialog Utility User’s Guide

• G2 Data Source Manager User’s Guide

• G2 Data Point Manager User’s Guide

• G2 Engineering Unit Conversion User’s Guide

• G2 Error Handling Foundation User’s Guide

• G2 Relation Browser User’s Guide

Bridges and External Systems

• G2 ActiveXLink User’s Guide

• G2 CORBALink User’s Guide

• G2 Database Bridge User’s Guide

• G2-ODBC Bridge Release Notes

• G2-Oracle Bridge Release Notes

• G2-Sybase Bridge Release Notes

• G2 JMail Bridge User’s Guide

• G2 Java Socket Manager User’s Guide

• G2 JMSLink User’s Guide

• G2 OPCLink User’s Guide

• G2 PI Bridge User’s Guide

• G2-SNMP Bridge User’s Guide

• G2 CORBALink User’s Guide

• G2 WebLink User’s Guide

G2 JavaLink

• G2 JavaLink User’s Guide

• G2 DownloadInterfaces User’s Guide

• G2 Bean Builder User’s Guide
lxxx

Customer Support Services
G2 Diagnostic Assistant

• GDA User’s Guide

• GDA Reference Manual

• GDA API Reference

Customer Support Services
You can obtain help with this or any Gensym product from Gensym Customer
Support. Help is available online, by telephone, by fax, and by email.

To obtain customer support online:

 Access G2 HelpLink at www.gensym-support.com.

You will be asked to log in to an existing account or create a new account if
necessary. G2 HelpLink allows you to:

• Register your question with Customer Support by creating an Issue.

• Query, link to, and review existing issues.

• Share issues with other users in your group.

• Query for Bugs, Suggestions, and Resolutions.

To obtain customer support by telephone, fax, or email:

 Use the following numbers and addresses:

Americas Europe, Middle-East, Africa (EMEA)

Phone (781) 265-7301 +31-71-5682622

Fax (781) 265-7255 +31-71-5682621

Email service@gensym.com service-ema@gensym.com
lxxxi

lxxxii

Part I
Introduction to G2
Chapter 1: Overview of G2

Presents a summary of and orientation to G2’s major features.

Chapter 2: The Developer’s Environment

Introduces features and strategies for developing a G2-based application.
1

2

1
 1
Overview of G2
Presents a summary of and orientation to G2’s major features.

Introduction 3

Basic Components 4

Computational Capabilities 14

G2 Graphical Language 16

Extensible and Graphical Components 17

Custom User Interfaces 21

Editors and Facilities 22

Development and Deployment 25

Networking and Interfacing 27

Additional Capabilities and Information 29

G2 Utilities 30

G2 Developer’s Utilities 31

G2 Bridges 33

Introduction
G2 is a complete development environment for creating and deploying intelligent
real-time applications. You can use G2 to develop applications that solve many
problems commonly encountered in business, scientific, and industrial markets.
3

While G2 is flexible enough to use for almost any intelligent application, G2 users
typically apply G2’s capabilities to complex situations that require:

• Monitoring, diagnosis, and alarm handling.

• Scheduling and logistics.

• Supervisory and advanced control.

• Process design, simulation, and re-engineering.

• Intelligent network management.

• Decision support for enterprise-wide operations.

This overview does not attempt to provide detailed descriptions of G2’s many
features, nor does it offer technical insight into the underlying capabilities of G2.
The remainder of this manual accomplishes those tasks. Instead, the overview
provides an orientation to G2 that does two things:

• Presents a top-level view of the major features of the G2 development
environment.

• Provides a reference for each main topic.

For a more extensive overview of G2 than this chapter provides, see:

• G2 for Application Developers: An Introduction. This document is available on
request from Gensym. It provides a technical overview suitable for evaluating
G2’s applicability to particular needs.

• G2 Developer’s Guide. This guide is included in the G2 Core Technology
documentation kit and online. It provides guidelines and techniques for using
G2 to develop knowledge-based applications.

Basic Components
G2 provides a complete, graphical development environment for modeling,
designing, building, and deploying intelligent applications. To create a G2
application, you interact with a number of basic components.

Knowledge Bases

An application you develop in G2 is called a knowledge base, or KB. You create a
new KB by adding items to the current G2 and then saving your work in one or
more KB files. You can load an existing KB, then edit its contents or use it as
needed.

A KB can be running, paused, or stopped. When a KB is running, reasoning and
computation occur. When a KB is paused, transient data is maintained, but
processing halts. While G2 is running, you can load a KB programmatically and
4

Basic Components
can save a KB either interactively or programmatically. G2 must be paused or
reset to load a KB interactively.

Knowledge bases are described in Knowledge Bases.

All components of a KB exist as items which have attributes. Items can appear
graphically as icons. For information on items, see G2 Items.

Workspaces

G2 calls the blank pages upon which you create, maintain, and organize items
workspaces. A KB can contain one or many workspaces. The items upon
workspaces are capable of having their own subsidiary workspaces. Thus, you
can create a logical hierarchy of items and workspaces to group and organize
your KB data.

Workspaces can contain anything from text messages to entire schematics that
model real-time activity.

This workspace contains a single simple message:
5

This workspace displays part of a networking schematic from a
telecommunications application:

To display and capture workspace knowledge, you can scale and print all
workspaces. Among other things, you can:

• Scale workspaces up to four times their full size, or down to a very small size,
in effect iconizing the workspace.

• Hide workspaces.

• Print workspaces using PostScript files, or encapsulated PostScript files if the
workspace is no larger than one physical sheet of paper.

• Print workspaces onto arbitrarily large paper sizes.

Workspaces are described in Workspaces.
6

Basic Components
Modules

You can develop a large KB from smaller, more manageable pieces called
modules. Each module contains a set of related items that together comprise a KB.

You might begin to build an application by populating an empty KB, organizing
the knowledge that pertains to certain classes of items into different modules. For
example, you could define a module for class definitions, define another module
for instances of the classes, and define a third module for executable items that
manipulate class instances as represented in the following figure.

Modules facilitate modular development and reusability. When several
developers are working on a single application, each can work on a separate
module These can later be combined to form the entire application. Class
definitions and other knowledge can be saved in a single module and used across
multiple applications.

Using modules you can:

• Specify an alternate search path for locating module KB files.

• Locate items on a per module basis, using the Inspect facility.

• Analyze the module consistency of a KB, using the Inspect facility.

• Delete all related workspaces when deleting a module.

• Merge, delete, and save modules programmatically, using system procedures.

For a complete description of using modules, see Modularized KBs.

executable-items module class-definitions module

class-instances module

modular knowledge base
7

Classes and Class Hierarchy

G2 development is based on object-oriented design. Knowledge representation is
maintained and extended through classes in the G2 class hierarchy.

G2 includes a large set of system-defined classes, many of which you can use as
the foundation of customized, user-defined classes. You can add to the G2 class
hierarchy through the use of its extensible classes. Every class within the G2 class
hierarchy is either a system- or user-defined class.

The next figure shows a small portion of the G2 class hierarchy as displayed by
the Inspect facility, G2’s tool for accessing and browsing KB knowledge. The
hierarchy begins with the item class on the left, which is the highest class level,
and extends to the right. All classes shown are system-defined classes.
8

Basic Components
9

Classes have attributes, which define the inherited and locally defined properties
of the class. G2 maintains class attributes within attribute tables. Here is the
iconic representation and the attribute table of a G2 integer variable class:

Classes may have associated methods. These define the operations characteristic
of each class. Methods allow generic operations to be implemented in class-
specific ways (polymorphism). Code that invokes a method needs only to know
the method’s name: the details of how to perform the operation exist in the
method, not in the code that invokes it (encapsulation).

G2 permits multiple inheritance in its class hierarchy: any user-defined class can
inherit the attributes and methods of any number of superior classes. To facilitate
modular design, classes can inherit attributes with identical names that are
defined by different superior classes.
10

Basic Components
The G2 class hierarchy is presented in Classes and Class Hierarchy. The ability to
extend the class hierarchy to create custom classes is described in Definitions.

Attributes and their tables are covered in Attributes and Tables. Programmatic
access to G2 system-defined attributes and their data structures is described in
Attribute Access Facility.

Methods are described in Methods.

Knowledge Representation

Items are the fundamental data structures within G2 that you use to represent
knowledge. You use items to collect and organize knowledge about real objects,
processes, and relationships. Items are described in G2 Items.

G2 represents knowledge within items as values, which are data structures that
are generated as the result of expression evaluations and are associated with item
attributes. G2 supports a variety of value types including integers, floats, text
values, truth values, symbols, and composite types. These are described in Values
and Types.

G2 supports a variety of other types of knowledge representation:

• Variables and parameters, which keep histories of values, described in
Variables and Parameters.

• Lists and arrays, which consist of a series of elements of a particular type,
described in Lists and Arrays.

• Hash tables, which consist of a collection of key-value pairs, and priority
queues, which consist of a collection of items, each with a priority, described
in Hash Tables and Priority Queues.

• Connections, which are graphical items that create a logical relationship
between two or more, objects, described in Connections.

• Relations, which are non-graphical items that create a logical relationship
between two or more, objects, described in Relations.
11

Configurations

G2 provides a unique capability, called configurations, for creating KB user
modes and controlling the behavior of KB items. You can use configurations to
define the behavior of single items, or hierarchically to specify the behavior of
groups and classes of items that you designate in various ways.

Typical uses of configurations include:

• Adding capabilities and restrictions of many different kinds to any item.

• Defining how items respond to particular user actions, such as mouse clicks.

• Allowing and prohibiting network access to an entire KB, or to any of its
individual components.

Configurations are explained in Configurations.

System Tables

G2 provides system tables that define global parameters applicable to an entire
KB, including parameters related to KB configuration, modules, menus, editor,
fonts, color, drawing, printer setup, saving, G2 server, data server, inference
engine, language, logbook, message board, log file, simulation, G2 graphical
language, timing, and debugging.

For details, see System Tables.

G2 Windows

A G2 window represents knowledge about the window within which you interact
with G2. G2 can automatically associate a G2 window item either with the local
G2 window or with a remote G2 window, which is the window displayed by a
Telewindows connected to your G2. A G2 window provides a variety of
information, including connected users, language, user mode, and so on.

For details, see G2-Windows.
12

Basic Components
G2 Developer’s Environment

G2 provides a rich development environment for building application, which
includes:

• Menus, which provide access to G2’s interactive capabilities. You can access
G2 menus by clicking the G2 window background, any workspace, an
individual item. Here are some examples of menus:

• G2 Message Board, which displays user-generated messages.

• G2 Operator Logbook, which displays system-generated messages and errors.

For more information, see The Developer’s Environment.

Item menu

Main menu from the
background area

KB Workspace menu
13

Computational Capabilities
At the core of the developer’s environment lies G2’s structured natural language.
G2 uses this language in all programmatic statements. Since the G2 language is
similar to ordinary human language, it is easier to read statements that are
written in the G2 language than it is to read other programming languages.

For example, the following rule scans all refrigerators as G2 executes, tests each
one for a specified temperature condition, and performs an action on any
refrigerator for which the condition is true:

if the temperature of any refrigerator R > 40 degrees
then start adjust-temperature-procedure(R)

For a summary of the G2 programming language, see the G2 Language Reference
Card.

Procedures, Methods, and Rules

Programmatic control over a KB and its corresponding real-time external events
occurs within:

• Procedures, covered in Procedures.

• Methods, described in Methods.

• Rules, presented in Rules, Inferencing, and Chaining.

Each of these items contains G2 statements. Statements consist of expressions;
expressions can include actions.

Expressions

You can use G2 expressions to:

• Obtain information about items.

• Specify actions to be executed on items.

Expressions are described in Expressions.

Actions

You can use G2 actions to perform many different tasks, including:

• Creating, moving, deleting, and showing items.

• Controlling the position of any workspace in the current G2 window.

• Accessing the position of items upon a workspace.

• Obtaining the current size of any item.
14

Computational Capabilities
Actions describes all actions.

Formulas

G2 provides formulas for creating equations that provide values for a variable or
parameter. G2 computes a formula only when a value is needed. Formulas are
described in Formulas.

Text and XML Parsing

G2 provides a variety of functions and expressions for manipulating and parsing
text strings, described in Text Parsing and Manipulation.

G2 also provides a facility for parsing XML code and executing user-defined
callbacks, using the SAX (Simple API for XML) standard, described in XML
Parsing.

Functions

G2 provides the ability to define user-defined functions, which are named
operations that return a value, with or without an argument. Functions are similar
to procedures except they are invoked differently. G2 also defines a set of system-
defined functions for a variety of operations including arithmetic, character
manipulation, time operations, and more.

Functions are described in Functions.

System Procedures

System procedures are a group of G2-provided procedures, contained in the
sys-mod.kb file. G2 includes hundreds of system procedures.

You use system procedures by merging or requiring the sys-mod.kb file into your
current KB, and then calling system procedures as needed from user-defined
code.

System procedures let you complete a variety of different tasks, and, in some
cases, provide a programmatic access to items that is unavailable through
expressions or actions.

Using system procedures, you can:

• Obtain and set various graphical properties of any KB item.

• Manipulate item and workspace layering.

• Obtain an item’s system predicate status (permanent, transient, or showing).

• Determine the position of any item.
15

• Register items for item passing.

• Perform profiling operations.

• Sort lists and arrays directly or through keys.

• Determine memory usage.

G2 system procedures are described in the G2 System Procedures Reference Manual
and the G2 System Procedures Reference Card.

G2 Graphical Language
The G2 Graphical Language (G2GL) allows the execution of processes, including
business, industrial, and general reasoning processes, directly within G2. It
provides a self-contained graphical programming environment for the
specification of any type of process, which fully integrates with G2.

The process activities are generally based on the Business Process Execution
Language for Web Services (BPEL4WS or BPEL for short) language. BPEL is an
industry initiative, now managed by OASIS, to establish an effective standard
framework for describing and defining high-level business processes that are
offered as Web services.

G2GL provides a tightly integrated environment for developing business
processes that includes process modeling, compilation, execution, debugging,
and animation. G2GL supports importing and exporting processes, based on the
BPEL4WS XML specification.

G2GL provides a variety of process activities for expressing the logic of the
process, including activities that perform sequential processing, branching and
concurrency, synchronization, and looping. G2GL supports most BPEL activities,
as well as activities beyond those within the BPEL specification including waiting,
debugging, and breakpoints. A G2GL process can include local variables for
holding data. G2GL activities use G2GL expressions, which are similar to G2
expressions.

G2GL provides communication between two linked partner processes. A partner
is a series of connected elements that mediate communication between two linked
partners.

G2GL allows for scope activities, which have bodies that specify subprocesses.
You can also have scope-like fault, alarm event, or message event handlers.
16

Extensible and Graphical Components
For example, this figure shows a G2GL process execution with a breakpoint:

For information using G2GL, see G2 Graphical Language (G2GL).

Extensible and Graphical Components
The G2 environment is both graphical and extensible. Almost everything in G2
has a graphical representation. You can use system-defined display items to show
the state of your application as it changes over time, and system-defined buttons
to send commands to G2 or the outside world. You can extend G2’s graphics in
various ways to provide a customized visual environment.
17

The preceding figure shows some system-defined and user-defined display items.
G2 provides and allows you to customize many such items, including:

• Radio buttons, type-in boxes, check-boxes

• User menu choices

• Readout displays and digital clocks

• Meters and dials

• Charts, graphs, and trend charts

You can use system procedures to get information about, and then change, many
graphical aspects of items, as described in System Procedures.

For details on these graphical components, see:

• Buttons.

• User Menu Choices

• Readout Tables, Dials, and Meters.

• Freeform Tables.

Digital clock Type-in box

Dial

Radio buttons

Meter

Trend chart
18

Extensible and Graphical Components
• Charts.

• Graphs.

• Trend Charts.

Icons

All G2 items are represented graphically or textually. The iconic representation of
items supports a full range of colors. G2’s Paint drawing mode permits
polychrome icons to overlap and maintain their color. G2 includes a large palette
of system-defined colors that you can apply to various KB items, including
workspaces, icons, and textual items. Some examples of system-defined icons are:

For information on creating and modifying icons, see The Icon Editor and Icon
Management.

Images

G2 supports the use of JPEG, X Bit Map (XBM) and Graphics Interchange Format
(GIF) images within a KB. The G2 Icon Editor, which you can use to create new
icons or edit existing ones, allows you to use images as icon components, where
they appear in monochrome.
19

You can also use images to provide full-color workspace backgrounds. The
following workspace has a frame style defined by a frame-style-definition and a
color background image:

For information on importing and using externally defined images, see External
Images.

Textual Items

Textual items, such as messages and free text, use an outline font technology,
making fonts more readable at smaller scales, and providing enhanced
typographical detail for larger font sizes.

For information on creating textual items, see Text Items and Messages.
20

Custom User Interfaces
Custom User Interfaces
G2 provides extensive tools for building custom Windows user interfaces for
display in Telewindows, including:

• Custom menus, including menu bars, popup menus, localization, dynamic
menus, and callbacks.

For details, see Windows Menus.

• Basic Windows dialogs, including basic, query, notification, file, and print
dialogs.

For details, see Windows Dialogs.

• Custom Windows dialogs, including posting, modifying, and querying
custom dialogs, callbacks, with numerous standard windows controls such as
text, buttons, lists, color, time and date, progress bars, tabular views,
grouping, images, and workspaces.

For details, see Custom Windows Dialogs.

• Windows views, including chart views, HTML views, shortcut bars, and
tree views.

For details, see Windows Views, Panes, and UI Features.
21

Here is an example of a custom user interface that shows some of these features:

Editors and Facilities
G2 provides various editors and facilities for interacting with text, icons, the
overall KB, languages, and characters.

Text Editor

G2 includes two text editors, the standard Text Editor for entering and editing
limited amounts of texts, such as item names and short statements, and the
scrollable Text Editor. Both editors are described in The Text Editor.
22

Editors and Facilities
For information about the Windows text editor available through Telewindows,
see the Telewindows User’s Guide.

The scrollable Text Editor is useful with multi-line text entries, such as
procedures, methods, and complex configurations. For example:

Icon Editor

Icon Editor allows you to define a class icon with graphic tools. The Icon Editor
converts the resulting graphical description into G2 code, and sets this code as the
value of the icon-description attribute of the class definition. The Icon Editor is
described in The Icon Editor and Icon Management.
23

Inspect Facility

The Inspect facility allows you to search a knowledge base (KB) for items based
on their type, class, attributes, and location. The Inspect Facility is described in
The Inspect Facility.

Natural Language Facilities

G2’s natural language facilities let you create your own menu translations for
non-European languages. Additionally, G2 includes a language.kl KB with
several complete sets of European language menu translations, as shown here:

Every G2 license includes the:

• European language facilities.

• Japanese language facilities.

• Korean language facilities.

• Chinese language facilities.

• Russian language facilities.

Japanese, Korean, and Chinese outline fonts require additional authorization. For
details, see Natural Language Facilities.
24

Development and Deployment
G2 Character Support

G2 character representation is provided by the Unicode Worldwide Character
Standard, which supports the storage, exchange, processing, and display of text
for most of the world’s modern and classical written languages. Supported
characters cover the principal languages of the Americas, Europe, Middle East,
Africa, India, Asia, and Pacifica. G2 character support is described in
G2 Character Support.

Development and Deployment
G2 provides an incremental development and deployment environment. As
development progresses, you can add capabilities to your KB at virtually any
stage of the development cycle. Techniques and guidelines for G2 application
development and deployment appear in the G2 Developer’s Guide.

For a detailed overview of the G2 development environment, see The Developer’s
Environment.

Compilation

Compilation occurs each time you select the End button or type Ctrl-Enter when
editing a procedure, rule, function, or any attribute containing a compatible
expression in the text editor.

You can use configuration statements to declare certain items as stable-for-
dependent-compilations. Declaring items this way informs G2 that certain parts of
the item’s knowledge will not change, letting G2 compile dependent items more
efficiently. In large KBs, the more items you can declare as stable, the more
performance will improve.

Error Handling and Debugging

G2 supports various error handling capabilities, including a system-defined class
for errors, error handling statements within procedures for catching, signalling,
and handling errors. For details, see Error Handling.

G2 provides various debugging capabilities, including displaying error and
warning messages, displaying source-code error location, displaying trace
messages, setting breakpoints and dynamic breakpoints, stepping through
procedure code, displaying disassembled code for procedures, methods, and
rules, and writing G2-state information and logbook messages to a file. For
details, see Debugging and Tracing.
25

Explanation Facilities

G2’s explanation facilities allow you to display including forward and backward
chaining for a variable, invocations of backward-chaining rules for a variable,
invocations of rules for an object that contain a generic reference to that object,
invocations of a particular rule. For details, see Explanation Facilities.

Profiling a KB

As KB development nears completion, you can use the KB profiling facility to
collect and analyze data about its performance during execution. After you
identify which parts of your KB can benefit from further optimization, you can
apply compilation configurations to help G2 to compile those parts more
efficiently.

A complete description of G2 compilation and profiling appears in Profiling and
KB Performance.

G2 Meters and Memory Management

G2 meters are specialized quantitative variables that monitor G2 and compute
statistics about its performance, such as how much memory it is using, and how
fast it is processing. For details, see G2-Meters.

G2 provides various tools for managing and allocating memory. For details, see
Memory Management.

Task Scheduling

G2 supports subsecond time. You can specify a subsecond time interval that
affects the G2 clock and thus the scheduler, certain intervals, and history
collection specifications. To allow subsecond timing, G2 represents time as a float,
rather than an integer.

The G2 scheduler directs task processing in G2. While a user never interacts with
it directly, the scheduler controls all of the activity that the user sees, as well as
many of G2’s background activities. The scheduler is the G2 time keeper and task
master; it is responsible for scheduling and prioritizing all tasks, executing tasks
between clock ticks, and ticking the G2 clock.

For information about scheduling and time, see Task Scheduling.

Package Preparation

When deploying an application, you use G2’s package preparation tools to
remove source code and make a KB proprietary. You do this by marking items for
text stripping, removing change logging and version information, and
configuring proprietary workspaces. For details, see Package Preparation.
26

Networking and Interfacing
Licensing and Authorization

G2 provides licenses for offline and online use, and for development and
deployment environments. It provides separate licensing for the Telewindows
client, using dedicated or floating licenses.

You can configure G2 to be secure, which requires users to login with a password.
You can also limit network access to a KB.

For details, see Licensing and Authorization and Network Security.

Networking and Interfacing
G2 offers these network and interfacing capabilities:

• Network security

• Telewindows

• G2-to-G2 interface

• G2 Gateway (GSI)

• Item passing

• Publish/subscribe

• Java interface

• Foreign functions support

• G2 as data service

Network Security

You can secure a KB from unauthorized network access through the use of special
network-oriented configuration statements.

Using configurations, you can apply network security at any level you need to
permit or disallow KB access across a network connection. Network security is
described in Configurations.

Telewindows

Telewindows allows more than one user to access the same G2 independently.
Each Telewindows user can open a telewindow, or remote view, into a running
G2 process. Telewindows provides a client-server based capability in which a
single G2 process, acting as a server, executes a KB, to which any number of
authorized Telewindows clients users can connect. On Windows platforms,
Telewindows provides a standard, Windows-based developer and end user
interface for G2 applications.
27

For information about Telewindows, see Telewindows Support, and the
Telewindows User’s Guide.

G2-to-G2 Interface

The G2-to-G2 interface lets two or more G2 processes connect for the purpose of
exchanging data. G2 supports the TCP/IP protocol only.

Once two systems are connected, you can:

• Use a remote G2 as the data server of one or more variables.

• Exchange various types of data, including any value.

• Pass entire items and their user- or system-defined attributes.

G2 also permits the dragging of single items between two G2 or Telewindows
processes on Windows platforms.

For information about using the G2-to-G2 interface, see G2-to-G2 Interface.

G2 Gateway

The G2 Gateway standard interface (GSI) is a network-oriented toolkit used for
developing software interfaces, or bridges, between G2 and other, external
systems. G2 Gateway allows KBs to exchange various types of data between a G2
process and the bridge.

The G2 Gateway bridge is itself a process that communicates with G2 over the
TCP/IP protocol, using a gsi-interface item.

For information about using G2 Gateway, see G2 Gateway, and the G2 Gateway
Bridge Developer’s Guide.

Item Passing

Item passing is supported across the G2-to-G2 and the G2 Gateway interfaces,
through the use of remote procedure calls. G2 supports item passing by allowing
you to:

• Pass any KB item by reference, using a network handle.

• Pass entire items, including complex items that contain attributes given by
objects such as variables and parameters, or attributes that consist of lists or
arrays of values or items.

Several system procedures support item passing. For details on item passing and
the procedures that support it, see G2-to-G2 Interface. Information about item
passing is also available in the G2 Gateway Bridge Developer’s Guide.
28

Additional Capabilities and Information
Publish/Subscribe

G2 provides a publish/subscribe facility, which allows application developers to
implement scalable, distributed applications that can respond dynamically to
changes in the application, including changes in item attribute values, item
deletion or creation, and custom events.

For information, see Publish/Subscribe Facility

Java Interface

G2 JavaLink provides a set of Java components and classes that you can use to
communicate with Java/RMI applications.

For information on the Java interface classes and references for more information,
see Interfacing with Java Applications.

Foreign Functions Support

G2 supports the use of foreign functions, which are functions written in C or C++
that you can call from within your KB as if they were local functions. The foreign
function interface is platform-independent. You can start a foreign function either
as an external process, or as a spawned process from within a KB.

To use foreign functions, you collect existing C source files into an executable
foreign image to which G2 connects. Gensym provides sample files to help you
create and use a foreign image.

Foreign functions and images are described in Foreign Functions.

G2 as Data Service

GService allows you to install and manage G2 and G2 bridges as services under
Windows. You may use this utility to install any number of G2 or bridge
processes as services as long as you provide a unique service name for each
installed service. GService runs each service as a separate process.

For information on running GService as well as examples, see Windows Services.

Additional Capabilities and Information
G2 provides the following additional capabilities and information in appendices:

• Command-line options

G2 provides a variety of command-line options for use when launching the
G2 server, which are described in the Appendix A, Launching a G2 Process.

• G2 reserved words
29

G2 reserved words are symbols that cannot serve as a user-defined name in
G2. For a complete list of reserved words, see Appendix B, Reserved Symbols.

• Mouse gestures, key bindings, and shortcut keys

G2 supports standard mouse gestures for selection, where “standard” implies
the Windows standard. They also support a number of other mouse gestures,
key bindings, and shortcut keys for interacting with selection, workspaces,
and items. G2 uses a selection style user interface where commands apply to
the current selection. For the complete list, see Appendix C, Mouse Gestures,
Key Bindings, and Shortcut Keys.

• Syntax conventions

For a description of the notation and user-specified terms used to describe the
G2 language, see Appendix D, Syntax Conventions.

• G2 KBs

For a list of the demonstration, sample, tutorial, utility, and graphics files that
are included with G2, see Appendix E, G2 KBs and GIF Files.

• Superseded practices

For a description of the G2 features that have been superseded, see
Appendix F, Superseded Practices.

G2 Utilities
G2 provides a number of utilities for developers to achieve uniformity,
compatibility, and reliability in their applications. The G2 utilities are:

• G2 ProTools (ProTools) — Provides advanced G2 developer tools for
speeding up development, testing, debugging, documenting, and
deployment. See the G2 ProTools User’s Guide.

• G2 Foundation Resources (GFR) — Establishes standard approaches to
several important design and implementation issues commonly encountered
in building inter-operable modules. GFR helps to assure the compatibility of
modules with modules written by other authors who also use GFR. See the
G2 Menu System User’s Guide.

• G2 User Interface Development Environment/User Interface Library
(GUIDE/UIL) — Provides a library of user interface components from which
you can build dialogs from pre-built components. GUIDE includes a basic
button library for navigation buttons. Once you have built a GUIDE
application, you can remove the development modules of GUIDE from the
application. See the G2 GUIDE User’s Guide and G2 GUIDE/UIL Procedures
Reference Manual.
30

G2 Developer’s Utilities
• G2 Menu System (GMS) — Provides a way of implementing menu bars. All
applications that need menu bars and popup menus in G2 should use GMS.
See the G2 Menu System User’s Guide.

• G2 Dynamic Displays (GDD) — Provides a number of attractive dials,
meters, and displays, based on G2 power icons, which you can use directly or
as direct superior classes. Use GDD to enhance the visual appeal of your
application. See the G2 Dynamic Displays User’s Guide.

• G2 Developer’s Interface (GDI) — Provides menu templates and dialogs for
standard menu layout and menu- based activities. You can use GDI as the
basis for developing your own custom menu layout, or simply use one of the
many useful GDI dialogs for selecting files, printing, manipulating modules,
and the like. GDI is based on GMS and GUIDE. See the G2 Developer’s Interface
User’s Guide.

• G2 XL Spreadsheet (GXL) — Provides a way of creating scrolling tabular
displays for viewing and editing a wide variety of lists, arrays, and complex
data structures. See the G2 XL Spreadsheet Reference Manual.

• G2 OnLine Documentation (GOLD) — Provides a set of related modules that
implement online documentation based on external browsers and HTML.
GOLD is the standard way to deliver context-sensitive help and to access
documentation via keyword, index, and table-of-contents searches. See the
G2 OnLine Documentation User’s Guide and G2 OnLine Documentation
Developer’s Guide.

G2 Developer’s Utilities
G2 provides the following developer’s utilities, which provide a consistent
development framework for building G2 decision management applications:

• Business Process Management System (BPMS) — Provides a user interface,
classes, methods, and built-in services that are based on the G2 Graphical
Language (G2GL). See the Business Process Management System Users’ Guide.

• G2 Business Rules and Management System (BRMS) — Provides a
mechanism for easily editing, organizing, analyzing, and executing complex
business rules. See the Business Rules Management System User’s Guide.

• G2 Web Services (GWEB) defines out-of-the-box Web pages and SOAP
services, as well as classes and APIs enabling G2 to implement an HTTP
server and serve HTML pages, XML structures, SOAP services, and files. See
the G2 Web User’s Guide.

• G2 Reporting and Processing Engine (GRPE) provides a consistent approach
for defining reports and charts, collecting values, displaying tabular values in
reports, and charting those values. See the G2 Reporting Engine User’s Guide.
31

• G2 Event and Data Processing (GEDP) is a multi-purpose graphical language
composed of graphical blocks that can be connected together to express a flow
of data, perform calculations, execute functions, generate messages, and
events. See the G2 Event and Data Processing User’s Guide.

• G2 Event Manager (GEVM) provides tools that support highly scalable,
distributed operator-advisory applications by providing an event “black
board” and alarm management capabilities, as well as associated message
queues, message browsers, and logging. See the G2 Event Manager User’s
Guide.

• G2 Run-Time Library (GRTL) provides a wide variety of development tools
for the runtime environment. These include support for object models, which
includes object keys, event notification, and support for localization,
configuration files, command-line options, publish/subscribe, XML, and a
variety of general runtime utilities. See the G2 Run-Time Library User’s Guide.

• G2 Dialog Utility (GDU) extends the custom Windows dialog functionality
that G2 provides to enable the rapid building and deployment of native
Windows dialogs. This module also includes the G2 Dialog Conversion
Utility (GDUC), which generates custom Windows dialog specifications from
GUIDE/UIL dialogs and the G2 Dialog Configuration Editor (GDUE), which
provides a native Windows editor for a native Windows dialog specification.
See the G2 Dialog Utility User’s Guide.

• G2 Data Source Manager (GDSM) provides tools for managing network
connections and for pooling connections to improve throughput in large-scale
applications, including UIL and native configuration dialogs. See the G2 Data
Source Manager User’s Guide.

• G2 Data Point Manager (GDPM) provides functionality to configure, log,
replay, and simulate datapoints, typically related to external sensors such as
temperature, pressure, and flow. These external values are represented in
GDPM as external datapoints and obtain their values typically via an OPC or
PI interface and bridge. G2 Data Point Manager User’s Guide.

• G2 Engineering Unit Conversion (GEUC) provides a way of specifying the
engineering units for entering and displaying values, as well as a large
number of synonyms for those conversions in both the English and metric
systems. G2 Engineering Unit Conversion User’s Guide.

• G2 Error Handling Foundation (GERR) provides tools for error handling as
an extension to G2 error and G2 Foundation Resources (GFR). See the G2 Error
Handling Foundation User’s Guide.

• G2 Relation Browser (GRLB) provides tools for displaying related items in a
graphical layout. See the G2 Relation Browser User’s Guide.
32

G2 Bridges
G2 Bridges
G2 provides the following bridges for communication with external systems
and standards:

• Databases:

– G2-Oracle Bridge — Provides communication with Oracle. See the
G2-Oracle Bridge Release Notes.

– G2-Sybase Bridge — Provides communication with Sybase. See the
G2-Sybase Bridge Release Notes.

– G2-ODBC Bridge — Provides communication with any relational
database on any platform for which there is an ODBC driver. See the
G2-ODBC Bridge Release Notes.

For general information, see the G2 Database Bridge User’s Guide.

• Devices and data historians:

– G2-PI Bridge — Provides communication with the PI data historian. See
the G2-PI Bridge User’s Guide.

– G2-OPC Client Bridge (OLE for Process Control) — Provides
communication with data supplied by any OPC-compliant server. See the
G2 OPCLink User’s Guide.

• Distributed object standards and protocols:

– G2 ActiveXLink — Provides communication with Microsoft
ActiveX/COM. See the G2 ActiveXLink User’s Guide.

– G2 JavaLink — Provides communication with Java/RMI. See the
G2 JavaLink User’s Guide, G2 DownloadInterfaces User’s Guide, and G2 Bean
Builder User’s Guide.

– G2 JMail Bridge — Provides communication with JavaMail (JMail). See
the G2 JMail Bridge User’s Guide.

– G2 JMSLink — Provides communication with Java Message Service
(JMS). See the G2 JMSLink User’s Guide.

– G2-SNMP Bridge — Provides communication with devices that support
the Java SNMP (Simple Network Management Protocol). See the
G2-SNMP Bridge User’s Guide.

– G2 Java Socket Manager — Provides communication with Java Sockets.
See the G2 Java Socket Manager User’s Guide.

– G2 CORBALink — Provides communication with CORBA. See the
G2 CORBALink User’s Guide.
33

– G2 WebLink — Provides communication with HTTP, the protocol of the
World Wide Web. See the G2 WebLink User’s Guide.

– G2-HLA Bridge — Provides an interface to the Modeling and Simulation
(M & S) High Level Architecture (HLA). See the G2-HLA Bridge Users’
Guide.
34

2
 2
The Developer’s
Environment
Introduces features and strategies for developing a G2-based application.

Introduction 36

Capturing Knowledge in a Knowledge Base 36

Using Computational Features in G2 36

Starting G2 37

Exiting from G2 40

Interacting with G2 40

G2 Window Styles 41

Using Menus to Operate the Current KB 47

Navigating KB Knowledge 52

Notifying the User of Errors 52

Working with the Operator Logbook 52

Working with the Message Board Workspace 59

Organizing KB Knowledge 60

Planning Your Work 62
35

Introduction
This chapter shows you how to interact with G2 as an application developer, and
how to design an application that uses G2’s major computational features.

Capturing Knowledge in a Knowledge Base
You implement a G2 application by using G2 to develop one or more knowledge
bases (KBs). These KBs will be delivered with G2 licenses (and perhaps with other
Gensym products) to provide an intelligent solution, dedicated or distributed, to
a knowledge-management need.

G2’s developer’s environment refers to the default set of features that are
available when you use G2 under a development license. You use these features
to define items, as well as their properties and behaviors, and to organize them
into a knowledge base (or KB). We use the word knowledge to mean information
that is structured and specified so that a running G2 can reason about it.

The set of knowledge that a running G2 contains is called the current KB. After
G2 starts, it always has a current KB. That is, a portion of G2’s memory is always
reserved to hold the items that currently represent the knowledge you have
collected and organized. At all times, the current KB contains a set of system
tables, which represent your current preferences for how G2 works with the KB.

G2 executes, or runs, the current KB. You can start, pause, resume, reset, and
restart (that is, reset and start as one command) the current KB.

You can save the current KB’s knowledge into a new or existing KB file, or, more
typically, into multiple KB files which capture your KB knowledge in
configurable modules. G2 does not alter KB files until you save the current KB
into it.

You can also load or merge a KB into G2 from a KB file that you previously saved.
You can load one KB, or more than one KB, into G2 at the same time.

For more information about the features of KBs, see Knowledge Bases.

Using Computational Features in G2
You interactively operate the overall execution of the current KB, while G2
automatically maintains the KB’s execution-related knowledge. By execution-
related knowledge we mean the current knowledge of the KB items, the
communications status of interface items to external systems, and the state of each
executable item that has been invoked. G2’s executable items include procedures
and methods, rules, action buttons, and user menu choices.

The G2 scheduler schedules and manages all of the activities required to execute
the current KB. The scheduler has settable properties, many of which reside in the
36

Starting G2
Timing Parameters system table. G2’s scheduler also queries the real time via
your computer’s own clock.

The G2 inference engine and other G2 components perform the KB’s rules,
provide data service for the KB’s variables, call foreign functions in other
processes, and support remote procedure calls (RPCs) to and from other
processes across your computer’s network.

Starting G2
For details on starting G2, see Appendix A, Launching a G2 Process.

For platform-dependent information, see the readme-g2.html file and the
G2 Bundle Release Notes.

The G2 Title Block

By default, G2 displays a title block during startup, as the following figure
shows:

The title block displays:

• The version of G2.
37

• Your platform (or combination of computer model and operating system),
identified when G2 was installed.

• The network identifier for the host machine.

• The TCP/IP port number on which this G2 listens for connections from other
processes across your network.

• The machine ID of the host machine (unless a site license is in use).

• The expiration date of the license (unless a permanent license is in use).

For information about displaying the G2 title block, see Displaying the Title Block.

Customizing the Gensym Background

By default, G2 and Telewindows display a light gray background. You can
change the background color and pattern of your local window to a solid color or
to a gray-and-white tiling pattern derived from an image file you specify. The
image file must contain fewer than 128x128 pixels.

To change the background pattern of your local window to a solid color:

 Launch your G2 or Telewindows process with the -background command-
line option followed by a color symbol.

Examples are:

g2 -background red

tw -background dark-slate-blue

To change the background pattern of your local window to a gray-and-white
tiling pattern:

 Launch your G2 or Telewindows process with the -background command-
line option followed by the file path of a GIF or XBM image file.

Examples are:

g2 -background /home/ghf/gifs/tile.gif

tw -background C:\development\kbs\system.xbm

If you find that your full-color image file does not result in an acceptable pattern,
try reducing the image to black and white by applying a graphics program
technique such as ordered dithering before you import the image into your G2 or
Telewindows process.

Note G2 and Telewindows display the default gray pattern when you specify a color
that is not in the G2 color palette, or when you specify a file that is not in GIF or
XBM format or contains more than 16,384 pixels.
38

Starting G2
Interacting with the G2 Server Icon on Windows
Platforms

On Windows platforms, when the G2 server is running, an icon appears in the
taskbar notification area. The tool tip shows the host and port of the G2 server, for
example, TCP_IP:host:1111. The icon has a popup menu with these choices:

• Connect Telewindows, which locates Telewindows in the registry and
automatically connects a Telewindows session to the G2 server.

• Shut Down G2, which shuts down the G2 server and any connected
Telewindows sessions.

If Telewindows Next Generation (twng.exe) is registered, the Connect
Telewindows menu choice uses that. If it cannot find Telewindows Next
Generation, it uses the registry location of Telewindows (tw.exe).

This figure shows the icon with its menu:

The G2 server icon looks like this, depending on the G2 run state:

Telewindows Next Generation and Telewindows are both registered
automatically when you install the G2 Bundle. However, if G2 cannot find either
Telewindows for some reason, you can run the -regserver command-line
option.

To connect Telewindows instead of Telewindows Next Generation when using
the Connect Telewindows menu choice, you can run the -unregserver
command-line option to unregister Telewindows Next Generation. For details,
see regserver.

To start G2 without the icon, use the -no-tray command-line option.

Note When running G2 as a service, you must start G2 with the -no-tray command-
line option to suppress the icon; otherwise, an error occurs when you start G2 as a
service.

running reset paused
39

Exiting from G2
You can quit G2 only if it is paused or reset.

To quit from G2:

 Choose Main Menu > Miscellany > Shut Down G2.

The G2 process closes its window and terminates execution.

Interacting with G2
After G2 starts, you can:

• Begin entering new knowledge interactively,

• Load a stored KB file, then

• Work with the loaded knowledge.

G2 provides a highly interactive, graphical, and customizable environment for
collecting and organizing knowledge:

• It is graphically interactive because you use your computer’s keyboard and
mouse to work with items that are visible on the screen.

• It is customizable because G2 supports three window styles and provides
several groups of features that suppress or replace the default behavior of the
KB’s items and of the menus and non-menu operations of the developer’s
environment itself.

By default, after selecting an item that appears on the screen, you choose from a
menu. The menu lists operations that are relevant to that item. You can also select
from other menus that affect developer’s environment settings, such as whether
G2 displays long menus or short menus or automatically highlights invoked
rules.

In various ways you can customize how the application’s users, and how other
G2 developers, work with the items in the current KB:

• You can code your KB so that it programmatically changes the appearance
and features of the items that the user interacts with.

• You can also declare configurations on items that refer to a user mode, which
is an identifier that specifies a level of access or degree of functionality that is
associated with particular users.

For details, see Actions and Configurations.
40

G2 Window Styles
G2 Window Styles

The style of the Main Menu above is called standard. It is the default window
style. G2 supports two other styles: a large version of the standard style called
standard-large and the G2 style before version 6.0, g2-5.x. Your style choice
determines the appearance of workspaces, menu and attribute tables, text and
icon edit boxes, and temporary workspaces such as Inspect workspaces. Item
icons are unaffected by window style.

The standard window styles are characterized by:

• A blue title bar which displays either its Workspace’s name, if it has one, or
the class of the workspace, unhyphenated, with mixed case (e.g., its menu-
style text not its prior attribute-table header style text), and a delete/hide
button. Selecting the button hides workspaces, and deletes tables, edit boxes,
and temporary workspaces. Clicking outside the button brings the item to the
top of the display hierarchy.

• A light-gray background, except for workspaces which, by default, have a
white background.
41

Window-Style Menu Examples

Here is the Main Menu shown in the three styles:

Window-Style Workspace Examples

Here are examples of workspaces in the three window styles, as well as a
standard-style workspace that has a user-defined frame-style which replaces the
title bar:

standard standard-large g2-5.x
42

G2 Window Styles
Window-Style Attribute Table Examples

This example shows an attribute table in the three styles:

Specifying Window Styles

G2 provides you with the ability to control the window style at several levels. The
options are to:

• Use the default window style, which is standard.

• Specify the default window style for the G2 process by setting the system
table Server Parameters g2-window-style attribute. This sets the window-style
for the G2 process.

You can edit this attribute either interactively, programmatically, or by using
the -window-style command-line option when you launch G2.

The g2-window-style attribute setting persists in the G2 process until you
explicitly change it because, unlike other system tables, the Server Parameters
table does not lose its non-default attribute values when the KB is cleared.

• Specify the window style for a particular KB by setting the system table
Miscellaneous Parameters default-window-style attribute. This sets the
window style for the KB, overriding the Server Parameters setting and the
default setting for the KB.

Using the new standard and standard-large window styles with KBs or
modules that were saved in G2 5.x. could break them. To avoid this, you
should set the window-style to g2-5x. To preserve maximum compatibility
with KBs previously saved in G2 5.1 or earlier, G2 automatically sets the
default-window-style to g2-5x whenever you load a 5.x KB or module.
Although not recommended, you can override this setting.

• Specify the window style for the Telewindows connection or local G2 window
by setting the system table This Window g2-window-style attribute. This sets

g2-5.xstandard-largestandard
43

the window style for the g2-window item associated with your interaction
with G2, making it possible for each process that is interacting with G2 to
establish its own window style.

The order of precedence for the window style setting is:

1 The Telewindows connection or local G2 window.

2 A KB.

3 The G2 process.

4 G2 default, which is standard.

If any of the above is set to default, G2 uses the window style setting of the next
item down.

For example:

• If the local G2 window (1) and the KB (2) are set to default, and the G2 process
(3) is set to g2-5.x, then G2 will use the g2-5.x window style.

• If the local G2 window (1) is standard-large, the KB (2) is default, and the G2
process (3) is g2-5.x, G2 will use the standard-large window style.

Note Setting the window-style affects newly created windows only. It does not affect
existing windows.

Establishing a Default Window Style for the G2 Process

You change the default style for the G2 process by editing the g2-window-style
attribute of the Server Parameters system table. You can edit this attribute either
interactively, programmatically, or by using the -window-style command-line
option when you launch G2. You can also launch Telewindows, using this
command-line option.

You can also specify this command-line option when launching a Telewindows
process. For more information, see the Telewindows User’s Guide.

To specify the default window style interactively:

1 Select Main Menu > System Tables > Server Parameters.

2 Edit the g2-window-style attribute to one of these four values:

default, standard-large, g2-5.x, or standard

To specify the default window style by using a command-line option:

 Launch G2 with the -window-style command-line.

For example:

g2 -window-style standard-large
44

G2 Window Styles
Overriding the Default Window Style for a Particular KB

You specify the window style for a particular KB by setting the system table
Miscellaneous Parameters default-window-style attribute.

To specify the window style for a KB:

1 Select Main Menu > System Tables > Miscellaneous Parameters.

2 Edit the default-window-style attribute to one of these four values:

default, standard-large, g2-5.x, or standard

Overriding the Default Window Style for the Current Window

You specify the window style for the Telewindows connection or local G2
window by setting the system table This Window g2-window-style attribute.

To specify the window style for your interaction with G2:

1 Select Main Menu > System Tables > This Window to access the g2-window
associated with your G2 or Telewindows process.

2 Edit the g2-window-style attribute on your g2-window item to one of these
four values:

default, standard-large, g2-5.x, or standard

Editing Title Bar Text

You can edit the text of the title bar by editing the title-bar-text attribute of a
kb-workspace. The text can be entered as a string, with quotes, or as an expression
to display the workspace name, class, or table header. When no name exists, the
expression can use a default.

Here are some examples:

• "My Workspace Title" shows the text My Workspace Title.

• "" shows a blank title bar.

• the name if any otherwise "unnamed" shows the workspace name, if any, or
the text unnamed.

• the name if any otherwise the class shows the workspace name, if any, or the
class name, the default.

If a workspace does not show a title bar, this attribute has no effect.

You can override this attribute for user-defined subclasses of kb-workspace. You
can get and set the exported internal representation of the title-bar-text attribute,
using the attribute access facility.
45

Syntax

The syntax for title-bar-text has this format:

default|
simple-option |
conditional-option [if any, otherwise simple-option]

The symbol default indicates that G2 should use its default setting, which you
cannot currently change. The default is equivalent to the name if any, otherwise
the class. In a future release, we may allow the default setting to be changed by
the user.

simple-option is one of:

string | the class | the table header

The string option displays the literal text string in title bar.

The phrase the class displays the workspace class name in the title bar, which is
formatted without hyphens and in title case, that is, with initial capitalization and
most other characters in lowercase, except KB, which always appears in upper
case.

The phrase the table header displays the table header of the workspace in the title
bar. This is the same text that would appear in the header of a table for the
workspace.

conditional-option is:

the name

The phrase the name displays the workspace name, if any, in the title bar. If there
is more than one name, the first name is used. If there are no names, then the title
bar is blank, unless an addition option is specified, using the phrase if any,
otherwise simple-option.

Note that you cannot include expressions to evaluate in any of the options, using
the [] syntax.

Attribute Access

You can get and set values for the title-bar-text internal attribute, using the
attribute access facility. You can set the value by using a simple conclude
statement or by concluding the value into a sequence. You must use a sequence
when concluding the value, using a phrase such as the name if any otherwise
"unnamed". Otherwise, the use of sequences is optional.

For more information about using this facility, see Attribute Access Facility.
46

Using Menus to Operate the Current KB
The attribute access format for setting the title-bar-text attribute value is one of the
following:

Using Menus to Operate the Current KB
After G2 has started and if the current KB contains knowledge that you want to
work with, you can operate the KB, which means to use G2’s default menus to
start, pause, resume, reset, or restart the current KB.

Because you can easily operate the current KB, you can quickly test and
determine the effects of changes in the KB’s items. Note, also, that you can make
many changes to your KB’s items, including in the definitions of classes, while
the KB is running. For more information, see Knowledge Bases.

Starting the current KB causes G2 to perform several standard tasks, all related to
activating some or all of the KB’s knowledge. Activating an item causes G2 to do
something with it, based on the item’s class. Activation of items is described in
Workspaces.

Title Bar Value Type Setting Attribute Access Value

Blank conclude that the title-bar-text does not exist

Text string conclude that the title-bar-text = string

Class name, table
header, name

conclude that the title-bar-text = the symbol
class

conclude that the title-bar-text = the symbol
table-header

conclude that the title-bar-text = the symbol
name

Empty sequence conclude that the title-bar-text does not exist

Text, class name, table
header, name as a
sequence

conclude that the title-bar-text =
sequence(string)

conclude that the title-bar-text = sequence(the
symbol class)

conclude that the title-bar-text = sequence(the
symbol table-header)

conclude that the title-bar-text = sequence(the
symbol name)

the name if any
otherwise simple-option

conclude that the title-bar-text is
sequence(the symbol name, "unnamed")
47

Note To perform an operation programmatically means that you perform it by invoking
an executable item. To perform an operation programmatically requires that the
current KB is running.

Pausing and resuming the current KB does just that. No knowledge about the
status of executing items is lost due to pausing the KB.

Resetting the KB means to restore all knowledge in the KB to its initial state.

Restarting the KB means to reset the KB then start it, in one command.

Using Menus to Operate on an Item in the KB

By default, you use menus to interact with items in the current KB. We say
“by default,” because you can use configurations to suppress the display of any
default menu or any default menu choice available in the developer’s
environment.

To work interactively with a particular item in the current KB, click the mouse on
the item to display its menu. The menu choices that are common to the KB’s items
are described under Using Item Menus.

Using Menus to Affect the Developer’s Environment

You also use menus to interact with the G2 developer’s environment. To change a
feature or setting in the developer’s environment, select from the G2 Main Menu
and from the Miscellany menu.

To display the G2 Main Menu:

 Click the mouse on the background of the G2 window.

Choices on the Main Menu

By default, the G2 Main Menu displays these choices:

• Change Mode: Displays the login dialog.

• Get Workspace: Brings an existing kb-workspace to the top of the display
hierarchy.

• Inspect: Opens the Inspect facility.

• Load KB, Merge KB, and Save KB: Loads or merges a KB or save the
current KB.

• Miscellany: Displays the Miscellany menu.

• New Workspace: Creates a new kb-workspace.
48

Using Menus to Operate the Current KB
• Run Options: Displays a menu from which you can select options that affect
how G2 runs the current KB.

• System Tables: Displays a menu from which you can select the system tables
for the top-level module.

• Start, Pause, Resume, Reset, and/or Restart: Changes the G2 run state,
depending on the current state.

Choices on the Miscellany Menu

By default, the Miscellany menu displays these choices:

• Clear KB: Clears the current KB.

• Create New Module: Creates a new module in the current KB.

• Connect to Foreign Image/Disconnect from Foreign Image: Connects this G2
to or disconnects this G2 from a separately developed C or C++ program.

• Delete Module: Deletes a module from the current KB.

• Enter Package Preparation Mode and Simulate Package Preparation Mode:
Enters or simulates G2’s package preparation mode.

• Load Attribute File: Loads a file, called an attributes file, that populates the
attributes of existing items in the current KB. Attribute files are a superseded
capability. For more information see Appendix F, Superseded Practices.

• Neatly Stack Windows: Relocates the currently displayed application
windows, or workspaces, into a cascading arrangement.

• Network Info: Displays this G2 process’s network information.

• New Title Block: Display G2’s title block.

• Short Menus/Long Menus: Selects long menus or short menus.

• Shut Down G2: Exits G2.

• Write G2 Stats: Creates a statistics file related to memory usage.

Clearing the KB

Clearing the current KB means to delete all knowledge from the current KB and to
reset all system tables, except the Server Parameters system table, to their default
values.

Creating a New Module and Deleting a Module

Creating a new module means to add a new module item and its associated set of
system tables to the current KB’s module hierarchy. This module cannot serve as
the current KB’s top-level module. Deleting a module means deleting a module
49

item, and, optionally, the workspaces associated with the module. For more
information about modules, see Modularized KBs.

Connecting to and Disconnecting from a Foreign Image

Connecting to a foreign image means to establish a network connection with a
running executable image, whose procedures the current KB’s procedures can
invoke. Disconnecting from a foreign image means to break a network connection
that was previously established. For more information, see Foreign Functions.

Entering or Simulating Package Preparation Mode

Entering package preparation mode means to set G2’s developer’s environment
so that you can prepare the current KB for customer distribution. Simulating
package preparation mode means to set G2’s developer’s environment so that
your G2 behaves as if it were authorized to run the proprietary current KB.

For more information about using these menu choices, see Package Preparation.

Neatly Stacking Windows

Neatly stacking windows means to relocate the current KB’s visible workspaces
so that they appear to cascade from the upper left corner of G2’s window.

Displaying Network Information

Displaying network information means to display the host name and TCP/IP
port number on which this G2 listens for connections from other processes across
your network. This information also appears in the G2 title block.

You can start G2 with the network information in the title bar of the window by
using a command-line option. For details, see name.

Displaying the Title Block

This means to display G2’s title block, as shown in Starting G2.

Selecting Long or Short Menus

By default, G2’s developer’s environment presents all menu choices on long
menus. You can alternatively select G2’s default menu choices from short menus,
which display more of the default choices in submenus.

The next figure shows the default G2 menus when long menus and short menus
are in effect. Notice in the figure that selecting long menus or short menus affects
the display of the Main Menu, the Miscellany submenu, and the KB Workspace
menu, but does not affect the display of the item’s menu.
50

Using Menus to Operate the Current KB
To use long menus to interact with G2:

 Select Main Menu > Miscellany > Long Menus.

To use short menus to interact with G2:

 Select Main Menu > Miscellany > Short Menus.

Shutting Down G2

Shutting down G2 means to exit G2. Shutting down causes G2 to interrupt and
end all its processing, close any open files, and release its resources to your
computer’s operating system.

Default long menus are on top with their equivalent short menus below them.
51

Navigating KB Knowledge
After the current KB contains some number of items, you will need a convenient
way to navigate the KB’s class and workspace hierarchies and to find particular
items. G2’s Inspect facility, another feature of G2’s developer’s environment,
provides this capability.

The Inspect facility is described in The Inspect Facility.

Notifying the User of Errors
An error condition is any unintended or unexpected discrepancy that occurs
while G2 is handling information. G2 can detect some error conditions whether
the current KB is running or not.

In general, G2 responds to error conditions by invoking an error handler.
An error handler manages error signals and produces error messages,
if necessary.

G2 includes a default error handler. When the current KB is reset or paused, G2’s
default error handler responds to most error conditions by posting a message on
the Operator Logbook. After you start the current KB, if an error condition occurs,
G2 responds by invoking either its default error handler or a custom error
handler defined in the current KB.

G2 error handling is described in Error Handling.

Working with the Operator Logbook
The Operator Logbook is a collection of workspaces that receive error messages
from G2’s default error handler. The Operator Logbook appears as a set of pages,
each of which can contain one or more error and informational messages
produced by G2.

The next figure shows one Operator Logbook page. Notice that each page has a
header that displays today’s date and a page number. Clicking the mouse on one
of the two triangles causes G2 to display either the preceding or subsequent
Logbook page.
52

Working with the Operator Logbook
Note Operator Logbook messages are internal to G2, rather than being posted by the
user, and therefore are not included in the values of expressions such as the count
of each message.

By default, the Operator Logbook displays as a native pane in Telewindows. For
more information, see Displaying the Native Logbook.

Hiding and Showing Logbook Pages

You can specify Logbook pages interactively or programmatically.

Specifying Logbook Pages on a G2-Window

The g2-window class includes the show-operator-logbook-in-this-window?
attribute, whose value is yes (the default) or no. Leaving the value of this attribute
as yes causes the Operator Logbook to be displayed as specified in the Logbook
Parameters system table.

Changing the attribute value to no for a window hides all existing Operator
Logbook pages in that window. Subsequent messages are recorded in the
logbook, but all pages remain hidden. Changing the value to yes again shows
logbook pages as specified in the Logbook Parameters system table. The pages
look as they would if they had never been hidden.

Page number

Logbook message

Page navigation buttons
53

To hide and show operator logbook pages:

 Edit the window’s table or use the conclude action to set the show-operator-
logbook-in-this-window? attribute of the relevant G2 window to yes to display
pages or no to hide them.

For example, the following procedures programmatically show and hide the
Operator Logbook pages in the g2-window for the user ghw:

hide-pages(window: class g2-window)
begin
if the g2-window-user-name-in-operating-system of window = "ghw"

then conclude that the show-operator-logbook-in-this-window@? of
window is false

end

show-pages(window: class g2-window)
begin
if the g2-window-user-name-in-operating-system of window = "ghw"

then conclude that the show-operator-logbook-in-this-window@? of
window is true

end

Specifying Using the Hide and Show Actions

To execute the show and hide actions on logbook pages:

1 Enable the executable item containing the show or hide statement to refer to
inactive items by setting the may-refer-to-inactive-items attribute of the
evaluation-attributes attribute to true. You can do this from the hidden
attributes table of the executable item.

2 Execute hide every log-book page or show every log-book page.

Limiting the Number and Size of Logbook Pages

You can conserve G2’s use of memory (specifically, its region 1 memory) by
keeping fewer Operator Logbook pages in memory, and by limiting the number
of logbook messages allowed per page. The number of Operator Logbook pages
can quickly accumulate, because G2 automatically writes a message to the
Operator Logbook workspace each time you start, pause, or reset the current KB.

To limit the number of Operator Logbook pages:

 Set the maximum-number-of-pages-to-keep-in-memory attribute in the
Logbook Parameters system table to a small number, such as 4 or 5.

To limit the size of Operator Logbook pages:

 Set the width-for-pages and height-for-pages attributes in the Logbook
Parameters system table.
54

Working with the Operator Logbook
Navigating to an Item Referenced in an Operator
Logbook Message

Each Operator Logbook message that references at least one item in the current
KB includes the go to referenced item menu choice. Selecting go to referenced
item causes G2 to display the workspace that contains the item referenced in the
message, and displays the referenced item (shown within its own workspace) in
the center of the window.

Note The go to referenced item menu choice appears only if the Operator Logbook
message references an item on a workspace that is not configured to be
proprietary. Package Preparation describes proprietary workspaces.

Use the go to referenced item menu choice with care. As shown below, G2
relocates the referenced item’s parent workspace so that the item appears at the
center of the window. This might disrupt the visual organization of a KB whose
workspaces have been carefully positioned. G2 also displays that item’s parent
workspace at its full scale, as described under Scaling a Workspace.Before
selecting go to referenced item, your window might appear like the top grouping;
and after selecting go to referenced item, G2 displays the referenced action button
at the center of the window.
55

56

Working with the Operator Logbook
If you select an Operator Logbook message that references more than one item,
the go to referenced item menu choice leads to a submenu, from which you can
choose a particular item, as shown in this figure:

If an Operator Logbook message does not refer to an item, G2 does not offer the
go to referenced item menu choice in the message’s menu.

Navigating to the Procedure Code That Causes
an Error

By default, G2 generates compiled-code to source-code identification information
when it compiles your procedure code. When your procedure code causes an
error, you can select the go to source menu choice from the message. G2 then
opens a text editor on the procedure, and places a cursor within the statement that
caused the error. For the details of this facility see Obtaining Procedure Source-
Code Error Location Information.

Shadowing the Operator Logbook Message Handler

When G2 posts a message to the Operator Logbook, it does so by calling an
Operator Logbook message handler and passing it the message. The system-
defined handler posts the message to the logbook.
57

You can shadow the system-defined handler with any procedure that takes one
argument of type text. Such a procedure is called a user-defined Operator
Logbook message handler. Once registered, such a handler receives all messages
that would otherwise go to the system-defined handler and be posted to the
Operator Logbook. Such messages do not appear on the logbook, and are not
recorded in the log file, if any.

If any activity of a user-defined Operator Logbook message handler causes G2 to
post a message to the Operator Logbook, the request goes to the system-defined
handler, which posts the message as if no user-defined handler had been
registered.

Resetting G2 does not affect handler shadowing: any handler registered remains
in effect when G2 restarts.

Note The following procedures provide low-level operator logbook message handling.
More sophisticated techniques are available through GFR. See the G2 Foundation
Resources User’s Guide for details.

To register a logbook message handler:

 g2-register-logbook-message-handler
(procedure: class procedure)

Registers the procedure to handle all logbook messages.

To deregister a logbook message handler:

 g2-deregister-logbook-message-handler
()

Deregisters the currently registered logbook message handler. The system-
defined handler is again in effect.

To get the logbook message handler:

 g2-get-logbook-message-handler
()
-> {handler: class procedure | false: truth-value}

Returns the procedure currently registered as the logbook message handler,
or false if none is registered.

Each of these procedures is described in more detail in the G2 System Procedures
Reference Manual.
58

Working with the Message Board Workspace
Working with the Message Board Workspace

The Message Board is a system generated workspace (not a kb-workspace) that
G2 creates automatically the first time that G2 executes a post or inform the
operator action.

G2 automatically activates the Message Board when it is created, and it remains
active whether the current KB is running or paused.

The currently installed Message Board Parameters system table determines the
size and settings for the Message Board.

By default, the Message Board displays as a native pane in Telewindows. For
more information, see Displaying the Native Message Board.

Shadowing the Message Board Message Handler

When G2 posts a message to the Message Board, it does so by calling a Message
Board message handler and passing it the message. The system-defined handler
posts the message to the board. The posted messages are deleted when you reset
G2. The messages on the Message Board, but not the Message Board itself, can be
manually transferred to a kb-workspace.

You can shadow the system-defined handler with any procedure that takes one
argument of type text. Such a procedure is called a user-defined Message Board
message handler. Once registered, such a handler receives all messages that
would otherwise go to the system-defined handler and be posted to the Message
Board.

If any activity of a user-defined Message Board message handler causes G2 to
post a message to the board, the request goes to the system-defined Message
Board handler, which posts the message as if no user-defined handler were in
effect.

A user-defined Message Board message handler can itself post messages to the
Message Board. G2 passes such a request to the system-defined handler, which
posts the message just as if no user-defined handler had been registered.

Resetting G2 does not affect handler shadowing: any handler registered remains
in effect when G2 restarts.

Note The following procedures provide low-level message board message handling.
More sophisticated techniques are available through GFR. See the G2 Foundation
Resources User’s Guide for details.
59

To register a message board handler:

 g2-register-message-board-message-handler
(procedure: class procedure)

Registers the procedure or method to handle all message board errors.

To deregister a message board handler:

 g2-deregister-message-board-message-handler
()

Deregisters the currently registered message board message handler.

To get the message board handler:

 g2-get-message-board-message-handler
()
-> handler: class procedure | false: truth-value

Returns the procedure or method currently registered as the message board
message handler, or false if none is registered.

Each of these procedures is described in more detail in the G2 System Procedures
Reference Manual.

Organizing KB Knowledge
As you add knowledge to your KB, you will find it important to organize that
knowledge in various ways and for different purposes.

G2 provides three ways to organize knowledge globally in a KB: by class,
by workspace, and by module. Each of these organizing techniques is global,
because you can reference each item in your KB only by its class, only by its
location within the KB’s workspace hierarchy, or only by its association with a
module.

Distinguishing Functional Behavior by Class

Use the organization of the classes defined in your KB as a primary determinant
of how your KB behaves. That is, your KB’s programmatic behavior should take
advantage of the object-oriented feature of inheritance that is built into G2’s class
hierarchy. Because a G2 developer has control over the organization of only the
KB’s user-defined classes, it is especially important that the organization of these
classes reflect your application’s functional requirements.

A standard way to use the class-orientation of your KB’s items is to use methods.
By coding your KB’s programmatic activities as methods, you can reuse the
procedural knowledge that is associated with a more generic class as you define
60

Organizing KB Knowledge
the procedure knowledge required for a more specific class. For more information
about using G2’s methods, see Methods.

You can also use the inheritance paths defined in the KB’s class hierarchy to
configure the behavior of the KB’s items. Instance configurations affect the default
behavior of the KB’s items, based on each item’s class. For more information
about instance configurations, see Configurations.

Using Workspaces to Organize KB Knowledge

For your own convenience, you can organize your KB’s items into collections by
placing each upon a workspace (that is, upon items of the kb-workspace class).
A workspace both contains a set of items (some of which can have their own
subworkspaces) and establishes their arrangement as a set when the workspace is
displayed. For more information, see Workspaces.

Although you can organize your KB’s items in any manner you prefer, you
should develop guidelines for how you arrange your KB’s items among a set of
workspaces.

For instance, if you are developing your KB to use methods as the primary
programmatic items, you might create one workspace for each user-defined class.
Upon this workspace you might place:

• The definition item for the class.

• Each method that you define for the class.

• The rules that refer only to instances of the class.

• Free texts and other items that contain the unchanging information for this
workspace’s methods and rules.

Partitioning Knowledge into Modules

G2 supports a further level of organization for your knowledge base, called
modules. Each module is an item that is associated with its own set of system
tables and with one or more top-level workspaces. Partitioning a large knowledge
base into modules allows you and others to develop and maintain the modules in
a more manageable fashion.

After you create a module in the current KB, you can save, as a unit, the module
item, its system tables, its associated workspaces, and all items below those
workspaces in the KB’s workspace hierarchy, into a distinct KB file.

You can design your modules to have well-defined dependencies upon each
other, or to have no dependencies upon each other at all (other than directly
required module dependencies). For more information, see Modularized KBs.
61

Planning Your Work
G2 offers many features that support building real-time applications. As you
design your G2-based application, you must evaluate how to put these features to
work. This section takes a broad view of G2’s features and indicates why and how
they are relevant to your work as an application developer.

Configuring the Default Developer’s Environment

As you develop your KB, keep in mind that you can customize the interface to the
KB’s items either by suppressing or by supplementing the default features of G2’s
developer’s environment. G2 allows you to accomplish this by declaring
configurations that are stored with your KB.

Whether you do this, and to what degree, depends upon the intended users of
your KB. For instance, you might develop a set of KBs for use only by other G2
developers; whereas, another G2 developer might develop a set of KBs that are
intended to work together as a complete application. The features that another G2
developer requires (such as editing procedures, changing the definitions of
classes, and so on) are probably inappropriate to deliver to users of most
applications.

Prototyping or Engineering

You can use G2 to very quickly develop a working prototype of an application.
G2 easily supports a prototyping development approach to developing your
application. G2’s key features, such as its syntax-driven Text Editor, its
structured-English programming language, its iconic and object-oriented class
hierarchy, and its incremental development environment, all support rapid
development and deployment of applications. You can complete your work in a
small fraction of the time required using other software development
technologies.

However, your application will also benefit from your taking a more disciplined,
engineering-oriented approach to your application development project. For
instance, developing a robust class hierarchy, with the associated data servers,
methods, rules, and configurations that support the application’s items, can
consume a significant portion of a project’s time and effort.

Identifying Roles for Workspaces

You can create a set of workspaces where you capture and organize the
definitions and items that form the backbone of your application. Typically, these
workspaces should not be available to the application’s users.

Thus, while designing your application’s user interface, you must determine how
to use workspaces to display the KB’s knowledge to the application’s users. For
62

Planning Your Work
instance, your KB might be designed to contain static workspaces: workspaces of
fixed sizes and with more or less fixed relationships to each other. The application
uses these workspaces as the areas within with to display the KB’s knowledge
and within which to allow user interaction.

Alternatively, you could design your KB to create and display workspaces and
their contents dynamically. That is, the stored KB that you deliver as the
application might not include any static, user-visible workspaces at all. Rather, at
run-time the application creates the workspaces that the user must see based only
on run-time conditions.

Identifying the User Interface Paradigm

Your application can utilize the user interface features of the G2 developer’s
environment, or you can develop a different user interface paradigm. That is,
your KB can display menus for its items in the same manner as G2 does by
default. Or, you can design new kinds of operations and items that implement the
same features in what is called a direct-manipulation paradigm.

One approach is to create items that display their primary knowledge graphically
and directly. For many kinds of applications, you can create items with which the
user interacts directly, without the need for selecting commands from menus.

For example, assume that you have developed a class of items that can be the
target of three operations: move this item, create a copy of this item, and delete
this item. You can use G2 actions and configurations to accomplish this, without
requiring the use of a menu-based interface. That is, you can configure the items
to respond to these user actions:

• Move this item operation: When the user clicks the mouse pointer over an
item, attach that item to the mouse pointer. Drop the item upon the workspace
where the user next clicks the mouse.

• Create a copy of this item operation: When the user clicks the mouse pointer
over an item while also holding down the Shift key, create a copy of that item
and attach it to the mouse pointer. Drop the new item upon the workspace
where the user next clicks the mouse.

• Delete this item operation: When the user clicks the mouse pointer over an
item while also holding down the Control key, delete that item.

Under this interface paradigm, where the user drops the item, such as within a
particular workspace, can also signify an operation on that item.
63

User Interface Utilities

G2 includes a number of utilities that provide specific user interface capabilities:

• GUIDE/UIL helps you implement your application’s dialogs, navigation
buttons, and data validation features with its own time-saving graphical
interface. For information see the G2 GUIDE User’s Guide and the
G2 GUIDE/UIL Procedures Reference Manual.

• G2 Menu System (GMS) provides extensive capabilities for defining menu
bars that appear on workspaces and popup menus associated with items. For
information see the G2 Menu System User’s Guide.

• G2 Dynamic Displays (GDD) provides a number of attractive dials, meters,
and displays, based on G2 power icons, which you can use directly or as
direct superior classes. For more information, see the G2 Dynamic Displays
User’s Guide.

• G2 Developer’s Interface (GDI) enables you to develop a Windows-like GUI
using classic G2 capabilities. For information see the G2 Developer’s Interface
User’s Guide.

• G2 XL Spreadsheet (GXL) enables you to develop scrolling tabular displays
for viewing and editing lists, arrays, and complex data structures. For more
information see the G2 XL Spreadsheet User’s Guide.

• G2 Online Documentation (GOLD) is a set of related modules that implement
online documentation and context-sensitive help, based on external browsers
and HTML. For more information, see the G2 OnLine Documentation User’s
Guide and the G2 OnLine Documentation Developer’s Guide.

Other Developer Utilities

G2 provides a number of other useful utilities for the G2 developer:

• G2 ProTools provides advanced G2 developer tools for speeding up
development, testing, debugging, documenting, and deployment.

• G2 Foundation Resources (GFR) establishes standard approaches to several
important design and implementation issues commonly encountered in
building inter-operable modules. GFR helps to assure the compatibility of
modules with modules written by other authors who also use GFR.

Identifying Data Servers for Variables

Typically, the variables in your KB represent a data point, or series of data points,
collected over regular time intervals. Also, some variables represent data points
that are collected outside of G2. One important part of the design of your G2-
based application is to identify the sources of data, or data servers, for each class
of variables in your KB.
64

Planning Your Work
Variables can have either internal or external data servers. External data service is
a more complex task for your KB to perform than internal data service. For this
reason, determining the minimum number of variables that must use an external
data server is also a key design decision.

For more information about variables, see Variables and Parameters.

Using Internal Data Servers

G2’s internal data servers are the G2 inference engine and the G2 Simulator. If a
variable’s data server is the inference engine, G2 allows the variable to receive a
new value via conclude actions (including those that result from chaining among
rules) and from specific formula items. If a variable receives data service from the
simulator, G2 associates the variable with a simulation formula, which provides
its value.

When a variable has been defined to receive internal data service, your KB can
dynamically alternate its service between the G2 inference engine and the G2
Simulator. This allows your KB to respond more flexibly to situations in which a
simulated value is just as useful to the application as a value obtained from
another source.

The G2 Simulator is a superseded capability. For more information, see
Appendix F, Superseded Practices.

Using External Data Servers

G2’s external data servers are other G2 processes, G2 Gateway bridge
applications, and GFI files. If a variable receives external data service, your KB
cannot dynamically change its data service. However, your KB can conclude the
value of an internally data-served variable from another variable that is externally
data-served.

External data service takes place asynchronously to the rest of your KB’s
processing; thus, the activity that your KB must perform to accommodate external
data service is inherently more complex than internal data service. For instance,
to support external data service, you must create and include interface items in
your KB.

For more information, see G2-to-G2 Interface, G2 Gateway, and the G2 Gateway
Bridge Developer’s Guide. GFI is a superseded capability. For information about it,
see Appendix F, Superseded Practices.
65

Using Timekeeping Features

Keeping time is central to how G2 performs its tasks. G2 has awareness of three
streams of time: real-time, scheduled time, and simulated time.

Querying the Real Time

After G2 starts and as long as it runs, G2 has awareness of the real time. G2 has
this awareness by querying your computer’s own clock. G2 uses the capabilities
of your computer’s operating system to perform these queries. G2 has as precise a
grasp of the real time as your computer and its operating system provide.

Scheduling G2’s Work

G2 schedules its own work, and the work it performs when running the
current KB, using a second time stream. You can adjust the granularity of this
time stream in the minimum-scheduling-interval attribute of your KB’s Timing
Parameters system table. Its granularity determines how often G2 checks whether
there is more work for it to do.

G2 manages its own work by dividing it into tasks, by assigning a priority to each
task, and by scheduling a given set of prioritized tasks to be performed at a
particular point in future time. G2 calculates that future point in time as the
current time plus a multiple of the minimum scheduling interval.

G2 performs only the work that has been scheduled for the current scheduling
interval. After G2 performs that work, G2 waits, by default, for the remainder of
the minimum scheduling interval (if any) to pass, then it begins performing the
tasks scheduled for the next interval.

G2 keeps this time using the G2 clock. G2 increments the G2 clock each time it
moves from one minimum scheduling interval to the next.

G2 manages its work in this way, because it must manage several threads
(independently running G2 tasks) of data processing that take place more or less
simultaneously. The tasks that G2 must constantly schedule and perform include,
but are not limited to:

• Responding to input from the user.

• Performing each procedure that has been started.

• Performing a procedure that has been called by a started procedure.

• Checking whether a running procedure has exceeded its execution time limit.

• Invoking each rule that is defined to be scanned during this time interval.

• Invoking a rule due to detecting an event.

• Invoking a rule due to chaining.

• Determining whether any variable’s value has expired.
66

Planning Your Work
• Determining whether any variable expects a new value.

• Inputting data received from an external data server.

Thus, you can set your KB’s knowledge so that G2 checks more often or less often
whether there is new work waiting to be done.

Determining the Minimum Scheduling Interval

You determine the right minimum scheduling interval for your KB by
determining the minimum interval of real time that is significant to your
application. For instance, perhaps one class of variables in your KB must be
updated as often as once per 0.5 seconds, but none of its rules must be invoked
more often than once per 0.5 seconds. Thus, for this KB there is no need to set the
minimum scheduling interval to a value less than 0.5 seconds. For this KB, doing
so would increase G2’s own overhead while adding no more capability to the
KB’s time-based processing.

You can also adjust the rate at which this second time stream elapses. The
scheduler-mode attribute of the Timing Parameters system table contains this
setting. Specifically, this determines whether G2 waits for the entire minimum
scheduling interval to elapse, before moving on to its set of tasks that are
scheduled for the next interval.

Use this feature to cause G2 to run your KB unconstrained by the granularity of
the minimum scheduling interval. For a KB whose processing does not depend,
or depends only minimally, upon the occurrence of events upon which G2 must
wait an entire minimum scheduling interval, setting the KB to run in the as fast
as possible scheduler mode allows G2 to move from minimum scheduling
interval to interval (and thereby increment the G2 clock) as fast as G2 can perform
its scheduled work without waiting for real-time based events.

For more information about the G2 scheduler and the G2 clock, see Task
Scheduling.

Establishing Simulated Time

G2 can also maintain a distinct time stream for each simulation model item
defined in the KB. Your KB can establish a distinct current time for each
simulation model, to allow the G2 Simulator to represent the occurrence of events
independently of the real time. You use G2 system procedures to set and
manipulate the time streams of simulation models.

The granularity at which G2 increments this time stream is determined by the
default-simulation-time-increment attribute of the Simulation Parameters system
table. The rate at which G2 allows this time stream to elapse is determined by the
scheduler-mode attribute of the Timing Parameters system table.

The G2 Simulator is a superseded capability. For more information, see
Appendix F, Superseded Practices.
67

Establishing Naming Conventions

As for applications coded in other programming languages, you must assign
names and identifiers to many entities in your KB, and you should establish
conventions for how you derive and assign those names.

G2 allows more than one item to have the same name. However, G2 requires that
each user-defined class and relation definition have a unique name.

If you are developing a modularized KB, you might prefer to establish module-
based naming conventions for classes, attribute names, user interface items,
procedures, and methods.

For more information about naming conventions, see the G2 Developer’s Guide.

Considering Natural Language Support

As you use G2 to implement an application, you can configure G2’s developer’s
environment to display G2’s default menu choices and to display the default text
of buttons in the Text Editor and other G2 facilities, using a particular natural
language.

You can also use the features of G2’s Text Editor to enter a text value that contains
any character in any natural language that G2 supports. Using this feature, you
can also define language-specific versions of each of your application’s custom
menu choices.

You can make this Text Editor feature available to your application’s users,
so that they can enter text into the application in a particular language (English or
not), or in any language that G2 supports.

These features are described in Natural Language Facilities.

You can also use ASCII characters to signify any character in any natural
language that G2 supports. This scheme for signifying non-English characters is
defined as the Gensym character set, which is described in G2 Character Support.
Use the Gensym character set to specify text outside of G2 that must be input to
G2, and to translate text containing non-English characters that G2 outputs for use
by other applications.

Also, Telewindows users can connect to G2 and can operate its current KB such
that each displayed Telewindow displays its menu text and G2’s system-defined
text in a distinct G2-supported natural language. This feature is described in
G2-Windows, and in Telewindows Support.
68

Part II
Global G2
Components
Chapter 3: Knowledge Bases

Shows how to work with the current KB, save the current KB, and load a KB.

Chapter 4: Workspaces

Shows how to use workspaces to organize your KB’s items.

Chapter 5: Modularized KBs

Describes how to partition your KB into modules.

Chapter 6: System Tables

Describes the use of system tables to set global preferences.

Chapter 7: Configurations

Describes how configurations override the default behavior of items.

Chapter 8: G2-Windows

Describes how G2 associates g2-window items with visible windows.
69

70

3

Knowledge Bases
Shows how to work with the current KB, save the current KB, and load a KB.

Introduction 72

Contents of a KB 73

Operating the Current KB 73

Saving Your KB Knowledge 80

Loading a KB 95

Saving Permanent and Transient Data in Snapshot KBs 101

Merging a KB File 107

Working with Duplicate Items in KBs 108

Detecting Conflicting Class-Definitions 111

Automatically Resolving Conflicting Class-Definitions 112

Manually Resolving Conflicting Class-Definitions 114
71

Introduction
A knowledge base, or KB, is the container in which you collect and organize a set
of knowledge about real or virtual entities.

A KB contains knowledge in the form of items which have attributes. Attributes
can also be items as well as simple or component values. The items in a KB
represent a set of application knowledge. G2 Items describes the purposes and
features of items.

A running G2 process provides an interactive environment that a developer uses
to work with knowledge bases. The Developer’s Environment describes the
features provided by the G2 developer’s environment.

You use G2 to work with a KB as follows:

• A running G2 process reserves part of its memory to contain one KB, called
the current KB. A G2 process always works with one and only one
current KB.

• You can direct G2 to save the KB into one or more files called KB files.

A KB can contain executable items, which are items that specify actions that G2
performs on the information contained in the KB.

You use the G2 developer’s environment to operate a KB. To operate a KB means
to start, pause, resume, reset, and restart the KB. You can operate your KB
programmatically, for example, within rules and procedures.

You work with the current KB and with KB files in these ways:

• You can load a previously saved KB file, so that it replaces the contents of the
current KB.

• You can merge the contents of a saved KB file into the current KB.

• You can clear the current KB by removing all application knowledge from it.

• You can save the current KB to KB files that G2 stores on a storage device.

• You can commit and update source-code controlled files in the current KB.

• You can capture the current KB, along with all its run-time information, to a
snapshot file.

• You can warmboot a KB from a KB snapshot file to run a captured KB as if
resumed at the time its snapshot file was written.

There are other ways to work with a modularized KB, such as saving the top-level
module to a file. Modular KBs are described in Modularized KBs.

Finally, each KB module has a set of system tables. These tables store preferences
that affect how G2 uses the KB’s application knowledge when the KB is loaded.
72

Contents of a KB
Contents of a KB
A KB contains knowledge in the form of items which have attributes. A KB itself
is not an item.

Items

A KB can contain any number of items, subject to the memory and disk storage
limitations of your computer.

The items in a KB can represent both permanent and transient knowledge. For a
description of how items represent knowledge, see Understanding the
Knowledge Contained in Items.

System Tables

Each KB contains at least one set of system tables. System tables contain
information that determines the default behavior of a G2 process. You can specify
new values for many system table parameters, or you can use the default values.
For a description of each system table and their attributes, see System Tables.

The system tables that are currently active for a KB are called the installed system
tables. The behavior of G2’s run-time environment is largely defined by the set of
installed system tables.

A modularized KB can contain more than one set of system tables when the KB
consists of more than one module. Each module has its own set of system tables.

• If you save a modularized KB into separate KB files, each KB file contains its
own set of system tables.

• If you save an inconsistently modularized KB into a single file, or if you
intentionally save a modularized KB into a single file, the KB file contains one
set of system tables for each module in the KB.

For more information on modularized KBs, see Working with Modularized KBs.

Operating the Current KB

A running G2 process always contains a KB, called the current KB, in its memory.
You operate the current KB by starting, pausing, resuming, resetting, or restarting
it. You can operate the current KB by using the G2 menus or programmatically.

The Initial Contents of a KB

By default, a new G2 process contains the following system-defined items:

• A g2-window item associated with the G2 process.
73

• A g2-window item for each connected Telewindows process, if any.

• A ui-client-session item for each connected G2 JavaLink process, if any.

• A complete set of system tables.

When a new G2 process starts, G2 initializes all the attributes of the system-table
and window items to their default values. You can customize the attributes of
these items, and you can add knowledge to the KB by interactively creating items.
When your KB contains executable items, you can programmatically add and
change KB knowledge.

You can save your KB at any point. When you next load your KB, G2 restores
your customized settings and added KB knowledge.

Clearing the Current KB

Sometimes you may wish to clear the knowledge you have added to the current
KB, and begin KB development again. The clear action reverts the contents of the
current KB back to its initial set of system-table and window items. The attribute
values of these items regain their default values with the exception of the Server
Parameters system table which retains its non-default values because it is
associated with the G2 process and not with a particular KB.

Caution Clearing the current KB cannot be undone. To save the knowledge in the current
KB before clearing it, you must save it to one or more KB files.

To clear the current KB:

 Select Main Menu > Miscellany > Clear KB.

A clear-KB action is implicit when you specify a KB load because G2
automatically clears the current KB before loading the new one. When you merge
a KB, the current KB is not cleared.

Starting the Current KB

Starting the current KB initializes all executable items so they can run. You can
start the current KB after launching a new G2 process or after resetting the KB.
After you start the current KB, it continues to run until you pause, reset, or
restart it.

To start the current KB:

 Select Main Menu > Start.
74

Operating the Current KB
Pausing and Resuming the Current KB

Pausing a KB means temporarily suspending the execution of all items. You can
pause the current KB only if it is already running.

You can still create items and interact with them in most ways when a KB is
paused. However, certain interactions are restricted when a KB is paused.

Once you have paused a KB, you can resume running it to continue execution.
You can pause and resume a KB interactively or programmatically.

To pause the current KB interactively:

 Select Main Menu > Pause.

To pause the current KB programmatically:

 Execute the pause knowledge-base action.

To resume a paused KB:

 Select Main Menu > Resume.

To resume the current KB programmatically:

 Execute the resume knowledge-base action.

Resetting the Current KB

Resetting the current KB:

• Stops the knowledge base from running.

• Reinitializes all variable and parameter values.

• Returns all items to their initial positions.

• Restores the default colors of all items.

• Deletes any transient items.

• Removes any relation instances that you have established, unless the relations
are permanent.

You can reset the current KB at any time.

To reset the current KB interactively:

 Select Main Menu > Reset.

To reset the current KB programmatically:

 Execute the reset knowledge-base action.
75

Restarting the Current KB

Restarting the current KB starts the KB again as if it had been reset. Restarting is
the same as selecting Main Menu > Reset, then selecting Main Menu > Start, in
succession.

To restart the current KB:

 Select Main Menu > Restart.

Determining the Run-State of the Current KB

Because G2 executes, or runs, the current KB, we refer to the current KB’s
run-state. Run-states affect the contents of a KB.

The next table summarizes how menu choices on the Main Menu affect the current
KB run-state:

G2 displays only the Main Menu choices that are valid for the current run-state.
For instance, if the current KB is paused, the Main Menu displays the Restart,
Resume, and Reset choices, but not the Start and Pause choices.

Main Menu
Choice Purpose

Resulting
Run-State

Start Start executing the current KB after it is
loaded or reset.

Running

Pause Stop executing the current KB, but allow
execution to be resumed.

Paused

Resume Continue executing a paused current KB. Running

Reset Initialize all information in the current KB. Initial/
Reset

Restart Reset and start executing a current KB that is
already running or paused.

Running
76

Operating the Current KB
This diagram shows the Main Menu choices that transition between run-states.

By default, G2 does not confirm run-state changes. Set the confirm-run-state-
changes attribute in the Miscellaneous Parameters system table to yes to post a
confirmation dialog for any attempt to start, restart, reset, resume, or pause G2.

The Initial/Reset Run-State

In the initial/reset run-state, a KB is ready for running. In this run-state, you can
interactively change all knowledge in the KB.

In this run-state, a KB contains only permanent knowledge. For a description of
permanent items and their initialized state, see G2 Items.

From the initial/reset run-state, a KB can transition only to the running run-state.

The Running Run-State

In the running run-state, G2 is performing the tasks specified in the current KB.
G2 detects events that occur in real time, performs actions specified in rules,
executes procedures, seeks data for variables, and so on. G2 performs these tasks
as a series of operations dispatched and controlled by the scheduler, as described
in Task Scheduling.

When the KB is running, it can contain both updated permanent knowledge and
transient knowledge. Transient knowledge consists of a KB’s transient items and
the transient information associated with permanent items. For a description of
transient items and the transient information associated with permanent items,
see G2 Items.

From the running run-state, a KB can transition to the initial/reset run-state or to
the paused run-state.

Initial/Reset

Running

Paused

Start

Pause

Reset

Resume

Selecting Restart is
Note:

equivalent to selecting
Reset, then selecting
Start.
77

The Paused Run-State

In the paused run-state, G2 suspends the execution of all tasks specified by the
KB. G2 retains all information about updated permanent and transient
knowledge. When in this state, you can resume running, at which time G2
continues performing suspended tasks.

From the paused run-state, a KB can transition to the initial/reset run-state or to
the running run-state.

Summary of Run-States

For each part of a KB’s knowledge, the following table summarizes its condition
under each run-state:

Status of Knowledge During Each Run-State

Item Knowledge Initial/Reset Running Paused

Attributes of
items

Initial: Contain
default values.

Reset: contain the
most recently
assigned values.

Contain most
recently assigned
values.

Contain most
recently assigned
values.

Variables Values revert to
initial values.

Do not have
collection times,
expiration times,
simulation values,
histories, or
simulation histories
(as applicable).

Conclude initial
values when
activated.

After activation,
have current
values, collection
times, etc. (as
applicable).

Have current
values, collection
times, etc. (as
applicable).

Parameters Values revert to
initial values.

Do not have
histories.

After activation,
have current
values.

Have current
values.

Arrays and lists Can have contents
if permanent.

Can have contents. Can have contents.

Relation
instances

Can exist if
permanent.

Can exist. Can exist.

Transient items Do not exist. Can exist. Can exist.
78

Operating the Current KB
The G2 Simulator, which can provide simulation values and simulation histories,
is a superseded capability. For more information, see Appendix F, Superseded
Practices.

Rules,
procedures,
formulas, and
functions

Do not execute, and
cannot resume
previous execution.

Execute. Do not execute, but
can be resumed.

Definitions Can be edited. Can be edited. Can be edited.

User-interface
items, such as,
buttons

Show a menu when
clicked.

Operational. Show a menu
when clicked.

Internal and
external data
service and
polling

Neither data service
nor polling takes
place; external data
service connection
closed; new
external data
service connection
not allowed.

All data service and
polling takes place;
new external data
service connection
allowed.

Data service does
not take place;
polling paused;
external data
service paused;
new external data
service connection
allowed.

Item registration
status for external
data service

No new
registrations;
existing
registrations
removed.

New registrations
allowed; existing
registrations
retained.

New registrations
allowed; existing
registrations
retained.

Internal and
external message
service

Neither takes place. Both take place. Message input;
message output
paused.

Status of Knowledge During Each Run-State

Item Knowledge Initial/Reset Running Paused
79

Saving Your KB Knowledge

When you add knowledge to a KB, you should save it periodically to a
knowledge base consisting of one or more files. Each module is saved in its own
KB file. By default, the KB data that is saved in your knowledge base does not
include transient knowledge; instead, it is the permanent knowledge that persists
after a reset action has deleted runtime transient knowledge.

The mode most frequently used for saving KB knowledge is saving permanent
data to modular KB files. G2 also supplies a system procedure you can use to save
both the transient and permanent data in your running KB to a single file called a
KB snapshot file. Permanent and transient knowledge is described in
Distinguishing Permanent, Transient, and Current Knowledge. Information on
saving a KB snapshot file is given in Saving Permanent and Transient Data in
Snapshot KBs.

G2 saves your KB modules in a compressed format consisting of ASCII characters.
KB files are fully portable across all G2-supported platforms.

The capability to save a KB depends upon the license associated with your G2
product. For information about G2 licenses, see Licensing and Authorization.

Saving the Current KB

You can save the current KB interactively or programmatically. You can save it
whether it is running, paused, or reset.

To save the current KB programmatically:

 Use the saving system procedures described in KB and Module Operations in
the G2 System Procedures Reference Manual.

To save the current KB interactively:

 Select Main Menu > Save KB.

The Save dialog that appears differs depending on whether your current KB is
modularized or unmodualized. To be minimally modularized, a KB must have
one named module, and all top-level workspaces must be assigned to
that module.

You name a module by editing the top-level-module attribute of the Module
Information system table, and you assign top-level workspaces by editing the
module-assignment attribute of kb-workspaces. To organize your KB into
separate modules, see Creating a Module Hierarchy.
80

Saving Your KB Knowledge
Saving a Modularized KB

If the current KB was loaded from saved KB files, each module’s Saving
Parameters system table includes the current-file-for-module attribute, which tells
you the file path from which the module was loaded.

You save a modularized KB in the Save dialog.

To save a modularized KB:

 save module module-name as (default-quoted-file-path by default)
[{overriding-file-name-symbol | overriding-quoted-file-path}]
[, including all required modules]
[, using clear text]

The syntax in the first line is required; the other three lines contain
optional phrases. When using clear text, the saved KB is in XML format using the
.xml extension.

The following example Save dialogs are based on saving a newly developed
modularized KB. The top-level module is named space, and space has a single
required module called definitions. By default, the save dialog for an unsaved KB
comes up with syntax to save the top-level module of your current KB to a file
path that is either your home directory or the directory from which you launched
G2. For example, the following unedited dialog saves the top-level module space
to a default file path:

Tip Place KB modules you do not wish to have overwritten in read-only directories,
and set your module search path to include all of the pathnames of your KB
directories.

To save a required module instead of the top-level module:

 Edit the module-name and default-quoted-file-path in the first line of the edit box
to another module name and another file path.
81

This example saves the definitions module to another file path:

To specify alternative file paths using overriding grammar:

1 In the save dialog, place your cursor after the closing parenthesis.

2 Type in an alternative file name or an alternative quoted file path.

For example:

Although G2 allows you to enter any file-name extension, it actually saves your
modules using the .kb extension (or .xml if clear text is used).

To additionally save all required modules:

 Select the including all required modules phrase.

Saving an Unmodularized KB

You save a modularized KB in the Save dialog.

To save an unmodularized KB:

 save current KB as (quoted-file-path by default)
[{overriding-file-name-symbol | overriding-quoted-file-path}]

You can accept the default-quoted-file-path in the edit box or edit it to another file
path. Alternatively you can supply an overriding file-name symbol or quoted file
path by typing it after the right parenthesis in the edit box.
82

Saving Your KB Knowledge
For example:

Backup Copies of KB Files

When G2 writes a KB module to a filename that already exists in the same
directory, it first appends a tilde (~) to the existing file before saving the
current KB.

For example, suppose you save a module to a file named classes.kb. If you later
save a module to that same filename and directory, G2 changes the original file to
classes.kb~ and saves the current module to classes.kb. G2 saves only one
backup copy.

Platform File Systems and KB File Names

A KB’s filename must be acceptable to the file system that stores the KB, and to
the G2 dialogs that load, save, and merge KBs. To insure that KB filenames work
under all conditions, they should:

• Contain only the characters A-Z, a-z, 0-9, dot (.) and underscore (_).

• Have at most eight characters in the filename proper, followed by a dot and a
suffix of at most three characters.

• Use the dot character only to indicate a suffix.

Filenames that conform to the described syntax work anywhere. Depending on
the uses of your KB, you may be able to relax these restrictions, but you should do
so only if you are certain that no incompatibility with an unanticipated use can
occur. For example, hyphens (-) can appear in a KB filename if the KB will never
be stored on CD-ROM, where the ISO 9660 standard precludes them; and blank
spaces in file and directory names are supported by the NTFS and FAT32 file
systems on Windows platforms, but the parsing methods on Unix platforms
discourage their use.
83

Using Comments

You can add comments to a KB by editing an attribute of the Saving Parameters
system table. See Adding Comments to a KB.

Using Change Logging for Version Control

G2 provides a comprehensive version control system, which leverages the G2
change log facility, to allow:

• Tagging attributes of G2 objects that support change logging (for example,
procedures, rules, class definitions) within a module, as well as tagging all the
attributes that support change logging of all items in a module.

• Reverting change-loggable attributes of individual items or of all items in a
module to a previous revision. Note that this only works on items that still
exist; G2 does not preserve the change log of deleted items.

• Deleting change log entries.

• Commenting change log entries.

For information on... See...

Enabling change logging for a KB Using KB Change Logging.

System procedures you can use for
version control

Version Control in the G2 System
Procedures Reference Manual.

Using the Inspect facility for
version control

Version Control.
84

Saving Your KB Knowledge
The following examples refer to the following item named my-umc, whose
change log shows edits to the names, label, action, and applicable-class attributes
of the item, including three revisions of the label attribute:

Tagging Change Log Entries

Here is a generic procedure that tags the change log entry of an item with a given
identifier:

tag-change-log-entry (item: class item, attribute-name: symbol, identifier: structure,
new-tag: symbol)
resulting-struct: structure;
begin

resulting-struct = call g2-tag-change-log-entry(item, attribute-name, identifier,
new-tag);

post "[resulting-struct]"
end

This action button tags the change log entry for the names attribute of my-umc
with the given timestamp with the symbol G283R0:
85

Here is the resulting change log and message board:

Getting Change Log Entries

Here is a generic procedure that posts the change log entry for an attribute of an
item with a given identifier:

post-change-log-entry (item: class item, attribute-name: symbol, tag: structure)
result: structure;
begin
 result = call g2-get-change-log-entry (item, attribute-name, tag);
 post "[result]"
end

This action button gets the change log entry for the names attribute of my-umc
tagged with the symbol G283R0:
86

Saving Your KB Knowledge
Here is the resulting message board:

This action button gets the change log entry for revision 2 of the label attribute of
my-umc:

Here is the resulting message board:

Deleting Change Log Entry Tags

Here is a generic procedure that deletes the change log tag for an attribute of an
item:

delete-change-log-tag (item: class item, attribute-name: symbol, new-tag: symbol)
resulting-struct: structure;
begin

resulting-struct = call g2-delete-change-log-tag(item, attribute-name, new-tag);
post "[resulting-struct]"

end
87

This action button deletes the change log entry tag G283R0 for the names
attribute of my-umc:

Here is the resulting change log and message board:

Deleting Change Log Entries

Here is a generic procedure that deletes a change log entry for an attribute of an
item with a given identifier:

delete-change-log-entry (item: class item, attribute-name: symbol, identifier: structure)
succeeded: truth-value;
begin

succeeded = call g2-delete-change-log-entry(item, attribute-name, identifier);
if succeeded then

post "deleting entry succeeded!"
else

post "deleting entry failed!"
end
88

Saving Your KB Knowledge
This action button deletes revision 2 of the change log entry for the label attribute
of my-umc:

Here is the resulting change log:

Commenting Change Log Entries

This action button adds a comment to revision 1 of the label attribute change log
entry for my-umc:

Here is a generic procedure that adds a comment to a change log entry for an
attribute of an item with a given identifier:

post-change-log-entry-comment(item: class item, attribute-name: symbol,
id: structure)

comment: text;
begin

comment = call g2-get-change-log-entry-comment(item, attribute-name, id);
post "[comment]"

end

This action button adds a comment to revision 1 of the change log entry for the
label attribute of my-umc:
89

Here is the resulting message board:

Reverting Change Log Entries

Here is a generic procedure that reverts the change log entry for an attribute of an
item with a given identifier:

revert-change-log-entry (item: class item, attribute-name: symbol, identifier: structure)
resulting-struct: structure;
begin

resulting-struct = call g2-revert-change-log-entry(item, attribute-name, identifier);
post "[resulting-struct]"

end

This action button reverts the label attribute of my-umc to revision 0:
90

Saving Your KB Knowledge
Here is the resulting change log and message board, thereby adding a new entry
to the change log:

Tagging All Items in a Module

This action button tags the current version of all attributes of all items in the
module named top with the symbol G283B0:

Here is the resulting change log for my-umc:
91

Performing “Diff” Operations

You can perform a “diff” operation on two texts or two change log entries.

For information on the system procedures you can use for text “diff” operations,
see Version Control.

For example, this action button performs a “diff” on the change log for put-up-
text-box-dialog:

This procedure calls spawn-diff, which performs a “diff”, and show-results, which
displays the results in a text box within a custom dialog:

do-diff-test (item-to-diff: class item, g2-win: class g2-window)
whole-diff-text: text;
begin

whole-diff-text = call spawn-diff(item-to-diff);
call show-results(whole-diff-text, g2-win)

end

This procedure calls g2-diff-texts on revision 0 and revision 1 of an item, and
returns the diff-output of the return structure:

spawn-diff (item-to-diff: class item) = (text)
all-diffs: value;
user-name: value;
ndiffs: integer;
result: structure;
v0, v1, whole-diff-text: text;
begin

all-diffs = the change-log of item-to-diff;
ndiffs = the number of elements in all-diffs;

user-name = call g2-name-for-item(item-to-diff);

if ndiffs = 0 then
post "[user-name] has no change-log"

else if ndiffs = 1 then
post "[user-name] has only one revision; cannot diff"

else
post "[user-name] has [ndiffs] revisions total";

v0 = the text-value of all-diffs[0];
v1 = the text-value of all-diffs[1];
result = call g2-diff-texts(v1, v0);
whole-diff-text = the diff-output of result;
return whole-diff-text

end
92

Saving Your KB Knowledge
Here is the result of doing the “diff” test on put-up-text-box-dialog:

Saving a Running Current KB

If you save a KB while it is running, G2 saves the permanent knowledge in the KB
as of that moment in time, regardless of any changes made to the knowledge
thereafter. The G2 scheduler allows KB processing to take place normally; G2
tasks of a higher priority take place before G2 tasks of lower priorities.

In addition, when G2 starts to save the KB, it delays any KB processing that
changes any part of the permanent knowledge, such as deleting a workspace,
until the KB is completely and successfully saved. It also postpones all other
processing of lower priority than the delayed processing until the save is
complete. In this way, G2 preserves consistency in the current KB.

The G2 scheduler manages the task of saving a KB while it is running. The
scheduler sets the priority of tasks based on the value of the default-priority-for-
runtime-saving attribute in the Saving Parameters system table.
93

Note The default value of the default-priority-for-runtime-saving attribute is priority 8,
which causes saving while running to execute as a relatively low priority task,
known as a background task.

For example, when you save a KB while it is running, G2 processes rules
normally, because the default priority for processing rules is priority 1.

Using System Procedures that Pause G2 before
Saving Your KB

There are three system procedures in sys-mod.kb that save your KB by first
pausing G2, saving your KB, and then resuming G2. Refer to KB and Module
Operations in the G2 System Procedures Reference Manual.

Saving the State of Workspaces

A KB file or KB snapshot file stores the following information about your
KB workspaces:

• The scale and absolute position within the G2 window.

• Which workspaces are visible.

• The back-to-front ordering of the visible workspaces.

Tip For more information about how G2 manages the appearance of workspaces in
windows, see the Positioning a Workspace within its Window.

Supporting Source-Code Control Systems

When you save a KB to the same KB file from which it was loaded, G2 updates
only a portion of the KB file itself. This allows an industry-standard source-code
control system (SCC) to detect which characters in the updated file represent the
most recent changes.

Note When checking out a KB file using a SCCS, do not use keyword expansion;
otherwise, the KB file will be corrupted. For example, if you use the RCS
application, specify the -ko argument when checking out a KB file.
94

Loading a KB
Loading a KB

Loading a knowledge base means replacing the current KB with knowledge read
from any KB files.

Note When you load a KB, G2 replaces the entire current KB with the new KB.

G2 loads a KB by reading from saved KB files. Saving KBs is described in Saving
Your KB Knowledge and Saving Permanent and Transient Data in Snapshot KBs.

The procedure for loading a KB file and a KB snapshot file are essentially the
same, except for the options that you might want to specify, as outlined in
Selecting Options when Loading a KB File.

Also, after loading a KB snapshot file, you can warmboot your KB. For
information on warmbooting, see Warmbooting a KB Snapshot File.

To load a KB file interactively:

1 Pause or reset the KB by selecting Pause or Reset from the Main Menu.

2 Select Main Menu > Load KB.

G2 displays the Load KB dialog, described in the next section.

To load a KB file programmatically:

 Use the KB-loading system procedures described in KB and Module
Operations in the G2 System Procedures Reference Manual.

As G2 loads a KB file, it displays a table that informs you of its progress. The
display also shows this progress as a percentage. It does not indicate the real size
of the KB being loaded.

Note You can load KB files that you saved using previous versions of G2. However,
you cannot always load KB files that you save using a later version of G2 into a
previous version. See the G2 Bundle Release Notes for version-specific backward-
compatibility details.

You can also load a KB file by using an initialization file. For details see Using an
Initialization File.
95

Using the Load KB Dialog

When you load a KB file interactively, G2 displays the Load KB dialog, as shown
in the next figure:

The first time you use the Load KB dialog, G2 displays in the edit area the
directory from which you launched the G2 process. Thereafter, the default
directory is the directory pathname most recently specified in a successfully
executed Load KB, Merge KB, or Save KB operation.

By default, the automatically resolve conflicts option is selected so that
intermodual class-definition differences are automatically resolved by G2.
Resolving such conflicts by hand is not recommended because it is very time
consuming; however, the option is deselectable.

In this dialog, you can navigate to any directory where KB files are stored. You
can enter the name of the KB file to load, or select it from the list of files that
appears at the bottom of the dialog.

Edit box

Current KB directory
Directory status area

Option check boxes

Grammar categories
and selectable syntax

Selectable syntax
characters
96

Loading a KB
To display the contents of a directory:

 Enter a pathname in the edit area, including a trailing delimiter character, and
click End.

or

 Enter a pathname in the edit area, without a trailing delimiter character, and
press Return.

The trailing delimiter character depends on your platform: / on UNIX platforms
and \ on Windows platforms.

G2 displays a list of subdirectories and KB filenames contained in the specified
directory. This figure shows how the Load KB dialog displays these lists:

At this point, you can select a KB file to load or another subdirectory. If you select
a subdirectory, continue following the above procedure until you find the desired
KB file.

Note G2 cannot load an empty file or a file that is not a KB file. If you attempt this, G2
signals an error.
97

Loading the KB File

To load the specified KB file:

 Click End or press Return in the Load KB dialog.

If G2 contains a resident KB, it will be cleared before the new KB is loaded.

If the resident KB has unsaved permanent changes, G2 generates this
confirmation dialog to notify you of the unsaved changes:

You can select the Cancel button and save the current KB before loading a new
KB, or you can press the OK button to clear the resident KB and load a new KB.
When G2 loads the new KB it reports on its load progress.

When loading is complete, G2 presents the contents of the loaded KB in the state
in which it was saved. For information on what G2 saves in KB files and KB
snapshot files, see Saving Your KB Knowledge.

In addition, G2 does the following:

• Sets the initial-value attributes of variables and the values of parameters.

• Displays some portion of each workspace that was visible when the KB was
saved. G2 displays these workspaces in each G2 window that is connected to
the G2 process. If the size of the G2 window is smaller than the size of the
window at the time the KB was saved, G2 adjusts the absolute locations of the
workspaces so that some portion of each workspace is visible.

After you load a KB file, the current KB contains the permanent knowledge that
was stored in that file. For information on how items represent permanent
knowledge, see Understanding the Knowledge Contained in Items.

Using Wildcards in Filenames when Loading a KB

You can enter a wildcard in the filename when loading a KB file. G2 displays a list
of names that meet the specified criteria.

For instance, you can enter kb*s.kb to display a list of all KB files in the current
directory, whose file names begin with the characters “kb” and end with the
characters “s.kb”.
98

Loading a KB
To use wildcards in the filename, use combinations of the following characters:

You can also use these characters in the text of the argument passed to the
g2-files-in-directory and g2-subdirectories-in-directory system procedures, as
described in File Operations in the G2 System Procedures Reference Manual.

Selecting Options when Loading a KB File

You can modify how G2 loads the selected KB file by selecting one or more
options on the Load KB dialog. To select a loading option, check its
associated box.

Notice that the check boxes appear in pairs. For example, merge in this KB and
merge in this KB and install its system tables pertain only to merging a KB file.
You should not select both options in a pair at the same time.

Wildcard Character/ Purpose Example

* (asterisk)

Matches zero or more
characters

Entering kb*s matches the files or
directories named kbfiles and
kbs.

? (question mark)

Matches any one character

Entering kbfile? matches the files
or directories named kbfiles and
kbfilez.

{abc} (braces)

Matches one occurrence of the
character a or b or c, where a, b,
and c each represents a
character

Entering kb{ef}iles matches the
files or directories named kbfiles
and kbeiles.

{abc}* (braces and asterisk)

Matches zero or more
occurrences of the character a
or b or c; where a, b, and c each
represents a character

Entering kb{xyz}*files matches the
files or directories named kbfiles
and kbzzzfiles.

! (exclamation point)

Escape (ESC) character allows
use of other characters in the
wildcard name

Entering kbfile!{s!} matches the file
or directory named kbfile{s}.
99

This table explains each option on the Load KB dialog:

Load KB Option Description

start afterwards Begin running the new KB immediately after loading the
KB file into a G2 that is in the initial/reset state.

Selecting this option overrides the setting of the start-KB-
after-load? attribute in the Miscellaneous Parameters
system table of the loaded KB.

never start afterwards Do not begin running the new KB after loading the KB file.

Selecting this option overrides the setting of the start-KB-
after-load? attribute in the Miscellaneous Parameters
system table of the loaded KB.

warmboot afterwards When loading a KB snapshot file, resumes running the KB
from the point at which it was saved. This option has no
effect if you are loading a normal KB file.

For more information, see Warmbooting a KB Snapshot
File.

warmboot afterwards
with catch-up feature

When loading a KB snapshot file, sets the scheduler’s
internal current time to the current time saved in the
snapshot file, and the scheduler-mode attribute of the
Timing Parameters system to as fast as possible.

This option has no effect if you are loading a normal KB
file.

For more information, see Warmbooting a KB Snapshot
File.

merge in this KB Merges the contents of the KB into the current KB. This is
described in detail in Merging a KB File.

merge in this KB and
install its system
tables

Merges the contents of the KB into the current KB, and
makes the merged module’s system tables the installed
system tables. This is described in Merging a KB File.
100

Saving Permanent and Transient Data in Snapshot KBs
Searching for KB Files

When loading knowledge bases, G2 searches for module files in the specified
directory and in the current G2 directory. The filename extension must be
specified and it must be .kb or .kl. G2’s module-saving scheme ensures that a
directory has only one knowledge base with a particular base name and proper
file extension. It does this by appending a tilde (~) to the backup copy. See Backup
Copies of KB Files for more information. If you specify a file that is not a G2
knowledge base, G2 posts an error message to the Logbook.

Note The use of .KL and .kl files (known as knowledge libraries) is obsolete except for
certain libraries supplied by Gensym to assist in localization, as described in
Natural Language Facilities.

You can specify the home directory pathname for a G2 process using the G2_HOME
environment variable. If no such specification exists, the home directory is the
directory from which you launched G2.

Saving Permanent and Transient Data in
Snapshot KBs

You can save and reload all of a KB’s permanent and transient knowledge,
including the real-time data associated with the G2 run-time environment, by

bring formats up-to-
date

Applies the formatting defaults, which are specific to the
current version of G2, to all loaded items. For example, the
width of text items are based on system-defined defaults
that might vary from version to version.

Note: Selecting this option can significantly affect the
appearance and layout of items when loading them into
new G2 versions. In general, we do not recommended
selecting this option unless you want to mix items
developed under different G2 versions.

automatically resolve
conflicts

When loading a modularized KB, G2 automatically checks
for conflicts among class-definitions contained in the KB,
and in any directly and indirectly required modules that
G2 also loads. This option is selected by default.

Using the automatically resolve conflicts feature is
described in Detecting Conflicting Class-Definitions.

Load KB Option Description
101

saving a KB snapshot file and reloading the snapshot KB with the warmboot
option selected.

Saving a KB Snapshot File

G2 saves your snaphot KB knowledge in a single file.

To save a KB to a snapshot file:

 Execute the g2-snapshot or the g2-snapshot-without-other-processing system
procedure, as described in KB and Module Operations in the G2 System
Procedures Reference Manual.

Note G2 does not save a KB in which the attribute table of a transient item resides on a
permanent workspace separate from the transient item.

The g2-snapshot system procedure writes the snapshot file with data as of the
moment that it is invoked. It does this despite the fact that the task of writing the
snapshot file allows interrupts for other processing. Thus, even if you modify or
delete significant portions of a KB after invoking g2-snapshot, G2 writes that
knowledge into the KB snapshot file as it existed at the time the procedure was
invoked.

The g2-snapshot-without-other-processing saves your snapshot KB by first
pausing G2, saving your KB, and then resuming G2.

See Warmbooting a KB Snapshot File for information about how to load KB
snapshot file and resume running a KB from it.

Contents of a KB Snapshot File

A KB snapshot file records:

• All information necessary to present the KB as if it had been reset at the time
of the snapshot, including information necessary to undo changes that are
normally undone when a KB is reset.

• All transient items except transient g2-windows not on a workspace.

• The current values, collection times, expiration times, and histories of all
variables and parameters when present.

• The simulation values and histories of all variables when present.

• The activation status of all KB workspaces.

• All instances of dynamic relations.

• The contents of all lists and arrays.
102

Saving Permanent and Transient Data in Snapshot KBs
The G2 Simulator, which can provide simulation values and simulation histories,
is a superseded capability. For more information, see Appendix F, Superseded
Practices.

A KB snapshot file does not record:

• The current executing status of rules, button items and display items.

• Procedure invocations and their associated information.

• The Operator Logbook, the Message Board, menus, temporary workspaces, or
tables, such as Inspect tables and attribute tables that have not been
transferred to a workspace.

Naming Conventions for KB Snapshot Files

Snapshot filenames must include the .kb extension. In addition, you should
follow naming conventions that distinguish snapshot files from KB files, such as
including the suffix -snapshot in the filename. To identify the time at which the
snapshot was saved, you might also prefer to include a timestamp in the filename,
for example, monitoring-snapshot-29may2000-02-14-23.kb.

Warmbooting a KB Snapshot File

When loading a KB snapshot file, you must select one of the warmbooting
afterwards options on the Load KB dialog to restore the snapshot file to its run-
time state.

G2 loads and automatically resumes running the current KB as if it had merely
been paused. This is called warmbooting. Loading a KB snapshot file restores
both the stored KB’s knowledge and the real-time data that existed at the time
when the KB snapshot file was saved.

If you do not select the warmbooting afterwards check box when loading a KB
snapshot file, G2 discards the run-time data that was loaded. The result is the
same as if you had loaded a standard KB file.

To warmboot a KB snapshot file:

 Select the warmbooting afterwards option in the Load KB dialog.

To warmboot a KB snapshot file programmatically:

 Invoke the g2-warmboot-kb system procedure, as described in KB and
Module Operations in the G2 System Procedures Reference Manual.

As when loading a KB file, when warmbooting a KB snapshot file, G2 sets the
scheduler’s current time to the current real time. When G2 resumes processing, G2
schedules its processing according to the value of the scheduler-mode attribute in
the Timing Parameters system table of the loaded KB snapshot file.
103

After loading a KB snapshot file, G2 runs the current KB somewhat differently
from its default behavior, as follows:

1 After the warmboot, G2 invokes no initially rules.

2 G2 looks for a procedure named warmboot, and executes it, if it exists.

3 After G2 has finished executing any warmboot procedure, it resumes
executing all scanned rules.

Creating Warmboot Procedures

Warmbooting cannot automatically restore the context of procedures and rules
that were executing when a KB snapshot file was written. To restore such context,
you can provide one or more procedures called warmboot procedures. For
example, you might want restart a procedure that was invoked just before the
moment when the KB snapshot file was saved. You can accomplish this by using
a warmboot procedure.

When the KB in a snapshot file contains a procedure whose name is warmboot, G2
invokes that procedure before beginning execution of the file. This invocation
provides a hook that you can use to take whatever action is necessary to restore
the needed context. If no procedure named warmboot exists, G2 continues
without error. A modularized KB can also contain warmboot procedures that are
not named warmboot, as described under Modular Warmboot Procedures.

Non-Modular Warmboot Procedures

When a KB is not modularized, or when one warmboot procedure suffices for all
modules, you can provide a procedure named warmboot that does what is
needed. This procedure must take no arguments and return no values.

Code the warmboot procedure so that it specifies a set of actions that are
appropriate to execute after the KB snapshot file is warmbooted. For example, the
sample warmboot procedure shown below duplicates some operations performed
when the KB starts, but performs other operations that depend on state
information saved as part of the KB snapshot file.

warmboot ()
ND : class node ;
WS : class kb-workspace = the subworkspace of mill-welcome-screen;
begin

{ Notify the user that warmbooting has occurred. }
show WS;
post "Warm restart of MILL application";

{ Update the saved-state display for each manufacturing station. }
for ND = each node upon WS

do
call reset-graphics (ND);
if the status of ND is processing then
104

Saving Permanent and Transient Data in Snapshot KBs
start process-material (ND) after
max (0 , the process-end-time of ND - the current time);

end;

{ Display the menu bar and resume "production" of raw material items. }
hide WS;
start developer-package-initialization-rules ();
show the subworkspace of mill-process-diagram-object with its top left

corner 2 units to the right of and 40 units below the top left corner of
the screen ;

start process-material (warehouse);
end

Modular Warmboot Procedures

When a KB contains modules that need to define their own warmboot
procedures, some mechanism is needed that invokes them all in the correct order.
You could write a procedure named warmboot that does this, but GFR provides a
more general capability: it contains a system-defined procedure named warmboot
that automatically executes any other warmboot procedures.

When you warmboot a snapshot of a KB that includes GFR, G2 invokes GFR’s
warmboot procedure just as it would a user-defined procedure with that name.
The GFR procedure scans the KB for items of class gfr-startup-object, each of
which can define a warmboot procedure for a module, and executes the
procedures specified by the items in the order defined by the module hierarchy.

A warmboot procedure for use with GFR has a different signature than a
procedure named warmboot, but otherwise does the same types of things in the
same ways that a non-modular warmboot procedure does, as described under
Non-Modular Warmboot Procedures. For further information about modular
warmboot procedures, see the chapter on managing modules in the G2 Foundation
Resources User’s Guide.

Caution If a KB contains more than one procedure named warmboot, the duplicate names
could cause G2 to invoke the wrong one. Therefore, a KB that requires GFR must
use GFR to execute any warmboot procedures, and must not contain any
procedure named warmboot except the one supplied by GFR.

Warmbooting with Catch-Up

G2’s default behavior for initializing a warmbooted KB snapshot file might not be
appropriate for a KB that is designed to run continuously. For this reason, you can
direct G2 to warmboot a KB so that its processing can catch up from the current
time saved in the snapshot file to the current real time.
105

To catch up to the current real time when warmbooting:

 Select the warmboot afterwards with catch-up feature option in the Load
KB dialog.

G2 initializes the KB snapshot file as follows:

• G2 sets the scheduler’s internal current time setting to the current time saved
in the KB snapshot file.

• G2 sets the scheduler-mode attribute in the resulting current KB’s Timing
Parameters system table to as fast as possible.

After warmbooting a KB in this manner, and after the scheduler’s current time
catches up to become equal to the current real time, your KB should reset the
scheduler-mode attribute to the value real time. If your KB does not reset the
scheduler-mode attribute, then G2 continues to run with a setting of as fast as
possible.

To reset the scheduler mode to use real time processing after a warmboot:

1 Create a procedure that changes the scheduler-mode attribute in the KB’s
Timing system table from as fast as possible to real time when the scheduler’s
current time is greater than or equal to the current real time.

For example, the following procedure restores the scheduler-mode attribute
to the value at the time the KB snapshot file was saved. This procedure
assumes that the warmbooted KB includes a text parameter named text-
parameter-holding-saved-scheduler-mode, whose value is equal to the value
of the scheduler-mode attribute in the Timing Parameters system table at the
time the KB was saved to its snapshot file.

change-to-real-time-when-caught-up()
begin

repeat
wait for the current real time = the current time;
exit if the current time >= the current real time;

end;
change the text of the scheduler-mode of timing-parameters

to the current value of
text-parameter-holding-saved-scheduler-mode;

end

2 Create a warmboot procedure so that it starts change-to-real-time-when-
caught-up.

G2 executes warmboot when warmbooting the KB. For example:

warmboot()
begin

. . .
start change-to-real-time-when-caught-up ();
. . .

end
106

Merging a KB File
3 Warmboot the KB snapshot file selecting the warmboot afterwards with
catch-up feature option.

After G2 warmboots the KB, when the scheduler’s current time becomes equal to
the current real time, the change-to-real-time-when-caught-up procedure restores
the value of the scheduler-mode attribute in the Timing Parameters system table.

For a KB that is warmbooted in this manner, if you reset the resulting current KB,
G2 resets the scheduler-mode attribute to its value that is saved in the KB
snapshot file.

Note You cannot use the warmboot afterwards with catch-up feature option to
warmboot KB snapshot files saved under G2 Version 3.0 revision 0 or earlier.

Merging a KB File
Merging a KB file means adding the knowledge in that KB file to the current KB.
Merging a KB is similar to loading a KB, as described under Loading a KB. The
same syntax and options applies to both operations. When KBs merge, the KB that
is already loaded is called the primary KB, and the KB that is merged into it is
called the secondary KB.

You merge one secondary KB at a time into the primary KB. If the secondary KB is
a modularized KB, G2 also merges the KB files that contain modules that are
directly required by the secondary KB. This is described in Merging a
Modularized KB into the Current KB.

When you merge one KB into another, G2 checks that the class-definitions in the
two KBs are consistent. G2 provides a variety of techniques for resolving
inconsistencies between merged KBs, as described in Detecting Conflicting Class-
Definitions.

When two KBs are merged:

• The resulting KB contains all the information in both knowledge bases, except
where conflicting class-definitions required changes.

• The visible workspaces from the secondary KB appear behind the visible
workspaces of the primary KB.

• By default, the system tables of the primary KB remain in effect. You can
choose to install the system tables of the secondary KB, thus replacing the
currently installed system tables.
107

Note Loading a modularized KB actually performs a merge operation for each module
that the loaded KB file directly requires. Thus, the entire discussion of merging
KB files applies also to loading modularized KB files. For more information, see
Working with Modularized KBs.

To merge a KB file interactively:

1 Pause or reset the current KB by selecting Pause or Reset from the
Main Menu.

2 Select Main Menu > Merge KB.

G2 displays the Load KB dialog with the merge in this KB option
automatically selected.

3 Navigate the directory structure and specify the filename to merge in the
same manner as when you load a KB.

For information on interacting with the Load KB dialog, using wildcards in
filenames, and specifying options, see Loading a KB.

To install system tables when merging a KB file interactively:

 Follow the preceding instructions, but choose the merge in this KB and install
its system tables option in the Load KB dialog.

To merge a KB file programmatically:

 Execute the g2-merge-kb or g2-merge-kb-ex system procedure, as described
in KB and Module Operations in the G2 System Procedures Reference Manual.

G2 reports its progress as it merges the KB. It does not indicate the real size of the
KB being merged.

To merge a KB file using an initialization file.

 See Using an Initialization File.

Working with Duplicate Items in KBs
Most items store their names in the names attribute of the item. Some items store
their name in an equivalent class-specific attribute. For example, the relation-
name attribute stores the name of a relation. Items have the same name if their
names attributes, or their class-specific equivalents, contains the same name.

Items that have the same name are called duplicate items. To detect duplicate
items, G2 considers only their names; the items may or may not have the same
class type or be functionally equivalent.
108

Working with Duplicate Items in KBs
Duplicate Definitional Items

Definitional items include all definitions that you create interactively from the
KB Workspace > New Definition menu, as well as a rule, which you create from
the New Rule menu.

G2 allows a KB to contain duplicate definitional items for anything except class-
definitions, which includes the following definitional items:

external-simulation-definition
procedure
foreign-function-declaration
image-definition
frame-style-definition
relation
function-definition
remote-procedure-declaration
generic-formula
rule
tabular-function-of-1-arg
language-translation
units-of-measure-declaration
method
user-menu-choice
tokenizer
text-conversion-style

Note G2 does not check method declarations for consistency.

When you merge a KB with a duplicate definitional item for anything except a
class-definition, G2 creates duplicate items in the KB.

Caution When you merge a KB with a duplicate definitional item for anything except a
class-definition, using the automatically resolve conflicts option, G2 deletes the
duplicate item from the merged KB.

Where duplicate items exist in a KB, G2 places a warning in the Notes attribute of
each item having the duplicate name, and posts no other notification. Here is an
example of the notes attribute for two items with the same name:

OK, and note that this is one of 2 distinct items named input-1

When duplicate items exist and more than one of the items satisfies a reference,
which item G2 chooses is not predictable. The choice may not be the same from
one reference to the next, which can cause unintentional results.
109

To find items with the same name:

1 Select Main Menu > Inspect.

2 Enter this command in the Inspect edit box:

show on a workspace every item with notes

3 For the items returned that have the note:

this is one of integer items named name

enter this command in the Inspect edit box:

show on a workspace every item I such that
the names of I exists and the names of I is name

Duplicate Class-Definitions

Class-definitions have the same name if their class-name attribute contains the
same name. Class-definitions that have the same name are called duplicate
definitions. To detect duplicate definitions, G2 looks only at the names of the
classes they define; the definitions may or may not have the same type or be
functionally equivalent.

Within a G2 process every class name must be unique. The G2 compiler does not
allow you to specify an existing class name in the class-name attribute of a class-
definition. However, class-definitions with duplicate names can occur when KBs
contain modules not developed in the same G2 process, or when additional
modules are merged into the current KB.

G2 generates backup class-definitions when writing a KB module. It saves all
user-defined class-definitions that determine the inheritance of the items in the
module, even when the definitions do not reside in the module. These class-
definitions are called backup definitions, and G2 uses them to determine the
inheritance of items in the module and to notice differences between the backup
definition and a same-named class-definition in another module.

When a KB module that contains a class-definition is merged into a G2 process
that already contains a class-definition of the same name, the existing class-
definition is called the primary definition, and the class-definition being merged
in is called the secondary definition.

At load time, G2 avoids all duplicate class-definitions in one of several ways, as
described in the rest of this chapter.

Identical Duplicate Definitions

G2 considers two class-definitions to be identical definitions when they:

• Are of the same type (class-definition, object-definition, connection-definition,
or message-definition).
110

Detecting Conflicting Class-Definitions
• Have the same name, attributes, and initial and default values.

• Specify their attributes in the same order.

When two class-definitions are identical, their attribute tables look exactly the
same. The value of an attribute that can contain multiple terms, such as class-
specific-attributes, must list the same terms in the same order to be considered
identical.

When two KB modules contain identical class-definitions, and one KB is merged
into the other, the secondary definition is redundant. G2 therefore:

• Deletes the secondary definition. G2 also deletes any subworkspace hierarchy
of the class-definition.

• Converts any instances of the deleted definition to be instances of the primary
definition; the instances are otherwise unaffected.

The deletion of the secondary class-definition prevents it from existing as a
duplicate class-definition in the combined KB. Since the class-definitions were
identical, and the converted instances are unchanged, the deletion and conversion
have no functional effect, so G2 does not post any notification that it has occurred.

Nonidentical Duplicate Definitions

When two KB modules contain duplicate class-definitions that are not identical,
the definitions are in conflict: neither can be deleted in favor of the other without
risking functional change. The rest of this chapter describes such situations and
shows you what to do about them.

Detecting Conflicting Class-Definitions

In order to understand conflicting definitions and their resolution, you need to
understand G2 classes, as described in Classes and Class Hierarchy, and G2
definitions for extending the class hierarchy, as described in Definitions. The rest
of this chapter assumes that you understand those topics.

When you merge one KB module into another, either in the process of loading a
multi-module KB or explicitly merging an additional module, G2 checks that each
class-definition in the merging module is consistent with those in the resident KB
modules. A merging KB module is consistent with the resident modules if it has
no class-definitions with duplicate names, or if every duplicate class-definition is
identical to the resident class-definition of the same name. Identical pairs of class-
definitions are handled as described under Identical Duplicate Definitions.

If a secondary definition has a name that is also used in the resident KB modules,
but has differing attributes, conflicting definitions exist. This section shows you
how such conflicts can be resolved.
111

Automatically Resolving Conflicting
Class-Definitions

You can direct G2 to resolve conflicts among definitions of classes automatically.
This ability is sometimes referred to as automerge. The automatically resolve
conflicts option on the Load KB dialog and Merge KB dialog determines whether
G2 automatically resolves class-definition conflicts. By default, this option is
selected because it is very time consuming to resolve them yourself.

To resolve conflicts automatically when loading and merging KBs:

 Make sure that the automatically resolve conflicts option in the Load KB
dialog or Merge KB dialog is selected.

When merging KBs or loading modularized KBs with automerge selected, G2
checks each pair of conflicting definitions to see whether they can be merged
automatically.

• Two definitions of the same type can be automerged if they have the same
foundation classes OR no instances of the secondary definition exist.

• A class defined on an object-definition, connection-definition, or message-
definition can be automerged into a class defined on a class-definition if they
have the same foundation classes OR no instances of the secondary
definition exist.

• A class defined on a class-definition cannot be automerged into a class defined
on an object-definition, connection-definition, or message-definition, even if
they have the same foundation classes.

When G2 automerges two KBs, it does the following for each pair of classes that
can be merged automatically:

• For each attribute that differs, G2 changes the attribute in the secondary
definition to be equivalent to its corresponding attribute in the primary
definition.

• In the secondary definition item, G2 opens the change attribute and executes:

merge all instances and subclasses into definition for primary-definition

• After G2 automerges two definitions, it deletes the secondary definition.
112

Automatically Resolving Conflicting Class-Definitions
Automerging a class defined on a object-definition, connection-definition, or
message-definition into a class defined on a class-definition cannot be done by
directly transferring attributes, because the syntax differs in the two types of
definition. G2 carries out such a merge by changing the syntax of the information
in the secondary definition as needed to fit into a class-definition.

Automerging two definitions resolves every difference between the primary and
secondary definitions in favor of the primary definition:

• Attributes defined in the secondary definition but not the primary definition
disappear from subclasses and instances of the secondary definition.

• Attributes defined in the primary definition but not the secondary definition
are added to subclasses and instances of the secondary definition.

• Attributes that exist in both definitions but have different properties use the
properties in the primary definition. Subclasses and instances of the
secondary definition change accordingly.

For a successfully merged pair of class-definitions with duplicate names, G2
displays a message on the Logbook. For example:

If all conflicting definitions can be merged automatically, the KBs themselves
have been successfully automerged. If any pair of definitions cannot be
automerged, G2 treats them as it does all conflicting definitions during an
ordinary merge, as described in the next section.
113

Manually Resolving Conflicting
Class-Definitions

We recommend that you take advantage of G2’s automerge facility which is
selected by default on the Load KB and Merge KB dialogs. This section explains
what happens when you turn off automerge or, when automerging, G2
encounters an unmergable conflict.

G2 Notification of Conflicting Class-Definitions

G2 does the following when it detects conflicting class-definitions:

• Displays a messages in the Operator Logbook indicating that conflicting
definitions exist. For example:

• Changes the name in the class-name attribute of the secondary definition.
This also changes the class name for all instances of that class that are being
merged. The new secondary name has the form:

primary-name-from-module

where primary-name is the original name of the definition, and module is the
module in which the secondary definition exists.

• Creates a conflict workspace. The workspace displays the tables of the two
conflicting definitions, with the primary definition on the left., highlights the
corresponding attributes in the two conflicting definitions whose values are
not equivalent.
114

Manually Resolving Conflicting Class-Definitions
This figure shows the contents of a typical conflict workspace:

Responding to Conflict Workspaces

The existence of unresolved conflicts among merged KBs does not prevent G2
from running the resulting KB, but the results may not be what was intended
when the KBs were designed. To insure correct results, all conflicts should be
resolved, and the previously conflicting definitions merged into one.

Most conflicts are easily resolved, because they result from minor
incompatibilities. In such cases, the answer is usually to change the attributes in

This text identifies the module that contains
the newly added conflicting definition.

This text offers suggestions
for changing the definitions.

Attributes that differ
115

the secondary definition and leave the attributes in the primary definition intact,
but this approach is not required.

The attribute tables on a conflict workspace are real tables: any change to them
changes the corresponding definition. Using a conflict workspace to eliminate
conflicts and merge definitions is exactly the same as merging two definitions
independently of KB merging. The conflict workspace just provides a convenient
interface to the process.

To merge definitions with minor incompatibilities:

 Follow the directions under Merging Classes, using the tables on the conflict
workspace rather than opening separate copies of the definitions’ tables.

Some conflicts are not so easily resolved, because they are unusual or complex in
some way. The next section contains examples of various conflicts and shows you
what to do about them.

Examples of Manual Conflict Resolution

This section describes various types of conflicts that can arise when you merge
inconsistent KBs and shows you how to resolve each of them.

Completely New Version of the Same Class-Definition

Assume that the conflicting definitions are related: one definition is a completely
new version of the other, and that the new version must replace the old version.

If the secondary definition contains the new version, follow these steps:

1 Edit the attributes in the definition already in the current KB. Edit the
definition so that its attributes are equivalent to the secondary definition’s
attributes.

2 Use the change attribute’s merge option on the secondary class to merge all
instances and subclasses of the secondary class into the primary class.

3 Unless you have a specific use for it, delete the secondary definition.

4 Delete the conflict workspace.

Name Conflicts between Independent Class-Definitions

Assume the conflicting definitions are not related: the two definitions are
intended to define distinct classes in your KB. For example, two different
developers might have accidentally given two definitions the same name. To
resolve this conflict, change the class-name attribute in one or both of the
definitions.

Unless the direct-superior-classes attributes in the two definitions have the same
foundation class, you cannot accomplish this form of conflict resolution by using
116

Manually Resolving Conflicting Class-Definitions
the Merge KB command’s automatic conflict resolution feature. For more
information, see Unresolvable Conflicts between Class-Definitions.

Separate Development of Groups of Attributes

Assume the conflicting definitions are related. Further, assume that two
developers made independent changes to separate copies of a shared definition.
However, in this case, each developer added distinct sets of information to the
definition, such as distinct class-specific attributes.

To resolve this conflict:

1 For each pair of corresponding attributes in the conflicting definitions,
determine which version you intend to keep.

2 Edit the definition already in the current KB so that its attributes contain the
values you want to retain.

3 Use the change attribute’s merge option on the secondary class to merge all
instances and subclasses of the secondary class into the primary class.

4 Unless you have a specific use for it, delete the secondary definition.

5 Delete the conflict workspace.

Separate Development of Specific Attribute Values

Assume that the conflicting definitions are related and that two developers made
independent changes to separate copies of a shared definition. More specifically,
assume that each developer simply assigned different default values within the
same set of class-specific attributes.

To resolve this conflict, for each pair of corresponding attributes in the conflicting
definition, first determine which value in each differing attribute you intend to
keep. Next, follow Steps 2 through 5 listed in Separate Development of Groups of
Attributes.

Conflict Due to Upgrading to a New G2 Version

Assume that the merged KB contains a definition whose name is the same as a
system-defined class name. This is possible only if the merged KB was developed
under an older version of G2.
117

In this case, G2 displays a conflict workspace containing only one attribute table,
as shown in this figure for an object definition that defines a server-parameters
class:

To resolve this conflict, simply edit the name in the definition item’s class-name
attribute. Instance items based on the edited definition item automatically inherit
the changed class name.
118

Manually Resolving Conflicting Class-Definitions
Conflict between Original and External Definitions

When writing a KB module, G2 saves all user-defined class-definitions that
determine the inheritance of the items that reside in the module, whether or not
the needed class-definitions also reside in the module. These class-definitions are
called backup definitions.

If you later merge a module containing an external class-definition with the
module containing the original, G2 compares the two definitions. If they are
identical, G2 merges the external class-definition into the original, then deletes the
backup. This is the normal course of events.

If the external definition is not identical to the definition of the same name found
in the required module, G2 creates a conflict workspace for the two definitions, as
with any conflict. Proceed as described under Manually Resolving Conflicting
Class-Definitions.

If no definition of the same name as the external definition exists in any required
module, G2 creates a new workspace named backup-definitions-for-module-name,
where module-name is the name of the module associated with the backup
definition. G2 places the backup definition on this workspace. The backup
definition is thereafter a real definition, identical except in location with the
missing original, and can be used as any definition can be.

Differences between Class-Specific Attributes

The possible differences between two class-specific attribute declarations in a
definition include:

• In one definition, the attribute is untyped, and in the other definition, the
attribute is untyped and has a default value. For example, these two
declarations conflict:

vehicle-identifier

vehicle-identifier initially is V103

• A difference exists in the declared type of the attribute in the two definition
items. For example, these two declarations conflict:

vehicle-identifier is an integer, initially is 0

vehicle-identifier is a symbol, initially is V103

• In one definition, the attribute is declared to be an instance of a particular
class, and in the other definition, the attribute is declared to be an instance of a
different class. For example, these two declarations conflict:

vehicle-identifier is an instance of a custom-message

vehicle-identifier is an instance of a borderless-free-text

• In one definition, the attribute is declared to be an instance of some class, and
in the other definition, the attribute is declared is given by any class of
variable or parameter.
119

Unresolvable Conflicts between Class-Definitions

Some conflicts between definitions cannot be resolved, either manually or
automatically, by editing those items. In these cases, the conflicting definitions
must remain distinct. Instead, you must make more significant changes to your
class hierarchy.

Suppose two definitions have the same name but specify different superior
classes. If those superior classes have different foundation classes, and each of the
conflicting classes has at least one instance, the conflict between the two
definitions cannot be resolved.

To illustrate, assume that different G2 developers have created two different but
related modules. One module contains a class-definition named scheduling-
information, whose superior class is the system-defined class free-text. The other
module contains a scheduling-information class-definition whose superior class is
the system-defined class freeform-table. Finally, assume that each KB has at least
one item that is an instance of the scheduling-information class.

These two Inspect workspaces show the class hierarchies for the two scheduling-
information definition items:
120

Manually Resolving Conflicting Class-Definitions
After merging the KBs with the automatically resolve conflicts option selected,
G2 displays the following conflict workspace:

The conflict workspace shows that only the direct-superior-classes attribute
differs in the two versions of scheduling-information. The conflict between these
two definitions cannot be resolved, because G2 does not allow you to change the
class of an instance whose foundation class is free-text into an instance whose
foundation class is not free-text, or one of its system-defined subclasses.
121

122

4

Workspaces
Shows how to use workspaces to organize your KB’s items.

Introduction 124

Kinds of Workspaces 125

Working with Workspaces 127

Positioning Items upon a Workspace 137

Creating and Using a Workspace Hierarchy 139

Activating and Deactivating Workspaces 145

Printing a Workspace 147

Setting the Color of Workspaces 149

Creating Custom Workspace Borders 150

Using a Graphic as a Background Image 151

The Kb-Workspace Class 156
123

Introduction
Workspaces are fundamental building blocks for constructing a knowledge base
(KB). Each workspace organizes a set of items within a region. You can also link
these regions together to form hierarchies of regions, called
workspace hierarchies.

You use workspaces primarily to collect and to contain other items:

• A workspace forms a two-dimensional region upon which you place items
interactively or programmatically. An item has an absolute location within the
coordinate system of its parent workspace. The items upon the same
workspace also have a spatial relationship to each other.

• Many operations on a workspace also affect the items upon it, for example:

– Cloning a workspace creates copies of the items upon that workspace.

– Changing the scale of a workspace changes the scale at which G2 displays
all the items upon that workspace.

– Deleting a workspace deletes all items on that workspace, as well as all
workspaces in the workspace subhierarchy. Items that depend on deleted
class-definitions for their inheritance are also deleted, regardless of their
workspace or module assignments.

Workspaces also serve other important purposes:

• G2 displays all KB knowledge on workspaces. Note: The display of attribute
tables are an exception.

• You can print workspaces. Note: You cannot print individual items.

• You can associate a hierarchy of workspaces, and the items they contain, with
a module.

• You can configure in similar ways items that are located within the same part
of the workspace hierarchy.

• You can declare a workspace as proprietary by using special configuration
statements to affect the behavior of the items in the hierarchy.

• A G2 process’s local G2 window and the Telewindows connected to that
process can each display independent sets of workspaces, and each can
display any workspace at a different scale and at a different position within its
own window.

In addition, you can create, delete, scale, clone, display, hide, and configure any
workspace. You can also associate custom borders and custom background
images with any workspace.
124

Kinds of Workspaces
Kinds of Workspaces

Within the G2 developer’s environment, you work with several kinds of
workspaces. This figure shows a variety of workspace types.
125

Common Features of Workspaces

Some common features of workspaces are:

• Each workspace appears as a rectangle.

• Each workspace has a background and border.

• Workspaces can appear on top of each other.

• G2 displays each workspace at its default size or at a factor of its default size.

KB Workspaces

One kind of workspace, called a KB workspace, is designed to be a permanent
part of your KB. A KB workspace is an item of the system-defined class named
kb-workspace.

KB workspaces are the only workspaces that can contain other items. KB
workspaces are also the only workspaces that you can save into a KB file.

Your KB can contain any number of KB workspaces. Any item, except another
workspace, can reside upon a KB workspace. You can create, delete, show, hide,
change the color of, scale, move, clone, activate and deactivate, and print KB
workspaces.

G2 offers actions that manipulate KB workspaces. You can refer to KB workspaces
in expressions. For more information, see Actions That Apply to KB Workspaces
and Expressions That Refer to KB Workspaces.

Note Throughout this chapter and throughout this guide, we typically refer to items of
the kb-workspace class as workspaces. We differentiate KB workspaces from other
kinds of workspaces only when required for clarity.

Other Workspaces

The G2 developer’s environment displays other kinds of workspaces, as well.
These workspaces appear as you open and interact with G2 editors and facilities,
and as you make choices from G2 menus.

These workspaces are not items, and you cannot save them into a KB file. You
cannot refer to these workspaces in actions or statements.
126

Working with Workspaces
The other kinds of workspaces are:

The Developer’s Environment, describes how to interact with several of these
workspaces.

Working with Workspaces

The following operations are common to all workspaces.

To create a workspace interactively:

 Choose Main Menu > New Workspace.

When you create a new workspace, it is not associated with any other item. This
type of workspace is called a top-level workspace.

When you create a new workspace interactively, G2 displays its center at the
current center of the G2 process’s window.

To create a workspace programmatically:

 create a kb-workspace

G2 does not automatically display a workspace that is created programmatically.
To display a new workspace programmatically, use the show action.

To display a workspace’s menu:

 Click on the background of the workspace.

Type of Workspace Description

Operator Logbook Displays error messages and informational
messages from G2.

Inspect workspace Displays the results of Inspect commands.

Text Editor
workspace

Displays editing sessions.

Class List workspace Presents lists of classes, items, or other entities
for entering in the Text Editor.

Message Board Displays messages from inform and post
actions.

Scrapbook workspace Contains pieces of text used for insertion in the
Text Editor.

Icon Editor
workspace

Displays Icon Editor sessions.
127

This menu is called the KB Workspace menu.

To move a workspace using the mouse:

 With the mouse pointer on the workspace background, depress any mouse
button and move the mouse.

To display a workspace on top of all other workspaces:

1 Click on the background of the workspace to display its menu.

2 Choose Lift to Top.

or, for standard-style workspaces:

 Click the title bar outside of the hide button.

To display a workspace beneath all other workspaces:

1 Click on the background of the workspace to display its menu.

2 Choose Drop to Bottom.

To minimize the extent of the workspace borders:

1 Click on the background of the workspace to display its menu.

2 Choose Shrink Wrap.

To produce a cascade display of all displayed workspaces:

 Choose Main Menu > Miscellany > Neatly Stack Windows.

You can also use several system-defined keystroke commands to affect the
position and scale of any workspace. For information on these commands, see
Appendix C, Mouse Gestures, Key Bindings, and Shortcut Keys.

Operating on an Area of a Workspace Interactively

You can work with a group of items in the same workspace. The behavior
depends on whether you are using standard or classic user interface mode.

Using Standard Selection

When running G2 in standard user interface mode (-ui standard), you use
standard selection to select a group of items, then work on the group by choosing
from the menu for the selection. You can move, clone, transfer, align, distribute,
and delete all items in the selection.

When aligning items, at least two items must be selected. When distributing
items, at least three items must be selected. The outermost two items are
unchanged, and the remaining inner items are positioned between the outermost
items such that the space between any two items is constant.
128

Working with Workspaces
For more information about working with selections, see Mouse Gestures for
Selection and Mouse Gestures for Interacting with Selections.

To work with a group of items on a workspace, using standard selection:

1 Drag in the open area of a workspace to select a group of items within a
bounding box.

2 Mouse right on any item to display the popup menu for the selection.

3 Choose the operation for the selection.

This figure shows a selection and the popup menu for the selection:

Here are the align and distribute submenus:
129

Using Operate on Area in G2 Classic

When running G2 in classic user interface mode (-ui classic), you use the
Operate on Area menu choice to select items by drawing an area box around
items on a workspace, then work with the group as you would for a single item.

To work with a group of items on a workspace, using Operate on Area:

1 Choose KB Workspace > Operate on Area.

This dialog box appears:

2 If the dialog box is obscuring the items you want to select, move the dialog
box out of the way.

3 Position the area box to surround the items of interest.

a To change the size of the area box, click the mouse on a side and drag the
side in or out to shrink or stretch the area box on that side, or click the
mouse on a corner to drag the corner out or in to pull two sides at once.

b To move the area box itself, place the mouse pointer anywhere inside the
area box (not on the black lines themselves), and drag the area box with
the mouse.

An item must be entirely within the inside edge of the area box to be included
in the area, although its name box may be partially or entirely outside of the
area box.

Area box
130

Working with Workspaces
4 Press the appropriate button:

Button Description

Move Attaches everything enclosed in the area box to
your cursor. Move to the new location and click
to place.

Clone Clones all of the items in the area box and
attaches them to your cursor. Move to a new
location and click to place.

Transfer Attaches everything in the area box to your
cursor. Move your cursor to another workspace
and click to locate the items there.

Left Aligns the left sides of the items in the area box
with the left side of the leftmost item.

L/R Center Aligns the left-to-right centers of the items in the
area box.

Right Aligns the right sides of the items in the area box
with the right side of the rightmost item.

Top Aligns the tops of the items in the area box with
the top of the topmost item.

T/B Center Aligns the top-to-bottom centers of the items in
the area box.

Bottom Aligns the bottoms of the items in the box with
the bottom of the bottom-most item.

Delete Deletes all of the items in the area box. G2
prompts you to confirm this operation.

Quit Stops the Operate On Area operation. The area
box and dialog box disappear. You can also quit
by pressing Control + a or by starting another
activity in another area.
131

Operating on an Area of a Workspace
Programmatically

Several system procedures provide the programmatic equivalent of most of the
interactive Operate on Area choices:

• g2-clear-movement-limits

• g2-get-movement-limits

• g2-set-movement-limits

These procedures are described in Movement Limit Operations in the G2 System
Procedures Reference Manual.

Cloning a Workspace

You can clone a workspace to copy the contents of the cloned workspace to
another workspace. G2 copies all items contained on the workspace, including the
subworkspaces of those items, the items on those subworkspaces, and so on.
Cloning workspaces is a convenient technique for quickly developing groups of
items.

To clone a workspace interactively:

 Choose the Clone Workspace choice from the KB Workspace menu.

When you create a new workspace interactively by cloning, G2 displays the
origin of the new workspace at the center of the window.

To clone a workspace programmatically:

 create a kb-workspace by cloning kb-workspace

G2 does not automatically display a workspace that is created by cloning
programmatically. To display a new workspace programmatically, use the
show action.

After cloning a workspace, G2 leaves the resulting cloned items with the same
status as if those items had been cloned individually. For example, a cloned rule is
left with a status of incomplete, and a cloned class-definition has no class name.
For more information about the status of an item, see Identifying the Status
Knowledge of Items.

Note If you clone a subworkspace whose top-level workspace is associated with a
module, G2 automatically specifies the module-assignment attribute in the new
top-level workspace as the name of that module.
132

Working with Workspaces
Deleting a Workspace

Caution When you delete a workspace, you delete all items upon the workspace itself, the
subworkspaces of those items, and so on. You also delete the dependent class-
definitions and instances in the class hierarchy of a deleted class-definitions
regardless of their workspace or module assignments.

If the workspace contains items that require confirmation for deletion, G2
displays a confirmation dialog before deleting the workspace. If the workspace
contains only items that do not require confirmation for deletion, G2 deletes the
workspace without confirmation. For example, if the workspace contains only a
name box or a table other than a display, G2 deletes the workspace without
confirmation.

To delete a workspace interactively:

 Choose the Delete Workspace choice from the KB Workspace menu.

To delete a workspace programmatically:

 delete kb-workspace {without permanence checks}

Disabling and Enabling a Workspace

When you disable a workspace, G2 behaves as if all the items on or below the
disabled workspace in the workspace hierarchy do not exist. However, class
definitions that reside upon a disabled workspace or upon a subworkspace under
its workspace hierarchy remain in effect.

Note A disabled workspace can still be referenced and is included in existence checks
in a KB such as the count of each kb-workspace.

Just as for any disabled item, the fact that a workspace is disabled is part of the
knowledge stored in a saved KB file. A disabled workspace remains disabled
until you enable it. You can disable both top-level workspaces and
subworkspaces.

To disable an enabled workspace:

 Choose Disable from its menu.

To enable an disabled workspace:

 Choose Enable from its menu.
133

Hiding and Showing a Workspace

Hiding a workspace means to stop displaying it. Showing it means to display the
workspace again. You can hide and show a workspace interactively or
programmatically.

Hiding a Workspace

To hide a workspace interactively:

 Click the hide button on the right side of the workspace title bar

or

 Choose Hide Workspace from the KB Workspace menu.

To hide a workspace programmatically:

 hide kb-workspace

You can hide the workspace of an item, the subworkspace of an item, the
workspace of an item on the superior workspace of an item, and the current
workspace. For more information, see hide.

Showing a Workspace

The technique for showing a workspace depends on whether the workspace is
named and whether it is a subworkspace.

To show a named workspace interactively:

 Choose Main Menu > Get Workspace, and select the workspace by name
from the resulting submenu.

To show an unnamed workspace interactively:

 Use the Inspect facility to find it, by searching for an item on the workspace or
by searching for all workspaces that meet a particular criteria.

To show the subworkspace of an item interactively:

 Choose the go to subworkspace menu option for the item.

To show the superior workspace of a subworkspace interactively:

 Choose Go To Superior from the KB Workspace menu of a subworkspace.

To show a workspace programmatically:

 show kb-workspace

You can show programmatically any named workspace, the subworkspace of an
item, the workspace of an item that is superior to an item, and any workspace that
134

Working with Workspaces
you can describe using a generic reference. You can also show a workspace at a
particular scale and position. For more information, see show.

To ensure that a portion of the workspace is always visible, use the g2-ui-show-
workspace system procedure. For details, see User Interface Operations.

Scaling a Workspace

G2 displays a workspace according to its current scale. By default, the current
scale of a new workspace is the normalized scale for the G2 process, which G2
determines by calculating the ratio of workspace units per pixel of resolution on
your computer’s monitor.

The absolute size in which a workspace appears when displayed at full scale
depends upon the settings specified for the -magnification and -resolution
command-line options when the G2 process was launched. See Appendix A,
Launching a G2 Process, for more information.

G2 displays each workspace at some factor greater than or less than its full scale.
You can enlarge and shrink the size of a workspace by using keystroke
commands or programmatically. G2 scales a workspace up or down to a
maximum or minimum size.

To enlarge the size of a workspace interactively:

 Place the cursor within a workspace, and press Control + b or Control + 4
repeatedly.

To shrink the size of a workspace interactively:

 Place the cursor within a workspace, and press Control + s repeatedly.

See Appendix C, Mouse Gestures, Key Bindings, and Shortcut Keys for a list of all
keystroke commands that affect the display of workspaces.

To change the size of a workspace programmatically:

 show kb-workspace scaled by

For a complete description of this syntax, see show.

The scale at which G2 displays a workspace is specific to the window in which the
user is viewing the current KB. For more information, see Displaying
Independent Views of the Current KB.

Positioning a Workspace within its Window

You can move a workspace within its G2 window by specifying a new location for
its origin with respect to the current center of the window. G2 considers the
current center of the window to be the location (0,0).
135

Note that the window’s current center can change from moment to moment, as
you resize the window by using the controls provided by your computer’s
window manager software.

For example, assume that you have created the workspace shown in the figure
below. The workspace contains an action button that moves the workspace to the
center of the window:
136

Positioning Items upon a Workspace
The figure on the left below shows the G2 window after operating-system
resizing. The figure on the right shows the same window after the show action
has been executed.

Positioning Items upon a Workspace

Each workspace defines its own two-dimensional x, y coordinate system
measured in workspace units. Each workspace unit corresponds to some number
of pixels of resolution on your computer’s display device. By default, G2 displays
workspaces at 75 workspace units per inch.

Tip You can set the ratio of workspace units per inch and the ratio of workspace units
per pixel on your display device when you launch G2. See the description of G2’s
-magnification and -resolution command-line options in Appendix A,
Launching a G2 Process.
137

Using the Workspace Origin

The workspace origin is defined as the location (0,0). When you create a new
workspace interactively, G2 displays it with its origin at the current center of the
G2 window.

You specify the locations of items on a workspace as coordinates with respect to
the origin. For example, this action moves an item within its own workspace so
that its center is at the location 100 workspace right of the origin and 200
workspace units below the origin:

move my-object to (100,-200)

You can specify a location up to 16,777,215 workspace units away from the
workspace origin.

Displaying the Visible Portion of a Workspace

The extent of a workspace is the visible portion of is two-dimensional region. The
extent of a workspace is always rectangular. When you display a workspace, you
are displaying its extent.

The origin of a new workspace is also the center point of its extent. However, after
you add items to the workspace, and after you shrink wrap it one or more times,
its origin might no longer be the same location as the center of its extent.

It is also possible for the origin of a workspace to lie outside the visible portion of
the workspace. Even when the origin is no longer within the visible portion of the
workspace’s two-dimensional region, you still refer to locations upon the
workspace with respect to the origin.

Specifying Margins within the Border of
a Workspace

G2 adds a number of extra workspace units, or margins, between the outermost
items upon a workspace and its borders. As you move or transfer items to
workspace regions outside of the workspace margins, G2 automatically adjusts
the borders of the workspace outward.

G2 moves the workspace borders outward only when you move items to
locations that are outside the current margins.

The workspace-margin attribute of a workspace determines the number of
workspace units that G2 automatically maintains between any items that reside
upon the workspace and each workspace edge.
138

Creating and Using a Workspace Hierarchy
Shrink Wrapping the Size of a Workspace

As stated above, G2 automatically adjusts the borders of a workspace outward as
you move and transfer items outside its current margins. G2 does not
automatically adjust the borders inward as you move items within the workspace
margins.

To adjust the borders of a workspace so they just fit the items on the workspace is
called shrink wrapping.

To shrink wrap a workspace interactively:

 Choose the Shrink Wrap choice from the KB Workspace menu.

To shrink wrap a workspace programmatically:

 change the size of kb-workspace to minimum

An item whose representation is transparent does not appear on the workspace.
However, such an item occupies a region within the workspace. When shrink
wrapping a workspace, G2 maintains the workspace margin outside any
transparent item.

Creating and Using a Workspace Hierarchy

Each top-level workspace, the items it contains, the subworkspaces of those items,
and so on, form a pattern called a workspace hierarchy. Each workspace
hierarchy forms a tree, with the top-level workspace at the root of the tree.

Only KB workspaces and the items they contain can participate in a
workspace hierarchy.

Creating a Subworkspace for an Item

Most items can optionally have an associated child workspace, called a
subworkspace. An item’s subworkspace can contain other items. Use the
subworkspace of an item to collect other items that have some relationship to that
item. For example, you can create a variable that has a subworkspace containing
the rules that conclude a new current value for the variable. An item can have
only one subworkspace.

To create a new subworkspace for an item interactively:

 Choose the create subworkspace choice from the item’s menu.

This menu choice creates a new workspace and automatically makes it the
subworkspace of the selected item. G2 automatically displays the new workspace
with its center at the current center of the window.
139

After the subworkspace of an item exists, the create subworkspace choice no
longer appears on the item’s menu.

To go to the subworkspace of an item:

 Choose go to subworkspace on an item with a subworkspace.

To create a new subworkspace for an item programmatically:

 Execute these actions in this order:

create item;
create kb-workspace;
make kb-workspace the subworkspace of item

For example:

create an item-list L1;
create a kb-workspace W;
make W the subworkspace of L1

G2 does not automatically display a new subworkspace that is created
programmatically. To display a new subworkspace programmatically, use the
show action. This procedure code creates a new item-list, creates a new
workspace, and makes the workspace the subworkspace of the item-list:

create-list-with-subworkspace()
SUB-WS: class kb-workspace;
IL: class item-list;
begin

create an item-list IL;
transfer IL to list-workspace;
conclude that the names of IL is concerto-item-list;
make IL permanent;

create a kb-workspace SUB-WS;
conclude that the names of SUB-WS is concerto-subworkspace;

make SUB-WS the subworkspace of IL;
make SUB-WS permanent;

end

Making a Workspace the Subworkspace of an Item

Using the make action, you can make an existing top-level workspace the
subworkspace of an item, and you can change the association of a subworkspace
from one item to another item. A workspace must be transient before you execute
these actions.

To make a workspace the subworkspace of an item:

 make kb-workspace the subworkspace of item
140

Creating and Using a Workspace Hierarchy
These code examples make workspaces the subworkspaces of items:

make top-level-workspace transient;
make top-level-workspace the subworkspace of mineral506;
change the name of top-level-workspace to the symbol mineral506-subworkspace;
make mineral506-subworkspace permanent

make the subworkspace of item1 transient;
make the subworkspace of item1 the subworkspace of item2;
make the subworkspace of item2 permanent

Note The transfer action does not change the item association of a subworkspace.
However, if the target item already has a subworkspace you can use the transfer
or delete actions to remove the item from the target item.

For details, see make and transfer.

Displaying the Workspace Hierarchy

Each top-level workspace in your KB has a distinct workspace hierarchy. You can
use the Inspect facility to view the current workspace hierarchies.

To display the workspace hierarchy:

 show on a workspace the workspace hierarchy [of item]

This figure shows an example of a workspace hierarchy consisting of one top-
level workspace and two subworkspaces:

Determining Whether a Subworkspace Exists

An item has an implicit, system-defined relationship with its subworkspace,
which you can determine interactively or programmatically.

To determine whether a subworkspace exists interactively:

 Display its menu to see if it includes the go to subworkspace choice.
141

To determine whether an item has a subworkspace programmatically:

 Using the expression the subworkspace of item exists, which returns a
truth-value.

Referring to Subworkspaces Programmatically

To refer to the subworkspace of an item:

 the subworkspace of item

To refer to the superior item of a subworkspace:

 the superior item of subworkspace

Configuring Items Based on the Workspace
Hierarchy

You can declare configurations in the item-configuration attributes of a workspace
to customize the behavior of items for particular categories of users.

Item configurations declared in one workspace can also pertain to all items below
that item in the workspace hierarchy. Thus, the workspace hierarchy can serve as
a framework for controlling the behavior of whole regions of KB knowledge. For
more information about using item configurations, see Configurations.

Organizing Knowledge in Subworkspaces by Using
Connection Posts

You can make the relationship between an item and its subworkspace explicit by
using connections and connection posts.

To make the relationship between an item and its subworkspace explicit:

 Create a class definition that declares the following instance configuration:

declare properties as follows : subworkspace-connection-posts

When you create an instance of this user-defined class, the subworkspace of the
new instance automatically contains a connection post for each stub defined in the
class definition or for each connection that the instance receives from a connection
post.
142

Creating and Using a Workspace Hierarchy
This figure shows an instance of a user-defined class named component-
subassembly. This definition declares two stubs for each instance.

The definition also declares this instance configuration:

declare properties as follows : subworkspace-connection-posts

As a result, for each instance of this class with a subworkspace, G2 automatically
places permanent connection post items on the subworkspace for each declared
stub in the definition. G2 also positions the connection posts within the
subworkspace relative to the location of the stubs on the instance.

In this example, each connection drawn between a stub on the instance and any
connection post is automatically associated with one of the connection posts on
the subworkspace of the instance. G2 associates each connection in the superior-
connection attribute of the appropriate subworkspace connection post.

If the class definition does not declare stubs, and you interactively create a
connection by dragging a stub from a connection post into the instance, G2
automatically creates connection post items on the subworkspace of the instance
when you create the subworkspace. G2 locates the connection posts on the
subworkspace relative to the location of the connections on the instance.

G2 automatically places a
connection post on the
subworkspace for each
defined stub.
143

The following figure illustrates this situation:

The figure shows a new version of the component-subassembly definition that
does not declare stubs. After you make a connection between the custom
connection post and the instance, and then create a subworkspace for the
instance, G2 automatically creates and places a connection post on the
subworkspace, and places it relative to the position of the connection on
the instance.

Associating Top-Level Workspaces with Modules

By assigning a top-level workspace to a module, you can associate a set of items
with a module. Dividing a large KB into modules is the recommended way to
organize the knowledge in your KB and to facilitate knowledge reuse.

To learn how to use top-level workspaces to identify the items associated with a
module, see Associating Items with a Module.

G2 automatically places one connection post on this subworkspace,
because the instance has received one connection from a connection post
144

Activating and Deactivating Workspaces
Activating and Deactivating Workspaces

To activate a workspace means to declare the items upon that workspace as
available to participate in KB processing. G2 activates enabled workspaces and
subworkspaces automatically when you start or restart the current KB, and when
you programmatically activate an activatable subworkspace.

The primary effect of activating a workspace is to cause G2 to invoke all initially
rules upon them. The invocation of initially rules is described in Activating the
Parent Workspace of a Rule.

Activating a workspace also activates all enabled items that reside upon the
workspace. The activation status of an item determines whether it is active. In
general, the activation status of an item propagates from its top-level workspace.
For example, if you create an item on an active and enabled workspace, the item
and its subworkspace are also active and enabled.

The activation status of an item is distinct from whether it is enabled or disabled,
which depends only on whether you have selected the enable and disable choices
for the item. By default, a workspace is enabled until you interactively disable it
using the disable menu choice. When you disable an item, the workspaces in the
hierarchy below the item are no longer active.

Activating Top-Level Workspaces

Each time you start or restart the current KB, G2 automatically does the following:

1 Activates each enabled top-level workspace.

2 Propagates the activation status of each top-level workspace to each item
below it in its own workspace hierarchy.

Note After the current KB has started or restarted, when a top-level workspace
becomes enabled, all enabled items below it in its own workspace hierarchy also
become activated.

All types of definitions (for example, class definitions and relation definitions)
remain in effect regardless of their activation status and regardless of whether
they are enabled or disabled. This means that you can instantiate definitions that
are inactive or disabled.

Executable items, for example, rules and procedures, must be enabled and
activated to be eligible to be invoked.
145

Activating and Deactivating a Subworkspace

Many system-defined items are capable of having a subworkspace, as described
in Creating a Subworkspace for an Item. Subworkspaces inherit the activation
status from the top-level workspace. If both the workspace and the item for which
you create a subworkspace are both enabled and active, the subworkspace of the
item is also enabled and active.

An activatable subworkspace is the subworkspace of an item whose parent item
has been configured using this configuration statement:

declare properties as follows : activatable-subworkspace

You specify this statement in an item-configuration or instance-configuration
attribute, as described in Configurations.

An activatable subworkspace does not inherit its activation status from the top-
level workspace. Instead, you must activate an activatable subworkspace
programmatically, using the activate and deactivate actions.

Note When you deactivate the subworkspace of an item, G2 behaves as though the
items upon the subworkspace do not exist. All items upon the subworkspace are
no longer active. The subworkspace itself, however, can still be referenced and is
included in existence checks such as the count of each kb-workspace.

Activating and deactivating activatable subworkspaces programmatically
provides a technique for enabling and disabling portions of a KB. By activating
and deactivating appropriate portions of the workspace hierarchy, you can
implement modes in your application, activating those branches which are
relevant to the current mode while deactivating branches used to model
competing modes.

How Activating and Deactivating Affects Items

When you first create an activatable subworkspace, it is active. Subsequently
resetting or restarting the KB renders the subworkspace deactivated and it must
then be activated programmatically.

When you activate an activatable subworkspace, G2 invokes all initially rules upon
that subworkspace, and resets variables and parameters that have initial values to
those values. Default attribute values changed since instantiation are not reset.

When you deactivate an activatable subworkspace, G2 ignores the non-definition
items that it and its subworkspaces contain, until that subworkspace is again
activated. Variables and parameters are reset to their initial values. Deactivating a
subworkspace also deactivates all of its subworkspaces automatically.

You activate and deactivate activatable subworkspaces programmatically by
using the activate and deactivate actions. For a description of these actions, see
activate and deactivate.
146

Printing a Workspace
Printing a Workspace

G2 can produce a print file that contains the image of a workspace. G2 only
supports PostScript print files.

Note When connecting to G2 through Telewindows, you can print directly to a native
printer from the client. For details, see the Telewindows User’s Guide.

To print a workspace:

 Select KB Workspace > Print.

G2 produces a print file subject to the current settings in the installed Printer
Setup system table described in Printer Setup.

Printing Multiple Pages

When the print output for a workspace extends across multiple pages, each
printed page includes a page index, indicating which part of the whole print job is
the current page. For instance, if you are printing page 3 of 4 pages, the page
index marker looks like this:

The page index shown here is for illustrative purposes only and is several times
larger than what actually appears in the lower-left hand corner of the print
output. The page index appears beyond the print area and does not affect the
print image.

Generating Encapsulated PostScript Files

To generate an encapsulated PostScript file for printing a workspace:

 Configure the printing-file-format attribute of the installed Printer Setup
system table to be encapsulated postscript.

Since the encapsulated PostScript convention requires that an image take up only
one page, choosing this file format causes G2 to scale the image of the workspace
to fit onto a single sheet of paper.

Tip An EPS print file contains both a graphics image and information about the height
and width of that image. For this reason, you can import the image in an EPS
print file into another document.
147

However, if you print a workspace whose image must span more than one
physical page, based on the current settings in the page-layout attribute, then G2
writes that file as a standard, not encapsulated, PostScript print file. The image
contained in such a print file cannot, by definition, conform to the requirements
for encapsulated PostScript.

Generating JPEG Files

To generate an JPEG picture file for printing a workspace:

 Configure the printing-file-format attribute of the installed Printer Setup
system table to be jpeg.

Choosing this file format causes G2 to ignore all page settings and generate a
JPEG picture with the same width and height of the workspace.

Printing a Workspace on a Color PostScript Printer

To produce a PostScript print file that prints on a color PostScript printer:

 Configure the color conversion detail to full-color in the printing-details
attribute of the installed Printer Setup system table.

The next time you print a workspace, G2 creates a PostScript print file that
contains the appropriate color information.

Note The image-palette attribute in the Color Parameters system table does not affect
whether printed output appears in color, black-and-white, or gray-scale.

Printing Workspaces without Borders

The page-economy-mode attribute in the Printer Setup system table allows you to
print workspaces without borders. When this attribute is set to yes, G2 prints the
workspace without borders, unless there is a frame style defined for the
workspace. Also, G2 does not print blank pages and suppresses the multipage
indicator. Use this option to save paper when printing workspaces.

For details, see Printer Setup.

Using Double Buffering

Workspaces support “double buffering,” which means G2 and Telewindows first
draw intermediate display updates to an offscreen bitmap, then copy the final
bitmap contents to the screen. This technique can reduce flickering when
updating workspaces.
148

Setting the Color of Workspaces
To support this feature, workspaces provide the prefer-buffered-drawing attribute,
with values yes or no. If the value is yes, then G2 and Telewindows try to use the
“double buffering” approach to rendering images, whenever possible.

Setting the Color of Workspaces

Workspaces have two color attributes, foreground-color and background-color,
where:

• The foreground color determines the color of items on this workspace that do
not specify a local color. The default foreground color for a workspace is the
color black.

• The background color is the color in which the background of the workspace
appears. The default background color for a workspace is the color white.

The foreground color of a workspace also determines the value of the metacolor
foreground for an item upon the workspace. Typically, the color setting for
attribute displays of items, and for the text and border of items with a text box,
such as rules, is foreground.

The background color of a workspace also determines the value of the metacolor
transparent for any item upon the workspace. Typically, the background color
setting for items with a text box, such as rules, is set to transparent.

To set the workspace color interactively:

 Select KB Workspace > Color > background-color | foreground-color > color.

To set the workspace color programmatically:

 change the color-attribute-name of kb-workspace to
{color-name | symbolic-expression}

For example:

change the background-color of my-workspace to salmon

You can also provide a symbol of the form RGBrrggbb as a valid color name,
where rr, gg, bb, are the 8-bit hex values for red, green, and blue. For details, see
Other Literal Terms.
149

Creating Custom Workspace Borders
You can create custom borders for workspaces by using a frame-style-definition.
The definition specifies the color of the border and its thickness in workspace
units. A workspace with a frame-style definition does not have a title bar.

Note The default borders of a kb-workspace, as well as borders created by using a
frame-style-definition are not included in the item-width and item-height of a
kb-workspace.

To create a frame-style definition:

 Choose KB Workspace > New Definition > frame-style-definition.

Associate a frame-style definition with a workspace by entering its name in the
frame-style attribute for the workspace.

A frame-style definition has one class-specific attribute, description-of-frame, in
which you enter one or more clauses that define the display characteristics of the
workspace border. Use a semicolon to separate clauses in a description-of-frame
attribute.

For example, to declare a border with two stripes, enter a statement like this:

border 10 gold , 5 forest-green

The statement must specify an integer value or expression, which represents the
thickness in workspace units of one border section. Enter a system-defined color
name, or select a color name from the color menu. Use a comma to separate any
two border stripe descriptions. You can specify more than one border clause.
150

Using a Graphic as a Background Image
The next figure shows a workspace whose frame-style definition has a border
with two differently colored sections:

The first color specified in the first border clause refers to the outermost stripe in
the border.

Note When you change the scale of a workspace, G2 does not scale the borders defined
by a frame-style definition; G2 only resizes them. As you scale the workspace, G2
redraws the border to fit around the workspace, but the thickness in workspace
units of the border does not change.

When a workspace is not selected, the frame-style turns gray.

Using a Graphic as a Background Image

You can specify that a workspace display a graphics image as its background. To
reference the image, enter the name of an image-definition in the background-
images attribute for the workspace. Image definitions support .jpeg, .gif, and
.xmb file types. For more information about image definitions, see External
Images.

The image definition must refer to a file that contains the bitmap graphics data.
The image definition bitmap itself can be up to 65,536 by 65,536 pixels in size.

For example, to include the image referenced in the image definition named
world-map, enter the following statement in the background-images attribute:

world-map at (10,10)
151

In this statement, the x and y coordinates direct G2 to place the center of the
image 10 workspace units above and 10 workspace units to the right of the
workspace origin.

Various GIFs that can be used as workspace background images are available in
the G2 demos directory, as described under GIF Files.

Specifying the Center of the Background Image

The x, y coordinates in the background-images attribute identify where G2 places
the center of the image. G2 positions the center of the image with respect to the
center of the workspace’s extent; it does not position the image with respect to the
workspace origin.

If you do not specify x, y coordinates in the background-images attribute:

• G2 places the center of the background image at the center of the workspace’s
displayed extent.

• G2 automatically updates the background-images attribute to include the x, y
coordinates within the workspace’s extent where the image’s center
was placed.
152

Using a Graphic as a Background Image
For example, the figure on the next page shows two versions of a workspace that
contains six items: before and after including a background image.

The three items on the right half of each workspace display their respective item-
x-positions and item-y-positions in attribute displays. The attribute displays
indicate that the workspace origin is not within its extent.
153

After entering the name of an image definition in the workspace background-
images attribute, with no x, y coordinates included, G2 changes this workspace
by automatically:

• Placing the center of the image at the center of the workspace’s
displayed extent.

• Expanding the workspace’s extent, as necessary, to allow the entire image to
display, while allowing for the margins.

• Updating the background-images attribute to include the x, y coordinates for
the location of the image’s center.

Using Tiled Workspace Backgrounds

You can use tiled images as the background of a workspace by configuring the
background-images attribute of a workspace, using this syntax:

image-name tiled [at (x,y)]

where:

image-name is the name of an image-definition object.

By default, the image is tiled at the center of the workspace, at (0, 0). You can
also specify the x, y coordinates at which to tile the image.

Here is an example of a tiled workspace background:
154

Using a Graphic as a Background Image
Displaying More Than One Background Image

You can display more than one image in the background of a workspace. To do
this, enter a statement in the background-images attribute, such as:

world-map at (10,10), map-legend at (100,100)

Note If you specify more than one image definition in the background-images attribute,
and if the extents of the images overlap, G2 displays image definitions at the end
of the list on top of those at the beginning of the list.

Saving the Background Image in the KB

You can save the graphics data that comprise the background image when you
save your KB file. To do so, specify yes as the value of the save-image-data-with-
kb attribute of the image definition referenced in the background-images
attribute. Doing so prevents you from inadvertently separating the image data
from your KB when you move the KB to another system, but doing so also
increases the size of your KB file when next saved.

Other Considerations for Using Background Images

As you work with background images for your workspaces, keep these
considerations in mind:

• G2 always displays the entire image stored in the image file. When you add or
change the background image of a workspace, G2 automatically enlarges the
workspace so that the bitmap graphics image fits within it.

• If the bitmap graphics image does not fill the workspace extent, the remainder
of the workspace extent appears in the background color.

• When shrink-wrapping a workspace, G2 does not hide or crop any portion of
the background image.

• After you add a new reference to an image definition in the background-
images attribute, and if that image is in color, then the first time G2 displays
the image, its colors might not appear in the colors you expect. If so, set the
image-palette attribute in the Drawing Parameters system table to extended-
colors, rather than standard-colors.

• If your KB contains a workspace that uses a background image that is not
saved in your KB file, that KB is inherently incomplete. Thus, when you load
the KB on another computer, the bitmap graphics data file(s) to which the
background image refers must accompany the KB on the new computer.
155

Be aware that G2 reads the bitmap graphics file referenced in an image definition
for a background image in only three situations:

• When G2 loads the KB, if the image’s graphics data are not already saved as
part of the KB itself.

• When you finish editing the name of an image definition in the background-
images attribute of the workspace.

• When the KB invokes the g2-refresh-image-definition system procedure.

The Kb-Workspace Class

A KB workspace is an item of the system-defined kb-workspace class.

A workspace has its own unique representation which depends on the window
style defined for your interaction with G2. Its appearance is not iconic.

The following table summarizes the class-specific attributes of the kb-workspace
class:

Attribute Description

workspace-margin Distance in workspace units between the outermost items
on the workspace and the innermost stripe of the
workspace border.

Allowable values: Any integer, zero (0) or greater

Default value: 30 workspace units

Notes: See Specifying Margins within the Border of a Workspace.

background-color The background color of the workspace

Allowable values: Any available color symbol.

Default value: white

foreground-color The foreground color of the workspace

Allowable values: Any available color symbol.

Default value: black

The Kb-Workspace Class
background-images Names of one or more image definitions, each of which
specifies a graphics image that appears as the workspace
background.

Allowable values: none
Name of any image definition item

Default value: none

Notes: See Using a Graphic as a Background Image.

frame-style Name of a frame-style definition, which determines a
reusable, custom border for this workspace.

Allowable values: none
Name of any frame-style definition

Default value: none

Notes: See Creating Custom Workspace Borders.

title-bar-text The text to display in the title bar, which can be a string,
with quotes, or as an expression to display the workspace
name, class, or table header.

Allowable values: default | string | the class | the table header |
the name [if any, otherwise, string | the class |
the table header]

Default value: default

Notes: See Editing Title Bar Text.

view-preferences Controls the display behavior when programmatically
showing workspaces in the server and client, using the
show action.

Allowable values: none | fixed size | unselectable

Default value: none

Notes: See Using View-Preferences.

Attribute Description
157

Using View-Preferences

The view-preferences attribute has these options:

• none, the default, which allows the workspace to be selected in the server and
the window to be resized in the client.

• unselectable, which prevents the workspace from ever being selected, either
programmatically or interactively, or from affecting the current selection in
the server.

Note By making a workspace unselectable, you are preventing menu bar operations
on the workspace in the Telewindows client. Making the workspace
unselectable does not affect the ability to interactively select the workspace by
clicking its title bar.

• fixed size, which prevents the window containing the workspace from
changing size when programmatically showing it in the client. Instead, if the
workspace size becomes larger than the window, the window displays scroll
bars. Note that the user can still resize the window interactively.

prefer-buffered-
drawing

Determines whether the workspace uses double-buffering
to reduce flickering.

Allowable values: yes
no

Default value: no

Notes: See Using Double Buffering.

module-assignment Name of the parent module of this top-level workspace.

Allowable values: unspecified
Name of any module in the current KB

Default value: unspecified

Notes: See Associating Top-Level Workspaces with Modules.

Attribute Description
158

The Kb-Workspace Class
You can specify none, or any combination of unselectable and/or fixed size.
When concluding a value for this attribute programmatically, you conclude the
value as a structure with this syntax:

structure (unselectable: truth-value, fixed-size: truth-value)

The view preferences are applied to the view created when a workspace is shown.

Example: Setting View-Preferences to Unselectable

In this example, ws-1 sets the view-preferences to none, the default, by setting
unselectable to false. Clicking the Show WS-1 button shows ws-1, which also
selects it because unselectable is false. This figure shows the workspaces in the
G2 server.

WS-1 is selected.
159

Now, ws-1 sets the view-preferences to unselectable by concluding that
unselectable is true. Clicking the Show WS-1 button shows ws-1, but it does not
select the workspace because unselectable is true. This figure shows the
workspaces in the server.

WS-1 is not selected.
160

The Kb-Workspace Class
Example: Setting View-Preferences to Fixed Size

This figure shows the workspaces in the Telewindows client. In this example,
ws-2 sets the view-preferences to none, the default. Clicking the Show WS-2
button shows ws-2 at three-quarter scale, then at full scale again. The window
containing the workspace resizes to fit the workspace each time the workspace is
scaled, because fixed-size is false.

The window containing
WS-2 resizes each time
the workspace is scaled.
161

Now, ws-1 sets the view-preferences to fixed size by concluding that fixed-size is
true. Clicking the Show WS-2 button shows ws-2 at three-quarter scale, then at
full scale again. However, this time, the window containing the workspace does
not resize to fit the workspace, because fixed-size is true. This figure shows the
workspaces in the Telewindows client.

Actions That Apply to KB Workspaces

You can use the show and hide actions to control workspaces programmatically.
For more information about these actions, see hide, and show.

Expressions That Refer to KB Workspaces

You can use the following expressions for KB workspaces.

To refer to whether a workspace has been activated:

 kb-workspace has [not] been activated
-> truth-value

The expression produces a truth-value that indicates whether the specified
workspace is activated. For example:

for any help-button B
if the subworkspace W of B exists and W has been activated

then start evaluate-status-of(B)

The window containing WS-2
remains a fixed size when
the workspace is scaled.
162

The Kb-Workspace Class
To refer to the workspace of an item:

 the workspace [local-name] of item
-> kb-workspace

For example, this expression brings the parent workspace of the specified item to
the top of the display hierarchy:

hide the workspace of pump-1

If the specified item does not have a parent workspace, evaluating this expression
causes G2 to signal an error. To prevent this, use this expression with the exists
expression, as follows:

for any item X
if the workspace of X exists and the name of X is CUSTOM then

conclude that the status of X is OK

This generic if rule checks each item that is upon a workspace, and for each such
item whose name is custom, sets its status attribute to the symbol ok.

To refer to the subworkspace of an item:

 the subworkspace [local-name] of item
-> kb-workspace

This expression produces the workspace that is the subworkspace of the specified
item. For example:

show the subworkspace of pump-1

If the specified item does not have a subworkspace, evaluating this expression
causes G2 to signal an error. To prevent this, use this expression with the exists
expression, as follows:

for any custom-object O
if the subworkspace of O exists and the name of O is custom

then conclude that the status of O is OK

This generic if rule identifies each custom-object that has a subworkspace and, for
each that does and whose name also is custom, sets its status attribute to the
symbol ok.

To refer to an item upon a particular workspace:

 the class-name [local-name] upon kb-workspace
-> item

With the the quantifier, this generic reference expression produces the one and
only item of the specified class that resides upon the specified workspace. With
the any quantifier, this expression produces the set of items of the specified class
that reside upon the specified workspace. For example:

move the help-button upon this workspace by (100,100)
163

164

5

Modularized KBs
Describes how to partition your KB into modules.

Introduction 165

Understanding Modules 166

Creating, Populating, and Saving Modules 169

Creating a Module Hierarchy 173

Obtaining Information about Modules 184

Working with Modularized KBs 189

Using a Module Search Path to Load KB Files 194

Using a Module Map File to Load and Save a KB 197

Introduction
You can develop a large knowledge base (KB) from smaller, more manageable
pieces called modules. Each module contains a set of related items that together
comprise a KB. You define a module in the Module Information system table. We
recommend that you design and implement your application to use modules.

One module can directly require another. For example, a module that contains
instances of user-defined classes would directly require modules that contain the
definitions for those classes. When you load a KB file that contains a module, G2
automatically loads all required modules.
165

Developers on an application team can develop modules more or less
independently of one another. Also, you can design your modules so that you can
use them to build more than one application.

By organizing items into modules, you can:

• Store items associated with each module into a separate KB.

• Add or change knowledge in each module independently of the
other modules.

• Reload the complete KB by loading all required modules.

• Merge modules from one KB into a different KB.

You can work with modules both interactively and programmatically.

Modules affect many aspects of a G2 application, and information about them
appears in various places in the G2 documentation. This chapter describes the
essential techniques for using modules and module hierarchies. Additional
information appears as follows:

• The Getting Started with G2 Tutorials introduce modules and provide exercises
that show you how to use them.

• The G2 Developer’s Guide describes techniques and guidelines for using
modules and module hierarchies effectively in complex situations.

• The G2 Foundation Resources User’s Guide describes additional capabilities for
module management that are available in GFR.

Understanding Modules
A module identifies a set of items that represents a component of a larger KB.

You can work with modules in a flexible manner, as follows:

1 Start by building an application without modules.

2 Create modules and associate the items in the KB with those modules

3 Save the KB into separate KB files, with one module per file.

For details about how to do this, see Creating, Populating, and Saving Modules.

You might begin to build an application by populating an empty KB, organizing
the knowledge that pertains to certain classes of items into different modules.
166

Understanding Modules
For example, you could define a module for class definitions, define another
module for instances of the classes, and define a third module for executable
items that manipulate class instances, as this figure shows:

You can create a module and associate it with a set of items, regardless of whether
the KB is reset, running, or paused.

Once you have modularized your KB and saved these modules into separate KB
files, you can load individual modules, and merge other modules into the current
KB. For information about loading and merging KBs, see Working with
Modularized KBs.

For large applications, you typically create a module hierarchy by defining
modules that directly require other modules. This is explained next.

The Module Hierarchy

To create a module hierarchy, you must have a top-level module, which is the
root of the module hierarchy. To form the hierarchy, you define modules in the
hierarchy to directly require one or more other modules.

Defining a module to directly require another module means that G2
automatically loads the directly required module before loading the module that
depends on it. In this manner, you can load an entire application by loading a
single top-level module.

Executable-items module

Class-definitions module

Class-instances module

Knowledge Base
167

The following diagram illustrates the relationships among the modules in a
module hierarchy:

A module that directly requires another module can function independently from
its directly required modules. However, you must define a module to directly
require another module when:

• A class definition contained in one module has the definition of one or more
superior classes contained in another module.

• An item contained in one module is an instance of a class definition contained
in another module.

In the figure above, for example, mod-0 might contain items that are instances of
classes defined in definitions assigned to mod-1. In this case, you must define
mod-0 to directly require mod-1.

A KB that includes a module hierarchy is called a modularized KB. When saving
a modularized KB, you save the modules into separate files. If a KB is not
consistently modularized according to the criteria outlined in Rules for Consistent
Modularization, it is considered unmodularized. G2 saves unmodularized KB
modules into a single KB file.

For more information about how to create and save a module hierarchy, see
Creating a Module Hierarchy.

Modules and System Tables

Each module that you create or load has its own set of system tables. You define
each module in the Module Information system table, including its name and its
directly required modules.

When you load a KB, G2 installs a set of system tables for each module contained
in the KB. After loading is complete, the set of system tables associated with the
top-level module defines much of the functionality for all the modules in the
current KB.

Top-level module

Directly required

Directly required
modules for mod-0

modules for mod-1
and mod-2
168

Creating, Populating, and Saving Modules
If you create a new module, G2 automatically creates a new set of system tables
and associates them with the new module. If you delete a module from the
current KB, G2 automatically deletes its associated system tables. When you save
a module, G2 also saves its associated system tables in the KB file.

There is one system table, the Server Parameters system table, which is not
associated with any module. Only one Server Parameters system table exists in a
G2 process. It is created by G2’s initialization process when you first launch G2
and remains in residence throughout the G2 process, even when you clear and
load KBs. You use this system table to specify preferences that pertain to your G2
process independent of the resident KB. For more details, see Server Parameters.

Modules and Items

You associate items in a KB with a module by assigning that module to one or
more top-level workspaces in the KB. This causes that workspace, all items upon
that workspace, and all items below them in the workspace hierarchy to be
associated with that module.

For information on assigning items to a module, see Associating Items with a
Module.

Creating, Populating, and Saving Modules
The basic tasks for working with modules are:

• Naming the top-level module, which creates a new empty module.

• Associating items with the module.

• Saving the module in a KB file.

For information about creating and saving a hierarchy of modules, see Creating a
Module Hierarchy.

Naming Conventions for Modules

When naming the top level or other modules, we recommend following the
standard naming conventions described in Platform File Systems and KB File
Names.
169

Naming the Top-Level Module

The first step in creating a module hierarchy is to name the top-level module. This
is true whether you are creating modules in an empty KB, or in a KB that already
contains items.

Naming the top-level module creates a module of that name in the current KB. If
you want the current KB to have a single module only, all you have to do to create
the module is to name it and assign all top-level workspaces to it.

You can name the top-level module interactively or programmatically.

To name the top-level module interactively:

1 Open the Module Information system table by choosing Main Menu >
System Tables > Module Information.

2 Enter the name of the top-level module in the top-level-module attribute:

You can enter any unreserved symbol as the name of the top-level module.

To name the top-level module programmatically:

 conclude that the top-level-module of module-information
= the symbol module-name

where module-name is the symbolic name of the module.

If you have named a top-level module in the current KB, each time you create a
new top-level workspace, G2 automatically assigns the workspace to the top-level
module.

Note If you delete a module from the current KB, you can optionally delete all the
workspaces associated with that module. For more information, see Deleting a
Module.
170

Creating, Populating, and Saving Modules
Associating Items with a Module

After creating a module, you typically associate the module with a set of items in
the current KB. You do this by associating the module with one or more top-level
KB workspaces. G2 associates the module with these workspaces and with all
items below the workspaces in the workspace hierarchies.

To associate a module with a top-level workspace interactively:

1 Open the table for a top-level workspace.

2 Enter the name of a module in the module-assignment attribute.

You can enter only one module name in this attribute.

To associate a module with a top-level workspace programmatically:

 conclude that the module-assignment of kb-workspace
is module-name

where module-name is the name of the module to which you wish to assign
kb-workspace.

Tip You can assign more than one top-level KB workspace to the same module.
However, we recommend that you assign only one top-level workspace to a
module. By observing this convention, your modularized KBs have a predictable
structure, and are more convenient to work with.

If the current KB has a top-level module, and you add a new top-level workspace
to the current KB, G2 automatically sets its module-assignment attribute to the
name of the top-level module.

Saving a Module in a Separate KB File

When your KB contains a single top-level module, you can save the module in its
own KB file. For information about saving a modularized KB, see Saving the
Module Hierarchy.

You can save modules interactively or programmatically.

Note G2 does not accept the wildcard characters *, ?, {, and } in filenames, file
extensions, or version numbers. They are allowed in pathnames. The following
filenames would not be accepted in the editor and would generate an error when
given to a system procedure: mod*.kb, mod.k*b, *.kb, and *.*. This pathname is
accepted on UNIX: /home/user/*/mod.kb.
171

To save a module in a file interactively:

1 Select Main Menu > Save KB.

G2 displays a special workspace for saving KBs, which shows:

• The name of the top-level module to save.

• The default directory path in which it will save the KB file.

• The default KB filename, which is based on the name of the top-level
module.

The following figure shows the save KB workspace that G2 displays when
saving the methods module:

2 At this point you can:

• Enter a new default directory path and filename of the KB file into which
you want to save the module.

• Enter just a new filename.

• Accept the default filename.

Tip We recommend that you name the KB file using the same name as the module it
contains. This is especially critical when saving modularized KB, as explained in
Specifying the Filename of a Saved Module.

To save a module programmatically:

 Use the g2-save-module system procedure, as described in KB and Module
Operations in the G2 System Procedures Reference Manual.

You can programmatically save a module, even while the current KB is running.
172

Creating a Module Hierarchy
Creating a Module Hierarchy

Typically, for large applications, you will want to create a module hierarchy to
organize your KB.

In general, a module hierarchy consists of one top-level module and multiple
directly required modules below the top-level module, where each submodule
can also directly require one or more modules.

For information on when one module must directly require another module, see
The Module Hierarchy.

The general steps for creating a module hierarchy are:

1 Create a top-level module.

2 Create one or more additional modules.

3 Declare the directly required modules for each module in the KB.

4 Check for consistent modularization.

5 Save the modularized KB into separate KB files.

The following sections outline these steps in detail.

Creating a Top-Level Module

The first step for creating a module hierarchy is to name the top-level module.
This is described in Naming the Top-Level Module.

Naming the top-level module creates a single top-level module for the KB. The
next step is to create additional modules in the current KB.

Creating a New Module

To create a module hierarchy, you must create additional modules in the current
KB. Once you have created these modules, you can declared them to be directly
required by the top-level module, as well as by other modules in the hierarchy.
173

Creating a New Module Interactively

You can create a new module interactively or programmatically.

To create a new module interactively:

1 Select Main Menu > Miscellany > Create New Module.

G2 displays the Module Information system table for the new module:

2 Enter the name of the new module in the top-level-module attribute of the new
Module Information system table.

Creating a New Module Programmatically

G2 includes a system procedure for creating a module programmatically.

To create a new module programmatically:

 g2-create-module
(module-name: symbol)

where module-name is the name of the module in your current KB that you wish to
create programmatically.

The module-name cannot:

• Duplicate the name of an existing module.

• Be a reserved word in G2.

• Be the symbol unspecified.

On successful execution, g2-create-module creates a set of system tables for the
new module. The top-level-module attribute of the Module Information system
table is module-name. All other attributes have default values.
174

Creating a Module Hierarchy
The next procedure creates a new module based on the symbolic name passed as
its argument, and assigns the kb-workspace to the new module:

create-module(module-name: symbol, ws: class kb-workspace)
begin

call g2-create-module(module-name);
conclude that the module-assignment of ws = module-name

end

System Tables Associated with a New Module

When you create a new non-top-level module interactively or programmatically,
G2 creates a set of twenty associated system tables for the new module. However,
these system tables are not installed in the current KB; with the exception of some
module-specific attributes, only the system tables of the top-level module are in
effect for the current KB.

To display the system tables for all loaded modules:

 Choose Main Menu > Inspect and enter this command:

show on a workspace every system-table

To display a particular system table subclass for all loaded modules:

 Choose Main Menu > Inspect and enter this command:

show on a workspace every system-table-subclass

For example, the next illustration shows an Inspect workspace for show on a
workspace every module-information. The KB has three defined modules: a top-
level module named top-level and two additional modules named required-1 and
required-2. The Module Information representation for the top-level module is
unique in that it does not display the module name.
175

Only representations of non-top-level modules are identified by the name of
the module:

Declaring Directly Required Modules

For each module that requires other modules, you must assign the name of the
required module to the directly-required-modules attribute in its associated
Module Information system table. A module can directly require one or more
other modules.

For example, suppose your current KB contains a top-level module named top,
and suppose you create a new module named classes, which you want to be
below the module top in the hierarchy.

To declare a directly required module of a module interactively:

1 Open the Module Information system table for the module that requires
another module.

2 Enter the name of the directly required module or modules in the directly-
required-modules attribute.

To declare one or more directly required modules programmatically:

 Use the conclude action to change the directly-required-modules attribute of a
specific Module Information system table.
176

Creating a Module Hierarchy
For example:

change-required-modules-for-module(module-name: symbol,
required-modules: sequence)

MI: class module-information;
begin

if there exists a module-information MI such that
(the top-level-module of MI = module-name)

then conclude that the directly-required-modules of MI =
required-modules

end

Use this technique to create a module hierarchy with module branches, as shown
in the figure in The Module Hierarchy.

Rules for Consistent Modularization

If the current KB contains one or more modules, those modules must conform to
G2’s rules for consistent modularization, as follows:

• Every module must be named in its own Module Information system table.

• The module hierarchy must include one and only one top-level module. All
modules other than the top-level module must be either directly or indirectly
required by the top-level module.

• Every top-level workspace must be assigned to an existing module.

• An item and its attribute table must reside in the same module.

• The attribute table of a transient item cannot reside on a permanent
workspace that does not also contain the transient item.

• An instance of a class must appear in either the same module as its class
definition, or in a module that is above it in the module hierarchy. An instance
of a class cannot appear in a module that is below its definition in the
hierarchy.

• The dependencies among modules must not be cyclic. A cyclic dependency
occurs when a module higher in the hierarchy directly requires another
module lower in the hierarchy, but the higher module is also directly required
by a module lower in the hierarchy.
177

The diagram below shows an illegal cyclic dependency formed by the chain
of references:

a-module Æ b-module Æ a-module

You can eliminate this cycle by moving the items in a-module that are referenced
in b-module to another module.

When G2 detects that the modules in the current KB violate any of the rules for
consistent modularization, G2 signals an error and adds information to the notes
attributes of the nonconforming modules, nonconforming top-level workspaces,
and so on, as shown in the previous figure.

Tip As you develop the current KB’s module hierarchy, you should regularly check
the notes attributes of your items.

G2 validates the consistency of modules in the current KB only. G2 does not
compare the knowledge in the currently loaded modules with the knowledge
stored in KB files that are not loaded. This means that if you load a KB file and
another developer happens to save a change to the same KB file, G2 cannot detect
whether that change affects its consistency with other modules until they are
next loaded.
178

Creating a Module Hierarchy
G2 does not evaluate the consistency and completeness of all references within
the KB that cross module boundaries. For instance, G2 does not validate the
existence of procedures and functions that are referenced but not contained in the
same module. These and other execution linkage references play no role in how
G2 validates the consistency of a module hierarchy.

Checking for Consistent Modularization

G2 checks that the current KB is consistently modularized when you attempt to
save the KB or any module in the KB. As you work with your current KB, you can
also check for consistent modularization, using Inspect. You can also check for
consistent modularization programmatically, using a system procedure.

To check for consistent modularization interactively:

 Choose Main Menu > Inspect and enter this command:

check for consistent modularization

To check for consistent modularization programmatically:

 g2-check-for-consistent-modularization
()
-> return-value: sequence

For information on the return value, see KB and Module Operations in the
G2 System Procedures Reference Manual.

When you issue the check for consistent modularization command, Inspect
displays an Inspect workspace and places on it any messages that describe why
the current KB is not consistently modularized.
179

The following figure shows an Inspect workspace with two messages, produced
after executing the check for consistent modularization command:

In this figure, the messages from Inspect report that the current KB contains at
least one top-level KB workspace whose module-assignment attribute has the
value unspecified, and that at least one module exists in the KB that is not
required by any other module.

To respond to these messages:

• You can use Inspect to find the workspaces whose module-assignment
attribute has the value unspecified. Then, either enter a module assignment
for that workspace or delete it.

• Use Inspect to view the module hierarchy. Then, for each module that is not
presently required, determine whether it belongs in this KB’s module
hierarchy. If so, include the module name in the directly-required-modules
attribute of the Module Information system table associated with the module
that requires it.

Saving the Module Hierarchy

When saving a modularized KB, G2 saves each module in its own KB file. You can
choose to save individual modules or all modules in the hierarchy, either
interactively or programmatically.

See also Saving Your KB Knowledge for information on choosing a KB format,
saving a KB, and unsavable-module change protection.
180

Creating a Module Hierarchy
To save an entire module hierarchy into separate KB files:

1 Choose Main Menu > Pause.

2 Choose Main Menu > Save KB.

3 In the save KB workspace, include the including all required modules
statement in the save module ... as command.

For a description of the default module name and filename that G2 provides,
as well as requirements for specifying the KB filename, see Specifying the
Filename of a Saved Module.

G2 displays a list of all the modules it will save with a confirmation message.

4 Click OK to save the modules.

To save an individual module in a module hierarchy:

1 Choose Main Menu > Save KB.

2 Edit the name of the module in the save module ... as command that appears
to specify the name of the module to save.

3 Edit the associated filename to correspond to the module name you are
saving.

To save a module hierarchy programmatically:

 Use the g2-save-module and g2-save-module-without-other-processing
system procedures, as described in KB and Module Operations in the
G2 System Procedures Reference Manual.

If any directly or indirectly required module was not loaded from an existing KB
file, then when you specify the ,including all required modules phrase in the
save module ... as command, G2 creates new KB files with names based on the
combination of:

• The module name in the top-level-module attribute of each module’s
associated Module Information system table.

• The entries in the module map file, if it exists.

Note The module map file, if it exists, also determines how G2 saves modules into
corresponding modularized KB files. See Using a Module Map File to Load and
Save a KB for more information.

Specifying the Filename of a Saved Module

When saving a module that is directly required by other modules, you should
save it to a filename that is the same as the module name. This allows G2 to find
the directly required module’s associated KB file by using G2’s default
search techniques.
181

If you choose to store the module in a KB file with a different name, then in order
for G2 to locate that module’s KB file when loading or merging it later as a
directly required module, you must also create a module map file. The module
map file associates a module name with either a directory path or a KB file path.
See Using a Module Map File to Load and Save a KB.

When saving a module, G2 offers defaults as follows:

• If you created the top-level module using an empty KB, G2 offers the name of
the top-level module as the default KB filename used to save the
specified module.

• If the current KB was loaded from an existing KB file, G2 offers the existing
filename as the default KB filename used to save the specified module. This
allows you change the module name of the top-level module without affecting
the default KB filename in which the top-level module will next be saved.

Saving an Inconsistently Modularized KB

If the current KB is inconsistently modularized, you cannot save any of its
modules into separate KB files. Instead, when you attempt to save the current KB,
G2 displays a warning message, such as the following, and only permits you to
save the entire KB into a single KB file.

By default, G2 stores this KB file in a file whose name begins with the ALL- prefix
and ends with the name of the current KB’s top-level module.

Deleting a Module

Deleting a module means removing the module, all of its associated system
tables, and, optionally, all its associated items from the current KB. Recall that
items are associated with a module based on the module assignment of the
workspace on which the items reside. Deleting a module does not mean deleting
the KB file in which a particular module is stored.
182

Creating a Module Hierarchy
To delete a module from the current KB interactively:

1 Choose Main Menu > Miscellany > Delete Module.

2 From the choose a module to delete menu, select a module to delete.

G2 displays this dialog:

3 Do one of the following:

• Click the OK button to delete only the selected module and its associated
set of system tables.

• Click the All button to delete the selected module, its associated set of
system tables, and all KB workspaces assigned to that module.

Note If you attempt to delete a module that is required by the KB, G2 displays an
appropriate warning on the confirmation dialog.

To delete a module from the current KB programmatically:

 Execute the g2-delete-module system procedure, as described in KB and
Module Operations in the G2 System Procedures Reference Manual.

Note If you delete the top-level module from the current KB, G2 replaces all installed
system tables with new system tables and initializes their attributes to system-
defined default values.
183

Determining Programmatically Whether a Module
is Loaded

You can use an if rule or an if statement in a procedure to determine whether a
particular module exists in the current KB. This procedure accepts a module name
as its argument to check whether it is the top-level-module:

check-module(module-name: symbol)
begin

if the top-level-module of module-information = module-name
then post "Module [module-name] is installed as the top-level-module

of this KB."
else post "Module [module-name] is not the top-level-module

of this KB. The top-level-module is
[the top-level-module of module-information]."

end

Obtaining Information about Modules
You can use the Inspect facility to show the module hierarchy of the current KB.
You can perform operations on modules from the module hierarchy display. You
can also display all Module Information system tables in the current KB.

At the item level, you can display the module assignment of a workspace or the
items that reside upon it. You can also programmatically obtain the containing-
module of an item.

Displaying the Module Hierarchy

You can display the module hierarchy of the current KB or of a particular module
in the KB.

The module hierarchy shown in the Inspect workspace represents only the
network of references to module names found in the directly-required-modules
attributes of the Module Information system tables.

Note The module hierarchy does not indicate whether top-level workspaces are
assigned to a particular module.

To display the module hierarchy of the current KB:

 Choose Main Menu > Inspect and enter this command:

show on a workspace the module hierarchy
184

Obtaining Information about Modules
Entering this command causes G2 to display an Inspect workspace containing a
diagram of the complete module hierarchy, such as:

In this module hierarchy, a-module is the top-level module.

To display the module hierarchy for a particular module:

 Choose Main Menu > Inspect and enter a command such as:

show on a workspace the module hierarchy of module-c

Entering this command causes G2 to display an Inspect workspace containing a
partial module hierarchy, such as:
185

To perform operations on a module in the hierarchy:

1 Click on the representation of the module in the hierarchy to display
this menu:

2 Select table to display the Module Information system table for the module.

3 Select describe to describe the module by using the Describe facility.

4 Select table of hidden attributes to display a table of virtual attributes.

5 Select hide to hide the short representation of the module in the hierarchy.

If a module hierarchy contains modules that are directly required by more than
one module, G2 displays the subhierarchy for the module only once. In the other
locations in the hierarchy that require the module, G2 displays only the directly
required module, not its submodules.
186

Obtaining Information about Modules
For example, if you show the workspace hierarchy for some KBs, you see that the
sys-mod module is directly required by more than one module. However, G2
displays sys-mod’s directly required modules only once, to the far left.

Displaying Module Information System Tables

You can use Inspect to display short representations of the Module Information
system tables of all loaded modules.

To display the Module Information system tables for all modules:

 Choose Main Menu > Inspect and enter this command:

show on a workspace every module-information
187

G2 displays a workspace such as the following:

In this Inspect workspace, the Module Information whose short representation
does not identify a module is associated with the top-level module.

Displaying the Module Assignment of Items

If an item resides upon a workspace that is assigned to a module, you can display
that module assignment.

To display the module assignment of an item:

1 Click any item to display its menu.

2 Select describe to describe the item, using the Describe facility.

If the item resides upon a workspace that is assigned to a module, its
description includes a line such as:

This is assigned to module my-module.

3 Select Delete Workspace or click on the hide-workspace button to close
the item.

System table associated
with the top-level module.
188

Working with Modularized KBs
Choosing the workspace Describe menu option reveals its module assignment,
which is also available in the module-assignment attribute of the workspace
attribute table and on the table of hidden attributes for the item. You can access
the hidden attributes by choosing the table of hidden attributes menu choice from
the item menu.

Obtaining the Containing Module for Items
Programmatically

To obtain the containing module of an item programmatically:

 the containing-module of item
-> symbol

Returns a symbol value of the module name.

Working with Modularized KBs

A modularized KB contains one or more modules. When you save a modularized
KB file, G2 saves one module per file.

As explained below, if the current KB contains modules that are inconsistently
modularized, and you save the KB, G2 requires that the entire current KB and all
its modules be saved into one KB file. In this case, the KB file contains knowledge
about more than one module.

Loading a Modularized KB

If you direct G2, interactively or programmatically, to load a KB file, G2 first
attempts to load all KB files that the specified KB directly or indirectly requires.
Indirectly required KB files are files that contain modules that are directly
required by submodules in the hierarchy.

When loading a KB, G2 does the following, in this order:

1 Traces down the module hierarchy of the top-level module in the specified KB
until it finds a KB whose module does not directly require another module.

2 Loads that KB.

3 Loads, in turn, the KB that directly requires the KB already loaded.

4 Continues marching up the hierarchy until it loads all directly required
modules of the top-level module.
189

The following figure indicates the order in which G2 loads the modularized KBs
that are directly and indirectly required by the top-level module named top:

No matter how many modules directly require a particular module, G2 loads that
module only once.

Loading Modularized KBs and Detecting Conflicts

After you direct G2 to load a modularized KB, as G2 loads the modularized KBs
that form a particular module hierarchy, G2 actually performs one load operation
and one or more merge operations. First, G2 loads the KB whose module requires
no other modules, then G2 merges one or more KBs into the current KB.

Because G2 actually performs merge operations to load the second through last
KBs into the current KB, it is possible for G2 to detect conflicts among the
definitions found in the various KBs. Therefore, when loading a KB that directly
require modules in other KBs, it is recommended that the automatically resolve
conflicts box in the Load KB dialog is selected. This option is selected by default
because resolving conflicts by hand is difficult and time consuming.

Tip For information on whether to select the automatically resolve conflicts check box
and how to respond to a conflict workspace, see Detecting Conflicting Class-
Definitions.

(3)

(4)

(2)

(1)
190

Working with Modularized KBs
Loading a Particular Version of a KB File

Your application development team might work with different versions of the
same KB file, with each version stored in different directories. If a KB directly
requires a module located in a particular version of another KB, you can use
either of two techniques to ensure that a particular KB file is loaded:

• Define a module search path, to specify the order in which G2 searches a list
of directories for KB files to load. See Using a Module Search Path to Load KB
Files.

• Create a module map file, to associate a directly required module’s name with
a KB file of the same name in a particular directory, or even with a particular
KB filename. See Using a Module Map File to Load and Save a KB.

Automatic Loading of Directly Required Modules

When a module stored in one KB directly requires a module stored in another KB,
and you load the first KB, G2 automatically loads the directly required module’s
KB first, loads the requiring KB next, and so on, until the specified KB is loaded.

By default, G2 looks for a KB file with the same name as the directly required
module. For example, if you load a KB that contains a module named top, and top
directly requires another module named classes, then G2 attempts to find the
module by searching for and loading a KB file named classes.kb in the same
directory where the KB file containing the module top resides.

Tip You can optionally use a module map file or module search path, to direct G2
where to find directly required modules. For more information about using a
module map file, see Using a Module Map File to Load and Save a KB. For more
information about using a module search path, see Using a Module Search Path to
Load KB Files.

Merging a Modularized KB into the Current KB

Merging any KB file means to read a stored KB and to add its knowledge to the
current KB. You can merge any KB into the current KB.

To merge a KB interactively:

 Chose Main Menu > Merge KB.

G2 automatically selects the Merge in this KB option in the save KB workspace.

To merge a KB programmatically:

 Invoke the g2-merge-kb or g2-merge-kb-ex system procedure, as described in
KB and Module Operations in the G2 System Procedures Reference Manual.
191

Merging Directly Required Modules

When you merge a modularized KB, G2 automatically merges other KBs that the
specified KB directly or indirectly requires. This is also true when you load a KB
that requires other modules. G2 selects the other KBs to merge as described in
Loading a Modularized KB.

Installing System Tables of a Merged Modularized KB

When you merge a KB, you can either install or not install its system tables into
the current KB. Installing the system tables of a merged KB causes the module
described in the Module Information system table of the merged KB to become
the top-level module in the resulting current KB.

To install the system tables of a merged KB, check the merge in this KB and install
its system tables check box, as shown in this figure:

If you merge a modularized KB without installing its system tables, the resulting
KB contains the merged modules, but they may not participate in the current KB’s
module hierarchy.
192

Working with Modularized KBs
For example, if the current KB contains no top-level module, after merging a KB
without installing its system tables, the Inspect facility shows that there is no
module hierarchy, because there is no top-level module:

Because the resulting KB has no top-level module, the merged modules are not
directly required, and the resulting KB is inconsistently modularized.

If the current KB contains modules, the result of merging a KB and installing its
system tables depends upon whether the current KB already has a top-level
module, as follows:

• If the current KB contains modules but no top-level module, the current KB is
not consistently modularized. When you merge a KB and install its system
tables, the top-level module in the merged KB becomes the top-level module.
The current KB remains inconsistently modularized.

• If the current KB contains modules including a top-level module, and you
merge a KB and install its system tables:

– G2 uninstalls the installed set of system tables. The uninstalled system
tables remain in the current KB and remain associated with the same
module.

– G2 installs the system tables associated with the top-level module in the
merged KB. This means that the top-level module in the merged KB
becomes the top-level module in the current KB.

Ignoring Modules with Duplicate Names

If a merged KB directly requires a module with the same module name as a
module already in the current KB, G2 does not attempt to load that module again.
G2 ignores the second and subsequent attempts to load a module with the same
name, even if those modularized KBs reside in different directories.
193

When G2 ignores merging a module in this fashion, G2 places a message on the
Operator Logbook, such as the example that follows:

In this example, if your current KB is modularized and contains the module
uilroot, and you merge another KB whose top-level module classes also directly
or indirectly requires a module named uilroot, G2 does not attempt to merge
another KB, which may be located in the same directory, and which also contains
a module named uilroot.

Merging a Particular Version of a KB

As explained in Loading a Particular Version of a KB File, you can also merge a
particular version of a KB by defining a module search path or creating a module
map file.

For more information, see Using a Module Search Path to Load KB Files and
Using a Module Map File to Load and Save a KB.

Using a Module Search Path to Load KB Files

By default, when loading a KB whose module directly requires other modules, G2
searches in the same directory as the loaded KB for the files containing the
other modules.

You can also load KB files that are located in other directories. When structuring
your KB directories in this way, you might want to specify a module search path.
A module search path is a list of directories that G2 searches to find the KB file
containing a directly required module.

Tip Specifying a module search path can be especially helpful if you load or merge KB
files for which there are multiple copies stored in different directories. In this
situation, you specify a module search path to direct G2 to load or merge a
particular version of the KB file, if it exists in one directory rather than in
another directory.
194

Using a Module Search Path to Load KB Files
G2 consults the list of directories in the module search path in these situations:

• If the current KB is modularized and G2 cannot find a directly required
modularized KB file in the directory from which the current KB was loaded.

• If the current KB is empty and G2 cannot find a directly required KB in the
directory that contains the KB file that you directed G2 to load.

Tip On Windows platforms, you can start the G2 server with a batch file to load a
default module search path. For details, see the readme-g2.html file.

Specifying a Module Search Path

There are three ways you can direct a G2 process to use a module search path to
locate KB files.

• Include the -module-search-path option in the command line that launches
the G2 process. Specify a list of directory paths as the argument to this option.
The -module-search-path command-line option is described in module-
search-path.

• Before starting G2, use the appropriate operating system command to define
and set the G2_MODULE_SEARCH_PATH environment variable. Specify a list of
directory paths as its value.

• At any time after G2 is launched, specify a module search path in the module-
search-path attribute of the Server Parameters system table.

Module Search Path Syntax

A module search path specified on the command line or with an environment
variable is a quoted text value containing one or more directory paths with blank-
space characters separating directory paths. A module search path specified with
the module-search-path attribute on the Server Parameters system table is one or
more quoted directory paths separated with commas.

When specifying the module search path on the command line or with an
environment variable, special syntax is provided to support directory and file
names that contain blank spaces. Blank spaces in file paths are fairly common on
Windows platforms and are supported by the NTFS and FAT32 file system built
on top of DOS. Unix also allows spaces, but its parsing methods have discouraged
their use. You do not need to use the special syntax when specifying path names
with spaces for the module-search-path attribute on the Server Parameters system
table.

To specify a file path that contains blank spaces:

 Enclose the path in single forward quotes (apostrophes); do not use the
backquote character.
195

You can use the single-quote delimiters for both the Windows and Unix styles of
file paths. Although it is not necessary, you can enclose file paths without spaces
in single quotes. Paths with embedded apostrophes are supported, but a path that
has both an embedded space and an embedded apostrophe is not supported.

Some examples of supported search paths specified for the module-search-path
attribute of the Server Parameters system table are:

"/home/user/kbs/", "/gensym/kbs"

"C:\Program Files\Gensym\g2-2011\g2\kbs\demo\"

"\\server1\Program Files\Gensym\g2-2011\g2\kbs\demo\"

"\kbs\current-release\", "D:\product\marketing kbs\"

"/home/user kbs/", "/gensym/kbs"

Examples of supported module search paths specified on the command line or
with the environment variable are:

"/home/user/kbs/ /gensym/kbs"

"'C:\Program Files\demo\kbs'"

"'\\server1\Program Files\Gensym\g2-2011\g2\kbs\demo\'"

"\kbs\current-release\ 'D:\product\marketing kbs\'"

"'/home/user kbs/' '/gensym/kbs'"

This path is not supported:

"'\Program Files\doc’s-kbs\'"

Here are example command scripts you can use on a UNIX platform to start a G2
process that searches for KBs in two directories other than the current directory:

Start G2 and specify two directories in its
module search path
g2 -module-search-path "/dev/g2-mods/ /usr/kmm/g2-mods"

or

Start G2 and specify two directories in its
module search path
setenv G2_MODULE_SEARCH_PATH "/g2-mods/ /usr/kmm/g2-mods"
g2
196

Using a Module Map File to Load and Save a KB
How G2 Searches for KB Modules

When you load a new top-level KB, G2 searches the directories listed in the
module search path, as follows:

1 G2 determines whether the directly-required-modules attribute in that KB’s
Module Information system table refers to other KBs.

a If so, G2 searches for the directly required KB file in the directory that
contains the top-level KB file.

b If G2 does not find the directly required KB file in the top-level KB file’s
directory, G2 searches, in order, each directory specified in the module
search path.

2 When G2 finds a KB file of the correct name, G2 determines whether it, in
turn, directly requires other KB files, then follows Steps 1a and 1b to locate
that KB file.

3 If G2 cannot find either the top-level KB file or its directly required KB file(s),
using Steps 1 through 2, G2 searches the directory that was current when you
launched G2. If G2 does not find the KB file in this directory, G2 reports
an error.

Using a Module Map File to Load and Save a KB
When you work with KB files whose filenames are not the same as the names of
the modules they contain, you can create a module map file to associate a module
name with a particular KB file. If this file exists, G2 consults it to find the KB file
that contains a particular module.

Locating the Module Map File

If you create a module map file, it must be named g2.mm. When a G2 process
starts, it searches for the module map file, as follows:

1 If you include the -module-map option in the command line to start G2, G2
searches for the file at the fully qualified file pathname that is specified as an
argument to the option.

2 If you do not include the -module-map option in the command line to start G2,
G2 checks whether a G2_MODULE_MAP environment variable is defined. If such
an environment variable exists, G2 attempts to open g2.mm under the
directory path assigned to that variable.

3 If G2 locates no g2.mm file using Steps 1 and 2, G2 attempts to open g2.mm
located in the directory that was current when you launched G2.
197

Tip The -module-map command-line option is described in module-map.

Adding Entries to the Module Map File

Use any text editor to create a module map file. It should contain only ASCII text.

Each line in the module map file associates the name of a module contained in a
KB with either a fully qualified directory path or a fully qualified file path. Use
one or more blank spaces to separate the module name from its associated
directory path or file path.

When specifying a directory path, include a trailing directory delimiter character:

For example, a module map file that describes two KBs that reside on a Windows
platform could contain:

vehicle-root C:\Program Files\Gensym\g2-2011\kbs\modules\vh.kb
vehicle-classes C:\Program Files\Gensym\g2-2011\kbs\shared\

The first line specifies that G2 loads, merges, and saves the module named
vehicle-root using the file C:\Program Files\Gensym\g2-2011\kbs\modules\
vh.kb. The second line specifies that G2 must load, merge, or save the module
named vehicle-classes using a KB file of the same name (vehicle-classes.kb)
under the directory C:\Program Files\Gensym\g2-2011\kbs\shared\ .

For this platform... Use this delimiter...

Windows \

UNIX /
198

6

System Tables
Describes the use of system tables to set global preferences.

Introduction 200

Using System Tables 200

Color Parameters 202

Data Server Parameters 205

Debugging Parameters 208

Drawing Parameters 216

Editor Parameters 226

Fonts 230

G2 Graphical Language (G2GL) Parameters 232

Inference Engine Parameters 234

KB Configuration 237

Language Parameters 241

Logbook Parameters 242

Log File Parameters 249

Menu Parameters 254

Message Board Parameters 257

Miscellaneous Parameters 260

Module Information 268

Printer Setup 270

Saving Parameters 276
199

Server Parameters 281

Simulation Parameters 284

Timing Parameters 284

Introduction
System tables define certain global defaults applicable to an entire KB, similar to
the Preferences you can set in many applications. The attributes in a system table
affect the settings of related system parameters.

This chapter describes all system tables in alphabetical order.

Using System Tables
Every KB has one set of system tables in effect at a given time. G2 refers to these as
the installed system tables.

In a new KB, the installed system tables contain the default values that G2
provides for each system table attribute. If you change one or more system table
attributes and then save your KB, the modified system tables are saved as a
permanent part of the KB’s knowledge. G2 installs these system tables when you
next load the KB.

Each module in a KB has an associated set of system tables which includes an
instance of every system table except the Servers Parameters system table. There
is only one Servers Parameters system table per KB which is created by G2’s
initialization process and is associated with the top-level module. The set of
system tables for the top-level module is the installed set.

Two reasons why modules include their own set of system tables are:

• Every module is capable of being the top-level module, and therefore requires
a complete set of system tables.

• The critical information G2 needs to know about a module is contained in the
Module Information system table.

For a description of the Module Information system table, see Module
Information.
200

Using System Tables
You can replace one set of installed system tables with another by merging in a
KB. If you merge a KB module into an existing KB, one of the options on the
KB Merge menu is:

merge in this KB and install its system tables

Choosing this option causes G2 to install the system tables of the merged KB,
overriding those of the existing KB. The overridden system tables are still present
in the KB, but their attributes are no longer in effect. You can search for system
tables in your KB by using the Inspect facility. For more information on merging
KB files with system tables, see Merging a KB File.

You can also start G2 with one or more optional command-line options that let
you specify a module map file or a module search path. Using either of these
command-line options can affect the values of the Module Information system
table.

For information about using the module map file, or module search path
command-line options, see module-map and module-search-path. For a
description of creating a module map file, see Using a Module Map File to Load
and Save a KB.

Changing System Tables Values Interactively

To access the installed set of system tables:

 Choose Main Menu > System Tables. This menu appears:
201

When you select a system table, G2 displays its attributes and the values for those
attributes. Unlike most items, system tables are not associated with a workspace
and display directly on the Gensym background area.

Changing System Table Values Programmatically

You can use the conclude action to change the value of most system table
attributes. For example, to change the default font size for the Text Editor, enter a
statement such as:

conclude that the font-for-editing of fonts is extra-large

Information about the types and read and write access of system-defined
attributes is available in the G2 Class Reference Manual.

Color Parameters
The Color Parameters system table lets you control which colors appear in the
background- and foreground-color menus of G2, and the order in which those
colors appear.

To display the color menu of a workspace:

 Choose KB Workspace > Color > foreground-or-background-color.

where foreground-or-background-color is either background-color or foreground-
color. Both choices have the same color selections. The color menus appear in
other locations within G2, such as the Icon Editor.

Controlling the Menu Order of Colors

The color-menu-ordering attribute controls the menu ordering. By default, the
system-defined set of colors is ordered this way on the color menus:

This value... Arranges the colors...

hue By hue. For example, greens are grouped together,
reds are grouped together, blues are grouped together,
and so on.

intensity From light to dark.

alphabetic Alphabetically, according to the color names.
202

Color Parameters
Specifying the Colors on the First Color Menu

The color-on-1st-level-color-menu attribute specifies what colors appear on the
first level menu as follows:

Defining the Colors on the Second Color Menu

The color-on-2nd-level-color-menu attribute defines what colors appear on the
second level menu. Specify this attribute as you would for the first level color
menu.

Specifying the Number of Columns for the First
Color Menu

The number-of-columns-for-1st-level-color-menu attribute determines the number
of columns, up to 7, that you want the menu to contain.

This value... Provides...

color-name,
color-name...

Any color from the G2 color set. Enter the names of the
color in the order of your choice to construct your own
color set. G2 accepts some variations in spelling. For
example, you can enter grey instead of gray.

You can also provide a symbol of the form RGBrrggbb
as a valid color name, where rr, gg, bb, are the 8-bit hex
values for red, green, and blue. For details, see Other
Literal Terms.

standard-set A subset of the G2 color set consisting of:

aquamarine, black, blue, brown, dark gray, gray, green, light
gray, orange, purple, red, white, yellow

all The full G2 color set as they appear:

transparent, foreground, black, dim gray, dark gray, gray,
light gray, white, pink, Indian red, salmon, brown, orange,
red, tan, gold, coral, sienna, wheat, medium goldenrod,
khaki, goldenrod, yellow, green yellow, pale green, forest
green, lime green, green, aquamarine, medium
aquamarine, light blue, turquoise, cadet blue, cyan, sky
blue, slate blue, medium blue, blue, medium orchid, dark
slate blue, thistle, plum, purple, violet, magenta, maroon,
and violet red.

The colors are arranged by hue, since that is the
default for the color-menu-ordering attribute
203

Specifying the Number of Columns for the Second
Color Menu

The number-of-columns-for-2nd-level-color-menu attribute determines the
number of columns, up to 7, that you want the menu to contain.

Indicating Whether to Dismiss the Color Menu

The dismiss-color-menu-after-choosing? attribute indicates whether the color
menu remains displayed after you pick a color.

Class-Specific Attributes of Color Parameters

The class-specific attributes of the Color Parameters system table are:

Attribute Description

color-menu-
ordering

Controls the order in which colors are displayed in menus.

Allowable values: {hue | intensity | alphabetic}

Default value: hue

colors-on-1st-level-
color-menu

Controls which colors appear in the first level color
menus.

Allowable values: {color-name [, ...] | standard-set | all | none}

Default value: standard-set

colors-on-2nd-level-
color-menu

Lets you create a subset of colors from the first level colors
menu. It has the same syntax as the color-on-1st-level-
color-menu attribute.

Allowable values: {color-name [, ...] | standard-set | all | none}

Default value: all
204

Data Server Parameters
Data Server Parameters

The Data Server Parameters system table lets you control data service.

Specifying a Data Server Alias

The data-server-aliases attribute lets you substitute an alternate name for one or
more data servers. For example, you could use this attribute to create aliases for
each of the available data servers. The syntax for defining a data server alias is:

symbolic-expression implies service through
{inference engine |
g2 [simulator | meter | data server] |
gfi data server |
gsi data server}

number-of-columns-
for-1st-level-color-
menu

Controls the number of columns to display the 1st level
color menu.

Allowable values: 1 – 7

Default value: 1

number-of-columns-
for-2nd-level-color-
menu

Controls the number of columns to display the 2nd level
color menu.

Allowable values: 1 – 7

Default value: 3

dismiss-color-
menu-after-
choosing?

Specifies how you want to dismiss menus. If yes, G2
dismisses the menus immediately. If no, all of the menus
are left up, and you must dismiss them manually.

Allowable values: {yes | no}

Default value: yes

Attribute Description
205

An example is:

robot-controller implies service through gsi data server, process-computers
implies service through gsi data server

GFI and the G2 Simulator are superseded capabilities. For more information, see
Appendix F, Superseded Practices.

More than one alias can imply service through the same data server. Thus, both
robot-controller and process-computers imply service through the G2 Gateway
data server.

Once an alias exists, you can use it in the data-server attribute of a variable to
indicate where G2 obtains a new current value for a variable, though G2 does not
include a Text Editor prompt for any aliases.

Specifying Data Service Scheduling Priority

The priority-of-data-service attribute specifies the default priority at which G2
schedules data server requests.

For more information about scheduling, see Task Scheduling.

Turning on G2 Meters

The g2-meter-data-service-on? attribute determines whether variables that have
G2-meter as their data server receive values.

Although meters use only a small fraction of the available processing time, you
may want to deactivate them when the KB does not need them. To do this, set this
attribute to no. To activate any enabled meters, set this attribute to yes.

If a KB has enabled G2 meter variables and this attribute is set to no, G2 signals an
error. Disable any G2 meter variables to prevent that error.

For a complete description of using G2 meters, see G2-Meters.
206

Data Server Parameters
Class-Specific Attributes of Data Server Parameters

The class-specific attributes of the Data Server Parameters system table are:

Attribute Description

data-server-aliases Specifies which data server is implied by each data server
alias.

Allowable values: dataserver-alias-symbol implies data service through
{inference engine |
g2 simulator |
g2 meter |
g2 data server |
gfi data server |
gsi data server}

GFI and the G2 Simulator are superseded capabilities. For
further information, see Appendix F, Superseded
Practices.

Default value: none

priority-of-data-
service

Determines the priority at which tasks are scheduled to
service data servers, by specifying an integer between 1
and 10. The highest priority is 1.

Allowable values: 1 – 10

Default value: 4

g2-meter-data-
service-on?

Controls whether G2 meter variables receive values.

Allowable values: yes
no

Default value: no
207

Debugging Parameters
The Debugging Parameters system table controls the kind of error feedback G2
provides while a KB is running. The following sections summarize the debugging
behavior that is specified by the attributes on the Debugging Parameters system
table. For information on how to use these attributes for debugging your KB, see
Debugging and Tracing.

G2 saves the values of these attributes with the KB: warning-message-level,
tracing-message-level, breakpoint-level, source-stepping-level, show-procedure-
invocation-hierarchy-at-pause-from-breakpoint, disassembler-enabled?, and
tracing-file.

Controlling Error and Warning Message Displays

The warning-message-level attribute controls the error and warning messages
that G2 displays in the operator logbook while a KB is running.

This value... Informs G2 to...

0 Not to display any warning or error messages.

1 Display error messages, and display warning
messages when G2 encounters problems in a KB, such
as a rule that it cannot interpret.

2 Display error messages, and display all level 1
warning messages, plus warning messages about
missing information such as a non-existent variable
reference from a data server.

3 Display all error messages, and display level 2
warning messages, plus messages about conditions
that are interesting but do not necessarily indicate
that something is wrong. For example, a level 3
message can inform you that a particular reference in
a rule does not denote an existing item, but this may
not be a problem. Rather, it may be an expected side
effect of the rule.
208

Debugging Parameters
Specifying Debugging Trace Messages

The tracing-message-level attribute controls the trace messages that G2 displays
in the operator logbook. Trace messages tell you what steps G2 is taking to
evaluate procedures, methods, rules, formulas, and display expressions.

Specifying Breakpoints for Debugging

The breakpoint-level attribute tells G2 to halt a running KB at particular times,
called breakpoints, to display a trace message, and to wait for you to
acknowledge the message.

The messages that G2 displays at breakpoints are identical to those of the
corresponding level of trace messages. At a breakpoint, however, in addition to
displaying the trace message, G2 halts and displays a dialog like this:

This value... Informs G2 to...

0 Not display any trace messages.

1 Display messages each time G2 begins or finishes
evaluating a procedure, rule, etc.

2 Display messages for major steps; for example, when
evaluating the antecedent of rules and when
evaluating actions in procedures, methods, rules,
formulas, and expressions.

3 Display messages at every step.
209

G2 cannot continue until you click one of the buttons:

The commands Load KB, Merge KB, Clear KB, Reset G2, Restart G2, and Delete
Module are not available while G2 is paused at a breakpoint.

Because G2 stops at breakpoints, it does not run in real time when breakpoints are
set. Thus, you should never set breakpoints when G2 is controlling an application
in real time. Breakpoints are convenient, however, when you are running a
simulation that does not run in real time, because you can halt as long as you like
at a breakpoint without altering the simulation behavior.

When you use breakpoint debugging, it is best to change to simulated time. This
has the effect of suspending the real-time clock during debugging. For more
information about using simulated time, see Timing Parameters.

G2 also supports dynamic breakpoints in the Telewindows client. For more
information, see the Telewindows User’s Guide.

The G2 Simulator, which can provide simulation that does not run in real time, is
a superseded capability. For more information, see Appendix F, Superseded
Practices.

Specifying Single-Stepping through Source Code

The source-stepping-level attribute controls whether single-stepping through
procedure source code is enabled. When G2 is single-stepping through source
code, before the next line of source code is executed, it performs a similar action as
when a halt action is executed. In the Telewindows client, the standard Windows
debugger appears, and in the server, a dialog appears that shows the source code
around the line of source code G2 is about to execute, the line numbers, the
contents of the stack, and the local variable bindings.

This button... Has this effect...

Disable debugging Changes the value of the tracing-and-breakpoints-
enabled? attribute to no, and continues running
without tracing or breakpoints.

Pause Pauses G2 so that you can view the trace
messages and examine other changes in the state
of your kb. You can also view the current
procedure invocation hierarchy.

Continue Resumes G2. This is the default. Select it by
pressing the Return key.
210

Debugging Parameters

For more information, see Stepping Through Procedure Source Code.

Enabling Tracing and Breakpoints for Debugging

Specifying yes for tracing-and-breakpoints-enabled? enables tracing and
breakpoint functionality. This attribute provides a convenient way of turning
tracing and breakpoints on and off without editing the attributes that specify
what items should be traced and at what level they should be traced.

The specification of what and how items should be traced and paused is
determined for the entire KB by the values of the tracing-message-level,
breakpoint-level, and source-stepping-level attributes of the Debugging
Parameters system table; for individual items it is determined by the tracing-and-
breakpoints attribute of the items.

The tracing-and-breakpoints-enabled? attribute is not savable, so each time you
load a KB it has its default value of no. By default, G2 does not stop for any
breakpoints and does not display any trace messages.

See Displaying Trace Messages and Specifying Breakpoints and Tracing on how
to use tracing and breakpoints for debugging your kb.

This value... Informs G2 to...

0 Not allow single-stepping though source code.

1 Allow single-stepping though source code.
211

Displaying the Procedure Invocation Hierarchy
while Paused

When G2 halts at a breakpoint, it displays a dialog like this:

The show-procedure-invocation-hierarchy-at-pause-from-breakpoint attribute
controls whether Pause on the breakpoint dialog runs the Inspect command
show on a workspace the procedure invocation hierarchy. The Inspect command
will be run when this attribute is yes, the default value.

To display the procedure-invocation hierarchy:

 Click the Pause button on the breakpoint dialog.

Here is an example of a procedure-invocation hierarchy display:

See Specifying Breakpoints for Debugging for more information about debugging
with breakpoints.
212

Debugging Parameters
Enabling the Display of Disassembled Code

The disassembler-enabled? attribute controls whether disassembled code is ever
displayed.

When the disassemble-enabled? attribute is yes, three changes occur to the G2
environment that facilitate debugging:

• The describe menu choice on a procedure, method, or rule shows the
corresponding byte code representation.

• G2 error messages indicate the byte code instruction that was running when
the error was generated.

• The Inspect command show on a workspace the procedure invocation
hierarchy indicates the byte code instruction that is running for every
procedure invocation.

Also see Showing Disassembled Code.

Saving Tracing Data to a File

To write tracing messages to a file, specify a file name as a text-value for the
tracing-file attribute, and set the enable-explanation-controls attribute in the
Miscellaneous Parameters system table to yes. See Saving Tracing Data to a File
for a detailed description.

Specifying the Display Interval for Explanation Data

The dynamic-display-delay-in-milliseconds attribute allows you to specify the
number of milliseconds that dynamically displayed explanation data remains on
display. You can enter an integer between 0 and 6000. The default value is 200.
213

Class-Specific Attributes of Debugging Parameters

The class-specific attributes of the Debugging Parameters system table are:

Attribute Description

warning-message-
level

Controls the error and warning messages that G2 displays
while a KB is running.

Allowable values: {0 (no warning messages) |
1 (kb errors only) |
2 (kb errors and deficiencies) |
3 (kb errors, deficiencies,
and other conditions) }

Default value: 2 (KB errors and deficiencies)

tracing-message-
level

Specifies the trace messages that G2 displays in the
operator logbook.

Allowable values: {0 (no trace messages) |
1 (trace messages on entry and exit) |
2 (trace messages at major steps) |
3 (trace messages at every step) }

Default value: 0 (no trace messages)

breakpoint-level Tells G2 to halt a running KB at particular times, called
breakpoints, display a trace message, and wait for you to
acknowledge the message.

Allowable values: {0 (no breakpoints) |
1 (breakpoints on entry and exit) |
2 (breakpoints at major steps) |
3 (breakpoints at every step) }

Default value: 0 (no breakpoints)
214

Debugging Parameters
source-stepping-
level

Tells G2 to allow single stepping though procedure source
code in the standard Windows debugger in the
Telewindows client.

Allowable values: {0 (no source stepping) |
1 (source stepping)

Default value: 0 (no source stepping)

tracing-and-
breakpoints-
enabled?

Controls whether G2 can display messages or set
breakpoints, regardless of the value of any other system
table attribute or the attribute of any item.

Allowable values: {yes | no}

Default value: no

show-procedure-
invocation-
hierarchy-at-pause-
from-breakpoint

Controls whether Pause on the breakpoint dialog runs this
Inspect command: show on a workspace the procedure
invocation hierarchy.

Allowable values: yes, no

Default value: yes

disassembler-
enabled?

Controls whether disassembled code is ever displayed.

Allowable values: yes, no

Default value: no

generate-source-
annotation-info

Controls whether source-code annotation information is
generated when you compile your procedures. The
information makes it possible for G2 to show you which
procedure statement is responsible for an error.

Allowable values: yes, no

Attribute Description
215

Drawing Parameters

The Drawing Parameters system table accommodates several options that affect
graphical representation and drawing scheduling within G2. The term drawing
refers to the way in which G2 renders all items that display within a KB, such as
tables, workspaces, icons, and messages, to name just a few.

Specifying Scheduled Drawing

The allow-scheduled-drawing? attribute specifies whether drawing is a scheduled
task. Drawing occurs in one of two modes, scheduled drawing mode (the
attribute is yes), or immediate drawing mode (the attribute is no). Scheduled
drawing is the default mode when you start G2. Immediate drawing is a
superseded capability. For more information, see Appendix F, Superseded
Practices.

Default value: yes

tracing-file Names a file to which tracing data is written.

Allowable values: none or a pathname

Default value: none

dynamic-display-
delay-in-
milliseconds

Specifies the number of milliseconds that dynamically
displayed explanation data remains on display.

Allowable values: 0 - 60000

Default value 200

Attribute Description
216

Drawing Parameters
When scheduled drawing is in effect:

• G2 consolidates drawing commands and eliminates unnecessary redraw and
refresh operations.

• You can invoke KB drawing on demand, using the g2-work-on-drawing
system procedure from within any procedure from which you want drawing
to occur on demand.

• The scheduler can allocate large drawing tasks over a longer interval to avoid
delaying computational processing.

In effect, scheduled drawing lets G2 continue other processing while completing
its drawing tasks. This attribute works in conjunction with paint-mode?. If
scheduled drawing is in effect, paint-mode? must be set to yes.

For a complete description of system procedures, see the G2 System Procedures
Reference Manual. For more information about how the scheduler handles
drawing tasks and priorities, see Task Scheduling.

Specifying the Paint Drawing Mode

The paint-mode? attribute specifies whether the Paint drawing mode (the
attribute is yes), or the XOR drawing mode (the attribute is no) is in effect. Paint
mode is the default when you start G2.

XOR mode is a superseded capability. For more information, see Appendix F,
Superseded Practices.

In Paint mode, icons maintain their individual color patterns without distortion if
you place them directly on top of one another. Paint mode supports the use of full
and defined color regardless of where you place an item, as illustrated next:
217

Note Item menu choices let you choose the layering order of items interactively. For a
description of these menu choices, see Lifting to the Top and Dropping to the
Bottom. System procedures let you change the layering order of items
programmatically.

Controlling the Set of Rendering Colors

The image-palette attribute controls the set of colors G2 uses to render workspace
background images, allowing G2 to allocate more colors than usual.

Displaying Colors on Your System

Most color monitors on which G2 runs can display millions of colors. Because of
certain limitations in display hardware or in current window systems, however,
most monitors display only a limited number of colors at one time. Also, other
running applications affect which colors are available to display at any time.

Each application running on your system competes on a first-come-first-served
basis for the use of available colors. Once an application uses a color, fewer colors
are available. If all of the applications running on a display require the same color
palette, no conflict exists. For instance, if you have a system dedicated to running
G2 and start a second G2 process that requires the same color palette, both G2
processes have the colors they require.

If you start an application on your system prior to running G2 and that
application uses many colors, however, it can effectively prevent G2 from
accessing its full color palette.

Note On PC platforms, the window with the focus (the foreground window under
Windows) is guaranteed to have a full color palette. When G2 is in the
foreground, it will use any colors it requires from other applications. Whenever
you do not display G2 in the focus window, KB colors can be compromised.

Selecting a Color Palette

G2 can display color images from a graphics image file (GIF) file. When a color
image is drawn in a KB, G2 chooses a color from its current color palette that most
closely matches a given pixel of the image, compromising the color if necessary.
As noted in the example above, the G2 color palette may be reduced to fewer
colors because of another application. The image-palette attribute provides a
means of controlling the set of colors from which G2 chooses.
218

Drawing Parameters
Note On Windows platforms, if the monitor is set to use more than 256 colors, the color
specified in the image-palette attribute is not used, and the GIF file is displayed
with its true colors.

The image-palette attribute lets you select from 5 fixed palettes and 2 custom
(image-specific) palettes as follows:

Available Palettes Description

black and white Images are drawn in black and white, rendering a
pixel as either black if its intensity is below a
certain threshold, or white if it is above a certain
threshold.

The diagram to the left shows a portion of an
image drawn in black and white.

standard grays Images are drawn using only the pure gray colors
from the standard G2 palette. Using standard
grays provides a total of 7 shades of gray: black,
dim-gray, dark-gray, gray, light-gray, extra-light-
gray, and white.

In contrast to the black and white diagram, this
figure shows part of the same image drawn with
standard gray.

standard colors Images are drawn using any of the 63 standard
G2 colors. This is the default. Note that since the
standard G2 palette is not uniformly spread over
all colors, G2 may be unable to render some
continuous-tone images satisfactorily.

extended grays Images are drawn using pure shades of gray from
an extended palette of 64 uniformly-spaced grays.

extended colors Images are drawn using an extended palette of
approximately 64 additional colors, spread
uniformly in color space. Use this if you are using
a full-color image as a workspace background
and the colors are not displaying properly.

Using extended colors is generally the best
compromise when you want to display many
disparate images in a single KB.
219

The black and white and standard choices do not allocate any more colors than
G2 is already using. The extended grays and extended colors choices allocate
more colors just for images.

The custom grays and custom colors selection provide you with the most control
over the G2 color palette (subject to the display limitations) by letting you specify
an image file whose colors G2 will use. You could, for instance, create an image
file containing a single row of pixels, each pixel being one of the colors you want
the G2 palette to contain. By specifying this image file as a custom colors value in
the image-palette attribute, the G2 color palette would then contain exactly the
colors you wanted it to use. The image itself would not need to be displayed on a
workspace for its colors to be in use.

custom grays from
image-definition

This value lets you define the G2 palette
containing the shades of gray that actually appear
in the image-definition you specify.

If the image definition does not exist, or its notes
attribute is not OK, drawing reverts to standard
grays.

custom colors from
image-definition

This value lets you define the G2 color palette
containing the colors that actually appear in the
image-definition you specify.

If the image definition does not exist, or its notes
attribute is not OK, drawing reverts to standard
colors.

Available Palettes Description
220

Drawing Parameters
Editing the Color Used for Selection

By default, when you select an item on a workspace and when you add an item to
the selection, the selected items appear with a green outline to indicate that they
are selected. For example:

You can change the colors that G2 uses for selection by editing the primary-
selection-color and secondary-selection-color attributes of the Drawing
Parameters system table.

Displaying a Visible Grid on Workspaces

The alignment-grid attribute controls a visible grid and a snap grid on
KB workspaces.

The snap grid is disabled by default. To enable it, use the following grammar in
the alignment-grid attribute:

grid [, line color: color] [, line pattern: symbol] [, snap to grid]

where grid can be either an integer, giving the spacing in workspace units for both
X and Y, or a pair on integers (integer, integer) giving spacings for X and Y.
For example:

100, line color: gray, line pattern: long dash, snap to 10

When given as a structure, the syntax is:

structure
(spacing: sequence(integer, integer),
line-color: symbol,
line-pattern: symbol,
snap-to: sequence(integer, integer))
221

The default value is:

structure
(spacing: sequence (50,50),
line-color: the symbol foreground,
line-pattern: the symbol coarse-dot)

The visible grid is invisible by default. To view the grid, do one of the following:

• Choose View > Toggle Visible Grid.

• Enter Ctrl + G with the mouse over a KB workspace.

• Execute the toggle-visible-grid system command, using the g2-system-
command system procedure. For details, see g2-system-command in User
Interface Operations in the G2 System Procedures Reference Manual.

• Set the view-preferences of a KB workspace to visible-grid, or conclude the
visible-grid attribute in the view-preferences structure of a KB workspace,
for example:

conclude that the view-preferences of this workspace =
structure(visible-grid: true)

If the snap grid is enabled, and both a constrain moving ... item configuration and
the snap grid apply to a particular item, then the item configuration takes
precedence and the snap grid is ignored.

For example, here is a workspace whose alignment-grid is set to:

100, line color: gray, line pattern: short dash, snap to 10
222

Drawing Parameters
Interactively Resizing Objects and Changing
Connection Vertices

The show-selection-handles attribute allows you to interactively resize objects,
using selection handles on the object. For example:

You can also interactively change the connection vertices of a connection, using
handles on the connection. For example:

When show-selection-handles is true, the default, selection handles appear and
the change size menu choice does not appear on items. When show-selection-
handles is false, selection handles do not appear and the change size menu choice
appears on items.
223

Class-Specific Attributes of Drawing Parameters

The class-specific attributes of the Drawing Parameters system table are:

Attribute Description

allow-scheduled-
drawing?

Specifies whether drawing is scheduled (yes) or
immediate (no).

Allowable values: yes
no

Default value: yes

Notes: Immediate drawing (attribute is no) is a superseded
capability. For more information, see Appendix F,
Superseded Practices.

paint-mode? Determines the default drawing mode: Paint mode (yes)
or XOR mode (no).

Allowable values: yes
no

Default value: yes

Notes: XOR mode (attribute is no) is a superseded capability. For
more information, see Appendix F, Superseded Practices.

image-palette Determines the palette of colors to use for drawing
background images.

Allowable values: {black and white | standard colors | standard grays |
extended colors | extended grays |
custom colors from image-definition |
custom grays from image-definition}

Default value: standard colors
224

Drawing Parameters
primary-selection-
color

The color used as the outline to indicate selection.

Allowable values: Any color

Default value: green

secondary-
selection-color

The color used as the outline for all subsequent selected
items when adding to a selection.

Allowable values: Any color

Default value: green

alignment-grid Controls a visible grid and a snap grid on KB workspaces.

Allowable values: structure

Default value: structure
(spacing: sequence (50,50),
line-color: the symbol foreground,
line-pattern: the symbol coarse-dot)

Notes: See Displaying a Visible Grid on Workspaces.

show-selection-
handles

Allows you to interactively resize objects, using selection
handles on the object.

Allowable values: truth-value

Default value: true

Notes: See Interactively Resizing Objects and Changing
Connection Vertices.

Attribute Description
225

Editor Parameters
The Editor Parameters system table lets you customize some aspects of editing in
a KB.

Specifying the Maximum Number of Names to Show

The maximum-number-of-names-in-menus attribute controls the maximum
number of names that G2 displays in prompt menus in the Text Editor.

For example, if this attribute has a value of 7 and you are editing a rule and can
enter an item name, if more than seven names exist in the KB, G2 does not display
any names in the text editor. If you type the letter s and there are seven or fewer
names that begin with s, G2 displays those names.

Defining the Minimum Text Editor Width

The minimum-width-for-edit-box attribute defines the minimum width at which
the Text Editor is displayed.

This attribute is applicable for both editors (scrolling and non-scrolling). The
default value for this attribute is 0. By default, the scrolling editor is
approximately 500 workspace units wide. Setting this attribute to a value greater
than 500 affects the scrolling editor. Setting it to a lesser value has no effect.

Specifying Whether to Enable Author Recording

The author-recording-enabled? attribute specifies whether G2 maintains user
information about changes made to items that include the authors attribute. The
authors attribute appears in a select number of G2 items. For a full description of
the authors attribute, see Using the Authors Attribute.

Edit Operations Menus and Buttons

You can specify whether G2 automatically pops up an edit operations menu or
edit operations buttons when you are entering text in the Text Editor. These
facilities are controlled by the pop-up-edit-operations-menu and buttons-for-edit-
operations attributes.

Controlling the Display of Calling Signatures

By default G2 displays the calling signature of a procedure or function when you
enter the procedure or function name followed by the left parenthesis in the Text
Editor. You can enable and disable this facility through the show-procedures-
signatures attribute.
226

Editor Parameters
Displaying the Native Text Editor

The prefer-native-text-editor attribute determines whether to use the native
Windows text editor in Telewindows or whether to use the classic G2 Text editor.
By default, Telewindows uses the native text editor.

For information on how to use the native text editor, see Editing Text in Using
Telewindows in the Telewindows User’s Guide.

Class-Specific Attributes of Editor Parameters

The class-specific attributes of the Editor Parameters system table are:

Attribute Description

maximum-number-
of-names-in-menus

Controls the maximum number of names that display at
one time in the Text Editor menus.

Allowable values: any positive integer

Default value: 7

object-name-menus-
in-upper-case?

Controls whether G2 displays object names in uppercase
in Text Editor prompts. When these names are displayed
in uppercase, G2 inserts them in text in upper case as well,
when you select them.

Allowable values: {yes | no}

Default value: no

number-of-spaces-
to-insert-on-a-tab

Controls the number of spaces that G2 inserts when you
press the Tab key.

Allowable values: integer

Default value: 4
227

maximum-number-
of-undos-to-
remember

Specifies how many text editing operations G2 remembers
and allows you to Undo. G2 allows you to undo any of the
available edit operations.

Allowable values: integer

Default value: 100

maximum-number-
of-scraps-to-keep

Sets the maximum number of text pieces, or scraps, kept
by the G2 text editor as you cut scraps from the text editor
window, or copy them into the scrapbook. Use an integer
to set the number of scraps kept. If you exceed this limit,
the oldest scrap is thrown away.

Allowable values: integer

Default value: 50

minimum-width-for-
edit-box

Determines the minimum width of the Text Editor box.

Allowable values: integer

Default value: 0

author-recording-
enabled?

Determines whether G2 maintains user information about
changes made to items that include the authors attribute.

Allowable values: {yes | no}

Default value: yes

pop-up-edit-
operations menu

Controls whether the edit operations menu comes up in
the Text Editor when text is selected. This menu contains
these menu choices: cut, copy, paste, delete, insert, move,
and cut and insert.

Allowable values: {yes | no}

Default value: yes

Attribute Description
228

Editor Parameters
buttons-for-edit-
operations

Controls whether edit operations buttons appear when
entering text in the Text Editor.

Allowable values: {yes | no}

Default value: yes

show-procedure-
signatures?

Determines whether G2 should automatically display the
calling signature of a procedure or function when you
enter the procedure or function name followed by the left
parenthesis in the Text Editor.

Allowable values: {yes | no}

Default value: yes

smart-space-
insertion

Controls whether or not to insert spaces when pasting
copied text in the classic G2 text editor. The default value
is yes, which inserts a space before and after the pasted
text. To avoid inserting spaces, set the attribute to no.

Allowable values: {yes | no}

Default value: yes

prefer-native-editor Determines the type of text editor to use in Telewindows.
The default value is yes, which uses the Windows text
editor. To use the classic G2 text editor, set prefer-native-
editor to no.

You can also configure this attribute when you launch the
text editor, using the g2-ui-launch-editor system
procedure.

Allowable values: {yes | no}

Default value: yes

Attribute Description
229

Fonts
The Fonts system table controls which font G2 uses for attribute tables,
statements, free text, editing, and descriptions. G2 supports three font sizes:
small, large, and extra-large.

Note The font-for-attribute-tables and font-for-editing attributes of the Fonts System
Table only affect the text-editor and attribute-table fonts in the g2-5.x window
style. These attributes have no effect on the standard and standard-large window
styles. See G2 Window Styles for a discussion of the three window styles.

Class-Specific Attributes of Fonts

The class-specific attributes of the Fonts system table are:

Attribute Description

font-for-attribute-
tables

Controls the size of the font used for the text on attribute
tables in the g2-5.x window style.

Allowable values: {small | large | extra-large}

Default value: large

font-for-attribute-
displays

Controls the size of the font that G2 uses for attribute
displays for all window styles.

Allowable values: {small | large | extra-large}

Default value: small
230

Fonts
font-for-statements Controls the size of the font used for the text in statements
for all window styles; thus, this attribute controls how
rules, generic formulas, generic simulation formulas, units
of measure, and procedures appear.

The G2 Simulator, which can use generic simulation
formulas, is a superseded capability. For more
information, see Appendix F, Superseded Practices.

Allowable values: {small | large | extra-large}

Default value: large

font-for-free-text Controls the size of the font used for free text and
borderless free text for all window styles.

Allowable values: {small | large | extra-large}

Default value: large

font-for-editing Controls the size of the font used in Text Editor
workspaces in the g2-5.x window style.

Allowable values: {small | large | extra-large}

Default value: large

font-for-
descriptions

Controls the size of the font that G2 uses in describing an
item for all window styles.

Allowable values: {small | large | extra-large}

Default value: small

Attribute Description
231

G2 Graphical Language (G2GL) Parameters
For information about G2GL, see G2 Graphical Language (G2GL).

The class-specific attributes of the G2GL Parameters system table are:

Attribute Description

time-between-time-
slice-for-execution-
of-thread

An extra amount time that the G2 scheduler should wait
between time slices for a given G2GL process to run, in
seconds. The default is none, which means no additional
waiting time is required.

Allowable values: integer

Default value: none

break-on-all-
execution-faults

Whether to show an individual execution display with
appropriately placed breakpoints whenever any kind of
fault occurs in a G2GL process, including system-defined
faults.

Allowable values: yes | no

Default value: no

suppress-
unspecified-partner-
link-variable-type-
faults

Whether to suppress compilation errors and/or execution
faults when the type of a partner link variable is not
specified. The default value is yes, which means you can
create G2GL processes that communicate, without having
to specify a partner link type. G2GL does not require
partner link types, whereas BPEL does. For more
information, see BPEL Compliance.

Allowable values: yes | no

Default value: yes

name-of-window-for-
g2gl-execution-
displays

The name of a g2-window on which to display individual
execution displays. The default is none, which uses every
logged-in window.

Allowable values: symbol
232

G2 Graphical Language (G2GL) Parameters
Default value: none

default-scale-for-
execution-displays

The default scale for individual execution displays.

Allowable values: float

Default value: 1.0

compile-texts-for-
execution-displays

Whether individual execution displays should show text.
The default value is no, which omits text from individual
execution displays.

Allowable values: yes | no

Default value: no

time-between-mini-
tracing-steps

The time between mini tracing steps in individual
execution displays, in seconds. A mini tracing step includes
all but the last step as the thread token moves from one
activity to another.

Allowable values: float

Default value: 0.02

time-between-maxi-
tracing-steps

The time between maxi tracing steps in individual
execution displays. A maxi tracing step is the last or only
step, depending on the mini tracing steps size.

Allowable values: float

Default value: 0.5

mini-tracing-step-
size

The size of each step when tracing is enabled, in workspace
units. By setting the mini tracing step to a larger number,
all tracing steps become maxi steps.

Allowable values: integer

Attribute Description
233

Inference Engine Parameters
The Inference Engine Parameters system table controls computational aspects of
the inference engine.

Limiting the Depth of Recursion

The recursion-limit attribute limits the depth of recursion for user-defined
functions. This limit does not affect procedures at all. If user-defined functions
extend beyond the recursion limit, G2 fails to evaluate the function and displays a
level 1 warning message, indicating that the user-defined function is in an infinite
recursion or that the recursion limit is too low.

Default value: 10

g2gl-activity-elbow-
room

The minimum distance between a thread token and an
activity icon, in workspace units.

Allowable values: integer

Default value: 2

default-thread-token-
class

The class used for the thread token icon in individual
execution displays when debugging.

Allowable values: symbol

Default value: g2gl-standard-thread-token

default-thread-token-
color

The color used for the thread token icon.

Allowable values: symbol

Default value: coral

Attribute Description
234

Inference Engine Parameters
Defining the Timeout for Getting a Variable Value

The timeout-for-variables attribute defines how much time G2 allows before
concluding that it has failed to receive a value for a variable. The default is
30 seconds. Specify none if you do not want variables to time out.

When a variable fails to receive a value, G2 invokes all of the whenever rules
containing fails-to-receive-a-value statements for that variable. For example, if the
variable temperature-sensor-1 fails to receive a value within the time interval that
the timeout-for-variables attribute specifies, G2 invokes the following whenever
rule for that variable:

whenever temperature-sensor-1 fails to receive a value
post "Temperature-sensor-1 is not responding."

Specifying the Timeout for Rule Completion

The timeout-for-inference-completion attribute specifies the amount of time a rule
has to complete. If the rule does not complete in this time, it is considered failed.
When G2 is evaluating an expression, if a rule cannot be completed immediately
(because a variable does not have a current value and G2 cannot immediately get
one through backward chaining or data service), the rule goes to sleep. G2
temporarily stops evaluating the expressions in the rule. The variable that needs a
value will wake up the expression when the value is available. If the timeout for
the rule occurs before the rule awakens, the rule tries one last time to execute, and
then completes whether or not it succeeds.

This attribute lets you control when inferencing occurs. If rules did not have
timeouts, they could reawaken long after the conditions that cause G2 to invoke
them end.

You can override the timeout-for-inference-completion attribute for a particular
rule with that rule's timeout-for-rule-completion attribute. For example, if you
want one rule to have up to 1 minute to complete, but all other rules to have
30 seconds to complete, set the timeout-for-inference-completion system table
attribute to 30 seconds and the special rule's timeout-for-rule-completion attribute
to 1 minute.

The default is 30 seconds. Specify none if you do not want rules to time out.

Specifying the Retry Interval for a Variable Value

The retry-interval-after-timeout attribute specifies the number of retries for a
variable value. In this context, the term retry refers to when G2 checks to see if a
variable has received a value after it initially fails to receive one. The value of this
attribute determines how long G2 waits before a retry. Note that these guidelines
for variable retry also apply to a GSI variable whose data server is gsi-data-server.
235

When the retry-interval-after-timeout attribute has a time interval value, G2
requests a value for the variable immediately when the variable exceeds the time
interval that the timeout-for-variables attribute specifies, and continues to do so
every retry interval. For example, if the retry-interval-after-timeout is 2 minutes,
and a variable fails to receive a value within the timeout-for-variables interval, G2
sends out an additional request every 2 minutes until the variable receives a
value.

Setting this attribute to do-not-retry prevents G2 from retrying a variable.

Specifying the Fuzzy Truth Threshold

The truth-threshold attribute specifies the threshold for fuzzy truth expressions, as
described in Producing Fuzzy Truth Values from Relational Operations.

This attribute can have a value from 0 to 1. Fuzzy truth expressions that evaluate
to less than the threshold are false, while those that are equal to or greater than
the threshold are true. If, for example, the truth-threshold attribute is set to 0.5 and
the antecedent to a rule has a truth value of 0.6, the antecedent is true and the rule
fires. The default truth threshold is 0.8.

Class-Specific Attributes of the Inference Engine
Parameters

The class-specific attributes of the Inference Engine Parameters system table are:

Attribute Description

recursion-limit Limits the depth of recursion for user-defined functions.

Allowable values: integer

Default value: 50

timeout-for-
variables

Determines how much time G2 allows before concluding
that it is has failed to receive a value for a variable.

Allowable values: {time-interval | none}

Default value: 30 seconds
236

KB Configuration
KB Configuration

The KB Configuration system table acts as the root of the configuration hierarchy
that operates within the workspace hierarchy.

Specifying Item Configurations for the KB

The item-configuration attribute determines the default configurations for the
entire KB. The defaults are as follows:

configure the user interface as follows:
unless in administrator mode:

attributes visible for item exclude additionally: item-configuration;
attributes visible for kb-restrictions exclude:

main-menu-user-restrictions, keyboard-command-restrictions,
initial-g2-user-mode-for-this-kb;

menu choices for item exclude additionally: describe-configuration

You can specify any appropriate configurations that your KB may require. For
more information about available configurations, see Configurations.

timeout-for-
inference-
completion

Specifies the amount of time a rule has to complete.

Allowable values: time-interval

Default value: 30 seconds

retry-interval-after-
timeout

Tells G2 how often to retry for a value after a variable fails
to receive one.

Allowable values: {time-interval | do not retry}

Default value: 1 minute

truth-threshold Determines the threshold for fuzzy truth expressions.

Allowable values: {number true | true | false}

Default value: .800 true

Attribute Description
237

Restricting Main Menu Options

The main-menu-user-restrictions attribute lets you specify which Main Menu
choices, if any, you wish to restrict. For example, you may want your KB to
exclude the change mode menu option in all user modes. Enter this statement to
accomplish this:

unless in administrator mode: main menu choices
exclude absolutely: change mode

Providing or Restricting Global Keyboard
Commands

Use the keyboard-command-restrictions attribute to restrict global or workspace
commands (such as center-origin). An example is:

when in proprietary mode:
global keyboard commands exclude: center-origin

Note You cannot restrict commands that begin with the Control key, such as
Control + y to display the login dialog.

Setting the Initial User Mode for a KB

You can specify the initial user mode for a KB by entering the mode as the value
of the initial-g2-user-mode-for-this-kb attribute.

Noting Your Optional Modules

The authorized-optional-modules attribute lists the license type, license option,
and any optional modules from your authorization file (g2.ok) that are currently
available for your machine. For instance, if you purchased an Online license with
a Developer’s option, the value of this attribute will be:

online

You cannot change this attribute.

Simulating Optional Modules

The simulated-optional-modules attribute lets you simulate an optional module
less powerful than the one for which you are licensed.

Typically, you will use this facility to test KB behavior under the license with
which you intend to deploy the application. Simulating an optional license
module remains in effect until you change this attribute value. A simulation mode
is not saved with a KB.
238

KB Configuration
You can simulate any license option less powerful than your own licensing
options or optional modules that you have purchased. For instance, if you are
developing a KB using a G2 Online license, with the Development option, you can
simulate all of the other less-powerful options: restricted, runtime, or embedded.
Simulating a less powerful license option does not prevent you from accessing the
KB Configuration system table so that you can revert to your license option.

The possible values for this attribute include all of the optional modules that you
can purchase or include with G2, and the various types of licenses available that
are less powerful than your own license option.

Note For a description of license types, license options, and optional modules available
for G2, see your Gensym representative for a copy of the latest price list.

While you can enter more than one selection from the text editor (such as
japanese and runtime), some combinations of choices are invalid. For example,
even though the text-editor permits such an entry, it does not make sense to enter
two values like restricted-use and embedded, because you can simulate only one
optional module at a time.

When you enter an optional module to simulate, the notes attribute of the KB
Configuration system table indicates exactly what license is being simulated,
shown next, for example:

Note Some Gensym internal-use only option names appear in the notes attribute
during license simulation.
239

Class-Specific Attributes of KB Configuration

The class-specific attributes of the KB Configuration system table are:

Attribute Description

item-configuration The KB-level configuration statements.

Allowable values: For a complete description of using configuration
statements, refer to Configurations.

Default value: SeeSpecifying Item Configurations for the KB.

main-menu-user-
restrictions

Lets you restrict all menu choices on the Main Menu. The
default is none.

Allowable values: For a complete description of using configuration
statements, refer to Configurations.

Default value: none

keyboard-
command-
restrictions

Lets you exclude or include global keyboard commands
while in a user mode.

Allowable values: For a complete description of using configuration
statements, refer to Configurations.

Default value: none

initial-g2-user-
mode-for-this-kb

Specifies a default user mode for the KB. The default is
none, which means that the user is in administrator mode
(the only system-defined user mode).

Allowable values: For a complete description of user modes, refer to
Configurations.

Default value: none
240

Language Parameters
Language Parameters
The Language Parameters system table lets you set the current language for a KB.
The current language may be different than the default language, as described
under Setting the Current Language.

Specifying the Current Language

The current-language attribute specifies the default language for a KB. This
language can be overridden by users accessing G2 through Telewindows and
either specifying another language as a command-line option, or changing the
default language for the G2 window.

For a description of using command-line options, see Appendix A, Launching a
G2 Process. For an explanation of specifying a language for a G2 window, see
Supporting a Window-Specific Language.

authorized-optional-
modules

The modules for which your G2 process is authorized.

Allowable values: none, icp, g1, offline, online, runtime,
restricted-use, embedded, japanese,
korean, gfi, gsi

GFI is a superseded capability. For further information,
see Appendix F, Superseded Practices.

Default value: A list of the current license modules.

simulated-optional-
modules

The optional module(s) to simulate.

Allowable values: do not simulate, none, icp, offline, online,
runtime, restricted-use, embedded, japanese,
korean, gfi, gsi

GFI is a superseded capability. For further information,
see Appendix F, Superseded Practices.

Default value: do not simulate

Attribute Description
241

Using a Text-Conversion-Style

You can specify the name of a text-conversion-style item in the attribute of the
same name.

For a complete description of text-conversion-style items, see Working with Text
Conversion Styles.

Class-Specific Attributes of Language Parameters

The class-specific attribute of the Language Parameters system table is:

Logbook Parameters
The Logbook Parameters system table controls the size, number, and behavior of
the operator logbook pages.

The first seven attributes of this system table after item-configuration and the
spacing-between-entries attribute are expressed in workspace units, which is one
pixel when the workspace is scaled to full size, and proportionally larger or
smaller when the workspace is scaled up or down.

Defining the Logbook Page Size

The width-for-pages and height-for-pages attributes defines the size of the
logbook pages. The default values are 345 and 400, respectively. Entering a lower
value in either of these attributes reduces the page size, while entering a higher
number increases it.

Attribute Description

current-language Specifies which language to use by activating a set of
predefined menu translations within a KB.

Allowable values: {symbol | english | russian | japanese | korean}

Default value: english

text-conversion-
style

Specifies the text-conversion-style item to use for the KB.

Allowable values: text-conversion-style: symbol

Default value: none
242

Logbook Parameters
Specifying the Margin for Logbook Messages

The margin-for-pages attribute specifies the amount of space left at the edge of
messages upon each logbook page.

Defining Where to Position Logbook Pages

The x-offset-for-next-page and y-offset-for-next-page attributes defines where G2
positions each page of the logbook in relation to the previous page.

Specifying Where to Position the Logbook

The x-offset-for-logbook and y-offset-for-logbook attributes specifies where G2
positions each logbook in relation to the G2 window. This diagram illustrates
several of the logbook options:

Controlling How Many Logbook Pages to Show

The maximum-number-of-pages-to-show attribute controls the number of
logbook pages that G2 keeps visible on the screen. G2 always shows at least a
small part of each of these pages on the screen, even if you try manually to move
them off the screen.

X offset for logbook

Y offset for logbook

X offset

Y offset for next page

for next
page
243

By selecting the up and down arrows at the top of any logbook page, you can turn
the logbook pages that are visible, as well as those that are not visible but in
memory. When you reach the maximum number of pages, G2 hides the oldest
pages, which are those with the smallest numbers.

Controlling the Number of Logbook Pages

The maximum-number-of-pages-to-keep-in-memory attribute controls the number
of logbook pages that G2 keeps in memory, including the pages that are currently
visible at any time.

By selecting the up and down arrows at the top of any logbook page, you can flip
through the logbook pages that are visible and those that are not visible but in
memory. When you reach the maximum number of pages, G2 discards the oldest
pages, which are those with the smallest numbers.

The number-of-pages-to-shed-at-limit attribute determines how many logbook
pages to discard when the maximum-number-of-pages-to-show limit has been
reached.

Note The value of maximum-number-of-pages-to-keep-in-memory should be always
equal or larger than maximum-number-of-pages-to-show, otherwise G2 will
forcedly align maximum-number-of-pages-to-keep-in-memory with the value of
maximum-number-of-pages-to-show to be able to hold all shown pages in
memory.

Displaying the Native Logbook

The prefer-native-logbook attribute determines whether to use the native G2
logbook in Telewindows or whether to use the G2 classic logbook. By default, the
G2 Operator Logbook appears in a Windows docking pane when viewed through
Telewindows and is docked to the upper-right corner of the overall window.

Note The default value is yes, except when loading KBs saved in G2 Version 8.1 or
earlier, in which case the value is no.

Note The native logbook is only supported in Telewindows Next Generation
(twng.exe).

If the lift-logbook-to-top-when-new-pages-are-added? attribute in the Logbook
Parameters system table is no and prefer-native-logbook is yes, the native logbook
244

Logbook Parameters
is initially hidden. When lift-logbook-to-top-when-new-pages-are-added? is yes,
the native logbook is initially visible and is shown whenever a message is added.

The native logbook pane accepts the following keyboard and mouse commands:

• Left click — Select message.

• Right click — Display message menu.

• Left drag on unselected area — Select text region.

• Left drag on selected text — Drag and drop text to another application, such
as Word.

• Control + C — Copy selected text.

• Control + A — Select all text.

• Tab — Select next message.

• Shift + Tab — Select previous message.

• Escape — Deselect all.

• Control + - (minus) — Zoom out.

• Control + + (plus) — Zoom in.

• Control + 0 — Normal zoom.

• PageUp, PageDown, Home, End, UpArrow, DownArrow — Scroll the view.

Include Date in Messages

The include-date-in-messages attribute controls whether to include date in
logbook messages. If yes, each message will have current date (year, month, day)
included. If no, only current time (hour, minute, second) is included.

Default Docking Position

The default-docking-position attribute controls the default docking position (top,
bottom, left, right) of the logbook, by default the docking position is right.

Class-Specific Attributes for Logbook Parameters

The class-specific attributes of the Logbook Parameters system table are:

Attribute Description

width-for-pages Determines the logbook page width
245

Allowable values: integer

Default value: 345

height-for-pages Determines the logbook page height.

Allowable values: integer

Default value: 400

margin-for-pages Determines the amount of space around the messages that
appear on the logbook.

Allowable values: integer

Default value: 5

x-offset-for-next-
page

Determines where new pages are horizontally positioned
relative to the previous page.

Allowable values: integer

Default value: -5

y-offset-for-next-
page

Determines where new pages are vertically positioned in
relation to the previous page.

Allowable values: integer

Default value: -28

Attribute Description
246

Logbook Parameters
x-offset-for-logbook Determines where the logbook is horizontally positioned
in relation to the G2 window.

Allowable values: integer

Default value: 10

y-offset-for-logbook Determines where the logbook is vertically positioned in
relation to the G2 window.

Allowable values: integer

Default value: -10

maximum-number-
of-pages-to-show

Controls the number of logbook pages that G2 keeps
visible on the screen.

Allowable values: integer

Default value: 3

number-of-pages-to-
shed-at-limit

Controls the number of logbook pages that G2 discards
when the maximum number of pages to show has been
reached.

Allowable values: integer

Default value: 1

spacing-between-
entries

Controls the amount of vertical spacing between message
units. Changes to this parameter do not affect existing
messages.

Allowable values: integer

Default value: 10

Attribute Description
247

log-inform-
messages?

Determines whether inform messages appear on both the
message board and the logbook or just the message board.
When set to no, messages appear only on the message
board.

Allowable values: {yes | no}

Default value: no

maximum-number-
of-pages-to-keep-in-
memory

Controls the number of logbook pages that G2 keeps in
memory, including the pages that are currently visible at
any time.

Allowable values: integer

Default value: 200

lift-logbook-to-top-
when-new-pages-
are-added?

Specifies how G2 adds new pages to the logbook. If yes,
G2 stacks all of the existing logbook pages on top of each
other and puts the new page on top of the stack. If no, G2
staggers the pages so that you can see a part of each one.

Allowable values: {yes | no}

Default value: yes

prefer-native-
logbook

Specifies whether to use the native Windows logbook or
the classic G2 Operator Logbook. If yes, displays the G2
Operator Logbook in a Windows docking pane when
viewed through Telewindows. If no, display the classic G2
Operator Logbook.

Allowable values: {yes | no}

Default value: yes

include-date-in-
messages

Specifies whether to include date in logbook messages. If
yes, each message will have current date (year, month,
day) included. If no, only current time (hour, minute,
second) is included.

Attribute Description
248

Log File Parameters
Log File Parameters

The Log File Parameters system table lets you write logbook messages to a file,
called a log file. Messages in the log file have the same format as those on the
logbook page. Although logbook page headers are not included in the file, you
can infer the date of the message from the write date of the file.

Saving a Log File

The log-file-enabled? attribute specifies whether logbook messages should be
written to a log file. Setting this option to yes immediately creates a log file, but
does not begin writing to the file. Instead, it buffers data that will be written to the
file when this option is set back to no.

When this option is yes, G2 begins to buffer messages, regardless of whether G2
is running or whether the tracing-and-debugging-enabled? attribute of the
debugging-parameters system table is set to yes. If you reset, restart, or pause G2,
logbook messages are still buffered as long as log-file-enabled? remains yes.

When you change the option to no, G2 automatically writes the buffered
information to the log file and closes the current log file. Subsequently setting this
option to yes and then to no appends interim data to the original log file, until G2
reaches the limit set in the when-to-close-current-log-file-and-open-next-one
attribute, described in Defining When to Close a Log File. If an error occurs in
locating or writing to the log file, G2 signals an error and sets log-file-enabled? to
no.

Allowable values: {yes | no}

Default value: no

default-docking-
position

Specifies the default docking position of the logbook.

Allowable values: {top | bottom | left | right}

Default value: right

Attribute Description
249

Specifying the Log File Directory Location

The directory-for-log-files attribute specifies the directory in which G2 writes log
files. The default value, default, indicates the directory from which you loaded the
current KB. If you have not started a KB, the default directory is the one from
which you started G2. Enter a directory name as a text value and complete the
pathname with a closing path delimiter as in:

"c:\myname\test-kbs\"

"/home/myname/test-kbs/"

You cannot edit this attribute if the log-file-enabled? attribute is yes.

Specifying a Log File Root Name

The root-name-for-log-files attribute specifies the naming convention G2 uses
when generating each log file and its version number. You can enter a fully
qualified pathname, or a prefix file name as follows:

You cannot edit this attribute if the log-file-enabled? attribute is set to yes.

Specifying the Current Log File

The current-log-file attribute displays the name of the current log file. You cannot
edit this attribute.

G2 selects the current log file according to the following criteria:

• If no log files have yet been written, using the current root and directory
names, the current file has the form root-name1.

• If log files have already been written, using the current root and directory
names, the current file has the form:

Value Description

"g2-log-" Specifies that G2 prefaces the log file name with:
"g2-log-" and places the file in the directory specified
in the directory-for-log-files attribute.

file pathname Must be a string specifying that the name contains a
root name (given by you) and a positive number. The
number indicates the number of files already written
plus the current file. It has the form:

root-name number-of-files-written

For example, mylog2 has root name mylog, and the file
is the second of two files written.
250

Log File Parameters
root-name number-of-files-already-written + 1

When G2 reaches the limit specified in the maximum-number-of-log-files attribute,
the next file is: root name1. Subsequent log files have the form shown in the
second bullet. Thus the original files are overwritten.

Defining When to Close a Log File

The when-to-close-current-log-file-and-open-next-one attribute controls when to
close the current log file and create the next file. You can specify that G2 should
close the log file after:

• A specific number of messages.

• A given time interval since the file was opened.

• A specific number of messages or a given time interval since the file was
opened, whichever occurs first.

Examples are:

after 3 minutes
after 100 messages
after 3 minutes or 100 messages, whichever comes first
after 100 messages or 5 minutes, whichever comes first

However, when you set the log-file-enabled? attribute to no, G2 closes the current
log file automatically, regardless of whether the criteria you set has been met. If
you then reset log-file-is-enabled? to yes without changing the directory and root
names, the current log file remains unchanged. G2 then appends the succeeding
messages to the end of the existing log file.

Defining When to Back Up Log Files

The when-to-back-up-current-log-file-other-than-when-closing attribute controls
when G2 should back up the current log file other than when it closes the file.
Backing up closes and reopens the file for appending. You can specify that G2
should back up the log file after a specific number of messages, or after a given
time interval since the file was opened, or both, in either order, whichever occurs
first. Here are examples:

after 3 minutes
after 100 messages
after 3 minutes or 100 messages, whichever comes first
after 100 messages or 5 minutes, whichever comes first
251

Class-Specific Attributes of Log File Parameters

The class-specific attributes of the Log File Parameters system table are:

Attribute Description

log-file-enabled? Determines whether logbook messages are written to a log
file.

Allowable values: {yes | no}

Default value: no

directory-for-log-
files

Specifies the directory in which G2 writes log files.

Allowable values: any directory path name as a string
default

Default value: default

root-name-for-log-
files

Specifies the naming convention for log files.

Allowable values: any directory or file path name as a string

Default value: "g2-log-"

current-log-file The name of the current log file.

Allowable values: current log file name
none

Default value: none
252

Log File Parameters
when-to-close-
current-log-file-and-
open-next-one

Controls when to close the current log file and create the
next.

Allowable values: See Defining When to Close a Log File.

Default value: after 100 messages or 1 day, whichever comes first

when-to-back-up-
current-log-file-
other-than-when-
closing

Controls when G2 should back up the current log file
other than when it closes the file.

Allowable values: See Defining When to Back Up Log Files.

Default value: never

maximum-number-
of-log-files

Specifies the maximum number of log files with the
specified root name that G2 can write to the specified
directory. After G2 reaches the maximum number of files,
the earliest files are overwritten as needed.

Allowable values: any positive integer less than 1000
none

Default value: 10

Attribute Description
253

Menu Parameters

The Menu Parameters system table controls how menus are displayed in G2 and
how the menu selections appear within the menu box.

Specifying How to Align Menu Choices

The alignment-for-menu-choices attribute specifies how G2 displays menu
selections. The left value specifies a left-justified display, right specifies a right-
justified display, and center specifies a centered display. The default for this
attribute is left.

Note The alignment-for-menu-choices attribute only affects the alignment of menu
choices in the g2-5.x window style. This attribute has no effect on the standard
and standard-large window styles. See G2 Window Styles for a discussion of the
three window styles.

Allowing Multiple Menus to Display

The when-to-allow-multiple-menus attribute determines whether you can display
on a workspace more than one copy of the same menu at a time, or whether you
can display more than one menu at a time as follows:

Allowing Walking Menus

The walking-menus? attribute determines whether G2 displays walking menus.
When the menu attribute is set to yes, G2 lets you choose from submenus by
dragging the mouse, leaving the original menu visible. When the attribute is set to
no, you must click on a choice and dismiss the original menu to display a
submenu.

This value... Causes G2 to...

always Allow as many copies of a menu as you want to
position on the workspace by clicking with your
mouse.

never Allow one copy of a menu for one purpose to be
displayed at any given time.

for different
selections

Display more than one menu at a time if the menus
are for different items. For example, you can display
the Main Menu and the Logbook Page menu at the
same time.
254

Menu Parameters
The walking-menus? attribute defaults to a value of no for KBs created in
previous versions of G2.

The next figure shows part of the KB Workspace menu with two submenus. This
display results from:

1 Opening the KB Workspace menu.

2 Dragging the mouse pointer to the right-hand portion of the New Display
menu choice. This causes G2 to display the New Display submenu.

3 Dragging the mouse pointer to the readout-table menu choice. This causes G2
to display the next choose a class submenu.

This figure shows walking menus in standard window style. The standard
window styles do not have a title bar on submenus.

Controlling the Display of Developer Menu Bar

The automatically-show-developer-menu-bar attribute allows you to control when
the developer menu bar appears in Telewindows. The default value is on pause,
reset, or initial connection, which displays the developer menu bar when the KB is
paused or reset, and when the initial connection is to G2 occurs. The other options
are: on, which always shows the developer menu bar, and never, which never
shows it.
255

Class-Specific Attributes of Menu Parameters

The class-specific attributes of the Menu Parameters system table are:

Attribute Description

alignment-for-menu-
choices

Specifies how G2 displays menu selections.

Allowable values: {left | right | center}

Default value: left

when-to-allow-
multiple-menus

Determines whether you can display more than one menu
at a time.

Allowable values: {never | always | for difference selections }

Default value: never

walking-menus? Determines whether G2 has walking menus.

Allowable values: {yes | no}

Default value: yes

automatically-show-
developer-menu-bar

Determines whether the developer menu bar appears in
Telewindows.

Allowable values: on pause, reset, or initial connection | on | never

Default value: on pause, reset, or initial connection
256

Message Board Parameters
Message Board Parameters
The Message Board Parameters system table lets you control the width of the
message board, its height, the amount of spacing between entries, the maximum
number of entries, and whether or not G2 highlights new messages.

These are the class-specific attributes of the Message Board Parameters system
table. The values of the first four attributes after item-configuration are expressed
in workspace units. A workspace unit is one pixel when the workspace is scaled
to full size, and proportionally smaller when the workspace is scaled down.
Changes to this system table do not affect existing items.

Defining the Minimum Display Interval

The minimum-display-interval attribute defines the length of time that the message
appears. If the validity interval of the antecedent of the rule is longer than the
value of this attribute, that is how long the message displays. The default is
indefinite.

If you set the minimum-display-interval to 0, messages appear only for as long as
they are true. However, since the validity interval for some messages can be very
short, you will probably want to set a minimum display interval to give the
operator time to read the message.

Displaying the Native Message Board

The prefer-native-message-board attribute determines whether to use the native
G2 Message Board in Telewindows or whether to use the classic G2 Message
Board. By default, the G2 Message Board appears in a Windows docking pane
when viewed through Telewindows and is docked to the upper right corner of
the overall window.

Note The default value is yes, except when loading KBs saved in G2 Version 8.1 or
earlier, in which case the value is no.

Note The native message board is only supported in Telewindows Next Generation
(twng.exe).

The native Message Board pane accepts the following keyboard and mouse
commands:

• Left click — Select message.

• Right click — Display message menu, which includes the go to message
origin menu choice.
257

• Left drag on unselected area — Select text region.

• Left drag on selected text — Drag and drop text to another application, such
as Word.

• Control + C — Copy selected text.

• Control + A — Select all text.

• Tab — Select next message.

• Shift + Tab — Select previous message.

• Escape — Deselect all.

• Control + - (minus) — Zoom out.

• Control + + (plus) — Zoom in.

• Control + 0 — Normal zoom.

• PageUp, PageDown, Home, End, UpArrow, DownArrow — Scroll the view.

Class-Specific Attributes of Message Board
Parameters

The class-specific attributes of the Message Board Parameters system table are:

Attribute Description

initial-width-of-
message-board

Controls the initial width of the message board. The width
can change to accommodate long messages.

Allowable values: integer

Default value: 345

initial-height-of-
message-board

Controls the initial height of the message board. The
height changes if it needs to show all of the current
messages.

Allowable values: integer

Default value: 400
258

Message Board Parameters
spacing-between-
entries

Controls the amount of vertical spacing between
messages.

Allowable values: integer

Default value: 10

maximum-number-
of-entries

Controls the maximum number of messages that can
appear on a message board. After G2 reaches the limit set
by this attribute, it deletes the oldest message to make
room for each new message.

Allowable values: integer

Default value: 10

highlight-new-
messages?

Controls whether G2 highlights a new message. If yes, G2
highlights each new message for the first second that it
appears on the message board. If no, G2 does not highlight
new messages.

Allowable values: {yes | no}

Default value: yes

minimum-display-
interval

Indicates how long the message should appear on the
message board after an inform action.

Allowable values: {time-interval | indefinite}

Default value: indefinite

Attribute Description
259

Miscellaneous Parameters
The Miscellaneous Parameters system table lets you control various aspects of
the KB.

Defining Whether to Repeat the Random Function

The repeat-random-function-on-reset? attribute defines whether G2 shuffles the
function upon a KB reset. If the attribute is set to yes, G2 does nothing and the
random function returns the same sequence of random numbers after each reset,
if it has the same argument.

If this attribute is set to no, G2 seeds the random function so that it returns a
different sequence of random numbers after each reset.

Specifying the Workspace Margin

The initial-margin-for-workspaces attribute specifies how close you can place icons
at the edge of a workspace. The margin must be a non-negative integer value,
measured in workspace units. The smaller the integer, the closer to the edge of the
workspace you can place an icon.

Starting a KB Automatically After KB Load

The start-kb-after-load? attribute determines whether G2 starts the KB whenever
it is loaded. G2 automatically starts the KB if this attribute is set to yes and
displays an operator logbook message indicating that the KB has been started
because of the system table setting.

The Load KB option never start afterwards overrides the start-kb-after-load?
setting. For more information on this option and others, see Selecting Options
when Loading a KB File.

prefer-native-
message-board

Specifies whether to use the native Windows message
board or the classic G2 Message Board. If yes, displays the
G2 Message Board in a Windows docking pane, which is
docked to the upper-right corner of the overall window. If
no, display the classic G2 Message Board.

Allowable values: {yes | no}

Default value: yes

Attribute Description
260

Miscellaneous Parameters
Determining the KB Run State

The g2-run-state attribute determines the current run state of the KB. It has a
symbol value which can be reset, running, or paused.

KB developers can query the value of this attribute to determine the current run
state of the KB, for example:

initially inform the operator that
"G2 is [the g2-run-state of miscellaneous-parameters]"

Enabling the Explanation Facilities

Specifying yes for the enable-explanation-controls attribute enables you to:

• Statically display one level of forward and backward chaining for a variable.

• Dynamically display:

– All invocations of backward-chaining rules for a variable.

– All invocations of rules for an item that contain a generic reference to that
item.

– All invocations of a particular rule.

• Cache explanation data for variables, parameters, and rules and create
explanation items that display the data on explanation trees.

Determining Connection Caching

The connection-caching-enabled? attribute determines whether graphical
connections between items should be cached.

G2 caches connections when this attribute is set to yes. Caching makes
expressions that reference connections execute faster, but causes connection
changes to take longer. When this attribute is set to no. G2 does not cache
connections and connection expressions take longer, but changing connections is
faster.

Either behavior may be preferable, depending on your particular application. See
Controlling Connection Caching for more information.

Determining Connection Inactivity

The dead-connection-timeout attribute lets you configure the amount of seconds
necessary to declare a Telewindows client that is not responding to G2 server as
dead (inactive). This situation could happen due to network problems. Valid
values for this parameter are positive integers greater than 0 and default value is
200.
261

It is possible to close such connections and free resources by setting disconnect-
dead-connections? attribute value to yes.

It is important to remark that the condition for inactive connections is evaluated
each 30 seconds. This means that although we set a dead-connection-timeout
value of 10 seconds it could take up to 30 seconds more to mark it as dead.

Changing the Backward Compatibility

The backward-compatibility-features attribute lets you revert certain changes
made in G2 since previous versions.

The changes that you can revert by completing this attribute are:

• ignore duplicate list element error

• extra vertices in g2-get-connection-vertices

• inconsistent behavior of move in configurations

Tip By default, loading a KB created by an earlier version of G2 changes the value of
this attribute to include both of these options.

Ignoring Duplicate List Element Error

The ignore-duplicate-list-element-error value causes G2 to disregard a change
made to the insert action. The change to the action causes G2 to signal an error
any time an attempt is made to insert duplicate elements into a list that disallows
them.

List items can allow or disallow duplicate elements. In previous G2 releases,
attempting to insert a duplicate element into list items that disallowed them
caused G2 to signal an error unless the insert action specified an element location
of either:

• at the beginning of the list.

• at the end of the list.

Attempting to insert duplicate elements into a list that disallows them now causes
G2 to signal an error consistently. This change of behavior can affect existing KBs.

Entering the value ignore duplicate list element error essentially reverses the
change to the insert action for list elements to its previous behavior. Use this value
if your KB relies on the previous behavior.

Returning Additional Connection Vertices

In previous G2 versions, the g2-get-connection-vertices system procedure
returned the exact number of vertices of which a connection consisted. The
purpose of this system procedure is to populate a list with the connection vertices
262

Miscellaneous Parameters
of an existing connection, and then to use that list with the create connection
action. The create action, however, does not require or expect the exact number of
vertices. Instead, it requires only a minimum number of vertices. To recreate a
connection, the create connection action determines the last one or two vertices
from the position of the item to which a connection is being joined.

The g2-get-connection-vertices system procedure currently returns the minimum
number of vertices that the create connection action requires. However, existing
KBs may rely on the previous behavior or having the system procedure return the
exact number of vertices. Specifying the value:

extra vertices in g2-get-connection-vertices

in the backwards-compatibility-features attribute causes the system procedure to
behave as it did in previous releases.

Configuring “Implies Move” for Workspaces

In previous releases, configuring the item configuration of a workspace as
selecting any item implies move resulted in inconsistent behavior, depending on
the selected item. If the selected item restricted the move menu choice, then
selecting the item moved the workspace rather than the item. In general, all items
that are transferable, that is, all items that have the transfer menu choice, as well
as all connections, exhibit this behavior, whereby selecting the item moved the
workspace instead of the item.

The current version of G2 changes the behavior when the item configuration of a
workspace is configured as selecting any item implies move. Now, selecting any
item moves the item, not the workspace, regardless of whether the move menu
choice has been restricted for the item.

To revert to the previous behavior, add the following option to the backward-
compatibility-features attribute:

inconsistent behavior of move in configurations

For more information about... See...

Inserting elements into lists Inserting into Lists with Duplicate
Elements

Creating connections using the
g2-get-connection-vertices
system procedure

Creating an Existing Connection
Programmatically

The g2-get-connection-vertices
system procedure

G2 System Procedures Reference
Manual
263

Displaying the Native G2 Login and Change Mode
Dialogs

The prefer-native-login-dialog attribute determines whether to use the native
Windows G2 Login and Change Mode dialogs in Telewindows or whether to use
the classic G2 dialogs. By default, Telewindows uses the native dialogs.

Confirming Run State Changes

The confirm-run-state-changes attribute determines whether G2 posts a
confirmation dialog for any attempt to start, restart, reset, resume, or pause G2.
The dialog is posted on the window where the request was made. The default
is no.

Use Unicode for Filenames

The use-unicode-for-filenames? parameter value yes makes G2 system
procedures that deals with file operation capable of using g2-strings to specify
filenames. This option should always work for supported Windows and usual
Linux configurations, allowing the user to call these functions with Unicode
characters:

The value no means that characters in the filename will be 8-bit and implies the
user will have to know the encoding used by the OS for non-ascii character
filenames:

The above example will not work if the encoding in the file system is not SJIS
(Shift-JIS).
264

Miscellaneous Parameters
Class-Specific Attributes of Miscellaneous
Parameters

The class-specific attributes of the Miscellaneous Parameters system table are:

Attribute Description

repeat-random-
function-on-reset?

Controls whether the random function is scrambled when
G2 is reset.

Allowable values: {yes | no}

Default value: no

initial-margin-for-
workspaces

Controls the size of the margin for workspaces.

Allowable values: integer

Default value: 30

start-kb-after-load? Controls whether G2 is started immediately after loading
a KB. If this attribute is set to yes, G2 is started after
loading the KB.

Allowable values: {yes | no}

Default value: no

g2-run-state Determines the run state of the current KB.

Allowable values: {reset | running | paused}

Default value: reset
265

backward-
compatibility-
features

Lets you disregard certain changes made in recent G2
releases.

Allowable values: {none | ignore duplicate list element error |
extra vertices in g2-get-connection-vertices}

Default value: none

show-uuids-in-
attribute-tables

Controls whether the uuid attribute of all items should be
displayed on attribute tables. By default, the value of this
attribute is no, and G2 displays only the uuid attributes of
items that inherit from unique-identification class.

Allowable values: {yes | no}

Default value: no

enable-explanation-
controls

Enables the explanation facilities which statically and
dynamically display the invocation of rules for variables
and parameters.

Allowable values: {yes | no}

Default value: no

connection-caching-
enabled

Determines whether graphical connections are cached.

Allowable values: {yes | no}

Default value no

prefer-native-login-
dialog

Determines the type of G2 Login and Change Mode
dialogs to use in Telewindows. The default value is yes,
which uses the Windows dialogs. To use the classic G2
dialogs, set prefer-native-login-dialog to no.

Allowable values: {yes | no}

Attribute Description
266

Miscellaneous Parameters
Default value: yes

confirm-run-state-
changes

Determines whether G2 posts a confirmation dialog for
any attempt to start, restart, reset, resume, or pause G2.

Allowable values: {yes | no}

Default value: no

float-to-text-default-
format

Determines the float-to-text format. default is compatible
with G2 8.x. For more explanation on float formats, please
refer to system procedure g2-float-to-text in G2 System
Procedures Reference Manual

Allowable values: {default | float | exponent | best | force-zero}

Default value: default

float-to-text-default-
precision

Specifies either the number of digits to the right of the
decimal point, or the significant digits, depending on the
output-format value (not applicable in default and force-
zero format).

Allowable values: 0 - 16

Default value: 3

allow-only-one-
table-display-for-
item?

Determines whether G2 should use only one display for
each item per window. By default, showing the table of an
item will always bring new tables. Using this new option,
now exist opened tables were reused if user tried to show
the table of an item.

Allowable values: {yes | no}

Default value no

Attribute Description
267

Module Information

The Module Information system table lets you define a top-level module for
your KB.

Modules are a convenient method of saving small KBs that typically contain
distinct and manageable pieces of a larger KB’s knowledge. For example, in a
development environment with several G2 developers, one developer could be
creating the class hierarchy, while another was creating procedures and methods
for those classes. Using modules, each developer could save his or her work in a
module, and then, using a top-level module, combine the modules into a single,
modularized KB.

A Module Information system table exists for each module you create, because
every module has associated with it a unique set of system tables. You can install
only one set of system tables, and therefore only a single Module Information
system table, in a KB at one time.

For a complete description of using modules, and the role that system tables play
within them, see Modules and System Tables.

Specifying a Module File Name

The module-file-name attribute specifies the pathname of a KB file in which to
save the module. When the value is default, the module file name is the value of
the top-level-module attribute with a .kb extension, which G2 saves in the
directory specified when you save the KB.

When the value is other than default, it should be a file name to use when the
module is saved. Note that this file name is not synchronized with the module
name, which is generally not recommended. Therefore, we recommend that you
use the default value, which is default.

If you want to override the module file name with a name other than the top-level
module name, specify a relative or fully qualified path name as the name, entered
as text in quotation marks (" "). However, be aware that if you do this and you
later decide to include the module file in a different module hierarchy in a new
location, you are responsible for manually changing the names of all relevant
module files.

Specifying the Top-Level Module

The top-level-module attribute specifies the module KB that is at the top of the
module hierarchy. G2 loads the system tables associated with the top level
module. Usually, the top level module requires other modules, specified in the
next attribute.
268

Module Information
Specifying the Required Modules

The directly-required-modules attribute specifies the modules that the top level
module requires directly. A module requires another because of definitions that
are contained in the required module.

Class-Specific Attributes of Module Information

The class-specific attributes of the Module Information system table are:

Attribute Description

module-file-name Specifies the name of the module, either as the pathname
and file name where the module and its system table
information are stored, or default.

Allowable values: “filename”
default

Default value: default

top-level-module Specifies the top-level module for the KB. G2 uses the
name you specify when identifying modules to load into
the hierarchy.

Allowable values: symbol
unspecified

Default value: unspecified

directly-required-
modules

Lists the modules, if any, required by the module named
as the top-level-module in this table. The required modules
are loaded in order as they are listed for this attribute.

Allowable values: any valid module name

Default value: none
269

Printer Setup

You can print one or more workspaces directly from within G2. The Printer Setup
system table controls how G2 produces printed images of workspaces for output
on PostScript or PostScript-compatible printers, or to JPEG picture files1.

Specifying the Printing Details

The printing-details attribute controls these aspects of printing:

• workspace scaling

• color conversion

Workspace Scaling

The workspace scaling setting controls the scale at which G2 creates workspaces
for printing, as in this example:

workspace scaling: 100 workspace units per inch

If you choose scale-to-fit-single-page and the workspace is very large, the
workspace items may be illegible when you print them, because of their very
small size. If a workspace cannot fit on to a single printed page, G2 automatically
prints different parts of the workspace on separate pages, in order of left to right
and top to bottom. By attaching the printed pages together, you can assemble a
paper display of your entire KB.

module-annotations You can add any information you wish to this savable
attribute as long as it conforms to the allowable attribute
syntax.

Allowable values: [, symbol is value] | none

For example:

track-inventory-procedure is undefined;
list-of-stable-workspaces is sequence
(the symbol class-definitions-ws, the symbol method-ws)

Default value: none

Attribute Description

1.JPEG support was added since April 2013 release.
270

Printer Setup
Color Conversion

The color conversion setting controls how G2 converts colors for printing.
Possible values are:

An example is:

color conversion: black-and-white

Tip Before printing a workspace with a full-color background image on a non-color
printer, change the color conversion setting to black-and-white. Setting color
conversion in this way reduces the size of the image data in the resulting
print file.

Specifying the Printer Page Layout

The page-layout attribute lets you specify six different print settings:

Color Conversion Setting Result

black-and-white Prints the workspace in black and white.

grays Prints the workspace in shades of gray.

full-color Prints the workspace in color when you use
a color PostScript printer.

Page-Layout Setting Description

Paper size Any valid page size, as the next section
describes.

Paper orientation portrait
landscape

Left margin Any number of inches or centimeters. You
can specify the unit. For example, you can
specify 0.75 inch or 3 centimeter. The
default value is 0.5 inch.

Top margin Same as those specified for Left margin.

Right margin Same as those specified for Left margin.

Bottom margin Same as those specified for Left margin.
271

Paper-Size Setting

You can specify the dimensions of the physical page that receives the output from
the next print job. You can enter either the absolute page dimensions in inches,
centimeters, feet, or millimeters, or specify a standard paper size (such as letter,
legal, ledger, A3, and so on).

To be valid, a paper-size setting must be at least 1.0” by 1.0” of printable area plus
the dimensions of the margins and an allowance for portrait or landscape
orientation.

The names and dimensions of the standard paper sizes that you can specify are:

• letter (8.5" by 11.0")

• legal (8.5" by 14.0")

• ledger (11.0" by 17.0")

• a0, a1, a2, a3, a4, a5

• b0, b1, b2, b3, b4, b5

This example shows how to specify the page-layout attribute, including an
absolute page size:
272

Printer Setup
Specifying How to Spool the Print File

The print-spooling attribute lets you specify three spooling settings:

G2 only prints your print job file if your system is configured to spool files to a
printer. Otherwise, G2 creates the print job file, but you must spool that file to
the printer.

Spooled-Filename-Template Setting

The default for this setting is the directory from which you start G2. You can
override the default by specifying a different directory pathname. By default, G2
names the file:

print-*.ps

where the asterisk represents a number that G2 increments each time it creates a
new print file to form a unique name. The first file you print is named print-1.ps,
the second print-2.ps, and so on. If you edit the spooled-filename-template setting
to write the file to another directory or to use a different file name, remember to
keep the asterisk (*) in the name; otherwise G2 does not uniquely name each file.

Spool-File-to-Printer Setting

If the value of this specification is yes, G2 automatically sends the resulting print
job to your printer, discarding the print job after printing is complete. If the value
is no, you must queue the print job manually. G2 does not know how to spool to
the printer on all platforms. This feature is not currently supported.

Printer-Identification Setting

Specifies the name of the printer on which you want to print. This specification is
useful when multiple printers are connected to your computer or network. G2
displays the string "unknown" if your computer is not connected to a printer.

An example on UNIX is:

Spooled filename template: "/usr/g2/print.ps";
Spool file to printer: no;
Printer identification: "unknown"

Spooling Setting Description

Spooled filename
template

The directory to which directory G2 writes
the print job file.

Spool file to printer Determines whether to spool print file. This
feature is currently not supported.

Printer identification Destination printer.
273

Controlling the Printing Priority

The printing-priority attribute lets you control the KB background printing priority.
The default priority is 8. For more information about scheduling and priorities,
see The G2 Scheduler.

Note The system procedure, g2-work-on-printing, lets you further control background
printing. For more information, see the G2 System Procedures Reference Manual.

Determining the Print File Format

Three print file formats are available: postscript, encapsulated postscript and jpeg.
The default format is postscript.

For more information about these two formats, see Printing a Workspace.

Printing a Workspace without Borders

The page-economy-mode attribute allows you to print workspaces without
borders. When this attribute is set to yes, G2 does not print workspace borders
unless there is a frame style defined for the workspace. Also, G2 does not print
blank pages and suppresses the multipage indicator. Use this option to save
paper when printing workspaces.

Class-Specific Attributes of Printer Setup

The class-specific attributes of the Printer Setup system table are:

Attribute Description

printing-details Controls the scaling of workspace size to paper and color
conversion.

Allowable values: See description following table.

Default value: Workspace scaling: 100 workspace units per inch;
Color conversion: black-and-white
274

Printer Setup
page-layout Controls the page layout for the printer.

Allowable values: See description following table.

Default value: Paper size: letter;
Paper orientation: portrait;
Left margin: 0.5 inch;
Top margin: 0.5 inch;
Right margin: 0.5 inch;
Bottom margin: 0.5 inch

print-spooling Controls the default file specification, spooling
capabilities, and printer information.

Allowable values: See description following this table.

Default value: Spooled filename template: ‘print-*.ps’;
Spool file to printer: no;
Printer identification: ‘unknown’

print-priority The default priority at which G2 services print requests.

Allowable values: 1 – 10

Default value: 8

printing-file-format Determines whether to print a PostScript or Encapsulated
PostScript format.

Allowable values: postscript
encapsulated postscript
jpeg

Default value: postscript

Attribute Description
275

Saving Parameters

G2 uses the attributes on the Saving Parameters system table to display current
file information for the KB module, and to determine the change logging behavior
that module.

Defining the Priority for KB Saving

The default-priority-for-runtime-saving attribute defines the priority at which G2
schedules the task of saving a KB while it is running.

Note This is not the default priority for the g2-save-kb or g2-snapshot system
procedures, nor is it the priority at which a KB save operation occurs while the KB
is reset or paused.

You can set the default priority at any value from 1 – 10. For a description of
scheduling tasks and priorities in G2, see The G2 Scheduler.

Identifying the Current KB

The identifier-of-basis-kb attribute displays this information about a module file:

• The base file name.

• The machine ID of the platform it was saved from.

• The date and time when the module file was saved.

Identifying the KB File Name

The filename-of-basis-kb attribute displays the full pathname of a module file.

Adding Comments to a KB

You can add comments to your KB in the kb-file-comments attribute. This
attribute accepts text, but does not require quotation marks (").

page-economy-
mode

Determines whether to print a workspace with or without
borders.

Allowable values: yes, no

Default value: no

Attribute Description
276

Saving Parameters
To add comments to a KB:

1 Choose Main Menu > System Tables > Saving Parameters.

2 Edit the KB-file-comments attribute.

You can add whatever comments you wish to this attribute. Your comments are
saved at the beginning of the KB file as lines of readable text preceded by a
semicolon. The next example shows two comments in the Saving Parameters
kb-file-comments attribute. The author has preceded each comment with the date:

Viewing KB Version Information

The kb-version-information-for-change-logging attribute of each module provides
version information for that module (or KB) when change logging is enabled.

You cannot edit this attribute, though you can query it for informational
purposes.

Using KB Change Logging

You can keep a record of certain changes made to a KB during processing. This
facility is called KB change logging.

The enable-KB-change-logging? attribute is a truth value, whose default is no.
Changing the value to yes enables change logging.

You enable KB change logging for any module (or a KB if it is not yet
modularized) to track each change made to the system tables and definitional
items. Definitional items include rules and all of the items you can create from the
KB Workspace New Definition menu.

To enable change logging for the top-level module:

1 Choose Main Menu > System Tables > Saving Parameters.

2 Change the value of the enable-KB-change-logging attribute to yes.

When KB change logging is enabled in a given module, only edits made
interactively through the text editor to the attributes of definitional items and
system tables in that module are recorded in those items’ change-log attribute.
You can review and revert changes at any time.
277

Logging Changes in All Modules

To enable change logging for all modules, the following procedure iterates over
each Saving Parameters system table and changes the value of its enable-KB-
change-logging? attribute to yes (true).

start-change-logging()
SP: class saving-parameters;
begin

for SP = each saving-parameters do
conclude that the enable-kb-change-logging of SP is true

end
end

In addition to keeping previous attribute values, the change log also saves the
author, the date, and the version of the KB or module at the time of the edit.

Tracking KB Versions

When KB change logging is enabled, G2 keeps track of relevant changes by
assigning a KB version number. Whenever a KB or module is saved, G2
increments the current version number. Changes to the attributes of definitional
items in the module or KB then correspond to their appropriate version.

KB version information is also stored in the Saving Parameters system table in the
kb-version-information-for-change-logging attribute. The next example shows the
portion of the Savings Parameter system table where KB version information
appears:

Viewing the Change Log for an Item

The number of changes made to each system table and definitional item in a
module appear in the item’s change-log attribute as a number of entries. For
example, if you edit a rule twice, the value of the rule’s change-log attribute will
be 2 entries. You cannot edit the value of the change-log attribute; it is for purely
informational purposes.

If the value of the change-log attribute is greater than one, you can view the item
change log.

When editing an item produces no changes to the item, G2 does not add an entry
to the change log.

To see an item’s change log:

1 Open the item attribute table.

2 Click on the name of the change-log attribute to display its submenu.
278

Saving Parameters
3 Choose view change log.

The following example shows the change log display of a class-definition.

Each change log entry consists of:

• Attribute — The name of the changed attribute.

• Revision — The revision number for the change.

• Value — The value of the attribute for that revision.

• Module Version — When change-logging is enabled on a particular module,
each time the module is saved, it is given a unique version number. The
module version and corresponding date and time of the save are visible in the
Saving Parameters system table.

• Timestamp — The date and time of the edit.

• Author — The user name of the author.

• Tags — User-defined tags.

You can also access change-log information programmatically and use text “diff”
tools on change log entries. For more information, see Application
Deployment Operations in the G2 System Procedures Reference Manual.

For information on using the Inspect facility for version control, see Version
Control.

Reverting Item Changes

Using the change log, you can restore former attribute values at any time.

To revert a change to an item:

1 Open the change log for the item whose value you wish to revert.

2 Edit the attribute value you want to change.

3 Delete the text of the attribute value.
279

4 Select the text of the change log attribute value that you wish to restore. The
text is inserted into the editor.

5 Click End.

For information about removing change logging and version information before
deploying and distributing your KB, see Removing KB Change Logging and
Version Information.

Class-Specific Attributes of Saving Parameters

The class-specific attributes of the Saving Parameters system table are given in the
table below. Only attributes that have an Allowable values description are user-
editable. The Default value specification for each attribute is the value the attribute
has when G2 is initialized for the start of a new G2 process or after the current KB
is cleared.

Attribute Description

default-priority-for-
runtime-saving

Allows you to specify the priority for the task of saving
your running KB.

Allowable values: 1 – 10

Default value: 8

identifier-of-basis-
kb

Provides three items of information for a module file: the
base file name, the machine ID of the platform the module
was saved on, and the time of the save.

Default value: none when starting a new G2 process
new-kb after clearing the current KB

filename-of-basis-kb Displays the file path for the module.

Default value: none

KB-file-comment Allows you to enter any comment you wish to save with
the current KB.

Allowable values: any text

Default value: blank
280

Server Parameters
Server Parameters
From the Server Parameters system table you can specify preferences that pertain
to your G2 process independent of the resident KB. Your preferences persist in the
G2 process until you explicitly change them because, unlike other system tables,
the Server Parameters table does not lose its non-default attribute values when
the KB is cleared. The table is created by G2’s initialization process when you first
launch G2 and remains in residence throughout the G2 process. It is not saved
with the KB.

To access the Server Parameters system table:

 Choose Main Menu > System Tables > Server Parameters.

Specifying a Module Search Path

By editing the module-search-path attribute, you specify what file directories G2
searches for locating your required KB modules. This attribute accepts quoted file
paths separated by commas, or it accepts the value none.

For example:

enable-KB-change-
logging

Use this attribute to specify whether you want change
logging to be in effect for the KB.

Allowable values: no | yes

Default value: no

KB-version-
information-for-
change-logging

Displays version information about the KB when change
logging is in effect.

Default value: none

current-file-for-
module

Shows the file path of the currently loaded module file.

Default value: none

Attribute Description
281

"/home/user/support-modules/", "/development/required-kbs"

For complete module-search-path syntax, see Module Search Path Syntax.

Controlling Edits to Read-Only Module Files

The restrict-edits-to-read-only-files attribute enables or disables G2’s editing-
prohibition and warning behavior when editing is attempted on a read-only
module file. The module-file-is-read-only attribute of the module’s Saving
Parameters system table tells you whether a module file is read-only.

You specify G2’s behavior by editing the unsavable-change-protection and
default-unsavable-change-protection attributes of the Savings Parameter system
tables.

When restrict-edits-to-read-only-files is set to yes, G2 enforces your preferences.
When this attribute is no, G2 will neither prohibit nor warn when there is an
attempt to edit a read-only module.

Specifying the Default Window-Style

You specify the default window-style for the G2 process by editing the
g2-window-style attribute. The syntax for this attribute is:

default | standard-large | g2-5.x | standard

Specifying default is the same as specifying standard because standard is G2’s
default window style. You override this default by editing the g2-window-style
attribute of the g2-window item associated with your local G2 process or your
Telewindows process, as described in Overriding the Default Window Style for
the Current Window. Alternatively, you can edit the G2 window style field of
your login dialog.

Determining if G2 is Secure

The hidden attribute named g2-is-secure allows you can test for a truth-value to
determine whether or not a G2 is secure. This attribute is read-only, which means
that you can access it but not set it via a conclude action.

To view the attribute interactively, choose Inspect, then enter show on a
workspace server-parameters, choose table of hidden attributes, and view the
value of g2-is-secure.

Programmatically or in a readout-table, use this expression to determine the value
of the hidden attribute:

 the g2-is-secure of server-parameters
282

Server Parameters
Class-Specific Attributes of Server Parameters

The class-specific attributes of the Server Parameters system table are all user-
editable. They are:

Attribute Description

module-search-path Determines the directories G2 searches to locate required-
module files.

Allowable values: The value none or one or more quoted file paths separated
by commas. For example: "/home/user/test-kbs",
"/development/current"

Default value: The file path(s) given by your -module-search-path
command-line option or environment variable, or the file
path from which G2 was launched.

restrict-edits-to-
read-only-files

Enables and disables G2’s editing-prohibition and
warning behavior when editing is attempted on a read-
only module.

Allowable values: yes | no

Default value: no

g2-window-style Determines the default window-style for a G2 process.

Allowable values: default | standard-large | g2-5x | standard

Default value: default

g2-is-secure Determines whether G2 is secure. This attribute is a
hidden and read-only.

Allowable values: true | false

Default value: false
283

Simulation Parameters

The Simulation Parameters system table controls the G2 Simulator, a superseded
capability. By default, the G2 Simulator is off. For information about the G2
Simulator, see Appendix F, Superseded Practices.

Timing Parameters
The Timing Parameters system table controls several scheduler settings and other
computational parameters.

Defining the Scheduler Mode

The scheduling-mode attribute defines the timing mode of the scheduler (how the
G2 clock ticks), and how tasks are scheduled. G2 has three scheduler modes:

• real time

• simulated time

• as fast as possible

Note A clock tick is a measure of time within G2 that may or may not be equivalent to
one second of real time. The relationship between a clock tick and real time is
determined by the value of the scheduler-mode attribute.

Real Time

If the scheduler mode is real time, a clock tick corresponds to one second of real
time. If G2 completes all of the tasks that are scheduled for a particular second
before the second ends, G2 waits until the second is over before starting to process
tasks scheduled for the next second.

If G2 has tasks left over at the end of a second, it begins processing tasks
scheduled for the next second, anyway. When this happens, G2 schedules the
remaining old tasks with the tasks scheduled for the new second, preserving the
priority of all tasks, and preserving temporal ordering within priorities. G2
performs tasks from the previous second before it performs tasks with an equal
priority from the next second. It does not, however, perform lower priority tasks
from the previous second before higher priority tasks from the next second. The
default mode is real time.

Simulated Time

Simulated time always attempts to match real time. However, when running in
simulated time, G2 completes all of the tasks scheduled for one second before
moving on to the tasks scheduled for the next second. As a result, a second of
284

Timing Parameters
simulated time may last longer than a second of real time. Consequently, the
simulator clock may run slower than the real-time clock.

If you pause a KB, reach a breakpoint, or suspend G2, the simulated time stops.
When you resume, the simulated time does not leap ahead to match real time.
Thus, simulated time lags behind real time as a result of such interruptions.

As Fast As Possible

When the scheduler-mode is set to as-fast-as-possible, and all tasks in the current
task queue are complete, the scheduler checks to see if tasks are scheduled on the
future task queue. If tasks are scheduled, the scheduler ticks the clock forward all
the way to the time of the next scheduled task and starts its execution cycle. If no
tasks are in the future task queue, the scheduler becomes idle and does not tick
the clock until tasks appear on the future task queue. For more information about
the scheduler and the current and future task queues, see Task Scheduling.

As fast as possible time is a convenient scheduler mode for discrete event
simulations, so that tests that might otherwise require hours to complete require
only minutes.

Caution The G2 clock has a limit of 17 calendar years. Reaching that limit, for example
when running simulations using the as fast as possible mode, will abort G2.

Specifying the Minimum Scheduling Interval

The minimum-scheduling-interval attribute specifies the length of time for a clock
tick, which determines how long the scheduler has to perform tasks between
clock ticks. The default value is the time interval 1 second. Possible values for the
attribute are any non-negative-number time interval, or continuous.

If you are entering a time interval (rather than continuous as the interval), the
interval value must be a multiple of a second or must divide evenly into a second.
If you enter another kind of value, G2 rounds the value up to the next valid
minimum scheduling interval. For example, if you enter .333 seconds as the
minimum scheduling interval, G2 rounds that number up to .334 upon
completing the edit. Entering .666 seconds causes G2 to behave as if the value
were 1.0, rounding it to 1 second.

The minimum value is .002 (2 milliseconds). Setting a lower value for the
minimum scheduling interval means you can take advantage of faster machine
speeds. It also means the gap between the minimum value for this attribute and a
value of continuous is much less.

When the minimum-scheduling-interval attribute is set to a time interval, the
scheduler advances the G2 clock by multiples of that amount (for instance, .333
seconds, or 1 second). When a time interval is in effect, G2 rounds the execution
times of scheduled tasks up to the next clock tick. For example, if the current
285

subsecond time is 5.0, and the minimum-scheduling-interval is set to 0.25 seconds,
G2 schedules the action start update report after 0.6 seconds to run at 5.75
seconds, current subsecond time.

If the interval is continuous, the scheduler ticks the clock at the task schedule
times, and remains idle between those tasks. Continuous scheduling incurs clock
ticks of various lengths, as tasks are scheduled. For example, if the scheduler ticks
the clock, completes the tasks on the current task queue, and then sees that there
is something scheduled on the future task queue in .2 seconds, the clock ticks at
that time. Conversely, if nothing is scheduled on the future task queue for 5
minutes after the current task completes, the scheduler does not tick the clock
until then.

Specifying the G2-Meter Lag Time

The meter-lag-time attribute tells G2 how many seconds of data to use when
computing values for G2 meters.

Frequently, performance values are expressed in events per second or are
measured in seconds. For example, a G2 meter can track the number of formulas
G2 evaluates each second, or how long a clock tick actually lasts in terms of
seconds. G2 meters can compute such values for the most recent clock tick, or
they can compute values based on an average result of recent clock ticks. The
meter-lag-time attribute controls how many seconds worth of data G2 uses in
evaluating each meter.

The meter-lag-time attribute holds a value of 0 seconds or any longer time
interval. If it holds 0 seconds, G2 meters reflect only the activity in the most
recently completed clock tick. As its value increases, the values of G2 meters
change more smoothly over time.

G2 computes lagged values as follows:

This is an Euler approximation of first-order delay. Note that if the meter lag time
is zero or is less than the latest clock tick length, then  = 1.0, and the new lagged
value = the current value, with no lag.

new lagged value = (1 - ) * previous lagged value
+ ( * current value)

where:  Is equal to min (1.0, clock tick length / meter
lag time)
286

Timing Parameters
Specifying the Interface Mode to Use

The interface-mode attribute specifies which interface mode G2 uses, as follows:

Adjusting the G2 Clock

The clock-adjustment-in-minutes attribute adjusts G2's clock as follows:

Setting the clock-adjustment-in-minutes to a positive or negative number sets the
clock but does not cause any of the events that where scheduled during that
adjustment period to occur.

Controlling the Foreign Function Timeout Interval

The foreign-function-timeout-interval attribute controls the interval of time that G2
waits for a return value after calling a foreign function. If the interval is exceeded,
G2 signals an error. Specify an integer to represent the interval in seconds.

This interface mode... Causes G2 to...

always service interface
first

Make responding to the mouse and
keyboard a priority over all scheduled
events.

interruptible interface
service

Give an equal share of computing time to
the keyboard and mouse, the Inference
Engine, the G2 Simulator and other data
servers.

The G2 Simulator is a superseded
capability. For more information, see
Appendix F, Superseded Practices.

This clock adjustment... Causes G2 to...

positive number Set the clock forward to a value derived by
adding the specified positive number of
minutes to the current real time.

negative number Set the clock backward to a value derived
by adding the specified negative number of
minutes from the current real time.

0 Leave the clock unchanged.
287

Note Setting the timeout-interval attribute of an individual foreign function definition
overrides the value set for the foreign-function-timeout-interval attribute of the
Timing Parameters system table for that function.

Controlling Foreign Image Reconnection

The reconnect-to-foreign-image-after-timeout? attribute controls whether G2
reconnects to a foreign image (a group of foreign functions) after the foreign
function timeout interval expires. If the value for this attribute is yes, G2 makes a
single attempt to reconnect to the foreign image. If the value is no, G2 does not
attempt to reconnect.

Setting the Uninterrupted Procedure Limit

The uninterrupted-procedure-execution-limit attribute sets a limit on the amount of
execution time a procedure can use without entering a wait state that allows other
processing to occur. Specify an integer to represent the number of seconds, or
none. The actual limit for this attribute is 24 hours. Note that setting the execution
time limit locally for a procedure overrides the limit set for this attribute.

G2 maintains a tally of the cumulative execution time per invocation of each
executing procedure.

Scheduling Attribute Table Updates

By default, attribute tables are updated whenever a change occurs in the value of
an attribute or to the class-specific attributes of the defining class. When attribute
changes are occurring at a very fast rate, continuous attribute-table updates place
a considerable load on G2, its clients, and the network between them.

You can direct G2 to update attribute tables only at specific intervals instead of
continuously. G2 defers updates until the specified interval of time has elapsed,
then updates the table with the latest changes, thus avoiding the overhead of
updating intermediate value changes.
288

Timing Parameters
Class-Specific Attributes of Timing Parameters

The class-specific attributes of the Timing Parameters system table are:

Attribute Description

scheduler-mode The current mode in which the scheduler is running.

Allowable values: {real time | simulated time | as fast as possible}

Default value: real time

minimum-
scheduling-interval

The length of the G2 clock tick.

Allowable values: {subsecond-interval | continuous}

Default value: 1 second

milliseconds-to-
sleep-when-idle

Controls the interval of time, in milliseconds, that G2
sleeps while the G2 process is idle.

Allowable values: any positive integer
use default

Default value: use default

meter-lag-time The number of seconds of data to use when computing G2
meter values.

Allowable values: time-interval

Default value: 10 seconds

interface-mode Specifies which interface mode G2 uses.

Allowable values: {interruptible interface service |
always service interface first}

Default value: interruptible interface service
289

clock-adjustment-in-
minutes

The number of minutes to adjust G2’s clock.

Allowable values: integer

Default value: 0

foreign-function-
timeout-interval

The interval of time that G2 waits for a return value after
calling a foreign function.

Allowable values: {none | time-interval}

Default value: 30 seconds

reconnect-to-
foreign-image-after-
timeout?

Whether G2 reconnects to a foreign image (a group of
foreign functions) after the foreign function timeout
interval expires.

Allowable values: {yes | no}

Default value: no

uninterrupted-
procedure-
execution-limit

A limit on the amount of execution time a procedure can
use without entering a wait state that allows other
processing to occur.

Allowable values: {time-interval | none}

Default value: 30 seconds

attribute-display-
update-interval

Specifies the frequency with which to update attribute
tables.

Allowable values: continuous | float (between 0.0 seconds and 0.5 seconds)

Default value: continuous

Attribute Description
290

7

Configurations
Describes how configurations override the default behavior of items.

Introduction 292

Declaring Configurations for Items 292

Configuring the User Interface of Items 300

Configuring Menu Choices and Attributes in Tables 302

Configuring Keystrokes 307

Configuring Mouse Gestures 308

Constraining the Movement of Items 322

Configuring the User Interface of Proprietary Items 324

Configuring Access to and from Other G2, G2 Gateway, and Telewindows
Processes 325

Configuring Properties of Items 328

Including Comments in Configurations 333

Describing Configurations 334

Declaring User Modes in Configurations 334

Declaring Generic and Exception Configurations 341

Configuring the G2 Main Menu and Global Key Bindings and Shortcuts 345

Using Configurations in Modularized KBs 348
291

Introduction
Configurations are declarations that determine the interactive behavior and
certain other properties of items. Using configurations you can:

• Customize how items respond to mouse clicks and to drag-and-drop
mouse operations.

• Assign custom keystrokes to G2 commands and operations.

• Customize which choices appear on the menus of items.

• Customize which attributes appear in the tables of items, as well as which
choices appear on the menus of those tables.

• Prohibit and allow access to items, and to the entire KB, by other G2 processes,
by G2 Gateway bridge processes, and by Telewindows processes.

• Enable or disable compilation properties, and other miscellaneous properties,
of items.

• Add comments to items.

For instance, you can use configurations to restrict how any item of a particular
class responds to being selected, or to restrict access to the proprietary knowledge
within your KB.

Most importantly, you use configurations to associate specialized behaviors with
different categories of users, namely, end users, developers, and administrators.

Note The current KB’s configurations are in effect at all times, regardless of whether it
is running, paused, or reset.

Declaring Configurations for Items
You declare configurations for items by entering configuration statements in their
item-configuration and instance-configuration attributes.

You use an item configuration to customize the behavior of an item, based on its
location within the current KB’s workspace hierarchy. You declare an item
configuration by entering configuration statements into the item-configuration
attribute of an item. Items of every class have an item-configuration attribute.

You use an instance configuration to customize the behavior of a class of items,
based on the position of their class in the KB’s class hierarchy. You declare an
instance configuration by entering configuration statements into the instance-
configuration attribute of a class definition.

Only class definitions have an instance-configuration attribute. Therefore, you can
use instance configurations only to customize items of user-defined classes.
292

Declaring Configurations for Items
The next figure shows a configuration statement. It declares that clicking the
mouse on any class definition causes G2 to create an instance of the class.

configure the user-interface as follows:
when in developer mode:

pressing any mouse button on any class-definition
implies create-instance

You can also declare global configurations by entering them in the KB
Configuration system table. Some configurations exist there by default, which
you can change as you require.

Kinds of Configuration Statements

An item-configuration or instance-configuration attribute can contain one or more
configuration statements. There are five general types of configuration
statements, summarized in the following table. For information on cooperative
combinations, see Combining Cooperatively.

Configuration
Statement

Support
Cooperative
Combinations? Purpose

configure the user
interface as follows

Yes Determines how an item responds to
interactive operations.

restrict proprietary
items as follows

Yes Determines how a proprietary item
responds to interactive operations and
certain programmatic operations.

set up network
access as follows

No Determines access to an item (or to the
entire KB) by other G2 process and by G2
Gateway bridge and Telewindows
processes; effects read, write, execute,
inform for items and the entire KB, and
connect access to the G2 process.
293

A configuration statement can have more than one clause. Within one
configuration statement, use a semicolon (;) to separate the statement’s clauses.
Do not append a semicolon to the last configuration statement.

Configurations propagate through your KB’s class and workspace hierarchies.
Thus, there is no need to specify configurations in each item of your KB.

Note The item-configuration and instance-configuration attributes are compiled
attributes. G2 saves a compiled version of the attribute’s text in the item, not the
exact text that you enter.

declare properties ...
as follows

No Declares an item as: disabled, text-stripped,
stable-for-dependent-compilations,
independent-for-all compilations,
stable-hierarchy, inlineable, or not.

In instance configurations, configures
items to support: activatable-
subworkspace, external-simulation,
manual-connections, or subworkspace-
connection-posts.

The editor prompts include optimizable
configuration syntax, but it no longer has
any effect in G2. The grammar is
maintained in order to prevent older KBs
from incurring compilation errors.

The G2 Simulator, which can provide
external simulation, is a superseded
capability. For more information, see
Appendix F, Superseded Practices.

comment as follows No Declares comment text in a configuration.

Configuration
Statement

Support
Cooperative
Combinations? Purpose
294

Declaring Configurations for Items
Scope of Configurations

The scope of a configuration means the items to which it applies.

Items can inherit the configurations that are declared for items higher in the class
and workspace hierarchies. Thus, one configuration can apply to many items in
your KB. For example, the following configuration statement optimizes the
compilation of all tracked-vehicle items in a KB:

declare properties of any tracked-vehicle as follows :
stable-for-dependent-compilations

Different configurations can overlap, such as when you declare configurations on
two items on the same branch of the KB’s workspace hierarchy. Thus, more than
one configuration can also apply to the same item.

You can also declare a configuration that applies to only one item. Such a
configuration is not inherited down the class or workspace hierarchies. In the
configuration statement, instead of naming the class of items that the
configuration applies to, include the this item phrase. For example:

declare properties of this item as follows :
stable-for-dependent-compilations

Precedence of Configurations

If two configurations apply to the same item, it is possible that they declare
conflicting behaviors for that item. For example, one configuration declared for
any item of the vehicle class might declare that each vehicle item must respond to
a mouse click by rotating, and another configuration declared for the vehicle item
named security-vehicle might declare that it not respond to mouse-clicks at all.

In this situation, G2 uses a predictable mechanism to determine which of two or
more conflicting configurations to use. G2’s precedence rules for configurations
are based on the current KB’s class and workspace hierarchies. By default, if
configurations for an item conflict, G2 uses the configuration declared closest to
the target item in the class and workspace hierarchy, and ignores the conflicting
configurations.

Example of the Scope of Configurations

The following example illustrates how the KB’s class and workspace hierarchies
determine the scope of an item configuration. Consider a KB that monitors
vehicles. Assume that one of the KB’s top-level workspaces is named Top Level,
and that it contains two navigation button items, Definitions and Schematic, each
of which has a subworkspace of the same name.
295

The Schematic navigation button declares an item configuration, which optimizes
the compilation of the navigation button itself, and all items below it in the
workspace hierarchy. Thus, by default, all items on the Schematic workspace are
automatically optimized for compilation.

The next figure shows that an instance configuration stored in a class definition
applies to all items of that class and to all items of any subclass of that class. In this
way, one instance configuration can affect a large set of items.

The scope of an item
configuration stored in this item...

...includes these items and all items below
them in the workspace hierarchy.
296

Declaring Configurations for Items
The figure shows that an instance configuration declared in the car-class
definition applies to all instances of car-class and to all items of the service-cars
class, which is a subclass of car-class. The instance configuration restricts the
menu choices to exclude rotate, reflect, and change size. Thus, the two cars on the
Schematic workspace both inherit the configuration in the car-class definition.

The scope of an instance configuration
that refers to car-class, stored in this
definition...

...includes this item, which is an
instance of car-class . . .

...and includes all items, such
as this, which are instances of
a subclass of the configured class.
297

How G2 Searches for Applicable Configurations

When an item is the target of a user gesture, before G2 performs the operation
associated with that user gesture, G2 must determine which configurations apply
to the item at that particular moment in time. To do so, G2 searches in the
following order for configuration statements in the following items:

1 Configuration statements in the item-configuration attribute of the item.

2 Configuration statements in the item-configuration attribute of each item that
is above the current item in the workspace hierarchy.

If the item that declares the configuration is contained in an attribute of some
other item, G2 searches all workspaces above the item containing the
configured item.

3 Configuration statements in the item-configuration attribute of the KB
Configuration system table.

4 If the class of the item is user-defined, configuration statements in the
instance-configuration attribute of the class definition that defines the
item’s class.

5 If the class of the item is user-defined, for each definition item that declares a
class in the class-inheritance-path attribute of the class definition,
configuration statements in the instance-configuration attribute of that
definition item.

Given the KB shown in the previous figures, the following figure shows how G2
searches for the configurations that apply when a user clicks the mouse on
car-class-1. G2 reacts to this user gesture as follows:

1 Checks whether the item-configuration attribute of the car-class contains
configuration statements.

2 Checks whether any configuration statements apply to car-class-1 in the item-
configuration attribute of the schematic workspace.

3 Checks the Schematic navigation button for an item-configuration.

4 Checks the Top Level workspace for an item-configuration, which is the
superior item of the workspace hierarchy for car-class-1.

5 Checks whether any configurations declared in the item-configuration
attribute of the KB Configuration system table apply to car-class-1.

6 Finally, since the car-class class is user-defined, G2 checks whether the
instance-configuration attribute of the car-class definition contains
configuration statements that apply to car-class-1.
298

Declaring Configurations for Items
Because the direct superior class of car-class is object class, which is a foundation
class, G2 stops searching for additional instance configurations. (A foundation
class is a G2 system-defined class that can be the direct superior class of a user-
defined class.) Otherwise, G2 would search for any instance configuration
declared in the definitions of all user-defined superior classes of car-class.

As stated in Precedence of Configurations, if two configuration statements, or
clauses within a configuration statement conflict for an item, the last statement or
clause takes precedence.

Items Searched for Configurations that Apply to Car-Class

item

object

car-class

service-cars

KB-configuration

top-level

definitions-button schematic-

definitions schematics

hide-button up-button

refrigeration-truck-1 service-car-1 car-class-1truck-class-1

button

workspace hierarchy

system tables

class hierarchy

of car-class-1

(6)

(5)

(4)

(3)

(2)

(1)

of car-class
299

Instance Configurations and Definition Items

An instance configuration does not apply to the class-definition item itself, nor to
the class-definition items that define subclasses of the configured class.

For example, in the figure below, an instance configuration declared in the pipe
class-definition includes in its scope all instances of the pipe class and all instances
of the pressurized-pipe and refrigerated-pipe classes. However, the scope of that
instance configuration does not include the class-definitions themselves.

Configuring the User Interface of Items
You configure how one or more items respond to interactive operations with a
statement that begins with this phrase:

configure the user interface as follows :

Each configure the user interface as follows statement incorporates clauses that
fall into four distinct categories:

• Configuring menu choices and attributes in tables.

• Configuring mouse clicks.

• Constraining movement.

• Configuring keystrokes.
300

Configuring the User Interface of Items
Specifying the Applicable User Modes

Each configure the user interface as follows statement must include at least one
user modes clause. This clause names one or more user modes under which the
configuration does or does not apply.

Use the when in phrase to list the user modes that apply to a set of configuration
clauses. Use the unless in phrase in a user modes clause to list the user modes that
do not apply to a set of configuration clauses. For example:

configure the user interface as follows :
when in developer or end-user mode : { inclusive }

... ;
unless in administrator, developer, or end-user mode : { exclusive }

...

As shown above, when specifying only two user modes, separate the mode
identifiers with the or reserved word. When specifying three or more modes,
separate the identifiers with commas, and include the reserved word or before the
last identifier.

Note You cannot specify a configure the user interface as follows statement that applies
only under administrator mode. You can specify configurations that apply when
not in administrator mode. This prevents you from unintentionally restricting
access to a portion of your own KB.

Declaring User Modes in Configurations provides more information about user
modes. Describing Configurations provides more information about configuring
the user interface in the various user modes, including a complete example.

Specifying Appropriate Operations for the Target
Class

If a clause in a configure the user interface as follows statement refers to a menu
choice, attribute, or low-level G2 operation that is not appropriate for the class of
the target item, G2 ignores that reference in the configuration clause.

For example, suppose you create this configuration statement:

configure the user interface as follows :
unless in developer mode :

menu choices for rule or custom-object exclude : hide

During the KB’s processing, G2 ignores the reference to the rule class in the menu
choices for rule exclude clause, because hide is not one of the system-defined
menu choices for the rule class. However, G2 does not ignore the entire clause,
because hide could be a user-menu-choice for the user-defined custom-object
class.
301

Configuring Menu Choices and Attributes
in Tables

The following clauses affects which menu choices can appear, which attributes
and table menu choices can appear in an attribute table, and which non-menu
choices can appear for an item:

These four clauses have a similar syntax:

• Each applies to one or more classes of items.

• Each supports cooperative combinations with similar clauses in other
configuration statements or in other configurations, as explained in
Combining Configurations.

• Each clause can specify that nothing is included or excluded.

For example, the following configuration statement might appear in the instance-
configuration attribute of the definition for the petro-valve class. The statement
summarizes the kinds of features that you can configure with these four clauses:

configure the user interface as follows :
when in developer or end-user mode :

attributes visible for any petro-valve include additionally :
notes, names, current-status ;

menu choices for any petro-valve include additionally :
diagnose-error-condition, show-status ;

non-menu choices for any petro-valve exclude additionally :
move-object, click-to-edit, full-editor,
option-buttons-for-edit-in-place,
menus-for-edit-in-place, do-not-clear-text-for-edit-in-place ;

Clause Purpose

attributes visible for Configures which of an item’s attributes are
displayed in the item’s table.

menu choices for Configures which system-defined menu
choices and user-menu-choices are displayed
in the item’s menu.

non-menu choices for Configures which system-defined interactive
operations for an item, for example, move,
scale, show, click-to-edit, and so on.

table menu choices for Configures which menu choices are available
when you select attributes in an item’s table.
302

Configuring Menu Choices and Attributes in Tables
{ This clause configures the table menu choices for the item's
entire table. }

table menu choices for any petro-valve exclude additionally :
transfer

{ This clause configures the table menu choices for a particular
attribute in the item's table. }

table menu choices for the notes of any petro-valve exclude
additionally : show-attribute-display

Configuring Attributes That Appear in Tables

In the developer’s environment, every G2 class defines a set of attributes for items
based on that class. Use the attributes visible for clause to determine the attributes
that appear in the attribute tables for a set of items identified by class. For
example:

configure the user interface as follows :
when in developer or end-user mode :

attributes visible for any petro-valve include :
notes, names, current-status

In the Text Editor, when you specify the attributes visible for clause, G2 prompts
you to specify which attributes to include or exclude. The Text Editor presents the
following prompts:

• any system-defined-attribute-name: Selecting this prompt displays a list of all
system-defined attributes for all system-defined classes.

• any attribute-name: Selecting this prompt displays a list of system-defined
attributes.

Configuring Menu Choices

Each G2 class has a system-defined set of menu choices. Use the menu choices for
clause to list the menu choices to include or exclude from the menus of a set of
items identified by class. For example:

configure the user interface as follows :
when in developer or end-user mode :

menu choices for any petro-valve include :
diagnose-error-condition, show-status

Configuring Non-Menu Choices

Each G2 system-defined class has a system-defined set of non-menu-based
operations. Non-menu choices are operations that are not performed in response
to the user’s selections from menus, such as selecting items, dragging the mouse,
input from the keyboard, and other user gestures like showing, hiding, resizing,
and scaling workspaces.
303

For example, to restrict the ability to use standard mouse gestures to copy items,
you can exclude non-menu options for selecting an object and selecting an area.
When items are restricted in this way, the user cannot execute any commands that
apply to the current selection.

These are the non-menu choices that you can configure:

This non-menu option... Provides the ability to...

select-object Left-click an item to select it.

select-area Drag in the open area of a workspace to select
all items in the rectangular area.

move-object Move an item by selecting it with the mouse
and dragging.

move-objects-beyond-
workspace-margin

Move an item further than the current
workspace edge to expand the
workspace size.

move-connection Click on a connection and move the
connection on the workspace.

move-workspace Move the workspace in the current window.
Excluding this option prevents the user from
moving the workspace.

move-workspaces-
beyond-window-margin

Move the workspace beyond the current
window margin.

show-workspace Show a workspace. Excluding this choice
removes named workspaces from the list of
workspaces available by choosing
Main Menu > get-workspace.

scale-workspace Scaling a workspace. Excluding this choice
prevents the user from scaling the workspace
with keystrokes such as Control + b and
Control + s.

click-to-edit Enter the Text Editor automatically when a
user selects, for example, an attribute value.
Excluding this option presents a menu from
which the user can choose to edit.

full-editor Invoke the Text Editor when editing an
attribute value. Excluding this option causes
G2 to invoke a partial editor in place.
304

Configuring Menu Choices and Attributes in Tables
Use the non-menu choices for clause to list one or more non-menu choices to
allow or prohibit for a set of items identified by class. For example:

configure the user interface as follows :
when in developer or end-user mode :

non-menu choices for any petro-valve exclude :
move-object, click-to-edit, full-editor,
 option-buttons-for-edit-in-place,
 menus-for-edit-in-place, do-not-clear-text-for-edit-in-place

You cannot use the non-menu choices for clause to add a custom non-menu choice
for a class of items.

Configuring Table Menu Choices

In the developer’s environment, after you display an item’s table, you can click
the mouse on the table to display a table menu. Use the table menu choices for
clause to name one or more system-defined menu choices to include or exclude
from the menu of an item’s table. For example:

configure the user interface as follows :
when in developer or end-user mode :

{ This clause configures the table menu choices for the item's
entire table. }

table menu choices for any petro-valve exclude additionally :
transfer

option-buttons-for-edit-
in-place

Remove buttons from a partial in-place editor
when the full-editor option is being excluded.
This option thus works in conjunction with
excluding the full-editor, further restricting
editing capabilities.

menus-for-edit-in-place Remove the edit in place menu.

do-not-clear-text-for-
edit-in-place

Remove the text when editing in place.

allow-selection-of-
outside-text-from-editor

Select text from a location outside of the Text
Editor and to use that text in the current
editing session. Excluding this option
prevents the user from sliding over a piece of
G2 text and have it appear in the editor.

allow-selection-of-text Permit text to be selected.

This non-menu option... Provides the ability to...
305

Because some table menu choices apply only to the attribute shown on the row
where the mouse was clicked, you can also use the table menu choices for clause
to include or exclude attribute-specific table menu choices. For example:

configure the user interface as follows :
when in developer or end-user mode :

{ This clause configures the table menu choices for a particular
attribute in the item's table. }

table menu choices for the notes of any petro-valve exclude
additionally :

show-attribute-display

Configuring Attribute Displays

You can restrict access to the attribute displays of items. Unless you restrict access
to these displays, users can click on them to open the Text Editor and edit the
attribute values themselves.

To do so, specify a configuration clause that names table-item, an internal class
that defines the characteristics of attribute displays. You can restrict attribute-
display access for a single item, for all the items on a workspace, or for all the
items in the KB. You do this by editing the item-configuration attribute of an item,
a workspace, or the Kb Configuration system table.

For example, to restrict attribute-display edit access to all the items on a
workspace, enter this statement in the item-configuration attribute of the
workspace:

configure the user interface as follows:
unless in administrator mode:

selecting any table-item does nothing

Adding this phrase to the statement above also prohibits the movement of the
attribute displays:

non-menu choices for table-item exclude: move-object

Note Item configurations are propagated down the KB workspace hierarchy. For
example, entering table-item configurations on an item with a subworkspace
makes any items on the subworkspace, as well as any existing items further down
the workspace hierarchy, subject to the item configuration.

To restrict edit access to attributes from the attribute-table of all instances of a
class, enter this statement in the instance-configuration attribute of the
class-definition:

configure the user interface as follows:
unless in admnistrator mode:

table menu choices for any class include: nothing
306

Configuring Keystrokes
Configuring Keystrokes
The typing ... implies clause associates keystrokes with G2 operations. When the
user displays the Help screen (by typing CTRL + /) the Help information includes
any keystroke associations currently in effect.

Use a typing ... implies clause to configure:

• Alphabetic and numeric keys, optionally modified by any combination of the
ALT, CTRL, or SHIFT keys.

• The function keys F1 through F12, modified or unmodified.

• The cursor-movement keys (left-arrow, right-arrow, up-arrow, down-arrow),
modified or unmodified.

• Other named keys (insert, delete, home, end, page-up, page-down), modified
or unmodified.

A typing ... implies clause can associate a keystroke with an operation that targets
one item, more than one item, or no items.

You can configure a keystroke to invoke a user menu choice or any of G2’s
system-defined menu choices.

You can bind printable characters, for example, to execute a menu choice by
pressing a single character or to prevent displaying the table for an item when
pressing the space bar.

Constraints on Configuring Keystrokes

You cannot use configurations to associate certain keystrokes that are intercepted
by your platform’s window manager.

For example, Microsoft Windows traps several keystrokes. You cannot associate
the following keystrokes with a G2 operation when using the typing ... implies
clause:

ALT + ESC
ALT + TAB
ALT + -
ALT + SHIFT + TAB
ALT + [SPACE]
CTRL + ESC

You can configure other standard Windows accelerator keystrokes by using the
typing ... implies clause.

Note that when configuring printable characters without any modifier keys, the
character bindings are not valid when the text editor is active.
307

Considering the Target of a Configured Action

When you use the typing ... implies clause to associate a keystroke with an action,
consider whether the action requires a target item. A keystroke can apply to:

• A particular item, for example, any kb-workspace.

• The current KB as a whole or the current G2 environment, depending on the
G2 operation, in which case, the clause contains no target item.

When a configured action applies to an item, a user must move the mouse pointer
over the target item before executing the keystroke.

Example of Configuring Keystrokes

The first clause below associates a keyboard keystroke with a G2 operation that
applies to a workspace; the second associates a character with the G2 operation
that presents the New Object menu; the third associates a keystroke with the G2
operation that resets the current KB; and the fourth prevents attribute table of an
item from displaying when the user presses the Space bar.

{ target is any kb-workspace }
typing alt + f on any kb-workspace implies full-scale ;

{ target is the entire KB }
typing n implies new-object;

{ target is the G2 developer’s environment }
typing f1 implies reset

{ target is the entire KB }
typing space does nothing

Configuring Mouse Gestures
These clauses declare an association between a mouse gesture and a low-level G2
operation or user menu choice. A mouse gesture includes selecting an item,
pressing and releasing the mouse, clicking or double-clicking the mouse, rolling
the mouse wheel, dragging the mouse, or hovering the mouse.

Note The pressing item configuration clause is invoked for either a mouse-down event
or a double-click event. To configure two different actions for a single-click and a
double-click event, ensure that the double-clicking clause appears after the
pressing clause in the item configuration statement. That way, the double-clicking
clause takes precedence when determining the behavior for the double-click
event.
308

Configuring Mouse Gestures
When you display the Help screen (by typing CTRL + /), the Help information
describes any mouse-click associations currently in effect.

Clause Purpose

selecting ... implies Associates selecting an item of the specified
class (or classes) with a system-defined menu
choice, a user-menu-choice, or a null
operation.

pressing ... implies Associates pressing a mouse button with a
system-defined menu choice, a user-menu-
choice, or a system-defined non-menu
operation.

releasing ... implies Associates releasing a mouse button with a
system-defined menu choice, a user-menu-
choice, or a non-menu operation.

clicking ... implies Associates clicking (pressing and releasing) a
mouse button with a system-defined menu
choice, a user-menu-choice, or a system-
defined non-menu operation.

double-clicking ...
implies

Associates double-clicking (pressing and
releasing twice quickly) a mouse button with
a system-defined menu choice, a user-menu-
choice, or a system-defined non-menu
operation.

rolling ... implies Associates rolling the mouse wheel with a
system-defined menu choice, a user-menu-
choice, or a system-defined non-menu
operation.

pressing ... on ... starts Invokes a procedure that tracks movement of
the mouse, to support state-based operations
such as drag-and-drop.

hovering ... implies Associates hovering the mouse over an item
of the specified class with a system-defined
menu choice, a user-menu-choice, or a
system-defined non-menu operation.
309

Note You cannot use configurations to associate certain mouse clicks that are
intercepted by your platform’s window manager. For example, holding down the
ALT key and left-clicking is meaningful for the HP-Vue window manager on
Hewlett-Packard 9000 Series workstations.

Syntax Summary

The item-configurations syntax for mouse gestures are:

selecting [on any class] implies action

pressing [modifiers+] (any | the (left | middle | right)) mouse button
[on any class] implies action

releasing [modifiers+] (any | the (left | middle | right)) mouse button
[on any class] implies action

clicking [modifiers+] (any | the (left | middle | right)) mouse button
[on any class] implies action

double-clicking [modifiers+] (any | the (left | middle | right)) mouse button
[on any class] implies action

rolling [modifiers+] the mouse wheel (forward | backward)
[over any class] implies action

pressing on [modifiers+] (any | the (left | middle | right)) mouse button
[on any class] implies action

hovering [modifiers+] the mouse [over any class]
{implies action | does nothing}

where:

• modifiers are control, alt, or shift modifier keys.

• class is the class name to which the item configuration applies, which
is optional.

• action is the action to perform when the event occurs.

Statement Description

selecting...implies Pressing and releasing the left mouse
button on an item.

pressing...implies Pressing the mouse button down.

releasing...implies Lifting the mouse button up.
310

Configuring Mouse Gestures
Example

This example configures the user interface in all modes except administrator,
as follows:

• Holding down the CTRL key and left-clicking any item displays its table.

• Left-clicking any icon clones the icon.

• Double-clicking any item displays its table.

• With the right mouse button, double-clicking any item displays its table.

• With the middle mouse button, double-clicking any item displays its table.

• Rolling the mouse wheel forward scrolls the workspace up.

• Holding down the CTRL key and rolling the mouse wheel forward scrolls the
workspace left.

configure the user interface as follows:
unless in administrator mode:

pressing control+the left mouse button implies table;
clicking the left mouse button on any icon implies clone;
double-clicking on any item implies table;
double-clicking the right mouse button on any item implies table;
double-clicking control+the middle mouse button on any item implies table;
rolling the mouse wheel forward implies scroll-up;
rolling control+the mouse wheel forward implies scroll-left

clicking...implies Pressing the mouse button down and up
without moving the mouse, within some
tolerance.

double-clicking...implies Pressing, releasing, and pressing the same
button without moving the mouse much
and within the time limit for double clicks
as set by the window system (typically
300-500ms).

rolling...implies Moving the mouse wheel forward or
backward, where forward means rolling
the wheel towards the front of the mouse.

hovering...implies When the mouse does not move more
than a certain amount for a period of time,
which is determined by the operating
system. On Windows, the default is 4
pixels and 400 milliseconds, respectively.

Statement Description
311

Associating Selection with a Menu Choice or User
Menu Choice

Use the selecting ... implies clause to configure selection operations that apply to
one item.

Selection means the pair of mouse clicks, mouse-down and mouse-up, which
occur in order over the same item.

For example, the following configuration statement associates the system-defined
create-subworkspace operation with selecting an item of the conveyor-station
class:

selecting any conveyor-station implies
create-subworkspace

Tip You should differentiate between the selecting ... implies clause, which is
appropriate for configuring operations directed at one item, such as create-by-
cloning, and the typing ... implies clause, which is appropriate for configuring
operations not directed at any particular item, such as save-KB.

You can also specify a selecting ... absolutely implies clause to override all other
configurations that use a selecting ... implies clause for the specified class in the
same hierarchy. G2 resolves configurations in the same hierarchy with selecting ..
. absolutely implies clauses that conflict according to G2’s precedence rules for
configurations.

For example, the following configuration statement, which associates the system-
defined go-to-subworkspace operation with selecting an item of the navigate-
down-button class, overrides any other conflicting configurations in the
configured item’s hierarchy:

selecting any navigate-down-button absolutely implies
go-to-subworkspace

Associating a Mouse Click with the Miscellany Menu

Use the selecting ... implies miscellany clause to control the display of the Main
Miscellany or Workspace Miscellany menus.

The Workspace Miscellany Menu is a short-menu version of the Workspace
Menu. It omits some menu choices that are on the Workspace Menu such as the
new-item, move, hide, disable, and operate-on-area menu choices. When the class
reference in the configuration clause names a workspace class, the clause governs
the display of the Workspace Miscellany Menu.

Here is an example:

selecting any definition-workspace implies miscellany
312

Configuring Mouse Gestures
When the class reference in the configuration clause names a non-workspace
class, the clause governs the Main Miscellany Menu. For example:

selecting any special-object imples miscellany

Associating a Mouse Click with an Operation

You can associate the following types of mouse clicks with an operation, using the
following configuration statements:

• pressing ... implies associates a mouse-down event with an operation.

• releasing ... implies associates a mouse-up event with an operation.

• clicking ... implies associates a mouse-up and mouse-down event with an
operation.

• double-clicking ... implies associates mouse-down, mouse-up, mouse-down
events done in quick succession, with an operation.

For each statement, you can specify the following mouse clicks:

• any mouse button

• left mouse button, middle mouse button, or right mouse button

• Any combination of the control, alt, or shift modifier keys with any mouse
button.

You can associate the mouse-down, mouse-up, mouse-click, or mouse-double-
click events with an operation that is targeted on:

• The current item:

pressing the right mouse button on this item does nothing

releasing the right mouse button on this item implies lift-to-top

• An item of any class:

clicking the left mouse button on any kb-workspace implies hide-workspace

pressing the right mouse button on any workspace implies select-area

• Not an item, such as the G2 window’s background tiling pattern:

double-clicking any mouse button implies inspect

In the Text Editor, when you specify any mouse click with an operation, G2
prompts you to enter the name of a user menu choice, or to select from a list of
system-defined menu choices, system-defined workspace-oriented operations,
and system-defined KB-wide operations.
313

Associating a Mouse-Wheel Event with an
Operation

Use the rolling ... implies clause to configure mouse wheel events with an
operation. The configuration clause can include:

• rolling the mouse wheel forward, that is, toward the front of the mouse.

• rolling the mouse wheel backward, that is, toward the back of the mouse.

You can associate the mouse-wheel event with an operation that is targeted on:

• The current item:

rolling the mouse wheel forward on this item implies lift-to-top

• An item of any class:

rolling the mouse wheel forward on any kb-workspace implies scroll-down
rolling the mouse wheel backward on any kb-workspace implies scroll-up

• Not an item, such as the G2 window’s background tiling pattern:

rolling the mouse wheel backward implies inspect

You can include any combination of the control, alt, or shift modifier keys, for
example:

rolling control+the mouse wheel forward implies scroll-left
rolling control+the mouse wheel backward implies scroll-right

Associating a Mouse Click with a Mouse-Tracking
Procedure

Use the pressing ... on ... starts clause to declare that mouse clicks on items of one
or more classes cause G2 to call a user-defined mouse-tracking procedure. You
code this procedure to respond to a change in the mouse pointer’s location within
a particular window, until the next mouse-click event within that window.

This allows your KB to support state-based, user-interface operations, including
drag-and-drop operations such as a simple drawing command and opening and
selecting from pulldown menus.

For example, you can code a phrase like this:

pressing any mouse button on any custom-object starts
track-mouse-over-custom-object as the mouse tracks over any item

This phrase causes G2 to call the track-mouse-over-custom-object procedure after
the user depresses any mouse button over any custom-object, and to call that
procedure again each time the mouse pointer passes over any other item in G2’s
own window.
314

Configuring Mouse Gestures
You can also code a phrase like this:

pressing control + any mouse button on any custom-object starts
track-mouse-over-custom-object as the mouse tracks
continuously over any item

This phrase causes G2 to call the track-mouse-over-custom-object procedure after
the user simultaneously depresses Control and any mouse button over any
custom-object; to call that procedure again each time the workstation’s window
manager updates the mouse position; and to call the procedure again each time
the mouse pointer passes over any other item in G2’s own window.

You can specify the following mouse clicks in a pressing on ... starts clause:

• any mouse button

• left mouse button, middle mouse button, or right mouse button

• Any combination of the control, alt, or shift modifier keys with any mouse
button.

The clause must refer to:

• A trigger-class: G2 calls your mouse-tracking-procedure when the user clicks
the mouse on an item of this class.

• A tracked-class: G2 calls your mouse-tracking-procedure when the mouse
pointer passes onto, off of, or continuously over items of this list of classes.

• A mouse-tracking-procedure: A user-defined procedure (must be of the
procedure class) that G2 calls to respond to the triggering mouse-click-event
and to the mouse pointer’s subsequent movement onto, off of, or over items of
the tracked-class.

Note You cannot specify an item of the method or method-declaration class as the
mouse-tracking-procedure. However, your mouse-tracking procedure can call or
start a method.

Coding the Mouse-Tracking Procedure

Your mouse-tracking procedure must conform to the following syntax:

mouse-tracking-procedure
(event: symbol , tracked-window: class g2-window,

trigger-item: item-or-value, tracked-item: item-or-value,
x-mouse-position: integer, y-mouse-position: integer,
event-timing-in-milliseconds: integer, state-of-modifier-keys: integer)
315

Argument Description

event Is one of:

• The symbol start-tracking

• The symbol enter

• The symbol motion

• The symbol leave

• The symbol stop-tracking

tracked-window Represents the g2-window item that is
associated with the window in which G2
tracks the mouse.

Note: It is possible that the tracked-window
argument of a user mouse-tracking
procedure does not exist. If your mouse-
tracking procedure uses this argument, the
procedure should first check for its existence,
using a statement such as if tracked-window
exists. If your procedure does not perform
this check, logging out of Telewindows or
deleting a g2-window while a user mouse-
tracking procedure is active can cause G2 to
signal a stack error.

trigger-item Represents the item over which the mouse is
pressed first, or the value false if that item
has been deleted.

tracked-item Represents the item the mouse is entering or
leaving, or the value false if that item has
been deleted. tracked-item also can be the
value false if the mouse is entering or leaving
a non-item component of the G2 environment
(such as an Operator Logbook page).

x-mouse-position Represents the x position of the mouse, in the
coordinate system of the workspace.

y-mouse-position Represents the y position of the mouse, in the
coordinate system of the workspace.
316

Configuring Mouse Gestures
You must code your mouse-tracking procedure to respond to these events:

• start-tracking event: When the configured mouse-click-event occurs over an
item of trigger-class.

• enter event: When the mouse pointer passes onto any item of tracked-class.

• motion event: (If the configuration includes the continuously keyword) when
the host platform’s window manager notifies G2 with a new location of the
mouse pointer.

• leave event: When the mouse pointer passes off of any item of tracked-class.

event-timing-in-
milliseconds

Represents the time-stamp in milliseconds of
the mouse-click-event. Use this value to
determine the time interval in milliseconds
between consecutive mouse-click-events, such
as to determine a double-click. By design, this
value reaches integer overflow and wraps to
zero every few hours.

state-of-modifier-
keys

Represents the pressed-or-released state of
the three modifier keys (Alt, Control, and
Shift). Only the least significant three bits of
this value are meaningful. G2 returns values
in the range 0 (zero) to 7 (seven), as presented
in the next table.

Position of Modifier Keys

Alt Control Shift Return Value

Up Up Up 0

Up Up Down 1

Up Down Up 2

Up Down Down 3

Down Up Up 4

Down Up Down 5

Down Down Up 6

Down Down Down 7

Argument Description
317

• stop-tracking event: When the user releases the mouse button.

• abort-tracking event: When the user interrupts mouse-tracking by pressing
Control + a.

When the configured mouse-click-event occurs over any trigger-class item,
G2 automatically calls the mouse-tracking-procedure, the first time, and passes
to it:

• The symbol start-tracking.

• The g2-window item that is associated with the window in which the mouse-
click-event occurred.

• The item over which the mouse was pressed.

• The item over which the mouse was pressed (again).

• The x, y position of the mouse-pointer.

• The timing of this mouse-click-event in milliseconds.

• The position of the modifier keys (Alt, Control, and Shift) as a three-bit
integer.

Note G2 does not call the mouse-tracking procedure if a mouse-click event occurs over
a disabled item.

For each tracked-class item onto which the mouse pointer passes, G2
automatically calls the mouse-tracking-procedure again, and passes to it:

• The symbol enter.

• The g2-window item that is associated with the window in which the enter
event occurred.

• The original item over which the mouse was pressed.

• The item over which the enter event occurred.

• The x, y position of the mouse pointer, with respect to the workspace of the
item over which the enter event occurred.

• The timing of this mouse-click-event in milliseconds.

• The position of the modifier keys (Alt, Control, and Shift) as a three-bit
integer.

For each tracked-class item from which the mouse pointer passes, G2
automatically calls the mouse-tracking-procedure again, and passes to it:

• The symbol leave.

• The g2-window item that is associated with the window in which the leave
event occurred.
318

Configuring Mouse Gestures
• The original item over which the mouse was pressed.

• The item over which the leave event occurred.

• The x, y position of the mouse pointer, with respect to the workspace of the
item over which the leave event occurred.

• The timing of this mouse-click-event in milliseconds.

• The position of the modifier keys (Alt, Control, and Shift) as a three-bit
integer.

When the user releases the mouse button, G2 automatically calls the mouse-
tracking-procedure again, and passes to it:

• The symbol stop-tracking.

• The g2-window item that is associated with the window in which the mouse-
click event occurred.

• The original item over which the mouse was pressed.

• The item currently under the mouse-pointer.

• The x, y position of the mouse-pointer, with respect to the workspace of the
item over which the stop-tracking event occurred.

• The timing of this mouse-click-event in milliseconds.

• The position of the modifier keys (Alt, Control, and Shift) as a three-bit
integer.

If the configuration specifies the phrase continuously over, then for each tracked-
item over which the mouse pointer passes, G2 automatically calls the mouse-
tracking-procedure each time the workstation’s window manager updates the
mouse position. When G2 calls the mouse-tracking-procedure, G2 passes to it:

• The symbol motion.

• The g2-window item that is associated with the window in which the motion
event occurred.

• The original item over which the mouse was pressed.

• The item over which the motion event occurred.

• The x, y position of the mouse pointer, with respect to the workspace of the
item over which the motion event occurred.

• The timing of this mouse-click-event in milliseconds.

• The position of the modifier keys (Alt, Control, and Shift) as a three-bit
integer.
319

Example of Mouse-Tracking Procedure

For example, suppose you have a pull-down-menu class, whose instances are
related to instances of the pull-down-menu-choice class. You can use a
configuration statement with a pressing ... on ... starts clause, as follows, to
implement operations that support selection of pulldown menu choices:

configure the user interface as follows :
unless in administrator mode :

pressing alt + any mouse button on any pull-down-menu starts
start-procedure use-pull-down-menu as the mouse tracks over
any pull-down-menu-choice or pull-down-menu

Including this pressing ... on ... starts clause in the configuration requires that
you write a procedure named use-pull-down-menu, as follows:

use-pull-down-menu (event : symbol, tracked-window : class g2-window,
trigger-item : item-or-value, tracked-item : item-or-value,
x-mouse-position : integer, y-mouse-position : integer,
event-time-stamp : integer, keys-mask : integer) = ()

begin
{ Respond to the four mouse-tracking procedure events ... }
case (event) of

START-TRACKING :
begin

call highlight-a-pull-down-menu (trigger-item) ;
call select-a-pull-down-menu (trigger-item) ;

end ;

ENTER :
{ First, verify that a "tracked-item" value was returned }

if tracked-item has a current value then
begin

{ Second, perform this operation only if the "tracked-item"
still exists. }

if tracked-item exists then
call highlight-a-choice-on-pull-down-menu

(tracked-item) ;
end ;

MOTION :
{ This case is necessary only if the relevant configuration

statement specifies "continuously over". }

{ First, verify that a "tracked-item" value was returned }
if tracked-item has a current value then

begin
{ Second, perform this operation only if the "tracked-item"

still exists. }
if tracked-item exists then

call display-menu-for-traversed-item (tracked-item) ;
end ;
320

Configuring Mouse Gestures
LEAVE :
{ First, verify that a "tracked-item" value was returned }
if tracked-item has a current value then

begin
{ Second, perform this operation only if the "tracked-item"

still exists. }
if tracked-item exists then

call unhighlight-a-choice-on-pull-down-menu
(tracked-item) ;

end ;

STOP-TRACKING :
{ First, verify that a "tracked-item" value was returned }
if tracked-item has a current value then

begin
{ Second, perform this operation only if the "tracked-item"

still exists. }
if tracked-item exists then

case (the class of tracked-item) of
pull-down-menu-choice :
{ Perform this operation only if the "tracked-item"

still exists. }
if tracked-item exists

call select-choice-on-pull-down-menu
(tracked-item) ;

otherwise :
{ If mouse-up event occurs over other than a

pull-down-menu-choice ... }
call unselect-the-selected-pull-down-menu () ;

end { case of }
end { begin }

ABORT-TRACKING :
{ This procedure does not support responding to aborts

(the Control + a keypress) during mouse-tracking. }
begin
end

end { case of }
end { begin }

In this sample procedure, notice that:

• When the user releases the mouse button, the mouse might not appear over an
item of the tracked-class. Therefore, code under the stop-tracking: case must
discriminate between items of applicable and non-applicable classes.

• In each situation in which G2 can return a tracked-item, the mouse-tracking
procedure must check, first, that G2actually returned a value, and second, that
the tracked-item still exists.

• If the trigger-item and the tracked-item are the same item, your KB might cause
that item to be deleted after the start-tracking event but before the enter, leave,
321

or stop-tracking events. In this case, G2 passes no value for the trigger-item
argument.

Note If the mouse button is released over the tracked-window’s background tiling
pattern, G2 supplies the g2-window that is associated with this process window
(belonging to G2 or Telewindows) as the value for tracked-item and returns x-
mouse-position and y-mouse-position as zero (0).

If tracked-item was deleted during mouse-tracking, trigger-item is passed as the
value false for all subsequent mouse-tracking events.

If tracked-item was deleted between when G2 detects the enter and leave events,
the tracked-item argument has the value false for the leave event.

Conflicts between Mouse-Tracking and Other User
Interface Operations

Other user-interface operations can also occur after mouse-tracking has begun
and before mouse-tracking ends. For example, the KB’s processing can perform a
transfer ... to the mouse action after mouse-tracking processing has begun; after
the user executes mouse-down to drop the item, the mouse-tracking processing
resumes.

Constraining the Movement of Items
These two clauses restrict where you can move items upon a workspace:

These constrain moving clauses do not restrict:

• The placement of cloned items on a workspace.

• The placement of items transferred to a workspace.

• The movement of items within an operate on area region.

Clause Purpose

constrain moving ...
to the rectangle

Limits the movement of an item to an
invisible rectangle.

constrain moving ...
such that the item
aligns on a grid

Limits where an item can be moved upon its
workspace.
322

Constraining the Movement of Items
Note You cannot use this configuration statement for workspaces, because the
coordinate systems are workspace coordinates. Use this configuration for items
upon a workspace.

Aligning Items to an Invisible Rectangle

The constrain moving ... to the rectangle clause restricts moving an item to within
an invisible rectangle whose left, right, top, and bottom edges you specify.

Specify the four edges of the invisible rectangle as x, y coordinates upon the
workspace. For example, the following clause restricts moving upright-beam
items outside of a particular region of a workspace that displays the floor-plan of
a building:

constrain moving any upright-beam to the rectangle (-100, 100, -100, 100)

Aligning Items on an Invisible Grid

The constrain moving ... such that the item aligns on a grid clause specifies an
invisible grid within the workspace. G2 forces placement of items of the specified
class at the intersection points on this grid. This capability is similar to the snap
feature in software packages for drawing schematic diagrams.

G2 measures the spacing between the intersection points on this grid in
G2 workspace units. G2 uses the center of the item as the reference point for
alignment.

For example, the following clause restricts placement of upright-beam items in a
workspace that displays the floor-plan of a building:

constrain moving any upright-beam
such that the item aligns on the grid (50, 50)

In this example, assume that the x-grid-length and y-grid-length attributes of floor-
plan have the value 50, which represents a length in G2 workspace units. As you
use the mouse to move an upright-beam within a workspace, G2 changes the
item’s location within its workspace only after the mouse moves at least 50
workspace units, either horizontally or vertically.

Tip The G2 system procedures g2-set-movement-limits, g2-get-movement-limits, and
g2-clear-movement-limits also programmatically restrict an item’s movement
within a workspace.
323

Configuring the User Interface of Proprietary
Items

G2 allows you to identify a workspace as proprietary. A proprietary workspace
and the items below it in the KB’s workspace hierarchy are called proprietary
items. You can use configurations to restrict access to proprietary items. For more
information about creating a proprietary KB, see Package Preparation.

G2 defines the proprietary status of workspaces independently of the user mode
of the g2-window that is associated with the current process window (for G2 or
Telewindows). Because of this, you can configure proprietary items
independently of any user modes declared in the KB’s configurations. By making
a workspace proprietary, you can effectively lock that workspace’s items from
any access whatsoever, including access by a programmatic action that isn’t
associated with a user mode.

Use the restrict proprietary items as follows statement to configure proprietary
items. This statement supports these configuration clauses:

Tip These clauses conform to the same syntax, and have the same limitations, as
described for the configure the user interface as follows statement, described in
Configuring the User Interface of Items.

For example, the following configuration statement restricts the menu choices
and non-menu choices available for proprietary tracked-vehicle items, which are
tracked-vehicles placed under any proprietary workspace in the KB’s workspace
hierarchy:

restrict proprietary items as follows :
menu choices for tracked-vehicle include additionally :

create-instance ;
non-menu choices for tracked-vehicle include :

nothing

menu choices for table menu choices for

non-menu choices for pressing ... implies

selecting ... implies pressing ... on ... starts

attributes visible for releasing ... implies

typing ... implies
324

Configuring Access to and from Other G2, G2 Gateway, and Telewindows Processes
Configuring Access to and from Other G2,
G2 Gateway, and Telewindows Processes

Use the set up network access as follows configuration statement to allow or
prohibit access to the entire KB or to one or more items in the KB, by other G2
processes, by G2 Gateway bridge processes, and by Telewindows processes.

Use the set up network access as follows statement as summarized in this table:

Type of
Access Short Description Relevant Items or Classes

read Other G2 processes can use
items in the current KB as a
source of data service for
variables in their own
current KBs. Not applicable to
G2 Gateway or Telewindows.

KB-wide, items of any system-
defined class, or items of any user-
defined class.

write Other G2 processes can set a
new current value of a variable
of a user-defined class. Not
applicable to G2 Gateway or
Telewindows.

KB-wide, variables of user-defined
classes that mix in either the g2-to-
g2-data-service or gsi-data-service
class.

execute Other G2 processes or G2
Gateway bridge processes can
call a G2 procedure in the
current KB.

Items of the procedure class.

inform Other G2 processes can target
an inform action on a variable
of a user-defined class.

Items of user-defined classes that mix
in the g2-to-g2-data-service class.
Though the editor permits you allow
or prohibit inform access to or from
G2 Gateway, such access is
inappropriate, because there is no
way for G2 Gateway to inform a
G2 process.

connect Other G2 processes, G2
Gateway and Telewindows
processes can connect to this
G2 process.

KB-wide only: Include a setup
network access as follows
configuration statement only in the
item-configuration attribute of the KB
Configuration system table.
325

Allowing or Prohibiting Network Access

By default, all G2 processes, G2 Gateway, and Telewindows allow network access
to the current KB. You can allow or prohibit all access to the current KB by other
G2 processes, G2 Gateway, and Telewindows.

Because network access applies to the entire KB, you must include a global
configuration statement such as the following in the item-configuration attribute
of the KB Configuration system table.

To prohibit network access to a KB:

 Enter a configuration statement in the KB Configuration system table such as:

set up network access as follows :
prohibit connect access by g2 and gsi and telewindows

G2 does not allow this configuration statement in any other item-configuration or
instance-configuration attribute.

Note To prohibit access to G2 Gateway, you must use the symbol gsi. Also, prohibiting
connect access by G2 Gateway prevents G2 Gateway from initiating a connection
to G2, but it does not prevent G2 from connecting to G2 Gateway through a
gsi-interface item in G2.

Allowing connect access permits another G2 process, G2 Gateway, or
Telewindows to establish a connection with this G2 process. Because connect
access applies to the entire KB, it restricts or enables all items in the current KB.

To allow or restrict connect access:

 Include a configuration statement in the item-configuration attribute of the
KB Configuration system table such as:

set up network access as follows :
allow connect access by g2 and telewindows

Note Because connect access does not apply to particular items, G2 does not support
the absolutely keyword for this phrase.
326

Configuring Access to and from Other G2, G2 Gateway, and Telewindows Processes
Allowing Read and Write Access

Allowing read and write access permits other G2 processes to access items in the
G2 granting the access:

• Allowing read access to a set of items in the current KB permits those items to
be the source of values for variables in the current KB of the other G2 process.

• Allowing write access to a set of variables in the current KB permits the other
G2 process to set those variables’ values with set actions.

Variables of a user-defined class that mixes in g2-to-g2-data-service are
candidates for allowing write access.

To restrict read or write access to items by other G2 processes:

 Enter a configuration statement such as:

set up network access as follows :
prohibit read or write access to any vehicle by g2

Allowing Execute Access

Allowing execute access to procedures in the current KB permits another G2 or a
G2 Gateway bridge to invoke them using a Remote Procedure Call (RPC).

To restrict execute access:

 Enter a configuration statement such as:

set up network access as follows :
prohibit execute access to update-vehicle-direction by g2 and gsi

Note Prohibiting execute access on a rule that can be activated by forward chaining
from a variable does not stop the rule from firing. To do this, you must instead
declare a configuration that prohibits access to the variable.

Allowing Inform Access

Allowing inform access to variables in the current KB permits another G2 process
to pass messages to those variables through an inform action.

To restrict inform access to items:

 Enter a configuration statement such as:

set up network access as follows :
prohibit inform access to any custom-message-receiving-variable by g2
327

Configuring Properties of Items
You can declare that an item has one or more properties, using the statement.

declare properties ... as follows

• These item properties relate to optimization and the compilation of rules,
procedures, and certain system-defined attributes:

• These item properties relate to subworkspaces:

• This property relates only to items that are using connections:

inlineable Whether the procedure or method can be
inlined.

stable-hierarchy For methods and related-items, stable-
hierarchy implies that neither the class-
hierarchy nor the method will be
specialized.

independent-for-all-
compilations

For items with compilation dependencies on
other items, whether compilation of the
item’s attributes depends on the stability of
those other items

stable-for-dependent-
compilations

Whether an item is the basis for the stability
of other items that have a compilation
dependency on it

activatable-
subworkspace

Whether an item’s subworkspace can be
activated and deactivated (using the
activate and deactivate actions)

subworkspace-
connnection-posts

Whether an item can be connected to other
items on its subworkspace via connection
posts on the subworkspace

manual-connections Whether the user can interactively draw
connections to or from an item
328

Configuring Properties of Items
Specifying the Scope of the Declared Properties

You specify declare configuration statements that have different scopes, as shown
in these examples:

{ Scope: Follow the KB's workspace hierarchy or class hierarchy ... }
declare properties as follows :

inlineable ;

{ Scope: Only the configured item is affected by the configuration. }
declare properties of this item as follows :

independent-for-all-compilations ;

{ Scope: Within the KB's workspace hierarchy or class hierarchy, any item
of the specified class(es) are to be affected by the configuration. }

declare properties of any tracked-vehicle as follows :
stable-for-dependent-compilations

Specifying Exceptions to the Declared Properties

To specify a statement that represents an exception to a declare statement found
in a configuration placed on an item higher in the hierarchy, begin the statement
with the phrase:

declare properties ... as follows : not ...

Examples:

declare properties as follows :
not inlineable ;

declare properties for this item as follows :
not stable-for-dependent-compilations

declare properties for any tracked-vehicle as follows :
not independent-for-all-compilations

Declaring a Procedure to be Inlined

An inlined procedure is one whose compiled code is embedded in any compiled
code that calls the procedure. Inlining a procedure improves performance by
eliminating the need to execute a call when the procedure is invoked: control
instead passes directly to the embedded code for the procedure. The trade-off is
increased compiled code size due to redundant inlined copies of the procedure.

When you inline a procedure, you must also use the configuration clause:
stable-for-dependent-compilation.

By default, all items in the current KB are configured as:

declare properties as follows :
not inlineable
329

To declare that a procedure can be inlined:

 Add this item configuration to the procedure:

declare properties as follows : inlineable,
stable-for-dependent-compilations

Inlining a procedure is further described in Using Compilation Configurations.

Declaring a Method to be Inlined

An inlined method is identical to an inlined procedure: its compiled code is
embedded in any compiled code that calls the method. When you inline a
method, you must also include the configuration clauses stable-hierarchy and
stable-for-dependent-compilations.

A method of stable-hierarchy guarantees that a more specialized method will not
be added below the current method in the method hierarchy. If the method
includes return values, the stable-hierarchy declaration additionally guarantees
the return value types.

By default, all items in the current KB are configured as:

declare properties as follows :
not inlineable

To declare that a method can be inlined:

 Add this item configuration to the method:

declare properties as follows : inlineable, stable-hierarchy,
stable-for-dependent-compilations

Inlining a method is further described in Using Compilation Configurations.

Declaring Items as Stable Hierarchy

Declaring an item as stable-hierarchy indicates that neither the class hierarchy of
the item, nor the item itself, will be specialized. If a method is declared with
stable-hierarchy, then G2 may be able to compile more efficiently the procedures
or methods that call the inlined method.

You can also declare classes as stable-hierarchy, which may let G2 compile any
methods of that class more efficiently.

By default, all items in the current KB are configured as:

declare properties as follows :
not stable-hierarchy

To declare an item to have a stable hierarchy:

 Add this configuration statement to the item:
330

Configuring Properties of Items
declare properties as follows :
stable-hierarchy

Note This statement must be used when declaring a method as inlineable.

Using the stable hierarchy configuration is further described in Using
Compilation Configurations.

Declaring an Item Independent for All Compilations

Declaring an item as independent-for-all-compilations means that the item’s
knowledge does not depend on the knowledge in any other item in the KB. This
allows G2 to compile that item more efficiently.

By default, all items in the current KB are configured as:

declare properties as follows :
not independent-for-all-compilations

To declare an item independent for all compilations:

 Add this configuration statement to the item:

declare properties as follows :
independent-for-all-compilations

This feature is described in detail under Using Compilation Configurations.

Declaring an Item Stable for Dependent
Compilations

Declaring an item as stable-for-dependent-compilations means that certain parts
of the item’s knowledge will not change during the KB’s processing. This allows
G2 to compile more efficiently other items that depend on that knowledge.

By default, all items in the current KB are configured as:

declare properties as follows :
not stable-for-dependent-compilations

To declare an item as stable for dependent compilations:

 Add this configuration statement to the item:

declare properties as follows :
stable-for-dependent-compilations

This feature is described in detail in Using Compilation Configurations.
331

Declaring an Activatable Subworkspace for an Item

Most G2 classes can support an activatable subworkspace. Activatable
subworkspaces support the programmatic activation and deactivation. You use
the activate and deactivate actions to activate and deactivate an activatable
subworkspace. By default, all items in the current KB are configured as:

declare properties as follows :
not activatable-subworkspace

To declare that an item supports an activatable subworkspace:

 Add this configuration statement to the item:

declare properties as follows :
activatable-subworkspace

Note If items of the configured definition item’s class do not support creating an
associated subworkspace, G2 ignores that declare properties as follows :
activatable-subworkspace configuration statement.

Declaring Subworkspace Connection Posts
for Items

If items of a class can have a subworkspace, and (for a user-defined class) if the
icon-description attribute of the class’s definition defines connection stubs, you
can configure items of that class so that G2 automatically creates permanent
connection-posts on the subworkspaces of items of that class.

Through an item’s subworkspace connection-posts, you can connect the item of
the configured class to items on the subworkspace. Using subworkspace
connection-posts is described in Creating Connection Posts on Subworkspaces
Automatically.

By default, this property is configured as:

declare properties as follows :
not subworkspace-connection-posts

To declare that an item supports subworkspace connection posts:

 Add this configuration statement to the item:

declare properties as follows :
subworkspace-connection-posts

Note If the configured items do not have a subworkspace, G2 ignores the declare
properties as follows : subworkspace-connection-posts configuration statement.
332

Including Comments in Configurations
Disallowing Manual Connections for an Item

For any subclass that is defined to support connections, you can prohibit KB users
from drawing connections interactively to or from items of that class, except
where pre-existing stubs exist.

By default, this property is configured as:

declare properties as follows :
manual-connections

To declare that an item disallows manual connections:

 Add this configuration statement to the item:

declare properties as follows :
not manual-connections

Note If items of the configured class do not support manual connections, G2 ignores
that declare properties as follows : manual-connections configuration statement.

Including Comments in Configurations
G2 allows you to store tagged text as comments in item configurations and
instance configurations. Each comment has a tag symbol and an associated text
string, such as:

comment as follows :
configuration-purpose : "A comment describing this configuration's

purpose" ,
author-of-configuration : "HCC" ,
configuration-last-modified : "18 Jul 1997" ,
latest-benchmark-statistics-load : "3.243" ,
latest-benchmark-statistics-save : "5.56" ,
latest-benchmark-statistics-run : "14.8973"

A comment as follows statement can contain one or more symbols, each of which
identifies a string that contains the text of the comment.

The symbol can represent a keyword that is significant for your application; the
text can represent textual information that identifies a significant fact or feature
for the items within the scope of that configuration.

Tip This feature is intended to support comments consisting of free-form text. For
example, you can assign symbols for use as search keywords.
333

Describing Configurations
By default, when you click the mouse on an item of any system-defined or user-
defined class, the menu that appears includes the describe configuration choice.

Selecting describe configuration presents a table that lists the configurations that
apply to that item. For example, after creating a new connection post, select
describe configuration from its menu. G2 displays a table like the one shown
below:

This table lists all configuration statements that G2 finds applying to this item.
Each entry indicates whether its statements are stored in an item configuration or
instance configuration. The entry at the top shows the statements that have
highest precedence; the entry at the bottom shows the statements that have lowest
precedence.

Tip As you develop configurations in your KB, use describe configuration to trace
which configurations actually apply to a particular item.

Declaring User Modes in Configurations
Certain configuration statements declare categories of usage, or user modes, for
your KB. Specifically, you refer to user modes in the configure the user interface
as follows statement, as described in Configuring the User Interface of Items.

Each user mode can represent a style of interaction with the KB’s knowledge. The
meaning of each style depends on how your application organizes its knowledge.

For instance, if your application organizes its knowledge into concentric layers of
knowledge, for example, with outer layers representing unrestricted knowledge
and inner layers representing restricted knowledge, each user mode can represent
a security level into one or more layers of the KB’s knowledge.

Alternatively, if your application organizes its knowledge according to the roles
of those that work with the application, perhaps distinguishing among
334

Declaring User Modes in Configurations
developers, users, and site administrators, each user mode can represent the set of
workspaces accessible to persons acting in a particular role.

You declare a user mode simply by referencing it in a configure the user interface
as follows statement in an item configuration or instance configuration. Your KB’s
configurations can declare as many user modes as your application requires.

Associating User Modes with G2-Window Items

G2 associates a user mode not with an individual user, but rather with a
particular window. This is because the value of each g2-window item’s g2-user-
mode attribute indicates the user mode in effect for the window with which it is
associated.

Recall that launching a G2 process causes G2 to create one g2-window item.
G2 automatically associates this g2-window item with the visible window
(produced by the workstation’s window manager software) that displays the
contents of the current KB.

Finally, recall that when a user starts or connects to a G2 process that uses a secure
G2 authorization file, G2 presents the login dialog, in which the user enters a user
name and optionally a user mode, default language, and so on. In this case, G2
first verifies that the specified combination of user name and user mode are
registered in the G2 authorization file. If they are, G2 creates a g2-window item
and sets the value of its g2-user-mode attribute to the user mode indicated in the
login dialog.

When logged into a secure G2 with a KB loaded, the user can only change to a
user mode that is explicitly mentioned in a configuration statement in the KB. If
the user attempts to change to a user mode that is not explicitly mentioned in the
KB, an error occurs in the editor indicating the user mode is unknown, even if the
specified user mode has been authorized for that user in the OK file.

Tip See G2-Windows for more information about g2-window items and their relation
to visible windows. See the Telewindows User’s Guide for more information about
starting and operating Telewindows.

Unless your G2 process is using a secure G2 authorization file, the g2-user-mode
attribute of each g2-window item that G2 creates has the default value
administrator. The administrator user mode is always declared and in use while a
G2 process is running.
335

Note The window associated with a g2-window item whose g2-user-mode attribute
contains the value administrator can access and display all the knowledge in the
current KB. To prevent you from mistakenly restricting access to your own KB,
you cannot use configurations to affect the behavior of items under
administrator mode.

Associating User Modes and Users

If your KB uses configurations that declare user modes, you must consider how to
associate each user of the KB with a user mode. If you require the users of your G2
application to login, G2 can automatically associate an appropriate user mode
with each user account. For more information, see G2-Windows.

Tip The knowledge in the G2 authorization file, typically named g2.ok, determines
whether users log into G2 or not. The G2 site administrator is responsible for
maintaining the g2.ok file. For more information, see the readme-g2.html file
and the G2 Bundle Release Notes.

If users do not login to your G2, your KB must be responsible for associating users
with user modes. Given this design, your KB could provide a dialog that allows
the user to switch among alternative views of the KB’s knowledge.

Example of Configuring the User Interface of
an Item

You can understand how configurations work by following a simple example.
The example shows you how to configure a symbol-list so that it behaves
differently when appearing in different windows associated with g2-window
items that have different settings in their respective g2-user-mode attributes.

This example also illustrates G2’s rules of precedence for configurations, in that
you will store configurations in items at different levels in the KB’s class and
workspace hierarchies.
336

Declaring User Modes in Configurations
This example uses action buttons to change the target g2-window item’s g2-user-
mode attribute: one action button for administrator mode and one for end-user
mode. The figure below shows how you should define each action button.

To configure the user interface of an item:

1 Start the current KB.

2 Click the mouse on your action button to change the user mode of this
G2 window to administrator.

3 Create a new workspace.

4 Create a symbol-list on the workspace named my-symbol-list by choosing
KB Workspace > New Object > g2-list > value-list > symbol-list.

5 Open the table for the symbol-list, and edit its name to my-symbol-list.

In my-symbol-list’s table, notice that you can modify the allow-duplicate-
elements attribute by selecting the change-to-no and change-to-yes table
menu choices.

6 In the table for the symbol-list, select describe configuration.

G2 lists the configurations in effect for the item, as follows:

• No item configurations currently apply for my-symbol-list.

• No item configurations apply for my-symbol-list’s parent workspace.

• The KB Configuration system table contains G2’s default KB-wide item
configurations.

7 Hide my-symbol-list’s table by clicking the mouse in the table’s title bar.

8 Click the action button to change the user mode setting for this g2-window
item to end-user.

9 Open my-symbol-list’s table again.

Notice that the item’s item-configuration attribute does not appear. This is
because, after you launch G2 with an empty current KB (or after you clear the
337

current KB), G2 includes the following configuration statement in the
item-configuration attribute of the KB Configuration system table:

10 Hide my-symbol-list’s table again, and change the user mode to administrator.

11 Display the table for the workspace that contains my-symbol-list.

12 In this table, edit the item-configuration attribute so that it contains:

configure the user interface as follows :
when in end-user mode:

attributes visible for g2-list exclude additionally :
element-type;

table menu choices for the allow-duplicate-elements of any
 g2-list exclude :

change-to-no, change-to-yes, edit

13 Change the user mode to end-user, then display my-symbol-list’s table again.

Notice that neither the item-configuration attribute nor the element-type
attribute appears. This is due to the item configuration you added to my-
symbol-list’s parent workspace. Due to the item configuration you added to
my-symbol-list, you cannot modify the item’s allow-duplicate-elements
attribute.

14 Change the user mode to administrator, and display my-symbol-list’s menu.

Notice that the describe configuration menu choice appears in the item’s
menu.

15 Change the user mode to end-user, and again display my-symbol-list’s menu.

Now notice that the describe configuration menu choice does not appear. This
demonstrates how a configuration placed at a more specific level in your KB’s
class or workspace hierarchy overrides a configuration placed at a more
general level in that hierarchy.
338

Declaring User Modes in Configurations
Obtaining the Attributes Visible for a User Mode
Programmatically

To obtain the attributes that are visible for an item in a particular user mode:

 g2-get-attributes-visible-in-mode
(class-or-item: item-or-value, user-mode: symbol)
-> list-of-attributes: sequence

As an example, the geo-classic automobile class defines its instance-configuration
attribute as follows:

configure the user interface as follows:
when in inventory-checker mode:

attributes visible for geo-classic exclude absolutely: test-case

To obtain a list of visible attributes for a particular user mode:

get-attributes-in-mode (geo-classic-instance: class geo-classic)
value-for-mode: sequence;

begin
value-for-mode =

call g2-get-attributes-visible-in-mode(geo-classic-instance,
the symbol inventory-checker);

change the text of message1 to "[value-for-mode]"
end
339

This procedure returns and displays the returned sequence containing the
attributes visible in the inventory-checker user mode. Notice that the system
procedure returns all of the attributes that a class inherits from every class in its
inheritance path, including those that are displayed on the table of hidden
attributes for an item:

For information about hidden attributes, see Hidden Attributes.

Note All configurations that exist for an item, through item- and instance-
configurations, and proprietary settings, remain in effect during attribute access
operations.
340

Declaring Generic and Exception Configurations
Declaring Generic and Exception
Configurations

After you enter configurations that apply very generally within your KB, you
might find that you must configure a unique behavior for some subset of the KB’s
items or for particular items. These configurations represent exceptions to your
KB’s more generally applicable configurations.

For example, in the KB shown in the figures in Example of the Scope of
Configurations, assume that:

• An item configuration stored in the Top Level workspace prohibits network
access to the navigation buttons labelled Definitions and Schematic, those
buttons’ subworkspaces, and all items contained in those subworkspaces.

• An item configuration stored in the Schematic workspace allows network
access to the items car-class-1 and service-car-1, and so on.

Following G2’s rules of precedence for configurations, among the configurations
that apply to car-class-1, the item configuration stored in the schematic
workspace overrides the item configuration stored in the top-level workspace.

You can also store configurations with a smaller scope that supplement
configurations with a larger scope. This allows you to declare a unique behavior
for a subset of items, without affecting the configurations for all other items in
your KB.

Combining Configurations

As described in Precedence of Configurations, given two configurations that each
affect some feature of an item in two distinct ways, G2 applies only the
configuration with the higher precedence to the item.

However, you can use G2’s precedence rules for configurations in a more
complex manner. Consider the user gesture of clicking the mouse on an item to
display its menu. Do you prefer to show all menu choices configured for the
menu or just those mentioned in the first menu configuration that G2 finds in its
search up the class and workspace hierarchies? The same question arises for
which attributes to show when displaying an item’s table.

G2 allows fine control over these cases by using the phrases include, include
additionally, and exclude absolutely.
341

Combining Cooperatively

You can use two configuration statements, configure the user interface as follows
and restrict proprietary items as follows, to define configurations that G2 applies
in a cooperative manner. These two kinds of statements configure the interactive
behavior of an item.

You can also use these statements to configure a feature for a set of items without
overriding the configurations on the same feature that are of a lower precedence.

To illustrate, suppose you create a KB that represents the foundation software
layer for applications built by G2 developers, with these requirements:

• Your KB must define new user-defined, item classes, and you must declare a
set of default user-interface characteristics for those new classes, using
instance configurations. Your instance configurations prohibit the display of
system-defined menu choices (and perhaps also configure new user menu
choices) for items of your new classes.

• Other G2 developers must define new subclasses based on the new classes
you provide. The other developers must also be able to add their own instance
configurations in definitions of their own new subclasses. These
configurations will configure their own user menu choices.

• The other developers’ configurations must be allowed to supplement the
configurations that you have defined for your new classes. You want to
prevent the other developers from adding configurations to their own
subclasses that conflict with the configurations you provided, but you must
allow the other developers to add their own configurations that are particular
for the subclasses that they will define.

G2 supports this kind of application development scenario by allowing you to
declare configurations that cooperate with other configurations without being
overridden.

Combining Additionally

A configure the user interface as follows or restrict proprietary items as follows
statement can additionally include or exclude one or more user-interface features
for the target item.

Including Additionally

This instance configuration statement causes the menus for conveyor-station
items to present only two of the menu choices (delete and create-subworkspace)
already defined for that class:

configure the user interface as follows:
when in end-user mode:

menu choices for conveyor-station include:
delete, create-subworkspace
342

Declaring Generic and Exception Configurations
For a more specific class, you could enter the following instance configuration
statement that additionally includes another menu choice (table):

configure the user interface as follows:
when in end-user mode:

menu choices for conveyor-station include additionally:
table

The statement declares that, in addition to any menu choices included in
configurations for conveyor-station items at more general levels in the KB’s class
or workspace hierarchies, the table menu choice is additionally available for items
at this level and at more specific levels in those hierarchies.

Excluding Additionally

A configuration statement can additionally exclude a capability for a set of items.
To do so, use the exclude additionally phrase in the clauses of a configure the user
interface as follows statement or restrict proprietary items as follows statement.

For example, the following statement causes the menus of conveyor-station items
to present all but two of the menu choices already defined for that class:

configure the user interface as follows:
when in end-user mode:

menu choices for conveyor-station exclude:
clone, show-status

For a more specific class, you could enter the following statement that removes
other menu choices:

configure the user interface as follows:
when in end-user mode:

menu choices for conveyor-station exclude additionally:
table

The statement declares that, in addition to any menu choices excluded in
configurations for conveyor-station items that are declared at a more general level
in the KB’s class or workspace hierarchies, the table menu choice is also not
available for items at this level and at more specific levels in those hierarchies.
343

Implementing Localized Exceptions

You can use configuration statements with additionally clauses to alternately
include and exclude system-defined or custom features of items at progressively
more specific positions in your KB’s class and workspace hierarchies. These
nested configurations represent localized exceptions to configurations declared
higher in those hierarchies. To do this use:

• An additionally configuration at a given position in the KB’s class or
workspace hierarchy combines with the configuration(s) in force at that
position that contains an includes or excludes phrase.

• Any number of additionally configurations can combine with the
configuration(s) in force that contains an includes or excludes phrase.

• An additionally configuration overrides a conflicting additionally
configuration(s) at a higher position in the KB’s class or workspace hierarchy,
subject to G2’s rules of precedence for configurations.

Combining Absolutely

You might want to prevent other G2 developers from restoring a particular
feature that you have excluded for some set of items. For this reason, you can
declare a configuration statement that absolutely excludes a capability.

To do so, include the exclude absolutely phrase in a configuration statement, as
follows:

configure the user interface as follows:
when in end-user mode:

menu choices for conveyor-station exclude absolutely:
delete, create-subworkspace ;

selecting any conveyor-station absolutely implies:
move

Because absolutely configurations cannot be overridden or supplemented, the
statement above restricts conveyor-station items so that, when a user interacts
with this KB via a window whose associated g2-window contains the value end-
user in its G2-user-mode attribute:

• The delete and create subworkspace menu choices are never available for the
target conveyor-station items.

• Selecting any of the target conveyor-station items always initiates an
interactive move operation.

An absolutely configuration on a particular item feature does not combine
cooperatively with other additionally configurations on the same feature. Instead,
an absolutely configuration overrides all other configurations that include or
exclude the same feature for the same item(s), regardless of where you place the
absolutely configuration in the KB’s class or workspace hierarchies. Further, you
cannot supplement an absolutely configuration for a particular item feature and
344

Configuring the G2 Main Menu and Global Key Bindings and Shortcuts
for a particular set of items by other additionally configurations on the same
feature.

Note You cannot specify a configuration statement that absolutely includes some item
behavior.

An absolutely configuration is particularly valuable when securing a
proprietary KB, since otherwise a user could restore access to the KB’s proprietary
knowledge.

Configuring the G2 Main Menu and Global
Key Bindings and Shortcuts

Two attributes of the KB Configuration system table allow you to configure menu
choices available on or under G2’s Main Menu, and to configure access to G2’s
system-defined global key bindings and shortcut keys.

Configuring the G2 Main Menu

The main-menu-user-restrictions attribute can contain configuration statements
that explicitly include or exclude choices that are, by default, available on the
Main Menu or one of its System Tables, Run Options, or Miscellany submenus.
345

This figure shows the Main Menu choices that you can configure in this attribute:

If a user gesture results in selecting a choice that, by default, appears on the Main
Menu, G2 searches for relevant configurations throughout the configurations
search path, then searches for a relevant configuration in the main-menu-user-
restrictions attribute.
346

Configuring the G2 Main Menu and Global Key Bindings and Shortcuts
Restricting Help

When using the G2 Online Documentation (GOLD) utility, the Main Menu can
include a Help option. Typically, the Help option appears automatically when
GOLD is loaded, but it is actually triggered by the presence of this procedure:

g2-launch-online-help (win: class g2-window)

Whenever a g2-launch-online-help procedure exists, with a single g2-window
argument, you can configure the Main Menu to exclude the Help choice.

To restrict the Help menu choice on the Main Menu:

 Enter this configuration statement:

configure the user-interface as follows:
unless in administrator mode:
main menu choices exclude additionally: launch-online-help

Keyboard Command Restrictions

The keyboard-command-restrictions attribute can contain configuration
statements that explicitly allow or disallow the use of global keyboard
commands. These commands are designed, by default, to be available in almost
all contexts.
347

This figure shows the global keyboard commands that you can configure in
this attribute:

Using Configurations in Modularized KBs
As explained in Working with Modularized KBs, if your current KB is
modularized, G2 installs into the current KB only the system tables loaded from
the KB file that contains the top-level module. This means that any configurations
you declare in the KB Configuration system tables in KB files that contain directly
required modules are not installed.

Therefore, when organizing the configurations used in a modularized KB,
you should:

• Declare all the relevant configurations for all directly and indirectly required
modules, in the KB Configuration system table of the top-level module.

• Include knowledge that copies and assigns configurations from the KB
Configuration system tables of directly required modules into the KB
Configuration system table installed in the current KB.
348

8

G2-Windows
Describes how G2 associates g2-window items with visible windows.

Introduction 350

Windows and G2-Windows 350

Using Local Windows and Remote Windows 351

Displaying Independent Views of the Current KB 352

The G2-Window Class 355

Working with G2-Windows 364

Expressions that Refer to G2-Window Items 368

Specifying the Appearance of the G2 Window 368

Rerouting a Telewindow 370

Supporting a Window-Specific Language 371

Using the Login Dialog 373

Logging Login Activities 374

Associating an Existing G2-Window with a Telewindow 375
349

Introduction
A g2-window is an item of the g2-window class. Within G2, a g2-window item
represents knowledge about the window within which you interact with G2.

G2 can automatically associate a g2-window item either with your G2 window
(the local window) or with the window displayed by a Telewindows connected to
your G2 (a remote window).

Telewindows is a Gensym product that allows you to connect to a running G2
process, and to view and interact with the contents of its current KB. For
information about Telewindows, see the Telewindows User’s Guide.

Your KB can use the information in g2-window items to:

• Monitor the connections of the KB’s users.

• Display the text of the KB, using a language translation appropriate for
each user.

A window is a distinct display of information on a computer screen. The features
of a window are determined by the window manager software installed on that
computer. Commercially available window manager products include
OpenWindows from Sun Microsystems, Motif from the Open Software
Foundation, and the Windows product line from Microsoft Corporation.

Windows and G2-Windows
Window-system windows and g2-window items are sometimes confused with
one another. Their purposes and relationship are as follows:

• A window is a display area on the screen that the operating system creates
and manages on behalf of a client application such as G2.

• A g2-window is a G2 item that G2 uses to track a window that the operating
system maintains on G2’s behalf.

A g2-window acts in two ways:

• As an internal billboard that makes information about the corresponding
window available within G2.

• As a command interface to the computer’s window system: changing some
attributes of a g2-window item causes G2 to tell the window system to
correspondingly change the window itself.

A g2-window item provides the only interface through which an executing KB
can poll and change a window within which G2 appears. The rest of the interface
to the window system is platform-dependent, and is hidden within G2. Thus a
g2-window item provides a platform-independent interface to the native
window system.
350

Using Local Windows and Remote Windows
Be careful not to confuse a window-system window with the g2-window item that
represents it within G2. To keep the distinction clear, this book always refers to
the latter explicitly as a g2-window, omitting the special font except in
code examples.

Using Local Windows and Remote Windows
A G2 can display its current KB in a local window. A G2’s local window appears,
by default, on the same machine where the process is running. When you launch
a G2 process, use the -display command-line option to cause the new G2’s local
window to appear on another computer. You can also start a G2 with no local
window, using the -no-window command-line option. These options are
described in Appendix A, Launching a G2 Process.

A G2 can display its current KB in one or more remote windows, or telewindows.
To a G2 process, a remote window is the window belonging to a Telewindows
process that has successfully connected to it. After accepting the connection, the
G2 displays its current KB in the Telewindows process’s own window.
Telewindows Support describes the G2 features that accept and manage
connections from Telewindows processes.

Representing Local and Remote Windows

When a G2 starts, by default it displays the current KB in a local window.
By default, it also automatically creates a new g2-window item and associates it
with that local window. Within G2, this g2-window item represents the visible
window in which G2 displays the current KB. Thus, the KB can use the
g2-window item’s knowledge about the properties of the windows in which the
KB’s contents appear.

When a G2 accepts a connection from a Telewindows, it automatically creates a
new g2-window item and associates it with the Telewindows window. When that
Telewindows disconnects from a G2, that G2 automatically deletes its associated
g2-window item.

Special Properties of Local and Remote Windows

A g2-window item that G2 creates automatically, for use as either a local or a
remote (Telewindows) window, has several unique characteristics:

• It does not reside upon any KB workspace.

• It’s status is neither permanent nor transient, and cannot be changed using the
make permanent or make transient actions.

• It persists unchanged when a KB is reset, as with a permanent item.

• It is not saved when a KB is saved, as with a transient item.
351

Because the local g2-window is not saved with a KB, changes to its attributes
remain in effect only during the current invocation of G2. Loading a KB does not
restore any customized g2-window attributes that were in effect when the KB
was saved.

Tip You can customize a g2-window by specifying various command-line options
when you invoke G2, as described in Appendix A, Launching a G2 Process, or
Telewindows, as described in the Telewindows User’s Guide.

Displaying Independent Views of the
Current KB

Each window that a G2 uses to display the current KB shows a distinct view of the
KB. Each window:

• Displays a distinct set of the KB workspaces of the current KB, each at a
position and scale that is distinct for this window.

• Has its own Scrapbook workspace.

• Has its own Text Editor and Inspect workspaces.

Otherwise, each window associated with or connected to a G2 process displays
the same instance of the Operator Logbook and Message Board, and of everything
else contained in the current KB.

If the same KB workspace is visible in two windows that are associated with or
connected to a G2, the items upon that workspace appear the same size (allowing
for any difference in workspace scale in the two windows), the same color, and at
the same x, y location within that workspace. Further, if the same item is visible in
those two windows, and the user at one window moves that item, changes its
color, or otherwise update its knowledge, that change is also visible in the other
window.

In the next figure, two telewindows connected to the same G2 are also displaying
the same workspace. When an operation in the first window moves the G2 list
item upon the workspace, that item also appears to move in the second window.
Thus, depending on how your KB is organized, two users working separately at
two windows connected to the same G2 process, can interact independently with
the same current KB.
352

Displaying Independent Views of the Current KB
One way to differentiate the operations that two simultaneously connected users
can perform within the same current KB, is to use configurations. See
Configurations for more information.

The next figure illustrates the relationship between:

• A G2 process.

• Its local window.

• Four g2-window items upon a workspace in the G2’s current KB.

• Three Telewindows processes and their respective windows.

The top part of the diagram shows a schematic view of four workstations,
as follows:

• One workstation is running G2, and three other workstations are running
Telewindows.

• The G2 has its own local window, which displays its own view of the
current KB.

• Because each Telewindows process is connected to the G2, each has a window
that can simultaneously display a distinct view of the current KB.
353

In the top part of the diagram, note that the display in the windows telewindow-1
and telewindow-3 are the same, and the display in telewindow-2 and in the G2
process’s local window are the same. This reflects the fact that a G2 can display a
different set of the current KB’s workspaces in each window that the G2 is
serving. Further, for each window that a G2 serves, G2 can display a given
workspace at a different location within the window and at a different scale.

In the bottom part of the diagram, the G2’s local window shows a KB workspace
named g2-window-items, which contains four g2-window items. One of these

This workspace
contains ...

Network
connections
354

The G2-Window Class
g2-windows is associated with the G2’s own local window, and each of the other
three is associated with a window produced by a Telewindows process that is
connected to the G2.

The G2-Window Class
A g2-window item is an instance of the g2-window class. Its direct-superior classes
are g2-extension and ui-client-item. This Inspect workspace shows the class
hierarchy of the g2-window class and its icon:

Notice that, by default, the icon of a g2-window item displays a stub for a
connection of class network-wire, which is a system-defined subclass
of connection.

Your KB can draw connections between a g2-window item and other items. For
instance, such a connection can indicate visually the portion of the current KB that
a particular G2 user or Telewindows user is working with.

For information on the ui-client-item class, see Interfacing with Java Applications.

Attributes of the G2-Window Class

The next table summarizes the class-specific attributes of the g2-window class:

Attribute Description

g2-user-name Identifier under which an authorized user logs into a
secure G2.

Allowable values: none, or any other series of characters (only alphanumeric
characters are recommended)

Default value: none

Notes: After establishing that a G2 user or Telewindows user is
authorized, a secure G2 sets this attribute to the value
specified in the User Name field of the login dialog.
355

g2-connection-
status

Whether this g2-window item is associated with the
window of either this G2 or a connected Telewindows
process. (Read-only)

Allowable values: connected
connection-closed

Default value: Determined by whether this g2-window item was created
automatically by G2 as the resulting of starting G2 or of
receiving a connection from a Telewindows process, or
whether this g2-window already exists in the current KB
independently of any connection to visible windows

Notes: See Determining When G2 Associates a G2-Window with
a Window.

g2-routing-
information

This attribute is reserved for future use.

Allowable values: Not applicable

Default value: Not applicable

g2-user-mode User mode currently in effect for this g2-window item.

Allowable values: administrator or any application-defined user mode

Default value: administrator, or value of initial-g2-user-mode-for-this-kb
attribute in the KB Configuration system table

Notes: See Determining the User Mode.

g2-window-style Allows you to specify the window style you prefer for
your interaction with G2.

Allowable values: default | standard | standard-large | g2-5.x

Default value: default

Notes: See G2 Window Styles.

Attribute Description
356

The G2-Window Class
g2-window-specific-
language

Name of a language translation item that determines, for
the window associated with this g2-window item, the
language of the text that G2 presents in system-defined
menu choices, Text Editor buttons, and so on.

Allowable values: english
japanese
korean
Name of any language-translation item in the current KB.

Default value: english

Notes: The value of this attribute overrides, for this g2-window,
the setting for the entire KB found in the current-language
attribute of the current KB’s Language Parameters system
table. See Supporting a Window-Specific Language.

g2-window-
management-type

Whether this g2-window item is the client of a G2 process
or a Telewindows process. (Read-Only)

Allowable values: local
remote

Default value: Determined by the event that triggered the creation of this
g2-window item: local if created automatically after the G2
is launched, or remote if associated with a successful
connection between the G2 and a Telewindows.

Notes: See Determining Whether the Connection is Local
or Remote.

g2-window-x The x location of the window associated with this
g2-window item. (Read-only)

Allowable values: integer

Default value: 0

Notes: The value is always 0.

Attribute Description
357

g2-window-y The y location of the window associated with this
g2-window item. (Read-only)

Allowable values: integer

Default value: 0

Notes: The value is always 0.

g2-window-width Width in pixels of the window associated with this
g2-window item. (Read-only)

Allowable values: 0 to the maximum width in pixels of the user’s
workstation screen.

Default value: 90% of the maximum width in pixels of the user’s
workstation screen

Notes: See Identifying the Dimensions of the G2 Window.

g2-window-height Height in pixels of the window associated with this
g2-window item. (Read-only)

Allowable values: 0 to the maximum height in pixels of the user’s
workstation screen

Default value: 90% of the maximum height in pixels of the user’s
workstation screen

Notes: See Identifying the Dimensions of the G2 Window.

g2-window-x-
resolution

Horizontal resolution in pixels per inch of the window
associated with this g2-window item. (Read-only)

Allowable values: 50 to 200

Default value: 75

Notes: See Identifying the Resolution of the G2 Window.

Attribute Description
358

The G2-Window Class
g2-window-y-
resolution

Vertical resolution in pixels per inch of the window
associated with this g2-window item. (Read-only)

Allowable values: 50 to 200

Default value: 75

Notes: See Identifying the Resolution of the G2 Window.

g2-window-remote-
host-name

A string containing the network ID of the workstation
from which the connected Telewindows process
(associated with this g2-window item) was launched.
(Read-only)

Allowable values: Determined by the range of network IDs permitted by
your network.

Default value: Determined by the event that triggered the creation of this
g2-window item: an actual workstation’s network ID if
associated with a successful connection between the G2
process and a Telewindows process, otherwise none.

Notes: See Determining the Remote Host Name.

g2-window-user-
name-in-operating-
system

A string containing the operating-system login ID under
which the connected Telewindows process (associated
with this g2-window item) was launched. (Read-only)

Allowable values: Determined by the range of login IDs permitted by your
operating system.

Default value: Determined by the event that triggered the creation of this
g2-window item: an actual user’s login ID if associated
with a successful connection between the G2 process and a
Telewindows process, otherwise none.

Notes: See Determining the Login Name at the Operating System.

On the HP UX 11 platform only, changing users (su) does
not update this attribute. Its value remains the original
user.

Attribute Description
359

g2-window-time-of-
last-connection

Date and time when this G2 associated this g2-window
item with either this local G2 window, or with this
telewindow. (Read-only)

Allowable values: Any time-stamp supported by the operating system under
which the associated G2 (for a local G2 window) or
associated Telewindows (for a telewindow) runs.

Default value: Not applicable

Notes: See Determining the Time of Connection.

g2-window-initial-
window-
configuration-string

A text value meaningful to your application; it is settable
only by the g2-reroute-window system procedure for a
reroutable Telewindows connection.

Allowable values: Any G2 text string.

Default value: none

Notes: See Setting up Access to Telewindows.

g2-window-reroute-
problem-report

Message returned from an unsuccessful rerouting of a
telewindow. (Read-only)

Allowable values: Not applicable

Default value: Not applicable

g2-window-
operating-system-
type

A symbol designating the type of operating system under
which the G2 window is running. (Read-only)

Allowable values: Any symbol.

Default value: No default value.

Notes: See Determining the Operating System Type.

Attribute Description
360

The G2-Window Class
show-operator-
logbook-in-this-
window?

Whether the operator logbook is or is not displayed in the
g2-window. When the value is yes, the logbook is
displayed as specified in the Logbook Parameters system
table.

Allowable values: yes, no

Default value: yes

Notes: See Hiding and Showing Logbook Pages.

Attribute Description
361

Hidden Attributes

The g2-window class defines the following hidden attributes:

g2-window-user-is-
valid

A truth value that indicates whether the user is
authorized. (Read-only)

Allowable values: true, false

Default value false

Notes: See Licensing and Authorization

g2-window-mode-is-
valid

A truth value that indicates whether the user mode is
valid.(Read-only)

Allowable values: true, false

Default value false

Notes: See Licensing and Authorization

Attribute Description

Attribute Description

selected-window-
handle

A handle to the selected MDI child view in the
native window.

Allowable values: integer

Default value: 0

Notes: See Window Handles and Views in User
Interface Operations in the G2 System
Procedures Reference Manual.
362

The G2-Window Class
window-handles A sequence of handles to all MDI child views
in the native window.

Allowable values: sequence

Default value: sequence()

Notes: See Window Handles and Views in User
Interface Operations in the G2 System
Procedures Reference Manual.

mouse-cursor A symbol that describes the icon used for the
mouse cursor.

Allowable values: default, arrow, cross, hand, help, i-beam,
circle-slash, size-all, size-ne-sw, size-ns,
size-nw-se, size-we, up-arrow, wait

Default value: default

Notes: See Controlling the Mouse Cursor.

g2-window-client-
version

A structure that provides the following
information about the Telewindows client
version:

structure
(program: symbol, {G2, TW, or TWNG}
major-version-number: integer,
minor-version-number: integer,
revision: integer,
build-identification-string: text)

If the g2-window is not associated with any
client, the value is an empty structure.

For example:

structure
(PROGRAM: the symbol TWNG,
MAJOR-VERSION-NUMBER: 8,
MINOR-VERSION-NUMBER: 2, REVISION: 1,
BUILD-IDENTIFICATION-STRING: "IC22")

Attribute Description
363

Working with G2-Windows
A g2-window item has attributes that report various information about the
window with which it is associated, including that window’s connection status.
Your KB can use this information to capture information about when your
application is in use, from what locations, and by whom.

Accessing the G2-Window Item Associated with
Your Interaction with G2

To access the g2-window associated with your Telewindows connection or
local G2 window:

 Choose Main Menu > System Tables > This Window.

The table of the g2-window item that is associated with your interaction with G2
is displayed.

Overriding the Default Window Style

The default window style for the G2 process is determined by the g2-window-style
attribute of the Server Parameters system table. You can specify a different
window style for your interaction with the G2 process by editing the g2-window-
style attribute of your g2-window item.

You edit the g2-window-style attribute to one of these four values: default,
standard, standard-large, or g2-5.x. The g2-window-style of the Server Parameters
system table determines your window-style when you specify default.

You can also use the g2-window-style field of the login dialog for specifying your
window-style preference.

See G2 Window Styles for information on window styles.

Determining When G2 Associates a G2-Window with
a Window

The g2-connection-status attribute indicates whether the g2-window is associated
with any window, local or remote. This attribute is updated only by G2.

After a G2 creates a new g2-window item, G2 sets the value of its g2-connection-
status attribute to connected. Your KB can detect when this value is set, and thus
detect when a new g2-window item is created. For instance, this whenever rule
detects when G2 creates a new g2-window item by detecting when the
g2-window-connection-status attribute of any g2-window receives a value:

whenever the g2-connection-status of any g2-window G
receives a value
364

Working with G2-Windows
then inform the operator that
"User [the g2-user-name of G] has logged into the application."

Determining Whether the Connection is Local
or Remote

If the g2-connection-status attribute of a g2-window item has the value
connected, then the g2-window-management-type attribute indicates whether the
associated window is local or remote. G2 assigns a value to this attribute only
after it has associated a window with the new g2-window item.

When G2 creates a new g2-window item, the value of its g2-window-
management-type attribute is none. Until the g2-window-management-type
attribute has a value, any references to it will fail. Thus, before you refer in an
expression to the value of g2-window item’s g2-window-management-type
attribute, first check whether its value exists.

For example, the following procedure statement performs processing based on
whether the g2-window-management-type of a G2 window (in this case, passed as
the window argument to this procedure) has the value local:

if the g2-window-management-type of window exists
and the g2-window-management-type of window is local

then ...

Determining the G2 User Name for a G2-Window

For the g2-window item associated with a G2 process’s local window, a G2 that is
not secure initializes the g2-user-name attribute based on the login name of the
person who launched the G2. A secure G2 initializes the g2-user-name attribute
based on the login name under which you log into G2.

For the g2-window item associated with a telewindow, a G2 that is not secure
initializes the g2-user-name attribute based on the operating system login ID of
the person who launched the Telewindows process. A secure G2 initializes the
g2-user-name attribute based on the login name under which you log into G2.

G2 also uses the value of this attribute when updating the authors attribute of
items whose knowledge is changed. If the g2-user-name attribute displays the
value none, G2 uses the operating system login ID of the person who launched
either the G2 or Telewindows process.

Note After the g2-window is associated with a local or remote window, the user
working at that window can also change this attribute interactively at any time by
editing the User Name field in the login dialog. See Using the Login Dialog.

A Telewindows user logging into a secure G2 must supply a user name in the
login dialog and can optionally supply a user mode. If the supplied combination
365

of user name and user mode is authorized and after completing the connection
with the Telewindows process, G2 creates a new g2-window item in the KB and
assigns that user name and user mode to the new item’s g2-user-name and
g2-user-mode attributes. G2 also sets the g2-window-user-is-valid and g2-window-
mode-is-valid attributes to true when the user name and mode are valid.

Determining the Login Name at the
Operating System

For a g2-window item associated with a connected telewindow, the g2-window-
user-name-in-operating-system attribute shows the login ID (or account name)
under which the Telewindows process was launched.

Determining the User Mode

If the initial-g2-user-mode-for-this-kb attribute in the KB Configuration system
table has the value none, then when a new g2-window is created, G2 initializes
the g2-window’s g2-user-mode attribute to the value administrator.

If the initial-g2-user-mode-for-this-kb attribute in the KB Configuration system
table has a value other than none, then when G2 creates a new g2-window item,
G2 also initializes the g2-user-mode attribute to that value.

Tip After G2 associates a g2-window item with a local or remote window, the user
working at that window can use the login dialog to change the value of the
g2-user-mode attribute of that g2-window. See Using the Login Dialog.

A Telewindows user logging into a secure G2 must supply a user name in the
login dialog and can optionally supply a user mode. If the supplied combination
of user name and user mode is authorized, then after completing the connection
with the Telewindows process, G2 creates a new g2-window item and assigns
that user name and user mode into the g2-user-name and g2-user-mode
attributes of the new g2-window item. G2 also sets the g2-window-user-is-valid
and g2-window-mode-is-valid attributes to true when the user name and mode
are valid.

Determining the Remote Host Name

G2 initializes g2-window-remote-host-name attribute of a new g2-window item to
the value none.

For a g2-window associated with a remote window, G2 automatically assigns the
g2-window-remote-host-name attribute to the host name (established by the
network administrator) of the computer from which a Telewindows user has
connected to the G2.
366

Working with G2-Windows
Determining the Time of Connection

For a g2-window associated with a local window, the g2-window-time-of-last-
connection attribute shows the date and time at which this user launched this G2.

For a g2-window associated with a remote window, the g2-window-time-of-last-
connection attribute shows the date and time when the Telewindows user
connected to this G2.

Determining the Operating System Type

The value of the g2-window-operating-system-type attribute is a symbol that
indicates the type of the operating system on which the G2 window is running.
The allowable values vary as different operating systems and versions become or
cease to be supported by their manufacturers or G2.

Controlling the Mouse Cursor

The g2-window class has a new hidden attribute named mouse-cursor, whose
value is a symbol with these possible values:

Symbol Icon

default

arrow

cross

hand

help

i-beam

circle-slash

size-all
367

Note The icons have a somewhat different appearance on Windows and UNIX
platforms.

Expressions that Refer to G2-Window Items
Because a g2-window is an item, your KB can use item reference expressions to
refer to it and can use attribute reference expression to refer to its attributes.

The this window expression refers to the g2-window that is associated with the
window in which a user-initiated event takes place. You can specify this
expression only in the action attribute of an action button or user menu choice.

The power of the this window expression is to associate a g2-window, and
therefore the set of knowledge it contains, with the initiation of a thread of
processing. Thus, your application can associate a particular user-initiated event
with a login account (in the g2-window’s g2-window-user-name-in-operating-
system attribute), computer identification (in the g2-remote-host-name attribute),
current language (in the g2-window-specific-language attribute), and so on.

Specifying the Appearance of the G2 Window
Each g2-window item has read-only attributes that report the associated
window’s height and width in pixels, resolution in pixels per inch, and
magnification.

size-ne-sw

size-ns

size-nw-se

size-we

up-arrow

wait

Symbol Icon
368

Specifying the Appearance of the G2 Window
G2 displays a window, using these defaults:

• Height in pixels of 90% of the screen’s height in pixels, and width in pixels of
90% of the screen’s width in pixels.

• Resolution of 75 pixels per inch.

• Magnification of one G2 workspace unit per pixel.

You can initialize these attributes by specifying command-line options when you
launch a new G2 process or Telewindows process.

Specifying the Resolution and Magnification

The -magnification command-line option specifies the default magnification for
KB workspaces at full scale. The optional -resolution command-line option
informs a G2 process about the resolution (in pixels per inch) of the monitor on
which the window appears. Together, these options determine the absolute size at
which G2 displays a window on a given display device for a given platform.

By combining the settings of these two options properly, you can launch G2
processes on different computers having display devices of different resolutions
and display the same KB at the same (or very nearly the same) absolute size.
Alternatively, by specifying other settings in these options, you can launch a G2
process that displays a KB at the highest resolution allowed on a particular
display device.

Tip For a description of the -resolution and -magnification command-line options
resolution, and magnification.

For example, if you use this command to launch a G2 process:

g2 -resolution 75 -magnification 1.0

it is equivalent to this command line:

g2 -resolution 100 -magnification 0.75

Tip For best results, consider the dot pitch (that is, the ratio of width to height) of the
pixels produced on the display devices on your G2 application’s delivery
platform.

Identifying the Dimensions of the G2 Window

The g2-window-height and g2-window-width attributes report the dimensions, in
workspace units, of the G2 window.
369

These attributes are read-only, but you can refer to them in expressions. For
example, this show action displays a KB workspace at a scale that has a particular
ratio of height to width:

{ Scale a kb-workspace on a g2-window of arbitrary size
to maintain the same relative size as if displayed on a window
of 1036 by 810 workspace units. }

show help-workspace scaled by its current scale times
min ((the g2-window-width of this window / 1036) ,

(the g2-window-height of this window / 810))

You can initialize the g2-window-height and g2-window-width attributes of a new
G2 window associated with a local window by using the -height and -width
command-line options. For more information about these options, see height and
width.

Otherwise, G2 automatically updates these attributes whenever you use the host
window manager to resize the local or remote window associated with the G2.

Tip When you launch a G2 process, you can specify the -fullscreen command-line
option to display the new G2’s local window at full-screen size.

Identifying the Resolution of the G2 Window

The g2-window-x-resolution and g2-window-y-resolution attributes report the
resolution (in pixels per inch) at which G2 displays the window associated with
this g2-window item.

Note These attributes are read-only. The associated window’s resolution does not
change during the window’s existence.

You can initialize the g2-window-x-resolution and g2-window-y-resolution
attributes of a new g2-window item associated with a local window by using the
-resolution command-line option, or by using the -x-resolution and
-y-resolution pair of command-line options.

See also Appendix A, Launching a G2 Process for more information about these
options.

Rerouting a Telewindow
A g2-window item has attributes that support switching or rerouting a
telewindow, as described in Rerouting Telewindows Connections.

A G2 process reroutes a telewindow by passing its connection to another G2.
A G2 reroutes a telewindow by executing the g2-reroute-window system
370

Supporting a Window-Specific Language
procedure. For more information, see the description of g2-reroute-window in the
G2 System Procedures Reference Manual.

Tip The KB file twtour.kb, a sample KB shipped with your G2 product, demonstrates
the features that a G2 application should support when rerouting a telewindow.
See the Telewindows User’s Guide for information about twtour.kb.

Setting up Access to Telewindows

The g2-window-initial-window-configuration-string attribute contains a text value
that the KB, running in a G2 that receives a reroutable Telewindows connection,
uses to set up access for the user to that KB. This attribute is only used by the
g2-reroute-window system procedure.

For instance, in a G2 application designed to support access by users via
reroutable telewindows, the KB running on one G2 can hand off a user’s
processing to another KB running on another G2. The initiating KB can log the
user (via Telewindows) into another G2 and pass to its KB a g2-window-initial-
window-configuration-string value that represents the state of that user’s activity
within the application.

For more information, see the description of the g2-reroute-window system
procedure in the G2 System Procedures Reference Manual.

Reporting Errors

The g2-window-reroute-problem-report attribute is a read-only attribute that
presents to a G2 an error message that returns from an unsuccessful rerouting of a
telewindow to another G2. This capability of G2 is described under Rerouting
Telewindows Connections.

Supporting a Window-Specific Language
Language translation items contain text that replaces the system-defined text that
appears in G2 menu choices, Text Editor buttons, and so on. A KB that contains
more than one language translation item can display G2’s own text, as well as
user-defined text, in more than one natural language.

The setting of the current-language attribute in the Language Parameters system
table determines which of the current KB’s language translation items governs the
display of G2’s system-defined text. For more information, see Using Language
Translations for Localization.

For a current KB that contains more than one language translation item, the KB
can programmatically associate a distinct language translation with each window
that is associated with or connected this G2. The g2-window-specific-language
371

attribute of a g2-window item identifies the language translation that G2 is using
to display system-defined text in that g2-window’s associated window.

When you launch G2, use the -language command-line option to set the value of
the g2-window-specific-language attribute of the g2-window item associated with
G2’s own local window.

Also, when a user launches a Telewindows process, that user can also specify a
-language command-line option:

• If the user is connecting to a secure G2, specifying this option sets the value of
the G2 Window Specific Language field shown in the login dialog. If the user
successfully logs in, this field’s setting determines the value of the g2-window-
specific-language attribute of the g2-window item associated with the new
Telewindows process’s own window.

• If the user is connecting to a G2 that is not secure, specifying this option
determines only the value of the g2-window-specific-language attribute of the
g2-window item associated with the new Telewindows process’s
own window.

The g2-window-specific-language attribute of a new g2-window item interacts
with the current-language attribute of the Language Parameters system table
as follows:

• When the value of the g2-window-specific-language attribute is none, G2’s
system-defined menu choices appear in the language named in the current-
language attribute of the Language Parameters system table.

• When the value of the g2-window-specific-language attribute is other than
none, the language named in the g2-window-specific-language attribute
overrides the setting of the current-language attribute of the Language
Parameters system table.

This feature is especially useful for a KB that users access via telewindows. Based
on the Telewindows user’s login ID, the KB can assign the name of a particular
language translation to the g2-window-specific-language attribute of the
g2-window item associated with that Telewindows process’s own window. As a
result, multiple users can simultaneously interact with the same KB, but view the
text portion of the KB’s context in different languages.
372

Using the Login Dialog
Using the Login Dialog
G2’s login dialog allows a secure G2 to gather the information required to
authorize each user who attempts to connect to a running G2 process:

After a user has logged into a secure G2, G2 updates attributes in the g2-window
item that G2 associated with the window that the user sees:

• G2 assigns the specified user name into the g2-user-name attribute.

• G2 assigns the specified G2 user mode into the g2-user-mode attribute.

• G2 assigns the specified window-specific language into the g2-window-
specific-language attribute.

For a G2 installation that does not rely on a secure authorization file, a G2 user or
Telewindows user can easily display the login dialog and use it to change
attributes in the g2-window item associated with the window at which he or she
is working.

By default, the Login Dialog displays as a native pane in Telewindows. For more
information, see Displaying the Native G2 Login and Change Mode Dialogs.

Displaying the Login Dialog

A secure G2 displays the login dialog in G2’s local window (if present) each time
it is launched, and in a remote window each time a Telewindows user attempts a
connection. For a description of how a secure G2 relies on the login dialog, see
Accepting a Connection from a Telewindows Process.

In a G2 that is not secure, the user must explicitly display the login dialog by
choosing Main Menu > Change Mode or by entering CTRL + y. Doing this is one
way for a G2 or Telewindows user to change interactively the values of the g2-
user-name, g2-user-mode, and g2-window-specific-language attributes for the
g2-window item that is associated with the window at which he or she is
working.
373

Determining Default Values in the Login Dialog

Your KB can determine the default values of some fields in the login dialog. For
example, if the initial-g2-user-mode-for-this-kb attribute in the KB Configuration
system table has a value other than none, G2 initializes the G2 User Mode field in
the login dialog to that value. Also, the current-language attribute of the
Language Parameters system table determines the default value of the G2
Window Specific Language field in the login dialog.

Notice that the fields in the login dialog correspond to attributes of the g2-window
class, as follows:

Logging Login Activities
This feature allows you to run a user-defined login handler whenever a user logs
into your secure G2. You must register this procedure with G2, using the system
procedure g2-system-register-login-handler. See the G2 System Procedures
Reference Manual for a description of this system procedure. You can then use
your login handler to perform whatever operations you wish on successful or
failed logins.

Changing a user’s password is not considered a login event and will not call your
login handler.

Writing the Login Handlers

The login handler must accept a structure as an argument. The structure, which is
returned by the system login function, has the following attributes:

Field in Login Dialog Attribute of G2-Window Class

User name g2-user-name

Password Not applicable

G2 user mode g2-user-mode

G2 window name or class Not applicable

G2 window specific language g2-window-specific-language

Attribute Value

success true if the login succeeded, false
otherwise.

system The symbol tw for Telewindows.
374

Associating an Existing G2-Window with a Telewindow
The icp-connection-name string provides information about the protocol of the
connection and the hostname of the machine attempting to connect.

The login handler may use this information in any way necessary. The following
example shows a login handler that simply prints the information in the structure
to the message board:

default-login-handler(login-information: structure)
msg: text;
begin

if (the success of login-information)
then msg = "succeeded"
else msg = "didn’t happen [the status of login-information];

post "Login [msg] in system [the system of login-information]
for user: [the user-name of login-information]
in mode: [the user-mode of login information]
from [the network-info of login-information]"

end

Registering the Login Handler

Before it can be called, the login handler must be registered with G2. To do this,
use the system procedure g2-system-register-login-handler. Please refer to the
G2 System Procedures Reference Manual for information about this procedure.

Associating an Existing G2-Window with
a Telewindow

G2 supports the practice of associating a g2-window item that is created and
maintained by your application, with the window that a Telewindows process
opens after connecting to a G2 process. After the Telewindows process connects
to G2, the Telewindows user can specify the name of an existing g2-window item,
or the name of a user-defined subclass of the g2-window class, in the login dialog’s
G2 Window Name or Class field.

status A symbol describing the event.

user-name A symbol.

user-mode A symbol.

network-info The icp-connection-name string for
connections over the network and false
otherwise.

Attribute Value
375

If the Telewindows user specifies a name that G2 finds is also the name of an
existing g2-window item (or of an existing item whose class is a subclass of the
g2-window class), then G2 initializes that item’s attributes and associates it with
the Telewindows process’s own window.

On the other hand, if G2 finds that the name is also the name of a subclass of the
g2-window class, then G2 automatically creates a new item of that class, initializes
its attributes, and associates it with the Telewindows process’s own window.

Note that it might limit the robustness of your application to require users to
supply the name of a g2-window item (or of a subclass of the g2-window class)
in the login dialog, after also supplying a user name, user mode, and optionally,
a window-specific language.
376

Part III
Knowledge
Representation
Chapter 9: Values and Types

Describes the role of values and types in a knowledge base.

Chapter 10: G2 Items

Presents the characteristics that are common to all G2 items.

Chapter 11: Attributes and Tables

Shows you how to use item attributes and the attribute tables that display them.

Chapter 12: Attribute Access Facility

Presents the capabilities of the attribute access facility.

Chapter 13: Classes and Class Hierarchy

Describes the principles, structure, and use of the G2 class hierarchy.

Chapter 14: Definitions

Describes class definitions and shows you how to use them.

Chapter 15: Variables and Parameters

Describes variables and parameters and how to use them within a KB.

Chapter 16: Lists and Arrays

Describes how to use lists and arrays.
377

Chapter 17: Hash Tables and Priority Queues

Describes how to use hash tables and priority queues.

Chapter 18: Connections

Describes connections, connection posts, and junction blocks.

Chapter 19: Relations

Describes how to associate items in a non-graphical way.
378

9

Values and Types
Describes the role of values and types in a knowledge base.

Introduction 379

Using Values Stored in Items 380

Distinguishing Value Types 382

Working with General Types 384

Working with Specific Types 385

Representing Time Values 394

Working with Composite Types 396

Using Structures and Sequences in User-Defined Classes 405

Introduction
A value is a piece of knowledge of a particular G2 type. Values consist of data
structures that are generated as the result of expression evaluations and are
associated with item attributes.

Values have a type, which can be:

• integer

• long

• float

• text
379

• truth-value

• symbol

• sequence

• structure

As the current knowledge base runs, it obtains values from entities such as the
knowledge stored in user-defined and system-defined attributes and the local
names and other values within the text attributes of executable items, such as
procedures and rules.

Using Values Stored in Items
Your KB’s activities work primarily with values stored in item attributes.
Attributes can be user-defined to capture the values of user-defined items, or they
can be system-defined and specify such item knowledge as the location of the
item upon its workspace, its relations and connections, its current attribute
displays, the value of variables and parameters, and so on. In some cases, the KB
uses the value in one attribute to assign the value of another attribute. In other
cases, the KB obtains values to write them to external files or to pass them to
external processes, such as G2 Gateway bridge applications.

For description of the kinds of information that are part of an item’s knowledge,
see Understanding the Knowledge Contained in Items.

Using Attribute Values

An item stores values in its attributes. An attribute might also have no value, in
which case G2 displays the symbol none as its value in an attribute table.

You can use the conclude and change actions to update the values of all user-
defined attributes and most system-defined attributes as follows:

Each chapter of this manual that describes a system-defined class includes a
section describing the characteristics of each system-defined attribute. Check
there to find which attributes you can edit. Refer to the G2 Class Reference Manual
for information about whether an attribute is value- or text-writable.

Use this action... For system-defined attributes that are...

conclude that the x of y = value Value-writable

change the text of the x of y to
"text-value"

Text-writable
380

Using Values Stored in Items
Using Text Attribute Values of Items

Some items include a text value, which is distinct from other attributes. This text
attribute appears in the attribute table of relevant items without an attribute name
called text, but is referred to programmatically with the expression the text of y,
where y is any item of these classes:

• Rules

• Procedures

• Methods

• Message

• Free text

• Borderless free text

• Word inserters

• Character inserters

• Character sequence inserter

For information on rules, procedures, and methods, see Rules, Inferencing, and
Chaining, Procedures, and Methods.

For more information about messages and each free text, borderless free text,
word inserter, character inserter, or character sequence inserters see Messages
and Text Items.

The text attribute of an item always stores a value of type text. For more
information about text values, see Using the Text Type.

Using Values Given by Variables and Parameters

Each variable and parameter has a last-recorded-value attribute that is handled
differently from its other attributes. See Variables and Parameters for more
information.

Checking for the Existence of an Attribute Value

The attributes of items can hold values, a subobject, or nothing which appears
as none.

You can determine whether an item attribute has a value by using the following
expressions:

• exists

• has a value

• has a current value
381

For more information about these expressions, see Expressions.

Using Local Names for Values

Your KB can also declare and manipulate values that are not part of any item’s
knowledge and that exist only when the current KB is running. For instance, you
can use local names to represent values used only within one rule or procedure.
See Using Local Names in Expressions.

Expiration of Variable Values

The value of each instance of a variable has an expiration time, which is the time
interval after which G2 must perform data seeking to obtain a valid value. The
expiration time can be never, indicating that the value is valid indefinitely.

The expiration time of a variable is determined by its validity-interval attribute. If a
variable value expires, and is then required by an expression referring to that
value, G2 attempts to obtain a new value to replace the expired one.

The expiration time of variable values also affects the expiration time of the
expressions in which those values participate. G2 must compare the expiration
time of a value used in a computation, such as in a rule or procedure, with the
time required to complete the execution of a rule or procedure that uses that
value. If a value expires before G2 can finish performing all portions of a rule or
procedure that refers to that value, G2 must perform data seeking to obtain a new
current value that replaces the expired value. How G2 data seeks for the values of
variables is explained in Obtaining Values for Variables.

Distinguishing Value Types
All G2 values have a type, which determines the valid operations in which the
value can participate. The G2 types, which are categorized into general, specific,
and composite types, are:

General Types Specific Types Composite Types

item-or-value integer sequence

value float structure

quantity symbol

text

truth-value

long
382

Distinguishing Value Types
G2 organizes these types into a type hierarchy, with the item-or-value type as the
root type. The following figure summarizes the relationships among the item-or-
value type and its subtypes:

This figure also shows that the item-or-value type is the parent of the item class.
Conceptually, G2 items are values whose type is class item. The item class, and
the rest of the system-defined classes in G2’s class hierarchy, are described in
Classes and Class Hierarchy.

Every attribute has a particular type, and is described in the G2 Class Reference
Manual.

Declaring a type for a user-defined attribute in a class definition is optional.
However, we recommend that you always use the most-specific type possible.
The declared type of an attribute restricts the values you can store in that attribute
and determines the valid operations for the attribute value.

Complex Types

As shown by some of the type specifications in the G2 Class Reference Manual, G2
internally uses arbitrarily complex types formed by using Boolean expressions to
combine the types described in this chapter. You cannot assign a complex type to
user-defined attributes, which can use only the types described in this chapter.

Declaring Types

You can declare that a piece of knowledge is of any type in these contexts:

• A class definition, for user-defined, class-specific attributes.

item-or-value

item value

quantity

integer float

symbol text truth-value

(G2 class hierarchy)

sequence structure

long
383

• A procedure or method, for return values or local names.

These items contain values of the given types:

Working with General Types
The G2 general types are:

• item-or-value

• value

• quantity

For those familiar with C, all values in G2 are implemented as pointers to data
structures containing explicit type tags. All attributes and local names contain
these pointers, so that G2 can always determine a specific type from the
value itself.

This type... Is used in these items...

item-or-value g2-list and g2-array items, whose elements
contain values of type item-or-value, excluding
sequences and structures.

value value-list and value-array items, whose elements
contain values of type value, excluding
sequences and structures.

quantity quantitative-variable, quantitative-parameter,
quantity-list, and quantity-array items.

integer integer-variable, integer-parameter, integer-list,
and integer-array items.

long long-variable, long-parameter, long-list, and
long-array items.

float float-variable, float-parameter, float-list, and
float-array items.

symbol symbolic-variable, symbolic-parameter, symbol-
list, and symbol-array items.

text text-variable, text-parameter, text-list, and text-
array items.

truth-value logical-variable, logical-parameter, truth-value-
list, and truth-value-array items.
384

Working with Specific Types
Values declared as a general type specify that the value held in the local name or
attribute will be one of the specific types that is a subtype of the general type. For
example, if a local name is specified as a quantity, its value will be either an integer
or a float, which are the subtypes of quantity.

Using the Item-or-Value Type

A value of type item-or-value represents a piece of information into which your
KB can assign either an item or a value of a general, specific, or composite type.

Declaring a value of type item-or-value can add flexibility to some kinds of KB
processing. Given a value of type item-or-value, your KB must determine the
value’s class or specific type before using it in a class-specific or type-specific
expression.

Using the Value Type

A value of type value represents a piece of information that your KB can interpret
as a number (that is, a quantity value, a float value, an integer value, or an long
value), a symbol value, a text value, a truth-value value, a sequence, or a structure.

Using the Quantity Type

A value of type quantity represents a number that your KB can interpret as either
type integer, long or float, depending on the processing context. This flexibility
can be an advantage for some kinds of KB processing.

You can also assign a quantity value into a piece of knowledge declared with type
quantity. After performing this assignment, however, for your KB to use the value
that the assigned quantity now references, your KB must first use an expression to
determine the specific type of the referenced value, integer or float. The KB can
then use the referenced value in an expression or action.

Working with Specific Types
The G2 specific types are integer, long, float, symbol, text, and truth-value. Each
value that your KB directly manipulates has a specific type. Your KB cannot
create user-defined specific types.

For example, when you declare a local name in a procedure with the type integer,
an action or procedure statement can assign into that local name only a value that
meets the requirements for integer numbers.

Using the Integer Type

A value of type integer represents an integral number.
385

In G2 Standard (32-bit), G2 integer values are signed with 30-bit precision. A G2
integer value can range from -536870912 to 536870911, that is, from -229 to (229 - 1).

In G2 Enterprise (64-bit), G2 integer values are signed with 61-bit precision. A G2
integer value can range from -1152921504606846976 to 1152921504606846975, that
is, from -260 to (260 - 1).

Note For actions that update the value of an integer value, G2 does not check for
integer overflow or underflow because of the performance penalty such checking
would impose.

KB saved by G2 Enterprise with G2 integer values which exceeded the value
range of G2 Standard, will loose its original value when loading in G2 Standard.
To prevent loosing of integer values in this case, it’s recommended to use the new
long type.

Using the Long Type

A value of type long represents an integral number. G2 long values are signed
with full 64-bit precision. A G2 long value can range from -9223372036854775808
to 9223372036854775807, that is, from -263 to (263 - 1).

Note For actions that update the value of an long value, G2 does not check for integer
overflow or underflow because of the performance penalty such checking would
impose.

The G2 long type is a native implementation which uses the underlying 64-bit
arithmetic CPU instructs to do all the 64-bit computations (even in 32-bit G2
Standard). However, it takes more memory spaces (16 bytes per long value) than
the integer type (4 bytes in G2 Standard and 8 bytes in G2 Enterprise), and the
performance may not be as good as the integer type.

In G2 2011, the G2 long type is undocumented. And it’s not a native
implementation, instead, using 32-bit arithmetic instructs to simulate 64-bit
computing, therefore very slow.

Using the Float Type

A value of type float represents a real number with a floating-point
representation. Due to the limitations of the floating-point representation for real
numbers, it is possible for a particular float value to represent an approximation of
a real number. This only occurs for very large and very small numbers.
386

Working with Specific Types
Float values in G2 are signed, with a 64-bit, double-precision floating-point
representation. On most platforms that G2 supports, a float value can range from
±1.79 x 10308 to ±2.22 x 10-308 with approximately 16 digits of precision.

G2 restores and manipulates float values in conformance with the IEEE’s Standard
for Binary Floating-Point Arithmetic (ANSI/IEEE Standard 754-1985). For G2 to
conform to this standard, the computer on which G2 runs must also support
that standard.

Working with Exceptional Float Values

Arithmetic operations on float values can result in these exceptional float values:

The ANSI/IEEE Standard 754-1985 document specifies how exceptional floating
point values participate in arithmetic operations. G2 conforms to this standard on
platforms that support it.

For example, in a numeric expression, if an exceptional float value participates in
any G2 arithmetic operation in that expression, G2 evaluates that expression as
that same exceptional float value. Also, in a truth-value expression, if an
exceptional float value participates in a comparison operation in that expression,
G2 evaluates that expression as false.

Note In cases where on other platforms G2 would produce an exceptional float value,
on the Alpha OSF platform, instead G2 signals the error “A floating point
exception has occurred.”

Exceptional
Float Value

Display of
Value in G2 Causes

Negative infinity -Inf Negative overflow; divide a
negative value of any
numeric type by zero
(0 or 0.0)

Positive infinity +Inf Positive overflow; divide a
positive value of any
numeric type by zero
(0 or 0.0)

Not a number NaN Divide zero (0 or 0.0) by zero
387

Coercing Numeric Values

Some G2 arithmetic and relational operators require G2 to coerce an integer value
to a float value. This means that G2 automatically creates a temporary copy of a
value in a different type, for use in evaluating an expression.

For example, in an expression that compares an integer value to a float value, G2
automatically coerces the integer value to a float value, then compares the
two values.

Tip For the details about how G2 coerces numeric values when applying arithmetic
and relational operators, see Coercion of Values Returned from Arithmetic
Operators.

Using Units of Measure for Numeric Values

You can create your own set of symbols to represent units of measure, such as
meters, pounds, and liters, that G2 does not provide. You define these symbols in
a units-of-measure-declaration item.

In a numeric value, such as in an attribute that stores a number or in a variable
whose value is an integer or float value, you can use the symbols defined in a
units of measure declaration. Doing so indicates that the numeric value
represents a measurement.

A value’s unit of measure symbols only affect how G2 displays that numeric
value. When G2 assigns a value that uses a user-defined unit of measure into an
attribute, procedure local name, or variable or parameter, that value’s unit of
measure is also assigned.

To create a unit of measure:

1 Choose KB Workspace > New Definition > units-of-measure-declaration.

G2 automatically invokes the Text Editor for you to declare the unit:
388

Working with Specific Types
2 Enter the symbol of your choice, with an optional singular version of the term,
using this syntax:

units of measure are:
{plural-unit-of-measure-symbol
[singular (single-unit-of-measure-symbol)]} [,...]

For example, this units-of-measure declaration declares meters and centimeters:

units of measure are:
meters (singular meter), centimeters (singular centimeter)

After you declare one or more units of measure, they appear after a numeric
expression in the Text Editor prompts for:

• The initially is statement in a class definition, for attributes without a type.

• The value of any instantiated item attribute, after you enter a value.

• The data-type attribute of quantitative, integer, and float variables
and parameters.

• The initial-value attribute of quantity, float, and integer variables
and parameters.

Using the Symbol Type

A symbol value contains a series of characters, each of which is a member of the
Unicode character set. For more information about the Unicode character set, see
G2 Character Support.

Use symbol values to represent identifiers: names of items, attributes, classes,
and types.

All characters in a symbol value are uppercase unless you quote them using the at
sign (@) character. When creating a symbol value, the first character can consist of
any Unicode character set.

Working with Characters in a Symbol Value

The Unicode character set supports alphabetic and ideographic characters from
most of the world’s modern and classical languages. For a discussion of Unicode,
see G2 Character Support.

When creating a symbol value, the first character can consist of any Unicode
character. All characters in a symbol value are uppercase unless you quote them.

Tip To quote any character, precede it with the at sign (@) character in the Text Editor.

Symbols can include lowercase characters from supported Unicode languages by
quoting the characters. You can quote any Unicode character.
389

Each of these characters requires quoting to be included in a symbol:

! " # $ & () * + , / : ; < = > ? @
[] ^ ' { | } ~ © ™ ® • ¢ £ ¥ » « ¡ ¿ ƒ

These characters also require quoting:

Note For information about entering Unicode characters, see Entering Unicode
Character Codes.

If you begin a symbol value with a period (.) or a number (0 - 9), it must also
include at least one alphabetic character or quote one of its numeric characters or
any of the Unicode character set symbol, punctuation, or special characters. The
hyphen (-), underscore (_), period (.) , and apostrophe (') characters are
exceptions, which do not require quoting.

Some examples of valid and invalid symbols are:

Enter this character... By...

Tab Pressing the Tab key one or more times. Each
time you press the Tab key in the editor, G2
inserts the number of spaces designated in the
number-of-spaces-to-insert-on-a-tab attribute of
the Editor Parameters system table.

Space character Pressing the space bar.

Line separator Entering the Unicode character x2028.

Paragraph separator Entering the Unicode character x2029.

Valid Symbols Invalid Symbols

@!7 .777

'123 123

-._ !!$

12@3

my-object

@my-object
390

Working with Specific Types
G2 always ignores the case of all unquoted alphabetic characters. For example, in
the next procedure, G2 always executes the post action, as shown in the message
displayed:

gds-compare-symbols()
symbol1, symbol2: symbol;
begin

symbol1 = the symbol ABC@ def@x;
symbol2 = the symbol abc@ DEF@x;
if symbol1 = symbol2 then

post "the value of symbol [symbol1] and symbol [symbol2]
is the same."

end

When entering special characters in the Text Editor, first quote the character using
the at sign (@), and then press Alt + i, followed by the special character you
require. In this procedure example, the trademark symbol is available by entering
Alt + i t.

Using the Text Type

A text value contains a series of characters, each of which must be a member of
the Unicode character set. For more information about the Unicode character set,
see G2 Character Support.

Use text values to contain any sequence of characters, including case-sensitive
alphabetic characters. The maximum number of characters in a text value is
1000000.

Working with Characters in a Text Value

G2 allows any character from the Unicode character set in a text value. The case of
characters is significant. G2 retains, displays, and prints the case of all alphabetic
characters.

G2 allows quoted characters in a text value, though quoting is unnecessary for all
characters in the Unicode character set, except:

• The at sign (@); enter two at sign characters (@@) to include one at sign (@)
character in the text string.

• Double quotes ("); otherwise, this character delimits a literal text value.

• Left bracket ([); otherwise, remaining characters after a left bracket signify a
literal value.
391

Specifying a literal text value is described in Evaluating Expressions. For a
description of the concatenation operation on text values, see Using the
Concatenation Operator.

The following procedure demonstrate-equal-texts demonstrates these facts about
text values:

• G2 retains the case of alphabetic characters in a text value.

• It is redundant to quote a character other than @, ", and [in a text value.

For example:

demonstrate-equal-texts()

{ Notice the unnecessarily quoted character in the value of text3. Also notice
that the text values displayed in the post action retain the case of their
alphabetic characters. }

text1: text = "ABCabc";
text2: text = "XYZxyz";
text3: text = "[text1]+@+[text2]";
text4: text = "[text1]++[text2];

begin
{ This post action always executes. }
if text3 = text4 then

post "The values of text1 [text1] and text4 [text4] are equivalent."
end

Formatting Text Values

You can include a newline character in a literal text value to format lengthy text.
The way to include a newline character depends on whether you are editing the
text in a non-scrolling editor, such as for messages and other free text items, or a
scrolling editor, such as for procedures and methods.

To enter a newline character in a text value in a non-scrolling editor:

 Press Control + j anywhere within the quoted text value that you want a
newline to appear.
392

Working with Specific Types
This example illustrates the use of Control + j newline sequences in a
free-text item:

Note Any newline characters that you enter to format text values are stored as Unicode
line separator characters. Such newline characters do not, therefore, translate into
ASCII newline character values when exporting text from G2.

To enter a newline character in a text value within a scrolling editor:

 Press Return anywhere within the quoted text value that you want a newline
to appear.

Getting Unicode Character Codes

You can get the Unicode character code of a single character in a text by including
a zero-based index in square brackets following the text. This construct returns
the equivalent of the text-to-character-codes function but for a single character.
For details, see Converting Character Codes to Unicode Text.

To determine the character code of a text character:

 text [integer]

For example, this procedure returns the Unicode character code of a character in a
text:

get-character-code(txt: text, index: integer)
t: text;
c: integer;
begin

t = "[txt]";
c = t[index];
post "[c]";

end

This action returns 116, which represents the character code for the letter “t”, the
first (0th) character in the text:

start get-character-code("text", 0)
393

Using the Truth-Value Type

A value of type truth-value represents a degree of certainty in the truth of a
condition, comparison, or assertion. Your KB can use values of type truth-value to
implement a reasoning strategy based on the principles of either boolean logic or
fuzzy logic.

A value of type truth-value ranges from -1.0 true (completely false) to +1.0 true
(completely true).

Tip G2 displays a truth-value of -1.0 true simply as false, and displays a truth-value
of +1.0 true simply as true. In this case the displayed values true and false
represent truth-values, not symbols.

In a truth-value expression that includes a relational operator, by specifying a
fuzzy truth band subexpression, you can produce a fuzzy truth value, whose
decimal value is greater than -1.0 true and less than +1.0 true.

For example, the following conclude action assigns a value into a truth-value
attribute of an item of a user-defined class, based on the result of evaluating the
expression (the volume-in-liters of tank-1 > 100) (+- 25) :

conclude that the truth-value-attribute of my-object =
(the volume-in-liters of tank-1 >100) (+- 25)

In this example, the subexpression (+- 25) signifies a fuzzy truth band. The
degree to which the volume-in-liters of tank-1 is greater than, equal to, or less than
the value 100, determines the fuzzy truth value that G2 assigns to the Truth-value-
attribute of my-object.

Tip For the details about specifying fuzzy truth band expressions, see Producing
Fuzzy Truth Values from Relational Operations.

Representing Time Values
G2 offers three formats for representing time: as an integer, as a float, and as a text
string. Each of these has advantages and disadvantages, as described in this
section. The difference between integer and float time is significant whenever
time intervals greater than 17 years are required.

Time as an Integer

G2 time functions, non-subsecond time expressions, and G2’s internal scheduler
encode time as an integer representing a number of seconds. This technique is
convenient and fast, but cannot represent an interval greater than 17 years
394

Representing Time Values
because the integer overflows. This restriction can cause problems in several
contexts, such as:

• A G2 application runs continuously for more than 17 years.

• A simulation proceeds for more than 17 years of simulated time.

• Schedule projections extend more than 17 years into the future.

The results when integer time overflows are unpredictable. Most applications will
never encounter the 17-year limit of integer time. When time values greater than
17 years may occur, use float time, as described in Time as a Float. For more
information about integer time, see:

• Time functions: See Time Functions.

• Time expressions:

– See History Expressions.

– See Referring to the Current Time.

• Scheduling: Task Scheduling.

Time as a Float

G2 provides system procedures that encode time as a 64-bit float representing a
number of seconds. The G2 expression the current subsecond [real] time also
returns time as a float, as described Expressions.

Float time provides effectively unlimited capacity, but processing float values is
slower than processing integer values. When time values in excess of 17 years are
required, use float time rather than integer time. G2 itself cannot be changed to
use float time rather than integer time internally, because doing so would cause
existing applications to fail.

Information about float time appears in the following locations:

• The system procedures that manipulate float time are described in Time
Information Operations in the G2 System Procedures Reference Manual.

• The expression the current subsecond [real] time is described in Referring to
the Current Time.
395

Time as a String

Neither integer time nor float time provide good human readability. G2 provides
several formats for representing time as a string. Each of these formats is
optimized for a different purpose. The available formats are:

• Timestamp format: dd mon yyyy hh:mm x.m. This format designates a point in
time. It appears in the authors attribute, and in displays of times where the
format is specified to be as a timestamp.

• Interval format: dd days, hh hours, mm minutes, and ss seconds. This format is
used in the validity attribute of a variable.

• Calendar format: mm/dd/yyyy/ hh:mm:ss x.m. This format can be used as
needed in applications to represent a point in time.

System procedures that manipulate string time are described in the G2 System
Procedures Reference Manual.

Working with Composite Types
The G2 composite types are structure and sequence. Composite types are those
that are composed of one or more values of any general, specific, or composite
type. G2 represents system-defined attributes whose values consist of complex
data structures with structures and sequences.

A sequence is a list-like value that can contain any item or value, including other
sequences and structures.

A structure consists of one or more pairs of names and values. The values of a
name/value pair can consist of other structures or sequences. Use structures to
represent item attributes and their values. A structure requires an even number
of arguments.

For more information about working with sequences and structures, see Attribute
Access Facility.

Using the Structure Type

A structure value type consists of a set of subattribute name and value pairs,
separated by a colon (:). All name-value subattribute pairs are separated with a
comma (,) in this construct:

structure ([subattribute-name: value [,...]])

As an example, this value is the structure returned for the history-keeping-spec
attribute of a variable:

structure
(maximum-number-of-data-points: 10,
minimum-interval-between-data-points: 6000)
396

Working with Composite Types
Structures, which can have a virtually unlimited number of name-value
subattributes (up to 523,263), including zero, are functionally similar to items. As
such, you can access their attributes by:

• Using standard attribute grammar such as:

the identity of x

• Iterating over their attribute names, using an expression such as:

for symbol = each symbol that is an attribute name of x do...

• Add or change the value of an attribute in a structure using the function
change-attribute ().

• Remove an attribute from a structure, using the function remove-attribute ().

The function structure () creates and returns new structures.

Because structures consist of name and value pairs, they require an even number
of arguments. The values of attributes of type structure can be any item or value,
including other structures and sequences.

When the subattribute of a structure consists of an item, and that item is deleted
from the KB, the attribute name remains within the structure, but has a value of
none.

Structure Functions

Use these functions for working with structures:

To create a new structure with given attribute values:

 structure
(attribute-name: item-or-value [,...])
-> structure

Creates a new structure containing the given attributes associated with their
corresponding values.

For example:

structure (measured-item: tank-10, temp: the temp of tank-10)

When concluding new values using the structure () function, omitting one or
more subattributes replaces their current value with none. For example, if the
history-keeping-spec attribute of a float-variable float-var-1 is currently:

keep history with maximum number of data points =
100 and maximum age of data points = 2 hours

then the value of that attribute is expressed as:

structure(maximum-number-of-data-points: 100,
maximum-age-of-data-points: 7200)
397

Concluding a new value for the number of data points with an expression such as:

conclude that the history-keeping-spec of float-var-1 =
structure (maximum-number-of-data-points: 50)

results in the value changing to this:

structure(maximum-number-of-data-points: 50)

To change one or more subattributes without changing other subattributes to the
value none, use the change-attribute function or a subattribute reference to
conclude a new value. For example, this expression:

conclude that
the maximum-number-of-data-points of
the history-keeping-spec of float-var-1 = 50

changes the value of one subattribute, without changing others.

To create a new structure with given evaluated attribute values:

 evaluated-structure
(symbol-expression, item-or-value [,...])
-> structure

Creates a new structure containing the given attributes associated with their
corresponding values. The difference between this function and the
structure () function is that this function evaluates the expressions giving the
attribute names, while structure () uses the names given explicitly in the form.

To create a new structure with a changed attribute:

 change-attribute
(structure, attribute-name, item-or-value)
-> structure

Creates a new structure containing all of the same attributes and values in the
given structure, but with the given attribute-name containing the given item-
or-value.

If the attribute did not exist within the argument structure, the new attribute
is added to the end of that structure. If the attribute already exists within the
argument structure, the function changes its value, but keeps its position in
the original attribute order of the structure.

To create a new structure with a changed evaluated attribute:

 change-evaluated-attribute
(structure, symbol-expression, item-or-value)
-> structure

Creates a new structure containing all of the same attributes and values in the
argument structure, but with the given symbol-expression containing the given
item-or-value.
398

Working with Composite Types
This is the same operation as change-attribute(), except for the attribute name
being given by an evaluated expression instead of using the name given
explicitly in the form.

To create a new structure with a removed attribute:

 remove-attribute
(structure, attribute-name)
-> structure

Creates a new structure containing all of the same attributes and values in the
argument structure, but with the named attribute removed. If the named
attribute was not in the argument, the function returns an exact copy of the
argument structure.

To create a new structure with a removed evaluated attribute:

 remove-evaluated-attribute
(structure, symbol-expression)
-> structure

Creates a new structure containing all of the same attributes and values in the
argument structure, but with the named attribute removed. If the named
attribute was not in the argument structure, the function returns an exact copy
of the argument structure.

Structure Expressions

Use the following expressions to access structures.

To return an attribute value:

 the attribute-name [local-name] of structure

Returns the value associated with the attribute name within the given
structure. If no such attribute exists within the structure, or the attribute
contains none, G2 signals an error.

Note If you have explicitly defined an attribute name to be lowercase by using quote
characters (@), G2 signals an error of you omit the quote characters when
accessing the attribute name.

To return an attribute value named by a symbolic expression:

 the {class-name | type } that is an attribute of structure named by
symbolic-expression

Returns the value associated with the attribute named by the symbolic-
expression. If no such attribute exists within the structure, or the attribute
contains none, G2 signals an error.
399

To return the attribute names within a structure:

 each symbol [local-name] that is an attribute name of structure

Returns the symbols that name attributes within the structure.

This code fragment contains an example of each expression:

identification: structure =
structure(corporation: the symbol acme, id: "456GL900")

S: symbol;
... ;

{ Post the value of the corporation attribute.}
post "[the corporation of identification]";

{ Post the value of the id attribute. }
conclude that id-symbolic-parameter = the symbol id;
post "[the text that is an attribute of identification named by

id-symbolic-parameter]";

{ Post each attribute name. }
for S = each symbol that is an attribute NAME of identification do post "[S]" end;

...;

Using the Sequence Type

A sequence value type is a list-like entity that can contain any item or value,
including other sequences and structures. Sequences can have a virtually
unlimited number of elements (up to 1,046,526), including zero. Each sequence
element is separated with a comma (,) in this construct:

sequence ([item-or-value [,...]])

The next example shows the sequence representing a portion of the item-
configuration attribute value.

sequence (the symbol developer, the symbol user)

Sequences are functionally similar to lists. As such, you can access their
elements by:

• Iterating over each element within a sequence.

• Adding to the beginning or end of a sequence using the functions insert-at-
beginning () and insert-at-end ().

• Inserting after a particular item or value in a sequence, using the insert-after ()
function.

• Inserting before or after an element at a particular index in the sequence using
the functions insert-before-element (), insert-after-element ().

• Using an element index ([0]) to address an element directly.
400

Working with Composite Types
When referencing and using sequences, remember that, unlike lists and array
items, sequences are values. While you can use sequences in some list and array
expressions, you pass sequence values as a copy, rather than as a reference, and
change their values using the sequence functions.

Note Deleting an item contained in a sequence changes the element value to none, but
does not decrease the number of elements.

Sequence Functions

Use these functions to create and manipulate sequences.

To return a new sequence containing the given elements:

 sequence
(item-or-value [,...])
-> sequence

Returns a new sequence containing the given elements. Sequences may
contain from zero to 1,046,526 elements.

For example:

get-debug (P:class procedure) = (sequence)
SEQ: sequence;

begin
SEQ = sequence (the tracing-and-breakpoints-of P);
return SEQ

end

To return a new sequence one element shorter than the given sequence:

 remove
(sequence, integer)
-> sequence

Returns a new sequence one element shorter than the given sequence, where
the element at the given index has been removed. The first element is at index
0. If there is no element at the given index, an error is signalled.

To return a new sequence whose first element is the given item-or-value:

 insert-at-beginning
(sequence, item-or-value)
-> sequence

Returns a new sequence whose first element is the given item-or-value, and
whose remaining elements are all elements in the given sequence.
401

To return a new sequence with specific elements inserted:

 insert-at-end
(sequence, item-or-value)
-> sequence

Returns a new sequence whose elements are those in the given sequence, but
which also contains an additional last element which is the given item-or-
value. This operation is generally faster than insert-at-beginning for
incrementally collecting large sequences.

Sequences are stored as data arrays (not items), potentially with some empty
elements at the end of the array as the sizes of data structures are rounded up
to allocated sizes. In many cases, elements added to the end of sequences may
be filled into these empty locations without having to shift the previous
elements in the sequence.

To return a new sequence with inserted arguments:

 insert-after
(sequence, item-or-value, item-or-value)
-> sequence

Returns a new sequence with the same elements as the argument sequence,
but with the second argument inserted after the first occurrence of the third
argument within the sequence.

To return a new sequence with inserted elements before a given index:

 insert-before-element
(sequence, integer, item-or-value)
-> sequence

Returns a new sequence with the same elements as the argument sequence,
but with the third argument inserted into the sequence at the index given as
the second argument.

The allowable range for the index argument of a sequence is:

-1 to (number of elements - 1)

This operation can insert the new item-or-value as the new first element, new
last element, or at any location within the sequence.

If an index is given outside of this range, an error is signalled.
402

Working with Composite Types
To return a new sequence with inserted elements after a given index:

 insert-after-element
(sequence, integer, item-or-value)
-> sequence

Returns a new sequence with the same elements as the argument sequence,
but with the third argument inserted into the sequence immediately after the
index given as the second argument.

The allowable range for the index argument of a sequence is:

-1 to (number of elements - 1)

This operation can insert the new item-or-value as the new first element, new
last element, or at any location within the sequence. If an index is given
outside of this range, an error is signalled.

To change a single element of a sequence:

 change-element
(sequence, integer, item-or-value)
-> sequence

Returns a new sequence with the same elements as the argument sequence,
but with the value at the index location changed to the given item-or-value.
The first element is at index 0, and it is an error if the index is larger than the
current size of the given sequence.

To concatenate two or more sequences:

 concatenate
(sequence, sequence [,...])
-> sequence

Returns a new sequence containing the combined elements of the argument
sequences, with all elements of those sequences concatenated in order to form
the new sequence.

To get a portion of a sequence:

 portion
(sequence, integer, integer)
-> sequence

Returns a new sequence containing a portion of the elements of the argument
sequence. The first integer argument is the index at which to start copying,
and the second integer argument is the number of elements to return in the
new sequence.
403

Sequence Expressions

Use these expressions to access sequences:

To obtain a particular element in a sequence:

 {sequence} [integer]

Returns the nth item-or-value in the given sequence, where integer is a zero-based
index.

To iterate over elements in a sequence:

 the {class-name | type} [local-name] in {sequence}
-> [item | integer | float | symbol | text | truth-value | structure | sequence]

Returns each element of the given type found within the sequence.

To return an element of a particular type from a sequence:

 the {first | second | next to last | last {class-name | type} in {sequence}

Returns the element of the given type at the described position within the
sequence.

To determine whether an item-or-value is a member of a sequence:

 {item-or-value} is [not] a member of {sequence}

Returns whether or not the given item-or-value is a member of the sequence.

When testing for membership in a sequence, G2 ignores the alphabetic case when
comparing two text values and ignores the type when comparing two quantity
values. For example:

• The text string “Text” is a member of the sequence that contains “text”.

• The float 2.0 is a member of the sequence that contains the integer 2.

To determine the number of elements in a sequence:

 the number of elements in {sequence}

Returns the number of elements in the given sequence.
404

Using Structures and Sequences in User-Defined Classes
Using Structures and Sequences in
User-Defined Classes

You can use structures and sequences as user-defined attribute values in class
definitions. Unlike the general and specific G2 value types (quantity, integer, float,
and so on), both structures and sequences can consist of multiple values:

• Sequences can contain values of items and all value types, including other
sequences and structures.

• Structures can have values of items and all value types, including other
structures and sequences.

While structures and sequences offer similar functionality to lists and other items,
they consume considerably less memory. If your class-specific attributes do not
require the full capabilities that items provide, we recommend that you use:

• Structures to represent items.

• Sequences to provide list-like functionality.

Comparing Structures and Items

The fundamental properties of structures and items are:

Property Structures Items

Has iconic representation 

Has methods 

Has inheritance 

Can save as permanent knowledge  

Consists of attributes and values  

Can conclude values into attributes 

Has fixed set of attributes defined by a
class definition



Has arbitrary set of attributes that can be
added to and removed from per instance



Must be created and deleted explicitly 

Requires minimum memory 

Memory and existence are managed
automatically



405

Comparing Sequences and Lists

The fundamental properties of sequences and lists are:

Property Sequences Lists

Has iconic representation 

Requires minimum memory 

Can save elements as permanent KB
knowledge

 

Can have elements of structures and
sequences



Programmatically manipulate elements  
406

10
G2 Items
Presents the characteristics that are common to all G2 items.

Introduction 407

Logical Components of Items 408

Understanding Item Inheritance 410

Understanding the Knowledge Contained in Items 411

Item Representation 417

Locating Items upon a Workspace 420

Working with Items Interactively 426

Item Expressions 439

Referring to Other Item Knowledge 442

The Item Class 448

System Procedures for Working with Item Groups 450

Introduction
Items are the fundamental data structures within G2 that you use to represent
knowledge. You use items to collect and organize knowledge about real objects,
processes, and relationships. You use G2 to collect and organize a set of items in a
knowledge base (KB). The items in a KB represent a set of application knowledge.
407

Each item represents knowledge that has a distinct identity, that persists, and
which you can reference directly or indirectly. Each item also represents a set of
knowledge that has a particular pattern or template, based on its class. G2’s
object-oriented support for defining items enables you to design custom classes
and to create as many items of each class as required.

As you develop a KB, you work with items interactively by creating them,
naming them, moving and transferring them upon workspaces, and so on. When
G2 runs the current KB, the KB’s own processing works with items by reasoning
about them programmatically in actions, rules, procedures, functions, and
formulas.

Note To perform an operation programmatically means that you perform it by
executing a G2 executable item, such as an action button, rule, procedure,
method, and so on. To perform an operation programmatically, the current KB
must be running.

Items play the role of objects in other object-oriented programming languages.
For historical reasons, G2 uses the term item rather than object.

Logical Components of Items
Through its class inheritance, each item contains information that enables it to
represent various kinds of knowledge. Internally, every item consists of several
logical components, which may be accessible interactively, programmatically,
or both:

Logical Component Description

table attributes The attributes of an item that are displayed in its
attribute table.

hidden attributes The internal attributes of an item that are
displayed on its table of hidden attributes.
These attributes have been made accessible
through the attribute-access facility.

status Information about whether an item is one of
several pre-defined states: ok, incomplete, or
bad. The status of an item also includes
information such as whether the item is
permanent or transient, enabled or disabled,
activated or deactivated.
408

Logical Components of Items
The logical components of items are further described in Understanding the
Knowledge Contained in Items and Item Representation.

You work with items interactively using the G2 developer’s environment. By
default, when you click the mouse on an item, it displays its menu. An item menu
presents operations that you can apply to that item.

You can display the values stored in the attributes of an item by displaying the
item table. Each table shows the name and class of the item, its list of attributes,
and the current value of each attribute. You can also display the current value of a
particular attribute by creating an attribute display, which appears next to the
item itself upon a workspace.

position The workspace x and y coordinates of an item
upon a workspace. You can return the integer
value representing an item’s position, using the
expressions:

the item-x-position of item
the item-y-position of item

size The width and height of the icon of an item in
workspace units. You can return the integer
value representing an item’s width and height,
using the expressions:

the item-width of item
the item-height of item

representation The color or color-pattern of an item. For
example, you can interactively or
programmatically change the background-color
of a workspace. Similarly, you can change the
color of the named regions of an item’s icon, or
for textual items, such as messages, the text
color or size.

Logical Component Description
409

Understanding Item Inheritance
Each item is an instance of a class. An item’s class defines the template for the
knowledge it can contain. Each class is associated with at least one parent, or
superior, class. A class can also have subclasses, whose definitions are based on
the definitions of their parent classes. For further information see Classes and
Class Hierarchy.

An item’s class defines its set of attributes. Each attribute can contain a value, or
piece of knowledge. Most of the knowledge that your KB manipulates resides in
the attributes of the KB’s items.

All items are instances of some subclass of the item class, which is the root class in
the system-defined class hierarchy. The item class defines three attributes, notes,
names, and item-configuration, which all subclasses of the item class inherit. By
definition, each item in your KB has these attributes.

The next figure shows a workspace that contains one value-list and an instance of
a user-defined class. Both the value-list and the pipe item inherit their top-three
attributes from item class:

There are items of some system-defined classes that do not use the names
attribute, but rather define a class-specific attribute to contain the item’s identifier.

For instance, because a procedure can be invoked, as well as referenced for its
attribute values, its name is based on the declaration found in its text. Similarly,
because a relation definition establishes two relationships, a relation and an
inverse relation, it uses the class-specific relation-name attribute instead of the
names attribute.
410

Understanding the Knowledge Contained in Items
Understanding the Knowledge Contained
in Items

Each item represents a set of knowledge whose template is based on its class. An
item’s set of attributes represents such a template. However, each item also
contains other information that G2 maintains, such as its status and relationships
with other items.

Identifying the Knowledge in Attributes

The class of an item determines its set of attributes. An item’s attributes contain
knowledge in a form that is easy to work with. Attributes are described in detail
in Attributes and Tables.

Identifying the Knowledge Not Stored in Attributes

Items of some classes can contain one or more values that are distinct from the
items’ attributes. For instance, a variable or parameter can contain a value, and
can be defined to also contain history datapoint values. Also, lists and arrays can
contain values and references to other items in their elements. See the appropriate
chapter for more information about the knowledge that these items can contain.

Further, items also include a set of hidden attributes, which are those that do not
appear in an attribute table, and include:

• The item name box.

• Attribute display.

• Relationships.

• Containing module.

For more information about hidden attributes, see Attribute Access Facility.
Obtaining the relationships in which an item is participating is described in
Referring to the Relationships of an Item.

Identifying the Status Knowledge of Items

Items also contain several kinds of status knowledge:

• Permanent/transient: Whether the item is retained in the current KB after you
reset or reset it.

• Active/inactive: Whether other items in the KB can reference the item. This is
determined by whether the item’s parent workspace has been activated.
411

• Enabled/disabled: Whether the item can be activated. This is determined by
whether you have interactively selected enable or disable from the
item’s menu.

• Participation: Whether the item’s attributes contain enough information, or
the right information, to participate in processing.

G2 automatically maintains each item’s status knowledge.

Permanent/Transient Status

At a given moment, each item in the current KB is either permanent or transient.
The permanent/transient status of items is user-settable, but only
programmatically.

A permanent item continues to exist in the current KB after the KB is reset or
restarted. When you save the current KB to a file, only the KB’s permanent items
are stored in the KB file.

A transient item does not continue to exist in the current KB after the KB is reset
or restarted. Likewise, a KB that has been loaded but not yet started contains no
transient items. When you save the current KB to a file, the KB’s transient items
are not stored in the KB file.

After being created interactively, an item is permanent. For instance, any item
that you create by selecting from the KB Workspace > New Object menu is a
permanent item.

When you create an item programmatically, using the create action, that item
is transient.

To make an item permanent:

 make permanent item

To make an item transient:

 make transient item

For instance, this rule creates a new transaction message and makes it permanent:

for any transaction T
if the status of T is not message-sent

then in order
create a transaction-message TM and
conclude that the status of TM is unsent

and make TM permanent

Changing the permanent/transient status of an item causes G2 to propagate the
new status to all items below it in the workspace hierarchy.
412

Understanding the Knowledge Contained in Items
Note You cannot make a permanent item the subordinate item of a transient item. For
instance, you cannot transfer a permanent item to a transient workspace, and you
cannot make a permanent workspace the subworkspace of a transient item.

G2 provides the g2-system-predicate system procedure to obtain any item’s
permanent/transient status:

To determine if an item is permanent or transient programmatically:

 g2-system-predicate
(item-to-check: item-or-value; predicate: symbol)
-> permanent-transient-showing

Returns a truth-value indicating the predicate you pass to the procedure,
which can be permanent, transient, or showing.

Active/Inactive Status

The active or inactive status of an item indicates whether G2 has activated it.
When an item is inactive, it cannot be referenced by other items.

You can only set the active/inactive status of activatable subworkspaces. You
perform this action programmatically.

To activate an activatable subworkspace programmatically:

 Use the activate and deactivate actions.

When you start or restart the current KB, G2 automatically activates all enabled
top-level workspaces, then automatically propagates those workspaces’
active/inactive status to all items below them in the KB’s workspace hierarchy.
All enabled items on active workspaces are activated.

Note When you deactivate the subworkspace of an item, G2 behaves as though the
items upon the subworkspace do not exist. All items upon the subworkspace are
no longer active. The subworkspace itself, however, can still be referenced and is
included in existence checks such as the count of each kb-workspace.

For more information about how G2 activates workspaces, see Activating and
Deactivating Workspaces.

In addition, G2 cannot activate these items:

• Disabled items.

• Items whose status is bad.

• Items directly or indirectly subordinate to a non-activatable item (see
Identifying the Superior and Subordinate Relationships among Items).
413

Only an active variable can have a current value and a history. Only an active list
or array can contain values in its elements.

Referencing Inactive Definitions

If a class definition is not active, the class that it defines continues to exist.
Likewise, relation instances continue to exist even when the relation definitions
on which they are based become inactive.

Enabled/Disabled Status

The enabled/disabled status of an item refers to whether the item can be
activated. By default, when you create an item interactively, it is enabled and can
thus be activated.

You can disable an item interactively or programmatically. Once disabled, an
item is effectively deactivated, and its activation status is inactive. Changing the
enabled/disabled status of an item propagates to the items below it in the KB
workspace hierarchy. Enabling or disabling a workspace affects the items that
reside upon it, causing them all to become deactivated. Enabling one or more
items that reside upon a disabled workspace has no effect until the workspace
status is active and enabled.

To change the enabled/disabled status of an item interactively:

 Select enable or disable from the item’s menu.

To enable all disabled items in the current KB:

 Select Main Menu > Run Options > Enable All Items.

To change the enabled/disabled status of an item programmatically:

 g2-system-command
(command: symbol, win: class g2-window, item: class item,
 attribute: symbol)

where:

command is enable or disable.

For details, see the G2 System Procedures Reference Manual.

You can change an item’s enabled/disabled status at any time, regardless of the
KB’s run-state. Changing this status does not affect the item’s other status values.

When you enable an item, G2 immediately activates the item, unless there is
another item above it in the workspace hierarchy that is not activated. If the
enabled item is an activatable subworkspace, it is activated only when it is the
target of an activate action.

When you disable an item, G2 cannot activate it, even if the item meets all other
criteria for activation.
414

Understanding the Knowledge Contained in Items
When you save the current KB, G2 also saves the knowledge of which items are
disabled. Thus, items will continue to be disabled after you next load that KB.

Participation Status

The status of an item can be ok, incomplete, or bad and reflects whether the item
knowledge is valid for KB participation. G2 changes the participation status of an
item appropriately as the knowledge an item contains is updated.

The ok, incomplete, or bad status of each item appears in its notes attribute. The
next table summarizes the meaning of each setting:

For example, after you create a new class definition, G2 initializes the status of the
item to incomplete until you specify new values for the item’s class-name and
direct-superior-classes attributes.

The notes attribute of an item can also contain other useful information. For
example, the status of an item may be ok, but if the item resides upon a disabled
workspace, it cannot participate in KB processing. Such a status is displayed in
the item notes attribute with a message such as:

OK, but some superior item is either DISABLED or not OK.

Because G2 reports the participation status of an item in the notes attribute, you
can reference this status in expressions. For instance, when debugging your KB,
use the Inspect facility to construct a command like this:

show on a workspace every acid-bath-tank whose item-status is incomplete

or

show on a workspace every help-organizer with notes

These commands display items whose notes attribute does not contain the
value ok.

The notes attribute is a composite attribute, as described in Attribute
Access Facility. You can refer directly to the status information of active items that

Item Status Description

ok All attributes have valid values, and a sufficient
number of attributes have values to permit the
item to participate in the KB’s processing.

incomplete At least one attribute, whose setting is required
for the item to participate in KB processing,
requires a different value.

bad At least one attribute does not have a
valid value.
415

the notes attribute contains by referring to the item-status of an item, and to the
actual notes of an item using the item-notes.

To refer to the item-status of an item:

 the item-status of item
-> {OK | INCOMPLETE | BAD}

To refer to the item-notes of an item:

 the item-notes of item
-> {none | sequence ([text [,...]] }

Identifying the Superior and Subordinate
Relationships among Items

An item’s knowledge includes whether it has a superior or subordinate
relationship to other items. G2 considers information about the following
relationships to be part of an item’s knowledge:

• The relationship between a KB workspace and the items upon it.

• The relationship between an item and its subworkspace.

• The relationship between an item and the object that is contained in an
attribute; this includes an attribute that is an instance of an object or given by a
variable or parameter.

Tip You can use expressions to refer to the item that is superior or subordinate to
another item. See Referring to the Superior Item.

G2 propagates knowledge from item to item along the lines of the superior and
subordinate relationships, including:

• The active/inactive, permanent/transient, and enabled/disabled status
of items.

• The item configurations.
416

Item Representation
Item Representation
The visible portion of an item’s knowledge is called its representation. An item’s
representation is determined by the representation style of its class, for example,
its icon, text box, workspace, table, chart, and so on.

Note The representation of an item (other than connections) always occupies a
rectangular region on the screen, even if the visible portion of the representation
is not rectangular.

The following figure displays some item-representation styles:

Identifying the G2 Color Palette

G2 supports a large set of colors. G2 displays its color palette when you select
color on the menus of items. You can assign any supported color to any color
attribute of an item, or to any region of the icon of a system-defined or user-
defined class.
417

The G2 color palette provides these colors:

antique white aquamarine azure

beige black blue

brown cadet blue coral

cyan dark gray dark slate blue

dim gray extra light gray floral white

forest green gold goldenrod

gray green green yellow

indian red ivory khaki

lavender light blue light cyan

light goldenrod light goldenrod yellow light gray

light pink light steel blue light yellow

lime green linen magenta

maroon medium aquamarine medium blue

medium goldenrod medium orchid orange

pale goldenrod pale green pale turquoise

pink plum powder blue

purple red salmon

sienna sky blue slate blue

smoke tan thistle

turquoise violet violet red

wheat white yellow
418

Item Representation
The G2 color palette also includes the metacolors foreground, background, and
transparent. Each metacolor assigns a color value for an item’s color attribute by
referring to a color attribute of another item:

• A metacolor of foreground means that the actual color is determined by the
color value of the foreground color attribute of the item’s parent workspace.

• A metacolor of background means that the actual color is determined by the
color value of the background color attribute of the item’s parent workspace.

• The metacolor transparent means exactly that: whatever you assign to this
metacolor becomes transparent. Any item beneath a transparent item or icon
becomes visible.

You can select and drag a transparent item. Any visible knowledge that is
behind the transparent item, or other entity with color, is visible.

You cannot set the background-color color attribute of a workspace
to transparent.

Identifying the Color Attributes of Items

Each representation style has a corresponding set of color attributes. A color
attribute is a component of an item’s representation that can appear in a
distinct color.

Each item representation presents a set of color attributes:

• The icon representation has the icon-color color attribute.

• The text box representation has the text-color, border-color, and background-
color color attributes.

• The workspace representation has the foreground-color and background-color
color attributes.

• The connection representation has the stripe-color color attribute.

Other item representations do not have settable color attributes.

Note The icon-color color attribute of an item is distinct from the color regions defined
for its icon. For more information about icon color regions, see Composition of an
Icon.

The settings of an item’s color attributes are part of its knowledge. You can set the
color attributes of items interactively or programmatically.

To set a color region of an item interactively:

 Select the color choice on the item’s menu as described in Changing the Color
of an Item.
419

Actions That Affect Item Appearance

G2 provides the following actions that change an item color or pattern:

To change a color attribute of an item:

 change the color-attribute-name of item to
{color-name | symbolic-expression}

To change a color pattern of an item:

 change the color-pattern of item so that
{color-attribute-name is color-name} [, ...]

For items with an iconic representation, you can programmatically set the icon-
color region as well as any other user-defined icon color-region.

To change an icon region of an item:

 change the region-name icon-color of item to color-name

You can provide a symbol of the form RGBrrggbb as a valid color name, where rr,
gg, bb, are the 8-bit hex values for red, green, and blue. For details, see Other
Literal Terms.

Locating Items upon a Workspace

The location of each item upon its parent workspace is part of its knowledge.
Note that some items do not reside upon a workspace, yet they are still part of the
KB’s knowledge.

The location of a workspace within a G2 window is part of its knowledge.

Note G2 maintains information about whether a workspace is being displayed, and at
what scale, on a per-window basis; it does not maintain this information in the
workspace item. For more information about the relationships among workspaces
and the windows of G2 and Telewindows processes, see G2-Windows.
420

Locating Items upon a Workspace
Layering Items upon the Same Workspace

Item layering refers to how G2 draws the representations of items in a top-to-
bottom manner upon a workspace. The layering of an item is part of
its knowledge.

Note G2 includes two drawing modes, Paint and XOR. The XOR drawing mode is a
superseded capability. Your KB should use only the Paint drawing mode,
described in Drawing Parameters. For further information, see Appendix F,
Superseded Practices.

When Paint drawing mode is in effect and the representations of two items
intersect, G2 displays those items so that they overlap. Each item’s item layer
position determines which item appears on top. Each item upon a workspace has
a unique item layer position, which is an integer value of zero or higher that
G2 sets and maintains. An item whose item layer position is zero appears on top
of all other items upon that workspace.

In the next example, at the bottom of the overlapping-items workspace, the
messages created by the execution of report-item-layer-positions procedure report
the item layer positions of the other four items on the workspace. The item layer
positions correspond to the overlapping appearances of the items’ representations
on the workspace.

report-item-layer-positions()
ITEM: class item;
M: class message;
SYM: symbol;
POS: integer;
begin

for ITEM = each item upon overlapping-items
do

SYM = call g2-name-for-item(ITEM);
POS= call g2-get-item-layer-position(ITEM);
create a message M;

transfer M to overlapping-items at
(-325 + (20 * the count of each message upon

overlapping-items),
100 - (50 * the count of each message upon

overlapping-items));
change the text of M to "the item layer position for [SYM] is [POS]."

end
end
421

In general, when you add or transfer an item to a workspace, that item appears on
top of all other items already on that workspace. The first item placed upon a new
workspace has an item layer position of zero. This is true whether you create the
item on that workspace or transfer the item from another workspace. As the set of
items on a workspace changes, G2 automatically adjusts the item layer position
values of the items that remain in the workspace.

Note Other entities displayed on a workspace, such as its name box or an attribute
table, also have their own item layer positions. For this reason, at any one point in
time, the item layer positions of the items on your workspace might not include
the value zero or be consecutive.

Your application should not rely on the absolute value of any item’s item layer
position. Rather, your application should rely on the relative differences among
the layer positions of items.

Distinguishing Permanent, Transient, and Current
Knowledge

After you reset G2, the current KB contains only one version of each item’s
knowledge: its permanent knowledge. An item’s permanent knowledge is the set
of attribute values, status values, and item relationships that are in effect when G2
422

Locating Items upon a Workspace
is reset. When you interactively create an item or change the value of an attribute
when G2 is reset, G2 adds that item or value to the permanent knowledge of the
current KB. G2 saves only permanent knowledge to a KB file, unless you direct G2
to save a snapshot file of your KB.

After you start the current KB, you can add both transient knowledge and
permanent knowledge to the current KB. Transient knowledge is removed from
the current KB when G2 is reset. The transient and permanent knowledge that
exists in the current KB when G2 is running or paused is known collectively as
current knowledge. G2 uses only the current knowledge when it is running
your KB.

When G2 is running, you create transient knowledge by creating transient items,
relationships, and array and list elements; and by changing attribute values using
the change and change the text of actions.

Here are some actions that produce transient knowledge:

change the text of the length of cable45 to "15.3"

create a generator

change the name of the generator upon this workspace
to the symbol test-generator-9

conclude that the list-is-permanent of accounting-list is false;
insert 5 at the beginning of accounting-list

You create permanent knowledge by creating permanent items, relationships,
and array and list elements; and by changing attribute values interactively, by
executing the conclude action, and by executing the change and change the text
of actions followed by a make item permanent action.

Here are some actions that produce permanent knowledge:

conclude that the length of cable45 = 15.3

change the text of the length of cable45 to "15.3";
make cable45 permanent

create a generator G;
make G permanent

conclude that the names of the generator upon this workspace
= the symbol bozo

How Using Change Actions Effects the Current Knowledge of the KB

In a running G2 session, the first time you change an attribute’s value using the
change or change the text of action, G2 first copies its permanent value to an
internal attribute and then applies the change to the attribute. The new attribute
value is transient because the saved permanent value will be reinstated when G2
is reset.
423

Note Once you have made a transient change to an attribute value, G2 will reinstate the
original permanent value even if you execute subsequent permanent change
actions on the attribute within the running G2 session.

In the following example, the value of the length of cable45 will revert to 15.3
upon a even though a transient change action has been followed by a permanent
conclude action within a running G2 session:

conclude that the length of cable45 = 15.3;
change the text of the length of cable45 to "0";
conclude that the length of cable45 = 2000

An Example Using Permanent and Transient Knowledge

To demonstrate how an item’s permanent and transient knowledge differ:

1 Reset the current KB.

2 Create a new workspace by selecting Main Menu > New Workspace.

3 Create a new action button and place it upon a workspace by selecting
KB Workspace > New Button > action-button.

Because you created this new button interactively, you added a permanent
item to the current KB. The default value of the new button’s attribute, its
default color, and its subordinate relationship to its parent workspace are
pieces of the new button’s permanent knowledge.

4 Open the new button’s attribute table by selecting table from its menu.

5 Edit the name of the button to be my-permanent-name.

Editing the button’s name interactively updates the button’s permanent
knowledge.

6 Edit the action attribute of the button to:

change the name of my-permanent-name
to the symbol my-transient-name

With attribute displays, your workspace should now look similar to this:
424

Locating Items upon a Workspace
7 Start the current KB by selecting Main Menu > Start.

8 Press the new action button.

This causes G2 to perform the button’s action, which updates the display of
the value of its names attribute in the table and adds a note to the action
button indicating that the item my-permanent-name does not exist:

Executing this action updates the button’s current knowledge with transient
data, but not its permanent knowledge. By pressing the button, you invoke a
change action, which performs a transient programmatic change to the item’s
knowledge.

9 To confirm this, reset the KB again by selecting Main Menu > Reset.

Notice that resetting the current KB causes G2 to update the display of the
button’s names attribute in the table and to remove the note about the item
not existing. It again shows the value my-permanent-name, part of the
button’s permanent knowledge.
425

Working with Items Interactively

When G2 is running, part of its memory contains all the items in the current KB.
By default, when you start G2, the current KB is empty. You use the developer’s
environment to add items to the current KB. After you add some number of items,
you save the current KB into a KB file. Working with the current KB and with KB
files is described in Knowledge Bases.

To place items on a workspace interactively:

1 Create a new workspace by selecting Main Menu > New Workspace.

G2 creates a new empty workspace.

2 To add an item to this workspace, click on the workspace background and
select one of the menu choices on the KB Workspace menu that begins with
the word New.

For example, to create a variable:

a Select the New Object menu choice.

b Select g2-variable from the choose a class submenu.

c Choose logical-variable from the choose a class submenu.

G2 automatically creates a new logical variable item and attaches its icon to
the mouse pointer.

3 Position the mouse and click to place the icon on the workspace.

The new item now resides upon that workspace.

When you create an item interactively, you see it appear on the screen. Items have
different kinds of appearances, such as icons or text boxes. Each kind of item
appearance is called its representation. For a description of the kinds of item
representations in G2, see Item Representation.

To learn more about working with workspaces, see Workspaces.

Using Item Menus

You perform an operation on an item interactively by selecting a choice from
its menu.

To open an item’s menu:

 Click the mouse on the item.
426

Working with Items Interactively
As the next figure shows, clicking the mouse on an item causes G2 to display the
item’s menu over or near the item. The title bar of an item’s menu shows the
item’s class.

To dismiss an item’s menu:

 Click the mouse on the title bar of the menu.

G2 automatically positions and scales a menu so that it is entirely visible within
the G2 process’s window.

Common Item Menu Choices

This table lists several interactive operations that are common to most classes
of items:

Menu Choice Description

change size Open a workspace that lets you resize the item.

Note: This menu choice is only available when
the show-selection-handles attribute in the
Drawing Parameters system table is false.

clone Create a new copy of the item.

color Change a color setting.

create subworkspace Create a new workspace that is subordinate to
this item.
427

Changing the Size of an Item

By default, items have selection handles when you select them. To resize an item,
drag the selection handles. For example:

delete Remove this item from the current KB.

describe Display the Describe workspace for this item.

describe
configuration

Display the inheritance of configurations for
this item.

enable
disable

Allow or disallow this item to participate in the
KB’s processing.

lift to top
drop to bottom

Display the item so that it is on top of all other
items upon this workspace; display the item so
that it is beneath all other items upon this
workspace.

name Edit the name of this item.

rotate/reflect Rotate the item’s representation in increments
of 90 degrees; display the item’s representation
with mirrored appearance.

show unsaved
attributes

Display the table for the item with permanently
changed attributes highlighted.

table Display the item’s attribute table.

table of hidden
attributes

Display the item’s hidden attributes table.

transfer Allow you to drag the item to another
workspace.

Menu Choice Description
428

Working with Items Interactively
The show-selection-handles attribute of the Drawing Parameters system table
determines whether selection handles appear on items. By default,
show-selection-handles is true, which shows selection handles. When
show-selection-handles is false, selection handles do not appear; instead, the
change size menu choice appears in the item menu for changing the size.

Selecting the change size menu choice opens a dialog that you use to change the
size of this item’s representation. G2 encloses the item in a rectangle with a thick
border. To change the size of an item, move any edge or corner of the rectangle,
then press the Update Now button.

For example, this figure shows how you can enlarge an icon:

When you finish changing the size, either:

• Click the Cancel button to revert the item’s representation to its previous size.

• Click the Yes button to retain the change you made.

Note Every G2 item has a maximum size limit, beyond which the change size option
has no effect.

Cloning an Item

Cloning an item means to make a copy of it and all its knowledge. You can clone
items interactively or programmatically.

(1)
Edges and corners
have been moved.

(2)
The icon image has
been updated.
429

To clone an item interactively:

1 Select the clone choice on its menu.

This causes G2 to create a copy of the selected item and to attach the new item
to the mouse pointer.

2 Move the mouse to a location upon this workspace or upon any other visible
kb-workspace, then click the mouse.

This causes G2 to place the new item at that location upon the workspace.

Interactively, you can clone either permanent or transient items. Cloning a
permanent item interactively results in a permanent cloned item; cloning a
transient item interactively results in a transient cloned item.

To clone an item programmatically:

 Execute the create by cloning action.

Unlike when cloning an item interactively, executing the create by cloning action
always causes G2 to create a transient cloned item that does not reside upon any
workspace. For the new item to become visible, your KB must also execute the
transfer action, to place the new item upon a kb-workspace. You can also
optionally execute actions that make the cloned item permanent.

For more information about the create by cloning action, see Creating an Item by
Cloning Another.

Cloning Specific Knowledge

In most cases, a cloned item’s knowledge includes all the knowledge of its source
item, if it is valid for a new copy of that knowledge to exist in the current KB. For
instance, a cloned item has the same attribute displays that are defined for its
source item. However, an item that is cloned from another item that is the value of
an attribute cannot also be the value of the same attribute.

You can clone a KB-workspace. This results in a new workspace item, cloned
items upon the new workspace that are copies of source items upon the source
workspace, cloned subworkspaces, if any, of the cloned items, and so on.
However, if you clone a workspace that is the subworkspace of another item, the
clone workspace is not also the subworkspace of that item.

A cloned item does not automatically participate in the relations already
established between its source item and other items. A cloned item does not have
a value in its names attribute. This reflects the philosophy that, in general, it is
less desirable to have more than one item with the same name, especially among
items of the same class.

After cloning an executable item (that is, a rule, procedure, method, and so on),
G2 initializes the item so that its OK/incomplete/bad status is incomplete. This
means that the item must be edited or explicitly recompiled before G2 allows it to
430

Working with Items Interactively
be invoked. For a cloned rule, G2 also appends ellipses (...) to the rule’s text, to
indicate visually that the rule’s status does not allow it to be invoked.

The next figure shows a named rule and a rule that has been cloned from the
named rule. The cloned rule’s text has ellipses indicating it is not invokable, and
its attribute displays show that it is incomplete and that it has no value in its
names attribute:

Changing the Text Alignment of an Item

The align text choice for items with a text box representation allows you to align
the text left, right, or center.

Changing the Color of an Item

The color menu choice allows you to assign color settings interactively to the color
attributes of items.

The color attributes that are settable using the color menu choice depend on the
item’s representation style, as follows:

• For items with an icon representation style, you can set the icon-color
color attribute.

• For items with a text box representation style, you can set the text-color,
border-color, and background-color color attributes.

• For workspaces, you can set the foreground-color and background-color
color attributes.

• For all other items, you cannot set a color attribute.

For information about how a set of color attributes corresponds to each item
representation style, see Item Representation.
431

The next figure shows how G2 displays the color palette after you select the color
menu choice followed by the icon-color region:

For example, the color choice in the menu for a rule allows you to set the three
color attributes for items with a text box representation style:

When setting a
color region,
G2 first displays
this menu.

Press here ...

... to display this
menu of all G2’s
system-defined
colors.

You can set these
color attributes for an
item with a text box
representation.
432

Working with Items Interactively
Deleting an Item

The delete menu choice for an item causes G2 to remove that item from the
current KB. Use this menu choice to delete an item, regardless of whether the KB
is running, paused, or reset, and regardless of the settings of the item status.

Use the Delete Workspace choice on a workspace’s menu to delete the
workspace. Remember that deleting a workspace also deletes all items upon the
workspace, as well as all items below those items in the KB’s workspace
hierarchy.

Deleting an item, either interactively or programmatically, can also affect other
items:

• Deleting an item that participates in a relation also causes G2 to break that
relation.

• Deleting an item that is also referenced in an element of a list or array, causes
the next reference to that element to produce a no value condition.

• Deleting an item that is attached to a connection also causes G2 to delete that
connection. If you delete an item attached to a connection that, in turn,
attaches to another connection via a junction, G2 deletes only the connection
between the deleted item and the junction.

Whether done interactively or programmatically, deleting a permanent item (and
any additional changes that this causes for other permanent items) cannot be
undone by resetting the current KB. Deleting a permanent item changes the
current KB’s permanent knowledge. For a description of the KB’s permanent
knowledge, see Distinguishing Permanent, Transient, and Current Knowledge.

Describing an Item

The describe menu choice for an item directs G2 to display a Describe workspace,
which presents information about an item’s knowledge. The exact information
that the workspace displays depends on the class of the selected item.

For many items, the Describe workspace simply displays the first name listed in
the item’s names attribute and its module assignment as for this workspace:
433

For this instance of a user-defined class, G2 also displays a description:

The Describe workspace has its own menu. The text items that appear in a
Describe workspace are also selectable and have their own menus.

Tip See the various chapters in this guide to obtain more information about what
appears in the Describe workspace for items of a particular system-defined class.

Describing the Configuration of an Item

Selecting the describe configuration choice on an item’s menu displays a table that
shows the hierarchy of configurations that apply to the item. Configurations and
the configurations hierarchy are described in Configurations.

Showing Unsaved Attributes

Selecting the show unsaved attributes choice on an item’s menu displays the table
for the item with permanently changed attributes highlighted. All attributes are
highlighted for a new item. An item that has no unsaved permanent attribute
changes has no show unsaved attributes menu option.

The following example shows a an item with one unsaved attribute value
highlighted and a newly created item with all attribute values highlighted:
434

Working with Items Interactively
Lifting to the Top and Dropping to the Bottom

Use the lift to top and drop to bottom menu choices to change an item’s layer
position, adjusting its relative position, top to bottom, among the items in its
workspace.

Selecting lift to top causes the selected item to appear on top of any other item on
its workspace. Selecting drop to bottom causes the selected item to appear beneath
any other item on its workspace.

Lift to top and drop to bottom work by revising the layering of items on a
workspace. Lift to top makes the selected item’s layer position less than the layer
positions of all other items on that workspace. Conversely, drop to bottom makes
the selected item’s layer position greater than the layer positions of all other items
on that workspace.

For two items whose representations overlap, the following diagrams shows the
result of selecting lift to top and drop to bottom:

In this example, station203 is lifted to the top:

Here, station203 is dropped to the bottom:

Naming an Item

To name an item, select the name menu choice and edit the names attribute.
Selecting name causes G2 to open a Text Editor workspace. When you finish
editing the name, press Return, or click the mouse on the End button.

If you name an item, try to make the name unique. Though G2 allows duplicate
item names, their use is not recommended as a development practice. When
duplicate names exist, and more than one of the items satisfies a reference, G2
chooses one of the items at random. The choice may not be the same from one
reference to the next, which can cause unpredictable results.
435

For some items, after you edit the item’s name, G2 displays the item’s name in a
name box below the item:

After a name box appears, you can drag it to a new position near the item or
anywhere else upon the workspace. You can quickly open the Text Editor and
edit the item’s name by clicking on the text of the name box.

For debugging purposes, G2 creates a unique, internal name for an item, as
needed, for example, when you describe the item. Occasionally, the G2 internal
name appears in the notes for the item indicating that its status is OK, for
example, METHOD-XXX-BAR::MY-METHOD-13: OK. You can safely ignore these
messages. G2 does not include them when you use the show on a workspace
every item with notes command.

To open the menu for a item’s name box:

 Click near the corner of the displayed item name.

To edit the name of an item shown in a name box:

 Double-click the name box.

or

 Open the menu for the name box and select edit from the menu.

To hide the display of a name box:

 Open the menu for the name box and select hide name from the menu.

Tip An item’s name box is not the same as an attribute display. See Adding Attribute
Displays to Attribute Tables.

Name box
436

Working with Items Interactively
Showing and Hiding an Item Name Box
Programmatically

You can access and manipulate an item’s name box programmatically using the
attribute access facility. The name-box of item is represented by a structure. Here
is an example:

structure
(color:

structure(background-color: the symbol transparent,
text-color: the symbol foreground),

position:
structure(x-offset 238, y-offset: 111))

The next procedure shows one way to hide and show the name box of any
variable or parameter. This procedure:

• Accepts a single variable or parameter as an argument.

• Creates a new structure of the existing values for the name box, using the
structure() function.

• Concludes that the name-box of the variable has no value.

• Waits for 5 seconds (used for testing purposes).

• Concludes that the name-box has its original values.

show-hide-name-box(art-object: class art)
name-box-value: structure;
begin

name-box-value = the name-box of art-object;
conclude that the name-box of art-object has no value;
wait for 5 seconds;
conclude that the name-box of art-object = name-box-value

end

Rotating and Reflecting an Item

The rotate/reflect menu choice presents this submenu:

Selecting a degree of rotation directs G2 to turn the item’s representation on its
center, by either 90 degrees or 180 degrees.
437

Selecting either left-right or up-down reflection directs G2 to display a mirrored
version of the item’s representation.

This figure shows the effect of rotating and reflecting an item with an icon
representation:

Displaying the Tables for an Item

Selecting the table menu choice directs G2 to display the attribute table for this
item, and selecting the table of hidden attributes menu choice displays the hidden
attributes.

Interacting with attribute tables is explained in Using Attribute-Tables and
Hidden-Attributes-Tables.

Transferring Items to Another Workspace

Selecting the transfer menu choice allows you to use the mouse pointer to drag
the selected item to any KB workspace that is displayed in the G2 window. If
necessary, G2 enlarges the workspace so that it encloses the item’s representation
within the workspace’s current margins.
438

Item Expressions
Item Expressions

These expressions refer to an item or, for the designated generic reference
expressions, a set of items.

Referring by Item Name

To refer to an item by name:

 item-name
-> item

In most contexts, specifying a symbol that names an item produces that item, for
use by an action or in an expression.

Referring through a Symbolic Expression

To refer to an item by a symbolic expression:

 the class-name [local-name] named by symbolic-expression
-> item

With the the quantifier, this generic reference expression produces one of the
items of the specified class whose item name is produced from symbolic-
expression. This expression indirectly references an item.

With the any quantifier, this expression produces the set of items of the specified
class whose item name is produced from symbolic-expression.

Referring by Variable or Parameter Name

To refer to an item by a variable or a parameter name:

 {g2-variable | g2-parameter}
-> {item | value }

In some contexts, specifying a symbol that names a variable or parameter
produces its current value, if one exists.

Referring by Workspace Location

To refer to an item by its location upon a workspace:

 the class-name [local-name] upon kb-workspace
-> item

With the the quantifier, this generic reference expression produces the one and
only item of the specified class that G2 finds upon the specified workspace. With
439

the any quantifier, this expression produces the set of items of the specified class
upon the specified workspace.

Referring by Identity

To reference an item by identity:

 item is [not] the same object as item
-> truth-value

This expression produces a truth-value that indicates whether an item referenced
in one manner is the same item as another item referenced in a different manner.
For example:

for any tank T that is downstream-of water-outflow-2
if tank-1 is the same object as T then

inform the operator that
"[the public-name of tank-1] is downstream of [the public-name of
water-outflow-2]."

This generic if rule checks whether tank-1 is among the items that participate in a
downstream-of relation with the item water-outflow-2.

Referring by Association with an Event or Location

These expressions refer to the item that is associated with an event or to the
workspace that contains the item in which the expression is evaluated.

To reference an item through its associated window:

 this window
-> g2-window

This expression produces the G2 window that receives the user gesture associated
with this expression. Specify this expression only in the action attribute of an
action button or in the action attribute of a user menu choice.

For example, this action affects the workspace that contains an action button that,
when pressed, causes this action’s this window expression to be evaluated:

hide this workspace on this window

To reference an item through its workspace:

 this workspace
-> kb-workspace

This expression produces the parent workspace of the item within which this
expression is evaluated.
440

Item Expressions
Note If the this workspace expression is evaluated as the result of selecting a user menu
choice, it produces the workspace that contains the user menu choice, not the
workspace that contains the selected item.

Referring by Item Evaluation

Several expressions refer to the item associated with the executable item in which
the expression is evaluated.

To reference the item from whose menu a user menu choice is selected:

 the item
-> item

Specify this expression only in the action attribute of a user menu choice, to refer
to the item from whose menu this user menu choice is selected.

The the item expression is valid regardless of the class named in the user menu
choice’s applicable-class attribute.

For example, the next figure shows a user menu choice whose action attribute
specifies the action rotate the item by 90 degrees:
441

Referring to Other Item Knowledge
These expressions refer to other knowledge contained in or associated with an
item, but not found in the item’s attributes.

Referring to the Name and Class

To refer to the name of an item:

 the name [local-name] of item
-> symbol

With the the quantifier, this generic reference expression produces the first
symbol in the names attribute of the specified item. With the any quantifier, this
expression produces the set of symbols that name the specified item. For example:

if the name of the custom-object O nearest to help-button is custom
then conclude that the status of O is OK

To refer to the class of an item:

 the class of item
-> symbol

This expression produces a symbol that names the class of the specified item. For
example:

if the class of the custom-object O nearest to help-button is my-object
then conclude that the status of O is ok

To refer to an item that is an instance of a particular class:

 item is an instance of the class named by (symbolic-expression)
-> truth-value

This expression produces a truth-value that indicates whether the specified item
is an instance of the class (or any of its subclasses) named in the specified
symbolic expression. For example:

if the custom-object O nearest to help-button is an instance of the class
named by (the equipment-class-identifier of my-object) then

conclude that the status of O is ok

Referring to the Superior Item

To refer to the item superior to a workspace:

 the class-name [local-name] superior to kb-workspace
-> item
442

Referring to Other Item Knowledge
This expression produces the superior item of the specified class of a workspace
that is also a subworkspace. For example:

move the item superior to this workspace by (100,100)

If you specify a top-level workspace as kb-workspace, G2 signals an error. To
prevent this, use this expression with the exists expression, as follows:

for any kb-workspace W
if the custom-object O superior to W exists and the name of W is help

then conclude that the purpose of O is help-schematic

This generic if rule identifies each workspace that has a superior item and, for
each that does and whose name also is help, sets the purpose attribute of its
superior item to the symbol help-schematic.

To refer to the item superior to an object contained in an attribute:

 the class-name [local-name] superior to item
-> item

For an object that is the attribute value of an item of a user-defined class, this
expression produces the item that is its superior item. For example:

rotate the item superior to my-custom-object

If you specify an object that has no superior item, G2 signals an error. To prevent
this, use this expression with the exists expression, as follows:

for any custom-object O1
if the item O2 superior to O1 exists and the name of O2 is help

then conclude that the status of O2 is ok

This generic if rule identifies each custom-object that has superior item and, for
each that does and whose name also is help, sets its status attribute to the
symbol ok.

Referring to the Workspaces Associated with
an Item

Expressions that return the workspace of an item are described in Expressions
That Refer to KB Workspaces.

Referring to the Relationships of an Item

Each item contains information about the relationships in which it is
participating. Such knowledge is accessible programmatically and on the item’s
hidden attributes table.
443

To refer to the relationships of an item:

 the relationships of item-of-interest
-> relationships

Each structure in relationships contains these subattributes:

As an example, in a KB that has two relation definitions, married-to and a-son-of,
you could create relations between items with the following conclude actions:

• conclude that bill is married-to edna

• conclude that george is a-son-of edna

Argument Description

item-of-interest The item whose relationships you wish to
obtain.

Return Value Description

relationships A sequence of structures of one or more
relation names and the items to which it
applies.

Subattribute Type Description

relation-name-
reference

symbol The name of the relation, which
can be either the relation-name or
the inverse-of-relation of the
relation.

relation-is-
inverted

truth-value A value of true indicates that the
item participates inversely in a
non-symmetric relationship;
otherwise the value of this
subattribute is false. It is not
necessary to include this
subattribute when concluding
relationships.

related-items sequence A sequence of items with the
relation-name-reference
relationship to the item-of-interest.
444

Referring to Other Item Knowledge
Such actions result in the item edna having two relationships with two separate
items, bill and george. A reference to:

the relationships of edna

returns a sequence of structures as follows:

sequence
structure(relation-name-reference: the symbol married-to,

relation-is-inverted: false,
related-items: sequence(BILL),

structure(relation-name-reference: the symbol a-son-of,
relation-is-inverted: true,
related-items: sequence(GEORGE)))

If an item is not participating in any relationships, G2 returns the empty sequence:
sequence().

Referring to the Size of an Item

Note The default borders of a kb-workspace, as well as borders created by using a
frame-style-definition are not included in the item-width and item-height of a
kb-workspace.

To refer to the height of an item:

 the item-height of item
-> integer

This expression produces the height in workspace units of the specified item’s
representation. You can apply this expression to items with an iconic
representation as well as to items with other representations. For a description of
the representations of items, see Item Representation.

An item’s visible icon might not be as high as the rectangular space provided
for it; therefore, the height in workspace units produced by this expression might
be greater than the visible icon’s height. For example:

conclude that the height of my-object = the item-height of my-object

To refer to the width of an item:

 the item-width of item
-> integer

This expression produces the width in workspace units of the specified item’s
representation. You can apply this expression to items with an iconic
representation as well as to items with other representations. For a description of
the representations of items, see Item Representation.
445

An item’s visible icon might not be as wide as the rectangular space provided
for it; therefore, the width in workspace units produced by this expression might
be greater than the visible icon’s width. For example:

conclude that the width of my-object = the item-width of my-object

Referring to Degrees of Rotation

To refer to the degrees of rotation of an item’s representation:

 the icon-heading of item
-> integer

This expression produces the number of degrees of rotation (0, 90, 180, or 270) for
the specified item. For example:

conclude that the angle-of-rotation of my-object = the icon-heading of my-object

Not all items are rotatable. See the description of the rotate action in rotate.

Referring to the Position of an Item

To refer to the item-x-position of an item:

 the item-x-position of item
-> integer

This expression produces the horizontal offset in workspace units between the
center of the specified item’s representation and its parent workspace’s origin.
A positive integer indicates a position to the right of the origin, and a negative
integer indicates a position to the left of the origin. For example:

conclude that the horizontal-location of my-object = the item-x-position of my-object

To refer to the item-y-position of an item:

 the item-y-position of item
-> integer

This expression produces the vertical offset in workspace units between the
center of the specified item’s representation and its parent workspace’s origin.
A positive integer indicates a position above the origin, and a negative integer
indicates a position below the origin. For example:

conclude that the vertical-location of my-object = the item-y-position of my-object

To refer to the item nearest to another item:

 the class-name [local-name] nearest to item
-> item

With the the quantifier or the any quantifier, this generic reference expression
produces the one item of the specified class (or any of its subclasses) that is on the
446

Referring to Other Item Knowledge
same workspace as, and the fewest workspace units from, the specified item. The
two specified items need not be connected.

G2 calculates the proximity of a pair of items as the distance in workspace units
between the centers of their respective representations. In the following example,
the readout table indicates that shopping is nearest to district.

To refer to the distance between items:

 the distance between item and {item | the nearest class-name}
-> integer

This expression produces the number of workspace units of distance between the
centers of the representations of the two specified items. The two items must be
upon the same KB workspace, else G2 signals an error. The two items need not be
connected.

The next figure shows two readout tables that use this expression to display the
distance between items X and Y and between items X and Z.
447

The Item Class

The item class is the root class of the G2 class hierarchy. For more information
about G2’s system-defined class hierarchy, see Classes and Class Hierarchy.

The system-defined attributes that G2 provides for all items in a knowledge base
are described in the following table. To avoid redundancy, they are omitted from
all other attribute descriptions in this manual that pertain to items:

Attribute Description

notes Displays the current value of the item participation status:
OK/incomplete/bad, active/inactive, and
enabled/disabled. Use this attribute’s value to identify a
discrepancy in the knowledge that an item contains.

If there are no problems with the item, G2 displays ok. If
there are problems with the value of any item attribute,
G2 displays bad. If there are attributes that require values
but do not yet have them, G2 displays incomplete.

Allowable values: ok
bad
incomplete

Default value: Varies, depending on the class of the item.

Notes: You cannot edit this attribute, but you can refer to it
programmatically in an expression, and by using the
phrase with notes in a filter expression within the Inspect
facility.

For information on the status of items, see Participation
Status.
448

The Item Class
names Contains one or more names for an item. G2 does not
require that this attribute have a value.

For example, a short name can identify the item in a
schematic, while a long name refer to the item in a rule or
other statement.

Allowable values: Any unreserved symbol

Default value: none

Notes: Items of some system-defined classes do not offer a names
attribute. See Understanding Item Inheritance.

If two connection posts have the same name, G2 considers
them to be connected.

item-configuration Contains one or more configuration statements that apply
to this item and to all items below it in the workspace
hierarchy.

Allowable values: See Declaring Configurations for Items.

Default value: none

Attribute Description
449

System Procedures for Working with
Item Groups

Several system procedures let you work with groups of items. The system
procedures are the programmatic equivalent of interactively using the operate on
area menu choice available on the KB Workspace menu.

The following system procedures allow you to get a group of items and to move,
transfer, clone, align, and distribute the items as a group. System procedures also
exist for moving, transferring, and cloning a group of items to the mouse.

For more information on all these system procedures, see Move and Transfer
Operations in the G2 System Procedures Reference Manual.

To create a list of a group of items:

 g2-get-items-in-area
(workspace: class kb-workspace, left: integer, top: integer,
 right: integer, bottom: integer, items-in-area: class item-list)

Selects a group of items on a workspace, and appends all but connections and
stubs to the existing list items-in-area. Connections and stubs are not included
because G2 can obtain them automatically given the included items. Other
group-movement system procedures require such a list of items as their first
argument.

To move a group of items:

 g2-move-items
(item-list: class item-list, delta-x: integer, delta-y: integer)

Moves one or more items, including any connections between them and any
stubs, to a new location on the current workspace. Connections to items not
moved redraw as needed to maintain their attachments to the moved items.

To transfer a group of items from one workspace to another:

 g2-transfer-items
(item-list: class item-list, destination: class kb-workspace,
 delta-x: integer, delta-y: integer)

Transfers one or more items, including any connections between them and
any stubs, from one workspace to another. No connection can exist between
an item that is transferred and one that is not. If any such connection exists,
G2 signals an error and leaves the workspaces unchanged.
450

System Procedures for Working with Item Groups
To clone and transfer a group of items from one workspace to another:

 g2-clone-and-transfer-items
(item-list: class item-list, destination: class kb-workspace,
 delta-x: integer, delta-y: integer)
-> transferred-items: class item-list

Clones a group of items, including any connections between them and any
stubs, and transfers the cloned items to another workspace. Connections to
items not cloned are not transferred.

To align a group of items:

 g2-align-items
(items: class item-list, operation: symbol)

Aligns a group of items. The options for operation are: left, right, top, bottom,
left/right-center, and top/bottom-center. To specify the slash character in a
symbol (/), you must use the @ escape character, for example, left@/right-
center.

To distribute a group of items:

 g2-distribute-items
(items: class item-list, operation: symbol)

Uniformly distributes a set of items. The options for operation are: horizontally
and vertically. At least three items are required. The outermost two items are
unchanged, and the remaining inner items are positioned between the
outermost items such that the space between any two items is constant.
451

452

11
Attributes and Tables
Shows you how to use item attributes and the attribute tables that display them.

Introduction 454

Attribute Contents 454

Using Attribute-Tables and Hidden-Attributes-Tables 455

Adding Attribute Displays to Attribute Tables 464

Loading Attribute Values from an Attribute File 469

Using the Authors Attribute 469

Using Indexed Attributes 470

Using Universal Unique Identifiers 471

Using Other Special-Purpose Attributes 473

Actions That Affect Attributes 474

Expressions That Refer to Attributes 474
453

Introduction
The most significant part of any item’s knowledge is typically contained in its
attributes. You display and edit an item’s attributes by displaying the attribute
tables for the item.

Attribute Contents
Attributes can contain values, such as integers, floats, symbols, text strings, truth-
values, sequences, and structures. For information on the values that attributes
can contain, see Values and Types.

Attributes can also contain instances of user-defined and system-defined classes
of objects, for example, instances of variable and parameter classes. An object
contained in an attribute of an item is called a subobject. For information on
accessing the attributes of objects contained in an attribute, see Displaying the
Subtable for an Attribute That Contains an Object.

Some attributes contain the text of a text-based item, such as a rule or procedure.
These are called text attributes. You work with the text attribute of an item just as
you would work with other named attributes.

Other item attributes contain actions, statements, or G2 expressions, such as the
action attribute of an action button, the text attributes of rules and procedures,
and the item-configuration attribute of items. These are called compiled
attributes. Items that have compiled attributes might have dependencies upon
other items that affect their compilation status, as described in Using Compilation
Configurations.

Distinguishing System- and User-Defined Attributes

An item’s attributes are either system-defined or user-defined. The G2 system-
defined classes define system-defined attributes for items. You cannot change the
definitions of any system-defined attributes.

When you create user-defined classes, you can also define user-defined attributes
for those classes. Definitions describes how to create user-defined classes and
user-defined attributes.

You can access most system-defined attributes of items. Some system-defined
attributes, such as notes, are text-readable only. You can refer to the text of such
attributes, but not to their values directly. Accessing system-defined attributes is
described in Attribute Access Facility.
454

Using Attribute-Tables and Hidden-Attributes-Tables
Accessing Text-Readable Only System-Defined Attributes

To access programmatically the value of a text-readable only system-defined
attribute:

 Form an expression that refers to the text of that attribute.

For example, the next figure shows an action button. Pressing this action button
displays the text of its own notes attribute in a message that G2 posts to the
Message Board workspace:

After you create a user-defined class with user-defined attributes, you can
interactively edit any user-defined and writable system-defined attribute in each
instance of that class. Your KB can also programmatically conclude the value of
any user-defined and writable system-defined attribute.

Suppressing Interactive Editing of Editable Attributes

To suppress interactive editing of editable attributes:

 Define configurations that direct G2 not to display the edit choice on menus or
to respond to mouse clicks that, by default, open the Text Editor.

Declaring configurations is the subject of Configurations.

Using Attribute-Tables and Hidden-Attributes-
Tables

An item has two attribute tables, both of which are accessible from the
item’s menu:

• An item’s table menu choice displays the attribute-table which displays the
user- and system-defined attributes of the item.

• An item’s table of hidden attributes menu choice displays the hidden-
attributes-table which displays the virtual attributes of the item. Virtual
attributes give you system information about the item such as its workspace
coordinates, its relations, and whether the item is permanent or transient. You
455

access the value of a virtual attribute and conclude a new value into a writable
virtual attribute programmatically and interactively just as you do for other
attributes. All user-accessible system-defined attributes are documented in
the G2 Class Reference Manual.

Displaying an Attribute Table for an Item

To display an attribute table for an item:

1 Click the item to display its menu.

2 Choose either the table or the table of hidden attributes menu choice.

Note The ability to display an attribute table assumes that the item has not been
configured to behave otherwise. Configurations are described in Configurations.

This figure shows the attributes table and a partial hidden-attributes tables for an
instance of a user-defined object class with a single class-specific attribute, area:
456

Using Attribute-Tables and Hidden-Attributes-Tables
This figure shows the organization of an attribute table for an instance of a user-
defined rule class:

Updating Attribute Tables

You can open more than one attribute table and more than one hidden-attributes
table for an item. For all open non-hidden attribute tables, G2 continuously and
automatically updates the tables when the values of the displayed attributes
change. For this reason, displaying an attribute table is a convenient way to
monitor an item’s attributes as you develop your KB. However, G2 does not
update a hidden-attributes-table unless you explicitly request an update.

To update an item’s hidden-attribute-table:

 Click the Update this table button at the bottom of the table of hidden
attributes.

User-specified item name

Names of attributes Current attribute values

G2-specified item name Class name

Text row

Attribute
menu
457

To the right of this button, G2 displays the time of the last update:

In an attribute table, G2 indicates that a value has expired by displaying the
characters ***. Since only the value of a variable can expire, an expired value can
occur in:

• A variable’s attribute table, when the current value expires.

• The attribute of a user-defined class that is given by a variable.

Display-Precision on Attribute Tables

G2 displays each float value with no more than three digits of precision to the
right of the decimal point. Thus, G2 displays the float value 0.333456 as 0.333. If
you reenter a value with only three digits of precision, other significant digits of
the original number are lost.

To display the float value of an attribute with greater precision, use a readout
table whose expression-to-display attribute specifies a formatting expression,
such as dd.ddddd.

Positioning Attribute Tables

By default, an attribute table does not reside upon any workspace. However, you
can use the mouse to drag an attribute table anywhere within the G2 window.
Attribute tables also respond to G2’s system-defined keystroke commands for
moving workspaces, such as Control + u and Control + d, to move it up and
down, respectively. You can also transfer an attribute table to a KB workspace, as
described in the next section.

Attribute tables persist after you reset or restart the current KB. An attribute table
is not an item, so G2 does not save it when you save the current KB into a KB file.

Using Attribute Menus on an Attribute Table

The attribute tables for an item have attribute submenus for most attributes. The
menu choices allow you to edit the attribute value, create an attribute display,
make a subtable, and perform other functions, depending on the attribute type.
For some attributes, clicking on the value of an attribute in a table immediately
opens the Text Editor.

To display a table menu:

 Click the mouse on any row in the table.
458

Using Attribute-Tables and Hidden-Attributes-Tables
The choices shown on an attribute menu depend upon whether you clicked in a
row that displays an editable value attribute, an editable subobject attribute, or a
uneditable attribute, as this figure shows:

To edit an attribute value:

 Double-click the attribute value.

or

 Select the edit menu choice.

This opens the Text Editor. You use the Text Editor to change the value of any
editable attribute. For information on interacting with the Text Editor, see
The Text Editor.

notes: An uneditable attribute

names: An editable value attribute

height: A subobject attribute
459

Certain attribute values are yes or no, in which case you can toggle the value of
the attribute.

To toggle the value of a yes/no attribute:

 Double-click the attribute value.

or

 Select the change to "yes" or change to "no" menu choice, depending on the
current value.

Transferring an Attribute Table

To transfer an attribute table means to place it upon a KB workspace.

A transferred attribute table has a special status within your KB:

• G2 continues to automatically update a transferred non-hidden attribute-table
with the current values of the displayed attributes.

• The permanent/transient status of a transferred attribute table
remains transient.

• G2 does not save a transferred attribute table into a KB file.

To transfer an entire attribute table to a workspace:

1 Click in one of the cells of the attribute table to display the table-item menu:

2 Choose transfer to attach an outline of the table to the mouse pointer.
460

Using Attribute-Tables and Hidden-Attributes-Tables
3 Drag the attribute table to any displayed workspace, including the workspace
on which you are currently displaying the table:

4 Click the mouse to place the table on the workspace. The workspace borders
move outward as necessary to include the table. The transferred attribute-
table changes to a white-background table without a title bar.

Note You cannot programmatically transfer a table, and you cannot programmatically
move a table that is on a workspace.

Displaying the Subtable for an Attribute That Contains an Object

A user-defined attribute of a user-defined item class can contain as its value any
instance of the object class.

The object contained in the attribute of an item is called a subobject. A subobject
has its own table associated with it, called a subtable. The table menus and menu
choices that appear in a subtable are no different from those for attribute tables.
The only difference is that they pertain to the attributes of the object contained in
the attribute.

Tip Defining an Attribute as an Object Instance describes how to define class-specific
attributes whose values are object instances, including variables, and parameters.

To display the subtable for an attribute that contains an object:

 Click on the attribute row in the table to display its menu and select the
subtable menu choice.

The fact that this table contains the subtable menu choice by default indicates that
the value of this attribute is an object.

Note You cannot delete the subtable for a class-specific attribute that is declared to be
an instance of some object class, or given by a variable or parameter.
461

The next figure shows the attribute menu for a suboject attribute:

Selecting the subtable menu choice displays the subtable for an float-parameter,
as shown in the next figure:

Creating a Subtable for an Attribute

You can interactively create a subtable for an attribute so that it contains an object.
The result is similar to defining a class-specific attribute in the definition of a class
to be an instance of some object class or given by a variable or parameter.

You can interactively add a subtable to any untyped attribute, or any attribute
that has a default value; you cannot interactively add a subtable to a typed
462

Using Attribute-Tables and Hidden-Attributes-Tables
attribute. For information on defining class-specific, typed and untyped attributes
in a class definition, see Defining and Initializing Class-Specific Attributes.

To add a subtable to an attribute interactively:

1 Click on an untyped attribute in an attribute table to display the table menu:

2 Select the add optional subtable menu option.

G2 displays a menu of all system-defined and user-defined object classes:

3 Choose a class.

G2 adds a subobject of the specified class to the attribute and an associated
subtable. The table menu for the attribute now displays the subtable menu choice
for displaying the interactively created subtable.

To delete an interactively created subtable for an attribute:

 Click on an attribute that contains an object whose subtable was created
interactively, and select the delete subtable menu choice.
463

Adding Attribute Displays to Attribute Tables

An attribute display shows the value of an attribute of an item. Using attribute
displays, you can display any number of an item’s values. You can also optionally
display the name of the displayed attribute with its value.

Note You cannot add an attribute display to a hidden attribute table.

This figure shows a variable that has two attribute displays: the options attribute
and the history-keeping-spec attribute:

The attribute displays of an item are part of its knowledge. As you move an item
within its workspace, its attribute displays move with it. When you transfer an
item to another workspace, its displays are transferred with it. G2 saves
knowledge about an item’s attribute displays in the KB file.

Attribute displays are not items; they cannot be transferred, cloned, and so on.
However, since they are part of an item’s knowledge, you can access them
programmatically using the attribute access facility as described in Adding or
Removing Attribute Displays Programmatically.

Attribute displays can only show the value for an attribute that does not contain
an item. For example, you cannot display the attributes of a quantitative variable
that provides the value of a tank’s pressure attribute.

Note An item’s name box is not the same as an attribute display of the item’s names
attribute.

To create an attribute display for an attribute in a table interactively:

 Click on the row for any attribute, and select the show attribute display
menu choice.

By default, showing an attribute display interactively displays only the value.
Showing the attribute name is described in Manipulating an Attribute Display
from its Menu.

The text shown in an attribute display appears in the color assigned to the
foreground-color color attribute of the item’s parent workspace.

You can reposition an attribute display by using the mouse to drag it. Click on the
attribute display to edit the text it displays.
464

Adding Attribute Displays to Attribute Tables
Note You cannot create attribute displays for charts, connections, digital clocks,
freeform tables, graphs, or readout tables.

Graphs are a superseded capability. For more information see Appendix F,
Superseded Practices.

Unlike readout tables, attribute displays do not cause data-seeking. If an
attribute’s value changes and its value is shown in an attribute display, the
display is updated with the new value. In addition, attribute displays are always
updated to reflect the current values of the attributes displayed, and cannot be
disabled.

Attribute displays behave identically to attributes in an item’s table. However,
attribute displays place a slight additional burden on your application’s
performance.

Note If you change the name of an attribute whose value appears in an attribute
display, G2 removes the attribute display.

Defining Attribute Displays in Class Definitions

You can also define attribute displays in class definitions so that each instance of
the class automatically contains attribute displays.

To define attribute displays for instances of a user-defined class:

 Add a declaration in the attribute-displays attribute of the class definition.

Setting up the attribute-displays attribute of a class definition is described in
Specifying Attribute Displays.

Manipulating an Attribute Display from its Menu

You can manipulate an attribute display by opening its menu:
465

Note If you click too close to the attribute display value, G2 invokes the Text Editor
rather than the attribute display menu.

To add or delete the name of the displayed attribute in the attribute display:

 Select the add name of attribute or delete name of attribute menu choice.

To delete an attribute display:

 Select the hide attribute display menu choice.

To display another attribute value in an existing attribute display:

 Select the add another attribute menu choice, then select another attribute
whose value you want to show within the same display.

If you create more than one attribute display for the same item, the attributes you
have selected appear as a list, beginning in the standard position for attribute
displays (that is, aligned with the top edge of the icon on the right-hand side).

G2 lists the attributes in the order that they appear on the item’s attribute table,
regardless of what order you use when creating the displays.

Adding or Removing Attribute Displays
Programmatically

It is useful to be able to add an attribute display to an item, or remove one or more
attribute displays. You can access and manipulate the attribute-displays of items
programmatically using the attribute access facility.

To refer to the attribute displays of all items, except those defined on class
definitions:

 the current-attribute-displays of item
-> display-details: sequence
466

Adding Attribute Displays to Attribute Tables
The returned sequence consists of one or more structures, each structure
representing the attribute display information of a particular attribute as
three subattributes:

To refer to the attribute displays that a class definition defines:

 the attribute-displays of class-definition
-> display-details: sequence

The returned sequence is identical to the sequence returned for the current-
attribute-displays of an item.

Subattribute Type Description

attribute-list sequence A sequence of structures, each
with two subattributes:

• attribute, a symbol, indicating
the attribute name.

• display-with-name, a truth-
value, indicating whether the
name of the attribute is also
displayed.

text-color symbol The color of the text.

position structure A structure consisting of two
integer subattributes:

• x-offset

• y-offset

You can also specify the position of
an attribute display as the symbol
at-standard-position.
467

As an example, the next example illustrates the current-attribute-displays
sequence value of a variable auto-count, which has attribute displays for its notes
and last-recorded-value attributes.

sequence
(structure

(attribute-list:
sequence(structure(attribute: the symbol notes,

display-with-name: false)),
text-color: the symbol foreground,
position: structure(x-offset: 29, y-offset: 4)),

(structure
(attribute-list:

sequence(structure(attribute: the symbol last-recorded-value,
display-with-name: false)),

text-color: the symbol foreground,
position: structure(x-offset: 29, y-offset: 25)))

Example: Adding Attribute Displays to New Objects

In the next example, a whenever rule tracks the creation of instances of hatchback
automobile objects, starting the add-displays procedure each time G2 detects a
new instance:

whenever any instance of hatchback H is created
then start add-displays(H)

To add attribute displays to an item:

1 Conclude a new value into the attribute-displays attribute of an item.

The next procedure increments the value of the parameter called auto-count,
concludes that value to an attribute of the new hatchback object, and then
displays the value and name of that attribute by setting the subattribute
display-with-name to true.

add-displays(car: class hatchback)
begin

{increment parameter tracking total}
conclude that Auto-Count = Auto-Count + 1;
conclude that the production-number of car = Auto-Count;
conclude that the current-attribute-displays of car =

sequence
(structure

(attribute-list:
sequence(structure(attribute: the symbol production-

number,
display-with-name: true)),

text-color: the symbol foreground,
position: the symbol AT-STANDARD-POSITION))

end
468

Loading Attribute Values from an Attribute File
Notice that the procedure specifies the position of the attribute display with:

the symbol at-standard-position

2 The result of showing this attribute display is as follows:

Loading Attribute Values from an Attribute File
Attribute files are a superseded capability. For further information, see
Appendix F, Superseded Practices.

Using the Authors Attribute

To support version control for the contents of your KB, system-defined definition
classes include the authors attribute. The authors attribute shows the login
account name of the person who last edited this item interactively and the date
and time when the edit occurred.

G2 updates an item’s authors attribute by inserting into it the G2 login name and
the current time and date of the most recent interactive edit of the item.
If developers do not login to your KB, G2 appends the username associated with
each developer’s operating-system login account.

You can edit the existing text of an authors attribute, and you can add your
own entries.

To update an item’s authors attribute:

 Set the author-recording-enabled? attribute in the Editor Parameters system
table to yes.

This is the default setting. G2 updates the authors attribute only when you
interactively edit an item of one of these classes.

Tip Because the contents of an item’s authors attribute are editable, it might be
appropriate to use configurations to restrict access to it by other developers and
by your application’s end users. Configurations describes how to configure
interactive and programmatic access to item attributes.
469

Using Indexed Attributes

Indexed attributes are a specific kind of attribute that provide an efficient means
for G2 to locate a particular item by its attribute value, searching among items of
the same user-defined class.

You should declare a user-defined attribute as indexed whenever your
application requires an efficient way to reference an item by a particular value for
one of its attributes. This is useful when the only alternative is to search a large
number of items for the desired attribute value. Techniques for defining indexed
attributes appear under Defining an Indexed Attribute.

One example of requiring indexed attributes is an automobile factory that tracks
the vehicle identification numbers (VINs) of the vehicles it manufactures. When
the KB requires a vehicle with a specific VIN, G2 must search among numerous
VIN values to locate the correct object. Using an indexed attribute for the VIN
would provide a quick way to locate any automobile item based on its
attribute value.

Performance Considerations

For every indexed attribute within a KB, G2 creates and maintains a hash table.
Each hash table maps the value of an indexed attribute to the item in which it
occurs. Hash tables provide rapid search capabilities by using the attribute value
as part of a search formula known as the hashing function.

However, the search performance that indexed attributes provide is not without
cost. G2 incurs some memory overhead for maintaining the necessary hash tables,
especially when the number of values is large. Performance is minimally affected
as new indexed values are created and G2 places them into the hash tables.

We recommend that you use indexed attributes sparingly only in situations
requiring their capabilities. For accessing smaller numbers of specific values,
arrays typically provide adequate results.

Expressions for Indexed Attributes

While any expression can reference an indexed attribute, only three types of
references exist for which G2 uses the hash tables for optimal search performance.
Other expressions that reference an indexed attribute do not use the
optimizations provided for indexed attributes, as follows:

• When using the there exists expression, described in There Exists.

• When using the the count of expression, described in By Iterating Over a Set.

• When using the g2-indexed-attribute-item-list system procedure, described in
the G2 System Procedures Reference Manual.
470

Using Universal Unique Identifiers
For instance, in the next example, G2 would almost directly access the automobile
with the correct vehicle-identification-number, if there is one, because vehicle-
identification-number is an indexed attribute:

if there exists an automobile AM such that
(the vehicle-identification-number of AM is nc44880100489) then

post "automobile [the vehicle-identification-number of AM]
is [the name of AM]"

Note Currently, when using an indexed attribute in an expressions with more than one
attribute, the indexed attribute should be evaluated first in the expression;
otherwise, the expression does not use indexing.

For example, if index-attr is an indexed attribute, this expression uses indexing:

if there exists an obj O such that
(the index-attr of O = reference-value and the attr2 of O = ref-value2)

whereas, this one does not:

if there exists an obj O such that
(the attr2 of O = ref-value-2 and the index-attr of O = reference-value)

Using Universal Unique Identifiers
Every item has a UUID attribute that receives a Universal Unique Identifier
(UUID) value when the item is created. In previous versions of G2, only items that
inherited from unique-identification class had a uuid attribute.

The UUIDs created by G2 conform to the standard OSF/Open DCE UUID format.
A UUID incorporates hardware identifiers, creation-time data, and other
information that make a UUID unique across KBs created anywhere, at any time.

Within G2, a UUID is stored in a compressed memory-saving format. It is
displayed on attribute tables as a text value containing 32 hexadecimal digits.
UUIDs are saved with the KB, and are necessary for the successful saving and
reloading of a KB.

Uniqueness within a G2 Process

The UUID of every item is unique within a G2 process because:

• G2 generates a UUID in accordance with the DCE UUID format.

• Even though you can edit the value of a UUID, G2 will not accept a new value
that does not contain an ordering of 32 hexadecimal digits that is unique
within the G2 process. If you enter a value that is a duplicate of the UUID of
another item or does not contain 32 hexidecimal digits, the G2 compiler rejects
the value.
471

• When you clone an item that has a UUID, G2 does not clone the UUID; it
supplies the clone with a new UUID.

• When you load a KB module, any item without a UUID, or with an invalid
UUID, is assigned a new value based on current hardware and time
information.

Changing a UUID at Load Time

Having unique UUIDs within a G2 process does not ensure the successful loading
of KBs. For saving and reloading items that contain references to items in other
modules, G2 relies on UUIDs being unique and stable across all the modules in
your KB. Permanent lists, arrays, and the relations of items are examples of KB
knowledge that can contain item references across modules.

For example, you might have a permanent g2-list that has an item element, and
the list and the item element reside in different modules. G2 saves the UUID of
the item element with the list so that the item can be reinserted in the list at load
time. If you change the UUID of the item element and save its module
independently of the module containing the list, reinsertion will fail when the KB
is loaded.

Displaying the UUID of Every Item

By default, G2 does not display the UUID attribute on the table of an item that
does not inherit from unique-identification.

To show the UUID on the attribute table of every item:

1 Choose Main Menu > System Tables > Miscellaneous Parameters.

2 Specify yes for the show-uuids-in-attribute-tables attribute.
472

Using Other Special-Purpose Attributes
The example below shows how G2 displays a UUID on an item attribute table,
and how G2 displays the value when it evaluates the text of the uuid of item and
the uuid of item statements. The unreadable blocks are a graphical representation
of the internal compressed format of a UUID.

Connections and UUIDs

Not all connections have UUID attributes. That is because connections, by default,
are represented by data structures that require less memory than item data
structures. Non-item connections are converted to items when you click on them
to display their attribute tables and when you show them in the Inspect facility.

Using Other Special-Purpose Attributes
G2 provides other kinds attributes that serve specific purposes:

• Formatting attributes

• Evaluation attributes

Formatting Attributes

Formatting attributes control the visual appearance of an item in charts and free-
form tables. For information about declaring formatting attributes for a chart, see
Using Chart Annotations. For information about declaring formatting attributes
for a freeform table, see Changing Formatting Attributes.

Evaluation Attributes

The evaluation-attributes are a set of two hidden attributes of certain
computational items, describing how those items participate in KB processing.
For more information, see Hidden Attributes and Evaluation Attributes.
473

Actions That Affect Attributes

G2 provides the following actions pertaining to attributes.

Changing an Item Name

To change the names attribute of a item and replace any existing values with a
transient value:

 change the name of item to symbolic-expression

The permanent value the names attribute had before a change action is reinstated
when G2 is reset.

Concluding Attribute Values

To permanently change the value of an attribute:

 conclude that the attribute-name of object
{= value-expression | is symbolic-expression}

To permanently change the values of user-defined attributes that contain
values, variables, or parameters using an indirect reference to the attribute.

 conclude that the {class-name | type}
that is an attribute of item named by symbolic-expression
{= value-expression | is symbol}

For more information about using actions, see Actions.

For information on the status of KB knowledge, see Distinguishing Permanent,
Transient, and Current Knowledge.

Expressions That Refer to Attributes

These expressions produce values that represent the knowledge contained in the
attributes of items.

Referring to Attributes by Name

To refer to attributes of user- or system-defined classes:

 the item-or-value-attribute [local-name] of item
-> {object | value}
474

Expressions That Refer to Attributes
Referring to Attributes through a Symbolic
Expression

To refer to an attribute using a symbolic expression:

 the {class-name | type} [local-name] that is an attribute of item
[named by symbolic-expression]
-> {object | value}

Indirectly references an attribute of an item using a symbolic expression.

Iterating Over User-Defined Attributes

To iterate over the names of user-defined attributes of an item:

 any symbol [local-name] that is a user-defined attribute name of item
-> symbol

This expression returns the symbolic names of user-defined attributes.

This expression converts the specified attribute’s value to a text value, then
produces that value. You can refer to the text of any system-defined attribute of
any item. You can also refer to the text of any user-defined attribute, regardless of
the attribute’s declared type.

The following rule demonstrates that you can use the the text of expression both
to query the value of an attribute and to assign the value of an attribute:

for any custom-object O
if the text of the notes of O /= "OK" then

change the text of the status of O to "needs-attention"

For every custom-object, this generic if rule determines whether the text version of
the value of the item’s system-defined notes attribute does not contain the text
value “OK”. For each such custom-object, the rule uses the change the text of
action to assign a new value into its status attribute. The change the text of action
assigns a transient value to an attribute.

You can also use attribute access to reference and change most attribute values, as
described in Attribute Access Facility.

Referring to the Text Attribute of an Item

To refer to the text attribute of an item:

 the text [local-name] of item
-> text
475

Messages and items of certain system-defined classes have a text attribute. The
text attribute of an item has no attribute name and contains an editable text value.
Classes whose items contain a text attribute are:

procedure
method
rule
free-text
borderless-free-text
message

For example:

conclude that the text of my-rule =
"if true then inform the operator that @"This is a short rule.@""

This conclude action sets the text attribute of the rule my-rule. The change is
permanent. This is an example of concluding the text of a compiled attribute: in
this case, the text of the rule’s text attribute. Concluding the text of a compiled
attribute causes G2 to recompile the attribute. If G2 detects compilation errors due
to recompiling the attribute’s text, G2 signals an error.

Referring to an Attribute That is an Instance of
an Object

To refer to an attribute that is an instance of an object:

 the item-attribute [local-name] of item
-> name

This expression produces the child object that is the value of a user-defined
attribute of a parent item of some user-defined class. For example:

create a quantitative-parameter by cloning the volume of my-water-tank

In this case, the value of the volume attribute of my-water-tank is defined as an
instance of a quantitative parameter.

Referring to an Attribute Given by a Variable
or Parameter

To refer to an attribute given by a variable or parameter:

 the item-attribute [local-name] of item
-> {integer | float | symbol | text | truth-value}

This expression refers to a user-defined attribute of an object, connection, or
message of a user-defined class. In the class’s definition the attribute’s value is
476

Expressions That Refer to Attributes
declared to be given by a variable or parameter. This expression produces the
value given by the associated variable or parameter. For example:

change the text of the validity-interval of pipe-scanning-rule to
the text of the minimum-scan-interval of water-pipe-1

In this case, the value of the minimum-scan-interval attribute of the connection
water-pipe-1 is given by a float parameter.

You can also use attribute access to reference and change most attribute values, as
described in Attribute Access Facility.

Referring to an Untyped Attribute That Contains
an Object

To refer to an untyped attribute that contains an object:

 the object-class that is an attribute of item [named by symbolic-expression]
-> object

This expression produces the child object contained in an untyped, user-defined
attribute of an item of a user-defined class.

For example, you might want to refer to the current level of a tank; however,
different subclasses of tanks might have differing names for this attribute. You
could use the following expression to determine the target attribute name in each
case:

the custom-quantitative-variable V that is an attribute of water-tank
named by tank-level-parameter

This expression refers to the item of class custom-quantitative-variable that is
contained in the attribute whose name is contained in the item named tank-level-
parameter, which is a user-defined symbolic parameter that returns the name of
the attribute that provides the current level of a water-tank.

Referring Indirectly Using a Symbol

To refer indirectly using a symbol:

 any symbol [local-name] that is a user-defined attribute name of item
-> symbol

This expression produces the names of the user-defined attributes of the specified
user-defined item. In combination with indirect attribute references, you can use
this expression to access the value of each user-defined attribute.

For example, the unconditionally rule shown next displays the names and values
of all the attributes associated with tank-1. (Note that each user-defined attribute
of tank-1 is declared as type quantity, which means that each can contain either an
integer value or a float value.)
477

for any symbol S that is a user-defined attribute name of tank-1
unconditionally post

"The [S] of tank-1: [the quantity that is an attribute of tank-1
named by S]"

Referring to the Parent Attribute Name of
a Subobject

To refer to the parent attribute name of an attribute name of a subobject:

 the attribute name of object
-> symbol

The procedure below iterates over the instances of an object class. When it finds
an instance that is the value of an attribute, it displays the parent attribute name
and parent item name on the Message Board:

declare-subobject-pistons()
P: piston;
begin

for P = each piston
do

if there exists an item superior to P then post
"The piston [the name of P] is a subobject

of the [the attribute name of P]
of [the name of the item superior to P]."

end
end
478

12
Attribute
Access Facility
Presents the capabilities of the attribute access facility.

Introduction 479

Accessing System-Defined Attributes 480

Attribute Access Terminology 481

Attribute Descriptions 482

Referencing System-Defined Attributes 488

Attribute Access System Procedures 496

Introduction
The attribute access facility provides programmatic access to G2 system-defined
attributes and the data structures of which they are composed, increasing the
level of control that you, as a KB developer, have over item knowledge.

Using the attribute access facility, you can:

• Interactively display the hidden attributes of an item and edit those that are
writable. You display the hidden-attributes-table for a item by selecting the
table of hidden attributes menu choice from the item’s table. For more
information, see Using Attribute-Tables and Hidden-Attributes-Tables.

• Conclude values directly into almost all system-defined attributes in exactly
the same way as you would use the conclude action to change user-defined
attributes. In most cases, attribute access supersedes the use of change the text
of statements. Examples are presented throughout this chapter.
479

• Access internal item knowledge, such as the attribute displays of any item by
referring to their values in exactly the same way as you would refer to user-
defined attribute values. For an example, see Adding or Removing Attribute
Displays Programmatically.

• Access and change an item’s name box. For an example, see Showing and
Hiding an Item Name Box Programmatically.

• Obtain user-specific information about items, such as which attributes are
visible in a particular user mode. For an example of doing this, see Obtaining
the Attributes Visible for a User Mode Programmatically.

• Work with history values programmatically. For a description, see Working
with History Keeping Using Attribute Access.

Part of using the attribute access facility involves the use and manipulation of
structures and sequences. These composite value types, described in detail in
Values and Types, provide a flexible, efficient, and convenient way of providing
sets of subattributes and ordered lists.

Accessing System-Defined Attributes
The attribute access facility provides an extremely powerful, but optional, set of
capabilities. Existing KBs can incorporate these capabilities or continue without
using them. Some KB developers may use attribute access to control a minimum
set of knowledge and attributes, while others use it to control every
programmatically accessible attribute of G2.

The attribute access facility lets you conclude new values into system-defined
attributes directly, using standard G2 expressions such as this conclude action:

conclude that the class-of-procedure-invocation of insert-field-items =
the symbol procedure-invocation

where the class-of-procedure-invocation refers to a system-defined attribute. You
can access most system-defined attributes.

In many cases, accessing system-defined attributes is no different than
completing identical tasks on user-defined attributes.

In some cases, however, the internal data structures of system-defined classes
consist of multiple embedded sequence and structure values, which require
correspondingly complex references to express them. Because of this complexity,
we recommend that you experiment gradually with using attribute access.

For example, you can initially use the facility to access and control some key
system-defined attributes. Once the grammatical structures for manipulating
embedded sequence and structure values become more familiar, you can then
extend your use of attribute access to include any number of system-defined
attributes that you wish to capture and manipulate.
480

Attribute Access Terminology
Attribute Access Terminology

The attribute access facility introduces several terms:

Note Do not confuse composite attributes with composite types. Composite attributes
are those that consist of more than one subattribute, while composite types are
those whose values can consist of any G2 type, such as structures and sequences
described next.

This term... Refers to...

subattribute An attribute that is part of another attribute’s
value. For example, the history-keeping-spec
attribute of variables and parameters consists of
three subattributes:

• maximum-number-of-data-points

• maximum-age-between-data-points

• minimum-interval-between-data-points

subattribute
reference

The expression to reference any subattribute of
an attribute, which may itself consist of other
subattributes, such as:

the minimum-interval-between-data-points of
the history-keeping-spec of x

hidden attributes Attributes inherent within an item, which are
interactively accessible from an item’s hidden-
attributes-table. Examples of hidden attributes
are relationships, position-in-workspace, icon-
reflection, and transient.

composite attributes Attributes that appear in an attribute table as
one attribute, but which are composed of more
than one subattribute.

attribute
descriptions

The detailed internal specifications of an
attribute. All attribute descriptions appear in
the G2 Class Reference Manual.
481

Attribute Descriptions

The ability to access system-defined attributes directly makes it possible to
change their values. To do so, however, requires knowledge of the structure of
each class attribute, called its attribute description.

Attribute descriptions present the internal data structure and type of each
accessible attribute in a system-defined class. You need to know this information
before accessing and manipulating system-defined attributes.

Obtaining Class Descriptions

The G2 Class Reference Manual presents an alphabetical listing of:

• Every system-defined class.

• The attribute descriptions of every accessible attribute.

The information is generated automatically from the internal structures of G2 to
ensure its accuracy and validity. Refer to the G2 Class Reference Manual to
determine the accessibility of any system-defined attribute.

In the class dictionary, all attribute names and their subattributes appear in bold
type. Each attribute description includes this information:

This information... Describes...

attribute-name A symbol of the attribute name.

text-readable Truth-value indicating whether it is possible to
use the expression:

the text of the attribute-name of item

text-writable Truth-value indicating whether it is possible to
set the attribute value using the action:

change the text of the attribute-name of item

value-readable Truth-value indicating whether it is possible to
use the expression:

the attribute-name of item

value-writable Truth-value indicating whether it is possible to
set the value of the attribute using the action:

conclude that the attribute-name of item...
482

Attribute Descriptions
You can also obtain the descriptions programmatically from G2, using the system
procedure g2-get-attribute-descriptions-of-class.

Differences between the Value and Text of
an Attribute

The G2 Class Reference Manual describes whether an item attribute is:

• text-readable

• value-readable

• text-writable

• value-writable

The readability and writability of an item determines the way in which you can
access a system-defined attribute. For example, if an attribute is defined as only
text-readable, you can refer to that attribute using the text of expressions, but you
cannot change the attribute, either through a change the text of statement or a
conclude that the x of y expression.

This is the way you can refer to or change system-defined attributes:

is-system-defined Truth-value indicating whether an attribute is
system- or user-defined. This attribute is true for
all system-defined classes.

defining-class A symbol value indicating the class in which the
attribute is defined, which could be the current
class or a superior class.

This information... Describes...

If an attribute is... You can...

text-readable Refer to it as:

the text of the attribute of item

value-readable Refer to it as:

the attribute of item

text-writable Change its value using:

change the text of the attribute of item

value-writable Change its value using:

conclude that the attribute of item
483

Viewing an Attribute Value or Text

When attributes are both text- and value-readable, you can view them both as a
text and as a value.

Consider the class-specific-attributes attribute of a class definition, which is text-
and value-readable and text- and value-writable. If you create a class definition
called test-class, which defines two class-specific attributes as follows:

attr-1 is an integer, initially is 1;
attr-2 is a text, initially is "two"

then returning the value of this attribute, using the expression:

the class-specific-attributes of test-class

would consist of this sequence of structures:

sequence
(structure

(attribute-name: the symbol attr-1,
attribute-type-specification: the symbol integer,
attribute-initial-value: 1,
attribute-initial-type: the symbol number),

structure
(attribute-name: the symbol attr-2,
attribute-type-specification: the symbol text,
attribute-initial-value: "two",
attribute-initial-type: the symbol text)

Returning the text of this attribute, using the expression:

the text of the class-specific-attributes of test-class

would consist of this text:

attr1 is an integer, initially is 1; attr2 is a text, initially is @"two@"

Referencing Limited-Access Attributes

Some system-defined attributes have a limited access to their textual
representation and values. Such attributes are those that either have:

• No grammar and thus can only be values, such as an item’s name-box.

• No value equivalents because their attributes consist of a deeply complex set
of grammar that can be expressed only as text.

All system-defined attributes are minimally readable, and may also be writable.
Some attributes are text- or value-readable, or both. A complete list of system-
defined attributes with limited access is not given here, because it may change.
484

Attribute Descriptions
However, the next table presents some examples of attributes that have various
combinations or text- and value-accessibility:

KB developers can determine the status of each attribute’s text-readable, text-
writable, value-readable, and value-writable access by referring to the G2 Class
Reference Manual, or by testing for these attributes programmatically as
described next.

Example of Obtaining an Attribute Description

You can use the g2-get-attribute-descriptions-of-class system procedure to return
the attribute description of one or more attributes programmatically. You can
then test any aspect of the attribute to determine its functionality.

As an example, the next procedure accepts any class and a sequence of attribute
names as its arguments, and then tests to see if each attribute is value-writable,
indicating that you can conclude a value into it:

get-attribute-informaton(CheckClass: item-or-value, CheckAttributes:
sequence)

Description: sequence;
Index, Elements: integer;
begin

Elements = the number of elements in CheckAttributes;
for Index = 0 to Elements -1

do
Description =

call g2-get-attribute-descriptions-of-class(CheckClass,
Check-Attributes);

if the value-writable of Description[Index] is false
then post "The [the attribute-name of Description[Index]]

attribute of the [CheckClass] class is not value writable,
so you cannot conclude a value into this attribute."

else post "The [the attribute-name of Description[Index]]
attribute of the [CheckClass] class is value-writable, so
you can conclude a value into this attribute directly."

end;
end

Attribute
Text-
readable

Value-
readable

Text-
writable

Value-
writable

format-of-image 

item-status 

notes  

authors  

change-log  
485

When called with the arguments to get information about two attributes of a
g2-window item:

start get-attribute-information
(the symbol g2-window, sequence (the symbol item-configuration,
the symbol g2-user-mode))

to test whether you can conclude a value into the item-configuration and g2-user-
mode attributes of a window item, the procedure determines that the first
attribute is value-writable, but that the second attribute is not.

The next figure shows these results:

Thus, you must use change the text of statements to change the g2-user-mode
attribute of the current window programmatically.

Hidden Attributes

Hidden attributes are interactively accessible from the table of hidden attributes
menu choice of an item. They are also programmatically accessible using the same
access grammar as other attributes. All accessible attributes, including hidden
attributes, are documented in the G2 Class Reference Manual.

These are some frequently encountered hidden attributes of items:

Hidden Attribute Description

evaluation-attributes Two attributes referring to the computational
aspects of G2 items. See Evaluation Attributes.

history A structure for providing history values and
their collection times.

history-using-unix-
time

The POSIX-compliant timestamp indicating
when each history value is saved.

user-restrictions A superseded hidden attribute; replaced with
item-configuration.
486

Attribute Descriptions
Evaluation Attributes

The evaluation-attributes hidden attribute contains two characteristics of G2 items
and how they participate in KB processing. Only one evaluation attribute is
actively used.

The evaluation attributes are:

name-box The structure of an item’s name box when it is
visible, including its position as an offset to
the item.

attribute-displays The structure for the attribute displays of each
item attribute.

icon-variables A structure of the variables you can define
within an icon. Every iconic system- and user-
defined class has at least two icon variables:
width and height. User-defined classes can
include other icon variables. For more
information about icon-variables, see The Icon
Editor and Icon Management.

relationships The relations in which an item participates. This
attribute returns a sequence of structures, as
described in Referring to the Relationships of an
Item.

Hidden Attribute Description

Evaluation Attribute Description

may-refer-to-inactive-
items

A truth-value indicating whether the item can
reference items that are disabled or deactivated.
This subattribute must be set to true for G2 to be
able to invoke the event detection rule:

whenever item is disabled

For more information about this attribute, see
Whenever Rules.

may-run-while-
inactive

An unsupported truth-value subattribute, for
future use.
487

Composite Attributes

Some attributes are composed of more than one subattribute, which you can refer
to individually. The notes attribute is an example of a composite attribute. These
are the subattributes of notes:

To reference both of its subattribute values requires two expressions:

the item-status of x
the item-notes of x

where the item-status returns the standard ok, incomplete, or bad status, and item-
notes returns a sequence of text values with actual notes.

Referencing System-Defined Attributes

The attribute description of an item describes the internal structure of each
attribute, including its value type. The values of many system-defined attributes
consist of a specific type, integer, float, text, and so on, while other attribute values
consist of more composite types, including one or more structures and sequences.
If the value type is of a composite type, it may be further described by one or
more boolean operators, which specify which subattributes are required, which
must exist together, which are exclusive, and so on. Such complex value types are
used exclusively in system-defined class, and do not appear in user-defined
attributes.

Typically, system-defined attribute values that consist of a determinate set of
subattributes, such as the history-keeping-spec attribute, are provided by a
structure, while those comprised of a variable number of subattributes, such as
item-configuration, are provided by a sequence.

To change system-defined attributes with a specific type such as integer, float, or
symbol, you can use a conclude action in a statement such as this:

conclude that the system-defined-attribute of object = new-value

Attribute Description

item-status A symbol used to indicate item status. The
value can be ok, incomplete, or bad. You can
refer to the value of this attribute, but not its
text. You cannot change the text or the value of
item-status.

item-notes The additional part of the item notes attribute,
specified as a sequence of text strings,
describing notes about an item.
488

Referencing System-Defined Attributes
A number of G2 items have a system-defined attribute named text. For example,
the text of a message, free-text, and procedure are stored in an attribute named
text. To change the text of the system-defined text attribute, you cannot use
change the text of because the grammar does not support it for an attribute
named text. Instead, use this syntax to conclude the value of the attribute named
by the symbol text:

conclude that the value that is an attribute of item named by symbol =
"new-text"

where item is the item whose text attribute you want to change, and symbol is a
symbolic expression evaluating to the symbol TEXT.

Manipulating the values of system-defined attributes provided by structures and
sequences requires an additional reference, because you can refer to the
subattribute of an attribute, which itself may consist of other subattributes.
Referring to the substructure of attributes is called a subattribute reference
operation.

A subattribute reference is one that lets you reference multiple levels of
subattributes within a single attribute value. Mastering subattribute reference
expressions is key to harnessing the power of the attribute access facility to its
fullest extent.

Typically, you use subattribute references to change one or more subattributes of
an existing structure or sequence. To conclude a set of values into a sequence or
structure, use the sequence () and structure () functions.

Creating Subattribute References

One way of creating a subattribute reference expression is to begin with the least-
specific reference you can make (the actual item attribute), and work outwards in
the expression, towards the most-specific reference (the subattribute you wish
to change).

Example of Referring to Class-Specific-Attributes

As an example of creating a subattribute reference in this manner, this section
describes how to change a subpart of the class-specific-attributes of a class
definition called attribute-initial-value. The class-specific-attributes is represented
as a sequence.

To begin, the sample class definition used in this example is called station, and
has this specification:

height initially is 3;
total-square-footage initially is 15000

The subattribute reference in this example changes the attribute-initial-value of the
height attribute from 3 to 5.
489

Displaying Subattributes Values

When creating subattribute references, it is often helpful to see the internal
structure of the attribute value that you want to change, especially to locate one or
more subattributes. One way to display the internal structure of any system-
defined attribute dynamically is to view it in a readout-table, which lets you
display any value-readable attribute directly.

You can still display the text of a system-defined attribute by using a Readout
Table.

To display the text of a system-defined attribute:

 In the expression-to-display attribute of the Readout Table, enter an
expression such as:

the text of the class-specific-attributes of station

This is what displays:

To display the value of a system-defined attribute:

1 Create a Readout Table item by choosing KB Workspace > New Display >
readout-table > readout-table.

2 Edit the table of the Readout Table.

3 In the expression-to-display attribute, enter the item attribute expression for
the value to see, for example:

the class-specific-attributes of station

The attribute value appears when the Readout Display is updated:

4 To change a subattribute, first find the subattribute you want to reference. For
our example, the subattribute to change is the attribute-initial-value of the
defined attribute height.

Referencing a Structure Attribute within a Sequence

The attribute-initial-value subattribute to change is a structure subattribute, within
a the main attribute sequence.
490

Referencing System-Defined Attributes
To create the subattribute reference:

1 Obtain the type of the system-defined attribute from its attribute description
in the G2 Class Reference Manual.

The type specification for a class-specific-attributes attribute of a class-
definition item is a sequence, and each element of that sequence is a structure
value for a defined attribute.

2 Begin the expression by referencing the name of the item attribute to change:

the class-specific-attributes of station

3 Locate the sequence element that is the value of the height attribute, the first
structure in the sequence:

(the class-specific-attributes of station)[0]

4 Finally, reference the attribute-initial-value subattribute by prefixing it to the
expression:

the attribute-initial-value of (the class-specific-attributes of station)[0]

5 Conclude a new value for the attribute-initial-value of the height attribute:

conclude that the attribute-initial-value of
(the class-specific-attributes of station)[0] = 5

Referencing a Sequence within a Sequence

As another example of creating subattribute references, this example changes the
subattribute of an instance-configuration. The existing configuration statement is
as follows:

configure the user interface as follows:
unless in administrator mode:

attributes visible for geo-classic exclude absolutely: delete;
when in inventory-checker mode:

selecting any geo-classic implies clone

The attribute-description for the class-definition class determines that the value of
the instance-configuration attribute is a sequence.

A Readout-table with this expression displays the value in the figure:

the instance-configuration of geo-classic
491

This subattribute reference will add a user-mode. Notice that the name of the
subattribute to change is applicable-user-modes.

To add a new user-mode:

1 Begin with the most general reference:

the instance-configuration of geo-classic

2 Since the value of this attribute is a sequence, add an element reference to the
expression:

(the instance-configuration of geo-classic) [0]

3 Prefix a reference to the next subattribute, clauses:

the clauses of (the instance-configuration of geo-classic) [0]

4 Since the clauses subattribute is a sequence, and the subattribute to change is
in the second element of that sequence, add a reference to its second element:

(the clauses of (the instance-configuration of geo-classic) [0]) [1]

5 Prefix a reference to the subattribute to change (applicable-user-modes),
which is a structure, so requires no element specification:

the applicable-user-modes of
(the clauses of

(the instance-configuration of geo-classic) [0] [1]

Subattribute to change
492

Referencing System-Defined Attributes
6 Since the value of the applicable-user-modes subattribute is a sequence, you
can conclude a new value into it by using the sequence () function, specifying
the user modes you require (inventory-checker and end-user) as follows:

add-user-mode(auto: class class-definition)
new-mode: sequence;
begin

conclude that the applicable-user-modes of
(the clauses of (the instance-configuration of auto) [0]) [1] =
sequence(the symbol inventory-checker, the symbol end-user)

end

The resulting instance-configuration in the definition is as follows:

configure the user-interface as follows:
unless in administrator mode:

attributes visible for geo-classic exclude absolutely: delete;
when in inventory-checker or end-user mode:

selecting any geo-classic implies clone

Referencing Elements in Sequences That Represents a Matrix

Compound values can be a memory-sparing data-structures for representing
matrices. This is an example of sequences that represent a 2-by-3 matrix:

sequence(
sequence(the symbol station100, the symbol station101,

the symbol station102),
sequence(15000, 75000, 10000))

This example procedure iterates over the “columns” of the value and displays the
values on the Message Board:

display-sequence-values(sequence-value: sequence)
number-of-columns, column-index, number-of-rows, row-index: integer;
begin

number-of-columns = the number of elements in sequence-value[0];
number-of-rows = the number of elements in sequence-value;
for column-index = 0 to number-of-columns -1

do
for row-index = 0 to number-of-rows -1

do
post "[sequence-value[row-index][column-index]];

end
end

end
493

These values are displayed on the Message Board:

Tips for Using Subattribute References

Keep these points in mind when working with subattribute references:

• When you return the value of a system-defined attribute, only the
subattributes that have a value appear in the sequence or structure.
Subattributes that do not have a value are omitted, rather than being returned
by name with a value of none.

The only way to determine definitively all of the subattributes of a system-
defined attribute is by checking its attribute description in the G2 Class
Reference Manual, or by returning that information programmatically using
the g2-get-attribute-descriptions-of-class system procedure, as presented in
Example of Obtaining an Attribute Description.

• To change the value of a complex attribute consisting of sequences and
structures, you must either:

– Conclude directly into the value, specifying the exact subattribute to
change.

– Provide a new sequence and structure to represent those values. You
cannot pass the current attribute value to a local variable, conclude back to
that local variable, and affect the original sequence. This is because the
sequences and structures returned from an attribute reference are always
copies of the value stored in the item.
494

Referencing System-Defined Attributes
For example, using this sample code:

x: sequence;

x = the sequence-attribute of new-item;
conclude that x = sequence (new-value, new-value);

does not change the value of the sequence-attribute of new-item. Instead, it
assigns the value of an attribute given by a sequence to the local variable x (a
sequence), and then concludes a new value into x.

To conclude into the sequence attribute, use an expression such as:

conclude that the sequence-attribute of new-item =
sequence (new-value, new-value)

• When the type attribute of an attribute is given as a construct such as:

none |
structure

and is currently none, you cannot conclude a subattribute value into the
attribute, without first concluding the entire structure.

For example, if the history-keeping-spec attribute of a float-variable float-var-1
is do not keep history, which is represented as a value of none internally, an
expression such as:

conclude that the maximum-number-of-data-points of the
history-keeping-spec of float-var-1 = 10

causes G2 to signal an error.

The correct way to conclude such a value would be to replace the none value
with a structure specifying one or more attributes, using the structure
function:

conclude that the history-keeping-spec of float-var-1 =
structure (maximum-number-of-data-points: 10)

• To change a sequence or structure that currently has values to a value of none,
use this expression:

conclude that structure-or-sequence has no value

For example, if an item X has item-configuration statements that you want to
remove, you can do so as follows:

conclude that the item-configuration of X has no value

Concluding Values Directly or Incrementally

When changing the values of system-defined attributes, consider the types of
changes to make and the order in which to make them. For example, if you are
changing multiple attributes that specify the appearance of an item, making the
495

changes incrementally results in the item appearing to jump through each
individual change.

Multiple updates to attributes that specify appearance are usually best done by
first creating appropriate structure and/or sequence values, and then concluding
those values in a single action to update all of the subattributes at once. Multiple
changes to the non-graphical aspects of an item can typically be completed in
whatever order the KB requires.

Attribute Access System Procedures
The attribute access system procedures are introspective in that they describe an
item’s internal structure, including:

• System- and user-defined attributes.

• The default values of each attribute.

• Hidden attributes.

One system procedure returns the current values of an item’s attributes.

These are the system procedures to use in conjunction with the attribute
access facility:

g2-get-attribute-descriptions-of-class
(class-name: symbol, specific-attributes: value)
-> attribute-descriptions: sequence

Returns a sequence of the attribute descriptions of the given attributes for
a class.

g2-get-attributes-visible-in-mode
(class-or-item: item-or-value, user-mode: symbol)
-> list-of-attributes: sequence

Returns a sequence of the attributes that are visible in a particular mode.

g2-get-attribute-values-of-item
(itm: class item, specific-attributes: value)
-> attribute-values: structure

Returns a structure of the current values of the class attributes that
you provide.

g2-get-attribute-texts-of-item
(itm: class item, specific-attributes: value)
-> attributes-as-text: structure

Returns a structure of the textual representation of the class attributes that
you provide.
496

13
Classes and
Class Hierarchy
Describes the principles, structure, and use of the G2 class hierarchy.

Introduction 498

The G2 Class Hierarchy 498

System-Defined Classes 501

Viewing the Class Hierarchy with the Inspect Facility 502

User-Defined Classes 503

Inheritance in Class Hierarchies 506

Single Inheritance 507

Multiple Inheritance 514

How G2 Linearizes Multiple Inheritance 516

Why G2 Linearizes As It Does 522

Illegal Patterns of Multiple Inheritance 523

Viewing Multiple Inheritance with the Inspect Facility 526

Default Values in Multiple Inheritance 527

Duplicate Attributes in Multiple Inheritance 531

Defining Classes in Bottom-up Order 533

Deleting a Class Definition 533

Planning a Class Hierarchy 534
497

Introduction
G2 knowledge bases (KBs) consist of items that represent or contain knowledge.
All items within a KB are based on definitions that are organized into a hierarchy
called the class hierarchy. This hierarchy is the basis of all knowledge
representation in G2.

This chapter describes the structure of the G2 class hierarchy, but does not show
you how to extend and use it. Definitions shows you how to extend the G2 class
hierarchy and use it to represent knowledge.

• If you are thoroughly familiar with object-oriented programming, you need
only skim this chapter to be sure you understand G2’s particular approach.

• If you have limited familiarity with object-oriented programming, you should
read this chapter as needed to refresh and increase your understanding, and
extend it to G2.

• If you are not at all familiar with object-oriented programming, this chapter
will probably not provide a sufficient introduction. Please consult a standard
text on the subject before you proceed.

This chapter describes multiple inheritance in detail, because it is more complex
and less widely understood than single inheritance. You should read the general
information about multiple inheritance to determine whether you need to use it,
but you can skim or skip over the more detailed information unless you have a
specific need for it.

The G2 Class Hierarchy
This section briefly summarizes the G2 class hierarchy, and introduces the
terminology G2 uses to describe it. The rest of this chapter builds on and expands
the information in this section.

Items and Classes

To represent knowledge in a KB, you need abstractions that represent the things
that the KB models. G2 calls these abstractions items. Many object systems call
such abstractions objects, but in G2 terminology an object is a particular kind of
item, as described later in this chapter.

To perform automated reasoning about items, we need a way to categorize them.
G2 calls categories of item classes. Classes facilitate automated reasoning just as
the categories from which they derive facilitate ordinary thought.

G2 implements every class as a set of properties called attributes that are
common to all members of the class. Examples: name, size, weight, status, color,
cost. G2 implements every item as an instance of some class. Creating an instance
498

The G2 Class Hierarchy
is called instantiation. Every instance can define a particular value for each
attribute characteristic of its class. Examples: Tank-1, Large, 100 pounds,
Repaired, Green, $49.95.

For more information on:

• Items and attributes, see G2 Items.

• Values, see Values and Types.

• Instances and instantiation, see Definitions.

Methods

Ordinary thinking requires understanding the behavior as well as the properties
of real things. Similarly, automated reasoning requires procedures that define
what items do and how they change. G2 calls such procedures methods.
Examples: clean, fill, pressurize, sample, empty. For complete information about
methods, see Methods.

Inheritance

Just as things can have common properties, allowing them to be grouped into
categories, so categories can have common properties, allowing them to be
grouped into supercategories. These in turn can be grouped, and so on until the
most general possible category is reached.

The grouping of categories into more encompassing categories is called
generalization. The inverse process, in which categories are subdivided into
increasingly specific subcategories, is called specialization or refinement. These
terms are common in object-oriented programming generally; they are not
specific to G2.

G2 uses common properties to organize classes into a class hierarchy. The highest
class is called the root class. It has only attributes and methods common to all
classes, and is the only class that has no parents.

The root class has subclasses, each of which inherits those attributes and
methods, and defines additional attributes and/or methods specific to its
purpose. These subclasses can in turn have lower-level subclasses, with yet more
specific attributes and/or methods, and so on to any depth.

The defining of increasingly specific subclasses is called subclassing. Attributes
and methods inherited by a subclass from a more general class are called
inherited attributes and inherited methods. Additional attributes and methods
defined by a subclass are called class-specific attributes and class-specific
methods.
499

Single Inheritance

When every subclass inherits from only one class, the result is a tree of classes. G2
calls such inheritance single inheritance, and describes trees of classes using the
usual terminology for hierarchies: root, parent, child, sibling, and leaf. The classes
from which a class inherits, directly or indirectly, are its superior classes. A class’s
parent in the hierarchy is its direct superior class.

Multiple Inheritance

Single inheritance can represent most knowledge, but not all. For example, mules,
the offspring of horses and donkeys, cannot be represented via single inheritance.

To provide for any possible information structure, G2 allows a subclass to have
any number of parents (direct superiors). The subclass then inherits all the
attributes and methods of all of its parents. G2 calls such inheritance multiple
inheritance. A class structure that includes multiple inheritance is not a tree, but
it remains a hierarchy because it has a unique root class and contains no circular
structures.

Linearization

Multiple inheritance entails the possibility of inheriting duplicate or inconsistent
attributes and methods. These could introduce ambiguities and conflicts into a
subclass’s definition. Preventing such problems requires assigning a precedence
order to the contributors to a subclass’s inheritance, and using it to prevent
problems. Establishing such an order is called linearization.

Purpose of Inheritance

G2 uses a class’s inheritance in three different ways:

• To determine the essential characteristics of the class.

• To determine the correct default value for each attribute of a new instance of
the class.

• To determine what methods to use with an instance of the class.

This chapter describes these three uses, and provides pointers to additional
information in other chapters.
500

System-Defined Classes
System-Defined Classes

The preceding overview emphasized the use of items and classes to represent
knowledge. However, G2’s object system is completely general. G2 uses it to
provide all KB components: workspaces, procedures, rules, message boards,
charts, buttons, meters, and many other things are all items.

G2 contains a hierarchy of system-defined classes that provides all of the classes
G2 needs to construct a KB, plus additional classes that you can use to represent
knowledge. System-defined classes are inherent in G2. They do not appear as
icons on workspaces, and you cannot access, inspect, modify, or delete them.

The root class of the system-defined class hierarchy is named item. This class
provides several attributes for all classes, as described in G2 Items and
Definitions.

Varieties of System-Defined Classes

System-defined classes have various properties that control how you can use
them. These properties determine whether a class can be instantiated, and
whether and in what ways it can be inherited by a subclass.

If you know the purpose of a class, you will rarely attempt to use it incorrectly,
because the incorrect use would make little sense. Therefore, you don’t need to
memorize which system-defined classes have which properties. If you do try to
use a class incorrectly, the Text Editor will catch and describe the error.

G2 uses various terms to categorize system-defined classes according to their
properties. The essential terms are:

• Extensible class: Can be inherited by user-defined classes.

• Reserved class: Cannot be inherited by user-defined classes.

• Instantiable class: Can be instantiated by the user.

• Noninstantiable class: Cannot be instantiated by the user.

Terms exist to denote combinations of extensibility, instantiability, and purpose:

• Concrete class: An extensible instantiable class.

• Abstract class: An extensible noninstantiable class that provides common
definitions for use in defining a collection of related of subclasses.

• Mixin class: An extensible noninstantiable class that adds specialized
capabilities to another class via multiple inheritance.

• Foundation class: Generic term for a concrete or abstract class (a foundation
class is any extensible system-defined class except a mixin).
501

Instantiating System-Defined Classes

You can instantiate system-defined classes interactively or programmatically.

To instantiate system-defined classes interactively:

1 Select Main Menu > New Workspace to create an instance of the system-
defined class kb-workspace.

2 Select KB Workspace > New Class-Type > system-defined-class.

For example, KB Workspace > New Button > action-button creates an instance of
the system-defined class action-button.

To instantiate system-defined classes programmatically:

 create a class-name

You can also use create to instantiate user-defined classes, as described in the next
section. For information on the create action, see Actions.

Instances of some system-defined classes can appear as icons on workspaces. The
icon characteristic of each such class is predefined for the class, and cannot
be changed.

Viewing the Class Hierarchy with the
Inspect Facility

You can use the Inspect facility to show the entire class hierarchy.

To view the entire class hierarchy:

 show on a workspace the class hierarchy

The class hierarchy that Inspect displays includes all system-defined classes, and
any user-defined classes as well. The names of user-defined classes appear inside
boxes. The figure at the end of this chapter shows the complete system-defined
class hierarchy as displayed by Inspect.

Note that Inspect shows class hierarchies from left to right, so that the root class of
the displayed hierarchy is at the left rather than at the top.

You can also use Inspect to examine the inheritance of any class.

To view the class hierarchy of a particular class:

 show on a workspace the class hierarchy of class

where class is the name of the class you want to examine. Inspect displays that
part of the class hierarchy that relates to class.

For further information on using Inspect, see The Inspect Facility.
502

User-Defined Classes
User-Defined Classes

You can create user-defined classes for two purposes:

• To tune and/or extend the machinery that G2 provides.

• To represent specific types of knowledge within a KB.

The two purposes overlap, because much of G2’s machinery exists to represent
knowledge in some way. The techniques for creating subclasses are the same in
either case.

A class that you define to extend G2 or represent knowledge is called a user-
defined class. Not all KBs require user-defined classes to create customized KB
components, but essentially all KBs require such classes to represent knowledge.
Techniques for creating user-defined classes appear in Definitions.

Extending G2’s Machinery with User-Defined
Classes

G2 provides a wide variety of components for constructing and accessing KBs,
such as workspaces, streams, buttons, and tables. These constitute G2’s essential
machinery. All are provided as system-defined classes. Examples: kb-workspace,
g2-stream, action-button, and system-table.

None of these components needs to be customized in order to provide effective
G2 machinery. Nevertheless, almost all of them can be. You can therefore extend
G2 in almost any way to provide whatever environment you need. Only
extensions that would break G2 are precluded.

Representing Knowledge with User-Defined Classes

Some KB knowledge comes in standardized forms, such as connections, relations,
methods, and rules. G2 represents such knowledge using system-defined classes.
Examples: connection, relation, method, rule. You can use these classes as G2
provides them, or subclass them as needed to provide specialized or extended
knowledge-representation capabilities.

Other KB knowledge takes arbitrary forms that cannot be anticipated by
predefined system classes. To represent such knowledge, you can define classes
that have any desired attributes, and use them as needed to represent knowledge.

Creating User-Defined Classes

Every user-defined class is based directly or indirectly on one or more system-
defined classes, from which it inherits various attributes. Such attributes are
called system-defined attributes. Most user-defined classes include additional
503

attributes specific to the class. Such attributes are called user-defined attributes.
Many user-defined classes also have associated methods.

To create a user-defined subclass, you create a class-definition using the New
Definition command of the KB-Workspace menu, then fill in the definition’s table
to give the new class the desired name and inheritance, as described in
Definitions. A user-defined class’s inheritance consists of one or more system-
defined classes, and optionally one or more user-defined classes.

User-defined class-definitions appear as icons on workspaces. A class-definition’s
icon is a shaded triangle.

For example, the following figure shows a workspace with seven class-
definitions. In this user-defined hierarchy, equipment is at the top of the
hierarchy, and pc-net is at the bottom. The direct-superior-classes attribute
displays at the left of each class-definition show how the classes inherit from one
another in this and the following examples.
504

User-Defined Classes
The table of a typical user-defined class, specifically the class pc-net in the above
figure, looks like this:

Note in particular the definition’s direct-superior-classes and class-inheritance-
path attributes. These attributes are the key to understanding and using G2 class
inheritance, as described later in this chapter.

Instantiating User-Defined Classes

You can instantiate user-defined classes interactively and programmatically.

To instantiate a user-defined class interactively:

 Select the create instance menu choice of the class definition.

To instantiate a user-defined class programmatically:

 create a class-name

You can also use create to instantiate system-defined classes, as described in the
previous section. For information on the create action, see Actions.

Instances of user-defined classes can appear as icons on workspaces. The icon
characteristic of each class can be inherited from a superior class, or the user-
505

defined class can specify an icon of its own. The Icon Editor and Icon
Management shows you how to customize a user-defined class’s icon.

The table of an instance of pc-net, the class whose table appears in the previous
figure, looks like this:

Inheritance in Class Hierarchies

Classes are bound into hierarchies by inheritance. If you understand how G2
handles inheritance, you will be able to design class hierarchies to suit any need.

Single inheritance is very straightforward: a subclass inherits everything
characteristic of its direct superior class (parent). If you do not redefine any
system-defined attributes in the subclass definition, or add any class-specific
attributes to the definition, an instance of the subclass differs only in name from
an instance of its parent class.

Single inheritance is convenient where information is tree-structured, or
sufficiently close to it that an acceptable amount of duplication in class definitions
can make up the difference. Single inheritance can usually provide everything
that a user-defined class hierarchy needs.

Where information is not tree-structured, you can use multiple inheritance to
represent the information efficiently. Multiple inheritance differs from single
inheritance in that it allows a subclass to have more than one direct superior class.

Various complexities can arise in multiple inheritance, because the parent classes
can include duplicate and conflicting attributes. If you understand how G2 copes
with these, as described later in this chapter, you should have no difficulty using
multiple inheritance.

Every definition has two attributes for controlling and displaying inheritance:
direct-superior-classes and class-inheritance-path. You must understand these
attributes in order to understand G2 inheritance.
506

Single Inheritance
Direct-Superior-Classes Attribute

This attribute of a class lists the class’s parent(s). In single inheritance, only one
class appears: the direct superior class. In multiple inheritance, more than one
class appears. The first class named in the attribute is called the primary direct
superior, and all subsequent classes are secondary direct superiors.

When more than one direct superior class exists, the order in which they appear
in the direct-superior-classes attribute, in conjunction with the structure of the
existing class hierarchy, determines the class inheritance path, which controls
what happens in case of duplicate or conflicting inheritance.

Class-Inheritance-Path Attribute

This attribute of a class lists all classes that contribute to the class’s inheritance, in
precedence order. The list begins with the class itself: the immediate class. The
list ends with the root of the class hierarchy, which is always item. The contents of
the list between the immediate class and the root class vary with the details of the
immediate class’s inheritance.

G2 automatically derives a class’s inheritance path based on its direct superior
class(es) and the existing class hierarchy, and updates the path as needed when
you modify the hierarchy.

Class inheritance paths are the key to working with class hierarchies. Almost
everything discussed in this chapter either explains how G2 generates class
hierarchy paths, or shows how G2 uses such paths to determine class properties.

G2 uses a class’s inheritance path to resolve duplicate and conflicting attributes
among the superior classes that the class inherits. Such resolution is exactly the
same in single and multiple inheritance: G2 scans the class inheritance path and
gives precedence to the first relevant attribute definition that it encounters.

Since the immediate class is always the first class on its own inheritance path, this
technique allows a class to override, or shadow, any inherited attribute definition
with a definition of its own.

Single Inheritance
A single inheritance class is a class that has a unique inheritance path leading
from itself to the root class, because neither the class nor any of its ancestors has
more than one parent.

For a single inheritance class, there is only one reasonable way to order the class
inheritance path: it lists the class itself, its parent, it’s parent’s parent, and so on,
culminating in the root class.

For example, consider first the following single inheritance class hierarchy:
507

The figure shows several classes in a hierarchy based on equipment. The direct-
superior-classes attribute displays show the class inheritance. The structure of the
hierarchy is:

• equipment is a subclass of object, that is, it specifies object as its direct
superior class.

• peripheral and computer are two subclasses of equipment, which each
specifies equipment as its direct superior class.

• network and pc are subclasses of peripheral and computer, respectively.

Following the rule for single inheritance given above:

• The class inheritance path of network is:

network, peripheral, equipment, object, item

• The class inheritance path of pc is:

pc, computer, equipment, object, item

Inheritance of Default Values

When you create an instance of a class, some system-defined attributes and any
user-defined attribute can receive an initial value. G2 calls such a value the
default value of the attribute. This value is derived from the definition of the
instantiated class.

When you reset a KB, attribute values do not return to their default values: they
keep the values that they had prior to the reset. This behavior distinguishes
default values of attributes from initial values of variables and parameters, which
are restored each time a KB is reset.
508

Single Inheritance
Caution Be careful not to confuse a default value, as described in this section, with a default
attribute, as described in the next section.

For every attribute, a class can inherit a default value from a superior class, or it
can specify a default value of its own, overriding any inherited value. When a
class does not explicitly define a default value, a new instance of the class has the
value specified by the first class in the class’s inheritance path that defines a
default value for the attribute.

For example, consider the following hierarchy:

The figure shows the same classes that we looked at earlier. Two of the classes,
equipment and peripheral, explicitly define icons. A class instance appears by each
class definition that defines a class icon.

An item’s icon is specified by the value of the icon-description attribute of its class
description or the icon-description of its closest superior on its class inheritance
path. This is a system-defined attribute that has a default value provided by G2. A
user-defined class can override this default by specifying its own value for icon-
description, as equipment and peripheral both do.

With the icon-description values shown, an instance of equipment has a
workstation icon, because the class defines the value for the attribute. An instance
of computer has the same icon, because computer inherits the default value from
equipment. The class pc similarly inherits that default value from computer, so a
pc instance also has the workstation icon.

However, peripheral explicitly specifies a different icon-description value: the
node icon. This definition shadows equipment’s icon description, and is inherited
509

by network. Thus instances of both peripheral and network have node icons, not
workstation icons.

Inheriting Default Values for Stubs

Icons and stubs are closely related, but they are specified by two different
attributes of a definition. This independence could result in mismatched icons
and stubs, so the G2 class inheritance rules contain a special provision that
prevents it.

To prevent such a mismatch, a class can inherit a stubs definition only from the
class from which it inherits its icon definition, or from a descendent of that class:
classes superior to the class that supplies the icon definition are disallowed. If no
acceptable superior class provides a stubs definition, the class’s stubs default
value is none.

Inheritance of Methods

A given class can have any number of associated methods that define the
behavior of instances of the class. These methods can take arguments that tailor
the behavior to suit a particular class of instances. Methods defined for different
classes can have the same name.

When you call a method on an instance of a class, G2 searches the class-
inheritance-path of that class and uses the first explicitly defined method it
encounters that has the same number of arguments as the calling expression. If no
match is found with any class in the class inheritance path, G2 signals an error.

For more information about methods and their use of the class inheritance path,
see Methods.

Duplicate Attributes

To facilitate modular design and encapsulation, G2 allows a subclass to define an
attribute whose name duplicates that of an inherited user-defined attribute.
Instances of the subclass then have both the inherited attribute and the locally
defined attribute. G2 does not permit a user-defined attribute to duplicate the
name of a system-defined attribute.

Attributes with the same name are customarily called duplicate attributes,
though actually only their unqualified names are duplicates. Duplicate attributes
have no more relation to one another than any two attributes have. They may or
may not hold data of the same type, or share any other characteristics.

If you change a duplicate attribute’s definition to eliminate the duplication,
nothing changes but the name; the attributes themselves are unaffected. The same
applies if you change a name in a way that creates a duplication. In either case, G2
updates all instances and tables as needed to reflect the change.
510

Single Inheritance
Duplicate attributes can lead to confusion, and complicate the task of referring to
attributes in expressions. Use them sparingly if at all, and only where they
provide a significant advantage.

Naming Duplicate Attributes

To prevent ambiguity, G2 qualifies the names of duplicate attributes as needed
with the name of the class that defines each attribute. The syntax for a qualified
attribute name is:

class-name::attribute-name

For every class, G2 determines what duplicate attribute name(s) to qualify by
following the class’s inheritance path. G2 uses without qualification the first
attribute with a given name that it encounters. This attribute is called the default
attribute. G2 qualifies each subsequently defined duplicate attribute with the
name of the class that defines it.

Caution Be careful not to confuse a default attribute, as described in this section, with a
default value, as described in the previous section.

For example, consider the following hierarchy where the attribute displays show
the direct-superior-classes attribute value for each class and the value of the
class-specific-attributes for two classes:

Both equipment and computer explicitly define an attribute named application.
The table of a computer instance would show two attributes: application,
representing the locally defined attribute, and equipment::application,
representing the inherited attribute.
511

G2 lists attributes from the bottom up in the order in which their definitions
appear on the class’s inheritance path, so the table looks like this:

An instance of pc has the same application attributes as an instance of computer,
because the pc class inherits them from the computer class:

In the preceding two tables, the default application attribute is the same for both
computer and pc: it is pc’s attribute. The reason is that, for both computer and pc,
computer is the first class on the class’s inheritance path to define an application
attribute.

However, if pc also explicitly defined an application attribute, an instance of pc
would have three such attributes: application, computer::application, and
equipment::application:

The attribute now named computer::application is the same attribute that was
named application before pc defined its own application attribute. It is no longer
pc’s default application attribute, because pc’s own application definition is now
the first such definition by a class on pc’s inheritance path.
512

Single Inheritance
Referencing Duplicate Attributes

When you reference one of a set of duplicate attributes, you must qualify the
reference as needed to specify the correct attribute. The name for any attribute of
an item appears with the necessary qualification in the item’s table.

If you do not qualify the name in a reference to a duplicate attribute, G2 uses the
default attribute of the class of the item. For example, if pc-1 is an instance of pc in
the equipment hierarchy pictured above, then:

the application of pc-1

refers to the application attribute that pc inherits from computer, and:

the equipment::application of pc-1

refers to the application attribute that pc inherits from equipment.

The meaning of an unqualified name can change if the hierarchy changes. For
example, if pc were to define its own application attribute, then:

the application of pc-1

would thereafter refer to the application attribute that pc itself defines. To
reference the computer’s application attribute, you would need a qualified name:

the computer::application of pc-1

To guard against such changes in meaning, you can qualify a reference to a
default attribute for a class. Such qualification, though initially redundant,
ensures that your code will mean the same thing even if subsequent changes give
the class a different default attribute. For example:

the computer::application of pc-1

means the same thing whether or not pc defines an application attribute of
its own.

When you give a qualified name in a reference, G2 always does the same thing: it
uses the default attribute of the class named in the reference. Thus a qualified
reference need not name the class that actually defines the attribute.

For example, in the hierarchy shown previously, the names network::application,
peripheral::application, and equipment::application all refer to equipment’s
application attribute, because that is the default application attribute for all
three classes.

Duplicate Attributes and Default Values

When duplicate attributes exist, the default values for each attribute are
completely independent of one another. They have no more relationship than
they would if each attribute had a different name.

Be careful not to define a duplicate attribute when all you want to do is shadow
an inherited attribute’s default value. You can define a new default value for any
513

attribute in any class definition, as described under Specifying Default Values for
Inherited Attributes.

Multiple Inheritance

A multiple inheritance class is a class that has, or inherits any class that has, more
than one parent. Such a class does not inherently have a unique inheritance path
leading from itself to the root class. Multiple inheritance is appropriate when
different branches of a class hierarchy define attributes and/or methods that
would be useful if available in a single class.

For example, a class on one branch of a hierarchy might define attributes
appropriate to a PC, and a class on another branch might define attributes
appropriate to a network. A class that combined both sets of attributes might be
useful to represent network controllers.

With multiple inheritance, you could create a network controller class by defining
a subclass that inherits both the PC class and the network class. With single
inheritance your subclass could inherit only one of the existing classes, and would
have to redundantly define the attributes of the other.

Multiple inheritance is also useful for adding specific properties to general-
purpose classes. G2 defines various classes called mixins that are useful for this
purpose. For example, the mixin class gsi-message-service gives any class that
includes it a gsi-interface-name attribute and a data-server-for-messages
attribute. You can include these attributes by adding the gsi-message-service
class in the direct superiors of the user-defined class.

If you do not need to use multiple inheritance, you can skip to Defining Classes in
Bottom-up Order. Before you proceed, be sure that you thoroughly understand
single inheritance, as described in the previous section.

Multiple Inheritance and Class Inheritance Paths

In both single and multiple inheritance, a class’s inheritance path is the key to
working with the class. G2 uses class inheritance paths in exactly the same way
for both single and multiple inheritance classes. However, deriving a class’s
inheritance path is more difficult in multiple inheritance than in single
inheritance.

For a single inheritance class, there is only one reasonable way to order a class’s
inheritance path: the path lists the class itself, the class’s parent, it’s parent’s
parent, and so on, culminating in the root class. Thus the class hierarchy
intrinsically provides every single inheritance class with a unique inheritance
path.

For a multiple inheritance class, deriving an inheritance path is more complex.
Some of the ancestors of the class exist on parallel branches of the hierarchy. The
514

Multiple Inheritance
classes on the different branches have no intrinsic ordering relative to one
another, so the class hierarchy does not inherently provide a unique inheritance
path.

Multiple inheritance requires a determinate technique that can order all ancestors
of a multiple inheritance class into a sequential class inheritance path. The task of
assigning an order to the classes that contribute to a subclass via multiple
inheritance is called linearization.

Many linearization techniques exist. The technique that G2 uses follows the same
specifications as the L*Loops technique, which has become the standard
technique for linearizing multiple inheritance. This chapter refers to G2’s
linearization technique as G2 linearization.

Linearizing Multiple Inheritance

A simple example can show you intuitively how G2 linearization works. The
following figure shows the same class hierarchy that previous examples used,
with the addition of a new multiple inheritance class called pc-net. Pc-net’s direct
superiors are pc and network, in that order.

The direct-superior-classes attribute display shows the two direct superiors in
their preference order. The question is: what is pc-net’s class inheritance path?
515

Like all class inheritance paths, pc-net’s inheritance path must begin with the
immediate class, and end with the root class. Thus pc-net’s inheritance class
begins with pc-net and ends with item. Because equipment is a single-inheritance
class (equipment < object < item), linearizing pc-net’s inheritance requires
ordering the contributions of the two inheritance branches between pc-net and
equipment.

There is no reason to shuffle the contributions of the two branches together, or to
reorder their constituent classes. The most obvious approach is to string them
together one after another. But in which order? pc appears before network in pc-
net’s list of direct superior classes, so the obvious answer is to give pc’s
contribution to pc-net’s inheritance precedence over network’s contribution.

Following these principles, the class inheritance path of pc-net is:

pc-net, pc, computer, network, peripheral, equipment, object, item

This simple example shows the general principle of G2 linearization: G2 linearizes
a class’s inheritance by interleaving the inheritance paths of its parents. The order
in which the parents appear in the class’s direct-superior-classes attribute, in
conjunction with the existing class hierarchy, controls the contributions of those
parents to the class’s inheritance path.

How G2 Linearizes Multiple Inheritance
The inheritance path shown in the previous example is intuitively reasonable.
However, linearization in more complex inheritance networks is not always so
obvious. To deal with complex cases, you must know how G2 constructs a class
inheritance path. You will then be able to predict the linearization of complex
inheritance networks without having to construct them.

If you need multiple inheritance only to create simple structures that branch and
rejoin in straightforward ways, as in the previous example, you do not need to
study G2 linearization beyond this point. You can let G2 handle linearization
automatically; the class inheritance paths that G2 produces will be intuitively
obvious.

If you do not need further information on G2 linearization, skip to Defining
Classes in Bottom-up Order.

The G2 Linearization Algorithm

G2 creates an inheritance path for a class by interleaving the inheritance paths of
its direct superiors. The merge proceeds in the order given by the class’s direct
superiors list. G2 starts with the inheritance path of the primary direct superior,
and merges the path of the next direct superior into it, yielding a path that
expresses the contributions of both superiors.
516

How G2 Linearizes Multiple Inheritance
G2 next merges in the inheritance path of the third superior class (if any), and so
on through the list of direct superior classes. Thus G2 merges inheritance paths in
pairs: at any given time, it has a primary path, and a secondary path to be merged
into it. Having completed the merge, it proceeds to the next secondary path (if
any), and so on.

G2 merges a secondary path into a primary path by applying the following
algorithm. The algorithm is not easily grasped at first reading, but its action is
essentially quite simple. You may want to just skim the algorithm, then refer back
to it as you read through the examples that follow it.

1 Start with the immediate classes of the two inheritance paths.

2 Scan up the two paths to the first class that exists on both paths.

Any class found on both inheritance paths is called a common ancestor.

3 Insert the classes that exist before the common ancestor on the secondary path
into the primary path directly below the common ancestor.

4 Unless both paths are exhausted, continue to scan to the next common
ancestor.

5 Insert any classes that exist in the secondary path between the previous
common ancestor and the current common ancestor into the primary path just
before the current common ancestor.

Step 5 is functionally identical with Step 3, as explained below.

6 Continue thus to scan and merge until both paths are exhausted.

Since all class inheritance paths end with the root class, any two paths always end
with a common ancestor. The only difference between Steps 3 and 5 is that Step 3
handles the boundary case where no previous common ancestor has been
encountered.

Linearizing Two Superior Classes

To help you understand how G2 linearization works, the rest of this section
shows several examples of its operation. In these examples, the top-level user-
defined class inherits singly from the system-defined class object. To simplify the
examples, object and its direct superior, item, are omitted from the examples.

First let’s take a more formal look at the previous example. Pc-net’s primary and
secondary class inheritance paths, shown in tabular form, are:

Primary (pc) Secondary (network)

equipment equipment
517

The immediate classes of the two paths are network and pc, the direct superiors of
pc-net. The first common ancestor is equipment. Therefore Step 3 inserts
peripheral and network, from the secondary path, between equipment and
computer on the primary path:

The resulting primary path is:

Since there are no additional classes superior to equipment (except object and
item), and no more secondary paths to merge in, the algorithm is finished. The
resulting interleaved path linearizes pc-net’s inheritance. Adding pc-net itself to
this path yields pc-net’s class inheritance path:

pc-net, pc, computer, network, peripheral, equipment. object, item

This is the same path that we previously derived informally.

computer peripheral

pc network

Primary (pc) Secondary (network)

Primary (pc) Secondary (network)

equipment equipment

computer peripheral

pc network

Primary

equipment

peripheral

network

computer

pc
518

How G2 Linearizes Multiple Inheritance
Linearizing Several Superior Classes

To get an idea of how G2 handles more complex inheritance, consider the
following example:

If you specify powerlan’s direct superiors as:

quadra, lan, clone

powerlan’s class inheritance path is:

powerlan, quadra, mac, clone, ibm, pc, computer, lan, subnet, network,
peripheral, equipment, object, item

subn
519

The following tables show how G2 derives powerlan’s inheritance path by
merging the inheritance paths of powerlan’s direct superiors:

Which yields the class inheritance path given above:

powerlan, quadra, mac, clone, ibm, pc, computer, lan, subnet, network,
peripheral, equipment, object, item

This inheritance path is probably not what you would expect intuitively. The
classes clone and ibm, which exist in the path only by virtue of the third direct
superior, clone, take precedence over classes contributed by both the second and
the primary direct superior. This is definitely not an ideal ordering.

However, notice the bizarre nature of powerlan’s direct superiors list. Inserting
the distantly related class lan between the closely related classes quadra and clone
makes very little sense. clone and ibm take precedence over so many other classes,
not because G2 linearization has produced an undesirable result, but because it
was given an illogical inheritance to linearize.

Primary (quadra) Secondary (lan) Secondary (clone)

equipment equipment equipment

computer peripheral computer

pc network pc

mac subnet ibm

quadra lan clone

Primary Secondary (clone)

equipment equipment

peripheral computer

network pc

subnet ibm

lan clone

computer

pc

mac

quadra
520

How G2 Linearizes Multiple Inheritance
This illustrates a general principle of linearization: strange class inheritance paths
usually reflect strange inheritance patterns that should be reorganized to have a
more logical structure.

Linearizing Networks of Classes

In the preceding examples of linearization, the class hierarchy was essentially a
tree: the root class diverged into parallel branches that merged at their tips to
create a multiple inheritance class. Thus no ancestor of a class with multiple
inheritance also had multiple inheritance.

Inheritance networks can become very complex, with multiple inheritance classes
inheriting other such classes. For example, consider the following inheritance
network:

G2 linearizes class inheritance by working from the top down. In this case, it first
linearizes lan’s inheritance, then proceeds to linearize subnet’s inheritance. Since
multiple inheritance networks are hierarchies (have a unique root and do not
contain circular structures), G2 can always linearize from the top down without
encountering mutually dependent needs for a previously computed class
inheritance path.
521

In this case, lan’s inheritance path is lan, computer, network, equipment, and
powerpc’s inheritance path is powerpc, computer, equipment, so subnet’s
inheritance path is subnet, powerpc, lan, computer, network, equipment:

Why G2 Linearizes As It Does
You may wonder why a relatively complex algorithm like G2 linearization is
necessary to accomplish something that seems initially to be so simple. The
reasons are largely beyond the scope of this document, but this section provides a
brief overview. If you do not need this information, skip to Defining Classes in
Bottom-up Order.

For more detailed information, consult a text on the theory of object-oriented
programming, and/or the paper “Monotonic Conflict Resolution Mechanisms for
Inheritance”, Ducournau, Habib, Huchard, and Mugnier, ACM Proceedings for
OOPSLA ‘92.

Ideal Linearization

The intuitively ideal linearization algorithm would always produce a class
inheritance path that has the following properties:

• Every class inherited from a higher-precedence direct superior appears before
any class inherited from a lower-precedence direct superior.

• Every inherited class C appears before any inherited class that is superior to C
in C’s own class inheritance path.

That is, we want a linearized class inheritance path to reflect the precedence in the
class’s direct superiors list without allowing any superior class to take precedence
over its own descendents.

Primary (powerpc) Secondary (lan)

equipment equipment

computer network

powerpc computer

lan
522

Illegal Patterns of Multiple Inheritance
Feasible Linearization

Unfortunately, these two requirements are intrinsically at odds: no possible
linearization algorithm can satisfy both of them in every case. The ability to
linearize any multiple inheritance structure therefore requires that one of these
goals be compromised in some cases. The question is: which one?

• Compromising hierarchical precedence

Allowing a more general class to ever take precedence over one of its own
descendents creates a structure in which both A>B and B>A. The result would
be an unusable tangle of mutually contradictory inheritances. The
requirement to maintain strict hierarchy cannot be compromised.

• Compromising direct superior precedence

Allowing a class inherited from a lower-precedence superior to sometimes
take precedence over a class inherited from a higher-precedence superior
produces results that are counterintuitive, but not disastrous. Successful
linearization, and thus the ability to use multiple inheritance at all, requires
accepting this compromise. A good linearization algorithm minimizes its
negative effects.

G2 Linearization

G2 linearizes as it does because the algorithm has several desirable properties:

• In most cases, it does in fact linearize inheritance in the intuitively ideal way.

• It never allows a parent class to take precedence over a child class under any
circumstances.

• It minimizes the degree to which classes inherited from lower-precedence
superiors take precedence over classes inherited from higher-precedence
superiors.

While no linearization technique gives ideal results in every case, G2
linearization, though more complex than most linearization algorithms, gives
results as good as or better than any other.

Illegal Patterns of Multiple Inheritance

G2 prohibits you from specifying some patterns of multiple inheritance because
they would cause disordered or meaningless results. If you specify an illegal
pattern of multiple inheritance, G2 displays a descriptive error message when you
try to close the edit of the direct-superior-classes attribute.

As long as you use multiple inheritance in straightforward ways, you will rarely
if ever specify an illegal pattern of multiple inheritance. Thus you do not need to
523

study the subject in detail so as to avoid trouble later on. This section describes
the general nature of the two types of illegal inheritance.

Disordered Multiple Inheritance

Some patterns of multiple inheritance are illegal because the resulting inheritance
could not have a logically ordered linearization. To get a general idea of this type
of illegal inheritance, consider the following figure:

The class-definition named peripheral-network was planned to have peripheral
and network, in that order, as its direct superior classes.

This specification is illegal because peripheral would be unable to precede
network in the class inheritance path as dictated by the direct-superior-class
precedence ordering. This is because peripheral is superior to network in the class
hierarchy. A subclass cannot precede a superior class in a class inheritance path.

To prevent this kind of problem, G2 requires that any class specified in a list of
direct superiors must precede any superior class that also appears. That is, a more
general class cannot take precedence over a more refined subclass in a list of
direct superiors.

In the current example, you could solve the problem by reversing the order of
inheritance, so that peripheral-network specifies its direct superior classes as
network and peripheral, in that order. However, such a specification, though not
illegal, is pointless: peripheral-network can inherit from network anything it
would inherit from peripheral. Thus there is no need for multiple inheritance in
this case.

This illustrates a general principle of multiple inheritance: where illegal multiple
inheritance occurs, something is probably wrong with the plan that led to it.
524

Illegal Patterns of Multiple Inheritance
Meaningless Multiple Inheritance

Some patterns of multiple inheritance are illegal because the resulting class could
not serve a reasonable purpose because of contradictory functionalities. For
example, consider a class that inherits g2-window and connection. The resulting
class would be nonsensical.

G2 defines any system-defined concrete or abstract class as a foundation class. To
prevent meaningless multiple inheritance, G2 enforces the following rule:

When a class inherits more than one foundation class,
the classes must all be in the same line of inheritance.

For example, integer-array is a subclass of object, which is a subclass of item, and
network-wire is a subclass of connection which is a subclass of item.

A user-defined class could inherit from a combination of item, object, and integer-
array, because all three are in the same line of inheritance. Similarly, a user-
defined class could inherit from any combination of item, connection, and
network-wire. However, a class that tried to inherit object and network-wire, or
any other combination of foundation classes in different lines of inheritance,
would be illegal.

As pointed out in the previous section, inheriting both a class and a direct
superior of that class serves no purpose, because the class already has everything
that the superior has. However, G2 applications sometimes define subclasses of
different foundation classes, then combine those subclasses using multiple
inheritance. Such a subclass can exist only when all foundation classes in its
ancestry are in the same line of inheritance.

item

object

integer-array

connection

network-wire
525

Viewing Multiple Inheritance with the
Inspect Facility

The Inspect facility does not attempt to show multiple inheritance as a network:
for inheritance networks of any significant complexity, such displays are typically
indecipherable. Instead, Inspect duplicates the representation of a class with
multiple inheritance as needed to show all connections between the class and
its ancestor.

For example, given the following class hierarchy:

this Inspect command:

show on a workspace the class hierarchy of pc-net

results in the following class hierarchy (with item and object omitted):

For further information on using Inspect, see The Inspect Facility.
526

Default Values in Multiple Inheritance
Default Values in Multiple Inheritance

In single inheritance, a class has the same default values that its parent class has,
except where the class overrides those values with values of its own. This
property results from the fact that the class has only one parent, and therefore
only one source from which it can inherit default value definitions.

In multiple inheritance, specifying a class as the primary direct superior does not
guarantee that the subclass inherits all default values from that class. A subclass
inherits the default value of an attribute from the first class in the class inheritance
path that explicitly defines one, not from the first class that has one by inheritance.

The examples in this section show how G2 uses the class inheritance path to
determine which default values a multiple inheritance class inherits. The
examples focus on the system-defined attribute icon-description, which defines
the icon displayed by an instance. The examples use the pc-net multiple
inheritance structure:

Pc-net’s direct superiors are pc and network, in that order; pc’s class inheritance
path is therefore:

pc-net, pc, computer, network, peripheral, equipment, object, item
527

Inheriting a Default Value from a Direct Superior

In the next figure, both the pc and network classes have their own icon definitions.
As in the previous example, the icon by pc is called the workstation icon, and the
icon by network is called the node icon.

Since pc appears before network on pc-net’s class inheritance path, pc-net inherits
the workstation icon.

Networks’s icon definition has no effect on pc-net: from pc-net’s perspective,
network’s icon definition does not exist: pc’s definition has overridden network’s
definition.

If you deleted pc’s icon definition, and did not define any other icon on the path
between pc-net and network, network’s icon definition would cease to be
overridden, and would be pc-net’s icon definition also. A pc-net instance would
then have a node icon.
528

Default Values in Multiple Inheritance
Overriding the Default Value of a Direct Superior

In the next figure, pc does not define an icon, but computer and network do:

Since computer appears before network on pc-net’s class inheritance path, pc-net
inherits the workstation icon: the default value given by network, a direct superior
is overridden. The class inheritance path, not the list of direct superiors,
determines default value inheritance.
529

Overriding an Inherited Value with an Explicit Value

In the next figure, network and equipment both define icons:

Since network appears before equipment on pc-net’s class inheritance path, pc-net
inherits the node icon: the default value that pc inherits from equipment via
computer is overridden. Only explicit specifications, not inherited specifications,
can provide default values.

Inheriting Default Values for Stubs

Icons and stubs are closely related, but they are specified by two different
attributes of a definition. Where multiple inheritance exists, this independence
could result in mismatched icons and stubs, so the G2 class inheritance rules
contain a special provision that prevents it.

To prevent such a mismatch, a class can inherit a stubs definition only from the
class from which it inherits its icon definition, or from a descendent of that class.
If none of these provides a stubs definition, either inherited or locally defined, the
class’s stubs default value is none.
530

Duplicate Attributes in Multiple Inheritance
Duplicate Attributes in Multiple Inheritance

Where multiple inheritance exists, a subclass can inherit user-defined attributes
with the same name from more than one superior class. Such duplication does not
arise when a subclass inherits the same attribute through more than one path. It
occurs only when different attributes with the same name exist in different
ancestral classes.

G2 handles duplicate attributes that arise from multiple inheritance just as it does
those arising from single inheritance: it follows the class inheritance path, uses the
first definition it encounters without qualification, and qualifies any others with
the relevant class name.

For example, consider again the pc-net multiple inheritance structure:

Suppose that, as indicated in the figure:

• equipment defines the attribute application

• pc defines attributes use and location

• network defines attributes use and location

• pc-net defines the attribute use

• pc-net’s direct superior classes are pc and network, in that order

Pc-nets’s class inheritance path is:

pc-net, pc, computer, network, peripheral, equipment, object, item
531

The following figure shows the definition table for pc-net, along with the table of
an instance of pc-net:

Note that the application attribute appears only once, even though pc-net inherits
it from two different sources: pc and network. Both of these definitions are really
the same definition, inherited from equipment, so G2 defines only one application
attribute in pc-net. G2 qualifies the other inherited attributes as needed by
following the class inheritance path, as described above.

If pc-net’s direct superior classes were network and pc, in that order, giving pc-net
the class inheritance path:

pc-net, network, peripheral, pc, computer, equipment, object, item

the attributes of a pc-net would be:

use
location
pc::use
pc::location
application
532

Defining Classes in Bottom-up Order
Defining Classes in Bottom-up Order

In order for a class to be fully defined, the class must have a name, and either an
existing direct superior class (single inheritance), or an acceptable list of such
classes (multiple inheritance). This information allows G2 to determine the class’s
inheritance path, add the class to the G2 class hierarchy, and thereafter instantiate
the class on demand.

If you define classes top-down, completely specifying each one before defining
any subclasses, each class becomes fully defined, and can be instantiated, as soon
as you complete its definition. However, this order of creation is not always
convenient. Therefore G2 does not require you to define a class’s direct
superior(s) before you name them in the class’s definition.

This provision allows you to define classes in bottom-up order. A class definition
with one or more direct superior classes that have not yet been defined does not
add the new class to the hierarchy, and does not permit the class to be
instantiated.

You can have any number of partially completed class definitions in a KB without
affecting the class hierarchy or KB execution in any way. The notes attribute of
any such definition has an incomplete status, and states that one or more direct
superior classes is not defined.

If many class definitions specify the same nonexistent superior class, defining the
superior will complete all of the definitions that depend on it, and add them all to
the hierarchy at once.

Deleting a Class Definition

Deleting a class definition automatically deletes all instances of that class, and all
instances of any subclasses that inherit it. Instance deletion occurs because an
instance requires a complete set of information from every superior class within
its class hierarchy. When you delete any superior class within that instance’s class
hierarchy, such information no longer exists, and thus, neither can the instance.

All subclasses of a deleted superior class retain their class definitions. The notes
attribute of any such subclass, however, has an incomplete status, and states that
one or more direct superior classes is not defined. The same notification would
appear if the subclass had been created as part of bottom-up development, and
the deleted parent class had never existed.
533

Planning a Class Hierarchy

Planning a class hierarchy for your G2 knowledge base is an important part of
completing your application. Following are some general guidelines:

• Try to plan as many of your classes at one time as possible. The hierarchy you
develop depends on the interrelationships of your classes. One of the first
steps to planning a class hierarchy is to list the most important properties that
each of your prospective classes will have.

• Use factoring to build a provisional class hierarchy based on the properties. In
factoring, you develop classes by grouping all common properties as high up
in the class hierarchy as you can. For instance, the classes vertebrates and
invertebrates group all animals with and without spines into two high-level
classes. Subclasses beneath these specify additional groups with
common properties.

• Consider the probable patterns of referencing objects when deciding which
kinds of properties should be the basis for your hierarchy. For instance, in a
taxonomy, the class basis is structural. If, in your application, you are more
likely to reference objects by some other property, say habitat, your high level
classes should reflect this. You might have high-level classes such as land-
animal, air-animal, and water-animal instead of the structural categories.

• Multiple-inheritance allows you to classify entities under two or more major
classifications. Don’t neglect its potential to help you to represent complex
structures of information.

G2 allows you to change user-defined classes and class hierarchies as needed.
Such changes automatically propagate to all existing subclasses and instances.
However, you may also have to change other parts of the KB to be consistent with
the new class definitions, and this is sometimes difficult. Careful thought in
laying out user-defined classes and class hierarchies can save significant time
later on.
534

14
Definitions
Describes class definitions and shows you how to use them.

Introduction 536

Terminology 537

Overview of the Class Definition Process 537

Creating Class Definitions 538

Class Definition Attributes 539

Configuring Class Definitions 542

Specifying Instantiability 560

Specifying an Icon 562

Creating Object Classes 564

Creating Connection Classes 577

Creating Connection Post Classes 581

Creating Message Classes 582

Using Specialized Definitions 585

Customizing Definition Classes 589

Creating New Classes Programmatically 591

Changing Definitions 591

Merging Classes 603

Deleting a Definition 605
535

Introduction
The ability to create custom classes, and thus to extend the G2 class hierarchy, is
fundamental to representing the particular kinds of knowledge most suitable to
your KB’s requirements. G2 provides a variety of classes useful for representing
knowledge. You can extend these as needed to represent knowledge of any type.

You can also use custom classes to extend the machinery of G2 itself. Almost
every class that G2 uses to implement a KB is extensible. For example, you can
create a subclass of kb-workspace and instantiate it as needed to create
workspaces that have whatever attributes and default values you need.

The G2 class hierarchy includes four special classes that you can use to extend the
class hierarchy. These classes are definition classes, and an instance of any of
them is a definition. Creating a definition adds a new class to the hierarchy. The
definition specifies the inheritance and attributes of the new class. The new class
can be used as soon as the definition is complete.

You can use a definition to create a subclass of any extensible class (single
inheritance) or classes (multiple inheritance), including user-defined classes,
subject to the restrictions described under Illegal Patterns of Multiple Inheritance
on page 523. These subclasses can be abstract or concrete, as described under
Specifying Instantiability on page 560. No practical limit exists to the number of
classes in the class hierarchy, or the depth to which it can be extended.

The four types of definitions available in G2 are:

• class-definition: Creates a subclass of any kind.

• object-definition: Creates a subclass of object.

• connection-definition: Creates a subclass of connection.

• message-definition: Creates a subclass of message.

You can define anything with a class-definition that you can with any of the more
specialized types of definitions. The specialized definitions are supported to
provide compatibility with previous versions of G2, which did not provide a
generic class definition capability.

Most of this chapter describes class-definitions. Information relating to the
specialized types of definitions appears under Using Specialized Definitions on
page 585.

Note Before you read this chapter, you should understand G2 classes and the G2 class
hierarchy, as described in Chapter 13, Classes and Class Hierarchy on page 497.
536

Terminology
Terminology
The terminology for class definitions can be confusing, because object, connection,
and message definitions are class definitions in a generic sense, in that they define
classes, but are not the same as class-definitions. To prevent ambiguity, we use the
following conventions:

• The informal term “class definition” refers generically to any kind of class
definition.

• The formal terms class-definition, object-definition, connection-definition, and
message-definition refer to specific types of definition.

• The term “type class definition” refers to any definition that creates a subclass
of type. For example, an “object class definition” creates a subclass of object,
and could be either a class-definition or an object-definition.

Overview of the Class Definition Process

The following outline summarizes the use of a class-definition to define a class.

To create a class-definition:

 Instantiate a class-definition onto a workspace.

To specify the attributes of the class:

1 Specify the class’s name and superior class(es).

2 When the superior classes have been specified, G2 supplies values to read-
only attributes that show:

• The class inheritance path.

• The initializable attributes inherited from the system-defined superior(s).

• Any attributes inherited from user-defined superiors.

3 Define any attributes that are specific to the new class, and specify their
default values.

4 Override default values as needed for attributes inherited from user-defined
superior classes.

5 Provide default values for attributes inherited from system-defined
superior classes.

To specify other properties of the class:

1 Specify any configurations that apply to the class-definition itself.

2 Specify any configurations that apply to instances of the class defined.
537

3 Specify the instantiability of the class (if applicable).

4 Specify the icon of the class (if applicable).

This outline orders the various steps to highlight their functional groupings. The
order in which the steps are described in this chapter is optimized to facilitate
learning and reference. The order in which the steps are actually performed varies
widely. Any order that results in a correct definition will work.

You can define classes either interactively, by instantiating and completing a
definition, or programmatically, by writing procedures that use the create action.
Most of this chapter describes interactive class definition. Programmatic class
definition is described under Creating New Classes Programmatically on
page 591.

The development of a class often requires changing various aspects of its
definition over time. Such changes can be made in any order: all that matters is
the ultimate correctness of the definition. When no class instances exist, changing
a class requires only changing the relevant attribute(s) of the definition. When
instances exist, they must be then updated to reflect the new definition, as
described under Changing Definitions on page 591.

Creating Class Definitions
A class-definition can define a subclass of any extensible class.

To create a new class-definition:

1 Select KB Workspace > New Definition > class-definition > class-definition.

2 Click to place the new definition on a workspace:

Storing Definitions on Workspaces

A definition specifies the attributes of a new class. Because G2 uses the definition
to interpret the attributes of each class instance, the definition must be available
any time G2 references the instance. Similarly, subclasses (and their instances)
also require the definitions of the superior classes.

By default, G2 stores a definition item on the workspace from which you choose
the new-definition option. When choosing a workspace to contain your
definitions, select one that will remain enabled or active as long as any workspace
containing instances and subclasses is active. A disabled or inactive workspace
disables all items that reside upon it, along with their instances and
subworkspaces.
538

Class Definition Attributes
Class Definition Attributes

The class-specific attributes of a class-definition are as follows:

Attribute Description

item-configuration Configuration statements that apply to this item and to all
items below it in the workspace hierarchy. Compare with
instance-configuration.

Allowable values: Described in Chapter 7, on page 291.

Default value: none

class-name The name of the class being added to the class hierarchy.

Allowable values: Any unique symbol.

Default value: none

direct-superior-
classes

The names of one or more direct superior classes.

Allowable values: Any list of class-names that result in acceptable class
inheritance.

Default value: none

class-specific-
attributes

The attributes specific to this class.

Allowable values: For attribute names, any symbol that is not the name of an
inheritable system-defined attribute.

Default value: none
539

instance-
configuration

Configuration statements that apply to all instances of this
class. Compare with item-configuration.

Allowable values: Described in Chapter 7, Configurations on page 291.

Default value: none

change Changes certain user- and system-defined attribute
values.

Allowable values: Described in Using the Change Attribute on page 592.

Default value: none

instantiate Whether the class is can be instantiated. Inapplicable to
connections.

Allowable values: yes, no

Default value: yes

include-in-menus Whether the class appears in the G2 definition menus.
Inapplicable to connections.

Allowable values: yes, no

Default value: yes

class-inheritance
path

The class inheritance path of the class.

Allowable values: G2 provided.

Default value: none

Attribute Description
540

Class Definition Attributes
Formatting the Text of Attributes

In some cases, when you enter attributes in a definition table, G2 does not save
the formatting characters you enter, such as Control + j for a new line, after you
exit from the Text Editor.

In other cases, G2 adds formatting automatically. For example, in the attributes-
specific-to-class attribute, G2 stores each attribute on a separate line, even if you
enter multiple attribute names on one line in the Text Editor.

inherited-attributes User-defined attributes that the class inherits.

Allowable values: Any inherited attribute descriptions.

Default value: none

initializable-system-
attributes

The names of all initializable system attributes inherited
from the class’s superiors.

Allowable values: Depend on the particular superiors.

Default value: none

attribute-
initializations

Class overrides of the default values of some inherited
system-defined attributes, and of user-defined inherited
attributes.

Allowable values: See Specifying Default Values for Inherited Attributes on
page 556.

Default value: none

icon-description The textual description of an item’s icon. Not applicable to
subclasses of connection or message, or other classes that
have no iconic representation, such as kb-workspace.

Allowable values: See Chapter 46, The Icon Editor and Icon Management on
page 1637.

Default value: inherited

Attribute Description
541

Order of Attributes in Tables

When you create an instance of a user-defined class, the order of attributes in its
table is determined by the order in which the attributes are inherited and defined
in the class definition. Attributes defined by the class itself appear at the bottom of
the table. Those defined by the first direct superior class appear above them, and
so on.

The inherited attributes appear in the order that the superior class defined them
as class-specific attributes. An item’s attribute table lists attributes in this order,
from the top of the attribute table to the bottom:

1 System-defined attributes

2 User-defined inherited attributes

3 Class-specific attributes

Configuring Class Definitions
This section describes:

• Attributes and techniques that supply information needed in every
class definition.

• Attributes that provide information that is useful for completing every
class definition.

Subsequent sections describe attributes and techniques whose applicability
depends on the type of subclass being defined.

Specifying the Item Configuration

The item-configuration attribute determines which configurations are in effect for
this class. These configurations apply only to the definition itself, not to instances
of the class that it defines. Instance configurations are described under Specifying
Instance Configurations on page 546. For a description of configuration clauses,
see Chapter 7, Configurations on page 291.
542

Configuring Class Definitions
Providing a Class Name

Use the class-name attribute to specify the name of the class. You can use any
symbol that is not already in use. You cannot use a G2 reserved word, or any
symbol that denotes a G2 data type. Once specified, the class name appears below
the definition’s icon:

The class-naming convention in G2 is to use hyphens to separate words in a class
name. You can use another allowable G2 character, such as an underscore (_), if
you wish.

Note All class names must be unique within your KB. A class name cannot conflict with
another class name even if the definition is of a different type. For instance, you
cannot create a class-definition and an object-definition with the same class name.

You must complete both the class-name and direct-superior-classes attributes of
your definition before G2 considers the definition complete and adds it to the
class hierarchy and the menu structure. Until you complete both of those
attributes, a definition displays incomplete in its notes attribute, as shown in the
partial definition that follows:

Specifying the Superior Class(es)

The direct-superior-classes attribute determines the name of one or more direct
superior classes for the new class.

Clicking on any foundation-class in the Text Editor displays a list of all system-
defined and user-defined classes (other than mixins) that can be inherited.
543

Entering Direct Superior Classes

Providing one or more extensible direct superior classes (along with a valid class
name) adds the new class to the class hierarchy. When a class exists within the
class hierarchy, it inherits attributes from all of its superior classes. Note that you
cannot:

• Change the system-defined class hierarchy.

• Create a circular inheritance between or among classes; for example, you
cannot make two classes the superior of each other.

A class exists in a KB when it has a unique name and a set of acceptable existing
direct superior classes. These prerequisites make it possible to determine the
inheritance of the new class, add it to the class hierarchy, and instantiate the class.

If you are creating a class with multiple inheritance (more than one direct
superior class), the name of the direct superior class you enter first is significant.
The first class in the list is the primary direct superior class. All other direct
superior classes are secondary superior classes.

Some restrictions on multiple inheritance must be observed, as described under
Illegal Patterns of Multiple Inheritance on page 523.

Specifying Direct Superiors Before Creating Their Definitions

You can enter the names of direct superior classes before you have defined them.
Specifying a definition with one or more direct superior classes that are not
defined, however, does not add the new class to the hierarchy. It merely provides
a means for you to create definitions prior to creating all of the required direct
superior classes.

A class that does not exist may have potential subclasses, but it cannot have
instances. The potential subclasses come into existence simultaneously as soon as
you define the missing direct superior class.

When you specify a nonexistent class as a direct superior, the notes attribute of
the class-definition that specifies the missing superior includes an incomplete
message such as:

544

Configuring Class Definitions
Using Mixin Classes

You can use some classes, called mixin classes, with one or more other direct
superior classes to add specific properties to a subclass. To use a mixin class,
define a class whose direct-superior-classes attribute includes one or more of the
following mixins:

gsi-data-service
gsi-message-service
g2-to-g2-data-service
g2-meter-data-service
unique-identification

The mixins gsi-message-service and unique-identification can be mixed in with
any class. The other mixins shown can be used only with subclasses of variable.
Mixin classes add the following system-defined attributes to a subclass:

This mixin class... Provides this attribute(s) to your subclass...

gsi-data-service gsi-interface-name attribute

gsi-variable-status attribute

Both attributes are described in Chapter 63,
G2 Gateway on page 1985.

gsi-message-service gsi-interface-name attribute

data-server-for-messages attribute

These attribute is described in Chapter 63,
G2 Gateway on page 1985.

g2-to-g2-data-service g2-to-g2-interface-name attribute

remote-g2-expression attribute

Both attributes are described in Chapter 62,
G2-to-G2 Interface on page 1943.

g2-meter-data-
service

g2-meter-name attribute

This attribute is described in Chapter 54, G2-
Meters on page 1841.

unique-identification uuid

This attribute is described in Using Universal
Unique Identifiers on page 471.
545

Specifying Instance Configurations

The instance-configuration attribute specifies the configuration statements for all
instances or subclasses of a definition. These configurations apply only to
instances of the defined class, not to the definition itself. Definition configurations
are described under Specifying the Item Configuration on page 542. For a
description of configuration clauses, see Chapter 7, Configurations on page 291.

For instance, you may want to configure all instances of a class so that they do not
include the delete menu option. To do this, you could enter the instance
configuration as shown here:

configure the user interface as follows:
when in user mode:

menu choices for menu-test exclude: delete

Determining the Class Inheritance Path

The class-inheritance-path attribute specifies the inheritance path from the class
you are defining to item. For details, see Class-Inheritance-Path Attribute on
page 507 and Multiple Inheritance and Class Inheritance Paths on page 514.

G2 completes this attribute as soon as you enter one or more direct superior
classes and close the edit for the direct-superior-classes attribute. You cannot edit
the value of the class-inheritance-path attribute.

For G2 to complete the class-inheritance-path attribute, the direct superior classes
you specify must already exist and the inheritance you specify must be valid.

Determining the Initializable System Attributes

The initializable-system-attributes attribute lists the names of all initializable
attributes that the class definition inherits from the system-defined class(es) on its
class inheritance path. This display is read-only, and appears as soon as you
specify one or more legal direct superiors as the value of a class definition’s direct-
superior-classes attribute. The default value is none.
546

Configuring Class Definitions
For example, the next figure shows the system-defined attributes that you can
initialize for a procedure subclass:

Techniques for providing default values for initializable system attributes are
described under Specifying Default Values for Inherited Attributes on page 556.

Determining the Inherited User-Defined Attributes

The inherited-attributes attribute lists the user-defined attributes that the class
inherits from its superior classes. This display is read-only, and appears as soon as
you specify one or more legal direct superiors as the value of a definition’s direct-
superior-classes attribute. The default value is none.

Inherited user-defined attributes appear in the order of the class hierarchy of the
class you are defining. Techniques for providing default values for such attributes
appear under Specifying Default Values for Inherited Attributes on page 556.

System-defined
attributes you can
override using the
attribute-initializations
attribute.
547

Defining and Initializing Class-Specific Attributes

The class-specific-attributes attribute defines all user-defined attributes that are
specific to the class you are creating. The specified value of an attribute can be a
value or an item. The default value of this attribute is none.

The G2 compiler prevents you from defining an attribute that has the same name
as a system attribute defined by a user-extensible system-defined class. For
examples, module-search-path can be a user-defined attribute name because its
system-defining class, server-parameters, is not user-subclassable; whereas
validity-interval is rejected because it is defined for the user-subclassable variable
system-classes.

You can specify simple attributes (an attribute name without a type or value).
Simple attributes have a value of none when they appear in instances and can
contain a value of any G2 type.

Note We recommend that your attributes have a default value and a specified type to
simplify attribute access and to take advantage of G2’s type checking facility.

You can optionally specify user-defined attributes to be of a G2 type, with or
without a default value, or to be an instance of an object. When an attribute is an
instance of an object, G2 creates two items whenever you instantiate the class, one
for the class instance, and another for the attribute value. An object created as the
value of an attribute does not have an iconic representation and does not appear
on a workspace.

When specifying user-defined attributes, you can declare the attribute to be
untyped or typed, and to have a default value explicitly specified or provided
automatically by G2. For information on G2 types, see Chapter 9, Values and
Types on page 379.

To specify that
the attribute has... Enter a statement like this...

No type or default value temp;
weight;
ranch-type

No type and a specified
default value

temp initially is 98.6;
weight initially is given by a float-variable;
emergency-code has values red-alert,
blue-alert, or green-alert
548

Configuring Class Definitions
After you enter an attribute name, the editor prompts you to specify the attribute
in one of several ways:

• attribute-name is a/an

• attribute-name is an instance of

• attribute-name is given by a/an

• attribute-name initially is

• attribute-name has values

You can optionally follow each of these choices with the with an index clause. The
next sections describe each kind of attribute expression, as well as various ways in
which you can format class-specific attributes.

Defining an Untyped Attribute with No Default Value

Specify an attribute that has no predefined properties except its name by entering
the name. For example:

temperature;
maximum-height

Defining an Untyped Attribute with a Default Value

Specify an attribute that has no type with a default value by using the initially is
phrase. For example:

past-time initially is 10 minutes;
operator-reading initially is cool;
set-up-message initially is "The beginning of this is:";
number-of-plants-online initially is 10;
temp initially is sequence(5, 6, 7);
dim initially is structure(length: 767, height: 45387);
list-of-messages initially is an instance of a g2-list;
temperature initially is given by a float-variable

You can follow the initially is phrase with:

• Any symbol.

A type with a specified
default value

temp is a float, initially is 98.6;
weight is given by a quantitative-variable,
initially is given by a float-variable

A type with a default value
provided automatically
by G2

temp is a float;
weight is given by a float-variable;
ranch-type is an instance of a house

To specify that
the attribute has... Enter a statement like this...
549

• Any string.

• Any number, optionally followed by a unit of measure.

• true or false.

• The given by phrase, followed by a variable or parameter class.

• An instance of any subclass of object.

Defining a Typed Attribute with a Specified Default Value

Specify an attribute as a particular type with a default value using the is a and
initially is phrases. For example:

temperature is a float, initially is 98.6;
maximum-height is an integer, initially is 12;
temp is a sequence, initially is sequence(6, 7, 8);
dim is a structure, initially is structure(length: 767, height: 45387)

Defining a Typed Attribute with a Default Value

Specify an attribute to have a particular type by using the is a phrase.
For example:

temperature is a float;
maximum-height is an integer
dim is a structure

The type can be: item-or-value, symbol, value, truth-value, quantity, integer, float,
text, structure, or sequence.

Specifying an attribute with a specific type constrains the attribute value to be of
that type when:

• Editing that attribute value in a class instance, where the text editor prompts
you to enter a value of the attribute type.

• Concluding a new value for an attribute.

• Using the attribute-initializations to provide an attribute value (see Specifying
Default Values for Inherited Attributes on page 556).

• Changing the value of an attribute within a remote procedure call (see Using
Remote Procedure Calls on page 1955 for more information).

If you declare an attribute as a type but do not give it a default value, G2 provides
one automatically when you complete the edit, by adding an initially is phrase
such as this:

temperature is a float, initially is 0.0;
maximum-height is an integer, initially is 0
550

Configuring Class Definitions
The default values that G2 provides for each type are:

Defining an Attribute as an Object Instance

You can specify an attribute whose value is an instance of any object class,
including a variable or parameter class, by using the is an instance of phrase:

attribute-name is an instance of a[n] class-name

For example:

heat-sensor is an instance of a thermometer

If you do not provide a default value, G2 provides one automatically by adding
an initially is an instance of phrase that instantiates the specified class:

inner-pressure is an instance of a float-variable,
initially is an instance of a float-variable;

You can give an initially is an instance of phrase that specifies the default value as
a more specific class than the type of the attribute requires:

outer-pressure is an instance of a quantitative-parameter,
initially is an instance of an integer-parameter

Instantiating a class that has an attribute whose type is an object class actually
instantiates two classes: the class itself, and the class specified as the default value
of the attribute. The instance of the latter class:

• Becomes the attribute’s value in the instance of the defining class.

• Does not have an iconic representation.

Attribute Type Default Value

float 0.0

integer 0

item-or-value 0.0

quantity 0.0

sequence sequence()

structure structure()

symbol G2

text ""

truth-value true

value 0.0
551

• Becomes permanent or transient as the containing item does.

• Can be referenced, accessed, and changed as any object instance can be.

• Is automatically deleted if the containing item is deleted.

The next example shows a tire object, whose inner-pressure attribute is given by a
float-variable. The variable is shown in the object attribute table as asterisks (****),
because it has no value. Clicking in the value of that attribute and choosing
subtable displays the attribute table of the variable.

You can specify the value of an attribute to be an instance of the class that defines
the attribute. To prevent an infinite regress, G2 limits the depth to 20 items when
you instantiate such a class. The value of the attribute in the most deeply nested
instance is none.

Defining an Attribute for Implied Symbolic Reference

Specify an attribute that is to be used with an implied symbolic reference
as follows:

pc-operating-system has values windows/xp or windows/2000,
initially is windows/xp

Use attributes defined with the has values phrase in expressions that imply an
attribute. For example, using the example above for the PC class, once instances
of the class exist, you could use an implied attribute reference such as:

if PC is windows/xp

to reason about the value of the pc-operating-system attribute. The statement
specifies the class and a value, rather than an attribute name. From this statement,
G2 infers that the expression refers to the pc-operating-system attribute, because
it is the only attribute that can have the specified value.

Attribute given
by a variable.

Accessing the
variable subtable.
552

Configuring Class Definitions
Defining an Indexed Attribute

Specify an attribute with an index by using the with an index clause:

temp initially is 98, with an index

Use indexed attributes when you need an efficient way to locate a particular
attribute value among many objects. G2 provides various expressions to use with
indexed attributes.

While the Text Editor does not prevent you from entering the with an index clause
after any attribute, you can index only attributes that are:

• Defined as the type integer, text, symbol, or truth-value.

• Given by an integer-, text-, symbolic-, or logical-parameter.

For information about using and referring to indexed attributes, see Using
Indexed Attributes on page 470.

Formatting Class-Specific Attributes

You can format class-specific attributes of user-defined classes, using one of these
format statements, depending on the type of attribute:

Format Statement Attribute Type Description

formatted as free text text Displays the attribute
without quotation marks,
and allows you to enter text
without quotation marks in
the text editor. To enter
quotation marks, simply
type the quote character;
you do not need to use the
escape character (@) to
enter a quotation mark.

formatted as a time stamp quantity Displays the quantity as a
G2 time stamp.

formatted as an interval quantity Displays the quantity as a
G2 time interval.
553

The following example shows four class-specific attributes of a user-defined class
and the resulting attribute displays for an instance of the class:

• free-text is a text, formatted as free text, initially is "hello";

• my-var-text is a text, formatted as free text, initially is "";

• timestamp is a quantity, formatted as a time stamp, initially is 1000;

• interval is a quantity, formatted as an interval, initially is 1000

• float-val is a quantity, formatted as ddd.dddd, initially is 123.4567

formatted as
ddd.dddd-format

quantity Displays the quantity as a
floating point number with
the specified number of
decimal digits to the left
and right of the decimal
point.

formatted as mm-dd-yyyy-hh-mm-ss
formatted as dd-mm-yyyy-hh-mm-ss
formatted as yyyy-mm-dd-hh-mm-ss
formatted as mm-dd-yyyy-hh-mm-ss-am-pm
formatted as mm-dd-yyyy-hh-mm-am-pm
formatted as yyyy-mm-dd-hh-mm-ss-am-pm
formatted as dd-mm-yyyy-hh-mm-ss-am-pm
formatted as dd-mm-yyyy-hh-mm-am-pm
formatted as yyyy-mm-dd-hh-mm-am-pm
formatted as mm-dd-yyyy-hh-mm
formatted as dd-mm-yyyy-hh-mm
formatted as yyyy-mm-dd-hh-mm
formatted as mm-dd-yyyy
formatted as dd-mm-yyyy
formatted as yyyy-mm-dd
formatted as mm-yyyy
formatted as yyyy-mm
formatted as dd-hh-mm-ss as an interval
formatted as hh-mm-ss as an interval
formatted as hh-mm as an interval
formatted as mm-ss as an interval
formatted as hh.hh as an interval

quantity, float,
or integer

Displays the quantity, float,
or integer as a date and
time format.

Format Statement Attribute Type Description
554

Configuring Class Definitions
The resulting textual attribute displays show the text without quotation marks,
except where they are entered explicitly, without escape characters, in the text
editor. They also show the quantities formatted as a timestamp and G2
time interval.
555

The following table shows examples of all date and time formats:

Specifying Default Values for Inherited Attributes

The attribute-initializations attribute lets you set default values for all user-defined
attributes and many system-defined attributes. System-defined attributes are part
of each class in the hierarchy. You cannot change or delete them. Some system-
defined attributes, like Notes and Names, appear in every G2 item.

Overriding Default Values of Inherited User-Defined Attributes

The inherited-attributes attribute lists the user-defined attributes that a class
inherits from its superior classes. Each of these already has an inherited default
value. Using the attribute-initialization attribute, you can override the inherited
default value of any inherited user-defined attribute.
556

Configuring Class Definitions
The grammar for such initializations differs from the grammar for overriding the
default value of a system-defined attribute, which is described under Specifying
Default Values of Initializable System-Defined Attributes on page 558.

To specify a default value for an inherited user-defined attribute:

 attribute-name initially is default-value

You can select one or more of the applicable phrases shown in the next figure to
specify attribute-initializations. Separate consecutive initializations with a
semicolon (;).

If user-defined attribute is... Then you can...

Without a type, such as:

temp

Supply a new default value of your
choice, optionally followed by a unit of
measure, such as:

length initially is 2 feet;
temp initially is hot

With a type, such as:

temp is a float,
initially is 0.0

Supply a new default value of the same
type, such as:

temp initially is 100.1

If you provide a value of a different type
than the inherited attribute, G2 lets you
complete the edit. However, a message
displays in the notes attribute,
indicating that the value will not take
effect.

Given by a variable or a
parameter, such as:

temp is given by a
quantitative-variable,
initially is given by a
quantitative-variable

Supply a new default value only if the
value is a subclass of the inherited class
of the attribute, such as (for the example
on the left):

temp initially is given by
an integer-variable

Initially an instance of an
object subclass, such as:

temp initially is an
instance of a float-array

Change the instance of one object to any
other allowable object, such as:

temp initially is an instance of
a symbol-list
557

As part of the capability to create and complete definitions in bottom-up order,
G2 allows you to specify user-defined attribute initializations for currently non-
existent inherited attributes. When such an initialization exists, the definition’s
notes attribute displays a message such as the following:

Specifying Default Values of Initializable System-Defined Attributes

The initializable-system-attributes attribute lists the names of all initializable
attributes that the definition inherits from the system-defined class(es) in its list of
direct superiors. Each of these already has an inherited default value. Using the
attribute-initialization attribute, you can override the default value of any
initializable system-defined attribute.

For example, you can specify the system-defined attributes array-length and the
element-type for an array definition in attribute-initializations. These two
attributes appear on the attribute table of an array.

The grammar for such initializations differs from the grammar for overriding the
default value of a user-defined attribute, which is described under Overriding
Default Values of Inherited User-Defined Attributes on page 556.

To specify a default value for an initializable system-defined attribute:

 attribute-name: default-value
558

Configuring Class Definitions
Separate adjacent initializations with a semicolon (;). The following definition for
a subclass of procedure specifies default values for the initializable system
attributes tracing-and-breakpoints and default-procedure-priority:

Initializations of inherited user-defined attributes and initializable system-
defined attributes can be intermixed as desired. Separate the adjacent
initializations with a semicolon (;). Be careful not to confuse the different
grammars of the two types of initialization.

For information on the initializable system attributes of any class, see the
documentation in this manual for that class. For additional information on the
initializable system attributes of:

• Objects, including variables, parameters, arrays, and lists, see Creating Object
Classes on page 564.

• Connections, see Creating Connection Classes on page 577.

• Messages, see Creating Message Classes on page 582.
559

Specifying Instantiability

Instantiation applies to all user-defined classes except subclasses of connection.
Instantiability is controlled by two definition attributes: instantiate and include-in-
menus. These two attributes are collectively called the instantiation attributes.
When you create a new definition, the default value of both instantiation
attributes is yes.

To specify that a class is/is not instantiable:

 Set the class’s instantiate attribute to yes/no.

To specify that a class does/does not appear in G2 menus:

 Set the class’s include-in-menus attribute to yes/no.

Effects of Setting Instantiability Attributes

When you add a class to the class hierarchy, its name always appears in the list of
available classes (via the direct-superior-classes attribute), and in the class
hierarchy schematic available through the Inspect facility (show on a workspace
the class hierarchy).

Other than that, the accessibility of the class depends on the values of its
instantiability attributes. The effects and interaction of these attributes are
summarized in this table:

include-in-menus

yes no

instantiate

yes

The class can be
instantiated
programmatically and
appears in G2 menus,
allowing it to be
instantiated interactively.

The class can be
instantiated
programmatically, but
does not appear in G2
menus, so it cannot be
instantiated interactively.

no

The class cannot be
instantiated, but appears
in G2 menus where
necessary to permit
navigation to a subclass
that is instantiable and
appears in menus.

The class cannot be
instantiated and does not
appear in any G2 menu.
The class may have
subclasses that are
instantiable and/or
appear in menus.
560

Specifying Instantiability
Instantiable Classes That Appear in Menus

Whenever you create a new class, G2 adds the class to the class hierarchy. If the
class is instantiable and appears in menus, the G2 menu of the class definition
then includes the choice create instance. Choosing create instance instantiates
the class.

G2 also adds the class to the G2 menu hierarchy. For instance, an object class
appears at some level under KB Workspace > New Object, and a subclass of
kb-workspace appears at some level under Main Menu > New Workspace.

When a class that is instantiable and appears in menus has a subclass that is also
instantiable and appears in menus, the higher-level class appears more than once
in the menu hierarchy:

• In a leaf menu to permit instantiation of the class.

• In higher-level menus as needed to permit navigation to the leaf menu.

Creating a subclass with more than one direct superior class adds the new
subclass to the menu structure of each of the superior classes. For instance,
creating a subclass of object and g2-to-g2-interface called g2-to-g2-object, adds
the g2-to-g2-object class to both the new object and the g2 to g2 interface
submenus.

Noninstantiable Classes That Appear in Menus

A class that is noninstantiable does not include create instance in its G2 menu,
but it appears as a higher-level entry in the menu hierarchy if and only if it is an
ancestor of a class that is instantiable and appears in menus. Its appearance at the
higher level facilitates navigating the menu hierarchy to the instantiable class.

Classes That Do Not Appear in Menus

Such a class does not include create instance in its G2 menu, and does not appear
in the menu hierarchy even if has an instantiable subclass that appears in menus.
The instantiable subclass appears in the hierarchy as a subclass of the first of its
ancestors that does appear in menus, or perhaps of more than one such ancestor if
it has multiple inheritance.

Order of Classes in the G2 Menu Hierarchy

There is no particular order to the way in which G2 adds new classes to menus,
nor is the order of display permanent across G2 sessions. User-defined classes
may appear on the menus before system-defined classes, or after them, and then
appear in a different order after you start a new G2 session.
561

Uninstantiable Subclasses

In order to be instantiable, a class must inherit at least one instantiable class.
When a class is not instantiable because its system inheritance does not include an
instantiable class, and the class’s instantiate attribute is yes, G2 ignores the value
of the attribute, and includes a Note that states:

note that the value of instantiate? should be changed to "no"
because system class inheritance precludes instantiation

Specifying an Icon
Almost every G2 class has an iconic representation. The only exceptions:
connection, message, and a few others for which an icon is obviously
inappropriate. For example, a kb-workspace has no icon: its visual representation
is the workspace itself. When a class has an iconic representation, the icon-
description attribute of its definition specifies the icon that represents an instance
of the class. The default value of icon-description is inherited.

The icon-description attribute is a special case. It could appear as an initializable
system-defined attribute, but an icon description can be very long and complex:
including it with other attribute initializations could make the other attributes
difficult to access. Making icon-description a separate attribute prevents such
problems, with the side-effect that the attribute appears in every definition
whether or not the defined class has an iconic representation. When a class has no
iconic representation, the icon-description attribute of its definition cannot be
edited and has no effect.

System-Defined and User-Defined Icons

G2 provides a system-defined icon for each type of item that has an iconic
representation. For instance, if you specify logical-parameter as one of the direct-
superior-classes, and no other icon has been defined through another class, the
icon for class instances will look like this:

You can replace the default, system-defined icon with your own design by editing
the icon in the Icon Editor. Most user-defined icons represent items used for
knowledge representation. For example, you may wish to draw a car icon to
represent automobile objects, a book icon for a help object, or a rocket icon for
space-vehicle objects. You can also define icons for user-defined subclasses of G2
components, such as procedures or image definitions.
562

Specifying an Icon
Icon Inheritance

The icon that a class inherits depends on its class inheritance path. For a detailed
explanation of the class inheritance path, see Chapter 13, Classes and
Class Hierarchy on page 497.

A class inherits the first explicitly defined (rather than inherited) icon-description
that G2 locates on the class inheritance path, which may be a user- or a system-
defined icon. The next diagram presents an example of a class inheriting a user-
defined icon, or a system-defined icon, depending on which way the direct
superior classes are specified.

The diagram shows a pointer superior class, with an instance, a-pointer. The two
other definitions, pointer-var and var-pointer, display their direct superior classes
attribute. Both of these classes have instances with different icons, illustrating
how an icon is inherited through the class inheritance path.

Using the Icon Editor

The icon-description attribute describes an icon textually, using a graphical
description language. However, icons are rarely specified by typing in their
descriptions.

To create a new icon for a definition:

 Use the Icon Editor to define the icon graphically.

When you save from or close the Icon Editor, G2 automatically replaces the
textual description in the icon-description attribute with a description
corresponding to the icon you defined.

For a complete description of the Icon Editor, and of the text syntax for the icon-
description attribute, see Chapter 46, The Icon Editor and Icon Management on
page 1637.
563

Creating Object Classes

Objects represent physical items, (such as a tank, a pump, or a car), abstract ideas
and concepts, relations, variables, parameters, lists, and arrays. The G2 class
hierarchy provides:

• The system-defined class object, for use in defining classes of objects.

• Various system-defined subclasses of object that provide variables,
parameters, lists, arrays, and many other things.

This section refers to object and any system-defined or user-defined subclass of
object as an object class.

To create an object class:

1 Create a class-definition item whose primary direct superior is object class or
any subclass of object class.

For details, see:

• Creating Class Definitions on page 538

• Class Definition Attributes on page 539

• Configuring Class Definitions on page 542

• Specifying Instantiability on page 560

• Specifying an Icon on page 562

2 Provide additional information as described in this section.

System-Defined Object Attributes

Two system-defined attributes (in addition to icon-description) exist in every
object class:

• attribute-displays

• stubs
564

Creating Object Classes
When you create a class-definition that inherits any object class, the attribute-
displays and stubs attributes appear as initializable system attributes in the
definition. The grammar for providing their default values is described under
Specifying Default Values for Inherited Attributes on page 556. For details, see:

• Specifying Attribute Displays on page 566.

• Specifying Connection Stubs on page 567.

Each system-defined subclass of object class adds the initializable system
attributes that it needs in order to carry out its purpose. Some of these are
described in this section under:

• Attribute Initializations for Variables and Parameters on page 575.

• Attribute Initializations for Lists and Arrays on page 576.

One type of object class, the connection-post class, is functionally more closely
associated with connections than with objects, which are typically used to
represent knowledge. Instructions for creating connection posts appear under
Creating Connection Post Classes on page 581.

Attribute Description

attribute-displays The attribute displays of this class

Allowable values: any system-defined attribute name
any user-defined attribute name

inherited
none

Default value: inherited

stubs The stubs that a class specifies or inherits.

Allowable values: {a | an} [input | output] connection-class [portname]
located at [top | bottom | right | left] integer
[with style {diagonal | orthogonal}]
[with line-pattern { solid | dot | fine dot | coarse dot |

dash | short dash | long dash |
 { [pattern,] ... }
 { [on integer, off integer] ...
 [, not scaled by line width] } }]

inherited
none

Default value: inherited
565

For information on other initializable system attributes of object classes, see the
documentation in this manual for the particular class.

Specifying Attribute Displays

The attribute-displays attribute lets you display the values and, optionally, the
names of, one or more system- or user-defined attributes of class instances.

Most attribute tables in G2 have a show attribute display option in their table
menu, as shown here on the history-keeping-spec attribute of a variable.

While you can display most attribute values by choosing that option, the attribute-
displays attribute in a definition provides additional functionality.

In addition to displaying the attribute value, the attribute-displays attribute lets
you optionally display the attribute name, and position the display at a location of
your choice.

To define the attribute-displays attribute, enter the name of any system- or user-
defined attributes, and select one or more of the phrases that appear in the
Text Editor.
566

Creating Object Classes
Separate attribute displays with a semi-colon (;). Here is how to specify
attribute displays:

When you specify attribute displays, instances of the object include those displays
at creation time and remain in effect until you change them in the attribute table
of the instance. Alternatively, you can use the change attribute in the class
definition to update the attribute displays of all instances. For information about
changing attribute displays with the Change attribute, see Using the Change
Attribute on page 592.

Specifying Connection Stubs

Connection stubs are short connections attached to and extending from an object.
They are the starting point for connections between objects. This figure shows an
object with stubs extending to the left and right:

All stubs have the qualities of elasticity, style, and line pattern. You can lengthen a
stub by dragging the stub end that is not attached to the object or item. In style, a
stub is either orthogonal or diagonal. Its line pattern can be solid, dotted, dashed,
or a combination.

The stubs attribute indicates the number of stubs and the location of where each
attaches to class instances.

To display the attribute... Enter the value like this...

Value (with or without the
attribute name) at the
standard position

batch-number at standard position;
mileage with name at standard position

Displaying only the attribute value at the standard
position is the default setting for attribute displays.
The standard position aligns with the top edge of the
object to the right-hand side.

The with name statement displays the attribute name
along with its value.

Value (and name) at a non-
standard position

batch-number with name offset by (10, 10)

where (10, 10) are x and y coordinates that define
the location of the attribute display as an offset from
the center of the icon.
567

Use this syntax to specify stubs:

{none | inherited | {a | an} [{input | output}] connection-class
[portname] located at {top | bottom | right | left} integer
[with style {orthogonal | diagonal}]
[with line-pattern { solid | dot | fine dot | coarse dot |

dash | short dash | long dash |
{ [pattern,] ... }
{ [on integer, off integer] ... [, not scaled by line width] } }] }

where:

• pattern is one of: dot, fine dot, coarse dot, dash, short dash, long dash.

• integer is the number of workspace units to make visible (on) or invisible (off).

• not scaled by line width causes the custom specification to use the actual
number of specified workspace units, rather than scaling them by the width of
the connection.

A stub can optionally have a direction. The next diagram shows a particular
connection style, and its direction, indicated by arrows:

By default, stubs are non-directional and associated with the system-defined
connection class. For a complete description of using connections, see Chapter 18,
Connections on page 703.

You can assign a name to a stub, and reference it by that name in expressions. A
named stub is called a port. Specify a port’s name by including a portname in the
stubs attribute that specifies the stub.

You can indicate direction in a stub by specifying it to be an input or output stub in
the stubs attribute. Providing direction to a stub gives you more control over
connections made to it, such as restricting the direction of flow. For example, G2
does not let you connect an input stub to another input stub, or an output stub to
another output stub. When a connection is directional, G2 can reason about the
objects it connects this way:

any auto-object connected at an input of auto-object2

The example shows the stub specification for the stubs in the previous diagrams.
You can specify multiple stubs in the stubs attribute:

an output movement-connection located at right 5;
an input movement-connection located at left 5
568

Creating Object Classes
You can optionally provide a portname in the stub specification, which you can
also refer to in expressions this way:

any auto-object connected at the outflow-port of auto-object2

By assigning a connection class to a stub, the stub has the same visual properties
of that class. You can then provide expressions that could, for example, change a
particular stripe color of the connection this way:

whenever the mileage of auto-object > 100
change the inside-stripe stripe-color of every production-line-connection to red

By default, a stub appears as a single black line extending from the object or item.
The following table shows techniques for specifying stubs:

To specify stubs with... Enter a statement such as this...

Direction, either input or
output, at a specific location

an input connection located at right 10;
an output connection located at bottom 25

The location can be top, bottom, right, or left,
followed by a positive integer specifying the
position on the object icon in workspace units

A style an input connection with style diagonal

Specifies whether the connection is orthogonal or
diagonal. The default is orthogonal, indicating
that the connection can be drawn using only
straight and right angles.

Diagonal specifies that the connection can be
drawn using straight or diagonal lines with an
angle. Stubs with a diagonal style are drawn with
the default single black line.

A line pattern an input connection with line-pattern dot

Specifies a solid, dashed, or dotted line pattern, or
a combination. See Specifying Line Patterns on
page 570.

A connection-class and a
portname

an input connection portname

Specifies the name of the connection class. You
can specify a connection class that does not yet
exist, but instances will not have stubs unless the
connection class exists.

The portname that you enter is the name of the
port where a connection attaches to an object.
569

Note G2 does not restrict connections to the stubs you define. Unless you specify
no-manual-connections as a Configuration in the class definition (which limits
connections to the stub locations), you can make any number of additional
connections to an object.

Specifying Line Patterns

You can configure the stubs attribute of a class definition to initialize the line-
pattern, in the same way that you can initialize the connection-style. You can also
configure this attribute for individual connection instances, in the same way that
you can configure the connection-style.

Once a connection exists, you can either change the text of the line-pattern
attribute or conclude a value for the line-pattern attribute, using the attribute
access facility.

This table shows the options for line-pattern and an example of each, using a
connection width of 3 workspace units:

Line-Pattern Example (Width = 3)

solid (the default)

dot

fine dot

coarse dot

dash
570

Creating Object Classes
Here are some examples of the with line-pattern syntax:

with line-pattern dot
with line-pattern fine dot
with line-pattern coarse dot
with line-pattern dash
with line-pattern short dash
with line-pattern long dash
with line-pattern dash, dot
with line-pattern dot, dot, dash
with line-pattern on 2, off 5
with line-pattern on 5, off 3, on 10, off 6
with line-pattern on 2, off 5, not scaled by line width

short dash

long dash

Any combination of
the above, for
example, dash, dot or
dash, dot, dot

A custom specification
of the number of
workspace units that
are on and off, scaled
by the line width, for
example, 10 on, 2 off,
5 on, 2 off, 2 on, 2 off

A custom specification
of the number of
workspace units that
are on and off, not
scaled by the line
width

Line-Pattern Example (Width = 3)
571

The following figure shows two examples of how to initialize the line-pattern
attribute of a connection of type cxn. class-1 is a class definition that configures
the attribute-initializations for the stubs attribute. class-2 is an object definition
that configures the stubs attribute directly.

This figure shows how to configure the line-pattern attribute of individual
connection instances, using an action button:
572

Creating Object Classes
Here is the resulting connection and its table:

This table shows various examples of how to use the attribute access facility to
conclude values for the line-pattern attribute of a connection named cxn:

Line-Pattern Attribute Value Concluding the Line-Pattern Attribute

dot

dash

conclude that the line-pattern of cxn =
the symbol dot

conclude that the line-pattern of cxn =
the symbol dash

fine dot

coarse dot

short dash

long dash

conclude that the line-pattern of cxn =
the symbol fine-dot

conclude that the line-pattern of cxn =
the symbol coarse-dot

conclude that the line-pattern of cxn =
the symbol short-dash

conclude that the line-pattern of cxn =
the symbol fine-dot

dash, dot

dot, dot, dash

conclude that the line-pattern of cxn =
(sequence (the symbol dash,
the symbol dot))

conclude that the line-pattern of cxn =
(sequence (the symbol dot,
the symbol dot, the symbol dash)
573

Inheriting Default Values for Stubs

Icons and stubs are closely related, but they are specified by two different
attributes of a definition. Where multiple inheritance exists, this independence
could result in mismatched icons and stubs, so the G2 class inheritance rules
contain a special provision that prevents it.

To prevent such a mismatch, a class can inherit a stubs definition only from the
class from which it inherits its icon definition, or from a descendent of that class.
If none of these provides a stubs definition, either inherited or locally defined, the
class’s stubs default value is none.

Specifying Other Object Class Attributes

Each system-defined subclass of object adds the initializable system attributes
that it needs in order to carry out its purpose. This section describes the attributes
of variables, parameters, lists, and arrays. For information on other initializable
system attributes of object classes, see the particular class.

on 2, off 5

on 5, off 3, on 10, off 6

conclude that the line-pattern of cxn =
(sequence (2,5))

conclude that the line-pattern of cxn =
(sequence (5,3,10,6))

on 2, off 5, not scaled by line
width

conclude that the line-pattern of cxn =
structure (pattern: sequence (2, 5),
not-scaled-by-line-width: true)

Line-Pattern Attribute Value Concluding the Line-Pattern Attribute
574

Creating Object Classes
Attribute Initializations for Variables and Parameters

The attribute-initializations applicable to variables and parameters are as follows:

Attribute-initialization Variable Parameter

data server any data-server-alias

inference engine
g2 simulator
g2 meter,
g2 data server
gfi
gsi

GFI and the G2 Simulator are
superseded capabilities. For
further information see
Appendix F, Superseded
Practices on page 2169.

N/A

data type (for
quantitative-variable, or
quantitative-parameter)

quantity
time-stamp
pure-number

quantity
time-stamp
pure-number

default update interval any non-negative time
interval, including
subsecond values

N/A

history-keeping spec [do not] keep history with
maximum number of data
points = any integer and
maximum age of data point =
time-interval, with minimum
interval between data points
= any non-negative-number
time-interval

[do not] keep history with
maximum number of data
points = any integer and
maximum age of data
point = time-interval, with
minimum interval
between data points =
any non-negative-number
time-interval

initial value for
initial values for

any legal value for type of
variable

any legal value for type
of parameter
575

You can also select supply simulation subtable as a default setting for a variable
definition. Instances will then include a simulation subtable available from the
variable’s simulation-details attribute.

The G2 Simulator is a superseded capability. For more information, see
Appendix F, Superseded Practices on page 2169.

Note For more information about specifying history keeping for variables and
parameters, see Chapter 15, Variables and Parameters on page 607.

Attribute Initializations for Lists and Arrays

The attribute-initializations applicable for lists and arrays are as follows:

Note You cannot change the allow duplicate elements for a g2-list or the element type
for a g2-array while G2 is running when instances exist.

options for do [not] forward chain;
do [not] seek data;
do [not] backward chain;
depth first backward chain;
breadth first backward chain;

do [not] forward chain

validity interval any integer (not a float)
indefinite
supplied

N/A

Attribute-initialization Variable Parameter

Attribute-Initialization Lists Arrays

allow duplicate elements
for g2-list

{yes | no} Not applicable

array-length for g2-array Not applicable Any non-negative integer

element type for item-list (any class) item-array (any class)

initial values for Not applicable Any legal item or value for
the type of array. If the
number of default values
disagrees with the array
length, G2 assigns the
default array value to all
elements.
576

Creating Connection Classes
For array classes of a specific type, such as an integer-array, the Text Editor does
not prevent you from entering elements of the incorrect type. Specifying such
elements causes G2 to replace any element of an incorrect type with the default
value for the array class.

Creating Connection Classes

Connections are graphical items that embody logical relationships. You can use
connections to represent almost anything that provides a pathway or route
between two or more objects. For information about using connections, see
Chapter 18, Connections on page 703.

The G2 class hierarchy provides the system-defined class connection for use in
defining connections. This section refers to connection and any system-defined or
user-defined subclass of connection as a connection class. You can create a
connection class that has the properties you need. For example, you may wish to
create a connection class that displays as a green stripe with a black border.

Connections use stubs on objects (described under Specifying Connection Stubs
on page 567), junction blocks, and connection posts, both described in
this section.

To create a connection class:

1 Create a class definition whose primary direct superior is connection or any
subclass of connection, following the directions under:

• Creating Class Definitions on page 538

• Class Definition Attributes on page 539

• Configuring Class Definitions on page 542

2 Provide additional information as described in this section.

Instantiability does not apply to connections. G2 ignores the values of a class
definition’s instantiability attributes when the primary direct superior is a
connection class.

System-Defined Connection Attributes

Three initializable system-defined attributes exist in every connection class:

• cross-section-pattern

• stub-length

• junction-block
577

When you create a class definition that inherits any connection class, these three
attributes appear as initializable system attributes in the definition. The grammar
for providing their default values is described under Specifying Default Values
for Inherited Attributes on page 556. The rest of this section shows you how to
specify values for the attributes.

Defining Connection Regions

The cross-section-pattern attribute lets you define connection regions to which
you can assign a width and a color. When connection regions exist, you can refer
to them in expressions. For example, during the execution of a KB, you could
change the color of one or more connection regions to signal changes in events
and status.

Also, completing the cross-section-pattern attribute automatically creates a
corresponding default-junction class.

Hint While it is not a requirement, we recommend that you define connection cross-
section patterns with a symmetrical design.

Attribute Description

cross-section-
pattern

The style and appearance of the connection.

Allowable values: Described in Defining Connection Regions on page 578.

Default value: none

stub-length The default length of the connection of this class, in
workspace units.

Allowable values: any positive integer

Default value: inherited

junction-block The name of the junction-block class that this connection
shall use.

Allowable values: Any junction-block class.

Default value: none
578

Creating Connection Classes
Here is how to specify the cross-section-pattern attribute:

Here is an example of a cross-section-pattern attribute value:

outside-wire = black, electrical-flow = green;
2 outside-wire, 5 electrical-flow, 4 outside-wire

Once region names exist for a connection class, you can refer to them in
expressions by using this syntax:

change the region-name stripe-color of connection-class to color

An example is:

change the electrical-flow stripe-color of my-connection to red

Specifying a Stub Length

The stub-length attribute specifies the length of stubs as an integer in
workspace units.

While an object class definition defines the class, location, and direction of the
connection flow, the stub-length attribute specifies the default length of the stub
on a class instance. The default length is 20 (workspace units).

Defining the Junction Block to Use

The junction-block attribute defines which junction block a connection will use.

A connection is drawn from point-to point, directly from the stub of one object to
the stub (or any available location) of another object. To terminate a connection at
another connection (rather than at an object), you can use a junction block. In that
way, two incoming connections can be joined to an input stub or two inputs fed

To specify... Enter a statement such as this...

Connection regions region1 = color, region2 = color;

Where you specify one or more regions (region1
and region2) as any unreserved symbol in G2 and
assign each a color. Enter as many regions as
necessary. An example is:

outside-wire = black, electrical-flow = green

The size of the regions 2 outside-wire, 6 electrical-flow, 2 outside-wire

Enter the size of each region as a positive integer
(in workspace units). This example creates a
connection with a black border and a green stripe.
579

from an output stub. The junction-block attribute indicates the class of junction
block to use at the intersection of two connections. Here is a junction block:

Whenever you complete the cross-section-pattern attribute, G2 automatically
creates a corresponding junction-block class with the name of the connection class
preceded by junction-block-for-. For example, if the connection name is water-line,
and you change the cross-section-pattern attribute, G2 creates a junction block for
that connection with the name:

junction-block-for-water-line

A junction-block is a default-junction subclass, which is an abstract object class.
When G2 creates a new junction-block class automatically, the new class does not
appear on the hierarchy of menus, but you can create an instance of it
programmatically, or whenever you terminate connections.

If a connection class inherits a cross-section-pattern, G2 does not create a new
junction block class for the subclass automatically. However, if you edit the cross-
section-pattern attribute and choose copy inherited path, G2 does two things:

• Displays the cross-section-pattern attribute exactly as it was specified in the
superior class.

• Creates a new junction-block class dynamically with the naming convention
noted above.

Hint While you can create a new junction block class interactively (by creating a new
object class definition using default-junction as the Direct-superior-class), we
recommend that you do not. G2 creates a a junction-box class dynamically any
time you specify a cross-section-pattern in a connection definition.

Creating a Junction-Block Subclass

If it is necessary to create a junction block subclass, create a new object class
definition and specify default-junction as the direct superior class.

By default, the icon for a default-junction subclass is a small grey square.

Junction block
580

Creating Connection Post Classes
Creating Connection Post Classes

Connection posts are objects that connect objects across workspaces by indicating
that the endpoints of connections on separate workspaces are joined. All
connection posts of the same name are connected to each other. The next figure
shows connection posts for connections on two separate workspaces.

If the connection posts have the same name, the two cars are functionally
connected to each other, just as if they existed and were connected on the same
workspace. For information about using connection posts, see Using Connection
Posts on page 717.

The G2 class hierarchy provides the system-defined class connection-post for use
in defining connections posts. In most cases, that class is sufficient, but you can
create subclasses of it that have the properties you need. This section refers to any
subclass of connection-post as a connection-post class.

To create a connection-post class:

1 Create a class definition whose primary direct superior is connection-post or
any subclass of connection-post, following the directions under Creating
Object Classes on page 564.

2 Provide additional information as described in this section.

Connection posts
581

System-Defined Connection Post Attribute

One initializable system-defined attribute exists in every connection post class, in
addition to those characteristic of every object class:

When you create a class definition that inherits any connection class, this attribute
appears as an initializable system attributes in the definition. The grammar for
providing its default values is described in Specifying Default Values for
Inherited Attributes on page 556. The rest of this section shows you how to
specify values for this attribute.

Specifying the Superior Connection

The superior-connection attribute lets you indicate a particular stub on an object
to which the connection post is connected. Use this attribute when a connection
post is on the subworkspace of an object and you want to specify that it is
connected to a specific port or location on the object. Specify the object connection
as either a portname or a specific location, using this syntax:

the connection {at portname | located at [top | bottom | right | left] integer}

The connection specified in this attribute is in addition to other connection posts
of the same name with which the connection post is associated. An example is:

the connection located at right 5

You can specify the statement with a location, as shown here, or a portname. The
default value is none.

Creating Message Classes

A message is an item that displays text. Messages provide information to the user.
For example, as a result of an inform or post action for the operator, G2 creates and
displays a message on the message board. For information about using messages,
see Chapter 35, Messages on page 1227.

The G2 class hierarchy provides the system-defined class message for use in
defining messages. In many cases, that class is sufficient, but you can create
subclasses of it that have the properties you need. This section refers to any
subclass of message as a message class.

Attribute Description

superior-connection The stub (if any) to which the connection post connects.

Allowable values: A portname or a specified location.

Default value: none
582

Creating Message Classes
For example, you could create a message class warning-message, which displays
in red with large type. You could then use such a message class only for
displaying warning messages.

To create a message class:

1 Create a class definition whose primary direct superior is message or any
subclass of message, following the directions under:

• Creating Class Definitions on page 538

• Class Definition Attributes on page 539

• Configuring Class Definitions on page 542

• Specifying Instantiability on page 560

2 Provide additional information as described in this section.

System-Defined Message Attribute

One initializable system-defined attribute exists in every message class:

When you create a class definition that inherits any message class, this attribute
appears as an initializable system attributes in the definition. The grammar for
providing its default value is described under Specifying Default Values for
Inherited Attributes on page 556. The rest of this section shows you how to
specify values for this attribute.

Attribute Description

default-message-
properties

The style of each attribute of this message class.

Allowable values: Described in the next section.

Default value: none
583

Specifying Default Message Properties

The default-message-properties attribute controls how instances of a message
class appear. For instance, if you want a message class to have a beige background
color and brown type, you specify that information in this attribute. Here are the
message properties you can specify:

Note Entering values for the minimum-width and minimum-height message properties
does not center the message text within those dimensions when an instance exists.

This message property... Specifies...

background-color The background color of the message. The
default is transparent.

border-color The color of the message border. The default
is foreground.

fonts The font size for the text. Available font
sizes are small, large, and extra-large. The
default is large.

minimum-width The minimum width of the message in
workspace units that you enter as an integer
value. If you do not specify a value for this
attribute, G2 makes the message width the
size of the text. The default is none.

minimum-height The minimum height of the message in
workspace units that you enter as an integer
value. If you do not specify a value for this
attribute, G2 makes the height the size of the
text. The default is none.

text-color The color of the message text. The default is
foreground.

text-alignment The alignment of the message text.
Available alignments are left, right, and
center. The default is left.
584

Using Specialized Definitions
Here is an example of a completed default-message-properties attribute and a
message of that message class:

Using Specialized Definitions
In addition to the class-definition class, which can define a subclass of any
extensible class, G2 provides three specialized types of definitions:

• An object-definition creates a subclass of object.

• A connection-definition creates a subclass of connection.

• A message-definition creates a subclass of message.

These specialized definitions are supported to provide compatibility with
previous versions of G2, which did not provide a generic class definition
capability. This section briefly describes the use of specialized definitions for
those who encounter them in existing G2 applications.

The specialized definitions are very similar to class-definitions. The only
difference is that each one provides as ordinary table attributes the attributes
characteristic of every class of its type. In a class-definition, these attributes appear
as initializable-system-attributes after the direct-superior-classes are specified.
The grammar for specifying their values is the same in either case.
585

For example, the following shows a class-definition and an equivalent object-
definition. Note the two techniques for initializing the stubs attribute.

Class Inheritance and Class Definition Types

A class defined on one type of specialized class definition cannot be a direct-
superior class on another type of specialized class definition. For example, a
message class cannot be a direct superior for a class defined on an object-
definition because object-definitions define only subclasses of object. A message
class and an object class are considered disjoint classes because they do not have a
inferior/superior class relationship.

A class defined on a class-definition can be a direct superior to a class defined on a
specialized class definition if its inheritance is compatible with the classes
supported by the specialized class definition. For example, an integer-variable
class defined on a class-definition can be a direct superior for a class defined on an
object-definition because integer-variable inherits from object. A class defined on
any of the specialized class definitions can be a direct superior for a class defined
on a class-definition because all class types can be defined on a class-definition.

However, when specifying more than one direct superior for a class, the direct-
superior classes must be compatible; that is, they must have a inferior/superior
class inheritance. The G2 compiler will always give you a reason when it rejects a
586

Using Specialized Definitions
value you have entered in the direct-superior-classes attribute of a class
definition.

Creating an Object Definition

An object-definition can define a subclass of any object class.

To create an object-definition:

1 Select KB Workspace > New Definition > class-definition > object-definition.

2 Click to place the new definition on a workspace:

See Storing Definitions on Workspaces on page 538 for related information.

The attributes of a connection-definition are included in the table in Class
Definition Attributes on page 539, and the general considerations listed in that
section apply.

3 Carry out the instructions in Configuring Class Definitions on page 542,
omitting the two sections that pertain to initializable-system-attributes:

• Determining the Initializable System Attributes on page 546.

• Specifying Default Values of Initializable System-Defined Attributes on
page 558.

The primary direct superior must be object or a subclass of object.

4 Carry out the instructions under Specifying Instantiability on page 560.

5 Optionally, provide or obtain values for the following attributes as described
in the sections indicated. To provide a value, edit the value cell of the
attribute, as with any table attribute.

Attribute Section

attribute-displays Specifying Attribute Displays on page 566.

stubs Specifying Connection Stubs on page 567.

icon-description Specifying an Icon on page 562.
587

Creating a Connection Definition

A connection-definition can define a subclass of any connection class.

To create a connection-definition:

1 Select KB Workspace > New Definition > class-definition >
connection-definition.

2 Click to place the new definition on a workspace:

See Storing Definitions on Workspaces on page 538 for related information.

The attributes of a connection-definition are included in the table under Class
Definition Attributes on page 539, and the general considerations listed in that
section apply.

3 Carry out the instructions under Configuring Class Definitions on page 542,
omitting the two sections that pertain to initializable-system-attributes:

• Determining the Initializable System Attributes on page 546.

• Specifying Default Values of Initializable System-Defined Attributes on
page 558.

The primary direct superior must be connection or a subclass of connection.

4 Optionally, provide or obtain values for the following attributes as described
in the sections indicated. To provide a value, edit the value cell of the
attribute, as with any table attribute.

Attribute Section

cross-section-pattern Defining Connection Regions on page 578.

stub-length Specifying a Stub Length on page 579.

junction-block Defining the Junction Block to Use on
page 579.
588

Customizing Definition Classes
Creating a Message Definition

A message-definition can define a subclass of any message class.

To create a message-definition:

1 Select KB Workspace > New Definition > class-definition > message-definition.

2 Click to place the new definition on a workspace:

See Storing Definitions on Workspaces on page 538 for related information.

The attributes of a connection-definition are included in the table under Class
Definition Attributes on page 539, and the general considerations listed in that
section apply.

3 Carry out the instructions under Configuring Class Definitions on page 542,
omitting the two sections that pertain to initializable-system-attributes:

• Determining the Initializable System Attributes on page 546.

• Specifying Default Values of Initializable System-Defined Attributes on
page 558.

The primary direct superior must be message or a subclass of message.

4 Carry out the instructions under Specifying Instantiability on page 560.

5 Optionally, provide or obtain values for the following attribute as described in
the section indicated. To provide a value, edit the value cell of the attribute, as
with any table attribute.

Customizing Definition Classes
Definitions are the means by which the G2 class hierarchy is extended. This
extensibility extends to the definition classes themselves. You can:

• Enter a class-definition class in the direct-superior-classes attribute of an
instance of a class-definition.

• Give the customized definition user-defined attributes.

Attribute Section

default-message-
properties

Specifying Default Message Properties on
page 584
589

An instance of the customized definition is itself a definition, so it can be used to
define a new class. Any instance of that class can then reference that definition to
obtain the value of the definition’s user-defined attribute(s) using the grammar:

the attribute of the definition named by the class of item

This capability is useful when an attribute relevant to a class has the same value
for all instances of a class at any given time. Storing the attribute in the definition:

• Saves space by not storing a redundant copy of the attribute and its value in
each instance.

• Saves time when the value changes by avoiding the need to update every
instance to reflect the new value.

• Is more modular, and provides faster access, than using a freestanding
variable or parameter to factor out the attribute.

For example, the next figure shows a user-defined class-definition class,
hardware-definition. The class transformer is defined on an instance of hardware-
definition, and utility-transformer is an instance of transformer:

This code accesses the value of the maximum-weight attribute on the class-
definition that defines transformer:

the maximum-weight of the definition named by the class of utility-transformer
590

Creating New Classes Programmatically
Creating New Classes Programmatically
You can create new definitions interactively, by instantiating and completing a
definition as described previously in this chapter, or programmatically, by
writing procedures that use some combination of these actions and capabilities:

• create (page 786)

• make permanent (page 801)

• transfer (page 821)

• conclude (page 783)

To create a definition programmatically:

1 Execute this action:

create a definition C [by cloning existing-definition]

where:

definition is one of class-definition, object-definition, connection-definition,
or message-definition.

C is a local name.

existing-definition is a definition whose type matches definition.

When you clone an existing definition, the clone has the same attribute values
as the original except for the class-name, which reverts to none.

2 Transfer the cloned definition to the workspace on which you want it
to reside.

3 Make the definition permanent.

4 Use conclude as needed to give the new definition the name, class-specific
attributes, and default values that you need.

By default, any items created with the create action are transient. Definitions
must be permanent items before they define classes and can have any instances
or subclasses.

Changing Definitions
You can change definitions two ways:

• Interactively, using the change attribute of a definition, as described in the
next section.

• Programmatically, using the conclude action, as described under Changing
Definitions with the Conclude Action on page 596.
591

Using the Change Attribute

The change attribute lets you change user- and system-defined attribute values,
including connection specifications. This attribute exists only in definition classes,
and is unique within G2.

The attribute functions as a command interpreter to let you manipulate
instantiated classes, their attributes and behavior, from a single location while G2
is running. The value of the change attribute is none and remains so even after
you perform a change. G2 executes the change command upon completing the
statement within the Text Editor and the attribute value reverts to none.

The things you can do with the change attribute depend on the foundation class
of the definition to be changed. Some changes are possible irrespective of the
foundation class; others are possible only for subclasses of object, connection, or
message. The possible changes are shown in the following table:

The following sections describe each of these options, noting whether the option
is applicable to only one definition. For further information on the effects of
changing a definition, see Effect on Subclasses and Instances on page 597 and
Effect on Procedure Statements and Other Items on page 601.

 Foundation Class of Definition

Change Attribute Option Any Object Connection Message

Add a connection stub 

Change the attribute    

Change a connection stub 

Copy inherited icon
description



Delete a connection 

Merge all instances and
subclasses

   

Move attribute    

Move connection 

Rename attribute    

Update each instance per
attribute-displays



Update each instance per
default-message-properties



592

Changing Definitions
Adding a Connection Stub to an Object Class Definition

You can add a connection stub of a particular connection-class, optionally using a
portname and a stub location, by using this syntax:

add {a | an} connection-class [portname] located at
{top | bottom | left | right} integer

Here is an example of adding a connection:

add a movement-connection out-port located at right 10

This example adds a connection of the movement-connection class, using an out-
port portname, located at right 10 on the icon.

Changing an Attribute to its Default Value in Instances

You can change the value of an attribute to its default value for all instances using
this syntax:

change the attribute attribute of each instance to the default value
[, preserving non-default values when switching to or from values
given by a variable-or-parameter]

Here is an example:

change the attribute volume of each instance to the default value

When the attribute whose value you are changing is given by a variable or a
parameter, you can use this optional statement:

, preserving non-default values when switching to or from values
given by a variable-or-parameter

This option lets you preserve any non-default initial values you may have
provided the variable or parameter as you switch to the default value.

Changing Stubs in Object Class Definitions

Changes the stub specification. You can change a connection stub in three
different ways:

• Connection class

• Stub direction

• Portname

To change the connection class, use this syntax:

change the connection class of the connection {at portname |
located at {top | bottom | left | right} integer } to connection-class
593

Here is an example:

change the connection class of the connection located at right 5
to movement-connection

Hint When specifying the location of a connection, you can refer to it either by its
portname or by its location and position (as an integer) on one side of the icon
(located at right 5). The changes affect all instances of the class.

To change the stub direction, use this syntax:

change the direction of the connection {at portname |
located at {top | bottom | left | right} integer } to {none | input | output}

Here is an example:

change the direction of the connection at out-port to output

To change the portname of the connection, use this syntax:

change the portname of the connection {at portname |
located at {top | bottom | left | right} integer } to portname

Here is an example:

change the portname of the connection located at right 5 to out-port

Copying an Inherited Icon-Description in Object Class Definitions

Use this option to copy the default icon description for an object. The default icon
description is the first explicitly defined icon description that G2 finds on the class
inheritance path. When copying an inherited icon description, if the class that
defines the icon specifies stubs, then the stubs are inherited also. Enter the
command as follows:

copy inherited icon description

This statement changes these attributes back to their default values:

• stubs (inherited)

• icon-description (the description of whatever is the inherited icon for this class
appears as the value for this attribute)

Any changes you may have made to the icon-description or stubs attributes,
revert back to the inherited descriptions. For example, while you cannot change
the icon description of an object instance, you can change the icon’s position, size,
and rotation. After you complete this change option, instances reflect the
appearance of the inherited icon.
594

Changing Definitions
Deleting Connections in Object Class Definitions

To delete a connection from a stubs attribute, and from all instances, use
this syntax:

delete the connection {at portname |
located at {top | bottom | left | right} integer}

Here is an example:

delete the connection located at right 5

If the stub had a portname, you can specify the connection’s location by its
portname rather than its location as shown above (located at right 5).

Merging All Instances and Subclasses into a Definition

This topic is described under Merging Classes on page 603.

Moving Attributes from One Class to Another

Use the move option to move an attribute from one definition to another.

You can move an attribute to either a superior or an inferior definition (the target
class) within the class hierarchy. The target class cannot include a class-specific
attribute of the same name, but it can have one or more same-name attributes
through inheritance. The move option preserves non-default attribute values in
class instances of both superior and inferior classes.

To move an attribute, use this syntax:

move attribute attribute-name to class

where attribute-name is the name of the attribute to move and class is the target
class to which you are moving the attribute. Here is an example:

move attribute year to car-object

Moving Connections

To move a stub from one location to another, use this syntax:

move the connection {at portname |
located at {top | bottom | left | right} by integer } to integer

Here is an example:

move the connection located at right 5 to 10

You can specify the current position of the stub either by its location on the icon
(as shown here), or by its portname. You can specify that the connection be
moved by an integer amount or to a positive-integer location elsewhere on the
same side of the icon.
595

Renaming an Attribute

Use the rename option to rename an attribute like this:

rename attribute-number-of-doors to door-total

You cannot use the change attribute to change the name of any system-defined
attributes.

Updating the Attribute Displays of All instances of a Class

You use the update option to update the attribute displays for all existing
instances of a class.

To update the attribute displays of all instances of a class:

1 Enter the attribute displays you want to change instances to in the attribute-
displays attribute. For example, if you want all instances to display the class-
inheritance-attribute at the standard position, enter this:

class-inheritance-attribute at standard position

2 Enter the update option of the change attribute like this:

update each instance per attribute-displays

This command immediately updates all instances with the new attribute display,
discarding any interactively created attribute displays, or manual changes to
existing displays.

Updating the Default Message Properties of All Class Instances

Use the update option to update the default-message-properties for all instances
of a message class like this:

update each instance per default-message-properties

This change substitutes the current value of the default-message-properties
attribute for whatever message properties are in existence in each instance of the
message class.

Changing Definitions with the Conclude Action

You can use the conclude action to change all of the editable attributes of a
definition, without pausing or resetting the knowledge base (KB) for:

• An instantiated (or non-instantiated) class.

• A permanent or transient definition.

For details on using conclude for this purpose, see Concluding Attribute Values
on page 783. For further information on the effects of changing a definition, see
the next section and Effect on Procedure Statements and Other Items on page 601.
596

Changing Definitions
Caution G2 permits you to change an instantiated definition while the KB is running, but
the consequences can be extensive and severe. Carefully consider the impact of
changing any instantiated definition before continuing with the change.

Effect on Subclasses and Instances

Changing definition attributes, whether the KB is reset or not, has the following
effects. The effects are the same for every type of definition.

Attribute Type of Change
Effect on Subclasses
and Instances

class-name New class name of any name.

You cannot rename a superior
class to one of its subclasses,
or a subclass to its superior
class.

Existing instances become
instances of the new class
name.

After changing a class name
with an action that refers to
the definition by name, the
action includes a note that
the (original) item no longer
exists.

direct-superior-
classes

Cannot change the foundation
class in this attribute if
instances exist.

Cannot change to any other
prohibited superior class
specification.

The inheritance of subclasses
and instances changes.

class-specific-
attributes

Adding attributes Adds attribute to existing
classes.

Deleting attributes Removes attribute from
existing classes.
597

change Renaming attribute Changes the name in all
instances.

Changing attribute to default
value

Gives each instance the
default specified in the
definition.

Can cause G2 to remove the
value of an inherited
attribute from existing
instances if, for example, the
default value was none and
an instance contains a value.

Changing the portname,
direction, or connection class
of a connection

Updates all instances as
directed.

Merging all subclasses and
instances

All subclasses and instances
become subclasses and
instances of the class into
which you are merging
another class.

Moving an attribute from one
class to another

G2 updates the subclass (or
superior class) with the new
attribute.

Maintains non-default
attribute values of all
instances.

Adding, deleting, or moving
an input or output connection.

Updates all instances as
directed.

Copying inherited icon
description

Updates all instances with
the first explicitly defined
icon description that G2
locates on the class
inheritance path.

Updating each instance per
attribute-displays.

Updates all instances to any
specified attribute-display.

Attribute Type of Change
Effect on Subclasses
and Instances
598

Changing Definitions
instantiate Changing default option Updates menu choice to
either add or delete the class
from applicable G2 menus.

include-in-menus Changing default option Updates menu choice to
either add or delete the class
from applicable G2 menus.

attribute-
initializations

Changing the default value of
an inherited attribute

Updates all instances with
the new default value, unless
the previous default value of
the instances has been
changed.

Changing the data type, initial
value, and history-keeping spec
for a variable or a parameter,
or changing the validity
interval, supply simulation
subtable, and default update
interval for a variable

The G2 Simulator is a
superseded capability. For
more information, see
Appendix F, Superseded
Practices on page 2169.

Updates all instances with
the new value, unless the
instance has a non-default
value.

Changing the options for
attribute for a parameter or
variable (forward chaining,
etc.)

Updates all instances. New
instances have the new
value.

Changing the element-type of
an item-list or an item-array

Updates all instances with
the new value. You cannot
change the element-type of a
g2-array without resetting
the KB and when the array
has instances.

Attribute Type of Change
Effect on Subclasses
and Instances
599

Changing whether a list
allows duplicate elements

Updates all instances with
the new setting.

You cannot change a g2-list
without resetting the KB and
when the list has instances.

When changing from allow-
duplicate-elements to do-not-
allow-duplicate elements, G2
does not delete duplicate
elements, but prevents you
from adding duplicate items
from after the change occurs.

Changing/specifying the
array length for an array

Updates existing instances,
whose length value has not
been changed. Instances with
changed length values
maintain their values. New
instances will contain the
new length as specified.

When changing the length of
a populated array, G2
increases or decreases the
length, and all elements
receive the default value for
that array.

attribute-displays Displaying an attribute Does not update existing
instances, only new
instances.

To update all instances, use
the Change attribute, with
update each instance per
attribute-displays, as the
previous table describes.

stubs Adding new stub or changing
a current stub

Does not update instances,
only new instances created
after you add or change a
stub.

Attribute Type of Change
Effect on Subclasses
and Instances
600

Changing Definitions
Note You cannot programmatically change either the class-name or direct-superior-
classes attribute of a definition that has been declared as stable for dependent
compilation and which already has a class name. For more information on
declaring stable definitions, see Chapter 53, Profiling and KB Performance on
page 1811.

Effect on Procedure Statements and Other Items

Changing certain definition attributes can affect executing procedures and other
items that include expressions, along with arrays, lists, and relations. The effects
happen because you can change the origination of attributes and instances to
another class, or delete them entirely. The definition attributes that can affect
procedure statements, rules, formulas, arrays, lists, and relations are:

• class-name

• direct-superior-classes

• change attribute, specifically:

– Merge all instances and subclasses

– Change the connection class of the connection

– Change or delete a connection

– Change attribute to default value

• class-specific-attributes (if the change removes an existing attribute)

• attribute-initializations

icon-description Change description or specify
Inherited

Changes all instances.
Adding an image file is
reflected in all instances.

junction-block
(connection classes
only)

Changing the junction-block
name

Does not update current
instances, only new instances
that use the junction block.

Attribute Type of Change
Effect on Subclasses
and Instances
601

Changing Instantiated Classes

The effect of changing an instantiated class upon executing procedures (and other
items with expressions) depends on the type of change being made and on when
the change occurs. For instance, a procedure may refer to an instance of some
definition, with a statement such as:

T: class tank = the tank upon this workspace

Changing an attribute such as the class-name of the definition for tank removes
the value from the local name of any executing procedures. Any statement that
thereafter refers to the local name’s value gets a procedure error.

If a statement, such as a procedure for statement containing a reference to the
original class name, has begun, but is incomplete while a change is made to the
definition, the statement continues executing with the values of the definition
before the change, unless the change to the definition deletes items that the
statement references. When changing a definition deletes items, the for statement
does not evaluate those items.

Changing an instantiated class can affect lists, arrays, and relations. For instance,
an item list or array can have elements that contain instances of the tank class.
A relation can exist between two tank instances.

Whenever you change one of the definition attributes listed earlier in this section,
G2 can verify the contents of all list, arrays and relation items to see if they still
contain items that do not conflict with their defined relation classes or element-
type. If a list or array element or a relation instance is no longer valid, G2 removes
it from the array, list, or relation.

G2 validates executing procedures, rules, generic formulas, and generic
simulation formulas, using the items that its local names reference. If a change
either deletes that item or changes its class inheritance from what the statement
expects, G2 clears the local name.

The G2 Simulator, which can use generic simulation formulas, is a superseded
capability. For more information, see Appendix F, Superseded Practices on
page 2169.

If you change an item that is part of a rule’s antecedent, the scheduler dismisses
the rule invocation if the item is invalid.

Note If a KB save operation is taking place while a definition change is occurring, G2
saves the KB with the affected definitions and their instances as they were before
the change to the definition is complete.
602

Merging Classes
Merging Classes
Merging classes gives you a way to simplify the class hierarchy while retaining all
the subclasses and instances of the class you want to eliminate. When you merge
two classes, the instances and subclasses of one of the classes become instances
and subclasses of the other class. You can merge only user-defined classes.

The merge option of the change action merges two definitions into a single
definition. One of these is called the primary definition. The class that is merged
into it is the secondary definition.

Merging Definitions of the Same Type

When you merge two class-definitions, object-definitions, connection-definitions,
or message-definitions, the merged definitions must be identical except for the
class name. For classes to be identical, the class-specific attributes and their values
must be the same, and the order in which the attributes appear in the definition
must correspond.

For example, if you try to merge object-definitions that have two class-specific
attributes with the same name and value, but which appear in a different order,
G2 views the definitions as different, even though the attribute names and values
are equivalent.

Before merging definitions of the same type, you must change the definitions as
needed to make them identical. You can then enter the merge option of the
change attribute in the definition table of the secondary class to merge it into the
primary class. For complete information about the Change attribute, see Using the
Change Attribute on page 592.

To merge definitions of the same type:

1 Display the table of the primary definition, that is, the one you want to remain
after the merge action.

2 Display the table of the secondary definition, that is, the one you want to
eliminate.

3 If the two tables are not identical, apart from the class-name, edit the
definitions as needed to eliminate all differences.

4 In the secondary definition, enter this merge command in the
change attribute:

merge all instances and subclasses into definition for primary-definition

where primary-definition is the primary class definition, into which you want
to merge the secondary definition.
603

Merging Classes Defined on Definitions of
Different Types

You can merge a class defined on an object-, connection-, or message-definition
into a class defined on a class-definition, but you cannot merge a class defined on a
class-definition into a class defined on an object-, connection-, or message-
definition. That is, the class defined on the class-definition must always be the
primary definition when definitions of different types are merged.

No object-, connection-, or message-definition can be identical with a class-
definition. Consequently, requiring strict identity when merging into a class-
definition would preclude upgrading existing object-, connection-, and
connection-definitions to be class-definitions.

Therefore, G2 does not require strict identity when merging into a class defined
on a class-definition. Such a merge is possible whenever the foundation classes of
the merged classes are the same. (A foundation class is any extensible system-
defined class except a mixin). When such a merge occurs, every difference
between the primary and secondary definitions is resolved in favor of the primary
definition:

• Attributes defined in the secondary definition but not the primary definition
disappear from subclasses and instances of the secondary definition.

• Attributes defined in the primary definition but not the secondary definition
are added to subclasses and instances of the secondary definition.

• Attributes that exist in both definitions but have different properties use the
properties in the primary definition. Subclasses and instances of the
secondary definition change accordingly.

To merge classes defined on definitions of different types:

1 Be sure that the two classes inherit the same foundation class(es).

2 In the secondary definition, enter this merge command in the change
attribute:

merge all instances and subclasses into definition for class

where class is the primary class, into which you want to merge the secondary
definition.

Completing a Merge

After G2 merges the two classes, it displays a message on the Operator Logbook,
stating that the two classes are merged. All subclasses and instances of the
secondary class whose definition you are editing are now subclasses and
instances of the primary class.
604

Deleting a Definition
The definition for the secondary class still exists and can safely be deleted. If the
definition has a subworkspace, be sure to transfer any needed information from
the subworkspace to another workspace before you delete the definition.

Deleting a Definition
You delete a definition by selecting delete from its menu. When you delete a
definition, you automatically delete:

• The subworkspace (if any) of the definition.

• All class and subclass instances.

• Any subworkspaces of those instances.

G2 does not delete definitions that depend on a deleted superior class, but such
definitions become incomplete because a direct superior class does not exist. G2
changes their notes status to incomplete, and notes that one (or more) direct
superior classes is not defined.

Instance deletion occurs because, to exist, an instance requires a complete set of
information from every superior class within its class hierarchy. When you delete
any superior class within an item’s class hierarchy, essential information no
longer exists, and thus, neither can the item.

Once you confirm that you want to delete a definition, you cannot reverse the
delete command. Therefore, use caution before deleting any definition that may
have instances crucial to other workspaces. Since an error can be quite costly, it is
good practice to save your KB before deleting any definitions.
605

606

15
Variables and
Parameters
Describes variables and parameters and how to use them within a KB.

Introduction 608

Comparing Variables and Parameters 608

Variables, Parameters, and Rules 611

Obtaining Values for Variables 611

Obtaining Values for Parameters 615

Creating Variables and Parameters 615

History Keeping in G2 624

History Expressions 631

Actions to Use with Variables and Parameters 639

Variable and Parameter Rules 642

Variable and Parameter Expressions 642

The Variable and Parameter Classes 648

Describing Variables and Parameters 654
607

Introduction
Variables and parameters are items of the g2-variable or parameter class of
objects, which you use as placeholders for values of specific data types.

Variables and parameters are designed to represent a data value. You can use
displays such as charts and trend charts to display the values of each, and use
button items, such as radio buttons and sliders, to change their values
interactively. You can create a variable or a parameter to represent any simple G2
type.

Comparing Variables and Parameters

You use variables and parameters in your knowledge base (KB) to represent
changing data and as a means of maintaining a history of important values.
Within a KB, variables and parameters can exist as autonomous objects, to hold
the attribute values of user-defined objects, or as superior classes of your own
user-defined variable and parameter classes.

Because all variables and parameters represent a value, you can refer to either in
an expression as a value, rather than as an item. For example, this expression,
referring to the quantitative variable Q1:

conclude that Q1 = 200

replaces the value of Q1 with 200, since G2 evaluates the variable as a value.

Within a KB, you can use variables and parameters to represent external values.
For example, in a KB monitoring a nuclear power plant, variables could represent
temperature readings. You use variables or parameters to represent such
knowledge because they:

• Are the only items in G2 that include history keeping capabilities, which lets
you maintain a record of changing values.

• Can trigger other events when you use them in conjunction with rules.

For more about the interaction with rules, see Variables, Parameters, and Rules.

Parameter Features

In effect, a parameter is a simple variable. Parameters provide a storage space in
memory for an inconstant data value that can be updated as often as necessary. In
addition to storing a data value, a parameter has these capabilities:

• History keeping

• Forward chaining
608

Comparing Variables and Parameters
History keeping permits the parameter to save its values over a specified period
of time. Once historical data exists, you can display, evaluate, store, and retrieve
its contents.

Forward chaining allows the parameter to trigger other events when it receives a
value, by invoking rules that refer to it.

A parameter is guaranteed to have a value, and does not require data seeking to
obtain one. Parameters supply reliable data sources that all parts of G2 can access.

Variable Features

In contrast, a variable can be thought of as a complex parameter. A variable also
stores a data value, keeps history, and can cause forward chaining to rules.
Additionally, a variable can:

• Specify a particular source, called a data server, through which it will obtain
a value.

• Include a specific formula for evaluating a value.

• Require that G2 generates a value at certain intervals.

• Define an expiration time for its value.

• Cause data seeking by backward chaining to a rule.

A variable does not always have a value, and its value can expire.

All variables are capable of having two values concurrently: a value obtained
through a data server, and a simulation value. You can save a history of one or
both of those values.

The G2 Simulator, which can provide simulation values, is a superseded
capability. For more information, see Appendix F, Superseded Practices.

Memory Considerations

As with all items, variables and parameters maintain their capabilities within
their attributes, such as last-recorded-value and validity-interval.

The chaining capabilities of both items are an exception. Although you specify
which chaining options to use in an attribute of a parameter or a variable, the
capability is actually a behavioral aspect of the inference engine. As such, it does
not severely impact the memory requirements of a parameter or variable.

Since variables have more capabilities than parameters, they require more
memory. In addition, the history-keeping-spec attribute for both variables and
parameters can require potentially large amounts of storage, depending on
its value.
609

Summary of Variable and Parameter Differences

The following table summarizes the differences between parameters
and variables:

Consider these issues when deciding whether to use a variable or a parameter:

Characteristic Variable Parameter

Always has a value 

Can have a validity interval 

Can receive values from a conclude action  

Can receive values from a generic formula 

Can receive values from an external data source 

Can receive values from a specific formula 

Can be referenced directly by a procedure 

Can have a history  

Has a data server 

Must have an initial value 

Can cause forward chaining  

Can cause backward chaining or other data seeking 

Can be the value of an object attribute  

If the data value... Then choose a...

Requires a specific data server,
such as G2 Gateway, for obtaining
values outside of G2

Variable, since you cannot specify
a data server in a parameter.

Is time dependent so that the item
updates on a regular basis and can
expire

Variable, since parameters do not
support expiration times.

Requires a value at all times, and
does not require a specific data
server

Parameter, since a parameter is
guaranteed to have a current value
and does not have a data server.
610

Variables, Parameters, and Rules
Variables, Parameters, and Rules

Parameters and variables are tightly coupled with rules. A common use of rules is
to test whether a variable or parameter has a certain value, and, if so, to take some
subsequent action, possibly involving another variable or parameter.

For both parameters and variables, the relationship with rules involves forward
chaining. Each can either:

• Cause forward chaining to a rule when either receives a value.

• Receive a value from the consequent of a rule invoked from another variable
or parameter that forward chained to the rule.

Forward chaining is the process of invoking a rule when at least one of the
conditions in its antecedent is true. Consider the following rule as an example.

if the tank-volume of auto-1 is low then conclude that auto-needs-gas is true

Whenever the tank-volume variable for auto-1 obtains the value low from some
source, that occurrence causes forward chaining to the antecedent of this rule. The
rule’s consequent concludes a new value for the auto-needs-gas parameter.
When the auto-needs-gas parameter receives a value as the effect of the variable
update forward chaining to the rule, it, in turn could cause forward chaining to
another rule containing that parameter in its antecedent. For a complete
description of forward chaining, see Forward Chaining.

In summary, a new value for a variable or parameter can cause forward chaining
to the antecedent of one or more rules.

For variables, the relationship with rules involves both forward chaining and
backward chaining, described next.

Obtaining Values for Variables
The purpose of variables is to hold a value and, optionally, to maintain a record of
values through history keeping.

Updating a variable value can take several forms. A variable can receive an
unrequested value or one that is requested. Both types of update have effects on
the KB.
611

Obtaining Unrequested Values

When variables receive unrequested values, the new value can cause forward
chaining which, in turn, can conclude values for other variables. A variable can
receive an unrequested value from:

• A conclude action from a procedure, method, or rule.

• An external data server such as G2, G2 Gateway, or GFI.

• A user event, such as a check-box or a type-in box.

• Activation, if the variable has an initial value.

For information on GFI, a superseded capability, see Appendix F, Superseded
Practices. For a description of using initial values, see Specifying an Initial Value.

Obtaining Requested Values

The events that create a request for a new variable value are:

• The variable’s default-update-interval attribute.

• An update interval in a display item that refers to a variable.

• A rule that references the variable.

• A local name declaration, a collect data statement, or a wait until statement in a
procedure that references the variable.

• An update action that references the variable.

When G2 receives a request for a variable value, it first determines whether the
last-recorded-value is still valid by checking the validity-interval attribute. The
validity interval of a variable is described in Specifying a Validity Interval. If the
value has not expired, G2 uses it and does not seek a new value. G2 seeks a value
for a variable only when an item needs a value for the variable and the variable's
value has expired. The attempt to obtain a new value for a variable is called data
seeking.

Value expiration does not itself cause G2 to data seek for a value. If a variable
value expires and no outstanding request for that value exists, G2 does not try to
obtain a value automatically.

G2 begins data seeking by determining which data server the variable specifies in
its data-server attribute. A data server is the process or task that tries to obtain a
value for the variable. The variable data servers are:

• The inference engine

• The G2 Simulator

• Some other data server, such as G2 Gateway or GFI
612

Obtaining Values for Variables
GFI and the G2 Simulator are superseded capabilities. For more information, see
Appendix F, Superseded Practices.

When the data server is other than the inference engine, G2 can receive both
requested and unrequested values from that data server. The rest of this section
shows how each of the data servers gets a value for the variable. Variable failures
are described in Handling a Variable Failure.

Inference Engine Data Server

The inference engine can obtain values from rules or formulas.

To obtain a value for a variable, the inference engine:

1 Checks to see whether the variable has a specific formula in its formula
attribute.

If a specific formula exists, G2 uses it to compute a value for the variable.

2 Checks to see whether there is a generic formula. If one exists, G2 uses that.

3 When neither a specific nor a generic formula exists for the variable, and
backward chaining is permitted, G2 backward chains to a rule to find a value.

Backward chaining is the process of invoking one or more rules capable of
inferring a value for the variable. For a description of backward chaining, see
Backward Chaining.

4 If neither a specific nor a generic formula exists, and backward chaining does
not produce a variable, G2 fails to get a value.

Forward and backward chaining are controlled by the options attribute of both
rules and variables. For variables to be able to backward chain to a rule, and for
variables and parameters to forward chain to a rule, both items must have their
options attribute set appropriately.

G2-Simulator Data Server

The G2 Simulator is a superseded capability. For more information, see
Appendix F, Superseded Practices.

G2 or GFI Data Server

If the variable is using one of the other data servers, G2 sends a request to that
data server for a value. G2 then performs other tasks until it receives a value.

Note The G2 inference engine timeout-for-variables attribute setting does not apply
when G2 is obtaining updates from an external data server, such as G2 Gateway.
613

If G2 does not receive a value within the time specified by the Inference Engine
Parameters system table attribute, timeout-for-variables, G2 fails to get a value for
the variable.

GFI is a superseded capability. For more information, see Appendix F,
Superseded Practices.

Handling a Variable Failure

A variable fails to receive a value if G2 requests a value and one of the following
is true:

• The variable does not receive a value within the time period specified in the
timeout-for-variables attribute in the Inference Engine Parameters
system table.

• G2 attempts to obtain a value as the sections describing each of the data
servers explain, and all possible methods fail.

A variable is not considered failed if G2 withdraws all requests for the variable’s
value before the timeout expires, or before it tries all avenues for finding the value.

When a variable fails, G2 does two things:

1 It invokes any whenever rules that check for a failure in the variable.

2 It schedules a task to try again to get a value for the variable.

Invoking Whenever Rules for Failed Variables

G2 invokes whenever rules automatically when at least one statement in the
antecedent is true.

Two forms of whenever rules that you can write to test variable values are:

• whenever variable receives a value

• whenever variable fails to receive a value

You can use whenever rules to initiate specific action in the event of a failed
variable. For example, a rule such as this:

whenever any temperature-variable V fails to receive a value
then start value-test (V)

could start a procedure whenever G2 detected a variable failure. Using whenever
rules this way is analogous to writing on error statements in procedures. Such
whenever rules are invoked once after each time the variable fails to receive a
value, not after each retry task.

Retrying the Variable

As long as there are pending requests for the variable's value, G2 retries the
variable once every retry period, which is specified in the retry-interval-after-
614

Obtaining Values for Parameters
timeout attribute in the Inference Engine Parameters system table. When no more
requests for the value of the variable exist, G2 stops retrying the variable, but the
variable is still considered failed.

A variable remains failed until it receives a value.

Obtaining Values for Parameters
Parameters receive values from expressions within procedures, rules, and user-
interface items, such as action buttons and sliders.

Parameters are guaranteed to have a current value. If you do not assign an initial
value to a parameter, G2 supplies an initial value corresponding to its data type:

Creating Variables and Parameters

To create a variable or a parameter:

 Select KB Workspace > New Object > variable-or-parameter.

where variable-or-parameter is either variable or parameter from the New
Object menu. After you select either choice, G2 displays a secondary menu
from which to choose a particular type.

Variables and parameters share similar icons, a separate icon for each type:

Parameter Type Initial Value

quantitative 0.0

float 0.0

integer 0

long 0L

logical false

text ""

symbolic g2
615

Specifying Forward and Backward Chaining

For parameters and variables, the options attribute controls whether a new value
causes forward chaining. For variables only, the attribute also controls whether
G2 can data seek and use backward chaining. If backward chaining is in use, the
attribute specifies the type to use (breadth first- or depth first-backward chaining).

The default settings for the different kinds of variables and parameters are:

The allowable values for each type of variable or parameter are:

Use caution when setting or changing the value of the options attribute. Whatever
you specify in this attribute, or whatever default value it provides, should
correspond directly with any rule that references the parameter or variable.

For example, if you want a parameter to cause forward chaining to a rule when it
receives a value, the default option for the parameter should be:

 do forward chain

This setting indicates that the parameter can forward chain to any rules that
reference it. If the rule that references the parameter is not itself invocable via
forward chaining, the chaining process comes to a halt.

This type... Has this default setting...

Quantitative and text
parameters

do not forward chain

Symbolic and logical
parameters

do forward chain

Quantitative and text variables do not forward chain,
breadth first backward chain

Symbolic and logical do forward chain,
breadth first backward chain

This item... Can have these settings...

Parameters do [not] forward chain

Variables do [not] forward chain
{do not {seek data |
backward chain} | ,
depth first backward chain |
breadth first backward chain}
616

Creating Variables and Parameters
Forward Chaining on Unchanged Variables and
Parameters

By default, G2 performs forward chaining on variables and parameters only
when the value changes. G2 can also perform forward chaining on variables and
parameters even if the received value is the same as the old value. To enable this
behavior, add even for same value after do forward chain in the options attribute
of a variable or parameter. For example, on a variable, you would specify:

do forward chain even for same value, breadth first backward chain.

Note this is only applicable to forward chaining and does not affect backward
chaining.

The value of the options attribute contains an optional attribute in the structure,
named forward-chain-even-for-same-value, which is a truth-value, whose default
value is false. Thus, the value for the above set of options looks like this:

structure
(forward-chain: true,
forward-chain-even-for-same-value: true,
backward-chain: the symbol breadth-first)

Defining Debugging and Tracing

The tracing-and-breakpoints attribute defines the level of tracing and breakpoints
for the variable or parameter. This attribute and its values are described in
Debugging and Tracing.

The tracing-and-breakpoints-enabled? attribute of the system table must have a
value of yes for this attribute to take effect.

Specifying the Type

The data-type attribute specifies the type for the variable or parameter. You
cannot edit this attribute for symbolic, logical, and text variables and parameters.
These are the allowable values for each variable and parameter.

This variable or
parameter type... Can have this value...

quantitative {unit-of-measure | interval | quantity | float |
integer | time-stamp | pure number

float {unit-of-measure | float | time-stamp |
pure number}
617

Specifying an Initial Value

The initial-value attribute specifies an initial value for the variable or parameter,
which is dependent on the type. If you do not specify an initial value for a
variable, G2 supplies the value none. Here is the default initial value for each type
of parameter:

Hint If you are maintaining historical data on a parameter or variable (using the
history-keeping-spec attribute), the value you provide in the initial-value attribute
is used as an initial historical data point.

You can supply initial values in individual instances of variables or parameters,
or in user-defined object definitions.

Variables with an initial value behave differently from parameters upon
activation. In this context, activation refers to starting or restarting the KB, or
activating the workspace of the variable or parameter after KB startup. For a

integer {unit-of-measure | interval | integer |
pure number}

long long

symbolic symbol

logical truth-value

text text

This variable or
parameter type... Can have this value...

This item... Has this initial value...

Quantitative parameter 0.0

Float parameter 0.0

Integer parameter 0

Long parameter 0L

Symbolic parameter g2

Logical parameter false

Text parameter ""
618

Creating Variables and Parameters
complete description of KB run states and their effect upon activating items, see
Operating the Current KB.

For variables, G2 concludes the initial value as the value of the variable, with its
collection time set to the activation time. Activating a variable with an initial
value, therefore, causes forward chaining. If the variable is keeping history, the
initial value is inserted into the history as if it had been collected from a
data server.

Note When using a variable as an external output, an activate event does not have the
same effect as a set action. While a set action can transmit a value to the external
facility, G2 does not transmit the initial value when an activate event occurs.

Parameters have an initial value by default, even if you do not provide one,
because they are guaranteed to have a value at all times. When a KB is reset,
parameters revert to their initial value, and do nothing upon activation. Thus,
parameters do not forward chain from activation. If the parameter is keeping
history, activating the parameter inserts the initial value into history as the first
collected value.

Obtaining the Last Recorded Value

The last-recorded-value attribute displays the value that G2 last concluded,
collected, calculated, inferred, or received for the variable or parameter. You
cannot change this attribute.

If the variable specifies a validity-interval, the last-recorded-value may not be
current. If the value has expired, it is has an expired suffix, and if it is current, it is
suffixed by the word expires, followed by the expiration time.

If no current value exists, an asterisk appears to the right of the value. If the last
recorded value reads no value, G2 has not yet found a value for the variable.

The variable-or-parameter class defines a read-only, hidden attribute named
last-recorded-value-text, which shows the last-recorded-value of the variable or
parameter in text format as it appears in a readout table. If the value of a variable
has expired, the hidden attribute appends an asterisk to the value (*). If the
variable has no value, the hidden attribute value is "****". These features only
apply to variables, not parameters. This attribute does not cause data seeking.

Use the format-numeric-text function to format the value of the last-recorded-
value-text hidden attribute of a variable. For details, see Format-Numeric-Text
Function.

Tip Expiration of a variable’s value does not cause data seeking. G2 seeks for a value
only upon request when the value has expired. For the causes of data seeking, see
Obtaining Values for Variables.
619

Specifying Whether to Keep a History of Values

The history-keeping-spec attribute indicates whether to keep a history of values
for the variable or parameter. If the item is keeping a history of values, the
attribute can also specify the maximum number of values to keep, and how long
to keep each value.

For more information about this attribute, see History Keeping in G2.

All variables have these additional attributes:

• validity-interval

• formula

• simulation-details

• initial-value-for-simulation

• data-server

• default-update-interval

The G2 Simulator is a superseded capability. For more information, see
Appendix F, Superseded Practices.

Specifying a Validity Interval

For variables, the validity-interval attribute specifies the length of time that the
value of the last-recorded-value remains current. Enter a value for this attribute
as follows:

Caution If you are using a default-update-interval for the variable and you set the validity-
interval to less than the update interval, the variable will constantly expire.

Value Description

time-expression Defines a specific amount of time, such as 10
seconds. You cannot use a subsecond interval
for the validity interval.

indefinite Indicates that the last recorded value is valid
indefinitely.

supplied Specifies that the inference engine computes the
validity interval. When supplied is the value for
this attribute, inference engine is the only valid
data server.
620

Creating Variables and Parameters
Effect of Validity Interval on Expiration Time Stamp

When a value is concluded into a variable, G2 stores two timestamps:

• The collection time, which is either the time at which the conclude occurred or
an explicitly supplied time in a conclude action.

• The expiration time, which is computed as the collection time plus the value
of the variable’s validity-interval attribute.

A variable value expires when the current time is greater than the expiration time.

You can detect interactively that a value has expired by examining an attribute
table showing the variable value. G2 updates attribute tables when a variable
expires, so you can leave the table on display and watch for changes.

You can detect programmatically that a value variable has expired with
the statement:

if variable has a current value

which returns the current expiration status of the variable. The expression:

if variable has a value

attempts to invoke data seeking to find a value, and only returns false if the
variable has failed to receive a value or if the expression has timed out and is
making its final evaluation attempt.

Note You can override the validity-interval of a variable by explicitly providing an
expiration time as part of a conclude action.

This is how the value of the validity-interval attribute affects the variable’s
expiration timestamp:

If validity-interval is... Then...

indefinite The expiration time stamp becomes the symbol
never.

supplied Values concluded from rules and formulas
receive an expiration time stamp that is the
minimum of the expirations of the values used
to execute the rule or formula.

If a value is concluded from a procedure, the
expiration time stamp is never. This occurs
because procedures can only refer to variable
values within a collect data or wait until
statement, not within a conclude action.
621

Setting the validity-interval attribute also has a direct effect on the variable’s
forward chaining capabilities, if the variable permits forward chaining.

Using a Specific Interval

A specific validity interval, indicating that a current value expires at some point,
always causes forward chaining to occur when the variable receives a value.

Using an Indefinite Interval

An indefinite validity interval causes forward chaining only if the new value
received is different than the previous value. Forward chaining then becomes a
response only to new information.

If your KB requires forward chaining to occur whether the variable’s value is new
or not, but needs to use an indefinite validity interval, create a whenever rule with
a statement such as:

whenever variable receives a value...

G2 invokes this rule even if the new value is the same as the current value. G2
does not invoke the rule if the time stamp of the new value is either the same as or
predates the current value.

The reason for this is that G2 only invokes a whenever variable receives a value
rule when the time stamp of any new value is later than that of the current value.
A value whose time stamp is identical to or earlier than that of the current value is
not considered new. If the variable is maintaining history, G2 stores older time
stamp values in history, but does not invoke the whenever rule.

Using a Supplied Interval

A supplied validity interval is applicable when G2 computes the value of the
current variable using other variables. The data server for a supplied validity
interval must be inference engine.

When the validity interval is supplied, the inference engine obtains a validity
interval from the variables used to calculate or infer a value. Specifically, the
inference engine uses the shortest available value. For example, consider that the
volume of a tank-1 object is given by a float variable with a supplied validity
interval, and G2 uses this expression to compute a value for volume:

the area of tank-1 * the level of tank-1

To obtain a validity interval for the volume variable, G2 checks the intervals of the
area and level variables, and then uses the shorter interval of the two.

If a variable has a supplied validity interval, but is not getting its value from other
variables, G2 infers that the validity interval is indefinite.
622

Creating Variables and Parameters
An exception to this is when an update source for a variable with a supplied
validity interval includes a conclude statement specifying a validity interval,
using a with expiration statement such as:

conclude that level = 100 with expiration 10 seconds

Other possible sources for obtaining a variable value include rules, formulas, and
actions buttons.

Creating a Specific Formula

For variables only, the formula attribute includes a specific formula that G2 uses
to compute a value for the variable. When a variable includes a formula, G2
calculates it only when the variable needs a new value.

Note The variable must use the inference engine as its data server for G2 to evaluate a
specific formula.

Specifying Simulation Details

The G2 Simulator is a superseded capability. For more information, see
Appendix F, Superseded Practices.

Determining the Initial Simulation Value

The G2 Simulator is a superseded capability. For more information, see
Appendix F, Superseded Practices.

Specifying a Data Server

For variables only, the data-server attribute specifies which data server G2 uses to
obtain a value for the variable. If you are using a formula, you must use inference-
engine as the data-server.

Data Server Description

data-server-alias Is an alias for a particular data server. You
specify the data server that each alias
name implies in the Data Server
Parameters system table by modifying the
data-service-alias attribute.

inference engine Tells G2 to get a value from a formula, a
generic formula, or to data seek for a value
using backward chaining in that order.
623

Specifying a Default Update Interval

For variables only, the Default-update-interval attribute directs G2 to obtain a
value for a variable at regular time intervals. For example, if the variable's Default
update interval is 2 minutes, G2 obtains a value for the variable every two
minutes, independent of whether it needs to for some other reason.

You can enter a subsecond value as a default update interval. A subsecond
update interval is limited by the scheduler’s update interval. For example, if the
update interval for the scheduler is set to.5 seconds, setting a variable’s update
interval to less than that will not have any effect.

If a variable does not have a validity interval, G2 obtains a value for the variable
only when necessary as Obtaining Requested Values describes.

History Keeping in G2
The history-keeping-spec attribute determines how to keep history for a variable
or a parameter. When the value of this attribute is changed from the default
do not keep history, G2 keeps a record of the variable or parameter values.

GSI data server Indicates that G2 Gateway (GSI) is the
data server. This is the data server used
for bridges and other external resources.
Refer to the G2 Gateway Bridge Developer’s
Guide for more information.

GFI data server GFI is a superseded capability. For more
information, see Appendix F, Superseded
Practices.

G2 meter This data server is only applicable for a
variable that you have created as a
g2-meter. For a description of using
g2-meters, see G2-Meters.

G2 simulator The G2 Simulator is a superseded
capability. For further information, see
Appendix F, Superseded Practices.

G2 data server Tells G2 to get a value from another G2
used during a G2-to-G2 connection. For
information about such connections, see
G2-to-G2 Interface.

Data Server Description
624

History Keeping in G2
Storing and Accessing History Values

The reason for saving history is typically to:

• View historical information.

• Reason about history values.

• Store historical data.

• Retrieve historical data.

Using a G2 display such as a trend chart, you can monitor historical data as G2
collects it, or refer to the data in expressions and formulas after collecting history.
History values are the basis for computing averages, minimum values, maximum
values, rates of change, and so on, for a parameter or a variable. Thus, you can
write rules and other statements that require knowledge of a history of events.
Trend charts can display history values. For information about trend chart
display items, Trend Charts.

The G2 system procedure g2-snapshot saves the current state of a KB with all of
its transient data, including variable and parameter histories. For information
about g2-snapshot, see Saving Permanent and Transient Data in Snapshot KBs.
The saved KB can then be loaded later and warmbooted. For more information,
see Warmbooting a KB Snapshot File.

The way you specify history keeping is identical in variables, parameters, and
simulation variables.

The G2 Simulator is a superseded capability. For more information, see
Appendix F, Superseded Practices.

Collection Time

G2 stores history as a series of data points. A data point consists of the variable or
parameter value and its corresponding collection time. Data points are stored as
part of an item’s transient knowledge.

In general terms, collection time refers to the time at which a variable or a
parameter receives a value. The collection time is either:

• The time of collection as furnished to the variable from a source outside of G2,
which can be G2 Gateway, GFI, or the G2 Simulator.

GFI and the G2 Simulator are superseded capabilities. For more information,
see Appendix F, Superseded Practices.

• The explicit collection time argument of a conclude action statement.

The conclude action lets you conclude a value for a variable or a parameter
with or without a specific collection time.
625

In the absence of an explicitly provided value, the collection time is the current
subsecond time at the moment that the variable received a value.

For variables with an external data server, the scheduling interval has no effect.
External data servers control the rate of updating the variable and thus its
collection time in history values.

G2 returns the collection time as an integer if the time does not include a
subsecond part, or a float if it does. Assign a collection-time value to a quantity
local variable; or force the collection time value to an integer by using one of these
functions: floor, ceiling, or truncate.

You can keep history data points in two different ways:

• A finite number of data points, for example:

keep history with maximum number of data points = 100

• An unspecified number of data points limited by a period of time, which
determines how long to keep the history values, for example:

keep history with maximum age of data points = 1 day

To keep history values:

 keep history with maximum
{number of data points = integer-expression |
age of data points = time-expression}
[, with minimum interval between data points = time-expression]

Data points are zero based, 0 being the most recent and possibly the current
value. To refer to the oldest history value, use the total number specified, less one.
For example, if you define the maximum number of data points to keep as 20, you
can refer to them as 0 – 19.

Saving a Maximum Number of Data Points

To keep history using a maximum number of data points:

 keep history with maximum number of data points = integer-expression

For example:

keep history with maximum number of data points = 100

Specifying history saving in this way causes G2 to allocate a finite amount of
memory to accommodate the total number of data points to collect.

Saving Data Points over a Maximum Time Period

To keep history over a maximum period of time:

 keep history with maximum age of data points = time-expression
626

History Keeping in G2
For example:

keep history with maximum age of data points = 2 days

The time-expression cannot be a subsecond interval.

When keeping history for a maximum time period, once the maximum number of
data points are received within the specified interval, G2 does not remove older
history values until a new value is added within the specified time. For example,
if you keep history for 15 seconds, updating every 5 seconds, the total number of
data points varies from 1 to 3 during the first 15 seconds. After the first 15
seconds, the number of data points remains steady.

Caution Keeping historical data can be costly in terms of memory usage. When you
specify a maximum age of data points, G2 can consume indefinite amounts of
storage space, until it either reaches the maximum age, or runs out of space.
Running out of storage space could abort G2.

Saving a Maximum Number of Data Points over a
Specific Time Period

To keep history combining both a finite number of data points and a specific
time period:

 keep history with maximum number of data points = integer-expression
and maximum age of data points = time-expression

Be sure to specify the number of data points first, and then the time period.
For example:

keep history with maximum number of data points = 100
and maximum age of data points = 2 days

Tip Changing the history keeping method from a maximum number of data points to
a maximum period of time may not affect current history values until the next
value is concluded into the variable or parameter. When new history values are
collected after you change the history keeping method, the history is adjusted to
the new interval.

Specifying a Minimum Interval between History
Data Points

In addition to keeping history values as a specific number of data points or over a
certain time period, you can append a minimum interval between data points
statement to specify the amount of time between when G2 saves one data point
627

and the next. G2 still collects data points between those points, but the minimal
interval determines which data points are saved.

The default minimum interval between history data points is one second. If more
than one data point is received within a one-second interval, G2 keeps only the
last one. If you do not include the minimum interval between history data points
statement in the history-keeping-spec attribute, this default behavior remains. A
one-second interval is the default.

By specifying the minimum interval between data points in different ways, G2
adjusts the collection times to the minimal interval. To keep only the last data
point received, the collection time is canonicalized by the minimum interval
specification. This provides history collection with a unique timestamp as its
target for each specified time interval. For example, specifying the minimal
interval between data points as 1 hour keeps only the last data point received in
any 60 minute period, regardless of how many data points are collected.

Use the minimum interval between data points statement to keep history:

• On an event basis, maintaining all data points.

• As a single data point per interval, which could be subsecond or not.

Event-Based History

Setting the minimum interval between data points to 0 seconds directs G2 to save
every data point collected (within the specified maximum number or age of data
points). Using this setting provides the finest granularity for keeping
history values.

Keeping a Single Data Point per Interval

To keep a single data point per interval, use the minimum interval between data
points statement with any value other than zero (0). Whenever the interval is
greater than zero, and more than one value is collected in the given interval, G2
keeps only the last value within an interval.

To keep subsecond history values, enter a value that divides evenly into a second.
If you enter a value that does not divide evenly, G2 adjusts the value to an even
interval. For instance, while .1,.2, and .5 are not rounded, entering a value of .4
seconds causes G2 to round the figure to .5 seconds, as .6, .7, .8, and .9 seconds
will be round up to a 1 second interval. The minimum allowable value is 0.05
seconds and the maximum value is 6 days.

The subsecond value you enter in this part of the history-keeping-spec attribute
actually determines the number of data points saved during a 1-second interval.
The maximum number of data points that you can save per second is 20, the
minimum is 1.

keep history with maximum age of data points = 1 minute and 10 seconds,
with minimum interval between data points = 2 seconds
628

History Keeping in G2
Values above 1 second must be integral second intervals, such as 2 seconds, 2
minutes and 5 seconds, or 1 hour.

For parameters, and variables whose data server is the inference engine, the
scheduling interval can affect the granularity between collection times if it is set to
an interval greater than the minimum interval between data points value.

For example, if the scheduler’s minimum-scheduling-interval is set to .5 seconds,
setting the history-keeping-spec attribute of a variable or a parameter to include a
minimum interval between data points of .2 seconds will not have any effect.
Instead, the minimum interval will be .5 seconds, corresponding to the
scheduler interval.

Working with History Keeping Using
Attribute Access

Using the attribute access facility, you can:

• View the history of a variable or parameter dynamically.

• Create or change the history keeping specification programmatically.

Displaying History Values Dynamically

To see a variable’s history values and their collection times, use a Readout-table.

1 Create a readout-table item by selecting KB Workspace > New Display >
readout-table > readout-table.

2 Edit the table of the readout-table.

3 In the expression-to-display attribute, enter the attribute of the item whose
value you want to see, for example:

the history of float-variable
629

The history values appear when the readout-display is updated:

Specifying History-Keeping Programmatically

Creating a variable programmatically and specifying its history-keeping-spec
attribute requires knowledge of the attribute type. The history-keeping-spec
attribute type is a symbol or structure. This example:

• Creates a float-variable, transfers it, makes it permanent, and concludes its
name to be float-var.

• Changes the history-keeping-spec attribute from its default value do not keep
history to a history keeping specification using the structure () function.

conclude that the history-keeping-spec of float-var =
structure(maximum-number-of-data-points: 10,

minimum-interval-between-data-points: 1 minute)

Changing the History-Keeping Specification

You can change the value of the History-keeping-spec in several ways, two of
which are shown next.

To conclude a new value into the subattribute directly:

 Use a conclude action, for example:

conclude that the maximum-number-of-data-points
of the history-keeping-spec of float-var = 100

or
630

History Expressions
 Use the change-attribute function to create a new structure to conclude
directly, for example:

conclude that the history-keeping-spec of V1 =
change-attribute((the history-keeping-spec of V1),

maximum-number-of-data-points, 100)

See Structure Functions for a description of the change-attribute function.

Removing History Keeping

You can remove history keeping and the current history from either a variable or
a parameter in two ways programmatically by:

• Concluding that the attribute has no value.

• Using the g2-clear-histories system procedure.

You can clear all history values from a parameter and to set the initial value and
collection time by using the g2-initialize-parameter system procedure.

To remove the history specification of a variable or parameter:

 conclude that the history-keeping-spec of float-var has no value

For information about system procedures, see the G2 System Procedures Reference
Manual.

History Expressions

G2 provides many expressions that reason about a variable or parameter
history values.

Most history expressions require you to specify a time-expression, consisting of
time units (seconds, minutes, hours, days, or weeks) or an arithmetic expression.
If the time interval is an arithmetic expression, G2 interprets its result as a number
of seconds. Some examples of valid time intervals are:

7 weeks, 6 days, 5 hours, 4 minutes, and 3 seconds
10 minutes
16 days and 2 hours
the current time + 10
3*4 seconds

Note When using the between time-expression ago and time-expression ago phrase in
these expressions, you must specify the longer time interval before the shorter
time interval.

Each of these expressions calculates a statistic, using the history values stored in a
quantitative variable (or its subclasses) or a quantitative parameter (or its
subclasses).
631

Note To create a rule that is invoked when the value of a history expression changes,
use a whenever rule. For efficiency reasons, G2 does not invoke an if rule that is
configured to forward chain when the rule antecedent refers to a history
expression.

Obtaining a History Value

To obtain a history value:

 the value of {variable | parameter}
{as of time-expression ago | as of integer-expression datapoints ago}
-> {integer | float | symbol | text | truth-value}

For a variable or parameter that is keeping history values, this expression
produces the value that the variable or parameter had at the specified time
interval ago or at a number of datapoints ago.

Two examples are:

conclude that Q1 = the value of F1 as of 1 hour ago

conclude that A1 = the value of F1 as of 10 datapoints ago

Specifying a time interval causes G2 to return the value from the specified time. If
G2 did not collect a value then, it returns the value collected immediately prior to
the specified time-interval. For instance, in the example shown here (as of 1 hour
ago), if no value were collected at that time, G2 would return the value collected
before that time, perhaps 1 hour and 1 minute ago. If no previous time existed, G2
returns no value, expressed as **** (asterisks). Note that this behavior differs from
the behavior of the interpolated value of expression.

If you specify a number of data points ago, as in the second example, G2 returns
the value at that data point. History data points are zero-based, meaning that if 10
data points are collected, the number of data points ranges from 0 – 9, and
specifying 10 is invalid.

If G2 did not collect a value at the specified data point, it returns no value,
expressed as **** (asterisks).

If you specify a number of history values ago, G2 produces that history value.
For example:

the value of the temperature of tank-3 as of 36 datapoints ago

In this example, if G2 did not collect a value at the temperature attribute’s 36th
history value, the expression produces a no value condition.
632

History Expressions
Computing the Number of History Datapoints

To obtain the total number of history datapoints within, and on, the boundaries
of the time interval you specify:

 the number of history datapoints in {variable | parameter}
{during the last time-expression |
between time-expression ago and time-expression ago }
-> integer

This expression produces the number of history values contained in the specified
variable or parameter, or the number of history values received during the
specified time interval. G2 counts the values within and on the boundaries of the
specified time interval.

Here are two examples:

conclude that Q1 =
the number of history datapoints in F1 during the last 12 hours

conclude that Q1 =
the number of history datapoints in F1
between 1 hour ago and 1 minute ago

Computing the Average History Value

To compute the average history value over a specified period of time:

 the average value of {quantitative-variable | quantitative-parameter}
{during the last time-expression |
between time-expression ago and time-expression ago}
-> float

If the specified variable or parameter contains at least one history value for the
specified time interval, this expression produces a value that G2 calculates based
on those history values. If the specified variable or parameter does not contain at
least one history value, this expression produces a no value condition.

The calculated average is the sum of the variable’s or parameter’s values divided
by the number of values. G2 does not calculate a time-weighted average, in which
the distribution of values over time can produce differing results.

Here are two examples:

conclude that Q1 =
the average value of F1 during the last 10 minutes

conclude that Q1 =
the average value of F1 between 5 minutes ago and 10 seconds ago
633

Tip G2 does not compute a time-weighted average where the distribution produces
differing results. This average value is simply the sum of the variable or
parameter’s values divided by the number of values.

Computing the Sum of Values in Histories

To compute the sum of values in histories:

 the sum of the values of quantitative-var-or-param
during the last time-expression

 the sum of the values of quantitative-var-or-param between
time-expression ago and time-expression ago

For example, this procedure sums the values of the parameter named param
during the last 1 hour:

sum-of-values()
q1: float;
begin

q1 = the sum of the values of param during the last 1 hour;
post "[q1]";
end

This procedure sums the values of param between 30 and 10 seconds ago:

sum-of-values-over-interval()
q1: float;
begin

q1 = the sum of the values of param between 30 seconds ago and 10 seconds
ago;
post "[q1]";
end

Computing the Integral

To compute the integral over a selected period of time:

 the integral in {seconds | minutes | hours | days | weeks}
of {quantitative-variable | quantitative-parameter}
{during the last time-interval |
between time-interval ago and time-interval ago}
-> float

If the specified variable or parameter contains at least one history value for the
specified time interval, this expression produces a value that G2 calculates based
on those history values. If the specified variable or parameter does not contain at
least one history value, this expression produces a no value condition.
634

History Expressions
Two examples are:

conclude that Q1 =
the integral in seconds of F1 during the last 10 seconds

conclude that Q1 =
the integral in minutes of F1 between 1 hour ago and 1 minute ago

G2 performs a true integration over time of the most recently received value for
the variable or parameter at each instant of the specified time interval. For all
history values falling into the specific time interval, suppose we have the value
series as with correspond time series as , then G2 uses
following formula to compute the integral:

In above formula, is the start time of the specific time interval, is always 0.0,
and u is the time unit in seconds. For example, using in seconds of we have the
unit as 1, while in minutes of has the unit of 60, because one minute has 60
seconds.

Computing the Interpolated Value

To compute the interpolated value of a variable or a parameter:

 the interpolated value of {quantitative-variable | quantitative-parameter}
as of time-interval ago
-> float

If the specified variable or parameter contains at least two history values for the
specified time interval, this expression produces an interpolated value that G2
calculates based on those history values. If the specified variable or parameter
does not contain at least two history values, this expression produces a no value
condition.

If G2 did not collect a value for the variable or parameter at the time interval you
specify, it performs straight-line interpolation of the values that were collected
immediately before and after that time interval. For instance, if the expression
states 1 hour ago and collections occurred at 50 minutes and 1 hour 5 minutes
ago, G2 interpolates those two values. In this way, interpolation differs from the
value of expression, which returns the value received prior to the specified time
interval, if no value was received as of the specified time interval.

Here is an example:

conclude that Q1 =
the interpolated value of F1 as of 1 hour ago

v1 v2 v3 vn   t1 t2 t3 tn  

vi 1– ti ti 1–– 
i 1=

n

 u

t0 v0
635

Note When obtaining interpolated values at a maximum time period value, it is
possible for the value to not be returned. For example, if you keep history for 30
seconds, and then try to obtain the interpolated value of the variable as of 30
seconds ago, G2 returns no value.

Computing Maximum and Minimum Values

To compute the maximum or minimum value of a variable or a parameter over a
period of time:

 the {maximum | minimum} value of
{quantitative-variable | quantitative-parameter}
{during the last time-interval |
between time-interval ago and time-interval ago}
-> {integer | float}

If the specified variable or parameter contains at least one history value for the
specified time interval, this expression produces the maximum or minimum of
the history values received within the specified time interval. If the specified
variable or parameter does not contain at least one history value within the
specified time interval, this expression produces a no value condition.

Two examples are:

conclude that Q1 =
the maximum value of F1 during the last 1 day

conclude that Q1 =
the minimum value of F1 between 5 minutes ago and 5 seconds ago

Computing the Rate of Change

To compute the rate of change within a particular time unit over a time period:

 the rate of change per {second | minute | hour | day | week}
of {quantitative-variable | quantitative-parameter}
{during the last time-interval |
between time-interval ago and time-interval ago}
-> float

If the specified variable or parameter contains at least one history value for the
specified time interval, this expression produces a rate of change statistic that G2
calculates based on those history values. If the specified variable or parameter
does not contain at least one history value, this expression produces a no value
condition.

The expression calculates the rate of change per second, minute, hour, day, or
week of the specified variable or parameter over the specified time interval. G2
636

History Expressions
calculates the rate of change by dividing the total accumulated change during the
specified time interval by the length of the time interval.

Two examples are:

conclude that Q1 =
the rate of change per minute of F1 during the last 2 hours

conclude that Q1 =
the rate of change per hour of F1 between 48 hours ago and 24 hours ago

G2 computes the rate of change by dividing the total accumulated change during
the time period by the length of the time period. For all history values falling into
the specific time interval, suppose we have the value series as with
correspond time series as , G2 actually use only the first two and the
last two values to get the rate of change. If all four values were available, G2 uses
follow formula to get the result:

in which

and u is the time unit in seconds. For example, using per second we have the unit
as 1, while per minute has the unit of 60, because one minute has 60 seconds.

If there’s just three history values, then above formula will be simplified into
following form:

With just two history values, it will be

And if there’s just one history value falling into the time interval, the result is 0.

Computing the Standard Deviation

To compute the standard deviation of the value over a selected period of time:

 the standard deviation of {variable | parameter}
{during the last time-interval |

v1 v2 v3 vn  
t1 t2 t3 tn  

vb va–

tb ta–
---------------- u

va

v1 v2+

2
----------------- vb

vn 1– vn+

2
------------------------ ta

t1 t2+

2
-------------- tb

tn 1– tn+

2
---------------------= = = =

v3 v1–

t3 t1–
---------------- u

v2 v1–

t2 t1–
---------------- u
637

between time-interval ago and time-interval ago}
-> float

If the specified variable or parameter contains at least one history value for the
specified time interval, this expression produces a standard deviation statistic
that G2 calculates based on those history values. If the specified variable or
parameter does not contain at least one history value within the specified time
interval, this expression produces a no value condition.

Two examples are:

conclude that Q1 =
the standard deviation of F1 during the last 1 minute

conclude that Q1 =
the standard deviation of F1 between 1 minute ago and .5 seconds ago

For all history values falling into the specific time interval, suppose we have the
value series as , then G2 uses following formula to compute the
standard deviation:

in which

Concluding the History Directly

To conclude the history of a variable or parameter directly:

 the {history | history-using-unix-time} of {variable | parameter}

This example shows how to conclude the value of the history hidden attribute of
one variable or parameter into the history hidden attribute of another variable or
parameter. When concluding histories this way, the value of the history-collection-
time subattribute of the history structure is based on the G2 start time. For
example:

conclude that the history of var-1 = the history of var-2

You can also conclude the history directly, where the history-collection-time is
based on the current UNIX time, as follows:

v1 v2 v3 vn  

vi
2

i 1=

n


n

--------------- v
2

–

v

vi
i 1=

n


n

--------------=
638

Actions to Use with Variables and Parameters
conclude that the history-using-unix-time of var-1 =
the history-using-unix-time of var-2

For information on the subattributes of the history and history-using-unix-time
hidden attribute structures, see the G2 Class Reference Manual.

Actions to Use with Variables and Parameters
Several actions are specifically for use with variables and/or parameters. For a
complete discussion of all G2 actions, see Actions.

Concluding an Attribute Variable to Have No Value

To conclude that an attribute variable has no value:

 conclude that the attribute of item has no value

For example:

conclude that the velocity of signal-load has no value

where velocity is an object attribute given by a float-variable.

Concluding Values for Variables and Parameters

Use the conclude action to change the value of any variable or parameter. The
variable or parameter must be active at the time the conclude action is executed.

Concluding values for variables or parameters may cause forward chaining, for
example by triggering an event that invokes a whenever rule awaiting a value.
639

You use identical statements to conclude values for variables or parameters,
except that variables can include the with expiration statement. Both variables and
parameters can include the with collection time statement.

For a variable, you can optionally specify both an expiration time and a collection
time, which effectively changes the validity interval of that value. This has no
effect on the value of the validity-interval attribute for the variable.

Concluding a Logical Value

To conclude a value for a logical variable or parameter:

 conclude that {logical-variable | logical-parameter}
{= truth-value-expression | is {true | false} }

This action concludes a variable or parameter value of true, false, or what the
truth-value evaluates to. As a shortcut, you can also set the value of a local
variable or parameter to true or false as follows:

conclude that [not] {logical-variable | logical-parameter}

This grammar sets the variable or parameter to true unless not is specified, in
which case it sets the variable or parameter to false. Despite its appearance,
specifying not does not invert the value of the variable or parameter; it just sets
the value to false.

Some examples are:

conclude that the there-is-enough-heat of heat-exchanger is true

conclude that not the there-is-enough-heat of heat-exchanger-2

conclude that the there-is-enough-heat of heat-exchanger-2 = false

The third example is preferable to the second, because its meaning is self-evident.

Use this phrase... To specify...

with expiration An expiration time for a value. G2 then sets the
expiration time of the variable to the value of
the expression. If you do not specify an
expiration time, G2 sets the variable’s expiration
time according to its validity-interval attribute.

with collection time The collection time for a variable or parameter.
If the collection time you specify is earlier than
the most recent collection time established by
G2, G2 inserts the value into the history. If you
do not specify a collection time, the collection
time for the variable is the time at which G2
executes this action.
640

Actions to Use with Variables and Parameters
Concluding a Quantitative Value

To conclude a value for a quantitative variable or parameter:

 conclude that {variable | parameter} = value-expression

This action concludes that the value of a quantitative, integer, or float variable or
parameter is the value of value-expression. The quantitative variable or
quantitative parameter can be a subclass of either, or a user-defined attribute
containing the same.

Two examples are:

conclude that the interior-temperature of tank-1 =
the exterior-temperature of tank-1 + 30

conclude that the area of floor-5 =
the length of floor-5 * the width of floor-5

Concluding a Symbolic Value

To conclude a value for a symbolic variable or parameter:

 conclude that {symbolic-variable |symbolic-parameter}
{ = symbolic-expression | is symbol }

This action concludes the value of the symbolic-expression into the symbolic
variable or parameter, or any attribute that receives its value from a symbolic
variable or parameter. This example replaces the value of the symbolic variable
that represents the tank attribute with a new symbol, filling.

conclude that the tank of the gas-tank connected to oil-tanker is filling

Concluding a Text Value

To conclude a value for a text variable or parameter:

 conclude that {text-variable | text-parameter} = text-expression

This action changes the value of the text-variable-or-parameter to the value of the
text-expression. The text-variable or text-parameter is any variable or parameter, or
subclass of either, or any attribute that receives its value from a text variable or
text parameter.

Two examples are:

conclude that the comments of gas-tank = "Remember to replace the valve!"

conclude that name-response = last-name

Concluding That a Variable Does Not Have a Value

To conclude that a variable does not have a value or a current value:

 conclude that variable has no [current] value
641

The variable can be any variable or any attribute that receives its value from a
variable. If current appears, this action concludes that the value of variable is
expired. If current is omitted, the action concludes the variable has no value at all,
expired or otherwise.

Using the has no value statement causes the variable’s last-recorded-value
attribute to show no-value, rather than an expired value. The variable maintains
its history, if it has one. Using the has no current value statement causes the
variable’s last-recorded-value attribute to display the value with an asterisk
beside it, indicating that the value is expired. If the value of the variable is already
expired, G2 does nothing.

Variable and Parameter Rules
The three whenever rules for use with variables and parameters are:

Whenever a Variable or Parameter Receives a Value

G2 can detect whenever a variable or parameter receives a value with a whenever
rule as follows:

whenever {variable | parameter | attribute} receives a value}

An indefinite validity interval for a variable affects how and when G2 invokes a
receives a value whenever rule. For more information, see Using an Indefinite
Interval.

Whenever a Variable Fails to Receive a Value

G2 can detect when a variable fails to receive a value with a whenever rule
as follows:

whenever variable fails to receive a value

Whenever a Variable Loses Its Value

G2 can detect when a variable loses its value with a whenever rule as follows:

whenever variable loses its value

Variable and Parameter Expressions
These expressions refer to the knowledge associated with variables and
parameters.
642

Variable and Parameter Expressions
Expressions that refer only to the valid current value of a variable cause G2 to
perform data seeking to obtain a new current value if the specified variable has
never had a value or if its current value has expired.

A reference to a variable or parameter produces the same value everywhere it is
used in the same expression. Also, a reference to a variable or parameter produces
the same value everywhere it is used within the same transaction scope.

Directly Referring to a Variable or Parameter

To refer directly to a variable or a parameter:

 {quantitative-variable | quantitative-parameter}
-> integer | float}

 {integer-variable | integer-parameter}
-> integer

 {float-variable | float-parameter}
-> float

 {symbolic-variable | symbolic-parameter}
-> symbol

 {text-variable | text-parameter}
-> text

 {logical-variable | logical-parameter}
-> truth-value

Refer to a variable or parameter to produce its current value in a larger
expression. If a variable has no current value, in some contexts, such as in rules
and the collect data statement in procedures, G2 performs data seeking to attempt
to obtain a new current value. See the discussion of data seeking in Obtaining
Values for Variables.

For example, suppose you have this rule:

for any tank T upon this workspace
if the temperature of T > 100 then
conclude that the latest-temperature of master-display = the temperature of T

In this case, the temperature attribute for the user-defined tank class is defined as
given by a variable. If the temperature of tank-1 has a current value, the conclude
action in the rule’s consequent uses that value as the new value of the latest-
temperature attribute of master-display. If the temperature of tank-1 does not have
a current value, referencing it causes G2 to perform data seeking.

Since variables do not always have a value, you cannot refer to them directly in
procedures as you can a parameter. Attempting to do so causes G2 to signal an
error. Instead, you can access the value of a variable within a procedure by using
a collect data statement or within a the current value of expression.
643

A collect data statement causes data seeking if the variable does not have current
value. For more information about how G2 performs a collect data operation, see
collect data.

Using the Value of Expression

To refer to the value of a variable:

 the value of variable
-> {integer | float | symbol | text | truth-value}

This expression produces a valid current value of the specified variable. If its
current value has expired, G2 performs data seeking to obtain a new current
value. If an attempt at data seeking fails for any reason, evaluating this expression
produces a no value condition.

The expiration time interval of this expression is the expiration time interval of
the current value of the specified variable. For example:

the value of the temperature of tank-1

Using the Has a Value Expression

To determine if a variable has a value:

 variable has {a | no} value
-> truth-value

This expression produces a truth-value that indicates whether a variable has a
valid current value or whether G2’s most recent attempt at obtaining a new
current value succeeded. For example:

the temperature of tank-1 has a value

In this case, if the temperature of tank-1 has a valid current value, this expression
produces the truth-value true. If the temperature of tank-1 has never had a value,
or if its current value has expired, this expression causes G2 to perform data
seeking to obtain a new current value. If G2 obtains a value from that data
seeking, the expression produces the truth-value true; otherwise, the expression
produces the truth-value false.

Using Current Value Expressions

A variable has a current value when it has a value that has not yet expired.
Current value expressions do not cause data seeking, even if the specified variable
has no current value.

When a variable receives a new current value, G2 determines an expiration time
for that value based on whether it was explicitly specified (via the conclude ...
644

Variable and Parameter Expressions
with expiration action) or by combining the collection time of the new value and
the variable’s validity interval.

To obtain a variable’s current value:

 the current value of variable
-> {integer | float | symbol | text | truth-value}

This expression refers to a variable’s current value, but does not cause data
seeking if the variable has never had a value or if its current value has expired.
If the specified variable has a current value, this expression produces it.
Otherwise, the expression produces a no value condition. For example:

the current value of the temperature of tank-1

If this expression produces a value, the expiration time of the expression is the
expiration time of the current value. If this expression produces a no value
condition, the expiration time is also a no value condition.

To determine whether a variable has a current value:

 variable has {a | no} current value
-> truth-value

This expression produces a truth-value that indicates whether a variable has a
current value. For example:

the temperature of tank-1 has a current value

In this case, if the temperature attribute of tank-1 has a current value, this
expression produces the truth-value true. If the temperature attribute of tank-1
has never had a value, or if its current value has expired, this expression produces
the truth-value false.

If this expression produces the truth-value true, the expiration time of this
expression is the expiration time of the current value. If this expression produces
the truth-value false, the expiration time is indefinite.

If a has a value expression is nested within a has a current value expression, G2
evaluates the nested expression no differently than a has a value expression. G2
performs data seeking, if necessary, to obtain a new current value for the variable
referenced in the nested has a value expression.

Obtaining the Simulated Value of a Variable or
Parameter

The G2 Simulator is a superseded capability. For more information, see
Appendix F, Superseded Practices.
645

Obtaining the Collection Time for a Variable or
Parameter

To obtain the collection time for a variable or parameter:

 the collection time of {variable | parameter}
[as of integer-expression datapoints ago]
-> float

This expression produces a float value that represents the time in seconds when
the specified variable or parameter received its most recent value. This time value
is based on the G2 clock, so it might not represent the passage of real time.

If you specify this expression without the optional as of integer-expression
datapoints ago phrase, for the expression to produce a value, the specified
variable or parameter need not have a current value, but must have received at
least one history value. Otherwise, this expression produces a no value condition.
For example:

the collection time of custom-variable

In this case, if the variable custom-variable has received at least one history value,
this expression produces a float value that represents the time in seconds at which
the most recent history value was received.

If you specify this expression with the optional as of integer-expression
datapoints ago phrase, then for the expression to produce a value, the specified
variable or parameter need not have a current value, but must have received at
least the specified number of history values plus one.

Otherwise, this expression produces a no value condition. The most recently
received history value is zero (0) history values ago. For example:

the collection time of custom-variable as of 10 datapoints ago

If the variable custom-variable has received at least 11 history values, this
expression produces a float value that represents the time in seconds at which the
value 10 history values ago was received.

The precision of the collection time depends on the specification of the
minimum interval between data points of the history-keeping-spec. For details, see
Specifying a Minimum Interval between History Data Points.

Obtaining the Expiration Time for a Variable

To obtain a variable’s expiration time:

 the expiration time of variable
-> integer

This expression produces an integer value that represents the expiration time of
the specified variable’s most recently received history value. If the specified
646

Variable and Parameter Expressions
variable has never received a value, or if its validity-interval attribute is set to
indefinite, this expression produces a no value condition. For example:

the expiration time of custom-variable

In this case, if the variable custom-variable has received at least one history value,
this expression produces an integer value that represents the time in seconds at
which the variable’s current value expires.

Referring to a Variable or Parameter That Gives the
Value of an Attribute

To refer to a variable or parameter giving the value of an attribute:

 the {variable | parameter} giving
the attribute-name of {object | connection | message}
-> {variable | parameter}

This expression produces the child variable or parameter that gives the value of
an attribute of an object, connection, or message of a user-defined class. This
expression refers to the child variable or parameter as an item, rather than to the
value of that variable or parameter. For example:

if the status of the temperature-variable TV
giving the temperature of tank-1 is broken
then post "The temperature sensor [the public-name of TV] is broken."

This expression refers to the status attribute of the temperature-variable item that
gives the value of the temperature attribute of tank-1.

Referring to a Time Interval Ending with the
Collection Time

To refer to a time interval ending with the collection time:

 history-expression of variable-or-parameter during the time-expression
ending with the collection time

where:

• history-expression is one of the following:

the value of
the number of history datapoints in
the average value of
the integral in {seconds | minutes | hours | days | weeks} of
the interpolated value of
the {maximum | minimum} value of
the rate of change per {seconds | minutes | hours | days | weeks} of
647

the standard deviation of
the sum of the values of

• variable-or-parameter is a quantitative variable or parameter, except when
using the number of history datapoints in, in which case it can be any type of
variable or parameter.

For example, the following procedure computes the average value of a parameter
during the 30 minutes ending with the collection time:

compute-average()
q1: float;
begin

q1 = the average value of param during the 30 minutes ending with
the collection time;

post "[q1]";
end

The Variable and Parameter Classes
Within the G2 system-defined class hierarchy, variable and parameter are
subclasses of the variable-or-parameter class of objects. The variable and
parameter classes are reserved, abstract classes, as is the g2-variable class from
which each of the variable type classes stem.

The variable and parameter type classes are:

G2-Variable Subclasses Parameter Subclasses

logical-variable logical-parameter

quantitative-variable quantitative-parameter

float-variable float-parameter

integer-variable integer-parameter

long-variable long-parameter

symbolic-variable symbolic-parameter

text-variable text-parameter
648

The Variable and Parameter Classes
You can create subclasses from any of those classes.

In addition to the value type subclasses, the variable hierarchy includes these
other classes:

• gfi-data-service

• gsi-data-service

• g2-to-g2-data-service

• g2-meter-data-service

• sensor

GFI is a superseded capability. For more information, see Appendix F,
Superseded Practices.

The sensor class has been replaced by the g2-variable subclasses. While G2
supports sensors for use in existing KBs, we recommend that the sensor class not
be used in new KB development.

Each of the data service classes is a mixin class that adds attributes to G2 variable
items to receive their value from another process. which adds class attributes
necessary for G2 variable data For a description of mixin classes and how to use
them, see Using Mixin Classes.

Note While G2 permits the use of parameters and variables of the non-specific type
quantitative, for efficiency, we recommend that you use an item of specific data
type, integer or float, whenever possible.

Variables and parameters have these class-specific attributes:

Attribute Variable Parameter

options  

tracing-and-breakpoints  

data-type  

initial-value  
649

The G2 Simulator is a superseded capability. For more information, see
Appendix F, Superseded Practices.

Common Attributes

The common attributes of variables and parameters are:

last-recorded-value  

history-keeping-spec  

validity-interval 

formula 

simulation-details 

initial-value-for-simulation 

data-server 

default-update-interval 

Attribute Variable Parameter

Attribute Description

options Controls whether or not G2 can backward or forward
chain or data seek from the variable, or forward chain
from the parameter.

Allowable values: See Specifying Forward and Backward Chaining

Default value: See Specifying Forward and Backward Chaining

tracing-and-
breakpoints

Sets tracing and breakpoints, overriding the tracing-
message-level and breakpoint-level attributes in the
Debugging Parameters system table.

Allowable values: See the description in Debugging Parameters

Default value: default
650

The Variable and Parameter Classes
data-type Indicates the variable’s data type or, for numeric variables,
the units of measure in use.

Allowable values: See Specifying the Type

Default value: See Specifying the Type

initial-value The initial value (if any)

Allowable values: Any valid value of an applicable data type for the item.

Default value: See Specifying an Initial Value

last-recorded-value The value G2 obtained for the variable or parameter

Allowable values: Any valid value of an applicable data type for the item

Default value: For variables: no value

For parameters: See Specifying an Initial Value

history-keeping-
spec

Describes whether to maintain a history of the values for
this item and if so, in which manner.

Allowable values: See History Keeping in G2

Default value: do not keep history

Attribute Description
651

Variable-Specific Attributes

The class-specific attributes of variables are:

Attribute Description

validity-interval The length of time that the last-recorded-value remains
current.

Allowable values: any time-interval
indefinite
supplied

Default value: supplied

formula A formula through which to calculate the variable value.

Allowable values: Any logical-, arithmetic-, symbolic-, or text-expression

Default value: none

simulation-details Specifies what simulation is in effect.

Allowable values: See Appendix F, Superseded Practices

Default value: no simulation formula yet

Notes: The G2 Simulator is a superseded capability. For more
information, see Appendix F, Superseded Practices.

initial-value-for-
simulation

The initial value for simulated variables that use discrete-
state and continuous-state simulation formulas.

Allowable values: any number
default

Default value: default

Notes: The G2 Simulator is a superseded capability. For more
information, see Appendix F, Superseded Practices.
652

The Variable and Parameter Classes
Value-Structure and History Hidden Attributes

The variable-or-parameter class defines a hidden attribute called value-structure,
which indicates the current value and collection-time:

structure
(data-point-value: quantity,
data-point-collection-time: quantity)

It also defines a hidden attribute called history, which is a sequence of structures,
where each structure indicates the value and collection-time for each update in
the history:

structure
(history-value: quantity,
history-collection-time: quantity)

When a variable or parameter keeps a history, the value-structure is simply a copy
of the latest update to its history hidden attribute.

When a variable or parameter does not keep a history, the value-structure
provides a way of keeping track of the latest value and collection-time of the
variable or parameter.

data-server The data server for this variable.

Allowable values: See Specifying a Data Server

Default value: inference engine

default-update-
interval

The interval at which G2 should collect a value for the
variable.

Allowable values: any non-negative number
none

Default value: none

Attribute Description
653

Describing Variables and Parameters

When you select describe for a variable or a parameter, G2 displays a temporary
workspace containing the system-defined describe information for any item, as
well as additional information that applies only to variables and parameters:

• Forward chaining: Whether forward chaining to rules from the variable or
parameter is selected.

• Generic formula: Any generic formula from which the parameter receives a
value.

• Specific formula (variables only): The variable may either contain the specific
formula within its attribute table or be referenced by it.

• Rules it forward chains to: Any rules to which G2 could forward chain from
the variable or the parameter (if forward chaining is enabled).

• Data server (variables only): The data server of the variable.
654

Describing Variables and Parameters
Here are describe workspaces of a parameter and a variable. The description of
sample-variable contains a short reference to variable-2 and a short reference to
variable-list. Short references are shortcuts to access items related to the variable
in some way.
655

656

16
Lists and Arrays
Describes how to use lists and arrays.

Introduction 658

Comparing Lists and Arrays 659

Creating Lists and Arrays 662

Populating a List 667

Removing List Elements 669

Populating an Array 671

Replacing List and Array Elements 672

Iterating over Lists and Arrays 674

Using Other List and Array Expressions 677

Accessing Lists or Arrays That are Object Attributes 680

Copying Lists and Arrays 682

Representing Sparse Arrays 683

Representing Matrixes with Arrays 684

Using System Procedures with Lists, Arrays, and Matrixes 684

The List and Array Classes 686

Describing Lists and Arrays 690
657

Introduction
Lists and arrays are instances of the g2-list and g2-array classes, respectively.
They consist of a series of elements whose data types depend on the class of the
list or array. Lists and arrays can consist of:

• Items only.

• Values of a single simple data type, such as logical, quantity, float, integer,
or text.

• Values of different data types, such as simple and composite value data types.

• Both items and values, using the item-or-value data type.

You can reference list and array elements positionally, using an integer element
index. The index of the first element of a list or array is zero.

KB Saving of Permanent Lists and Arrays

G2 lists and arrays can have item elements that do not reside in the same module
as the list or array item. When G2 saves a permanent list or array with the KB, it
saves the UUID of any cross-module item element with the list or array item so
that the item element can be reinserted in the list or array at KB load time.

For the successful saving and reloading of permanent lists and arrays that contain
references to items in other modules, G2 relies on the item element UUIDs being
unique and stable across all the modules in your KB. Therefore, it is essential to
refrain from changing item UUID values when only a subset of your KB modules
are resident in G2 in order to prevent the failure of array and list element insertion
at KB load time.

For more information on UUID attributes, see Using Universal Unique Identifiers.

Lists and Sequences

The sequence value type is a list-like entity whose elements can consist of items
and values, including other sequences and structures. Using a sequence to store
item references and values you can:

• Reason about its elements.

• Save the sequence as permanent knowledge in your KB.

The use of sequences is described in more detail in Attribute Access Facility.

Note Be careful not to confuse the sequence data type with the general concept of a
sequence of elements kept in a list or array, as described in this chapter.
658

Comparing Lists and Arrays
Comparing Lists and Arrays

You create lists and arrays as placeholders for items and values in your KB. The
two items have similar behavior but are best suited for different purposes. The
choice of whether to use a list or an array can be made easily once the differences
between both items are clear. This section offers a brief description of lists and
arrays, and concludes with a table of their differences.

Choosing Lists

Lists are objects that contain a group of one or more elements. Lists have no fixed
length. A list grows or shrinks in length as you insert or remove elements, and the
numeric position (or index) of any element changes as G2 inserts or removes
elements closer to the beginning of the list. Use lists to implement:

• Queues.

• Push-down stacks.

• Any sequence of items in which the number of elements changes frequently
with insertions and deletions.

G2 provides expressions to reference certain list elements, using the position near
the beginning (first and second) or the end (next-to-last, last) of the list, or
adjacent to another element (before, after).

You can also access list elements by using an element index into the list. However,
unlike an array index operation, which evaluates to a position and thus accesses
the array element directly, a list element index causes G2 to perform a linear
search from the beginning of the list to the specified item-or-value referenced by
the index.

Choosing Arrays

Arrays are objects that contain a sequence of zero or more elements. Arrays have a
fixed length, which you declare in the array-length attribute of the array. You can
change the array length interactively by editing the attribute, or
programmatically by using the change action.

Changing the length of an array interactively or programmatically using the
conclude grammar is a permanent change. Changing the length
programmatically using the change grammar is temporary: resetting the
knowledge base causes the array length to revert to its original value.

When you shorten the length of an array while it is active, the high-end contents
are lost. When you lengthen an array while it is active, G2 provides initial values
for the new elements.

Arrays are more efficient than lists for referencing an indexed element. In contrast
to lists, arrays do not require a linear search for their elements. G2 uses an array
659

index to locate an array element directly. Use arrays when you need quick access
to a set number of elements.

Using Nested Arrays

While arrays in G2 are one-dimensional, you can nest them so that they function
as multi-dimensional arrays. For example, you can create an array of arrays and
reference its elements using a double index. The array of arrays then functions as
a two-dimensional array.

The next diagram illustrates an item array, vehicle-array, whose two elements are
item arrays: car-array is element 0 and holds three cars and truck-array is element
1 and holds three trucks.

To reference the second car in that array, use the expression:

vehicle-array [0] [1]

where the first index ([0]) references car-array, and the second index ([1])
references car1.

List or Array Contents

When a list or array is populated with item elements, the item elements consist of
item references. The items are not a part of the list or array. Deleting an item from
a list or array does not delete the item, but removes the item reference. Because
item elements are references, a single item can be a member of several lists or
arrays, and can appear more than once in the same list. In contrast, value list and
array elements are not references, and exist as part of the list or array.

By default, neither item references nor value elements are a permanent part of a
list or array: lists are cleared upon reactivation, and arrays are re-initialized. A list
or an array is also cleared when its workspace is disabled or it is transferred to a
disabled workspace. Such a list or array is called a transient-membership list
or array.
660

Comparing Lists and Arrays
You can optionally set a list or array to retain references and elements as
permanent knowledge. Such a list or array is called a permanent-membership list
or array. For details, see Using Permanent-Membership Lists and Arrays.

Alternatively, you can save the elements of transient-membership lists and arrays
by using the g2-snapshot system procedure, and then load the snapshot KB,
using the warmboot option. A snapshot of a KB saves all existing data, transient
and permanent, which you can restore later during a warmboot load. For
information about saving and loading a KB this way, see Saving Permanent and
Transient Data in Snapshot KBs and Warmbooting a KB Snapshot File.

Effect of Run States on Lists and Arrays

As with most G2 items, you can reference lists and arrays only when they are
active. This means that expressions and actions involving lists and arrays execute
only when the list or array is active. In addition, items must be active before you
can add them to a list or array. For a description of G2 run states, see Operating
the Current KB.

Activation and deactivation affects lists and arrays in this way:

With transient membership... With permanent membership...

Inactive lists are empty.

Inactive arrays contain their initial
values.

Inactive lists retain their elements
after they have been populated.

Inactive arrays contain their initial
values, if they have not been
previously populated, or their
elements if they have.

This action...
In a list or array with
transient membership...

In a list or array with
permanent membership...

Deactivating list or array Removes all elements. Retains all elements.

Deactivating an item
which is an element

In a list, removes item.

In an array, renders the
item inaccessible until
active.

Retains the item.
661

When workspace items are list or array elements, their behavior differs from
other elements. In G2, deactivated workspaces are the only deactivated items that
you can refer to within expressions. Similarly, deactivated workspaces can exist
as list or array elements.

Summary of List and Array Differences

The following table summarizes the differences between lists and arrays:

Creating Lists and Arrays

To create a list or array class:

1 Select KB Workspace > New Object > g2-list or g2-array.

2 Select a class of list or array from the choose a class submenu.

For example:

KB Workspace > New Object > g2-list > item-list

Deleting an item In a list, removes item.

In an array, removes item
so that element has no
value.

In a list, removes item.

In an array, removes item
so that element has no
value.

Activating list or array Removes all elements.

Populates array with
initial values.

Populates list with
previous elements.

Populates array with
previous elements, or
with initial values if not
previously populated.

This action...
In a list or array with
transient membership...

In a list or array with
permanent membership...

Characteristic Arrays Lists

Increases or decreases size dynamically 

Has a set length 

Allocates memory at creation time 

Contains mixed data types  

Contains elements of values and items  

Can have initial values 
662

Creating Lists and Arrays
Setting the Array Length

The array-length attribute lets you specify how many elements the array contains.
The default value is 0.

The array length should correspond to the number of initial values that you
provide. If the number of initial values differs from the length of the array, G2
populates the array with the initial value for the array type.

Defining the Element Type

The element-type attribute defines the class or type of the list or array. You cannot
change the value of this attribute, unless you modify the attribute-initializations
attribute of user-defined class of item-list or item-array.

The valid types or classes for lists and arrays are listed in The List and Array
Classes.

Allowing Duplicate List Elements

The allow-duplicate-elements? list attribute determines whether a list permits
duplicate elements.

Changing the default yes value to no disallows duplicate list elements in the list.

If you allow duplicate elements in a list, and then change the attribute, G2 does
not indicate whether duplicate elements already exist, but prevents you from
subsequently adding any duplicates.

Note Inserting elements into a list that does not allow duplicate elements takes longer
than into a list that allows duplicates.

For information on the backward compatibility feature for inserting duplicate
elements into lists, see Ignoring Duplicate List Element Error.

Providing Initial Values for Array Elements

The initial-values attribute specifies an initial value for each array element. The
number of initial values should correspond with the array length or should
contain one initial value.

You can use this attribute to populate an array as Populating an Array describes.
For g2-arrays and item-arrays, you can specify item names as the initial values.
663

Elements in arrays must always have a value, except for item-arrays and
g2-arrays, which can have an initial value of none. If you do not specify initial
values for the array, G2 provides initial values as follows.

G2-Array Initial Values Conflict

You can set the initial values of a g2-array subclass in the attribute-initializations
attribute of its class definition, as follows:

• If the initial-values attribute specifies only one value, all elements receive
that value.

• If either the number of elements or the element type of an instance differs
from the values specified in the class definition, G2 posts a warning about the
discrepancy in the notes attribute of the instance.

• If the initial-values attribute has a count that does not match the array-length
attribute, G2 assigns the initial value for that array class to each element.

• If any of the initial values of an item-array conflict with the element-type of the
array, G2 assigns no-item to the element in conflict.

Specifying Symbolic Initial Values in Arrays

Three types of arrays can contain symbolic values:

• g2-array

• value-array

• symbol-array

Array Type Default

g2-array none

value-array 0.0

item-array none

symbol-array g2

text-array ""

truth-value-array false

quantity-array 0.0

float-array 0.0

integer-array 0

long-array 0L
664

Creating Lists and Arrays
When you enter symbolic values in the attribute-initializations attribute of a class
definition, the syntax differs slightly depending on the array class.

For g2-array and value-array classes, precede symbolic names with the symbol.
For symbol-arrays, enter only the symbolic name, as follows:

Using Permanent-Membership Lists and Arrays

If the list-is-permanent attribute of a list, or the array-is-permanent attribute of an
array is no (the default), membership in the list or array is transient:

• Resetting G2 causes a transient-membership list to be cleared, and a transient-
membership array to be set to zero length.

• Starting G2 causes a transient-membership array to be set to its initial values.

• Membership information for a transient-membership list or array is lost
during a KB save and load operation.

You can make list and array element knowledge permanent by changing the
value of the list-is-permanent or array-is-permanent attribute to yes. A
permanent-membership list or array is unaffected by resetting or restarting G2,
and by saving and loading the KB, provided that all member items have the
properties described in Complying to Permanent Membership.

Levels of Permanency in Lists and Arrays

The list-is-permanent and array-is-permanent attributes do not determine whether
the list or array item is itself permanent, and do not determine whether any items
referenced as elements are permanent. The attributes control only whether
membership is permanent.

• If a list or array itself is transient, resetting G2 or saving the KB will delete it
whether or not it specifies permanent membership.

• If an item referenced in a list or array is transient, resetting G2 or saving the
KB will delete the item whether or not the list or array specifies permanent
membership.

Thus, three levels of permanency apply to lists and arrays:

• Whether the list or array is itself permanent.

• Whether membership in the list or array is permanent.

For this array class... Enter symbolic values like this...

g2-array and value-array the symbol cold, the symbol warm,
the symbol hot

symbol-array cold, warm, hot
665

• Whether an item that belongs to a list or array is permanent.

Be careful not to confuse these levels of permanency when you work with lists
and arrays.

To ensure all levels of permanency, you must:

• Set the list-is-permanent or array-is-permanent attributes to true.

• Use the make permanent action:

– After creating the list or array.

– Each time you use the change action to add or remove elements to or from
the list or array; you do not need to use the make permanent action if you
add or remove elements, using the conclude action.

– For each element of the list or array.

Initial Values of Arrays

Unlike lists, arrays can have initial values. If you do not provide initial values for
an array, G2 populates each element with its initial value, which is type
dependent. For example, for an integer-array, G2 supplies an initial value of 0; for
a symbol array, G2 supplies the symbol g2.

When a permanent-membership array is first activated, G2 initializes it with
either its default or user-provided initial values. The array then maintains initial
or changed values throughout KB Restart and Reset operations, no further
initialization takes place, and the values are saved in the KB.

Complying to Permanent Membership

For an item to remain in a permanent-membership list or array when G2 is reset,
the item must be permanent. Otherwise, resetting G2 will delete it, as with any
transient item, precluding its continued membership in the list or array.

Failure of an item to comply to permanent membership does not preclude its
inclusion in a permanent-membership list or array. G2 does not signal an error if
you populate permanent-membership list and array elements with non-compliant
items, and does not post any messages if their non-compliance causes G2 to
remove them from the list or array.

Maintaining Permanent-Membership Lists and Arrays

It is the KB developer’s responsibility to monitor and maintain the integrity of
permanent-membership lists and arrays. After adding items to them, G2 does not
monitor members for conformance to permanent membership, nor does it inform
you if it is unable to save any list or array item as a permanent member during a
KB save or reset operation.
666

Populating a List
For items participating in permanent-membership lists and arrays, G2 does not
signal an error if you:

• Conclude or change a list element to a transient item.

• Change the value of the list-is-permanent or array-is-permanent attribute
to no.

Restoring Permanent-Membership Lists and Arrays

After successfully saving permanent-membership lists and arrays that contain
items, G2 attempts to restore each item to membership when you load the KB.
The inability to restore a previously saved list or array item member is called a
rendezvous failure. Such a failures occurs if G2 is unable to locate one or more of
the item members at KB load time.

If the UUID reference in a list or array does not correspond to any item because
the item has been deleted or its UUID has changed, G2 replaces the item reference
with no value.

Note Single-module KB saving is not compromised by inter-module item references in
permanent lists and arrays.

Populating a List
Use the insert action to populate an empty list. The insert action causes G2 to
insert a list element. The syntax is:

insert item-or-value {at the {beginning | end} of} |
{ {before | after} item-or-value in} g2-list

When you specify an insert action, by using the before or after phrase:

• G2 evaluates the existing element as a value, rather than as a specific location
in the list.

• The element before or after the element you are inserting must already exist.

Several ways to insert list elements are:

insert 100 at the beginning of sample-list

insert 99 before 100 in sample-list

insert 101 after sample-list [1] in sample-list

insert 101 after the second integer in sample-list in sample-list

Notice that when you specify an insert item-or-value after the second type action,
the list is noted twice: once to specify the list element and again to specify the list.
667

Note If the allow-duplicate-elements? attribute of any list is set to no and you attempt to
insert a duplicate element, G2 signals an error.

Inserting Based on Element Location

To insert a list element based on element location:

 insert item-or-value {before | after} element integer-expression of g2-list

For example:

insert start-action-button after element 9 of button-list

Inserting at the Beginning or End of a List

To insert an element at the beginning or end of a list:

 insert item-or-value at the {beginning | end} of g2-list

This action inserts item-or-value at the beginning or end of the specified g2-list.
You must use the insert action to add elements to an empty list.

For example:

insert 100 at the beginning of sample-list

Inserting Before or After an Existing Element

To insert an element before or after an existing list element:

 insert item-or-value {before | after} item-or-value in g2-list

This action inserts item-or-value either before or after the existing element stated
by item-or-value of a list.

For example:

insert 99 before 100 in sample-list

insert temp-variable at the beginning of items-on-ws-list and insert s1
after temp-variable in items-on-ws-list

Note When you use the location before or after, the element before or after the element
you are inserting must already exist; otherwise, G2 signals an error.
668

Removing List Elements
Inserting into Lists with Duplicate Elements

When a list allows duplicate elements, using the insert and remove actions may
produce unexpected results if you use either the second or next to last phrase,
both of which evaluate to a value rather than a location.

Consider the next example, in which an item list with duplicate elements contains
several part numbers, and this expression indicates an insertion after the second
element in the list:

insert part-no-105 after the second item in parts-shipped-list
in parts-shipped-list

The pointer in this diagram shows the desired position in the list:

When G2 evaluates this expression, it first obtains the value of the second item in
the list, part-no-102 (this could also be an element index such as parts-shipped-list
[1], for this example). G2 then searches the list from the first element to the last,
and inserts the new element after the first occurrence of the given value. In this
example, G2 inserts part-no-105 after the first element in the list (the first part-no-
102) since it is the first occurrence of the second element value.

G2 guarantees to insert list elements after the first occurrence of an element value.
Setting the allow-duplicate-elements? attribute to no prevents positional
ambiguity when inserting new list elements.

Removing List Elements
To remove an existing element from a list, use the remove action:

 remove {item-or-value | element integer-expression |
{the {first | last} type} from g2-list

part-102

part-102

part-104

part-101

part-104

Insert part-105 after the second

parts-shipped-list

item in parts-shipped-list
669

Two examples are:

remove the last float from float-list

remove the first quantity from q-list

The remove action removes an item, value, or list type from a list. List type is one
of the following valid g2-list types: quantity, integer, float, symbol, text, or truth-
value.

Removing a Particular List Element

To remove a particular list element:

 remove element integer-expression from g2-list

For example:

remove element 200 from new-autos

Removing Using an Element Index

To remove a list element:

 remove item-or-value from g2-list

The item-or-value must be present in the list. In this example, the first element
with this item-or-value, starting from the beginning of the list, is removed.

remove temp-variable from items-on-ws-list

Removing a Type of List Element

To remove a type of list element:

 remove the {first | last} type from g2-list

The type can be one of the following valid data types for g2-lists: quantity, integer,
float, symbol, text, truth-value, item-or-value, value, item, or a class.

Here are two examples:

remove the first integer from int-list

remove the last integer from int-list

If you attempt to remove a non-existent element or remove an element from an
empty list, G2 signals an error.
670

Populating an Array
Populating an Array

The two ways of populating an array are:

• Changing the initial-values attribute.

• Iterating over the array to change its elements.

Changing the Initial Values of an Array

You can change the initial-values attribute, interactively or programmatically, to
populate the contents of each array element. Each time the array becomes active,
G2 populates it with the initial values in the attribute table.

• If you specify only one initial value, G2 assigns that value to every
array element.

• If you specify multiple initial values, but a total number of values less than or
greater than the array length, all of the elements receive the default initial
value for that array class and a warning appears in the notes attribute.

The following procedure code is an example of populating a newly created array,
using the attribute access facility to conclude directly into the initial-values
attribute:

create an integer-array NewArray;
conclude that the array-length of NewArray to 3;
conclude that the initial-values of NewArray = sequence (100, 101, 102);
transfer NewArray to WS at (50, 50);
make NewArray permanent;
conclude that the array-is-permanent of NewArray = true;

Note these things about the code:

• Because the value of the initial-values attribute is none by default, and does
not consist of a sequence, you must conclude an entire sequence of elements
into the attribute.

• The array-is-permanent attribute values are yes and no on the attribute table.
Since the type of this attribute is truth-value, however, you conclude its value
as true or false programmatically.

Iterating over an Array

You can populate an array by iterating over its elements and inserting values or
items. When you do this, be careful that concurrent processes are not allowed to
affect the results of the iteration. For details see Allowing Other Processing
During List and Array Iteration.
671

The next example shows how to populate an array with the elements of a list, first
changing the array length to the number of elements in the list, and then iterating
through the list to insert element values into the array:

conclude that the array-length of int-array = the number of elements in int-list;
index = 0;
for int-value = each integer in int-list

do
conclude that int-array [index] = int-value;
index = index + 1;

end

Using an Attribute File

Attribute files are a superseded capability. For further information, see
Appendix F, Superseded Practices.

Replacing List and Array Elements

Use the change and conclude actions to replace items and values.

Using Change

To change an element of an array or list:

 change {g2-array | g2-list} [integer-expression] = item-or-value

This action places an item or value into an array or list, replacing the existing item
or value, if any. Lists must already have an item or value at the specified location,
which is replaced by the change action. Arrays do not require an existing value at
the specified location, but if one exists, it is replaced.

An example is:

change list-of-names[10] = the name of new-patient-10

Using Conclude

To replace a list or array element with a value:

 conclude that {g2-array | g2-list} [integer-expression]
{= value-expression | is symbolic-expression}

If you try to conclude a value into an element that does not contain a value, a
variable, or a parameter, G2 signals an error. To conclude a list element, the list
must already have an item or value at that location.
672

Replacing List and Array Elements
The behavior of this action varies depending on whether the current element is an
item or a value, as follows:

You cannot conclude a new item into lists and arrays with item elements. Use the
change action to place a new item into an existing element of a list or array
of items.

Two examples are:

change parts-list[4] = 191.1

conclude that auto-array[100] = new-auto-10

If the array or list contains values, no difference exists between using the change
or conclude actions to replace an element.

Altering the Length of an Array

To change the length of an array:

 conclude that the array-length of g2-array = quantity-expression

The g2-array refers to any array. If the quantity expression you enter makes the
array longer, this action also re-initializes the new elements to the values of the
default initial-values attribute. For more information about this attribute, see
Providing Initial Values for Array Elements.

For example:

conclude that the array-length of my-array = 20

Changing Elements to Have No Values

Use the change action with the syntax described below to designate that an
element of an item-list or an item-array or a g2-list or a g2-array does not have a
value. Value arrays always have an initial value, so you cannot change or
conclude a value element not to have a value.

If the element at
the given position... Then the conclude action...

Is a value Replaces the existing value with the new one.
This has the same behavior as the change
action described under change.

Is a variable or
parameter item

Concludes a new value for the variable or
parameter.

Is an item that is not a
variable or parameter

Causes G2 to signal an error.
673

To change an array or list element to have no value, use this syntax:

 change {g2-array | g2-list} [integer-expression] to have no value

For example:

change project-list[100] to have no value

Data Seeking and Event Updating

Changing lists and arrays has this effect on data seeking and event updating
within your KB:

• Adding or removing list or array elements does not cause event updating.

• G2 does not data seek to add elements to an array or list.

• G2 does not forward chain to array element expressions.

• G2 does forward chain to some list element expressions, when the element is
an item. These expressions are first, second, next to last, last, and type
in g2-list.

Iterating over Lists and Arrays
You can iterate over lists and arrays to perform various computations, including
populating the list or array, adding elements, reasoning about elements, and
so forth.

To iterate over the elements in a list:

 for local-name = each type in list do

For example:

for int-value = each integer in my-list
do

change int-array[index] = int value;
index = index + 1

end

This is an efficient method for list iteration because G2 locates each list element by
simply incrementing a pointer at the beginning of each iteration of the loop.

Using counter syntax such as for i = 0 to 15 do change my-array[i] = my-list[i]
requires unnecessary processing because it causes G2 to locate each list element
by starting at the beginning of the list for each loop iteration.
674

Iterating over Lists and Arrays
Here is a procedure that iterates over an item list of task times, using the
insert action:

enqueue-task (new-task: class task, task-queue: class item-list)
task-1: class task;
task-time-of-new-task: float = the start-time of new-task;

begin
for task-1 = each task in task-queue

do
{If task is time dependent, insert at beginning}
if the start-time of task-1 > task-time-of-new-task then

begin
insert new-task before task-1 in task-queue;
return;

end;
end;

{If not time dependent, add to end of queue.}
insert new-task at the end of task-queue;

end

In the example, the enqueue-task procedure adds new tasks to a queue in the
correct time sequence.

Iterating According to Element Type

G2 can iterate over the current elements of a list or array to reference a specific
element type.

To iterate according to element type:

 the {class-name | type} [local-name] in {g2-array | g2-list}
-> {item | integer | float | symbol | text | truth-value}

 the class-name [local-name] in {item-array | item-list}
-> item

 the type [local-name] in {value-array | value-list}
-> {integer | float | symbol | text | truth-value}

These generic reference expressions produce the item or items of the specified
class, or the value or values of the specified type, that is referenced in an item-
array, item-list, value-array, or value-list.

For example:

if any float in task-list < the current time then post "Task is late."

Tip Referring to an item that is a member of a list or array, is an indirect reference to
that item.
675

Iterating over Lists For a Particular Item

To iterate over every list that contains a particular item:

 g2-list that contains item

For example:

for x = each item-list that contains my-object do ...

Specifying a Relative List Position

To iterate over each list element specifying a relative position in the list:

 the {first | second | next to last | last} {class-name | type} [local-name] in g2-list
-> {item | integer | float | symbol | text | truth-value}

These expressions produce the item or value that is referenced in the specified
element in a list. An example:

the first float in grades-list

Allowing Other Processing During List and
Array Iteration

Allowing other processing to occur during list or array iteration can cause
unpredictable results. For example, consider the following loop code that allows
other processing while iterating over a list, adding 10 to each integer in
integer-list-1, which consists of 1000 elements:

for int-value = each integer in integer-list-1
do

conclude that integer-list-1[i] = int-value + 10;
i = i + 1;
allow other processing;

end

When a procedure allows other processing, it is possible for another statement to
change the list element values during the processing of the procedure. The
following diagram illustrates how an element could be changed twice during the
676

Using Other List and Array Expressions
procedure, once from an external action (a whenever rule), and once from
the procedure.

Simultaneous processing could also result in G2 adding an element to the
beginning of the list while the procedure was processing the remainder of the list.
In such a situation, the for loop would not update the new value.

Due to the possibility of concurrency problems, we recommend that you do not
allow other processing to occur during list or array iteration unless you are
certain that no concurrent processing can interfere. For more information, see
Allowing Other Processing.

Using Other List and Array Expressions

You can reason about both lists and arrays and their elements by using the
expressions described here. For a general discussion of G2 expressions, see
Expressions.

Accessing List or Array Elements by Index

To access a list or array element with an index:

 {g2-array | g2-list} [integer]
-> {item | integer | float | symbol | text | truth-value}

This expression produces the value in, or the item referenced in, the specified
element in a list or array.

30101101111 111 101 101 101 101

Begin processing for loop:

Add 10, move pointer to next element

Simultaneous processing that affects a list element:

•
•
whenever new-issue is true
change integer-list-1[500] = 30

••••

0 1 2 3 4 498 499 500 501

••••

Result: Element 500 is changed before the for loop change is complete.
677

An example is:

conclude that my-array[9] = the current time

When an expression refers to an element in a list, the length of time G2 requires to
evaluate the expression is proportional to the position of the specified element in
the list.

Performing Computations over Sets of Elements

You can compute the values of expressions over sets of elements in a list or
an array.

Sum, Product, Minimum, Maximum Of

the {sum | product | minimum | maximum} over each
generic-reference-expression in {g2-array | g2-list} of (quantity-expression)
-> {integer | float}

This expression produces a calculated value of either type integer or float from the
set of items or values specified in the generic reference expression, which are
contained in the specified array or list and which meet the criterion specified in
the quantity expression.

Because this expression can produce either an integer or float value, use a piece of
knowledge declared as type quantity to contain the produced value.

For example, the following expression computes the sum of the flows of all valves
that are connected to tank-1 and are also elements in my-valve-list:

the sum over each valve V connected to tank-1 in my-valve-list of
(the flow of V)

Average Of

the average over each generic-reference-expression in {g2-array | g2-list}
of (quantity-expression)
-> float

This expression produces a calculated value of type float from the set of items or
values specified in the generic reference expression, which are contained in the
specified array or list and which meet the criterion specified in the quantity
expression.

An example is:

x = the average over each task T in task-list of (the start-time of T);
post "[x] is the average of the start times of all jobs in the queue";
678

Using Other List and Array Expressions
Count Of

You can also use the count of each expression to specify the elements that G2
iterates over in a set.

the count of each generic-reference-expression in {g2-array | g2-list}
[such that (truth-value-expression)]
-> integer

This expression produces the number of items or values specified in the generic
reference expression, which are contained in the specified array or list and which
meet the criterion specified in the truth-value expression. For a list, unless you are
counting a subset of the list’s elements, using the the number of elements in
expression is faster.

For example, the following expression finds the number of elements in qlist-1 that
have the value 4:

the count of each water-tank T in water-tank-list such that T < 200

Note You can optimize the execution of a the count of each expression if it references
indexed attributes. See Defining an Indexed Attribute for more information about
indexed attributes.

Testing for List Membership

To test whether an element is or is not a member of a list:

 {class-name | type} is [not] a member of g2-list
-> truth-value

When testing for membership in a specified list, G2 ignores the alphabetic case
when comparing two text values and ignores the type when comparing two
quantity values. For example:

• The text string “Text” is a member of the text-list that contains “text”.

• The float 2.0 is a member of the quantity-list that contains the integer 2.

This expression produces a truth-value that indicates whether an item of the
specified class, or a value of the specified type, is a member of the specified list.

Referring to an item that is a member of a list or array, is an indirect reference to
that item.

An example is:

when task-1 is a member of task-list post "task-1 is included"
679

Obtaining the Number of List Elements

To find the number of elements in a list:

 the number of elements in g2-list
-> integer

This expression produces the number of elements in a list. You can also use the
the count of each expression to count the elements in a list; however, using the
the number of elements in expression operates more quickly.

An example is:

conclude that element-count = the number of elements in task-list

Finding the Length of an Array

To find the length of an array:

 the array-length of g2-array
-> integer

This expression produces the number of elements in an array.

Accessing Lists or Arrays That are
Object Attributes

User-defined objects can have attributes that are instances of lists and arrays. You
specify such an attribute in a class definition.

To access lists or arrays that are object attributes:

 attribute-name initially is an instance of {a | an} {g2-list | g2-array}

where attribute-name is the name of the attribute you are specifying, and g2-list or
g2-array is any applicable g2-list or g2-array class or subclass. To distinguish lists
and arrays that are object attributes, this section refers to them as attribute lists
and arrays.

When objects with such attributes are instantiated, the lists or arrays exist as
separate items within the KB. You can access a list or array that is an attribute by
naming it. You can name attribute lists and arrays interactively by accessing the
subtable from the object’s attribute table.

To change the name of attribute lists and arrays programmatically:

 change the text of the names of the array-attribute of object to text

or

 change the name of the array-attribute of object to the symbol symbol
680

Accessing Lists or Arrays That are Object Attributes
You can also use attribute access to reference and change most attribute values, as
described in Attribute Access Facility.

Changing Attribute List and Array Elements

To provide new element values to attribute lists and arrays without names:

 change (the attribute of object) [integer-expression] = item-or-value

where attribute is the attribute name, object is the object, followed by the element
index, and item-or-value is the new value to assign to that array or list element.

The conclude actions uses two similar syntactical forms to produce
different results.

Concluding an Unnamed Object Attribute That is a List or an Array

To provide a new element value to an unnamed attribute list or array:

 conclude that (the attribute-name of object) [integer-expression] = item-or-value

Concluding a List or Array Element That is an Object

To change the attribute value of an object that is a list or array element:

 conclude that the attribute of {g2-list | g2-array} [integer-expression] =
item-or-value

Element Syntax Description

(the attribute-name
of object)

An unnamed attribute list or array whose
element value you want to change.

item-or-value The new value for the attribute list or array
element.

Element Syntax Description

g2-list | g2-array
[integer-expression]

An array or list whose element at the specific
index consists of an object, which includes an
attribute as specified by attribute.

attribute The attribute name of the object referenced in
the array or list.

item-or-value The new value of attribute, which must be a
value, a variable, or a parameter. If the array or
list element is a variable or a parameter, G2
updates it with the new value.
681

Copying Lists and Arrays
You can copy a list to a sequence or a sequence to a list by using g2-list-sequence
from the table of hidden attributes for the list.

Similarly, you can copy an array to a sequence or a sequence to an array by using
g2-array-sequence from the table of hidden attributes for the array.

These attributes are accessible to you programmatically through G2’s attribute
access facility and are documented in the G2 Class Reference Manual.

Procedures for copying arrays to sequences and sequences to arrays are similar.
When copying a sequence into an array the values from the sequence take
precedence over any initial values the array may already have, and the array
length of the array adjusts, as needed.

g2-list-sequence

Here is a procedure for copying a list into a sequence:

copy-list-to-seq(list: class g2-list) = (sequence)
seq: sequence;
begin

seq = the g2-list-sequence of list;
return seq;

end

Here is a procedure for copying a sequence into a list:

copy-seq-to-list(seq: sequence, list: class g2-list)
begin

conclude that the g2-list-sequence of list = seq;
end

g2-array-sequence

Here is a procedure for copying an array into a sequence:

copy-array-to-seq(array: class g2-array) = (sequence)
seq: sequence;
begin

seq = the g2-array-sequence of array;
return seq;

end

Here is a procedure for copying a sequence into an array:

copy-seq-to-array(seq: sequence, array: class g2-array)
begin

conclude that the g2-array-sequence of array = seq;
end
682

Representing Sparse Arrays
You can use the g2-array-sequence hidden attribute to copy the initial-values of
an array to the current values of the array, as follows:

initialize-array ()
array: class g2-array;
begin

conclude that the g2-array-sequence of array = the initial-values of array;
end

Representing Sparse Arrays
A dense array is a quantity array that can include zero values. A sparse- array
representation consists of two separate arrays: a value array that holds only the
non-zero values of a corresponding dense array and an integer array which holds
the indexes to the non-zero elements as they would be in the corresponding
dense array.

A sparse array can be more efficient because it reduces the number of elements
that need processing; however, it requires the overhead of an additional array to
hold the indexes.

For example, a dense array can contain the following values:

(0.0, 0.0, 0.0, 45.1, 9.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 35.6)

The sparse-array representation that corresponds to this dense array consists of
two arrays: a value array with these values:

(45.1, 9.2, 35.6)

and an index array with these values:

(3, 4, 12)

where 3, 4, and 12 are the indexes to the three non-zero values of the
corresponding dense array.

The G2 system procedure, g2-sparse-gather, converts a dense array into a sparse
array; and the G2 system procedure, g2-sparse-scatter, converts a sparse array
into a dense array.

See the G2 System Procedures Reference Manual for a complete description of these
and other procedures.
683

Representing Matrixes with Arrays
A matrix can be represented by an item-array whose elements are also arrays. For
example, you can construct a 3 x 4 matrix of integer values by defining a three-
element item array and populating each element with a 4-element integer-array.
Each integer array represents a row in the matrix.

To represent a matrix as an array, you must first create the individual arrays
before inserting them into the slots of the top-level array.

Using System Procedures with Lists, Arrays,
and Matrixes

Here is a list of system procedures specifically for use with lists, dense arrays,
dense matrixes, and sparse arrays. For a complete description of these and other
G2 system procedures, see the G2 System Procedures Reference Manual.

To do this... Use this system procedure...

Sort a list g2-sort-list

Sort an array g2-sort-array

Get the element position of an item
or value in an array

g2-get-position-of-element-in-array

Get the element position of an item
or value in a list

g2-get-position-of-element-in-list

Copy array elements to the initial-
values attribute of the array

g2-array-copy-elements-to-initial-values

Get the largest value in an array g2-array-max

Get the smallest value in an array g2-array-min

Get the sum of all the elements in
an array

g2-array-sum

Get the sum of the absolute values of
all the elements in an array

g2-array-sum-abs

Add two arrays g2-array-add

Copy one array into another array g2-array-copy
684

Using System Procedures with Lists, Arrays, and Matrixes
Determine if two arrays have the same
element values

g2-array-equal

Multiply two arrays g2-array-multiply

Subtract one array from another g2-array-subtract

Get the dimensions of a matrix g2-get-matrix-dimensions

Solve the set of N linear equations
AX=B

g2-lu-back-substitute

Decompose a matrix using Crout’s
method with partial pivoting

g2-lu-decompose

Get the values that solve the equation:
x-array = a-matrix * x-array = b-array

g2-lu-solve

Multiply a matrix by another matrix or
an array

g2-matrix-multiply

Multiply an array by a scalar g2-scalar-multiply

Transpose the rows and columns of
a matrix

g2-transpose

Get the result of the operation
X = X + alpha * Y, where X and Y are
sparse arrays

g2-sparse-add

Convert a dense array into a
sparse array

g2-sparse-gather

Get the value of an element in a
sparse array

g2-sparse-get

Get the product of multiplying two
sparse arrays

g2-sparse-multiply

Convert a sparse array into a
dense array

g2-sparse-scatter

Set a sparse array element to a value g2-sparse-set

To do this... Use this system procedure...
685

The List and Array Classes

Within the system-defined class hierarchy, nine system-defined parallel
subclasses for lists and arrays exist, each capable of containing these elements:

The class hierarchies of lists and arrays are:

These list and array classes... Can have these elements...

g2-list or g2-array Items and values

value-list or value-array Values of any G2 type, but no
items

item-list or item-array Items

symbol-list or symbol-array Symbolic values

text-list or text-array Text values

truth-value-list or
truth-value-array

Truth values

quantity-list or
quantity-array

Float or integer values

float-list or float-array Float values

integer-list or integer-array Integer values
686

The List and Array Classes
Creating Subclasses of Lists and Arrays

You can create subclasses directly from g2-list and g2-array, and from any of their
subclasses as you would any other user-defined class.

When creating a new list or array class, always use the most specific type possible
for your requirements, for example:

• If a list class is to contain only float elements, use float-list as the superior class,
not quantity-list.

• If an array should contain items, specify item-array as the superior class rather
than g2-array.

You can also create your own set of list or array classes in which membership is
permanent by default, by specifying the array-is-permanent or list-is-permanent
as yes in the attribute-initializations attribute of the class definition.

For classes with value-array as a direct superior class, you can include values of
any type (float, integer, symbol, text, and truth-value, but not items), as the
following attribute-initializations value indicates:

array-length for g2-array: 3;
initial values for value-array: the symbol ME, the symbol YOU, the symbol US

Notice that you must precede symbolic values (me, you and us in this example)
with the statement the symbol, as described in Specifying Symbolic Initial Values
in Arrays.

For new classes with item-list or item-array as a direct superior class, the elements
of the list or array can be generic or specific to a particular item class. To create a
list or array of a specific item class, use an class definition to create a subclass of
item-list or item-array.

Within the class definition, you can use the attribute-initializations attribute to
specify a particular class of items for the element-type attribute. When you specify
a class name for the element-type attribute, all elements within the list or array
must be instances of that class.

For a complete description of creating subclasses, see Creating Object Classes.
687

Class-Specific Attributes

These are the class-specific attributes of lists and arrays:

Attribute Description

array-length Arrays only. Specifies the number of elements that the
array contains.

Allowable values: Minimum:
Maximum:

0
523,264

Default value: 0

element-type Specifies the type or class of the list or array elements.

Allowable values: For a list of allowable type or classes for lists and arrays,
see The List and Array Classes.

Default value: For a list of type or classes for lists and arrays, see The List
and Array Classes.

allow-duplicate-
elements?

Lists only. Controls whether duplicates of the same
element can exist in a list.

Allowable values: {yes | no}

Default value: yes

initial-values Arrays only. Specifies the initial-value for each array
element.

Allowable values: See Providing Initial Values for Array Elements

Default value: See Providing Initial Values for Array Elements

array-is-permanent Arrays only. Specifies whether the elements of the array
are maintained as permanent KB knowledge.

Allowable values: yes or no
688

The List and Array Classes
Note G2 permits the use of lists and arrays of the non-specific type quantity. For
efficiency, we recommend that you use an item of specific type (integer or float)
whenever possible.

Default value: no

list-is-permanent Lists only. Specifies whether the elements of the lists are
maintained as permanent KB knowledge.

Allowable values: yes or no

Default value no

Attribute Description
689

Describing Lists and Arrays

Once a list or array is populated, you can use the describe menu choice to display
its elements, or to display the lists and arrays to which an item belongs. The
Describe facility includes a list or array index for every value-array element.

The next diagram shows an example of the Describe facility for an array and a list.
The description of the list contains short references to the tasks that are
its elements.

When you select describe from the menu of a list or an array, G2 displays a
workspace containing information about every datum or item in the list or array.
Click on the short reference of the element item to access the attribute table of the
original, go to the original item, and so on.

The Describe display does not update dynamically as list or array
elements change.

Note We do not recommend using the Describe facility for very long lists or arrays with
many elements, because it uses a large amount of storage space.
690

17
Hash Tables and
Priority Queues
Describes how to use hash tables and priority queues.

Introduction 691

Hash-Table Class 692

Priority-Queue Class 697

Introduction
G2 provides two data structures for use in a wide variety of programming
contexts:

• hash-table — A collection of key-value pairs, where the key and the value can
be any G2 item-or-value. Hash tables provide fast lookups for various types of
data, regardless of the number of entries in the table, where the lookup time is
proportional to the log of the number of key-value pairs in the table.

• priority-queue — A collection of items, each with an associated priority. For
example, you could use a priority queue as the core of an event-based
simulator, where the time an event should occur is used as the priority.
691

While sequences and structures also provide the ability to define key-value pairs,
structures require that the keys be symbols. Hash tables do not have this
restriction; the key and the value can be any G2 item or value. Also, when the
number of key-value pairs in a sequence or structure becomes very large, finding
elements can be very slow. Thus, when all you require is a set of key-value pairs,
we recommend that you use hash tables rather than sequences or structures. If
you require the ability to parse the key-value pairs sequentially, you should use a
sequence or a list.

G2 provides hash tables and priority queues as objects, which you can create from
the KB Workspace > New Object menu or programmatically, using the create
action. G2 provides a number of procedures for adding and removing elements,
accessing values, and dynamically changing values in a hash table, and for
changing the priority of an item, and get the object with the highest priority from
a priority queue.

Note G2 does not save the contents of a hash table or priority queue in a KB when it is
saved. When a new KB is loaded, all hash tables and priority queues are emptied.
Also, disabling a hash table or priority queue empties their contents.

Hash-Table Class
The hash-table class provides a data structure for fast lookup of a value, based on
a key. The key and value can be any item-or-value. When specifying keys as text,
the text is case sensitive.

G2 provides procedures for getting and setting values given a key, clearing
individual values from the table given a key, clearing all key-value pairs from the
table, and converting hash tables to sequences to allow iterating over the
elements.

You can subclass the hash-table class to provide application-specific behavior.
692

Hash-Table Class
Hidden Attributes

The hash-table class defines the following hidden attributes:

Attribute Description

g2-hash-table-
sequence

A sequence of structures that defines all the
key-value pairs in the hash table, where each
structure has attributes ENTRY-KEY and
ENTRY-VALUE. For example:

sequence
(structure

(ENTRY-KEY: "Key 1",
ENTRY-VALUE: "text value"),

structure
(ENTRY-KEY: "Key 2",
ENTRY-VALUE: "text value"))

Allowable values: A sequence of structures

Default value: sequence()

Notes: See also the description of g2-hash-table-to-
sequence in the G2 System Procedures Reference
Manual.

g2-hash-table-
number-of-entries

The number of structures in the g2-hash-table-
sequence. In the sequence above, the number
of entries is 2.

Allowable values: integer

Default value: 0
693

Application Programmer’s Interface

The API procedures for hash tables appear on the g2-hash-tables workspace of
G2 System Procedures.

For a description of these procedures, see the G2 System Procedures Reference
Manual.

To display the hash table procedures:

 Choose Get Workspace > g2-system-procedures to display the G2 System
Procedures top-level workspace, display the table of contents, and choose
g2-hash-tables.

Note The g2-hash-table-to-sequence procedure is not supported and will be removed
in a future release. The procedure exists for compatibility with G2 Version 8.0
Beta Rev. 0 only. Use the hash-table-sequence hidden attribute on hash-table
instances instead.

Example: Hash Tables

Here is an example of manipulating hash tables. First, the procedure clears the
hash table named my-hash-table, then it calls g2-get-hash-table-value on a key,
which doesn’t exist. The return value is false. The procedure then sets various
keys and values, using different data types, and gets the resulting values for each
key and posts the result. It clears a value for a particular key and attempts to get
its value. Then it posts the value of the g2-hash-table-sequence. Finally, it clears
all keys and values and post the empty sequence. The procedure provides three
examples of getting a value from a textual key, one of which fails because it does
not use the correct case.

test-hash-table()
result: item-or-value;
found: truth-value;
seq: sequence;

begin
{clear the hash table}
call g2-clear-hash-table(my-hash-table);

{symbolic key and value with no value set}
result, found = call g2-get-hash-table-value(my-hash-table, the symbol my-key);
post "symbolic key my-key has value [result]";

{symbolic key and value}
call g2-set-hash-table-value(my-hash-table,the symbol my-key, the symbol val-1);
result, found = call g2-get-hash-table-value(my-hash-table, the symbol my-key);
post "symbolic key my-key has value [result]";
694

Hash-Table Class
{text key and value}
call g2-set-hash-table-value(my-hash-table, "text key 1", "text value");
result, found = call g2-get-hash-table-value(my-hash-table, "text key 1");
post "text key @"text key 1@" has value [result]";

{upper case text key and value}
call g2-set-hash-table-value(my-hash-table, "Text Key 2", "text value");
result, found = call g2-get-hash-table-value(my-hash-table, "Text Key 2");
post "text key @"Text Key 2@" has value [result]";

{wrong case text key and value returns false}
result, found = call g2-get-hash-table-value(my-hash-table, "text key 2");
post "text key @"text key 2@" has value [result]";

{quantity key and value}
call g2-set-hash-table-value(my-hash-table, 1, 1.0);
result, found = call g2-get-hash-table-value(my-hash-table, 1);
post "quantity key 1 has value [result]";

{logical key and value}
call g2-set-hash-table-value(my-hash-table, true, true);
result, found = call g2-get-hash-table-value(my-hash-table, true);
post "logical key true has value [result]";

{item key and value}
call g2-set-hash-table-value(my-hash-table, cp-1, cp-2);
result, found = call g2-get-hash-table-value(my-hash-table, cp-1);
post "item key cp-1 has value [the name of result]";

{clear hash table value}
call g2-clear-hash-table-value(my-hash-table, cp-1);
result, found = call g2-get-hash-table-value(my-hash-table, cp-1);
if found then

post "item key cp-1 has value [the name of result]"
else post "The key cp-1 does not exist";

{post hash table sequence}
seq = the g2-hash-table-sequence of my-hash-table;
post "the hash table sequence = [seq]";

{clear hash table and post empty sequence}
call g2-clear-hash-table(my-hash-table);
seq = the g2-hash-table-sequence of my-hash-table;
post "the hash table sequence = [seq]";

end
695

Here is the hash table and the resulting Message Board when you start this
procedure:
696

Priority-Queue Class
Priority-Queue Class
The priority-queue class provides a data structure for associating items with a
priority, which can be any float value.

G2 provides procedures for adding a new item to a queue at a given priority,
removing an item from a queue, changing the priority of an existing item in a
queue, getting the item with the highest priority, getting and removing the item
with the highest priority, and determining if the queue is empty.

Note that if items in the priority queue have the same priority, the order in which
they are retrieved from the queue is unpredictable. If you care about the order of
items with the same priority, then provide a more detailed prioritization scheme,
such as 1.1, 1.2, 1.3, and so on.

You can subclass the priority-queue class to provide application-specific behavior.

Hidden Attributes

The priority-queue class defines the following hidden attributes:

Attribute Description

g2-priority-queue-
sequence

A sequence of structures that defines all the
items and priorities in the priority queue,
where each structure has attributes ENTRY
and PRIORITY. For example:

sequence
(structure

(ENTRY: post-three,
PRIORITY: 3.0),

structure
(ENTRY: post-five,
PRIORITY: 5.0))

Allowable values: A sequence of structures

Default value: sequence()
697

Application Programmer’s Interface

The API procedures for priority queues appear on the g2-priority-queues
workspace.

For a description of these procedures, see the G2 System Procedures Reference
Manual.

To display the priority queue procedures:

 Choose Get Workspace > g2-system-procedures to display the G2 System
Procedures top-level workspace, display the table of contents, and choose
g2-priority-queues.

Example: Priority Queue

This example performs these operations on a priority queue:

• Clears the priority queue.

• Builds a new queue by inserting items randomly into the queue.

• Posts the name of the highest priority item to the Message Board.

• Removes the top item from the queue and posts the name of the new highest
priority item.

• Changes the priority of the top item and posts the name of the new highest
priority item.

• Removes a specific item from the queue.

• Posts the value of the g2-priority-queue-sequence.

• Loops through the rest of the items in the queue, removing the top item until
the queue is empty, then posts the empty sequence. Note that looping through
the items in a priority queue, based on the priority is a fast operation,
regardless of the number of items in the queue.

g2-priority-queue-
number-of-entries

The number of structures in the g2-priority-
queue-sequence. In the sequence above, the
number of entries is 2.

Allowable values: integer

Default value: 0

Attribute Description
698

Priority-Queue Class
Here is the procedure that performs these operations:

reorder-items(queue: class priority-queue)
empty, result: truth-value;
itm: item-or-value;
priority: float;
cp: class connection-post;
seq: sequence;
begin

{clear queue}
call g2-clear-priority-queue(queue);

{build queue}
result = call g2-insert-in-priority-queue(queue, post-one, 1.0);
result = call g2-insert-in-priority-queue(queue, post-three, 3.0);
result = call g2-insert-in-priority-queue(queue, post-five, 5.0);
result = call g2-insert-in-priority-queue(queue, post-four, 4.0);
result = call g2-insert-in-priority-queue(queue, post-six, 6.0);
result = call g2-insert-in-priority-queue(queue, post-two, 2.0);

{get highest priority item}
itm, priority = call g2-get-higheset-from-priority-queue(queue);
post "[the name of itm] is the top item in the queue at priority [priority]";

{remove highest priority item}
itm, priority = call g2-remove-highest-from-priority-queue(queue);
post "[the name of itm] removed from the queue";
itm, priority = call g2-get-highest-from-priority-queue(queue);
post "[the name of itm] is the top item in the queue at priority [priority]";

{change priority of item}
result = call g2-change-priority-in-priority-queue(queue, itm, 7.0);
post " [the name of itm] now has priority 7.0";
itm, priority = call g2-get-highest-from-priority-queue(queue);
post "[the name of itm] is the top item in the queue at priority [priority]";
699

{remove post-four from queue}
result = call g2-remove-from-priority-queue(queue, post-four);
post "@"post-four@" removed from the queue";
itm, priority = call g2-get-highest-from-priority-queue(queue);
post "[the name of itm] is the top item in the queue at priority [priority]";

{post priority queue sequence}
seq = the g2-priority-queue-sequence of queue;
post "the priority queue sequence = [seq]";

{remove rest of items until queue is empty}
repeat

itm, priority = call g2-remove-highest-from-priority-queue(queue);
post "[the name of itm] removed from the queue at priority [priority]";
result = call g2-priority-queue-is-empty (queue);
exit if result is true;

end;
post "the queue is empty";

{post empty sequence}
seq = the g2-priority-queue-sequence of queue;
post "the priority queue sequence = [seq]";

end
700

Priority-Queue Class
Here is the priority queue and the resulting Message Board when you start this
procedure:
701

702

18
Connections
Describes connections, connection posts, and junction blocks.

Introduction 704

Properties of Connections 704

Controlling Connection Caching 705

Connecting to Objects 705

Using Connections 707

Using Junction Blocks 716

Using Connection Posts 717

Using Connection Expressions 720

Iterating over Connections 723

Using Actions with Connections 724

Detecting Connection and Disconnection Events 730

System Procedures for Connections 731

Functions for Connections 732

Describing Connections 735
703

Introduction
A connection, an item of the connection class, is a graphical item that creates a
logical relationship between two or more objects. You can use connections to
represent almost anything that provides a pathway or route between two or more
objects. For instance, use connections in your knowledge base (KB) to represent
electrical wires, pipes, roadways, or cables.

The next figure shows a simple schematic of objects and their connections.

In addition to representing physical entities such as pipes and wires, connections
can represent more abstract relationships such as the cause of one event by
another, or one event occurring later than another. A connection can also
represent a transition from one state to another.

Note If you are using connections for abstract reasoning only and you are moving
connected objects on a workspace, you can improve performance by making
connections transparent or by not displaying the workspace at all.

Properties of Connections

Connections have the properties of elasticity, direction, style, line pattern, and
arrowheads. When you drag an end of a connection, the connection becomes
elastic, letting you lengthen or shorten it. Once a connection exists between two
objects, dragging one of the objects stretches the connection. Each connection can
be either non-directional or of a single direction (input or output), and be either
diagonal or orthogonal in style. Connections can also have a line pattern, which
can be solid, dashed, dotted, or a combination, and an arrowhead at the end.

In addition, connection definitions have a unique cross-section-pattern attribute,
which lets you specify the connection width and color. By defining different
cross-section patterns in your connection classes, you can create visually distinct
704

Controlling Connection Caching
connections representing different flows in your KB. You can change the colors of
a connection’s cross-section pattern programmatically.

Using connections in your KB always involves stubs, and may also involve
junction blocks and connection posts, described in Using Junction Blocks, and
Using Connection Posts, respectively.

Controlling Connection Caching

When G2 caches graphical connections between objects, expressions that
reference connections execute faster, but changing connections takes longer.
When G2 does not cache connections, connection expressions take longer but
changing connections is faster. The default behavior is not to cache them;
however, either behavior may be preferable, depending on your particular
application.

To change G2’s connection caching behavior:

 Set the connection-caching-enabled? attribute of the Miscellaneous
Parameters system table to yes or no.

The default setting is no, which suppresses connection caching. If your
application often executes complex expressions that reference connections,
and/or rarely changes connections during KB execution, performance may
improve if you turn connection caching on.

Connecting to Objects
Connections are interrelated with objects: connections join objects, and objects can
have connections. You add connections to an object by using stubs. A stub is a
short connection located on the perimeter of an object icon with nothing on the
other end.

All user-defined object classes are capable of having one or more stubs, which you
define in the stubs attribute of the object definition. In the simplest case, the stubs
attribute can define a system-defined connection, consisting of a single black line,
one pixel wide. Alternatively, you can specify a user-defined connection class.
Each stub must also include the stub location upon the object icon.

A stub can specify a direction (input or output), and include a user-defined name.
Creating an object with a stub automatically creates one connection item for every
stub. For a description of specifying stubs, see Specifying Connection Stubs.

While object definitions specify what connections an object has by default,
connection definitions describe the connection, and allow it to be instantiated. A
connection instance cannot exist without the object that uses it; an object is devoid
of its specified connection unless the connection definition exists and is complete.
705

A connection definition specifies the class name, direct superior classes, class-
specific attributes, cross-section pattern, stub length, and junction block for each
instance of the connection class. For a complete description of specifying stubs for
objects and creating connection definitions, see Creating Connection Classes.

Creating a Connection

While you can use the default connection class provided with G2, typically you
create your own custom connection definitions and use them in your object
definitions. This section presents a basic example to illustrate the process of
creating a generic object with a user-defined connection.

You can create the definition for the connection and object in any order. However,
if you specify a connection definition before it exists, instantiating the class will
not produce a stub. For clarity, the following example creates the connection
definition first.

To create a connection definition:

1 Select:

KB Workspace > New Definition > class-definition > class-definition.

or

KB Workspace > New Definition > class-definition > connection-definition

2 Open the definition table.

3 Edit the class-name attribute as red-connect.

4 Edit the direct-superior-classes attribute as connection.

5 Edit the cross-section-pattern attribute, for example:

outer = black, inner = red; 2 outer, 5 inner, 2 outer

For complete information on creating connection classes, see Creating Connection
Classes.

To create an object definition:

1 Select:

KB Workspace > New Definition > class-definition > class-definition

or

KB Workspace > New Definition > class-definition > object-definition

2 Open the definition table.

3 Edit the class-name attribute as red-object.

4 Edit the direct-superior-classes attribute as object.
706

Using Connections
5 Edit the stubs attribute and enter a specification like this:

an input red-connect located at left 20;
an output red-connect located at right 20

You can edit the object icon if you wish. The example here uses the system-
defined object icon, but with other colors.

For complete information on creating object classes, see Creating Object Classes.

Connecting Objects

Once the object and connection definitions exist, you can use the connection. You
cannot create a free-standing connection. A connection always begins as an
object stub.

To use the red-connect connection:

1 Create two instances of the red-object class and place them on a workspace.

2 Click on the right-hand stub of the left object and drag the connection into the
icon body of the right object, then click the pointer again to release the
connection:

Using Connections
You form a connection by dragging a stub to another object. Click on the
destination object to end the connection.

Drawing Orthogonal Connections

When you drag an orthogonal connection, it forms a right angle between the
object and your pointer. To reach a destination, you may want to create additional
bends along the connection. To create such angles, drag the connection with your
pointer and click once at the location where you want to create an angle. Resume
dragging (and optionally clicking to create angles) until you reach the destination

Click and drag the connec-
tion into the icon body of the
other object. Then click to
release the connection.
707

object, then drag the connection into the icon body and click to release the
connection.

Hint If the connection seems to be stuck to the pointer and you cannot end it, double
click or press Ctrl + a to release the connection.

To lengthen or shorten a connection between two objects, click on one of the
objects and move it further away from or closer to the other object. The connection
stretches or shrinks depending on which way you drag the object. If there are
multiple bends in a connection, only the last two links shorten or stretch as you
drag the connected object. To shorten an unattached connection, click on the free
end and retrace the connection route towards the object. The connection shrinks
as you drag the pointer.

Drawing Diagonal Connections

When you drag a diagonal connection, G2 draws the connection, using the
specified line width and line pattern, in the color first mentioned in the cross-
section specification for the connection class.

Drawing diagonal connections is slightly different than drawing orthogonal
connections.

To draw a diagonal connection:

1 Click near the end of a diagonal connection, the last line segment
becomes elastic.

2 Drag the connection to extend it and click where you want a bend. Repeat this
step for as many bends you desire.

3 When the connection reaches a destination object, click to end the connection.
708

Using Connections
Here are some examples, using different line patterns:
709

For diagonal connections, you cannot use the junction block that G2 creates
automatically. You have to create a junction block subclass by using an object
definition as described in Using Junction Blocks.

Note Junction blocks work exactly the same way for diagonal connections as for
orthogonal connections, except that the junction blocks are not created
automatically.

Changing Connection Vertices

You can interactively change the connection vertices of a connection by dragging
the handles on the connection. For example:

To interactively change connection vertices, the show-selection-handles attribute
in the Drawing Parameters system table must be true, the default.
710

Using Connections
Using Connection Arrowheads

You can configure the connection-arrows attribute of connection instances to have
one of these values:

• default — Directional arrows along the length of the connection, which is the
current behavior.

• none — No arrows anywhere on the connection.

• arrow[, arrow] . . . — A single arrow specification or a list of arrow
specifications, separated by commas.

where:

• arrow = shape | adjectives shape | shape place | adjectives shape place

• shape = arrow | triangle | diamond | circle

• adjectives = adjective | adjective adjectives

• adjective = filled | open | wide | narrow | large | small | thin | thick

• place = at the {output | input} end | at both ends | along the length

Note The following combinations are not valid: wide circle and narrow circle.

Here are some examples:

arrow

filled triangle

large thick arrow

diamond at both ends

open large circle at the input end, filled small circle at the output end

Arrows scale with the width of a connection.
711

This feature is accessible in TW, G2, and the Workspace View ActiveX control.

This figure shows various combinations of arrowhead styles:

Connecting to Objects without Stubs

You can lengthen a stub by dragging it with the pointer and then connecting it to
another item. While at least one object must have a stub to begin a connection,
other items that you connect to may or may not have stubs.

For example, the next diagram shows a grouping of four objects before and after
they are connected. Though one object originally has stubs, you can connect it to
any one of the other objects, as the right-hand grouping illustrates.

After you connect a stub to an item that did not previously have a connection,
deleting the connection leaves the stub intact.

default filled thick wide large

arrow

triangle

diamond

circle
N/A
712

Using Connections
Defining Connectedness

Objects are considered connected to one another only when a direct path exists
between them, consisting of connections or junction blocks. Other objects cannot
exist between two objects in a connection. Two objects are:

• Directly connected when a route exists between them that consists of a
sequence of two or more connections linked by connection posts and/or
junction blocks.

• Indirectly connected when a route of objects exists between them that
consists of a sequence of one or more objects, in which each object are directly
connected with the next one in the route.

• Not connected otherwise.

Thus connectedness is not transitive for direct connections: A connect B and B
connect C does not imply A connect C. Note that two items could be both directly
and indirectly connected if more than one route exists between them.

Notice that, for connection helpers (connections, connection posts and junctions)
the definition of connectedness between them and normal objects are of different
approaches. For example, follow table shows the expected results when using
different type of items in system defined function items-are-connected().

Class of item1 Class of item2 items-are-connected(item1, item2)

blocka block True iffb no other blocks between them

connection block True iff no other blocks between them

connection post block True iff no other blocks between them

junction block True iff no other blocks between them

connection connection True iff there’s only one junction/CPc between them

block connection True on directly attached connections to the block

junction connection True on directly attached connections to the junction

connection post connection True on directly attached connections to the CP

connection connection post True on directly attached CPs to the connection

connection post connection post True iff no other block/CPs between them

block connection post True iff no other block/CPs between them

junction connection post True iff no other block/CPs between them
713

Notice that the result is not symmetrical if swapping the order of two arguments.
This is reasonable, and there’s a theorem between KB expression for each ...
connected to and the system-defined function items-are-connected:

for each item I connected to B => items-are-connected(B, I) is true

Also, connection posts (CPs) are special: they’re supposed to connect items
appears on different workspaces. Given the fact that a connection post could have
multiple names, two connection posts are considered as the “same” just if there’s
one shared name between them.

Disallowing Connections

G2 does not allow connections to items for which connections do not make sense,
such as logbook pages or a readout tables.

All G2 items that permit connections can restrict other items from connecting to
them by using this configuration statement: declare properties as follows : not
manual connections.

Determining the Item Count for Connections

When you create objects with stubs, each stub counts as a single item in your KB.
The item count changes as you connect and delete connections as follows:

• Joining two stubs changes the number of connections from two items to one
(a single connection between two objects).

• Joining a stub to an item without a stub, retains one item.

• Deleting a connection from an item originally without a stub leaves the stub
and thus adds a connection item to the KB.

block junction True iff no other block/junctions between them

connection post junction True iff no other block/junctions between them

connection junction True iff no other block/junctions between them

junction junction True iff no other block/junctions between them

a.block: class or subclass of item other than class or subclass of connection,
connection-post and default-junction.
b.iff: if and only if.
c.CP: connection post.

Class of item1 Class of item2 items-are-connected(item1, item2)
714

Using Connections
Note If you create a transient item with stubs but do not transfer the item to a
workspace, looping over every connection with a statement such as for each
connection connected to my-object do, will not locate connections of any items
that are not on workspaces.

Deleting Stubs and Connections Interactively

To delete a stub:

1 Click on the end of the stub and drag it inside of the object icon.

2 Click to release.

The stub is deleted.

To delete a connection:

1 Click on the connection between two objects to display the connection menu.

2 Choose delete.

The connection is deleted without confirmation.

Deleting Stubs and Connections Programmatically

To delete stubs programmatically, use the delete action, described in delete.

Connection Layering

As Layering Items upon the Same Workspace describes, each item upon a
workspace has an associated item-layer-position. Connections are no exception.
The item-layer-position of a connection is always above the object to which it is
drawn to. G2 displays connections is this manner regardless of whether the
connections are drawn interactively or programmatically.

Connections are layered above the object at their input end. For non-directional
connections drawn interactively, this is the end from which you drag the stub, or
the from object for connections drawn programmatically.

Connections with the same object at their input end are layered in the order you
create them.
715

Using Junction Blocks

While connections provide the graphical and logical connections between objects,
you may also need branching connections. The item at the junction of two
connections, shown next, is called a junction block.

Creating Junction Blocks

You do not have to create junction blocks manually. G2 creates a junction block
for you automatically whenever you join one connection to another. The style of
the junction block depends on how the connection has been created.

A junction block is an item of the default-junction class. If you are using the
system-defined, default class of connection, G2 creates an instance of a default
junction object whenever you join two connections.

If you create your own connection subclass, and specify a cross-section pattern,
G2 creates a new default junction class automatically. The name of the class is the
name of your connection class with the prefix junction-block-for. For example, if
the name of your connection class is water-line and you have specified a cross-
section pattern for it, G2 creates a default-junction subclass called junction-block-
for-water-line. If you have used a connection definition to define your connection,
this class name appears in your connection definition table in the junction-block
attribute. The default junction class will not appear on a class definition. You can
use the Inspect Facility to check for its existence.

Whenever you join two connections of the subclass, G2 creates an instance of the
customized junction block automatically. You can connect two connections of
different classes, as long as they have identical cross-section patterns.

Whenever possible, we recommend that you use the junction block that G2
creates dynamically for you. However, if you need a specific kind of junction
block, perhaps one with additional attributes, or for use with a diagonal
connection, create a new class. If you wish to name your default-junction class
using the junction-block naming scheme that G2 uses, define your default-
junction class before you define your connection class, otherwise the
automatically created default junction will preempt the name.
716

Using Connection Posts
Creating a Junction Block Subclass

To create a new junction block subclass:

1 Create an object definition.

2 Name the class by completing the class-names attribute.

3 In the direct-superior-classes attribute, specify default-junction as the
superior class.

Once the class exists, use it whenever you need a junction block by selecting:

KB Workspace > New Object > junction-block-name

where junction-block-name is the name of the class you created. You can join the
connections to the junction block as necessary.

Using Connection Posts
If you need to connect objects across workspaces, you can do so by using a
connection post. A connection post is an instance of the connection-post class of
objects, analogous to the connection posts found in flow diagrams and electrical
schematics. Using a connection post lets you connect two or more objects on
different workspaces, indicating that endpoints of connections on separate
workspaces are actually joined.

To create a connection post:

 Select KB Workspace > New Object > connection-post.

The names attribute specifies the name of the connection post. All connection
posts of the same name are connected to each other, regardless of their locations.
Connecting an object to a connection post connects it to any other object
connected to that connection post, and to any object connected to any other
connection post having the same name.

Note Using connection post as argument of items-are-connected is allowed. However,
if there’re multiple connection posts having the same name, calling items-are-
connected with explicit name of connection posts may not get the correct result.
That’s because G2 will do conflict name resolving when compiling the related KB
code involving the conflict name. For example, suppose there’re two connection
posts having the name CP1, when compiling the expression items-are-
connected(CP1, AA), G2 will internally assign names like CP-XXX-CP1-1 to one
of the connection posts and use that internal name in the expression. However,
according to the asymmetry of items-are-connected, if connection posts were at
the first argument place, the internal searching process will still consider all
connection posts with the same original name.
717

For example, this figure shows three connection posts of the same name,
connect-ws. All of the objects, transfer-car1, transfer-car2, and transfer-car3 are
connected to each other via the connect-ws connection posts.

Hint Although connection posts are most often used to connect objects across
workspaces, you can also use them to connect objects on the same workspace.
Also, you can attach any number of connections to a connection post.

You cannot connect objects with opposing directions of flow.

Creating Connection Posts on Subworkspaces
Automatically

G2 provides a special configuration clause that affects how you use connection
posts and how items are connected through the workspace hierarchy. The
configuration clause is:

declare properties as follows : subworkspace-connection-posts

This configuration is a convenient way to create connection posts automatically
upon the subworkspaces of objects. If an object definition includes this
configuration statement in its instance-configuration attribute (not item-
718

Using Connection Posts
configuration), whenever a subworkspace is created for that class, G2
automatically creates a connection post for each connection stub on the class icon.

For example, the next diagram shows the water-tank class, with its instance
configuration declaring subworkspace connection posts. An instance of this class,
water-tank23, has a subworkspace, shown below it. Upon the subworkspace is the
connection post that G2 creates automatically due to the configuration clause.
Further, the connection post has a completed superior-connection attribute,
indicating the specific connection to which it is attached.

Creating a Connection Post Subclass

To create a connection post subclass:

1 Create an object definition.

2 Name the class by completing the class-names attribute.

3 In the direct-superior-classes attribute, specify connection-post as the
superior class.

Once the class exists, use it whenever you need a connection post by choosing:

KB Workspace > New Object > connection-post-name

Definition declaring
properties and a stub.

An instance of the class
with a subworkspace.

An automatically created
connection-post showing
its superior connection.
719

Using Connection Expressions

G2 provides a powerful language for referring to connections and objects
connected to other objects. The expressions you use with connections make it
possible, for example, to write generic rules that refer to any class connected to
any object.

In all connection expressions, you can refer directly to the object (if appropriate),
to a name on the object (the name), or to a direction (an input to, an input of, an
output of) of the connection.

Expressions do not exist for referencing a connection as an item upon a
workspace such as:

if there exists a connection upon workspace-name
the count of each connection upon workspace-name

While the Text Editor lets you enter such statements, they are ineffective and
always return false, since connections cannot exist as autonomous items upon
a workspace.

Note G2 ignores junction blocks when looking for connected objects unless you refer to
the, any, or every junction-block (or a subclass of junction-block) connected to an
object or connection within the expression.

These generic reference expressions reference items that are connected to other
items or that are attached to particular connections.

Referring to Connected Items

To iterate over one or multiple items that are connected:

 the class-name [local-name] connected to item
-> item

With the the quantifier, this generic reference expression produces the one and
only item of the specified class that is connected in any way to the specified item.
With the any quantifier, this expression produces the set of items of the specified
class that are connected in any way to the specified item. For example, to refer to
items connected to other items:

for any file-marker F connected to page-marker1

for any file-marker F connected to any page-marker
720

Using Connection Expressions
Referring to Input or Output Stubs

Whenever stubs are defined with a direction (input, output), you can refer to them
using the flow direction (input to, input of, or output of).

To refer to input or output stubs:

 the class-name [local-name] connected at an
{input to | input of | output of } item
-> item

With the the quantifier, this generic reference expression produces the one and
only item of the specified class that is connected at any input stub or output stub
of the specified item. With the any quantifier, this expression produces the set of
items of the specified class that are connected at any input or output stub of the
specified item. The input to and input of phrases are equivalent; use one or the
other to improve the readability of your code. For example, to refer to objects
connected at a particular flow direction:

for any file-marker F connected at an output of any page-marker

Input and output stubs of objects are described in Specifying Connection Stubs.

Referring to Port Names

The place at which a connection attaches to an icon is called a port. You can give
these locations names by defining stubs with port names in the object definition.

To refer to port names:

 the class-name [local-name] connected at the {portname of | input to |
input of | output of } object
-> item

With the the quantifier, this generic reference expression produces the one and
only item of the specified class that is connected at a named port or at any input
stub or output stub of the specified object. With the any quantifier, this expression
produces the set of items of the specified class that are connected at a named port
or at any input or output stub of the specified object. The input to and input of
phrases are equivalent; use one or the other to improve the readability of your
code. For example, to refer to connected objects using a port name:

for any file-marker F connected at the infile-port of any page-marker

Another example:

if the status of any valve V connected at the water-input-for any tank is
blocked then inform the operator that
"[the public-name of V] is blocked; check it immediately!"
721

This generic if rule checks whether the status attribute contains the symbol
blocked for any valve that is connected to any tank at its water-input-for port.
Input and output stubs of objects are described in Specifying Connection Stubs.

Tip This example illustrates a naming convention for portnames in an object
definition whereby you include a preposition as a name suffix. In the example,
water-input-for is the portname. This convention makes the expression easier to
read by G2 developers, knowledge engineers, and application users.

Referring to the End of a Connection

G2 can iterate over any specified object connected to the (or an) input end of,
output end of, or either end of a connection.

To refer to the end of a connection:

 the class-name at {an input end | an output end | either end} of connection
-> item

With the the quantifier, this generic reference expression produces the one and
only item of the specified class that is at an input end, output end, or either end of
the specified connection. With the any quantifier, this expression produces the set
of items of the specified class that is at an input end, output end, or either end of
the specified connection. For example, to refer to objects using the connected
direction only, without a connected at statement:

for any truck T at an input end of any km-connection
unconditionally post "[the name of T] is connected!"

Referring to the Connection Class

G2 can iterate over any item that uses a specific connection class.

To refer to the connection class:

 the connection-class-name [local-name] connected to item
-> item

With the the quantifier, this generic reference expression produces the one and
only connection class that is connected in any way to the specified item. With the
any quantifier, this expression produces the set of connections of the specified
class that are connected in any way to the specified items. For example, to refer to
a specific connection class:

for any km-connection C connected to any truck T upon this workspace
unconditionally post "[the name of C] is connected to T"
722

Iterating over Connections
Iterating over Connections
You can iterate over all of the connections of an item, or you can iterate of a subset
of item connections by specifying a particular connection class, a -name, or
whether the connection is an input or output connection.

To iterate over connections:

 for local-name = each connection-class connection-spec item

The connection-spec phrase uses this syntax:

{connected to |
connected at the -name of |
connected at the input to |
connected at an input to
connected at the input of
connected at an input of
connected at the output of |
connected at an output of }

Here is an example that iterates over all the connections of an item and
deletes them:

for C = each connection connected to warehouse-123
do

delete C removing connection stubs without permanence checks
end

This example constrains the iteration to pipe-line class connections connected to
an output of an object:

for PL = each pipe-line connected at an output of station3
do

change the inside stripe-color of PL to yellow;
for OBJ = each object connected to PL

do
post "[the name of OBJ] is connected"

end
end
723

Using Actions with Connections
Several actions exist that manipulate connections. Following is a description of
each action, along with an example.

Changing the Stripe-Color

When you define regions for the cross-section pattern of a connection class, you
can refer to those regions.

To refer to connection regions:

 change the connection-region stripe-color of connection-class-name
to {color-name | symbolic-expression}

An example is:

change the electrical-wire stripe-color of km-connection to red

You can also provide a symbol of the form RGBrrggbb as a valid color name,
where rr, gg, bb, are the 8-bit hex values for red, green, and blue. For details, see
Other Literal Terms.

Creating Transient Connections

Connections can be of any connection class and may be orthogonal or diagonal,
with or without direction, and located at an existing stub or in an entirely new
position. G2 creates stubs for connections newly locating it at some location on an
object; otherwise, G2 requires that a stub already exist at the specified position
(locating it at).

You can create a connection with a name or without, by specifying with name
none. You can create a connection on one object (connected to) with the other end
of the connection left free, or between two objects (connected between). The
create action fails if one or both objects has a configuration statement specifying
not manual-connections.

Transient connections are orthogonal by default. When the connection is
orthogonal, G2 places a bend at the end of each specified distance. If the
connection is diagonal, G2 places a bend after each two distances, with a segment
connecting bends. You can think of a diagonal connection as connecting odd-
numbered bends in an imaginary orthogonal connection.

To create a connection using the create action:

 create a connection [local name] [of {class connection-class-name |
the class named by symbolic-expression}] connected
{between-spec | to-spec} connection-spec [, ...]
724

Using Actions with Connections
The between-spec and to-spec uses this syntax:

{between item from-position and item to-position | to end-position}

The end-position uses this syntax:

{ [at -name] [[newly] locating it at
{ {left | top | right | bottom} | the side named by side-expression} } {integer |
at the position given by quantity-expression} [at {-name |
the named by -name-expression}]]

The connection-spec uses this syntax:

{with style {diagonal | orthogonal} |
with the style named by symbolic-expression | with vertices integer [,...] |
with the vertices given by integer-g2-list |
with direction {input | output} |
with the direction named by direction-expression }

Here is an example that creates a connection on one object:

create a connection connected to d1 newly locating it at right 15

Here is an example that creates a connection between objects:

create a connection of class km-connection connected between d1
locating it at right 15 and d2 locating it at left 20 with direction input

Here is an example that creates a connection with vertices:

create a connection of class km-connection connected to d1
newly locating it at right 20 with direction output, with vertices 20 20 30 40

The next sections illustrate several ways of creating connections and explain
the statements.

Element Description

from-position The item from which the connection is being
drawn.

to-position The item to which the connection is connecting.

end-position See the following syntax description.
725

Creating a Connection on One Side of an Object

This action creates a transient system-defined connection on the right side of the
D1 object.

create a connection connected to d1 newly locating it at right 15

Note To create a connection without direction, omit the with direction statement
completely, as in this example. You cannot use the statement with direction none.

The newly locating it at statement indicates that no stub currently exists at the
given location. If you omit this statement in any create action by stating only the
position (at right 15), G2 requires that a stub exist at the location you specify.

Creating a Directional Connection

This action connects two objects with a transient connection located at existing
stub locations of both items:

create a connection of class km-connection connected between d1
locating it at right 15 and d2 locating it at left 20 with direction input

In this case, the statement also specifies a user-defined connection class,
km-connection, to use and a direction (input).

You can make transient connections only to transient stubs, not to permanent
stubs. If you create a connection to a stub, and the stub already has a connection
on it with the other end free, G2 deletes both the old connection and the old stub,
and creates a new stub.

Creating a Connection with Vertices

This action creates a connection, with specific vertices, on one side of an object,
quarters, as the example illustrates:

create a connection of class pipe-line connected to quarters
newly locating it at right 45 with direction output, with vertices 20 30 40 50
726

Using Actions with Connections
Specifying Connection Vertices

You specify vertices (bends) for a connection with a list of numbers, which
determine how G2 draws the segments and vertices of a connection. Separate
vertex numbers with a space character, not a comma (,).

Vertex numbers are relative to the starting point of the connection (top, bottom,
right, or left). Positive numbers extend upwards and to the right of an icon,
negative number extend downwards or to the left. The second number in a vertex
specification determines in which direction the connection continues. After the
second vertex, the pairs of values determine how G2 draws the remaining
segments and vertices of the connection.

For example, in the previous diagram, the first number specifies the distance (20
workspace units) that G2 extends the connection from the icon before creating the
first vertex. Both right and top connections require a positive first number to
extend away from the object. Connections beginning at the left and bottom of an
icon require a negative value first number to extend outwards from the object.

For connections that begin on the left or right side of an icon, the odd number
vertices (1, 3, 5, etc.) always indicate a horizontal part of the connection, while
even number vertices (2, 4, 6, etc.) specify the vertical connections. This rule
reverses for connections that begin at the top or bottom of an icon — odd number
vertices specify vertical connections, even numbers horizontal directions.
727

To illustrate this, the next two diagrams show how to specify the vertices for the
same connection, starting first on the left and right sides of an icon, and starting
second at the top and bottom of an icon, extending in different directions.

Creating an Existing Connection Programmatically

A common requirement in KBs is to obtain the connections of an existing item and
create them elsewhere on other items.

G2 provides the g2-get-connection-vertices system procedure for this purpose.
The system procedure populates an integer list with the lengths of the connection
segments and vertices of an existing connection. Positive values specify a segment
extending upwards or to the right of an object or vertex, and negative numbers
specify a segment extending downwards or to the left. Once populated, you can
728

Using Actions with Connections
then use the list as the vertices specification for the create connection action and
its given by integer-list grammar.

The integer list that the system procedure populates contains a minimum number
of connection segments and vertices, typically one or two less than those of the
original connection. When creating a new connection between two objects, the
create action uses the vertices contained in the list, and then determines the last
one or two vertices based on the location of the item to which the newly created
connection is being attached.

Note The g2-get-connection-vertices system procedure has changed in recent G2
releases and currently returns the minimum number of vertices that the create
action requires, rather than the exact number of vertices from the original
connection. For KBs that may have relied on the previous behavior, a backward
compatibility option exists to revert the system procedure to its previous
behavior. For information about that option, see Changing the Backward
Compatibility.

The following procedure illustrates one way to use the system procedure in
conjunction with the create connection action. This code creates a new object with
connections identical to those of an existing item, which is passed to the
procedure as an argument.

gds-get-connection-vertices(from-item: class object)
IL: class integer-list;
New Object: class red-object;
C: class connection;

begin
create an integer-list IL;
change the name of IL to the symbol vertices-list;
transfer vertices-list to this workspace at (50, -20);
C = the connection connected to from-item;
call g2-get-connection-vertices(from item, C, vertices-list);
create a red-object NewObject;
transfer New Object to this workspace at (50, 50);
create a connection C of class connection connected to NewObject

locating it at right 20 with the vertices given by vertices-list;
make NewObject permanent

end

Making a Transient Connection Permanent

Use the make action to make a transient connection permanent. The next example
appends the make permanent action to the create action:

in order
create a connection C of class km-connection connected to d1

newly locating it at right 10 with direction output and make C permanent
729

Deleting a Connection

The delete action deletes a transient connection. You can delete a permanent
connection by using the without permanence checks grammar. Deleting a
connection leaves the stubs, unless you specify the optional removing connection
stubs phrase, shown here:

delete pipe-connection57 without permanence checks removing connection stubs

Making an item with connections transient, and then deleting that item,
automatically deletes the connection stubs.

Hint Transient connections and their stubs are deleted whenever you reset the KB.

Detecting Connection and Disconnection
Events

Several rules can detect changes in any connection, or in a direct connection only.
You can constrain the execution of the body of a rule that detects a
connection/disconnection event by making such execution conditional on one of
the functions described under Detecting Connectedness.

You cannot use rules to detect changes in the connection status of default-junction
and connection-post items because those items are considered transparent to the
connection search.

Generic Connection and Disconnection Events

A whenever rule can detect the establishment or breaking of a connection
between two items irrespective of:

• Whether the connection is direct or indirect.

• The class(es) of the connection(s) that connect the items.

• The direction(s) of the (s) to which the connections attach.

To detect generic connection and disconnection events:

 whenever item is connected to item

 whenever item is disconnected from item

For example:

whenever any temp-control-monitor C
is connected to any outer-thermometer T

then start check-temp-progress (C, T)
730

System Procedures for Connections
Direct Connection and Disconnection Events

A whenever rule can detect the establishment or breaking of a direct connection
between two items. The rule can fire for any direct connection, or only if the
connection is:

• Of a specified connection class.

• Has a specified name.

• Has a specified direction.

To detect direction and disconnection events:

 whenever a connection [of class class]
is directly {connected to | disconnected from}
[an input of | an output of | the name of] item

When referring to a connecting that is directly connected to an item, G2 permits
the use of a local variable. You cannot use a local variable when referring to a
connection being directly disconnected from an item. Not using a local variable for
a disconnected connection prevents the possibility of attempting to refer to a
deleted item in the rule consequent.

Here are some examples:

whenever a connection of class pipe-connect is directly disconnected
from any tank T then start check-connection (T)

whenever a connection X is directly connected to
inflow- of any tank T then start -inflow-rate (T, X)

whenever a connection of class my-connect is
directly connected to an input to any tank T
then conclude that the input-connection of T is true

System Procedures for Connections

G2 provides two system procedures for use with connections:

g2-get-connection-vertices
(connected-item: class item, connection: class connection,
integer-list: class integer-list)

This procedure accepts a single item with a connection, and populates an integer
list with the connection segments and vertices, as described in Creating an
Existing Connection Programmatically.

g2-get-items-connected-to-port
(connection-source: class item, connected-class:
symbol, port-name: symbol, connected-items: class item-list)
731

This procedure finds items connected to the port of any given item, where the
port name is given by an expression.

Functions for Connections
Several system-defined functions provide two categories of information about
connections:

• Type and location of connections.

• Existence of connectedness.

Checking Connection Information

These are the functions that check the:

• Connection direction.

• Portname of a connection.

• Connection position.

• Side of a connection.

• Connection style.

To check the connection direction:

 connection-direction
(item1, connection1)
-> symbol

Returns input, output, or none to indicate whether connection1 connected to
item1 is directed and, if so, whether it is an input or output connection. The
connection1 must be connected directly to item1.

If this function returns a direction of none, you cannot specify with direction
none in a connection statement. Instead, do not enter any direction statement.

To check the connection portname:

 connection-portname
(item1, connection1)
-> symbol

Returns a symbol indicating the portname at which connection1 attaches to
item1.
732

Functions for Connections
To check the connection position:

 connection-position
(item1, connection1)
-> integer

Returns an integer indicating the position along the side of item1 at which the
connection1 is attached. The value is relative to the side of the icon. For
example, if an icon is 30 workspace units square, here is how the connections
at locations 10 and 20 are returned:

To check the connection side:

 connection-side
(item1, connection1)
-> symbol

Returns top, bottom, left, or right, indicating the side of item1 to which the
connection1 is attached.

To check the connection style:

 connection-style
(item1, connection1)
-> symbol

Returns either diagonal or orthogonal as the style of connection1.

Detecting Connectedness

These functions are predicates that check:

• Whether two items are directly connected in any way.

• Whether two items are directly connected in a specified direction.

• Whether two items are connected via specified (s).

For a description of what constitutes connectedness, see Defining Connectedness.

You can constrain the execution of the body of a rule that detects a
connection/disconnection event (described under Detecting Connection and
Disconnection Events) by making such execution conditional on one of these
functions.

10

20

10

20

10

10

20

20
733

To check whether two items are directly connected in any way:

 items-are-connected
(item1: class item, item2: class item)
-> truth-value

Returns true if any connection whatsoever directly connects item1 and item2;
else false. Example:

To check whether two items are directly connected in a specified direction:

 items-are-connected-with-direction
(item1: class item, item2: class item, item1-direction: symbol)
-> truth-value

Returns true if a connection runs from item1 to item2 and has the specified
direction relative to item1; else false. Example:

To check whether two items are directly connected at specified ports:

 items-are-connected-at-ports
(item1: class item, item2: class item,
name1: symbol, name2: symbol)
-> truth-value
734

Describing Connections
Returns true if a connection runs from item1 to item2 and connects to name1 on
item1 and name2 on item2; else false. To specify that a name does not matter,
specify any. Example:

Describing Connections

Use the Describe facility to provide useful information about the location and
direction of connections.

Click directly on a connection to get to its item menu and select describe. If you
click too close to the connection, you will get the item menu for the object, rather
than the connection. Similarly, if you click too close to an unconnected end of a
connection, you will extend the connection instead of getting the item menu.

G2 provides this information for a directional connection:
735

If a connection is non-directional and the horizontal distance between connection
endpoints is greater than the vertical distance between connection endpoints,
describe displays information such as the following:

left end connected to enet--1 at enet-out and right end
connected to enet--2 at enet-in

If the connection is non-directional and the vertical distance is greater than the
horizontal, describe displays information such as the following:

top end connected to enet--1 at enet-out and bottom end
connected to enet--2 at enet-in

where enet-out and enet-in are optional names.
736

19
Relations
Describes how to associate items in a non-graphical way.

Introduction 738

Using Relation Definitions and Relations 738

Creating a Relation Definition 739

Using Permanent Relations 740

Specifying the Cardinality of Relations 742

Defining an Inverse Relation 743

Defining a Symmetric Relation 745

Creating a Relation 746

Removing a Relation 750

Replacing a Relation 751

Invoking Rules Using Relations 755

Working with Transient Items 759

Updating Relations While a KB is Running 760

Expressions Involving Relations 762

The Relation Class 765

Describing the Items That Participate in a Relation 767
737

Introduction
A relation associates items in a KB, without drawing physical connections
between the items. A single item can be related to one or more items, and multiple
items can be related to one or more items.

You can create and break relations programmatically, which can cause forward
chaining in rules. You can also refer to items based on their relationship to other
items, and use relations to limit the scope of generic statements.

Using Relation Definitions and Relations
A relation definition creates a type of association between items of a first class
and items of a second class. A relation is an association of a particular name
between two particular items. A relation is an item of the relation class.

• The first class of a relation is known as the relation source.

• The second class is known as the relation target.

Note There is no class within G2 called relation definition. However, this chapter uses
the term to differentiate between the item you create to specify the name and
properties of a relation (the relation definition) and the association that can exist
between items (the relation), based on that definition.

To use relations in your KB, first you create a relation definition, then you use the
conclude action to create, remove, or replace relations based on their definition.

For example, you can define the relation the-holding-tank-for to represent an
association between two items of the class tank. Based on this relation definition,
you can conclude that one tank is the-holding-tank-for another tank.

By default, relations are transient: they disappear when you reset G2, and are not
included in a saved KB. You can create permanent relations in your KB as
described in Using Permanent Relations.

You can work with relations programmatically in the following ways:

• Forward chain to rules that detect when relations are established and broken.

• Use an item expression to test for the existence of a relation.

• Use an item expression to refer to items that participate in relations.
738

Creating a Relation Definition
Creating a Relation Definition
When you create a relation definition, you are creating an instance of the relation
class. For a summary, see The Relation Class.

To create a relation definition:

1 Select KB Workspace > New Definition > relation.

2 Display the relation definition table, and edit the relation-name attribute to
specify the relation name.

3 If the relation is not to be symmetric, edit the inverse-of-relation attribute to
specify an inverse name.

4 Enter the relation source class in the first-class attribute.

5 Enter the relation target class in the second-class attribute.

When you create a relation based on its definition, you conclude that one or more
items of the first-class are related to one or more items of the second-class via the
relation-name. For more information, see Creating a Relation.

Choosing a Relation Name

When specifying the relation-name attribute of a relation definition, choose a
name that is descriptive and meaningful when read in a conclude action.

Unlike most items, a relation definition does not include a names attribute. The
name of a relation is the symbol you provide in the relation-name attribute. For a
description of how you use the conclude action with relations, see Creating a
Relation.

For example, you might conclude that a particular tank is the-holding-tank-for
another tank:

conclude that tank-1 is the-holding-tank-for tank-2

When concluding that a particular tank is one of many holding tanks for another
tank, you might use the prefix a in the relation name:

conclude that tank-1 is a-holding-tank-for tank-2

Sometimes relation names refer to a location, for example, a bottle might be
located-at a station:

conclude that bottle-1 is located-at washing-station
739

Using Permanent Relations
You can create permanent relations by completing a relation definition and
changing the value of its relation-is-permanent attribute to yes. The relation then
persists when you reset G2, and is included when you save the KB. provided that
the items that participate in the relation comply to permanency, as described
under Complying to Permanency.

Leaving the relation-is-permanent attribute with its default no value causes
relations to be transient: instances of the relation are removed at KB Restart and
Reset operations, and are not saved with the KB.

Understanding How G2 Saves Relations

Each time you create or conclude a relation, three items participate in
that relation:

• The definition of the relation you are creating.

• The relation source.

• The relation target.

G2 creates source and item relations for every relation you create between two or
more items. Consider the next diagram:

Given the connected-to relation definition, if you conclude that pc-1, a PC
computer, is connected-to ps-1, a printer, G2 maintains three pieces of knowledge
to sustain that relation:

• The connected-to relation definition.

• A relation for pc-1 indicating it is connected-to ps-1.

• A relation for ps-1 indicating that pc-1 is connected to it.
740

Using Permanent Relations
Complying to Permanency

For a relation to persist through a reset of G2, the relation definition, and the items
that participate in that relation, must be permanent. G2 establishes a relation even
when one or both of the items are transient, but it deletes such relation on reset
without posting a message.

For G2 to save relations as permanent knowledge, each item must be permanent
and uniquely identifiable during a KB save and subsequent load operation. G2
assures that every item in a G2 process is uniquely identifiable by its uuid
attribute which is saved with the KB. However, if you change the value of a
related item’s uuid you can jeopardize successful reloading of a relation. See
Changing a UUID at Load Time.

Restoring Permanent Relations

After successfully saving permanent relations, G2 restores each relation when you
load the KB. The inability to restore a previously saved relation is called a
rendezvous failure. Such failures can occur if G2 is unable to locate one or more
of the participating relation items at KB load time.

This is how G2 handles rendezvous failures:

Note Inter-module item references in permanent relations do not compromise single-
module KB saving.

If... Then G2...

G2 cannot locate the relation
definition

Deletes all relations with that
name.

The UUID reference of a relation in
one item does not correspond to
another qualifiable item.

Deletes the missing relation.

One item relates to another, but
only one item has a relation,
possibly because only selected
modules were saved in a KB save
operation

Replaces the missing relation
automatically.
741

Specifying the Cardinality of Relations
An important property of a relation is its cardinality, which specifies how many
instances of the relation’s first class can be related to how many instances of the
relation’s second class.

You specify the cardinality of a relation in the type-of-relation attribute, which can
be one of the values listed in the following table:

Type-of-Relation
Attribute Value Description

one-to-one An instance of the relation’s first class can be related to at
most one instance of the relation’s second class, and an
instance of the second class can be related to at most one
instance of the first class.

For example, each server on a network can have only one
backup server, and each backup server can support only one
server.

one-to-many An instance of the relation’s first class can be related to one
or more instances of the relation’s second class, and an
instance of the second class can be related to at most one
instance of the first class.

For example, one local-area network supports connections to
one or more computer nodes, and each computer node can
be connected to only one local-area network.

many-to-one One or more instances of the relation’s first class can be
related to at most one instance of the relation’s second class,
and an instance of the second class can be related to one or
more instance of the second class.

For example, each of many computer nodes can be connected
to one local-area network, and the local-area network
supports connections to more than one computer node.

many-to-many An instance of either of the relation’s classes can be related to
one or more instances of the other class. This is the default
cardinality.

For example, each printer in a local-area network can be the
print server for more than one computer node, and each
computer node on the network can be served by one or more
printers.
742

Defining an Inverse Relation
As soon as you enter the relation name, the first class, and the second class in the
relation’s table, G2 displays a description of the possible relations based on the
type of relation. If you change the type of relation, G2 updates this description.

For example, the following description shows how two computers are related
based on a many-to-many relation named in-communication-with:

Defining an Inverse Relation
When defining a relation, you can also define an inverse relation, which is a
relation between a relation target (the second class) and a relation source (the first
class). You specify the name of the inverse in the inverse-of-relation attribute.

The following figure shows a relation and an inverse relation between two items,
A and B. The relation X is the relation name, and the relation Y is the inverse
relation. The arrow between the two items represents the relation.

If you define a relation with an inverse, concluding an instance of that relation
also concludes an instance of the inverse relation.

Relation with inverse relationA B
X

Y
Inverse relation

Relation
743

Concluding an inverse relation automatically concludes the relation. For example,
if A is the first-class and B is the second-class, you can conclude that A is related
to B, or that B is related to A.

For example, the relation previous-linestation-for could specify an inverse relation
named next-linestation-for, as this table shows:

Note If you have specified an inverse relation, you cannot also specify that the relation
is symmetrical. The relation-is-symmetric attribute must be no. A symmetrical
relation creates its own inverse relation, which has the same name as the relation,
as described in Defining a Symmetric Relation.

The inverse of a relation has the inverse cardinality of that relation, as this
table shows:

To create an inverse relation:

1 Enter any allowable value in the type-of-relation attribute.

2 Use the default value of no for the relation-is-symmetric attribute.

3 Enter a name for the inverse relation in the inverse-of-relation attribute.

Note G2 prevents you from specifying a value for the inverse-of-relation attribute when
the relation-is-symmetric attribute is yes.

For an inverse relation, when
you conclude this relation...

G2 also concludes
this inverse relation...

grinding-station-1
is the-previous-linestation-for
rinsing-station-2

rinsing-station-2
is the-next-linestation-for
grinding-station-1

If the relation’s cardinality is... Then its inverse relation is...

one-to-one one-to-one

one-to-many many-to-one

many-to-one one-to-many

many-to-many many-to-many
744

Defining a Symmetric Relation
Defining a Symmetric Relation
A relation can be symmetric or not. You specify whether a relation is symmetric
in the relation-is-symmetric attribute.

By default, relations are not symmetric; the default value of relation-is-symmetric
is no. This means that when you create a relation between two items, by default,
G2 creates a single relation between the relation source and the relation target.
Further, relation-is-symmetric must be no when creating inverse relations.

If you define a relation to be symmetrical, however, concluding an instance of that
relation also concludes an inverse relation of the same name as the relation.

You can also conclude the inverse relation, which automatically concludes the
relation. For example, if A is the first-class and B is the second-class, you can
conclude that A is related to B, or that B is related to A.

Note For symmetric relations, when concluding the relation or its inverse, the relation
source and relation target can be items of the first-class or second-class. For
example, A can be an item of the second-class and B can be an item of the first-
class, or vice versa.

The following figure shows a relation between two items, A and B, first with no
symmetric relation, then with a symmetric relation. The relation X is both the
relation name and the inverse relation name of the symmetric relation. The arrow
between the two items represents the relation.

A Relation with no symmetric relation

Relation with symmetric relation

B
X

A B
X

X
Symmetric relation

Relation

Relation
745

For example, a relation between two computers is symmetric when one computer
is in-communication-with a second computer, and the second computer is also
in-communication-with the first computer:

Note You can only create symmetric relations between relations whose cardinality is
also symmetrical: one-to-one or many-to-many.

To create a symmetric relation:

1 Specify the type-of-relation attribute as either one-to-one or many-to-many.

2 Use the default specification of none in the relation definition’s inverse-of-
relation attribute.

3 Click on the value of the relation-is-symmetric attribute, and select change to
"yes" from the menu.

Note The change to "yes" menu choice is only available when the value of inverse-of-
relation is none.

Creating a Relation
You can create a relation between:

• Single items.

• Classes of items.

• A single item and a class of items.

• A class of items and a single item.

Using Conclude to Create Relations

You use a conclude action to create a relation between two relation items
or classes.

To conclude a relation value:

 conclude that {item} is [{not | now}] relation-name item

For a symmetric relation,
when you conclude this relation...

G2 also concludes this
symmetric inverse relation...

computer-a
is in-communication-with
computer-b

computer-b
is in-communication-with
computer-a
746

Creating a Relation
The first item serves as the relation source, and the second item serves as the
relation target. In general, the first item returns an instance or class of the
first-class, the second item returns an instance or class of the second-class.

The exception is a symmetric relation, where the expressions can be items of the
first or second class. See the note under Defining a Symmetric Relation.

The not statement breaks an existing relation, while the now statement establishes
a new relation by breaking an existing one when doing so violates the relation’s
cardinality. If you do not specify either not or now, you can only conclude a
relation between items when it does not violate the relation’s cardinality.

You can conclude all types of relations by using this syntax. Here are some
examples of concluding different types of relations:

Example of Creating a Relation between Two Items

For example, this action button creates a relation between computer-1 and
computer-2, which are both instances of the computer class. In the relation
definition, first-class and second-class both specify the computer class.

Notice that the relation type is one-to-one. This means that you cannot conclude
another relation named in-communication-with between computer-1 and another
computer, since doing so would violate the relation’s cardinality.

Relation Type Example of Conclude Statement

one-to-one conclude that node-1 is not-responding-on network-1

one-to-many conclude that node-1 is the-server-for every node

many-to-one conclude that every node is a-part-of network-8

many-to-many conclude that every node is a-component-of
every network

in-communication-with
747

Note If you attempt to conclude a relation between an item that is already participating
in a one-to-one relation of the same name, G2 signals an error.

Example of Creating a Relation between an Item and
a Class

You can create a relation between more than one instance of a class by using an
expression that returns a class instead of an item. (Note that you can also create
multiple conclude statements to accomplish the same thing.)

For example, this button creates a relation between computer-1 and every
instance of the computer class:

Note In this example, G2 also concludes a relation between computer-1 and itself,
because the relation source is also an instance of the second class.

You can only conclude a relation when doing so does not violate the relation
definition’s cardinality.

Note If you attempt to conclude a relation that violates the relation’s cardinality, G2
signals an error.

Tip Use an alternative form of the conclude action to break existing relations before
concluding a new relation, when concluding the relation violates the relation’s
cardinality.

in-communication-with
748

Creating a Relation
G2 creates, at most, one instance of a particular relation between the same two
items. Thus, if you conclude a relation between two items when a relation of that
name already exists between the items, G2 does not create another relation.

You can conclude multiple instances of different relations between the same
two items.

Using a Sequence to Conclude a Relation

You can also conclude relations between items by specifying a sequence value for
the relationships virtual attribute of an item.

To use a sequence for creating a relation:

 conclude that the relationships of item-of-interest = sequence (relationships)

where the sequence of relationships consists of one or more structures of
relation names and the items to which the relation applies. Each structure in
relationships contains these subattributes:

G2 uses the value of the relation-is-inverted subattribute of the relationships
virtual attribute to determine the directionality of the relation being set under
these conditions:

• The relation is not symmetric.

• The relation does not specify an inverse.

• Both the relation target and the relation source are instances of the first-class
of the relation.

Subattribute Type Description

relation-name-
reference

symbol The name of the relation, which
can be either the relation-name or
the inverse-of-relation of the
relation.

relation-is-
inverted

truth-value An attribute that G2 sets to
determine whether the relation is
symmetric (true) or not symmetric
(false) when concluding
relationships.

related-items sequence A sequence of items with the
relation-name-reference
relationship to the item-of-interest.
749

Example of Creating a Relation with a Sequence

As an example, a KB includes two relation definitions, married-to and a-daughter-
of. Three items exist, george, bill, and edna. Using the conclude action without a
sequence, you could create two relations for edna:

conclude that bill is married-to edna and conclude that
edna is a-daughter-of george

To conclude the same relationships by using a sequence, use an action such
as this:

conclude that the relationships of edna =
sequence(

structure(relation-name-reference: the symbol married-to,
related-items: sequence(bill)),

structure(relation-name-reference: the symbol a-daughter-of,
related-items: sequence (george))))

Caution Concluding relations using the relationships virtual attribute replaces the item’s
current relations. Concluding relations using the without-a-sequence grammar
adds relations to an item while maintaining the item’s current relations.

Removing a Relation
You use a conclude action with the word not to remove a relation instance
between two relation items or classes.

To remove a relation:

 conclude that item is not relation-name item

For a description the arguments, see Creating a Relation.

For example, this button breaks a relation between computer-1 and computer-2,
which are instances of the computer class. In the relation definition, the first-class
and second-class attributes both specify computer class.
750

Replacing a Relation
Similarly, you can break relations between more than one instance of a class by
using a class expression. For example, this statement breaks all relations between
every instance of the computer class:

conclude that every computer
is not in-communication-with
every computer

Removing Relations by Deleting Items

If you delete an item that participates in a relation, G2 removes the relation.

Deleting a relation in this manner does not cause forward chaining in rules. For
more information, see Invoking Rules When a Relation is Deleted.

Replacing a Relation
In general, when concluding a relation, G2 signals an error if you attempt to
conclude a relation that violates the relations’s cardinality. You can use an
alternative form of the conclude action to break existing relations before
concluding a new relation.

To replace a relation between items or classes:

 conclude that item is now relation-name item

Using the Now Syntax

When you use the now syntax, G2 determines whether adding the instance of the
relation violates the cardinality of a relation. If it does, G2 deletes the conflicting
relation when it establishes the new one.

For example, suppose not-responding-on is a one-to-one relation between a node
and a network and you conclude the following relation:

conclude that node-1 is not-responding-on network-1

Then, suppose you conclude the following:

conclude that node-1 is now not-responding-on network-2

This causes G2 first to delete the not-responding-on relation instance between
node-1 and network-1 and then to establish a new not-responding-on relation
between node-1 and network-2.

When replacing a one-to-one relation, G2 deletes existing relations in which the
relation source or the relation target participate before creating a new relation.
When replacing a one-to-many relation, however, G2 only breaks the existing
relation between the relation target and another item; it leaves intact any existing
751

relations between the relation source and another item. G2 does not break any
existing relations when replacing a many-to-many relation.

The following table shows how relations are deleted, if necessary, according to
the type of relation:

Example of Replacing a One-to-One Relation

For example, assume computer-1 is related to computer-2 by an
in-communication-with relation. The following action button breaks the relation
between computer-1 and computer-2, and creates a new in-communication-with
relation between computer-1 and computer-3. The cardinality of the relation is
one-to-one.

For this type
of relation...

G2 deletes the existing
relation instance with items of...

one-to-many The second class

many-to-one The first class

one-to-one The first and/or the second class
752

Replacing a Relation
Example of Replacing Multiple One-to-One
Relations

Suppose computer-1 is related to computer-2, and computer-3 is related to
computer-4, both via an in-communication-with relation. The action button in this
figure breaks both existing relations, and creates a new in-communication-with
relation between computer-1 and computer-4.
753

Example of Replacing a Many-to-One Relation

Suppose computer-1 is related to computer-2, and computer-3 is related to
computer-4 via a many-to-one relation. The action button in this figure breaks the
existing relation between computer-1 and computer-2, and creates a new in-
communication-with relation between computer-1 and computer-4. Notice that
computer-3 is still related to computer-4 because the relation allows more than
one relation source to be related to the same relation target.
754

Invoking Rules Using Relations
Example of Replacing a One-to-Many Relation

Suppose computer-1 is related to computer-2, and computer-3 is related to
computer-4 via a one-to-many relation. The action button in this figure breaks the
existing relation between computer-3 and computer-4, and creates a new in-
communication-with relation between computer-1 and computer-4. That
computer-1 is still related to computer-2 because the relation allows for one
relation source to be related to more than one relation target.

Note If the computers were related via a many-to-many relation, G2 would not break
any existing relations.

Invoking Rules Using Relations
Relations can cause forward chaining to rules under the following circumstances:

• When a rule tests whether a relation is created or deleted.

• When the antecedent of a rule refers to an item that participates in a relation.

• When a generic rule refers to an item that participates in a relation.

• When a generic rule refers to a variable that participates in a relation, and the
variable receives a new value or expiration time.

Note When G2 evaluates whether a relation exists between two items, G2 does not
backward-chain to rules that can establish a relation.
755

Using Whenever Rules to Detect Relatedness

You can create a whenever rule to detect that two items have become related
irrespective of the relation involved.

To detect relatedness:

 whenever item becomes related to item

For example:

whenever any plane P becomes related to any runway R
then start check-takeoff-or-landing (P, R)

A whenever rule that detects a relation event fires every time any relation is
made. Thus if two items become related by one relation, and then by another, a
becomes related to rule fires twice, once for each relation established.

Using Whenever Rules to Detect Cessation of
Relations

You can create a whenever rule to detect that two items have ceased to be related
irrespective of the relation involved.

To detect cessation of relations:

 whenever item ceases to be related to item

For example:

whenever any plane P ceases to be related to departure-schedule
then conclude that the departure of P is complete

Deleting an item that participates in a relation does not invoke any whenever
rules checking for a ceases to be related to event, because the item no
longer exists.

Invoking Rules When a Relation is Created

When you create a relation by using a conclude action, G2 detects this event as
part of processing, which causes forward chaining to rules. You test when one or
more relations is created in the antecedent of a rule.

To invoke rules when a relation is created:

 item becomes relation-name item
756

Invoking Rules Using Relations
In this example, the generic if rule on the left concludes a new a-member-of
relation, if N is connected to R. When G2 detects the creation of this relation, G2
invokes the generic whenever rule on the right.

Invoking Rules When a Relation is Deleted

When you delete a relation by using a conclude action with the word not, G2 also
detects this event during processing, which also causes forward chaining to rules.
You test when one or more relations is deleted in the antecedent of a rule.

To invoke rules when a relation is deleted:

 item ceases to be relation-name item

For example, the generic if rule on the left deletes the relation named
a-member-of, which invokes the generic whenever rule on the right:

Note Deleting a relation by deleting an item that is participating in the relation does not
cause forward chaining to rules.

For a description of whenever rules and the events they can detect, see Whenever
Rules.
757

Invoking Rules That Test Whether a Relation Exists

You can test whether a relation exists, in the antecedent of a rule. When G2 detects
the creation or deletion of the relation, G2 invokes this rule via forward chaining.

You test for the existence of one or more relations in the antecedent of a rule.

To invoke rules that test whether a relation exists:

 if item is [not] relation-name item
-> truth-value

For example, the generic if rule on the left concludes a new a-member-of relation,
if N is connected to R. The rule on the right tests for the existence of this relation.
G2 invokes this rule when the relation is created.

To test whether N is not related to the parent-network of R, you would use:

if N is not a-member-of the parent-network of R

Invoking Rules That Refer to Items with Relations

You can use an expression in the antecedent of a rule to refer generically to a class
of items that participate in a relation. When G2 detects the creation or deletion of
the relation, G2 invokes this rule via forward chaining. You refer generically to a
class of items that are related to one or more items in the antecedent of a rule.

To invoke rules that refer to items with relations:

 for any class-name [local-name] that is relation-name item
758

Working with Transient Items
In this example, the rule on the left concludes the a-member-of relation, which
triggers the rule on the right that refers generically to any node that is a-member-
of the parent network of the router.

Invoking Rules That Refer to Variables
with Relations

You can use an expression in the antecedent of a rule to refer generically to a
variable that participates in a relation. When the variable receives a value or an
expiration time, G2 invokes this rule via forward chaining.

You refer to variables that are related to items by using the same syntax as
outlined in Invoking Rules That Refer to Items with Relations.

For example, the rule on the left concludes a value for the variable N. router via
the relation named a-member-of, where node is a subclass of the system-defined
symbolic variable class. When the relation is created, the rule concludes a value
for the variable, which invokes the rule on the right that refers generically to the
variable that is participating in the relation.

Working with Transient Items
Some relations are transient knowledge in your KB; thus, resetting the current KB
deletes all relations, and saving the current KB does not save these relations.
However, saving the current KB into a KB snapshot file does save all the KB’s
relations. See Saving Permanent and Transient Data in Snapshot KBs for more
information about KB snapshot files.
759

You can establish, break, and replace relations based on:

• A relation definition that is either permanent or transient.

• A relation source or relation target that is either permanent or transient.

For information on how to use an action to change the permanent/transient
status of a relation definition, relation source, or relation target, see make.

Working with Deactivated and Disabled Items

You can establish, break, and replace relations that are based on:

• A relation definition that is deactivated or disabled.

• A relation source or relation target that is activated or enabled; you cannot
establish, break, or replace a relation when a relation source or item is
deactivated or enabled.

If a relation definition, relation source, or relation target becomes deactivated or
disabled while existing relations exist, G2 does not break the relation. However,
you cannot use an expression to refer to deactivated or disabled items that
participate in relations.

Updating Relations While a KB is Running
You can change a relation definition while the KB is running, paused, or reset. In
general, when G2 is not reset, changing a relation definition changes any
instances of that relation definition accordingly. For example, if you change the
name of a relation definition while relations of that name exist, G2 renames the
relations.

Note We do not recommend making significant changes to relation definitions while
your KB is running and while relations exist, because G2’s short-term
performance can be significantly degraded.

The following sections describe special precautions that you should take when
making changes to relation definitions while your KB is not reset and while
existing relations exist.

Updating the First Class and Second Class

If you update the first-class or second-class attributes of a relation definition,
G2 preserves existing relations based on the new class, as long as the new class is
a superior class of the existing class; otherwise, it may delete existing relations if
an item conflicts with the new class.
760

Updating Relations While a KB is Running
Updating the Type of Relation

If you change the cardinality of a relation to be more restrictive, for example,
changing a many-to-one relation to a one-to-one relation, G2 removes all relation
instances that conflict with the new relation type, leaving only one. G2 chooses
the remaining relation arbitrarily from the original set.

Updating Symmetric Relations

For relations whose relation-is-symmetric attribute is yes, the effect on existing
relations of changing the first-class, second-class, type-of-relation, and relation-is-
symmetric attributes can be more complex, depending on the classes of items that
you specify.

If the items participating in the relation are subclasses of both the first class and
the second class, and you change the definition such that G2 must delete one or
more relations, G2 arbitrarily determines which item is the relation source and
which item is the relation target.

Updating Relations While Executing Procedures

If a statement or action in a procedure refers to a relation, and you make a change
to the relation definition while the procedure is executing that statement, the
procedure continues to execute using the existing relation. Any changes to the
relation are not visible to the procedure’s execution.

For example, given a for statement in a procedure that refers to a set of items
based on their relation to another item, if you change the definition of that
relation while the loop is processing, G2 neither adds to nor removes from the
definition of the set of items.

Similarly, if a local name in a procedure refers to an item that participates in an
instance of a relation, and you change the definition of the relation while the
procedure is executing, G2 uses the existing value of the local name.

Updating a Relation While a Rule is Executing

If a rule refers to a relation, and you change its relation definition while the rule is
executing, the rule continues executing using the existing relation.

Note Changing the definition of a relation can cause G2 to remove relations. For each
relation that is removed for this reason, G2 generates a ceases to be related event.
In turn, generating these events causes G2 to invoke whenever rules that refer to
these events. For more information, see Invoking Rules Using Relations.
761

Updating a Relation When Saving a KB
Snapshot File

After you begin saving the current KB to a KB snapshot file (by invoking the
g2-snapshot system procedure), if you change a relation definition, G2 first writes
any relations affected by the change to the file before changing relations in the
current KB.

Expressions Involving Relations
G2 provides the following expressions involving relations.

Event Expressions

To detects the creation or deletion of a relation:

 item {becomes | ceases to be} relation-name item

For information on using this expression to forward chaining to rules, see
Invoking Rules When a Relation is Created and Invoking Rules When a Relation
is Deleted.

Logical Expressions

You can test for the existence of a relation to produce a truth-value that indicates
whether one item participates in a relation of the specified kind with
another item.

To test for the existence of a relation with a logical expression:

 item is [not] relation-name item
-> truth-value

For example:

if my-item is not aligned-with my-message then
conclude that the status of my-item is unaligned

For information on using this expression to forward chain to rules, see Invoking
Rules That Test Whether a Relation Exists.

Relation Participation Expressions

Two expressions return information about relation participation as:

• The relationships in which an item participates.

• The items participating in a relation.
762

Expressions Involving Relations
Obtaining the Relationships of an Item

Items include a hidden attribute, relationships. When you refer to the this
attribute, G2 returns a sequence of structures describing the relations in which the
given item is participating.

To refer to the relationships of an item:

 the relationships of item-of-interest
-> relationships

If the item-of-interest is not participating in any relationships, the expression
returns the empty sequence, sequence(). For a complete description of this
expression, see Referring to the Relationships of an Item.

Obtaining Items Participating in a Relation

You can refer to a relation’s items-in-this-relation hidden attribute. G2 returns a
sequence of the items participating in the relation.

To refer to the items participating in a relation:

 the items-in-this-relation of relation-of-interest
-> participating-items

Argument Description

item-of-interest The name of the item whose relations you
are testing.

Return Value Description

relationships A sequence of structures, each consisting of
these subattributes:

• relation-name-reference

• relation-is-inverted

• related-items
763

If no items are participating in the given relation, G2 returns the symbol none.

As an example of using this expression, in a KB with a married-to relation
definition, you could create relations between four items with this
conclude action:

conclude that bill is married-to edna and conclude that george is married-to janet

Such an action results in four items participating in the married-to relation:

• bill

• edna

• george

• janet

A reference to:

the items-in-this-relation of married-to

returns this sequence of symbols:

sequence(JANET, EDNA, GEORGE, BILL)

Generic Item References

You can reference the class of items that is related to any item or class.

To reference generic items by their relations:

 the class-name [local-name] that is relation-name item
-> item

With the the quantifier, this generic reference expression produces the one and
only item of the specified class (or any of its subclasses) that participates in a
relation of the specified kind with the specified item. With the any quantifier, this
expression produces the set of items of the specified class (or any of its subclasses)

Argument Description

relation-of-interest The name of the relation in which items are
participating.

Return Value Description

participating-items A sequence of symbols, each naming an
item participating in the relation-of-interest.
764

The Relation Class
that participate in relations of the specified kind with the specified item. For
example:

if the status of any mixing-vat that is controlled-by vat-controller-1 is hot
then ...

For information on using this generic reference to forward chain to rules, see
Invoking Rules That Refer to Items with Relations and Invoking Rules That Refer
to Variables with Relations.

The Relation Class
These are the class-specific attributes of the relation class.

Attribute Description

first-class Name of the class of items that participate as the relation
source. For example, if a tank is part-of a subsystem, then
tank is the first class.

Allowable values: Any class name

Default value: item

second-class Name of the class of items that participate as the relation
target. For example, if a tank is part-of a subsystem, then
subsystem is the second class.

Allowable values: Any class name

Default value: item

relation-name Name of the relation.

Allowable values: Any valid symbol that is unique within the KB

Default value:

inverse-of-relation Name of an automatically defined relation that is the
inverse of relation-name. When a relation defines an
inverse, concluding the relation also concludes the inverse
relation.

Allowable values: Any valid symbol that is unique within the KB
765

Default value: none

Notes: You can enter an inverse relation only when the relation is
not symmetric.

type-of-relation Cardinality of the relation.

Allowable values: one-to-one
one-to-many
many-to-one
many-to-many

Default value: many-to-many

relation-is-
symmetric

Whether G2 creates an inverse relation of the same name
as the relation between items of the second class and items
of the first class.

Allowable values: yes
no

Default value: no

Notes: If a relation is symmetric, G2 requires that the inverse-of-
relation attribute contains the value none (that is, the
relation name and inverse relation name are the same).

relation-is-
permanent

Determines whether G2 will save the relation through a
KB restart and reset operation. For more information, see
Using Permanent Relations.

Allowable values: yes
no

Default value: no

Attribute Description
766

Describing the Items That Participate in a Relation
Describing the Items That Participate in
a Relation

You use the Describe facility to display the relations in which an item participates.
You can describe both the relation source and the relation target.

To describe a relation source:

 Display the relation source’s menu and select describe.

For example, suppose computer-1 is related to computer-2 via a non-symmetric
in-communication-with relation.

Describing computer-1 displays the following temporary workspace. G2 displays
the relation target using a short description provided by the Describe facility:

To describe the relation target:

 Click on the short description of the relation target in the Describe workspace,
and select describe.

or

 Click on the relation target on the workspace and select describe.

Describing computer-2 displays the following temporary workspace. Notice that
the description does not show an inverse relation for the relation target. The
description simply shows the relation in which computer-2 participates.

Relation source

Relation target

Relation name

(short representation)

Relation target

Relation source

Relation name
767

768

Part IV
Computational
Capabilities
Chapter 20: Actions

Describes each G2 action and shows you how to use it.

Chapter 21: Expressions

Describes the purpose and syntax of each G2 expression.

Chapter 22: Procedures

Shows how to define, customize, and use G2 procedures.

Chapter 23: Methods

Shows how to define and use G2 methods.

Chapter 24: Rules, Inferencing, and Chaining

Describes how G2 invokes rules to perform actions.

Chapter 25: Formulas

Describes generic and specific formulas and their use.

Chapter 26: Text Parsing and Manipulation

Describes capabilities for manipulating text and substrings, parsing and tokenizing text
using regular expressions, and interconverting text between the Gensym and Unicode
character sets.
769

Chapter 27: XML Parsing

Describes how to parse XML code and make callbacks to user-defined procedures.

Chapter 28: Functions

Lists system-defined functions and describes how to create new functions.

Chapter 29: Publish/Subscribe Facility

Describes how to use the publish/subscribe facility for event subcription.

Chapter 30: G2 Graphical Language (G2GL)

Describes G2GL, a graphical language for describing processes.
770

20
Actions
Describes each G2 action and shows you how to use it.

Introduction 772

Executing Actions 772

Dictionary of Actions 774
abort 775
activate 777
change 778
conclude 783
create 786
deactivate 788
delete 789
focus 791
halt 792
hide 794
inform 796
insert 799
invoke 800
make 801
move 804
pause 805
post 806
print 807
remove 808
reset 809
rotate 810
set 811
show 812
shut down g2 818
start 819
transfer 821
update 824
771

Introduction
An action is a task that G2 executes. Actions often provide programmatic
equivalents to interactive tasks, such as printing a workspace, pausing the
knowledge base (KB), or changing the value of an item’s attribute.

Some actions require items to be transient. The effects of most actions performed
on permanent KB items revert when you reset the KB, unless you save the change
with a make permanent action. For example, if you rotate an icon, resetting the
KB causes the icon to revert to its previous position.

The effects of the following three actions persist when you reset the KB:

• conclude, to provide a new attribute value.

• show, to show an item or workspace.

• hide, to hide an item or workspace.

You can use actions in rules, procedures, user menu choices, and action buttons.
This example shows a series of actions: create, conclude, transfer, and make:

create a class-definition CD;
conclude that the class-name of CD = the symbol musical-selection;
conclude that the direct-superior-classes of CD =

sequence(the symbol object);
transfer CD to this workspace;
make CD permanent

Executing Actions

An action executes when control reaches it during execution of a procedure, rule,
action button, or user menu choice. When more than one action appears in one of
these contexts, the actions can execute sequentially or in parallel.

For sequential execution of a series of actions, G2 performs each statement in the
order in which it appears. Thus the following three statements, executed
sequentially, swap the values of var1 and var2:

conclude that var0 = var1;
conclude that var1 = var2;
conclude that var2 = var0
772

Executing Actions
For parallel execution of a series of actions, G2 first evaluates the arguments of
every action, and then executes each action. Thus, the result of executing these
actions in parallel:

conclude that var1 = var2;
conclude that var2 = var1

is to swap the values, rather than to assign the value of var2 to both var1 and var2,
which would happen if G2 executed the same statements sequentially.

The order in which G2 executes actions in parallel after evaluating their
arguments is not predictable: G2 may order their execution as needed to
optimize scheduling.

Executing Actions in Procedures

In a procedure, sequential execution is the default. Actions in a series therefore
execute sequentially unless they appear in a do in parallel statement, as described
under do in parallel.

Executing Actions in Other Contexts

In rules, action buttons, and user menu choices, parallel execution is the default.
Actions in a series therefore execute in parallel unless they are qualified by an in
order clause, as described under Specifying Sequential Execution.

Executing Iterative Actions

Sequential or parallel execution can also occur in the execution of a single action.
If an action iterates over a class of items, such as:

conclude that the pressure-status of every tire T is full

G2 finds each item to which the action can be applied (in this case, every tire) and
executes the action for each item it finds. If the action exists in a context where
sequential execution applies, G2 applies the actions to the items sequentially. If
the context specifies parallel execution, G2 applies the actions to all of the items
in parallel.

For more information about parallel and sequential execution within rules, see
Understanding Rule Invocation and Execution.
773

Further Information

The principles that govern the use of actions in rules apply to their use generally,
as described in Rules, Inferencing, and Chaining. For further information about
specifying actions, see in that chapter:

• Coding the Consequent.

• Executing Actions in the Consequent in Parallel.

• Executing Actions in the Consequent Sequentially.

Dictionary of Actions

The rest of this chapter lists all actions in alphabetical order, and provides
complete information about each one.
774

abort
abort
This action aborts a procedure or a procedure invocation. A procedure is an item.
A procedure invocation is a transient item that exists when G2 executes any
procedure whose class-of-procedure-invocation attribute has the value
procedure-invocation, or any subclass of that class.

To abort a procedure or procedure invocation:

 abort {procedure | method | procedure-invocation | method-invocation}

This statement illustrates how to abort a specific procedure invocation. The
symbol filling is the name of a user-defined relation.

abort the procedure-invocation that is filling gas-tank-1

The next statement illustrates how to abort a procedure using its name:

abort fill-gas-tank

For a description of procedures and procedure invocations, see Procedures.

Aborting a Procedure or Method

To abort a procedure or method:

 abort procedure

where procedure is one of:

• The name of a procedure.

• A generic reference to a procedure, expressed with the or every.

• A qualified method name.

You can use the statement abort this procedure only within a procedure or
method. When you abort a procedure, G2 aborts all invocations of that procedure.

Aborting a Procedure or Method Invocation

To abort a procedure or method invocation:

 abort procedure-invocation

where procedure-invocation is a statement referring to a procedure-invocation in
one of several ways, including every. When you abort a procedure-invocation, G2
aborts only the particular invocation. For example, you can refer to a procedure-
invocation from within a procedure or method as this procedure-invocation, or
you can specifically identify the procedure-invocation.

If you reference the method by using the class::method syntax, invoking the abort
action that way aborts all invocations of the method.
775

To refer to a procedure-invocation, the class-of-procedure-invocation attribute of
the procedure or method must have the value procedure-invocation.
776

activate
activate
This action activates an activatable subworkspace. For the subworkspace of an
item to be activatable, the superior item must include this configuration statement
in its item-configuration attribute:

declare properties as follows : activatable-subworkspace

When you start or restart a KB, G2 does not activate activatable subworkspaces:
they remain inactive until they are activated with the activate action. For more
information about the effects of activating a subworkspace, see How Activating
and Deactivating Affects Items.

To activate a subworkspace:

 activate the subworkspace of item

where item refers to:

• Any item whose class definition includes the configuration statement in its
instance-configuration attribute.

• Any item, capable of having a subworkspace, whose item-configuration
attribute includes the configuration statement.

An example is:

activate the subworkspace of every volvo

Note Disabling an activated subworkspace also deactivates it. Subsequently enabling
the subworkspace leaves it deactivated.

When you activate a subworkspace, G2 invokes any initially rules residing upon
the subworkspace and then starts scanning rules on the subworkspace after all
initially rules are complete. You cannot activate a subworkspace if its superior
item is:

• Disabled, by selecting Disable from its menu.

• On a workspace that has been disabled, by selecting Disable from the
KB Workspace menu.

• On an inactive subworkspace.

When you try to do so, G2 signals an error and does not activate
the subworkspace.
777

change
This action changes these properties of items:

• An array or list value element.

• The length of an array.

• The color attribute of an item.

• The name of an item.

• The size of an item.

• The text of an attribute.

• The text of a procedure, statement, free-text, or message.

The change action does not make permanent changes; the effects of the actions
are undone when you reset G2. In some cases, you can make these changes
permanent by using the make permanent action, as described under make.

You can also make many permanent changes by using the conclude action, as
described under conclude, in conjunction with attribute access, as described in
Attribute Access Facility.

Changing List and Array Elements

Using the change action with lists and arrays is described in Using Other List and
Array Expressions.

Changing the Color Attribute of an Item

To change the color of an item:

 change the color-attribute-name of item to {color-name | symbolic-expression}
change the color-pattern of item so that
{color-attribute-name is color-name} [, ...]
778

change

The color attribute you specify varies with the type of item. For example, only
connections have a stripe-color color attribute. Workspaces and messages have a
background-color, while messages and textual items, such as rules, have a
text-color.

Two versions of this action exist. The first lets you change a single color-attribute,
the second, change the color-pattern of, lets you change more than one color-
attribute of an item in one statement.

These examples show you how to change a single color-attribute, and then two
attributes, using the color-pattern of statement:

change the border-color of warning-message to red

change the color-pattern of subws-of-volvo so that background-color is wheat,
foreground-color is brown

If you try to change multiple icon regions by using the change the color-pattern
action, and a specified icon region does not exist, G2 signals an error.

You can provide a symbol of the form RGBrrggbb as a valid color name, where rr,
gg, bb, are the 8-bit hex values for red, green, and blue. For details, see Other
Literal Terms.

You can obtain the various color attributes of any item with color operations
systems procedures. For a description of these, see the G2 System Procedures
Reference Manual.

Changing the Icon Color Region of Instances

The change the icon-color of action changes any region of a system- or user-
defined region called icon-color.

All system-defined icons have multiple named regions, including icon-color. You
can use the color operations system procedures to get a list of all region names
and their corresponding colors, and then change them. The color operations
system procedures are described in the G2 System Procedures Reference Manual.

Element Description

color-name Any color or metacolor.

symbolic-expression Any expression evaluating to a color name.

color-attribute-name background-color
border-color
foreground-color
icon-color
stripe-color
text-color
779

To change an icon’s icon-color region:

 change the icon-color of item to color

Using this action has different results depending on how the icon is defined:

Changing the Color of Any Named Icon Region

You can change the color of any named icon region. Icon regions are described in
Defining Regions.

To change the color of an icon region:

 change the region-name icon-color of item to color-name

Use this action to change any icon region not called icon-color. This example
changes the region called inner-circle of the item instance circle1 to green:

change the inner-circle icon-color of cirle1 to green

You can provide a symbol of the form RGBrrggbb as a valid color name, where rr,
gg, bb, are the 8-bit hex values for red, green, and blue. For details, see Other
Literal Terms.

Use the color operations system procedures, described in the G2 System Procedures
Reference Manual to change multiple icon regions programmatically.

Changing the Name of an Item

Use this action to give an item a new names attribute value and to replace any
existing values.

You can use the change the name of action to generate names for transient items.

If the icon-description
of the class includes... Then the action has this effect...

A region called icon-color Changes only the color of the icon-
color region.

At least one color set to the
foreground metacolor

Changes the binding of the
foreground metacolor to the new
color. Subsequently adding an
icon-color region causes any
foreground color to revert to its
previous binding.

No foreground color and no
icon-color region

None.
780

change
To change the name of an item:

 change the name of item to symbolic-expression

An example is:

change the name of volvo to the symbol volvo-model-x

Note The names attribute requires a symbolic value, so you must precede the item
name using the symbol statement.

You can also use attribute access to reference and change most attribute values, as
described in Attribute Access Facility.

Minimizing the Size of a Workspace

Use this action to shrink wrap a workspace, which you refer to with any
kb-workspace expression.

To change the size of a workspace to its minimum size:

 change the size of kb-workspace to minimum

An example is:

change the size of subws-of-volvo to minimum

Changing the Text of an Attribute

Note In most cases, the attribute access facility supersedes the use of the change the
text of action. However, all such actions continue to be supported. Attribute
access is described in Attribute Access Facility.

Use this action to change the value of any user-defined attribute and most system-
defined attributes that you would otherwise change interactively with the Text
Editor. Unlike text-editor and conclude-action changes, the change the text of
action is not permanent unless it is followed by a make permanent action.
Without the make permanent action, the attribute will revert to its previous
permanent value when G2 is reset, even when the change the text of action is
followed by a text-editor or conclude-action change.

Note Changing the text of a rule deactivates the rule and then reactivates it. The
deactivation of the rule causes it to be removed from item arrays and lists.

To change the text of an item’s attribute:

 change the text of the attribute of item to quoted-message
781

Enter the quoted-message with surrounding quotation marks (""). If G2 detects an
invalid value for the changed attribute, G2 signals an error.

This example changes the class name of an class-definition, and makes the name
change permanent:

change the text of the class-name of auto-1 to "automobile";
make automobile permanent

This example transiently changes the scan-interval attribute of a rule:

change the text of the scan-interval of check-loss-rule to "10 seconds"

Note You cannot use this action to change the attribute values of tabular functions.

To make permanent changes to user-defined value attributes, use the conclude
action, described on Concluding Attribute Values. For information about
changing class definitions while G2 is running, see Changing Definitions.

Changing the Text of Textual Items

Use this change the text of action any time you wish to change any textual item
programmatically.

To change the text of a procedure, statement, free-text, or message:

 change the text of {procedure | statement | free-text | message}
to text-expression

This action changes the text of a procedure, free-text, message, or statement
(including generic formulas, rules, function definitions, units of measure, and
remote procedure and foreign function declarations).

An example of changing the text of a message is:

change the text of overfull-warning to "The gas tank is full"

To include quotes within the new text, precede each quote with the @ character. In
general, the @ sign is used to escape a special character.
782

conclude
conclude
Use the conclude action to change the value of:

• Arrays and lists.

• Attributes.

• Icon variables.

• Variables and parameters.

• Relations.

Unlike the change action, using conclude makes a permanent change to an
attribute value.

Concluding Array and List Elements

Using the conclude action for list and array elements is described in Lists and
Arrays.

Concluding Attribute Values

You can change the values of user-defined and most system-defined attributes
that contain values, variables, or parameters. Such changes are permanent and are
not undone when you reset G2.

Concluding Values for Attributes

To conclude a new value for an attribute:

 conclude that the attribute of item =
{ = value-expression | is symbolic-expression }

This action changes the value of the attribute-name of item. For attributes with a
structure or sequence type, you can use the corresponding function with the
conclude action to produce a new attribute value.

You can conclude a symbolic value using either is or =, the difference being that
an equals (=) expression evaluates the symbol, and an is expression is equivalent
to the statement: = the symbol symbol-name. The difference between these two
constructs can produce very different results.
783

Consider this procedure, which accepts a symbol as its argument. Using the is a-
symbol statement changes the value of the dynamics attribute of concerto203 item
to the symbol a-symbol, not to the value of a-symbol.

Changing the procedure to use the equals (=) operand changes the value of the
dynamics attribute to the value passed to the procedure, in this example, the
symbol wide:

This example illustrates concluding values for attributes with float, symbolic, and
truth values:

conclude that the temperature of values-test = 100.2;
conclude that the heat-range of values-test is hot;
conclude that the is-it-hot of values-test is true

This change is permanent. Use change the text of attribute actions for
transient changes.

Using an Indirect Reference to Conclude an Attribute Value

To conclude a new value for a user-defined attribute by using an indirect
attribute reference:

 conclude that the {class-name | type that is an attribute of item named by
symbolic-expression { = value-expression | is symbolic-expression }

This action changes the value of a user-defined attribute, which is specified by the
attribute-name returned by the symbolic-expression, as shown in the next example:

conclude that the quantity that is an attribute of values-test
named by gas-tank-level = 250

TestSymbol1(a-symbol: symbol)
begin

conclude that the dynamics of
concerto203 is a-symbol

end

TestSymbol1(a-symbol: symbol)
begin

conclude that the dynamics of
concerto203 = a-symbol

end
784

conclude
Concluding Icon Variables

To change the icon-variables of an item:

 conclude that the icon-variables of item ...

For example:

conclude that the icon-variables of person =
structure (width: 30, heigth: 120);

For a detailed description of using variables in icons, see The Icon Editor and Icon
Management.

Concluding Variable and Parameter Values

Using the conclude action to change the values of variables and parameters is
described in Variables and Parameters.

Concluding Relations

Using the conclude action to change relations is described fully in Relations.
785

create

This action creates a transient connection or item. You can create an item by:

• Naming a particular class.

• Cloning an existing item.

• Specifying a class named by a symbolic expression.

Whenever you create a transient item, it exists within the KB, but does not appear
on a workspace until you use the transfer action to place it on a workspace. The
item remains transient until or unless you make it permanent with the make
permanent action. Transient items are deleted by G2 when the KB is reset. For a
description of transient and permanent items, see Understanding the Knowledge
Contained in Items.

Creating Transient Connections

Creating transient connections is described in Creating Transient Connections.

Creating an Item of a Particular Class

To create an item of a particular class:

 create {a | an} class-name [local-name]

This action creates an instance of the class-name you specify. You can optionally
follow the class name with a local name in the statement. An example is:

create an automobile AM and transfer AM to this workspace at (100, 100);
change the name of AM to the symbol transient-auto

Creating an Item by Cloning Another

To create an item by cloning an existing item:

 create {a | an} class-name {local-name} by cloning item

This create action clones an existing item to create a new one. This action is similar
to the clone menu choice, described in Cloning an Item, except that using the
menu choice creates a permanent item, while using the create action creates a
transient one. Cloning an item also clones its subworkspace and all items and
their attributes on the subworkspace, but does not clone any relations. An
example of creating by cloning is:

create a kb-workspace KS by cloning change-action-ws;
show KS at half scale;
change the name of KS to the symbol cloned-action-ws
786

create
Creating an Instance of a Class by Using an
Indirect Reference

To create an item whose class is determined from an expression:

 create an instance of the class named by symbolic-expression

In this example, class-name is a the symbolic-expression that names a class:

create-transient-item(class-name: symbol)
I: class item;
begin

create an instance I of the class named by class-name;
transfer I to new-item-ws at (100, 100)

end
787

deactivate

This action deactivates the subworkspaces of items that are activatable.

To deactivate a subworkspace:

 deactivate the subworkspace of item

For a description of activatable subworkspaces, see activate.

When you deactivate the subworkspace of an item, G2 behaves as though any
items upon the subworkspace do not exist. All items upon the subworkspace are
no longer active. The subworkspace itself, however, can still be referenced and
tested with the expression:

kb-workspace has [not] been activated

For more information about the effects of activating a subworkspace, see How
Activating and Deactivating Affects Items. An example of deactivating a
subworkspace is:

deactivate the subworkspace of every automobile
788

delete
delete
You can delete transient or permanent items.

To delete a transient or a permanent item:

 delete item {without permanence checks} {removing connection stubs}

You cannot delete a permanent item without first making it transient, unless you
use the without permanence checks clause.

Deleting Items without First Making Them Transient

To delete permanent items without permanent checks, optionally removing
connection stubs:

 delete item without permanence checks {removing connection stubs}

Using the delete action in this way lets you delete permanent items
programmatically, completely ignoring all transient restrictions. Deleting items
by using the without permanence checks is the programmatic equivalent of the
interactive delete menu choice.

Note Using the delete action omitting the without permanence checks statement
requires that items be made transient prior to deletion. For a discussion about
making items transient, see Making Permanent Items Transient.

When the delete action executes, any rule that is waiting for a value and that
refers to a deleted item (or to one of its attributes, its subworkspace, or to any item
on its subworkspace) is cancelled. If a delete action is part of a rule, the rule is not
cancelled, but any parallel or subsequent sequential action in the rule that refers
to the deleted item causes G2 to signal an error.

A procedure that referenced the item before it was deleted continues to execute,
but if it references the deleted item, G2 signals an error.

Removing Stubs While Deleting an Item

You can remove connection stubs from a remaining item when deleting an item to
which another is connected.

To remove stubs when deleting an item connected to another:

 delete item removing connection stubs {without permanence checks}

For example:

delete filling-auto-1 removing connection stubs without permanence checks
789

The top grouping in this example shows two connected objects station100 and
station 101, and the bottom grouping shows the result of deleting station100 with
the delete action using the removing connection stubs expression:

Deleting Connections

To delete a connection:

 delete {connection [without permanence checks]
[removing connection stubs] }

You can delete a transient connection or a permanent one by using the without
permanence checks grammar. Deleting a connection does not delete the stubs,
unless you use the removing connection stubs statement with the delete action, as
in the next example:

delete the connection at the output end of k11 without permanence checks
removing connection stubs
790

focus
focus
This action invokes all rules that have a specified object in their focal-objects
attribute, or it invokes all rules that have an object’s class or superior class
specified in their focal-classes attribute. The focal-objects and the focal-classes
attributes of all rules let you specify the object or classes, respectively, to which a
focus action applies.

To focus on an object:

 focus on {object | object-class}, awaiting completion

When a focus action is invoked, such as the action in this example, G2 invokes all
the rules that have capacity specified in their focal-objects attribute or all rules
that have the class or a superior class of capacity specified as focal-classes.

whenever maximum-volume receives a value and
when maximum-volume > 200 then focus on capacity

You cannot focus directly on a class to focus on all instances at one time. If you
need to do that, write a generic rule with this structure:

for any class such that qualification if antecedent then focus on the class

For a description of the , awaiting completion option, see Waiting for Rules to
Complete When Invoked from a Procedure.
791

halt
This action stops G2 from running the KB. Use this action for debugging.

To enter a halt action:

 halt [with text-expression] if breakpoints are enabled

The halt action lets you halt at a certain location in a procedure, rule, or action
button. Using the halt action with a text-expression displays the message when the
halt action is executed.

The halt action is a debugging tool that lets you pause at a certain point of
execution. As such, you may not want to use the halt action when G2 is
controlling a real-time application.

Note The uninterrupted-procedure-execution-limit of a procedure applies even when
using the halt action. Therefore, using the halt action may cause the procedure to
time out.

You can use the halt action only when the tracing-and-breakpoints-enabled?
attribute in the Debugging Parameters system table is set to yes. The attribute
default is no. The breakpoint-level of the Debugging Parameters need not be set to
a level greater than zero (0).

You can use the halt action to display the procedure invocation hierarchy by
setting the show-procedure-invocation-hierarchy-at-pause-from-breakpoint of the
Debugging Parameters system table to true.
792

halt
A dialog such as the following appears in the server when G2 executes the halt
action. The dialog shows the line number of the source code that G2 is about to
execute and the surrounding source code with line numbers. G2 cannot continue
processing until you select one of the buttons.
793

hide
The hide action lets you hide one of these items:

• The workspace upon which a given item resides.

• The workspace of the superior item of a given subworkspace.

• The subworkspace of a given item.

• The workspace upon which an action button or a user menu choice resides.

• A workspace in a given G2 window.

To use the hide action:

 hide {item |
{ the workspace of | the item superior to | the subworkspace of item} |
this workspace} [on g2-window]

Hiding an Item

To hide any item by hiding its workspace:

 hide item

If the specified item does not exist, G2 signals an error.

Hiding the Workspace Containing an Item

To hide the workspace that contains the specified item:

 hide the workspace of item

If the specified item does not exist, G2 signals an error.

Hiding the Workspace of a Superior Item of a
Subworkspace

To hide the item that is the superior of the specified subworkspace:

 hide the item superior to kb-workspace

This action hides the workspace upon which the superior item to the given
workspace item resides. If the subworkspace of that item is visible, it remains so.
If the specified kb-workspace does not have a superior item, G2 signals an error.
794

hide
Hiding the Subworkspace of an Item

To hide the subworkspace of a specified item:

 hide the subworkspace of item

Hiding the Workspace of an Action Button or User
Menu Choice

To hide the workspace upon which the action button or user menu choice that
invokes the action resides:

 hide this workspace

Hiding Workspaces on any G2 Window

You can use each of the hide actions to operate on any G2 Window. Following are
examples of each version of the hide action, where kmm-window is a named
g2-window of a Telewindows client, and each of the action buttons would be
invoked from the G2 server.

hide the workspace of cp1 on kmm-window

hide the item superior to the-subws-of-cp1 on kmm-window

hide the subworkspace of cp1 on kmm-window

hide this workspace on kmm-window
795

inform
This action sends a text message to:

• The operator, which, by default, refers to the message board.

• An item that has an external message facility.

• A workspace.

• Any other specified destination.

The inform action lets you send a text message to a single destination. If the
log-inform-messages? attribute of the Logbook Parameters system table is yes, all
inform messages are posted to the Operator Logbook as well as to their
inform destination.

Using Inform to Post to the Message Board

To use inform to send a message to the message board:

 inform the destination [for the next time-interval] that text-expression

Using this syntax, destination is typically the operator. However, specifying the
destination as an item is acceptable and will also post a message to the message
board as in this example:

inform the connection-post upon this workspace
that "This message will reach the message board!"

Referring to an item as the destination with the inform action permits the use of the
upon this workspace statement. This contrasts with the use of the on this
workspace statement to refer to a specific destination item, as described in
Informing a Destination Item.

This action displays the specified text-expression on the message board. You can
optionally specify a time interval to display the message. Doing so deletes the
message after the specified time interval, but leaves the message board displayed.
The next example shows an inform message that is displayed for 30 seconds:

inform the operator for the next 30 seconds that
"[the name of tanker] is filling gas-pump [name-of-pump] now"

To use post to send a message to the message board:

 post [for the next time-interval] text-expression

The shorter post action syntax is functionally equivalent to:

inform the operator [for the next time-interval] that text-expression.

See post for information on the post action.
796

inform
Informing a Destination Item

To use inform to send a message to a destination item:

 inform item [on kb-workspace [below | above] item]
[for the next time-interval] that text-expression

This action lets you specify the item as an inform message destination. The
destination can be any item, an object with an external message capability, such as
gsi-message-service, or a workspace. For information on how to use the inform
action for G2-to-G2 data exchange, see Examples of Remote Data Service.

You can display a message next to an item on a particular workspace, using an
expression such as:

inform connection-post-9 on CP-WS that "This is a warning."

To display a message next to an item on a particular workspace, you can specify
the workspace itself as the destination and use the on kb-workspace statement,
which specifies the name of a workspace in the KB. G2 displays the message on
that workspace, optionally positioned below or above an item you specify. The
next example shows how to specify a workspace as the destination for
the message:

inform start-action-ws on start-action-ws below check-if-showing
that "here’s a message for an item"

You can optionally indicate a length of time for G2 to display the message. If you
do not specify a time interval, the length of time that the message appears is
determined either by the validity-interval attribute of the antecedent if this action is
in a rule, or the minimum-display-interval attribute of the Message Board
Parameters system table.

If you specify an object with an external message capability, G2 ignores the
on kb-workspace and any above or below item statements.

The above item or below item statement specifies that G2 displays the message
either below or above the specified item. You can only use this statement in
conjunction with the on kb-workspace statement. If the specified item is not on the
workspace, G2 signals an error and does not display the message.

G2 uses the following attributes from the Message Board Parameters system table
when displaying messages:

• spacing-between-entries

• maximum-number-or-entries

• highlight-new-messages?

• minimum-display-interval

For a description of these attributes, see Message Board Parameters.
797

The next example displays a message for 10 seconds below the msg-obj, upon the
inform-ws workspace. Messages displayed for a time-interval are transient
messages that G2 deletes from the KB after the elapsed time period.

inform inform-ws on inform-ws below message-object for the next 10 seconds
that "The filling task is complete."
798

insert
insert

This action inserts an element into a list:

• At an element location.

• At the beginning or end of a list.

• Before or after an existing list element.

To insert an element into a list:

 insert item-or-value {at the {beginning | end} of} |
{ {before | after} item-or-value in | element integer-expression of} g2-list

For a complete description and examples of using the insert action, see Lists and
Arrays.
799

invoke
This action invokes a category of rules for all objects, or for an object specified in
the categories attribute of the rule.

To enter an invoke action:

 invoke rule-category-name [{, | or} rule-category-name]... rules
for {object | object-class}, awaiting completion

This action invokes all rules in the specified rule-category-name. You specify the
category in the categories attribute of a rule. When G2 invokes all rules from a
certain category, it uses this attribute to determine what rules are in the category.

Using the optional for object statement narrows the search for applicable rules.
You can specify a class of appropriate objects for a rule in its focal-objects
attribute. When an invoke action includes the for object statement, G2 invokes only
those rules that include the corresponding rules-category and focal-objects
values. Following is an example of two invoke actions:

invoke safety rules

invoke safety rules for filling-tank-4

The first example invokes all rules that specify safety in their category attribute.

The second invokes all rules that specify safety in their category attribute and
have filling-tank-4 as a focal-object, or its class or one of its superior classes as the
value of focal-classes.

For a description of the , awaiting completion option, see Waiting for Rules to
Complete When Invoked from a Procedure.
800

make
make
Use the make action for three different purposes:

• Making transient items permanent.

• Making permanent items transient.

• Making a transient workspace the subworkspace of an item.

Making Transient Items Permanent

To enter the make permanent action:

 make item permanent

This action makes a transient item, its attributes, its connections, and its
subworkspace (and all their items, attributes and connections) permanent.
Making a workspace permanent makes all items upon it permanent.

Once an item is permanent, G2 does not delete it when you reset your knowledge
base. G2 retains the current state of the item including rotation, color, and
location. G2 does not save the values of variables and parameters, or the elements
of arrays and lists, unless their elements are permanent. For more information
about permanent arrays and lists, see Lists and Arrays.

There are two restrictions to making items exist permanently:

• If a transient item does not reside on a workspace, or resides on one that is
transient, you cannot make such an item permanent. An exception to this is
any object that is an attribute of another object. An attribute object does not
reside on a workspace, but making its holding object permanent also makes
permanent the attribute object.

• You cannot make a connection permanent if it connects to something that
is transient.

You can use the make permanent action on a permanent item to make a transient
change permanent. For example, changing the array-length of a permanent array
and subsequently using a make permanent action on that array retains the array
length.

Here are examples of the make permanent action, one making a transient item
permanent, and the other making transient changes to a permanent
item permanent.

create a kb-workspace WS and show WS at (50, 50) in the screen;
change the name of WS to the symbol new-ws;
make WS permanent

length = the number of elements in name-list;
change the array-length of name-array to length;
make name-array permanent
801

Making Permanent Items Transient

You can make a permanent item transient so that you can transfer it
programmatically.

Tip You do not have to make items transient to delete them. Permanent items can be
deleted programmatically as described in Deleting Items without First Making
Them Transient.

To enter the make transient action:

 make item transient

This action makes a permanent item, its attributes, its connections, and its
subworkspace (and all items, their attributes and connections on its
subworkspace), or a workspace itself transient.

When you make an item transient, all of its connections become transient. When
you make a workspace transient, all items upon it become transient.

The next example makes a parameter transient, creates a new workspace, and
transfers the parameter to the new workspace:

gds-transfer-parameter(WS: class kb-workspace)
NewWS: class kb-workspace;

begin
if there exists a parameter P upon WS then

begin
make P transient;
create a kb-workspace NewWS;
show NewWS at the left center of the screen;
change the name of NewWS to the symbol Parameter-WS;
make newWS permanent;
transfer P to NewWS;
make P permanent;
post "[the name of P] has been transferred to Parameter-WS";

end
else post "No parameter exists upon [the name of WS]."

end

Limitations to Transiency

An item cannot be made transient when any one of these conditions is true:

1 The item is a class definition for an instantiated or subclassed class.

2 The workspace hierarchy of the item contains a class definition for an
instantiated or subclassed class. (When an item is made transient, all of the
items within its workspace hierarchy are transient, too.)

3 The item is an attribute value.
802

make
Making a Workspace the Subworkspace of an Item

To make a workspace the subworkspace of an item:

 make kb-workspace the subworkspace of item

This action makes the specified kb-workspace a subworkspace of item. A
workspace must be transient to become the subworkspace of an item. If the
workspace is already an item’s subworkspace, this action automatically changes
its association with the original item and makes it the subworkspace of the target
item. The transient action cannot be used to accomplish these tasks.

If the target item already has a subworkspace, you must remove that
subworkspace before executing this action by either transferring the
subworkspace to another item, or deleting it.

The next example makes a subworkspace transient, makes it the subworkspace of
an item, and makes it permanent:

make subws-of-volvo transient;
make subws-of-volvo the subworkspace of name-list;
make subws-of-volvo permanent

Creating a Subworkspace Programmatically

Making a transient workspace the subworkspace of an item is part of creating a
subworkspace programmatically. First, use the create action to create a
workspace item, and then make it the subworkspace of the desired item.

Activation Status of Subworkspaces

You can enable or disable all workspaces and subworkspaces. Additionally, some
subworkspaces are activatable, as described under activate. By default,
workspaces and subworkspaces are enabled when G2 starts, while activatable
subworkspaces are deactivated, and must be activated programmatically.

While the enabled and activated statuses of a subworkspace are separate
properties, they can have similar results. For example, when G2 starts, it invokes
every initially rule upon enabled workspaces and subworkspaces. Activating an
activatable subworkspace at any time invokes any initially rules that reside
upon it.

Making a workspace the subworkspace of another item usually has no effect on
its enabled or activation status. An exception to this is making an activatable
subworkspace, which is currently deactivated, the subworkspace of an item that
is not configured to support activatable subworkspaces. Since the subworkspaces
of items are enabled by default, executing such an action enables the previously
deactivated subworkspace, which is akin to activating it.
803

move
This action changes the position of an icon on a workspace.

To move an icon:

 move item {to | by} (x, y)

Using the move action with a by statement moves the icon by the amount
specified by (x, y) from its current position.

Using move with a to statement moves the icon to a new position specified by
(x-workspace-units-right, y-workspace-units-up) relative to the center of
the workspace.

A workspace unit is equivalent to one pixel when a workspace is full size. As you
reduce the size of a workspace, the size of each workspace unit also reduces.
Specifying a negative number for x or y moves the icon to the left or down,
respectively.

The next examples illustrate the use of the item-x-position and item-y-position of
other icons as a starting place for the icon being moved:

move cart by
(the item-x-position of installation + 20,
the item-y-position of installation + 20)

You cannot use the move action on workspaces or on items that you are moving
manually, nor can you move an icon beyond the edge of a workspace; the object
stops at the border. Using the move action can cause event updating, invoking
whenever rules.
804

pause
pause
This action pauses the knowledge base.

To enter the pause action:

 pause knowledge-base

This action is the same as the Pause menu choice. You can use the pause action
anywhere in a procedure or as the last action of a rule. If you use the pause action
in a procedure, when you resume running, execution continues at the next
procedure statement. An example is:

when number-of-parts >= the array-length of array-of-parts
then pause knowledge-base

This example shows how you can use the pause action to debug your knowledge
base during development.
805

post
The post action sends a message to the message board. It supplies shorter syntax
for message-board posting than the inform action does; but, unlike the inform
action, it does not send messages to non-message-board destinations. See inform
for more information on inform syntax and functionality.

To use post to send a message to the message board:

 post [for the next time-interval] text-expression

The shorter post action syntax is functionally equivalent to:

inform the operator [for the next time-interval] that text-expression

An example is:

post "task 450 has completed"
806

print
print

This action prints a workspace.

To enter the print action:

 print kb-workspace

The kb-workspace specifies the name of the workspace to print. You can use the
statement this workspace if you are issuing the action from an action button or a
user menu choice.

A workspace does not have to be visible for you to print it. The print action uses
the formats specified in the Printer Setup system table. An example is:

print this workspace
807

remove
This action removes an element from a list by specifying an element, and item-or-
value or a position, and list-type.

To remove an element from a list:

 remove {element integer-expression | item-or-value | {the { first | last } type}
from g2-list

For a complete description and examples of using the remove action, see Lists and
Arrays.
808

reset
reset

This action resets a knowledge base.

To enter the reset action:

 reset knowledge-base

This action is the same as the Reset menu choice. When G2 resets a knowledge
base, it:

• Stops the knowledge base.

• Reinitializes all variables and parameters.

• Returns all icons to their initial positions.

• Restores the default colors to all items.

• Deletes any transient items.

• Removes list elements, unless the elements are permanent.

• Reinitializes array elements, unless the elements are permanent.

• Removes any relations between items, unless the relations are permanent.

• Reverts any modifications made using the change action that were not
subsequently made permanent by the make permanent action.

Use this action any time you want to reset the KB programmatically. For example,
in a factory environment, you may want each operator to reset the knowledge
base when each shift ends. To do so, you can place the following action button on
each shift operator’s top-level workspace:

in order
post for the next 30 seconds that

"[shift] has ended. Resetting knowledge base."
and reset knowledge-base
809

rotate
This action rotates an icon in 90 degree increments.

To use the rotate action:

 rotate item {by | to the heading} quantity-expression degrees

Rotating an Icon

To rotate an icon:

 rotate item by {0 | 90 | 180 | 270} degrees

This action rotates the icon of item the specified degrees clockwise from its current
degree of rotation. Selecting this action repeatedly causes the icon to continue
rotating clockwise by the specified degree of rotation. An example is:

rotate every g2-window upon this workspace by 90 degrees

Entering a value other than those specified causes G2 to round the number to the
closest allowable value. For example, if you enter 40 degrees, G2 rounds that
value down to 0 degrees; entering 50 degrees causes G2 to round the value up to
90 degrees.

Some items, such as charts and dials, do not permit rotation. G2 signals an error if
you try to rotate an item that cannot be rotated.

Rotating an Icon from its Vertical Position

This action rotates an icon clockwise a specified number of degrees from its
original upright position, which G2 refers to as its heading. The number of
degrees you specify can be 0, 90, 180, or 270. Use the to the heading clause to
rotate an icon regardless of its current rotation.

To rotate an icon from its upright vertical position:

 rotate item to the heading {0 | 90 | 180 | 270} degrees

An example is:

rotate every g2-window upon this workspace to the heading 180 degrees

Note Using the rotate action can cause event updating, such as invoking whenever
rules that test for icon rotation.
810

set
set

This action assigns a new value to a G2 Gateway variable or a simulation variable.

To assign a new value to a gsi-variable:

 set {gsi-variable | simulation-variable} to value-expression

The G2 Simulator is a superseded capability, so using set for a simulation-variable
is not documented here. For more information, see Appendix F, Superseded
Practices.

This action also assigns a new value to a variable in a KB running remotely from a
KB running locally. See Examples of Remote Data Service for information.

Setting the Value of a Gsi-Variable

To assign a value to a gsi-variable:

 set gsi-variable to value-expression

This action provides the specified gsi-variable with a value. A gsi-variable is
subclass of a logical-, quantitative-, float-, integer-, symbolic- or text-variable that
includes gsi-data-service as one of its direct superior classes. The G2 Gateway
data server must be active to set the gsi-variable to a value-expression.

The next example initially sets the value of the set point attribute of pi-controller-1,
a symbolic gsi-variable in the external application, to on:

initially set the set-point of pi-controller-1 to the symbol on

Comparing Set with Conclude

Using the set action for a gsi-variable differs from using the conclude action.
Concluding a value to a gsi-variable:

• Updates the last-recorded-value attribute of the variable in G2.

• Does not transmit the value to G2 Gateway.

Using the set action to change a gsi-variable value:

• Transmits the value to G2 Gateway.

• Does not change the last-recorded-value attribute of the gsi-variable unless
the G2 Gateway that is data serving the variable returns the value to G2.
811

show

This action changes the way a workspace is displayed. You can use this action to
change these characteristics of a workspace:

• The window it is displayed on.

• Its window position.

• Its scale.

• Its layering position in the drawing hierarchy.

To show a workspace:

 show {kb-workspace | item}
[[

{on window at scale } |
{on window at (x, y) in the screen } |
{at the window-location of the screen} |
{scaled by numeric-expression } |
{scaled by its current scale times {numeric-expression | (x, y) } } |
{with focal point (x, y) at (x, y) in the screen} |
{with its workspace-location at the window-location of the screen}]

[preserving workspace layering]]

Element Description

window An optional window specification. You can
show the workspace or item on a particular
window.

workspace-location A location in reference to some part of a
workspace, which can be:

top left corner | top right corner | top center |
left center | center | right center |
bottom left corner | bottom-center |
bottom-right corner

window-location The location of the workspace in the G2
window which can be:

top center | top left corner |
top right corner | left center |
center | right center |
bottom center | bottom left corner |
bottom right corner
812

show
Note Some of the show action statements deal with a workspace origin or extent, or its
relationship to G2’s window. To familiarize yourself with these terms and
concepts, see Positioning Items upon a Workspace.

A show action that does not specify preserving workspace layering always
displays the specified workspace at the top of all other workspaces currently
being displayed.

The preserving workspace layering phrase can be optionally specified only when
a scaling or positioning detail is also specified. Specifying preserving workspace
layering causes the workspace to be rescaled or repositioned without changing its
current layering position.

Note When viewing workspaces in Telewindows, the show action on minimized
workspace views automatically restores the workspace view if the action also lifts
the workspace to the top. For example, show ws-1 restores ws-1 if the workspace
is minimized, but show ws-1. . . preserving workspace layering does not.
Similarly, entering go to ws-1 in Inspect for a minimized workspace view restores
the view, but Control + - does not.

The show action has many capabilities, some of which can be used together in
complex ways. The following sections describe the different ways to reference a
workspace, and demonstrate the scaling and positional variations of the show
action. In most cases, you can combine statements to include multiple options in
one action. For example, this statement combines the basic show action with
workspace scaling and positional options:

show show-action-ws scaled by its current scale times 1.5 with its top left
corner 10 units to the right of the center of the screen

Showing a Workspace without Changing its Scale or
Position

This section describes show actions that do not include scaling or positioning
specifications. These actions result in the workspace being drawn on the top layer
of the drawing hierarchy at its current scale and window position. If the
workspace is already on the top layer, these actions do nothing. The statements
demonstrate the various ways of referencing the workspace to be shown.

To show a workspace by referencing the workspace itself or an item that
resides on the workspace:

 show {kb-workspace | item}

To show the workspace or subworkspace of an item:

 show the {workspace | subworkspace} of item
813

Notice that show the workspace of item and show item both display the
workspace the item resides on.

To show a workspace through indirect item references:

 show the item superior to {subworkspace | object}

The action show the item superior to subworkspace will display the workspace of
the item that has the subworkspace.

The object in show the item superior to object should be the value of a user-defined
attribute of an item. The action will display the workspace of the parent item.

Showing a Workspace at a Different Scale or
Window Position

When the show action includes scaling or positioning details, you can add the
optional preserving workspace layering specification and the workspace will be
rescaled or repositioned on its current layering position rather than being drawn
on the top layer. Depending on the scale and position of the other workspaces in
the window, such an action may obscure the workspace.

You can use the layering syntax to create dynamic workplace displays that avoid
the flickering effect of alternately shown and hidden workspaces. If you omit the
layering syntax, the workspace will be displayed at the top layer of the drawing
hierarchy.

The examples below show the optional layering syntax at the end of each
statement.

Showing a Workspace at a Fixed Scale

To display a workspace at a system-defined fixed scale:

 show {kb-workspace | item} {at scale} [preserving workspace layering]

where scale can be one-quarter scale, half scale, three-quarter scale, or full scale.

Showing a Workspace at an Arbitrary Scale

To display a workspace at an arbitrary scale based on a factor of the
workspace’s current scale:

 show {kb-workspace | item} scaled by its current scale
times quantity-expression [preserving workspace layering]

where quantity-expression can be any float value. When a workspace is at full size,
you can scale it up to four times its current scale.
814

show
Showing a Workspace with Different Horizontal and Vertical Axes
Scaling Factors

To use different scaling factors for the horizontal and vertical axes of the
workspace:

 show {kb-workspace | item} scaled by its current scale
times (x, y) [preserving workspace layering]

This action scales the workspace by the scaling factors of x and y.

Whenever a workspace is scaled, G2 scales everything upon the workspace
proportionately. Showing a workspace with different horizontal and vertical
scaling factors can produce disproportional effects, which are especially
noticeable with text elements such as item names, labels, and messages.

The next diagram shows the label of an action button upon a workspace scaled by
its current width and two times its height:

Note Changing the scale of a workspace can change the location of its origin within the
G2 window.

There are three available scaling options for the show command.

This example scales a workspace a fixed amount:

show inform-ws at three-quarter scale

This example scales a workspace an arbitrary amount:

show inform-ws scaled by its current scale times 2.5

This example scales a workspace by specifying x-y scales:

show hide-ws scaled by (1.5, 2.0)
815

Showing a Workspace at a Specific Screen Location

To show the workspace at a certain location:

 show {kb-workspace | item} at (x, y) in the screen
[preserving workspace layering]

 show {kb-workspace | item} at the window-location of the screen
[preserving workspace layering]

The first action shows the workspace at the specified x and y integer values,
which determine the horizontal and vertical positions in workspace units within
the G2 window.

Alternatively, you can specify a window-location. The next examples illustrate
both variations of the show action using a specific screen location.

show hide-ws at (100, 100) in the screen

show hide-ws at the left center of the screen

Showing a Workspace by Positioning its Edges

To show a workspace using a part of the workspace as a reference point in the
G2 window:

 show {kb-workspace | item} with its workspace-location at the window-location
of the screen [preserving workspace layering]

This action positions the workspace at the window-location of the G2 window,
which can be center, left, right, top, or bottom.

The next examples show the workspace in the center or right center of the G2
window, using the bottom left corner, or bottom center of the workspace, as a
reference point.

show hide-ws with its bottom left corner at the center of the screen

show hide-ws with its bottom center at the right center of the screen

Showing a Workspace Using a Focal Point

To use a focal point upon the extent of the workspace to position the workspace
at a specific location within the G2 window:

 show {kb-workspace | item} with focal point (x, y) at (x, y) in the screen
[preserving workspace layering]

The x and y are the horizontal and vertical locations, respectively, provided in
workspace units. The first pair of numbers provide a reference point in the extent
of the workspace, and the second pair provide a location within the G2 window.

For example, you may wish to use a particular item upon a workspace as the focal
point to position that workspace within the G2 window. The next example uses
an item’s item-x-position and item-y-position values as the focal point upon the
816

show
workspace, and then positions that workspace focal point at a specific G2 window
location.

show hide-ws with focal point
(the item-x-position of cart1, the item-y-position of cart1)

at (-200, -300) in the screen)

Ensuring that the Workspace is Always Visible

To ensure that a portion of the workspace is always visible, use the g2-ui-show-
workspace system procedure. For details, see User Interface Operations.
817

shut down g2

This action automatically shuts down G2 and returns control to the operating
system.

To enter the shut down action:

 shut down g2

When this action executes, G2 aborts all executing tasks and procedures, closes all
open files and any Telewindows connections, and shuts down.

This action is similar to the Shut Down G2 menu choice, but the action does not
display a button that asks you to confirm the shutdown. Here is an example of a
shut down command:

post for the next 20 seconds that "G2 is shutting down now"
wait for 20 seconds;
shut down g2
818

start
start
This action invokes a procedure asynchronously:

• With arguments or without.

• Locally or on a remote G2 or G2 Gateway process.

• Optionally with a priority or after a time interval.

Use the start action to start a procedure for asynchronous processing. The start
action schedules the specified procedure for execution; processing then continues
through any remaining statements within the calling rule or procedure. At some
later time, the scheduler will actually invoke the started procedure.

When starting a remote procedure, because of this scheduling order, it is possible
for the remote procedure to complete before the remainder of the calling rule or
procedure. To invoke a procedure synchronously from a procedure, use the call
statement, as described under call.

You cannot use the start action to obtain a return value from a procedure: any
value returned by a started procedure is discarded. Use start with caution for
operations such as writing to a file: by the time the started procedure executes, the
data it was to write may no longer exist, or the stream it was to write to may no
longer be open.

A started procedure cannot assume that the context that existed when it was
scheduled still exists. Any amount of processing may have occurred between its
scheduling and its invocation by the scheduler. Once the procedure starts, it can
assume that nothing else in the KB will execute unless the procedure enters a wait
state, as described under Allowing Other Processing.

Starting a Procedure

To start a procedure:

 start procedure ([argument [, ...])

This action starts procedure, which is a procedure that requires arguments or does
not. Separate all arguments with commas (,).

This example shows an action that starts a procedure, using the this window
statement to pass the current g2-window as the single argument of the procedure.

start check-if-showing(this window)

Starting a Procedure on a Remote G2 Process

To start a procedure on a remote G2 or G2 Gateway process:

 start procedure ([argument [, ...]) across {g2-to-g2-interface | gsi-interface}
819

This example starts procedure on another G2 process, using a user-defined g2-to-
g2-interface object named node-chad-connection:

start random-color(new-object) across node-chad-connection

Hint To start a procedure on a remote G2, you must declare the procedure as remote by
using a remote procedure declaration. Remote procedure declarations are
described in the G2 Developer’s Guide.

Starting a Procedure with a Priority

To start any procedure with a non-default priority:

 start procedure ([argument [, ...]) at priority integer-expression

This action schedules the specified procedure at integer-expression, which you
provide as a value from 1 to 10, 1 being the highest priority and 10 the lowest.

Specifying a priority overrides the default priority of the invoked procedure. Here
is an example of the optional priority statement:

start provide-a-color(this workspace) at priority 4

Starting a Procedure after a Time Interval

To start any procedure after a time interval:

 start procedure ([argument [, ...]) after time-interval

This action schedules the specified procedure to execute at the current time, plus
the given interval.

start get-new-color(this workspace) after 10 seconds
820

transfer
transfer

This action transfers items to the mouse, or on and off of workspaces, and to and
from items and workspaces. Use the transfer action to:

• Transfer one or more items to the mouse.

• Transfer an item that is not on a workspace to a workspace.

• Transfer an item that is on a workspace to:

– Another workspace.

– Any attribute whose value can be an object.

• Transfer an object that is the value of an attribute to:

– A workspace.

– Any attribute whose value can be an object.

• Remove an item from a workspace.

The transfer action works only on transient items. You cannot transfer permanent
items using this action.

Note You cannot transfer a workspace or a connection.

Transferring Object Attributes

To transfer objects to and from objects, and from workspaces to objects:

 transfer {item | the attribute of item} to {item | the attribute of item}

While you can transfer virtually any attribute object to a workspace, some
restrictions apply to the target attribute when transferring one attribute object to
another object, or an object upon a workspace to the attribute of an object.

• The target attribute must already exist. For example, to use this expression:

transfer my-variable to the volume of gas-tank

the object gas-tank must have an existing volume attribute.

• A target attribute cannot already have an object value.

• The class of the object being transferred must conform to the type-
specification (if any) in the attribute description of the target attribute.

For example, to transfer an object attribute to a workspace:

transfer the temp of tank1 to new-workspace at (50, 50)
821

To transfer an object attribute to another object:

transfer the temp of tank1 to the new-temp of specialty-pump

To transfer an object upon a workspace to the attribute of an object:

transfer tank1 to the equipment of tank-holder

Referencing Transferred Objects

When transferring a named object to the attribute of an object, the transferred
object retains its name. You can then reference the object either as the attribute of
its object, or by its name. For example, if temperature-var is a float-variable, which
you transfer to be the temp attribute of new-object, you can change the value of
temperature-var with either of these statements:

conclude that temperature-var = 100.6

conclude that the temp of new-object = 100.6

Transferring an Item to the Mouse

To transfer a transient item to the mouse:

 transfer item to the mouse of g2-window

This action lets you attach the specified item to the mouse pointer so that a user
can interactively place the item upon a workspace in the specified g2-window.

When entering a transfer item to the mouse action, the Text Editor includes a
prompt for a positioning statement, such as at (x, y). Adding such a statement has
no effect on the transfer action. The item is simply transferred to the mouse at its
current location.

In the next example from the text of an action button, G2 creates a new connection
post in the current window and transfers it to the mouse. In this case, the
connection post will appear attached to the mouse pointer at its current position.
Clicking the mouse places the item on the workspace. Action buttons can use the
statement this window to refer to the current G2 window.

in order
create a connection-post C
and transfer C to the mouse of this window

Note You cannot transfer a connected item to the mouse.

If the user has already pressed down a mouse button when the transfer to the
mouse action begins, the user must release that button and press a mouse button
again for G2 to transfer the item to a workspace.
822

transfer
Transferring More Than One Item to the Mouse

You can use the transfer item to the mouse action to attach more than one item to
the mouse. If you do so, G2 queues the items in a last-in, first-out basis.

Because G2 displays only one item at a time under the mouse pointer, as the user
places each item upon a workspace, the next transferred item appears under the
mouse pointer.

Transferring an Item to a Workspace

To transfer an item from one workspace to another, or to transfer an item that is
not on a workspace to a workspace:

 transfer item to {kb-workspace [at (x, y)]

The at (x, y) statement represents the workspace unit integer values that specify
the horizontal and vertical coordinates of the item upon the target workspace. An
example is:

in order
create an auto-1 A1;
and transfer A1 to this workspace at (50, 50)

Removing an Item from a Workspace

To remove an item from a workspace:

 transfer item off

G2 removes the item you specify from its current workspace, however, the item
exists in the KB as a transient item that you can find through Inspect, but which is
not associated with any workspace. An item must be transient before you can
transfer it off of its workspace. An example is:

make auto1 transient;
transfer auto1 off
823

update

This action updates display items and variables.

Updating a Display Item

To update an item:

 update item

A display item can be a chart, a dial, a freeform table, a graph, a meter, or a
readout table.

Graphs are a superseded capability. For more information see Appendix F,
Superseded Practices.

When G2 executes the update action, the item is updated programmatically. The
update action is the only means of updating charts. An example is:

conclude that the status of every gas-tank T = new-level;
update every readout-table upon gas-tanks-filling

This example changes the status of every gas-tank to new-level, and directly
updates every readout table on the gas-tanks-filling workspace.

Updating a Variable

To update a variable:

 update variable

This action updates the variable you specify. The update action causes G2 to data
seek for a new variable value, even if it already has a current value.

Using the update action for a variable with an unsolvable formula causes G2 to
retry continuously to obtain a variable value after failure once the action is
invoked. Such behavior can adversely affect KB performance. To avoid constant
retries from occurring, make appropriate adjustments to the timeout-for-variables
and the retry-interval-after-timeout attributes of the Inference Engine Parameters
system table.
824

21
Expressions
Describes the purpose and syntax of each G2 expression.

Introduction 826

Forming an Expression 826

Evaluating Expressions 826

Determining When Expressions Expire 828

Understanding Transactions and Transaction Scopes 828

Using Generic Reference Expressions 829

Using Class-Qualified Names 832

Using Local Names in Expressions 833

Using Literals 835

Using Operators in Expressions 835

Producing a Symbol Value 851

Referring to a Superior or Inferior Class 851

Referring to Items or Values 852

Referring to the Current Time 860

Referring to Specific Items 863
825

Introduction
This chapter describes how G2 obtains items and values by evaluating
expressions. This chapter also shows how to form each expression that G2
supports.

An expression indicates how G2 should obtain a value when performing a
computation. G2 obtains one value from each expression that it evaluates. To
evaluate an expression means to obtain one value after performing the specified
operations on other referenced values.

The same expression might not produce a value each time that G2 evaluates it.
This can happen, for instance, when an item referenced in the expression no
longer exists, when a conclude action changes a value, or when the expression
refers to a value given by a variable whose value has expired. G2 takes special
actions when it cannot obtain a value from an expression. See Evaluating
Expressions.

You enter expressions as you code actions and statements in your KB’s rules,
procedures, and methods. You can also use the same kinds of expressions in the
Inspect facility.

The form of G2 expressions is consistent with G2’s English-like language. Use
G2’s syntax-directed Text Editor to enter expressions, as described in The Text
Editor.

Forming an Expression
An expression consists of one or more terms. In some expressions, the terms
combine with an appropriate operator. Each term in an expression is either a
literal or another expression, also called a subexpression.

The next example illustrates how an expression’s operator combines with its
terms. Here, the arithmetic addition operator combines a literal term with an
attribute expression:

conclude that flow-variable = 10 + the rate-of-change of outflow-pipe

Evaluating Expressions
G2 evaluates each expression to a single item or to a single value of a specific type.
G2 evaluates an expression either successfully or unsuccessfully. When G2
evaluates an expression successfully, the expression produces an item or a value,
as specified for that expression.

When G2 cannot evaluate an expression successfully, G2 produces a no value
condition. Producing a no value condition also causes G2 to signal an error.
G2 displays a no value condition as the reserved symbol none.
826

Evaluating Expressions
Tip To avoid generating error conditions due to non-existing items or values, you can
use G2’s existence expressions to test for a no value condition, as described in
Existence of an Item or Value, Using the Has a Value Expression for variables, and
Referring to Items or Values.

G2 produces a no value condition in these circumstances:

• When there is no possibility of obtaining a value.

• When attempting to obtain a current value that has expired.

• After unsuccessfully attempting to perform an operation that specifies a
type mismatch.

Never Obtaining a Value

If no possibility exists of obtaining a value for an expression, evaluating that
expression produces a no value condition. This occurs when:

• The expression refers to an item that does not exist.

• The expression refers to an attribute that contains no value.

• The expression refers to a variable that has never received a value.

Not Obtaining a Value at this Time

If an expression refers to a variable whose current value has expired, evaluating
that expression produces a no value condition.

G2 can also produce a no value condition after evaluating a conditional
expression whose if-clause expression produces the truth-value false, but has no
else-clause. Conditional expressions are described in Conditional Evaluation.

Finding a Type Mismatch

When an expression specifies an operator, a mismatch can exist between the
operator and the type of any expression term, or among the expression terms.
This occurs, for instance, when an expression specifies the + (addition) operator
for a numeric value and a symbol value.

When a type mismatch prevents G2 from evaluating an expression, G2 signals
an error.
827

Determining When Expressions Expire
Each value that G2 uses has an expiration time, which is the point in time when
the value’s expiration time interval runs out. Most G2 values have an expiration
time of never, indicating they are valid indefinitely. Variables are the exception,
because they are the only values in G2 that can expire. G2 determines a value’s
expiration time based on when the value was obtained at its source and on the
explicit or implicit expiration time intervals of the sources for that value.

To illustrate, if your KB concludes a value into a variable at 1000 seconds of G2
clock time, and the variable’s validity-interval attribute contains the value
10 seconds, then the expiration time of this value is at 1010 seconds of G2 clock
time. The validity interval of a variable is an example of an explicit expiration
time interval.

If a value’s expiration time interval has passed, that value has expired. A variable
whose value has expired also has no current value.

The value that G2 obtains from evaluating an expression also has an expiration
time. G2 determines this point in time as the current KB runs, based on the
expiration times for the values that are the expression’s terms. In some contexts,
such as within an executing procedure, an expression’s expiration time must be
indefinite, or else G2 signals an error. In these cases, if evaluating an expression
produces a value at all (that is, if G2 does not produce an error condition), that
value never expires.

In other contexts, such as in rules and displays, G2 might evaluate an expression
that refers to the expired value of a variable. In such cases, the expression’s
expiration time depends upon the expiration times of the values that are its terms.

Note When G2 evaluates an expression that produces a no value condition, the
expression’s expiration time is also a no value condition.

For the majority of expressions, the expiration time is the minimum expiration
time of its terms. A notable exception to this rule is an expression that includes the
and operator. For more information, see Affecting the Expiration Time.

Understanding Transactions and
Transaction Scopes

The expiration time of the values that G2 obtains by evaluating expressions is
significant because of G2’s practice of performing your KB’s activities within
transactions. A transaction is a sequence of your KB’s processing in which the set
of values in use must remain valid, unchanged, and consistent with respect to
each other.
828

Using Generic Reference Expressions
G2 automatically identifies when a sequence of processing must take place as a
transaction; this is called a transaction scope. G2 also automatically ensures that
the values referenced within a transaction’s scope remain valid and consistent
until G2 finishes performing the transaction.

For instance, by default, the statements and actions that G2 performs within a
called procedure form one transaction. G2 ensures that the values referenced in
the procedure’s statements and actions do not change while the procedure is
executing, even if the source of a particular value (such as an attribute or a
parameter) is updated by another KB activity while this procedure is executing.
Thus, references to a particular attribute in different statements within the
procedure will produce the same value.

G2 must perform the current KB’s activities within transactions for these reasons:

• The scope of the knowledge contained in each item is global. Any executable
item can refer at any point in its execution to the knowledge in any other
activated item.

• As the current KB runs, G2 can simultaneously perform more than one thread
of execution. G2 can simultaneously execute procedures, invoke rules,
perform data seeking and respond to other external connections and
interfaces.

Because G2 performs the KB’s activities within transactions, your KB’s executable
items can produce reliable results.

Using Generic Reference Expressions
Certain expressions allow you to use generic references to a set of items or values,
depending on the expression’s context in an action or procedure statement. These
are called generic reference expressions.

Generic reference expressions can refer to one or more items, attributes, variable
or parameter values, or list or array elements in certain contexts. For instance, the
generic reference expression any custom-object connected to my-valve in the
antecedent of the following rule refers to a set of items:

whenever the authors of any custom-object connected to my-valve
receives a value then
post "The object [the public-name of the custom-object] has been edited."

The generic reference expression any symbol in any symbol-list in the antecedent
of the following rule refers to a set of values:

if any symbol in any symbol-list is not ok then
post "Validation of [the superior item of the symbol-list]

found discrepancies."
829

To create a generic reference expression:

 generic-reference-expression := {class-name | type} [local-name]
[generic-reference-qualifier]

Including a Generic Reference Qualifier Expression

In a generic reference expression that identifies a set of items, use a generic
reference qualifier expression to refer to those items with respect to their system-
defined relationships with other items.

To create a generic reference qualifier expression:

 generic-reference-qualifier :=
{upon kb-workspace} | {connected connected-expression} |
{at at-expression} | {nearest to item} |
{superior to kb-workspace | object-attribute} |
{that is relation-name item} | {named by symbolic-expression} |
{in {g2-list | g2-array} } | {name of item}

For example, the antecedent of this rule specifies a generic reference expression
that includes a generic reference qualifier expression connected to my-valve:

whenever the authors of any custom-object connected to my-valve
receives a value then
post "The object [the public-name of the custom-object] has been edited."

Using Quantifiers

You must prefix each generic reference expression with a G2 reserved symbol,
called a quantifier. Each quantifier indicates whether the expression produces
one, one and only one, at least one, or any number of items or values.

You use particular quantifiers in certain contexts, as summarized in this table:

Quantifier Meaning Context and Example

a

an

At least one Use only in there exists expressions:

there exists a tank T in tank-list-1
such that (T is full)

any Zero or more Use only in generic rules:

if any tank T in tank-list-1 is full
then remove T from tank-list-1
830

Using Generic Reference Expressions
Note When the the quantifier is used together with named by, it has the meaning “At
least one”. This is an exception. See also Referring through a Symbolic Expression.

It is possible to use the every quantifier in outer and inner statements:

for every tank T in tank-list1 conclude that
the background-color of the workspace of every T is the symbol blue

When doing so, however, the second every statement cannot refer to a local
variable declared in the first, and a statement such as the example here would not
compile correctly.

each Zero or more In expressions over a set of values, items, or
attributes, use to compute a value based on
the set:

the count of each tank T in tank-list-1
such that (T is full)

In expressions in procedures, use to iterate
over a set of items:

for T = each tank in tank-list-1 do ...

every Zero or more In a for every expression, use to iterate over a
set of items or attributes:

for every tank T in tank-list-1 (T is full)

In the consequent of a rule, causes an action to
execute on every item that matches the
reference:

if the time-of-day of floor-clock > 600
then show the subworkspace of every
die-cutting-machine

In this example, G2 iterates over all tanks in
tank-list-1, and produces the truth-value true
if all tanks are full.

the One and only one In any expression: the tank in tank-list-1 exists

This expression produces the truth-value true
only when there is one tank in tank-list-1.

Quantifier Meaning Context and Example
831

Embedded Generic Reference Expressions

In some G2 expressions you must specify an embedded generic reference
expression. In these cases, you must use a particular quantifier, not any quantifier.

For example, the there exists expression requires only the a or an quantifier for its
embedded generic reference expression. This rule’s antecedent tests whether any
items exist that have a value other than OK in the notes attribute:

initially
if there exists an action-button such that

(the text of the notes of the action-button /= "ok") then
post "At least one action-button in this KB has errors."

Note In this chapter the syntax descriptions for each expression show the required
quantifier for the embedded generic reference expression, if any.

Using Class-Qualified Names
G2 allows duplicate class or attribute names in two contexts:

• Attributes of different classes can have the same names.

• Methods defined on different classes can have the same names.

To avoid ambiguity in such cases, G2 uses class-qualified names to refer to the
duplicate attributes and/or methods. A class-qualified name uses the class-
qualifier operator, two colon characters (::), and has the syntax:

class::name

where class is the class that defines the attribute or method, and name is the
attribute or method’s name.

G2 supports class-qualified names in all grammar categories and value
expressions that support symbols:

• User-defined attribute and method names.

• Symbolic values for user-defined attributes.

• The initial and current values of symbolic variables and parameters.

• Symbolic array and list elements.

• All item named by expressions.

Thus you can use expressions such as:

• the symbol class::name

• symbol "class::name"
832

Using Local Names in Expressions
• conclude that reference is class::name

• attribute initially is class::name

When G2 provides an attribute or method name, and that name would be
ambiguous if given without qualification, G2 provides a class-qualified name.
Thus an expression that iterates over all user-defined attributes can distinguish
among duplicate attributes.

Using Local Names in Expressions
You can use a local name to simplify some expressions, including generic
reference expressions. For example, using two local names, V and T, you can
recode this expression:

the volume of the tank nearest to connection-post-A +
the maximum-volume-at-shutdown of the inflow-pipe connected to

the tank nearest to connection-post-A -
(0.10 * the volume of the tank nearest to connection-post-A)

as this expression:

the volume V of the tank T nearest to connection-post-A +
the maximum-volume-at-shutdown of the inflow-pipe connected to
T - (0.10 * V)

You can use local names implicitly and explicitly. You can also use existing
classes or attribute names as local names.

Implicit Use

You can implicitly use local names in expressions to simplify the expression.
A local name provides a quick method of referring to the value produced by an
expression, such as:

if the temperature T1 of tank-1 > 200 and T1 < 300
then ...

In this example, you use the local name T1 to refer to the temperature of tank-1.

An implicit local name must be unique to the expression in which it appears. The
scope of an implicit local name is also limited to the expression in which it
appears. Thus, you can use the same implicit local name in different expressions
in the same rule, action, or procedure statement.
833

Explicit Use

In procedures and methods you can also use declared local names. In the local
name declaration section of the procedure, you must declare each local name that
receives an assignment (in a = statement) within that procedure.

This example demonstrates how a procedure can use both explicit and implicit
local names:

local-names-sample () = ()
{ C is an explicit local name. }
C : class conveyor ;
begin

for C = each conveyor upon this workspace do
{ S is an implicit local name. }
case (the status S of C) of

paused, stopped :
post "Status of conveyor [the public-name of C] is [S]." ;

end ; { case }
end { do }

end

Tip Declaring a local name in a procedure allows G2 to compile each statement that
uses the name more efficiently.

Class or Attribute Name Use

You can use a class name or attribute name as a local name in a rule, in which case
you must use the the quantifier. When you first refer to an attribute in a rule, you
must identify the item of the attribute. When you make additional references to
that same attribute, however, you need not identify the item, because the item is
clear from the first reference.

For example, this rule uses the name of the temperature attribute of the tank class
as a local name:

if the temperature of tank-1 > 200 and the temperature < 300 then ...

The second reference to the temperature attribute omits the reference to tank-1.
G2 assumes that the reference the temperature still refers to the temperature of
tank-1.
834

Using Literals
Using Literals
A literal directly represents a value of a specific G2 type. The specific value types
are integer, float, truth-value, text, and symbol. G2 evaluates a literal to the value
that it signifies:

Note The case of alphabetic characters in a literal symbol is not significant.

For more information about G2 types, see Distinguishing Value Types.

It is valid to specify a literal value as a term in an expression, if the type of the
literal’s value is valid for that term.

Using Operators in Expressions
An operator specifies a type-specific operation. Each operator combines with one
or two expression terms, also called operands. For most operators, each operand
can be a distinct expression.

Each operator in an expression must be appropriate for the types of its operands.
For instance, it is invalid for G2 to combine an arithmetic operator with an
operand that does not produce a value of type integer or float.

Type of Value Example Meaning

integer 54 Integral number in decimal
notation.

long 536870912L
-100L

Signed 64-bit integral number in
decimal notation.

float 165.70
1.0e204

Rational number in decimal
notation; rational number in
exponential notation.

truth-value true
false
1.0 true
0.33 true
-1.0 true
-0.79 true

A fuzzy truth-value.

text "your computer" Case-sensitive text.

symbol AB-#304-CABLE
X-29-RADAR

Unique identifier.
835

G2 offers these operators:

• Arithmetic operators: Unary negation, addition, subtraction, multiplication,
division, and exponentiation for operands that produce values of type
quantity, integer, and float.

• Logical operators: Boolean operations and, or, and not for operands that
produce values of type truth-value.

• Relational operators: As follows:

– For operands that produce values of type quantity, integer, float, and text:
equal to, not equal to, greater than, greater than or equal to, less than, and
less than or equal to.

– For operands that produce values of type symbol: equal to and not
equal to.

– For operands that produce values of types truth-value: equal to, not
equal to, is less true than, is more true than, is not less true than, and is not
more true than.

• Concatenation operator: For operands that produce values of any type.

• Class-qualifier operator: For operands that name a class and a class-specific
attribute of that class.

The following sections describe in detail how these operators and their operands
participate in an expression.

Using Arithmetic Operators

G2 uses the following reserved characters to signify arithmetic operators:

Note For G2 to interpret the - (hyphen) character as an operator, rather than as a
character in a symbol, include at least one space before and after it.

Reserved Character Arithmetic Operation

- (hyphen) Negation

+ (plus) Addition

- (hyphen) Subtraction

* (asterisk) Multiplication

/ (forward slash) Division

^ (caret) Exponentiation
836

Using Operators in Expressions
Note See the arithmetic function remainder in Arithmetic Functions, which is similar to
the division (/) operator.

Identifying the Default Order of Evaluation

By default, G2 evaluates an expression with an arithmetic operator from left to
right. For example, G2 evaluates this expression:

W * X - Y + Z

as follows:

1 Obtain the value of the term W.

2 Obtain the value of the term X and multiply it by the previous value.

3 Obtain the value of the term Y and subtract it from the previous product.

4 Obtain the value of the term Z and add it to the previous difference.

Using Parentheses to Affect the Order of Evaluation

You can use parentheses to override the default order in which G2 evaluates an
expression that includes an arithmetic operator. In the following expression,
enclosing the middle two terms and their operator in parentheses changes how
G2 evaluates the expression:

W * (X - Y) + Z

In this case, G2 evaluates this expression as follows:

1 Obtain the value of the term W and remember it.

2 Obtain the value of the term X.

3 Obtain the value of the term Y and subtract it from the previous value.

4 Multiply the memorized value of W by the previous difference.

5 Obtain the value of the term Z and add it to the previous product.
837

Precedence of Arithmetic Operators

When evaluating expressions that include arithmetic operators, G2 observes the
following precedence among operators.

For example, in this expression:

W + X * Y + Z

because the * (multiplication) operator has higher precedence than the
+ (addition) operator, G2 evaluates the entire expression as if its terms are
combined within parentheses as follows:

W + (X * Y) + Z

Coercion of Values Returned from Arithmetic Operators

When evaluating an expression that includes an arithmetic operator, the type of
value obtained depends upon a combination of the operator and the types of the
values obtained from the operand terms. The following table summarizes this
behavior:

Precedence
Reserved
Character Arithmetic Operation(s)

1 - Negation

2 ^ Exponentiation

3 * and / Multiplication and division

4 + and - Addition and subtraction
838

Using Operators in Expressions
Reserved Character
(Operation)

Types of
Operand Values Type of Resulting Value

- (negation) quantity
integer
long
float

quantity
integer
long
float

+ (addition)

- (subtraction)

* (multiplication)

quantity, quantity
quantity, integer
quantity, long
quantity, float
integer, integer
integer, long
integer, float
long, long
long, float
float, float

quantity
quantity
float
float
integer
long
float
long
float
float

/ (division) quantity, quantity
quantity, integer
quantity, long
quantity, float
integer, integer
integer, long
integer, float
long, long
long, float
float, float

float
float
float
float
float
float
float
long
float
float

^ (exponentiation) quantity, quantity
quantity, integer
quantity, long
quantity, float
integer, integer
integer, long
integer, float
long, long
long, float
float, float

float
float
float
float
float
float
float
float
float
float
839

Constraints on Exponentiation Operations

G2 disallows certain values to participate in an exponentiation operation,
as follows:

• G2 disallows an exponentiation operation that produces a complex number.

• G2 disallows an exponentiation operation where the base value is zero
(that is, 0 or 0.0) and the exponent value is a negative number.

• G2 disallows an exponentiation operation where the base is negative and the
exponent is positive.

Using Logical Operators

Logical operators specify boolean operations on either one or two operand terms
for which G2 obtains values of type truth-value, as summarized in this table:

An expression that includes a logical operator produces a value of type
truth-value.

These expressions include logical operators:

the tank is empty or the input-valve connected to the tank is broken

not valve-is-broken

Operator Resulting Value Example

and
(two operands)

true, only if the values obtained
for both operand terms are true

false, otherwise

X and Y

or
(two operands)

true, if the value obtained for
either operand term is true

false, otherwise

X or Y

not
(one operand)

true, if the value obtained for
the operand term is false

false, if the value obtained for
the operand term is true

not X
840

Using Operators in Expressions
Short-Circuited (Lazy) Evaluation of Logical Operators

G2’s and and or operators are short-circuited:

• X and Y

If X evaluates to false, G2 returns the value of X without evaluating Y;
otherwise G2 returns the smallest of the values.

• X or Y

If X evaluates to true, G2 returns the value of X without evaluating Y;
otherwise G2 returns the largest of the values.

Short-circuited (also called lazy) evaluation avoids wasting processor time
evaluating terms in a logical expression whose value is already known.

Affecting the Expiration Time

For an expression that includes a logical operator and that refers to one or more
logical variables, the expiration time of the entire expression depends on which
logical operator is used, as follows:

• For the and operator, G2 uses the expiration time of the first logical variable
whose current value is false.

– If each term in the expression produces the truth-value true, G2 evaluates
the entire expression as the truth-value true, and the expiration time for
entire expression is the expiration time among those of the operand terms
that is nearest into the future from the current time.

– If some terms produce a no value condition but none of the known terms is
false, G2 produces the no value condition for the entire expression, and the
expiration time for the entire expression also produces the no value
condition.

– If any term produces the truth-value false, G2 evaluates the entire
expression as the truth-value false, and the expiration time of the
expression is that of the term that produced false.
841

• For the or operator, G2 uses the expiration time of the first logical variable
whose current value is true.

– If all terms referenced in the expression produce the truth-value false,
then G2 evaluates the entire expression as the truth-value false, and the
expiration time for the entire expression is the expiration time among
those of the operand terms that is nearest into the future from the
current time.

– If some terms produce the no value condition but none of the known terms
produce the truth-value true, then G2 produces the no value condition for
the entire expression, and the expiration time also produces the no value
condition.

– If any term produces the truth-value true, G2 evaluates the entire
expression as the truth-value true, and the expiration time of the entire
expression is the same as the expiration time of the term that
produced true.

Tip Logical operators can also combine with terms that produce fuzzy truth values.
For more information, see Producing Fuzzy Truth Values from
Relational Operations.

Precedence and Order of Evaluation

The precedence for logical operators is as follows:

1 not

2 and

3 or

An example is:

X and not Y or Z and W

Because the not operator has higher precedence than and, and because the and
operator has higher precedence than the or operator, G2 associates the operators
and operands as follows:

(X and (not Y)) or (Z and W)

By default, logical operators have lower precedence than arithmetic and relational
operators. So, G2 evaluates these two expressions in the same manner:

2 + X > Y and Z > W

(2 + X > Y) and (Z > W)
842

Using Operators in Expressions
Using Relational Operators

A relational operator causes G2 to compare the values obtained for its two
operands and to return a value of type truth-value.

Use these relational operators to compare two terms for which G2 obtains a value
of type quantity, integer, or float:

Use these relational operators to compare two terms for which G2 obtains a value
of type text:

G2 ignores the alphabetic case when comparing two text values. For example:

• The text strings "Text" and "text" are equal, that is, "Text" = "text" is true.

• The text string "Text" is a member of the text-list that contains "text".

• The text string "Text" is a member of the sequence that contain "text".

Reserved Character Relational Operation Usage

= Is equal to A = B

/= Is not equal to A /= B

> Is greater than A > B

< Is less than A < B

>= Is greater than or equal to A >= B

<= Is less than or equal to A <= B

Reserved Character Relational Operation Usage

= Is equal to A = B

/= Is not equal to A /= B

> Is greater than A > B

< Is less than A < B

>= Is greater than or equal to A >= B

<= Is less than or equal to A <= B
843

G2 also ignores the type when comparing two quantity values. For example:

• The integer 2 and the float 2.0 are equal, that is, 2 = 2.0 is true.

• The float 2.0 is a member of the quantity-list that contains the integer 2.

• The float 2.0 is a member of the sequence that contains the integer 2.

Use these relational operators to compare two terms for which G2 obtains a value
of type symbol, sequence and structure:

Use these relational operators to compare a term for which G2 obtains a value of
type symbol with a literal symbol:

Tip There are corresponding relational operators for fuzzy truth expressions. See
Fuzzy Truth Operators for more information.

Producing Fuzzy Truth Values from
Relational Operations

A truth-value expression that includes a relational operator produces a value of
type truth-value. As introduced in Using the Truth-Value Type, a value of type
truth-value can range from -1.0 true to +1.0 true, where -1.0 true signifies
complete certainty that a comparison is false and +1.0 true signifies complete
certainty that a comparison is true. Thus, such an expression can also produce a
fuzzy truth value, which signifies a partial certainty in the truth of a comparison.

You produce a fuzzy truth value from a truth-value expression with a relational
operator when you also specify a fuzzy truth band subexpression. In the
following expressions that contain a relational operator, the fuzzy truth band
subexpressions appear in boldface:

X < Z (+ - 4)

the level of tank-1 < 110 (+ - 5)

Reserved Symbols Relational Operation Usage

= Is equal to A = B

/= Is not equal to A /= B

Reserved Symbols Relational Operation Usage

is Is the same symbol as A is red

is not Is not the same symbol as A is not red
844

Using Operators in Expressions
Specifying a Fuzzy Truth Band Subexpression

To produce a fuzzy truth value from an expression that includes a relational
operator, specify a fuzzy truth band subexpression. Its syntax is:

(+- quantity-expression)

For example, this truth-value expression compares an attribute’s value with a
literal integer, according to a fuzzy truth band subexpression:

the flow of pump-1 > 50 (+- 5)

The fuzzy truth band subexpression (+- 5) specifies that the fuzzy truth value
produced corresponds to a range of values, from 45 (50 minus 5) to 55 (50 plus 5).
That is, as the value of the flow attribute of pump-1 ranges from 45 to 55, the
corresponding fuzzy truth values range from -1.0 true to +1.0 true.

Thus, the expression the flow of pump-1 > 50 (+- 5) has a +1.0 true truth-value
when the the flow of pump-1 is 55 or greater, and a -1.0 true truth value when the
flow of pump-1 is 45 or less, as shown in the next diagram:

As the diagram indicates, the truth-values in the fuzzy-truth band fall along a line
between the specified end-points of the band.

You can specify a fuzzy truth band subexpression in the antecedent of a rule.
G2 executes such a rule after consulting the value of the truth-threshold attribute
in the Inference Engine Parameters system table. Its value can range from 0.0 to 1.
0, and its default value is .800 (or +0.8 true). When G2 invokes a rule, for G2 to
execute the actions in the rule’s consequent, the truth-value that results from
evaluating the rule’s antecedent must be greater than or equal to the truth-
threshold.

For example, the truth-value expression in this rule’s antecedent specifies a fuzzy
truth value subexpression:

if the temperature of tank-1 >100 (+- 2) then
conclude that the tank-is-boiling of tank-1 is true

If the temperature attribute of tank-1 has a value of 101.8, the subexpression
causes the entire truth-value expression to produce the fuzzy truth value of

45 50 55
-1.0 true

+1.0 true

0.0 true
845

+0.9 true. Because the value +0.9 true is greater than the value of truth-threshold
(that is, +0.8 true), G2 executes the action to conclude the truth-value (+0.9 true)
into the tank-is-boiling attribute of tank-1.

Using Logical Operators with Terms That Produce Fuzzy Truth Values

You can use logical operators to combine terms in a truth-value expression that
produce fuzzy truth values. For example, you can specify a truth-value
expression like this:

X > Y (+- 5) and Z > W (+- 3)

G2 evaluates these expressions as follows:

• If the and operator is used, G2 produces the lesser fuzzy truth value as the
value of the entire truth-value expression.

• If the or operator is used, G2 produces the greater fuzzy truth value as the
value of the entire truth-value expression.

• If the not operator is used, G2 produces the fuzzy truth value with the
opposite sign.

Given this truth-value expression that includes the and logical operator:

X > Y (+- 5) and Z > W (+- 3)

G2 evaluates this expression as follows:

1 G2 finds values for X and for Y, then uses the fuzzy truth band (+- 5) to
calculate a truth-value for the subexpression X > Y.

2 G2 finds values for Z and for W, then uses the fuzzy truth band (+- 3) to
calculate a truth-value for the subexpression Z > W.

3 G2 produces the lesser of the two fuzzy truth values as the value of the entire
expression. For example, if the value of the left side is +0.6 true and the value
of the right side is +0.7 true, G2 produces the value +0.6 true for the
entire expression.

Given this truth-value expression that includes the or logical operator:

X or Y >= W (+- .3)

G2 evaluates this expression as follows:

1 G2 finds the value for X.

2 G2 finds values for Y and for W, then uses the fuzzy truth band (+- .3) to
calculate a truth-value for the subexpression Y >= W.

3 G2 produces the greater of the two fuzzy truth values as the value of the entire
expression. For example, if the value of the left side is +0.4 true and the value
of the right side is +0.9 true, G2 produces the value +0.9 true for the
entire expression.
846

Using Operators in Expressions
Given this truth-value expression that includes the not logical operator:

not (X > Y (+- .2))

G2 evaluates this expression as follows: If the subexpression X > Y (+- .2)
evaluates to a fuzzy truth value of +0.3 true, G2 produces the value -0.3 true for
the entire truth-value expression.

Fuzzy Truth Operators

You can specify a truth-value expression that compares one fuzzy truth value to
another. This kind of expression uses one of these fuzzy truth operators:

• = (is equal to)

• /= (is not equal to)

• is more true than

• is less true than

• is not more true than

• is not less true than

A truth-value expression that specifies a fuzzy truth operator produces a truth-
value of either true or false. It does not produce a fuzzy truth value.

The following truth-value expressions specify both fuzzy truth band
subexpressions and fuzzy truth operators. The fuzzy truth operators appear
in boldface:

Y < 6 (+- 3)) /= (Z > 4 (+- 2)

(X < Z (+- 4)) is less true than (X > 7 (+- 2))

the level of tank-1 < 110 (+- 5)) is not more true than
(the level of tank-2 < 120 (+- 10)

In an expression that specifies a fuzzy truth operator, if either truth-value
expression term being compared is more complex than a reference to a logical
variable or logical parameter, enclose that term in parentheses, such as:

(X > Y (+- 2)) is more true than (Z > X (+- 3))

Using the Concatenation Operator

G2 provides a concatenation operator that you specify by using the square bracket
characters: []. You use this operator to insert, prepend, or append a text version of
any value to a literal text value.

For information on using square brackets to get the Unicode character code of a
single character in a text, see Getting Unicode Character Codes.
847

To concatenate by inserting, specify a text expression such as:

"The direction of flow for the water-pipe [the public-name of the water-pipe
connected to tank-1] is [the direction-of-flow of the water-pipe
connected to tank-1]."

In this case, G2 converts the value produced by the expression the public-name of
the water-pipe connected to tank-1 to a text value and inserts it into the literal text
enclosed in double quotes. Likewise, G2 converts the value produced by the
expression the direction-of-flow of the water-pipe connected to tank-1.

To concatenate by prepending, specify an expression such as:

"[the public-name of the first alarm in the
master-alarm-list] is ready for your response."

To concatenate by appending, specify an expression such as:

"The sum of the volumes is [the volume of tank-1 +
the spillage-volume of drainage-pipe]."

You can also use the concatenation operator to produce an entire text value, as in
this change the text of action:

change the text of the item-configuration of my-item to
"[the text of the item-configuration of workspace-label-free-text]"

G2 can convert to a text value any expression specified within the concatenation
operator characters.

Formatting Using the Newline Character

You can include a newline character in a literal text value, by pressing Control + j
within the two double quotes (") characters that enclose the value. However,
including a newline character within the [and] concatenation operators only
formats that line of code; G2 does not include the newline character in the literal
text value.

For example, this literal text value includes a newline character after the
word “ready”:

"[the public-name of the first alarm in the master-alarm-list] is ready
for your response."

For example, this literal text value does not include a newline character, because
its author specified the newline character between the [and] operators:

"[the public-name of the first alarm in the
master-alarm-list] is ready for your response."

Formatting Numeric Values

Within the concatenation operator, you can optionally specify how G2 formats a
numeric value: its number of decimal digits to the left and/or right of a decimal
point, as a time-stamp, or as a time interval.
848

Using Operators in Expressions
For example, this post action embeds a numeric (the pressure of the tank) in a
literal text value, with the numeric value formatted with three digits left and two
digits right of the decimal point:

if the pressure of any tank has a value
then post "Pressure measurement of [the public-name of T] is

[the pressure of the tank as ddd.dd]."

For both a float pressure value of 45678.8 and an integer pressure value of
45678, G2 posts: 4.57e4.

Here is the syntax for a formatting expression:

as {ddd.dddd-format | a time stamp | an interval}

The formatting alternatives in this expression are also those for formatting the
display of a float value in a readout table. The display-format attribute of a
readout table has no effect on integer values. See Readout Tables.

For a float value, a ddd.dddd-format expression specifies the number of digits in
the value to display left and right of the decimal point. For instance, the
expression dd.ddd specifies to format a number with two digits left of the decimal
point and three digits right of the decimal point.

For a float value expressed in exponential notation, a ddd.dddd-format expression
adheres to the specified format and adds the exponential notation to the right. For
example, an exponential value that adheres to the expression dd.dddddd is
2.323372e4.
849

The next figure shows a workspace whose readout tables demonstrate how the
same ddd.dddd-format expression affects differently the display of an integer
value, a nonexponential float value, and an exponential float value.

You can also format time values using a formatting expression. For example, this
post action embeds a time value formatted as a time-stamp in a literal text value:

post "The last update occurred with a time-stamp of
[the update-time of my-object as a time stamp]."

A time value is either an integer or float value. You can capture a time value by
using one of the G2 time functions or one of these expressions:

• the current time

• the current real time

• the current subsecond time

• the current subsecond real time
850

Producing a Symbol Value
The next figure shows a workspace whose readout tables demonstrate how the
as time stamp and as interval formatting expressions affect differently the display
of the current time and a literal float value.

Notice that when you format a number as a time-stamp, as in the third readout
table in the figure above, the displayed value represents a time-stamp as of that
number of seconds after the current KB was started, not after the current time.

Producing a Symbol Value

To procedure a symbol value:

 the symbol symbol
-> symbol

This expression produces a value of type symbol. For example, the expression
the symbol red produces a symbol value red that G2 does not interpret as the
name of an item, attribute, class, and so on.

Referring to a Superior or Inferior Class
To refer to the superior or inferior class of an item:

 the symbol [local-name] that is
{a superior-class | an inferior-class} of symbolic-expression
-> symbol

This generic reference expression produces one or more symbols that name the
superior or inferior classes of the class named by the symbolic expression. This
expression references a class indirectly.
851

Referring to Items or Values
The following expressions refer to items or values.

Existence of an Item or Value

To determine whether an item or value exists:

 item-or-value {exists | does not exist}
-> truth-value

This expression produces a truth-value that indicates whether the specified item
exists in the current KB, or whether the specified value-expression has a value,
that is, does not produce a no value condition. Use this expression to avoid
references to nonexistent items and attribute values; such references cause G2 to
signal an error.

For an item, use this expression to determine whether the item exists and is active.
For example:

wait until proof-checker-1 exists checking every 5 seconds

For a value-expression, use this expression to determine whether evaluating the
expression produces a value. For example:

if the public-name of the temperature T of my-tank exists
then ...

Tip To test whether a variable or parameter has a value, or whether a variable has a
current value, use the has a value and has a current value expressions. See
Variable and Parameter Expressions.

There Exists

To determine whether an item or value exists:

 there exists {a | an} generic-reference-expression
such that (truth-value-expression)
-> truth-value

This expression produces a truth-value that indicates whether an item or value
exists in the current KB that meets the criterion specified in a truth-value
expression. Use this expression to determine whether an item or value referenced
generically exists and is active.
852

Referring to Items or Values
If the specified generic reference expression refers to items, this expression
produces either truth-value true or false, or a no value condition, as follows:

• Produces the truth-value true if the current KB contains at least one item that
meets the specified criterion. The expiration time of this expression is the
minimum expiration time of either the generic reference expression or the first
instance of the embedded truth-value expression that produces the truth-
value true.

• Produces the truth-value false if no items in the current KB meet the specified
criterion. The expiration time of this expression is the minimum expiration
time of either the generic reference expression or the minimum expiration
time among those of the instances of the embedded truth-value expression.

• Produces the no value condition if no items meet the specified criterion, but
some might be unknown.

If this expression produces the truth-value true, you can refer to the generic
reference expression’s local name in other expressions within this expression’s
transaction scope. In this case, the local name refers to a value when the such that
phrase evaluated to the truth-value true. If there is no such that phrase, the local
name refers to the first instance of the generic reference expression. For example,
this rule’s antecedent contains a there exists expression:

if there exists a vat V1 such that (V1 is overflowing) then ...

Here, the expression V1 is overflowing produces the truth-value true if at least one
vat is overflowing, but produces the truth-value false if no vat is overflowing.

If the there exists expression produces the truth-value false, the value that the
local name refers to is not predictable. In the sample rule shown above, if the there
exists a vat V1 ... expression produces the truth-value false, then references to the
V1 local name in this rule’s consequent might produce a different truth-value.

Note You can optimize the execution of a there exists expression if it references
indexed attributes. See Defining an Indexed Attribute for more information about
indexed attributes.

Class or Type of Item or Value

To determine the class of an item or type of value:

 item-or-value is {a | an} {class-name | type}
 truth-value
853

This expression produces a truth-value that indicates whether an item is an
instance of the specified class (or any of its subclasses), or whether a value is an
instance of any type. For example:

if the item I nearest to help-button is a custom-object then
conclude that the status of I is ok

By Generic Reference

To reference items or values generically:

 for every generic-reference-expression (truth-value-expression)
-> truth-value

This expression produces the truth-values true or false, or produces a no value
condition, as follows:

• Produces the truth-value true if the specified truth-value expression produces
the truth-value true for every item or value in the specified generic reference
expression. If so, the expiration time of the expression is the minimum of the
expiration times of the items or values produced by the generic reference
expression and of all instances of the embedded truth-value expression.

• Produces the truth-value false if the specified truth-value expression
produces the truth-value false for any item or value produced by the specified
generic reference expression. The expiration time of this expression is the
expiration time of the first instance of the specified truth-value expression that
produces the truth-value false.

• Produces a no value condition if the specified truth-value expression does not
produce the truth-value false for every item or value produced by the
specified generic reference expression. In this case, the expiration time of the
expression produces the no value condition.

This expression allows you to iterate through the items or values referenced in the
specified generic reference expression and to detect whether a condition specified
in the truth-value expression is true. This is similar to a universal quantifier in
traditional logic.

For example:

for every valve V connected to tank-1 (V is broken)

This expression produces the truth-value true if every valve connected to tank-1 is
broken. Otherwise, it produces the truth-value false. Note that if no items or
values match the generic reference expression, the expression produces the truth-
value true.
854

Referring to Items or Values
Conditional Evaluation

To perform conditional evaluation:

 (if truth-value-expression then item-or-value [else item-or-value])
-> {item | integer | float | symbol | text | truth-value}

This expression produces a value, based on the result of evaluating a truth-value
expression. Parentheses are required around this expression.

If there is no else phrase, and the truth-value expression produces the truth-value
false, then the entire expression produces a no value condition.

The expiration time of this expression is the minimum of the expiration times of
the specified truth-value expression and of G2’s evaluation of either the then
phrase or the else phrase.

You can nest this expression within other expressions, even with other
conditional expressions. Some examples are:

the area of tank-1 *
(if the current time < 2 then 10 else the level of tank-1)

the status-light of tank-1 =
(if the level of tank-1 > 100 then the symbol red else the symbol green)

if (if valve-1 is open then 10 else 0) > the outflow of tank-1 then
conclude that tank-1 is filling

(if tank-1 is empty then
(if valve-1 is closed then the symbol green else the symbol red)
else the symbol green)

Value Expressions

These expressions deal with the values of items or values.

Value of an Item or Value

To determine the value or an item or value:

 the value of item-or-value
-> {item | integer | float | symbol | text | truth-value}

This expression produces the value of the specified expression, which can be
either an item or a value. If any variable referenced in the specified expression has
never had a value, or if its current value has expired, then G2 performs data
seeking for each such variable. If an attempt at data seeking for any variable
referenced in the specified expression fails for any reason, this entire expression
produces a no value condition.
855

The expiration time of the entire expression is the expiration time of the value
produced by the specified expression. For example:

the value of
(if the custom-variable CV that is synchronized-with the

temperature-variable giving the temperature of tank-1 is not broken
then CV else the temperature of tank-1)

This expression refers to the value of the custom-variable that is related to the
temperature-value variable that gives the temperature attribute of tank-1. If either
that custom-variable or the temperature-value variable that gives the temperature
attribute of tank-1 does not have a current value, then G2 performs data seeking
to obtain a value.

Has a Value

To determine whether an item or value has a value:

 item-or-value has {a | no} value
-> truth-value

This expression produces a truth-value that indicates whether the specified value-
expression has a valid value. For example:

the temperature of the most-reliable-measures of tank-1 has a value

If the expression the temperature of the most-reliable-measures of tank-1 refers to
any variables or parameters, and if those variables or parameters each have a
valid current value, then this expression produces the truth-value true. If those
referenced variables or parameters have never received a value, or if any of their
respective current values have expired, then this expression causes G2 to perform
data seeking to obtain new current values. If G2 obtains a value from that data
seeking, then the entire expression produces the truth-value true; otherwise, the
entire expression produces the truth-value false.

First of the Following Expressions That Has a Value

To determine the first item or value with a value:

 the first of the following expressions that has a value
(item-or-value [item-or-value...])
-> {item | integer | float | symbol | text | truth-value}

This expression produces the item or value that is produced by the first
expression in the specified list of item-or-value expressions that has a valid value.

G2 attempts to evaluate each item-or-value expression in the specified list, going
from left to right. If the expression being evaluated refers to a variable or
parameter that has never received a value or that has an expired current value,
then G2 performs data seeking for those variables or parameters. If G2 cannot
856

Referring to Items or Values
obtain a value for any of the specified item-or-value expressions, the entire
expression produces the truth-value false. For example:

the first of the following expressions that has a value
(the temperature of tank-1,
average-system-temperature,
(if the current time >= 10 then 50 else 55))

G2 evaluates this expression as follows:

1 If the temperature of tank-1 has a value, G2 produces that value as the value of
the entire expression. If not, G2 performs data seeking, as needed, to obtain a
new current value for any variables referenced in the the temperature of
tank-1 expression.

2 If G2 cannot obtain a new value from evaluating the the temperature of tank-1
expression, G2 next checks average-system-temperature for a valid value. If it
has a valid value, G2 produces that value as the value of the entire expression.
If average-system-temperature does not have a valid value, and if it is a
variable, then G2 performs data seeking to obtain a new current value.

3 If G2 cannot obtain a value for average-system-temperature, the value of the
entire expression is either 50 or 55, depending on the G2 clock’s current time,
as specified in the expression (if the current time >= 10 then 50 else 55).

Current Value of an Expression

Whether or not an expression has a current value depends on whether any item
referenced in that expression is a variable and, if so, whether the value of each
referenced variable has expired.

For the majority of expressions, the expiration time is the minimum of the
expiration time of the values of the expression’s terms. As an example, if the
expiration time of X is 50, and the expiration of Y is 10, the expiration time of the
expression X + Y is 10.

Current Value Of

To determine the current value of an item or value:

 the current value of item-or-value
-> {item | integer | float | symbol | text | truth-value}

For the specified item-or-value expression, a current value exists if G2 can evaluate
the expression without finding a new value for the variables, if any, referenced in
that expression. If the specified expression has a current value, this entire
expression produces it. Otherwise, this expression produces a no value condition.
For example:

if the current value of the temperature of tank-1 exists then ...
857

The expression in this rule’s antecedent produces an item or a value if the
temperature attribute of tank-1 has a current value. If the temperature of tank-1
does not have a value, is no longer current, or refers to an item that does not exist,
then this expression produces a no value condition.

Has a Current Value

To determine whether an item or value has a current value:

 item-or-value has {a | no} current value
-> truth-value

This expression produces a truth-value that indicates whether the specified
expression has a current value. For the specified item-or-value expression,
a current value exists if G2 can evaluate that expression without finding a new
value for the variables, if any, referenced in that expression.

If this expression produces the truth-value true, its expiration time is the
expiration time of the value that the specified item-or-value expression produces.
If this expression produces the truth-value false, the expiration time is indefinite.

If a has a value expression is nested within a has a current value expression, G2
evaluates the nested expression no differently than a has a value expression. That
is, G2 performs data seeking, if necessary, to obtain a new current value for any
variables referenced in the nested expression. For example:

if the temperature of the most-reliable-measures of tank-1 has a current value
then ...

If G2 can evaluate the expression the temperature of the most-reliable-measures
of tank-1 without the need to obtain a new current value for any variables
referenced in that expression, then this expression produces the truth-value true.
Otherwise, this expression produces the truth-value false.

First of the Following Expressions That Has a Current Value

To determine the first item or value with a current value:

 the first of the following expressions that has a current value
(item-or-value [item-or-value ...])
-> {item | integer | float | symbol | text | truth-value}

This expression produces the value of the first item-or-value expression in the
specified list of expressions that has a current value. For each specified
expression, a current value exists if G2 can evaluate the expression without
finding a new value for any variables referenced in that expression.

G2 attempts to evaluate each expression in the specified list, going from left to
right. If none of the specified expressions has a value, or if none have a current
858

Referring to Items or Values
value, then this expression produces a no value condition and no error is
signalled. For example:

the first of the following expressions that has a current value
(the temperature of tank-1, average-system-temperature,

(if the current time >= 10 then 55 else 50))

G2 evaluates this expression as follows:

1 If the temperature of tank-1 has a current value, G2 produces that value as the
value of the entire expression.

2 If the temperature of tank-1 does not have a current value, G2 next checks
average-system-temperature for a current value. If it has a current value, G2
produces that value as the value of the entire expression.

3 If average-system-temperature does not have a current value, the value of the
entire expression is either 50 or 55, depending on the G2 clock’s current time,
as specified in the expression (if the current time >= 10 then 55 else 50).

By Iterating Over a Set

These expressions produce a value by directing G2 to iterate over the set of items
specified in a generic reference expression.

Note Your KB’s processing cannot depend upon the same order of iteration over a set
of items from one evaluation to another of the same expression.

The Count Of

To determine the count of:

 the count of each generic-reference-expression
[such that (truth-value-expression)]
-> integer

This expression produces the number of items or values in the set specified in the
generic reference expression that also meet the criterion in the specified truth-
value expression.

For example, the following expression finds the number of objects upon this
executable item’s workspace whose number-of-edits attribute is greater than four:

the count of each object O upon my-object-ws such that
(the number-of-edits of O > 4)
859

Note You can optimize the execution of a the count of expression if it references
indexed attributes. See Defining an Indexed Attribute for more information about
indexed attributes.

Also notice that this expression doesn’t count for those inactive objects. So a
expression like the count of each item will match the result when inspecting show
on a workspace every item whose status is active.

The Average Over Each

To determine the average over each:

 the average over each generic-reference-expression of (quantity-expression)
-> float

This expression produces a calculated value of type float from values in the set of
items or values in the specified generic reference expression. For example:

the average over each valve V connected to tank-1 of (the flow of V)

Other Operations Over a Set

To perform operations over a set:

 the {sum | product | minimum | maximum}
over each generic-reference-expression of (quantity-expression)
-> {integer | float}

This expression produces a calculated value of type quantity from values in the set
of quantitative variables, quantitative parameters, or numeric values in the
specified generic reference expression.

For example, the following expression computes the minimum of the flows of all
valves that are connected to tank-1:

the minimum over each valve V connected to tank-1 of (the flow of V)

Referring to the Current Time
These expressions produce values pertaining to time. G2 allows you to access two
clocks:

• The real-time clock, a hardware facility of your computer that G2 accesses
through the computer’s operating system.

• The G2 clock, which is the clock maintained by G2’s task scheduler.
G2 calibrates the G2 clock to the real-time clock when you select Start from the
Main Menu.
860

Referring to the Current Time
The G2 clock runs at the same rate as real time only if you have specified real time
in the scheduler-mode attribute of the Timing Parameters system table. If you
have set simulated time or as fast as possible in that attribute, the G2 clock might
be out of synchronization with the real-time clock. It can be very useful to change
this synchronization; see Optimizing Task Scheduling for more information.

Tip You can format the display of values produced from these time expressions. See
Formatting Numeric Values.

G2 provides system-defined functions that return time values obtained from
either the G2 clock, the real-time clock, or from any numeric expression. See Time
Functions for more information.

Current Subsecond Time

To refer to the current subsecond time:

 the current subsecond [real] time
-> float

This expression produces a time value, represented as a floating-point number
of seconds:

• The expression the current subsecond time produces the number of seconds
since you started the current KB, using the G2 clock.

• The expression the current subsecond real time produces the number of
seconds of since you started the current KB, using the real-time clock.

Note The precision of subsecond time expressions is affected by the setting of the
minimum-scheduling-interval attribute of the Timing Parameters system table.

Current Time by Time Unit

To refer to the current time by unit:

 the current {time | real time | year | month | day of the month | hour |
minute |second}
-> integer

This expression produces a time value, as follows:

• the current time expression uses the G2 clock and produces the number of
seconds since you started the current KB.

• the current real time expression uses the real-time clock and produces the
number of seconds since you started the current KB. Note that this produces
861

the actual number of elapsed seconds, regardless of the setting of the
minimum-scheduling-interval attribute in the Timing Parameters system table.

• the current year expression uses the G2 clock and produces the year, such
as 2002.

• the current month expression uses the G2 clock and produces the number
(1 through 12) of the current month.

• the current day of the month expression uses the G2 clock and produces the
number (1 through 31) of the day of the current month.

• the current hour expression uses the G2 clock and produces a number
representing the hour of the current day (0 to 23). Note that the number
0 (zero) indicates 12:00 a.m. midnight.

• the current minute expression uses the G2 clock and produces a number
representing the minute of the current hour (0 to 59).

• the current second expression uses the G2 clock and produces a number
representing the second of the current minute (0 to 59).

These expressions have an equivalent G2 function. For example, the the current
day of the month expression is equivalent to the expression day (the current time)
that uses the G2 day function.

Current System Time

To refer to the current system time:

 the current system [real] time
-> float

This expression produces a time value, as follows:

• the current system time — Returns the current UNIX time, as a float, which is
the number of seconds since January 1, 1970, using the G2 clock.

• the current system real time — Returns the current UNIX time, as a float,
which is the number of seconds since January 1, 1970, using the real-time
clock.

Current Day of the Week

To refer to the current day of the week:

 the current day of the week
-> symbol

This expression uses the G2 clock and produces one of the following symbols that
names a day of the week: sunday, monday, tuesday, wednesday, thursday,
friday, saturday.
862

Referring to Specific Items
Referring to Specific Items
Numerous expressions exist for referring to specific items and attributes.
Expressions are presented on these topics as follows:

For expressions referring to... See...

Attributes Expressions That Refer to
Attributes.

Connections items and
connections

Using Connection Expressions.

Items Item Expressions.

Lists and arrays Lists and Arrays.

Procedures Expressions for Procedures.

Relations Expressions Involving Relations.

Rules Expressions That Refer to Rules.

Variables and parameters Variable and Parameter
Expressions.

Workspaces of items Expressions That Refer to KB
Workspaces,
863

864

22
Procedures
Shows how to define, customize, and use G2 procedures.

Introduction 866

Procedure Syntax 866

Defining a Procedure 872

Compiling a Procedure with Error-Location Information 873

Procedure Attributes 873

Sample Procedure 874

Using Procedures 876

Procedures and Rules 890

Dictionary of Procedure Statements 892
allow other processing 893
assignment (=) 894
begin-end 895
call 896
case 898
collect data 900
do in parallel 902
exit if 904
for 905
go to 910
if-then 911
on error 913
repeat 915
return 916
signal 917
wait 919
865

Introduction
A procedure is a predefined sequence of operations that execute sequentially
and/or in parallel each time the procedure is invoked. Procedures are convenient
when you want to perform the same operations repeatedly under different
circumstances and/or on different data values. For a comparison of procedures
and rules, see Procedures and Rules.

G2 executes a procedure when the procedure’s name and arguments (if any)
appear in a call statement or a start action. The procedure executes synchronously
when called and asynchronously when started. A called procedure can return one
or more values, which are obtained by including the invoking call statement in an
assignment statement.

A procedure that returns a value is not the same as a G2 function. Functions have
a simpler syntax and are less powerful than procedures, but can be invoked by
embedding references to them directly into expressions. Complete information on
G2 functions appears in Functions.

This chapter shows you how to define, use, and debug user-supplied G2
procedures. Several other documents and chapters in this document supply
related information about procedures:

• G2 provides many system-supplied procedures, as described in the G2 System
Procedures Reference Manual.

• You can call procedures remotely using G2 Gateway, as described in the
G2 Gateway Bridge Developer’s Guide.

• You can call procedures remotely across a G2-to-G2 interface, as described in
G2-to-G2 Interface.

Methods have the same syntax as procedures, but are defined and invoked
differently. Methods also provide a locking mechanism. Complete information on
creating and using methods appears in Methods.

Procedure Syntax

The syntax of a G2 procedure is similar to the syntax of a procedure in any
ordinary programming language. You can write G2 procedures without knowing
every detail of their syntax, because the text editor warns you of any syntactic
error as soon as it occurs.
866

Procedure Syntax
A G2 procedure consists of four major parts:

• Procedure header

• Optional local declarations

• Procedure body

• Optional error handler

For example:

The formal syntax of a G2 procedure is:

procedure-name ([argument: type] [, ...]) [= (type [, ...])]

[local-name [, ...]: type [= value-expression];] ...

begin
[statement-label:] statement [; ...]

end

[on error (local-name)
[label:] statement [; ...]

end]

The rest of this section describes procedure syntax in detail.

Local Names in Procedures

A local name in a procedure is a name that represents an item or value while the
procedure executes. A local name has no attributes, collection time, or expiration
time, and need not be explicitly deleted when a procedure returns: it has no
properties except its type and the item or value that it represents.

create-item(class-name: symbol, rank: integer) = (class item)

new-item: class item;
new-name: symbol;

begin
create an instance new-item of the class named by class;
transfer new-item to this workspace;
make new-item permanent;
new-name = symbol("[class-name]-[rank]")
conclude that the new-names of new-item = new-name
return new-item

end

local declarations

procedure body

procedure header
867

Procedure Header Syntax

The procedure header names the procedure and specifies what arguments it
accepts and the types of values (if any) that it returns. The syntax is:

procedure-name ([argument: type] [, ...]) [= (type [, ...])]

For example, the following header begins a procedure that takes two arguments,
a mixer and the name of a part used in it, and returns a truth-value that tells
whether that part is currently in stock:

check-inventory-for-part (mixer1: class mixer, part: text) = (truth-value)

Tip Omitting the keyword class when specifying an argument or return value is one
of the most common errors in defining procedures.

A procedure can accept a maximum of 255 arguments and can return a maximum
of 255 values.

Duplicate Procedure Names

If a procedure name is not unique, G2 posts a warning in the notes attribute of
every procedure that shares the name. Invoking the duplicated procedure
invokes an arbitrarily selected instance of it. The selection may differ from one
invocation to the next.

Procedures used as methods can have duplicate names provided that the number
of arguments differs in each method that shares a name, as described under
Duplicate Methods.

Element Description

procedure-name Any name that uniquely identifies the
procedure.

argument A local name to be used within the procedure
body to represent a supplied argument. The
name shadows any same-named item existing
outside the procedure.

type The type of a local name used as an argument,
or of a return value.

• If the argument or return value is an item,
type is the keyword class followed by the
class of the item.

• If the argument or return value is a value,
type is the type of the value.
868

Procedure Syntax
Local Declarations Syntax

A procedure’s argument definitions (if any) define local names to hold the
arguments. Any additional local names needed in the procedure are defined in
the local declarations section. If no additional local names are needed, the local
declarations section is omitted.

Local declarations specify local names, their associated types, and their initial
values (if any). The syntax is:

[local-name [, ...]: type [= expression];] ...

If more than one local name is of the same type, you can combine the declarations.
The following declares three local names of type integer:

inventory, products-shipped, orders: integer;

You cannot combine local names of the same type if you also need to declare an
initial value. You must declare initial values for local names separately, for
example:

inventory: integer = 0;
products-shipped: integer = 0;
orders: integer = 0;

Terminology

In other programming languages, declared names that hold values during
procedure execution are called variables. In G2, the term “variable” refers
exclusively to a g2-variable, as described in Variables and Parameters.

Element Description

local-name Any name that defined as a local name
elsewhere in the procedure. The name shadows
any same-named item existing outside
the procedure.

type • If local-name represents an item, type is the
keyword class followed by the class of
the item.

• If local-name represents a value, type is the
type of the value.

expression Any expression of the specified type. G2
evaluates expression to obtain the initial value
for the local-name.
869

Variables and parameters can have initial values, but these are not the same as the
initial values of local names. Be careful not to confuse the two meanings of “initial
value.” The context always clarifies which is intended.

Procedure Body Syntax

The procedure body contains one or more procedure statements, which specify
the operations that the procedure performs. All of the statements in a procedure
are enclosed in a begin-end block. The syntax is:

begin
[statement-label:] statement [; ...]

end

If a statement-label appears, the statement can be the target of a go to, as described
under go to.

Statements

Every statement in a procedure is either an action statement or a procedure
statement. An action statement specifies some action, using the same syntax that
the action uses when specified in a rule. For information on the various actions
that a procedure can contain, see Actions.

Procedure statements make assignments, control the flow of execution, and do
other things typical of statements in any computer language. The following table
summarizes all G2 procedure statements. The Dictionary of Procedure Statements
provides complete information about all procedure statements.

Element Description

statement-label An integer or symbol.

statement Any of the actions described in Actions, or any
of the statements described in the Dictionary of
Procedure Statements. See Statements.

Statement Description

allow other
processing

Lets G2 interrupt a procedure to perform other
tasks with the same priority.

assignment (=) Associates a value with a given local name
without causing data-seeking.

begin ... end Defines a compound statement, including the
body of a procedure.
870

Procedure Syntax
Error Handler Syntax

G2 provides error handlers. When errors occur, G2 searches for and invokes the
error handler. The default error handler prints a message to the logbook
describing the error.

You can also define your own error handlers within procedures by using the
on error statement. The syntax is:

case Specifies a series of alternative statements to be
executed based on the value of an expression

call Invokes a procedure and transfers control to it.

collect data Associates a value with a given name by causing
data-seeking. Procedures must use this statement
when referencing variable values.

do in parallel Executes two or more statements at the
same time.

exit if Transfers control outside a loop, based on the
value of a specified logical expression.

for Specifies a loop, that is, a sequence of one or more
statements to be executed repeatedly until a
specified condition has been fulfilled.

go to Transfers control explicitly to a specified label.

if-then Specifies conditional execution of statements
based on the value of an expression.

on error Accepts control of the procedure when an
error occurs.

repeat Explicitly iterates over a sequence of one or more
statements.

return Returns control to the calling procedure.

signal Signals errors that you have named.

wait Suspends procedure execution for a specified
time or based on the value of some expression.

Statement Description
871

[on error (local-name)
[label:] statement [; ...]

end]

For details, see on error. For information on all aspects of G2 error handling, see
Error Handling.

Comments

You can include comments within the text of a procedure body by enclosing
comments within braces:

{This is a comment.
This is the second line of the comment.}

You can also include single-line comments within the text of a procedure body by
beginning the comment line with double slashes:

//This is a single-line comment

You can place a comment anywhere that whitespace is allowed. Comments are
saved with the procedure and do not affect its compilation.

Defining a Procedure

The first step in creating a procedure is creating a blank procedure definition.

To create a procedure definition:

 Select KB Workspace > New Definition > procedure > procedure.

To enter statements into a procedure:

 Click the mouse on the procedure item, and select the edit menu choice.

When you edit a procedure, you are opening its text attribute for editing. The text
attributes of items are described under Identifying the Knowledge in Attributes.

In a procedure’s attribute table, the procedure’s text attribute appears as one
entire row of the table. The procedure’s statements appear in this row.

A procedure definition does not have an explicit names attribute. The name of a
procedure definition is the name of the procedure itself, which appears at the
beginning of the procedure text.

To specify what a procedure does when invoked:

 Edit the text of the procedure to specify the desired operations.

You can write G2 procedures without knowing every detail of their syntax,
because the text editor warns you of any syntactic error as soon as it occurs. The
872

Compiling a Procedure with Error-Location Information
warning consists of an ellipsis at the site of the error, and a description of the error
in a message posted below the edit box.

If your procedure contains syntactic errors, G2 does not permit you to close the
Text Editor until you have corrected them. As soon as you close the Text Editor,
G2 compiles the procedure. Such compilation aborts any currently executing
invocations of the procedure.

If G2 discovers any problems during compilation, it describes them in the notes
attribute of the procedure’s table, and posts a message on the Operator Logbook
that names the procedure and states that a problem exists in it. After you modify
the text of a procedure, be sure to check the logbook or the procedure’s notes
attribute.

Compiling a Procedure with Error-Location
Information

When a procedure in your KB generates a stack error, G2 can tell you what
statement in your procedure source code is responsible for the error. G2 does this
by retrieving the source-code annotation location information it creates when it
compiles your procedure code. You can control the generation of this information
by editing the generate-source-annotation-info attribute of the Debugging
Parameters system table.

For information on this debugging feature, see Obtaining Procedure Source-Code
Error Location Information.

Procedure Attributes
The class-specific attributes of a procedure definition are:

Attribute Description

tracing-and-
breakpoints

Allows you to set tracing and breakpoints on the
procedure. See Debugging a Procedure.

Allowable values: default
warning message level
tracing message level
breakpoint level

Default value: default
873

Sample Procedure

The following sample shows a complete procedure. This procedure, create-and-
move-robot, creates a robot object, transfers it to a workspace, and slowly moves it
to a particular place on the workspace. This place is represented by the destination
argument, which is defined in the procedure header. The newly created robot will
move until it reaches whatever is displayed at that point.

create-and-move-robot (destination: class item)

myrobot: class robot;
new-x: quantity = 0;
new-y: quantity = 0;

begin
create a robot myrobot;

class-of-procedure-
invocation

Specifies whether G2 automatically creates procedure
invocations when a procedure is called or started. Creating
Procedure Invocations.

Allowable values: none
procedure-invocation

Default value: none

default-procedure-
priority

Controls the default priority at which G2 executes the
tasks associated with the procedure. Setting Procedure
Priority.

Allowable values: Any priority (an integer from 1 through 10)

Default value: 6

uninterrupted-
procedure-
execution-limit

Limits the cumulative amount of time this procedure can
run without allowing other processing to occur. Limiting
Procedure Execution Time.

Allowable values: none
use default
Any time-interval

Default value: use default

Attribute Description
874

Sample Procedure
transfer myrobot to the workspace of destination;
repeat

exit if
(the item-x-position of myrobot = the item-x-position of destination and
 the item-y-position of myrobot = the item-y-position of destination);

if the item-x-position of destination > the item-x-position of myrobot
then new-x = the item-x-position of myrobot + 1

else
if the item-x-position of destination < the item-x-position of myrobot

then new-x = the item-x-position of myrobot - 1;
if the item-y-position of destination > the item-y-position of myrobot

then new-y = the item-y-position of myrobot + 1
else

if the item-y-position of destination < the item-y-position of myrobot
then new-y = the item-y-position of myrobot - 1;

move myrobot to (new-x, new-y);
wait for 1 second;

end;
end

This procedure uses four local names: destination, myrobot, new-x, and new-y.
Destination is declared in the procedure header, as described under Procedure
Header Syntax. The other three (myrobot, new-x, and new-y) are used only within
the procedure body and are declared in the local declarations part of the
definition, as described under Local Declarations Syntax.

This procedure first uses a create action to create a new instance of the class robot
called myrobot. It places myrobot on whatever workspace the destination object is
displayed, using a transfer action.

• A loop is established to repeatedly increment the display coordinates, moving
the robot within the workspace. This is embedded in an if-then statement so
that the procedure will end when the destination is reached.

• For each repetition of the loop, a move action moves the robot. Note the use of
the wait statement. This slows the loop down so that the movement is visible
to the human eye.

Note that this procedure includes references to the item-x-position of destination
and the workspace of destination, where destination is an item that is passed to
the procedure as an argument.

If you want to change the value of a variable from within a procedure, you must
use a conclude action, as described under conclude. You can also use a set action
to set the value of a variable in the G2 Simulator or an external data server, as
described under set.

The G2 Simulator is a superseded capability. For more information, see
Appendix F, Superseded Practices.

You can use implicitly declared local names in procedure statements just as you
can in expressions generally. For details see Using Local Names in Expressions.
875

Using Procedures
Using G2 procedures is similar to using procedures in any programming
environment. G2 also provides some capabilities beyond those ordinarily
available. These allow you to optimize and control procedure execution in
various ways, as described later in this section.

Invoking a Procedure

You can invoke a procedure from within another procedure by using either a start
action or call statement.

The start action invokes a procedure and runs it asynchronously. It tells G2 to
schedule the new procedure for execution, then continue processing the current
procedure. You can also use the start action to invoke a procedure from within a
rule, a button, or any other context where you can execute an action. For more
information about the start action, see start.

The call statement invokes a procedure and runs it synchronously. It tells G2 to
invoke the new procedure and wait until the procedure returns before continuing
to execute the calling procedure. Call is a procedure statement, not an action: you
can use it only in the body of a procedure. For more information on the call
statement, see call.

Passing Arguments to a Procedure

Whenever you invoke a procedure, you must pass it the correct number and type
of arguments. When a procedure is defined, the arguments are specified in the
procedure header. For example:

plant-record (plant-name: text, inventory-total: quantity)

The plant-record procedure has two arguments, whose local names are plant-
name and inventory-total. The plant-name is of type text, and inventory-total is of
type quantity. You could invoke the plant-record procedure like this:

call plant-record ("soap-plant-1", 245)

Any argument to a procedure can be given literally or as an expression that
evaluates to an item or value of the correct type. Thus you could have specified a
text parameter as the plant-name, in which case, you would not surround it with
double quotation marks. G2 would then use the value of the text parameter as the
value of the plant-name.

For example, if soap-1 is a text variable or text parameter whose value is
soap-plant-1, then:

call plant-record (soap-1, 200+45)

is equivalent to the call in the previous example.
876

Using Procedures
Using the Procedure Signature Prompts in
the Editor

When you enter a procedure-body statement in the editor that is a call to a
procedure or a function, G2 prompts you with the signature of that procedure or
function. In the case of multiple methods with the same name, G2 prompts you
with the signatures of all methods with that name. G2 does this in the text editor
for all items that contain executable code such as rules, function-definitions,
formulas, and action-button actions.

G2 prompts by putting up a workspace that displays the argument names for a
function; and the argument names, argument types, and return values for a
procedure. When you type a defined procedure or function name followed by a
left parenthesis, the signature workspace appears in the upper right-hand corner
of the G2 window. The workspace remains there as long as the cursor is within
the opening and closing parentheses. It automatically disappears when you type
the closing right parenthesis, and it reappears when you relocate the cursor
within the parentheses.

Whether G2 displays procedure and function signatures is controlled by the
show-procedure-signatures? attribute on the Editor Parameters system table. The
default value of this attribute is true.

To turn off signature prompting in the editor:

 Specify no for the show-procedure-signatures? attribute on the Editor
Parameters system table.

Here is an example of the text editor open for editing a procedure. The three
argument workspaces show sample signatures for a procedure, all the methods
named plan, and a system-defined function.
877

These sample argument workspaces were captured over time. G2 actually
displays only one argument workspace at a time and it is for the procedure or
function which has the cursor in its argument list.

Accessing Variables in a Procedure

In order to reference the value of a variable, a procedure must use a collect data
statement whether or not the variable has a value at the time of the reference. For
details, see collect data.

Memory Management in Procedures

When a procedure creates an item, that item is not automatically deleted when the
procedure exits: the item persists indefinitely until explicitly deleted with a delete
action. Therefore, a procedure must delete every item that it creates unless the
item is specifically intended to persist and be used elsewhere in the KB.

If this requirement is not met, and undeleted items accumulate without limit, they
will eventually consume all memory and abort G2. For additional information,
see:

• Failure to Delete Transient Items.

• create.

• delete.
878

Using Procedures
Allowing Other Processing

Concurrent processing during procedure execution can allow other processes to
change data used by the procedure, with unpredictable results. For an example,
see Allowing Other Processing During List and Array Iteration.

To prevent such problems, by default, G2 executes a procedure without
interruption. However, uninterrupted procedure execution prevents G2 from
accomplishing any other tasks, such as serving data servers and user interfaces,
performing tasks for other procedures and for rules, and so on.

G2 provides two mechanisms for preventing uninterrupted execution from
locking out other processing to a harmful extent:

• A procedure can enter a wait state. This interrupts procedure execution and
allows other processing to occur.

• When a procedure exceeds the time limit for uninterrupted execution, G2
signals an error, as described under Limiting Procedure Execution Time.

Wait States

A procedure can enter a wait state when it executes any of the following
statements:

• allow other processing

• call ... across

• collect data

• for each ... do in parallel

• wait

• call when calling a synchronized method

Whether the procedure enters a wait state when one of these statements occurs
can depend on the conditions that exist when G2 executes the statement. G2
processes each of the statements as follows:

• allow other processing: G2 enters a wait state if the procedure has been
running for more than 200 milliseconds; otherwise, it continues executing the
procedure. For more information, see allow other processing.

• call ... across: G2 cannot predict the response time of the remote system, so it
enters a wait state and allows other processing for the duration of the call. The
wait state avoids needless suspension of the local G2 or timeout of the calling
procedure. For more information, see call.

• collect data: If G2 has to wait for one or more values, it allows other
processing to occur so that the appropriate variables can receive values. If the
variables all have values, G2 continues without allowing other processing. For
more information, see collect data.
879

• for each ... do in parallel: G2 enters a wait state between the iteration that
launches the parallel iterations and the entrance to each parallel iteration. This
enables an arbitrary number of threads to be launched through the iteration
without risk of the procedure timing out. For more information, see for and do
in parallel.

• wait: If the condition for the statement is false or the interval for the statement
has not yet passed, G2 allows other processing to occur until the appropriate
interval has passed or the conditions of the statement are met. If the condition
in the statement is true, G2 continues without entering a wait state. For more
information, see wait.

• call: G2 allows other processing to occur when using the call procedure
statement to call a synchronized method when the first argument to the
method is an item that is currently locked by another procedure or method.
For more information, see Locking Mechanism for Objects.

Processing During Wait States

The fact that G2 enters a wait state does not guarantee that it will execute all or
any scheduled tasks before the wait state ends. If the wait was predicated to end
with a particular event, such as a variable obtaining a value or a time interval
passing, the procedure can be sure that the specified outcome has occurred, or the
wait would not have ended. Beyond that, the procedure should make no
assumptions about what did or did not happen while it waited.

Note that certain G2 expressions execute as implicit loops, such as there exists,
for every, and conclude that item is relation-name item. G2 schedules these
expressions as a block, rather than scheduling each iteration. As a result, if the
implicit loop does not finish executing before the procedure execution limit is
reached, an allow other processing statement following such an expression might
never be reached. To avoid this problem, break up iteration with long execution
times into explicit loops with explicit allow other processing statements.

Using Wait States Cautiously

When a wait state ends and the interrupted procedure resumes execution, the
environment in which it executes may have changed in ways that invalidate the
procedure’s assumptions. Be sure to revalidate the environment as needed before
continuing execution of the procedure.

Statements that can cause wait states should not be inserted into procedures
without careful consideration of the possible consequences. To prevent
concurrency problems, use them only in controlled ways to serve
definite purposes.
880

Using Procedures
Limiting Procedure Execution Time

The uninterrupted-procedure-execution-limit attribute sets a limit on the amount of
execution time a procedure can use without in some way allowing other
processing to occur. The possible values are:

• An integer and units that represent the time limit. The default is 30 seconds.
The maximum is 24 hours.

• use default: The procedure’s execution time limit is given by Main Menu >
System Tables > Timing Parameters > uninterrupted-procedure-
execution-limit.

• none: The procedure has no execution time limit.

Caution Specifying none can be dangerous. If the procedure enters an infinite loop, or
otherwise fails to return, it will prevent other processing indefinitely, effectively
freezing G2. If this happens, you can stop the procedure only by terminating your
G2 process from the operating system.

G2 maintains a tally of the cumulative execution time per invocation of each
executing procedure. For a given executing procedure, G2 resets this measure
only when that procedure, or some procedure called by it, enters a wait state,
allowing other processing to occur.

If an executing procedure exceeds its specified execution time limit, G2 signals an
error. If no user-defined handler exists for the error, G2 aborts the procedure and
posts an error message to the Operator Logbook.

When G2 aborts a procedure that was called by another, it also aborts the caller.
Thus procedure timeout in the absence of an error handler aborts the entire
procedure stack, not just the procedure that timed out.

For more information, refer to Timing Parameters.

Setting Procedure Priority

The default-procedure-priority attribute controls the default priority at which G2
executes an asynchronously invoked procedure. For information on priorities, see
Task Scheduling.

The default priority is 6. You should accept this default unless you have a specific
reason to change it. If you need to change it, set the attribute to an integer between
1 and 10 that indicates the priority at which you want the procedure to run.
881

Three different factors can set the priority at which a procedure executes:

• A called procedure runs at the same priority at which its caller is running,
irrespective of the value of its default-procedure-priority attribute.

• A started procedure runs by default at the priority declared in its default-
procedure-priority attribute.

• You can override the default priority by including the clause at priority
integer-expression in the start statement that invokes the procedure. Thus:

start plant-record (SOAP-1, 245) at priority 2

starts the procedure at priority 2, rather than at the priority given by its
default-procedure-priority attribute.

Debugging a Procedure

The tracing-and-breakpoints attribute allows you to set tracing and breakpoints
on the procedure. G2 provides three techniques for debugging procedures:

• The notes attribute of a procedure definition provides descriptions of
problems involving usage (like an undefined local name) or syntax. You
cannot execute the procedure until you correct these errors.

• The tracing-and-breakpoints attribute of a procedure definition allows you to
step through the procedure to find problems. This attribute overrides the
default settings in the Debugging Parameters system table.

• You can include inform or post actions in your procedure to send messages at
important steps in the procedure. For example, you can use inform actions to
display the values of local names, or to show what statement G2 is executing.

For information on debugging, see Debugging and Tracing.

Displaying the Invocation Hierarchy of a Procedure

You can use Inspect to display on a workspace:

• All procedures that invoke a given procedure.

• All procedures that are invoked by a given procedure.

Instructions appear under Showing Procedure Caller and Calling Hierarchies.
882

Using Procedures
Inlining a Procedure

A procedure declared as inlineable exists as a separate procedure definition, but
its code body is compiled as part of the code of the procedure that calls it. Inlining
a procedure improves performance by:

• Avoiding the overhead of a procedure invocation when the inlineable
procedure is called. Procedure invocations consume runtime memory.

• Reducing the total number of instructions executed between the calling
procedure and the inlined procedure.

However, inlined procedures increase the size of the executable code, because the
code for the procedure is copied redundantly to every point where the procedure
is invoked. Inlining is best for small procedures that are called frequently,
typically from a loop that iterates many times.

Inlining Restrictions

The following situations prevent G2 from compiling the code of an inlineable
procedure into a calling procedure:

• The inlineable and calling procedures are not defined in the same module.

• The invocation to the inlineable procedure is asynchronous.

• The invocation to the inlineable procedure is recursive.

When you compile a procedure that calls an inlineable procedure defined in
another module, G2 does not inline the code. Instead, G2 compiles the calling
procedure to contain a normal call to the inlineable procedure. This restriction
helps protect your KB from unexpected runtime behavior due to intermodual
code inconsistencies. Similarly, G2 does not inline asynchronous or recursive
invocations to inlineable procedures.

G2 does not give you notification of these failures to inline. See Testing for an
Inlined Procedure for information on how to detect whether code has been
inlined.

If you have successfully inlined a procedure but then perform a transfer action
that places the calling and inlineable procedure definitions in different modules,
G2 does the following:

• It changes the status of the calling procedure to incomplete.

• It puts up a Recompile the KB? popup dialog containing these buttons:

– An OK button. If you click it, G2 compiles the calling procedure
without inlining.

– A Cancel button. If you click it, G2 does nothing. The calling procedure is
left in an incomplete state.
883

This example shows the pop-up dialog that appears immediately after a transfer
action places the inlineable procedure and the calling procedure in different
modules:

To change the incomplete status of a calling procedure:

 Transfer the calling and inlineable procedures to the same module and
recompile with inlining.

or

 Leave the procedures in different modules and recompile without inlining.

The following example illustrates both successful and unsuccessful inlining. The
code from recursive-inlineable-procedure has been inlined into the body of
calling-procedure because both procedure definitions reside in the same module
and the inlineable procedure is invoked through a synchronous call statement
rather than an asynchronous start statement.

However, the recursive call statement within recursive-inlineable-procedure does
not result in inlining. With tracing on entry and exit specified for the inlineable
procedure, the Logbook page shows a single pair of trace messages that designate
the invocation as recursive-inlineable-procedure(2) invoked from the inlined code
in calling-procedure.
884

Using Procedures
A KB saved in an earlier version of G2 may have procedures that violate the
intermodual inlining restriction. When G2 loads a procedure that contains inlined
code from an inlineable procedure defined in another module, it first determines
whether the inlineable procedure has changed since its caller was compiled; then:

• If the inlineable procedure has not changed, G2 accepts the inlining. The
non-conforming inlining is grandfathered in.

or

• If the inlineable procedure has changed, G2:

– Changes the status of the calling procedure to incomplete.

– Adds this note to the calling procedure:

note that the procedure <inlineable procedure>, with <integer>
arguments, is no longer the same as what was inlined

Note You will not be able to remove the incomplete status of a text-stripped procedure
because it cannot be recompiled. To restore the procedure to a runnable state, you
will need to obtain non-text-stripped versions of both the calling and
inlineable procedures.
885

Declaring a Procedure as Inlineable

When declaring a procedure as inlineable, you must also use the configuration
clause: stable-for-dependent-compilations.

To declare that a procedure can be inlined:

 Add these item configurations:

declare properties as follows : inlineable, stable-for-dependent-
compilations

Tip As with other configurations, the stable-for-dependent-compilations
configuration statement can be applied to a workspace. Whenever configurations
are applied to workspaces, their effects propagate to every applicable item upon
the workspace (procedures in this case), and all item subworkspaces.

Recompiling an Inlineable Procedure

When you change the item-configuration of a procedure to include these
properties, the notes attribute of the procedure changes to read:

OK, and note that this item needs to be recompiled
to generate data needed for inlining

To recompile the inlineable procedure:

1 Choose edit from the item menu of the procedure attribute table.

G2 displays this dialog, because the procedure has been declared as stable:

2 Click OK to continue.

3 Save the edited procedure to recompile it. The procedure notes status will
be OK.
886

Using Procedures
Note After making a procedure inlineable and recompiling it, other procedures that call
the inlined procedure must be recompiled to incorporate the inlineable code. You
can recompile a single procedure by editing it in the Text Editor and saving any
changes, or recompile your entire KB using Inspect.

Determining Inlined Procedures

G2 procedures define a new read-only hidden attribute inlined-calls, which is a
sequence of symbols that name all procedures that are inlined in this procedure.
When the inlined procedures are methods, the symbols are class-qualified. The
order of the inlined procedures is undefined. When multiple procedures are
inlined, the procedure only appears once in the sequence.

Testing for an Inlined Procedure

You can test whether a procedure has been inlined through the G2
Tracing facility.

To test for an inlined procedure:

1 In the Debugging Parameters system table, change the tracing-and-
breakpoints-enabled? attribute to yes.

2 Change the value of the tracing-message-level attribute to:

1 (trace messages on entry and exit)

3 Run the procedure that calls the inlined procedure. If the inlined code has
been incorporated into the calling procedure, the inlined procedure will not
appear in the trace messages.

For a further discussion on using these configuration statements, see Using
Compilation Configurations.

Creating Procedure Invocations

A procedure invocation is an item that represents an instance of an executing
procedure. You can put procedure invocations into lists, assign them to
participate in relations, and manipulate them as you would any other item.

The class-of-procedure-invocation attribute specifies whether G2 automatically
creates a procedure invocation when a procedure is called or started. Possible
values are none and procedure-invocation. The default is none.

If the class-of-procedure-invocation is specified as procedure-invocation, G2
automatically creates a procedure invocation each time that procedure is invoked
from a start action or call statement. G2 creates a separate procedure invocation
each time the procedure is invoked, so a procedure that is recursive or runs
concurrently with itself can have more than one procedure invocation at the same
887

time. G2 automatically deletes a procedure invocation when the
procedure returns.

For information on referencing procedure invocations in expressions, see the
example The Procedure Invocation Associated with the Procedure Containing the
Expression.

Aborting a Runaway Procedure

When a procedure goes into an infinite loop that never enters a wait state, only
expiration of the uninterrupted procedure execution time limit can abort it, as
described under Limiting Procedure Execution Time. If no such time limit is in
effect, the only recourse is to abort G2 itself from the operating system command
level.

If the procedure does enter a wait state at some point in the loop, you can use
several techniques to abort the procedure:

• Edit the procedure, then close the text editor without making any changes.

• Disable the procedure.

• Deactivate the superior workspace of the procedure.

• Use the abort action on the procedure or procedure invocation.

• Reset the KB.

When you use one of these techniques, G2’s response may not be immediate,
because G2 cannot process the operation until the runaway procedure enters a
wait state.

Caution When you abort a runaway procedure, the KB may be left with undeleted items
or incorrect global data that the procedure would have cleaned up if it had exited
normally. If any such problem is possible, reset the KB before you rely on it to
function correctly.

Expressions for Procedures

These are the expressions to use with procedures.

The Procedure Containing the Expression

this procedure
-> procedure
888

Using Procedures
This expression produces the procedure within whose invocation G2 evaluates
this expression. For example, the announce-self procedure creates and places a
message upon its workspace, then deletes that message 10 seconds later:

announce-self ()
M : class message ;
begin

create a message M ;
change the text of M to

"[the name of this procedure] is now being performed.";
transfer M to the workspace of this procedure ;
wait for 10 seconds ;
delete M ;

end

The Procedure Invocation Associated with the Procedure Containing
the Expression

this procedure-invocation
-> procedure-invocation

This expression produces the executing procedure invocation within which G2
evaluates this expression.

Specify this expression only in the text of a procedure or method whose class-of-
procedure-invocation attribute has the value procedure-invocation. Invoking such
a procedure causes G2 to create a procedure invocation item. For more
information about procedure invocations, see Creating Procedure Invocations.

For example, the next figure shows a workspace that contains two lists, an initially
rule, and the view-invocation procedure. The initially rule starts the view-
invocation procedure once for each list that exists.

view-invocation(list: class g2-list)
PIcount: integer = the count of each procedure-invocation;
counter: integer;

begin
transfer this procedure-invocation to the workspace of list
889

at (the item-x position of list, the item-y-position of list - 50);
conclude that the names of this procedure-invocation =

symbol("PI-for-[the name of list]");
for counter = 1 to 5 * the count of each g2-list do

begin
change the icon-color of this procedure-invocation to yellow;
wait for (2 * PIcount);
change the icon-color of this procedure-invocation to blue;
wait for (2 * PIcount)

end
end

end

Each invocation of view-invocation causes G2 to create one procedure-invocation.
view-invocation transfers this procedure-invocation to the workspace of the list
passed as its argument and graphically aligns its icon with that list’s icon. Once
per second for several seconds, view-invocation changes the icon-color of this
procedure-invocation to indicate that it is active.

Procedures and Rules
Procedures and rules have much in common, but their purposes are different, and
their syntax differs slightly. This section compares and contrasts procedures
with rules:

• Use procedures to perform an explicit series of operations and to control the
flow of events. Example: to perform the steps involved in starting up or
shutting down a plant.

• Use rules to monitor asynchronous events and to detect or anticipate
problems that might occur. Example: to watch for conditions that exceed
specified limits.

Rules are better than procedures for monitoring events because they do not
consume resources with busywaiting as procedures would.

Within a procedure, you control exactly when G2 waits and allows other
processing to occur. This differs from the way rules operate, because you cannot
control when a rule waits for a value. As a result, you are guaranteed that G2
executes the tasks for a procedure without interruption, except where you
indicate in the procedure that other processing can occur.

Because a procedure only waits at specific points, all of the expressions in it must
have current values. Data-seeking implies waiting and allowing other processing
to take place, so a procedure does not cause data-seeking unless you instruct it to
do so by using a collect data or wait statement. This is another difference between
procedures and rules: rules automatically manage data collection and waiting for
values, while procedures do not.
890

Procedures and Rules
The following table summarizes the major differences between procedures
and rules:

The following table shows minor differences between procedures and rules that
can cause trouble when they are written. Action buttons use the same syntax that
rules do, so the table applies to them also.

Capability Procedures Rules

May cause event updating (forward chaining) 

Can only seek data explicitly 

Always allows other processing to take place
while it waits for a value



Explicitly allows other processing to take place
while it waits for a value



Automatically manages data collection and
waiting for values



May call functions 

May start procedures (so that they run in
parallel)

 

May call procedures (so that they run in
sequence)



Can contain actions  

Rules/Action Buttons Procedures

Procedures can only be started. Procedures can be started or called.

No control structures are available. All standard programmatic control
structures are available.

Default: parallel execution. Use
in order to specify sequential
execution.

Default: sequential execution. Use
do in parallel to specify parallel
execution.

Local names are defined by
context, for example:

for any bottle B ...

Local names are explicitly declared
in the local declarations section, for
example:

B: class bottle;
891

Dictionary of Procedure Statements

The rest of this chapter lists all procedure statements in alphabetical order, and
provides complete information about each one. For information on the various
action statements that a procedure can contain, see Actions.

Iterate over items using every,
for example:

move every bottle ...

Iterate over items using each, for
example:

for B = each bottle do ... end;

Separate actions with and. Separate actions and other
procedure statements with
semicolons.

Rules/Action Buttons Procedures
892

allow other processing
allow other processing
This statement lets G2 interrupt a procedure (enter a wait state) to perform tasks,
to service networks, the user interface, the G2 clock, and other current processes,
such as rules and procedures, with the same priority. See Allowing Other
Processing for more information. The syntax is:

allow other processing

When G2 encounters an allow other processing statement, it first checks to see
how long the procedure has been running. If it has been running for more than
200 milliseconds, G2 puts the procedure at the end of the list of tasks with the
same priority on the current task queue and proceeds to execute the other tasks
on the queue.

Note The 200 millisecond time limit does not include the time that G2 waits for a called
procedure to run.

If the procedure has not been running for more than 200 milliseconds, G2
continues processing the procedure. Thus, G2 will not interrupt the procedure,
even if there is an allow other processing statement, if the procedure has not used
more than 200 milliseconds of processing time.

Caution When a procedure returns from a wait state, the environment in which it executes
may have changed in ways that invalidate the procedure’s assumptions. Be sure
to revalidate the environment as needed before continuing execution of
the procedure.
893

assignment (=)

This statement assigns a value to a local name in a procedure. The syntax is:

local-name = expression

When the statement is executed, the expression is evaluated and that value is
associated with the local-name to the left. The association persists until another
assignment occurs. For example:

weight = 200
.
.
weight = weight+1

Here the first assignment sets the value of weight to 200. The value remains 200
until the subsequent assignment increments its value to 201.

The expression can be a call statement to a procedure that returns a value. That
value is assigned to local-name:

weight = call get-weight (height)

For further information, including the syntax for obtaining multiple return
values, see call.

An assignment statement does not cause data-seeking so it cannot contain any
references to G2 variables. Use the collect data statement to assign the value of a
variable to a local name, as described under collect data.
894

begin-end
begin-end

You can specify a block of two or more statements wherever a single statement
can appear by enclosing the statements in a begin-end statement. This
construction is also called a compound statement or a begin-end block. The
syntax is:

begin
[label:] statement [; ...]

end

The body of a procedure is enclosed in a begin-end block. Such blocks can be
nested to arbitrary depth. Any begin-end blocks can have an associated error
handler, as described under on error.

A begin-end statement must end with a semicolon whenever a single statement in
that location would do so, unless it is the value of the then clause of an if-then
statement. For further information, see if-then.
895

call

This statement allows you to invoke another procedure synchronously from
within the current procedure. The calling procedure suspends execution, and
remains suspended until the called procedure returns. The calling procedure then
resumes execution. The syntax is:

[local-name [, ...] =] call procedure ([argument [, ...]])
[across {g2-to-g2-interface | gsi-interface}]

where:

Note A called procedure runs at the same priority as that of the calling procedure, not
at the priority declared in its default-procedure-priority attribute.

Here is an example of how to use the call statement to invoke the procedure
check-inventory-for-part described in Procedure Header Syntax. The procedure is
defined as follows:

check-inventory-for-part (mixer1: class mixer, part: text) = (truth-value)

The example declares two local variables. In the procedure call, the ingredient-1 of
recipe1 is a text attribute of recipe-1.

is-in-Inventory: float;
mixer1:class mixer;

is-in-Inventory = call check-inventory-for-part(mixer1, the ingredient-1
of recipe-1)

local-name A local name in which G2 places a return
value of the called procedure. The number of
local names must not exceed the number of
values returned by the called procedure. See
return for details on providing return values.

procedure A procedure name or a reference to a
procedure name, such as the procedure that is
the-open-procedure-of tank-1.

argument An item or value used by the specified
procedure. Specify multiple arguments by
separating them with commas.

across Designates the name of a G2-to-G2 interface
or a G2 Gateway (GSI) interface that G2 uses
to call a procedure that is running on another
G2 process.
896

call
Calling and Wait States

When one procedure calls another in the local G2, the calling procedure does not
enter a wait state. The called procedure may or may not enter a wait state,
depending on its code. For information about wait states see Allowing Other
Processing.

However, in a call ... across, G2 cannot predict the response time of the remote
system, so it enters a wait state and allows other processing for the duration of the
call. The wait state avoids needless suspension of the local G2 or timeout of the
calling procedure.

Caution When a procedure returns from a wait state, the environment in which it executes
may have changed in ways that invalidate the procedure’s assumptions. Be sure
to revalidate the environment as needed before continuing execution of the
procedure.

Asynchronous Invocation

To invoke a procedure asynchronously, use the start action, as described under
start.
897

case
This statement branches to a statement based on the value of an expression. After
the selected statement executes, control passes to the first statement after the case
statement. The syntax is:

case (value-expression) of
{case-tag [; ...]: statement [; ...] } ...
[otherwise: statement]

end

where:

If no match exists, control passes to the otherwise statement if one is provided. If
none is provided, G2 signals an error. For example:

case (the icon-color of light) of
red:

conclude that power is off;
yellow, orange:

begin
conclude that power is low;
invoke safety-rules

end;
green:

conclude that power is high;
otherwise:

begin
conclude that power is off;
inform the operator that

"The light is [the icon-color of light]. Turning power off";
invoke emergency-rules

end;
end

In this example, if the icon-color of light is red, G2 executes the statement specified
by the red case-tag; however, if it is yellow, G2 executes the statements specified

value-expression Any expression that returns any type. Its
value determines how the case statement
branches.

case-tag A quantity, text value, or symbol. The type
must match that of value-expression.

statement Any procedure or action statement.

otherwise Designates a statement to execute if the value
of value-expression does not match any case-
tag.
898

case
by the yellow case-tag. If the icon-color of light is something other than red, yellow,
or green, G2 executes the statements specified by otherwise; however, if otherwise
were omitted, G2 would signal an error.
899

collect data
This statement assigns a value, based on an expression containing G2 variables, to
a local name. You can access variables only with a collect data statement: you
cannot reference them directly, as you can a local name. The syntax is:

collect data [(timing out after time-expression)]
local-name = value-expression [; ...]
[; if timeout then statement] [;]

end

where:

Note You cannot access parameters with collect data; you can access only variables. The
syntax for accessing a parameter is the same as the syntax for referencing a
local name.

Executing a Collect Data Statement

When G2 executes a collect data statement, it first attempts to evaluate each
expression in the statement. If all of the variables in the expressions have current
values, G2 evaluates the expressions and assigns the values to the appropriate
local names. It then proceeds to the next statement in the procedure.

If G2 cannot immediately evaluate an expression because a variable does not have
a current value, G2 enters a wait state (suspends procedure execution and waits
for a value). For information about wait states see Allowing Other Processing.
Depending on the characteristics of the variable, G2 may data-seek for values.
Procedure execution resumes when the variable receives a value or the statement
times out, assuming you have specified a timeout interval.

timing out after
time-expression

Limits the time that G2 spends
seeking values to the specified time-
expression.

local-name Is any local name defined within the
procedure.

value-expression Is any expression containing
references to variables (not
parameters).

if timeout then statement Designates a statement that G2
executes if it times out while
evaluating the specified
expression(s).
900

collect data
When the procedure resumes, G2 reevaluates all of the expressions in the collect
data statement, as follows:

• If all of the expressions now have values, G2 assigns those values to the local
names. It then proceeds to the next statement in the procedure.

• If any of the expressions does not have a value and the statement has not yet
timed out, G2 suspends the procedure and waits.

• If any of the expressions does not have a value and the statement has timed
out, G2 assigns the values of any expressions that it was able to evaluate to the
appropriate local names. It does not change the values of the other local
names in the statement.

• If you include the if timeout then syntax, G2 executes that syntax before
resuming procedure execution after a timeout.

Tip To make a collect data statement that cannot cause a wait state, use timing out
after -1 seconds. G2 then makes one attempt to gather values, but times out
without waiting and allowing other processing if some values are not available.

Caution When a procedure returns from a wait state, the environment in which it executes
may have changed in ways that invalidate the procedure’s assumptions. Be sure
to revalidate the environment as needed before continuing execution of the
procedure.
901

do in parallel

This statement allows G2 to execute concurrently all statements that appear
between do in parallel and end. The do in parallel statement is very useful when
the statements are waiting for conditions in an external system to complete, such
as with remote procedure calls. The syntax is:

do in parallel [until one completes]
statement [; ...]

end

where:

You cannot use a go to statement to transfer control from one statement to
another within a do in parallel block, or into the block from outside.

Do in Parallel and Wait States

A do in parallel statement does not in itself cause a procedure to enter a wait state.
However, executing a statement of the form for each ... do in parallel causes a
procedure to enter a wait state between the iteration that launches the parallel
iterations and the entrance to each parallel iteration. This enables an arbitrary
number of threads to be launched through the iteration without risk of the
procedure timing out.

For information about wait states see Allowing Other Processing. The for
statement is described under for.

Caution When a procedure returns from a wait state, the environment in which it executes
may have changed in ways that invalidate the procedure’s assumptions. Be sure
to revalidate the environment as needed before continuing execution of the
procedure.

until one completes Specifies that G2 stops simultaneously
processing the statements when any one of
the statements completes. G2 continues
executing the procedure, beginning with the
statement immediately following the do in
parallel block.

statement Any action or procedure statement.
902

do in parallel
Using Do in Parallel Effectively

Since the computers on which G2 runs cannot actually do more than one thing at
a time, do in parallel offers no speed advantage unless the execution of individual
threads is dependent on some external event. For example, the do in parallel in the
following is counterproductive:

for T = each tank do in parallel
conclude that the computed-thing of T = compute-thing (T);

end;

The do in parallel slows down the application instead of speeding it up, because
the body of the loop consists entirely of computations directly within G2. The
launching and resynchronizing of all the parallel threads just wastes time. On the
other hand, the following is improved by the do in parallel.

for T = each tank do in parallel
thing = call remote-compute-thing (T) across my-interface;
conclude that the computed-thing of T = thing;

end;

In this case, since remote-compute-thing is executed on a remote machine, the
loop is improved, if only to reduce the impact of communication latencies on the
performance of the loop.

Concurrency and Asynchrony

Don’t confuse the concurrency provided by do in parallel with the asynchronous
execution provided by start. For example, consider the statements:

do in parallel
call race-car (racer-1);
call race-car (racer-2);
call race-car (racer-3);

end
call award-prizes ();

The call to award-prizes will not execute until all three races have finished.
Presumably award-prizes uses global data of some kind to obtain the outcomes of
the races. However, consider the statements:

start race-car (racer-1);
start race-car (racer-2);
start race-car (racer-3);
call award-prizes ();

The call to award-prizes will fail, because none of the invocations of race-car can
execute until after the procedure that scheduled them has exited: award-prizes
will find no data about outcomes, because the races that will generate it have not
yet been run.
903

exit if

This statement causes G2 to exit from a loop before it would normally terminate.
The syntax is:

exit if truth-value-expression

where:

If the logical expression is true, G2 executes the exit if statement and transfers
control to the statement immediately following the loop. If false, G2 does not
execute the exit if statement and continues processing the loop.

When G2 encounters an exit if statement within a nested loop, its effect is to
transfer control back to the loop immediately enclosing it. For example:

for var-1 = 1 to 5
do

for var-2 = 1 to 5
do

exit if var-2 = 3
end;

statement-1;
end;

statement-2;

In the above example, when G2 executes the exit if statement (when var-2 has the
value 3), it will continue processing with statement-1, rather than statement-2.

truth-value-expression A logical expression that evaluates to true
or false.
904

for
for

This statement instructs G2 to repeatedly execute a statement or sequence of
statements enclosed by do and end. You determine the terminating conditions.
You can execute for statements for each instance of a class of items, for each item
or value in a list or array, or based on the value of a numeric expression.

Iterating over Each Instance of a Class of Items

You can use the for statement with the each quantifier to execute a sequence of
statements once for each instance of a class of items. The syntax is:

for local-name = each generic-reference-expression
do

statement [; ...]
end

where:

The for loop terminates when all the instances of the specified class have been
processed. For example:

for V = each valve
do

change the icon-color of V to red;
end

This example changes the icon-color used for each instance of the class valve. To
limit the iteration, you could use the following:

for V = each valve connected to tank-1
do

change the icon-color of V to red;
end

In this example, only instances of valves connected to tank-1 change color.

generic-reference-
expression

Specifies any generic reference to an item or
value that G2 iterates over in the set.

statement Any procedure or action statement.
905

Iterating Using a Counter

You use a loop variable as a counter to iteratively execute the statements in the
body of the for loop. The number of iterations is determined by the initial value of
the loop variable, the amount the loop variable is updated at the end of each
iteration, and the specified loop termination control value.

The syntax is:

for loop-variable = initial-value-integer {to | down to}
termination-control-integer

[by loop-variable-pdate-integer]
do

statement [; ...]
end

where:

loop-variable A local integer variable that is initialized
to initial-value-integer and is incremented
or decremented at the end of each
iteration of the for loop.

initial-value-integer An expression that evaluates to an integer.
It supplies the initial value for loop-
variable.

to When you omit the optional by phrase, to
specifies that loop-variable is, by default,
incremented by 1 at the end of each
iteration. If you add the by phrase, it
overrides the default incrementing
behavior.

down to When you omit the optional by phrase,
down to specifies that loop-variable is, by
default, decremented by 1 at the end of
each iteration. If you add the by phrase, it
overrides the default decrementing
behavior.
906

for
The for loop exits and passes control of execution to the next statement in the
procedure when:

• The updated value of loop-variable is beyond the range of loop-termination-
control-value.

• The body of the for statement contains an exit if statement that evaluates to
true. See exit if for more information.

Caution Your procedure will enter an infinite loop when you specify an update integer
that prevents the for loop from exiting.

Here is a for loop that will exit after six iterations:

for loop-variable = 0 to 5
do

.

.

.
end

loop-termination-
control-integer

An expression that evaluates to an integer.

At the end of each iteration, G2 compares
its value with the value of the loop-variable
to determine whether the for loop should
continue or should exit.

When you use the to phrase, the loop exits
when loop-variable exceeds its value; when
you use the down to phrase, the loop exits
when loop-variable is less than its value.

by Overrides the default incrementing and
decrementing behavior of the to and down
to phrases.

Regardless of whether you specify to or
down to, the value of loop-variable-update-
integer is added to loop-variable at the end
of each iteration. A negative value will
decrement loop-variable, and a positive
value will increment loop-variable.

loop-variable-update-
integer

An expression that evaluates to an integer.
It determines the amount loop-variable is
updated at the end of each iteration.
907

This for loop will also exit after six iterations:

for loop-variable = 0 to 10 by 2
do

.

.

.
end

In this example, the for loop will enter an infinite loop. If the exit if statement is
uncommented and the procedure is recompiled, it will exit after six iterations:

for loop-variable = 10 down to 0 by 2
do

.

.
{ exit if loop-counter = 20 }
end

For Each and Wait States

A for each statement does not in itself cause a procedure to enter a wait state.
However, executing a statement of the form for each ... do in parallel causes a
procedure to enter a wait state between the iteration that launches the parallel
iterations and the entrance to each parallel iteration. This enables an arbitrary
number of threads to be launched through the iteration without risk of the
procedure timing out.

For information about wait states see Allowing Other Processing. The do in
parallel statement is described under do in parallel.

Caution When a procedure returns from a wait state, the environment in which it executes
may have changed in ways that invalidate the procedure’s assumptions. Be sure
to revalidate the environment as needed before continuing execution of
the procedure.
908

for
Transferring Objects in a Loop

In the following example, the first time through the loop, the object is transferred
off the workspace and placed in the item list of a container object. The second time
through the loop, the same object is placed in the item list of a second container
object. Thus, an object that has already been removed from a workspace appears
in the item list of two container objects.

for O = each myObject upon WS do
transfer O off;
create containerObj C;
insert O in the items item-list of C;
for T = each myObject upon WS do

if the destination of T = the destination of O then begin
transfer T off;
insert O in the items item-list of C;

end;
end;

end;
909

go to
This statement explicitly transfers control to a statement with a specified label.
The syntax is:

go to statement-label

where:

The go to statement specifies the label to which G2 transfers control. The specified
label must appear in the procedure. If it does not, G2 signals an error. Specifying a
label requires the following syntax:

statement-label: statement

For example:

new-proc (quant1: quantity, quant2: quantity) = (integer)
x, y: integer;
begin

if x > 4
then go to tag5

else
return

tag4: x = 8;
tag5: x = y;

end

In this example, G2 transfers control of the procedure to tag5 if x is greater than 4,
and returns otherwise. Note that G2 never executes the statement labeled tag4.

statement-label An integer or symbol that labels some
statement in the procedure.
910

if-then
if-then
This statement is a conditional statement that executes the then statement if G2
evaluates the truth-value-expression to true; otherwise, it executes the else
statement, if one exists, or the statement following the if-then, if no else exists. The
syntax is:

if truth-value-expression
then statement
[else statement]

where:

For example:

if x = y
then return 10 else return 12

In this example, the program returns 10 if x equals y; however, if x does not equal
y, the program returns 12.

You can nest if-then statements by enclosing the nested if-then statement in a
begin-end block. For example:

if x = y then
begin

if x = z then
return 10

else
return 12

end
else ...

If x is not equal to y, G2 ignores the nested if-then statement and passes control to
the else portion of the outer if statement. If x does equal y, G2 executes the nested
if-then statement.

truth-value-expression Is any expression that evaluates to true or
false. If the expression is true, G2 executes
the then statement. If false, G2 executes
the else expression if one exists, or
transfers control to the statement
following the if statement.

statement Is any procedure or action statement.
911

Note When a then clause contains a begin-end block immediately followed by an else
clause, do not put a semicolon after the keyword end. Such a semicolon would
terminate the scope of the if statement, causing the else clause to appear as a
syntax error.
912

on error
on error

G2 provides error handlers. The default error handler prints a message to the
logbook describing the error. You can use the on error statement to define an error
handler that is specific to any begin-end block in a procedure, including the outer
block that contains all of the executable code.

For complete information on G2 error handling, see Error Handling. For
information about the signal statement, see signal.

G2’s default error handling capabilities are synchronous: they do not enter a wait
state during handling of an error. This protects the context within which the error
occurred from asynchronous changes. User-defined error handling capabilities
can allow other processing if appropriate. For information on wait states, see
Allowing Other Processing.

On Error Statement Syntax

The syntax of the on error statement is:

on error (local-name)
[label:] statement [; ...] ...
end

where:

An on error statement appears immediately after the end statement of the block to
which it applies. For example:

demonstrate-block-error-handler()
error-obj: class error;
begin

post "calling sigproc now";
call sigproc(0);
post "returning from sigproc:"

end
on error (error-obj)

post "An error of class [the class of error-obj]
occurred: [the text of the error-description of error-obj]";

delete error-obj
end

An on error statement executes if and only if G2 signals an error within the scope
of the statement, or a signal statement executes within the scope of the statement.
Otherwise, control skips over the on error block and continues sequentially.

local-name A local name whose type is class error or
any subclass of error.

statement Is any procedure or action statement.
913

For complete information about the on error statement, see Defining an Error
Handler.

Superseded On Error Statement Syntax

For compatibility with earlier versions of G2, the on error statement also accepts
two arguments. The syntax is:

begin
statement [; ...]

end
on error (symbolic-local-name, text-local-name)

[statement [; ...]]
end

where:

For example:

sample-proc()
error-name: symbol;
error-text: text;
begin

post "This is a sample statement within a begin-end block";
call proc-with-signal();

end
on error (error-name, error-text)

post "An [error-name] error occurred. [error-text]";
end

The two-argument form of the on error statement should not be used in new code.
A KB can mix both forms of the statement, and can use either form in conjunction
with either form of the signal statement. G2 automatically interconverts between
the two syntaxes, as described under Mixing Error Handling Techniques.

symbolic-local-name A local name that contains a symbol. You
must declare this name locally in your
procedure.

text-local-name A local name that contains text. You must
declare this name locally in your procedure.
914

repeat
repeat
This statement causes G2 to repeatedly execute a statement or set of statements
indefinitely. The grammar for a repeat statement is as follows:

repeat
statement [; ...]

end

To exit the loop, you can embed a statement that alters the pattern, such as exit if,
return, or go to.
915

return

A return statement tells G2 to exit the procedure and return values to the calling
procedure. This is required when the procedure returns values, since at that time
the values are assigned to the specified symbols. The syntax is:

return [value-expression [, ...]

The number and types of the values returned must match the return values
definition in the procedure header. See Procedure Header Syntax for more
information.

The calling procedure may accept as many of the returned values as it needs;
however, it may not attempt to accept more values than are returned. For details
see call.
916

signal
signal
You can signal errors that you have defined by using the signal statement. By
using the signal statement, you can signal errors that you have named, then use
the on error statement to create an error handler for those named errors. The
signal statement can be used anywhere within a procedure.

For complete information on G2 error handling, see Error Handling. For
information about the on error statement, see on error.

G2’s default error handling capabilities are synchronous: they do not enter a wait
state during handling of an error. This protects the context within which the error
occurred from asynchronous changes. User-defined error handling capabilities
can allow other processing if appropriate. For information on wait states, see
Allowing Other Processing.

Signal Statement Syntax

The syntax of the signal statement is:

signal error-object;

where:

For example:

sigproc(index: integer)
ZD: class zerodivide;
begin

create a zerodivide ZD;
conclude that the error-description of ZD = "Cannot divide by zero.";
if index = 0 then signal ZD;
post "ratio: [45387 / index]

end

When a signal statement executes, G2 looks for a block error handler whose class
matches that of the error-object specified in the statement. If G2 finds such a
handler, it invokes the handler, passing it error-object. If G2 does not find a block
error handler, it invokes the default error handler on error-object.

For complete information about the signal statement, see Signaling Errors in a
Procedure.

error-object An instance of the class error or of any
subclass of error.
917

Superseded Signal Statement Syntax

For compatibility with earlier versions of G2, the signal statement also accepts
two arguments. The syntax is:

signal symbolic-expression, text-expression

For example:

proc-with-signal()
begin

if x > 100
then signal the symbol OVERFLOW,

"X appears to be overflowing --check X immediately!";
end

The two-argument form of the signal statement should not be used in new code.
A KB can mix both forms of the statement, and can use either form in conjunction
with either form of the on error statement. G2 automatically interconverts
between the two syntaxes, as described under Mixing Error Handling
Techniques.
918

wait
wait
This statement suspends a procedure’s execution, causing it to enter a wait state,
until either a specified amount of time passes, a specified condition is met, or an
event occurs. During this time, other processing may take place. For information
about wait states see Allowing Other Processing. The syntax is:

wait { {for time-expression} |
{until truth-value-expression checking every time-expression} |
{until {variable | parameter | {the attribute-name [local-name] of item} |
{the {class-name | type} that is an attribute of item [named by
symbolic-expression] } receives a value}

where:

The second until clause defines an event predicate. When you specify an event
predicate in a wait statement, the statement suspends procedure execution until
the event predicate becomes true. An event predicate may contain boolean
operators. For example:

repeat
exit if the temp of tank-1 > the high-limit of tank-1;
wait until the temp of tank-1 receives a value or

the high-limit of tank-1 receives a value;
end

This form of the wait statement does not consume any CPU resources while it
waits for an event to occur. If any of the items for which the event predicate
awaits a value is deleted, the wait statement terminates, and control proceeds to
the next statement.

for time-expression Specifies that G2 suspends procedure
execution for the specified interval.

until truth-value-
expression

Specifies that G2 suspends procedure
execution until a truth-value-expression is true.
Note that the truth-value-expression may
contain references to G2 variables and may
data-seek for values.

checking every
time-expression

Species how often G2 checks the value of the
specified truth-value-expression. The time-
expression is an expression that returns
seconds.
919

Caution When a procedure returns from a wait state, the environment in which it executes
may have changed in ways that invalidate the procedure’s assumptions. Be sure
to revalidate the environment as needed before continuing execution of the
procedure.
920

23
Methods
Shows how to define and use G2 methods.

Introduction 921

About Methods 922

Designing a Class Hierarchy 926

Implementing a Class Hierarchy 928

Creating Method Declarations 929

Defining a Method 930

Describing a Collection of Methods 932

Invoking a Method 933

Duplicate Methods 937

Inlining a Method 938

Considerations for Multiple Inheritance 940

Locking Mechanism for Objects 943

Introduction
Object-oriented programming treats the data and the behavior associated with a
class as parts of a single abstraction. G2 uses attributes to contain the data
associated with a class, and methods to define the behavior. For information on
attributes, see Identifying the Knowledge in Attributes.
921

This chapter does not cover the theory that underlies methods in object-oriented
programming languages. It focuses on practical techniques for designing and
implementing methods in G2. For information on the theory of methods, consult
a standard text on object-oriented programming.

In order to understand, design, and use methods, you must understand class
hierarchy, class inheritance, and class hierarchy paths, as described in Classes and
Class Hierarchy. In order to code methods, you must know how to code
procedures, as described in Procedures.

About Methods
In G2’s object-oriented programming language:

• An operation is a function or transformation that can be applied to items.

• A method is a specialized procedure that implements an operation for items
of a particular class.

• An operand is an item on which a method performs an operation.

Methods allow you to customize operations in class-specific ways. In conjunction
with class hierarchy, methods allow you to define item behavior with great
economy and modularity. Two essential capabilities provide these advantages:

• When you perform an operation, you perform it in the same way regardless of
the class of the operand. G2 automatically invokes the correct method for an
operand of that class.

• A method defined for a class can invoke the method defined for a superior
class by executing a call next method statement. G2 automatically calls the
correct method based on the structure of the class hierarchy.

Methods and Procedures

Methods are syntactically and functionally similar to procedures, and procedures
can do anything that methods can do. However, methods are typically more
convenient than procedures for defining complex behavior, because they are
more modular, flexible, maintainable, and reusable.

G2 methods have essentially the same syntax as ordinary G2 procedures. Both
procedures and methods:

• Have names.

• Can take arguments and return values.

• Contain statements and actions.

• Can be invoked by call or by start.
922

About Methods
The only syntactic differences are:

• The first argument to a method must be of the class to which the
method applies.

• A method can execute call next method, while an ordinary procedure cannot.

Thus any procedure that has the first property listed could be used as a method
without changing its code in any way. The essential difference between
procedures and methods is not in their code, but in the way G2 invokes them.

The Vessel Example

A simple example can demonstrate all the essential features of methods, and
show you how they compare with procedures. Suppose that:

• Your KB defines the class vessel, with three subclasses: tank, bottle, and flask.

• You need to fill tanks, bottles, and flasks at various times as your KB executes.

• Before filling a vessel, you must prepare it in a way that depends on its class:

– tank: Unscrew the tank’s cap.

– bottle: Remove the bottle’s cork.

– flask: Sterilize the flask.

• After preparing the vessel, you fill it in exactly the same way regardless of
its class.

• After filling the vessel, you screw on its cap, replace its cork, or do nothing,
depending in its class.

The rest of this chapter uses this example at various points to illustrate the
properties of methods.

Filling Vessels Using Procedures

To fill vessels by using procedures, you could create a procedure for each of the
four classes. For example:

fill-vessel (V: class vessel) Fill the vessel (tank, bottle, or flask).

fill-tank (T: class tank) Unscrew the tank’s cap, invoke fill-vessel
to fill the tank, then replace the tank’s cap.
923

Your code would need to know in advance which class of vessel is to be filled,
and invoke a different procedure depending on the class, or else use a case
statement that selects on class to choose the correct procedure dynamically. The
former technique greatly constricts code flexibility. The latter is not too
burdensome for three subclasses—but what if there were hundreds of them?

Filling Vessels Using Methods

To fill vessels by using methods, you could create a method for each of the four
classes. Each of these methods would be similar to the analogous procedure, with
the following differences:

• All four methods would be named fill.

• Each method would be bound to the class to which it applies.

• The methods for tank, bottle, and class would use call next method to invoke
the method for vessel.

For example:

Your code would not need to know the class of a vessel to be filled, or use a case
statement that selects on class. With the above methods defined, you can invoke
fill on any tank, bottle, or flask. G2 then looks at the class of the vessel and invokes
the fill method specific to that class. Thus fill means different things for different
classes. This property of methods is called polymorphism.

When the method G2 selected executes call next method, G2 scans the class
hierarchy path of the relevant class, looking for a superior class that also has a fill
method. The class vessel is the direct superior of tank, bottle, and flask, and

fill-bottle (B: class bottle) Remove the bottle’s cork, invoke fill-vessel
to fill the bottle, then replace the bottle’s
cork.

fill-flask (F: class flask) Sterilize the flask, then invoke fill-vessel to
fill the flask.

fill (V: class vessel) Fill the vessel (tank, bottle, or flask).

fill (T: class tank) Unscrew the tank’s cap, execute call next method
to fill the tank, then replace the tank’s cap.

fill (B: class bottle) Remove the bottle’s cork, execute call next
method to fill the bottle, then replace the bottle’s
cork.

fill (F: class flask) Sterilize the flask, then execute call next method
to fill the flask.
924

About Methods
defines a fill method. G2 invokes that method on the vessel. When the method
returns, the lower-level method continues execution.

Encapsulation

Methods allow existing code to be extended more easily than procedures do.
Suppose that you now define a fourth subclass of vessel, say tube, which must be
washed before it can be filled, and labeled afterwards. You need only define a fill
method bound to tube, and code that method to:

• Wash a tube.

• Execute call next method.

• Label the tube.

Existing code already used to fill tanks, bottles, and flasks, can now fill tubes also,
yet the code itself has not changed at all. It did not need to change because the
knowledge of how to fill an instance of each class resides in the class, in the form
of its fill method; not in the code that calls the method, which needs to know only
the operation’s name. This property of methods is called encapsulation.

Duplicate Methods

On occasion, the nature of an operation requires it to do slightly different things
under different circumstances to operands of the same class, and these differences
require supplying the relevant method with different numbers of arguments. G2
does not provide optional arguments, but you can achieve the same effect by
defining two or more methods that:

• Have the same name and perform the same operation.

• Apply to the same class.

• Take different numbers of arguments.

This capability allows you to customize the behavior of operations by giving
different numbers of arguments when you invoke them.

Inheriting Methods

When a class defines no method for a particular operation, and a superior class
does, the subclass inherits the method defined for the superior.

Suppose that vessel has another subclass, vial, that needs no preparation before
filling and no cleanup afterwards. That is, filling a vial requires no customized
behavior, but only the behavior characteristic of every vessel.

The vial class would need no fill method of its own. If you invoked fill on a vial,
G2 would search vial’s class inheritance path looking for a method named fill. The
925

class vessel is the direct superior of vial, and defines a fill method. G2 invokes that
method on the vial.

G2 does the same thing every time you invoke a method, whether directly or with
call next method: it scans the class inheritance path of the relevant class, and
invokes the first method it encounters that has the correct name and the right
number of arguments. Since every class is the first element of its own class
inheritance path, this technique gives a locally defined method precedence over
any inherited method.

Defining Methods

The steps for defining a set of methods to specify behavior are:

• Design and implement the class hierarchy.

• Create a method declaration for each operation to be implemented using
methods.

• Create methods as needed to implement each operation.

You don’t have to carry out these steps sequentially, though doing so is often
convenient. The following sections give complete information on defining
methods.

Designing a Class Hierarchy

Methods are closely linked with the class hierarchy on whose members the
methods operate. If the hierarchy is correctly designed, methods can take
advantage of its structure to provide very economical and modular
behavioral specifications.

The general principle is to distribute the behavior of the various classes over the
hierarchy in a way that takes maximum advantage of any inherent modularity in
the behavior. For a given operation:

• The method for each class should do only things that are specific to it and all
of its subclasses.

• Any behavior characteristic of more than one sibling class should be factored
into a method defined for a parent class.

• Any behavior that differs for different child classes should be specified in a
separate method defined for each class.
926

Designing a Class Hierarchy
Class hierarchies designed for use with methods often contain levels of
refinement that exist only to modularize behavior. For example, suppose that:

• The class AZ is the direct superior of six subclasses: A1, A2, A3, Z1, Z2.

• A start operation exists that is much the same for all six subclasses.

• The three A classes all customize start in one way, and the three Z classes
customize it in another way.

The hierarchy looks like this:

With this hierarchy, you have two possible ways to implement the start operation
using methods. Both of them are unsatisfactory because:

1 No subclass defines a start method of its own. Instead, AZ defines a method
and each subclass inherits it. This method does everything necessary to start
an instance of any of the subclasses, and contains a case statement that selects
on class. The case statement customizes start appropriately for the A classes
and for the Z classes.

2 Every class has a start method. The method for AZ does everything necessary
to start an instance of any of the subclasses. The method for each subclass uses
call next method to invoke AZ’s method, and provides class-specific
customization. The methods for the three A classes are identical, as are the
methods for the three Z classes.

The first technique uses a case statement to simulate the effect of customized
methods. The second technique requires three copies of each class-specific
method. In either case, the improvement over ordinary procedures is small.

AZ

A1 A2 A3 Z1 Z2 Z3
927

The problem is that the structure of the AZ class hierarchy does not correctly
reflect the structure of the constituent classes’ behavior. The answer is to
implement an intermediate class level:

With this hierarchy, you could define:

• A start method for AZ that does everything necessary to start an instance of
any of the subclasses.

• A start method for A that uses call next method to invoke AZ’s method, and
provides the customization needed by an A class.

• A similar method for Z that provides the customization needed by a Z class.

With such methods defined, you can invoke start on any instance of the six
lowest-level subclasses. Since none of the subclasses defines a start method of its
own, G2 selects the method inherited from A or Z as appropriate. Thus the
improved class structure allows you to define the needed behavior without case
statements or duplicate code.

Implementing a Class Hierarchy
Techniques for implementing a class hierarchy appear in Classes and
Class Hierarchy, and Definitions. This chapter does not repeat the information
available there.

You do not have to define the classes for which you need methods before you
define the methods themselves: you can implement classes, method definitions,
and methods in any order. When you create methods before creating their class,
all of the methods become usable as soon as you create the class.

However, you may find it convenient to define classes before defining the
methods that use them, because a method defined for a nonexistent class contains
a warning in its notes attribute that the class it applies to does not exist. Such
warnings can become tiresome.

Class hierarchies rarely provide the ideal structure when first implemented, and
methods rarely provide the ideal hierarchy of behavior from their inception. As

AZ

A Z

A1 A2 A3 Z1 Z2 Z3
928

Creating Method Declarations
you develop your KB, you can iteratively develop and refine your class hierarchy
and its associated methods, changing each as needed to reflect changes in the
other. G2 immediately updates existing classes and methods as needed to reflect
any such changes.

Creating Method Declarations
For every operation that you want to implement using methods, you must create
a definition called a method declaration. This definition declares the name of the
operation: every method that implements it for a particular class has this name.

In the vessel example on , you would need one method declaration to define the
fill operation. This declaration would suffice for all fill methods on all classes, no
matter how numerous the methods, or how the class hierarchy might be
structured or restructured. If you also needed to implement an empty operation,
you would need a second method declaration to define it; and so on for any
number of operations.

To create a method declaration:

1 Select KB Workspace > New Definition > procedure > method-declaration.

2 Open the method declaration’s table.

3 Edit the names attribute to specify the name of the operation.

You can use any available name. If you specify more than one name, only the
method with the first name is called.

For example, the following method declaration defines the fill operation used in
the vessel example:

A method declaration can exist on any workspace. However, you can keep track
of method declarations more easily if you store them systematically. One
possibility is to keep them all on a workspace dedicated to that purpose. Another
is to store each on the subworkspace of the highest-level class that uses
the method.
929

Note If you give a method declaration and a procedure the same name, and use that
name in a call statement or a start action, you cannot predict whether G2 will
invoke a method or the procedure. Avoid using the same name for both a method
declaration and a procedure.

Flagging Call Next Method Requirements

Method declarations have one class-specific attribute:

G2 does not enforce the restriction implied by requires-call-next-method?. The
attribute is strictly informational, and has no effect on method compilation or
KB execution.

Defining a Method

A method is syntactically similar to a procedure, and specifies what an operation
does when the operand is of a particular class. You must create a separate method
for each class on which you want to define a given operation.

To begin defining a method:

 Select KB Workspace > New Definition > procedure > method.

To specify the behavior of the method:

 Edit the text of the method to specify the desired behavior.

You can use any statement or action you could use in a procedure, as described in
Procedures, plus the call next method statement, as described under Invoking a
Superior Method.

When you are defining a method, the G2 text editor prompts for procedure and
function signatures as described in Using the Procedure Signature Prompts in
the Editor.

Attribute Description

requires-call-next-
method?

Flags developers that any method based on this
method-declaration must include a call next
method statement in order to function
correctly.

Allowable values: yes, no

Default value: no
930

Defining a Method
To bind a method to its method declaration:

 Give the method the same name as the method declaration for the operation
that the method implements.

The method declaration need not exist when you reference it in the code of a
method, but you must create it before you can actually invoke the method.

To bind a method to its class:

 Code the method so that its first argument is of the class to which the
method applies.

Every method must have at least one argument, which must name the
applicable class.

For example, the following code could be used as a fill method for the class flask in
the vessel example:

fill(F: class flask) = (truth-value)
OK: truth-value;

begin
call wash-flask(F);
OK = call next method;
if OK then call label-flask(F)

else call empty(F);
return OK

end

Note that, except for the call next method statement, this could be an ordinary
procedure. Any method that does not use call next method could be a procedure,
and any procedure whose first argument is an instance of a class could be a
method defined for that class.

A method can exist on any workspace, but you can keep track of methods more
easily if you store them systematically. One possibility is to keep them all on a
workspace dedicated to that purpose. Another is to store each on the
subworkspace of the highest-level class that uses it.

Method Attributes

A method has exactly the same attributes as an ordinary procedure, plus one
more. The common attributes of procedures and methods are:

• tracing-and-breakpoints

• class-of-procedure-invocation

• default-procedure-priority

• uninterrupted-procedure-execution-limit
931

For information about how to use these attributes, see Defining a Procedure.
These attributes serve the same purpose for methods and procedures.

Methods have two attributes that procedures do not:

You cannot edit a method’s qualified-name attribute. When you first create a
method, its qualified-name is none. When you have correctly entered the text of
the method, G2 sets its qualified name automatically based on the method’s name
and the class of its first argument.

When a method appears on a workspace, it has by default an attribute display
that shows its qualified name. You can use this name to invoke the method
directly, as described under Invoking a Method Directly.

Describing a Collection of Methods
You can use the Describe facility to see a list of all methods defined for that
operation. For example, if you defined the classes and methods defined for the

Attribute Description

qualified-name Allows you to reference a specific method.

Allowable values: class-name :: method-name

Default value: none

synchronized Whether a method should allow locking. For
details, see Locking Mechanism for Objects.

Allowable values: truth-value

Default value: false
932

Invoking a Method
vessel example on , and executed Describe on the method declaration for the fill
method via the describe command in its menu, G2 would display:

Invoking a Method
Method invocation is syntactically similar to procedure invocation.

To invoke a method:

 Use call or start exactly as you would for a procedure.

For information about the call statement, see call. For information about the start
action, see start. The differences between call and start are the same for methods
and procedures.

Invoking a Method Generically

When you invoke a method generically, G2 selects the particular method
to invoke.

To invoke a method generically:

 Specify an operation name in a call statement or start action.

To execute such an invocation, G2 does the following:

• Notes the class of the first argument in the call statement.

• Obtains the class inheritance path of that class.

• Scans the classes on the path looking for one that has a method that:

– Has the name of the operation named in the invocation

– Takes the number of arguments given in the invocation.
933

If G2 finds a class with such a method defined, G2 invokes the method, sending it
the argument(s) specified in the invocation. If G2 reaches the end of the
inheritance path without finding such a class, it signals an error.

For example, suppose that:

• flask-1 is an object of class flask.

• success is a truth-value.

• The fill method is as described in the vessel example on .

You could then invoke fill on a flask by executing:

success = call fill (flask-1)

The class flask and its parent vessel each has a fill method. Since every class
appears first in its own inheritance path, G2 invokes the method for flask, sending
it the arguments flask-1.

Matching Types in Generic Method Invocations

When you invoke a method generically, the class of the first argument and the
number of arguments are significant, because they specify the class whose
inheritance path G2 scans to search for a matching method, and the number of
arguments that a matching method must have.

The types of any additional arguments, and the number and type(s) of any return
values, are not significant for selecting which method to invoke. However, they
must match whichever method G2 actually invokes, or G2 signals an error, as
with a similar mismatch in an ordinary procedure invocation.

Invoking a Method Directly

In most cases, you invoke a method by specifying an operation, leaving G2 to
select the correct method as described under Invoking a Method Generically.

Some situations require invoking a specific method and no other, bypassing G2’s
selection process. To allow such invocation, G2 provides a qualified name for
every method. This name has the syntax:

class-name::method-name

For example, the qualified name of the fill method for flask is:

flask::fill

To invoke a method directly, you give its qualified name in a call statement or
start action. G2 then invokes exactly the designated method. If the method does
not exist, G2 signals an error: it does not search the inheritance path of the class
specified in the generic name.
934

Invoking a Method
For example, suppose that:

• flask-1 is an object of class flask.

• The fill method is as described in the vessel example on .

• You want for some reason to bypass the normal sterilizing and labeling of a
flask, which flask::fill performs, and fill the flask directly, via vessel::fill.

You could obtain the described effect by executing:

call vessel::fill (flask-1)

To execute this statement, G2 acts just as it would for an ordinary procedure call:
it calls the fill method for vessel on the object flask-1.

The call next method statement has the same effect whether the method that
contains it was invoked generically or directly, as described under Invoking a
Superior Method.

Optional Direct Invocation

You can use direct invocation even where generic invocation would have the
same effect. Such invocation, though initially unnecessary, ensures that your code
will always call the particular method despite subsequent changes to the class
hierarchy. Using direct invocation does not protect against changes to the effect of
executing call next method.

For example, so long as the class hierarchy described for the vessel example
remains unchanged:

success = call flask::fill (flask-1)

has the same effect as:

success = call fill (flask-1)

but the former will always invoke flask::fill no matter how the class hierarchy
changes, while the latter might cease to do so. However, such a change in the
hierarchy might in either case change the effect of call next method.

Matching Types in Direct Method Invocations

When you invoke a method directly, all arguments and any returned values must
match the invocation, or G2 signals an error, as with any procedure call.

Direct invocation allows you to invoke a method on an item whose class differs
from that of the first argument defined by the method. Such an invocation is
correct if the item belongs to a subclass of the argument class, but not if it belongs
to a superior class.

That is, you cannot directly invoke a method on an item whose class is superior to
the class for which the method is defined. If you attempt to violate this restriction,
G2 signals an error.
935

This restriction exists because an instance of a superior class may not have all of
the attributes needed by a method or procedure designed for use with an inferior
class: additional attributes may be added lower in the hierarchy.

Invoking a Superior Method

You can use the call next method statement to cause one method to call another
that is defined for a superior class. The statement allows you to specify behavior
hierarchically, as described under Designing a Class Hierarchy.

The syntax of the call next method statement is:

[return-value [, ...]] = call next method

Note that this syntax is the same as that of an ordinary call statement, except that
no arguments appear. For example, the flask::fill method shown earlier included:

OK = call next method

G2 executes a call next method statement as follows:

• Scans the class inheritance path of the class to which the calling
method applies.

• Checks each class in turn to see if it has an associated method that:

– Has the same name as the calling method.

– Takes the same number of arguments as the calling method.

If G2 finds such a method, G2 calls it, passing it the same arguments that the
calling method received. If G2 does not find such a method, G2 does not signal an
error; it proceeds to the next statement in the calling method.

A call next method statement is similar to an ordinary call statement. Specifically:

• The calling method suspends execution until the called method returns.

• The calling method need not be coded to receive any value(s) returned by the
called method.

• If the calling method is coded to receive a return value, and the called method
cannot be found or does not return a value, G2 signals an error.

• If the number and types of arguments passed to the called method do not
match its declared number and types of arguments, G2 signals an error.

The call next method statement applies only to methods: it cannot appear in a
procedure.
936

Duplicate Methods
Duplicate Methods

Sometimes the nature of an operation requires it to do slightly different things
under different circumstances to operands of the same class, and these differences
require supplying the relevant method with different numbers of arguments. To
provide for such cases, G2 allows you to define methods that:

• Have the same name.

• Apply to the same class.

• Take different numbers of arguments.

For brevity, G2 refers to such methods as duplicate methods, even though only
the methods’ qualified names are duplicates, and not the methods themselves.

For example, suppose that in the vessel example on , you sometimes want to
supply the label to be pasted onto a flask, and other times want a default label.
You could define a second fill method on flask.

With both fill methods defined, G2 counts the arguments each time you invoke fill
on a flask, and selects the fill method that has that number of arguments.

Duplicate and Superior Methods

When you use call next method in a duplicate method, you must make sure that
the superior method is also duplicated, or G2 will not invoke it because it has the
wrong number of arguments. For example, the two-argument flask::fill in the
preceding example would not work correctly unless a two-argument vessel::fill
existed also.

When duplicate superior methods exist, you must use call next method to invoke
the correct superior method. Trying to call it directly may invoke the wrong
method, as in the case of duplicate procedures, resulting in an error due to
mismatched argument lists. For further information, see Duplicate Procedure
Names.

fill (F: class flask, L: class label) Sterilize the flask, execute call next
method to fill the flask, than paste the
label on the flask.
937

Inlining a Method
A method declared as inlineable exists as a separate item, but is compiled as part
of the calling code when called from another method or procedure. Inlining a
method can improve performance by:

• Avoiding the overhead of a procedure invocation when the method is called.
Procedure invocations consume runtime memory.

• Reducing the total number of instructions executed between the calling
procedure or method and the inlined method.

However, inlined methods increase the size of the executable code, because the
method code is copied redundantly to every point from which it is invoked.
Inlining is best for small methods that are called frequently, typically from a loop
that iterates many times.

Embedded code is incompatible with asynchronous and recursive invocation, so
the code for an inlineable method is actually inlined only for a nonrecursive call.
Inlineable methods exist as ordinary items; starts and recursive calls to them are
handled just as if the method were not inlineable.

Inlining Restrictions

The following situations prevent G2 from compiling the code of an inlineable
method into a calling method or procedure:

• The inlineable method and calling method or procedure are not defined in the
same module.

• The invocation to the inlineable method is asynchronous.

• The invocation to the inlineable method is recursive.

These restrictions are the same as those applied to procedures. See Inlining
Restrictions for the details of how G2 handles existing inlined code when
procedures are transferred to different modules and when loading older KBs that
violate the current inlining restrictions.

Declaring a Method as Inlineable

Declaring a method as inlineable requires the additional stable-hierarchy and the
stable-for-dependent-compilations configuration.

Declaring a method as stable-hierarchy implies that a more specialized method
will not be added below the current method in the method hierarchy. If the
method includes any return values, the stable-hierarchy declaration additionally
guarantees the return value types.
938

Inlining a Method
To declare that a method be inlined:

 Add these item configurations:

declare properties as follows : inlineable, stable-hierarchy,
stable-for-dependent-compilations

Tip As with other configurations, the configuration statements stable-hierarchy and
stable-for-dependent-compilations can be applied to a workspace. Whenever
configurations are applied to a workspace, their effects propagate to every
applicable item (methods in this case) upon the workspace, and all
item subworkspaces.

Recompiling an Inlineable Method

When you change the item-configuration of a method to include these properties,
the notes attribute of the method changes to read:

OK, and note that this item needs to be recompiled to
generate data needed for inlining

To recompile the inlineable method:

1 Choose edit from the table item menu of the method attribute table. G2
displays this dialog, because the method has been declared as stable:

2 Click OK to continue.

3 Save the edited method to recompile it. The method notes status will be OK.

Note After making a method inlineable and recompiling it, other methods and
procedures that call the inlined method must be recompiled to incorporate the
inlineable code. You can recompile a single procedure method by editing it in the
Text Editor and saving any changes, or recompile your entire KB using Inspect.
939

Testing for an Inlined Method

You can test whether a method has been inlined through the G2 Tracing facility.

To test for an inlined method:

1 In the Debugging Parameters system table, change the tracing-and-
breakpoints-enabled? attribute to yes.

2 Change the value of the tracing-message-level attribute to:

1 (trace messages on entry and exit)

3 Run the procedure that calls the inlined method. If the inlined code has been
incorporated into the calling procedure, the inlined method will not appear in
the trace messages.

For a further discussion on using the inlineable and stable-hierarchy
configurations, see Using Compilation Configurations.

Considerations for Multiple Inheritance

When you call a method for an instance of a multiple-inheritance class, G2 uses
the inheritance path of the instance class to determine which methods should be
invoked.

G2 uses the class inheritance path for two types of method calls:

• When you invoke a method generically by calling the method name without
class qualification, G2 scans the class inheritance path of the item that is the
first argument to the method call. The first class on the item inheritance path
that has a method defined for it, with the method name and number of
arguments in the call, is the method that G2 invokes.

• When you execute call next method, G2 similarly scans the inheritance path of
the instance class, this time starting with the class following the class of the
first-argument of the calling method.

In either case, only the instance class inheritance path determines method
invocation. The path might result from single inheritance or from linearizing
multiple inheritance. G2 scans the path in exactly the same way, regardless of the
underlying class hierarchy.

The effect of nested call next method invocations in multiple inheritance can be
appear complex. This complexity does not result from any special action of G2,
which invokes methods in exactly the same way irrespective of the particular
class hierarchy. It results from the fact that in multiple inheritance, a class’s
hierarchy path is not a simple extension of a unique superior class’s path, but a
linearization of two or more different inheritance paths.
940

Considerations for Multiple Inheritance
For example, assume that:

• Your KB contains five class definitions.

• Two of these class definitions, car-boat and boat-car, are defined with two
direct-superior classes.

• You have defined three propel methods, vehicle::propel, car::propel, and
boat::propel. Each of these methods contains a call next method statement
placed between two post statements that indicate when the method is being
invoked and when it is being exited.

• You have defined a procedure that calls the propel method for boat-instance
and then for boat-car-instance.

The figure below shows the vehicle class hierarchy, and the propel methods
defined for the hierarchy. To indicate inheritance, each class definition has
attribute displays of its direct-superior classes and class inheritance path. There is
a single instance of each class.
941

The next figure shows a procedure which calls the propel method for two
instances. The messages posted to the Message Board indicate the order of
method invocation:

Notice that the methods are invoked strictly in order of the classes on the
inheritance path of the instance class. This is due to the call next method statement
at the beginning of each method which has the effect of invoking the methods
from bottom up and then executing those methods top down, from the most
general class method to the most specific class method.
942

Locking Mechanism for Objects
Locking Mechanism for Objects
G2 provides two techniques for invoking a method:

• Using the call procedure statement, which executes the method
synchronously. It tells G2 to invoke the method and wait until it returns
before continuing to execute the calling procedure or method.

• Using the start action, which executes the method and runs it asynchronously.
It tells G2 to schedule the method for execution, then continue processing the
calling procedure or method. The method being started does not run until the
entity that issued the start action either completes or enters a wait state.

To enter a wait state and allow other processing to occur, a procedure must
execute one of the following statements: allow other processing, call ... across,
collect data, for each ... do in parallel, or wait.

Historically, to avoid problems due to concurrency when a procedure or method
enters a wait state, it has been up to the developer to ensure that only one
procedure is accessing the same object at the same time.

G2 provides a locking mechanism, which allows other processing to occur when
executing a method with a wait state, while ensuring that no more than one
procedure that locks the same object can operate at the same time. This feature is
similar to the use of the synchronized keyword in Java.

To support this feature, methods define the synchronized attribute, whose value
is one of the following:

• no — When an unsynchronized method executes, the item that is the first
argument to the method call is not locked and is, therefore, vulnerable to
concurrency problems if the method contains a wait state. This is the default.

• yes — When a synchronized method executes, the item that is the first
argument to the method call is locked, which prevents any other
synchronized method from obtaining a lock on the item. When the
synchronized method completes, either normally or due to an error, the lock
is released.
943

When a synchronized method attempts to execute on a locked item, there are two
possible outcomes, depending on how the method is executed, as follows:

A synchronized method is executed in a different call chain when:

• Using a call statement in a different procedure or method.

• Using the start action.

• Within a do in parallel, do in parallel until one completes, or for each...do in
parallel statement.

A synchronized method is executed in the same call chain when it is executed via
a call statement within the same method or within any method in the calling
hierarchy of the synchronized method. Note that the call statement can be inside
an on error block and is still considered within the same call chain. However, if
the call statement is within a do in parallel, do in parallel until one completes, or for
each ... do in parallel statement, this is considered a different call chain.

It is possible, due to careless use of synchronization, to have a program in which
several methods are permanently in wait states, each waiting for the other to
release a lock, in what is usually referred to as a deadlock. You can avoid this
situation by ensuring that a call chain that obtains locks on multiple items always
attempts to lock the items in the same order.

G2 provides a way of detecting and releasing deadlocks when they occur,
interactively, programmatically, and automatically.

As a result of this change, the call action now causes procedures to enter a wait
state when calling a synchronized method and when the first argument to the call
is an item that is currently locked by another synchronized method.

The locking mechanism for G2 methods works in the same way as synchronized
methods in Java. For more information, see http://java.sun.
com/docs/books/jls/third_edition/html/classes.html#8.4.3.6 and
http://java.sun.com/docs/books/jls/third_edition/html/memory.

When a synchronized method
is executed in... The synchronized method...

A different call chain Waits to execute until the lock is released.

If the synchronized method is invoked via a
call statement, then the calling method enters
a wait state until the lock is released, allowing
other processing to occur while waiting for
the lock to be released.

The same call chain Executes normally.
944

Locking Mechanism for Objects
Example: Calling a Synchronized Method from a
Procedure

This example demonstrates executing a synchronized method via a call statement
in two separate procedure invocations when the method contains a wait state.
When the method executes in the first invocation of the procedure, the item that is
the first argument to the method is locked. Any other synchronized method call
on the same item is not allowed to execute until the first method completes, even
though the method contains a wait state, because the method is being executed in
a different procedure invocation.

In this example, my-method-caller calls my-method on items of class lock. The
action button starts my-method-caller for lock-one in two separate procedure
invocations.

Here is the my-method synchronized method, which has synchronized set to yes.
This method simply posts to the Message Board that my-method is starting, waits,
then posts to the Message Board that my-method is completed. Because the
method contains a wait state, it allows other processing to occur; however,
because the method is synchronized, the item that is the first argument to the
method is locked. Thus, any other synchronized method that attempts to execute
on the same item must wait until the first method completes and releases the lock
before it can execute.

my-method(thing-to-lock: class lock, message: text)
begin

post "Starting my-method on [the name of thing-to-lock]: [message]";
wait for 5 seconds;
post "Completed my-method on [the name of thing-to-lock]: [message]";

end
945

Here is the procedure that executes my-method, using a call statement. It posts to
the Message Board that it is about to call my-method, calls my-method, then posts
to the Message Board that my-method is complete.

my-method-caller(thing-to-lock: class lock, message: text)
begin

post "About to call my-method on [the name of thing-to-lock]: [message]";
call my-method(thing-to-lock, message);
post "Returned from my-method on [the name of thing-to-lock]: [message]";

end

The action button starts the my-method-caller procedure twice, which creates two
separate procedure invocations, each using the same target object, lock-one:

start my-method-caller(lock-one, "invocation one") and
start my-method-caller(lock-one, "invocation two")
946

Locking Mechanism for Objects
Using method synchronization (synchronized is yes) and a wait state, the
synchronized method allows other processing to occur due to the wait state;
however, it cannot execute the method on the same item because the item is
locked. In this scenario, there are no concurrency issues.

Procedure statements that appear
before the wait state execute in
invocation one of my-method.

The first argument to the method,
lock-one, is locked.

Synchronized, wait state: No concurrency issues

Procedure statements that appear after
the wait state execute in invocation one
of my-method.

Lock-one is now unlocked, making it
available for processing by other
methods on the same item.

Procedure statements in my-method
can now execute on lock-one in
invocation two of my-method.

The procedure my-method-caller is
allowed to execute due to the wait state.

However, my-method cannot execute on
lock-one until the item is unlocked.
947

With no method synchronization (synchronized is no) and a wait state, the
synchronized method allows other processing to occur due to the wait state,
including executing the method on the same item in a different invocation of the
method. This is the scenario that can lead to concurrency issues because the item
is not locked.

Procedure statements that appear
before the wait state execute in
invocation one of my-method.

Unsynchronized, wait state: Concurrency issues

Procedure statements that appear
after the wait state execute in
invocation one of my-method.

Procedure statements that appear
before the wait state execute in
invocation two of my-method.

Procedure statements that appear
after the wait state execute in
invocation two of my-method.
948

Locking Mechanism for Objects
Example: Calling a Synchronized Method from the
Same Method

This example demonstrates executing two synchronized methods on the same
item when one method uses the call statement to execute the other method and
both methods contain a wait state. When the outer method executes, the item that
is the first argument to the method is locked. However, because the inner method
is being called from the same call chain, it is allowed to execute, even though the
item is locked.

In this example, outer calls inner on items of class lock. The action button starts
outer for lock-one, which starts inner for lock-one:

Here is the outer synchronized method, which has synchronized set to yes. This
method posts to the Message Board that outer is starting, waits, calls inner, waits,
then posts to the Message Board that outer is completed. The method contains a
wait state, which allows other processing to occur. Because the method is
synchronized, the item that is the first argument to the method is locked when
outer executes. However, because outer executes inner by using a call statement in
the same synchronized method, inner is allowed to execute because it is within
the same call chain.

outer(lock-for-outer: class item, lock-for-inner: class item)
begin

post "Starting OUTER method on [the name of lock-for-outer]";
wait for 5 seconds;
call inner(lock-for-inner);
wait for 5 seconds;
post "Returning from OUTER method on [the name of lock-for-outer]";

end
949

Here is the inner synchronized method, which also has synchronized set to yes.
This method simply posts to the Message Board that inner is starting, waits, then
posts to the Message Board that inner is complete.

inner(lock: class item)
begin

post "Starting INNER method on [the name of lock]";
wait for 5 seconds;
post "Returning from INNER method on [the name of lock]";

end

The action button starts outer using lock-one as the argument to both outer and
inner:

start outer(lock-one, lock-one)

Using method synchronization (synchronized is yes) and a wait state, the outer
synchronized method allows other processing to occur due to the wait state.
Because the outer method calls the inner method, the inner method is allowed to
execute, even though the item is locked, because it is in the same call chain. In this
scenario, there are no concurrency issues because the methods execute within the
same call chain.

Procedure statements that appear
before the wait state in the outer method
execute, and the first argument to the
method, lock-one, is locked.

Calling a synchronized method in the same call chain:
No concurrency issues

The inner method is allowed to execute even
though lock-one is locked, because it
executes in the same call chain.

The procedure statements in the
outer method finish executing.
950

Locking Mechanism for Objects
Detecting and Releasing Deadlocks

You have two options for detecting deadlocks:

• Choose Miscellany > Detect Deadlocks.

• Use this system procedure:

g2-detect-deadlocks
()
-> return-value: truth-value

These options simply indicate whether a deadlock exist.

You can also detect and break deadlocks by using one of these options:

• Choose Miscellany > Detect and Break Deadlocks.

• Use this system procedure:

g2-detect-and-break-deadlocks
()
-> return-value: truth-value

Returns false if no deadlock is detected; otherwise, returns true and breaks
the deadlock.

• Setting the Automatic Deadlock Detection Frequency parameter in the
Miscellaneous parameters system table to the frequency, in seconds, with
which to check for deadlocks and break them when found.

These options detect deadlocks and abort one of the involved methods by
generating an instance of g2-deadlock-error, a subclass of g2-error. G2 chooses
which method to abort, as follows:

• It chooses a method that contains an on error clause that catches errors of type
g2-deadlock-error or one of its superior classes, like g2-error, or a method that
was called by a procedure or method that contains such an on error clause,
and so forth.

• Otherwise, it arbitrarily chooses one of the methods that is participating in a
deadlock. Note that in the absence of an on error clause, all methods in the call
chain will be aborted as a result when a deadlock exists.

Note that it always chooses a method that is waiting for a lock to be released,
rather than a method or procedure that has called a method or procedure and is
waiting for that method to return.
951

Example: Detecting and Releasing Deadlocks Using
an Error Handler

This example shows a simple deadlock in which two synchronized methods are
waiting for locks to be released on the same locked objects. The button below
starts outer-with-error-handler locking lock-one and passing lock-two as the
argument to inner, then it starts outer locking lock-two and passing lock-one as the
argument to inner. The result is a deadlock, because each procedure is waiting for
the other to complete before it can release the lock on the respective locked
objects.

Here is the outer-with-error-handler method:

outer-with-error-handler (lock: class item, lock-for-inner: class item)
errobj: class error;
begin

post "Starting OUTER-WITH-ERROR-HANDLER method on [the name of lock]";
wait for 5 seconds;
begin

call inner(lock-for-inner);
end
on error (errobj)

post "An error of class [the class of errobj] occurred: [the text of the
error-description of errobj]";

delete errobj;
end;
post "Returning from OUTER-WITH-ERROR-HANDLER method on [the name of

lock]";
end
952

Locking Mechanism for Objects
Here is the outer method:

outer (lock: class item, lock-for-inner: class item)
begin

post "Starting OUTER method on [the name of lock]";
wait for 5 seconds;
call inner(lock-for-inner);
post "Returning from OUTER method on [the name of lock]:";

end

Here is the inner method:

inner(lock: class item)
begin

post "Starting INNER method on [the name of lock]";
wait for 5 seconds;
post "Returning from INNER method on [the name of lock]";

end

When you click the button that starts outer-with-error-handler, the outer-with-
error-handler method starts on lock-one, then the outer method starts on lock-two.
Neither method returns due to the deadlock whereby the first call to inner is
waiting for lock-two, which is locked by outer, and the second call to inner is
waiting for lock-one, which is locked by outer-with-error-handler and cannot
complete.

The following button and procedure detect deadlocks:
953

Here is the detect-deadlocks procedure:

detect-deadlocks()
result: truth-value;
begin

result = call g2-detect-deadlocks();
if (result) then

post "Deadlock detected"
else

post "No Deadlock detected"
end

Clicking the button that detects deadlocks displays this new message in the
Message Board:

Alternatively, choosing Miscellany > Detect Deadlocks displays the following
message in the G2 Operator Logbook:

The following button and procedure detect and break deadlocks:

Here is the detect-and-break-deadlocks procedure:

detect-and-break-deadlocks()
result: truth-value;
begin

result = call g2-detect-and-break-deadlocks();
if not (result) then

post "No deadlock detected"
end

A deadlock is detected.
954

Locking Mechanism for Objects
Clicking the button that detects and breaks deadlocks displays these new
messages in the Message Board. First, the outer-with-error-handler method is
aborted and a g2-deadlock-error occurs and is posted to the Message Board. Next,
the outer-with-error-handler method returns, which releases the lock on lock-one.
The call to outer is allowed to proceed by executing inner on lock-one and
returning.

Example: Detecting and Releasing Deadlocks with
No Error Handler

This example shows what happens when a deadlock occurs on a method that has
no error handler. In this case, the button below starts outer locking lock-one and
passing lock-two as the argument to inner, then it starts outer locking lock-two and
passing lock-one as the argument to inner. Again, the result is a deadlock, because
each procedure is waiting for the other to complete before it can release the lock
on the respective locked objects.

A g2-deadlock-error occurs, and the

outer-with-error-handler method is
aborted to break the deadlock.

The outer-with-error-handler method
returns after it is aborted, which releases the

lock on lock-one.

The inner method is allowed to execute

on lock-one, which allows the outer
method to complete.
955

In this case, clicking the button that starts outer, then clicking the button that
detects deadlocks, then clicking the button that detects and breaks deadlocks
results in these messages in the Message Board:

Because neither method defined an error handler, the g2-deadlock-error appears
in the G2 Operator Logbook, as follows:

When the deadlock is broken, it aborts one of
the methods, in this case, the second method

call to outer, which releases the lock on

lock-two, thereby allowing inner to

execute on lock-two and the first method

call to outer to return on lock-one.

A deadlock is detected.
956

24
Rules, Inferencing,
and Chaining
Describes how G2 invokes rules to perform actions.

Introduction 957

Creating a Rule 959

Coding the Text of a Rule 961

Kinds of Rules 963

Event Expressions 967

Using Whenever Rules 970

Specifying the Scope of the Rule 973

Invoking Rules 979

Debugging Rules 993

Understanding Rule Invocation and Execution 994

The Rule Class 1001

Introduction
Rules establish how your KB responds to various conditions. Rules describe
knowledge in a manner that allows your KB to draw conclusions from existing
knowledge, to react to certain kinds of events, and to monitor the passage of time.
957

A rule expresses a programmatic response to a set of conditions. A rule contains a
text and a set of attributes. When a rule fires, it executes one or more actions. For
information about actions, see Actions.

When you create a new rule, you typically enter a two-part statement in its text.
The first part, called the antecedent, tests for a condition. The second part, called
the consequent, specifies the actions to take when the condition returns a value of
true. This is an example of the text of a rule:

if the level of any tank = 0
then conclude that the status of the tank is empty

G2 offers five kinds of rules:

• if rules are invocable in many ways.

• initially rules respond to the activation of their parent workspace.

• unconditionally rules execute their actions each time they are invoked.

• when rules are like if rules, but they cannot participate in chaining.

• whenever rules respond to events.

You can create:

• Specific rules that apply to specific items or values.

• Generic rules that apply to a set of items or values. Such rules use a for prefix
in the text of the rule.

G2 invokes rules by using:

• Forward and backward chaining.

• Scanning.

• Event detection.

• Activating workspaces.

• Focusing on items.

• Focusing on rule categories.

You can specify whether a rule executes its actions sequentially or in parallel. This
determines how G2 schedules the activities of an invoked rule and determines the
transaction scope of those activities.

You can use G2’s facilities for debugging and tracing to monitor the execution of
rules. These facilities notify you when a particular rule has been invoked,
suspended, and completed. You can also direct G2 to highlight the text box
representation of each rule as it is invoked.
958

Creating a Rule
Creating a Rule
You create and edit rules interactively by using the Text Editor. A rule has a text
box representation; it does not have an icon.

To create a rule:

1 Select KB Workspace > New Rule.

G2 displays the Text Editor, shown in the next figure, where you enter the text
of the rule. The Text Editor displays prompts for entering one of the five kinds
of rules, or the for prefix for entering a generic rule.

2 Enter the text of the rule and end the editing session by selecting End or
pressing Return.

G2 displays the text box for the rule on the workspace. The text box is attached
to the mouse pointer.

3 Move the mouse to position the rule on the workspace, and click to place
the rule.

A completed rule has a text box representation, as shown in this figure:

To edit the text of an existing rule:

 Click anywhere in the text shown in the text box.

G2 displays the Text Editor for editing the text of the rule.
959

Displaying the Table for a Rule

You display the table for a rule by clicking on the border of its text box.

To display the table for a rule:

1 Click on the border of the text box of the rule to display its menu.

2 Select the table menu choice.

For information about specifying the attributes of a rule, see the sections that
follow. For a summary of the attributes of a rule, see The Rule Class.

Cloning a Rule

One way of creating new rules is to clone an existing rule.

To create a rule by cloning:

1 Display the menu for the rule.

2 Select the clone menu choice.

3 Move the mouse pointer to position the new rule on the workspace, and click
to place the rule.

After you clone a rule, G2 assumes that you will edit its text. G2 assumes you do
not want more than one rule in your KB with the same text. Thus, after cloning a
rule, G2 changes the status of the rule in its notes attribute to incomplete, and
displays ... (ellipses) in the text of the cloned rule as shown below:

These two indicators tell you that you must edit or recompile the cloned rule
before G2 can invoke it.

Changing the Font Size of a Rule

The default font size for a rule is large.

To change the font size of a rule:

 Mouse right on the rule and choose font, then choose extra large, large,
or small.
960

Coding the Text of a Rule
Coding the Text of a Rule

The text of each rule has a two-part structure: an antecedent and a consequent.
The antecedent contains a truth-value expression, and the consequent contains
one or more actions. In the example below, the truth-value expression is the level
of any tank = 0; and the action is conclude that the status of the tank is empty.

Coding the Antecedent

The antecedent of a rule includes one of the five reserved words, such as if, or an
optional for prefix, which indicates that it is a generic rule. Following the reserved
word in a rule is a truth-value expression, which indicates the conditions under
which G2 executes the actions in the consequent of the rule.

Tip For a description of the truth-value type, see Using the Truth-Value Type. For a
description of expressions that return truth-values, see Expressions.

Because a truth-value expression can produce a fuzzy truth value, G2 considers
the expression in the antecedent of a rule to be true only if its fuzzy truth-value is
greater than or equal to a fuzzy truth-value threshold. You specify this threshold
for the entire KB in the truth-threshold attribute of the Inference Engine
Parameters system table.

By default, truth-threshold contains the value .800 true. The value of the
truth-threshold attribute applies to all rules that G2 invokes.

Coding the Consequent

The consequent of a rule specifies one or more actions that G2 executes if the
antecedent evaluates to true. You can specify the following actions in the
consequent of any rule:

antecedent
consequent

abort focus move show

activate halt pause shut down g2

change hide print start

conclude inform remove transfer

create insert reset update
961

For complete information about actions, see Actions. For information about
sequential and parallel action execution, see Executing Actions. For a description
of each G2 action, see the Dictionary of Actions.

Specifying More than One Action in the Consequent

You can specify more than one action in the consequent of a rule. To do so,
include the reserved symbol and after each action in the consequent, except the
last action, as follows:

if the level of any tank = 0
then conclude that the status of the tank is empty and

start flush (the tank)

By default, the actions execute in parallel, and within the same transaction scope.
For more information, see Executing Actions in the Consequent in Parallel.

Specifying Sequential Execution

If you specify more than one action in the consequent of a rule, you can specify
that the actions execute sequentially, rather than in parallel, by including the
phrase in order before the actions. For example:

if the level of any tank = 0
then in order

conclude that the status of the tank is empty and
start flush (the tank)

When executing actions sequentially, each action executes within its own
transaction scope. This is especially important when the expression within one
action depends on the result of a previous action. For more information on
sequential processing within rules, see Executing Actions in the Consequent
Sequentially.

When you are defining a rule, the G2 text editor prompts for procedure and
function signatures as described in Using the Procedure Signature Prompts in
the Editor.

deactivate invoke rotate

delete make set
962

Kinds of Rules
Kinds of Rules

G2 offers five kinds of rules, each of which serves a different purpose. You refer to
a rule by its reserved word: if, initially, unconditionally, when, or whenever.

This table shows which methods of invocation G2 supports for each kind of rule:

For a detailed description of how G2 invokes each kind of rule, see Invoking
Rules.

This table shows whether each kind of rule can participate in backward chaining
and forward chaining:

For information on how rules participate in backward and forward chaining, see
Backward Chaining and Forward Chaining.

If Rules

An if rule specifies a condition, in the form of a truth-value expression, and one or
more actions.

The syntax for an if rule is:

[for {any | the} generic-reference-expression] ...
if truth-value-expression

then [in order]
action [and action] ...

Invocation Mechanism if initially
uncondi
-tionally when whenever

Event detection 

Scanning   

Workspace activation 

Focusing on or invoking a rule
category

  

Participation in Chaining if initially
uncondi
-tionally when whenever

Forward chaining from     

Forward chaining to  

Backward chaining from    

Backward chaining to  * 

* Only an initially rule can invoke another initially rule via backward chaining.
963

For example:

if the level-in-gallons of tank-1 < empty-level-in-gallons of tank-1
then conclude that the status of tank-1 is empty

An if rule is the most flexible kind of rule. An if rule can be invoked using forward
and backward chaining, using scanning, and using the focus an invoke actions.
An if rule can invoke other rules due to forward chaining and due to backward
chaining.

To make an if rule behave like a when rule, edit its options attribute to include the
phrases not invocable via forward chaining and not invocable via
backward chaining.

Initially Rules

An initially rule optionally specifies a condition, in the form of a truth-value
expression, and one or more actions.

G2 automatically invokes an initially rule each time its parent KB workspace is
activated. After an initially rule executes, G2 automatically disables it.

A workspace is automatically activated when you start or restart the current KB.
Also, the activate action explicitly activates a subworkspace configured as an
activatable subworkspace. For information about how and when workspaces are
activated, see Activating and Deactivating Workspaces.

Tip If you edit an initially rule after it has been invoked, G2 automatically enables the
edited rule, if it otherwise valid to do so.

An initially rule can cause backward chaining and forward chaining to other rules.
By default, an initially rule cannot be invoked using forward chaining or backward
chaining. You can edit the options attribute of an initially rule so that it can be
invoked using backward chaining, but only from other initially rules.

The syntax for an initially rule is:

initially
[for {any | the} generic-reference-expression [unconditionally]] ...

[{ if truth-value-expression then}]
[in order]

action [and action] ...
964

Kinds of Rules
Forms of Initially Rules

G2 supports three forms of initially rules:

• initially if: In this form, the antecedent of the rule can optionally specify one or
more for expressions to create a generic rule, and must include a truth-value
expression that specifies the condition under which G2 executes its
consequent. You form this initially rule like an if rule, for example:

initially
for any demonstration-window DW

if the subworkspace of DW exists
then change the arrow-region icon-color of DW to yellow

• initially unconditionally: In this form, the antecedent of the rule can include one
or more for expressions and an unconditionally clause. The antecedent for this
initially rule always evaluates to 1.0 true. You form this initially rule like an
unconditionally rule, for example:

initially
for any valve V

unconditionally
change the name of this window to the symbol gbh-local

• initially with implied unconditionally: In this form, the antecedent of the rule
cannot include a for expression. For example:

initially
inform the operator that

"Validation for [the name of the object O superior to this
workspace] is underway." and

focus on O

Effects on Rule Scanning

When the current KB starts, if any enabled workspace or subworkspace contains
initially rules, G2 invokes those initially rules. G2 does not begin scanning other
rules until the initially rules upon all newly activated workspaces complete or are
suspended (due to backward chaining or data seeking). When the current KB
starts, if no enabled workspace contains an initially rule, G2 begins scanning other
types of rules immediately.

For an activatable subworkspace that contains initially rules, when G2 explicitly
activates that subworkspace due to executing an activate action, G2 does not
perform additional scanning of other rules until the initially rules on the newly
activated subworkspace complete or are suspended (due to backward chaining or
data seeking). If the newly activated workspace has no initially rules, G2 does not
interrupt scanning other rules.

When any workspace is activated, G2 invokes each initially rule on the workspace
at each rule’s declared priority. When each initially rule has completed or is
965

suspended (due to backward chaining or data seeking), G2 schedules scanned
rules for the next G2 clock tick.

Unconditionally Rules

An unconditionally rule specifies one or more actions to perform without a
condition. G2 performs the consequent of an unconditionally rule each time the
rule is invoked.

The syntax for an unconditionally rule is:

[for {any | the} generic-reference-expression] ...
unconditionally

[in order]
action [and action] ...

Like an if rule, an unconditionally rule can be invoked using backward chaining,
using scanning, and using the focus or invoke actions. Since an unconditionally
rule has no antecedent, it cannot be invoked using forward chaining.

For example, this unconditionally rule:

unconditionally
conclude that the status of tank-1 is empty

is equivalent to this if rule:

if true
then conclude that the status of tank-1 is empty

When Rules

A when rule specifies a condition, in the form of a truth-value expression, and one
or more actions.

A when rule is like an if rule that cannot be invoked using forward chaining or
backward chaining. In this sense, a when rule is like an if rule that includes these
phrases in its options attribute: not invocable via forward chaining, not invocable
via backward chaining.

A when rule can be invoked using scanning and using the focus or invoke actions.

The syntax for a when rule is:

[for {any | the} generic-reference-expression] ...
when truth-value-expression

then [in order]
action [and action] ...
966

Event Expressions
This is an example of a when rule:

when the status of any pipe-valve PV1 is broken
then inform the operator that

"[the name of PV1] is broken. Corrective action taken."
and

invoke repair rules for PV1

Whenever Rules

The antecedent of a whenever refers to an event. G2 invokes a whenever rule each
time the specific event occurs. The syntax for a whenever rule is:

[for {any | the} generic-reference-expression] ...
whenever event-expression [or event-expression] ...

[and when truth-value-expression]
then [in order]

action [and action] ...

For example:

whenever any object O is moved by the user
then start align-workspace-objects (the superior item of O)

You can include more than one event expression in the antecedent of a whenever
rule by using the reserved symbol or. This expression directs G2 to execute the
consequent of the rule when any event specified in any of the event expressions in
the antecedent occurs. For example:

whenever the level-status TS of any valve V receives a value
or TS fails to receive a value

then invoke heat-safety rules for V

Optionally, you can include the reserved symbol when and specify a truth-value
expression, which represents an additional condition that must be satisfied for G2
to perform the consequent of the rule. For example:

whenever the temperature-status TS of any valve V receives a value
and when TS is too-high

then invoke heat-safety rules for V

Event Expressions
This section describes the various event expressions that a whenever rule can
contain. The general principles described previously in this section apply to all
event expressions. The detectable events are:

A Variable, Parameter, or Attribute Receives a Value

The syntax is:

whenever {variable | parameter | attribute} receives a value}
967

See Multiple Invocations Result in a Single Firing for a discussion of value
updates and rule firing.

A Variable Fails to Receive a Value

The rule fires when a variable fails to receive a value for the first time after
previously having a current value. For information on how variables fail to
receive a value, see Handling a Variable Failure. Syntax:

whenever variable fails to receive a value

A Variable Loses Its Value

The syntax is:

whenever variable loses its value

For example:

whenever the miles-per-hour of any racing-car R loses its value
then start check-auto-speed (R)

An Item Is Created

The syntax is:

whenever any instance of class is created

For example:

whenever any instance of tank T is created
then conclude that total-number-of-tanks = total-number-of-tanks + 1
and start initialize-tank (T)

G2 fires the rule after the create action is complete. To detect the creation of an
item of any kind, specify item itself as the item.

An Item Is Moved on a Workspace

The rule can specify whether the item is moved by the user or by G2 executing a
move action, or can fire in either case. The syntax is:

whenever item is moved [by {the user | G2}]

An Item Is Resized by user on a Workspace

The rule can specify whether the item is resized by the user. The syntax is:

whenever item is resized by the user

An Item Is Enabled or Disabled

The syntax is:

whenever item is enabled
968

Event Expressions
whenever item is disabled

For example:

whenever any currency-exchange CE is disabled
then start exchange-tally (CE)

An Item Is Activated or Deactivated

The syntax is:

whenever {item | subworkspace} is activated

whenever {item | subworkspace} is deactivated

For example:

whenever the subworkspace of any shuttle S is activated
then conclude that the operational-status of S is active

The use of whenever rules for detecting item deactivation is an experimental
feature. To make the rule fire, you must set the rule’s may-refer-to-inactive-items
evaluation attribute to true.

To make a whenever rule for detecting item deactivation operative:

 Create an action button to conclude the value of the rule’s evaluation-
attributes, using the following grammar:

conclude that the may-refer-to-inactive-items of the evaluation-attributes
of myrule is true

Caution The evaluation-attributes of items are hidden attributes, which are not fully
supported. Do not use them in any way that is not specifically described in the G2
documentation or recommended by Gensym Customer Support.

Two Items Become or Cease to Be Related by a Specific Relation

The syntax is:

whenever item {becomes | ceases to be} relation-name item

Two Items Become or Cease to Be Related by Any Relation

The syntax is:

whenever item becomes related to item

whenever item ceases to be related to item

For details, examples and further information, see Invoking Rules Using
Relations.
969

Two Items Become or Cease to Be Connected

See Detecting Connection and Disconnection Events for information about
detecting connection events with whenever rules.

Using Whenever Rules
Whenever rules have a number of special considerations, which this section
discusses.

Event Expressions in Whenever Rules

You cannot use an event expression in a whenever rule to respond to events
produced due to actions that use indirect referencing to affect an item or the value
of an attribute. That is, if your KB’s processing performs an action that affects an
item or an attribute’s value, and the action references that item or attribute in an
indirect manner, then updating that item’s knowledge or that attribute’s value
does not produce an event that is detectable using a whenever rule.

Referencing an item or attribute by means of the named by symbolic-expression
expression, or referencing an item that is a member of a list or array, are examples
of indirect referencing.

G2 cannot invoke a whenever rule by using scanning, forward chaining, or
backward chaining. G2 ignores the focal-objects, focal-classes, and categories
attributes of a whenever rule.

G2 does not execute a whenever rule that refers to a variable in an expression that
uses the named by or nearest to phrases.

A whenever rule that tests for an attribute receiving a value is fired when an
object is instantiated only if the referenced attribute is a variable or parameter
with an initial value. The rule is not fired if the attribute of the object being
instantiated is a simple data type with an initial value. Thus, the rule fires as a
result of activating the object and its subobjects, not as a result of the object
being instantiated.

Multiple Invocations Result in a Single Firing

Because the processing of rules must compete for priority with all of the other
tasks G2 performs, G2 does not execute the actions in the whenever rule
consequent every time the antecedent evaluates to true.

For example, a variable being monitored can change values very rapidly, and
executing the consequent actions for each change would hinder G2 from
performing other tasks in a timely manner. Instead, when a value is received, G2
determines whether there already is a task scheduled to execute the rule actions.
If there is, G2 updates the task with the new value; otherwise it creates a new task
970

Using Whenever Rules
and adds it to the queue. This process ensures that when the rule finally executes,
it has the latest value.

Reducing the Number of Invocations per Firing

The number of invocations that result in a single firing depend on factors such as
what tasks are scheduled, their priority, and how rapidly the monitored events
are occurring. Having a rule fire every time an event takes place can be a very
difficult task. However, if you would like to reduce the number of rule
invocations that result in a single firing, here are four suggestions:

• Add a wait statement after the conclude value statement.

A wait statement suspends a procedure’s execution, providing some time
during which the rule has an opportunity to fire.

• Increase the priority of the rule.

Give the rule more priority than the task that concludes a value. This will give
the rule an opportunity to execute before a new value is concluded.

• Require an acknowledgement before a new value can be concluded.

For example, add an action to the rule consequent that changes the state of
some data that can be referenced before concluding another value.

• Use procedure statements instead of a whenever rule.

Place the conclude statement and the statements that execute the response
actions in the same procedure. Because multiple procedure invocations can
exist, no values will be missed. This suggestion can also be applied to setting a
value via a remote procedure call by G2 Gateway.

Coalescing Multiple Whenever Rule Invocations

This section describes:

• Problems caused by coalescence of multiple whenever rule invocations.

• Design requirements that whenever rules can be expected to satisfy.

• Possible event sequences in a G2 application employing whenever rules.

• Using of delays, priorities, and acknowledgments to resolve problems caused
by whenever rule coalescence.

• Additional measures that may be required to ensure the reporting of every
value that a variable, parameter or attribute receives.

A whenever rule set to monitor the values received by a variable, parameter, or
object attribute exists as a single instance, rather than as multiple instances for
each time the variable, parameter, or attribute is updated. Therefore, when such a
971

rule is scheduled to fire, multiple invocations of the rule are coalesced into the
single instance, and the rule reports on the most recent value received.

Such coalescence can cause problems for developers whose applications expect to
be informed of every value that the variable, parameter, or attribute takes. This
chapter provides guidelines for solving such problems.

Whenever Rule Design Requirements

A whenever rule, when triggered by a change in a value, can be expected to report
only the most recent value, not every value that has existed.

• Most recent value

A whenever rule can trigger whenever a value changes and, via the rule
consequent, report only the most recent value. This is the guaranteed behavior
of a whenever rule. For rapidly changing information, reporting on the most
recent value conserves computational resources.

The most recent value is typically the desired information for a continuous
variable, parameter or attribute that is being monitored. There are also
situations where a finite state machine is being monitored. Although the finite
state machine may undergo several transitions before a monitoring rule
executes, the information desired can still be the most recent state
information.

• Every value

A whenever rule can also trigger whenever a value changes and report on
every value. Depending on the conditions that prevail for the execution
environment of the knowledge base, this can be difficult requirement to
satisfy.

This requirement applies to finite state machines for which the process of
arriving at a final state is as important as the final state itself.

Possible Event Sequences

Two possible conditions can prevail in a knowledge base for the sequence of
events relating the concluding of values to the execution of a rule monitoring
those values:

• One-to-One

Priorities or timing can be such that for every time a value is concluded, the
whenever rule that monitors that value executes. This situation satisfies the
every-value requirement.

• Many-to-One
972

Specifying the Scope of the Rule
Values can also be concluded many times before a monitoring rule that has
been scheduled finally executes. This situation satisfies only the most-recent-
value requirement.

Reporting Every Value

This section describes how a many-to-one situation can be modified to meet the
every-value requirement. The techniques that can be used include:

• Delay

Adding a delay after a value is concluded provides a time interval in which
the monitoring rule has an opportunity to fire.

• Priority

Increasing the priority of the monitoring rule with respect to the priority of
the action that assigns a value gives the monitoring rule an opportunity to be
executed before a new value is concluded.

• Acknowledgment

Requiring an acknowledgment before a new value can be concluded ensures
that each value is noted. This requires an architectural change to the
knowledge base.

• Procedures

A second architectural approach is to replace the conclude action and
whenever rule with a single procedure that combines the setting of a value
with the appropriate response action. Because multiple procedure invocations
can exist, no values will be missed. This also applies to setting a value via an
RPC called by G2 Gateway.

Specifying the Scope of the Rule

For each of the five kinds of rules, you can specify a different scope for the rule:

• A specific rule is a rule that applies to one item, as opposed to a set of items.

• A generic rule is a rule that applies to a set of items or values, as opposed to a
single item or value.

Depending on the scope of the rule, G2 invokes and executes one or more rules
for each item specified in the antecedent of the rule.

When creating both specific and generic rules, you typically use local names
within the text of the rule.
973

Creating Specific Rules

You can use any kind of rule to form a specific rule. Specific rules typically refer to
items by name. However, there are several expressions that indirectly or
generically specify a particular item. For more information, see Item Expressions.

For example, the following rule applies only to the tank named tank-1:

initially if the level-in-gallons of tank-1 < the empty-level-in-gallons of tank-1
then conclude that the status of tank-1 is empty and

inform the operator that "Tank-1 is empty."

Indirect Specific Rules

Using a generic reference expression, a specific rule can refer generically to a
particular item in the KB.

For example, the following rule applies only to the tank connected to the valve
named valve-1. In this case, if more than one tank is, in fact, connected to valve-1,
G2 applies this rule to none of them:

initially
if the level-in-gallons of the tank connected to valve-1

< the empty-level-in-gallons of the tank
then conclude that the status of the tank is empty and

inform the operator that "The tank [the name of the tank] is empty."

Local Names in Specific Rules

The following rule uses the local name T to refer to the tank connected to valve-1.
Using local names can make specific rules easier to read. For general information
on the use of local names, Using Local Names in Expressions.

initially
if the level-in-gallons of the tank T connected to valve-1

< the empty-level-in-gallons of T
then conclude that the status of T is empty and

inform the operator that "The tank [the name of T] is empty."

For clarity in rules, we recommend that local names consist of one to three
uppercase letters.

Creating Generic Rules

The usefulness of a rule depends on the generic nature of the truth-value
expression in its antecedent and of the actions in its consequent. You can use
generic rules to capture knowledge about significant features of the items in
your KB.

A generic rule includes at least one generic-reference-expression in its antecedent.
A generic reference expression is preceded by the reserved word for and either
974

Specifying the Scope of the Rule
the or any, which identifies a set of items or values to which the rule can pertain.
You can use any kind of rule to form a generic rule.

You can also use a generic reference expression in any action in the consequent of
a rule. When creating generic actions in the consequent of a rule, you must
precede the generic reference expression with the reserved word any.

For example, if your KB contains rules that refer to heat exchangers, you can write
a generic rule that pertains to any heat exchanger, such as:

if the inlet-temperature-fahrenheit of any heat-exchanger HE
< the max-inlet-temperature-fahrenheit of HE

then focus on HE

Compare this to this rule that pertains to a particular heat exchanger, such as:

if the inlet-temperature-fahrenheit of heat-exchanger-4
< the max-inlet-temperature-fahrenheit of heat-exchanger-4

then focus on heat-exchanger-4

Two Forms for Generic Rules

You form a generic rule in one of two ways:

• Before the identifying reserved symbol (if, when, whenever, and so on),
include a for expression that specifies a generic reference expression, as in the
following example:

for any valve
if the status of the valve is broken

then inform the operator that
"The valve [the name of the valve] is broken."

The expression any valve is a generic reference expression. You can nest
for expressions in a rule, as in the following example:

for any tank
for any valve connected to the tank

if the status of the valve is broken
then inform the operator that

"The valve [the name of the valve] is broken."

• After the identifying reserved symbol, include one or more generic reference
expressions in the antecedent of the rule, as in the following example:

if any valve is broken
then inform the operator that "[the name of the valve] is broken."

The expression any valve is a generic reference expression.
975

You can express a generic rule equivalently in either form. For example,
G2 performs the following three generic rules equivalently:

for any valve connected to any tank
if the status of the valve is broken

then inform the operator that
"The valve [the name of the valve] is broken."

for any tank
if the status of any valve connected to the tank is broken

then inform the operator that
"The valve [the name of the valve] is broken."

if the status of any valve connected to any tank is broken
then inform the operator that

"The valve [the name of the valve] is broken."

For more information, see Using Generic Reference Expressions.

Using Local Names in Generic Rules

Local names can increase the expressive power of generic rules, as well as make
the rules easier to read. In rules, we recommend that local names consist of one to
three uppercase letters. For general information about local names, see Using
Local Names in Expressions.

Use a local name to represent an item or value that is referenced more than once
in the rule, as in the following two examples:

for any heat-exchanger HE
if the inlet-temperature-fahrenheit of HE

< the max-inlet-temperature-fahrenheit of HE
then focus on HE

if the status of any valve V connected to any tank is broken
then inform the operator that "The valve [the name of V] is broken."

You can use a local name to represent an item or value in the set, as follows:

for any tank T
for any valve V connected to T

if the status of V is broken
then inform the operator that

"The valve [the name of V] connected to [the name of T] is broken."
976

Specifying the Scope of the Rule
To refer generically to the same class in different parts of a generic rule, you must
use different local names, as in the following example:

for any tank T
if the sum over each valve VI

connected at an input to T of (the flow-rate of VI)
> the sum over each valve VO connected at an output of T of
(the flow-rate of VO)

then in order
conclude that the expected-level-status of T is rising and
inform the operator that

"The level of the [the class of T] named [the name
of T] should be [the expected-status-level
of T], because the sum of rates-of-flow of all inputs to [the name
of T] is greater than the sum of rates-of-flow of all outputs from [the
name of T]."

In this case, the local name VI represents valves connected at an input of any tank,
and the local name VO represents valves connected at an output of any tank.

Generic Rules and the Class Hierarchy

When a generic reference expression in the antecedent of a generic rule specifies
any and the name of a class, G2 includes in the resulting set all items that are
instances of the specified class that meet the condition. G2 also includes in the set
all items that are instances of any subclass of that class that meet the condition.

Therefore, in a G2 application with a robust class hierarchy, you should develop
generic rules carefully. You must consider the position in the class hierarchy of
any class referenced in a generic rule. That is, for each generic rule, determine
whether the action in the consequent is appropriately generic for the level of the
class whose items the rule references.

Also, you should consider the pertinence of generic rules for each new class that
you add to your class hierarchy. That is, the consequent of each rule that refers to
items generically by class must be meaningful and appropriate for instances of
each new subclass added to your KB.

Determining the Number of Generic Rules That Are Invoked

By default, when a generic rule is invoked, G2 actually executes one copy of the
rule for each item or value in the set identified by the generic reference
expressions in the antecedent of the rule.

For example, when this rule is invoked, G2 invokes a separate copy of the rule for
each item upon its parent workspace:

if any item upon this workspace is moved
then start update-leftmost-item-position (this workspace)

As another example, when this rule is invoked, G2 determines the number of
connected pairs of objects and water pipes. For each such pair, G2 determines
977

whether the notes attribute of the object in that pair contains the text “OK”, then
invokes a separate copy of the rule for each such object.

for any object O upon this workspace
for any water-pipe connected to O

if the text of the notes of O /= "OK"
then start validate-objects (this workspace)

Scanning Generic Rules

When scanning generic rules, G2 invokes a separate copy of that rule at the
beginning of each scan interval, for each item or value in the set specified by the
generic reference expressions in the antecedent of the rule.

For example, if you set a scan interval for a rule that applies to any terminal
connected to any modem, G2 invokes that rule once every scan interval for each
connected terminal/modem pair.

Tip Because scanned generic rules can cause the invocation of very many rules per
scan interval, employ them carefully.

For more information about invoking rules by scanning, see Scanning Rules.

Using Generic Rules with Focal Objects

You can invoke rules with a focal object, as described in Focusing on Items.

For example, when G2 invokes the following generic rule with a focal object, by
executing the action focus on valve-1 anywhere in the KB, the rule applies to only
one valve, namely, the one that the focus action specifies. An example is:

for any valve V1
if V1 is broken

then inform the operator that "[V1] is broken"
and conclude that the is-maintenance-required of V1 is true

In contrast, here is a more complicated rule that refers to the valves and tanks
upon the workspace shown in the next figure:

for any tank T
for any valve V1 connected to T

if V1 is broken ...
978

Invoking Rules
If this rule is invoked with tank-2 as a focal object, G2 applies the rule to only the
connected pairs of tanks and valves of which tank-2 is a member. Given the items
on the workspace shown above, G2 applies this rule to the connected pair tank-2
and valve-2, and to the connected pair tank-2 and valve-3. For these two cases, G2
determines whether the valve in the connected pair is broken, and, if so, executes
the consequent of the rule.

Getting Focal Classes for Rules

G2 provides system procedures for getting the focal classes to which a generic
rule applies and for getting the rules to which a variable would backward chain.

For details, see Rule Operations in the G2 System Procedures Reference Manual.

Invoking Rules
By default, each rule in your KB is idle. To invoke a rule means to begin evaluating
the antecedent of the rule. G2 can invoke a rule when:

• Data referenced in the antecedent of an if rule changes via forward chaining.

• The KB requires a value for a variable that is concluded in the consequent of
any rule via backward chaining.

• The parent KB workspace of an initially rule is activated.

• G2 detects an event that is tested in the antecedent of a whenever rule.

• A time interval passes for a rule that specifies scanning.

• The KB executes a focus or invoke action that names an object, object class, or
rule category associated with the rule.

If G2 is paused, and you interactively make a change that would invoke a rule if
G2 were running, the rule is invoked when G2 resumes execution.
979

Based on the kinds of reasoning that you desire, you should develop rules that
use the appropriate mechanisms for rule invocation.

Forward Chaining

G2 uses forward chaining to invoke if rules when the value referenced in the
antecedent of the rule changes.

Forward chaining is a form of deductive reasoning. Your KB can use rules
invoked using forward chaining to draw conclusions from other rules. Similarly,
your KB can use forward chaining to initiate actions from conclusions drawn in
other rules.

When forward chaining takes place, G2 identifies all rules whose antecedents
refer to the changed value. If a rule concludes the new value, the rule must be able
to cause forward chaining. The rules that refer to the value in their antecedents
must be invocable via forward chaining. G2 invokes these rules in parallel, and
schedules each for execution at its declared priority.

The following figure illustrates forward chaining by using an abstract example:

G2 invokes rules by using forward chaining when the value referenced in the
antecedent changes for any reason, not just by concluding a value in another rule.
Also, the value referenced in the antecedent can be an attribute, a variable, or a
parameter.

By default, G2 only forward chains to rules when a variable or parameter
referenced in the rule receives a new value that is different from its previous
value; whereas, G2 forward chains to rules whenever an attribute referenced in
the rule receives a new value, regardless of whether the value has changed. You
can also configure variables and parameters to cause forward chaining even when
the value does not change. For details, see Forward Chaining on Unchanged
Variables and Parameters.

To illustrate, suppose the following rule is invoked by scanning:

if valve-is-broken of valve-1
then conclude that the temperature-is-too-hot of tank-1 is true

If this rule is declared to participate in forward chaining, when G2 concludes a
value for the temperature-is-too-hot of tank-1, G2 forward chains to any rule that

if truth-value-expression
then conclude that variable is true

G2 invokes this rule by some mechanism such as
scanning. When the truth-value-expression

evaluates to true, G2 concludes true for the
value of the variable.

if variable is true then action

G2 forward chains to rules that refer
to the variable in their antecedents.
When a rule antecedent evaluates to

true, G2 invokes the action in the
rule consequent.
980

Invoking Rules
1) refers to the temperature-is-too-hot of tank-1 in its antecedent, and 2) can be
invoked using forward chaining. For example, G2 could forward chain to
this rule:

if temperature-is-too-hot of tank-1
then invoke safety rules

The antecedent of this rule refers to the temperature-is-too-hot of tank-1, which is
given by a logical variable that is declared to use forward chaining.

Note To create a rule that is invoked when the value of a history expression changes,
use a whenever rule. For efficiency reasons, G2 does not invoke an if rule that is
configured to forward chain when the rule antecedent refers to a history
expression.

To use forward chaining in rules:

1 In the rule that concludes a value in its consequent, specify the following
phrase in the options attribute:

may cause forward chaining

2 In the rule that refers to the value in its antecedent, specify the following
phrase in the options attribute:

invocable via forward chaining

3 If the value that is concluded is a variable or parameter, include this phrase in
the options attribute for the variable or parameter, whose value is obtained via
forward chaining:

do forward chain

By default, symbolic and logical variables and parameters have the setting
do forward chain in their options attributes. Text and quantitative variables and
parameters have the default setting do not forward chain in their options
attributes. You can edit these settings so that any variable or parameter in your
KB can support or not support forward chaining.
981

This figure illustrates how concluding a new value for an item in one rule causes
forward chaining to other rules whose antecedents refer to that item. In this
example, level-status is an attribute whose value is given by a symbolic variable.

In general, forward chaining only works with if rules. Although G2 never allows
forward chaining to a whenever rule, you can potentially forward chain from a
whenever rule. In this case, forward chaining can occur when a whenever rule
concludes a value for a variable that is declared to participate in forward
chaining. All other rules can be set to be invocable or not invocable by
forward chaining.

Ordering of Rules Invoked by Forward Chaining

When two or more rules are invocable due to forward chaining based on a change
to the same attribute or current value of the same item, G2 does not specify the
order in which those rules are invoked.

To specify such ordering, you can set the rule-priority attributes of the rules
differently. When this has been done, G2 schedules the rules for invocation
according to their priority.

Implementing Loops Using Forward Chaining

A rule can potentially forward chain to itself. For example, given that the value of
X is greater than zero, the first time the following rule is invoked it forward chains
to itself many times within a second, until X equals 20:

if (x > 0 and x <= 19)
then conclude that x = x + 1

 Forward Chaining

Assigning this symbolic variable... Specific rule

Generic rule

... causes G2 to forward
chain to these rules, but...

...G2 cannot forward
chain to a when rule.

Xmay cause forward chaining
invocable via forward chaining

invocable via forward chaining
982

Invoking Rules
Such rules can implement a processing loop, but such loops must have some way
of ending. For example, the rule above forward chains to itself only until X
equals 20.

In contrast, the next rule can forward chain to itself repeatedly without stopping,
thereby heavily loading G2’s ability to run all the current activities:

if x > 0
then conclude that x = x + 1

Notice that this behavior cannot occur when this rule is no longer declared to
allow forward chaining. Take care not to construct rules that forward chain to
themselves without an appropriate termination condition.

Backward Chaining

Backward chaining takes place when an item in the KB references a variable that
does not have a current value. G2 can invoke via backward chaining one or more
rules whose consequent provides a value for the variable.

The following figure illustrates backward chaining by using an abstract example:

To illustrate with a simple example, suppose the following rule is invoked
by scanning:

if valve-is-broken of valve-1
then focus on repair rules for valve-1

If this rule is declared to participate in data seeking, when G2 evaluates the
antecedent of the rule and valve-is-broken has no current value, then G2
backward chains to any rule that 1) concludes a value for the valve-is-broken
attribute of valve-1, and 2) can be invoked using backward chaining. For example,
G2 could backward chain to this rule:

for any valve V
if valve-is-closed of V and tank-is-overflowing of the tank connected to V

then conclude that valve-is-broken of V

The consequent of this rule refers to the valve-is-broken of valve-1, which is given
by a logical variable that is declared to use backward chaining.

if variable is true then action

G2 invokes this rule by some
mechanism such as scanning. If the
variable has no current value, G2
backward chains to rules that refer to
the variable in their consequents.

if truth-value-expression then
conclude that variable is true
G2 backward chains to this rule. If the truth-

value-expression evaluates to true, G2

concludes true for the value of the variable and
executes the action in the rule at left.
983

To evaluate the antecedent of this rule, G2 might be required to backward chain
to other rules that provide values for valve-is-closed and tank-is-overflowing,
which are also variables. G2 continues to backward chain to other rules until it
can fully evaluate the antecedents of each invoked rule.

To use backward chaining in rules:

1 In the rule that refers to the variable in its antecedent, specify the following
phrase in the options attribute:

may cause data seeking

Backward chaining is one form of data seeking using variables. For
information on other forms of data seeking, see Obtaining Values for
Variables.

2 In the rule that supplies a value for the variable in its consequent, specify the
following phrase in the options attribute:

invocable via backward chaining

You can define subclasses of variables whose value is computed by a formula
specified in the formula attribute of the variable. Such a variable cannot be used in
the consequent of a rule, but can be used in the antecedent. For further
information, see Variables, Parameters, and Rules and Obtaining Values for
Variables.
984

Invoking Rules
The following figure shows another example of backward chaining. Note that a
rule cannot backward chain to a when rule, because when rules do not support
backward chaining.

Using Breadth-First Backward Chaining

If you have a set of rules that provide a new current value for a variable, you can
organize the set of rules to be invocable by using breadth-first
backward chaining.

When G2 invokes a rule whose antecedent requires a value for a variable that
specifies breadth-first backward chaining, G2 invokes in parallel every rule that
provides a value for that variable in its consequent. G2 schedules each rule for
execution at its declared priority. As soon as any rule in that set provides a value
for the variable, G2 cancels execution of the other rules.

To use breadth-first backward chaining:

1 Include this phrase in the options attribute for the variable whose value is
obtained via backward chaining:

breadth first backward chain

2 Specify backward chaining in the rules by following the steps under
Backward Chaining.

This is the default setting for all subclasses of the system-defined variable class.

 Backward Chaining

Specific rule

X

... G2 backward chains

...G2 does not backward
chain to a when rule.

to these rules, but...

When this rule is invoked, G2 checks to

Generic rule

see if the variable in the antecedent has a
a current value. If not ...

may cause backward chaininginvocable via backward chaining

invocable via backward chaining
985

In the following figure, in the rule on the right, suppose the direction of robot-arm-
1 is given by a variable. If the variable declares breadth-first backward chaining,
G2 invokes each rule that can provide a value for that variable.

Note When G2 invokes rules that can conclude a value for a variable that declares
breadth-first backward chaining, G2 does not cancel the invocation of the same
rules invoked due to some other rule, procedure, or function.

Using Depth-First Backward Chaining

Often, rules provide different techniques for determining the value of a single
variable. These techniques are called heuristics. When more than one rule
provides a value for a variable via backward chaining, you might want to specify
the order in which G2 executes each rule by specifying a precedence. This is
called depth-first backward chaining.

When G2 concludes a value for a variable that declares depth-first backward
chaining, G2 identifies the rules that can conclude a value for the variable, then
invokes those rules in sequence until one concludes the required value.
G2 invokes these rules in an order based on the precedence set in each rule.

 Breadth-First Backward Chaining

If this variable declares breadth-first
backward chaining, and if it has no

... G2 backward chains to all these
rules, which conclude a value for
the variable, and are declared to be
invocable via backward chaining.

current value, when the rule is
invoked ...
986

Invoking Rules
To use depth-first backward chaining:

1 Include this phrase in the options attribute for the variable whose value is
obtained via backward chaining:

depth first backward chain

2 Specify a value for the depth-first-backward-chaining-precedence attribute in
each rule that concludes a value for the variable in its consequent.

G2 invokes rules with the higher precedence (lowest number) first.

3 Specify backward chaining in the rules by following the steps under
Backward Chaining.

For example, suppose a valve has a level, which is a measure of its flow. You
might want to determine the status of its flow, that is, whether the flow is ok, high,
or overflowing. You might use distinct rules, each implementing a different
heuristic, to set the level-status attribute of the valve.

This figure shows three rules that implement heuristics for determining the level-
status of a valve. The precedence order is shown in the figure and indicates the
likelihood of finding a result.

G2 invokes a rule with the next lower precedence only if rules with higher
precedence have completed without concluding a new value for the variable.

 Depth-First Backward Chaining

Most

Less

Least

(1)

(2)

(3)

... G2 backward chains
to these rules, in order of
the precedence set in their
depth-first-backward-
chaining-precedence
attributes, until one
produces a value.

If this variable declares
depth-first backward chaining,
and if it has no current value,
when the rule is invoked ...

likely

likely

likely
987

G2 waits for a rule to complete before invoking the rule with the next lower
precedence, even if that rule must backward chain to other rules. After each rule
is invoked, G2 schedules it for execution at its declared priority.

Note The precedence for a rule for depth-first backward chaining differs from its
priority. Precedences determine the order in which G2 invokes a set of rules that
provide a new value for the same variable. Priorities determine which tasks can
wait if G2 is fully loaded with activities to perform in a particular G2 clock tick.

Activating the Parent Workspace of a Rule

G2 invokes an initially rule each time the parent KB workspace of a rule is
activated. For a description of initially rules, see Initially Rules.

When G2 starts the current KB, G2 activates all enabled top-level workspaces.
Next, G2 activates in turn all enabled KB workspaces that are in the workspace
hierarchy below the activated top-level workspaces. However, when G2 starts the
current KB, G2 does not automatically activate subworkspaces that are
configured as activatable subworkspaces.

For more information about how G2 activates workspaces, see Activating and
Deactivating Workspaces.

Detecting Events

G2 can invoke certain rules after detecting an event. This mechanism is called
event detection.

G2 invokes whenever rules after detecting the event specified in the antecedent of
a rule. For example:

whenever the temperature of tank-1 receives a value
then start update-maximum-temperature (tank-1)

G2 can invoke a whenever rule in response to these events:

• A variable, parameter, or attribute receives a value.

• A variable fails to receive a value.

• A variable loses its value.

• An item is created.

• An item is moved on a workspace.

• An item is resized by user on a workspace.

• An item is enabled or disabled.

• An item is activated or deactivated.
988

Invoking Rules
• Two items become or cease to be related by a specific relation.

• Two items become or cease to be related by any relation.

• Two items become or cease to be connected.

For the syntax used for each of these events, see Whenever Rules.

Scanning Rules

For rules that contain a value in the scan-interval attribute, G2 invokes rules once
per the specified time interval. This mechanism is called scanning, because G2
invokes rules due to the passage of time, as opposed to based on the state of
knowledge in your KB.

To invoke a rule by scanning:

 Specify a time interval in the scan-interval attribute of the rule.

For example, if you want G2 to check the temperature of tank-4 every five
minutes, you can assign a scan-interval of 5 minutes for the following rule:

if the temperature of tank-4 > 40 F
then inform the operator that "Tank-4 is overheating."

G2 invokes this rule every five minutes; thus, every five minutes, G2 finds the
current temperature of the tank, compares it to 40 F, and tells the operator if the
tank is overheating. In this case, F (representing degrees fahrenheit) has been
defined as a unit of measure.

Note You cannot set the scan-interval attribute for an initially or whenever rule.

Determining the Scan Interval to Use

The time interval at which G2 starts performing a new set of scheduled tasks is
determined by the value of the minimum-scheduling-interval attribute of the
Timing Parameters system table. G2 cannot perform rule scanning more often
than the minimum scheduling interval, when this value is a number.

This means that you must determine which time interval is most significant for
your KB processing: the minimum-scheduling-interval attribute, which affects all
activities that G2 performs for your KB, or the scan-interval attribute of a scanned
rule. If some scanned rule must be invoked more often than the minimum
scheduling interval, you must either decrease the setting of the minimum-
scheduling-interval attribute or increase the scan-interval setting for the most
frequently scanned rule or rules.

To determine the rate at which G2 must service scanned rules, you should first
identify those rules. Next, determine which of those rules has the shortest time
interval (that is, the smallest value) in its scan-interval attribute. This value
989

represents the slowest rate that the G2 scheduler can schedule its activities and
still invoke scanned rules.

Note You should not attempt to set the value of the scan-interval attribute of a rule to a
time interval shorter than (smaller than) the time interval found in the minimum-
scheduling-interval attribute of the Timing Parameters system table.

Scanning Versus Event Detection

Scanning is a less efficient way of invoking rules than event detection. Invoking
rules by scanning causes G2 to perform activity that might not have any
relationship to the condition expressed in each scanned rule.

If G2 scans many rules, in some circumstances, the performance of the KB might
be constrained. An important goal of analyzing your application is to identify the
items whose knowledge directly depends upon the passage of a fixed time
interval. Only those items should be manipulated due to invoking scanned rules.

Your application will be easier to understand and maintain, and will perform
with less overhead, if you define the majority of the items in your application so
that they respond to events other than the passage of a fixed time interval. For
more information, see Detecting Events.

Scanning Generic Rules

Avoid coding generic rules that are invoked via scanning. For each generic rule
that is scanned, at the beginning of that rule’s scan interval, G2 invokes one copy
of that rule for each item or value in the set identified in the generic reference
expressions in the antecedent. For more information, see Determining the
Number of Generic Rules That Are Invoked.

Focusing on Rules and Invoking Rules by Category

If the majority of your rules are generic, you can invoke these rules so that they
apply only to a particular item or set of items. This is called focusing. G2 supports
two mechanisms for invoking rules by focusing:

• Focusing on rules associated with particular items or classes of items

• Focusing on rules defined to be within a particular category

Focusing on Items

The focus action names as its argument a focal item or focal class of items.
Executing the focus action causes G2 to invoke all rules that are associated with
that focal item or focal class.
990

Invoking Rules
To associate a rule with a focal item:

 Specify one or more items in the focal-objects attribute of the rule.

Specifying a focal object might be appropriate for a specific rule that refers only to
particular items. However, you can also associate a generic rule with a focal
object.

To associate a rule with a focal class:

 Specify one or more item classes in the focal-classes attribute of the rule.

Specifying a focal class might be appropriate for a generic rule that refers to a set
of items or values.

When G2 invokes a generic rule due to focusing, G2 applies the rule to each item
that is an argument of the focus action.

For example, suppose you have this generic rule:

if the status of any tank T is ready
then change the background-region of T to the ready-color of T

Suppose water-tank-1 is specified as the focal-objects attribute of the rule. When
G2 executes this action, G2 invokes the rule for the instance named water-tank-1:

focus on water-tank-1

Now suppose tank is specified as the focal-classes attribute of the rule. If water-
tank is a subclass of tank, then when G2 executes this action, G2 invokes the rule
for all instances of the water-tank class:

focus on water-tank

The focus action can also act upon a set of items. For example, when G2 executes
the following action, G2 invokes the rule for every water tank upon the parent
workspace of the item that specifies this focus action:

focus on every water-tank upon this workspace

Invoking Rules by Category

The invoke action takes as its argument one or more rule categories. This action
causes G2 to invoke all rules that are associated with the named category.

To associate a rule with a rule category:

 Specify one or more symbols in the categories attribute of the rule.

Note A rule category exists only when it is named in the categories attribute of any
enabled rule.
991

For example, suppose you have the following rule and have specified safety and
quality in its categories attribute:

if any tank T is overheated
then inform the operator that

"The tank [the name of T] is hot."

By associating this rule with the safety rule category, you capture the knowledge
that an overheated tank is unsafe. By associating this rule with the quality rule
category, you capture the knowledge that an overheated tank reduces the quality
of the product that passes through that tank.

Executing the following action causes G2 to invoke all rules that specify safety in
their categories attribute, and that specify tank-1 in their focal-objects attribute or
tank-1 or any superior class of tank-1 in their focal-classes attribute.

invoke safety rules for tank-1

If G2 executes an invoke action whose argument is a set of items, G2 invokes one
copy of the rule for each named rule category and for each item in the set.

For example, executing the following action causes G2 to invoke one copy of each
rule associated with the safety and quality rule categories for each item upon the
parent KB workspace of the item that contains the action:

invoke safety and quality rules for any item upon this workspace

If executing an invoke action causes G2 to invoke a generic rule, G2 invokes one
copy of that rule for each item in the set of items named as the argument to the
invoke action.

Waiting for Rules to Complete When Invoked from a Procedure

G2 provides the ability to invoke a category of rules, or to focus on a class or
object from a procedure and have the procedure wait until the invocation
completes before continuing. If the left-hand side of the rule matches the given
category as specified by the invoke action or the given focal class or object as
triggered by the focus action, the procedure waits until the right-hand side of the
rule completes before continuing execution. The right-hand side of the rule might
include actions that occur immediately, such as conclude, or they might include
scheduled actions, such as start. Note that any scheduled side-effect of the right-
hand-side of the rule might or might not occur before the invoking procedure
wakes up, which is based on the relative priorities of the various tasks. Side-
effects include the start action or any additional forward-chaining caused by a
conclude action.

To cause the procedure to wait until the rule completes, use the , awaiting
completion after the invoke action.

For example:

invoke safety rules, awaiting completion
992

Debugging Rules
You can also use this new grammar with the focus action, for example:

focus on tank, awaiting completion

Note that if the rule never completes, the invoking procedure never wakes up. To
cause the procedure to wake up if the rule never completes, add a do in parallel
statement, as follows:

do in parallel until one completes
invoke safety rules, awaiting completion;
wait for 10 seconds;

end

Debugging Rules
You can use G2’s system-defined facility for debugging and tracing rules. In
addition, you can highlight invoked rules, which is helpful for debugging.

Debugging and Tracing Rules

G2 provides a facility for producing messages that indicate when the invocation
and execution of a rule begins and ends. This facility is described in Debugging
and Tracing.

To specify debugging and tracing for rules:

1 Specify a custom settings in the tracing-and-breakpoints attribute of the rule.

2 Set the attribute tracing-and-breakpoints-enabled? to yes in the Debugging
Parameters system table.

This setting overrides the global settings for tracing and warning messages and
for breakpoints found in the Debugging Parameters system table, as described in
Debugging Parameters.

Highlighting Rules

You can direct G2 to highlight each rule that it invokes. Highlighting a rule means
to change momentarily the appearance of its text box representation, so that its
text appears in white on a dark background.

To enable rule highlighting:

 Select Main Menu > Run Options > Highlight Invoked Rules.

To disable rule highlighting:

 Select Main Menu > Run Options > Do Not Highlight Invoked Rules.

You enable and disable highlighting for all rules in the current KB.
993

If rule highlighting has been enabled, for each rule that G2 highlights, G2 pauses
for three-tenths of a second, to allow you to identify that rule. Thus, G2 runs the
current KB at a slightly slower speed when rule highlighted is enabled.

If invoking a rule causes backward chaining to other rules, G2 leaves that rule
highlighted until its antecedent is fully evaluated (or until that rule times out),
then highlights in turn each rule to which it chains. G2 restores the appearance of
the chained to rules in the reverse order in which they were invoked.

Note Highlighting is not intended to portray all invocations of the current KB’s rules.
Due to G2’s optimizations for evaluating the antecedents of rules, G2 does not
always highlight each rule whose antecedent is, in fact, checked but not fully
evaluated. Simple condition expressions, such as the status of my-variable is ok,
allow G2 to optimize its own behavior and not evaluate the entire antecedent.

Understanding Rule Invocation and Execution
To invoke a rule means to begin evaluating its antecedent. G2 can invoke a rule by
using the mechanisms described in Invoking Rules.

When G2 invokes a rule, G2 creates a task called a rule invocation. Each rule
invocation is a copy of the information in the invoked rule.

By default, G2 creates one rule invocation for each item or value in the set that the
antecedent of the rule identifies. Thus, for a specific rule, G2 creates one rule
invocation; for a generic rule, G2 creates one rule invocation for each item or
value in the set identified in the generic reference expressions of the antecedent.

To execute a rule means to begin performing the actions in the consequent of a
rule. G2 executes a rule if the antecedent of the rule produces a value of true. If
you are using fuzzy truth values, the value of true must be greater than or equal
to the truth-threshold attribute of the Inference Engine Parameters system table.

Prioritizing Rules

Every rule has a priority that determines how G2 schedules rule invocations for
that rule. By default, the scheduler executes rules at a priority of 6.

To override the default priority for executing a rule:

 Specify a value for the rule-priority attribute of the rule.

This attribute accepts a value from one (1) to ten (10), with one indicating the
highest priority.

Scheduling tasks by priority becomes important in the unusual case when G2 is
working at maximum capacity. G2 can postpone the execution of the lowest
994

Understanding Rule Invocation and Execution
priority tasks until the next G2 clock tick. Therefore, you should use priorities to
identify what tasks can safely be postponed if necessary.

Each time G2 completes a task, G2 starts executing the next highest task in the
task list for the current G2 clock tick. If a task with priority 1 comes in while G2 is
performing a priority 2 task, then after the priority 2 task completes, G2 starts
executing the priority 1 task.

Rules and Scheduler Tasks

An internal component of G2, called the scheduler, is responsible for managing
which activities G2 actually performs starting at each tick of the G2 clock.

At each G2 clock tick, G2 begins performing the tasks that the scheduler has
associated with that clock tick. For a given clock tick, G2 begins performing tasks
with a higher priority before those with a lower priority. However, G2 must
suspend some tasks, or put them into a waiting state, before they can complete.
This means that a task with a high priority that has already begun, and that must
be suspended for some reason, might not complete before another task with a
lower priority begins and completes.

One example of this is the activity of evaluating the antecedent of a rule that can
backward chain to other rules. Evaluating the antecedent of a rule might require
invoking another rule that concludes a value for a variable or that causes
data seeking.

Rule Priorities and Rule Completion

The priorities of rules do not affect the order in which G2 completes particular rule
invocations. That is, after G2 invokes a rule with a high priority, G2 might require
its rule invocation to wait for a value as G2 evaluates the antecedent of the rule.
While this rule invocation waits, another rule invocation with lower priority (that
is, one that is not required to wait for the values that it uses) can begin to execute
and can complete.

Propagation of Rule Priorities

When backward chaining takes place, the priority of rules propagates from the
invoking rule to the invoked rule. This means that if two rules with different
priorities backward chain to the same rule, G2 invokes a rule invocation for the
third rule at the higher of the two invoking rules’ priorities.

For example, if rule R1 is declared to have a rule-priority of 3, and rule R2 is
declared to have a rule-priority of 5, and both rule R1 and R2 backward chain to
rule R3 that declares a rule-priority of 8, then G2 creates and invokes a rule
invocation for rule R3 that has the priority 3.

If G2 cancels the rule invocation for rule R1 for any reason, G2 does not
reschedule rule R3 with a rule-priority of 5; rule R3 retains its rule-priority setting
of 3.
995

Note The priorities of rules do not propagate when forward chaining takes place or
when a rule is invoked due to a focus or invoke action.

Setting the Timeout Interval for a Rule

You can specify a timeout interval for a rule to specify how long G2 allows the
rule invocation to execute after it is invoked. If a rule did not specify a timeout
interval, then after being suspended, it could reawaken long after the conditions
that caused G2 to invoke it have passed from the KB’s knowledge.

To set the timeout interval for a rule:

 Specify a time interval for the timeout-for-rule-completion attribute of the rule.

The value of this attribute in the rule overrides the value of the timeout-for-
inference-completion attribute in the Inference Engine Parameters system table.
G2 uses the latter attribute as the timeout interval for rules whose timeout-for-rule-
completion attribute contains the value use default.

Depending on the nature of the values that your rules and procedures
manipulate, setting long time intervals for the completion of your rules can lead
to inconsistencies in your KB’s knowledge.

For instance, if the values of variables are periodically unavailable to your rules,
you should create whenever rules that respond to the event expression does not
receive a value. A variable does not receive a value when its validity interval has
expired, as declared in its validity-interval attribute.

Creating and Managing Rule Invocations

G2 begins performing a rule invocation when that task reaches the top of the task
queue for that rule’s declared (or propagated) priority. Note that one rule’s
priority can propagate to other rules, as described in Prioritizing Rules.

G2 executes each rule invocation in several stages, as follows:

1 G2 evaluates the truth-value expression (whether it is explicit or implied) in
the antecedent of the rule.

2 If the evaluation of the antecedent cannot be completed within the timeout-for-
rule-completion attribute of the rule, G2 performs the appropriate time-out
processing. See Evaluating the Antecedent.

3 If the antecedent evaluates to a valid truth-value, the evaluation does not time
out, and the consequent of the rule specifies the in order phrase, then G2
performs the actions in the consequent sequentially.
996

Understanding Rule Invocation and Execution
4 If the antecedent evaluates to a valid truth-value, the evaluation does not time
out, and the consequent of the rule does not specify the in order phrase, then
G2 executes the actions in the consequent in parallel.

5 If any action in the consequent cannot be completed within the declared
timeout-for-rule-completion time interval, G2 performs the appropriate time-
out processing.

6 If the antecedent evaluates to false, G2 does not perform the actions in the
consequent, and the rule invocation completes.

The rest of this section describes how G2 performs each portion of a
rule invocation.

Evaluating the Antecedent

G2 begins performing a rule invocation task by attempting to evaluate the
antecedent of the rule. When the rule has a compound antecedent, G2 will first
look for any variable that has an immediate value, regardless of where it is in the
expression; then if any other variables require data-seeking, these will be
evaluated in left-to-right order. Evaluating the antecedent brings about one of
three results:

• The antecedent evaluates to true, so G2 begins executing the actions in
the consequent.

• The antecedent evaluates to false, and the rule invocation task completes
without executing any action in the consequent.

• One or more variables in the antecedent do not have a current value.
G2 suspends this rule invocation and sets a wake-up flag on each variable that
needs a new current value. If any of the variables receives a value, G2 wakes
up the rule invocation and tries again to evaluate the entire antecedent.

In the unusual case where the time required to evaluate the antecedent exceeds
the timeout-for-rule-completion attribute setting, G2 performs time-out processing.
This means G2 makes one final attempt to evaluate the complete antecedent:

• If this final attempt succeeds, G2 continues performing this rule invocation by
executing the actions in the consequent of the rule, as described in the next
two sections.

• If this final attempt fails, G2 cancels the entire rule invocation without
executing the consequent. Note that G2 does not consider this cancellation to
be an error condition; G2 does not signal an error.

Executing Actions in the Consequent in Parallel

When G2 begins executing the consequent of a rule, it first determines whether
the phrase in order is present. If the phrase is not present, G2 first attempts to
997

evaluate all the expressions in all the actions in the consequent. After G2
successfully evaluates all expressions in the consequent, G2 schedules all actions
to be performed in parallel, in other words, within the same transaction scope. For
information about the scope of a transaction, see Understanding Transactions and
Transaction Scopes.

Evaluating all the expressions in the consequent might require G2 to suspend this
rule invocation, so that G2 can perform data seeking to obtain values.

Time-Out Processing

If G2 cannot evaluate all the expressions in the consequent within the declared
timeout-for-rule-completion time interval, G2 performs time-out processing. This
means that G2 makes a final attempt to evaluate all the expressions in the
consequent as follows:

• If this final attempt succeeds, G2 performs the actions in the consequent as
described in the next section.

• If this final attempt fails, G2 cancels this rule invocation without completing
its execution of the consequent. Note that G2 does not consider this
cancellation to be an error condition; G2 does not signal an error.

Single Transaction Scope for All Consequent Actions

When G2 executes the actions in the consequent in parallel, all actions execute in
the same transaction scope.

This means that each action begins executing with the same context of
information. For example, if the expressions in any two consequent actions refer
to the same item or value, G2 evaluates those expressions by starting with the
same set of items or values.

Example 1: The following rule includes two actions that increment the variable X:

unconditionally
conclude that X = X + 1 and conclude that X = X + 1

In this case, after this rule completes successfully, the value of X will be
incremented only by 1. G2 executes the actions in the consequent in parallel and
evaluates all expressions in the consequent by using values in effect at the time
the rule was invoked.

Example 2: The two actions in the next rule increment the variable X by
differing amounts:

unconditionally
conclude that X = X + 1 and conclude that X = X + 3

However, even though the two conclude actions start with the same source value
for X, when the rule completes successfully, the value of X will be incremented by
3. this is because, among actions that execute in parallel and that update the same
998

Understanding Rule Invocation and Execution
value, the action specified last in the rule determines the new value after the rule
completes.

Example 3: The consequent actions in this rule refer to the variable that gives the
value of the minimum-temperature of tank-1:

if the temperature-measured of tank-1
then conclude that

the minimum-temperature of tank-1 = min (the temperature of tank-1,
the minimum-temperature of tank-1)
and conclude that the global-minimum-temperature of tank-monitor
= min (the minimum-temperature of tank-1, the minimum-temperature of
tank-monitor)

Because G2 executes the actions in this consequent in parallel, G2 supplies the
same value for the minimum-temperature of tank-1 for each conclude action.

If the purpose of the global-minimum-temperature of tank-monitor is to store the
minimum temperature ever recorded for any tank monitor in the KB, then this
rule concludes the value of the global-minimum-temperature of tank-monitor
incorrectly. This is because the second conclude action uses a value for the
minimum-temperature of tank-1 that does not include the calculation performed in
the first conclude action. Therefore, this rule should be rewritten by using
sequential execution (described below).

Also, because G2 executes consequent actions within one transaction scope, after
the actions start executing, G2 allows no other KB processing to take place until
all the consequent actions finish executing.

Executing Actions in the Consequent Sequentially

When G2 begins executing the consequent of a rule invocation, it first determines
whether the phrase in order is present. If it is present, G2 prepares to perform the
actions in the consequent in sequence. G2 evaluates the expression in the first
action in the consequent, then executes the action, and so on for every action in
the consequent.

When performing the actions in the consequent of a rule sequentially, G2 executes
each action within its own transaction scope, as described in One Transaction
Scope per Consequent Action.

If executing any consequent action depends upon obtaining a new current value
for any variable, G2 suspends this rule invocation and sets a wake-up flag on each
variable without a current value that is referenced in that action.

When any variable with a wake-up flag receives a new current value, G2 wakes
up the rule invocation and reevaluates the expressions in the action whose
execution was suspended. In this case, G2 does not reevaluate the antecedent of
the rule, and it does not reevaluate the same consequent actions that have already
been performed.
999

Time-Out Processing

If G2 cannot perform all consequent actions in sequence within the declared
timeout-for-rule-completion time interval, G2 performs time-out processing. For
instance, if a rule invocation is suspended because an action contains an
expression that refers to a variable, and the action has been waiting for a new
current value for that variable, G2 wakes up the rule and performs time-out
processing, as follows:

• G2 attempts to execute any inform actions without having the values of all
variables; G2 displays expired current values for variables with asterisks.

• After discarding any consequent actions that have not yet been performed,
G2 completes the rule.

One Transaction Scope per Consequent Action

When performing the consequent actions of a rule sequentially, G2 executes each
action within its own transaction scope. This means that before executing each
consequent action, G2 evaluates the expressions within the actions by using
values that reflect the execution of any previous consequent action in this rule.

For example, G2 performs these consequent actions sequentially:

for any demonstration-window DW
if the subworkspace of DW exists

then in order
change the arrow-region icon-color of DW to yellow and
start populate-demonstration-frame (the initial-item-count

of DW)

This rule helps prepare the subworkspace of an item to display a dynamically
generated set of items. In this case, the initial-item-count attribute of a
demonstration window is given by an integer variable.

Because each consequent action in this rule takes place within its own transaction
scope, this rule cannot prevent other KB processing from taking place between
the completion of the change action and the completion of the start action.

In this case, if the variable that gives the value of the initial-item-count of the
demonstration window requires a new current value, G2 might be required to
suspend this rule invocation while backward chaining or other data seeking
takes place.

This means that G2 cannot prevent other KB processing from changing the color
of the demonstration-window’s arrow-region to a color other than yellow while
the start action is suspended. Depending on the activity that the populate-
demonstration-window procedure performs, this possibility might leave some of
the current KB’s knowledge in an inconsistent state.
1000

The Rule Class
The Rule Class

Rules have the following class-specific attributes:

Attribute Description

options Declares whether the rule can be invoked using chaining,
and also declares whether the rule can invoke other rules
by using chaining.

For any rule except a when or whenever rule, edit this
attribute to declare participation in chaining to or from
this rule.

Allowable values: invocable via forward chaining
not invocable via forward chaining

invocable via backward chaining
not invocable via backward chaining

may cause data seeking
may not cause data seeking

may cause forward chaining
may not cause forward chaining

Default value: if rules, initially rules, and unconditionally rules:

invocable via forward chaining

invocable via backward chaining

may cause data seeking

may cause forward chaining

when rules and whenever rules:

not invocable via forward chaining

not invocable via backward chaining

may cause data seeking

may cause forward chaining

Notes: See Backward Chaining and Forward Chaining.

By setting this attribute to not invocable via forward
chaining and not invocable via backward chaining, you can
make an if rule behave like a when rule.
1001

tracing-and-
breakpoints

Declares the message levels for warning messages and
tracing messages, and declares the breakpoint level. These
settings pertain only to this rule. Use warning messages,
tracing messages, and breakpoints when debugging
your KB.

Allowable values: default
or,
optionally, one of the following warning message levels:

warning message level 0 (no warning messages)
warning message level 1 (KB errors only)
warning message level 2 (KB errors and deficiencies)
warning message level 3 (KB errors, deficiencies,

and other conditions)

and, optionally, one of the following tracing
message levels:

tracing message level 0 (no trace messages)
tracing message level 1 (trace messages on entry

and exit)
tracing message level 2 (trace messages at

major steps)
tracing message level 3 (trace messages at every step)

and, optionally, one of the following breakpoint levels:

breakpoint level 0 (no breakpoints)
breakpoint level 1 (breakpoints on entry and exit)
breakpoint level 2 (breakpoints at major steps)
breakpoint level 3 (breakpoints at every step)

Default value: default

Notes: See Debugging and Tracing.

A value of default in this attribute directs G2 to use the
settings in the warning-message-level attribute, tracing-
message-level attribute, and breakpoint-level attribute of
the Debugging Parameters system table.

The tracing-and-breakpoints-enabled? attribute of the
Debugging Parameters system table must have the value
yes for G2 to produce tracing messages and to recognize
breakpoints.

Attribute Description
1002

The Rule Class
scan-interval Specifies how often G2 should invoke this rule. G2 ignores
this attribute for initially rules and whenever rules.

Allowable values: none
Any time interval

Default value: none

Notes: See Scanning Rules.

If a generic rule has a scan interval, G2 invokes each
generic rule invocation at the beginning of each scan
interval.

focal-classes Associates the rule with one or more classes of items.
By executing a focus action that names a class of items,
your KB can invoke all rules whose focal-classes attribute
names that class.

Allowable values: none
item
Name of any subclass of item class

Default value: none

Notes: See Focusing on Rules and Invoking Rules by Category.

focal-objects Associates the rule with one or more named items. By
executing a focus action that names an item, your KB can
invoke all rules whose focal-objects attribute names that
item.

Allowable values: none
Name of any item

Default value: none

Notes: See Focusing on Rules and Invoking Rules by Category.

Attribute Description
1003

categories Names one or more rule categories that pertain to
this rule.

When executing an invoke action that names a rule
category as its only argument, G2 invokes all rules whose
categories attribute names that category.

When executing an invoke action that names both a rule
category and an item or an item class, G2 invokes all rules
whose categories attribute names that category and whose
focal-objects attribute name that item or whose focal-
classes attribute names that class.

Allowable values: none
Any non-reserved symbol

Default value: none

Notes: A rule category exists only if named in at least one enabled
rule.

See Focusing on Rules and Invoking Rules by Category.

rule-priority Specifies the priority for the rule invocation that G2
creates when this rule is invoked.

Allowable values: Literal integer, from 1 (highest priority) to 10 (lowest
priority)

Default value: 6

Notes: See Prioritizing Rules.

A rule’s priority does not control the ordering of G2
scheduler tasks.

Priorities propagate from rule to rule due to backward
chaining. Priorities do not propagate due to forward
chaining, or due to invoking a rule by executing a focus or
invoke action.

Attribute Description
1004

The Rule Class
Actions That Manipulate Rules

To invoke rules associated with an item or class:

 focus on {item | item-class}, awaiting completion

Invokes all rules that are associated with the specified item or item class.

invoke rule-category-name [{ , | or } rule-category-name] ... rules
for { item | item-class }, awaiting completion

depth-first-
backward-chaining-
precedence

Specifies the precedence among a group of rules that G2
identifies for execution by using depth-first backward
chaining. This attribute does not affect breadth-first
backward chaining.

Allowable values: Literal integer, 1 or greater

Default value: 1 (highest priority)

Notes: By default, depth-first backward chaining causes G2 to
invoke rules with lower precedence after rules with higher
precedence have completed.

Precedence differs from rule priority. For more
information, see Using Depth-First Backward Chaining.

timeout-for-rule-
completion

Determines how long G2 attempts to invoke and execute a
rule invocation before performing time-out processing.

Allowable values: none
(the rule never times out)

use default
(use the value in the timeout-for-inference-completion
attribute of the Inference Engine Parameters system table)

Any time interval

Default value: use default

Attribute Description
1005

Expressions That Refer to Rules

To refer directly to a rule:

 this rule
-> rule

This expression produces the invoked rule within which this expression is
evaluated. This expression is valid only in a rule. For example:

if the status of any custom-object O
upon the workspace of this rule is not ok
then inform the operator that
"An error has occurred; press the DIAGNOSIS button."

This whenever rule detects events that are associated with items on its
own workspace.
1006

25
Formulas
Describes generic and specific formulas and their use.

Introduction 1007

Creating Generic Formulas 1008

Creating Specific Formulas 1008

Introduction
A formula is an equation that provides values for a variable or parameter. G2
computes a formula only when a value is needed. G2 provides these kinds of
formulas:

• Generic formulas, which you can specify for a class of variables by creating a
generic-formula definition. The generic-formula class is a subclass of the
statement class.

• Specific formulas, which you specify in the formula attribute of a
single variable.

• Simulation formulas, which are used with the G2 Simulator, a superseded
capability. For more information, see Appendix F, Superseded Practices.
1007

Creating Generic Formulas
A generic formula applies to an entire class of variables. You can specify that an
attribute of any class evaluates to a certain expression.

To create a generic formula:

 Select KB Workspace > New Definition > generic-formula.

G2 invokes the Text Editor so that you can enter a formula beginning with the
word let, as follows:

When you complete the edit, the new formula appears in a statement box
connected to your cursor. Press to place it on a workspace. G2 uses this generic
formula to calculate the volume of any gas-meter, if no specific formula exists for
the variable.

When writing formulas, a general rule of thumb is to use generic rather than
specific formulas whenever possible. This lets you write one formula for an entire
class of variables rather than a formula for each variable in the class. A generic
formula for a class of variables applies to all classes of variables below it in the
class hierarchy; thus, you should try to write generic formulas for classes as far up
in the item hierarchy as possible.

Creating Specific Formulas
A specific formula is a formula that applies to just one variable. You give a
variable a specific formula by specifying the formula attribute in its attribute table.
G2 then uses this specific formula to calculate a value for the variable.

To create a specific formula for a variable:

 Edit the formula attribute of the variable.
1008

Creating Specific Formulas
You create a specific formula for numeric, truth-valued, symbolic, and text
variables by using any arithmetic, logical, symbolic, or text expression. Here is a
partial attribute table with the formula attribute filled in:

G2 uses this formula to calculate a value for the variable if the data-server for the
variable indicates inference engine. If the data-server attribute is G2 simulator, G2
uses the formula specified in the simulation-formula attribute in the subtable of the
simulation-details attribute.

The G2 Simulator is a superseded capability. For more information, see
Appendix F, Superseded Practices.

Specific formula
for a variable
1009

1010

26
Text Parsing
and Manipulation
Describes capabilities for manipulating text and substrings, parsing and
tokenizing text using regular expressions, and interconverting text between the
Gensym and Unicode character sets.

Introduction 1011

G2 Text Manipulation Functions 1012

G2 Conventions for Manipulating Text 1012

Ordinary Text Manipulation Functions 1013

Regular Expression Syntax 1016

Text Functions Using Regular Expressions 1020

Parsing Strings into Tokens 1021

G2 Character Representation 1026

Working with Text Conversion Styles 1026

Character Set Conversion Functions 1032

Introduction
G2 provides a variety of capabilities for manipulating text:

• Functions for searching for, extracting, and replacing text in strings.

• A syntax for regular expressions.

• Functions that use regular expressions for searching and modifying text.
1011

• A facility that uses regular expressions to parse strings into tokens.

• Text-processing functions for use with encoding character codes for importing
and exporting text.

This chapter describes all of the capabilities listed, and shows you how to use
them to process text in a knowledge base.

G2 Text Manipulation Functions
G2 provides text manipulation functions that:

• Perform simple text manipulation, as described under Ordinary Text
Manipulation Functions

• Use regular expressions to perform more complex text manipulation, as
described under Text Functions Using Regular Expressions

• Use regular expressions to parse a string and identify tokens, as described
under Locating Tokens in a String.

The text functions available in G2 are non-destructive: they leave their input
arguments intact. G2 functions in general are described in Functions.

G2 Conventions for Manipulating Text
G2 provides a character string data type, text, but lacks a built-in type to refer to
characters. However, conventions exist that provide a consistent way to deal with
substrings and individual characters:

• The first position in a string is position 1 (not position 0).

• The last position in a substring reference is inclusive. For example:

get-from-text ("abcdef", 2, 3) -> "bc"

• The length of a string does not include any escape (@) characters that appear
in the string when G2 displays it in the Text Editor. Such characters exist only
in the editor display: they are not stored as part of the string.

length-of-text ("@"") -> 1

• The length of a string does include any extra characters kept internally to
represent diacritics (Unicode non-spacing marks).

• The index 0 is used as a sentinel to indicate failure:

position-of-text ("A", "XYZ") -> 0

Arguments that provide character positions to G2 text-manipulation functions
must be of type integer. Using a quantity or a float causes G2 to signal an error,
even of the value is integral, for example, 2.0.
1012

Ordinary Text Manipulation Functions
For information on using square brackets to get the Unicode character code of a
single character in a text, see Getting Unicode Character Codes.

Ordinary Text Manipulation Functions
G2 provides ordinary text-manipulation functions similar to those that exist in
most programming languages, as described in this section.

Text functions in general are described under G2 Text Manipulation Functions
and G2 Conventions for Manipulating Text. G2 functions in general are described
in Functions.

For the functions get-from-text, replace-in-text, and omit-from-text, the following
conditions must be true; otherwise, the function signals an error:

• 1 <= start-index <= length-of-text + 1

• start-index - 1 <= end-index <= length-of-text

Obtaining Text Length

length-of-text
(text-expression: text)
-> length: integer

Returns the number of characters in text-expression. Examples:

length-of-text ("message") = 7

length-of-text ("") = 0

Testing for a Substring

is-contained-in-text
(text-expression1: text, text-expression2: text)
-> substring-exists: truth-value

Returns the true if text-expression1 is a substring of text-expression2, and false
if it is not. This function is not case sensitive. Example:

is-contained-in-text ("your", "Your flight") = true

Locating a Substring

position-of-text
(text-expression1: text, text-expression2: text)
-> start-position: integer

Returns the starting position of the first occurrence of text-expression1 in text-
expression2, or 0 if no such occurrence exists. Example:
1013

position-of-text ("fli", "Your flight") = 6

Obtaining a Substring

get-from-text
(text-expression: text, start-index: integer, end-index: integer)
-> substring: text)

Returns the string of characters extracted from text-expression beginning at
start-index and ending at end-index. Spaces between words are included in the
count from left to right. Assuming the start-index and end-index are both
valid, this function returns the empty string if and only if end-index =
start-index - 1; otherwise, the function returns a non-empty string. Examples:

get-from-text ("one two three", 5, 7) = "two"

get-from-text ("abcd",5,4) = ""

get-from-text ("abcd",3,2) = ""

Inserting a Substring

insert-in-text
(text-expression1: text, text-expression2: text, insert-index: integer)
-> combined-text: text

Returns a text value consisting of text-expression2 with text-expression1
inserted before the character at insert-index. Example:

insert-in-text (" not ", "do enter", 3) = "do not enter"

Replacing One Substring with Another

replace-in-text
(text-to-substitute: text, source-text: text,
 start-index: integer, end-index: integer)
-> modified-text: text

Returns the source-text with the substring from start-index to end-index
replaced by text-to-insert. Assuming the start-index and end-index are both
valid, this function simply inserts the text-to-substitute into the source-text
when end-index = start-index - 1. Examples:

replace-in-text ("exit", "do not enter here", 8 , 12) = "do not exit here"

replace-in-text("come ","to",1,0) = "come to"

replace-in-text (" come","to",3,2) = "to come"

replace-in-text ("and","nip tuck",5,4) = "nip and tuck"
1014

Ordinary Text Manipulation Functions
Deleting a Substring

omit-from-text
(text-expression: text, start-index: integer, end-index: integer)
-> remaining-text: text

Returns the text-expression, with the range of characters between start-index
and end-index omitted. Spaces between words are included in the count from
left to right. Assuming the start-index and end-index are both valid, this
function makes no change when end-index = start-index - 1. Examples:

omit-from-text ("do not enter",4,7) = "do enter"

omit-from-text("do not enter",8,7) = "do not enter"

Capitalizing Text

capitalize-words
(text-expression: text)
-> capitalized-string: text

Returns text-expression with the first letter of each word capitalized. Example:

capitalize-words ("this is a test") = "This Is A Test"

Converting Text to Uppercase

upper-case-text
(text-expression: text)
-> uppercased-text: text

Returns text-expression with all alphabetic characters in upper-case. Example:

upper-case-text ("123AbcDef") = "123ABCDEF"

Converting Text to Lowercase

lower-case-text
(text-expression: text)
-> lowercased-text: text

Returns text-expression with all alphabetic characters in lowercase. Example:

lower-case-text ("123AbcDef") ="123abcdef"

Testing for a Quantity

text-begins-with-quantity
(text-expression: text)
-> quantity-present: truth-value
1015

Returns true if text-expression begins with one or more numeric characters;
else false. Leading spaces, signs, or exponents are ignored. Examples:

text-begins-with-quantity ("123abc") = true

text-begins-with-quantity ("+456def") = true

text-begins-with-quantity ("abc123") = false

Regular Expression Syntax
G2 provides regular expressions that can be used to describe text flexibly and
succinctly. The G2 regular expression syntax is similar to that used by UNIX
utilities such as lex, grep, sed, awk, and others. G2 regular expressions are text
strings (type text), and therefore appear in quotes when embedded in G2 code.

A regular expression is a sequence of characters and/or meta-characters that
specifies a pattern that matches one or more possible character strings. The meta-
characters used by G2 regular expressions are:

{ } \ | * + ? ^ . ()

Characters represent themselves; meta-characters are operators that define
expressions. For example, the meta-character ’|’ represents logical or, so the
regular expression a|b matches either the character ’a’ or the character ’b’. The
following table gives the syntax of G2 regular expressions.

Basic Regular Expression Constructs

Example Interpretation

abc a followed by b followed by c.

(abc) a followed by b followed by c; i.e., a synonym for abc. The
difference is that, in larger strings, the meaning of abc can be
affected by the context, whereas (abc) always means the same thing.
See Precedence.

a|b Either a or b. The vertical bar (|) means alternatives. A string with |
as the first character is an invalid regular expression, as is a string
with | as the last character, unless the next-to-last character is \.

a* Zero or more occurrences of a. A string with an asterisk (*) as the
first character is an invalid regular expression.

a+ One or more occurrences of a. A string with a plus sign (+) as the
first character is an invalid regular expression.

a? Zero or one occurrences of a. A string with a question mark (?) as
the first character is an invalid regular expression.
1016

Regular Expression Syntax
Caution Be careful not to confuse regular expressions with wildcard expressions for
designating filenames. The two syntaxes use some of the same meta-characters,
but their meanings are somewhat different.

Character Classes

Character classes provide a terse notation for indicating large sets of characters.
G2 regular expressions use { and } as delimiters for character classes. G2 also
provides several system-defined character classes, as described under System-
Defined Character Classes.

Note Character classes are unrelated to item classes, which are classes in the object-
oriented sense. Character classes are just sets of characters specified with a
terse notation.

. Any single character, including the newline character.

\.\|* A period (.) followed by | followed by \, followed by *. The \
character specifies that the character following the \ is to be
interpreted literally. It is typically used to escape meta-characters,
although it will work for any character (e.g., \a is a synonym for a.)

["@"] This is just an ordinary string, with no meta-characters. It matches
the sequence of characters '[' '"' '@' '"' ']'. However, remember that the
standard meta-characters of G2 text will apply to strings even if they
are intended to be regular expressions, so to enter this string in the
editor, one would use the string "@[@"@@@"@]".

$(foo) The $ character is used in the attributes of the Tokenizer class. The
construction has no special meaning in other contexts.

^abc The sequence of characters a, b, c, but only if found at the start-
position given. The caret “anchors” the search. This feature only has
meaning for system-defined functions. The Tokenizer’s search is
always anchored.

Basic Regular Expression Constructs

Example Interpretation
1017

Caution A null string matches anything, so searching for it can cause an infinite loop.
Guard against inadvertently creating and searching for it in iterative constructs
that assemble regular expressions dynamically.

System-Defined Character Classes

G2 provides several system-defined character classes. Such a classes consists of
the union of the appropriate characters over all natural languages supported by
our character encoding. To refer to a system-defined character class in a regular
expression, give the name of the class in <brackets>.

Character Class Constructs

Example Interpretation

{abc} The character a, or b, or c. Essentially, this usage is a shorthand for
the notation (a|b|c).

{a-z} Any character between a and z inclusive. Inside curly braces, the
hyphen becomes a meta-character meaning a range of characters.

Since “between” refers to the numerical values assigned to the
characters in the character encoding, problems may arise with
encodings, such as EBCDIC, that intersperse alphabetic and non-
alphabetic characters.

{^a-z} Any character which is not between a and z inclusive. A caret (^)
immediately following a left curly brace introduces an inverted
character class.

The inversion refers to the entire class; i.e., the characters following
the caret determine a match space, and the match space for the class
becomes the set difference between the full alphabet and the
computed match space.

A caret inside a character class which is not the first character has no
special meaning.

{} The null string. A null string in a regular expression is legal but has
no effect on the meaning of the string. Thus car, {}car, c{}ar, ca{}r and
car{} are all equivalent.

<charclass> Any alphabetic character in the system-defined character class
named by charclass. All characters in between a < and its
corresponding > are read as a symbol. If that symbol does not name
a system-defined character class, an error results.
1018

Regular Expression Syntax
The system-defined character classes are as follows. Ranges are specified with
semicolons, because no semicolon appears in any character class.

Precedence

The constructs used to indicate G2 regular expressions have a precedence order.
This order defines the correct interpretation when constructs appear
consecutively. Several levels of precedence exist. Constructs at the same
precedence level are evaluated left-to-right.

The following table shows the construct(s) at each precedence level, and gives the
correct interpretation of a sample regular expression that uses the construct(s):

Character Class Name Character Class Definition

alphabetic A:Z a:z

numeric 0:9

alphanumeric A:Z a:z 0:9

g2symbol A:Z a:z 0:9 - _ " .

hexadecimal 0:9 A:F a:f

whitespace space, newline, return, linefeed, line-separator,
tab

double-quote "

left-bracket [

right-bracket]

Precedence

Level Example Interpretation

\ \{a-z} The sequence of characters {, a, -, z, }

{...} c{ad}+r The character c, followed by one or more occurrence of
either character a or character d, followed by character r.

(...) (dog)* Zero or more consecutive occurrences of the character
sequence d, o, g, e.g., dogdogdog or "".

, +, ? dog d followed by o followed by zero or more g characters, e.g.,
dogggg or do.
1019

Text Functions Using Regular Expressions
G2 provides various system-defined functions that find and/or replace text as
designated by numeric arguments and regular expressions. For brevity, the
names of such functions call a regular expression a pattern.

Text functions in general are described under G2 Text Manipulation Functions
and G2 Conventions for Manipulating Text. G2 functions in general are described
in Functions.

Locating a Substring Using a Regular Expression

find-next-pattern
(search-pattern: text, source-text: text, start-position: integer)
-> structure (token-type: the symbol goal,

start-index: integer, end-index: integer)

Searches through source-text, starting at start-position, for a substring that
matches search-pattern, a regular expression, and returns a structure
containing the start-index and end-index of the match, or:

structure (token-type: the symbol goal, start-index: 0, end-index: 0)

if no match exists. For example:

find-next-pattern ("{A-Z}{a-z}*" "according to Will Rogers", 1)
-> (token-type: the symbol goal, start-index: 14, end-index: 17)

Many substrings match the pattern. "W", "Wi", "Wil", and "Will" begin at
position 14, and "R", "Ro", etc., begin at position 19. The function returns the
start and end positions of the leftmost longest matching substring.

find-next-pattern ("{A-Z}{a-z}*" "according to Will Rogers", 15)
-> (token-type: the symbol goal, start-index: 19, end-index: 24)

"Will" is not a candidate, because the search starts at position 15. The function
therefore returns the start and the end positions of "Rogers".

The token-type attribute can be ignored.

Implicit
Sequence

ca|dr Either (1) c followed by a or (2) d followed by r.

| a|b Either a or b.

Precedence

Level Example Interpretation
1020

Parsing Strings into Tokens
Extracting a Substring Using a Regular Expression

find-next-substring-matching-pattern
(search-pattern: text, source-text: text, start-position: integer)
-> substring: text

Identical to find-next-pattern, except that the function returns the matching
substring itself, rather than the substring’s start and end positions. If no match
exists, the function returns the empty string (*"). Example:

find-next-substring-matching-pattern
("{A-Z}{a-z}*", "according to Will Rogers", 1)
-> "Will"

Replacing a Substring Using a Regular Expression

find-and-replace-pattern
(search-pattern: text, text-to-substitute: text, source-text: text,
 start-position: integer, end-position: integer)
-> modified-text: text

Replaces each occurrence of search-pattern, a regular expression, in source-text
between start-position and end-position, with text-to-substitute, a text string,
and returns the complete source-text with the changes made. After each
replacement, the search continues from the first character unaffected by the
change. Example:

find-and-replace-pattern ("abcd", "newchars", "abcdcdef", 1, 8)
-> "newcharscdef"

If no substring between start-position and end-position matches search-pattern,
the function returns source-text unchanged.

Parsing Strings into Tokens
A token is an atomic unit of a language, consisting of a syntax description and a
type name. Every instance of a token is represented by a lexeme: a string whose
sequence of characters conforms to the syntax characteristic of the token.

A parser is a utility that inputs a string and a set of token definitions, scans the
string for lexemes, and outputs the token that each lexeme in the string
represents. G2 provides two capabilities that can be used together to implement
a parser:

• tokenizer: An item that contains regular expressions that define a set
of tokens.

• get-next-token: A function that uses a tokenizer to locate lexemes in strings
and return the token that each represents.
1021

The difference between tokens and lexemes is analogous to the difference
between numbers and character strings that represent numbers. Where the
meaning is clear, strings that represent numbers are often referred to as if they
were the numbers themselves. Similarly, lexemes that represent tokens are often
referred to informally as if they were the tokens themselves.

Specifying the Syntax for Extracting Tokens

To parse a string into tokens, a parser must know:

• The syntax of every type of token in the language that it parses.

• What to do when it locates a token of each type.

• The syntax of anything it should ignore when searching for tokens,

G2 uses tokenizers to specify this information.

To create a tokenizer:

 Select KB Workspace > New Definition > tokenizer.

The class-specific attributes of a tokenizer are:

Defining Patterns

A pattern is a named regular expression. Patterns allow you to:

• Use the same regular expression in multiple locations by giving its name.

• Create complex regular expressions by combining the names of
simpler expressions.

A pattern definition is a pair of the form:

name regular-expression

Attribute Description

patterns-definition One or more named regular expressions.

Allowable values: Pairs of the form name regular-expression

Default value: No value

tokens-definition One or more regular expressions and action to
take when each is encountered.

Allowable values: Pairs of the form regular-expression action

Default value: No value
1022

Parsing Strings into Tokens
where name is any symbol.

The patterns-definition attribute of a tokenizer specifies a set of patterns that are
available in a tokenizer. The value of the attribute is zero or more consecutive
pattern definitions. No patterns need be defined in a tokenizer; they are strictly
a convenience.

G2 reads and compiles pattern definitions in sequential order. Once a pattern has
been defined, it is available for use in subsequent pattern definitions. The syntax
for referencing a pattern definition is:

"$(name)"

The following could be the value of a tokenizer’s patterns-definition attribute:

nonzero "{1-9}"
digit "{0-9}"
numseq "$(nonzero)$(digit)*
int "{\+\-}?$(numseq)"
real "($(int)\.$(digit)*)|({\+\-}?\.$(digit)+)"
name "{A-Z}{a-z}*|{A-Z}\."

The rest of the examples in this section assume the preceding pattern definitions.

To specify a tokenizer’s pattern definitions:

 Make the desired definitions the values of the tokenizer’s patterns-definition
attribute.

The scope of a pattern is the tokenizer that specifies it. Hence the same name can
be used to represent different expressions in different tokenizers.

Defining Tokens

A token definition is a pair of the form:

regular-expression response

where regular-expression specifies the syntax of some class of token, and response
tells what to do on encountering a token that matches regular-expression. The
regular-expression can use any regular expression construct, including patterns
referenced via $(name). The possible types of response are:

• The symbol do-nothing.

• A symbol other than do-nothing.

The meaning of each of these responses is described under Responding to a
Match.
1023

The tokens-definition attribute of a tokenizer specifies one or more token
definitions. These define the tokens that the tokenizer is to scan for. The following
could be the value of a tokens-definition attribute.

"$(numseq) $(name) Street" address
"$(name) $(name)" person
" " do-nothing
"$(int) zip-code

The rest of the examples in this section assume the preceding token definitions.

To specify a tokenizer’s token definitions:

 Make the desired definitions the values of the tokenizer’s tokens-definition
attribute.

Locating Tokens in a String

Once you have specified a tokenizer’s pattern definitions (if any) and token
definitions, you can use the tokenizer to locate the tokens that it recognizes. G2
provides a text manipulation function for this purpose:

get-next-token
(tokenizer: class G2-tokenizer, source-text: text, start-position: integer)
-> structure (token-type: symbol, start-index: integer, end-index: integer)

Scans source-text beginning at start-position for tokens as defined in tokenizer.
Returns a structure that gives the results of the search, as described in
this section.

Text functions in general are described under G2 Text Manipulation Functions
and G2 Conventions for Manipulating Text. G2 functions in general are described
in Functions.

Searching for a Token

Get-next-token is similar to find-next-pattern, as described under Locating a
Substring Using a Regular Expression, but is much more general. The action of
get-next-token is as follows:

• Look for substrings that begin at start-position and match one or more of the
token definitions in tokenizer.

• If no substring matches any definition, return:

structure (token-type: FALSE, start-index: 0, end-index: 0)

• If substrings of different length match the same definition, use the longest
such substring.

• If longest substrings of equal length match different definitions, use the
substring whose definition appears earlier in the list of definitions.
1024

Parsing Strings into Tokens
• If a match is found, proceed as specified by the response associated with the
definition that matched.

Responding to a Match

Every token definition specifies a response, as described under Defining Tokens.
The possible types of response, and the meaning of each, are:

• The symbol do-nothing continues scanning from the first character after the
end of the matching substring.

• A symbol other than do-nothing returns:

structure (token-type: symbol, start-index: integer, end-index: integer)

where:

token-type: The symbol given by the response in the matching definition.

start-index: The character position where the matching token begins.

end-index: The character position where the matching token ends.

Example

If a tokenizer has the pattern and token definitions described earlier in this
section, the call:

get-next-token (tokenizer, " 10461 Steve Street", 10)

returns:

structure (token-type: FALSE, start-index: 0, end-index: 0)

and the call:

get-next-token (tokenizer, " 10461 Steve Street", 1)

returns:

structure (token-type: address, start-index: 2, end-index: 19)

Note that start-index is 2 even though start-position was 1. This occurred because
the tokenizer specifies that a blank (" ") has a response of do-nothing. Therefore
get-next-token skipped over the initial blank at position 1 of " 10461 Steve
Street", and continued scanning from position 2.

Extracting Tokens from a String

The get-next-token function does not return the lexeme that it found, because a
token’s type is usually all that is needed: returning the lexeme would be a
needless overhead. In some cases, the lexeme is also needed.

To extract a token identified by get-next-token:

 Use get-from-text as described under Obtaining a Substring.
1025

G2 Character Representation
G2 represents all symbol and text in a knowledge base using the Unicode
Worldwide Character Standard, which provides support for multiple languages
as described in G2 Character Support.

Working with Multiple Character Sets

While G2 supports the Unicode character set, numerous other character sets exist
that are neither Unicode-based, nor Unicode compliant.

To coexist with diverse character sets, KBs require the ability to translate:

• Imported characters into Unicode.

• Exported characters to a given character set of a non-Unicode environment.

G2 provides the text-conversion-style class, described next, to perform character
translation to and from Unicode, along with numerous text conversion functions,
described in Character Set Conversion Functions.

Working with Text Conversion Styles
The text-conversion-style class lets you specify certain text conversion parameters
to represent different character sets for importing or exporting text. For example,
if your KB requires translation for three different character sets:

• Gensym

• Cyrillic

• Japanese

you could create three text-conversion-style items. Each of the text-conversion-
style items would represent a particular character set that you required. For
example, to facilitate the Gensym, Cyrillic, and Japanese character sets, you could
create these three text conversion styles:

Once you create the text conversion styles your KB requires, any item that
interacts with text conversion can use them, as described in Using a Custom Text
Conversion Style.

Use this text-conversion-style item... For importing and exporting...

gensym-text-style Gensym character set text

cyrillic-text-style Cyrillic text

shift-jis-text-style Japanese text
1026

Working with Text Conversion Styles
To create a text-conversion-style item:

1 Select KB Workspace > New Definition > text-conversion-style.

2 Position the new item on the workspace.

3 Click on the item to display its menu.

4 Choose table.

Naming the Conversion Style

You must name each text-conversion-style item. Other items refer to text
conversion styles by name.

Determining the External Character Set to Use

The external-character-set attribute lets you choose from the following character
sets, where the symbol gensym is the default. The external character set
determines how G2 encodes characters whenever the text conversion style is
in use.

Note We recommend that you use the us-ascii character set for XML text. For more
information, see Providing the XML Code as Text.

Character Set Description

us-ascii 7-bit, single byte character set

latin-1 8-bit, single byte character set ISO-8859-1

latin-2 8-bit, single byte character set ISO-8859-2

latin-3 8-bit, single byte character set ISO-8859-3

latin-4 8-bit, single byte character set ISO-8859-4

latin-cyrillic 8-bit, single byte character set ISO-8859-5

latin-arabic 8-bit, single byte character set ISO-8859-6

latin-greek 8-bit, single byte character set ISO-8859-7

latin-hebrew 8-bit, single byte character set ISO-8859-8

latin-5 8-bit, single byte character set ISO-8859-9

latin-6 8-bit, single byte character set ISO-8859-10
1027

Using a Replacement Character

You can specify a replacement character to use in the event that Unicode does not
have a character code for any imported character, or for any exported character
that Unicode cannot represent. In the replacement-character attribute, specify a
one-character string or character code. The default is none, which means that any
unrepresented characters will be omitted.

Specifying the Han-Unification Mode

You can specify whether Japanese, Korean, or Chinese is preferred when
translating Chinese characters into non-Unicode character sets such as gensym.

jis 7-bit, JIS X 0208 (Japanese)

jis-euc 8-bit, JIS X 0208

shift-jis Shift-jis encoded JIS X 0208 (Japanese)

ksc 7-bit, KS C 5601 (Korean)

ksc-euc 8-bit, KS C 5601

unicode Unicode as series of-16 bit character codes.

unicode-byte-swapped Unicode as series of-16 bit character codes,
but as byte-swapped codes.

unicode-ucs-2 8-bit byte sequences of Unicode in UCS-2
format, most significant byte first.

unicode-ucs-2-byte-
swapped

8-bit byte sequences of Unicode in UCS-2
format, least significant byte first.

unicode-utf-7 Standard 7-bit encoding of Unicode.

unicode-utf-8 Standard 8-bit encoding of Unicode.

gensym The Gensym character set, as used in G2
and related products since Version 1.0,
modified to handle Unicode.

x-compound-text X compound text with subset of ISO 2022
escapes.

Character Set Description
1028

Working with Text Conversion Styles
In the han-unification-mode attribute, choose:

• japanese

• chinese (traditional Chinese, simplified)

• korean

The default mode is japanese.

Specifying the External Line Separator

Line separators vary among different character sets. The external-line-separator
attribute lets you specify what characters are used to indicate the end of one text
line and the beginning of the next.

The external-line-separator choice is valid only when exporting text. When
importing text, G2 separates lines of text whenever it sees any of the available
options. An exception is for the Unicode line separator options, which G2 only
searches for when the current text-conversion-style is using one of the Unicode
character sets. Character set options are described in Determining the External
Character Set to Use.

These are the six possible line separators:

Line Separator Description

per-platform This is the default value. With this value, G2
determines the current operating system and
selects a line separator as follows:

CRLF: Intel NT

LF: UNIX

If G2 cannot determine the operating system, or
it is not one of those listed, the default option
is LF.

CR The carriage return character, which is ASCII 13
decimal and Unicode 000D hexadecimal.

LF The linefeed character, which is ASCII 10
decimal and Unicode 000A hexadecimal.

CRLF The two character carriage return and
linefeed sequence.
1029

While you can choose the line separator of your choice, not every option is
applicable to every external character set. For example, the unicode-line-separator
or the unicode-paragraph-separator cannot be expressed in ASCII.

Using a Custom Text Conversion Style

The text-conversion-style attribute appears in all items that interact with
text conversion:

• Language Parameter system table

• g2-stream

• gfi-output-interface and gfi-input-interface

GFI is a superseded capability. For more information see Appendix F, Superseded
Practices.

When at least one text conversion style exists in a KB, you can direct any one of
the previous items to use that particular style by including its name in the text-
conversion-style attribute.

The text-conversion-style attribute is value-writable and value-readable. This
means you can get and set the text conversion style of language-parameters, or an
instance of g2-stream, gfi-input-interface, or gfi-output-interface by exporting the
attribute text-conversion-style, using the attribute access facility. For example, this
example code changes the text-conversion-style of the local variable FS, which is a
g2-stream, to MY-TEXT, which is a text-conversion-style:

conclude that the text-conversion-style of FS = the symbol MY-TEXT

For more information, see Attribute Access Facility.

Using the Default Text Conversion Style

If you do not provide your own text-conversion-style and an item requires one,
G2 uses a system-defined text-conversion-style. The relevant attribute values of
the system-defined class are as follows:

unicode-line-
separator

Code 2028.

unicode-paragraph-
separator

Code 2029.

Line Separator Description
1030

Working with Text Conversion Styles
The system-defined text-conversion-style is generally designed to import and
export text as it was done in G2 Version 4.0. For text whose external encoding was
not specified in 4.0 such as Greek, Hebrew, Arabic, and Georgian, such a
comparison is meaningless, but the definition of the Gensym character set clarifies
the interpretation that should be assigned.

The reason japanese is used as the default han-unification-mode is that Han
(Chinese) characters are infrequently used in Korean writing, but frequently used
in Japanese writing.

Working with G2-Stream Items

Several text-oriented system procedures create g2-stream items as part of opening
and closing files external to G2. You can specify a particular text-conversion-style
for the g2-stream item to use as described in Using a Custom Text Conversion
Style.

If the g2-stream contains characters that are not included in the default character
set, you might need to programmatically change the text-conversion-style of the
g2-stream to a character set that supports all the characters in the file. You should
change the text-conversion-style after you open the file and before you begin
reading it.

If you do not specify a particular text-conversion-style, G2 uses the system-
defined style, which is defined in the text-conversion-style attribute of the
Language Parameters system table. The default character set is Gensym.

Note Changing the text-conversion-style attribute while reading from a file, writing to a
file, or setting file positions in a g2-stream is not recommended; if you do, the
results are undefined.

This attribute... Has this value...

external-character-set gensym

replacement-character 8-bit replacement char: none

han-unification-mode japanese

external-line-separator per platform
1031

Character Set Conversion Functions
These are the text processing functions to support character conversion between
the standard Gensym character set and the Unicode character set.

Converting Character Codes to Unicode Text

character-codes-to-text
(character-codes: sequence)
-> text-of-unicode-characters: text

Accepts a sequence of Unicode character codes and returns the appropriate
Unicode text that the codes represent.

The next example shows a procedure that accepts a sequence as its single
argument, and displays the returned characters that the Unicode codes represent:

convert-codes(codes: sequence)
T: text;
begin

T = character-codes-to-text(codes);
post "The unicode codes: [codes] represent these characters: [T]

end

Converting Text to Unicode Character Codes

text-to-character-codes
(input-text: text)
-> sequence-of-unicode-character-codes: sequence

Accepts a series of text characters and returns the sequence of Unicode
character codes that represent the characters of input-text.

For information on using square brackets to get the Unicode character code of a
single character in a text, see Getting Unicode Character Codes.
1032

Character Set Conversion Functions
The next example shows a procedure that accepts a text value as its single
argument, and displays the returned sequence of Unicode character codes for
the text:

convert-it (T: text)
codes: sequence
begin

codes = text-to-character-codes(T);
post "The text string [T] is represented by these unicode codes: [codes]"

end

Comparing Text

compare-text
(text-1: text, text-2: text)
-> greater-than-or-equal-to: integer

Compares the text-1 and text-2 arguments and returns an integer greater than,
equal to, or less than 0, depending on whether the numeric value of the
Unicode code that represents the character of text-1 is greater than, equal to,
or less than text-2.

The next example shows a procedure that accepts two text values as its
arguments, and displays the result of comparing the text:

comparing-text(text1: text, text2: text)
result: integer;
begin

result = compare-text(text1, text2);
post "The result of [text1] compared to [text2] is: [result]."

end
1033

Exporting Unicode Text

export-text
(unicode-text: text, conversion-style: class text-conversion-style)
-> export-text: text

Takes a Unicode text and returns an equivalent text in an encoding and
character set specified by conversion-style, and with various other parameters
specified there.

Importing Unicode Text

import-text
(external-text: text, conversion-style: class text-conversion-style)
-> unicode-text: text

Takes a Unicode text in an encoding and character set specified by conversion-
style, and with various other parameters specified there, and returns the
corresponding Unicode string.

Determining Unicode Digits

is-digit
(character-code: integer)
-> unicode-digit: truth value

Returns true if character-code is not in the range 0x2000-0x2FFF and the
Unicode name contains the word DIGIT.

This is true of both:

• The normal digits that have always been accepted as digits in G2, and
which correspond to ASCII digit characters with codes 0x30-0x39.

• The decimal digit characters in various other scripts.

These are the ranges of Unicode characters that are considered digits:

0x0030 through 0x0039 ASCII/ISO-LATIN-1 digits ('0' through '9')

0x0660 through 0x0669 Arabic-Indic digits

0x06F0 through 0x06F9 Extended Arabic-Indic digits

0x0966 through 0x096F Devanagari digits

0x09E6 through 0x09EF Bengali digits

0x0A66 through 0x0A6F Gurmukhi digits
1034

Character Set Conversion Functions
Determining Lowercase Characters

is-lowercase
(character-code: integer)
-> lowercase: truth-value

Returns true if character-code is lowercase.

Determining Readable Digits

is-readable-digit
(character-code: integer)
-> readable-as-decimal: true

Returns true if character-code corresponds to a digit that can be read by the G2
reader to make a decimal number in G2. These are the character codes in the
ASCII range for 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and are the ASCII digit characters that
range from 0x30 to 0x39.

Determining Readable Digits in Radix

is-readable-digit-in-radix
(character-code: integer, radix: integer)
-> is-digit: true

Returns true if character-code corresponds to a digit in the specified radix and
if character code is the ASCII range. Radix must be between 2 and 36.
Depending on radix, the character codes may be any of the ranges 0x30-0x39
(for digits 0-9), 0x41-0x5A (for A-Z), or 0x61-0x7A (a-z).

0x0AE6 through 0x0AEF Gujarati digits

0x0B66 through 0x0B6F Oriya digits

0x0BE7 through 0x0BEF Tamil digits

0x0C66 through 0x0C6F Telugu digits

0x0CE6 through 0x0CEF Kannada digits

0x0D66 through 0x0D6F Malayalam digits

0x0E50 through 0x0E59 Thai digits

0x0ED0 through 0x0ED9 Lao digits

0xFF10 through 0xFF19 Full width digits

0x0030 through 0x0039 ASCII/ISO-LATIN-1 digits ('0' through '9')
1035

Determining Titlecase Characters

is-titlecase
(character-code: integer)
-> titlecase: truth-value

Returns true if character-code is in titlecase.

Titlecase is true of those few precomposed characters in Unicode that encode
multiple Latin letters, and so appear to be a capital followed by small letter.
For example, there is a character that looks like Lj named LATIN CAPITAL
LETTER L WITH SMALL LETTER J.

Determining Uppercase Characters

is-uppercase
(character-code: integer)
-> uppercase: truth-value

Returns true if character-code is uppercase.

Obtaining a Readable Symbol from Text

readable-symbol-text
(printed-text: text)
-> readable-text: text

Returns a text value that is readable as a symbol version of printed-text. For
example, if printed-text is:

SYMBOL WiTH SPACES++

this function returns the text:

symbol@ w@ith@ spaces@+@+

If this returned text is read into the G2 tokenizer, it would be read in as a
single symbol consisting of the letters in the printable text. Notice that the
space characters and the plus (+) signs require an escape character (@), as does
the lowercase i character in the word WiTH. The escape characters insure that
the spaces and plus (+) signs are accepted, and that the letter i is not made
uppercase by tokenizing. Note also that this representation only guarantees
that it will be readable as the symbol with the same printed representation.
1036

Character Set Conversion Functions
Obtaining a Readable Text

readable-text
(printable-text: text)

Converts text input in its printable representation to a form that is readable
internally by G2. For example, if printable-text is:

Use quotes around email addresses: "mhd@gensym.com"

This function converts the text to:

"Use quotes around email addresses: @"mhd@@gensym.com@"

Converting a Value into a Readable Representation

readable-text-for-value
(value-for-text: value)

Changes a value into that value’s readable representation, such that reading
back such text through the G2 tokenizer would result in the same value.

This function converts value-for-text only if the value has a readable
representation. Value types with a readable representation are:

• Text

• Quantity

• Symbol

• Truth-value

If the value has no readable representation, G2 signals an error.

Converting Characters to Lowercase

to-lowercase
(character-code: integer)
-> unicode-equivalent: integer

Returns the character code that is equivalent to lowercase in Unicode. If there
is no equivalent, returns character-code.

Converting Characters to Titlecase

to-titlecase
(character-code: integer)
-> unicode-equivalent: integer

Returns the character code that is equivalent to titlecase in Unicode. If there is
no equivalent, returns character-code.
1037

Converting Characters to Uppercase

to-uppercase
(character-code: integer)
-> unicode-equivalent: integer

Returns the character code that is equivalent to uppercase in Unicode. If there
is no equivalent, returns character-code.

For example, the next procedure returns information about lowercase,
uppercase, and titlecase of a single character code:

text-case(unicode-code: integer)
lowercase, uppercase, titlecase: integer;
begin

lowercase = to-lowercase(unicode-code);
uppercase = to-uppercase(unicode-code);
titlecase = to-titlecase(unicode-code);
post "The lower case code is [lowercase],

the uppercase code is [uppercase],
and the titlecase code is [titlecase]"

end

Transforming Text for Unicode Comparison

transform-text-for-unicode-comparison
(text-to-transform: text, consider-case: truth-value)

If consider-case is false, this is just the identity operation. Otherwise, this
returns text with all characters changed to their uppercase equivalents, if any,
and if not, just kept as themselves.

Note that:

(text-1 > text-2)

is equivalent to (is true if and only if it is the case that)

compare-text
(transform-text-for-unicode-comparison (text-1, false),
 transform-text-for-unicode-comparison (text-1, false))

> 0
1038

Character Set Conversion Functions
Transforming Text for G2 4.0 Comparison

transform-text-for-G2-4.0-comparison
(text-to-transform: text, consider-case: truth-value)

If consider-case is false, transforms text so that, for text that was possible to
have in G2 4.0, it is compared exactly as it would have been in G2 4.0. This
difference between version 4.0 and 5.0 and later is mostly in the handling of
accented and special characters, and in the handling of Japanese. Latin
characters that are in ASCII and the Korean and Russian characters allowed in
G2 4.0 are sorted in an internally consistent manner in G2 5.0 and later. The
sorting of text that mixes any of the above mentioned subsets of characters, as
well as the linebreak character, is quite different in G2 5.0 and later as well.
This transforming function makes any such distinctions go away.

Note that if in 4.0:

(text-1 > text-2)

is true, then in 5.0 and later:

g2-compare-text
(g2-transform-text-for-G2-4.0-comparison (text-1, false),
 g2-transform-text-for-G2-4.0-comparison(text-1, false))

> 0

is true.
1039

1040

27
XML Parsing
Describes how to parse XML code and make callbacks to user-defined procedures.

Introduction 1041

Providing the XML Code as Text 1042

SAX-Parser Class 1043

SAX Callback Procedure 1046

Example 1048

Introduction
G2 provides a way to parse XML code and execute user-defined callbacks. G2
uses the SAX (Simple API for XML) standard, which provides an event-based
XML parser.

The G2 XML parser consists of a parser class and a set of G2 system procedures
that parse the XML text and execute the callbacks. You provide the XML code as a
text string, whether from a file, from a bridge, or directly in G2. You then write G2
code that sends the text to the parser and sequentially executes each callback,
based on the parsed text. The callback can be any user-defined procedure with the
required signature.

You can associate callbacks with the start and end of the XML document, the start
and end of an XML element, characters between XML elements, and comments.
You can also associate callbacks with warnings, errors, and fatal errors that occur
when parsing the XML code.
1041

You can parse the entire XML text at once, or you can parse the XML text in
“chunks.” As G2 parses the text, it queues the specified callbacks for each event.
Your procedure executes each callback in the queue sequentially by calling a
system procedure.

Because G2 parses the text and queues the callbacks as a single process, no other
processing can occur while the parsing takes place. Therefore, you should ensure
that the text strings you are parsing are not too long.

You can also parse XML text directly from a file, which queues all events.

For the definition of the API procedures, see XML Parser API in the G2 System
Procedures Reference Manual.

For an example, see xml.kb in the g2\kbs\samples directory of your G2
installation directory.

For information on SAX, visit www.saxproject.org.

For information on XML, visit www.w3.org/TR/REC-xml.

Providing the XML Code as Text
To use the XML parser, you provide the XML code as a G2 text. Depending on the
source of the XML code, you might use one of several techniques:

• Use G2 system procedures to read the entire XML file into a text string or to
read one line at a time. For information on reading text files, see File
Operations in the G2 System Procedures Reference Manual.

We recommend that you use the us-ascii character set for XML text. For more
information, see Working with Text Conversion Styles.

• Use G2 Gateway to write a bridge that receives XML text.

• Write the XML code directly in G2.

G2 limits the size of text strings to 1,000,000 bytes; therefore, you should limit the
size of your XML code accordingly. Note that while reading or transferring very
large strings, G2 performs no other processing.

Rather than reading the file in chunks, you can also parse an entire XML file.
Although this approach takes up more memory than reading the file in chunks, it
avoids the limitation on the maximum size of a text and is easier than parsing the
file in chunks. Note that this technique does not allow other processing while
reading the file, which might be an issue for very large files or slow file systems.
1042

http://www.saxproject.org
http://www.w3.org/TR/REC-xml

SAX-Parser Class
SAX-Parser Class
A SAX parser is an instance of the sax-parser class. It parses XML text and
executes user-defined callbacks. The SAX parser provides the following types
of callbacks:

• Start and end document callbacks execute when the parser begins and ends
parsing the XML text.

• Start and end element callbacks execute when the parser begins and ends
parsing an XML element.

• Characters callbacks execute when the parser encounters characters between
XML elements, which are not comments or malformed XML code.

• Comment callbacks execute when the parser encounters a comment in the
XML code.

• Warning, error, and fatal-error callbacks execute when the parser generates a
warning, error, or fatal error, based on malformed XML code.

For each callback, you provide a symbol that names a user-defined callback
procedure with a given signature, which performs the desired action when the
event occurs. You can provide any or all of the available callbacks.

For a description of the callback procedure, see SAX Callback Procedure.

The following table summarizes the class-specific attributes of the sax-parser
class:

Attribute Description

start-document-
procedure

The user-defined callback procedure associated with the
start of the XML text.

Allowable values: The callback procedure name as a symbol

Default value: none

end-document-
procedure

The user-defined callback procedure associated with the
end of the XML text. This callback procedure executes
only after g2-sax-finish-parsing is called.

Allowable values: The callback procedure name as a symbol

Default value: none
1043

start-element-
procedure

The user-defined callback procedure associated with the
start of an XML element.

Allowable values: The callback procedure name as a symbol

Default value: none

end-element-
procedure

The user-defined callback procedure associated with the
end of an XML element.

Allowable values: The callback procedure name as a symbol

Default value: none

characters-
procedure

The user-defined callback procedure associated with
characters that appear between XML elements.

Allowable values: The callback procedure name as a symbol

Default value: none

comment-procedure The user-defined callback procedure associated with
comments in the XML code.

Allowable values: The callback procedure name as a symbol

Default value: none

warning-procedure The user-defined callback procedure associated with an
XML warning.

Allowable values: The callback procedure name as a symbol

Default value: none

Attribute Description
1044

SAX-Parser Class
For example, this code creates a sax-parser and associates user-defined callback
procedures with the start and end of the XML document, the start and end of each
XML element, and the characters between XML elements.

my-sax-parser: class sax-parser;

create a sax-parser my-sax-parser;
conclude that the start-document-procedure of my-sax-parser is

my-start-document-callback;
conclude that the end-document-procedure of my-sax-parser is

my-end-document-callback;
conclude that the start-element-procedure of my-sax-parser is

my-start-element-callback;
conclude that the end-element-procedure of my-sax-parser is

my-end-element-callback;
conclude that the characters-procedure of my-sax-parser is

my-character-callback;

error-procedure The user-defined callback procedure associated with an
XML error.

Allowable values: The callback procedure name as a symbol

Default value: none

fatal-error-
procedure

The user-defined callback procedure associated with a
fatal XML error.

Allowable values: The callback procedure name as a symbol

Default value: none

number-of-pending-
callbacks

The number of callbacks remaining to execute. This
attribute is decremented each time a callback is executed
by calling g2-sax-execute-next-callback. The value is
read-only.

Allowable values: integer

Default value: 0

Attribute Description
1045

SAX Callback Procedure
The syntax for the callback procedure of a sax-parser is:

sax-parser-callback-procedure (sax-parser: class sax-parser, data: structure)

The syntax for the structure argument depends on the callback, as follows:

Callback Procedure Structure

start-document-procedure structure
(callback-type: start-document)

end-document-procedure structure
(callback-type: end-document)

start-element-procedure structure
(callback-type: start-element
element-name: element-name
attributes:
sequence

(structure
(attribute-name: attribute-name
attribute-value: attribute-value),

structure
(attribute-name: attribute-name
attribute-value: attribute-value)

. . .)
)

end-element-procedure structure
(callback-type: end-element
element-name: element-name)

characters-procedure structure
(callback-type: characters
string: character-string)

comment-procedure structure
(callback-type: comment
comment: comment-string)

warning-procedure structure
(callback-type: warning
error-message: warning-string)
1046

SAX Callback Procedure
This table describes the attribute values of the structure:

error-procedure structure
(callback-type: error
error-message: error-string)

fatal-error-procedure structure
(callback-type: fatal-error
error-message: fatal-error-string)

Callback Procedure Structure

Attribute Value Description

start-document
end-document
start-element
end-element
characters
comment
warning
error
fatal-error

A symbol that identifies the type of
callback.

element-name The name of the XML element, as a string.

attribute-name The name of the XML attribute, as a string.

attribute-value The value of the XML attribute, as a string.

character-string The value of the text string of non-XML
characters.

string-length The length of the text string of non-XML
characters, as an integer.

comment-string The value of the text string that appears as
a comment in the XML code.

warning-string The value of the text string generated as a
warning when parsing the XML code.

error-string The value of the text string generated as
an error when parsing the XML code.

fatal-error-string The value of the text string generated as a
fatal error when parsing the XML code.
1047

Example
The following procedure shows how to parse XML code in chunks of 128
characters. The XML code is stored in a free text named xml-text. The procedure
executes start and end document, start and end element, characters, comment,
and error callbacks. The SAX Parser API functions are shown in bold.

do-my-sax-parsing ()

my-sax-parser: class sax-parser;
text-input: text;
start-index, end-index, length, events-ready, i: integer;
my-preferred-chunk-size: integer = 128;

begin
create a sax-parser my-sax-parser;
conclude that the start-document-procedure of my-sax-parser is start-doc;
conclude that the end-document-procedure of my-sax-parser is end-doc;
conclude that the start-element-procedure of my-sax-parser is start-elmnt;
conclude that the end-element-procedure of my-sax-parser is end-elmnt;
conclude that the characters-procedure of my-sax-parser is sax-chars;
conclude that the comment-procedure of my-sax-parser is sax-comment;
conclude that the error-procedure of my-sax-parser is sax-error;

text-input = the text of xml-text;

start-index = 1;
end-index = my-preferred-chunk-size;
length = length-of-text(text-input);

if (end-index > length) then end-index = length;

repeat
call g2-sax-parse-chunk(my-sax-parser, text-input, start-index,

end-index);
exit if end-index = length;
start-index = end-index + 1;
end-index = end-index + my-preferred-chunk-size;
if (end-index > length) then end-index = length;

end;
call g2-sax-finish-parsing(my-sax-parser);

repeat
exit if the number-of-pending-callbacks of my-sax-parser = 0;
call g2-sax-execute-next-callback(my-sax-parser)

end;
delete my-sax-parser

end
1048

28
Functions
Lists system-defined functions and describes how to create new functions.

Introduction 1049

Invoking Functions 1050

Executing Functions 1050

User-Defined Functions 1050

Tabular Functions of One Argument 1052

System-Defined Functions 1060

Introduction
A function is a named sequence of operations that compute and return a value.
Functions and procedures are similar in many ways, but G2 invokes them
differently, and they have different advantages and disadvantages.

G2 provides three kinds of functions:

• User-defined functions

• Tabular functions of one argument

• System-defined functions

You can also invoke functions that run outside G2, as described in Chapter 68,
Foreign Functions on page 2009.
1049

Invoking Functions
G2 executes a function when the function’s name and arguments (if any) appear
as part of an expression that G2 is evaluating. The function executes
synchronously, and the value that it returns is used just as if it had appeared
literally at the point of the invocation. A function reference can appear in any
statement at any point where a literal value of the type returned by the function
could appear.

By contrast, a procedure executes only when a reference to it appears in a call
statement or a start action; executes synchronously when called and
asynchronously when started; and may or may not return a value.

For information on procedures, see Chapter 22, Procedures on page 865.

Executing Functions
A function executes exactly as if the body of the function appeared literally at the
point of invocation. Therefore:

• Function invocation is always synchronous and cannot cause a wait state.

• Function execution time is tallied to the cumulative time of the
invoking context.

• Functions do not time out independently of their context.

For information on execution time and timeouts, see Limiting Procedure
Execution Time on page 881 and Setting the Timeout Interval for a Rule on
page 996.

User-Defined Functions
You create a user-defined function by using a function definition.

To create a user-defined function:

 Select KB Workspace > New Definition > function-definition.

G2 invokes the Text Editor automatically so that you can enter your function. The
syntax is:

function-name ([argument] [,...]) = (expression)

where:
1050

User-Defined Functions
When you close the text editor, G2 attaches a rectangle representing the new
function definition to the mouse. Click on any workspace to place the definition
on that workspace. G2 transfers the definition rectangle to the workspace at the
point of the click, and displays the text of the function in the rectangle. You can
click the definition to edit it, display its table, transfer it to a different workspace,
or delete it.

For example, the following specifies the area function:

area (x, y) = x * y

On a workspace, the area function definition looks like this:

After creating this function, you can refer to it by name or arguments in
procedures or expressions. An example of using the area function is:

if area (the length of floor-1, the width of floor-1) > 25 then
inform the operator that
"The area of floor-1 is greater than 25 square feet."

You can reference any system-defined or user-defined function in a function
definition. You can also use functions recursively; however, be aware that you
run the risk of exceeding the recursion limit specified in the Inference Engine
Parameters system table or the memory allocated to the stack for recursive
functions. In general, we recommend that you use procedures for recursive
computation, rather than functions, because procedures are not handled using a
stack and as such are not subject to the same memory limitations. Also, the error
handling of procedures is more robust.

function-name Specifies the name of the function.

argument [,...] Describes the arguments for the function,
and are substituted for the arguments in
the function definition.

expression Defines the computation of the function
using a symbolic, arithmetic, or logical
expression, and can include other user-
defined or system-defined functions.
1051

Tabular Functions of One Argument
Tabular functions of one argument are items of the tabular-function-of-1-arg class,
referred to as tabular functions.

Tabular functions begin with a single-argument, user-defined function of
the form:

f (x)

From such a function, you enter one or more arguments and values to derive, or
cause G2 to compute, multiple comparative or associative values. G2 presents
such comparisons and associations in a tabular format. Tabular functions and
their arguments can consist of any type (integer, float, symbolic, logical, or text).

If you create a tabular function of arithmetic values, you can direct G2 to
interpolate a return value for an argument that is not given in the table. G2
performs a straight-line interpolation whenever it interpolates one or more
missing values. If you do not direct G2 to interpolate values, and a value of x is
not given in the table, function evaluation fails.

Two examples illustrating different uses of tabular functions are:
1052

Tabular Functions of One Argument
To create a new tabular function of one argument:

 Select KB Workspace > New Definition > tabular-function-of-1-arg.

This
example... Shows how to...

1 Translate values from one type into another. After
specifying the series of numbers with an associated color,
you could then use this tabular function in an expression
such as:

the-color-of (3) = blue

2 Define the percentage of maximum flow through a valve as
a function of the percent of the valve opening. Thus, given
a valve opening, x, you can use the function percent-of-
max-flow to calculate the percent of maximum flow
through a valve.

You can use this function in an expressions such as:

if the percent-of-max-flow (the percent-of-max-valve-opening
of valve-1) > 80 and the outflow of valve-1 < 20 gpm then
conclude that valve-1 is broken

Percent-of-max-flow is defined as a tabular function, rather
than as a user-defined function, because the relationship
between the two variables is non-linear and cannot be
expressed readily in an algebraically.
1053

The tabular function’s icon and its menu are:

Notice that a tabular function has two table menu choices:

• table, which displays the attribute table.

• table of values, which lets you add and delete rows and display the table
contents once they exist.

These are the attributes of a tabular function:

Attribute Description

names The name of the function as you will use it in expressions.

Allowable values: symbol

Default value: none

keep-sorted Specifies whether G2 sorts the values in the table.

Allowable values: {no | by args | by values}

Default value: by args
1054

Tabular Functions of One Argument
Naming the Tabular Function

The names attribute provides the name to use when referring to the function
within expressions. After completing this attribute, the name replaces the f(x)
label in the table of values for the function.

Sorting the Items in the Table

The keep-sorted attribute specifies whether G2 sorts the function arguments,
referred to as the values of x, or the values that correspond to the arguments,
referred to as f (x).

If G2 is interpolating values, you must specify by values for this attribute.

Interpolating Function Values

The interpolate? attribute specifies whether G2 interpolates a value for f (x) when
the value of x is not explicitly given in the table.

When G2 is interpolating values, it performs a straight-line interpolation. For
example, assume that the percent-of-max-flow function has these values:

interpolate? Defines whether G2 will interpolate values that are not
provided in the table.

Allowable values: {no | yes}

Default value: yes

Attribute Description
1055

G2 interpolates for all values of x in the range of 10 to 50. For example, if x is 15,
G2 interpolates the percent-of-max-flow as 45.0. For interpolation to occur, the
value of x must be greater than or equal to the smallest argument in the table and
less than or equal to the largest argument in the table. If the argument is not in
this range, G2 fails to evaluate the function.

Adding and Deleting Values and Arguments

For each tabular function, you enter one or more arguments, and a corresponding
number of return values. G2 can complete a list of multiple arguments and return
values, after you supply the first two entries.

During function execution, each argument is a possible value to pass to the
function; every value is the complement of an argument that G2 can return. When
using the optional interpolation capabilities, a tabular function can accept
arguments and return complementary values that are not listed in the table.

To show the tabular function values table:

 Choose table of values from the menu for the function’s icon.

A new table of values contains the values of x and f(x):

To record values in the tabular function table:

1 Choose add or delete rows from the table of values.

2 Enter the syntax to add or delete rows in the edit workspace.

Adding Rows of Values

Use this syntax to add values to a tabular function:

add integer [unfinished] row[s]
[{at the {beginning | end} } | { {before | after} x = datum}]
 with x = [datum1] [datum2] [,...] | etc.}
and f (x) = [datum] [datum2] [,...] | etc.}]]
1056

Tabular Functions of One Argument
Element Description

integer A positive integer specifying the number of
rows to add.

at the beginning Adds one or more values to the beginning of
the table.

at the end Adds one or more values to the end of the table.

before x = datum Adds one or more values immediately before
the row defined by x = datum.

after x = datum Adds one or more values immediately after the
row defined by x = datum.

with x = {datum1
[datum2] [,...] | etc.}

Provides a list of possible argument values that
you can pass to the tabular function. If the
difference between successive values is
constant, you can indicate a series of values for
x by entering the first two values in the series,
followed by etc. G2 computes the remaining
values for you.

and f (x) = {datum1
[datum2] [,...] | etc.}

Provides a list of the values that correspond to
each of the arguments you provide. If the
difference between successive values is
constant, you can indicate a series of values for
f(x) by typing the first two values in the series,
followed by etc. G2 computes the remaining
values for you.
1057

As an example, entering this statement results in the tabular function that follows:

add 7 rows with x = 0, 10, etc. and f(x) = 0, 30, 60, 75, 80, 87, 91

Note that if you have indicated that G2 should sort by either argument or value,
where you add the rows does not matter; G2 immediately sorts them. For
example, the table shown above is sorted by argument. If you add a row to it with
x = 55, G2 automatically places that row after the row that has 50 as an
argument value.

Deleting Rows of Values

Use this syntax for deleting rows:

delete { integer | unfinished} row[s]
[{at the {beginning | end} } | { {before | after} x = datum}]
[with x = [datum-1] [datum-2] [,...] | etc.]
and f (x) = [datum-1] [datum-2] [,...] | etc.]

Element Description

integer A positive integer specifying the number of
rows to delete.

unfinished Specifies any row in which the value of x, or the
value of f (x) has no value.

at the beginning Deletes one or more values from the beginning
of the table.
1058

Tabular Functions of One Argument
Some examples are:

at the end Deletes one or more values at the end of
the table.

before x = datum Deletes one or more values immediately before
the row defined by x = datum.

after x = datum Deletes one or more values after the row
defined by x = datum.

with x = [datum-1]
[datum-2] [,...] | etc.]

Provides a list of the argument values to delete.
If the difference between successive values is
constant, you can indicate a series of values for
x by typing the first two values in the series,
followed by etc. G2 computes the remaining
values for you.

and f (x) = [datum-1]
[datum-2] [,...] | etc.]

Provides a list of the return values to delete. If
the difference between successive values is
constant, you can indicate a series of values for
f(x) by typing the first two values in the series,
followed by etc. G2 computes the remaining
values for you.

Element Description

Example Result

delete unfinished
rows

Deletes rows that do not have a value for either
x or f (x).

delete row Deletes the first row in the table.

delete row after x
= 60

Deletes the row after the one that has 60 as the
value for the x argument.

delete rows with x =
30 and f (x) = 40

Deletes all rows that have the value 30 for the x
argument and 40 for the f(x) argument.

delete 5 rows at
the end

Deletes the last five rows in the value table.
1059

Changing Tabular Functions Programmatically

Previous G2 releases did not provide programmatic access to the x and f(x) fields
of a tabular-function-of-1-arg item, referred to here as a tabular function.

Tabular functions include a hidden attribute, values-for-table-of-values,
consisting of a sequence of structures as follows:

text-readable = false, text-writable = false,
value-readable = true, value-writable = true,
is-system-defined = true, defining-class = tabular-function-of-1-arg

type =
 sequence
 . (structure
 . . (x: none | symbol | integer | float | text,
 . . f-of-x: none | symbol | integer | float | text)
 . [, ...])

Using this hidden attribute, you can now conclude values directly into a tabular
function.

To change a tabular function programmatically:

 conclude that the values-for-table-of-values of tab1 =
 sequence (structure (x:2, f-of-x: 12), structure (x:4, f-of-x: 24))

This example produces these results:

System-Defined Functions

G2 provides the following categories of system-defined functions:

• Arithmetic functions

• Attribute access functions (see Chapter 12, Attribute Access Facility on
page 479).

• Bitwise functions
1060

System-Defined Functions
• Call function

• Character manipulation (see Chapter 49, G2 Character Support on page 1739).

• Connection functions (see Chapter 18, Connections on page 703).

• Format numeric text function

• Great circle distance function

• Quantity function

• Symbol function

• Rgb-symbol function

• Text functions (see Chapter 26, Text Parsing and Manipulation on page 1011).

• Time functions

Functions relating to a topic in its own chapter in this manual are described in
that chapter, as indicated in the above list. All other functions are described in the
following sections.

Arithmetic Functions

These are the system-defined arithmetic functions:

Function Description

abs (quantity-expression) =
(quantity)

Returns the absolute value of quantity-expression.
An example is:

abs(-9) = 9

arctan (quantity-expression
[, quantity-expression]) = (float)

Using one argument: returns the arctangent of
quantity-expression in radians. An example is:

arctan (1) = 0.785

Using two arguments: returns the arctangent of
quantity-expression/quantity-expression in radians.
Use this function to handle cases where the result
approaches infinity. An example is:

arctan (1, 0) = 1.571

If both arguments are zero, G2 signals an error.

average (quantity-expression,
quantity-expression
[, quantity-expression...]) =
(quantity)

Returns the average value for a list of two or more
quantity-expressions, and no value for one
quantity-expression. An example is:

average (1,2,6) = 3
1061

ceiling (quantity-expression) =
(integer)

Returns the smallest integer value greater than or
equal to the value of quantity-expression. See also
the truncate and floor functions. Some
examples are:

ceiling (5.3) = 6

ceiling (-5.3) = -5

ceiling (5) = 5

cos (quantity-expression) =
(float)

Returns the cosine of quantity-expression in
radians. An example is:

cos (1) = 0.54

exp (quantity-expression) =
(float)

Returns e to the power of quantity-expression. An
example is:

exp (8) = e8

expt (quantity-expression,
quantity-expression) =
(quantity)

Returns the value of quantity-expression raised to
the power of the second quantity-expression. An
example is:

expt(2, 4) = 16

floor (quantity-expression) =
(integer)

Returns the largest integer that is less than or
equal to quantity-expression. See also the truncate
and ceiling functions. An example is:

floor (5.3) = 5

floor (-5.3) = -6

ln (quantity-expression) = (float) Returns the natural logarithm (base e) of quantity-
expression. An example is:

ln (1.5) = 0.405

log (quantity-expression) =
(float)

Returns the base 10 logarithm of quantity-
expression. An example is:

log (1.5) = 0.176

max (quantity-expression,
quantity-expression [,...]) =
(quantity)

Returns the maximum value in a list of two or
more quantity-expressions. It returns no value for
just one quantity-expression. An example is:

max (1,3,7,4) = 7

Function Description
1062

System-Defined Functions
min (quantity-expression,
quantity-expression [,...]) =
(quantity)

Returns the minimum value in a list of two or
more quantity-expressions. It returns no value for
just one quantity-expression. An example is:

min (3,7,2,5) = 2

quotient (quantity-expression,
quantity-expression) =
(quantity)

Returns the result of dividing the first quantity-
expression by the second, truncated. The sign of
the result depends on the arguments. Some
examples are:

quotient (5, 2) = 2

quotient (5, -2.1) = -2

quotient (-5, 2.1) = -2

quotient (5, 0) = 0

See the note at the end of this table for the results
of dividing by zero using float arguments.

Function Description
1063

random (quantity-expression,
[, quantity-expression]) =
(quantity)

Using one argument:

Returns a pseudo random number greater
than or equal to zero and less than quantity-
expression. If the argument is an integer, the
function returns an integer (likewise for
floating point numbers). The argument must
be positive, and the return value is always
positive. For example, random (3) can return
0, 1, or 2.

Using two integer arguments:

Returns a value greater than or equal to the
first quantity-expression, and less than or equal
to the second quantity-expression.

If the first argument is greater than or equal to the
second argument, G2 signals an error.

Using two float arguments:

Returns a value greater than or equal to the
first quantity-expression, but less than the
second. Arguments can be negative but the
second quantity-expression must be greater
than the first.

For example, random (-1,1) can return either
-1, 0, or 1, while random (-1.0,1) can return -1.
0, 0.1, or 0.999. G2 selects random numbers in
a system-dependent manner.

If the first argument is greater than or equal to the
second argument, G2 signals an error.

remainder
(quantity-expression,
quantity-expression) =
(quantity)

Returns the remainder that results from dividing
the first quantity-expression by the second. The
remainder always has the same sign as the
dividend. Note that G2 provides this function in
place of a mod function. Example are:

remainder (5, 2) = 1

remainder (5.3, 2.0) = 1.3

remainder (5, 0) = 5

See the note at the end of this table for the results
of dividing by zero using float arguments.

Function Description
1064

System-Defined Functions
round (quantity-expression) =
(integer)

Returns the nearest integer value for a floating
point quantity-expression. Some examples are:

round (2.4) = 2

round (-2.4) = -2

round (2.5) = 3

sin (quantity-expression) =
(float)

Returns the sine of quantity-expression, in radians.

sqrt (quantity-expression) =
(float)

Returns the square root of quantity-expression. It
returns no value if quantity-expression has a
negative value; instead, G2 signals an error. An
example is:

sqrt (5) = 2.236

tan (quantity-expression) =
(float)

Returns the tangent of quantity-expression,
in radians.

Function Description
1065

Note When dividing by zero using the quotient and remainder functions with float
arguments, the values G2 returns remain dependent on the behavior of the
operating system you are using. Your operating system may return a NaN (not a
number) or it may generate a floating point exception (SIGFPE).

If G2 receives a NaN from the operating system, it becomes the return value in G2.
There are several types of NaNs, including positive and negative infinity (+Inf and
-Inf). If a SIGFPE is generated within G2’s evaluator, it causes a G2 stack error;
otherwise the SIGFPE results in a G2 abort.

This floating-point behavior may be configurable on your platform. See your
operating-system documentation for information.

truncate (quantity-expression)
= (integer)

Returns the truncated form of the decimal portion
of the value of quantity-expression. This function
always truncates toward zero. Some examples are:

truncate(6.6) = 6

truncate(-5.3) = -5

truth-value
(quantity-expression) =
(truth-value)

Converts the value of expression to a fuzzy
truth value.

If quantity-expression = 1.0, this function
returns true.

If quantity-expression = -1.0, this function
returns false.

If quantity-expression is such that -1.0 x 1.0, this
function returns x true.

If quantity-expression is a logical argument, the
value returned is the same as the argument.

If quantity-expression is a symbol or text, G2
returns no value. Instead, G2 signals an error.
Some examples are:

truth-value (6) = true

truth-value (.6) = .600 true

truth-value (-1) = false

Function Description
1066

System-Defined Functions
Vector Functions

There are three system-defined vector (1-dimension array) functions, which are
faster alternative for existing system procedure on arrays.

Attribute Access Functions

See Chapter 12, Attribute Access Facility on page 479 for information about
attribute access and its associated functions.

Function Description

vector-add (quantity-array,
quantity-array,
quantity-array) =
(quantity-array)

A faster alternative of g2-array-add, it adds the
first and second quantity-array and put the results
into the third quantity-array, which is also the
return value (by reference). An example is:

array3 = vector-add(array1, array2, array3);

which equals to:

call g2-array-add(array1, array2, array3);

If array sizes are not equal, G2 signals an error.

vector-multiply (quantity-array,
quantity-array) =
(quantity)

A faster alternative of g2-array-multiply, it
multiply the two quantity-array as parameter, and
return a quantity. An example is:

result = vector-multiply(array1, array2);

which equals to:

result = call g2-array-multiply(array1, array2);

If array sizes are not equal, G2 signals an error.

vector-scalar-multiply
(quantity-array,
quantity-expression,
quantity-array) =
(quantity-array)

A faster alternative of g2-scalar-multiply, which
multiplies a quantity-array by a scalar value
quantity and returns the result to a second
quantity-array, which is also the return value (by
reference). An example is:

array2 = vector-scalar-multiply(array1, x, array2);

which equals to:

call g2-scalar-multiply(array1, x, array2);

If array sizes are not equal, G2 signals an error.
1067

Bitwise Functions

These are the system-defined bitwise functions:

Using Bitwise Operator Functions

Some examples of using the bitwise functions are:

new-value = bitwise-not (1918);
shift-bits = bitwise-right-shift (temp-int-var, 1)
inclusive-or = bitwise-or (quant1-param, quant2-param)

You can use the bitwise functions in any compiled attribute. For a definition of
compiled attributes within G2.

Function Description

bitwise-or (value-expression,
value-expression) = (integer)

Performs an inclusive or operation on two values
and returns an integer.

bitwise-and (value-expression,
value-expression) = (integer)

Performs a logical and operation on two values
and returns an integer.

bitwise-xor (value-expression,
value-expression) = (integer)

Performs an exclusive or operation on two values
and returns an integer.

bitwise-not (value-expression) =
(integer)

Performs a logical not operation on a value and
returns an integer.

bitwise-right-shift (value-
expression, value-expression) =
(quantity)

Returns the result of shifting the first value-
expression n places to the right. The second value-
expression specifies the number of bit positions
to shift.

bitwise-left-shift
(value-expression,
value-expression) = (integer)

Returns the result of shifting the first value-
expression n places to the left. The second value-
expression specifies the number of bit positions to
shift.

bitwise-test (value-expression,
value-expression) =
(truth-value)

Returns true or false after testing value-expression
to see if the nth bit, specified by the second value-
expression, is set.

bitwise-set (value-expression,
value-expression) = (quantity)

Returns the result of setting the nth bit of the first
value-expression, specified by the second
value-expression.
1068

System-Defined Functions
For instance, the following example shows a readout table containing an
expression with the logical-operation bitwise-or function. The two arguments of
the bitwise-or function reference a quantitative parameter and an integer variable.

Call-Function Function

The call function calls a specified function with its arguments. It lets you call a
user-defined function indirectly when you know the function arguments.

The syntax is:

call-function (function-definition-expression [, argument] [,....])

An example is:

result = call-function (the function-definition that is the-measurement-for TANK-1, the
volume of TANK-1, the level of TANK-1)

Note that the-measurement-for is a relation. You cannot use the call function to
directly call system functions, which are G2 functions that do not have function-
definition items. You could, however, define a function to call system functions,
and then use call function to call that function. Within a normal function call,
such as:

2 + combine (x, y)
1069

if combine is a local name, G2 calls the function definition within that local name.

Character Manipulation Functions

See Chapter 49, G2 Character Support on page 1739 for information about
character manipulation and its associated functions.

Connection Functions

See Chapter 18, Connections on page 703 for information about connections and
their associated functions.

Format-Numeric-Text Function

Use this function to format numeric text:

format-numeric-text
(quantity-text: text, formatting-expression: text)
formatted-text: text

Formats numeric text, using a formatting expression such as dd.ddd. The
quantity-argument is a text whose left-most part is a quantity. Leading spaces and
any text following the quantity are both allowed. The formatting-text is a text
containing a dd.ddd format. The result is a text that is the result of applying the
formatting expression to the numeric text. For example:

format-numeric-text ("35.3", "dd.ddd")  "35.300"

To assist with formatting variable values, which can include asterisks when the
variable value has expired or when the variable has no value, the first argument
can also be one of the following:

• The text value "****", which returns "****", regardless of the formatting
expression, which you still need to provide.

• A text with a quantity and a trailing asterisk (*). The result is a text that has the
number formatted according to the dd.ddd format expression, with a trailing
asterisk. For example:

format-numeric-text ("35.3*", "dd.ddd")  "35.300*"

This function exists to handle values of the format stored in the last-recorded-
value-text hidden attribute of variables and parameters. For more information,
see Obtaining the Last Recorded Value on page 619.
1070

System-Defined Functions
Great-Circle-Distance Function

great-circle-distance
(latitude-1: quantity, longitude-1: quantity,
latitude-2: quantity, longitude-2: quantity, radius: quantity)
 distance: float

The great-circle-distance (gcd) is the distance between two points on a sphere
when traveling on the surface of the sphere. The first point is at (latitude-1,
longitude-1), and the second point is at (latitude-2, longitude-2). The latitudes and
longitudes are given in degrees as quantities, usually floats. The answer is
multiplied by the spherical radius, the fifth argument.

gcd = 2 * radius * arcsin (sqrt (sin ((lat1 - lat2) / 2) ^ 2 +
cos (lat1) * cos (lat2) * sin ((long1 - long2) / 2) ^ 2))

arcsin(a) for -1 <= a <= 1

can be given in terms of arctan by:

arcsin(a) = arctan(a/sqrt(1-a^2))

where:

arcsin(1) = pi/2, arcsin(-1) = -pi/2

Latitudes go from 0 to 90 degrees N (positive) and from 0 to 90 degrees S
(negative).

Longitudes go from 0 to 180 degrees E (positive) and from 0 to 180 degrees W
(negative). 0 degrees is in Greenwich, England (prime meridian). 180 degrees is at
the International Date Line. (The convention E negative and W positive is also
fine as long as one is consistent.)

To convert from degrees to radians, multiply by pi/180.0, where
pi = 3.141592653589793 (approx.).

So, 180 degrees = pi radians;

90 degrees = pi/2 radians = 1.5707963267948966 (approx.)

To convert from radians to degrees, multiply by 180/pi.

The units of the supplied radius determines the units of the result. For the Earth,
equatorial radius = 6378.137 kilometers, polar radius = 6356.752 km, and FAI
radius = 6371.0 km. radius = 1 implies that the result is in radians.

For example:

The distance in radians between LAX at (33.95, -118.4) degrees and JFK at
(40.633333, -73.783333) degrees = 0.623585 radians.

great-circle-distance(33.95, -118.4, 40.633333, -73.783333, 1) = 0.623585 .

Using the FAI radius of 6371.0 km:

great-circle-distance(33.95, -118.4, 40.633333, -73.783333, 6371.0) = 3972.858 (km)
1071

Quantity Function

The quantity function is used to obtain a quantity value from an argument that is
either a logical expression or text, as:

Function Description

quantity
(truth-value-expression) =
(quantity)

Returns a quantity value for a truth-value-
expression. Some examples are:

quantity (true) = 1.0

quantity (false) = -1.0

quantity (fuzzy truth value) = a real number
between -1.0 and +1.0 exclusive

quantity (text-expression) =
(quantity)

Extracts any numeric characters found at the
beginning of text-expression and returns them as
quantity values. Leading spaces are ignored.
Numbers may begin with a plus sign, a minus
sign, or may be in exponential format (contain an
e preceding an exponent of ten, by which to
multiply the preceding mantissa).

If no numeric characters are found at the
beginning of text-expression, G2 signals an error.

This function does not evaluate an arithmetic
expression that may be embedded in the text
value (the string enclosed in quotation marks).

If you specify initialize a quantity variable with a
decimal point without trailing digits, the variable
initializes to a float, not an integer. For example:
x: quantity = 5. initializes x to 5.0, not 5.

Some examples are:

quantity ("123yes no") = 123

quantity ("-12.3abc") = -12.3

quantity ("5.") 5.0

quantity ("exp(2)") = error

quantity ("abc 123") = error
1072

System-Defined Functions
Symbol Function

The symbol function converts a text expression into a symbol. You can use the
result of the symbol function to name transient items. The syntax is:

symbol (text-expression) = (s)

Caution Once G2 creates a symbol with the symbol function, the memory it uses cannot be
reclaimed or reused within that execution of G2 even if you delete the item that
uses the symbol. If a symbol with the name specified by the text-expression
already exists, G2 reuses that symbol and does not create a new one.

G2 maps all alphabetic characters in a symbol to uppercase, even when such a
character has been escaped. Thus, symbol ("abc") creates the same symbol as
symbol ("AbC") and symbol ("@abc").

The symbol function extracts any alphanumeric characters including hyphens,
periods, underscores, and single-quotes found at the beginning of text-expression
and returns them as a symbol. These must not be numeric characters constituting
a quantity. Leading and following spaces and tabs are ignored.

For example:

symbol("abc 123") = abc

symbol("abc-123") = abc-123

symbol("abc+123") = abc

Text-to-Symbol Function

The text-to-symbol function converts a text expression into a symbol:

text-to-symbol (text-expression) = (s)

It differs from the symbol function in two ways:

• It is up to an order of magnitude faster.

• It treats every character as escaped.

For example:

text-to-symbol ("Gensym")

escapes all characters, preserving their case and creating the symbol: Gensym;

while:

symbol ("Gensym")

uppercases all characters, creating the symbol: GENSYM.
1073

Creating the symbol Gensym with the symbol function would require escaping
every lowercase letter to prevent conversion to uppercase:

symbol ("G@@e@@n@@s@@y@@m");

To return a standard (all uppercase) G2 symbol with text-to-symbol, enter the
argument in uppercase, as in:

text-to-symbol ("GENSYM");

Also, notice that symbol ("ITEM::TEST") would return the symbol “ITEM::TEST”,
and text-to-symbol ("ITEM::TEST") would return the symbol “ITEM@:@:TEST”,
hence they’re different.

You can also use text-to-symbol to compose existing symbols into new ones while
preserving the case of the symbols. Thus:

s1 = text-to-symbol ("aBc");
s2 = symbol ("d@@ef");
s3 = text-to-symbol ("[s1]-[s2]");
s4 = symbol ("[s1]-[s2]");

sets the values as follows:

s1: aBc
s2: DeF
s3: aBc-DeF
s4: ABC-DEF

Rgb-Symbol Function

You can provide a symbol of the form RGBrrggbb as a valid color name, where rr,
gg, bb, are the 8-bit hex values for red, green, and blue. The full 24-bit color is used
for drawing if the window is capable of it; otherwise, the closest Gensym
standard color is used.

You use the rgb-symbol function to convert RGB color values to a symbol. The
syntax is:

rgb-symbol
(rr, gg, bb)
rbg-symbol: symbol

Here are some examples:

NavyBlue: rgb-symbol(0,0,128) -> rgb000080

blue: rgb-symbol(0,0,255) -> rgb0000ff

brown: rgb-symbol(165,42,42) -> rgba52a2a

RoyalBlue: rgb-symbol(65,105,225) -> rgb4169e1

snow: rgb-symbol(255,250,250) -> rgbfffafa
1074

System-Defined Functions
Many examples of hexadecimal colors are available on the World Wide Web, for
example, http://www.htmlhelp.com/cgi-bin/color.cgi. However, you do not
need to restrict yourself to Web-safe colors in G2.

Text Functions

See Chapter 26, Text Parsing and Manipulation on page 1011 for information
about text processing and its associated functions.

Time Functions

The G2 time functions can be used with the inference engine, the G2 Simulator,
and within procedures.

In these functions, the time-expression argument is an integer count of the number
of seconds that have elapsed since the start of the current run of G2:

the current time
the current real time

In these functions, the time-expression argument is a floating-point number as
accurate as the operating system supplies:

the current subsecond time
the current subsecond real time

If you use the current time as an argument, the time returned is from the G2 clock.
If you use the current real time as an argument, the time returned is from the real-
time clock. Otherwise, the time returned is from a clock that is time-expression
seconds or subseconds ahead of where the real-time clock was when the KB was
started.

The G2 Simulator is a superseded capability. For more information, see
Appendix F, Superseded Practices on page 2169.

Computing Time with Daylight-Savings Time

Computers using the UNIX and Windows operating system support timezones
and daylight-savings time, while some other operating systems do not.

To illustrate these differences, consider that the U.S. switches from daylight-
savings time to standard time in November. For that month, on operating systems
that recognize daylight-savings time, G2 calculates the time function as the
1075

number of seconds in 31 days and 1 hour. For other operating systems, the time
function returns the number of seconds in 31 days.

Function Description

year (time-expression) =
(integer)

Returns a four-digit integer representing the year for
the specified time-expression, which must be an
integer or float. An example is:

year (the current time) = 2002

month (time-expression) =
(integer)

Returns the month of the specified time-expression as
an integer from the range 1 to 12 inclusive, where
time-expression must be an integer or float. An
example is:

month (the current real time) = 11

day-of-the-month
(time-expression) = (integer)

Returns the day of the month of the specified
time-expression as an integer from the range 1 to 31
inclusive, where time-expression must be an integer or
float. An example is:

day-of-the-month (the current time) = 27

day-of-the-week
(time-expression) = (integer)

Returns the day of the week of the specified
time-expression as one of the symbols from this list:
monday, tuesday, wednesday, thursday, friday,
saturday, sunday. time-expression must be an integer
or float. An example is:

day-of-the-week (the current time) = friday

minute (time-expression) =
(integer)

Returns the minute of the hour of the specified
time-expression as an integer from the range 0 to 59
inclusive, where time-expression must be an integer or
float. An example is:

minute (10) = 29

hour (time-expression) =
(integer)

Returns the hour of the specified time-expression as
an integer from the range 0 to 23 inclusive, where
time-expression must be an integer or float. An
example is:

hour (the current time) = 15
1076

System-Defined Functions
second (time-expression) =
(integer)

Returns the second of the minute of the specified
time-expression as an integer from the range 0 to 59
inclusive, where time-expression must be an integer or
float. An example is:

second (-2) = 10

time (year, month, day,
hour, minute, second) =
(number)

Returns an absolute time that can be used in other
time-related functions. It’s in seconds, as an integer or
float (if the result exceeds the limitation of integers),
which you can format using the default, interval, or
timestamp display formats. You must specify the year
as a four-digit integer (1995, not 95). All other
arguments may be specified as one- or two-digit
integers. Some examples are:

time (1992, 06, 5, 13, 30, 45) = -8393

time (1992, 06, 5, 13, 30, 45) = -2 hours, 32 minutes,
and 35 seconds

time (1992, 06, 5, 13, 30, 45) = 5 Jun 92 1:30:45 p.m.

Also notice that the returned value is only valid for
current G2 session (because the internal algorithm is
based on current G2 start time), it cannot be saved
into KB for use when next time G2 starts.

Function Description
1077

1078

29
Publish/Subscribe
Facility
Describes how to use the publish/subscribe facility for event subcription.

Introduction 1079

Application Programmer’s Interface 1080

Registering Callbacks Remotely 1080

Examples 1081

Introduction
G2 provides a publish/subscribe facility, which allows application developers to
implement scalable, distributed applications that can respond dynamically to
changes in the application. This facility provides tools similar to what many
modern development environments such as Java provide. Previously, G2
developers were required to use G2 JavaLink to access similar features, or to build
their own facility within G2, which has various limitations.

The publish/subscribe facility allows applications to subscribe to these item
events:

• modify — When the value of a single attribute, a list of attributes, or all
attributes of an item change. This event also occurs when the value of a
variable or parameter changes.

• item-color-pattern-change — When any color region of an icon changes.

• delete — When an item is deleted.

• add-item-to-workspace — When an item is added to a workspace.
1079

• remove-item-from-workspace — When an item is removed from a workspace.

• custom-event — When a custom event is sent.

The publish/subscribe facility also provides a way of sending custom events.

When the event occurs, G2 can execute a callback procedure, which can refer to
user-defined data passed to the procedure that creates the subscription. The
subscription procedure returns handles, which you must use to remove
subscription registrations.

Note that G2 schedules callbacks to occur in response to an event; the event does
not automatically cause the callback to execute, then wait for it to finish.

When an item is deleted, all subscriptions on it are automatically deregistered.

The publish/subscribe facility supports remote application subscriptions and
callbacks.

Note Subscriptions are not saved in the KB; however, they remain after resetting G2.

Application Programmer’s Interface
The publish/subscribe facility API procedures appear on the g2-publish-
subscribe workspace of G2 System Procedures.

For a description of these procedures, as well as the callbacks for each type of
event, see the G2 System Procedures Reference Manual.

To display the publish/subscribe procedures:

 Choose Get Workspace > g2-system-procedures to display the G2 System
Procedures top-level workspace, display the table of contents, and choose
g2-publish-subscribe.

Registering Callbacks Remotely
To register callbacks remotely, you need to make an RPC call into G2 to a
procedure that does the registration. When registering callbacks remotely, you
pass a symbol as the callback argument, which is interpreted as the name of a
procedure in the remote registration. If no such procedure exists, an error is
thrown at when the callback is invoked.

Before invoking the callback remotely, any items being passed to the callback are
registered for network use as if the g2-register-on-network system procedure had
been called on them and their associated interface. Registering the item returns a
network handle, as an integer, which is passed as the item argument to the
callback procedure.
1080

Examples
Note When invoking callbacks in a bridge, you must retrieve the network handle by
calling gsi_handle_of, not gsi_int_of. For more information, see Chapter 9
“API Functions” in the G2 Gateway User’s Guide.

For examples, see Example: Registering Callbacks Remotely Over a Network
Interface and Example: Registering Callbacks Remotely Over a G2 Gateway
Bridge.

Examples
These examples are available online in publish-subscribe-doc-ex.kb and
publish-subscribe-remote-doc-ex.kb, which are located in the g2\kbs\demos
(Windows) or /g2/kbs/demos (UNIX), and in pub_subscribe.c, which is located
in the gsi directory. To compile the .c file, use the makefile in the gsi directory.

Example: Subscribing to Attribute Changes

This example shows how to subscribe to attribute changes of a tank, which has
two attributes, level and temperature. The subscription handles are stored in the
tank-callback-handles integer list.

The subscribe-to-tank-changes procedure subscribes to changes that occur in the
specified attributes of the tank. The tank-callback procedure posts a message to
the Message Board when the event occurs.

The Subscribe to All Tank Changes button subscribes to all attribute changes for
tank-1. The Subscribe to Level Tank Changes subscribes to attribute changes for
the level attribute only for tank-1.
1081

This procedure subscribes to attribute changes of a tank and executes the tank-
callback when the event occurs. It posts the subscription handle to the Message
Board at registration time and inserts it into the tank-callback-handles integer list.

subscribe-to-tank-changes(tank: class tank, attribute-spec: item-or-value)
val: value;
i: integer;
begin

val = call g2-subscribe-to-item-attributes(tank, attribute-spec, tank-callback,
sequence());

post "return value of tank subscription: [val]";
if val is an integer then

insert val at the beginning of tank-callback-handles
else
begin

for i = 0 to the number of elements in val - 1 do
insert val[i] at the beginning of tank-callback-handles

end
end

end

Here is the callback procedure, which simply posts the new value of the changed
attribute and the attribute denotation to the Message Board when the modify
event occurs:

tank-callback(event: symbol, item: class tank, info: sequence, new-val: item-or-value,
user-data: item-or-value, handle: integer)

begin
if event = the symbol MODIFY then

post "The new value is [new-val] for info [info]";
end
1082

Examples
Here is the result of clicking the Subscribe to All Tank Changes button, then
clicking the Change Temp button and then the Change Level button:

Example: Deregistering Subscriptions

The example also shows how to deregister subscriptions:

Here is the tank-deregister procedure, which deregisters all subscription handles
in the tank-callback-handles list:

tank-deregister()
i: integer;
begin

for i = 0 to the number of elements in tank-callback-handles - 1 do
start g2-deregister-subscription (tank-callback-handles[i]);

end;
conclude that the g2-list-sequence of tank-callback-handles = sequence();

end

Here is the result of clicking the Subscribe to All Tank Changes button, then
clicking the Change Temp button and then the Change Level button:

Registration handle

New value

Attribute denotation
1083

Here is the result of first clicking the Deregister button, then clicking the
Subscribe to Level Changes button, and then clicking the Change Level button.
Note that clicking the Change Temp button in this case would not execute the
callback because the registration is only invoked for changes to the level attribute.

Example: Subscribing to Deletion Events

This example shows how to subscribe to deletion events for a tank. The subscribe-
to-tank-deletion procedure subscribes to tank deletion events and invokes the
tank-deletion-callback procedure when a tank is deleted, which posts a message to
the Message Board. The button creates a tank and executes the subscription
procedure.

This procedure subscribes to tank deletion events and executes the tank-deletion-
callback when a tank is deleted. It posts the subscription handle to the Message
Board at registration time and inserts it into the tank-callback-handles integer list.

subscribe-to-tank-deletion(tank: class tank)
val: integer;
i: integer;
begin

val = call g2-subscribe-to-item-deletion (tank, tank-deletion-callback, the text of
the uuid of tank) ;

post "return value of deletion subscription: [val]";
insert val at the beginning of tank-callback-handles;

end
1084

Examples
Here is the callback procedure, which posts the user data to the Message Board
when the delete event occurs. In this case, the user data is defined as the UUID of
the tank and the event type of the deleted item. It then deregisters the
subscription for the deleted item.

tank-deletion-callback(event: symbol, item: class item, info: sequence, new-val:
item-or-value, user-data: item-or-value, handle: integer)

begin
if event = the symbol DELETE then

begin
post "Tank deleted with uuid [user-data] and [event] event";
call g2-deregister-subscription(handle);

end
end

Here is the result of first clicking the Deregister button, then clicking the
Create Tank and Subscribe to Deletion Events button, and then clicking the Delete
Tank button:

Example: Subscribing to Workspace Events

This example shows how to subscribe to items being added to and removed from
a workspace. The subscribe-to-workspace-additions procedure subscribes to
workspace addition events and invokes the workspace-item-addition-callback
procedure when an item is added to a workspace, which posts a message to the
Message Board. Similarly, the subscribe-to-workspace-removals procedure
subscribes to workspace removal events and invokes the workspace-item-
removal-callback procedure when an item is removed from the workspace, which
posts a message to the Message Board.

The Subscribe to Workspace Additions and Subscribe to Workspace Removals
buttons execute the subscription procedures, passing doc-examples as the
workspace that should listen for these events. The Create Tank button creates a
tank on the current workspace, the Delete Tank buttons deletes the tank, and the
Transfer Tank removes the tank from the workspace by transferring it to another
workspace so it still exists.

User data

Event type
1085

Here is the procedure that subscribes to workspace additions and invokes the
workspace-item-addition-callback when items are added to the workspace:

subscribe-to-workspace-additions(ws: class kb-workspace, user-data: item-or-value)
val: integer;
i: integer;
begin

val = call g2-subscribe-to-add-item-to-workspace(ws,
workspace-item-addition-callback, user-data);

post "return value of subscription: [val]";
insert val at the beginning of TANK-CALLBACK-HANDLES;

end

The subscription procedure for removing items from a workspace is similar
except that it calls g2-subscribe-to-remove-item-from-workspace.
1086

Examples
Here is the callback procedure for subscribing to workspace additions, which
posts information to the Message Board when the add-item-to-workspace event
occurs.

workspace-item-addition-callback(event: symbol, wksp: class kb-workspace,
info: sequence, itm: item-or-value, user-data: item-or-value, handle: integer)

begin
if event = the symbol ADD-ITEM-TO-WORKSPACE then
post "add-item-to-ws-callback: event: [event], workspace: [(if the name of wksp

exists then the name of wksp else the text of the uuid of wksp)], info: [info],
itm: [(if the name of itm exists then the name of itm else the text
of the uuid of itm)], user-data: [user-data], handle: [handle]";

end

The callback procedure for subscribing to workspace removals is similar except
that it tests for the remove-item-from-workspace event. In addition, the item
removal callback tests for the existence of the item that was removed from the
workspace. If the item exists, it refers to the name of the item; otherwise, it
indicates that the item has been deleted.

workspace-item-removal-callback(event: symbol, wksp: class item, info: sequence,
itm: item-or-value, user-data: item-or-value, handle: integer)

begin
if event = the symbol REMOVE-ITEM-FROM-WORKSPACE then

post "remove-item-from-ws-callback: event: [event], item: [(if the name of
wksp exists then the name of wksp else the text of the uuid of wksp)],
info: [info], itm: [(if itm exists then the name of itm else "the item has been
deleted")], user-data: [user-data], handle: [handle]";

end
end

Here is the result of clicking the Subscribe to Workspace Additions button, then
clicking the Create Tank button:
1087

Here is the result of clicking the Subscribe to Workspace Removals button, then
clicking the Delete Tank button. Because the item no longer exists, the message
indicates that the item has been deleted.

Here is the result of clicking the Subscribe to Workspace Removals button, then
clicking the Transfer Tank button. This time, the message refers to the name of the
item because it still exists.

Example: Subscribing to Variable Events

This example shows how to subscribe to variable changes. The subscribe-to-
variable-changes procedure subscribes to variable events and invokes the
variable-callback procedure when the value of the variable changes, which posts a
message to the Message Board. Note that the callback is only invoked when the
value of the variable changes to a new value; it does not get invoked when the
value of the variable changes to the same value.

The Subscribe to Var-1 Changes and Subscribe to Var-2 Changes buttons execute
the subscription procedures, passing var-1 and var-2 as arguments. The var-1
integer variable updates its value based on a formula, and the var-2 logical
variable updates its value by clicking the True and False buttons.
1088

Examples
Here is the procedure that subscribes to variable changes and invokes the
variable-callback when the value of the variable changes to a different value:

subscribe-to-variable-changes(var: class variable)
val: integer;
i: integer;
begin

val = call g2-subscribe-to-variable-or-parameter-value (var, variable-callback,
sequence());

post "return value of variable subscription: [val]";
insert val at the beginning of TANK-CALLBACK-HANDLES;

end

Here is the callback procedure for subscribing to variable changes, which posts
information to the Message Board when the modify event occurs.

variable-callback(event: symbol, item: class variable, info: sequence, new-val:
item-or-value, user-data: item-or-value, handle: integer)

begin
if event = the symbol MODIFY then

post "The new value for [the name of item] is [new-val] for info [info]";
end

end

Here is the result of clicking the Subscribe to Var-1 Changes button, then waiting
for the variable value to update:
1089

Here is the result of clicking the Subscribe to Var-2 Changes button, then clicking
the True button twice. Notice that clicking the value twice does not invoke the
callback because the value did not change.

Example: Subscribing to Custom Events

This example shows how to subscribe to custom events for a tank. The example is
similar to the previous two examples except that for custom events, you provide
the custom event as an argument to the subscription system procedure. Also, you
must explicitly send the custom event.

The subscribe-to-custom-event procedure subscribes to custom events and
invokes the custom-event-callback procedure when a custom event is sent, which
posts a message to the Message Board that indicates the event name and its value.
The send-event procedure sends a custom event to a tank. The Subscribe to
Custom Event button subscribes to the my-custom-event event, and the Send
Custom Event button sends the custom event to tank-1.

Here is the subscribe-to-custom-event procedure, which passes the custom event
as an argument to the g2-subscribe-to-custom-event system procedure.

subscribe-to-tank-custom-event(event: symbol)
val: integer;
i: integer;
begin
 val = call g2-subscribe-to-custom-event(tank-1, event, custom-event-callback,

sequence());
post "return value of tank subscription: [val]";
insert val at the beginning of TANK-CALLBACK-HANDLES;

end
1090

Examples
Here is the custom-event-callback procedure, which posts various information to
the Message Board:

custom-event-callback(event: symbol, i: class item, info: sequence,
new-val: item-or-value, user-data: item-or-value, handle: integer)

begin
if event = the symbol custom-event then
post "Custom-event-callback: event: [event], item: [the name of i], info: [info],
new-val: [new-val], user-data: [user-data], handle: [handle]";

end

Here is the send-event procedure, which sends a custom event to an item:

send-event(i: class item, event: symbol, info: item-or-value)
begin

call g2-send-notification-to-item(i, event, info);
end

Clicking the Subscribe to Custom Event button posts the subscription handle to
the Message Board:

Clicking the Send Custom Event button posts the following information to the
Message Board, including the event type, which is custom-event, and the custom
event name, which is my-custom-event:

Event type

Denotation sequence
1091

Example: Registering Callbacks Remotely Over a
Network Interface

This example shows how to register callbacks in a remote G2 over a G2-to-G2
interface. You can follow a similar procedure to deregister callbacks remotely
over an interface.

To register callbacks remotely over a G2-to-G2 interface:

3 In the remote G2, create a g2-to-g2-interface and configure it with the network
information of the local G2 that will define the subscription procedure:

For example, the g2-to-g2-interface named network-interface connects to the
G2 running on the localhost at port 1111:

4 On the local machine, create a procedure that performs the subscription,
which will be called remotely across the G2-to-G2 interface.

Here is a procedure in the local G2 running on port 1111, which subscribes to
tank changes and uses a remote callback:

Your procedure passes in the remote callback as a symbol to the G2 system
procedure that does the subscription. Compare this to local subscriptions in
which you pass in the callback procedure itself.

Remote G2 (localhost:1112)

Local G2 (localhost:1111)
1092

Examples
This procedure subscribes to level attribute changes in tank-1 and executes the
remote callback when the event occurs. The remote callback name is passed in
as a symbol argument to your procedure. When the remote G2 calls this
procedure, it will provide the name of the remote callback as a symbol
argument.

subscribe-to-tank-changes-with-remote-callback(remote-callback-name: symbol)
val: value;
i: integer;
begin

val = call g2-subscribe-to-item-attributes(tank-1, the symbol level,
remote-callback-name, sequence());

post "return value of tank subscription: [val]";
if val is an integer then

insert val at the beginning of TANK-CALLBACK-HANDLES
else
begin

for i = 0 to the number of elements in val - 1 do
insert val[i] at the beginning of tank-callback-handles
end

end
end

5 In the remote G2, create a remote procedure declaration for the procedure in
the local G2 that performs the subscription.

This remote procedure declaration is for the subscribe-to-tank-changes-with-
remote-callback procedure you saw earlier:

6 In the remote G2, create a callback procedure that is invoked when the
subscription event occurs in the local G2.

This procedure typically makes calls into the local G2 for information about
the item on which the event occurs.

Remote G2 (localhost:1112)
1093

This procedure calls another local procedure named get-item-name-from-
handle across the interface when the event occurs and posts a message to the
Message Board that includes the item name:

remote-callback (event: symbol, host-handle: integer, info: sequence,
new-val: item-or-value, user-data: item-or-value, handle: integer)

item-name: symbol;
begin

item-name = call get-item-name-from-handle (host-handle) across
network-interface;

if event = the symbol MODIFY then
post "The new value is [new-val] for [info] for [item-name]";

end

7 In the local G2, create any other necessary procedures that the remote callback
references, then in the remote G2, create remote procedure declarations for the
procedures.

Here is the local procedure referenced in the remote callback and its remote
procedure declaration in the remote G2:

Remote G2 (localhost:1112)

Local G2 (localhost:1111)

Remote G2 (localhost:1112)
1094

Examples
This procedure gets the item name from the network handle, using G2 system
procedures:

get-item-name-from-handle (handle: integer) = (symbol)
interface: class network-interface;
item: class item;
begin

interface = call g2-current-remote-interface();
item = call g2-get-item-from-network-handle (handle, interface);
return the name of item;

end

8 In the remote G2, create some way to call the local procedure that performs
the subscription across the network interface.

Here is an action button that calls subscribe-to-tank-changes-with-remote-
callback across the network-interface, passing in the name of the remote
callback as a symbol as the argument to the procedure:

9 In the remote G2, call the local procedure.

Clicking the Register Callback in Remote G2 action button causes this
message to appear in the local G2 indicating that the subscription has
been created:

10 In the local G2, execute the subscription event to invoke the remote callback.

This action button changes the value of the level attribute of tank-1 to 10:

Remote G2 (localhost:1112)

Local G2 (localhost:1111)

Local G2 (localhost:1111)
1095

Changing the level in the local G2 invokes the remote callback, which causes
this message to appear in the remote G2:

Example: Registering Callbacks Remotely Over a
G2 Gateway Bridge

This example shows how to register callbacks defined in a G2 Gateway bridge
over a GSI interface.

To register callbacks remotely over a G2 Gateway Bridge:

1 In your G2 application, create a gsi-interface and configure it with the
network information of the local G2 that defines the subscription procedure:

For example, the gsi-interface named bridge-interface specifies the host and
port of the G2 Gateway bridge process and the protocol to use:

2 In your G2 application, create a procedure that performs the subscription,
which will be called remotely from your G2 Gateway bridge.

Here is the same procedure as in the previous example, which subscribes to
tank changes remotely:

Recall that this procedure takes as an argument a symbol, which is the remote
callback name.

Remote G2 (localhost:1112)
1096

Examples
3 Create a G2 Gateway bridge that uses gsi_rpc_declare_local to declare a
local procedure as the remote callback in the gsi_set_up.

void gsi_set_up ()
{

gsi_rpc_declare_local(rpc_remote_callback,
"RPC-REMOTE-CALLBACK");

}

4 Use declare_gsi_rpc_receiver_fn to allow the local procedure that is the
remote callback to receive values from G2.

/* Allow the local procedure that is the callback to receive
values from G2 */

extern declare_gsi_rpc_local_fn(rpc_remote_callback);

5 Define the local procedure that is the remote callback.

/* Remote callback that G2 invokes when an attribute of the tank
changes */

void rpc_remote_callback(gsi_item item_array[], gsi_int count,
call_identifier_type call_index)

{
int i;
/* event: symbol, handle: integer, info: sequence,
new-val: item-or-value, user-data: item-or-value,
callback-handle: integer */

 printf("Event: %s, Item-handle: %d, Level: %d\n",

gsi_sym_of(item_array[0]),
gsi_handle_of(item_array[1]),
gsi_int_of(item_array[3]));

for (i=0;i<count;i++)
gsirtl_display_item_or_value(item_array[i], 0, 0);

}

6 Use gsi_set_sym to tell G2 the name of the remote callback, as a symbol.

/* Tell G2 the name of the remote callback */

 gsi_set_sym(args[0], "RPC-REMOTE-CALLBACK");

7 Use gsi_function_handle_type to create a handle for the remote procedure
in G2 that performs the subscription.

/* Create a handle for the remote procedure in G2 */

gsi_function_handle_type subscribe_to_tank_changes_remotely;
1097

8 Use gsi_rpc_declare_remote to declare a remote procedure for the
procedure in G2 that performs the subscription in the gsi_int gsi_
initialize_context.

/* Declare a remote procedure for the subscription
procedure in G2 */

 gsi_rpc_declare_remote(&subscribe_to_tank_changes_remotely,|
"SUBSCRIBE-TO-TANK-CHANGES-REMOTELY", NULL_PTR, 1, 0,
context);

9 Use gsi_rpc_start to start the subscription procedure remotely from
the bridge in the gsi_int gsi_initialize_context.

/* Start the subscription procedure in G2 */

 gsi_rpc_start(subscribe_to_tank_changes_remotely, args, context);

10 Create an executable for the G2 Gateway bridge.

To run the G2 Gateway bridge that registers callbacks remotely:

1 Invoke the executable for the G2 Gateway bridge you created.

The bridge is ready to accept connections from a G2 application.

2 Establish the connection to the bridge by restarting G2 or by disabling and
enabling the interface object.

The bridge should now be connected to your G2 application, and the
gsi-interface status should be 2.

Recall that the subscribe-to-tank-changes procedure in G2 posts a message to
the message board. Thus, you should see the following message in the G2
Message Board, indicating that the bridge process has invoked the
subscription procedure in G2 remotely.

3 In G2, send an event that will trigger the remote callback.

In our example, this action button changes the level attribute of tank-1, which
is the item whose attribute is registered.
1098

Examples
Changing the level attribute of the tank results in the following output in the
command window that started the bridge. Notice that the callback reports
values that it receives from G2 for the event name, handle, and attribute value.

Event: MODIFY, Item-handle: 1, Level: 2

symbol value MODIFY

Item handle 1

a sequence with 1 elements

a structure with attributes...

TYPE: symbol value ATTRIBUTE

NAME: symbol value LEVEL

integer value 5

a sequence with 0 elements

integer value 0
1099

1100

30
G2 Graphical
Language (G2GL)
Describes G2GL, a graphical language for describing processes.

Introduction 1101

Terms and Concepts 1103

Creating G2GL Processes 1103

Communicating Between G2GL Processes 1139

Interacting with G2GL Processes 1162

Introduction
The G2 Graphical Language (G2GL) provides a self-contained graphical
programming environment for the specification of any type of process. It allows
the execution of processes, including business, industrial, and general reasoning
processes, directly within G2.

The process activities are generally based on the Business Process Execution
Language for Web Services (BPEL4WS or BPEL for short) language. BPEL is an
industry initiative, now managed by OASIS, to establish an effective standard
framework for describing and defining high-level business processes that are
offered as Web services. The following companies are members of the BPEL
technical committee and provide BPEL-inspired products: IBM, Oracle
Corporation, Microsoft Corporation, SAP, BEA Systems Inc., Gensym, and others.
1101

G2GL provides these features:

• Implements most of BPEL and provides expressive power and process
invocation options beyond BPEL, as well as high execution performance, to
support lower-level as well as higher-level process. This means that, unlike
most other BPEL products, developers can do everything at the BPEL level,
rather than having to descend into Java, for example.

• Integrates process modeling, authoring, compilation, execution, animation,
and debugging together in one software environment that can run online as
well as offline, providing large productivity and manageability advantages
over other major implementations of BPEL.

• Integrates with G2 and, thus, can use G2’s powerful domain modeling,
reasoning, real-time data handling, and system integration capabilities.

You can model process flows graphically in G2GL, or you can import them from a
BPEL document. You can also export G2GL process specifications to a BPEL
document. G2GL uses a namespace prefix when exporting G2GL extensions to
BPEL.

G2GL provides many activities that you can use to compose an execution flow.
Typical activities include receiving messages, setting variables on message parts
to the value of expressions, deciding on next steps, invoking external services,
waiting, starting parallel executions, and calling G2 procedures. For example, a
process might receive messages from an external system, evaluate expressions
and metrics, decide next steps, and call external services embedded in COM
objects.

You compile and execute G2GL processes within G2. Multiple G2GL processes
can execute in parallel. A G2GL process integrates fully with G2 procedures,
which means you can invoke G2GL processes from G2 procedures, and you can
call G2 procedures from within a G2GL process. G2GL provides graphical
debugging capabilities for process execution.

G2GL processes are inherently multithreaded, that is, they have built-in logic to
share processing by advancing their execution in fraction-of-a-second time slices.
Contrast this with G2 procedures, which can lock up G2 for up to the time
allowed by the uninterrupted procedure execution limit, which defaults to 30
seconds.

G2GL relies on a variant of the G2 expression language and on G2 procedures to
implement integration mechanisms with G2, COM, JMS, custom SOAP bridges,
and so on.
1102

Terms and Concepts
Terms and Concepts
• BPEL: Business Process Execution Language.

• BPEL4WS: Business Process Execution Language for Web Services Version 1.1
(http://www.oasis-open.org/cover/bpel4ws.html).

• COM: Component Object Model (http://www.microsoft.com/com/)

• WS-BPEL: Business Process Execution Language for Web Services Version 2.0

• WSDL: Web Services Description Language (http://www.w3.org/TR/wsdl).

• XML: Extensible Markup Language.

Creating G2GL Processes
A G2GL process is a graphical representation of a flow chart of activities. You
create the process on the subworkspace of a g2gl-process object as the process
body. The process body consists of activities, local variables, argument variables,
and various types of handlers, as needed to specify the process.

Here is a sample process that shows several features:

You can create G2GL processes that execute a flow chart of activities to perform
calculations, assign values to local variables, create messages, and return values.

Argument variables are
passed into the process
when it is called from a
G2 procedure.

Local variable gets
bound to a value.

Return activity
returns two values.

Assign activity
assigns a value to a
local variable, using
an expression.

While
activity
causes the
process to
iterate,
based on a
condition.
1103

http://www.oasis-open.org/cover/bpel4ws.html
http://www.w3.org/TR/wsdl
http://www.microsoft.com/com/

G2GL processes provide a graphical procedural programming environment, an
alternative to the G2 programming language.

This section describes the G2GL activities that you can use to create arbitrary
process flows. For information on activities that provide communication in a
process, see Communicating Between G2GL Processes.

G2GL processes can declare local variables of various types to which the process
can assign values by using the Assign activity. You use the Assign activity to
make general assignment statements, using the G2GL expression language. The
G2GL expression language provides many of the features of the G2 expression
language, including arithmetic, relational, and logical operators, text expressions,
and symbols. To provide communication, processes can use the Assign activity to
assign variables to message parts.

G2GL processes can define argument variables, which you pass into the process
when it executes by calling the g2-call-g2gl-process-as-procedure system
procedure. G2GL processes can also return values by executing a Return activity.
For more information, see Calling a G2GL Process as a Procedure.

Note You cannot subclass G2GL activity classes.

Using G2GL within the Business Process
Management System Module

The Business Process Management System (BPMS) module, which is part of the
G2 Developer’s Utilities, provides the following extensions to G2GL:

• Windows dialogs and palettes for all G2GL blocks.

• A class hierarchy of G2GL process subclasses to organizes the processes as
detection flows, tests, responses, or orchestration processes. These processes
are automatically organized in the navigator tree view and the Project menu.

• Standard menus, message browser integration, and APIs to invoke the
detection, test, and response processes for a domain object.

• Predefined G2 services that can be called from G2GL processes including
services for interacting with OS processes, performing ping and trace route
operations on a computer, sending email, interacting with databases and files,
creating or querying operator messages and event states, generating SymCure
events, and invoking BRMS rules.

To use G2GL within the BPMS module:

1 Load bpms.kb from the kbs subdirectory of the g2i directory of your G2
bundle installation.

2 To access a toolbox of G2GL blocks, choose View > Toolbox - BPMS.
1104

Creating G2GL Processes
Here are the palettes in the BPMS toolbox:

For more information, see the Business Process Management System Users’ Guide.

Summary of G2GL Activities

Here is a summary of the various types of G2GL activities:

• Activities that execute statements and return values, and that provide
integration with G2 and external systems:

– Assign — Assigns values to one or more local variables within the process.

– Return — Returns one or more values from a G2GL procedure, and can
have one or more G2GL expressions that determine the values.

– Do — Concludes values into attributes of G2 items, can also assign values
to local variables, and can perform any general statements, using the
G2GL expression language.

– Call — Calls a G2 procedure or G2GL process, passing arguments and
receiving return values, which can be assigned to local variables.
1105

• Activities that control the flow of execution:

– Switch Fork — Provides a two-way (yes/no) decision point with an
expression representing the switch condition.

– Switch Join — Brings together, through its top-edge input connections, the
branches of a Switch Fork activity or a group of Switch Fork activities.

– While — Provides iteration in a process, based on an expression
representing the iteration (loop) condition.

– Wait — Has an expression representing a duration or a deadline and waits
until the determined time.

– Flow Split — Splits the process flow into two or more branches, which
execute concurrently.

– Flow Sync — Brings together, through its top-edge in connections, and
synchronizes the branches of a Flow Split activity.

– Flow Discriminator — Brings together the branches of a Flow Split
activity, and goes to the next activity when one of the input process
threads executes.

– N-Out-Of-M Flow Join — Brings together the branches of a Flow Split
activity, and goes to the next activity when n out of m input process
threads execute.

– Flow Terminator — Brings together the branches of a Flow Split activity,
without synchronizing, and goes to the next activity when one of the input
process threads executes, immediately terminating all other incoming
process threads.

– Flow Signal — Provides a cross-branch synchronization signal within a
flow, where the top input connection is from the source activity, the left or
right output connection goes to a Flow Gate activity, and the bottom
output connection, if any, goes to the next activity.

– Flow Gate — Receives a cross-branch synchronization signal within a
flow, where the top input connection, if any, is from the previous activity,
the left or right input connections (one or more) comes from a Flow Signal
activity, and the bottom output connection is to the next activity.

– Empty — Performs no action.

– Exit — Provides an optional abrupt termination activity for any G2GL
process or indicates the normal end of a process.

• Activities that provide fault handling and debugging

– Breakpoint — Creates and displays an individual execution display for a
process, if one does not already exist, and creates a breakpoint, waiting for
the user to click the breakpoint icon before proceeding. This activity does
not prevent other concurrent threads from continuing.
1106

Creating G2GL Processes
– Throw — Throws a fault to the nearest applicable named Fault Handler.

– Compensate — Appears only on the body of a Fault Handler or
Compensation Handler; explicitly invokes the Compensation Handler for
a named Scope.

• Activities with bodies that define scopes and handlers

– Scope — Provides a subordinate process that executes within a process,
where activities within the scope body can refer to and set higher-level
variables.

– Fault Handler — Provides a subordinate process like a Scope, which
handles system-defined faults and user-defined faults that a Throw
activity generates and may specify a fault data argument variable. The
Fault Handler can have a left input connection from an Invoke activity, in
which case it serves a local handler for that activity’s invocation action.

– Alarm Event Handler — Provides a subordinate process like a Scope,
which executes based on a duration or as an alarm clock, similar to a Wait
activity that is always active.

– Message Event Handler — Provides a subordinate process like a Scope,
which asynchronously handles messages with a given operation name as
if it were a Receive activity that is always active.

– Compensation Handler — Provides a subordinate process like a Scope,
which specifies how to compensate for (for example, undo) the work done
by a Scope in case a fault is signalled in a parent Scope after the Scope has
completed successfully.

• Activities that provide communication

– Invoke — Invokes named operations in linked partners; can provide one-
way or two-way communication by sending an operation invocation and
optionally receiving a response message transmission; and can connect to
local fault handlers specific to this activity, using optional right output
connection.

– Receive — Receives messages that an Invoke activity sends and can
instantiate a process by receiving a message.

– Reply — Replies to messages that an Invoke activity sends by sending a
response or fault message to complete a two-way communication.

– Pick — Receives one of several messages sent by Invoke activities;
branches to one of several Receive activities, based on a received message;
can also branch to a Wait activity as a time-out; and can instantiate process
by receiving a message.

– Pick Join — Brings together the branches of a Pick activity.
1107

Creating a G2GL Process

To create a G2GL process, you create an instance of a g2gl-process object or a
subclass, create a subworkspace as the process body, and place the desired types
of objects on the body.

You can create local variables, which the process uses within the process flow.
You can also create argument variables, whose values are passed to the process
when you execute it as procedure. These are analogous to local variables and
procedure arguments in a G2 procedure.

You create and connect various types of activities to describe the process flow and
perform operations within the process body. The process body can also contain
various types of handlers, such as fault and alarm handlers.

For a description of how to configure the attributes of a G2GL process for
debugging, see Debugging G2GL Processes.

For a description of the other attributes, see BPEL Compliance.

To create a G2GL process:

1 Do one of the following:

 Choose KB Workspace > New Object > G2GL-object > G2GL-process.

or

 With bpms.kb loaded, choose View > Toolbox - BPMS, display the General
palette, and choose one of the four types of Workflow Processes: Event
Detection, Test, Response, or Orchestration.

By creating one of these types of processes, you can manage and execute
different categories of processes together.

2 Configure the names attribute of the G2GL process.

Tip To configure the attributes through a properties dialog, with bpms.kb loaded,
switch to any user mode except administrator.

Note The names attribute is required for processes that communicate via partner
links.

3 Choose create subworkspace on the G2GL process object or Show Detail on a
BPMS workflow process.

The subworkspace of the g2gl-process object is the process body.

4 Create and configure g2gl-local-variable and g2gl-arg-variable objects to
specify local variables and argument variables, respectively, for the process.
1108

Creating G2GL Processes
Create variables from the New Object menu or from the Variables palette of
the BPMS toolbox.

Place the argument variables above the local variables at the top of the process
body. The order of the argument variables in the process body determines
their order when passing arguments to the process, where the top-most
variable is the first argument, the next variable down is the second argument,
and so on.

For details on configuring variables, see Creating Local and Argument
Variables.

For information on passing arguments to G2GL processes, see Executing
G2GL Processes.

5 Create, configure, and connect g2gl-activity objects to describe the
process flow.

For details, see:

• Creating G2GL Processes.

• Communicating Between G2GL Processes.

6 Create and configure g2gl-activity-with-body objects to define scopes
and handlers.

For details, see Defining Scopes and Handlers.

7 Choose Redo Layout on the body of a G2GL process to aesthetically
reconfigure the variables and activities, as needed.

The Redo Layout menu choice places argument variables at the top of the process
body, local variables below the argument variables, handlers below the variables,
and flow chart activities below the handlers.

To redo the layout programmatically, use the g2-system-command system
procedure, which is described in User Interface Operations in the G2 System
Procedures Reference Manual.

The first argument is the symbol redo-layout. The item argument is a G2GL body,
that is, the subworkspace of a g2gl-process or g2gl-activity-with-body.
For example:

start g2-system-command
(the symbol redo-layout, my-g2-window, bpel-flow-with2-loops-body,
the symbol none)
1109

Creating Local and Argument Variables

You declare local variables in G2GL process bodies to hold data. You can also
declare argument variables to a G2GL process that is used as a procedure. You
pass in these arguments by calling the g2-call-g2gl-process-as-procedure system
procedure.

Place the argument variables above the local variables at the top of the process
body. The order of the argument variables in the process body determines their
order when passing arguments to the process, where the top-most variable is the
first argument, the next variable down is the second argument, and so on.

The local and argument variables types are:

• general — Accepts any item or value.

• float — Floating point values.

• integer — Integer values.

• truth-value — True or false.

• text — Text strings.

• symbol — G2 symbols.

• sequence — G2 sequences.

• structure — G2 structures.

• class class-name — Class names, where class-name is any G2 class.

For information on passing arguments to a process, see Executing G2GL
Processes.

For information on partner link variables and correlation variables, see
Communicating Between G2GL Processes.

To create a G2GL variable:

1 Do one of the following:

 Choose KB Workspace > New Object > G2GL-object > G2GL-local-
variable or G2GL-arg-variable.

or

 With bpms.kb loaded, choose View > Toolbox - BPMS, display the
Variables palette, and choose a variable.

Place the variable on a G2GL process body above the flow chart.

The argument variables must be at the top in the order in which they are
passed into the process.

2 Configure the names attribute to name the local variable.
1110

Creating G2GL Processes
3 Configure the g2gl-variable-type to be any of the above variable types.

4 Optionally, configure default-value-for-g2gl-variable to be the initial value for
the variable, which must match its type.

The default value type must correspond with the variable type.

For example, here is an integer variable with an initial value of 0:

Here is an argument variable of type general:
1111

G2GL Expressions

Numerous activities use G2GL expressions. A G2GL expression is similar to a G2
expression in that it can be a local variable, arithmetic expression, time
expression, truth-value expression, text expression, or symbolic expression.
However, note that the G2GL expression language is separate from the G2
expression language.

For example, you use G2GL expressions to determine:

• Variable values in an Assign activity.

• Return values in a Return activity.

• Concluded attribute values of items in a Do activity.

• Iteration condition of a While activity.

• Duration or deadline expression of a Wait activity.

• Switch Fork condition of a Switch Fork activity.

A g2gl-expression is any of the following expressions, which can be used in these
contexts:

Expression Example Description

Any G2GL expression Any of the following
expressions

Used in any context that
accepts a g2gl-expression

arithmetic-expression a * b - c + d / e

(a * (b - c) + d) / d

a ^ b

where a, b, c, d, and e are
variable names, integers,
floats, or a time-expression

Used when assigning
values to integer or float
variable types.

For information about the
precedence order of
arithmetic expressions, see
Using Operators in
Expressions.
1112

Creating G2GL Processes
time-expression the current subsecond time

the current subsecond real time

the current time

the current real time

the current system time

the current system real time

the current time + 10 seconds

10 seconds

2 hours and 10 seconds

5 days, 2 hours, and 10 seconds

Used when assigning
values to float or integer
variable types or anywhere
that the syntax accepts a
time-expression.

The G2GL time expressions
are analogous to the G2
time expressions with the
same syntax. For more
information, see Referring
to the Current Time.

truth-expression true

false

(a > b) and (c <= d)

Used when assigning
values to truth-value
variable types.

"text" "here is some text"

"Random = [random(100)]"

Used when assigning
values to text variable
types.

the symbol symbol-name the symbol 123-abc Used when assigning
values to symbol variable
types.

sequence-expression sequence(1,2,3) Used when assigning
sequence variable types.

sequence-element my-sequence[0]

my-sequence[1][2]

Used for accessing
elements of a sequence.

structure-expression structure
(name: tasha
birthday: 112760)

Used when assigning
structure variable types.

if truth-expression then
g2gl-expression else
g2gl-expression

(if (a > b) then (c = 10)
[else (c = 20)])

Used in any context that
accepts a g2gl-expression.

Expression Example Description
1113

G2GL Statements

The following sections describe the various types of G2GL statements that you
can use.

General Variable Assignment Statements

To assign a value to one or more local variables, use this syntax:

variable-name = g2gl-expression[; variable-name = g2gl-expression] . . .

For example:

i = i + 1

i = i + 1; j = j + 1

i = true

i = “hello world”

i = the symbol red

i = sequence (the symbol julian, the symbol simon)

i = structure(person: the symbol julian, birthday: 090987)

You use the Assign activity to make general variable assignment statements.

the message-part of
message-variable-name

credit-rating = the credit-rating of
credit-report

the credit-rating of credit-report =
the symbol good

Used when getting or
setting the value of a part of
a message bound to a
variable.

For more information, see
Message Part Assignment
Statements.

the attribute-name of item the my-attr of item-1 Used for referencing G2
item attributes. You pass
G2 items as arguments to
the process or provide
them as return values from
G2 procedure calls.

this process this process Returns the current
g2gl-process.

function (arguments) average (11, 27, 60)
my-func (11, 27, 60)

Calls any of the G2 system-
defined functions or any
user-defined function.

Expression Example Description
1114

Creating G2GL Processes
Message Part Assignment Statements

G2GL processes communicate with each other and with Web services by using
message structures containing XML data. A Web service message has a set of
message parts, represented as the attributes of a structure.

To assign a value to a message part, use this syntax:

the message-part of message-variable-name = g2gl-expression

where:

• message-part is an attribute name.

• message-variable-name is a variable that is either uninitialized or is bound to a
Web service message structure.

• g2gl-expression is an expression whose value is a text, an XML element value,
or a sequence of texts and/or XML element values.

An XML element value is a structure representing an XML element with this
syntax:

structure
(tag-name: text,
attributes: structure,
children: sequence)

where:

• tag-name is the element tag name. This attribute is required.

• attributes is a structure containing named attribute values, which are texts.
This attribute is optional.

• children is a sequence of XML elements and/or texts. This attribute is
optional.

Attribute names with hyphens correspond to XML names with mixed case. For
example, a structure attribute named my-attribute corresponds to an XML
attribute named myAttribute.
1115

For example, this XML text:

<elt attrName="attrValue">
<child>text1</child>
text2

</elt>

corresponds to this XML element value:

structure (tag-name: "elt",
attributes: structure (attr-name: "attrValue"),
children: sequence
(structure (tag-name: "child",

 children: sequence ("text1")),
"text2"))

You can use the Assign activity or the Do activity to make message part
assignment statements.
1116

Creating G2GL Processes
Assigning Values

You use the Assign activity to set local variables to values.

Assigning Variables to General Value Types

To assign values to any of the standard types of variables (general, float, integer,
truth-value, text, or symbol), you configure the g2gl-assignments attribute of the
Assign activity to be a general variable assignment statement.

For details, see General Variable Assignment Statements.

For example, this Assign activity sets the variable i to the value of the expression
i + 1:

Sets the variable named i
to the value of i + 1.

Variable whose value the
process increments.
1117

Working with Message Parts

A process flow might require setting a variable to the value of a message part or
assigning values to message parts. You do this by configuring the
g2gl-assignments attribute of the Assign activity to be a message part assignment
statement.

For details, see Message Part Assignment Statements.

For example, a credit rating process might set the credit-rating variable to the
value of the credit-rating attribute of the credit-report message variable. The
process might also assign a value to the credit-rating attribute of the credit-report
message variable.

This example shows how to assign the value of a variable to a message part. The
Assign activity assigns the value of the attribute-value variable to the message-
attribute of m-1.

Assigns the attribute-
value variable to a
message part.

Message variable.
1118

Creating G2GL Processes
Returning Values

A process can return one or more values when it is finished executing by
including a Return activity. To specify the values to return, you configure the
g2gl-values-expression to be one or more G2GL expressions, separated by
commas:

g2gl-expression[, g2gl-expression]

The Return activity has one input connection and can have one output
connection, for example, to connect to a Switch-Join or Flow-Sync.

To obtain the return values, you call the g2-call-g2gl-process-as-procedure
system procedure. The number of return values that you get when you call the
system procedure with return values will match the number of return values
specified in the Return activity.

This example shows a simple process that increments the value of a local variable
named i and returns the value of i:

For information on calling a process as a procedure with return values, see
Executing G2GL Processes.

Returns the value of
the variable named i.

Variable whose value
the process returns.
1119

Interacting with G2 Items

You use these activities to execute statements that interact with G2 items:

• Do activity — Concludes values for G2 items.

• Call activity — Calls a G2 procedure.

Concluding Values for G2 Items

You use the Do activity to conclude attribute values for G2 objects, just as you
would by using the conclude action in a G2 procedure. To conclude values for G2
objects, you configure the g2gl-statements attribute of the Do activity include one
or more statements of the form:

conclude that the attribute-name of item = g2gl-expression

For example:

conclude that the my-attr-1 of my-object-1 = 27

Using the Do activity to conclude attributes of G2 items triggers whenever rules
and forward chaining, and updates table attributes, just like using the G2
conclude action. You can use the conclude expression in a Do activity to conclude
user-defined and system-defined attributes.

You can also use the Do activity to execute any type of assignment statement that
you can with the Assign activity. For more information, see Assigning Values.

Calling G2 Procedures

You use the Call activity to call a G2 procedure or method from within a G2GL
process, with or without arguments. If the procedure has return values, you can
set the value of local variables within the G2GL process to the return values of the
G2 procedure. To call a G2 procedure, you configure the g2gl-procedure-call-
statement to be a statement of this format:

return-values-list = call g2-procedure-name (arguments-list)
1120

Creating G2GL Processes
where:

• return-values-list is an optional list of one or more return values for the
procedure, separated by commas, where each return value is:

– variable-name

or

– the message-part of message-variable-name

• g2-procedure-name is the name of a G2 procedure.

• arguments-list is an optional list of one or more G2GL expressions, which are
arguments to the procedure, separated by commas. You can use an if-then-
else statement in the argument list.

Here are some examples:

i, j = call my-proc (x)

the customer-name of customer-info, the id of customer-info = call my-proc (x)

a, b = call my-proc (if (i > j) then 12 else 13)

This example shows a process with two G2 procedure calls, using the Call
activity. The first Call activity takes one argument and returns two values, and the
second Call activity takes two arguments.
1121

The g2gl-procedure-call-statement attributes for each Call activity are:

my-var, my-text = call my-proc (my-var)

call my-proc2 (my-var, my-text)

Here are the two procedures that the Call activities call. The my-proc procedure
takes an integer as argument and returns an integer and a text. The my-proc2
procedure takes an integer and a text as arguments and returns no values.

Using Flow-Related Activities

A process flow can have various types of flow-related activities, which control the
flow of execution within the process. These activities typically have multiple
input and/or output connections. The flow-related activities are:

• Switch Fork and Switch Join activities support alternative branching.

• While activity provides iteration.

• Flow Split, Flow Sync, Flow Discriminator, Flow Terminator, and
N-Out-Of-M Flow Join activities support concurrency branching with and
without synchronization.

• Flow Signal and Flow Gate activities support concurrency branching with
synchronization.

• Exit activity abruptly stops the flow of execution.
1122

Creating G2GL Processes
Switch Fork and Switch Join

You use the Switch Fork activity to provide a two-way decision point in a flow.
You configure the switch-fork-condition to be a G2GL expression that returns a
truth value to determine which branch to take.

The activity has one input connection and two output connections. The bottom
output connection is the true branch, and the right output connection is the false
branch.

The Switch Join activity brings together the true and false branches of a Switch
Fork activity. The activity has input connections from all the branches of a group
of Switch Fork activities, but it has only a single output connection. The activity
has no attributes to configure.

This example shows a simple process with a single Switch Fork and Switch Join
activity. The Switch Fork tests the value of the variable i and increments its value
by one on the false branch. The process loops until the variable exceeds 10, then it
assigns the variable keep-going to false as the true branch.

true

false
1123

This example has two Switch Fork activities and a single Switch Join activity,
where the right (false) output connection of SF-1 goes to another Switch Fork
activity. The left and middle input connections to the Switch Join activity are the
true branches from each of the two Switch Fork activities, and the right input
connection is the false branch of SF-2.
1124

Creating G2GL Processes
While

You use the While activity to perform iteration in a process. You configure the
while-iteration-condition to be a G2GL expression that returns a truth value to
determine whether to continue iterating. The expression might contain logical
operators and if-then-else expressions, for example:

i < 10 and j < 100

if (i < 10) then (j < 100) else (k < 100)

The activity can have one input connection on the top that comes from a
preceding activity. The right output connection is the true branch, which must
loop back into the activity on the right input connection. The bottom output
connection, if any, goes to the next activity. As long as the iteration condition
remains true, the process continues the loop. When the iteration condition
becomes false, iteration is finished.

For example:

true (loop)

false
1125

Flow Split, Flow Sync, Flow Discriminator, N-Out-Of-M Flow Join, and
Flow Terminator

A process might require that the flow of execution splits so that separate threads
can run concurrently before rejoining back into a single thread. You use the Flow
Split activity to create multiple execution threads that run in parallel. A Flow Split
activity can have any number of output connections.

You must use one of these activities to rejoin concurrent threads that have been
split, depending on when the following activity should execute:

• The Flow Sync activity synchronizes the execution of all concurrent threads.
Process execution waits until all concurrent threads that had been split are
rejoined before continuing with a single thread of execution.

• The Flow Discriminator activity merges the execution of multiple concurrent
threads, without synchronizing. Process execution continues when one of the
concurrent threads executes.

• The N-Out-Of-M Flow Join activity merges the execution of multiple
concurrent threads and performs partial synchronization. Process execution
continues when n out of m execution threads execute, where n is specified by
the number-of-branches-to-synchronize attribute of the activity, and m is the
number of branches coming into this activity.

• The Flow Terminator activity merges the execution of multiple concurrent
threads and terminates all active, incoming execution threads when any one
of the threads executes.

Note The Flow Discriminator and N-Out-Of-M Flow Join activities are not permitted
within a While activity on the same body; however, they can occur within a scope
body within a While activity.

Note If a process body, either at the top level or in a scope, has threads that are still
executing when the overall final activity is reached on the main thread of
execution, the execution of the body waits and does not end until all those threads
have finished executing, that is, until they have reached their terminal flow join.
1126

Creating G2GL Processes
This example shows a Flow Split activity that splits a single execution thread into
two separate threads, which rejoin at a Flow Sync activity:

Flow Signal and Flow Gate

A Flow Signal activity is the start of a synchronization link, which synchronizes
two activities in a process. The Flow Signal connects to a Flow Gate on some other
branch of the process flow, which is the end of the synchronization link.

Assuming no transition or join conditions are specified, when the Flow Signal
executes, it sends a signal to the Flow Gate. A Flow Gate waits until it receives a
signal from all connected Flow Signals before it lets the thread of execution
proceed to the next activity.

The Flow Signal activity has an input connection from a source activity, and two
output connections. The left or right output connection goes to a left or right input
connection of a Flow Gate, and the bottom output connection goes to the next
activity in the process.

The Flow Gate activity can have any number of input connections and has one
output connection. The top input connection is from a source activity. The left or
right input connections come from the left or right output connection of Flow
Signal activities. The bottom output connection goes to the next activity.

When a Flow Signal activity executes, it determines its status before sending the
signal. The status is either positive or negative. You can configure the flow-signal-
transition-condition attribute to be a G2GL expression that returns a truth-value to

The execution thread splits
into two concurrent threads...

...which are then synchronized
into a single execution thread.
1127

determine the signal status. If the expression evaluates to true or if the attribute is
unspecified, the status of the Flow Signal is positive; otherwise, its status is
negative.

When a Flow Gate has received a signal from all connected Flow Signal activities,
it checks the g2gl-join-condition, which is a G2GL expression that returns a
truth-value. If the expression evaluates to true, then the next activity is executed;
otherwise, the next activity is not executed. If the g2gl-join-condition is
unspecified, the Flow Gate checks the status values of the signals. If at least one
status value is positive, then the next activity is executed; otherwise, the next
activity is not executed.

By default, if the g2gl-join-condition expression evaluates to false, or if the
g2gl-join-condition is not specified and all the status values of the connected Flow
Signal activities are negative, a join-failure fault is thrown. You can also set the
suppress-join-failure attribute of the Flow Gate to yes, in which case the join-
failure fault is not thrown and instead execution continues with the activity that
follows the activity connected to the Flow Gate.

For information on catching faults, see Handling Faults.

The g2gl-link-name attribute of a Flow Signal is not currently supported.
1128

Creating G2GL Processes
This figure shows two pairs of Flow Signal and Flow Gate activities. The left
branch handles shipping requests, the middle branch handles invoicing, and the
right branch handles scheduling. The Flow Signal activities in the shipping thread
send signals to the connected Flow Gates, which wait to execute the following
activities until they receive the signals.

This Flow Signals send
a signal to the connected
Flow Gates in another
branch of the process.

The Flow Gate waits to
execute the following
activity until it receives
a flow signal.
1129

Exit

If the process needs to terminate abruptly at any point, you can use the Exit
activity. You can place the Exit activity anywhere within the process, including
within a Scope activity of arbitrary depth to exit at that point, for example, on one
of several branches.

Although you can place the Exit activity at the bottom of the flow of execution in
a process body to exit without returning any values, this technique is not
recommended or necessary.

The Exit activity has one input connection. It has no attributes to configure.

Defining Scopes and Handlers

In G2GL, you can have scope activities, which have bodies that specify
subprocesses. You can also have scope-like fault, alarm event, message event, or
compensation handlers.

G2GL provides several types of scopes, which are all subclasses of g2gl-activity-
with-body:

• Scope — An activity with a body that defines a subprocess within a higher-
level process.

• Fault Handler — A handler for named faults, which catches system-defined
faults or user-defined faults that a Throw activity throws.

• Alarm Event Handler — A handler for alarms, which executes based on a
duration or deadline expression.

• Message Event Handler — A handler for message events, which an Invoke
activity sends and a Receive activity receives.

• Compensation Handler — Specifies how to compensate for (for example,
undo) the work done by a Scope in case a fault is signaled in a parent Scope
after the Scope has completed successfully.

You can reference local variables that are defined within the scope or that are
defined in the higher-level process that defines the scope. Local variable values
defined within the scope override local variable values defined in the higher-level
process.

For more information about Message Event Handlers, see Handling Message
Events.
1130

Creating G2GL Processes
Defining Scope Activities

You use a Scope activity to define a subprocess within the overall process.
Activities within the Scope activity can refer to local variables within the
subprocess or in the process that defines the Scope activity. Local variables within
the Scope body override local variables in the high-level process.

To define a scope within a process:

1 Do one of the following:

 Choose KB Workspace > New Object > G2GL-object > G2GL-activity-with-
body > G2GL-scope.

or

 With bpms.kb loaded, choose View > Toolbox - BPMS, display the General
palette, and create a Scope activity.

Place it within the body of a G2GL process.

2 Connect the Scope activity to other activities in the process.

3 Create a subworkspace for the Scope activity and configure the body as
needed to define the local scope.

The activities in the body of the Scope can refer to local variables in the Scope
body or in the superior process.

Note The variable-access-serializable attribute is not implemented in this release.
1131

Here is a process that defines a Scope. The high-level process defines three local
variables, i, j, and k. The Scope body assigns local variables defined in the body, as
well as in the superior process. The Scope defines a Fault Handler, which assigns
values to variables defined in the superior process.

For information on the Fault Handler, see Handling Faults.
1132

Creating G2GL Processes
Handling Faults

You use a Fault Handler to handle certain kinds of faults that might arise during
execution of a process, typically by undoing the actions of an incomplete and
unsuccessful execution of a process. When a fault is signaled during execution,
the execution thread is terminated, and if a matching fault handler is specified,
the specified fault handler executes to handle the fault.

A Fault Handler can handle user-defined faults, which a process throws by using
the Throw activity. The Throw activity specifies a fault name and fault data,
which are used to match against a Fault Handler that should catch the fault. The
Fault Handler can have a g2gl-arg-variable on its body. The Fault Handler only
handles faults that have fault data whose type matches the type of the g2gl-arg-
variable. The value of this g2gl-arg-variable is copied from the g2gl-variable
specified in the fault-data-g2gl-variable-name attribute of the Throw activity.

A Fault Handler can also handle system-defined faults. An example of a system-
defined fault is join-failure. System-defined faults never have fault data. To catch
all faults, use catch all.

Note The system-defined faults are formatted with hyphens in G2GL, whereas in BPEL
they are formatted similar to this: joinFailure.

For processes that provide communication, you can connect an Invoke activity to
a Fault Handler, in which case the Fault Handler is local to the Invoke activity.
The activities on the body of the Fault Handler are executed when a fault occurs
while invoking the named operation.

Activities within the Fault Handler can refer to local variables within the
subprocess or in the process that defines the Fault Handler.

To handle faults in a process:

1 Do one of the following:

 Choose KB Workspace > New Object > G2GL-object > G2GL-activity-with-
body > G2GL-handler > G2GL-fault-handler.

or

 With bpms.kb loaded, choose View > Toolbox - BPMS, display the General
palette, and create a Fault Handler activity.

Place it at the top of the body of a G2GL process.

2 To provide a local Fault Handler for an Invoke activity, choose add stub for
local handler on the Fault Handler to create a left-side input stub and connect
it to the right side of an Invoke activity.
1133

3 Configure the g2gl-fault-name in the Fault Handler to be a system-defined
fault or any user-defined fault, for example, handle-fault.

4 Create a subworkspace for the Fault Handler and configure the body of the
handler, as needed to handle the fault.

Here is a Fault Handler that catches a fault named handle-fault, which the Throw
activity throws.

Handling Alarm Events

An Alarm Event Handler is similar to a Message Event Handler except that it
executes based on a duration or deadline expression, similar to a Wait activity.

For more information on duration and deadline expressions, see Wait.

For more information on Message Event Handlers, see Handling Message Events.

To handle alarm events in a process:

1 Choose KB Workspace > New Object > G2GL-object > G2GL-activity-with-
body > G2GL-handler > G2GL-event-handler > G2GL-alarm-event-handler
and place it at the top of the body of a G2GL process.

2 Configure the type-of-g2gl-alarm-time-expression in the Alarm Event Handler
to be either duration-expression or deadline-expression.

3 Configure the duration-or-deadline-expression to be a time-expression that
represents the specified type of expression, either a duration or a deadline.

The Throw activity
throws the fault named
handle-fault, which the
Fault Handler catches.
1134

Creating G2GL Processes
4 Create a subworkspace for the Alarm Event Handler and configure the body
of the handler, as needed to handle the alarm.

Compensating for Faults

The compensation mechanism in G2GL supports transaction-based computing. A
Compensation Handler on a Scope body specifies how to compensate for (for
example, undo) the work done by that Scope in case a fault is signaled in a parent
Scope after the Scope has completed successfully. A Scope completes successfully
if it finishes executing without signaling a fault. Even if a signaled fault is handled
by a Fault Handler in that Scope, the Scope is not considered to have completed
successfully.

When a Compensation Handler is invoked, the activities on its body are executed.
All variables in the handler’s Scope and its ancestor Scopes are temporarily
restored to their values at the time when the Scope completed successfully.

A Compensation Handler can be invoked in one of two ways:

• Explicitly by a Compensate activity in a Fault Handler or Compensation
Handler in the parent Scope.

• Implicitly if there is no applicable Fault Handler or no Compensation Handler
in the parent Scope.

By default, a Compensate activity in a Fault Handler or Compensation Handler
body invokes the Compensation Handlers for all Scopes that completed
successfully in the same body as the handler, in reverse order of their completion.
Alternatively, you can configure the scope-name-for-compensate-activity to be
the name of a specific Scope in the same body as the handler; the Compensate
activity will then only invoke the Compensation Handler on the body of that
Scope.

If the named Scope did not complete successfully or if its Compensation Handler
was already invoked, then its Compensation Handler is not invoked, and the
Compensate activity does nothing.

If the named Scope completed successfully multiple times because it was inside a
While loop, its Compensation Handler is invoked once for each completion, in
reverse order.

If there is no applicable Fault Handler in a Scope when a fault is signaled, all
Compensation Handlers in Scopes that have completed successfully in that Scope
are invoked, in reverse order of their completion, before the fault is propagated to
the parent Scope. If there is no Compensation Handler in a Scope that is being
1135

compensated, all Compensation Handlers in Scopes that have completed
successfully in that Scope are invoked, in reverse order of completion. If a Fault
Handler or Compensation Handler has no Compensate activities, then the Scopes
on the same body as the handler will not be compensated. In other words, implicit
compensation only happens if there is no applicable Fault Handler when a fault is
signaled or no Compensation Handler when a Scope is compensated.

An Invoke activity may be connected to a Compensation Handler with a right-
side output connection. This is equivalent to the Invoke activity being inside its
own Scope with the Compensation Handler being on that Scope body.

Handling Message Events

You use Message Event Handlers with processes that provide communication.
For more information, see Handling Message Events.

Miscellaneous Activities

Wait

You use the Wait activity to provide a duration or a deadline expression that
causes the process to wait for a period of time. You configure the type-of-g2gl-
expression-in-wait-activity to be either duration-expression or deadline-
expression, and the duration-or-deadline-expression to be a time-expression.

A duration expression is the amount of time to wait before proceeding to the next
activity. A deadline expression is an absolute time at which to proceed to the next
activity, which you can express in terms of the current real time.

For example, this example waits for 1 second:
1136

Creating G2GL Processes
Empty

The Empty activity performs no action.

Debugging

Breakpoint

You use the Breakpoint activity to add a permanent breakpoint to a process for
debugging. The flow stops at the Breakpoint activity and shows an individual
execution display with a breakpoint at the activity. To continue, click the
breakpoint.

For more information about working with individual execution displays and
continuing from breakpoints, see Debugging G2GL Processes.

Throw

You use the Throw activity to signal a named fault. You configure the fault-name-
for-throw to be the named fault to throw. Optionally, you configure the fault-data-
g2gl-variable-name to be the name of a g2gl-variable whose value is to be used as
fault data.

If break-on-execution-fault is true for the individual process or if break-on-all-
execution-faults is true in the G2GL Parameters system table, an individual
execution display appears with a breakpoint at the Throw activity.

You can configure a Fault Handler to catch the named fault, as needed. The Fault
Handler can have a g2gl-arg-variable on its body. The value of this g2gl-arg-
variable is copied from the g2gl-variable specified in the fault-data-g2gl-variable-
name activity of the Throw activity.

For more information about fault handlers, see Handling Faults.
1137

This example throws a fault named handle-fault:

Summary of Differences Between G2GL and BPEL
Activities

This table summarizes which G2GL activities are standard BPEL, which are G2GL
extensions to BPEL, and which have somewhat different behavior than standard
BPEL activities.

G2GL Activity Description

Assign Standard BPEL

Return G2GL extension

Do G2GL extension

Call G2GL extension

Switch Fork/
Switch Join

To implement a BPEL switch activity might require
several Switch Fork activities.

While Standard BPEL

Wait Standard BPEL
1138

Communicating Between G2GL Processes
Communicating Between G2GL Processes
G2GL provides communication between two linked partner processes via a
partner link, which is a connection between two partner processes. A partner is a
series of connected elements that mediate communication between two linked
partners.

Partners communicate at the most basic level through message transmissions,
which are combinations of named operations and messages. In general, a message
transmission involves one partner that invokes the operation, and another partner
that receives the message transmission and possibly replies to the partner that
invoked the operation. You can think of a message transmission as an RPC call,
where the message that one partner sends and the other partner receives is the
argument to the RPC call.

The partner that invokes the operation creates a message and assigns it to a local
variable. The partner that receives the message transmission assigns a local
variable to the received message.

You represent partner links in a process as partner link variables, which are
specialized process variables that can get bound to partner links. When a partner
link variable is bound, its value is one of the two end elements of the partner link,

Flow Split/
Flow Sync

G2GL provides separate activities for splitting and
synchronizing the flow of execution, whereas BPEL
specifies a single flow activity, which contains the
concurrent activities as subactivities.

Flow Discriminator/
N-out-of-M Flow Join/
Flow Terminator

G2GL extension.

Flow Signal/
Flow Gate

G2GL breaks out the Flow Signal and Flow Gate
activities as separate activities, whereas BPEL
specifies these as properties of arbitrary other
activities.

Empty Standard BPEL

Exit Standard BPEL Terminate activity.

Breakpoint G2GL extension.

Throw Standard BPEL

Compensate Standard BPEL

G2GL Activity Description
1139

which not only represents the partner link as a whole, but also identifies which
end of it belongs to a particular process.

For example, in a purchase order fulfillment process, two partners might be
linked via a purchasing partner link. To establish communication, you instantiate
the partner process that invokes the process-purchase-order operation with the
purchase-order message transmission. The partner link is established when the
partner process receives the purchase order message for the invoked operation,
which instantiates the linked partner process.

Invocation

At the heart of all communication is the Invoke activity, which invokes a named
operation with a message across an established or newly created partner link.
Typically, you use the Invoke activity to provide two-way synchronous
communication by invoking an operation with a message and waiting for a
response as part of the same activity. The Invoke activity specifies the partner link
variable, the named operation, the message to send, and the message variable in
which to receive the response message.

You use the Receive activity to receive messages that the Invoke activity sends
across a partner link. The Receive activity identifies the message to receive by
referring to the named operation sent by the Invoke activity and the partner link
variable. It also specifies a message variable in which to receive the sent message.

You use the Reply activity to send a response by specifying the partner link
variable, the named operation sent by the Invoke activity, and the message
variable whose value is set to the message to send in response.

You can also use the Pick activity and the Message Handler activity to receive
messages that the Invoke activity sends. These activities use the received message
in different ways.

The Receive activity and the Pick activity are both instantiation triggers, which
means if they are the first activity in the flow chart, they can trigger the
instantiation of the process. Invoking the named operation for an instantiation
trigger establishes a partner link between two partner processes.
1140

Communicating Between G2GL Processes
This table describes the required activities and specifications for two-way
synchronous communication:

Activity Specification Description

Invoke partner link variable name
operation name
message variable name
response message variable

A partner invokes a named operation with
a given message and partner link to send
the message, then waits for a response as
part of the same operation. It sets the
value of the response message variable to
the message received in response.

Receive partner link variable name
operation name
message variable name

A partner receives a message that the
Invoke activity sends. The Receive activity
identifies the message to receive by the
named operation that sent the message
and the partner link. It sets the value of
the specified message variable to the
received message.

Reply partner link variable name
operation name
message variable name

A partner sends a response message to a
message that the Invoke activity sends
and the Receive activity receives. The
Reply activity identifies the message to
send in response by the named operation
that sent the message and the partner link.
The specified message variable must be
set to the message to send in response.
1141

The following figure shows two-way communication between two partners that
participate in the purchasing partner link. P1 invokes the process-purchase-order
operation with the p-o message, which sends the message to the linked partner. P2
receives the p-o message that P1 sends. P2 then sends an invoice message in
response as part of the same operation. You specify the partner link variable, the
named operation, and the message variable for the Invoke, Receive, and Reply
activities, and you specify the response message variable for the Invoke activity.

(process) (process)

Invoke

partner link variable: purchasing-1
operation: process-purchase-order
message variable: p-o-1
response message variable: invoice-1

Receive

partner link variable: purchasing-2
operation: process-purchase-order
input message variable: p-o-2

Reply

partner link variable: purchasing-2
operation: process-purchase-order
message variable: invoice-2

2

1

P1 P2
process-purchase-order

process-purchase-order

+
p-o

+
invoice
1142

Communicating Between G2GL Processes
BPEL Compliance

To simplify the specification of processes that communicate, G2GL only requires
that you specify the partner link variable, without declaring its type, the named
operation to invoke, and the message to send or receive. G2GL does not require
partner link type definitions to invoke named operations with message types
across a partner link.

In a future release, G2GL will support the BPEL-compliant specification for
communication between two G2 processes, including partner link type
definitions, port type definitions, roles, correlation variables, and correlation sets.

To configure a process to provide communication by using the simplified G2GL
specification, configure the following attributes:

Attribute Object Description

suppress-
unspecified-partner-
link-variable-type-
faults

G2GL
Parameters
system table

Set this value to yes to suppress faults when
partner link variables do not specify a
g2gl-variable-type.

names-of-g2gl-
service-switches-for-
instantiation

G2GL process Use the default value, which is none, to use the
simplified G2GL method of communicating
between processes.

name-of-g2gl-service-
switch-for-connection

G2GL process Use the default value, which is g2gl-standard-
service-switch, to use the simplified G2GL
method of communicating between processes.

g2gl-variable-type Partner link
variable

Set this value to unspecified to provide
communication without requiring a partner link
variable type definition.

g2gl-port-type Invoke,
Receive, and
Reply
activities

Set this value to unspecified to provide
communication without requiring a port type
definition.

g2gl-correlations Invoke,
Receive,
Reply, and
Message
Event
activities

Set this value to none to provide communication
without requiring correlation variables.
1143

Creating Processes that Communicate

To create two-way communication, you use these types of objects:

• Partner link variables — Get bound to a representation of the partner link
that links the two partners.

• Message variables — Local variables that are set to messages, which
represent the messages to send and/or messages received.

• Invoke activity — Invokes a named operation with the value of a message
variable, response message variable, and partner link variable.

• Receive activity — Receives messages sent by an Invoke activity.

• Reply activity —Sends responses to an Invoke activity with a given named
operation and message, along a partner link.

Corresponding activities in each side of a partner link must use the same
operation name. To provide communication, one process invokes operations that
send messages, and the other process receives and optionally responds to
received messages. Thus, one process specifies the Invoke activity, and the other
process specifies the Receive activity, and optionally, the Reply activity.

The following sections describe how to create a process that provides two-way
communication. One-way communication is similar but only requires the Invoke
and Receive activities.

Creating Partner Link Variables

A partner link variable gets bound to one end of a partner link. Activities within
each linked process refer to the partner link variable in their specification.

In G2GL, partner link variables do not require a type declaration to establish a
partner link. For more information, see BPEL Compliance.

To create a partner link variable:

1 Create a g2gl-process and show its subworkspace.

For more information, see Creating a G2GL Process.

2 Do one of the following:

 Choose KB Workspace > New Object > G2GL-object > G2GL-partner-link-
variable.

or

 With bpms.kb loaded, choose View > Toolbox - BPMS, display the
Variables palette, and create a partner link variable.

Place the partner link variable at the top of the subworkspace of the G2GL
process.
1144

Communicating Between G2GL Processes
3 Configure the names attribute to describe the partner link, for example, pl-1.

4 Create another g2gl-process with which the first process should
communicate.

5 Create and configure another partner link variable for the linked process,
for example, pl-2.

For example, here are two processes named p1 and p2 with partner link variables
named pl-1 and pl-2:

Invoking an Operation that Sends a Message

To invoke an operation, you use the Invoke activity. For one-way communication,
you specify the partner link variable, the operation name, and the message
variable that is the message to send. You can think of the message variable as the
argument to the named operation.

The Invoke activity does not require a port type or correlations to invoke
operations. For more information, see BPEL Compliance.

To invoke an operation that sends a message:

1 Create a g2gl-invoke activity, place it on the body of a G2GL process.

2 Configure the g2gl-partner-link-variable-name of the Invoke activity to be a
partner link variable, for example, pl-1.

3 Configure the g2gl-operation-name to be any named operation to invoke, for
example, p2-operation.
1145

4 Configure the g2gl-message-variable-name to refer to a message variable
whose value is set to the message to send when the operation is invoked, for
example, m-1.

5 Configure the g2gl-port-type as unspecified.

For more information, see BPEL Compliance.

This example shows the body of the p1 process and the table for the Invoke
activity. The Invoke activity invokes the operation named p2-operation with the
m-1 message variable across the pl-1 partner link. The process then waits.
1146

Communicating Between G2GL Processes
Receiving a Message that an Invoke Activity Sends

To receive a message that an Invoke activity sends, you use the Receive activity.
You specify the partner link variable, the operation name, and the message
variable that should be set to the message to receive.

The Receive activity can be an instantiation trigger. If the Receive activity is the
first activity in the process, it must be an instantiation trigger.

The Receive activity does not require a port type or correlations to receive
messages. For more information, see BPEL Compliance.

To receive a message that an Invoke activity sends:

1 Create and configure a g2gl-invoke activity to send a message.

For details, see Invoking an Operation that Sends a Message.

2 Create a g2gl-receive activity and place it on the body of a G2GL process that
should receive the message.

The Receive activity can be in a different process from the process that sends
the message.

3 Connect the input and output connections to other activities in the process.

The Receive activity can initiate the process, in which case it has no input
connections.

4 Configure the g2gl-partner-link-variable-name of the Receive activity to be a
partner link variable, for example, pl-2.

5 Configure the g2gl-operation-name to be the named operation that the Invoke
activity sends, for example, p2-operation.

6 Configure the g2gl-message-variable-name to refer to a message variable
whose value should be set to the message to receive.

7 Configure the this-is-an-instantiation-trigger attribute of the Receive activity to
be yes.

This attribute causes the process to be instantiated when the Receive activity
receives a message via a named operation.
1147

This example shows the body of a process named p2 and the table for the Receive
activity. The Receive activity receives a message that the Invoke activity sends by
invoking the operation named p2-operation across the pl-2 partner link. The value
of the local variable named m-2 gets set to the message received. The process
then waits.

Replying to a Message that a Receive Activity Receives

To create two-way synchronous communication that sends and receives a
message as part of the same activity, you use the Invoke activity. You specify the
partner link variable, the operation name, the message variable that is the
message to send, and the message variable that gets set to the response message.
The Invoke activity waits until it receives a response before continuing execution.

The partner process that receives the message also includes a Reply activity,
which specifies the message variable to send in response. It also specifies the same
partner link variable and operation name as the Receive activity.

You can use the same message variable for the Receive activity and the Reply
activity, in which case the message that is received is also the response message.
1148

Communicating Between G2GL Processes
You can also create a new response message by using the Assign activity to assign
a different message variable to a new message, and specify that message variable
in the Reply activity.

The Reply activity does not require a port type or correlations to send response
messages. For more information, see BPEL Compliance.

To reply to a message that a Receive activity receives :

1 Create and configure a g2gl-invoke and g2gl-receive activity to send a
message and receive the sent message.

For details, see:

• Invoking an Operation that Sends a Message.

• Receiving a Message that an Invoke Activity Sends.

2 Create a g2gl-reply activity, place it on the body of the G2GL process that
receives a message that the Invoke activity sends, and connect it after the
Receive activity that receives the message.

In the example, you would place the Reply activity in the p2 process.

The Reply activity can be the last activity in a process, in which case it has no
downstream activities.

3 Configure the g2gl-partner-link-variable-name of the Reply activity to be the
same partner link variable that the Receive activity uses to receive a message,
for example, pl-2.

4 Configure the g2gl-operation-name of the Reply activity to be the named
operation that the Invoke activity uses to send a message, which the Receive
activity receives, for example, p2-operation.

5 Configure the g2gl-message-variable-name of the Reply activity to refer to
the message variable to set to the response message.

You can use the same message variable for the Receive activity and the Reply
activity, in which case the Reply activity sends the same message that was
received as the response message. You can also send a different message.
1149

This example shows the body of a process named p-a and the table for the Invoke
activity. The Invoke activity invokes the operation named 2-way-invocation across
the pl-1 partner link. It specifies m-1 as the message variable to send and m-1a as
the message variable to send in response. The process then waits.
1150

Communicating Between G2GL Processes
Here is the body of a process named p-b and the tables for the Receive and Reply
activities. The Receive activity receives a message that the Invoke activity sends
by invoking the operation named 2-way-invocation across the pl-2 partner link.
The Receive activity specifies m-2 as the message to receive. The Reply activity
replies to the message that the Invoke activity sends by invoking the operation
named p2-operation across the pl-2 partner link. The Reply activity specifies the
same message variable, m-2, as the response message. The process then waits.
1151

Receiving Multiple Messages

You use the Pick activity to accept the first of several distinct operation
invocations, based on the receipt of one of many message transmissions or a
timeout. The branches of a Pick activity must join together as the input
connections of a Pick Join activity.

You connect a Pick activity to one or more Receive activities, each of which
specifies a different named operation. The Pick activity accepts the message
transmission whose named operation matches the message transmission received
from a partner process’s Invoke activity. The Pick activity can also connect to one
or more Wait activities to provide a time-out condition.

Often, you configure the Pick activity to be an instantiation trigger. If the Pick
activity is the first activity in the process, it must be an instantiation trigger. The
Receive activities that connect to the output connections of a Pick activity cannot
be instantiation triggers.

To choose between multiple messages:

1 Create and configure multiple g2gl-invoke activities to send multiple
messages, using different values for the g2gl-operation-name.

For details, see Invoking an Operation that Sends a Message.

2 Create a g2gl-pick activity and place it on the body of a G2GL process that
should receive the multiple messages.

The Pick activity can be in a different process from the process that sends the
message. Typically, the Pick activity can initiate the process, in which case it
has no input connections.

3 Create multiple g2gl-receive activities and connect them to the output paths
of the Pick activity.

If connecting more than two Receive activities to a Pick activity, drag the
input connection to the Receive activity directly into the Pick activity to create
a new connection.

4 Configure the g2gl-partner-link-variable-name of each Receive activity to be
the same partner link variable, for example, pl-2.

5 Configure the g2gl-operation-name of each Receive activity be the named
operation for each message that each Invoke activity sends, for example,
operation-1 and operation-2.
1152

Communicating Between G2GL Processes
6 Configure the g2gl-message-variable-name of each Receive activity to refer to
a message variable whose value should be set to the message to receive.

You can use the same message variable for each Receive activity.

7 Optionally, create and configure a g2gl-wait activity and connect it to the
output of the Pick activity to provide a time-out condition.

8 Configure the this-is-an-instantiation-trigger attribute of the Pick activity to
be yes.

This attribute causes the process to be instantiated when the Pick activity
receives a message via the named operations of one of its connected Receive
activities.

Here is the body of a process named p-x and the tables for each of two Invoke
activities, which invoke the operations named pick-op-1 and pick-op-2 with the
m-1 message across the pl-1 partner link. The process then waits.
1153

Here is the body of the process named p-y, which includes a Pick activity and two
Receive activities. The Receive activities receive messages that the Invoke activity
sends by invoking the operations named pick-op-1 and pick-op-2 with the m-2
message across the pl-2 partner link. The process then waits.

Handling Message Events

Any process that provides communication can have a Message Handler, which
handles messages of a given type when they are received from outside of the
process. The Message Handler is activated when the process is instantiated, and it
waits for messages of the specified type to be received. When a message of the
specified type is received, the body of the Message Handler executes concurrently
with the execution of the process that receives the message. For example, you
might use a Message Handler to handle modifications to an order.
1154

Communicating Between G2GL Processes
To handle message events:

1 Choose KB Workspace > New Object > G2GL-object > G2GL-activity-with-
body > G2GL-handler > G2GL-event-handler > G2GL-message-event-handler
and place it at the top of the subworkspace of a G2GL process that receives
messages that an Invoke activity sends.

2 Configure the g2gl-partner-link-variable-name of the Message Handler to be
the same partner link variable that the Receive activity uses to receive a
message, for example, pl-2.

3 Configure the g2gl-message-variable-name to be the same message variable
that the Receive activity uses to receive a message, for example, m-2.

4 Configure the g2gl-operation-name to be the named operation that the Invoke
activity uses to send a message, which the Receive activity receives, for
example, p3-operation.

5 Create a subworkspace for the Message Handler and configure the body of
the handler, as needed to handle the message.

Handling Faults

The Invoke activity can have an additional right-side output connection that can
connect to the left-side input connection of a Fault Handler to handle faults that
are triggered from within the process. For more information, see Handling Faults.

Also, the Reply activity can trigger a Fault Handler in the linked partner process
by specifying a fault name in the fault-name-for-reply attribute. The Fault Handler
in the linked partner process whose g2gl-fault-name matches the fault-name-for-
reply is triggered when the fault occurs. The fault data for the fault handler is the
message to which the Reply message is responding.

If an Invoke activity is connected to a Fault Handler that matches the fault-name-
for-reply of a Reply activity, that Fault Handler executes before any others in the
process or in any enclosing Scope activity.

Invoking Web Service Operations

Partner link variables have a default-value-for-g2gl-variable attribute, similar to
local and argument variables. Its value can either be local (the default) to
represent a link to another G2GL process in the same KB, or an endpoint reference
specification, to represent a link to a remote Web service.

For more information, see Invoking Web Service Operations in Interfacing with
Web Services.
1155

Example: Credit Rating Partner Processes

This example shows how to implement two linked partner processes that
communicate by making a credit request and providing a credit report. The credit
rating requester sends a credit request and receives the credit report in response
as part of the same synchronous operation. The credit information is provided as
a local variable in the credit request provider and is used to determine whether
the credit rating is good, ok, or bad. The credit rating requester process is called
from a G2 procedure, which passes the credit information as an argument and
returns the credit rating.

You can load this example from this location:

The credit-rating-requester process assigns the credit-info attribute of the credit-
request message variable to the value of the credit-info argument variable, which
is passed in as an argument to the G2 procedure that invokes the process.

The process uses the Invoke activity to send the credit request and receive the
credit report in response as part of the same synchronous operation. The Invoke
activity invokes the request-credit-rating operation with the credit-request
message variable and the partner-link partner link variable. The Invoke activity
waits until it receives the credit report before proceeding and assigns it to the
credit-report message variable.

The process returns the value of the credit-rating attribute of the credit-report
message variable, which is the return value of the G2 procedure that executes the
G2GL process.

Windows
Start > Programs > Gensym G2 2011 > Examples > G2 >
G2GL Credit Rating Example

UNIX /g2/kbs/demos/g2gl-credit-rating-example.kb
1156

Communicating Between G2GL Processes
Here is the body of the credit-rating-requester process:
1157

The credit-rating-provider process receives the credit request from the credit rating
requester sent by invoking the request-credit-rating operation, which it stores in
the credit-request message variable. The process then executes the activities on
the body of the get-credit-rating scope, which creates a credit report and
determines the credit rating of the credit request. It uses the Reply activity to send
the credit report to the Invoke activity in the partner process by invoking the
request-credit-rating operation with the credit-report message variable.
1158

Communicating Between G2GL Processes
The body of the get-credit-rating scope assigns the credit-info of credit-request to
the credit-info local variable, then tests the value to determine if the credit is good.
It uses two Switch Fork activities to branch to three possible states, good, ok, and
bad, which are assigned to the credit-rating local variable. The Switch Join joins
the three inputs and the value is assigned to the credit-rating attribute of the
credit-report local variable.
1159

The request-credit-report procedure executes the credit-rating-requester process,
given a value for the credit-info. It calls the g2-call-g2gl-process-as-procedure
system procedure, passing in as arguments the name of the G2GL process and a
sequence of argument variables defined in process. The procedure returns the
value of the credit-rating variable. The button executes the procedure, using the
value of the user-credit-info variable as the argument.
1160

Communicating Between G2GL Processes
This figure shows the individual execution displays that result from clicking the
button and single-stepping through the process. The credit-rating-requester
process executes, passing in 0.8 as the value of the credit-info-arg, and returning
the value of the credit-rating, which is good.
1161

Clicking the breakpoint at the end of the credit-rating-requester execution display
causes this message to appear in the Message Board.

Interacting with G2GL Processes
A G2GL process is must be compiled before it can be instantiated. If you change
the process, you must recompile it to instantiate the latest compilation version.
Once the process has been compiled, you can execute process instances, which
are analogous to procedure invocations in G2. A process instance executes the
activities on the process body flow chart, following the flow chart and using the
locally specified variables.

You can set various attributes of a G2GL process to debug the process by setting
breakpoints, tracing, and single-stepping through the process. You can also
configure global parameters in the G2GL Parameters system table that control
various aspects of execution, debugging, animation, and tracing.

You can create a G2GL process by importing it from an XML document that
conforms with the BPEL specification. You can also export a G2GL process to an
XML document.

Compiling G2GL Processes

Once you have defined a G2GL process, you must compile it before it can be
executed.

G2GL automatically compiles a G2GL process when it is loaded from a KB and
the first time it is executed by using a menu choice or a system procedure. For
more information, see Executing G2GL Processes.

If you change the process, you must recompile it in order to use the latest version
for the execution. If you change the process and do not recompile it, the process
uses the existing compilation version for its execution.

When you compile, if an old compilation version is still being used to execute a
process instance, the old version continues to exist until all process instances that
are based on that version terminate. This means that, in theory, there could be any
number of distinct versions of the process executing concurrently. However, all
new instances of the process use the latest version that has been successfully
compiled.

G2GL detects compilation errors and warnings, and displays them in the process
body. The process also keeps track of the number of errors and warnings.
1162

Interacting with G2GL Processes
The G2GL process updates these attributes when the process is compiled:

• latest-attempted-compilation-version-number — The version number of the
most recent successful compilation, which increments each time the G2GL
process is compiled.

• latest-attempted-compilation-version-time — The time of the most recent
attempt to compile a process. This attribute is saved in the KB.

• g2gl-process-compilation-version-number — The version number of the latest
compilation version, which is a positive integer, or none if no compilation
version exists.

• g2gl-process-compilation-version-time — The time of the latest compilation
version or none if no compilation version exists.

• number-of-errors-in-latest-attempted-compilation and number-of-warnings-in-
latest-attempted-compilation — The number of errors and warnings in the
latest compilation attempt.

• g2gl-process-procedure-signature — A parenthesized list of argument
descriptions for the process to be called as a procedure or none if no
compilation version exists. An empty parenthesized list appears in the case of
a process that has no argument variables (instances of g2gl-arg-variable). Each
argument description is of one of the following forms:

– For an argument variable that has no default value:

arg-name : g2gl-variable-type

– For an argument variable that has a default value:

arg-name : g2gl-variable-type (default: default-value)

– For an argument variable that is optional:

arg-name : g2gl-variable-type (optional, default: default-value)

Note that an argument variable is optional if it has a default value and is either
the last argument or is followed only by argument variables that are optional.

To compile a process manually:

 Choose Compile Process on a G2GL process or on the process body
workspace.

or

 g2-compile-g2gl-process
(process: class g2gl-process)
-> success: truth-value
1163

Here is a process that has compilation warnings because the While activity is
missing one of its input connections:

To clear compilation postings:

 Choose Clear Compilation Postings on the process body workspace.

Recompiling also automatically clears old compilation postings.

Executing G2GL Processes

Once you have compiled a G2GL process, you can execute it in one of the
following four ways:

• Manually, by using a menu choice on the G2GL process or process body.

• Programmatically, by calling a G2 system procedure that executes the
G2GL process.
1164

Interacting with G2GL Processes
• If the process has arguments and/or return values, by calling a G2 system
procedure that calls the G2GL process as if it were a procedure.

• By invoking an instantiation trigger operation on the process either from an
Invoke activity in an existing process instance or programmatically by calling
a G2 system procedure, which establishes a partner link. Instantiation triggers
include the Receive activity and the Pick activity.

For information on using the Invoke activity to invoke instantiation triggers, see
Communicating Between G2GL Processes.

You can execute a G2GL process only when G2 is running. If the process has
never been compiled, executing the process also compiles it. Thereafter, executing
a process uses the last good compilation.

Executing a G2GL Process Manually

To execute a G2GL process manually:

 Choose Execute Process on a G2GL process or on the process body
workspace.

The process executes the flow chart on the body. If tracing and/or breakpoints are
enabled, or if the process hits a Breakpoint activity, the individual execution
display for the process instance appears. Otherwise, the process executes without
any visual indication.

Executing a G2GL Process Programmatically

You can execute a simple G2GL process programmatically from a G2 procedure,
as long as it does not have arguments or return values.

To execute a G2GL process programmatically:

 g2-execute-g2gl-process
(process: class g2gl-process)
-> process-instance: g2gl-process-instance

This procedure compiles the G2GL process first if it has not already been
compiled, then executes it.

Similar to executing a process manually, the process executes the activities on the
body without any visual indication unless the process specifies tracing and/or
breakpoints.

The procedure returns a process instance, which you can pause, resume, and kill
programmatically. For details, see Managing G2GL Process Instances.
1165

Calling a G2GL Process as a Procedure

If you define a G2GL process with arguments and/or return values, you must call
it as if it were a procedure, using a different system procedure, which allows you
to pass arguments and return values.

To call a G2GL process as a procedure:

1 Create a G2GL process with arguments and/or return values.

For details, see:

• Creating a G2GL Process.

• Returning Values.

2 Specify the callable-as-procedure attribute of the G2GL process object as yes,
the default.

3 Call this system procedure from a G2 procedure, passing the arguments to the
G2GL process as an argument to the system procedure and returning values,
as needed:

g2-call-g2gl-process-as-procedure
(process: class g2gl-process, argument-list: sequence
-> return-values: sequence)

This procedure compiles the G2GL process first if it has not already been
compiled, then calls it.

The procedure returns a single value, the sequence of values returned by the g2gl-
process, or signals an error if a fault is not handled at the top-level of the g2gl-
process. The error is an instance of the system error class g2gl-fault, which is a
subclass of g2-error. The error-description has a text describing the fault, which is
the same as the message shown on the breakpoint execution display. The error
item has two additional attributes, fault-name, a symbol, and fault-data, which is
"none" for all non-user faults and for user faults that don’t include fault data.
1166

Interacting with G2GL Processes
The following example shows how to call a G2GL process as a procedure with
arguments and return values.

Here is the process-to-call-as-procedure process and its body, which declares two
argument variables and returns two values. The process increments the local
variable named i while it is less than the value of arg-2, which is passed in as an
argument to the process. It returns i + 10000 and the first argument to the process.

Here is a G2 procedure that calls the process-to-call-as-procedure G2GL process
as a procedure. The procedure passes in the argument list to the G2GL process as
an argument to the procedure, and it posts the return values to the Message
Board. The procedure uses the g2-call-g2gl-process-as-procedure API to call the
G2GL process as a procedure.

Argument variables

Local variable

Return activity
returns two values.

G2GL process to call as a
procedure with arguments
and return values.
1167

call-to-process-to-call-as-procedure (arglist: sequence)
values-sequence: sequence;
begin

values-sequence = call g2-call-g2gl-process-as-procedure
(process-to-call-as-procedure, arglist);

post "result of calling process-to-call-as-procedure with arglist [arglist]:
[values-sequence]";

end

This button executes the call-to-process-to-call-as-procedure procedure:

start call-to-process-to-call-as-procedure (sequence("hello", 10))

Here is the individual execution display that results when setting a temporary
breakpoint on the Return activity. Notice that the values of arg-1 and arg-2 are set
to the arguments passed to the procedure that calls the process as a procedure.
Just before the process returns its values, i is equal to the value of the second
argument.
1168

Interacting with G2GL Processes
When you click the temporary breakpoint to finish the execution of the process,
the Message Board posts this information about the return values:

Invoking Instantiation Trigger Operations Programmatically

You can use the following system procedure to invoke an instantiation trigger
operation in a G2GL process programmatically:

g2-invoke-g2gl-operation
(service-switch: class g2gl-service-switch, operation-name: symbol,
input-message: item-or-value)
-> output-message: item-or-value, reply-or-fault-name: symbol

In order for a G2GL process to be available for instantiation this way, the name of
the service-switch item must be in its names-of-g2gl-service-switches-for-
instantiation list, or, if that is "none", the name of the service-switch item must be
its name-of-g2gl-service-switch-for-connection. By default, every KB has a
g2gl-service-switch item named g2gl-standard-service-switch, which is also the
default name-of-g2gl-service-switch-for-connection for G2GL processes.

The operation-name is the name of the instantiation trigger operation. The
input-message and output-message are Web service message structures. For a
description of web service message structures, see Web Services in Web
Operations in the G2 System Procedures Reference Manual.

The reply-or-fault-name is either the symbol reply if the reply was not a fault, or
else the name of the fault.

Note Currently, this system procedure can only invoke two-way synchronous
operations. The system procedure always waits for a reply from the G2GL
process. If the process exits without responding, a g2gl-fault error is signaled,
whose fault-name is partner-has-terminated.
1169

Managing G2GL Process Instances

G2GL provides the g2gl-process-instance class, which is the G2GL analog of the
G2 procedure-invocation class. G2GL creates an instance of this class is when you:

• Start a G2GL process via the g2-execute-g2gl-process system procedure.

• Evaluate the following G2GL expression:

this process instance

• Call the following system procedure, which returns all process instances,
g2-collect-all-g2gl-process-instances.

The g2gl-process-instance class defines the g2gl-process-instance-is-paused
attribute, which is true when the process instance is paused and false otherwise.

Pausing and Resuming G2GL Process Instances

You can pause and resume process instances from an individual execution
display. The current state of the process instance appears in the title bar. You can
also pause and resume process instances programmatically.

To pause and resume a G2GL process instance interactively:

 Choose pause process instance and resume process instance on an
individual execution display workspace, depending on the current state.

To pause a G2GL process instance programmatically:

 g2-pause-g2gl-process-instance
(process-instance: class g2gl-process-instance)

or

 Conclude that the g2gl-process-instance-is-paused attribute of the process
instance is true.

To resume a paused G2GL process instance programmatically:

 g2-resume-g2gl-process-instance
(process-instance: class g2gl-process-instance)

or

 Conclude that the g2gl-process-instance-is-paused attribute of the process
instance is false.
1170

Interacting with G2GL Processes
Deleting G2GL Process Instances

You can delete individual G2GL process instances associated with a process
interactively or programmatically. Deleting an execution instance stops the
execution of that instance and deletes its individual execution display.

To delete a process instance interactively:

 Choose Delete Process Instance on an individual execution display.

To delete an individual G2GL process instance programmatically:

 g2-kill-g2gl-process-instance
(process-instance: class g2gl-process-instance)

To delete all executing G2GL process instances for a process:

 g2-kill-all-g2gl-process-instances
(process: class g2gl-process)

Getting All G2GL Process Instances

You can get a list of all G2GL process instances associated with a process.

To get all G2GL process instances:

 g2-collect-all-g2gl-process-instances
(process: g2gl-process)
-> process-instances: sequence

Debugging G2GL Processes

To debug a G2GL process, you can show individual execution displays when
executing the processes. Individual execution displays represent execution
instances of a G2GL process and allow you to trace the execution of the process,
including its variable assignments and subprocesses.

Individual execution displays use thread tokens to show execution flows. These
thread tokens move around the execution display as the process executes.

You can show individual execution displays by configuring the process to:

• Trace the top-level process or all levels.

• Use breakpoints on the top-level process or all levels.

• Use temporary breakpoints, which you can set in an individual execution
display.

• Use single-stepping, which sets breakpoints at each activity.

• Automatically break on execution faults.
1171

Breakpoints cause an execution thread to pause at that point. To continue
processing, you click on the breakpoint icon.

A G2GL process can have multiple execution threads executing concurrently,
which you can view in a single execution display that superimposes all executing
process threads.

Tracing G2GL Processes

You can trace the top-level process or the top-level process and all subprocesses.
When tracing a process, G2GL shows an individual execution display for each
execution instance, depending on the tracing level.

To trace a process:

 Set the individual-execution-display-mode of a G2GL process to one of these
values:

• trace-top-level to show an individual execution display for the top-level
process.

• trace-all-levels to show an individual execution display for the top-level
process and any subprocesses.
1172

Interacting with G2GL Processes
Here is the individual execution display that appears when tracing a process.
Notice the thread token, compilation version information, and variable values.

Setting Breakpoints

You can set a breakpoint at the beginning of the top-level process or at the
beginning of the top-level process and all subprocesses. When setting a
breakpoint, G2GL shows an individual execution display for each execution
instance, depending on the breakpoint level.

You can also use the Breakpoint activity to set a permanent breakpoint in the
process. For details, see Breakpoint.
1173

To set a breakpoint:

 Set the individual-execution-display-mode of a G2GL process to one of these
values:

• break-on-entry to show an individual execution display for the top-level
process with a breakpoint at the beginning of the process.

• break-on-entry-at-all-levels to show an individual execution display for
the top-level process and any subprocesses, with a breakpoint at the
beginning of the top-level process and each subprocess.

Here is an individual execution display with a breakpoint. To continue
processing, click the breakpoint.
1174

Interacting with G2GL Processes
Setting Temporary Breakpoints

You can set a temporary breakpoint on an activity instance within an individual
execution display. The breakpoint remains until you explicitly remove it or the
display disappears. The temporary breakpoint only affects the current individual
execution display.

To set a temporary breakpoint:

1 Execute the process to show an individual execution display.

2 Choose set temporary breakpoint on an activity instance within the execution
display.

When the thread token reaches the temporary breakpoint, it pauses and a
breakpoint appears. Click the breakpoint to continue.

To remove a temporary breakpoint:

 Choose remove temporary breakpoint on the activity instance that has a
breakpoint set.

Here is an individual execution display with a temporary breakpoint set on the
Switch Fork activity:
1175

Single-Stepping through the Execution

When you are tracing or are at a breakpoint, you can single-step through the
process, which sets temporary breakpoints at each activity instance in the
individual execution display. Single-stepping only affects the current individual
execution display.

To single-step through the execution:

1 Enable tracing or breakpoints for the process.

2 Execute the process to show an individual execution display.

3 Choose Single-Step on the individual execution display workspace.

Note Single-stepping is not available for superimposed tracing execution displays.

The execution stops at each activity instance and a temporary breakpoint appears.
Click each breakpoint to continue.

To remove single-stepping:

 Choose Do Not Single-Step on the individual execution display workspace.

Showing Superimposed Tracings Execution Displays

When setting tracing or breakpoints, you can show a superimposed tracing
execution display to show simultaneous executions of instances of a process in a
single execution display. You can set superimposed tracing for the top-level
process or for the top-level process and all subprocesses.

To show superimposed execution displays:

 Set the superimposed-tracings-execution-display-mode of a G2GL process to
one of these values:

• trace-top-level to show a superimposed execution display for the top-level
process.

• trace-all-levels to show a superimposed execution display for the top-level
process and any activities with subprocesses.

To use superimposed tracing:

1 Enable superimposed tracings.

2 Execute the process.

The superimposed tracings execution display appears, which is scaled.

3 While the process is still executing, execute the process again.
1176

Interacting with G2GL Processes
The superimposed tracings display now shows thread tokens for both executing
processes.

Here is a superimposed tracing execution display when two process instances are
executing. Individual execution displays for these instances appear in the upper-
left and overlap; move the top workspace to expose the workspace underneath.
Notice that the superimposed tracing display has two thread tokens. The top
thread token is paused at the first activity because a breakpoint has been set in the
individual execution display. The other thread token is moving through the
process.

Automatically Breaking on Execution Faults

During debugging, you can configure a process to display a breakpoint
automatically if it encounters a fault during execution. For example, an unbound
variable causes an execution fault. You can also configure a parameter in the
G2GL Parameters system table to break on execution faults for all processes.

If a process encounters a fault during execution and it is configured to break on
execution faults, it shows the individual execution display with a breakpoint and
error message at the fault location. If it is not configured to break on execution
faults, there is no visible indication that a fault has occurred. Therefore, we

The superimposed
execution display
shows two thread
tokens, one for each
process instance.

Individual
execution
displays for
each process
instance.
1177

recommend that you always enable breaking on execution faults until you have
fully debugged the process, at which point you can disable it.

To configure an individual process to break on execution faults:

 Configure the break-on-execution-fault attribute of the G2GL process to
be yes.

To configure all processes to break on execution faults:

 Configure the break-on-all-execution-faults attribute of the G2GL Parameters
system table to be yes.

Breaking on execution faults occurs if the attribute is enabled for all processes or
for the individual process.

Here is an example of an execution fault for a message variable that has no value:
1178

Interacting with G2GL Processes
Configuring Debugging for an Individual Execution Instance

Once a process is executing, you might want to change the tracing and
breakpoints settings for the individual execution instance.

To configure debugging for an individual execution instance:

1 Choose Process Display Attributes on an individual execution display or
superimposed tracing display workspace.

A table appears with the individual-execution-display-mode and
superimposed-tracings-execution-display-mode attributes for the associated
process.

2 Configure these attributes, as needed.

The process now uses these values for these attributes.

Here is the table that appears:

Continuing without Debugging

When tracing or breakpoints are set, you might want to continue executing the
process without debugging and close the associated individual execution display
or superimposed tracing display.

To continue without debugging:

 Choose Close and Continue on an individual execution display or
superimposed tracing display workspace.

Displaying the Source

When tracing or breakpoints are set, you might want to display the body of the
G2GL process associated with an individual execution display or superimposed
tracing display.

To display the source:

 Choose Bring Up Source on an individual execution display or superimposed
tracing display workspace.

This menu choice does not appear for subprocess instances.
1179

Configuring G2GL

To configuring G2GL, you:

• Configure attributes in the G2GL Parameters system table.

• Override default G2GL icons.

Configuring G2GL Parameters

To configure G2GL parameters:

 Choose G2GL System Attributes on the individual execution display or
superimposed tracing display workspace.

or

 Choose Main Menu > System Tables > G2GL Parameters.

For details, see G2 Graphical Language (G2GL) Parameters.

Overriding Default Icons

The G2GL Parameters system table provides the g2gl-object-icon-substitutions
attribute for overriding the default icon for G2GL objects, including activities,
processes, and process instances.

The syntax for this attribute is a list of this form:

[g2gl-class: object-subclass;]...

Thus, to override the icon for a G2GL object, create a subclass of the object class
with the desired icon, then specify the G2GL class whose icon you want to replace
followed by the object subclass as the value of the attribute. You can specify a list
of icon substitutions, separated by semi-colons.

Exporting G2GL Processes as XML

You can export a G2GL process to an XML document. The structure of the XML
document corresponds to the BPEL specification.

You can also export a G2GL process to a G2 text, which contains the entire XML
document. Exporting to a text is significantly faster than exporting to a file. The
maximum size of the text containing the XML code is 1 MB. The procedure must
complete before the scheduler allows other processing to occur.

G2GL extensions to BPEL are exported to the http://gensym.com/g2gl/
XML namespace URI and use the g2gl: prefix. G2GL uses the
http://gensym.com/g2gl/g2gl-expression namespace for the
expressionLanguage and queryLanguage attributes.
1180

Interacting with G2GL Processes
When exporting a g2gl-process as XML, the value of the g2gl-namespace-map
attribute is converted to a set of XML namespace declarations on the process
element.

The g2gl-target-namespace attribute on g2gl-process corresponds to the
targetNamespace attribute on the <process> element. It is initialized to an empty
string when you create a g2gl-process in G2.

To export a G2GL process as XML to a file:

 g2-export-g2gl-process-as-xml
(process: class g2gl-process, file-path: text)

To export a G2GL process as XML to a text:

 g2-export-g2gl-process-as-xml-text
(process: class g2gl-process)
-> document: text

Importing G2GL Processes from XML Documents

You can create a G2GL process by reading it from an XML document that
describes the BPEL process specification.

You can also import a G2GL process from a G2 text, which contains the entire
XML document. Importing from a text is significantly faster than importing from
a file. The maximum size of the text containing the XML code is 1 MB. The
procedure must complete before the scheduler allows other processing to occur.

Note Currently, G2GL only supports the G2GL expression language. It does not
support the standard BPEL expression language, XPath, or any other expression
language. When importing from XML documents, G2GL discards expressions in
non-G2GL languages.
1181

The G2GL process object body contains the following types of objects, which
correspond to the BPEL specification:

G2GL Definition G2GL Class
BPEL
Specification G2GL Features

G2GL argument
variables

g2gl-arg-variable Not
implemented
in BPEL, except
in the body of a
Fault Handler

• Argument variables
appear at the very top
of the process body,
where their order
implies the order of
arguments to the
process.

• names attribute
corresponds with name
element, with hyphens
inserted in front of
capital letters, which
are lower-cased.

• g2gl-variable-type
attribute refers to the
variable type, which is
either a G2GL message
type or G2GL type.

G2GL partner
link variables

g2gl-partner-link-
variable

Partner link
variables

• Appear as icons at the
top of the G2GL
process body below
argument variables.

• names attribute is the
same as G2GL
argument variables.

• g2gl-variable-type
attribute refers to
corresponding G2GL
partner link type
definition.
1182

Interacting with G2GL Processes
G2GL
correlation
variables

g2gl-correlation-
variable

Correlation set • Appear as icons at the
top of the G2GL
process body below
partner link variables.

• names attribute is the
same as G2GL
argument variables.

• g2gl-variable-type is a
comma-separated list
of G2GL message
types.

G2GL local
variables

g2gl-local-variable Variables • Appear as icons at the
top of the G2GL
process body below
partner link variables
and correlation
variables.

• names attribute is the
same as G2GL
argument variables.

• g2gl-variable-type
attribute refers to the
variable type, which is
either a G2GL message
type or G2GL type.

G2GL Definition G2GL Class
BPEL
Specification G2GL Features
1183

To import a G2GL process from an XML file:

 g2-import-g2gl-process-from-xml
(file-path: text)
-> process: class g2gl-process

To import a G2GL process from XML text:

 g2-import-g2gl-process-from-xml-text
(document: text)
-> process: class g2gl-process

G2GL activities g2gl-activity subclasses Activities • Appear below variables
in a connected process
flow chart.

• names attribute is the
same as G2GL
argument variables.

• BPEL Sequence activity
is implicit in the order
in which the activities
are connected in the
process flow.

• Individual specification
and behavior depends
on activity. See
Summary of
Differences Between
G2GL and BPEL
Activities.

G2GL scopes,
fault handlers,
alarm event
handlers,
message event
handlers, and
compensation
handlers

g2gl-activity-with-body
subclasses:

• g2gl-scope

• g2gl-fault-handler

• g2gl-alarm-event-
handler

• g2gl-message-
event-handler

• g2gl-compensation-
handler

• Appear below variables
and above connected
flow chart activities.

• Subworkspace contains
variables and activities
in a subprocess flow.

G2GL Definition G2GL Class
BPEL
Specification G2GL Features
1184

Interacting with G2GL Processes
1185

1186

Part V
User Interface
Components
Chapter 31: Buttons

Describes action and radio buttons, check boxes, sliders, and type-in boxes.

Chapter 32: Text Items

Describes how to create text items and how to use text inserts.

Chapter 33: User Menu Choices

Describes how to define application-specific menu choices.

Chapter 34: External Images

Explains how to use external images in workspace backgrounds and icons.

Chapter 35: Messages

Describes how to work with messages.

Chapter 36: Readout Tables, Dials, and Meters

Describes the display items readout tables, dials, and meters.

Chapter 37: Freeform Tables

Describes how to use freeform table display items.

Chapter 38: Charts

Presents chart styles and graphs, and show you how to use them.
1187

Chapter 39: Graphs

Presents chart styles and graphs, and show you how to use them.

Chapter 40: Trend Charts

An introduction to and description of trend charts and their use.

Chapter 41: Windows Menus

Provides examples of how to create Windows menus in Telewindows by using one of two
techniques: rendering native GMS menus in Telewindows and using the Native Menu
System.

Chapter 42: Windows Dialogs

Provides examples of how to create basic and custom Windows dialogs.

Chapter 43: Custom Windows Dialogs

Describes the complete specification for creating custom Windows dialogs, including a
description of the various dialog controls.

Chapter 44: Windows Views, Panes, and UI Features

Provides examples of how to create Windows chart views, HTML views, shortcut bars, tree
views, and other Windows user interface features.
1188

31
Buttons
Describes action and radio buttons, check boxes, sliders, and type-in boxes.

Introduction 1189

Types of Buttons 1190

Creating Buttons 1190

Action Buttons 1192

Check Boxes 1194

Radio Buttons 1197

Sliders 1198

Type-in Boxes 1201

Introduction
Buttons are user interface items that either perform actions (via action buttons), or
provide a value to a variable or parameter. This chapter describes the different
kinds of buttons and how to use them.
1189

Types of Buttons
The types of buttons are as follows. All buttons except action buttons are
associated with a variable or a parameter:

Note While buttons provide solutions for some of your user-interface requirements, we
recommend that you use the GUIDE/UIL product, shipped with G2. GUIDE/UIL
provides an extensive set of user-interface tools. See the G2 GUIDE User’s Guide
for more information.

Subclassing Buttons

You can subclass all system-defined buttons. Subclassing buttons lets you
redefine their icon descriptions, and provide the default values for any attributes
that you require.

Creating Buttons
To create a button:

 Select KB Workspace > New Button > button-type.

where button-type is a type of button. The new button appears on the workspace
connected to the mouse. Move the mouse to position the button and click to place
the button on the workspace.

Button Description

Action button Causes G2 to perform one or more actions.

Check box Assigns an on or off value to a symbolic,
quantitative, logical, or text-value variable or
parameter.

Radio button Assigns one of a mutually exclusive set of symbols,
numbers, logical values, or text values to a variable
or parameter.

Slider Assigns numeric values to a variable or parameter
as a pointer slides along a horizontal guide.

Type-in box Lets you enter a symbolic, quantitative, logical, or
text value for a variable or parameter.
1190

Creating Buttons
Here are examples of each type of button:

Tip You cannot open the attribute table of a button without pausing the KB. If a
button’s attribute table is visible while the KB is running, however, you can edit
its attributes.

Common Attributes of Buttons

Buttons have the following class-specific attributes. Attributes unique to a
particular button are explained in the sections describing that button.

Attribute Description

label Provides a description of the button.

Allowable values: Any text string

Default value: none

variable-or-
parameter

The variable or parameter whose value the button
represents. Action buttons do not include this attribute.

Allowable values: Any variable or parameter

Default value: none
1191

Providing a Label for the Button

The optional label attribute provides a textual description for the button, which
you enter as a text string within quotation marks (" "). The default is none.

For action buttons, the label appears inside the rectangular boundary of the
button. The size of the action button increases to accommodate the length of
the label.

The label appears to the right of check boxes and radio buttons and to the left of
sliders and type-in boxes.

Use the label to describe a button, or to indicate which value the variable or
parameter expects when the button is active.

Representing the Variable or Parameter

The variable-or-parameter attribute indicates which variable or parameter
receives a value when the user clicks on the button. This is a required attribute for
check boxes, radio buttons, sliders and type-in boxes, but is not applicable to
action buttons. The default is none.

For radio buttons, several buttons represent different values for one variable or
parameter. For check boxes, each box represents a separate variable or parameter.

Buttons associated with a variable or a parameter always attempt to update
whenever their variables or parameters receive values from other sources. For
example, if a check box is set to on, and a rule sets the variable or parameter to its
off value, G2 sets the check box to off. Similarly, if two check boxes exist for the
same variable, turning off one turns off the other, unless the check boxes have
different on or off values.

Action Buttons
An action button lets you start one or more actions interactively. Each time you
click on an action button when G2 is running, G2 highlights the button and
executes the specified action(s) once. For information about actions, see Actions.

Selecting an action button can cause forward chaining by updating a variable, or
backward chaining by using an expression requiring a variable’s value. You can
repeatedly click an action button if you wish to repeat the action(s).

The only way to invoke an action button is by clicking on it. You cannot scan,
forward chain, or backward chain to an action button, nor can you invoke it
programmatically.
1192

Action Buttons
Entering the Actions to Execute

The required action attribute is where you specify what action(s) G2 should
perform when a user clicks on the button. The grammar and other considerations
are similar to those applicable to the consequent of a rule. For further
information, see:

• Coding the Consequent.

• Executing Actions in the Consequent in Parallel.

• Executing Actions in the Consequent Sequentially.

An action button is effectively an unconditionally rule with some specific
restrictions. For example, while you can use local names within action statements,
you cannot use the keywords whenever and if in an action button. The
unconditionally statement is implied for simple actions — unconditionally
perform one or more actions whenever the user clicks on an action button.

The statements you enter in an action button vary slightly from the similar
expressions you enter in a rule.

Using Unconditionally Statements

Use the unconditionally statement following a for statement, for example:

for any message M upon this workspace
unconditionally change the border-color of M to red

Using For, When, and Then Statements

Use the for, when, and then statements as you would in a rule, for example:

for any laptop LT connected to any network-connection NC
when the power-status of LT is on then

conclude that the connect-status of NC is connected

Using the In Order Statement

Multiple actions in an action button execute in parallel unless you use the in order
statement to specify sequential execution, for example:

in order
create a secret-box S and
transfer X to covert-ws at (50, 75) and
make S permanent

Controlling the Scheduling Priority

The action-priority attribute controls the priority at which the G2 executes the
action(s). When you select an action button, G2 schedules the action at the
specified priority.
1193

The default priority for an action button is intentionally high (2) because the
purpose of an action button is to execute one or more statements upon demand.
For a complete description of task priorities, see Task Scheduling.

Class-Specific Attributes

The class-specific attributes of action buttons are:

Check Boxes
Check boxes control autonomous choices that can assign either an on or off value
to a symbolic, quantitative, or text variable or parameter. When the box is
checked, the assigned value is on, and an X appears in the check box. When the
choice is off, the check box is blank. The following example shows the 3-hole-
punch and edge-binding options with an on value, and the corner-stapled option
with an off value.

When you create check boxes, you assign each box to a separate variable or
parameter.

Attribute Description

action The compiled statements that are executed when a user
clicks the button.

Allowable values: A statement, or series of statements.

Default value: No default value

action-priority The priority at which G2 executes the statements.

Allowable values: 1 – 10

Default value: 2
1194

Check Boxes
Specifying the Activation Value

The value-on-activation attribute specifies what value, if any, the variable or
parameter receives when the check box is activated. The default is none.

Although this attribute is not required, we recommend that you enter a value
identical to the on-value attribute if you want the check box to be selected when
activated, or the same as the off-value attribute if you want the check box to be
blank when activated.

If you do not set the default value, the check box contains a question mark when it
is activated.

Allowable values for this attribute depend on the data type of the variable or
parameter.

Specifying the On and Off Values

The on-value and off-value attributes are required values for check boxes,
indicating the value that G2 assigns to the variable or parameter when the check
box is selected and when it is not. The default value is none. Allowable and
default values are data-type specific for the variable or parameter.

For this variable or parameter type... The value can be...

Quantitative Any float or integer.

Integer Any integer.

Float Any float.

Symbolic Any symbol.

Logical Any truth value.

Text Any text string.
1195

Class-Specific Attributes

The class-specific attributes of check boxes are:

Attribute Description

value-on-activation The value, if any, to assign the variable or parameter upon
item activation.

Allowable values: Any appropriate value for the variable or parameter being
represented.

Default value: none

on-value The value to assign the variable or parameter when the
check box is selected.

Allowable values: Any appropriate value for the variable or parameter being
represented.

Default value: none

off-value The value to assign the variable or parameter when the
check box is not selected.

Allowable values: Any appropriate value for the variable or parameter being
represented.

Default value: none
1196

Radio Buttons
Radio Buttons
A radio button represents a single choice within a set of choices that are mutually
exclusive. Use radio buttons to assign a symbolic, numeric, or text value to a
variable or parameter. This example shows several radio buttons being used to
select a font size, and a corresponding rule that updates the text of a message,
called font-size, with the current choice.

While several radio buttons typically appear together, it is the designation of a
single variable or parameter to each button that groups a series of buttons, not
their physical proximity. Moving a radio button in a series to another location
does not change its grouping. You assign several radio buttons to a single variable
or parameter, each button representing a different value. In the example above,
the buttons represent the symbolic values extra-large, large, and small for the
symbolic variable font-var.

By selecting one of the buttons, you assign a value to the variable or parameter.
Only one radio button can be selected at a time. G2 indicates which button is
chosen by placing a black dot in the center of the icon.

Specifying the Value Upon Activation

The value-on-activation attribute specifies what value, if any, the variable or
parameter receives when the radio button is activated. The default is none.
Allowable values depend on the data type of the variable or parameter.

If you want a radio button to be selected when it is activated, enter the same value
that you enter in the on-value attribute. Only one button in a group should have a
value for value-on-activation. If you want all buttons to be blank at activation,
leave the default none for all buttons in the group.
1197

Defining the Selected Value

The on-value attribute defines the value that G2 assigns to the variable or
parameter when you select the radio button. This is a required attribute for a
radio button. The default is none. Allowable values are specific to the type of the
variable or parameter that the button represents.

Class-Specific Attributes

The class-specific attributes of radio buttons are:

Sliders
A slider updates the value of a variable or a parameter when you slide the
marker. You can use sliders only for numeric variables and parameters. The slider
shown here has minimum and maximum values, 50 and 150, respectively.

By dragging the marker along the line of the slider with the mouse, you change
the value of the variable or parameter within the range of the minimum and
maximum values. These values appear at the left and right ends of the slider,

Attribute Description

value-on-activation The value, if any, to assign the variable or parameter upon
item activation.

Allowable values: Any appropriate value for the variable or parameter being
represented.

Default value: none

on-value The value to assign the variable or parameter when the
radio button is selected.

Allowable values: Any appropriate value for the variable or parameter being
represented.

Default value: none
1198

Sliders
respectively. The current value of the position occupied by the marker appears
below the slider by default. The current value of the slider in the example is 86.

G2 can distinguish up to 200 values between the minimum and the maximum
value. If the range is greater than 200, you cannot use the slider to indicate all
possible values in the range. For example, if the range is 0 to 1000, the user can
select only values in increments of 5 (0, 5, 10... 995, 1000, and so on). Thus, the
slider readout displays the value corresponding to the position of the slider,
which is not necessarily the variable's exact value.

Specifying the Activation Value

The value-on-activation attribute specifies what value, if any, the variable or
parameter receives when the slider is activated. Providing a value for this
attribute displays the value below the slider when it is activated, unless you have
the when-to-show-value attribute set to never or only while sliding.

Setting the Minimum and Maximum Values

The minimum-value and maximum-value attributes specify the lowest and highest
values in the range of values you can specify for the slider. You must provide a
value for both of these attributes. The minimum-value appears on the left side of
the slider, and the maximum-value on the right side.

Specifying When to Update a Value

The set-value-while-sliding? attribute indicates whether G2 should update the
value of the variable or parameter concurrently with slider motion. The default
value of no indicates that the value changes only once the slider stops moving.
Changing the default to yes causes G2 to update the variable or parameter with
each slider motion.

Specifying When to Show a Value

The when-to-show-value attribute specifies when to display the current value of
the variable or parameter below the slider. The default is always.

This value... Indicates that the slider value...

always Displays at all times, whether the marker is sliding
or not.

never Never displays.

only while sliding Displays while the marker is sliding, but
disappears when it is not.
1199

Class-Specific Attributes

The class-specific attributes of sliders are:

Attribute Description

value-on-activation The value, if any, to assign the variable or parameter upon
item activation.

Allowable values: Any appropriate value for the variable or parameter being
represented.

Default value: none

minimum-value The lowest value in the slider’s value range.

Allowable values: Any number.

Default value: none

maximum-value The highest value in the slider’s value range.

Allowable values: Any number.

Default value: none

set-value-while-
sliding?

Determines whether G2 updates the variable or parameter
whenever the slider moves.

Allowable values: yes
no

Default value: no

when-to-show-value Determines the gesture that causes G2 to display the
value.

Allowable values: always
never
only while sliding

Default value: always
1200

Type-in Boxes
Type-in Boxes
A type-in box lets you enter values from the keyboard. G2 uses what you enter as
the new value of the variable or parameter that you associate with the type-in box.
Here are several type-in boxes, representing several symbolic variables:

Type-in boxes are specific to the variable or parameter type they represent. G2
does not permit you to enter a value of the wrong type. For example, if you try to
enter text into a type-in box that is assigned to a float variable, the variable retains
its previous value, and G2 signals an error.

Specifying the Activation Value

The value-on-activation attribute indicates what value, if any, appears in the type-
in box upon activation. The value could be any value of the appropriate type for
the variable or parameter that the type-in box represents.

If you do not specify a value in the value-on-activation attribute and the variable
or parameter has an initial value, that value appears when the type-in box
is activated.

As soon as the variable or parameter for the type-in box receives a value, G2
replaces the asterisks or the default data type value with the new value. The size
of the type-in box increases or decreases to accommodate the current value.

Specifying the Formatting Style

The format-for-type-in-box attribute specifies the format in which to display the
value. The default value is default, indicating that G2 displays the value in the
appropriate format for the data type of the variable or parameter.

You can specify any of these formatting styles:

If the type-in box represents... Then when activated...

A variable that does not have an
initial value

Asterisks appear in the box.

A parameter that does not have a
user-specified initial value

The data type-specific default
initial value appears in the box.
1201

• free text to represent textual values without quotation marks.

• interval to represent quantities as time intervals, such as 1 hour, 30 minutes,
and 10 seconds.

• time stamp to represent quantities as G2 timestamps, such as 1 Jan 2004
12:00:00 a.m.

• Any ddd.dddd-format to represent floating point numbers with decimal point
precision, where a d represents each digit, such as 123.4567. If you enter a
value that exceeds the specified format, G2 displays it as an exponential value.

The type-in box in this example sets the value of the text variable named my-var.
Notice that the type-in box does not use quotation marks. To accomplish this, the
format-for-type-in-box and display-format is configured as free text.

Defining the Selection Status

The blank-for-type-in? attribute defines whether to clear the type-in box when you
select it. The default value of yes automatically deletes any value when you click
in the box to enter a value. Changing the default to no maintains the previous
value, which you can then edit.

Specifying Editor Options

The have-edit-option-buttons-for-type-in? attribute specifies whether certain Text
Editor buttons appear with the type-in box when you select it to change its value.
The default is no.
1202

Type-in Boxes
Changing the default to yes displays edit option buttons when you click in the
type-in box. The next example show the Text Editor buttons that appear after
pressing a space character after the name.

Showing Editor Prompts

The show-prompts-for-type-in attribute controls whether to show formatting
prompts when entering text. You might want to display editor prompts when the
format requires specific G2 syntax, such as a timestamp or an interval. By default,
type-in boxes do not show prompts.
1203

For example, here is a type-in box that is configured to require a timestamp and to
show editor prompts:
1204

Type-in Boxes
Class-Specific Attributes

The class-specific attributes of type-in boxes are:

Attribute Description

value-on-activation The value, if any, that appears in the box when the type-in
box is activated.

Allowable values: Any appropriate value for the variable or parameter being
represented.

Default value: none

format-for-type-in-
box

Determines the format in which to display the value.

Allowable values: any ddd.dddd-format
free text
interval
time stamp
default

Default value: default

blank-for-type-in? Determines whether G2 clears the type-in box when a user
selects it.

Allowable values: yes
no

Default value: yes

have-edit-option-
buttons-for-type-in?

Determines whether limited Text Editor buttons appear
for editing.

Allowable values: yes
no

Default value: no
1205

show-prompts-for-
type-in

Determines whether Text Editor prompts appear when
editing type-in box values.

Allowable values: yes
no

Default value: no

Attribute Description
1206

32
Text Items
Describes how to create text items and how to use text inserts.

Introduction 1207

Using Free Text to Label Your KB 1207

Using Text Inserters to Insert Text into the Text Editor 1209

Introduction
You can create two types of text items: text items that you use to label your KB,
and text items that you use to insert text directly into the text editor.

Using Free Text to Label Your KB
You can create a type of text item called free text to label various items in your
KB. Using free text lets you label your KB informatively and attractively.

The two types of free text are:

• Free text, which includes the text and a border:

• Borderless free text, which includes just the text:
1207

Free text is an item, which means you can perform the normal set of operations on
it, such as changing the color, cloning, transferring, and changing the minimum
size. You can also change the background color of the text. For free text with a
border, you can also control the color of the border.

You control the font size of the free text through the Fonts system table.

Creating Free Text

To create free text:

1 Select one of the following commands:

KB Workspace > New Free Text > free-text

or

KB Workspace > New Free Text > borderless-free-text

G2 opens the text editor.

2 Enter the text and select the End button.

You do not need to enter quotes. G2 capitalizes the text the way you enter it.

3 Position the text outline, and click to place it on the workspace.

Changing the Color of Free Text

You can change the following color regions for the two types of free text:

• For free text, you can change the text color, the background color, and the
border color.

• For borderless free text, you can change the text color and the background
color.

To change the color of a region of free text:

1 Click just outside the border of the free text, and select the color menu choice.

2 Choose the region whose color you want to change.

3 Choose a color from the color palette.

This example shows bordered and borderless free text before and after changing
the background color to gray:
1208

Using Text Inserters to Insert Text into the Text Editor
Changing the Font of Free Text

By default, free text uses a large font size. You can change the default font size
used for all free text, or you can change the font size for individual text. You can
use extra-large, large, or small fonts:

To change the default font size of free text:

1 Select Main Menu > System Tables > Fonts to display the Fonts system table.

2 Edit the font-for-free-text attribute in the system table by specifying one of the
font sizes above.

To change the font size of an individual free text:

 Mouse right on the free text and choose font, then choose extra large, large,
or small.

Using Text Inserters to Insert Text into the
Text Editor

You can create a type of text item called a text inserter, which allows you to click
on an item to insert text directly into the text editor. You use this feature when
you must enter text repeatedly, for example, when creating menus or expressions.

The four types of text inserters are:

• Text inserter: Inserts all of its text into the text editor.

• Word inserter: Inserts a single word at a time.

• Character inserter: Inserts the selected character only.

• Character sequence inserter: Inserts a sequence of characters that you select.

Creating and Editing a Text Inserter

You create a text inserter from the New Free Text menu. Once you have created a
text inserter, you can edit its text, if necessary.

To create a text inserter:

1 Select KB Workspace > New Free Text > text-inserter.

2 Choose the type of text inserter.

G2 displays the text editor for entering the text.
1209

3 Enter the text to appear in the text inserter, then click the End button.

4 Position the text inserter, and click to place it on the workspace.

To edit the text of a text inserter:

1 With the text editor closed, click the text inserter, then click table.

The text inserter’s table appears. Its text appears at the bottom of the table.

2 Click the text of the text inserter.

The text editor opens on the text of the text inserter.

3 Edit the text of the text inserter, then click the End button.

Using Text Inserters from the Scrapbook

Whenever you cut or copy text from the text editor, and whenever you drag your
cursor over visible text to insert it into the text editor, G2 creates a text inserter
and places it in the scrapbook. The scrapbook is a non-KB workspace that G2
creates, which you can access as a named workspace.

You can use the text inserters in the scrapbook directly, to insert text into the text
editor, or you can transfer text inserters from the scrapbook to another workspace
to make them a permanent part of your KB.

For more information about the scrapbook and about cutting and pasting text, see
Using the Clipboard and Scrapbook.

To use text from the scrapbook as a text inserter:

 Choose Main Menu > Get Workspace > scrapbook.
1210

Using Text Inserters to Insert Text into the Text Editor
G2 displays a workspace named scrapbook containing text inserts such as
the following:

4 To insert text from a text inserter:

a Open the text editor.

b Click on a text inserter.

G2 inserts the entire text at the current cursor location in the text editor.

5 To transfer the text inserter to another workspace and make it permanent:

a With the text editor closed, click on a text item in the scrapbook to display
its menu; or with the text editor open, click on the border of the text item.

b Select the transfer command to transfer it to another workspace.

The text item from the scrapbook is not a permanent part of your KB.

Using Text Inserters to Insert Text

You can use text inserters to insert text into the text editor when you are editing
any type of text. You might want to create a workspace that contains all your text
inserters so they are available to you at any time.

If you do not place them on a separate workspace, you may want to label them so
that they are not confused with regular text boxes.
1211

To insert text into the text editor by using a text inserter:

1 Open the G2 text editor.

For example, you open the text editor when creating a rule or procedure, or
when editing the attributes of a table. For more information, see Opening the
Text Editor.

2 With the text inserter visible, click or select the desired text in the text inserter,
depending on the type of text inserter:

G2 inserts the specified text from the text inserter into the text editor at the current
cursor position.

You can also drag the cursor over a sequence of characters when inserting text
from a text, word, or character inserter. G2 inserts the selected character(s),
including the following space if you drag over a word.

Note that when dragging the cursor over a text inserter, however, you must begin
selecting from the first character, whereas when dragging the cursor over any
other type of inserter, you can begin selecting anywhere.

The character sequence inserter also has the characteristics of a word inserter; you
can click on a word to insert it.

When using this type
of text inserter... Do this...

Text inserter Click anywhere on the text inserter to insert
the entire text.

Word inserter Click on a single word in the text inserter to
insert the word and the following space.

Character inserter Click on a character in the text inserter to
insert the character.

Character sequence Drag the cursor over a sequence of
characters in the text inserter to insert the
character sequence.
1212

33
User Menu Choices
Describes how to define application-specific menu choices.

Introduction 1213

Working with User Menu Choices 1213

Introduction
A user menu choice is an item of the user-menu-choice class, which lets you
define application-specific menu choices that specify one or more actions. G2
executes the action(s) specified by the user menu choice when a user chooses the
option interactively. For information about actions, see Actions.

Working with User Menu Choices
A user menu choice performs an action when the user selects it. You associate a
user menu choice with a particular class so that it appears on the menu of the
specified class and its subclasses.

A user menu choice is visible in an item's menu only when the KB is running and
the value of the menu choice’s condition attribute is true or unspecified.

If the KB is reset or paused while a menu containing a user menu choice is
displayed on the screen, or if the condition for a menu choice becomes false after
the menu has been displayed, the menu choice remains visible but G2 will not
execute the action if the user chooses it.
1213

User menu choices for a class appear in an arbitrary order after the system-
defined choices. Furthermore, the order is not guaranteed to be stable across G2
sessions in which user menu choices are defined or modified.

To create a new user menu choice:

 Select KB Workspace > New Definition > user menu choice.

The KB must be running for user menu choices to work.

Labelling the Menu Choice

The label attribute determines the name of the menu choice as it appears on the
item menu. By default, the attribute display of the label attribute appears at the
upper right-hand side of the user menu choice.

The user menu choice label cannot be the name of a system-defined menu choice,
nor should it be identical to another user menu choice for the same class. If the
label is the same as a system-defined menu choice, G2 executes only the system-
defined choice, not the user-defined menu choice.

If the label is identical to another user menu choice for the same class, G2 executes
one of the choices randomly when one is selected.

Capitalization in Menu Entries

By default, G2 removes any hyphens that you enter as part of the label symbol,
and converts the name to the appropriate case for the class upon which the menu
choice appears. For example, if you enter the label as:

MY-CHOICE

for a kb-workspace class, the menu entry appears as:

My Choice

since all KB Workspace menu choices use initial capital letters. The same choice
assigned to an object class such as g2-variable would appear on the menu as:

my choice

because menus for item classes other than KB Workspace are lowercase.

Entering escape characters to force capitalization of menu choice labels does not
affect how they appear. For example, entering this:

TEST-@A@B@C-TEST

to appear as:

Test ABC Test

does not take effect. The menu entry appears as:

Test Abc Test
1214

Working with User Menu Choices
on a KB Workspace menu, and as:

test abc test

on an item menu class other than KB Workspace.

Hint A user menu choice has an incomplete status until you complete the label,
applicable-class and action attributes, which are all required attributes.

Defining the Applicable Class

The applicable-class attribute defines the class to which the user menu choice
applies. You must specify an applicable class, or the menu choice will not work.
The applicable class must be item or a subclass of item.

In general, the user menu choice also applies to subclasses of the applicable class.
The exception is when the subclass does not meet the condition of the user menu
choice, in which case the user menu choice does not appear for the subclass.

Controlling When the Menu Choice is Available

The condition attribute controls when the menu choice is available or when G2
will execute the action.

The condition of a user menu choice is either none, or any logical-expression
returning a truth-value. If you do not provide a condition and the condition
remains none, the user menu choice always appears on the applicable item menu
and G2 always executes the action when the user selects this choice.

If the condition contains an expression, G2 evaluates the expression at the time
the user clicks on an object to get the item menu. If the condition is false or
unknown, the user menu choice does not appear on the item menu.

If the condition is true, the user menu choice appears on the item menu and the
user can select it. If the user chooses the user menu choice, G2 evaluates the
condition again. If the result is still true, G2 performs the action. If the result is
false or unknown at the second evaluation, G2 does not perform the user menu
choice action.

Specifying the Action to Execute

The action attribute specifies the action G2 executes when the menu choice is
selected. Enter any G2 action(s) in this attribute. The grammar and other
considerations are similar to those applicable to the consequent of a rule. For
further information, see:

• Coding the Consequent.

• Executing Actions in the Consequent in Parallel.
1215

• Executing Actions in the Consequent Sequentially.

You can refer to the item to which the menu choice applies using the statement
the item, as shown in the next example. The statement the item refers to the item
the user clicked.

move the item by (10, 10)

Similarly, you can also use the statement this workspace in a user menu choice
action, indicating the G2 window in which the user selection took place.

Specifying the Scheduling Priority

The action-priority attribute specifies the priority at which G2 schedules the action
to execute.

The default priority for a user menu choice is intentionally high (2), because the
purpose of the menu choice is to execute one or more statements upon demand.

For a complete description of task priorities, see The G2 Scheduler.

User Menu Choice Attributes

The class-specific attributes of user menu choices are:

Attribute Description

label The name of the menu choice as it appears in the item's
menu.

Allowable values: symbol

Default value: none

applicable-class Specifies the class to which the menu choice applies.

Allowable values: Any class

Default value: none
1216

Working with User Menu Choices
condition The condition under which the menu choice is available,
or when G2 executes its action.

Allowable values: logical-expression

Default value: none

action The action to execute when a user selects the menu choice.

Allowable values: Any G2 action.

Default value: No default value

action-priority Indicates the priority at which G2 executes the action for
the menu choice.

Allowable values: 1 – 10

Default value: 2

Attribute Description
1217

1218

34
External Images
Explains how to use external images in workspace backgrounds and icons.

Introduction 1219

Supported Graphics Formats 1220

Working with External Images 1221

Creating an Image Definition 1221

Specifying the Name of the Image 1223

Specifying the Pathname of the Image File 1223

Using an Image in a KB 1224

Saving an Image with a KB 1224

Updating an Image in a KB 1225

Introduction
An external image is a bitmap or other graphical image created outside G2. You
can import an external image into a KB and use it as an icon, part of an icon, or the
background image of a workspace.
1219

Supported Graphics Formats
G2 supports JPEG, X Bit Map, (XBM, black and white only) and Graphics
Interchange Format images as follows:

G2 supports the 89A GIF format, which permits any color in the image to be
transparent. Where such a GIF exists, G2 draws nothing wherever the transparent
color appears, thus making visible whatever is below the transparent section on
the screen. The non-transparent GIF formats paint the designated transparent
color to the screen, making the color opaque.

Note The use of transparent GIFs applies only to color GIF files that are displayed as
the background layer of icons. It does not apply to any color GIFs that a
workspace may be using as a background.

Various GIFs that can be used in image definitions are available in the G2 demos
directory, as described under GIF Files.

Note JPEG images do not currently work when displayed on an X server with 8
bits/pixel. To work around this limitation, switch the X server’s display to true
color, using 16, 24, or 32 bits/pixel.

Caution Bitmap images will not display correctly on Windows computers if the Color
Palette settings are changed while G2 or TW is running. You can rectify an
incorrect display state by shutting down and then restarting G2 or TW.

Image File Icons Workspaces

JPEG  

XBM (black and white)  

GIF87A (black and white, non-interlaced)  

GIF87A (color, non-interlaced) 

GIF89A (color, transparent) 
1220

Working with External Images
Working with External Images
The general technique for using an external image in a KB is:

• Create an image-definition item to represent the image within the KB.

• Edit the image definition’s attributes to give the image a name and designate
the file that contains it.

• Use the image name to include the image in an icon or workspace.

Creating an Image Definition
An image definition is an instance of the system-defined class image-definition.

To create an image definition:

 Select KB Workspace > New Definition > image-definition.

The class-specific attributes of an image definition are as follows:
.

Attribute Description

names Any symbol representing the name of the image that you
want to use.

Allowable values: Any symbol

Default value: none

Notes: You must provide an image definition name since you
reference it when you use the definition in a KB.

file-name-of-image A text string of the pathname of the image file you want to
use.

Allowable values: Any valid filename of a JPEG, GIF, or XBM image.

Default value: none
1221

save-image-data-
with-kb

Determines whether an image file is stored as part of a KB,
or resides externally to a KB in an appropriate directory.
See Saving an Image with a KB for more information
about this.

Allowable values: yes
no

Default value: no

format-of-image The file format. G2 supplies this information dynamically
after you enter (or update) a valid image filename. You
cannot edit this attribute.

Allowable values: gif
jpeg
xbm

Default value: none

width-of-image The width of the image as an integer value representing
workspace units. G2 supplies this information
dynamically after you enter (or update) a valid image
filename. You cannot edit this attribute.

Use this and the height-of-image values to determine the
appropriate icon size in the icon editor. For more
information, see Image Size and Icon Size.

Attribute Description
1222

Specifying the Name of the Image
Specifying the Name of the Image
In order to use an image in a KB, you must give the image a name, so that other
KB components can refer to it. You can use any available name.

To give an image a name:

 Edit the names attribute of the image definition to specify the desired name.

Specifying the Pathname of the Image File
In order to use an image in a KB, you must tell G2 where in the file system to find
the file that contains the image.

To designate the pathname of the image:

 Edit the file-name-of-image attribute to specify the pathname of the image in
the file system.

You can enter the pathname as an absolute pathname, a pathname relative to the
current KB, or a filename if the image file is located in the directory that holds the
executing KB. If you have not loaded a KB, G2 searches for the file in the
current directory.

G2 reads the image file into the current KB when you enter (or update) a valid
filename for this attribute.

height-of-image The height of the image as an integer value representing
workspace units. G2 supplies this information
dynamically after you enter (or update) a valid image
filename. You cannot edit this attribute.

Use this and the width-of-image values to determine the
appropriate icon size in the icon editor. For more
information, see Image Size and Icon Size.

depth-of-image The depth of the image as an integer value representing
bits. This value is always 1 for XBM images, ranges from
1 to 8 for GIF images, and is either 8 or 24 for JPEG images.
G2 supplies this information dynamically after you enter
(or update) a valid image filename. You cannot edit this
attribute.

Attribute Description
1223

Using an Image in a KB
An image definition is ready for use as soon as you enter a valid name in the
names attribute and a valid filename in the file-name-of-image attribute.

To use an image in a KB:

 Include the name of the image definition in the:

• image attribute of the icon editor.

• icon-description attribute of a class definition.

• background-images attribute of a workspace table.

For details on using external images with icons, see Including Externally Created
Images.

For details on using external images as the backgrounds for workspaces, see
Using a Graphic as a Background Image.

Note The size of the image to be used as a workspace background cannot exceed 65,536
by 65,536 pixels.

Saving an Image with a KB
The save-image-data-with-kb attribute of an image definition determines whether
the image file is saved as part of your KB. The default for this attribute is no.
Change this attribute to yes to save the image as part of your KB.

Advantages and Disadvantages

As a general guideline, you will probably not want to save image files with your
KB during development, since changes to the image file will not be reflected in
the KB. Note that any KB that requires an image file, but does not save the image
with the KB, is inherently incomplete.

Saving an image file with your KB protects the integrity of the image file for
deployment purposes, and ensures that the KB is complete. However, the size of
your KB will increase by significantly more than the size of the image file because:

• File compression is not currently used for images within a KB.

• Storing an image carries an overhead above that of the data in the image.

If KB size is an issue, you may not want to save image files with the KB.

Deploying a KB without saving its images requires that you determine an
appropriate directory location for the image files to be stored at a customer site.
1224

Updating an Image in a KB
Since directory specifications are operating-system specific, you can increase KB
portability by saving the image with the KB. Also, consider the fact that image
files in a directory at a customer site are subject to change and deletion.

Omitting the Pathname of an Image Saved with a KB

If you specify a valid image definition, then use the save-image-data-with-kb
attribute to save the image with the KB, you can thereafter change the definition’s
file-name-of-image attribute to be none. G2 knows that the image has been saved
in the KB, and therefore does not describe the image definition as incomplete in
its notes attribute, as it would if no pathname were specified and no image had
been saved.

Updating an Image in a KB
G2 reads an image into a KB in three instances:

• You enter a valid filename value in the file-name-of-image attribute.

• You load a KB and G2 has finished loading all of the definitions.

• You run the g2-refresh-image-definition system procedure.

If you save the image with the KB and then want to update the image, enter the
new filename in the image definition after loading the KB.
1225

1226

35
Messages
Describes how to work with messages.

Introduction 1227

Using Messages 1227

Using Actions with Messages 1229

Introduction
A message, an item of class message, displays text that provides information to
the user. For example, as a result of an inform or post action for the operator, G2
creates and displays a message on the message board.

Using Messages
You can create messages in two ways by:

• Choosing a system-defined message class.

• Creating a user-defined message class.

Creating a Message

To create a generic message:

 Select KB Workspace > New Free Text > message.
1227

The message appears on the workspace. Open its table to enter text into the
message area, as shown here.

Creating a New Message Class

You can create your own message classes to define a particular font size, font and
background color, and so on. For example, you could create a message class
called user-warning-message that uses an extra-large font and has a red
background. You could then use instances of this class to alert users to problems
while the KB is running.

As with object classes, you create message classes in a hierarchy so that each
subclass inherits the attributes of its superior class. For information on creating
your own message classes, see Creating Message Classes.

To create an instance of the message class:

 Select KB Workspace > New Free Text > message > message-class.

where message-class is any message class.

Message classes have an initializable system attribute, the default-message-
properties attribute, which controls how instances of a message class appear. You
can set the default appearance of a message by initializing this attribute
appropriately, as described under Specifying Default Message Properties. You
can also change message properties programmatically, as described under Using
Actions with Messages.

Message area
1228

Using Actions with Messages
The next figure illustrates a user-defined message class, welcome-message,
showing attribute displays of the direct-superior-classes and attribute-
initializations attributes of the definition, an instance of that class, and a generic,
system-defined message.

Messages do not have any class-specific attributes. They contain a text area that
you can type a message into interactively, or use change the text of actions to
edit programmatically.

Using Actions with Messages
You can create, manipulate, and delete messages by using actions. When you
create a message with a create action, the message is transient and can be deleted
with the delete action. You can transfer such messages to a particular workspace,
and also change the text, text-color, and background-color by using a change the
text of or a conclude action.

Use these actions when working with messages:

• change the color of

• change the text of

• conclude that...

• create

• transfer

• delete
1229

The next sections provide functional descriptions of each of these actions. For a
complete description of all G2 actions, see Actions.

Changing the Color Attributes of Message
Properties

Messages have three color attributes that you can change programmatically:

• background-color

• border-color

• text-color

You can change one or more color attributes with the change action, as the next
two examples show. In the first example, the action changes the text-color color
attribute. In the second, use the change the color-pattern of action to change all
the message’s color attributes.

change the text-color of corporate-welcome-message to blue

change the color-pattern of corporate-welcome-message so that
text-color is red, background-color is yellow, and border-color is purple

Changing the Text of a Message

Use the change the text of action to change the contents of a message, as the
following example illustrates.

change the text of corporate-welcome-message to "new message text"

The change action lets you change the text of any free-text or message
programmatically.

Concluding Message Text into a Variable or
Parameter

You can conclude a new value for a text variable, text parameter, or any attribute
that receives a value from a text variable or text parameter, using a text-
expression. The text-expression could be the text of a message, as the next
example illustrates.

conclude that welcome-text-variable =
the text of corporate-welcome-message
1230

Using Actions with Messages
Creating and Transferring Transient Messages

Create and transfer messages with the create and transfer actions. The next
example shows you how to create a transient message and transfer it to the
workspace:

create a welcome-message M;
transfer M to this workspace at (100, 50);
change the text of M to "This is a transient message"

Transient messages are deleted automatically whenever you reset the KB.

Deleting Transient Messages

Use the delete action to delete a transient message. The next example deletes
every transient message upon a particular workspace.

for any welcome-message M upon this workspace unconditionally delete M
1231

1232

36
Readout Tables,
Dials, and Meters
Describes the display items readout tables, dials, and meters.

Introduction 1233

Working with Displays 1234

Readout Tables 1237

Dials and Meters 1241

Introduction
Readout-tables, dials, and meters, items of the readout-table, dial, and meter
classes, respectively, are displays that show values as they change.

Updating each of these display items causes data-seeking, which can establish
new valid data and cause event updates to occur.

Caution Do not confuse the display meters described in this chapter with G2-meters. A
G2-meter is a special class of quantitative variable you can create to monitor G2
performance and memory utilization, as described in G2-Meters.

The G2 Dynamic Displays utility allows you to add dynamically generated radial,
linear, and floating graphical attribute readouts to icons. For more information,
see the G2 Dynamic Displays User’s Guide.
1233

Working with Displays
To create a readout-table, dial, or meter item:

 Select KB Workspace > New Display > display-item.

where display-item is the display of your choice.

Among others, G2 provides these displays:

• Readout-table: shows a variable, parameter, or expression, and its value.

• Digital-clock: a subclass of readout-table that displays the time according to
the scheduler.

• Dial: represents an arithmetic value graphically. The dial needle moves
clockwise as the value increases and counterclockwise as it decreases.

• Meter: represents an arithmetic value graphically. Meters have a bar that rises
and falls vertically as the value increases and decreases.
1234

Working with Displays
Note Unlike most items, G2 does not display the name of a display adjacent to it on the
workspace.

Specifying Tracing and Breakpoints

The tracing-and-breakpoints attribute lets you override the display item’s default
settings for these facilities.

For more information about using the tracing and breakpoints facilities in G2, see
Debugging and Tracing.

Specifying the Display Expression

The expression-to-display attribute specifies the variable or parameter, or
expression you want the display to show. Some examples are:

Q + 1
the level of tank-1

Specifying the Update Interval

The display-update-interval attribute indicates how long G2 waits before updating
the display. For example, if you specify 3 seconds, G2 updates the display every
three seconds.

Specifying the Display Update after G2 Start-Up

The display-wait-interval attribute specifies the amount of time, after KB start-up,
that G2 waits before updating the display.

We recommend that you give readout-tables different display-wait-intervals to
stagger updating and even out the CPU load after start-up.

Defining the Update Priority

The display-update-priority attribute defines the display update priority. G2
schedules the execution of tasks according to priority, executing those with the
highest priority (1) first.

Specifying Simulated Value Display

The show-simulated-values? attribute determines whether to display the
simulated value of the variable referenced in the expression-to-display attribute.

The G2 Simulator, which can supply simulated values, is a superseded capability.
For more information, see Appendix F, Superseded Practices.
1235

Common Attributes of Readout Tables, Dials,
and Meters

Readout tables, dials, and meter displays each have the following attributes:

Attribute Description

tracing-and-
breakpoints

Use this attribute to override the default tracing and
breakpoints for the readout.

Allowable values: For a complete description of possible tracing and
breakpoints values, see System Tables.

Default value: default

expression-to-
display

Specifies the variable, parameter, or expression whose
value you want to display.

Allowable values: any valid G2 expression

Default value: No default value

display-update-
interval

Specifies the frequency with which you want G2 to update
the display.

Allowable values: any positive time-interval

Default value: 5 seconds

display-wait-interval Specifies a time interval that G2 waits, when you start (or
restart) your KB, before updating the display.

Allowable values: any positive time-interval

Default value: 2 seconds
1236

Readout Tables
Readout Tables
The two kinds of readout tables are: readout table and digital clock.

A readout table is a rectangular, divided box that shows a label or an expression
on the left-hand side, and displays any quantity variable, parameter, or
expression on the right, as shown next.

A readout-table causes data-seeking only if the workspace it is on is showing (not
hidden). When the expression for the readout table has never been updated, G2
displays **** (asterisks).

When the expression has a value, G2 displays that value. When the value of the
expression is no longer valid (because it expires or attempts to update it fail), G2
continues to display the value but displays an asterisk beside it.

display-update-
priority

Specifies an integer between 1 and 10 that indicates the
priority at which G2 updates the display.

Allowable values: 1 – 10

Default value: 2

show-simulated-
values?

Specifies whether a variable referred to in the expression-
to-display attribute gets its value from the simulator or
inference engine.

Allowable values: yes
no

Default value: no

Notes: The G2 Simulator, which can supply simulated values, is a
superseded capability. For more information, see
Appendix F, Superseded Practices.

Attribute Description
1237

Readout tables do not support attribute displays, nor do they update through
events. For example, you cannot write a whenever rule that concludes a new
value for the readout table. The two ways to update a readout table are:

• An update action.

• Scanning, when the readout table is showing.

You cannot disable scanning.

Tip Internally, G2 classifies readout tables as a form of table. If you include a
configuration statement for tables in the KB Configuration system table, G2
imposes that configuration on readout tables, too.

Digital Clocks

A digital clock is a special kind of readout table. It displays the value of the
expression the current time in the time stamp format. Digital clocks have a subset
of a readout-table’s attributes.

A digital clock displays the word time when disabled. Note that the value of the
current time may drift out of synchronization with the current real time if, for
example, the scheduler is running in as fast as possible or simulated time mode.
For more information about time expressions, see By Iterating Over a Set.

Specifying the Label to Display

The label-to-display attribute specifies what appears in the left-hand side of the
readout display. If you do not enter a value for this attribute, G2 displays the
expression-to-display on the left side of the readout-table.
1238

Readout Tables
Specifying the Display Format

The display-format attribute specifies which way to display the expression value.
Keeping the default value displays the value as it appears for integers, quantities,
truth-values, symbols, and text.

You can specify any of these formatting styles:

• free text to display textual values without quotation marks.

• interval to display quantities as time intervals, such as 1 hour, 30 minutes, and
10 seconds.

• time stamp to display quantities as G2 timestamps, such as 1 Jan 2004
12:00:00 a.m.

• Any ddd.dddd-format to display floating point numbers with decimal point
precision, where a d represents each digit, such as 123.4567. By default,
readout tables display up to three decimal places.

• Any of the following date and time formats:

formatted as mm-dd-yyyy-hh-mm-ss
formatted as dd-mm-yyyy-hh-mm-ss
formatted as yyyy-mm-dd-hh-mm-ss
formatted as mm-dd-yyyy-hh-mm-ss-am-pm
formatted as mm-dd-yyyy-hh-mm-am-pm
formatted as yyyy-mm-dd-hh-mm-ss-am-pm
formatted as dd-mm-yyyy-hh-mm-ss-am-pm
formatted as dd-mm-yyyy-hh-mm-am-pm
formatted as yyyy-mm-dd-hh-mm-am-pm
formatted as mm-dd-yyyy-hh-mm
formatted as dd-mm-yyyy-hh-mm
formatted as yyyy-mm-dd-hh-mm
formatted as mm-dd-yyyy
formatted as dd-mm-yyyy
formatted as yyyy-mm-dd
formatted as mm-yyyy
formatted as yyyy-mm
formatted as dd-hh-mm-ss as an interval
formatted as hh-mm-ss as an interval
formatted as hh-mm as an interval
formatted as mm-ss as an interval
formatted as hh.hh as an interval

For examples of the date and time formats, see Formatting Class-Specific
Attributes.
1239

The readout table in this example sets the value of the text variable named my-var.
Notice that the readout table does not use quotation marks. To accomplish this,
the format-for-type-in-box and display-format is configured as free text.

Reading the Current Value

The readout-table-display-value attribute indicates the most recent value
computed for the display. You cannot change this attribute; it is provided by G2.

G2 does not update a readout table automatically, but according to its display-
update-interval attribute specification.

Class-Specific Attributes of Readout Tables

Readout tables have the same attributes as other displays, as described in
Common Attributes of Readout Tables, Dials, and Meters. The class-specific
attributes of readout tables are:

Attribute Description

label-to-display Specifies the label shown on the left side of the readout-
table.

Allowable values: Any symbolic name

Default value: none
1240

Dials and Meters
Dials and Meters
Dials and meters, items of the dial and meter classes, show the value of any
quantity variable, parameter, or expression as a pointer on the display. Both items
cause data-seeking if the workspace upon which they reside is not hidden.

A dial is a semi-circular clock-like display containing a pointer and five numeric
values, ranging from the far left-hand side to the right. You set the range of the
dial values in the attribute table. The pointer moves clockwise from left to right as
the expression value increases, and reverses as it decreases.

display-format The format in which to display the value of the
Expression-to-display.

Allowable values: any ddd.dddd-format
free text
interval
time stamp
default

Default value: default

readout-table-
display-value

The most recent value computed for the display.

Allowable values: The current value

Default value: ****

Attribute Description
1241

A meter is a vertical measurement display. The meter also has five numeric
values, along with a bar that moves up and down as the expression value
increases or decreases.

Display meters are not the same as G2-meters. A G2-meter is a special class of
quantitative variable you can create to monitor G2, as described in G2-Meters.
However, you could use a display meter to show the value of a G2-meter.

Setting the Meter’s Lower Value

The low-value-for-dial-rule attribute (low-value-for-meter-ruling for meters) sets the
lowest value for the ruling of the dial or meter.

Determining the Meter’s Dial Increment

The increment-per-dial-ruling attribute (increment-per-meter-ruling for meters)
determines the increment of the dial or meter rulings.

For example, if the low-value-for-dial-ruling is 0 and the increment-per-dial-ruling
is 10, then the dial or meter will have the rulings: 0, 10, 20, 30, 40.
1242

Dials and Meters
Class-Specific Attributes of Dials and Meters

Dials and meters have functionally identical attributes, though the names differ
slightly depending on whether the item is a dial or a meter. Common attributes
are described in Common Attributes of Readout Tables, Dials, and Meters. The
class-specific attributes of dials and meters are:

Attribute Description

low-value-for-dial-
ruling

low-value-for-meter-
ruling

Specifies the lowest calibration (ruling) value for the dial
or meter.

Allowable values: Any dial- or meter-ruling-parameter

Default value: 0.0

increment-per-dial-
ruling

increment-per-
meter-ruling

Specifies the increment to use for dial and meter rulings.

Allowable values: Any dial- or meter-ruling-parameter

Default value: 0.25
1243

1244

37
Freeform Tables
Describes how to use freeform table display items.

Introduction 1245

Creating a Freeform Table 1245

Formatting Freeform Tables 1247

Changing Formatting Attributes 1248

Changing Evaluation Settings 1250

Changing Freeform Tables Programmatically 1257

The Freeform Table Class 1257

Introduction
A freeform table, an item of the freeform-table class, is a tabular display that is
similar to a spreadsheet. The table consists of cells, which are arranged in rows
and columns. By default, freeform tables do not cause data seeking.

Creating a Freeform Table
To create a freeform table:

 Choose KB Workspace > New Display > freeform-table.
1245

By default, G2 creates a freeform table having four rows and three columns, as
shown in the next diagram.

Specifying the Table Size

The table-size attribute specifies the size of the freeform table as a number of rows
and columns, which you enter as follows:

the number-of-rows = 4;
the number-of-columns = 3

where 4 and 3 are the defaults that you can change. Increasing these values adds
new rows to the bottom of the table and new columns to the right-hand side.
Decreasing these values removes rows and columns from the same locations.

You can also change the size of the freeform table by choosing other-edits from
the item menu and then one of the choices shown below:

When you select add column, G2 adds a column to the left; when you select add
row, G2 adds a row above the cell from which you chose the other edits menu. By
design, these choices are the opposite of adding rows and columns via the table-
size attribute, thus providing a means for you to add rows and columns in
either direction.

Specifying Default Formats for Table Cells

The default-cell-format attribute specifies a default set of formats for all table cells.
You can specify all of the formatting options that Changing Formatting Attributes
describes. An example is:

the text-color is green
1246

Formatting Freeform Tables
Determining the Default Evaluation Settings

The default-evaluation-setting attribute controls how G2 evaluates an expression.
An example is:

evaluated every 2 seconds at priority 5

You can specify all of the evaluation settings that Changing Evaluation Settings
describes.

Note You cannot use the change the text of action to change the default-evaluation-
setting attribute value.

Formatting Freeform Tables
You can format freeform tables by setting defaults, which affect every table cell, or
by setting cell values individually. Individual cell values override default values.

Additionally, freeform tables have two special kinds of attributes:

• formatting attributes: For formatting various visual aspects of the freeform
table using one or more statements.

• evaluation settings: For specifying one or more statements about how G2
evaluates a freeform table cell expression, using one or more statements.

G2 provides a set of formatting and evaluation setting values that are inherent
with every freeform table. While the default formatting and evaluation setting
values are not visible, they exist as part of that item’s knowledge. For a list of
these default values, see Changing Formatting Attributes and Changing
Evaluation Settings later in this chapter.

To set default values for a freeform table, click on the freeform table and open the
freeform table’s attribute table, shown next.
1247

To provide a cell expression and set any individual cell values:

 From the freeform table’s menu choose:

• edit cell expression to provide an expression and, optionally, set
evaluation settings.

• edit cell format to set formatting attributes).

To add and delete freeform table rows and columns:

 Choose the other edits menu option.

Expressions for Freeform Table Cells

Each table cell displays the value of an expression. You enter the expression using
the edit cell expression option from the freeform table’s menu.

G2 updates the expression that a freeform table cell displays only when it
changes. If you are displaying a parameter value, for example, that value may
only change when an event update occurs.

Using evaluation settings, you can optionally configure either the entire freeform
table or an individual cell expression to use scanning, event updating, and data
seeking, to name just some of the evaluation options.

Several expression examples are:

the status of tank-2
the current time; evaluated every 2 seconds
the level of tank-2; evaluated with these settings: may-request-data-seeking is true;
scan-interval is 4

For descriptions and examples of all of the evaluation settings you can specify, see
Changing Evaluation Settings.

Note You cannot refer to the values of expressions in freeform tables.

Changing Formatting Attributes
Formatting attributes let you control the visual appearance of a freeform table.
You set default values for formatting attributes in the default-cell-attribute of the
freeform table, and individual cell values by choosing the edit-cell-format menu
option when you click in any table cell. You can use all of the formatting
attributes to format individual cells except for border-color, height, and width,
which are applicable only in the default-cell-format attribute.
1248

Changing Formatting Attributes
The names and descriptions of the freeform table formatting attributes, along
with their default values, are:

Formatting attributes for an individual cell override the default value. For
example, if the default-cell-format attribute specifies the background-color as
yellow, and you edit the background-color of an individual cell to:

the background-color is blue

all the freeform table cells will have a yellow background, except for the cell
whose format you edited, which will have a blue background.

When entering formatting attributes, the Text Editor includes in its freeform table
prompts the line-color is attribute, which is applicable only to charts. Also, the
Text Editor does not prevent you from entering a formatting attribute more than
once. If you do so, however, G2 uses the last one. For example, if you enter both of
these statements in the default-cell-format attribute:

the background-color is blue;
the background-color is red

G2 discards the first statement and uses only the last statement; the background
color of every cell would then be red.

This attribute... Has this default... And specifies...

background-color transparent Any color, meta-color, or a symbolic
expression as the freeform table’s
background color.

border-color foreground Any color or meta-color as the border color.

height 35 An integer as the height (in pixels) of the
freeform table’s cells.

width 150 An integer as the cell width (in pixels).

text-alignment right The value left, center, or right as the
alignment for text within cells.

text-color foreground Any color or meta-color as the text color
of cells.

text-size small The cell font size as small, large, or
extra-large.
1249

Here is part of a freeform table’s attribute table after you set every available
formatting attribute from the default-cell-format attribute:

Changing Evaluation Settings
Evaluation settings control the way G2 evaluates freeform table cell expressions.

This section describes each of the available evaluation settings, which affect
several activities, including, but not limited to:

• Data seeking

• Event updating

• Scanning

Entering Evaluation Settings

You can set one or more default evaluation settings in the freeform table’s default-
evaluation-setting attribute, or tailor the evaluation settings for individual cells,
using the edit cell expression menu option from any table cell, and entering one
or more statements after the cell expression.

The ways to enter evaluation settings are:

To provide.... Enter a statement like this...

A priority level of your choice. evaluated at priority 3

A specific evaluation time interval
that you provide.

evaluated every 10 seconds
1250

Changing Evaluation Settings
The evaluation settings you can enter after the evaluated with these settings:
statement are:

Not all of the evaluation settings that appear in the Text Editor prompt are
applicable for freeform tables. The names and descriptions of the valid evaluation
settings, along with their default values, are:

A priority level and evaluation
time interval of your choice.

evaluated at priority 3 every 10
seconds

One or more evaluation attributes
as shown in the next figure.

evaluated with these settings:

A specific evaluation time interval,
and one or more evaluation
settings.

evaluated every 10 seconds with
these settings:

To provide.... Enter a statement like this...

This evaluation setting... Has this default...

priority 2

scan-interval none

initial-scan-wait-interval 5 seconds

value-domain inference-engine

update-only-when-shown true

trace-message-level none

warning-message-level none
1251

Data Seeking Evaluation Settings

Data seeking can occur within a KB whenever G2 encounters an unknown
variable value. Backward chaining is one kind of data seeking, obtaining data
from a data server is another. There are many ways to cause data seeking
including:

• Setting a g2-variable’s update-interval attribute.

• Showing a display (such as a readout-table) that needs a value.

• Executing a rule that needs a value.

• Executing a wait statement in a procedure that tests a waiting predicate.

These evaluation settings control when G2 seeks data:

Using Data Seeking Evaluation Settings

The following example shows you how to use evaluation settings to allow or
disallow data seeking. Consider a freeform table cell that contains the expression
X+Y. If G2 attempts to update the value of this expression and encounters
unknown values for X and Y, it may request data seeking if the cell expression
contains the following evaluation setting:

X + Y;
evaluated with these settings:
may-request-data-seeking is true

break-message-level none

timeout-when-requesting-data-seeking infinite

may-request-event-updates true

may-request-data-seeking false

This evaluation setting... Has this default...

Evaluation setting Description

may-request-data-
seeking

Enables or disables a computation’s
permission to request data seeking when it
encounters an unknown value. Set this
attribute to true to enable permission to data
seek or false to disable it.

timeout-when-
requesting- data-
seeking

Specifies a time limit on data seeking for a
value. When data seeking times out, G2
notifies the requesting computation.
1252

Changing Evaluation Settings
This allows G2 to data seek for values for X and Y. Note that you could also have
specified the evaluation setting may-request-data-seeking as a value in the
default-evaluation-setting attribute of the freeform table’s attribute table.

Consider the quantitative-variables X and Y. In this example, the values for these
variables are unknown. Given the above evaluation setting, G2 attempts to data
seek for values. The attribute tables for both X and Y are shown below.

Because the options attribute is set to do not backward chain, the X variable may
not provide data on request to G2. Because X will not accept the data seeking
(backward chaining) request, G2 is unable to obtain a new value for X.

For the Y variable, however, the options attribute is set to depth first backward
chain (it may also be breadth first backward chain). Y accepts G2’s data seeking
request, evaluates its formula (the current time), and then provides a new value.

Event-Updating Evaluation Settings

When one part of G2 notifies another of an event, the notification process is called
event-updating. Forward chaining is one example of event updating. When
values change, they may provide events that allow expressions, depending upon
those values, to be updated. You can control this process by using event updating
evaluation settings.
1253

When a value changes, it sends an event to those expressions relying on the value
and informs them of the event. Expressions can request event updates, so that
when these values change, the expressions automatically receive the forward
chaining event to get the new value. With the following evaluation settings, you
can control when G2 uses events to update values:

Scanning Evaluation Settings

G2 allows you to configure some computations to occur periodically by giving
them a scan interval. By using the following evaluation settings, you can control
how often and when G2 attempts to evaluate an expression:

Evaluation setting Description

may-request-event-
updates

Enables or disables a computation‘s
permission to request that locations it
references provide it with updates.

Evaluation setting Description

scan-interval Specifies an interval (in seconds) that G2
waits between evaluations of a scanned
computation. If the value of this attribute is
none, no scanning occurs.

initial-scan-wait-interval Specifies the initial time interval that G2
waits immediately following activation
before executing the first scanned
evaluation. G2 only waits the initial-scan-
wait-interval once, and this allows you to
stagger the scan intervals for expressions,
making better use of resources.
1254

Changing Evaluation Settings
Debugging and Tracing Evaluation Settings

These attributes control the interactions between G2, when it attempts to evaluate
expressions, and the tracing and debugging facilities. G2 provides the following
debugging and tracing evaluation settings:

The values for these attributes are the same as you would specify in the
Debugging Parameters system table. However, specifying debugging and tracing
evaluation settings for a particular item allows you to override the setting in the
system table.

Note In the Debugging Parameters system table, the tracing-and-breakpoints-enabled?
attribute may be set to no, in which case G2 disables all debugging and tracing
attributes (those specified in the system table and those specified as debugging
and tracing evaluation settings). For more information about debugging and
tracing, see Debugging and Tracing.

Evaluation setting Description

break-message-level Controls the breakpoint for a particular item;
the default value is the value found in the
Debugging Parameters system table.

trace-message-level Controls the tracing messages for a
particular item; the default value is the value
found in the Debugging Parameters
system table.

warning-message-level Controls the warning messages for a
particular item; the default value is the value
found in the Debugging Parameters
system table.
1255

Scheduling Evaluation Settings

By using the scheduling evaluation setting, you can prioritize expressions. G2
evaluates those expressions of higher priority before evaluating those of lower
priority. In G2, 1 is the highest priority and 10 is the lowest. Use the following
scheduling evaluation setting to set priorities for expressions:

Other Evaluation Settings

G2 provides a value-domain attribute for specifying where G2 gets the values for
the expressions it is evaluating, and an update-only-when-shown attribute to
suppress updating when the expression is not visible. These attributes are
described below:

Evaluation setting Description

priority Sets the priority for the expression, which G2
uses in determining when to evaluate it. A
value of 1 is the highest priority; however,
you can specify any number from 1 through
10. Note that you cannot use this attribute to
change the order of evaluation. You can use
it only to affect how soon a given expression
is evaluated when its task reaches the top of
the task queue.

Evaluation setting Description

value-domain Specifies where G2 gets the values when
evaluating expressions. The possible values
for this attribute are inference-engine or
g2-simulator.

The G2 Simulator is a superseded capability.
For more information, see Appendix F,
Superseded Practices.

update-only-when-shown Suppresses updating if the expression is not
visible. This functionality is similar to
readout tables, which do not data seek
unless they are visible on the workspace.
1256

Changing Freeform Tables Programmatically
Changing Freeform Tables Programmatically
You can use the attribute access facility to update any part of a freeform table
programmatically. For example, the next procedure accepts as its arguments any
freeform table, and the number of columns and rows to which the table should be
sized. The procedure also sets several of the evaluation settings.

The attribute descriptions of freeform tables, presenting their internal structure, is
presented in the G2 Class Reference Manual.

update-freeform-table (F: class freeform-table, columns: integer, rows: integer)
evaluation-attributes, size: structure;
begin

size =
structure(number-of-columns: columns, number-of-rows: rows);

evaluation-attributes =
structure(priority: 4, may-request-event-updates: true,

may-provide-data-on-request: true,
may-provide-event-updates: true);

conclude that the table-size of F = size;
conclude that the default-evaluation-setting of F =

evaluation-attributes
end

The Freeform Table Class
The class-specific attributes of freeform tables are:

Attribute Description

table-size The number of columns and rows in the freeform table.

Allowable values: 1 – 100 (for both number-of-rows and number-of-columns)

Default value: the number-of-rows = 4;
the number-of-columns = 3

default-cell-format Specifies the default formatting attributes that G2 uses for
table cells.

Allowable values: See description following table.

Default value: none
1257

default-evaluation-
setting

Specifies the default evaluation settings (if any) which
each cell expression uses.

Allowable values: See Changing Evaluation Settings.

Default value: none

Attribute Description
1258

38
Charts
Presents chart styles and graphs, and show you how to use them.

Introduction 1259

Using Charts 1260

Displaying and Updating a Chart 1263

Using Chart Annotations 1263

Updating Charts Programmatically 1273

The Chart Class 1273

Introduction
Charts, instances of the chart class, are display items that plot numerical data in
the form of one or more data series. A data series consists of one or more
quantities, which must be elements of a quantity list or quantity array.

Charts do not cause data seeking and have no means of updating automatically.
Instead, you use the update action to plot the data series on a chart. Unlike most
items, charts do not support attribute displays.

Note Do not confuse charts with trend charts, which plot the history values of one or
more variables and parameters over time. Trend charts are described in Trend
Charts.
1259

Using Charts

To create a chart:

 Select KB Workspace > New Display > chart.

Chart Styles

There are three system-defined chart styles:

• Line chart

• Scatter chart

• Column chart

The chart-style attribute of a chart determines its style, each style providing a set
of default attributes. The following diagram shows an example of each chart type.
Chart attributes are described in The Chart Class.
1260

Using Charts

Scatter-chart-style

Line-chart-style

Column-chart-style
1261

Specifying the Chart Style

The chart-style attribute specifies what style of chart to use. You can further
enhance the chart style by using annotations. For example, when using a column-
chart-style, you can optionally add an annotation indicating that a data series
should be represented as either a bar (horizontal) or a column (vertical) style.

Sizing a Chart

G2 limits the size of a chart so that it cannot become so large that it consumes all
available system resources.

To change the size of a chart:

 Select change size from the chart’s menu.

G2 draws a size box around the chart and displays update dialog, shown here.
Move the edges of the size box so that the chart is the size you want and click
Update Now in the dialog.

Defining the Data Series for the Chart

The data-series attribute defines what to plot on the chart. Each data series must
evaluate to a quantity list or array.

The order in which you enter each data series determines its numeric reference,
which you use in statements. For example, if you enter two data series in this
attribute, you would refer to them in an expression with a statement such as:

data series 1, data series 2

where the data series number corresponds to the order in which you
entered them.

Drag the outer border
to size the chart.
1262

Displaying and Updating a Chart
By using the versus statement, you can plot two data series against each other. An
example of plotting two data series is:

plot q1; plot q2 versus q3

where q1, q2, and q3 are each quantity-list or quantity-array items.

Displaying and Updating a Chart
To display one or more plots on a chart, you use the update action. Because charts
do not have a scan interval, G2 does not automatically update a chart when an
element of the quantity-list (or quantity-array) for the chart changes. Instead, you
must use the update action whenever you want to update a chart. Some
examples are:

update power-series-chart
update every chart upon this workspace

Note Updating a chart does not cause data seeking or event updating. A chart is
updated once when activated and once whenever it is edited.

Using Chart Annotations

After creating a chart and determining its style, you can optionally format the
chart using annotations.

Charts are composed of several components:

• Axis

• Chart

• Data series

• Data point

Each component consists of formatting attributes that define the chart’s
appearance. For example, the axis component includes the axis-minimum, axis-
maximum, and axis-crossover attributes. Formatting attributes are a special kind
of attribute used only in formatting freeform tables and charts. Annotations are
statements that describe the value of one or more formatting attributes of a
chart component.

Note When referring to component attributes, this chapter uses the term attribute
somewhat loosely. Unlike most other item attributes, a chart’s component
attributes are not accessible as individual attribute names on attribute tables.
Instead, you provide values for these attributes through annotation statements.
1263

Unlike trend chart components, which are organized into component subtables,
chart components are accessible only as annotations. Syntactically, chart
annotations are almost identical to those found on trend charts. They differ,
however, in their organizational and descriptive statements.

Trend chart annotations explicitly state the components to which they refer. They
begin with a component statement, followed by one or more component
attributes and values, such as:

1 value-axis;
the label-color of value-axis 1 is red

indicating that there is one value axis, and that its label-color attribute has a value
of red.

In contrast, chart annotations do not explicitly state the component to which they
refer. The attribute name indicates the relevant component, as these
annotations do:

the grid-color of axis 1 is purple;
the indicator of any data-point of data-series 1 is solid-column

In this example, grid-color is a chart component attribute, and indicator is an
attribute of the chart’s data point component.

While you can enter chart annotations in any order, G2 may regroup certain
attributes so that they appear together for one component.
1264

Using Chart Annotations
Default Chart Annotations

Each chart style that G2 provides includes a set of default values for each of the
components. Though you cannot see the default values as annotations in the
chart’s attribute table, the defaults exist as part of that item’s knowledge. The
component attribute defaults for each chart style are shown next. The notation
N/A indicates that the default is not applicable.

Shaded component attributes without values are those that have an unspecified
default. For these attributes, G2 calculates an appropriate value based upon the
data that the chart is plotting.

Chart Style

Component Attribute Line-Chart Scatter-Chart Column-Chart

all line-color black black black

axis axis-minimum (1)

axis-maximum (1)

axis-crossover zero zero zero

number-of-significant-
digits

-1 -1 -1

number-of-tickmarks

tickmark-interval

chart background-color transparent transparent transparent

border-color black black black

grid-color black black black

grid-visible false false false

data-series connection-line-visible true false false

line-from-last-to-first-
point-visible

false false true

data-point height 5 5 N/A

indicator square square bar

indicator-visible false true true

width 5 5 5
1265

Axis Component Attributes

Here are the axis component attributes.

Specifying the Minimum and Maximum Axis Values

The axis-minimum and the axis-maximum attributes specify a number on the axis
that shows the beginning and end of the range of data. Axis 1 is the horizontal
axis and axis 2 is the vertical axis. An example is:

the axis-minimum of axis 1 = -20
the axis-maximum of axis 1 = 10

Specifying Where Axes Cross

The axis-crossover attribute specifies a point on the axis where the other axis
crosses it. The point is an integer, whose default value is zero. If zero is not on the
axis, the default is the axis-minimum. If you specify an axis-crossover value that is
outside the axis range, G2 overrides it and uses the axis-minimum value. An
example is:

the axis-crossover of axis 1 = 4.7

Specifying the Number of Significant Digits of Tickmark Labels

The number-of-significant-digits specifies whether tickmark-label quantities
should be displayed using exponential representation. The specified value can be
an integer between 2 and 15 or it can be -1.

The default value of -1 specifies that floating point and integer values for labels be
converted to exponential representation under these conditions:

• When the quantity is an integer value over six digits and its exponential
representation is shorter than its integer representation.

• When the quantity is a floating-point value and its exponential representation
is shorter than its floating-point representation.

Providing a value between 2 and 15 overrides the default behavior by specifying
that the label quantity should not be converted to exponential representation,
unless the value specified is not large enough to accurately represent the quantity.
An example is:

the number-of-significant-digits of axis 2 = 13

Specifying the Number of Tickmarks on an Axis

The number-of-tickmarks attribute specifies the number of tickmarks on the axis.
An example is:

the number-of-tickmarks of axis 1 = 4
1266

Using Chart Annotations
Specifying the Tickmarks Interval

The tickmarks-interval attribute specifies the distance between successive
tickmarks on an axis. An example is:

the tickmark-interval of axis 2 = 5

Chart Component Attributes

These are the chart component attributes.

Setting the Background Color

The background-color attribute determines the background color of the entire
chart. Unlike trend charts, there is no way to separate the background color of the
actual data window, in which the data series values display, from the outer edge
of that area. The default background color is transparent.

Setting the Border Color

The border-color annotation determines the chart’s external border color. There is
no annotation to set the border that bounds the data window area, in which the
data series values appear. The default is black.

Setting the Grid Color

The grid-color attribute specifies the color of the grid for either axis. Conceptually,
a grid is an extension of an axis tickmark to the full size of the chart. You can
specify a grid-color for both axes, or for either axis individually. Some
examples are:

the grid-color is light-blue
the grid-color of axis 1 is pale-green

Specifying Whether Grid Lines are Visible

The grid-visible attribute turns grid lines on or off (true and false, respectively) for
either or both axes. Some examples are:

the grid-visible is true
the grid-visible of axis 2 is false

Data Point Component Attributes

These are the attributes that compose the data point component.

Specifying the Height and Width of Data Points

The height and width attributes specify the height and width of a data point in
pixels. Enter this attribute as an integer value. The height and width attributes are
1267

not applicable to line charts. The default value varies depending on the indicator
you use. To change the default, enter an annotation like this:

height of any data-point = 10;
width of any data-point = 10;

The following diagram shows the effect of changing the data-point height and
width from the default value to 10:

Defining the Indicator Type

The indicator attribute defines what G2 displays at each data point in a data series.
The next table lists the possible values for this attribute and the chart style they
are appropriate for.

Hint Adding an indicator annotation to a line-chart effectively changes the chart style
to a column- or scatter-chart, depending on the value you specify.

Indicator Value
Column
Chart Style

Scatter
Chart Style

Square 

Rectangle 

Triangle 

Cross 

X 

Bar 

Column 

Solid-bar 

Solid-column 
1268

Using Chart Annotations
Here are examples of an indicator of bar and solid-bar:

The next diagram shows a column chart with solid-column data-point indicators
for two data series. The chart appears with upper and lower values since the list
element values it represents are in opposite numeric ranges (random 10 to 20, and
random -20 to -10).

The indicator of any

The indicator of any

data-point is solid-bar.

data-point is bar.
1269

Here are examples of each of the indicator attribute values appropriate for
scatter charts:

As the previous table notes, indicator attribute values are appropriate for scatter or
column chart types. The term appropriate, however, does not indicate that each
value is exclusive to a chart type. On the contrary, changing the indicator attribute
on a scatter or column chart effectively changes the chart style.

Consider the following column charts. The left-hand chart is one without a
specific indicator attribute (the default is bar). The right-hand chart shows the
effect of adding the annotation:

the indicator of any data-point is square

Cross

Square

X

Triangle

Rectangle
1270

Using Chart Annotations
Such an annotation essentially changes the appearance of the column chart into a
scatter chart:

You can specify a separate indicator for each data series on the chart, but only one
indicator can be in effect at a time. If a chart includes one indicator annotation and
you add another, closing the edit on the change causes G2 to delete the first
annotation and keep the last change.

Two examples of indicator attribute annotations are:

the indicator of any data-point is rectangle

the indicator of any data-point is bar-column

Specifying Whether the Indicator is Visible

The indicator-visible attribute specifies whether the indicator is visible. By default,
an indicator is visible (true). Changing the indicator-visible attribute to false
effectively hides the data-series display. For example:

the indicator-visible of any data-point of data-series 1 is true
1271

Data Series Component Attributes

Here are the attributes that comprise the data series component.

Specifying Whether Data Points are Connected

The connection-line-visible attribute specifies whether there is a line between
data-points in a data series. You can set this attribute to true or false. The
connection-line-visible attribute is not applicable to column charts.

An example of this annotation is:

the connection-line-visible of any data-point is true

For a line chart, this attribute is true by default. Changing it to false effectively
hides all data points.

The next diagram shows the effect of changing the connection-line-visible
attribute to true upon a scatter chart:

Controlling Connecting Lines

The line-from-last-first-point-visible attribute controls the appearance of a single
connecting line from the last point in the data series to the first point. Use this
when plotting data that samples one cycle of a cyclic process. Set this attribute to
true or false. An example is:

the line-from-last-to-first-point-visible of any data-point is false
1272

Updating Charts Programmatically
Defining the Line Colors

The line-color attribute is applicable to several components, including the chart’s
axis, data point and data series components.

You can specify the line color for a chart component attribute as a color or a meta-
color as follows:

the line-color of axis 1 is purple;
the line-color of data-series 1 is red;
the line-color of any data-point is brown

Updating Charts Programmatically
You can use the attribute access facility to update chart-style, data-series, and
annotations of a chart programmatically.

The attribute descriptions of charts, presenting their internal structure, is
presented in the G2 Class Reference Manual.

This code example concludes the chart-style attribute.

conclude that the chart-style of series-chart = the symbol column-chart-style

The Chart Class

The class-specific attributes of charts are:

Attribute Description

chart-style The style of the chart.

Allowable values: {line-chart-style | scatter-chart-style | column-chart-style}

Default value: line-chart-style

data-series One or more data series that you want to plot on the chart.

Allowable values: {none | plot {g2-list | g2-array} [,...]
[versus plot {g2-list | g2-array}]}

Default value: none
1273

annotations A syntactical description of how to format the chart. A
chart can have no annotations, or a great many of them
describing multiple chart attributes. Using Chart
Annotations describes the possible values of this attribute
in detail.

Allowable values: Any applicable chart annotations.

Default value: none

Attribute Description
1274

39
Graphs
Presents chart styles and graphs, and show you how to use them.

Introduction 1275

Creating a Graph 1276

Introduction
A graph plots the histories of one or more quantitative variables and parameters.
Here is a graph with its various attributes labeled:

Graph background

Grid line

Grid

Tickmark

Graph label

label

background
1275

Hint To graph the histories of variables and parameters, you must complete the
history-keeping-spec attribute of those items in their corresponding attribute
tables.

Creating a Graph
To create a new graph:

 Select KB Workspace > New Display > graph.

The class-specific the attributes of graphs are:

Attribute Description

desired-range-for-
horizontal-axis

The length of time that the graph represents. The
maximum value for this attribute is 24 weeks.

Allowable values: {none | time-interval | any time-interval to time-interval
[without tickmark labels]

Default value: none

desired-range-for-
vertical-axis

The range of values that the graph plots.

Allowable values: {none | number [to number]} [with all intervals the same |
without tickmark labels]

Default value: none

scroll-
continuously?

Determines whether the values in the graph data window
scroll to display new data.

Allowable values: yes
no

Default value: no
1276

Creating a Graph
percentage-extra-
space-to-leave

The percentage of data points to display before scrolling.

Allowable values: Any integer

Default value: 0

show-grid-lines? Determines whether to display grid lines in the grid
background.

Allowable values: yes
no

Default value: yes

interval-between-
horizontal-grid-
lines?

Determines the interval between the tickmarks on the
vertical axis.

Allowable values: {compute automatically | number beginning at number}

Default value: yes

extra-grid-lines? Determines the color and placement of extra grid lines.

Allowable values: at any number in any-color
none

Default value: none

background-colors Determines the background colors for the graph and the
grid.

Allowable values: graph background: color, grid background: color

Default value: graph background: white,
grid background: white

Attribute Description
1277

expressions-to-
display

The expressions whose value the graph represents.

Allowable values: Any expression that evaluates to a variable or a parameter.

Default value: No value

label-to-display The label that appears below the graph.

Allowable values: Any label of your choice

Default value: No value

display-update-
interval

The frequency with which you want G2 to update the
graph.

Allowable values: time-interval

Default value: 5 seconds

display-wait-interval The interval of time that G2 waits before updating the
graph whenever you start or restart the KB.

Allowable values: time-interval

Default value: 2 seconds

display-update-
priority

The priority at which G2 evaluates the graph expressions.

Allowable values: 1 – 10

Default value: 2

Attribute Description
1278

Creating a Graph
Tip Internally, G2 classifies graphs as a form of table. If you include a configuration
statement for tables in the KB Configuration system table, G2 imposes that
configuration on graphs, too. Also, like some other display items, graphs do not
support attribute displays.

Sizing a Graph

G2 limits the size of a graph so that it cannot become so large that it consumes all
available system resources.

To change the size of a graph:

 Choose change size from the graph’s menu.

G2 draws a size box around the graph and displays the update dialog,
shown next:

Move the edges and corners of the size box to the shape and size you want for
the graph.

show-simulated-
values

Determines whether to show a variable’s simulated value,
rather than its non-simulated value.

Allowable values: yes
no

Default value: no

Attribute Description
1279

Hint When you change the size and shape of a graph, the tickmark labels and graph
label remain the same size while the overall graph size changes. The minimum
size of a graph is limited by its label; the graph cannot be narrower than its
expression-to-display or label-to-display, whichever is shown as the label of the
graph. Also, as the graph gets smaller, its labels may overlap, causing fewer labels
to show.

Specifying the Data Window Time Span

The desired-range-for-horizontal-axis attribute specifies the time span that the
data window of the graph represents.

The graph’s horizontal axis represents time. G2 plots the history values of
variables and parameters on the vertical axis (representing values) against the
time that the horizontal axis represents.

Graphs have a maximum time range of 24 weeks, in contrast with trend-charts,
whose maximum time range is 10 years. Specify the value as follows:

Entering a
statement like this... Causes G2 to...

none Determine an appropriate time range for the
recorded data that the graph displays.

30 seconds Plot the data that was recorded during that
last time interval. In this case, G2 plots the
values that were recorded during the last 30
seconds on the graph.
1280

Creating a Graph
Specifying Numerical Bounds for the Value Axis

The desired-range-for-vertical-axis attribute specifies the numerical bounds for
the value axis, which is the vertical axis. Complete this attribute as follows:

30 seconds to
1 minute and 30 seconds
after start

Specifies a time interval range; G2 only
displays those values that were recorded
during that time period. Note that the history-
keeping-spec must record enough datapoints
to satisfy the time interval range.

without tickmark labels Selectively suppresses the display of
tickmark labels for each graph axis, when you
add this statement at the end of a range
specification.

Suppressing tickmark labels results in a
larger interior drawing area for the graph’s
data and smaller margins around it. This
format is useful when displaying a large
number of graphs so that you can fit as much
data as possible on the display.

Entering a
statement like this... Causes G2 to...

Entering a
statement like this... Causes G2 to...

none Determine an appropriate range for the
recorded data.

100 Use the number you enter as the zero-
centered value axis range. For example,
entering 100 causes G2 to center the range of
100 around zero and show a range of values
from -50 to 50, as shown at the left.

Grid lines appear for -50 and 50; however,
the tickmark labels may not reflect the exact
values specified for the range.
1281

Specifying Graph Scrolling

The scroll-continuously attribute specifies yes or no from the menu that appears. If
no, when the data line reaches the end of the graph, the data shifts backward to
the previous grid line; the grid lines remain in place. If yes, then the data and grid
lines both shift backward in increments large enough to show the new data. The
default is no.

Defining the Graph Percentage to Extend

The percentage-extra-space-to-leave attribute defines any positive number that
indicates a percentage of the graph that G2 extends before scrolling. To increase
performance, use this attribute when the scroll-continuously? attribute is set to
yes so that G2 can display more data points before scrolling.

20 to 40 Use that range of values that you provide for
the value axis. For example, if you specify 20
to 40, G2 positions an appropriate number of
axis values beginning at 20 and ending at 40
as shown to the left.

with all intervals the same Use the range of values that you specify, but
keep all grid intervals the same and make the
top and bottom grid lines coincide with the
top and bottom of the graph. This statement
is optional.

without tickmark labels Selectively suppress the display of tickmark
labels for the graph’s value axis. This
statement is optional.

Suppressing tickmark labels results in a
larger interior drawing area for the graph’s
data and smaller margins around it. This
format is useful when displaying a large
number of graphs so that you can fit as much
data as possible on the display.

Entering a
statement like this... Causes G2 to...
1282

Creating a Graph
Specifying Whether Grid Lines are Visible

The show-grid-lines attribute specifies yes or no from the menu that appears. If
yes, the grid lines appear on the grid background. If no, the grid lines do not
appear. The default is yes.

Defining the Interval between Tickmarks

The interval-between-horizontal-grid-lines attribute defines the interval between
the tickmarks on the horizontal time axis (which are the horizontal grid lines on
the grid background). Complete this attribute as follows:

Specifying the Number and Style of Grid Lines

The extra-grid-lines attribute specifies the color and placement of extra grid lines.
The default is none.

Entering a statement such as this:

at 10 in green

specifies where on the vertical axis you want to place extra grid lines, and what
color they should be. The color specification is optional.

Tip You can show extra grid lines even if the show-grid-lines? attribute is set to no.

Entering a
statement like this... Causes G2 to...

compute automatically Determine the interval between horizontal
grid lines automatically. G2 uses an interval
that lets it display between four and seven
horizontal grid lines on a graph, depending
on the range of the vertical axis.

4 beginning at 2 Use the interval and the origin point
(beginning at 2) that you specify for the
horizontal grid lines.

In this example, the tickmarks begin at 2, with
intervals of 4, until they reach the limits that
the desired-range-for-vertical-axis attribute
specifies.
1283

Defining a Graph’s Background Color

The background-colors attribute specifies the background colors for the graph
and for the grid. Enter the statements like this:

graph background: color, grid background: color

The values for color can be any color, but not a meta-color or a color expression.

Specifying the Expression to Display

The expression-to-display attribute specifies the variable or parameter whose
history values you want to display on the graph. You can enter any variable or
parameter by name, or any expression that evaluates to a variable or a parameter.
Enter multiple expressions by separating them with a semicolon. Appending one
or more of the following optional statements lets you format the display of
the expression:

Entering a
statement like this... Causes G2 to...

quant-variable-1 in red Display the data line and any plot markers
for the specified expression in the color
you specify.

quant-variable-1
using triangle plot marker

Display the markers for the data line as the
shape you specify. Possible shapes are:
plus-sign, square, or triangle.

quant-variable-1
using line width 10

Display the data line as wide as the number
of workspace units you enter. Note that the
line width does not affect the size of the
plot markers.

quant-variable-1
using shading in blue

Shade the area below the data line with the
color you specify. If you do not specify a
color, G2 uses black for the shading.

quant-variable-1
with range from 0 to 5

Show the data with its range scaled to that of
the graph’s vertical axis. For example, if the
range is from zero to five and a datapoint falls
at 2, G2 displays that datapoint at 40 (for 40
percent of the range), provided that the
vertical axis goes from 0 to 100.
1284

Creating a Graph
The next example shows an expression using three variables, X, Y, and Z, each
with different formatting options:

X in blue using square plot marker and using line width 3 with range from 1 to 50;
Y in red;
Z in yellow using shading

Tip If you specify a range for the expression (as in the X specification), you must also
specify a range (or range width) for the desired-range-for-vertical-axis attribute.

Specifying the Graph Label

The label-to-display attribute specifies the label shown beneath the graph, which
has no effect on the expression that the graph displays. If you do not enter a label-
to-display, G2 displays the expression-to-display beneath the graph.

Using Grid Lines and Tickmark Labels in Graphs

When you configure a graph, the grid lines and tickmark labels may not appear
exactly as you specify them. When you let G2 compute ranges automatically, it
sometimes changes the layout slightly to avoid overlapping tickmark labels.

Horizontal Axis and Tickmark Labels

The horizontal axis represents time. G2 places tickmark labels at the ends of the
horizontal axis, and attempts to place them next to any visible grid lines, omitting
tickmark labels wherever they overlap or are too close. If the show-grid-lines?
attribute is set to no, the tickmark labels remain as if the grid lines were visible.

If the desired-range-for-horizontal-
axis attribute uses... Then the...

Either a time interval or a compute
automatically statement

Right-most label on the horizontal axis
indicates the current time, and the other
labels are relative to that label. For
example, if the right-most label on the
horizontal axis is 37:45 and another label
reads -0:30, then the time for the latter
label is 30 seconds earlier than the right-
most label (37:15).

A time interval statement such as:
1 second to 20 seconds after start

Tickmark labels represent the current time.
1285

Vertical Axis and Tickmark Labels

The vertical axis represents the values of the expression(s). G2 automatically
determines where vertical tickmark labels should be, based on the size of the
range specified in the desired-range-for-vertical-axis attribute. G2 creates between
four and seven vertical grid lines (at the tickmark labels) on a graph. Note that if
you specify that if the scroll-continuously? attribute is set to yes, the vertical grid
lines move with the data and do not always align with the edges of the graph.
1286

40
Trend Charts
An introduction to and description of trend charts and their use.

Introduction 1288

About Trend Charts 1288

Compound Attributes 1292

Configuring Trend Charts 1300

Configuring Plots 1304

Configuring Value Axes 1313

Configuring the Time Axis 1322

Configuring Point Formats 1331

Configuring Connector Formats 1334

Configuring the Trend Chart Format 1339

Working with Trend Charts 1343

System Procedures for Trend Charts 1344

Trend Chart Attributes Reference 1344
1287

Introduction
Trend charts are graphical display items of the trend-chart class that plot time
series or historical data over a designated period of time. The major features of
trend chart displays are:

• Multiple Y (value) axes.

• Support of all numeric expressions, not just those that name a variable
or parameter.

• An editing interface that uses subtables instead of attribute expressions.

• Fine-grained control over all aspects of trend chart labelling and layout.

• Plot marker choices, including current value and monochrome icons.

• Subsecond time support.

• Full data seeking capabilities (optional).

Note Do not confuse trend charts with charts, which plot numerical data in the form of
one or more data series. See Charts.

About Trend Charts
A G2 trend chart consists of several components. Components are the building
blocks of a trend chart, each customizes a particular aspect of the trend chart and
its data. The trend chart components are:

• One or more plots, which plot data history values over a period of time.

• One or more value axes, which are vertical indicators of the range of values
that a plot represents.

• A single time axis, indicating the time over which G2 is plotting data.

• One or more connector formats, describing whether connectors between data
points appear on the chart and, if they do, how they are drawn.

• One or more point formats, describing whether markers for certain points
appear on the trend chart and how and when they display.

• A single trend chart format, determining general formatting attributes for the
entire trend chart.
1288

About Trend Charts
The next figure shows a trend chart with two plots and callouts to some of the
trend chart components:

Each plot component contains an expression that plots on the trend chart. A plot
expression can evaluate to a quantitative variable or a parameter, or to a
quantitative value expression.

A relationship exists between each plot and its associated value axis. Every plot
must have an associated value axis, and several plots may exist on a single axis. A
value axis, however, does not require a plot.

Plots also have an association with point and connector formats. While plots
maintain data point values, point and connector formats determine how the data
points appear on the trend chart. Connector formats specify how the lines of a
plot are drawn on the trend chart. Point formats specify what marker, if any,
appears upon a drawn plot at a specified data point. Point and connector formats
exist for the purpose of defining specific, named drawing styles that you can refer
to in multiple plots.

Plots

Value axes

Time axis
1289

The next diagram shows a single connector format, and two different point
formats, triangle and square for two plots:

Minimally, a trend chart consists of a single time axis, one value axis, and at least
one plot with an expression. Configuring a trend chart lets you fully control all
aspects of the trend chart’s appearance. You can configure a trend chart as much
or as little as you like. As an example, the next diagram shows a single-plot trend
chart plotting a random number expression before and after some
minor customizing.

The only configuration of this trend chart was to change its size, add a title and
different background colors, and change the number of significant digits on the
value axis.

Square
point
format

Triangle
point
format

Single
connector
format

Random number trend chart

Same trend chart
after customizing

before customizing
1290

About Trend Charts
The ability of trend charts to support multiple value axes, sometimes called y
axes, provides a flexible way to plot various types of data values. Consider the
next examples.

For a comparative display of one value against two measurements, such as the
temperature of a tank in Fahrenheit and Celsius, use a single plot and two
value axes.

To plot disparate values, such as the temperature and the volume of a tank, use
two plots on two value axes.
1291

To compare the values of two items against one another, such as the temperature
of two tanks, use two plots on one value axis.

Compound Attributes
Most of the trend chart attributes are compound attributes. A compound
attribute is composed of one or more components. The time-axis and trend-chart-
format compound attributes can include only a single component. The plots,
value-axes, point-formats, and connector-formats compound attributes can
include multiple components.

Compound attribute components are similar to other G2 items in that they consist
of attributes and corresponding values, which you can display on an attribute
table. They differ from items in that you cannot see them as icons upon a
workspace, or detect them as separate items through the Inspect facility or any
other item reference, either interactively or programmatically.

Compound attribute values are accessible in two basic forms:

• Each component in the compound attribute has its own attribute subtable.

• The attribute/value row for the compound attribute on the trend-chart
attribute table combines the values of all of the components in the compound
attribute. You can select from three different views of the combination value:

– A top-level view which simply tells you how many components are in the
compound attribute.

– A textual annotation with information on the non-default valued
attributes in each component.

– The value of the compound attribute expressed as a sequence of
structures: one structure for each component.
1292

Compound Attributes
The next four sections describe the different views and how to access them. The
plot compound attribute is used in the examples.

Accessing Component Subtables

Attribute tables that represent trend chart components are called component
subtables. A component subtable lists all the attributes of a single component and
provides you with interactive access to them. Component subtables are used as
examples throughout this chapter because they provide the optimal way to
customize components.

Accessing Component Subtables

For all compound attributes that can include multiple components, you can add,
delete, and edit component subtables, or access the defaults subtable. The next
two graphical examples show you the two ways of accessing a plot
component subtable.

To access component subtables from the trend chart menu:

 Select menu choice > subtable > component on the trend chart.

For example: plots > subtable > plot-component
1293

To access component subtables from the trend-chart attribute table:

 Select table > compound-attribute value cell > subtables > component on the
trend chart.

where compound-attribute is the component to access, such as Plots.

For example: trend-chart > table > plots value cell > subtables > plot-component

Note Component subtables do not include the notes attribute. If the status of a
component is anything other than ok, a message appears in the notes attribute of
the trend chart attribute table. The message indicates which component is not ok.
1294

Compound Attributes
Adding and Deleting Component Subtables Programmatically

You can add and delete component subtables programmatically by using two
system procedures:

• g2-add-trend-chart-component

• g2-delete-trend-chart-component

These system procedures function almost exactly as the menu choices do. Each
procedure accepts two or three arguments: the trend chart to or from which you
want to add or delete something, the name of the component subtable to add or
delete, and, when deleting, the specific component to delete.

For a complete description of these and other system procedures, see the
G2 System Procedures Reference Manual.

Selecting Compound-Attribute Value Views

The attribute/value row for a compound attribute on the trend-chart attribute
table combines the values of all of the components in the compound attribute.
You can select any one of three different views of a compound-attribute value.

To access a compound-attribute value view:

1 Click the value cell of the compound attribute on the trend-chart attribute
table to bring up its menu.

2 Select one of these menu choices: show summary of text, show text, or
show value.

The current view will not be a menu choice.

In the example above, the show summary of text menu choice is not offered
because the plots value is already shown in the summary of text view. This view is
the default view and simply tells you how many components the compound
attribute has.
1295

The text view is a detailed syntactical description of the non-default values of the
components. For example:

The next example shows the plots attribute in value view:

The value view shows the value that is available through the attribute-access
facility. In this case, the value consists of a sequence of two structures, one for
each plot component.
1296

Compound Attributes
Changing Compound Attributes

You can change a compound attribute by:

• Adding, deleting, or editing a component subtable.

• Editing the text and composite value attribute values interactively with the
Text Editor.

• Using system procedures.

• Changing the compound attribute programmatically, using change the text of
or conclude actions.

Regardless of how you change compound attribute, G2 reprocesses the
entire attribute.

You can change a compound attribute programmatically through its composite
value. This ability is available through G2’s attribute access facility which is
described in Attribute Access Facility.

Reprocessing the text of a compound attribute value has a number of
implications, one of which is that to change even a single character of the text, you
must first get all of the text. You then modify the text in its entirety to include
the change.

Because of the complexity of changing a text value, we recommend that you do
not use change the text of or conclude actions to do so. Instead, G2 provides two
system procedures to perform this task:

• g2-get-text-of-trend-chart-component

• g2-set-text-of-trend-chart-component

The first system procedure gets the text of a textual annotation, the second lets
you replace it with a change. For a complete description of these and other system
procedures, see the G2 System Procedures Reference Manual.

Another implication of the reprocessing of textual annotations is that the entire
set of components in a compound attribute is replaced by a new set of
components created from the textual annotations. In general, this has little or no
importance to trend chart users, with the exception of plot components that are
plotting local history values. Because changing a textual annotation deletes and
replaces the old set of plots, it also deletes any local history values associated with
those plots. For information about using local histories, see Defining Where to
Obtain History Values.
1297

Using Component References

For compound attributes capable of multiple components, you refer to individual
components by using a component reference. A component reference is the
number or name by which you specify a particular component of a
compound attribute.

By default, a component reference is a number preceded by the name of the
component, such as plot #1, or connector-format #1. Each compound attribute
capable of multiple components includes a single default component reference,
which is 1 in all cases. You cannot delete a default component.

You add components by the methods described in Accessing Component
Subtables. As you add new components to a trend chart, G2 automatically
increments and assigns a component reference number for the compound
attribute with each additional component. For instance, if you add two plot
components to a new trend chart, in addition to the default component, their
component reference numbers will be 2 and 3, respectively.

Component reference numbers are reusable. For instance, if you have three plots,
1, 2, and 3, and you delete plot #2, plots 1 and 2 remain, not 1 and 3, as you
might expect.

Each component subtable includes a names attribute, through which you can
name the component. Naming a component subtable does not negate its numeric
reference. You can use a component name interchangeably with its corresponding
reference number when referencing a component. By using a component
reference name, you alleviate the need to refer to component reference numbers,
which change as you add and delete components.

Note Because trend chart component reference numbers are positional, we recommend
that you always provide a unique name to each trend chart component. By
naming components, and then by using the appropriate name as a reference, you
avoid inadvertently referencing the wrong component.

Setting Component Defaults

All compound attributes capable of multiple components also have a defaults
subtable. In contrast to a component subtable that lets you format a specific
component, a defaults subtable lets you define general format settings that can
apply to all of the corresponding components.

For instance, two of the attributes on the plot defaults subtable are update-interval
and wait-interval. Changing the value of these two attributes to 3 seconds changes
the values on all plots that have not overridden the default value. Specific
component subtables can always override any default settings for the
component attributes.
1298

Compound Attributes
The defaults subtables themselves have a set of default attribute values. Each new
component consists of these defaults before customizing. Changing the values on
a defaults subtable appears in the text view of the attribute value as an any
statement, such as the any point-format statement shown next in the following
sample point-formats attribute:

The defaults subtables of all compound attributes are accessible in the same way
as other choices, described in Accessing Component Subtables.

Linking to a Default Value

When you enter a non-default value for any attribute on a component subtable
that also appears on the component defaults subtable, you can revert to the
default value at any time interactively by choosing the link to default choice from
the table menu, as shown here.

After you change the default attribute value, the link to default menu choice is
available to revert to the default value.

The defaults subtables of compound attributes include most of the attributes that
appear on the corresponding components. Each of the following sections describe
how to customize the trend chart components (plot, value-axis, etc.). They also
describe the corresponding defaults subtables, and note what attributes do not
appear on the defaults subtable.
1299

Configuring Trend Charts
To configure a trend chart initially, you need only to provide an expression
to plot.

Creating a Trend Chart

To create a trend chart:

 Select KB Workspace > New Display > trend-chart.

A trend chart appears upon the workspace. Click on the trend chart to display its
menu. Choose table to display the attribute table of the trend chart. The next
diagram shows a new trend chart, the trend chart menu, and the trend chart
attribute table.

By default, a new trend chart contains the minimal set of useful components — a
single value axis, ranging from -1.0 to 1.0 and a time axis. One plot is defined, but
needs an expression before the trend chart can plot any data. If you start your KB

New trend chart

Trend chart
attribute table

Trend chart menu
1300

Configuring Trend Charts
with a new trend chart you have not customized, the chart will scroll as time
progresses, but no data will be displayed because the plot has no expression.

Sizing a Trend Chart

G2 limits the size of a trend chart so that it cannot become so large that it
consumes all available system resources.

To change the size of a trend chart:

 Choose change size from the trend chart’s menu.

G2 draws a size box around the trend chart and displays update dialog, shown
here. Move the edges of the size box so that the trend chart is the size you want
and click Update Now in the dialog.

Summarizing Trend Chart Attributes

Configuring a trend chart requires editing one or more of the compound
attributes. The trend chart attributes are:

Drag the outer border
to size the trend chart

Attribute Description

title An optional label that is displayed on the top of the
trend chart.

Allowable values: Any symbol

Default value: blank
1301

plots In summary of text view, displays the number of plots that
the trend chart is plotting.

In text view, it provides a description of all non-default
plot attributes, including the value axis name or number,
point and connector format name or number, and the
expression of each plot.

In value view, it gives the composite value of the plots.

Allowable values: See Configuring Plots.

Default value: 1 plot

value-axes In summary of text view, displays the number of value
axes that the trend chart uses.

In text view, provides an annotational description of each
value axis and any non-default values.

In value view, it gives the composite value of the value
axes.

Allowable values: See Configuring Value Axes.

Default value: 1 value-axis

time-axes In summary of text view, displays the time axis indicator.

In text view, supplies an annotational description of each
of the time axis attributes and any non-default values.

In value view, it gives the composite value of the
time axes.

Allowable values: See Configuring the Time Axis.

Default value: a time-axis

Attribute Description
1302

Configuring Trend Charts
The following sections describe how to customize each trend chart component.

point-formats In summary of text view, displays the total number of
point formats that the trend chart uses.

In text view, supplies an annotational description of each
point format and any non-default values.

In value view, it gives the composite value of the point
formats.

Allowable values: See Configuring Point Formats.

Default value: 1 point-format

connector-formats In summary of text view, displays the total number of
connector formats that the trend chart uses.

In text view, supplies an annotational description of each
connector format and any non-default values.

In value view, it gives the composite value of the
connector formats.

Allowable values: See Configuring Connector Formats.

Default value: 1 connector-format

trend-chart-format In summary of text view, displays the trend chart format
indicator.

In text view, supplies an annotational description of each
of the trend chart format attributes containing non-default
values.

In value view, it gives the composite value of the trend-
chart format.

Allowable values: See Configuring the Trend Chart Format.

Default value: a trend-chart-format

Attribute Description
1303

Configuring Plots
The plots attribute lets you define the single or multiple data plots that appear on
the trend chart. A trend chart plots histories of values. Each plot specifies where
the values are stored. The history values may be stored in the history of a variable
or a parameter, or locally in the trend chart.

You create a plot for every data series you want to display. Every plot specifies a
value-axis, a point-format, and a connector-format. Plots can be similar in
appearance and color or, by using different point- and connector-formats, each
can have a unique look. The next diagram indicates two plots on a trend chart:

Access plots from:

• The plots choice from the trend chart menu.

• The plots choice from the trend chart attribute table.

Plots
1304

Configuring Plots
The attribute tables of plot defaults and plots are:

Plot subtables include three attributes that refer to other components, namely the
value-axis, point-format, and connector-format components.

By accessing the table choice (clicking at the side of the value) of each of these plot
subtable attributes, you can:

• Access the referenced component subtable directly.

• Link to the default subtable for that component (only if you have changed a
default value).

• Change the current component reference by choosing another
component reference.

Plot defaults table Plot table
1305

The following diagram shows the value-axis-name-or-number attribute
table choice:

Defining Where to Obtain History Values

The use-local-history? attribute defines whether the plot is plotting local history
values, stored within the trend chart, or external history values, stored within a
variable or a parameter.

Setting this attribute to yes (the default) directs G2 to maintain a history of values
locally. G2 evaluates local history values from the plot expression in the plot’s
expression attribute, regardless of whether that expression refers to a variable or
parameter that itself maintains a history of values.

Setting this attribute to no plots the history values of a variable or a parameter
and implies that the plot expression must evaluate to a variable or a parameter,
specifically, one that maintains history. If you set the use-local-history? attribute
to no and the variable or parameter is not saving history values, the trend chart
does not display anything for this plot.

For information about history keeping specifications, see Specifying Whether to
Keep a History of Values.

Specifying the Value Axis for the Plot

The value-axis-name-or-number attribute indicates the component reference
name or number of the value axis for the current plot. The default number 1
indicates that the plot will use value axis #1, which is the default.
1306

Configuring Plots
If you create other value axes and provide names for them, or provide a name to
value axis #1, you can enter either the name or the number of the value axis.

You can access the value axis subtable that this plot references by choosing
referenced subtable from the attribute’s table choice, or change the current
reference to a new one by choosing change reference, shown next.

Specifying the Point Format

The point-format-name-or-number attribute specifies the component reference
name or number of the point format for the current plot. The default number 1
indicates that the plot will use point-format #1, which is the default.

If you create other point formats and provide names for them, or provide a name
to point-format #1, you can enter either the name or the number of the point
format component reference.

You can access the point format subtable that this plot references by choosing
referenced subtable, or change the current reference to a new one by choosing
change reference.

Specifying the Connector Format

The connector-format-name-or-number attribute specifies the component
reference name or number of the connector format this plot will use. The default
number 1 indicates that the plot will use connector-format #1, which is
the default.

If you create other connector-formats and provide names for them, or provide a
name to connector-format #1, you can enter either the name or the number of the
connector format component reference.

You can access the connector format subtable that this plot references by choosing
referenced subtable, or change the current reference to a new one by choosing
change reference.

Accessing a subtable
1307

Defining the Update Interval

The update-interval attribute determines the interval at which G2 evaluates the
expression contained in the expression attribute. This interval takes effect
following the first time G2 evaluates the expression after activation. Conversely,
the wait-interval attribute determines the interval G2 waits before evaluating the
plot expression for the first time after activation.

The update-interval attribute determines when the expression is evaluated
regardless of the value of the use-local-history? attribute. To recap what the
section Defining Where to Obtain History Values describes, that attribute
determines whether a plot is using historical values maintained in the trend chart,
or the history values of a variable or a parameter. If use-local-history? is set to no,
indicating that a variable or parameter history is being plotted, the expression is
still evaluated at the interval that this attribute specifies.

When use-local-history? is set to yes, and to correspond with G2’s subsecond
interval capabilities, the update-interval attribute can optionally include the
minimum interval between data points statement, as:

2 seconds, with minimum interval between data points = .5 seconds

The minimum interval between data points statement lets you specify the
granularity between data points, that is, the amount of time between when G2
saves one data point and the next.

This statement is identical to one you could specify for the history keeping
specification of variables and parameters, and is described in Specifying a
Minimum Interval between History Data Points.

Specifying the Activation Interval

The wait-interval attribute determines the interval G2 waits before evaluating the
expression in the plot’s expression attribute after activation.

Specifying the Update Priority Level

The update-priority attribute sets the priority level within the scheduler task queue
for the trend chart expression. Priority levels range from 1 – 10, with 1 being the
highest priority. The default for this attribute is 2. The number you enter affects
how soon G2 evaluates a given expression when its task reaches the top of the
task queue.
1308

Configuring Plots
Specifying Data Seeking Capabilities

The may-request-data-seeking? attribute specifies whether the trend chart can
data seek for an unknown value. When the use-local-history? attribute is yes, and
the plot expression includes a variable or a parameter such as:

95 + X

where X is a variable, if the value of X has expired and this attribute is set to yes,
the trend chart causes G2 to data seek for a value for X.

Using Simulated History Values

The use-simulator? attribute should always be set to no, because the G2 Simulator
is a superseded capability. For more information, see Appendix F, Superseded
Practices.

Specifying Event Updates

The may-request-event-updates? attribute determines whether the trend chart
receives event updates. Forward chaining is one example of an event update. For
instance, if a trend chart expression relies on a value that changes, setting this
attribute to yes indicates that when the value changes, the expression receives the
new value.

If this attribute is set to no, changing values may not forward chain to the
trend chart.

Defining the Debugging Level

The tracing-and-breakpoints attribute lets you set tracing and breakpoint levels.
Setting this attribute overrides the tracing-message-level and breakpoint-level
attributes in the Debugging Parameters system table.

Note The tracing-and-breakpoints-enabled? attribute of the Debugging Parameters
system table must be set to yes for tracing and breakpoints to occur.
1309

Entering an Expression

The expression attribute specifies what value this plot represents. This attribute is
not on the plot defaults subtable.

This attribute works on conjunction with the use-local-history? attribute,
described in Defining Where to Obtain History Values, as follows:

Note The value of the plot expression cannot exceed ± 1.7978e304, and will be truncated
to this limit.

Summarizing Plot Attributes

The plot component attributes are:

If use-local-history? is yes then... If use-local-history? is no then...

The expression must evaluate to a
quantity data type.

The expression must evaluate to a
variable or a parameter of the
quantity, float, or integer data
type. Further, for the trend chart to
plot data, the variable or
parameter must be
keeping history.

Attribute Description

names The optional name of the plot. We recommend that you
name each trend chart plot. This attribute is not on the plot
defaults subtable.

Allowable values: Any symbol

Default value: none

use-local-history? Indicates whether to use a history of values maintained
within a trend chart from the data points it plots (yes) or
to plot the history values of a variable or a parameter (no).

Allowable values: {yes | no}

Default value: yes
1310

Configuring Plots
value-axis-name-or-
number

The component reference name or number of the value
axis for this plot.

Allowable values: See Configuring Value Axes.

Default value: 1

point-format-name-
or-number

The component reference name or number of the plot’s
point format.

Allowable values: See Configuring Point Formats.

Default value: 1

connector-format-
name-or-number

The component reference name or number of the plot’s
connector format.

Allowable values: See Configuring Connector Formats.

Default value: 1

update-interval The interval at which G2 evaluates the expression in the
expression attribute.

Allowable values: {time-interval [minimum interval between data points] }

Default value: 5 seconds

wait-interval The interval G2 waits before evaluating the expression in
the expression attribute after the trend chart is activated.

Allowable values: time-interval

Default value: 2 seconds

Attribute Description
1311

update-priority The task priority level at which G2 evaluates the plot
expression.

Allowable values: {1 – 8}

Default value: 2

may-request-data-
seeking?

Determines whether the trend chart can data seek for an
unknown value.

Allowable values: {yes | no}

Default value: yes

may-request-event-
updates?

Determines whether the trend chart receives event
updates.

Allowable values: {yes | no}

Default value: yes

use-simulator? Determines whether the plot uses simulated history
values of a variable.

Allowable values: {yes | no}

Default value: no

Notes: The G2 Simulator is a superseded capability. For more
information, see Appendix F, Superseded Practices.

tracing-and-
breakpoints

The level of tracing and breakpoints.

Allowable values: {default | warning message level (0, 1, 2, or 3) |
tracing message level (0, 1, 2, or 3) |
breakpoint level (0, 1, 2, or 3)}

Default value: default

Attribute Description
1312

Configuring Value Axes
Configuring Value Axes
The value-axes attribute of a trend chart determines how the vertical axes of a
chart appear and behave. The value axes of a trend chart are:

You can access value axes from:

• The value axes choice from the trend chart item menu.

• The subtables choice of the value-axes attribute on the trend chart
attribute table.

• The table of the value-axis-name-or-number attribute on a plot subtable.

include-in-legend? Specifies whether information about this plot is included
in the trend chart legend.

Allowable values: {yes | no}

Default value: yes

expression The expression whose value this plot represents.

Allowable values: value-expression

Default value: No default value

Attribute Description

Value axes
1313

The attribute tables of the value axis defaults and the value axis subtable are:

Displaying the Value Axis

The value-axis-visible? attribute determines whether the value axis is displayed
on the trend chart. This attribute is not on the value axis defaults subtable.

Regardless of whether a value axis is visible, all of its functionality, such as its
range-mode and range-bounds, is still in effect.

Specifying the Value Range

The range-mode attribute specifies how G2 adjusts the value axis in response to
plotting values outside of the current range of this value axis. The range of the
value axis increases by the amount specified in the range-slack-percentage
attribute.

Value axis defaults table Value axis table
1314

Configuring Value Axes
This attribute has three modes:

• fixed

• autoranging on data window (the default)

• autoranging on all past values

The term autoranging indicates that G2 controls the range of values for this value
axis according to the criteria you specify as:

Specifying fixed in this attribute and not setting the range-bounds attribute
accordingly causes G2 to use the attribute default, autoranging on data window.

All values that the trend chart displays will be truncated to lie within the range of
± 1.7978e304, even when the value axis is autoranging.

Specifying Range Limits

The range-bounds attribute specifies the numerical bounds for a value axis as a
from-to value, for instance 0 to 100. These bounds are used in conjunction with
the range-mode attribute as follows.

If range-mode is fixed, the trend chart uses the range-bounds exactly as you
specify them.

If range-mode is set to either of the autoranging modes, G2 uses the range-bounds
that you specify as a starting point for the value axis bounds. If the minimum or
maximum plot data values exceed the specified range-bounds, the bounds are
adjusted automatically to accommodate the values.

When range-mode is... Then G2...

autoranging on data
window

Adjusts the value axis bounds to the minimum
and maximum values of all data plotted in the
data window.

autoranging on all past
values

Adjusts the value axis bounds to include the
minimum and maximum values, not only of the
data plotted on the data window, but of all
values in the trend chart history since
G2 started.

fixed Includes only those values specified in the next
attribute, range-bounds. G2 does not plot points
outside of this range. For example, if you want
the range to be from 0 – 100, set the range-mode
attribute to fixed, and specify the range-bounds
attribute as 0 to 100.
1315

Note The value bounds cannot exceed ± 1.7978e304, and will be truncated to this limit.

Defining the Range Slack Percentage

The range-slack-percentage attribute defines the percentage G2 increases the
range-mode value of the value axis in response to plotting a point that is not
currently in range. This attribute is applicable only when the range-mode
attribute is set to either of the autoranging modes, described in Specifying the
Value Range.

Specifying the Label Frequency

The label-frequency attribute specifies the number of labels that are displayed on
the value axis and where those labels will appear.

Choosing automatic directs G2 to provide an appropriate number of value labels
based on the space available on the trend chart. G2 automatically computes which
values to label, based on the plot values.

You can also specify a set number of value labels (such as 10 labels), or a label at
specific intervals (every 10), optionally starting at a particular number (every 10
beginning at 20). If no beginning is specified, 0 is assumed.

When the grid-lines-visible? attribute for the value axis is set to yes, each label is
aligned on the grid line. If the value range is very large, it is possible for there to
be too many grid lines to accommodate labels.

For instance, if you specify the label-frequency as every 10 and the range-bounds
are from 0 to 10,000, the range exceeds the number of labels that can be displayed
legibly.

In such a case, G2 would change the label frequency that you had requested and
display an appropriate message in the trend chart notes attribute, as shown in
this diagram:

Displaying Labels as Percentages

The show-labels-as-percent? attribute changes the value axis labels to show the
values as a percentage of the entire range of the value axis range.
1316

Configuring Value Axes
Before a plot expression is specified, and while the significant-digits-for-labels
attribute is at its default value of 4, the default value axis labels are 4.5%, 50.0%,
and 95.5%.

Specifying the Significant Digits for Labels

The significant-digits-for-labels attribute specifies the number of significant digits.
The default 4 accommodates numbers up to 99.99 and numbers down to, and
including, 0.01.

If the label value is outside of the range that can be accommodated, G2 displays
the label as an exponential expression, 1.0e2 for 100 when 4 is the value for this
attribute.

Showing Grid Lines

The grid-lines-visible? attribute determines whether grid lines are displayed for
the value axis.

In most cases, for the sake of clarity, we recommend that only one value axis has a
set of visible gridlines.

For instance, in a trend chart that has two value axes, each representing different
plot values, especially when the range-mode is set to autoranging on data window,
two grid lines can make the trend chart difficult to read. The diagram here
illustrates a portion of the sample trend chart used throughout this chapter with
grid-lines-visible? set to yes for two value axes.

Adding Extra Grid Lines

The extra-grid-lines attribute specifies:

• That extra grid lines should be displayed on the trend chart.

• Where on the vertical axis to place the extra lines.

• The color of the extra lines.

For example, to add extra grid lines at several different positions in a particular
color specify:

at 100, at 200, at 300 in blue
1317

If you do not specify a color for the extra grid lines, G2 uses the current grid line
color. Note that you can see extra grid lines even if the grid-lines-visible? attribute
is set to no.

Displaying a Baseline

The baseline-visible? attribute determines whether the baseline for the value axis
is displayed. Set the attribute to yes to display the baseline, which is a vertical line
that displays to the left or the right of the value axis, depending on which side of
the trend chart the axis is displaying.

Specifying the Baseline Color

The baseline-color attribute determines the color of the value axis baseline. The
value axis baseline must be set to yes for this attribute to have any effect.

Summarizing Value Axis Attributes

The value axis attributes are:

Attribute Description

names The optional value axis name. This attribute is not on the
defaults subtable.

You can refer to a value axis either by name (if you
provide one) or by reference number in the trend chart
attribute table or on the plots table.

Allowable values: Any symbol

Default value: none

value-axis-visible? Determines whether the value axis is displayed on the
trend chart. This attribute is not on the value axes
defaults subtable.

Regardless of whether a value axis is visible, the value axis
functionality, such as its range-mode and range-bounds,
are still in effect.

Allowable values: {yes | no}

Default value: yes
1318

Configuring Value Axes
value-axis-position Determines on which side of the trend chart the value axis
is displayed. Changing the side moves both the value axis
base line and any labels.

Allowable values: {left | right}

Default value: right

range-mode Determines how G2 adjusts the value axis in response to
plotting values outside of the current range of this value
axis.

Allowable values: {fixed | autoranging on all past values |
autoranging on data window}

Default value: autoranging on data window

range-bounds Specifies the numerical bounds for a value axis.

Allowable values: {none | from integer to integer}

Default value: none

range-slack-
percentage

The amount G2 increases the range mode value of the
value axis in response to plotting a point that is not
currently in range.

Allowable values: {none | 1 – 100}

Default value: 10

labels-visible? Determines whether the value labels are visible.

Allowable values: {yes | no}

Default value: yes

Attribute Description
1319

label-color Determines the color of the labels for this value axis.

Allowable values: {color-name | match plot color}

Default value: black

label-frequency Determines the number of labels that are displayed and
where those labels appear on the value axis.

Allowable values: {automatic | integer labels {every integer |
every integer beginning at integer} }

Default value: automatic

show-labels-as-
percent?

Changes the labels to show values as a percentage of the
value axis range.

Allowable values: {yes | no}

Default value: no

significant-digits-
for-labels

Determines the number of significant digits. The default 4
accommodates numbers up to 99.99 and numbers down
to, and including, 0.01.

Allowable values: integer

Default value: 4

grid-lines-visible? Determines whether grid lines for the value axis are
visible.

Allowable values: {yes | no}

Default value: yes

Attribute Description
1320

Configuring Value Axes
grid-line-color Determines the color of the grid lines for this value axis.

Allowable values: color-name

Default value: gray

grid-lines-per-label Lets you determine how many grid lines appear for each
value axis label you are formatting.

Allowable values: {1 – 50}

Default value: 1

extra-grid-lines Determines the position and color of extra grid lines.

Allowable values: {none | at number [, ...] [in color-name] }

Default value: none

baseline-visible? Determines whether the baseline for the value axis is
visible.

Allowable values: {yes | no}

Default value: yes

baseline-color Determines the color of the value axis base line.

Allowable values: color-name

Default value: black

Attribute Description
1321

Configuring the Time Axis
Trend charts plot data values over a period of time. The time axis component
determines the period of time over which values are plotted, how that time period
moves and grows, and how the time period is labelled. There is one time axis per
trend chart, which you must define.

By customizing the time axis, you can determine how scrolling occurs—the way
in which plots are displayed on the trend chart, along with what data the trend
chart displays. The time axis of a trend chart is at the bottom of the data window:

Access the time axis component from:

• The time axis subtable choice from the trend chart item menu.

• The time-axis attribute of the trend chart attribute table.

Defining the Data Window Time Span

The data-window-time-span attribute determines the time span that the data
window represents. You can base the time span on a specific time interval (fixed),
or on the history of values.

Entering a specific time interval means that the time span of the data window is
fixed, and moves according to the values of the end-time, jump-scroll?, and jump-
scroll-interval attributes.

Time axis
1322

Configuring the Time Axis
Depending on what plots are active, changing this value can affect the way in
which plots appear on the trend chart. As an example, the figure above captures a
sample portion of the sine curve from the trend chart shown throughout this
chapter when the data-window-time-span has a value of 5 minutes.

In contrast, this figure captures a similar portion of the trend chart after changing
the data-window-time-span to 10 minutes. When the time span is longer, G2 has to
display more data.

In this example, since more of the plot is visible within the data window, G2
adjusts the trend chart display to accommodate as much data as possible, having
the effect of compressing the sine curve.

Entering show all history means that G2 ignores the end-time, jump-scroll? and
jump-scroll-interval attributes. The time of the trend chart then reflects the time
span of all the values in the histories of all of its plots.

If the data-window-time-span attribute is set to show all history and the total-time-
span attribute is set to same-as-data-window, G2 uses a maximum time span of
one day and includes that in the notes attribute as:

Specifying How Long to Maintain Local History

The total-time-span attribute specifies how long history is maintained in a trend
chart. This attribute relates to and is used only for plots whose use-local-history?
attribute is set to yes. It is useful when you need to work with the end-time
attribute to view data displayed earlier.

If use-local-history? is set to no for a plot, the total time span for that plot is
limited by the history keeping specification of the variable or parameter
being plotted.

Always set this attribute to a value greater than that of the data-window-time-span
attribute. If you set the value to be less than the data window time span, G2
adjusts the value to be at least equal to the data-window-time-span value.
1323

Setting the total-time-span attribute to same-as-data-window when the data-
window-time-span attribute has a show-all-history value defaults the total time
span to one day as noted in the previous attribute description.

Specifying the Last Plot Value

The end-time attribute determines the last plot value as:

The end time of the chart gets rounded by the jump-scroll-interval to align with the
next interval that aligns with the number and time. For example, if the last history
plotted was received at 6:59.9, the end-time attribute rounds to 7:00 so that all
labels are legible.

Because of rounding the end time of the trend chart, early data points may not be
shown when data-window-time-span is show-all-history, total-time-span is same-
as-window, and jump-scroll-interval is automatic.

Updating the Trend Chart Data

The display-update-interval attribute defines how frequently G2 updates the data
on the trend chart. This value is independent of the update interval associated
with, for instance, the variable whose value is being displayed on the trend chart.

Specifying How Data Scrolls

The jump-scroll? attribute specifies how data scrolls in the data window.

A trend chart with a fixed data-window-time-span attribute and an end-time
attribute specified as last-sample or current-time needs to scroll data out of the

If End-time is... Then...

last-sample The trend chart ends at the most recent value in
any of its plot’s histories.

current-time The current time, rather than the most recent
historical value, marks the last plot value.

time-interval Prevents the trend chart from scrolling, and
directs G2 to ignore any settings for the jump-
scroll?, and jump-scroll-interval attributes. A
time-interval refers to an interval of time since
G2 started, not an absolute time specification.

A time earlier than
the current time, or
what is currently
displaying

G2 redisplays the values that the trend chart
previously displayed at the time designated by
end-time.
1324

Configuring the Time Axis
data window to accommodate new data. Other trend charts do not scroll. Two
ways to scroll data in the data window are:

Shifting the Data Window

In correlation with the data-window-time-span value, the jump-scroll-interval
attribute defines when to shift the data window to the left, based on whether
jump-scroll? is set to yes or no.

When jump-scroll-interval is set to automatic, the data window shifts to the left at
an interval that G2 determines.

Displaying Current Real-Time Clock Labels

The absolute-labels-visible? attribute specifies where current real-time clock
labels are displayed in the data window. The labels scroll with the data.

Displaying Negative Offset Labels

The relative-labels-visible? attribute does two things:

• Specifies that you want relative labels to be displayed on the trend chart.

• Marks negative offsets from the end time of the trend chart.

If jump-scroll? is... Then the data window scrolls...

yes At the rate specified in the jump-scroll-interval
attribute.

no The smallest amount possible to accommodate
any new data, giving the appearance of smooth
scrolling.

If no new data is arriving, and end-time is set to
last-sample, the data window does not scroll.

If end-time is set to current time, the data
window will scroll with the passing of time,
regardless of whether data is arriving.
1325

Relative labels do not scroll with the data. You can display both absolute and
relative labels:

Defining the Label Frequency

The label-frequency attribute determines the interval between time axis labels.

Specifying the Label Alignment

The label-alignment attribute determines where G2 places the time label relative
to the time that it labels on the data window:

When the grid line is visible, it visually depicts how G2 aligns the time label—the
vertical grid line appears in the center or to the left or right of the time label as the
diagrams illustrate.

Absolute

Relative
labels

labels

If Label-frequency is... Then...

none Time labels are not displayed.

automatic G2 determines how many labels are appropriate
for the time period, and which time labels make
sense.

every time-interval G2 places a label at the time interval you
specify, unless too many labels would display,
in which case G2 adjusts the total number of
labels appropriately to fit the time axis.

Left Right Center
1326

Configuring the Time Axis
Absence of a grid line does not change the relative placement of the time labels; it
is just more difficult to see how the time labels align.

Summarizing Time Axis Attributes

The time axis attributes are:

Attribute Description

data-window-time-
span

Determines the time span that the data window
represents. You can base the time span on a specific time
interval (fixed), or on the history of values.

Allowable values: {time-interval | show all history}

Default value: 5 minutes

total-time-span Determines how long a history is maintained in a trend
chart. This attribute relates to and is only used for plots
whose use-local-history? attribute is set to yes.

Allowable values: {time-interval | same as data window}

Default value: same as data window

end-time Determines the last plot value.

Allowable values: {time-interval | last sample | current time}

Default value: last sample

display-update-
interval

Determines how frequently the data on the trend chart is
updated. This value is independent of the update interval
associated with the variable whose value is being
displayed on the trend chart.

Allowable values: time-interval

Default value: 2 seconds
1327

jump-scroll? Determines whether or not the trend chart will jump-scroll
(shift the data window from right to left at a
certain interval).

Allowable values: {yes | no}

Default value: yes

jump-scroll-interval Determines when to shift the data-window to the left,
based on whether jump-scroll is set to yes or no, and then
in correlation with the data-window-time-span value.

Allowable values: {time-interval | automatic}

Default value: automatic

absolute-labels-
visible?

Determines whether real-time clock labels are displayed in
the data window.

Allowable values: {yes | no}

Default value: yes

relative-labels-
visible?

Determines whether negative offset labels from the end
time of the trend chart are displayed in the data window.

Allowable values: {yes | no}

Default value: no

label-frequency Determines the frequency of the time axis labels.

Allowable values: {automatic | none | every time-interval}

Default value: automatic

Attribute Description
1328

Configuring the Time Axis
label-alignment Determines whether the time label is placed relative to the
time that it labels on the data window.

Allowable values: {center | right | left}

Default value: right

time-format Determines how the time expression is displayed as the
time axis label.

Note that the dd-hh-mm as an interval format will display
the times as negative offsets from the current time.

Note that the hh.hh as an interval format may be used to
display times relative to G2 start time as hours and
decimal fractions of hours. For example, 90 minutes after
G2 start time is rendered 1:30 in the “hh.mm as an
interval” format; and as 1:50 in the “hh.hh as an interval”
format.

Allowable values: {mmm-yyyy | mmm-dd-yyyy | dd-mmm-yyyy | dd-mm-yy |
yy-mm-dd | mm-dd-yy | mm-yy | mm-dd-hh-mm |
mmm-dd-hh-mm | mm-ss | hh-mm-ss-am-pm | hh-mm-ss |
hh-mm-am-pm | hh-mm | dd-hh-mm as an interval |
hh.hh as an interval}

Default value: hh-mm-ss-am-pm

label-color Specifies the color of the time label.

Allowable values: color-name

Default value: black

grid-lines-visible? Determines whether the time axis vertical grid lines are
visible.

Allowable values: {yes | no}

Default value: yes

Attribute Description
1329

grid-line-color Specifies the color of the vertical grid lines that are
displayed for the time axis. The value for this attribute is
only applicable if grid lines are visible.

Allowable values: color-name

Default value: gray

grid-lines-per-label Determines the number of vertical grid lines that are
displayed on the trend chart.

Allowable values: {0 – 50}

Default value: 1

baseline-visible? Determines whether the time axis baseline, which is the
horizontal line displayed just above the time axis, is
visible.

Allowable values: {yes | no}

Default value: yes

baseline-color Determines the color of the time axis baseline. Setting a
specific color for this baseline has no effect if the baseline
is not visible (previous attribute is set to no).

Allowable values: color-name

Default value: black

Attribute Description
1330

Configuring Point Formats
Configuring Point Formats
Point format components specify whether a point marker appears at certain
places on a plot. If point markers are visible, the point format attribute determines
the style and frequency of markers. The next diagram indicates point markers on
a trend chart:

Note Once point markers are visible, the trend chart legend includes a description of
which marker styles are in use.

Access point formats from:

• The point formats choice from the trend chart item menu.

• The point-formats attribute on the trend chart attribute table.

• The point-format-name-or-number attribute on a plot subtable.

The attribute tables of the defaults subtable and a point-format subtable are:

Point
markers

point-format defaults table point-format table
1331

Displaying Markers

The markers-visible? attribute specifies whether point markers are displayed
upon the trend chart. The marker-color attribute defines the point marker color.

Specifying the Marker Style

The marker-style attribute specifies what type of point marker to use. You can
choose among several marker styles (square, plus-sign, or triangle) or the current
value of the plot. Alternatively, you can use an object icon as a marker, as long as
the icon consists of a single layer or is monochrome.

Defining the Marker Frequency

The marker-frequency attribute defines when, in relation to a number of data
points, point markers are displayed on the trend chart. You specify that
frequency as:

every integer points

The Effect of Markers on Trend Chart Drawing

When markers are not displayed, G2 draws to a trend chart only when the result
would change the appearance of the chart. This optimization does not occur when
markers are displayed: G2 then draws every data point, even if a point already
exists at the same location.

Summarizing Point Format Attributes

The point format attributes are:

Attribute Description

names Provides an optional name for the point format. This
attribute is not on the defaults subtable.

Allowable values: symbol

Default value: none
1332

Configuring Point Formats
markers-visible? Determines whether the trend chart displays point
markers.

Allowable values: {yes | no}

Default value: no

marker-color Determines the point marker color.

Allowable values: color-name

Default value: black

marker-style Specifies what type of point marker to use.

Allowable values: {square | plus-sign | triangle | icon of object-class |
current value}

Default value: triangle

marker-frequency Determines when to display a point marker.

Allowable values: every integer points

Default value: every 1 points

Attribute Description
1333

Configuring Connector Formats
Connector format components effectively provide a visual interpretation of plot
values (data points), by determining how plots are drawn on the trend chart. A
connector format determines the way in which G2 interpolates the plot values as
they become available. The next diagram illustrates the connector formats in use
on a trend chart:

Access connector formats from:

• The connector formats choice from the trend chart item menu.

• The connector-formats attribute on the trend chart attribute table.

• The connector-format-name-or-number attribute on a plot subtable.

The attribute tables of the connector format default menu and of a connector
format table are:

Connector

formats

connector-format defaults table connector-format-table
1334

Configuring Connector Formats
Displaying Connectors

The connectors-visible? attribute specifies whether connectors are drawn
between plots on the trend chart. If point markers are not in use and this attribute
is set to no, a plot is effectively hidden on the trend chart.

The connector-line-color attribute specifies the line color when connectors
are visible.

Specifying How Connectors are Drawn

The connector-interpolation attribute specifies the way in which G2 draws the
connection between two successive points on a plot.

The default value, linear, indicates that G2 draws a continuous
connector between two points when two values are available.
The first sample connector here shows a linear connector. (The
connector line width in these examples is set to 7.)

Specifying sample-and-hold interpolation directs G2 to draw a
connector line when a single value is available, and to draw a
riser and a second connector when the second value is
available. Sample and hold implies that G2 draws a riser
between the two connectors. The second sample connector
shows the same plot as the previous diagram, but with a
sample-and-hold connector.

Specifying sample and hold, without risers draws the connector
lines only at the time a value is received. The third sample
1335

Specifying the Connector Line Width

The connector-line-width attribute specifies the width of the connector line in
workspace units. The width is measured vertically. The next diagram shows part
of the sample trend chart with two plots and connectors of different widths.

Displaying Block Shading

The connector-shading-target attribute specifies whether connectors have block
shading. The default is none. Changing the value to bottom or top, directs G2 to
shade from wherever the connector point exists to either the top or bottom of the
data window, rather than connecting the data points with lines.

The diagram here shows a portion of the trend chart used in the other examples
with the connector-shading-target attribute of two plots set to bottom.

Width of 20

Width of 7
1336

Configuring Connector Formats
When using connector-shading-target, plots appear to be layered, one on top of
the other. The bottom layer of a trend chart consists of the grid lines. Plots are
drawn from back to front in the order they appear on the menu — plot #1 is the
first layer after the grid lines, plot #2 is next, and so on. You cannot change the
layering order of plots.

Summarizing Connector Format Attributes

The connector format attributes are:

Attribute Description

names Indicates the optional name of the connector format. This
attribute is not on the defaults subtable.

Allowable values: symbol

Default value: none

connectors-visible? Determines whether connectors are drawn between plots
on the trend chart.

Allowable values: {yes | no}

Default value: yes

connector-line-color Determines the color of the plot as it is drawn on the trend
chart. Setting this attribute has no effect if the connectors
are not displayed.

Allowable values: color-name

Default value: black

connector-
interpolation

Determines the way in which G2 draws the connection
between two successive points on a plot.

Allowable values: {linear | sample and hold [,without risers] }

Default value: linear
1337

connector-line-
width

Determines the width of the connector line in workspace
units. The width is measured vertically. When a
workspace is at full size, there are approximately 100
workspace units per inch.

Allowable values: integer

Default value: 1

connector-shading-
target

Determines whether connections are drawn with block
shading. Setting this attribute has no effect if connectors
are not visible.

Allowable values: {none | bottom | top}

Default value: none

Attribute Description
1338

Configuring the Trend Chart Format
Configuring the Trend Chart Format
The trend chart format compound attribute lets you define options for the entire
trend chart that you are creating. The next diagram labels the various trend chart
components that you can change with the trend chart format subtable.

Access the trend chart format subtable from:

• The trend chart format subtable choice from the trend chart item menu.

• The trend-chart-format attribute from the trend chart attribute table.

Displaying an Outer Border

The outer-border-visible? attribute specifies whether the border is displayed. If it
is, you can set its color in the outer-border-color attribute.

The outer-background-color determines the color of the border surrounding the
data window.

Displaying a Data Window Border

The data-window-border-visible? attribute determines whether G2 draws a border
around the data window. If a border is displayed, the data-window-border-color
attribute sets its color.

Outer-

Outer-

Data-window

Data-window-
background-color Legend

Title

border

background

border
1339

The data-window-background-color attribute specifies the background color
within which all plots are displayed.

Adding a Trend Chart Legend

The legend-visible? attribute defines whether a legend is displayed. If it is, you
can set its color with the legend-color attribute, and its position with the legend-
position attribute.

Providing a Trend Chart Title

The title-visible? attribute specifies whether the trend chart displays a title. The
text of the title is the value of the trend chart’s names attribute. If a title is
displayed, you can set its color with the title-color attribute and its position, above
or below the trend chart, with the title-position attribute.

Summarizing Trend Chart Format Attributes

The trend chart format attributes are:

Attribute Description

outer-border-
visible?

Determines whether the outer border of the trend chart is
visible. The outer border is the outline drawn on the outer-
most edges of a trend chart.

Allowable values: {yes | no}

Default value: yes

outer-border-color Specifies the color of the trend chart outer border. Setting
this attribute has no effect if the outer border is not visible.

Allowable values: color-name

Default value: black
1340

Configuring the Trend Chart Format
outer-background-
color

Specifies the outer background color of a trend chart,
which is the area surrounding the data window.

Allowable values: color-name

Default value: smoke

data-window-
border-visible?

Determines whether the data window border is visible.
The data window border is the line surrounding the outer-
most edge of the data window.

Allowable values: {yes | no}

Default value: no

data-window-
border-color

Specifies the color of the data window border. Changing
this value has no effect if the data-window-border-visible?
attribute is set to no.

Allowable values: color-name

Default value: black

data-window-
background-color

Specifies the background color of the trend chart data
window.

Allowable values: color-name

Default value: smoke

legend-visible? Determines whether to display a legend for the trend
chart.

Allowable values: {yes | no}

Default value: yes

Attribute Description
1341

legend-color Determines the color of the legend. You can display the
entire legend in one color, or have the legend for each plot
match the plot color (determined in the plot’s
connector-format).

Allowable values: {color-name | match plot colors}

Default value: match plot colors

legend-position Determines the position of the legend, if it is visible.

Allowable values: {below | above}

Default value: below

title-visible? Determines whether to display the title of the trend chart
(entered as a symbol on the trend chart’s attribute table).

Allowable values: {yes | no}

Default value: yes

title-color Specifies the color of the trend chart title, if it is visible.

Allowable values: color-name

Default value: black

title-position Determines the position of the trend chart title if it is
visible.

Allowable values: {below | above}

Default value: above

Attribute Description
1342

Working with Trend Charts
Working with Trend Charts
Trend charts provide a dynamic and flexible means to represent data values
visually. Here are some tips about working with trend charts.

Updating Trend Charts

Like other display items, G2 updates trend chart displays only when they are
visible in the current window. An item is visible in the current window if the
workspace upon which it resides is not hidden, even though it may be positioned
below another.

If the workspace upon which a trend chart resides is hidden, G2 continues to
update the history values, but not the display.

How Plots are Drawn

Plots are drawn from back to front in the order that they appear on the
component menus. The bottom layer of a trend chart consists of the grid lines
followed by plot #1, plot #2, and so on. You cannot change the order of the trend
chart plots.

Causes of Redrawing and Reformatting

Changing certain component attributes of a trend chart causes G2 to either
redraw or reformat the trend chart. Differentiating between redrawing and
reformatting is important, since each causes different effects.

Repainting a trend chart redisplays the same history values while incorporating
some visual change. For example, changing the size of the trend chart or the color
of a connector-format component causes G2 to redraw the entire trend chart. If a
trend chart has a large number of values to plot, redrawing may not be
immediate, depending on other system settings and the KB’s current processing
load.

Reformatting recomputes certain aspects of the trend chart, such as the value axis
and the layout of the trend chart’s components. When a trend chart is plotting
local history values, changing a plot expression or the value of the use-local-
history? attribute causes all history values to be lost and the trend chart to be
reformatted. After reformatting, G2 redraws the trend chart to reflect all changes.
1343

System Procedures for Trend Charts
The system procedures specifically for use with trend charts are:

For a complete description of these and other G2 system procedures, see the
G2 System Procedures Reference Manual.

Trend Chart Attributes Reference
Because there are so many formatting attributes associated with trend charts, you
may not remember on which component subtable a particular attribute exists. The
following figures present each of the compound attribute subtables.

Note In expressions, when referring to trend chart attributes that include question
marks, precede the question mark with an @ sign. For example:
use-local-history@?

See these sections for detailed descriptions:

• Configuring Plots.

• Configuring Value Axes.

To do this... Use this system procedure...

Add a new trend chart component. g2-add-trend-chart-component

Delete a new trend chart component. g2-delete-trend-chart-component

Get the complete annotation text of a
trend chart component.

g2-get-text-of-trend-chart-component

Change the complete annotation text
of a trend chart component.

g2-set-text-of-trend-chart-component
1344

Trend Chart Attributes Reference
See these sections for detailed descriptions:

• Configuring Plots

• Configuring Value Axes
1345

See these sections for detailed descriptions:

• Configuring the Time Axis

• Configuring Point Formats

• Configuring Connector Formats

• Configuring the Trend Chart Format
1346

41
Windows Menus
Provides examples of how to create Windows menus in Telewindows by using one
of two techniques: rendering native GMS menus in Telewindows and using the
Native Menu System.

Introduction 1347

Comparison between Native GMS, Classic GMS, and NMS Menus 1348

Using Native G2 Menu System (GMS) Menus 1349

Using the Native Menu System API 1362

Displaying Classic GMS Menus in Telewindows 1375

GMS and NMS Menus and the G2 Run State 1376

Demos 1377

Introduction
G2 provides tools for creating standard end-user interfaces for G2 applications
when viewed through Telewindows. The Native Menu System (NMS) allows
you to create custom pulldown menus and popup menus by:

• Rendering menus created using the G2 Menu System (GMS) as standard
Windows menus, when viewed through Telewindows.

• Providing an API for creating and manipulating Windows menus, using G2
system procedures.

To create custom menus, the G2 developer can choose to use GMS, which
provides a graphical interface, or G2 system procedures, which provides a
1347

programmatic interface. Both techniques support standard menu features such as
menu bars, submenus, and popup menus.

While you can use the NMS API to implement almost everything that you can
implement using GMS, GMS provides a more intuitive, graphical environment
for defining menus. In addition, it provides built-in tools that the NMS API
requires specific programming to accomplish. Which approach you use depends
on your preference.

For detailed information on how to create GMS menus, see the G2 Menu System
User’s Guide.

For a detailed description of the Native Menu System API, see Native Menu
System (NMS) API in the G2 System Procedures Reference Manual.

By default, GMS menus render as standard menus when viewed through
Telewindows. You can also choose to display GMS menus in Telewindows, using
their classic G2 interface.

Note The total number of native (NMS) menus and menu items in existence at one time
is limited by G2 to around 30,000 per Telewindows connection. This limit comes
from a Windows limitation. The exact limits depend on various factors, including
which version of Windows you are running, the amount of physical memory
installed, and registry settings. The limits are in the neighborhood of 10,000 and
includes native windows, menus (but not menu items), and bitmaps, over all
processes on the machine. The integer handles used by the native user interface
routines in G2 are limited by the largest integer, around 500 million.

Comparison between Native GMS, Classic
GMS, and NMS Menus

The menus that you create using GMS or the NMS API are identical; both render
as standard menus when viewed through Telewindows. When you view classic
GMS menus through Telewindows, they appear just as they did in classic G2 or
Telewindows.

This chart summarizes the features that each menu type supports:

Feature
Native

GMS Menus
Classic

GMS Menus
NMS

Menus

Available on Windows and UNIX 

Render as native Windows menus  

Render as classic KB workspaces 

Menu bars   
1348

Using Native G2 Menu System (GMS) Menus
Using Native G2 Menu System (GMS) Menus
To use native GMS menus, you simply load a KB that defines GMS menus; the
menus automatically render as standard menus when viewed through
Telewindows.

Following are examples of GMS menu specifications and the resulting menus
when viewed through Telewindows. These examples do not describe how to
create the menus, using GMS; they merely show examples of various features of
GMS and how they render in Telewindows.

Alternate menu bars   

Submenus   

Popup menus   

Localized menu choice labels   

Menu choice keys   

Callbacks for individual
menu choices

  

Callbacks for menu hierarchies   

Enabling/disabling menu choices   

Checking/unchecking
menu choices

  

Choosing one from a set
of menu choices (radio choices)

  

Help text  

Color   

Character underlining   

Right justification   

Separators   

Groupings   

Icons   

Dynamic pulldown menus
and popup menus

  

Mouse tracking 

Feature
Native

GMS Menus
Classic

GMS Menus
NMS

Menus
1349

For detailed information on how to create GMS menu specifications, see the
G2 Menu System User’s Guide.

Example: Alternate GMS Menu Bar

Below is a GMS menu specification that provides three alternate menus. The
specification uses GMS menu bar templates, switch menu bar templates, cascade
templates, change mode templates, show workspace templates, choice templates,
and separators, all of which are labeled and described below.

A

C

B

D

G

E

A: Menu Bar Template
B: Cascade Template
C: Switch Menu Bar Template
D: Change Mode Template
E: Choice Template
G: Show Workspace Template
1350

Using Native G2 Menu System (GMS) Menus
Here is the menu bar that appears when you load the KB and start G2:

Here is an example of a cascading menu:

This figure shows a cascading menu that sets the user mode of the KB by choosing
one from among several choices:

This figure shows a menu choice that lets you choose an alternate menu bar:
1351

Example: GMS Popup Menu

This figure shows a GMS popup menu specification, which uses a GMS popup
menu template, cascade menu template, and choice template:

Here is the popup menu that appears when you click an item:

A

B

C
A: Popup Menu Template
B: Cascade Template
C: Choice Template
1352

Using Native G2 Menu System (GMS) Menus
Example: GMS Localization

This figure shows a GMS menu specification that uses local text resources to
localize menu labels. The menu specification uses a GMS menu bar template,
cascade templates, and change mode templates, as in the other examples. In
addition, it uses a GMS subpanel, whose subworkspace contains choice
templates. Notice that the labels for each template item represent keys to look up
in a local text resource, for example, s-file.

A

A: Subpanel
1353

This figure shows a GMS text resource group named language-resources with its
associated local text resources on its subworkspace. One text resource uses
English as the language and the other uses Spanish. The buttons labeled English
and Spanish switch the language by switching the g2-window-specific-language
of the GMS preference object, then refreshing the preference.

This figure shows the portion of the lookup table that specifies Spanish text
strings for keys in the Item menu:

A

B

B

C

A: Text Resource Group
B: Local Text Resources
C: GMS Preference
1354

Using Native G2 Menu System (GMS) Menus
Here are the resulting menu bars in English and in Spanish:
1355

Example: GMS Dynamic Menus

You can use dynamic cascade templates to create GMS menus whose choices
update dynamically, based on a callback procedure. When viewed in the standard
user interface through Telewindows, these menus render as native Windows
menus and update dynamically, just as they do in G2. You can create both
dynamic menus and dynamic popup menus.

Here is a GMS menu specification, which uses a GMS dynamic cascade template
to create a menu whose contents updates, based on a callback:

A
B

D

A: Menu Bar Template
B: Cascade Template
C: Change Mode Template
D: Dynamic Cascade Template

C

1356

Using Native G2 Menu System (GMS) Menus
The subpanel constructor collects all the subclasses of the object class, then creates
dynamic cascade templates for each subclass that itself has subclasses and choice
templates for each leaf node in the class hierarchy. The activation callback creates
an instance of the class and attaches it to the mouse. Here is the dynamic cascade
template table and the two callbacks:

To see the text of the procedures, load g2\kbs\gmsdemo.kb.
1357

Here is the dynamic submenu that appears when you choose the Object menu:
1358

Using Native G2 Menu System (GMS) Menus
Example: GMS Menu Icons

You can use GMS choice templates to create GMS menu choices that include
icons. When viewed in the standard user interface through Telewindows, these
menus render as native Windows menus and icons.

By default, native GMS uses the same icon as standard GMS. To optimize the
appearance of the icon in standard GMS, you can specify different icons for native
and standard GMS.

Here is a GMS menu specification, which uses a GMS choice template to create a
menu choice that includes native Windows icons:

A

B

C

A: Menu Bar Template
B: Cascade Template
C: Choice Template
1359

Here is the table for the choice template that defines the Copy menu choice, which
specifies the icon named gms-copy-icon:

Here is the Edit menu, which includes icons for its menu choices:

If the gms-native-icon is the symbol unspecified, then the gms-inline-icon-class is
used for both G2 and Telewindows.

For a list of icons, see Native Menu System (NMS) API in the G2 System Procedures
Reference Manual.
1360

Using Native G2 Menu System (GMS) Menus
Example: Built-in G2 Menu

You can use the gms-builtin-template to create one of the built-in G2 menus in
Telewindows. The built-in menu only works in Telewindows Next Generation
and standard Telewindows; the menu choice is grayed out in classic G2 and
Telewindows.

To specify which built-in menu to create, configure the gms-label attribute to be
one of these text values: file, edit, view, toolbars, run, tools, window, run-options, or
package-preparation, or help.

Here is a menu specification that includes two built-in G2 menu templates, the
Window menu and the Help menu:

Here are the two built-in G2 menus:

See g2\kbs\gmsdemo.kb for the example.

A: Menu Bar Template
B: Cascade Template
C: Built-in Template

A

C CB B B
1361

Using the Native Menu System API
The Native Menu System (NMS) API provides a low-level set of system
procedures for creating and manipulating menus and dialogs in Telewindows.
Typically, you use this API to create and manipulate existing G2 objects that you
want to render as native Windows menus. For example, you might have built
your own menu system in G2, using workspaces. You could use this API to
render those “menus” as native Windows menus when viewed through
Telewindows. In fact, to implement native GMS menus, we used this API to
create a thin layer on top of GMS.

If you have not already created a menu system in G2, using either GMS or
workspaces, you can also use this API to create native Windows menus “from
scratch.”

Note Gensym recommends that you use either native GMS menus or native NMS
menus. We do not recommend that you combine native GMS menus with NMS
menus that you create either from scratch or as a layer on top of your existing
menu objects.

If your G2 application does not define either GMS menus or NMS menus,
Telewindows displays the developer menu bar. You can also display the
developer menu bar programmatically, using the API.

The sys-mod.kb module contains a category of system procedures called
G2 Native Menu API, which let you:

• Create and delete menu bars, menus, and submenus.

• Show, hide, and reset menu bars.

• Manage popup menus and menu choices.

• Get and set various information related to menus.

• Get information about the current menus in a given window.

Each API procedure call takes a g2-window as its last argument; thus, you create
menu choices for each connected window. Menus and menu choices are
represented by “handles,” which are positive integers that are unique over a
given window.

NMS menus behave like transient items in that clearing or resetting the KB deletes
all of them. NMS menus are only available while G2 is running; when G2 is
stopped or paused, the menu bar automatically reverts to the developer menu
bar. When G2 is resumed, the user-defined menu bar, if any, is restored.

For detailed information on the NMS API, see Native Menu System (NMS) API in
the G2 System Procedures Reference Manual.
1362

Using the Native Menu System API
Using the NMS API to Create Menus and Toolbars

You use the NMS API to create two basic types of menus:

• Menu bars — Consist of menus, which are often called “submenus” or
“pulldown menus.” A menu, in turn, consists of menu choices and/or
submenus. A menu that consists of one or more submenus is often called a
“cascading menu.” Menus and menu choices implement callbacks, which
implement the behavior of each menu choice.

• Popup menus — Consist of menu choices and/or submenus.

Both submenus and popup menus are considered menus.

You can also use the NMS API to create dockable toolbars, as well as edit boxes
and combo boxes, which you can add to any NMS menu or toolbar. Toolbars are
considered a special sort of menu, and edit boxes and combo boxes are considered
a special sort of menu choice. You can use the extended callback procedure to
access edit and combo box text.

Note Toolbars are only available when using Telewindows Next Generation

(twng.exe).

Menu bars, menus, and menu choices exists on a per-window basis, that is, for a
single Telewindows connection only. Thus, all of the API calls take a g2-window
as the last argument.
1363

Examples of Menu Hierarchies

This figure shows examples of the types of menu hierarchies you can create. The
terms in parentheses are the common names for these types of menus, whereas
the other terms are the object types that NMS actually creates.

Menu Bars and Popup Menus

To display a menu bar, you create a G2 procedure that performs these
sequential steps:

1 Create the menu bar.

2 Create menus and submenus.

3 Add menu choices and submenus to the menus.

4 Add menus to the menu bar.

5 Set the current menu bar.

To display a popup menu in the window, you create a procedure that performs
these steps:

1 Creates the popup menu, which is just a menu.

2 Create submenus.

3 Add menu choices and submenus to the popup menu.

4 Display the popup menu.

menu choice

menu bar

menu (“popup menu”)

menu
(“submenu” or “pulldown menu”)
1364

Using the Native Menu System API
Callbacks

The Native Menu System supports these types of callback procedures:

• Basic callbacks.

The basic callback is called when the user clicks a choice in an NMS menu or
when the user dismisses an NMS menu.

• Extended callbacks.

The extended callback is also called when the user clicks a choice or dismisses
an NMS menu; however, the extended callback provides the text string from
edit and combo boxes.

• Selection callbacks.

Selection callbacks are called when the user highlights a menu choice by
dragging the mouse over the choice or by pressing an arrow key, or when the
user unhighlights a highlighted menu choice.

You specify the basic callback procedure:

• When you create a menu bar or menu, using g2-nms-create-menu-bar or
g2-nms-create-menu.

• By using the g2-nms-set-callback procedure.

You specify the selection callback procedure by using the g2-nms-set-selection-
callback procedure.

The procedure argument can be a procedure object, a symbol naming a
procedure, or the symbol INHERITED, which uses the callback from the parent
menu, if any. NMS signals an error if it cannot find the callback procedure when it
tries to call it.

Callbacks are also supported in native GMS.

Menu Choices

A menu choice consists of a label and an optional user-defined key. The label can
include tabs for right-justifying shortcut key labels such as CTRL+S. The label can
also include access keys, such as File, whereby pressing the ALT key plus the
access key executes the menu choice, for example, ALT+F. You use the user-
defined key to identify the menu choice for further processing. You can get and
set various features of the menu choice, including its color, help text, and callback.
You can check and uncheck menu choices, select one of some number of menu
choices, and enable and disable menu choices.
1365

Here are some examples of menu choices:

Note By default, Windows always displays menu choices with access keys visible. You
can configure Windows to hide these keys until you press the ALT key. To do
this, display the Display Properties dialog from the Windows Control Panel and
click the Effects tab.

Additional Features

The procedures you write to create NMS menus must check whether the window
supports NMS menus by using an API call. If the window does not support NMS
menus, your procedure cannot use NMS menus.

The API provides procedures for:

• Creating dynamically updating menus.

• Adding icons to menu choices.

• Adding separators, breaks, and right-justification to a menu.

• Getting and setting menu bars, menus, and menu choices.

• Testing whether an item is a menu bar, menu, or menu choice.

• Testing whether a menu choice is checked.

The NMS API represents menus and menu choices as positive integer handles.
Zero is not a valid handle and has a special meaning in some procedures. Handles
are unique over a given window, where there is a limit of approximately 32000
handles, per window.

While all menus are represented as integers, Windows makes a distinction
between a menu bar and a popup menu. As such, the API provides different
procedures for initializing menu bars and popup menus.

Menu choices are disabled.

Menu choice is checked.

Menu choices include access
keys and right-justified
shortcut key labels.
1366

Using the Native Menu System API
NMS menus have certain behaviors with respect to the G2 run state and KB.
Starting or restarting G2 initializes all NMS menus on all connected windows.
Similarly, clearing the KB deletes all NMS menus on all connected windows.
Because callbacks cannot run when G2 is paused, G2 temporarily replaces the
user-defined menu bar with the developer menu bar when G2 is paused. When
G2 is resumed, the user-defined menu bar is restored.

Examples

Following are a number of simple examples that show how to use the NMS API to
create and manipulate menus and toolbars.

Note You must delete NMS menus when they are no longer needed, using g2-nms-
delete-menu or nms-reset. The following examples omit this important step
for simplicity.

Example: Simple Menu Bar

This example builds a simple menu bar. Each menu choice uses nms-demo-
callback as its callback. Here is the resulting menu bar:

In the example, when using g2-nms-add-choice, a tab character precedes all
keyboard shortcuts, such as CTRL+N. You enter a tab character in G2 by entering
ALT+I, then pressing the TAB key.

simple-menu-bar(win: class g2-window)
menu-bar, file-menu, view-menu, window-menu: integer;
i: integer;
begin

menu-bar = call g2-nms-create-menu-bar(the symbol
NMS-DEMO-CALLBACK, win);

file-menu = call g2-nms-create-submenu(win);
call g2-nms-add-choice(file-menu, "&New Ctrl+N", the symbol NEW, win);
i = call g2-nms-add-choice(file-menu, "&Open Ctrl+O", the symbol OPEN, win);
call g2-nms-set-help(i, "Help for the Open command", win);
call g2-nms-set-colors(i, the symbol white, the symbol red, win);
call g2-nms-add-separator(file-menu, win);
call g2-nms-add-choice(file-menu, "&Save As@.@.@. Ctrl+S",

the symbol SAVE, win);
view-menu = call g2-nms-create-submenu(win);
1367

call g2-nms-add-choice(view-menu, "Zoom &In", the symbol ZOOM-IN, win);
call g2-nms-add-choice(view-menu, "Zoom &Out", the symbol ZOOM-OUT, win);
window-menu = call g2-nms-create-submenu(win);
call g2-nms-add-choice(window-menu, "&My Window",

the symbol MY-WINDOW, win);
call g2-nms-add-submenu(menu-bar, "&File", file-menu, win);
call g2-nms-add-submenu(menu-bar, "&View", view-menu, win);
call g2-nms-add-submenu(menu-bar, "&Window", window-menu, win);
call g2-nms-set-menu-bar(menu-bar, win);

end

Example: Simple Callback

This example provides a callback that simply updates a free text named
menu-choice to indicate which menu choice was selected. Here is the text when
the Zoom Out menu choice is selected:

nms-demo-callback(window: class g2-window, menu: integer, choice: integer,
path: sequence)

user-data: item-or-value;
begin

if (choice = 0) then
change the text of menu-choice to "You dismissed the menu."

else
begin

user-data = call g2-nms-get-key(choice, window);
change the text of menu-choice to "You chose [user-data].";

end
end
1368

Using the Native Menu System API
Example: Simple Popup

This example shows how to create a simple popup menu. Each menu choice uses
nms-demo-callback as its callback. Here is the item before and after displaying the
popup menu:

In the example, when using g2-nms-add-choice, a tab character precedes all
keyboard shortcuts, such as CTRL+N. You enter a tab character in G2 by entering
ALT+I, then pressing the TAB key.

simple-popup-menu(win: class g2-window, item: class item)
menu: integer;
x,y: integer;
begin

menu = call g2-nms-create-menu(the symbol NMS-DEMO-CALLBACK,
win);

call g2-nms-add-choice(menu, "One", the symbol ONE, win);
call g2-nms-add-choice(menu, "Two", the symbol TWO, win);
call g2-nms-add-choice(menu, "Three", the symbol THREE, win);

x = call g2-x-in-window(the item-x-position of item, the workspace of item,
win);

y = call g2-y-in-window(the item-y-position of item, the workspace of item,
win);

call g2-nms-manage-popup-menu(menu, x, y, win);
end
1369

Example: Menu Bar with Built-in G2 Menus

This example builds a simple menu bar that includes the built-in G2 View menu,
and adds menu choices after the built-in menu choices:

simple-menu-bar(win: class g2-window)
menu-bar, file-menu, view-menu, window-menu: integer;
i: integer;
begin

menu-bar = call g2-nms-create-menu-bar(the symbol NMS-DEMO-CALLBACK,
win);

file-menu = call g2-nms-create-submenu(win);
{Contents of file menu goes here}

view-menu = call g2-nms-get-built-in-menu(the symbol VIEW, win);
call g2-nms-add-separator(view-menu, win);
call g2-nms-add-choice(view-menu, "Zoom &In", the symbol ZOOM-IN, win);
call g2-nms-add-choice(view-menu, "Zoom &Out", the symbol ZOOM-OUT, win);

window-menu = call g2-nms-create-submenu(win);
{Contents of window menu goes here}

call g2-nms-set-menu-bar(menu-bar, win);
end

Here is the resulting View menu:
1370

Using the Native Menu System API
Example: Popup Menu with Built-in G2 Menus

This example builds a popup menu that includes the built-in G2 Edit menu as a
submenu, along with several other menu choices:

simple-popup-menu(win: class g2-window, item: class item)
menu: integer;
x,y: integer;
begin

menu = call g2-nms-create-menu(the symbol NMS-DEMO-CALLBACK, win);
call g2-nms-add-choice(menu, "One", the symbol ONE, win);
call g2-nms-add-choice(menu, "Two", the symbol TWO, win);

x = call g2-nms-get-built-in-menu (the symbol EDIT, win);
call g2-nms-add-submenu(menu, "Edit", x, win);

call g2-nms-add-choice(menu, "Three", the symbol THREE, win);

x = call g2-x-in-window(the item-x-position of item, the workspace of item, win);
y = call g2-y-in-window(the item-y-position of item, the workspace of item, win);
call g2-nms-manage-popup-menu(menu, x, y, win);

end

Here is the resulting popup menu:

Built-in G2 Edit
menu choices
1371

Example: Toolbar with Edit Box and Combo Box

The following example is located in g2-80r0-doc-examples.kb located in
g2\kbs\demos (Windows) or g2/kbs/demos (UNIX).

This procedure creates a toolbar, then populates it. The toolbar is docked at the
default location, at the top of the window below the menu bar.

demo-toolbar (win: class g2-window)
tb: integer;
begin

tb = call g2-nms-create-toolbar ("My Toolbar", the symbol toolbar-callback,
structure(), win);

call populate(tb, win);
end

Here is part of the populate procedure, which creates File, View, Window, and
dynamic submenus, and which creates and adds a combo box and edit box, each
with a key.

populate(bar: integer, win: class g2-window)
file-menu, view-menu, window-menu, dynamic-menu: integer;
i, j: integer;
version: float;
begin

file-menu = call g2-nms-create-submenu(win);
{contents of file-menu goes here}

view-menu = call g2-nms-create-submenu(win);
{contents of view-menu goes here}

i = call g2-nms-create-combo-box ("Combo", sequence ("Animal", "Vegetable",
"Mineral"), structure (key: the symbol MY-COMBO, width: 100), win);

 call g2-nms-add-control (bar, i, win);

i = call g2-nms-create-edit-box ("Edit", structure (key: the symbol MY-EDIT,
width: 150), win);

call g2-nms-add-control (bar, i, win);

window-menu = call g2-nms-create-submenu(win);
{contents of window-menu goes here}

dynamic-menu = call g2-nms-create-submenu(win);
{contents of dynamic-menu goes here}

end
1372

Using the Native Menu System API
Here is the callback procedure that gets called when a menu choice is selected or
when the user enters a value in the combo box or edit box. The callback simply
updates the free text named menu-choice with the selected choice or text, based
on the specified key. If the selected choice has an associated string in the
properties structure argument to the callback, the free text displays the text of the
edit box or combo box.

toolbar-callback (window: class g2-window, menu: integer, choice: integer,
plist: structure)

userdata: item-or-value;
begin

if (choice = 0) then
change the text of MENU-CHOICE to "You dismissed the menu."

else
begin

userdata = call g2-nms-get-key (choice, window);
if (the string of plist exists) then
change the text of MENU-CHOICE to "You chose @"[the string of plist]@" in

[userdata]."
else

change the text of MENU-CHOICE to "You chose [userdata].";
end

end
1373

This figure shows the result of clicking the Demo Toolbar button, which executes
the demo-toolbar procedure. The toolbar is docked at the top of the window and
includes a combo box and edit box. The nms-callback procedure updates the free
text with the selected menu choice or text value, in this case, the edit box
text "hello".

Default toolbar
docked at the top
of the window.

Combo box Edit box

The callback updates
this free text with the
selected menu
choice or text value
and the key.
1374

Displaying Classic GMS Menus in Telewindows
Displaying Classic GMS Menus in Telewindows
You might want to display GMS menus in Telewindows, using their classic
interface. Reasons for doing this include:

• You have already documented your end user interface, using classic GMS
menus.

• You require dynamic menus, which only classic GMS supports.

• You want to test how your GMS menu system will look when displayed on
UNIX platforms.

The active GMS preference object controls how GMS menus appear in
Telewindows.

To display classic GMS menus in Telewindows:

1 Find the active gms-preference and display its table.

You create and configure a GMS preference object when you create your GMS
menus. Here is a gms-preference object:

If you have more than one GMS preference, you must determine the active
preference programmatically by calling gms-get-current-preference, which
takes an integer handle argument and returns the current preference.

For information on how to create a GMS preference and how to get the active
preference, see the G2 Menu System User’s Guide.

By default, the gms-use-native-menus attribute of the preference is set to true.

2 Set gms-use-native-menus to false.

3 Restart G2.

The GMS menus now appear in Telewindows as they appear in classic G2 or
Telewindows.
1375

Here is an example of a classic GMS menu bar displayed in Telewindows:

GMS and NMS Menus and the G2 Run State
A number of differences exist between how native GMS menus, classic GMS
menus, NMS menus, and the G2 developer menu bar behave in Telewindows
with respect to the G2 run state. The following table compares the behavior of
each of these menus under different G2 run states. Native G2 menus are also
included for comparison. In the table, menus refer to both menu bars and popup
menus.

When G2 is...

Paused... Resumed...
Started or

Restarted... Reset...

Native
GMS Menus

Menu bar is
replaced with
the developer
menu bar

Menu choices
are available
and functional

Menu bar resets
to the value of
gms-initial-
menu-bar

Menu bar is
replaced with
the developer
menu bar

Classic
GMS Menus

Menu choices
are unavailable

Menu choices
are available
and functional

Menu bar resets
to the value of
gms-initial-
menu-bar

Menu bar is
unavailable

NMS Menus

Menu bar is
replaced with
the developer
menu bar

Menu choices
are available
and functional

Menu choices
are available
and functional

Menu bar is
replaced with
the developer
menu bar
1376

Demos
In the table above:

• Native GMS Menus are menus created using GMS and displayed in
Telewindows running with a standard user interface.

• Classic GMS Menus are menus created using GMS and displayed in
Telewindows running with a classic user interface.

• NMS Menus are menus created using the NMS API, except for the menu bar
you get when you use g2-nms-set-menu-bar with an argument of 0, which
displays the developer menu bar.

• Developer Menu Bar is the menu bar you get by default in Telewindows
when no other menus are defined. This is also the menu bar you get when you
use g2-nms-set-menu-bar with an argument of 0.

• Classic G2 Menus are the G2 Main Menu, the KB Workspace menu, and item
popup menus.

Demos
G2 provides a number of demos that illustrate how GMS menus render as native
Windows menus, as well as how to use the NMS API to create and manipulate
menus.

You can access these demos in this subdirectory of your G2 product installation
directory:

\kbs\demos\

You can also load \kbs\gmsdemo.kb to test other features of GMS in
Telewindows, such as dynamic and built-in menus.

gms-native-multiple-menubar-demo.kb

This demo shows various features of GMS menus rendered as native Windows
menus. The Multiple Menubar Demo WS workspace provides the GMS menu

Developer
Menu Bar

Menu choices
are available
and functional

Menu choices
are available
and functional

Menu choices
are available
and functional

Menu choices
are available
and functional

Classic
G2 Menus

Menu choices
are available
and functional

Menu choices
are available
and functional

Menu choices
are available
and functional

Menu choices
are available
and functional

When G2 is...

Paused... Resumed...
Started or

Restarted... Reset...
1377

templates and settings for three alternate menu bars. The menu bars are
implemented as GMS menu bar templates, and the submenus are implemented as
GMS cascade templates. G2 must be running to interact with the menus.

To switch between menus bars, choose Logo > Other Menus and choose a menu.
The menu bar switches to the alternate menu bar and a workspace with a blue
title bar also appears. Now choose a different menu. The menu bar switches to the
alternate menu, and another workspace appears. The title bar of the new
workspace is blue, and the title bar of the previous workspace switches to grey.
Switching between menu bars is implemented by using a GMS switch menu bar
cascade template. Displaying the workspace and coloring its title bar is
implemented by specifying a callback procedure in the gms-posting-callback of
the GMS menu bar template, which activates when the menu bar is posted.

To change the user mode, choose Logo > User Mode and choose a user mode.
Changing the user mode is implemented by using a GMS change mode template.

With the GDA menu active, choose the Modules menu and choose a module. The
top-level workspace of the module appears, and a message is posted to the
Message Board. Displaying a workspace is implemented by using a GMS show
workspace template. Posting to the Message Board is implemented by specifying
a callback procedure in the gms-activation-callback of the GMS menu bar
template, which activates when any menu choice in the menu bar is chosen.

See Example: Alternate GMS Menu Bar.

gms-native-large-menu-demo.kb

This demo provides another GMS menu bar template, which renders as a native
Windows menu bar. The Large Menu Demo WS provides the GMS menu
template and settings. G2 must be running to interact with the menus.

The unique part of this demo is the Item menu, which creates instances of items.
Choose Items, then choose a submenu until you display a submenu of items.
Choosing an item from the last submenu attaches the item to the mouse. Click the
workspace where you want to place the item.

The Item menu and its submenus are implemented as GMS cascade templates.
The submenus are defined on the subworkspace of GMS subpanel templates.
Creating instances of items is implemented by specifying a callback procedure in
the gms-activation-callback of the Item cascade template.

See Example: Alternate GMS Menu Bar.

gms-native-popup-demo.kb

This demo shows how GMS popup menus render as native Windows popups
when viewed through Telewindows. The Popup Demo WS provides the GMS
menu templates and settings. G2 must be running to interact with the popups.
1378

Demos
To display the popups:

• Right-click the test-umc object and choose Post Item Menu to display a popup,
using a user menu choice.

• Right-click the test-track object to display a popup, using mouse tracking.

• Right-click the test-directed-item object to display a popup, then choose
Rotate and either Clockwise or Counterclockwise.

The popup menu is implemented as a GMS popup template. The class definitions
for each item and the callbacks are located on the Settings subworkspace. The
callbacks for all the menu choices in the popup simply post messages to the
Message Board. The callbacks for the menu choices in the Rotate submenu
actually rotate the item.

See Example: GMS Popup Menu.

gms-native-language-demo.kb

This demo shows how localized GMS menus render as native Windows menus
when viewed through Telewindows. The Language Demo WS provides the GMS
menu templates and settings. G2 must be running to interact with the menus.

Click the English button to display the List menu in English. Click the Spanish
button to display the List menu in Spanish. This demo also shows how to
implement a callback that creates an item and attaches it to the mouse. First,
create a new workspace, then choose an item from the List submenu and click on
the workspace to create the item.

The Item menu is implemented as a GMS cascade template, whose label is a key,
s-items, into a local text resource. Similarly, the List menu is a GMS cascade
template, whose label is s-list. The menu choices in the List menu appear on the
subworkspace of a GMS subpanel template and are GMS choice templates.

The menu bar is implemented as a GMS menu bar template, whose gms-text-
resource-group is language-resources, a GMS text resource group, which appears
on the Language Demo WS.

To view the local text resources for each menu, display the subworkspace of the
language-resources text resource group. The subworkspace contains two local
text resources, one for English and one for Spanish, each of whose gfr-resource-
group is the language-resources resource.

To view the specification of each menu, first, get the GXL top-level workspace
and enable the Array and List Editing option. Once this option is enabled, you can
choose edit resource on each local text resource to view a GXL spreadsheet that
specifies key-value pairs for each menu choice.

See Example: GMS Localization.
1379

nmsdemo.kb

This demo provides examples of how to use the NMS API to create and
manipulate native Windows menus. The NMSDemo workspace contains several
G2 action buttons, which start procedures that call various NMS API procedures.

The Simple Menu Bar procedure shows how to create a menu bar, create a
submenu, add menu choices with keys, set help text and color, add separators,
and, finally, set the menu bar in the window.

The Simple Popup Menu procedure shows how to create a popup menu and add
menu choices with keys, then set the popup menu in the window at a given x, y
location relative to the item.

The demo callback procedure simply gets the specified key for the selected menu
choice and uses it to update the text of a free text called menu-choice.

See Examples.
1380

42
Windows Dialogs
Describes the complete specification for creating custom Windows dialogs,
including a description of the various dialog controls.

Introduction 1382

Running the Dialogs Demo 1383

Posting Basic Dialogs 1387

Posting Query Dialogs 1388

Posting Notification Dialogs 1388

Posting Delay Notification Dialogs 1389

Viewing the Source Workspace for Basic Dialogs 1390

Posting Custom Dialogs 1391

Viewing the Source Workspace for Custom Dialogs 1393

Posting Messages to an Alert Queue 1398

Viewing the Source Workspace for the Alert Queue 1400
1381

Introduction
This chapter shows examples of Windows dialogs in Telewindows. These
examples are available in dialogs-demo.kb located in g2\kbs\demos (Windows)
or g2/kbs/demos (UNIX).

You must be running Telewindows on a Windows machine to post custom
dialogs. Posting dialogs in G2 or in Telewindows running on UNIX generates an
error. Custom Windows dialogs are only supported in Telewindows Next
Generation (twng.exe). You can create these types of basic Windows dialogs:

• Basic

• Query

• Notification

• Delay notification

• File

• Print

• Custom

Custom dialogs can contain a variety of standard Windows controls, including
text, list, color, time and date, progress bar, tabular, grouping, image, and
workspace controls.

You specify the custom dialog as a structure, which describes the format and
layout of the controls within the dialog. You post dialogs on a specific G2
window, which returns a unique dialog ID. When the user updates or dismisses a
dialog, the G2 application receives callbacks. You can modify dialogs dynamically
after they have been posted, for example, to enable and disable controls.

You specify basic and custom dialogs as part of your G2 application, using the
dialog API, which is fully described in:

• Dialog Views in User Interface Operations in the G2 System Procedures
Reference Manual.

• Custom Windows Dialogs.
1382

Running the Dialogs Demo
Running the Dialogs Demo
This section describes how to run the dialogs demo and shows examples of some
of the basic and custom dialogs, as well as a sample alert queue.

To run the dialogs demo:

1 Load dialogs-demo.kb located in g2\kbs\demos (Windows) or g2/kbs/demos
(UNIX).

2 Connect to the demo using Telewindows.

The start-dialog-examples workspace appears:

3 Click the Post Example Dialogs button.

A custom Windows dialog appears from which you can post and modify
various types of dialogs.
1383

4 Click the Basic Dialog Examples tab.

From this tab, you can post basic, notification, and delay notification dialogs,
as well as perform various actions on the notification and delay notification
dialogs:
1384

Running the Dialogs Demo
5 Click the Custom Dialog Examples tab.

From this dialog tab, you can launch custom dialogs with examples of each
type of Windows control:
1385

6 Click the Alert Queue Demo tab:

From this dialog tab, you can launch a sample alarm queue and send alarm
messages to components:

7 To dismiss the current dialog, click Dismiss.

8 To dismiss all dialogs, including the current dialog, click the Dismiss All
Dialogs button.
1386

Posting Basic Dialogs
Posting Basic Dialogs
A basic dialog contains a message, a set of buttons for the specified type of dialog,
an icon, and a caption. You can create message, confirmation, yes-no, yes-no-
cancel, and retry-cancel dialogs. The procedure that posts the basic dialog returns
the name of the button chosen.

To post a basic dialog:

1 On the Basic Dialog Examples tab, choose Message, Confirmation, Yes/No,
Yes/No/Cancel, Retry/Cancel from the Post Dialog dropdown list.

For example, here is a confirmation dialog, which consists of OK and Cancel
buttons:

2 Click the OK button.

The example dialog posts the name of the clicked button to the Message Board:
1387

Posting Query Dialogs
A query dialog consists of a message, a text field for the user to enter a value, a
caption, and an icon. The dialog provides OK and Cancel buttons. The procedure
that posts the query dialog returns the entered text and the name of the button
chosen.

To post a query dialog:

1 On the Basic Dialog Examples tab, choose Query from the Post Dialog
dropdown list and enter some text:

2 Click the OK button:

The example dialog posts the entered text to the Message Board:

Posting Notification Dialogs
A notification dialog consists of a message, a caption, and an icon. You can
configure the font size of the message text. You can post, update, and remove
notification dialogs. Typically, you post a notification dialog, wait for some event
to occur, update the dialog, then remove the dialog when some other event
occurs.

To post a notification dialog:

1 On the Basic Dialog Examples tab, choose Post from the Action dropdown list
in the Notification group to post this dialog:
1388

Posting Delay Notification Dialogs
2 Choose Update from the Action dropdown list to update the dialog text:

3 Choose Remove from the Action dropdown list to dismiss the dialog.

Posting Delay Notification Dialogs
A delay notification dialog consists of a message, a caption, and an animation
object. You can configure the font size of the message text. You can post, update,
and remove notification dialogs. Typically, you post a notification dialog, wait for
some event to occur, update the dialog, then remove the dialog when some other
event occurs. You can also start and stop the animation, and step through the
animation one frame at a time.

To post a notification dialog:

1 On the Basic Dialog Examples tab, choose Post from the Action dropdown list
in the Delay Notification group to post this dialog, whose icon animates:

2 Choose Update from the Action dropdown list to update the dialog text:

3 Choose Step several times from the Action dropdown list to step through
the animation one step at a time.

4 Choose Remove from the Action dropdown list to dismiss the dialog.
1389

Viewing the Source Workspace for Basic
Dialogs

To view the source workspace for basic dialogs:

 Click the Go To Source Workspace button on the Basic Dialogs Examples tab.

The workspace contains action buttons that call procedures that post basic, query,
and notification dialogs and display the results to the message board:
1390

Posting Custom Dialogs
Posting Custom Dialogs
A custom dialog consists of any number of these standard Windows controls:
labels, text boxes, push buttons, radio buttons, spinners, check boxes, combo
boxes, list boxes, groups, tab frames, and tabular views.

You specify the custom dialog as a structure, which describes the format and
layout of the controls within the dialog. You post dialogs on a specific G2
window, which returns a unique dialog ID. When the user updates or dismisses a
dialog, the G2 application receives callbacks, depending on the response action
you specify for each control. For example, when the user clicks the OK button, it
can trigger the dialog updated callback, and when the user clicks the Cancel
button, it can trigger the dialog dismissed callback.

You can post and cancel custom dialogs. You can modify dialogs dynamically
after they have been posted, for example, to enable and disable, show and hide,
check and uncheck, and add elements to various types of controls. You can also
query custom dialogs to obtain information back from the dialog.

To post a custom dialog:

1 Click the Custom Dialog Examples tab.

2 Choose a control from the Post Example dropdown list to display a dialog that
contains examples of the control.

For example, here is the result of choosing Check Box from the dropdown list,
which displays a custom dialog with a check box and two push buttons:

3 Check and uncheck the control manually.
1391

4 To modify the control programmatically, choose Check Box in the Modify
Example dropdown list.

For example, here is the result of modifying the Check Box control, which
enables the check box:
1392

Viewing the Source Workspace for Custom Dialogs
5 Click the OK button.

The custom dialog executes the dialog updated and dialog dismissed callback,
which posts this information to the Message Board:

Viewing the Source Workspace for Custom
Dialogs

To view the source workspace for custom dialogs:

1 Click the Go To Source Workspace button on the Custom Dialogs Examples
tab.
1393

The workspace contains example-dialog-class instances, which define the
post dialog menu choice for posting the dialog:
1394

Viewing the Source Workspace for Custom Dialogs
2 Choose table on one of the example-dialog-class instances to see the dialog
and dialog update specifications.

Here is the table for the check-box example dialog, which specifies dialog-
update and dialog-specification.
1395

3 Go to the dynamic-dialogs-examples workspace to see the definition of the
example-dialog-class and its associated procedures and user menu choices:

The post-selected-dialog procedure is called when you choose post dialog, and
the dialog-examples-update-callback and dialog-examples-dismissed-callback are
called when the dialog is updated and dismissed, respectively.
1396

Viewing the Source Workspace for Custom Dialogs
4 Go to the main-demo-dialog-definitions workspace to see how these
procedures get called when dialogs are posted and updated:
1397

Posting Messages to an Alert Queue
You can create an alert queue and post messages to the queue, by creating a
custom dialog that uses the tabular view control. The dialogs demo KB has a
complete example of creating an alert queue, including creating and deleting
alerts, and clearing the queue.

To display the example alert queue:

1 Click the Alert Queue Demo tab.

2 Choose View from the Alert Queue Action dropdown list.

An empty alert queue appears:
1398

Posting Messages to an Alert Queue
3 Configure the Component, Priority, and Message and click the Send Alert
button to create several messages.

For example, here is the dialog configured to create a high priority alert
message on component-1 with message text Test Message 2:
1399

Here is the resulting message queue with three messages added:

4 To delete all messages, click the Delete Alerts button in the queue or choose
Clear from the Alert Queue Action dropdown list.

Viewing the Source Workspace for the
Alert Queue

Notice that for a tabular view, the new-value argument to the dialog update
callback returns only the selected-rows of the control-value structure, not the
columns and rows. The reason is that the data cannot be changed by the user, and
there may be many rows of data. Additionally, the architecture is such that the
model and view are kept separate, and a separate controller is responsible for
handling callbacks from the view and updating the model. To modify the view,
you use the g2-modify-custom-dialog system procedure.
1400

Viewing the Source Workspace for the Alert Queue
To view the source workspace for the alert queue:

1 Click the Go To Source Workspace button on the Alert Queue Demo tab:

The workspace contains an alert-queue instance, a procedure that posts alerts,
and various buttons for viewing and clearing the alert queue, and creating
various types of alerts:
1401

2 Go to the definitions-for-alert-queue workspace to see the definitions for the
alert-queue and alert classes, and their associated methods:
1402

43
Custom
Windows Dialogs
Describes the complete specification for creating custom Windows dialogs,

Introduction 1404

Posting a Custom Dialog 1406

Dialog Callbacks 1424

Modifying a Custom Dialog 1430

Querying a Dialog 1434

Dialog Controls 1435
calendar 1436
check-box 1438
checkable-list-box 1441
color-picker 1444
combo-box 1448
duration 1452
full-color-picker 1454
grid-view 1457
group 1477
image 1479
label 1481
list-box 1483
masked-edit 1487
progress-bar 1490
push-button 1492
radio-button 1496
slider 1499
spinner 1500
tab-frame 1503
tabular-view 1508
text-box 1519
time-of-day 1523
toggle-button 1527
tree-view-combo-box 1529
1403

track-bar 1532
workspace 1533
Summary of Control Values 1535

Win32 Control Types 1540

Introduction
This chapter describes the API for creating custom Windows dialogs in
Telewindows.

Note You must be running Telewindows on a Windows machine to post custom
dialogs. Posting dialogs in G2 or in Telewindows running on UNIX generates an
error. Custom Windows dialogs are only supported in Telewindows Next
Generation (twng.exe). See Dialog Specification.

You specify the custom dialog as a structure, which describes the format and
layout of the controls within the dialog. You post dialogs on a specific G2
window, which returns a unique dialog ID. When the user updates or dismisses a
dialog, the G2 application receives callbacks. You can modify dialogs dynamically
after they have been posted, for example, to enable and disable controls.

You can create dialogs with these Windows controls in these categories:

• Text controls

– label

– text-box

– masked-edit

• Button controls

– check-box

– push-button

– radio-button

– toggle-button
1404

Introduction
• List controls

– combo-box

– list-box

– checkable-list-box

– tree-view-combo-box

• Color controls

– color-picker

– full-color-picker

• Time and date controls

– calendar

– duration

– time-of-day

• Numeric input controls

– spinner

– slider

– track-bar

• Tabular controls

– grid-view

– tabular-view

• Grouping controls

– group

– tab-frame

• Miscellaneous controls

– progress-bar

– image

– workspace

You specify the dimensions of dialogs and controls in dialog units, which is a
device-independent measure to use for layout. One horizontal dialog unit is equal
to one-fourth of the average character width for the current system font. One
vertical dialog unit is equal to one-eighth of an average character height for the
current system font. For more information, see Microsoft documentation.
1405

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwue/html/ch14e.asp

Custom dialogs obey the Windows desktop font preferences, which you specify
in the Display Properties dialog on the Appearance tab. In particular, dialogs use
the Message Box font, which you specify by clicking the Advanced button.

For examples of creating custom dialogs, see Windows Dialogs.

For information on creating basic Windows notification, query, file, and print
dialogs, see Dialog Views in User Interface Operations in the G2 System Procedures
Reference Manual.

For examples of basic and custom Windows dialogs, see dialogs-demo.kb
located in g2\kbs\demos (Windows) or g2/kbs/demos (UNIX). Connect to the
demo using Telewindows and click the Post Examples dialog on the Dialogs
Examples Home workspace to display a custom dialog from which you can run
all the examples.

For information on converting GUIDE dialogs to custom Windows dialogs and
system procedures for adding dialog controls to custom Windows dialogs, see the
G2 Dialog Utility User’s Guide.

Posting a Custom Dialog
To post a dialog on a remote client’s window, call the following system
procedure:

g2-ui-post-custom-dialog
(dialog-specification: structure, user-data: value, win: g2-window)
-> dialog-handle: integer

The procedure returns an integer that is a handle to the posted dialog. This
procedure signals an error if the specified window does not support standard
Windows.

Argument Description

dialog-
specification

A structure that describes the dialog. For a description
of this argument, see Dialog Specification.

user-data An item or value passed to the callback when it is
invoked. For example, you can use the same callback
for multiple registrations and specify different
user-data to differentiate each callback.

win The g2-window on which to post the dialog. This
window must be running on a Windows machine.
1406

Posting a Custom Dialog
Dialog Specification

The dialog-specification argument to the g2-ui-post-custom-dialog system
procedure has these attributes:

Return Value Description

dialog-handle An integer that provides a handle to the custom dialog
that gets created.

Attribute Type Required Default Description

components sequence yes N/A A sequence of dialog
component structures.
Dialog Component
Structure.

container symbol or
integer

no mdi-child One of the following:

• pane — Displays the
dialog in a docked
pane.

• mdi-child — Displays
the dialog in a floating
pane.

• The handle of a listbar-
style shortcut bar, as an
integer, in which case
the neighbor option is
the number of the
folder within the listbar
into which to create the
dialog.

dialog-
dismissed-
callback

symbol or
procedure
class

no none The procedure to call when
the dialog is dismissed. See
Dialog Dismissed Callback.

dialog-height integer yes N/A The height of the dialog in
dialog units.
1407

dialog-is-mdi-
child

truth-value no false Whether to create the
dialog as a Multiple
Document Interface (MDI)
child, which means the
dialog has a minimize
button. MDI child dialogs
are modeless (not modal).

dialog-is-modal truth-value no true Whether the dialog is
modal, which means the
user cannot interact with
any other objects while the
dialog is open.

dialog-title text no "G2" The title of the dialog
window.

dialog-update-
callback

symbol or
procedure
class

no none The procedure to call when
the dialog is updated. See
Dialog Update Callback

dialog-width integer yes N/A The width of the dialog in
dialog units. Actual width
may vary depending on the
display device.

Attribute Type Required Default Description
1408

Posting a Custom Dialog
dialog-x-position integer or
symbol

no center The x position of the dialog
in the specified window.
You can specify any of
these symbols:

• left, right, center

• working-area-center

• working-area-
{left|top|right|bottom}

• near-working-area-
{left|top|right|bottom}

• desktop-area-center

• desktop-area-
{left|top|right|bottom}

• near-desktop-area-
{left|top|right|bottom}

The working area is the
desktop area of the display,
excluding taskbars, docked
windows, and docked
toolbars. The desktop area
is the entire Windows
desktop.

You can also specify the
x position in the G2
coordinate system, as an
integer.

dialog-y-position integer or
symbol

no center The y position of the dialog
in the specified window.
See dialog-x-position for the
options.

Attribute Type Required Default Description
1409

dock symbol no none Where to dock the dialog in
the window. The options
are one of these symbols:
none, left, top, right, bottom,
float, or within.

Note: This option is only
relevant if dialog-is-modal
and dialog-is-mdi-child are
both false. If so, and if dock
is any value other than
none, then the dialog
appears in a dockable pane,
initially docked to the
given side of neighbor, or
within neighbor as a new
tab, or floating.

icon item or
symbol

no none A G2 class name, an item,
or a built-in GMS icon. For
a list of built-in GMS icons,
see image.

left integer no N/A The initial position of the
left side of the dialog, in
pixels. By default, the
dialog is centered in the
overall window.

Attribute Type Required Default Description
1410

Posting a Custom Dialog
neighbor integer no 0 The integer handle of
another pane to dock
against. The neighbor can
be a handle to a dialog, tree
view, or shortcut bar pane.
The default is 0, which
means the overall window.
To specify that the dialog
be placed in a tab pane
within another pane,
specify these options: dock:
the symbol within and
neighbor h, where h is the
pane within which to place
the tree view pane.

Note: This option is only
relevant if dialog-is-modal
and dialog-is-mdi-child are
both false. If so, and if dock
is any value other than
none, then the dialog
appears in a dockable pane,
initially docked to the
given side of neighbor, or
within neighbor as a new
tab, or floating.

top integer no N/A The initial position of the
top of the dialog, in pixels.
By default, the dialog is
centered in the overall
window.

Attribute Type Required Default Description
1411

Dialog Component Structure

The dialog component sequence attribute of the dialog-specification argument
specifies a set of component structures contained within the dialog. Each
structure specifies an individual element within a dialog. Each dialog component
is associated with a separate window.

Component Structure Attributes

Each dialog component structure has these attributes for specifying the
component within the dialog:

Attribute Type Required Default Description

anchor symbol |
sequence |
integer

no none How the component
should be moved or resized
as the dialog is resized. The
options are one of the
symbols none, top, left,
bottom, right, top-left,
bottom-right, top-left-
bottom-right, a sequence of
these symbols, or an
integer bitmask. The
default value is top-left.

control-
background-
color

text no N/A A string representing the
background color for the
text in the control.

control-id integer or
symbol

yes N/A A unique ID for the control.
Within a single dialog, each
control must have a unique
ID.

control-type symbol yes N/A The type of control. See
Control Types.

control-value structure yes N/A A structure that describes
the value of the control.
The structure attributes
depend on the control type.
See Control Types.

height integer yes N/A The height of the control in
number of dialog units.
1412

Posting a Custom Dialog
horizontal-
scrollbar

truth-value no false Whether the component
has a horizontal scrollbar.

is-disabled truth-value no false Whether the initial state of
the control is disabled.

is-enabled truth-value no true Whether the initial state of
the control is enabled.

is-tabstop truth-value no Depends on
the control
type.

Whether the control is a tab
stop, which means it gets
selected when the user
presses the Tab key in the
dialog. By default, all
control types except label
are tab stops.

is-visible truth-value no true Whether the component is
visible.

left integer yes N/A The number of dialog units
from the top-left corner of
the control to the left side
of the parent window.

parent-control-id integer or
symbol or
false

no false The unique ID of the parent
control. A value of false
indicates that the parent
control is the top-level
window of the dialog.

resizable truth-value no false Whether the dialog is
resizable. The anchor
attribute determines how
the dialog behaves when it
is resized.

response-action symbol no Depends on
the control
type

The callback that the
control triggers when the
user updates the control
manually. See Response
Actions.

Attribute Type Required Default Description
1413

starts-new-
group

truth-value no false Whether the control starts a
new group of controls that
are contained within a
single group. This attribute
is applicable to all controls,
however, you can use it
most effectively with radio
button and check box
controls. See Example:
Creating Groups of
Controls.

tabstop-index integer no N/A The order of the control
when pressing the Tab key
to navigate to the next
control in the dialog. The
smaller the index, the
higher the priority.
Controls with indexes are
always given priority over
those without indexes.

text-font text no N/A A string representing the
font, as understood by the
host system of
Telewindows client. e.g.
Times New Roman,
Tahoma.

text-font-size integer no N/A A number representing the
size of the text in the
window.

text-font-color text no N/A A string representing the
g2 color symbol, it will be
the color of the text.

top integer yes N/A The number of dialog units
up from the top-left corner
of the control to the top of
the parent window.

vertical-scrollbar truth-value no false Whether the component
has a vertical scrollbar.

Attribute Type Required Default Description
1414

Posting a Custom Dialog
Note When the focus moves from one component to another in a dialog, either by
pressing the Tab key or by clicking the control, components can become obscured
if they overlap. Therefore, ensure that the heights of each dialog component do
not overlap.

Note The height of all controls except the combo-box is specified in dialog units, where
one dialog unit is 1/8 of the font height. Thus, for example, to display n rows in a
list-box, specify n*8 as the height. The height of a combo-box specifies the number
of visible rows.

Note The text-font, text-font-size, text-font-color and control-background-color are
newly added in May 2015 release, they’re experimental support for the new Font
feature request.

Note For details on controlling how the dialog behaves when it is resized, using the
anchor attribute, visit http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemwindowsformsanchorstylesclasstopic.asp.

width integer yes N/A The width of the control in
number of dialog units.

win32-styles sequence no sequence() A sequence of win32-
specific style symbols. See
Windows-Specific Control
Styles.

Attribute Type Required Default Description
1415

Control Types

The control-type attribute of the dialog component structure specifies the type of
control to display in the dialog. The control-type attribute must be one of the
following G2 symbols:

Control Type Example

calendar

check-box

checkable-list-box

color-picker

combo-box

duration
1416

Posting a Custom Dialog
full-color-picker

grid-view

group

image

label

list-box

Control Type Example
1417

masked-edit

progress-bar

push-button

radio-button

slider

spinner

tab-frame

tabular-view

text-box

Control Type Example
1418

Posting a Custom Dialog
time-of-day

toggle-button

track-bar

tree-view-combo-
box

workspace

Control Type Example
1419

Windows-Specific Control Styles

The win32-styles attribute in the dialog component structure provides an
alternate way of specifying the control type. You specify a sequence of symbols,
which correspond with style bit-flags in the Win32 API.

The following table categorizes the supported controls into groups according to
whether they can share the same style symbols or not:

Example: Posting a Simple Dialog

This example posts a simple dialog that contains a label, and OK and Cancel
buttons. The procedure takes an instance of a my-custom-dialog-definition, which
is a subclass of the built-in dialog-definition class. It calls g2-ui-post-custom-dialog
to post the custom dialog, which returns a handle that is the dialog-id of the
custom dialog.

The first argument to g2-ui-post-custom-dialog is the dialog specification, which
specifies the dialog title and size, whether the dialog is modal and an MDI child of
the parent window, the dialog dismissed and update callbacks, and the dialog
components.

The dialog components structure attribute specifies a sequence of structures,
where each structure specifies a dialog control, in this case two push-button
controls and a label control. Each control structure specifies the control type,
control ID, size, position, response action, and control value.

Group Controls Win32 Control Styles

Static controls label, group, tab-frame WIN32 Static Control
Style Symbols.

Edit controls text-box WIN32 Edit Style
Symbols.

Button controls push-button, check-box,
list-box, toggle-button

WIN32 Button Style
Symbols.

Combo controls combo-box, group WIN32 Combo-Box
Style Symbols.

Spinners spinner WIN32 Spinner Style
Symbols.

Tables tabular-view WIN32 Tabular-View
Style Symbols.
1420

Posting a Custom Dialog
The second argument to the g2-ui-post-custom-dialog procedure is the user data,
in this case a symbol, and the last argument is the window on which to post
the dialog.

post-selected-dialog (dialog: class my-custom-dialog-definition,
window: class g2-window)

dialog-id: integer;
begin

dialog-id = call g2-ui-post-custom-dialog
(structure

(dialog-title: "LABEL example",
dialog-width: 310,
dialog-height: 124,
dialog-is-modal: false,
dialog-is-mdi-child: true,
dialog-dismissed-callback: dialog-examples-dismissed-callback,
dialog-update-callback: dialog-examples-update-callback,
components:

sequence
(structure

(control-type: the symbol push-button,
control-id: 1,
height: 14,
width: 50,
left: 100,
top: 86,
response-action: the symbol ok,
control-value: structure (text-value: "OK")),

structure (control-type: the symbol push-button,
control-id: 2,
height: 14,
width: 50,
left: 160,
top: 86,
response-action: the symbol cancel,
control-value: structure (text-value: "Cancel")),

structure (control-type: the symbol label,
control-id: 3,
width: 50,
height: 15,
left: 10,
top: 10,
response-action: the symbol ignore,
control-value: structure (text-value: "Hello World")))),

the symbol hello-world-dialog, window);
conclude that the dialog-id of dialog = dialog-id

end
1421

Here is the class definition for the custom dialog, the dialog definition instance,
and the procedure and action button that posts the custom dialog:

Here is the resulting dialog, which consists of a label and two push buttons:

Example: Creating Groups of Controls

To create two groups of radio buttons with three buttons in each group, you
would specify six radio-button controls, where the first and fourth buttons in the
sequence of structures of dialog components would specify starts-new-group as
true. The dialog components would also specify two group controls, where the
first three radio buttons would be part of the first group and the second three
radio buttons would be part of the second group. By specifying the first three
buttons to be part of the first group, and the second three buttons to be part of the
second group, this means you can select one radio button in each group.

Compare this technique of creating groups of controls with simply including two
group controls in a dialog where three radio buttons appear in each group. This
1422

Posting a Custom Dialog
technique simply displays a box around each set of radio buttons and has no
effect on which buttons can be selected within each group.

For example, this figure shows a dialog with two groups of radio buttons in
which you can select one radio button in each group:

Here is the specification for the radio buttons and the group controls:

structure
(control-type: the symbol radio-button,
control-id: the symbol radio-button-1-1,
control-value: structure (text-value: "Choice A"),
starts-new-group: true,
. . .),

structure
(control-type: the symbol radio-button,
control-id: the symbol radio-button-1-2,
control-value: structure (text-value: "Choice B", selected: true),
. . .),

structure
(control-type: the symbol radio-button,
control-id: the symbol radio-button-1-3,
control-value: structure (text-value: "Choice C"),
. . .),

structure
(control-type: the symbol radio-button,
control-id: the symbol radio-button-2-1,
control-value: structure (text-value: "Choice 1", selected: true),
starts-new-group: true,
. . .),
1423

structure
(control-type: the symbol radio-button,
control-id: the symbol radio-button-2-2,
control-value: structure (text-value: "Choice 2"),
. . .),

structure
(control-type: the symbol radio-button,
control-id: the symbol radio-button-2-3,
control-value: structure (text-value: "Choice 3"),
. . .),

structure
(control-type: the symbol group,
control-id: the symbol group-1,
control-value: structure (text-value: "Group 1"),
. . .),

structure
(control-type: the symbol group,
control-id: the symbol group-2,
control-value: structure (text-value: "Group 2"),
. . .)

Dialog Callbacks
You can configure custom dialogs to send callbacks to G2 when the user updates
controls within the dialog and/or when the user dismisses the dialog, that is,
when the user clicks OK, Apply, or Cancel. You can use specific callbacks for
dialog update and dismissed events, or you can use a generic dialog callback,
which handles dialog update and dismissed events, as well as selection events for
the grid-view control, and mouse click and key pressed events for the grid-view
and tabular-view controls.

Response Actions

The response-action attribute in the dialog component structure determines
which callbacks are triggered by the control when the user updates the control
manually.

Response Action Symbol Description

ignore Do not send any callbacks.

ok, accept Dismiss the dialog and respond with all
data.
1424

Dialog Callbacks
Note that whenever the user dismisses a dialog by clicking the Windows close
box, the dialog dismissed callback is triggered with dialog-was-accepted of false.
See Dialog Dismissed Callback.

Dialog Update Callback

The dialog-update-callback attribute in the dialog component structure
determines the procedure to call when the user edits the value of a control in
the dialog.

Here is the syntax for the dialog update callback:

my-dialog-update-callback
(win: class g2-window, dialog-id: integer, control-id: value,
reason-for-callback: symbol, new-value: structure,
user-data: value, other-values: sequence)

cancel Immediately cancel the dialog and send a
dialog dismissed callback. This response
action is for use with the push-button
control only.

respond Send a dialog updated callback.

respond-with-all-data Send a dialog updated callback, including
all the data of all the controls in the dialog.

ok-with-just-my-data Dismiss the dialog and respond only with
the data for this control.

ok-without-data Dismiss the dialog and do not respond
with any data.

Response Action Symbol Description

Argument Description

win The window on which the dialog is displayed.

dialog-id The dialog handle that is returned by the g2-ui-post-
custom-dialog system procedure.

control-id The control-id of the dialog component structure for the
updated component.

reason-for-
callback

Currently, this value is not used.
1425

Example: Dialog Update Callback

Here is a simple update callback procedure that posts the results of the callback to
the Message Board:

dialog-examples-update-callback (win: class g2-window, dialog-id: integer,
control-id: value, reason-for-callback: symbol, new-value: structure,
user-data: value, other-values: sequence)

begin
post "Update callback: g2-window: [the g2-window-remote-host-name of win],

dialog-id: [dialog-id], control-id: [control-id], reason-for-callback:
[reason-for-callback], new-value: [new-value], user-data: [user-data],
other-values: [other-values]";

end

Here is the resulting message after clicking the OK button for dialog whose
dialog-id is 20. Notice that the reason-for-callback is user-edit, which means the
user edited the dialog.

new-value The control-value of the dialog component structure for
the updated component.

other-values A sequence of control-value structures for controls
other than the one for which the update takes place.
Currently, this argument contains all other controls.

user-data An item or value passed to the callback when it is
invoked. See Posting a Custom Dialog.

Argument Description
1426

Dialog Callbacks
Dialog Dismissed Callback

The dialog-dismissed-callback attribute in the dialog component structure
determines the procedure to call when the user dismisses a dialog.

Here is the syntax for the dialog dismissed callback:

my-dialog-dismissed-callback
(win: class g2-window, dialog-id: integer, dialog-was-accepted: truth-value,
user-data: value, current-values: sequence)

Example: Dialog Dismissed Callback

Here is a simple dismissed callback procedure that posts the results of the
callback to the Message Board:

dialog-examples-dismissed-callback (win: class g2-window, dialog-id: integer,
dialog-was-accepted: truth-value, user-data: value, new-values: sequence)

begin
post "Dismissed callback: g2-window: [the g2-window-remote-host-name of win],

dialog-id: [dialog-id], dialog-was-accepted: [dialog-was-accepted],
user-data: [user-data], new-values: [new-values]";

end

Argument Description

win The window on which the dialog is displayed.

dialog-id The dialog handle that is returned by the g2-ui-post-
custom-dialog system procedure.

dialog-was-
accepted

True if the user clicked the OK button; false if the user
dismissed the dialog without accepting it. See Response
Actions.

user-data An item or value passed to the callback when it is
invoked. See Posting a Custom Dialog.

current-values A sequence of structures for each control in the dialog,
where each structure contains the control-id and
control-value attributes.
1427

Here is the resulting message after clicking the OK button for a dialog whose
dialog-id is 20. Notice that the dialog-was-accepted is true, which means the user
clicked the OK or Apply button.

Generic Dialog Callback

The dialog-generic-callback attribute in the dialog component structure
determines the procedure to call when a generic dialog update occurs. It is called
when the user:

• Edits a control value in the dialog, just like the dialog-update-callback.

• Dismisses the dialog, just like the dialog-dismissed-callback.

• Changes the selected cells in a grid-view.

• Clicks the mouse or presses a key in a grid-view or tabular-view.

The syntax for the generic dialog callback is:

my-dialog-generic-callback
(event: symbol, win: class g2-window, dialog-id: integer, item: value,
info: structure, user-data: value)

Argument Description

event The event that occurred. The options are:

• All controls: USER-EDIT and DISMISSED

• grid-view: SELECTION-CHANGED

• grid-view or tabular-view: LEFT-CLICK,
MIDDLE-CLICK, RIGHT-CLICK, KEY-PRESS, or
any combination of modifier keys or DOUBLE
combined with LEFT-CLICK, MIDDLE-CLICK, or
RIGHT-CLICK, for example: SHIFT+LEFT-CLICK,
CONTROL+RIGHT-CLICK, ALT+LEFT-CLICK,
DOUBLE+CONTROL+LEFT-CLICK

win The window on which the dialog is displayed.
1428

Dialog Callbacks
The info structure for the USER-EDIT event has this syntax:

structure
(control-id: control-id,
control-value: new-value,
all-control-values: sequence)

The info structure for the DISMISSED event has this syntax:

structure
(dialog-ok: truth-value,
all-control-values: sequence)

Example: Generic Dialog Callback

Here is a generic dialog callback procedure that posts the results of the callback to
the Message Board:

cb (event: symbol, win: class g2-window, control: integer, item: value, info: structure,
user-data: value)

begin
post "[event] item=[item] info=[info] user=[user-data]";

end

dialog-id The dialog handle that is returned by the g2-ui-post-
custom-dialog system procedure.

item For the DISMISSED event, true if the user clicked the
OK button, or false if the user clicked the Cancel
button.

For all other events, the control-id of the dialog
component structure for the updated component.

info A structure, which depends on the type of event.

For information on the USER-EDIT and DISMISSED
events, see below.

For information on the selection changed event, and the
mouse and key click events, see grid-view and tabular-
view.

user-data Any user-defined value.

Argument Description
1429

Here is the resulting message after pressing the Control key and clicking the left
mouse button in the first row of a tabular-view control:

Here is the resulting message after clicking the right mouse button in the top-left
cell of a grid-view control:

Modifying a Custom Dialog
After a dialog has been posted, you can change the contents of a dialog by calling
this system procedure:

g2-ui-modify-custom-dialog
(dialog-handle: integer, modify-specification: sequence, win: class g2-window)

Argument Description

dialog-handle The dialog handle that is returned by the g2-ui-post-
custom-dialog system procedure.

modify-
specification

A sequence of structures that describe the dialog
components to modify. For a description of this
argument, see Modify Specification.

win The g2-window on which to post the dialog. This
window must be running on a Windows machine.
1430

Modifying a Custom Dialog
For examples of how to modify individual controls, see the examples under
Dialog Controls.

Modify Specification

The modify-specification is a sequence of structures that describe the controls to
modify, where each structure has the following attributes:

Control Actions

The options for control-action are:

Attribute Name Type Required Default Description

control-id integer Yes N/A The control-id of the
control to modify.

control-action symbol No replace The action to perform
when modifying the
control. See Control
Actions.

control-value Depends on
the control
action.

Depends on the
control action.

N/A The new value for the
control.

Control Action
Symbol Description Available for Controls Required Control Value

add Adds to a control
value.

text-box, combo-box,
list-box, checkable-list-
box

The control value of the
item being added.

replace Replaces all of the
existing control
values.

label, text-box, push-
button, radio-button,
toggle-button, spinner,
check-box, combo-box,
list-box, checkable-list-
box, group, full-color-
picker, progress-bar,
track-bar, slider, image,
spinner

The control value of the
item being updated.

hide Hides the control. All control types No control value
required.
1431

show Shows the control. All control types No control value
required.

enable Enables the control. All control types No control value
required.

disable Disables the
control.

All control types No control value
required.

check Checks the control. radio-button,
check-box,
toggle-button

No control value
required.

uncheck Unchecks the
control.

radio-button,
check-box,
toggle-button

No control value
required.

dropped-height Changes the height. tree-view-combo-box The height, in pixels, as
an integer.

dropped-width Changes the width. tree-view-combo-box The width, in pixels, as
an integer.

selected-tab Changes the
selected tab.

tab-frame A text of the selected
tab.

See Example:
Modifying the Selected
Tab.

add-rows Adds new rows of
data to a tabular-
view control.

tabular-view See Example: Adding a
Row to a Tabular-View
Control.

add-column Adds a new column
to a tabular-view
control.

tabular-view See Example: Adding
Columns to a Tabular
View.

remove-rows Removes rows of
data from a tabular-
view control.

tabular-view See Example: Deleting
a Row from a Tabular-
View Control

Control Action
Symbol Description Available for Controls Required Control Value
1432

Modifying a Custom Dialog
Example: Modifying a Custom Dialog

This example shows the modify-specification for a number of controls within a
custom dialog:

sequence(
structure(control-id: 1, control-value: structure(text-value: "Yes")),
structure(control-id: 9, control-action: the symbol disable),
structure(control-id: 11, control-action: the symbol hide),
structure(control-id: 21, control-action: the symbol check))

For examples of how to modify individual controls, see the examples under
Dialog Controls.

remove-
columns

Removes columns
of data from a
tabular-view
control.

tabular-view The control-value is a
sequence of integer
column numbers,
where -1 means the last
column.

replace-rows Replaces all values
in specific rows in a
tabular-view
control.

tabular-view See Example: Replacing
Rows in a Tabular
View.

replace-cells Replaces specific
cell values in a
tabular-view
control.

tabular-view See Example: Replacing
Cells in a Tabular View.

remove-all-rows Removes all the
rows in a tabular-
view control.

tabular-view See Example:
Removing all Rows in a
Tabular View.

remove-all-
selected-rows

Removes all the
selected rows in a
tabular-view
control.

tabular-view

deselect-rows De-select specific
rows in a tabular-
view control.

tabular-view The control-value is a
sequence of integer row
numbers, where -1
means the last row.

Control Action
Symbol Description Available for Controls Required Control Value
1433

Querying a Dialog
After a dialog has been posted, you can query its contents by using the following
system procedure:

g2-ui-query-custom-dialog-values
(dialog-handle: integer, controls: sequence, win: class g2-window)
-> control-values: sequence

Argument Description

dialog-handle The dialog handle that is returned by the g2-ui-post-
custom-dialog system procedure.

controls This argument is currently not used.

win The g2-window on which to post the dialog. This
window must be running on a Windows machine.

Return Value Description

control-values A sequence of current control values for all controls in
the dialog.
1434

Dialog Controls
Dialog Controls
This section describes each of the dialog controls in detail by providing:

• An example of each control within a dialog.

• Control-specific attributes.

• An example of the dialog component structure for the control.

• An example of how to modify the control.
1435

calendar
The calendar control provides a dropdown calendar for configuring the date. You
configure the date by clicking the date in the calendar. The control circles today’s
date.

Specific Attributes for Calendar Control

The selected-year must be between 1601 and 30827, the selected-month must be
between 1 and 12, and the selected-date must be between 1 and 31.

Attribute Name Type Required Default Description

long-date-
format

truth-value no false Whether to display the date
in a long format, such as
Friday, April 14, 2005. By
default, the date is
displayed in a short format,
such as 4/19/05.

control-value structure yes the current
date

A structure that specifies
the default date:

structure
(selected-year: integer,
selected-month: integer,
selected-date: integer)
1436

calendar
Example: Dialog Specification for Calendar Control

Here is the specification for the calendar control shown above:

structure
(control-type: the symbol CALENDAR,
control-id: the symbol MY-CALENDAR,
control-value:

structure
(selected-year: 2005,
selected-month: 3,
selected-date: 14)

. . .)
1437

check-box
The check-box control provides a toggle for enabling or disabling a value:

Specific Attributes for Check-Box Control

Attribute Name Type Required Default Description

control-value structure yes N/A A structure that specifies
the label for the check box
and whether it is initially
selected:

structure
(text-value: text,
selected: truth-value)
1438

check-box
Example: Dialog Specification for Check-Box
Control

Here is the dialog specification for the check-box control portion of the dialog
above, which specifies a single check box that is initially unchecked:

structure
(dialog-title: "CHECK-BOX example",
dialog-width: 310,
dialog-height: 124,
dialog-is-modal: true,
dialog-update-callback: dialog-examples-update-callback,
dialog-dismissed-callback: dialog-examples-dismissed-callback,
components:

sequence
(structure

(control-type: the symbol push-button,
. . .
control-value: structure (text-value: "OK")),

structure
(control-type: the symbol push-button,
. . .
control-value: structure (text-value: "Cancel")),

structure
(control-type: the symbol check-box,
control-id: 3,
height: 15,
width: 100,
top: 10,
left: 10,
response-action: the symbol ignore,
control-value: structure (text-value: "Enabled"))))

Example: Checking a Check-Box Control

Use the check control action to check a check-box control:

call g2-ui-modify-custom-dialog
(dialog-id,
sequence

(structure
(control-action: the symbol check,
control-id: 3)),

window);
1439

Example: Unchecking a Check-Box Control

Use the uncheck control action to uncheck a check-box control:

call g2-ui-modify-custom-dialog
(dialog-id,
sequence

(structure
(control-action: the symbol uncheck,
control-id: 3)),

window);
1440

checkable-list-box
checkable-list-box
The checkable-list-box control is similar to the list-box control except that entries
have check-boxes for selecting and deselecting entries in the list. Otherwise, the
checkable-list-box supports all the same options as the list-box control, including
single, extended, and multiple selection, and sorting. When using extended and
multiple selection, you can select multiple elements in the list, then check or
uncheck all elements in the selection with a single mouse click.

The control adds vertical scrollbar if the number of items in the list is bigger than
the height of the control.

Here is a checkable list box control with one option checked:

Specific Attributes for Checkable-List-Box Control

Attribute Name Type Required Default Description

extended-
selection

truth-value no false When true, enables
extended selection and
disables multiple selection,
if it was enabled.

When false, disables
extended selection and
does nothing to multiple
selection.

multiple-
selection

truth-value no false When true, enables
multiple selection and
disables extended
selection, if it was enabled.

When false, disables both
multiple selection and
extended selection.
1441

single-selection truth-value no true When true, disables both
extended selection and
multiple selection.

When false, enables
extended selection and
disables multiple selection,
if it was enabled.

sort-list truth-value no false When true, sorts the strings
alphabetically.

When false, displays the
strings in the order
supplied in the text-
sequence of the control-
value.

control-value structure yes N/A A structure that specifies
the sequence of text values
for each element in the
checked list box, the
initially checked values,
and the initially selected
values:

structure
(text-sequence: sequence

(text[, ...]),
checked: sequence
(text[, ...]),
selected: sequence
(text[, ...]))

Attribute Name Type Required Default Description
1442

checkable-list-box
Example: Dialog Specification for Checkable-List-
Box Control

Here is the dialog specification for the checkable-list-box control portion of the
dialog above:

structure
(control-type: the symbol checkable-list-box,
control-id: 3,
height: 50,
width: 100,
top: 10,
left: 15,
response-action: the symbol ignore,
control-value: structure (text-sequence: sequence ("Red", "Green", "Blue"),
checked: sequence ("Red")),
1443

color-picker
The color-picker control provides dropdown list for choosing a color. By default,
the list of colors is determined by the value of the colors-on-2nd-level-color-menu
in the Color Parameters system table, whose options are all, standard set, or a list
of colors. This attribute determines the colors on the second-level color menu,
which you access by choosing More on a G2 color palette.

You can specify the currently selected color in the control-value for the control.
You can also provide a specific list of colors, rather than using the default list.
1444

color-picker
Here is a custom dialog with a color-picker control that uses the default set of
colors for the second-level color menu, which is all, with green as the currently
selected color:
1445

Here is a custom dialog with a color-picker control that specifies a list of colors:

Specific Attributes for Color-Picker Control

When specifying a list of colors, the return value in the callback contains the list of
colors.

Attribute Name Type Required Default Description

control-value structure yes structure() A structure that specifies
the currently selected color,
as a symbol, and the
sequence of colors, as
symbols, to display in the
control:

structure
(selected: color,
colors: sequence)
1446

color-picker
Example: Dialog Specification for Color-Picker
Control

Here is the dialog specification for the color-picker control portion of the second
dialog above, which specifies a list of colors:

structure
(control-type: the symbol color-picker,
control-id: the symbol color-picker-with-invalid-symbol,
control-value: structure

(colors: sequence
(the symbol red,
the symbol white,
the symbol blue,
the symbol green,
the symbol yellow,
the symbol orange),

selected: the symbol blue),
response-action: the symbol respond,
height: 375,
width: 110,
left: 100,
top: 60)
1447

combo-box
The combo-box control provides a static list of choices or a dropdown list. You
can configure the combo box to be a static list that is also editable through the
type-in box (simple), a dropdown list that is also editable through the type-in box
(dropdown), or a dropdown list that is not editable through the type-in box
(dropdownlist).

simple
combo-box

dropdown or
dropdownlist
1448

combo-box
Specific Attributes for Combo-Box Control

In the control-value, specify text-selection as an integer to set the initial cursor
position at the specified index or as a sequence to set the initial selection between
the specified indices, where index is a zero-based integer index. The text-selection
option only works if the list-box-style is simple or dropdown.

The selection is returned as the text-selection attribute of the control-value, as
either an integer or a sequence.

Attribute Name Type Required Default Description

list-box-style symbol no simple The type of combo box,
which can be on of the
symbols:

• simple — The choices
are always visible, and
the type-in box is
editable.

• dropdown — The
choices appear in a
dropdown list, and the
type-in box is editable.

• dropdownlist — The
choices appear in a
dropdown list, and the
type-in box is not
editable.

control-value structure yes N/A A structure that specifies a
sequence of text values in
the combo box, the text of
the initially selected value,
the selected text, and the
width of the combo-box:

structure
(text-sequence:

sequence (text[, ...]) | (),
selected: text,
text-selection: index |

sequence (index, index)
dropdown-width: integer)
1449

Note The height of a combo-box specifies the number of visible rows. The minimum
height is 1. Currently, the height is ignored in standard Telewindows (tw.exe).

Example: Dialog Specification for Combo-Box
Control

Here is the dialog specification for the combo-box control portion of the dialog
above, which specifies a simple combo box and a dropdown list:

structure
(dialog-title: "COMBO-BOX example",
dialog-width: 310,
dialog-height: 124,
dialog-is-modal: true,
dialog-update-callback: dialog-examples-update-callback,
dialog-dismissed-callback: dialog-examples-dismissed-callback,
components:

sequence
(structure

(control-type: the symbol push-button,
. . .
control-value: structure (text-value: "OK")),

structure
(control-type: the symbol push-button,
. . .
control-value: structure (text-value: "Cancel")),

structure
(control-type: the symbol combo-box,
control-id: 3,
height: 60,
width: 50,
left: 10,
top: 10,
response-action: the symbol ignore,
list-box-style: the symbol simple,
control-value:

structure
(text-sequence: sequence ("Red", "Green", "Blue")
selected: "Red")),

structure
(control-type: the symbol combo-box,
control-id: 4,
height: 60,
width: 50,
left: 70,
top: 10,
response-action: the symbol ignore,
list-box-style: the symbol dropdownlist,
1450

combo-box
control-value:
structure

(text-sequence: sequence ("Red", "Green", "Blue",
"Yellow", "Orange", "Purple", "Mauve", "Violet", "Taupe"),
selected: "Red"))))

Example: Adding and Replacing Elements in a
Combo-Box Control

Use the add control action to add elements to a combo-box control, and use the
replace control action to replace elements:

call g2-ui-modify-custom-dialog
(dialog-id,
sequence

(structure (control-action: the symbol add,
control-id: 3,
control-value: structure

(text-sequence: sequence ("New-1", "New-2", "New-3"))),
structure (control-action: the symbol replace,

control-id: 4,
control-value: structure

(text-sequence: sequence ("New-1", "New-2", "New-3"))))
window);
1451

duration
The duration control provides spinners for configuring the weeks, days, hours,
minutes, and seconds. You select the part of the duration you want to configure,
then click the up or down arrow to change its value. You can also enter the value
directly.

The duration control provides a tooltip when hovering the mouse over each field
to indicate the units: weeks, days, hours, minutes, and seconds.

Note When using the spinners to enter a value for days that is greater than 365, it cycles
back to 0, whereas when entering a value that is greater than 365 from the
keyboard, the value is the last valid value.

Specific Attributes for Duration Control

Note The duration control converts days to weeks when the number-of-days in the
control-value exceeds 6. However, the user can enter a value of up to 365 days in
the control, and the return value is given in days.

Attribute Name Type Required Default Description

control-value structure yes N/A A structure that specifies
the default weeks, days,
hours, minutes, and
seconds:

structure
(number-of-weeks: integer,
number-of-days: integer,
number-of-hours: integer,
number-of-minutes: integer,
number-of-seconds: integer)
1452

duration
Example: Dialog Specification for Duration Control

Here is the specification of the duration control above:

structure
(control-type: the symbol DURATION,
control-id: the symbol MY-DURATION,
control-value:

structure (number-of-weeks: 1,
number-of-days: 3,
number-of-hours: 5,
number-of-minutes: 30,
number-of-seconds: 15),

. . .)
1453

full-color-picker
The full-color-picker control provides dropdown list for choosing a 24-bit color.
You specify the default color by specifying any RGB-color symbol, for example,
RGBFF0000 (red).

You can specify the currently selected color in the control-value for the control.

Here is a custom dialog with a full-color-picker control, with RGBFF0000 as the
currently selected color:
1454

full-color-picker
Here are the Standard and Custom tabs of the dialog that appears when you click
More Colors:
1455

Specific Attributes for Full-Color-Picker Control

Example: Dialog Specification for Full-Color-Picker
Control

Here is the dialog specification for the full-color-selection control portion of the
dialog above:

structure
(control-type: the symbol full-color-picker,
control-id: the symbol my-full-color-picker,
control-value: structure (selected: the symbol RGBFF0000),
response-action: the symbol respond,
height: 375,
width: 100,
left: 25,
top: 20)

Attribute Name Type Required Default Description

control-value structure yes structure() A structure that specifies
the currently selected color,
as an RGB color symbol,
such as RGBFF0000:

structure
(selected: rgb-color)
1456

grid-view
grid-view
The grid-view control shows a grid that contains multiple columns and rows of
cells, which can contain read-only and editable cells.

You specify a sequence of columns, including the column header, the column
width, the default cell type and value, whether the cells are read-only by default,
and the default colors for each column. You specify a sequence of row data for
each column, including the row heading, the row height, and the individual cell
settings.

Each cell can contain any of these types of data or controls: integer, quantity,
text-box, check-box, combo-box, color-picker, duration, calendar, time-of-day,
spinner, and image. The cell value specification depends on the type of control in
the cell.

The grid-view control supports sorting of columns. When sorting is enabled,
clicking the column header displays an arrow for sorting the values in ascending
or descending order. When sorting in ascending order, numbers precede
uppercase letters, and uppercase letters precede lowercase letters. Numeric
sorting only works if all cells in the column contain cells of type integer or
quantity.

The grid-view control displays an error when attempting to create a grid view
with zero columns.

Here is a grid view that shows examples of each type of control in two columns.
The user can interactively resize the column width and row height in the grid.
1457

Control-Value

The control-value structure has these attribute specifications:

Attribute Name Type Required Default Description

control-value structure yes N/A A structure that specifies the
rows and columns in the grid
view. The number of cells
specified in each row must be
the same as the number of
columns. The control value also
specifies the currently selected
cells.

structure
(columns: sequence-of-columns,
rows: sequence-of-rows,
selected-cells: sequence-of-cells,
use-column-header: truth-value,
use-row-header: truth-value)

Argument Type Required Default Description

columns sequence yes N/A sequence (column-spec[, ...])

rows sequence yes N/A sequence (row-spec[, ...])

selected-cells sequence no sequence() sequence
(structure

(row: row-id,
column: column-id)

[, ...])

The row-id and column-id are
zero-based index values, where
(0,0) indicates the top-left cell,
not including the headers.

use-column-
header

symbol no true Whether to show the column
header.

use-row-header symbol no true Whether to show the row
header.
1458

grid-view
Column-Spec

The column-spec is a structure with these attributes:

Attribute Name Type Required Default Description

alignment symbol no left The alignment of the control in
the cell. The options are left,
right, and center.

Note: The alignment attribute
does not apply to cells of type
ellipsis-button or image.

background-
color

symbol no white The default background color
for cells in the row.

bold truth-value no false When true, specifies that all text
in the column is bold.

default-cell-type symbol no text-box The default cell type for the
column. The options are:
integer, quantity, text-box,
check-box, combo-box, color-
picker, duration, calendar,
time-of-day, spinner, and
image.

default-cell-
value

structure no N/A The default value for the
controls in the row of cells. The
contents vary by cell type. See
Cell-Value-Spec.
1459

Note For any cell in a grid-view control, any attribute that is not specified in the
cell-value but is specified in the default-cell-value of the column is inherited, that
is, it uses the value from the column. For example, for a combo-box cell, you can
supply the text-sequence on a per-column basis and supply just the selected
value on a per-cell basis, and the text-sequence is inherited.

ellipsis-button truth-value no false For text-box cell types, whether
to display an ellipsis button (...)
next to all cells in the column of
type text-box. When true, the
value is displayed in a text box
that the user cannot edit.
Clicking the button sends an
event notification in the dialog
update callback. This attribute
is only relevant for text-box cell
types and ignored by all other
cell types.

For a description of the dialog
update callback and an
example, see Launching a
Custom Cell Editor.

read-only truth-value no false The default read-only state of
the cells in the row.

text-color symbol no black The default text color for cells
in the row.

text-value text no none The column header text.

width integer no N/A The width of the column in
dialog units. The default width
is computed, based on the
overall width of the grid view
and the number of columns.

Attribute Name Type Required Default Description
1460

grid-view
Row-Spec

The row-spec is a structure with these attributes:

Cell-Setting-Spec

The cell-setting-spec is a sequence of structures, where each structure has these
attributes:

Attribute Name Type Required Default Description

cell-settings sequence yes N/A A sequence of structures that
specifies the data in each cell,
where each structure
corresponds with the data for
each column in the row. The
attributes are similar to those in
the column-spec except they are
for an individual cell.

height integer no N/A The height of the row in dialog
units. The default height is
computed, based on the overall
height of the grid view and the
number of rows.

text-value text no N/A The row header text.

Attribute Name Type Required Default Description

alignment symbol no left The alignment of the control in
the cell. The options are left,
right, and center.

background-
color

symbol no white The background color for
the cell.

bold truth-value no false When true, specifies that the
text is bold.

cell-type symbol no text-box The cell type for the cell. The
options are: integer, quantity,
text-box, check-box, combo-
box, color-picker, duration,
calendar, time-of-day, spinner,
and image.
1461

cell-value structure no N/A The value for the control in the
cell. The contents vary by cell
type. See Cell-Value-Spec.

ellipsis-button truth-value no false For text-box cell types, whether
to display an ellipsis button (...)
next to the cell. When true, the
value is displayed in a text box
that the user cannot edit.
Clicking the button sends an
event notification in the dialog
update callback. This attribute
is only relevant for text-box cell
types.

For a description of the dialog
update callback and an
example, see Launching a
Custom Cell Editor.

read-only truth-value no false The read-only state of the cell.

sorting truth-value no false When true, allows sorting of
cells by clicking the column
header. Numeric sorting only
works if all cells in the column
contain cells of type integer or
quantity.

text-color symbol no black The text color for the cell.

Attribute Name Type Required Default Description
1462

grid-view
Cell-Value-Spec

The cell-value-spec structure has different syntax, depending on the cell-type:

Cell-Type Syntax Description

calendar structure
(selected-year: integer,
selected-month: integer,
selected-date: integer,
calendar-format: symbol)

The currently selected year, month, and
date, and the calendar format. The
selected-year must be between 1970 and
3000, the selected-month must be between
1 and 12, and the selected-date must be
between 1 and 31. You specify the value
through spinners. The calendar-format is
one of the symbols MM-DD-YYYY
(the default), DD-MM-YYYY, and
YYYY-MM-DD.

Note: If you create a grid-view with a
calendar control without specifying the
default date, G2 uses "the current date" to
create the control. Note that if G2 and
Telewindows are in different time zones,
and if the dialog is created at a time of day
when the date is different in the two time
zones, the control uses the date in G2’s
time zone.

check-box structure
(text-value: text,
selected: truth-value)

• text-value is the text to appear to the
right of the check-box. It defaults to no
text.

• selected is whether the check-box
should be checked or unchecked. The
default is false (unchecked).
1463

combo-box structure
(text-sequence:

sequence (text[, ...]) | (),
selected: text,
dropdown-width: integer,
list-box-style: symbol)

• text-sequence is a sequence of text
values, which are the values for the
combo-box specified from the top
down.

• selected is the text value that is
selected initially.

• dropdown-width is the width of the
dropdown box.

• list-box-style is one of the following
symbols:

– dropdown — Allows entering any
value via an edit box, the default.

– dropdownlist — Allows only
selections from the dropdown list.

color-picker structure
(selected: symbol)

The value of the color that is initially
selected.

duration structure
(number-of-weeks: integer,
number-of-days: integer,
number-of-hours: integer,
number-of-minutes: integer,
number-of-seconds: integer)

The number of weeks, days, hours,
minutes, and seconds.

Note: You can only enter values directly in
the control for hours, minutes, and
seconds. You cannot currently enter
values directly for weeks and days,
although you can enter their values by
using the spinners.

image structure
(icon: item-or-symbol)

The icon to display in the cell, which can
be a G2 class name, an item, or a built-in
GMS icon. For a list of built-in GMS icons,
see image.

When specifying an item, the icon updates
dynamically as the G2 icon changes.

If the icon is too large for its cell, the
portion that fits appears in the cell.

If an icon is smaller than 32x32 pixels, the
icons is drawn at its actual size.

integer structure
(current-value: integer)

The cell accepts integer values only.

Cell-Type Syntax Description
1464

grid-view
Dialog Dismissed Callback

The current-values argument to the dialog dismissed callback returns the
currently selected cells in the grid, using this syntax:

selected-cells:
(sequence

(structure (row: integer, column: integer),
(structure (row; integer, column: integer),
. . .)

quantity structure
(current-value: quantity)

The cell accepts quantity values only.

spinner structure
(current-value: quantity,
low-value: quantity,
high-value: quantity,
increment: quantity)

The current value, low and high values,
and increment for the spinner.

text-value structure
(text-value: text)

The text to appear in the text box. It
defaults to no text.

time-of-day structure
(selected-hour: integer,
selected-minute: integer,
selected-second: integer)

The currently selected hour, minute, and
second. The selected-hour must be
between 0 and 23, the selected-minute
must be between 0 and 59, and the
selected-second must be between 0 and
59.

Note: If you use the default value, which
is the current time, the current time is
displayed in GMT of the Telewindows
process. If you set the time explicitly, the
control returns the hour exactly as it
appears in the control. If Telewindows is
running in a different time zone from G2,
it is up to the application developer to
decide how to interpret the time.

Cell-Type Syntax Description
1465

For example, the dialog dismissed callback returns this value for selected-cells if
the first and second cells of the first row are selected at the time the dialog is
dismissed:

selected-cells:
(sequence

(structure (row: 1, column: 1),
(structure (row; 1, column: 2))

Generic Dialog Callback

The dialog-generic-callback for a custom dialog, if specified, is called whenever
the set of selected cells changes in a grid-view on the dialog, with the following
arguments:

• event: SELECTION-CHANGED

• control-id: integer

• info: structure (row: integer, column: integer, selection: sequence)

where:

– row and column describe a particular cell in the selection, either the cell
with the focus, or if no cell has the focus, the top-left-most cell in the
selection. The value for row and column are -1 if the selection is empty.

– selection is a sequence of structures representing the rectangular regions
of contiguously selected cells in the unsorted grid, where each structure
has this syntax:

structure
(minrow: integer,
maxrow: integer,
mincol: integer,
maxcol: integer)

• user-data: value

The dialog-generic-callback for a custom dialog, if specified, is called whenever
the user clicks the mouse or presses a key in the grid-view on the dialog, with the
following arguments:

• event: LEFT-CLICK, MIDDLE-CLICK, RIGHT-CLICK, KEY-PRESS, or any
combination of modifier keys or DOUBLE combined with LEFT-CLICK,
MIDDLE-CLICK, or RIGHT-CLICK, for example: SHIFT+LEFT-CLICK,
CONTROL+RIGHT-CLICK, ALT+LEFT-CLICK,
DOUBLE+CONTROL+LEFT-CLICK

• control-id: integer
1466

grid-view
• info: structure
(x: integer,
y: integer,
selected-cells: sequence,
key: symbol,
row: integer,
column: integer)

where:

– x and y are the x-y coordinates of the mouse click in the grid view.

– selected-cells is a sequence of structures representing the row and column
of each selected cell, where each structure has this syntax:

structure
(row: integer,
column: integer)

– key is the key that was pressed, if any.

– row and column describe a particular cell in the selection, either the cell
with the focus, or if no cell has the focus, the top-left-most cell in the
selection. The value for row and column are -1 if the selection is empty.

• user-data: value

For an example, see Example: Generic Dialog Callback.

System Procedures

Use the following system procedures to insert and delete columns and rows and
to replace cells in a grid-view:

g2-ui-grid-view-insert-column
(dialog: integer, control: value, column: integer, column-spec: structure,
win: class g2-window)

Inserts a column into the grid-view specified by control, which is the control-id
of the control, in dialog. The column is the column-id of the new column, after
it has been inserted. The column argument must not be greater than the
number of columns in the grid after the new column has been added. For
example, if the grid has columns 0 - 4 (5 columns), the column argument can
be 0 - 5, inclusive. A column number of -1 means to insert as the last column.

For a description of column-spec, see grid-view in Custom Windows Dialogs
in the G2 Reference Manual. The column-spec must specify the same number of
rows as the existing columns in the grid.
1467

g2-ui-grid-view-delete-column
(dialog: integer, control: value, column: integer, win: class g2-window)

Deletes a column from the grid-view specified by control, which is the
control-id of the control, in dialog. The column is the column-id of the column
to delete, which must be a valid column in the grid. A column number of -1
means to delete the last column.

g2-ui-grid-view-insert-row
(dialog: integer, control: value, row: integer, row-spec: structure,
win: class g2-window)

Inserts a row into the grid-view specified by control, which is the control-id of
the control, in dialog. The row is the row-id of the new row, after it has been
inserted. The row argument must not be greater than the number of rows in
the grid after the new row has been added. For example, if the grid has rows
0 - 4 (5 rows), the row argument can be 0 - 5, inclusive. A row number of -1
means to insert as the last row.

For a description of row-spec, see Row-Spec. The row-spec must specify the
same number of columns as the existing rows in the grid.

g2-ui-grid-view-delete-row
(dialog: integer, control: value, row: integer, win: class g2-window)

Deletes a row from the grid-view specified by control, which is the control-id of
the control, in dialog. The row is the row-id of the row to delete, which must be
a valid row in the grid. A row number of -1 means to delete the last row.

g2-ui-grid-view-replace-cell
(dialog: integer, control: value, row: integer,
column: integer, cell-spec: structure, window: class g2-window)

Replaces the cell at the given row and column positions in a grid-view specified by
control, which is the control-id of the control, in dialog. You can replace all grid
view attributes of all control types, using the following syntax for cell-spec:

structure
(cell-type: the symbol cell-type,
cell-value: structure ([attribute: value] ...))

For example, to replace a cell with a text-box cell with a given text and
background color, the cell-spec would look like this:

structure
(cell-type: the symbol text-box,
cell-value:

structure (text-value: “New Text”, background-color: the symbol blue))
1468

grid-view
Example

This example shows the specification for the grid-view shown earlier:

sequence (structure (control-type: the symbol grid-view,
 control-id: the symbol my-sole-grid-view,
 height: 110,
 width: 320,
 left: 10,
 top: 20,
 response-action: the symbol respond,
 control-value: structure (columns: sequence (structure (width: 100,
 text-value: "Column 1",
 read-only: false),
 structure (text-value: "Column 2",
 read-only: false),
 structure (text-value: "Column 3",
 read-only: false),
 structure (text-value: "Column 4",
 read-only: false),
 structure (text-value: "Column 5",
 read-only: false),
 structure (text-value: "Column 6",
 read-only: false),
 structure (text-value: "Column 7",
 read-only: false)),
 rows: sequence (structure (text-value: "Row 1",
 cell-settings: sequence (structure (text-color: the symbol black,
 background-color: the symbol pink,
 cell-value: structure (text-value: "Augustus")),
 structure (cell-type: the symbol check-box,
 background-color: the symbol ivory,
 cell-value: structure (selected: true,
 text-value: "Who")),
 structure (cell-type: the symbol combo-box,
 background-color: the symbol medium-goldenrod,
 cell-value: structure (text-sequence: sequence ("Huey",
 "Dewey",
 "Louie"),
 selected: "Dewey")),
 structure (cell-type: the symbol color-picker,
 background-color: the symbol light-yellow,
 cell-value: structure (selected: the symbol light-yellow)),
 structure (cell-type: the symbol calendar,
 background-color: the symbol light-cyan,
 cell-value: structure (selected-year: 2012,
 selected-month: 9,
 selected-date: 7)),
 structure (cell-type: the symbol time-of-day,
 background-color: the symbol lavender,
 show-date: true,
1469

 cell-value: structure (selected-year: 2005,
 selected-month: 8,
 selected-date: 24,
 selected-hour: 1,
 selected-minute: 2,
 selected-second: 3)),
 structure (cell-type: the symbol duration,
 background-color: the symbol thistle,
 cell-value: structure (number-of-weeks: 1,
 number-of-days: 1,
 number-of-hours: 1,
 number-of-minutes: 1,
 number-of-seconds: 1)))),
 structure (text-value: "Row 2",
 cell-settings: sequence (structure (cell-type: the symbol duration,
 background-color: the symbol light-pink,
 cell-value: structure (number-of-weeks: 2,
 number-of-days: 12,
 number-of-hours: 14,
 number-of-minutes: 17,
 number-of-seconds: 35)),
 structure (background-color: the symbol beige,
 cell-value: structure (text-value: "Tiberius")),
 structure (cell-type: the symbol check-box,
 text-color: the symbol black,
 background-color: the symbol pale-goldenrod,
 cell-value: structure (selected: false,
 text-value: "What")),
 structure (cell-type: the symbol combo-box,
 background-color: the symbol yellow,
 cell-value: structure (text-sequence: sequence ("Moe",
 "Larry",
 "Curly"),
 selected: "Curly")),
 structure (cell-type: the symbol color-picker,
 background-color: the symbol pale-turquoise,
 cell-value: structure (selected: the symbol pale-turquoise)),
 structure (cell-type: the symbol calendar,
 text-color: the symbol black,
 background-color: the symbol powder-blue,
 cell-value: structure (selected-year: 2013,
 selected-month: 10,
 selected-date: 18)),
 structure (cell-type: the symbol time-of-day,
 background-color: the symbol plum,
 cell-value: structure (selected-hour: 12,
 selected-minute: 24,
 selected-second: 36)))),
 structure (text-value: "Row 3",
 cell-settings: sequence (structure (cell-type: the symbol time-of-day,
 background-color: the symbol salmon,
1470

grid-view
 cell-value: structure (selected-year: 2001,
 selected-month: 2,
 selected-date: 17,
 selected-hour: 6,
 selected-minute: 15,
 selected-second: 5)),
 structure (cell-type: the symbol duration,
 background-color: the symbol floral-white,
 cell-value: structure (number-of-weeks: 5,
 number-of-days: 3,
 number-of-hours: 22,
 number-of-minutes: 19,
 number-of-seconds: 55)),
 structure (text-color: the symbol black,
 background-color: the symbol khaki,
 cell-value: structure (text-value: "Gaius")),
 structure (cell-type: the symbol check-box,
 background-color: the symbol green-yellow,
 cell-value: structure (selected: true,
 text-value: "I Don't Know")),
 structure (cell-type: the symbol combo-box,
 background-color: the symbol cyan,
 cell-value: structure (text-sequence: sequence ("Chico",
 "Groucho",
 "Harpo"),
 selected: "Chico")),
 structure (cell-type: the symbol color-picker,
 background-color: the symbol light-blue,
 cell-value: structure (selected: the symbol light-blue)),
 structure (cell-type: the symbol calendar,
 background-color: the symbol violet,
 cell-value: structure (selected-year: 2015,
 selected-month: 6,
 selected-date: 18)))),
 structure (text-value: "Row 4",
 cell-settings: sequence (structure (cell-type: the symbol calendar,
 background-color: the symbol coral,
 cell-value: structure (selected-year: 2005,
 selected-month: 12,
 selected-date: 2)),
 structure (cell-type: the symbol time-of-day,
 background-color: the symbol linen,
 cell-value: structure (selected-hour: 18,
 selected-minute: 36,
 selected-second: 54)),
 structure (cell-type: the symbol duration,
 background-color: the symbol light-goldenrod,
 cell-value: structure (number-of-weeks: 0,
 number-of-days: 0,
 number-of-hours: 8,
 number-of-minutes: 14,
1471

 number-of-seconds: 23)),
 structure (text-color: the symbol black,
 background-color: the symbol pale-green,
 cell-value: structure (text-value: "Claudius")),
 structure (cell-type: the symbol check-box,
 background-color: the symbol aquamarine,
 cell-value: structure (selected: false,
 text-value: "Why")),
 structure (cell-type: the symbol combo-box,
 background-color: the symbol light-steel-blue,
 cell-value: structure (text-sequence: sequence ("Athos",
 "Porthos",
 "Aramis"),
 selected: "Aramis")),
 structure (cell-type: the symbol color-picker,
 background-color: the symbol magenta,
 cell-value: structure (selected: the symbol magenta)))),
 structure (text-value: "Row 5",
 cell-settings: sequence (structure (cell-type: the symbol color-picker,
 text-color: the symbol gold,
 background-color: the symbol red,
 cell-value: structure (selected: the symbol red)),
 structure (cell-type: the symbol calendar,
 background-color: the symbol antique-white,
 cell-value: structure (selected-year: 2006,
 selected-month: 10,
 selected-date: 14)),
 structure (cell-type: the symbol time-of-day,
 background-color: the symbol gold,
 show-date: true,
 use-24-hour-time: true,
 cell-value: structure (selected-year: 2007,
 selected-month: 10,
 selected-date: 2,
 selected-hour: 14,
 selected-minute: 16,
 selected-second: 18)),
 structure (cell-type: the symbol duration,
 background-color: the symbol green,
 cell-value: structure (number-of-weeks: 0,
 number-of-days: 4,
 number-of-hours: 2,
 number-of-minutes: 3,
 number-of-seconds: 10)),
 structure (background-color: the symbol turquoise,
 cell-value: structure (text-value: "Nero")),
 structure (cell-type: the symbol check-box,
 background-color: the symbol sky-blue,
 cell-value: structure (selected: true,
 text-value: "Because")),
 structure (cell-type: the symbol combo-box,
1472

grid-view
 text-color: the symbol gold,
 background-color: the symbol medium-orchid,
 cell-value: structure (text-sequence: sequence ("Pompey",
 "Crassus",
 "Sulla"),
 selected: "Crassus")))),
 structure (text-value: "Row 6",
 cell-settings: sequence (structure (cell-type: the symbol combo-box,
 text-color: the symbol gold,
 background-color: the symbol indian-red,
 cell-value: structure (text-sequence: sequence ("Socrates",
 "Plato",
 "Aristotle"),
 selected: "Aristotle")),
 structure (cell-type: the symbol color-picker,
 background-color: the symbol wheat,
 cell-value: structure (selected: the symbol wheat)),
 structure (cell-type: the symbol calendar,
 background-color: the symbol orange,
 cell-value: structure (selected-year: 2007,
 selected-month: 2,
 selected-date: 7)),
 structure (cell-type: the symbol time-of-day,
 background-color: the symbol lime-green,
 cell-value: structure (selected-hour: 5,
 selected-minute: 6,
 selected-second: 7)),
 structure (cell-type: the symbol duration,
 text-color: the symbol black,
 background-color: the symbol medium-aquamarine,
 cell-value: structure (number-of-weeks: 3,
 number-of-days: 6,
 number-of-hours: 12,
 number-of-minutes: 24,
 number-of-seconds: 36)),
 structure (text-color: the symbol gold,
 background-color: the symbol blue,
 cell-value: structure (text-value: "Galba")),
 structure (cell-type: the symbol check-box,
 text-color: the symbol gold,
 background-color: the symbol violet-red,
 cell-value: structure (selected: false,
 text-value: "Today")))),
 structure (text-value: "Row 7",
 cell-settings: sequence (structure (cell-type: the symbol check-box,
 text-color: the symbol gold,
 background-color: the symbol brown,
 cell-value: structure (selected: true,
 text-value: "Tomorrow")),
 structure (cell-type: the symbol combo-box,
 background-color: the symbol tan,
1473

 cell-value: structure (text-sequence: sequence ("Adam",
 "Hoss",
 "Little Joe"),
 selected: "Adam")),
 structure (cell-type: the symbol color-picker,
 background-color: the symbol goldenrod,
 cell-value: structure (selected: the symbol goldenrod)),
 structure (cell-type: the symbol calendar,
 text-color: the symbol gold,
 background-color: the symbol forest-green,
 cell-value: structure (selected-year: 2009,
 selected-month: 7,
 selected-date: 6)),
 structure (cell-type: the symbol time-of-day,
 text-color: the symbol gold,
 background-color: the symbol cadet-blue,
 show-date: true,
 show-time: false,
 cell-value: structure (selected-year: 1993,
 selected-month: 6,
 selected-date: 19,
 selected-hour: 8,
 selected-minute: 13,
 selected-second: 22)),
 structure (cell-type: the symbol duration,
 text-color: the symbol gold,
 background-color: the symbol slate-blue,
 cell-value: structure (number-of-weeks: 1,
 number-of-days: 2,
 number-of-hours: 4,
 number-of-minutes: 8,
 number-of-seconds: 16)),
 structure (text-color: the symbol gold,
 background-color: the symbol purple,
 cell-value: structure (text-value: "Otho"))))))),
 structure (control-type: the symbol push-button,
 control-id: the symbol ok-button,
 height: 20,
 width: 50,
 left: 70,
 top: 150,
 response-action: the symbol ok,
 control-value: structure (text-value: "OK")),
 structure (control-type: the symbol push-button,
 control-id: the symbol apply-button-with-icon,
 height: 20,
 width: 50,
 left: 130,
 top: 150,
 response-action: the symbol respond,
 control-value: structure (icon: the symbol gms-gensym-icon)),
1474

grid-view
 structure (control-type: the symbol push-button,
 control-id: the symbol cancel-button,
 height: 20,
 width: 50,
 left: 190,
 top: 150,
 response-action: the symbol cancel,
 control-value: structure (text-value: "Cancel")))

Launching a Custom Cell Editor

The grid-view control allows you to place an ellipsis button (...) in a text-box cell,
which displays the value in a text box that the user cannot edit. When the user
clicks the button, an event notification is sent to the dialog update callback, which
you can use, for example, to launch a custom cell editor.
1475

For example, this code fragment shows a portion of the rows specification for the
grid-view shows above, where the cell in Column 4 and Row 1 has an ellipsis
button.

rows: sequence
(structure

(text-value: "Row 1",
height: 40,
cell-settings: sequence

(structure
(cell-type: the symbol text-box,
height: 40,
text-color: the symbol black,
background-color: the symbol pale-green,
cell-value: structure

(text-value: "Augustus")),
structure

(cell-type: the symbol spinner,
background-color: the symbol ivory,
cell-value: structure (current-value: 1,
low-value: 0,
high-value: 5,
increment: 1)),

structure
(cell-type: the symbol image,
alignment: the symbol center,
background-color: the symbol coral,
cell-value: structure (icon: the symbol connection-post)),

structure
(cell-type: the symbol text-box,
background-color: the symbol cadet-blue,
ellipsis-button: true,
cell-value: structure (text-value: "fee"))))

When the user clicks the ellipsis button, the update callback control-value
structure includes the following new information at the end of the structure:

NOTIFICATION: structure
(ROW: 0, COLUMN: 0, REASON: the symbol ELLIPSIS-BUTTON)

You can use this information in the dialog-update-callback of the dialog
specification to launch a text editor, for example, by calling g2-ui-launch-editor.
1476

group
group
The group control provides a logical grouping and associated label:

Specific Attributes for Group Control

Attribute Name Type Required Default Description

control-value structure yes N/A A structure that specifies
the group label:

structure (text-value: text)
1477

Example: Dialog Specification for Group Control

Here is the dialog specification for the group control portion of the dialog above:

structure
(dialog-title: "GROUP example",
dialog-width: 310,
dialog-height: 124,
dialog-is-modal: true,
dialog-update-callback: dialog-examples-update-callback,
dialog-dismissed-callback: dialog-examples-dismissed-callback,
components:

sequence
(structure

(control-type: the symbol push-button,
. . .
control-value: structure (text-value: "OK")),

structure
(control-type: the symbol push-button,
. . .
control-value: structure (text-value: "Cancel")),

structure
(control-type: the symbol group,
control-id: 3,
height: 70,
width: 200,
left: 10,
top: 10,
response-action: the symbol ignore,
control-value: structure (text-value: "Group"))))
1478

image
image
The image control allows you to display an icon in a dialog.

Here is a custom dialog with three image controls that uses the built-in GMS
icons:

Specific Attributes for Image Control

When specifying the icon, you can provide a G2 class name, an item, or one of the
following GMS icons, as a symbol:

gms-cut-icon
gms-copy-icon
gms-paste-icon
gms-undo-icon
gms-redo-icon
gms-delete-icon
gms-file-icon
gms-folder-icon
gms-save-icon
gms-print-preview-icon
gms-properties-icon
gms-help-icon
gms-find-icon
gms-replace-icon

Attribute Name Type Required Default Description

control-value structure yes structure() A structure that specifies a
symbol that is the icon to
display:

structure
(icon: item-or-symbol)
1479

gms-print-icon
gms-gensym-icon (This is the aquamarine gensym logo.)
gms-binoculars-icon
gms-save-all-icon

Example: Dialog Specification for Image Control

Here is the dialog specification for one of the image controls in the dialog above:

structure
(control-type: the symbol image,
control-id: 3,
width: 90,
height: 15,
left: 10,
top: 10,
response-action: the symbol ignore,
control-value: structure (icon: the symbol gms-cut-icon))
1480

label
label
The label control adds a static label to a dialog:

Specific Attributes for Label Control

Attribute Name Type Required Default Description

alignment symbol no left The alignment of the label,
as one of these symbols:
left, right, and center. These
are equivalent to ss-left,
ss-right and ss-center
win32 styles.

control-value structure yes N/A A structure that specifies
the initial text of the label:

structure
(text-value: text)
1481

Example: Dialog Specification for Label Control

Here is the dialog specification for the label portion of the dialog above, which
provides a static label:

structure
(dialog-title: "LABEL example",
dialog-width: 310,
dialog-height: 124,
dialog-is-modal: true,
components:

sequence
(structure

(control-type: the symbol push-button,
. . .
control-value: structure (text-value: "OK")),

structure
(control-type: the symbol push-button,
. . .
control-value: structure (text-value: "Cancel")),

structure
(control-type: the symbol label,
control-id: 3,
width: 50,
height: 15,
left: 10,
top: 10,
response-action: the symbol ignore,
control-value: structure (text-value: "Hello World"))))

Example: Updating a Label

Use the replace control action to change the text of a label control:

call g2-ui-modify-custom-dialog
(dialog-id,
sequence

(structure
(control-action: the symbol replace,
control-id: 3,
control-value: structure(text-value: "New label"))),

window);
1482

list-box
list-box
The list-box control supports three modes:

• Single selection allows the user to select a single element in the list box only.
Selecting an element deselects the currently selected element.

• Extended selection allows the user to extend the selection to include multiple
entries. Clicking an element deselects the currently selected elements.
Holding down the SHIFT key and clicking an element selects a series of
elements. Holding down the CTRL key and clicking an element adds or
removes individual elements to or from the selection.

• Multiple selection allows the user to select of any number of elements in the
list box by single clicking the element. Clicking a selected element deselects it.

Here is a dialog with a multiple selection list box with choices 1, 2, 4, and 5
selected:

Note When using the list-box control for G2 Version 8.1 Rev. 0 or later, you must use
Telewindows Version 8.1 Rev. 0 or later.
1483

Specific Attributes for List-Box Control

Attribute Name Type Required Default Description

extended-
selection

truth-value no false When true, enables
extended selection and
disables multiple selection,
if it was enabled.

When false, disables
extended selection and
does nothing to multiple
selection.

multiple-
selection

truth-value no false When true, enables
multiple selection and
disables extended
selection, if it was enabled.

When false, disables both
multiple selection and
extended selection.

single-selection truth-value no true When true, disables both
extended selection and
multiple selection.

When false, enables
extended selection and
disables multiple selection,
if it was enabled.
1484

list-box
As long as the selected attribute of the control-value is a sequence with zero or
more members and each member is a text, no errors are signalled. Thus, you must
ensure that all elements in the selected sequence also appear in the text-
sequence.

If the list-box is operating in extended selection or multiple selection mode, then
the user may select any number of choices, including zero. If it is operating in
single selection mode, then only one choice can be selected. In single-selection
mode, the selected attribute must still be a sequence.

If a sequence with more than one element is supplied for the selected attribute in
single-selection list-box, the first member of the sequence is the initially selected
value.

For a single-selection list-box, if no selected attribute is supplied or if an empty
sequence is specified, or if a sequence where the first member does not actually
appear in the list-box is supplied, then the first entry in the list is the initially
selected value.

The return value of a list box is:

structure
(control-id: control-id,
control-value:

structure
(text-sequence: sequence (text[, ...]),
selected: sequence (text[, ...])))

sort-list truth-value no false When true, sorts the strings
alphabetically.

When false, displays the
strings in the order
supplied in the text-
sequence of the control-
value.

control-value structure yes N/A A structure that specifies
the sequence of text values
for each element in the list
box and the initially
selected values:

structure
(text-sequence: sequence

(text[, ...]),
selected: sequence

(text[, ...]))

Attribute Name Type Required Default Description
1485

Example: Dialog Specification for Multiple-Selection
List-Box Control

For example, here is the control structure for a multiple-selection list box:

structure
(control-type: the symbol LIST-BOX,
control-id: the symbol EXAMPLE-LIST-BOX,
multiple-selection: true,
control-value:

structure
(selected: sequence ("choice 1", "choice 2", "choice 4"),
text-sequence:

sequence ("this is a list box",
"choice 1",
"choice 2",
"choice 3",
"choice 4",
"choice 5",
"more choices")),

response-action: the symbol RESPOND,
height: 75,
width: 280,
left: 10,
top: 10)

Example: Replacing an Element in a List-Box
Control

Use the add control action to add an element to a list-box control:

call g2-ui-modify-custom-dialog
(dialog-id,
sequence

(structure
(control-action: the symbol replace,
control-id: 3,
control-value: structure

(text-sequence: sequence ("New 1", "New 2", "New 3"))))
window);
1486

masked-edit
masked-edit
The masked-edit control provides a text box that restricts what the user can enter.
You specify the mask to be the allowable characters, for example, characters or
numbers, as well as fixed characters, such as dashes or parentheses. You can also
specify literal text to enter if the user presses the space bar.

Here is a custom dialog with a masked-edit control that restricts entry to a 10-digit
phone number. The control specifies parentheses and dashes as fixed characters
and underscores as the literal character to enter if the user inputs a space. The
second dialog shows the result of entering three spaces and the numbers 1, 2, 3, 4,
5, 6, and 7. The cursor skips over the fixed characters.

Specific Attributes for Masked-Edit Control

In the control-value, the values of each of the following attributes should have the
same length:

Attribute Name Type Required Default Description

control-value structure yes structure() A structure that specifies
the current value, the
mask, and the literal text
for the masked edit box:

structure
(current-value: text,
mask: text,
literal: text)
1487

• current-value determines the initial value when the control is displayed, as
well as the character to enter when the user presses the Backspace or
Delete key.

• mask determines the position and type of the values the user can enter and
any fixed text. Use these characters to specify the type of allowable text:

0 — Numeric (0-9)

9 — Numeric (0-9) or space (' ')

— Numeric (0-9) or space (' ') or ('+') or ('+')

L — Alpha (a-Z)

? — Alpha (a-Z) or space (' ')

A — Alpha numeric (0-9 and a-Z)

a — Alpha numeric (0-9 and a-Z) or space (' ')

& — All print character only

H — Hex digit (0-9 and A-F)

X — Hex digit (0-9 and A-F) and space (' ')

> — Forces characters to upper case (A-Z)

< — Forces characters to lower case (a-z)

All other characters are considered fixed text.

• literal determines the literal format for the data, where an underscore ("_")
indicates where the user can enter data.
1488

masked-edit
Example: Dialog Specification for Masked-Edit
Control

Here is the dialog specification for the masked-edit control portion of the dialog
above:

structure
(dialog-width: 150,
dialog-height: 150,
dialog-title: "Masked Edit Demo",
dialog-is-modal: false,
dialog-update-callback: dialog-has-been-updated,
dialog-dismissed-callback: static-dialog-has-been-dismissed,
components:

sequence
(structure

(control-type: the symbol PUSH-BUTTON,
. . .
control-value: structure (text-value: "OK")),

structure
(control-type: the symbol MASKED-EDIT,
control-id: the symbol my-masked-edit,
control-value:

structure
(current-value: "(800)555-1212",
mask: "(000)000-0000",
literal: "(___)___-____"),

response-action: the symbol RESPOND,
height: 50,
width: 100,
left: 25,
top: 15),

structure
(control-type: the symbol LABEL,
. . .
control-value: structure (text-value: "masked-edit"))))
1489

progress-bar
The progress-bar control shows progress in specified increments along a
horizontal or vertical progress bar. The progress can show smooth or discrete
steps.

Specific Attributes for Progress-Bar Control

Smooth progress-bar.

Vertical progress-bar,
discrete increments.

Attribute Name Type Required Default Description

is-smooth truth-value no false Whether the progress bar
shows increments as
smooth or discrete steps.
By default, the progress
appears in discrete
increments.

is-vertical truth-value no false Whether the progress bar is
vertical. By default, the
progress bar is horizontal.

control-value structure yes N/A A structure that specifies
the value range and current
value:

structure
(low-value: integer,
high-value: integer,
current-value: integer)
1490

progress-bar
Example: Dialog Specification for Progress Bar

This example shows the smooth progress bar:

structure
(control-type: the symbol PROGRESS-BAR,
control-id: the symbol MY-PROGRESS-BAR,
control-value:

structure
(low-value: 0,
high-value: 100,
current-value: 50),

is-smooth: true,
. . .)

Example: Animating the Progress Bar

This code fragment shows how to animate the progress bar by calling g2-ui-
modify-custom-dialog:

h: integer;
n: integer;

h = the dialog-id of dialog;
n = 50;
repeat

call g2-ui-modify-custom-dialog
(h, sequence

(structure
(control-id: the symbol MY-PROGRESS-BAR,
control-action: the symbol REPLACE,
control-value: structure (current-value: n))),

window);
n = n + 10;
if n > 100 then n = 0;
wait for 1 second;

end
1491

push-button
The push-button control provides a button that takes some type of action, such as
accepting or dismissing a dialog:

The push-button control also provides an option for specifying an icon instead of
text. When specifying an icon, the text value is used as a tool tip for the icon.
For example:

Note Currently, you can use only 16x16 icons.
1492

push-button
Specific Attributes for Push-Button Control

When specifying an icon, you can specify a G2 class name, an item, or a built-in
GMS icon. For a list of built-in GMS icons, see image.

Note The control-value also accepts the icon-name attribute; however, this attribute is
deprecated. You should use the icon attribute instead.

Attribute
Name

Type Required Default Description

is-default truth-value no false Whether the push button is
the default push button for the
dialog.

Note: This attribute is
currently not supported.

control-value structure yes N/A A structure that specifies a text
value for the label, or an icon
and text value to use as a tool
tip. Properties control-
background-color and text-
font-color also specify the
background and font color of
push-button control:

structure
(text-value: text,
icon: item-or-symbol,
control-background-color: text,
text-font-color: text)
1493

Example: Dialog Specification for Push-Button
Control

Here is the dialog specification for the dialog above, which provides OK and
Cancel buttons:

structure
(dialog-title: "PUSH-BUTTON example",
dialog-width: 310,
dialog-height: 124,
dialog-is-modal: true,
dialog-update-callback: dialog-examples-update-callback,
dialog-dismissed-callback: dialog-examples-dismissed-callback,
components:

sequence
(structure

(control-type: the symbol push-button,
control-id: 1,
height: 14,
width: 50,
left: 100,
top: 86,
response-action: the symbol ok,
control-value: structure (text-value: "OK")),

structure (control-type: the symbol push-button,
control-id: 2,
height: 14,
width: 50,
left: 160,
top: 86,
response-action: the symbol cancel,
control-value: structure (text-value: "Cancel"))))

Example: Disabling a Push Button

Use the disable control action to disable a push-button control:

call g2-ui-modify-custom-dialog
(dialog-id,
sequence

(structure
(control-action: the symbol disable,
control-id: 1)),

window);
1494

push-button
Example: Enabling a Push Button

Use the enable control action to enable a push-button control:

call g2-ui-modify-custom-dialog
(dialog-id,
sequence

(structure
(control-action: the symbol enable,
control-id: 1)),

window);

Example: Specifying an Icon for a Push Button

Here is the dialog specification for a push button that uses an icon:

structure
(control-type: the symbol PUSH-BUTTON,
control-id: the symbol CUT-BUTTON,
height: 20,
width: 20,
left: 10,
top: 10,
response-action: the symbol RESPOND,
is-enabled: true,
control-value:

structure
(icon: the symbol GMS-CUT-ICON,
text-value: "Cut")
1495

radio-button
A radio-button control provides a set of choices from which the user can choose a
single value:

Specific Attributes for Radio-Button Control

Attribute Name Type Required Default Description

control-value structure no N/A A structure that specifies
the label for the radio
button and whether the
button is initially selected:

structure
(text-value: text,
selected: truth-value)
1496

radio-button
Example: Dialog Specification for Radio-Button
Control

Here is the dialog specification for the radio-button control portion of the dialog
above, which provides three radio buttons:

structure
(dialog-title: "RADIO-BUTTON example",
dialog-width: 310,
dialog-height: 124,
dialog-is-modal: true,
dialog-update-callback: dialog-examples-update-callback,
dialog-dismissed-callback: dialog-examples-dismissed-callback,
components:

sequence
(structure

(control-type: the symbol push-button,
. . .
control-value: structure (text-value: "OK")),

structure
(control-type: the symbol push-button,
. . .
control-value: structure (text-value: "Cancel")),

structure
(control-type: the symbol radio-button,
control-id: 3,
height: 15,
width: 50,
left: 10,
top: 10,
control-value: structure (text-value: "Choice 1"),
response-action: the symbol ignore),

structure
(control-type: the symbol radio-button,
control-id: 4,
height: 15,
width: 50,
left: 60,
top: 10,
control-value: structure (text-value: "Choice 2"),
response-action: the symbol ignore),

structure
(control-type: the symbol radio-button,
control-id: 5,
height: 15,
width: 50,
left: 110,
top: 10,
control-value: structure (text-value: "Choice 3"),
response-action: the symbol ignore)))
1497

Example: Checking a Radio Button

Use the check control action to check a radio-button control:

call g2-ui-modify-custom-dialog
(dialog-id,
sequence

(structure
(control-action: the symbol check,
control-id: 3)),

window);
1498

slider
slider
The slider control provides a slider with smooth increments that you can use to
set a value.

Note The slider control does not trigger the update callback when the user changes the
value with the keyboard. It only triggers the update callback when the user
releases the mouse button.

Specific Attributes for Slider Control

Example: Dialog Specification for Slider Control

Here is the specification for the slider control:

structure
(control-type: the symbol SLIDER,
control-id: the symbol MY-SLIDER,
control-value:

structure
(low-value: 0,
high-value: 1000,
current-value: 750,
increment: 5),

. . .)

Attribute Name Type Required Default Description

control-value structure yes the current
date

A structure that specifies
the value range, current
value, and increment:

structure
(low-value: integer,
high-value: integer,
current-value: integer,
increment: integer)
1499

spinner
The spinner control provides text box with a spin control that increments the
value by a given quantity between a low and high value:

Specific Attributes for Spinner Control

Attribute Name Type Required Default Description

alignment symbol no right The alignment of the
arrows relative to the text
box, as one of these
symbols: left and right.
These are equivalent to
the ss-left and ss-right
win32 styles.

orientation symbol no Windows default The orientation of the
arrows, as one of these
symbols: vertical or
horizontal.

arrow-keys truth-value no false Whether you can use the
up and down arrow keys
on the keyboard to
increment the value of the
control, in addition to the
arrow buttons on the
control.
1500

spinner
The minimum value for increment is .0001.

The precision is specified as a ddd.dddd-format expression, which is a symbol that
determines the number of decimal places to the right and left of the decimal point.
For example, ddd.dd formats a floating point number to the hundredths decimal
place.

Example: Dialog Specification for Spinner Control

Here is the dialog specification for the spinner control portion of the dialog above,
which specifies values between 0.5 and 300.5 in increments of 1.0, using precision:

structure (control-type: the symbol spinner,
control-id: the symbol my-spinner,
height: 15,
width: 70,
left: 100,
top: 10,
response-action: the symbol respond,
control-value: structure (current-value: 95.5,

low-value: 0.5,
high-value: 300.5,
increment: 1.0,
precision: the symbol dd.ddd))

is-integer truth-value no false Whether the spinner
accepts only integer
values, regardless of
whether the low-value,
high-value, and increment
attributes of the control-
value structure are
floating point numbers or
integers.

control-value structure yes structure
(current-value: 50,
low-value: 0,
high-value: 100,
increment: 1)

A structure that specifies
the default value, low and
high values, value for
incrementing the spinner,
and precision:

structure
(current-value: quantity,
low-value: quantity,
high-value: quantity,
increment: quantity,
precision: ddd.dddd-format)

Attribute Name Type Required Default Description
1501

Example: Updating a Spinner Control

Use the replace control action to update the value of a spinner control:

call g2-ui-modify-custom-dialog
(dialog-id,
sequence

(structure
(control-action: the symbol replace,
control-id: 3,
control-value: structure (text-value: "15")),

window);
1502

tab-frame
tab-frame

The tab-frame control provides tab pages in a dialog, where each tab has a
separate label. You can add child controls to a particular tab by using the parent-
control-text and parent-control-id attributes.

Specific Attributes for Tab-Frame Control

In the control-value structure:

• tab-labels is a sequence of labels for each tab, each of which must be unique. If
the sequence is empty, a tab-frame with no tabs is created.

• tab-icons is a sequence of icons, where the number of elements in the
sequence must match the number of elements in the tab-labels sequence. To
specify no icon for a particular tab, use false. The icon can be a G2 class name,
an item, or a built-in GMS icon. For a list of built-in GMS icons, see image.

Attribute Name Type Required Default Description

control-value structure yes N/A A structure that specifies the
tab labels, tab icons, initially
selected tab, and tab position:

structure
(tab-labels: sequence (text,...),
tab-icons: sequence (icon, ...),
selected-tab: text,
tab-position:

top | left | right | bottom)
1503

• selected-tab is the initially selected tab.

• tab-position is the position of the tabs in the overall frame, where the default
value is top.

Example: Dialog Specification for Tab-Frame
Control

Here is the dialog specification for the tab-frame control portion of the dialog
above, which specifies three tabs. Notice the use of parent-control-id and parent-
control-text in the label controls to identify the tab on which to place the control.

structure (dialog-title: "TAB-FRAME example",
dialog-width: 310,
dialog-height: 124,
dialog-is-modal: true,
dialog-update-callback: dialog-examples-update-callback,
dialog-dismissed-callback: dialog-examples-dismissed-callback,
components:

sequence
(structure

(control-type: the symbol push-button,
. . .
control-value: structure (text-value: "OK")),

structure
(control-type: the symbol push-button,
. . .
control-value: structure (text-value: "Cancel")),

structure
(control-type: the symbol tab-frame,
control-id: 3,
height: 75,
width: 150,
left: 10,
top: 10,
response-action: the symbol ignore,
control-value:

structure (tab-labels: sequence ("Tab 1", "Tab 2", "Tab 3"))),
structure

(control-type: the symbol label,
control-id: 4,
parent-control-id: 3,
parent-control-text: "Tab 1",
height: 15,
width: 70,
left: 40,
top: 40,
response-action: the symbol ignore,
control-value: structure (text-value: "Belongs to Tab 1")),
1504

tab-frame
structure
(control-type: the symbol label,
. . .
control-value: structure (text-value: "Belongs to Tab 2")),

structure
(control-type: the symbol label,
. . .
control-value: structure (text-value: "Belongs to Tab 3"))))

Example: Specifying Tab Position and Icons

Here is a tab-frame in a dialog with the tabs at the bottom and icons specified for
two of the three tabs:
1505

Here is the procedure used to create the dialog:

create-tab-frame(side: symbol, Win: class g2-window)
components: sequence = sequence(
 structure (control-type: the symbol push-button,
 control-id: 1, height: 14, width: 50, left: 30, top: 115,
 response-action: the symbol ok,
 control-value: structure (text-value: "OK")),
 structure (control-type: the symbol push-button,
 control-id: 2, height: 14, width: 50, left: 90, top: 115,
 response-action: the symbol cancel,
 control-value: structure (text-value: "Cancel")),
 structure (control-type: the symbol tab-frame,
 control-id: 3, height: 100, width: 280, left: 10, top: 10,
 response-action: the symbol ignore,
 control-value: structure (tab-labels: sequence ("Procedure", "No Icon", "Print"),
 tab-icons: sequence (this procedure, false, the symbol

GMS-FUNNEL-ICON),
 tab-position: side)),
 structure (control-type: the symbol label,
 control-id: the symbol L1, parent-control-id: 3, parent-control-text: "Procedure",
 control-value: structure (text-value: "A LABEL control in first tab."),
 height: 40, width: 250, left: 20, top: 30),
 structure (control-type: the symbol label,
 control-id: the symbol L2, parent-control-id: 3, parent-control-text: "No Icon",
 control-value: structure (text-value: "A LABEL control in second tab."),
 height: 40, width: 250, left: 20, top: 30),
 structure (control-type: the symbol label,
 control-id: the symbol L3, parent-control-id: 3, parent-control-text: "Print",
 control-value: structure (text-value: "A LABEL control in third tab."),
 height: 40, width: 250, left: 20, top: 30));
begin
 call g2-ui-post-custom-dialog(structure(dialog-width: 310, dialog-height: 160,
components: components), false, Win);
end
1506

tab-frame
Example: Modifying the Selected Tab

Use the selected-tab control action to update the selected tab of a tab-frame
control:

call g2-ui-modify-custom-dialog
(dialog-id,
sequence

(structure
(control-action: the symbol selected-tab,
control-id: the symbol my-tab-frame,
control-value: "Tab2")),

window);

sequence (structure (control-action: the symbol selected-tab,
control-id: the symbol this-tab-frame,
control-value: "Tab2"))
1507

tabular-view
The tabular-view control provides support for presenting data in a grid:

Specific Attributes for Tabular-View Control

Attribute Name Type Required Default Description

background-
color

symbol no Windows
default

A G2 color for the default
background color of all rows in the
tabular view. The default value is the
Windows background color.

text-color symbol no Windows
default

A G2 color for the default color of the
text in the tabular view.

gridlines truth-
value

no true Whether the tabular view has grid
lines.

allow-sort-
rows

truth-
value

no false Whether the client can sort the rows
by clicking the column headers.
When true, clicking the column
header of a column that contains cells
of type integer or quantity sorts the
rows numerically.
1508

tabular-view
The control-value structure defines these attributes:

• columns is a sequence of column-structure specifications for each column,
where column-structure is:

structure
(text-value: text,
width: integer-or-symbol,
icon: item-or-symbol,
alignment: left | right | center)

where:

– text-value is the column header text.

– width is the width of each column in the tabular view. The default width is
the width of the widest value in the column (text-width); thus, this
attribute is optional. The value can be an integer for the width of each
column, specified in dialog units, or one of these symbols:

– header-width — The width of the column text.

– text-width — The width of the widest value of the cells in the column.

To make the columns fit into a tabular view without a scrollbar,
specify the overall width of the control to be two or three greater than
the sum of the widths of the columns.

– icon is a G2 class name, an item, or a built-in GMS icon. For a list of GMS
icons, see image.

– alignment is the alignment of the cell contents of each column in the
tabular view.

single-
selection

truth-
value

no false Whether the tabular view only allows
the user to select a single row.

control-value structure yes N/A A structure that specifies the column
headers, row specifications, and
initially selected row:

structure
(columns: sequence

(column-structure, ...),
rows: sequence

(row-specification, ...),
selected-rows: sequence)

See below for a description of the
structure.

Attribute Name Type Required Default Description
1509

• rows is a sequence of row-structure specifications for each row in the tabular
view, where row-specification is:

structure
(logical-id: integer | float | symbol | text,
text-color: color-symbol,
background-color: color-symbol,
row-values: sequence (value-specification, ...)

where:

– logical-id is an integer, float, symbol, or text that identifies the row. The
logical-id defaults to an integer starting at 1.

– text-color is the color for all text in the tabular view.

– background-color is the color for the cell background for all cells in the
row.

– row-values is a sequence of value specifications for each row, where
value-specification is:

structure
(text-value: text,
icon: item-or-symbol)

When specifying the icon, you can provide a G2 class name, an item, or a
built-in GMS icon. For a list of GMS icons, see image.

• selected-rows is a sequence of logical-id values of the initially selected rows in
the tabular view. This attribute is optional.

Note For a tabular view, the new-value argument to the dialog update callback returns
only the selected-rows of the control-value structure, not the columns and rows.
The reason is that the data cannot be changed interactively in the client, and there
may be many rows of data. Additionally, the architecture is such that the model
and view are kept separate, and a separate controller is responsible for handling
callbacks from the view and updating the model. To modify the view, you use the
g2-modify-custom-dialog system procedure. For an example, see the description
of the Alert Queue Demo in Windows Dialogs.
1510

tabular-view
Generic Dialog Callback

The dialog-generic-callback for a custom dialog, if specified, is called whenever
the user clicks the mouse or presses a key in the tabular-view on the dialog, with
the following arguments:

• event: LEFT-CLICK, MIDDLE-CLICK, RIGHT-CLICK, KEY-PRESS, or any
combination of modifier keys or DOUBLE combined with LEFT-CLICK,
MIDDLE-CLICK, or RIGHT-CLICK, for example: SHIFT+LEFT-CLICK,
CONTROL+RIGHT-CLICK, ALT+LEFT-CLICK,
DOUBLE+CONTROL+LEFT-CLICK

• control-id: integer

• info: structure
(x: integer,
y: integer,
selected-rows: sequence,
key: symbol,
row: integer)

where:

– x and y are the x-y coordinates of the mouse click in the tabular view.

– selected-rows is a sequence of the logical-id values of the selected rows in
the tabular view.

– key is the key that was pressed, if any.

– row is the logical-id of the row with the focus, or if no row has the focus,
the top-most row in the selection. The value for row is -1 if the selection is
empty.

• user-data: value

For an example, see Example: Generic Dialog Callback.
1511

Example: Dialog Specification for Tabular-View
Control

Here is the dialog specification for the tabular-view control portion of the dialog
above, which specifies a tabular view with three columns and one row:

structure
(dialog-title: "TABULAR-VIEW example",
dialog-width: 310,
dialog-height: 124,
dialog-is-modal: true,
dialog-update-callback: dialog-examples-update-callback,
dialog-dismissed-callback: dialog-examples-dismissed-callback,
components:

sequence
(structure

(control-type: the symbol push-button,
. . .
control-value: structure (text-value: "OK")),

structure
(control-type: the symbol push-button,
. . .
control-value: structure (text-value: "Cancel")),

structure
(control-type: the symbol tabular-view,
control-id: 3,
height: 50,
width: 100,
left: 10,
top: 10,
response-action: the symbol ignore,
control-value:

structure
(columns: sequence ("Col1", "Col2", "Col3"),
rows:

sequence
(structure

(logical-id: 0,
row-values:

sequence
(structure (text-value: "Val1"),
structure (text-value: "Val2"),
structure (text-value: "Val3"))))))))
1512

tabular-view
Example: Adding a Row to a Tabular-View Control

Use the add-rows control action to add rows to a tabular-view control, where the
control-value is a sequence of rows specified in the same way that rows are
specified when creating the control. The following example adds a row to the
tabular view.

call g2-ui-modify-custom-dialog
(dialog-id,
sequence

(structure
(control-action: the symbol add-rows,
control-id: 3,
control-value:

sequence
(structure (logical-id: 2,
row-values:

sequence
(structure (text-value: "Val4"),
structure (text-value: "Val5"),
structure (text-value: "Val6")))))),

window);
1513

Example: Deleting a Row from a Tabular-View
Control

Use the remove-rows control action to remove rows from a tabular-view control,
where the control-value is a sequence of logical-id values for the rows to be
removed from the tabular-view. The following example removes two rows from
the tabular view.

call g2-ui-modify-custom-dialog
(dialog-id,
sequence

(structure
(control-action: the symbol remove-rows,
control-id: 3,
control-value: sequence (0))),

window);

Example: Replacing Rows in a Tabular View

Use the replace-rows control action to replace rows in a tabular-view control,
where control-value is a sequence of logical-id values for the rows to be modified
in the tabular-view. The following example replaces the values in the row with the
logical ID of 1 and changes the colors:

call g2-ui-modify-custom-dialog
(dialog-id,
structure (control-action: the symbol replace-rows,

control-id: 3,
control-value:

sequence
(structure

(logical-id: 1,
background-color: the symbol light-blue,
row-values: sequence (structure (text-value: "R1"),

structure
(text-value: "R2"),

structure
(text-value: "R3")))),

window);
1514

tabular-view
Example: Replacing Cells in a Tabular View

Use the replace-cells control action to replace cells in a tabular-view control,
where control-value is a sequence of structures, where each structure contains the
logical-id and index of the cells to be replaced in the tabular-view. The following
example replaces the values in the cells logical ID of 1 and changes the colors:

call g2-ui-modify-custom-dialog
(dialog-id,
structure

(control-action: the symbol replace-cells,
control-id: 3,
control-value:

sequence
(structure

(logical-id: 0,
index: 1,
text-color: the symbol blue,
text-value: "New"))),

window);

Example: Removing all Rows in a Tabular View

Use the remove-all-rows control action to remove all rows in a tabular-view
control. It does not require any control-value.

call g2-ui-modify-custom-dialog
(dialog-id,
structure

(control-action: the symbol remove-all-rows,
control-id: 3),

window);

Example: Removing all Cells in a Tabular View

Use the remove-all-cells control action to remove all cells in a tabular-view control.
It does not require any control-value.

call g2-ui-modify-custom-dialog
(dialog-id,
structure

(control-action: the symbol remove-all-selected-rows,
control-id: 3),

window);
1515

Example: Adding Columns to a Tabular View

Use the add-columns control action to add columns to a tabular-view control,
where the control-value is a sequence of column structures with this syntax:

structure
(column: integer,
text-value: text,
icon: item-or-symbol,
width: integer,
row-values: sequence)

where:

• column — The column number to add.

• text-value —The column header text.

• icon — An icon in place of the column header text, which you specify as a G2
class name, an item, or a built-in GMS icon. For a list of built-in GMS icons, see
image.

• width — The width of the column in the tabular view. The default width is the
width of the widest value in the column (text-width); thus, this attribute is
optional. The value can be an integer for the width of each column, specified
in dialog units, or one of these symbols:

– header-width — The width of the column text.

– text-width — The width of the widest value of the cells in the column.

• row-values — A sequence of cell structures used to populate the new column,
where each structure has this syntax:

structure
(logical-id: integer | float | symbol | text,
text-color: symbol,
background-color: symbol,
text-value: text
icon: item-or-symbol)

If row-values is omitted, all cells in the new column are blank.
1516

tabular-view
The following example adds a column to a tabular view:

call g2-ui-modify-custom-dialog(dialog,
sequence

(structure
(control-action: the symbol add-columns,
control-id: the symbol table,
control-value:

sequence
(structure

(column: pos,
icon: icon,
row-values: sequence

(structure (logical-id: 0, text-value: "X-[tag]"),
structure (logical-id: 1, text-value: "Y-[tag]"),
structure (logical-id: 2, text-value: "Z-[tag]")))))),

Win);

Example: Specifying Cell Alignment

Here is an example of a tabular view with different cell alignment:

structure (control-type: the symbol tabular-view,
 control-id: the symbol the-tabular-view,
 height: 200,
 width: 210,
 left: 10,
 top: 10,
 text-color: the symbol blue,
 background-color: the symbol yellow,
 allow-sort-rows: true,
 row-height: 25,
 single-selection: true,
 response-action: the symbol ignore,
 control-value: structure (columns: sequence (structure (text-value: "Center Alignment",
 width: 80,
 alignment: the symbol center),
 structure (text-value: "No Alignment",
 width: 50),
 structure (text-value: "Right Alignment",
 width: 50,
 alignment: the symbol right)),
 rows: sequence (structure (logical-id: 0,
 row-values: sequence (structure (text-value: "Value4"),
 structure (text-value: "Value2"),
 structure (text-value: "-1245.90"))),
1517

 structure (logical-id: 1,
 row-values: sequence (structure (text-value: "Override! Right",
 alignment: the symbol right),
 structure (text-value: "Value5"),
 structure (text-value: "3.14"))))))

Here is the resulting tabular view:

Example: Message Browser

Here is a simple message browser created using a tabular view. For details on this
example, click the Alert Queue Demo tab in the custom dialog in the dialog-
demo.kb.
1518

text-box
text-box
The text-box control provides a simple text editor:

It also provides a a password text box:
1519

Specific Attributes for Text-Box Control

Attribute Name Type Required Default Description

is-multiline truth-value no false Whether the text box
supports multiple lines.
This is the same as the
es-multiline win32 style.

is-readonly truth-value no false Whether the text box is
read only. This is the same
as the es-readonly win32
style.

is-autohscroll truth-value no false Whether the text box
supports horizontal
scrolling. This is the same
as the es-autohscroll win32
style.

is-autovscroll truth-value no false Whether the text box
supports vertical scrolling.
This is the same as the
es-autovscroll win32 style.

accepts-return truth-value no false Whether carriage returns
are allowed in the text box.

is-lowercase truth-value no true Whether to coerce input to
lower case in the text box.

is-uppercase truth-value no false Whether to coerce input to
upper case in the text box.
1520

text-box
In the control-value, specify selection as an integer to set the initial cursor position
at the specified index or as a sequence to set the initial selection between the
specified indices, where index is a zero-based integer index.

The selection is returned as the selection attribute of the control-value, as either an
integer or a sequence.

is-password truth-value no false Whether to display input
as password characters.
This attribute is only valid
when is-multiline is false.

control-value structure no structure
(text-value: "")

A structure that specifies
the initial text, text color,
background color, and
initial selection for the
text box:

structure
(text-value: text,
text-color: color,
background-color: color,
selection: index |

sequence (index, index))

Attribute Name Type Required Default Description
1521

Example: Dialog Specification for Text-Box Control

Here is the dialog specification for the text-box control portion of the dialog
above, which provides a multi-line, scrollable text box with sample text:

structure
(dialog-title: "TEXT-BOX example",
dialog-width: 310,
dialog-height: 124,
dialog-is-modal: true,
dialog-dismissed-callback: dialog-examples-dismissed-callback,
dialog-update-callback: dialog-examples-update-callback,
components:

sequence
(structure

(control-type: the symbol push-button,
. . .
control-value: structure (text-value: "OK")),

structure
(control-type: the symbol push-button,
. . .
control-value: structure (text-value: "Cancel")),

structure
(control-type: the symbol text-box,
control-id: 3,
width: 290,
height: 66,
left: 10,
top: 10,
response-action: the symbol ignore,
is-multiline: true,
vertical-scrollbar: true,
control-value: structure (text-value: "DUMMY TEXT: ..."))))

Example: Replacing Text in a Text-Box

Use the replace control action to replace the text in a text-box control:

call g2-ui-modify-custom-dialog
(dialog-id,
sequence

(structure
(control-action: the symbol replace,
control-id: 3,
control-value: structure

(text-value: "New text."))),
window);
1522

time-of-day
time-of-day
The time-of-day control provides spinners for configuring the date and the time of
day. You select the part of the date or time of day you want to configure, then
click the up or down arrow to change its value. You can also enter the value
directly in the control.

By default, the control uses a 12-hour clock and does not show the date. You can
configure the control to use a 24-hour clock and to show the date.

Here is a time-of-day control that shows the time of day and the date and uses a
12-hour clock:

Specific Attributes for Time-of-Day Control

Attribute Name Type Required Default Description

show-date truth-value no false Whether to include the
date, as well as the time of
day. By default, the date
does not appear.

show-time truth-value no true Whether to show the time.
By default, the time always
appears. To show just the
date, specify show-time as
false. You can only specify
show-time as false if show-
date is true.
1523

The selected-year must be between 1601 and 30827, the selected-month must be
between 1 and 12, the selected-date must be between 1 and 31, the selected-hour
must be between 0 and 23, the selected-minute must be between 0 and 59, and the
selected-second must be between 0 and 59.

use-24-hour-
time

truth-value no false Whether to display the
value by using a 24-hour
clock. By default, the
control uses a 12-hour
clock and includes AM or
PM in the time. This
attribute is only relevant if
the time is showing.

control-value structure yes N/A A structure that specifies
the default date and time:

structure
(selected-year: integer,
selected-month: integer,
selected-date: integer,
selected-hour: integer,
selected-minute: integer,
selected-second: integer)

Attribute Name Type Required Default Description
1524

time-of-day
Example: Dialog Specification for Time-of-Day
Control

Here is a time-of-day control that shows just the time of day and uses a 12-hour
clock, both of which are the defaults. Notice that the selected-hour specifies the
hour, using a 24-hour clock.

structure
(control-type: the symbol TIME-OF-DAY,
control-id: the symbol MY-TIME-PICKER,
control-value:

structure
(selected-year: 2004,
selected-month: 12,
selected-date: 14,
selected-hour: 18,
selected-minute: 30,
selected-second: 0),

. . .)

Here is a time-of-day control that shows the time of day and the date, and uses a
12-hour clock, the default:

structure
(control-type: the symbol TIME-OF-DAY,
control-id: the symbol MY-DATE-AND-TIME,
control-value:

structure
(selected-year: 2004,
selected-month: 12,
selected-date: 14,
selected-hour: 18,
selected-minute: 30,
selected-second: 0),

show-date: true,
. . .)
1525

Here is a time-of-day control that shows the time of day and the date, and uses a
24-hour clock:

structure
(control-type: the symbol TIME-OF-DAY,
control-id: the symbol MY-24-HOUR-DATE,
control-value:

structure
(selected-year: 2004,
selected-month: 12,
selected-date: 14,
selected-hour: 18,
selected-minute: 30,
selected-second: 0),

show-date: true,
use-24-hour-time: true,
. . .)

Here is a time-of-day control that shows just the date:

structure
(control-type: the symbol TIME-OF-DAY,
control-id: the symbol MY-JUST-DATE,
control-value:

structure
(selected-year: 2004,
selected-month: 12,
selected-date: 14,
selected-hour: 18,
selected-minute: 30,
selected-second: 0),

show-date: true,
show-time: false,
. . .)
1526

toggle-button
toggle-button
The toggle-button control provides a button whose state toggles between a
selected and unselected state.

Here is a toggle button that shows two different states:

Specific Attributes for Toggle-Button Control

When specifying an icon, you can provide a G2 class name, an item, or a built-in
GMS icon. For a list of built-in GMS icons, see image.

Note The control-value also accepts the icon-name attribute; however, this attribute is
deprecated. You should use the icon attribute instead.

selected

unselected

Attribute Name Type Required Default Description

control-value structure yes N/A A structure that specifies a
text value for the label, or
an icon and text value to
use as a tool tip, and
whether the button is
initially selected:

structure
(text-value: text,
icon: item-or-symbol,
selected: truth-value)
1527

Example: Dialog Specification for Toggle-Button
Control

Here is an example:

structure (control-type: the symbol toggle-button,
control-id: the symbol my-toggle-button,
height: 14,
width: 50,
left: 125,
top: 25,
response-action: the symbol respond,
control-value:

structure (icon: the symbol gms-replace-icon,
text-value: "Toggle Button",
selected: true))
1528

tree-view-combo-box
tree-view-combo-box
The tree-view-combo-box control displays a tree view within a combo box.

For more information, see Using Tree Views.

Specific Attributes for Tree-View-Combo-Box
Control

Attribute Name Type Required Default Description

accept-only-
leaves

truth-value no false Whether to allow the user to
select only leaf nodes in the tree
as the selected value.

dropped-height integer no false The height of the tree view
combo box when it is expanded.

dropped-width integer no false The width of the tree view combo
box when it is expanded.

control-value structure yes structure() Specifies the tree layout, initially
selected tree node, and initial size
with this syntax:

structure
(tree-layout: tree-layout-sequence,
selected: selected-node-structure)

For a description of this structure,
see below.
1529

In the control-value structure:

• tree-layout-sequence is a sequence of structure values that specifies the top-
level nodes in the tree, where each structure has this syntax:

structure
(item-or-name: item-or-text,
children: sequence-of-structures)

The children attribute is optional. The structure can include user-defined
attributes. See below.

• selected-node-structure is the initially selected item or text in the tree-layout
structure, which is a structure that uniquely identifies the tree node. See
below for description.

where:

• item-or-text is any named G2 item, text string, or symbol.

• sequence-of-structures is a sequence of structures with this format:

sequence
(structure
(item-or-name: item-or-text,
children: sequence-of-structures)

. . .)

The top-level item-or-name structure attributes in the sequence are the parent
nodes in the tree view, and the top-level children are the children of the parent
node. The tree structure can be nested as many levels deep as needed to describe
the tree.

To specify the selected node, you can refer to the item-or-name of the node in the
tree-layout structure, or you can refer to any user-defined attribute in the
tree-layout structure that uniquely identifies the node. For example, to select one
of several nodes whose item-or-name in the tree-layout structure is identical, you
can add a user-defined attribute to the tree-layout structure, such as id, and refer
to this attribute in the selected structure.

To create a tree view that is the class hierarchy of a particular class, you can use
the g2-get-class-hierarchy system procedure by passing in the class to use as a
root of the tree view. Use the return value of the procedure as one of the structure
values in the tree-layout sequence. You can also construct your own tree structure.

The new-value argument of the dialog update callback is a structure with the
selected attribute equal to the selected node and with the tree-layout structure of
the original control-value structure.
1530

tree-view-combo-box
Example: Dialog Specification for Tree-View-
Combo-Box

Here is the dialog specification for the tree-view-combo-box control portion of the
dialog above:

structure (control-type: the symbol tree-view-combo-box,
 control-id: the symbol my-tvcb,
 width: 100,
 height: 15,
 left: 40,
 top: 40,
 response-action: the symbol ignore,
 control-value: structure (selected: structure (item-or-name: "Hairspray"),
 tree-layout: sequence (structure (item-or-name: "Broadway",
 children: sequence (structure (item-or-name: "Musicals",
 children: sequence (structure (item-or-name: "Hairspray"),
 structure (item-or-name: "Little Women"),
 structure (item-or-name: "Sweet Charity"),
 structure (item-or-name: "Wicked"))),
 structure (item-or-name: "Plays",
 children: sequence (structure (item-or-name: "Doubt"),
 structure (item-or-name: "700 Sundays"),
 structure (item-or-name: "The Glass Menagerie"))))),
 structure (item-or-name: "London",
 children: sequence (structure (item-or-name: "Musicals",
 children: sequence (structure (item-or-name: "Mamma Mia!"),
 structure (item-or-name: "The Far Pavillion"),
 structure (item-or-name: "The Producers"))),
 structure (item-or-name: "Plays",
 children: sequence (structure (item-or-name: "Death of a Salesman"),
 structure (item-or-name: "The Mousetrap"),
 structure (item-or-name: "The Woman in Black"))))))))

Example: Modifying a Tree-View-Combo-Box

Here is the specification for modifying the control height and width of a tree-
view-combo-box:

sequence
(structure

(control-action: the symbol dropped-height,
control-id: the symbol my-combo-tree-view,
control-value: 500),

structure
(control-action: the symbol dropped-width,
control-id: the symbol my-combo-tree-view,
control-value: 500))
1531

track-bar
The track-bar control provides a slider with discrete increments that you can use
to set a value.

Specific Attributes for Track-Bar Control

Example: Dialog Specification for Track-Bar Control

For example:

structure
(control-type: the symbol TRACK-BAR,
control-id: the symbol MY-TRACK-BAR,
control-value:

structure
(low-value: 0,
high-value: 10,
current-value: 5,
increment: 1),

. . .)

Attribute Name Type Required Default Description

control-value structure yes the current
date

A structure that specifies
the value range, current
value, and increment:

structure
(low-value: integer,
high-value: integer,
current-value: integer,
increment: integer)
1532

workspace
workspace
The workspace control displays a G2 workspace within a dialog. You specify the
workspace name as a text or a symbol, or the workspace UUID of the workspace
to display.

Note Currently, the workspace control must appear in an MDI dialog, that is, a dialog
whose dialog-is-mdi-child attribute is true. You cannot use it in a modal or
modeless dialog, that is, a dialog whose dialog-is-modal is true or false, and whose
dialog-is-mdi-child attribute is false.Also, the workspace control does not
currently support the replace control action for modifying the control.

Note The Native Menu System (NMS) API allows you to create popup menus on
workspace controls. NMS does not support menu bars or tool bars on workspace
controls.
1533

Specific Attributes for Workspace Control

Example: Dialog Specification for Workspace
Control

Here is the dialog specification for a workspace control:

structure
(control-type: the symbol WORKSPACE,
control-id: the symbol MY-WORKSPACE,
control-value: structure (workspace-name: the symbol WS-1),
height: 150,
width: 230,
left: 10,
top: 10)

Attribute Name Type Required Default Description

control-value structure yes N/A A structure that specifies
the workspace name or
UUID to display:

structure
(workspace-name:

text | symbol)

or

structure
(workspace-uuid: text)
1534

Summary of Control Values
Summary of Control Values
The control-value attribute is used in the following three ways:

• Specifying the initial state of a control.

• Specifying updates to a control.

• Providing the current state of the control in a callback.

The following table summarizes the different uses of the control-value attribute.

Control Type Control Value Format
Supported
Control Actions

calendar structure
(selected-year: integer,
selected-month: integer,
selected-date: integer)

replace
enable
disable
hide
show

check-box structure
(text-value: text
selected: truth-value)

check
uncheck
replace
enable
disable
hide
show

checkable-list-
box

structure
(text-sequence: sequence

(text[, ...]),
checked: sequence (text[, ...]),
selected: sequence (text[, ...]))

add
replace
enable
disable
hide
show

color-picker structure
(selected: color)

replace
enable
disable
hide
show
1535

combo-box structure
(text-sequence:

sequence (text[, ...]) | (),
selected: text,
text-selection: index,
dropdown-width: integer)

add
replace
enable
disable
hide
show

duration structure
(number-of-weeks: integer,
number-of-days: integer,
number-of-hours: integer,
number-of-minutes: integer,
number-of-seconds: integer)

replace
enable
disable
hide
show

full-color-picker structure
(selected: rbg-color)

replace
enable
disable
hide
show

grid-view structure
(columns: sequence-of-columns,
rows: sequence-of-rows,
selected-cells: sequence-of-cells)

replace
enable
disable
hide
show

group structure
(text-value: text)

replace
enable
disable
hide
show

image structure
(icon: item-or-symbol)

replace
enable
disable
hide
show

Control Type Control Value Format
Supported
Control Actions
1536

Summary of Control Values
label structure
(text-value: text)

replace
enable
disable
hide
show

list-box structure
(text-sequence: sequence

(text[, ...]),
selected: text)

add
replace
enable
disable
hide
show

masked-edit structure
(current-value: text,
mask: text,
literal: text,
text-color: color,
background-color: color,
selection: index |

sequence (index, index))

replace
enable
disable
hide
show

progress-bar structure
(low-value: integer,
high-value: integer,
current-value: integer)

replace
enable
disable
hide
show

push-button structure
(text-value: text,
icon: item-or-symbol)

replace
enable
disable
hide
show

Control Type Control Value Format
Supported
Control Actions
1537

radio-button structure

(text-value: text,
selected: truth-value)

check
uncheck
add
replace
enable
disable
hide
show

slider structure
(low-value: integer,
high-value: integer,
current-value: integer,
increment: integer,
precision: ddd.dddd-format)

replace
enable
disable
hide
show

spinner structure
(current-value: quantity,
low-value: quantity,
high-value: quantity,
increment: quantity,
precision: ddd.dddd-format)

replace
enable
disable
hide
show

tab-frame structure
(tab-labels: sequence (text,...),
tab-icons: sequence
(item-or-symbol, ...),

selected-tab: text,
tab-position:

top | left | right | bottom)

enable
disable
hide
show

Control Type Control Value Format
Supported
Control Actions
1538

Summary of Control Values
tabular-view structure
(columns: sequence

(column-structure, ...),
rows: sequence

(row-specification, ...),
selected: integer)

enable
disable
hide
show
add-rows
add-column
remove-rows
replace-rows
replace-cells
remove-all-rows
remove-all-selected-rows

text-box structure(

text-value: text)
add
replace
enable
disable
hide
show

time-of-day structure
(selected-year: integer,
selected-month: integer,
selected-date: integer,
selected-hour: integer,
selected-minute: integer,
selected-second: integer)

replace
enable
disable
hide
show

toggle-button structure
(text-value: text,
icon: item-or-symbol,
selected: truth-value)

check
uncheck
replace
enable
disable
hide
show

Control Type Control Value Format
Supported
Control Actions
1539

Win32 Control Types
This section describes the win32 control types and their equivalent attributes. For
information on how to use these control types, see Windows-Specific Control
Styles.

WIN32 Window Style Symbols

track-bar structure
(low-value: integer,
high-value: integer,
current-value: integer,
increment: integer)

replace
enable
disable
hide
show

tree-view-
combo-box

structure
(tree-layout: tree-layout-sequence,
selected: selected-node-structure)

replace
enable
disable
hide
show

workspace structure
(workspace-name:

text | symbol)

or

structure
(workspace-uuid: text)

enable
disable
hide
show

Control Type Control Value Format
Supported
Control Actions

Style Symbol Win32 API Constant Equivalent Attribute

ws-overlapped WS_OVERLAPPED

ws-popup WS_POPUP

ws-child WS_CHILD is-child

ws-minimize WS_MINIMIZE

ws-visible WS_VISIBLE is-visible

ws-disabled WS_DISABLED
1540

Win32 Control Types
WIN32 Static Control Style Symbols

ws-clipsiblings WS_CLIPSIBLINGS

ws-clipchildren WS_CLIPCHILDREN

ws-maximize WS_MAXIMIZE

ws-caption WS_CAPTION

ws-dlgframe WS_DLGFRAME

ws-vscroll WS_VSCROLL

ws-hscroll WS_HSCROLL

ws-sysmenu WS_SYSMENU

ws-thickframe WS_SYSMENU

ws-group WS_GROUP

ws-tabstop WS_TABSTOP is-tabstop

ws-minimizebox WS_MINIMIZEBOX

ws-maximimizebox WS_MAXIMIZEBOX

Style Symbol Win32 API Constant Equivalent Attribute

Style Symbol Win32 API Constant Equivalent Attribute

ss-left SS_LEFT

ss-right SS_RIGHT

ss-center SS_CENTER

ss-icon SS_ICON

ss-blackrect SS_BLACKRECT

ss-grayrect SS_GRAYRECT

ss-whiterect SS_WHITERECT

ss-blackframe SS_BLACKFRAME
1541

ss-grayframe SS_GRAYFRAME

ss-whiteframe SS_WHITEFRAME

ss-useritem SS_USERITEM

ss-simple SS_SIMPLE

ss-leftnowordwrap SS_LEFTNOWORDWRAP

ss-ownerdraw SS_OWNERDRAW

ss-bitmap SS_BITMAP

ss-enhmetafile SS_ENHMETAFILE

ss-echtedhorz SS_ETCHEDHORZ

ss-etchedframe SS_ECHEDFRAME

ss-typemask SS_TYPEMASK

ss-noprefix SS_NOREFIX

ss-notify SS_NOTIFY

ss-centerimage SS_CENTERIMAGE

ss-rightjust SS_RIGHTJUST

ss-realsizeimage SS_REALSIZEIMAGE

ss-sunken SS_SUNKEN

ss-endellipsis SS_ENDELLIPSIS

ss-pathendellipsis SS_PATHEMDELLIPSIS

ss-wordellipsis SS_WORDELLIPSIS

ss-ellipsismask SS_ELLIPSISMASK

Style Symbol Win32 API Constant Equivalent Attribute
1542

Win32 Control Types
WIN32 Edit Style Symbols

WIN32 Button Style Symbols

Style Symbol Win32 API Constant Equivalent Attribute

es-left ES_LEFT

es-center ES_CENTER

es-right ES_RIGHT

es-multiline ES_MULTILINE is-multiline

es-uppercase ES_UPPERCASE

es-lowercase ES_LOWERCASE

es-password ES_PASSWORD

es-autovscroll ES_AUTOVSCROLL is-autovscroll

es-aotohscroll ES_AUTOHSCROLL is-autohscroll

es-nohidesel ES_NOHIDESEL

es-oemconvert ES_OEMCONVERT

es-readonly ES_READONLY is-readonly

es-wantreturn ES_WANTRETURN

es-number ES_NUMBER

Style Symbol Win32 API Constant Equivalent Attribute

bs-pushbutton BS_PUSHBUTTON

bs-defpushbutton BS_DEFPUSHBUTTON

bs-checkbox BS_CHECKBOX

bs-autocheckbox BS_AUTOCHECKBOX

bs-radiobutton BS_RADIOBUTTON

bs-3state BS_3DSTATE

bs-auto3state BS_AUTO3STATE
1543

WIN32 Combo-Box Style Symbols

bs-groupbox BS_GROUPBOX

bs-userbutton BS_USERBUTTON

bs-autoradiobutton BS_AUTORADIOBUTTON

bs-ownerdraw BS_ONEDRAW

bs-lefttext BS_LEFTTEXT

bs-text BS_TEXT

bs-icon BS_ICON

bs-bitmap BS_BITMAP

bs-left BS_LEFT

bs-right BS_RIGHT

bs-center BS_CENTER

bs-top BS_TOP

bs-bottom BS_BOTTOM

bs-vcenter BS_VCENTER

bs-flat BS_FLAT

bs-right BS_RIGHTBUTTON

Style Symbol Win32 API Constant Equivalent Attribute

Style Symbol Win32 API Constant
Equivalent
Attribute

cbs-simple CBS_SIMPLE

cbs-dropdown CBS_DROPDOWN

cbs-dropdownlist CBS_DROPDOWNLIST

cbs-ownerdrawfixed CBS_OWNERDRAWFIXED

cbs-ownerdrawvariable CBS_OWNERDRAWVARIABLE

cbs-autohscroll CBS_AUTOHSCROLL
1544

Win32 Control Types
WIN32 Spinner Style Symbols

cbs-oemconver CBS_OEMCONVER

cbs-sort CBS_SORT

cbs-hasstrings CBS_HASSTRINGS

cbs-nointegralheight CBS_NOINTEGRALHEIGHT

cbs-disablenoscroll CBS_DISABLESCROLL

cbs-uppercase CBS_UPPERCASE

Style Symbol Win32 API Constant
Equivalent
Attribute

Style Symbol Win32 API Constant Equivalent Attribute

uds-wrap UDS_WRAP

uds-setduddyint UDS_SETBUDDYINT

uds-alignright UDS_ALIGNRIGHT

uds-alignleft UDS_ALIGNLEFT

uds-autobuddy UDS_AUTOBUDDY

uds-arrowkeys UDS_ARROWKEYS

uds-horz UDS_HORZ

uds-nothousands UDS_NOTHOUSANDS

uds-hottrack UDS_HOTTRACK
1545

WIN32 Tabular-View Style Symbols

Style Symbol Win32 API Constant Equivalent Attribute

lvs-icon LVS_ICON

lvs-report LVS_REPORT

lvs-smallicon LVS_SMALLICON

lvs-list LVS_LIST

lvs-typemask LVS_TYPEMASK

lvs-singlesl LVS_SINGLESEL

lvs-showselalways LVS_SHOWSELALWAYS

lvs-sortascending LVS_SORTASCENDING

lvs-shareimagelists LVS_SHAREIMAGELISTS

lvs-nolabelwrap LVS_NOLAVELWRAP

lvs-autoarrange LVS_AUTOARRANGE

lvs-editlabels LVS_EDITLABELS

lvs-ownerdata LVS_OWNERDATA

lvs-noscroll LVS_NOSCROLL

lvs-typestylemask LVS_TYPESTYLEMASK
1546

44
Windows Views, Panes,
and UI Features
Provides examples of how to create Windows chart views, HTML views, shortcut
bars, tree views, and other Windows user interface features.

Introduction 1547

Using Chart Views 1548

Using HTML Views 1557

Using HTML Help 1560

Using Property Grid 1564

Using Shortcut Bars 1565

Using Tree Views 1577

Using Status Bars 1587

Using Workspace Views 1588

Using Tabbed MDI Mode 1590
1547

Introduction
G2 provides numerous system procedures for creating Windows views, panes,
and other user interface features. Some of these features are only supported in
Telewindows Next Generation (twng.exe) while others are supported in
Telewindows (tw.exe).

This chapter provides examples of following Windows user interface features:

• Chart view

• HTML view

• HTML help

• Property grid

• Shortcut bar

• Tree view

• Status bar

• Workspace view

• Tabbed MDI mode

You specify these Windows user interface features as part of your G2 application,
using system procedures described in User Interface Operations in the G2 System
Procedures Reference Manual.

Other Windows user interface features include:

• User interface themes

• Dockable and floating panes

• Resizable dialogs

• Windows Text Editor, Message Board, and Operator Logbook

For details, see:

• Window Handles and Views in User Interface Operations in the G2 System
Procedures Reference Manual.

• Editor Parameters, Logbook Parameters, and Message Board Parameters.

Using Chart Views
G2 provides a Windows chart view, which you access through Telewindows.

Note Chart views are only supported in Telewindows Next Generation (twng.exe).
1548

Using Chart Views
When you install Telewindows, the required chart DLL (pegrp32d.dll) is
automatically installed.

The chart view API supports these features:

• Creating a chart view and configuring its properties.

• Modifying the chart view properties.

• Setting individual properties of a single data element in a chart view.

• Printing, copying, and destroying a chart view.

• Exporting chart views to an image file.

• Callback procedure when the user clicks a point or closes the chart view.

The chart view is based on the ProEssentials™ package from Gigasoft, Inc.
(http://www.gigasoft.com). Most of the documentation on their Web site
applies to the G2 implementation, except that the names of the various properties
are hyphenated, rather than using mixed capitalization. For example, MainTitle
becomes main-title in G2. For a list of all of the property names that the G2
implementation of chart views uses, see Appendix B, Chart Properties and
Enumeration Values in the G2 System Procedures Reference Manual.
1549

http://www.gigasoft.com

For examples, load charts.kb in the g2\kbs\samples directory.

For a description of the G2 system procedures for working with chart views, see
Chart Views in User Interface Operations in the G2 System Procedures Reference
Manual.
1550

Using Chart Views
Creating a Simple Chart

This procedure creates a simple chart:

start g2-ui-create-chart-view
("Chart View", the symbol NONE, structure(ydata: sequence(1,3,1)), this window)

Creating a Simple Bar Chart

This procedure creates a simple bar chart:

start g2-ui-create-chart-view
("Bar Chart", the symbol NONE, structure(ydata: sequence(1,3,1),
plotting-method: the symbol PEGPM-BAR), this window)
1551

Creating a Simple Chart and Table

This button creates a simple chart and table:

start g2-ui-create-chart-view
("Chart+Table", the symbol NONE, structure(subsets: 3, points: 3,
ydata: sequence(1,3,1, 1,4,1, 4,1,4), graph-plus-table: the symbol PEGPT-BOTH),
this window)

Populating a Chart View

The following procedure code plots values in a chart:

{ Plot the current history of given G2 variable, with annotations. }
chart-variable-history(var: class g2-variable, win: class g2-window)
props: structure;
point: structure;
xdata, ydata: sequence;
x, y, unix-time: float;
utc-offset: integer = -4; { US Eastern Daylight Time }
begin
 xdata = sequence();
 ydata = sequence();

 for point = each structure in the history-using-unix-time of var do
 x = unix-time-to-vb-date(the history-collection-time of point, utc-offset);
 y = the history-value of point;
 xdata = insert-at-end(xdata, x);
 ydata = insert-at-end(ydata, y);
 end;
1552

Using Chart Views
 props = structure(type: the symbol SGRAPH, { A Scientific Graph }
 main-title: "History of [the name of var]",
 subtitle: "Click on any data point",
 {Enable DateTimeMode}
 date-time-mode: the symbol PEDTM-VB,

 { Various appearance options }
 quick-style: the symbol PEQS-DARK-INSET,
 bitmap-gradient-mode: false,
 mark-data-points: true,
 fixed-fonts: true,
 gradient-bars: 8,
 subtitle-font: "Arial Unicode MS",
 subtitle-bold: true,
 label-bold: true,
 line-shadows: true,

 { Let the user zoom in }
 allow-zooming: the symbol PEAZ-HORZANDVERT,
 zoom-style: the symbol PEZS-RO2-NOT,

 {Make data points be mouse sensitive}
 allow-data-hot-spots: true,
 hot-spot-size: the symbol PEHSS-LARGE,

 { Add some lines showing set points }
 show-annotations: true,
 horz-line-annotation: sequence(the maximum value of var during the last 1 hour, the
minimum value of var during the last 1 hour),
 horz-line-annotation-type: sequence(the symbol PELT-DOT, the symbol PELT-DOT),
 horz-line-annotation-color: sequence(the symbol RGBFF8080, the symbol
RGBFF8080),
 horz-line-annotation-text: sequence("|RHigh", "|RLow"), { "|R" prefix puts text on
right}
 right-margin: "XXXX", { Make room for some text on right }
 line-annotation-text-size: 110, { Also increase text size }

 { The data }
 xdata: xdata,
 ydata: ydata,
 subset-colors: sequence(the symbol GREEN));

 call g2-ui-create-chart-view("[the name of var]", the symbol CALLBACK, props, win);
end
1553

Here is the button that starts the procedure, the variable whose data the chart
plots, and the function called in the procedure:
1554

Using Chart Views
Displaying Annotations

The following procedure creates a graph using annotations:

start g2-ui-create-chart-view
("Title", the symbol NONE, structure

(ydata: sequence(1,3,1),
show-annotations: true,
graph-annotation-x: sequence(1.0, 3.0),
graph-annotation-y: sequence(2.8, 1.5),
graph-annotation-type: sequence(the symbol PEGAT-THICKSOLIDLINE,

the symbol PEGAT-ARROW-LARGE),
graph-annotation-text: sequence("Start", "End")),

this window)

Exporting a Chart View

This procedure call exports a chart view to a JPEG file:

start g2-ui-manage-chart-view
(the symbol EXPORT, chart, structure(pathname: “c:\my-chart.jpeg”), this window)

Printing a Chart View

This procedure call displays a print dialog for a chart:

start g2-ui-manage-chart-view
(the symbol PRINT, chart, structure(), this window)
1555

Deleting a Chart View

This procedure call deletes a chart view:

start g2-ui-manage-chart-view
(the symbol DESTROY, chart, structure(), this window)

Example Callback: Chart View

Here is an example callback procedure for a chart view:

callback (event: symbol, Win: class g2-window, handle: integer, data: value,
info: structure, user-data: value)

begin
change the text of DPY to "Event: [event] Handle: [handle]";
if(event is not CLOSED) then
call g2-ui-modify-chart-view(handle, structure(subtitle: "[data] [info]"), Win);

end

Here is the result of closing a chart view:
1556

Using HTML Views
Using HTML Views
G2 provides a Windows HTML view, which allows you to embed an Internet
Explorer Web Browser window into Telewindows.

Note HTML views are only supported in Telewindows Next Generation (twng.exe).

The HTML view API supports:

• Creating HTML views that display an initial URL.

• Sending commands to go forward and back, go to a given URL, go to the
home page, stop downloading, refresh, and destroy the view.

For a description of the G2 system procedures for working with HTML views, see
HTML Views in User Interface Operations in the G2 System Procedures Reference
Manual.

Creating an HTML View

This procedure creates an HTML view, passing in a URL as an argument. It stores
the handle to the HTML view in an integer parameter named htmlview.

make(url: text, win: class g2-window)
hv: integer;
begin

hv = call g2-ui-create-html-view(url, the symbol CALLBACK,
structure(width: 500, height:700, left: 10, top:10), win);

conclude that htmlview = hv;
end

This procedure call creates an HTML view that goes to www.gensym.com:

start make("http://www.gensym.com", this window)

Here is the action button that creates the HTML view and the integer parameter
that stores the handle:
1557

Here is the resulting HTML view:

Going to a Web Page

This procedure call goes to a web page specified by a message named url, using
the HTML view specified by the htmlview parameter:

start g2-ui-manage-html-view(the symbol GOTO, htmlview, the text of url, this window)
1558

Using HTML Views
Destroying an HTML View

This procedure call destroys the HTML view specified by the htmlview parameter:

start g2-ui-manage-html-view(the symbol DESTROY, htmlview, false, this window)

Example Callback: HTML View

This callback procedure is called when the user closes the HTML view, which
changes the text of a message named msg:

callback (event: symbol, Win: class g2-window, control: integer, item: value, info:
structure, user-data: value)
begin

change the text of MSG to "[event] Control [control] Item @"[item]@" info [info]
user-data: [user-data]";

end

Here is the result of closing the HTML view:
1559

Using HTML Help
You can launch Windows HTML help from Telewindows. The HTML Help API
supports:

• Launching Windows HTML Help (.chm) files.

• Displaying topics by name or ID.

• Displaying the index or table of contents.

• Displaying popup help.

For a description of the G2 system procedure for launching HTML help, see
HTML Views in User Interface Operations in the G2 System Procedures Reference
Manual.

For example, this procedure provides a way of managing HTML Help windows:

test-html-help(cmd: symbol, file: text, topic: value, win: class g2-window)
begin

call g2-ui-html-help(cmd, structure(help-file-directory:
"c:\Program Files\Gensym\g2-2011\g2\",
help-file-name: "[file]", topic: topic), win);

end
1560

Using HTML Help
Displaying a Topic

The following code fragment launches Windows Help for the Master2.html topic
in the Master.chm help file:

start test-html-help(the symbol DISPLAY-TOPIC, "Master.chm", "Master2.html",
this window)

The following code fragment launches the topic associated with the topic whose
integer ID is 1127:

start test-html-help(the symbol DISPLAY-TOPIC, "G2ReferenceManualHelp.chm",
1127, this window)

You can also provide a URL such as the following as the topic:

start test-html-help(the symbol DISPLAY-TOPIC, "G2ReferenceManualHelp.chm",
"mk:@MSITStore:c:\Program%20Files\Gensym\g2-2011\g2\
G2ReferenceManualHelp.chm::/kbs15.html", this window)
1561

Displaying the Table of Contents

The following code fragment displays the Table of Contents of the help file
named Master.chm:

start test-html-help(the symbol DISPLAY-CONTENTS, "Master.chm", 0, this window)
1562

Using HTML Help
Displaying the Index

The following code fragment displays the index for the help file named
Master.chm with the index scrolled to the make transient action entry:

start test-html-help(the symbol DISPLAY-INDEX, "Master.chm",
"make transient action", this window)

Displaying Popup Help

The following code fragment displays some text in a popup window:

start test-html-help(the symbol DISPLAY-POPUP, "Master.chm",
"Here is some popup text", this window)
1563

Using Property Grid
A property grid displays a two-column list of names and values, called
properties, where each value may optionally be edited by the user, in a way that
depends on its type and other options.

Each property may optionally be assigned to a category.

The grid may have a toolbar positioned above it and a help pane below it. The
help pane displays the description of the currently selected property.

For a description of the G2 system procedure for creating property grids, see
Property Grid Views in User Interface Operations in the G2 System Procedures
Reference Manual.

Here is a simple example:

create-property-grid(win: class g2-window)
begin
 call g2-ui-create-property-grid("Properties", the symbol CB,
 structure(width: 300, user-data: "User Data", show-toolbar: true,
 contents: sequence(
 "Text",
 structure(property: the symbol COMBO, current-value: "Animal",

possible-values: sequence("Animal", "Vegetable", "Mineral"),
description: "This property has a combo box."),

 structure(property: the symbol TEXT-WITH-ICON,
 icon: this procedure, current-value: "A G2 icon", ellipsis: true,

edit-in-place: false),
structure(property: the symbol INTEGER, current-value: 123),

 structure(property: the symbol BOOLEAN,
 type: the symbol BOOLEAN,
 current-value: true),

structure(property: the symbol COLOR, type: the symbol COLOR, current-value:
the symbol RED, select: true),

structure(property: the symbol DATE, type: the symbol DATE,
category: "Calendar", current-value: the current subsecond real time),

structure(property: the symbol DATE2, type: the symbol DATE,
category: "Calendar", value-format: the symbol LONG-DATE,
current-value: structure(month: 3, date: 10)),

structure(property: the symbol FLOAT, current-value: 12.3,
value-format: the symbol dd.dddd, user-data: "My float"))),

 win);
end
1564

Using Shortcut Bars
Using Shortcut Bars
G2 provides a Windows shortcut bar, which you access through Telewindows.

Note Shortcut bars are only supported in Telewindows Next Generation (twng.exe).

The API supports:

• Creating shortcut bars that contain folders and icons, using one of two styles.

• Sending commands to enable and disable, clear, and destroy the shortcut bar.

• Changing the icon size to small or large icons, both interactively through a
popup menu and by sending a command.

• Renaming the icon through a popup menu.

• A callback procedure that sends notification when the user selects an icon in a
shortcut bar, clicks the right mouse button, and renames the icon.

For a description of the G2 system procedures for working with shortcut bars, see
Shortcut Bar Views in User Interface Operations in the G2 System Procedures
Reference Manual.
1565

Creating a Shortcut Bar

This procedure creates a shortcut bar with a given title text in a window. The
procedure stores the shortcut bar handle in an integer parameter named the-bar.
The sequence of folders is the return value of the test-folders procedure, which
follows. The shortcut bar registers a callback procedure named callback.

create(title: text, window: class g2-window)
handle: integer;
folders: sequence;
begin

folders = call test-folders();
handle = call g2-ui-create-shortcut-bar(folders, the symbol CALLBACK,

structure(width: 125, title: title), window);
conclude that the-bar = handle;

end

This procedure returns a sequence of structures that describes the folders and the
items in each folder to show in the shortcut bar. The procedure creates two
folders, one named Items and the other named Icons.

test-folders() = (sequence)
begin

return
sequence(
structure(label: "First Folder",

items: sequence(
structure(label: "First Item", icon: the symbol PROCEDURE),
structure(label: "Second Item", icon: the symbol G2-WINDOW),
structure(label: "Third Item", icon: the symbol G2-LIST),
structure(label: "Fourth Item", icon: the symbol GMS-PRINT-ICON))),

structure(label: "Second Folder",
items: sequence(

structure(label: "First Item", icon: the symbol GMS-SAVE-ICON),
structure(label: "Second Item", icon: the symbol USER-MENU-CHOICE),
structure(label: "Third Item", icon: the symbol SAX-PARSER),
structure(label: "Fourth Item", icon: the symbol GMS-PRINT-ICON))),

structure(label: "Third Folder",
items: sequence(

structure(label: "First Item", icon: the symbol GMS-PRINT-ICON),
structure(label: "Second Item", icon: the symbol USER-MENU-CHOICE),
structure(label: "Third Item", icon: the symbol SAX-PARSER),
structure(label: "Fourth Item", icon: the symbol GMS-PRINT-ICON)))

);
end
1566

Using Shortcut Bars
Here is a button that creates a shortcut bar named G2 Shortcuts, and the integer
parameter that stores the shortcut bar handle:

Here are the three folders of the resulting shortcut bar:

Using the Listbar Style

The shortcut bar supports the listbar style, which has these features:

• The ability to show multiple icons per row.

• Icons with tooltips for folders.

• The ability to control the number folders that are visible.
1567

To use the listbar style, provide the style attribute in the options structure in the
g2-ui-create-shortcut-bar system procedure. For example:

create(title: text, window: class g2-window)
handle: integer;
folders: sequence;
begin

folders = call test-folders();
handle = call g2-ui-create-shortcut-bar(folders, the symbol NONE,

structure(width: 125, title: title, style: the symbol LISTBAR), window);
conclude that THE-BAR = handle;

end

The other option for the style attribute is default.

Here is the shortcut bar with the listbar style showing a single column and
multiple columns:
1568

Using Shortcut Bars
Here is the shortcut bar with the folder tabs showing and with the Configure
Buttons menu:

Displaying Arbitrary Views in a Listbar Style
Shortcut Bar

You can display an arbitrary view in the folders of a listbar-style shortcut bar, for
example, a tree view or a dialog view. To support this feature, the container
option of any of the g2-ui-create-view system procedures and the g2-ui-post-
custom-dialog can be the handle of a listbar-style shortcut bar, in which case the
neighbor option is the number of the folder within the listbar into which to create
the view.

In addition, you can create shortcut bars and listbars with no items initially, then
add native views to those folders later.
1569

The following examples show how to create an empty listbar and add views to
the folders incrementally.

This procedures creates the listbar with three folders, two of which are initially
empty:

f()=sequence(
structure(label: "Folder Zero", icon: cp-1),
structure(label: "Folder One", items: sequence(

structure(label: "First", icon: the symbol GMS-SAVE-ICON),
structure(label: "Second", icon: CP-1),
structure(label: "Third", icon: the symbol SAX-PARSER))),

structure(label: "Folder Two", icon: the symbol GMS-PASTE-ICON))

The following button creates the listbar:
1570

Using Shortcut Bars
This button adds a tree-view to the first folder in the listbar:

This button adds a dialog to the first folder in the listbar:
1571

This button adds another dialog to the first folder in the listbar:
1572

Using Shortcut Bars
This button adds a property grid to the third folder in the listbar:

Example Callback: Shortcut Bar

This callback procedure is called when the user clicks an item in a shortcut bar,
which changes the text of a message named msg:

callback (event: symbol, Win: class g2-window, control: integer, item: value, info:
structure, user-data: value)
begin

change the text of MSG to "[event] Control [control] Item @"[item]@" info [info]
user-data: [user-data]";

end

Here is the result of clicking the First Item icon in the First Folder:
1573

Interacting with Items in the Shortcut Bar

You can click the right mouse button on an item in a shortcut bar to display a
popup menu for changing the icon size and renaming the icon:

When you click the right mouse button on an item in the shortcut bar, and you
choose Small Icons, Large Icons, or Rename Shortcut, the shortcut bar sends the
right-click event to the callback procedure. When you enter a new label for the
shortcut, the shortcut bar sends the item-renamed event to the callback.

Here is the result of renaming the First Item in the First Folder to My Item:
1574

Using Shortcut Bars
Changing the Icon Size

The following procedure calls change the size of the icons in the shortcut bar
named by the-bar:

start g2-ui-manage-shortcut-bar (the symbol SMALL-ICONS, the-bar, false,
this window)

start g2-ui-manage-shortcut-bar (the symbol LARGE-ICONS, the-bar, false,
this window)

Here is the shortcut bar with small icons:
1575

Disabling and Enabling a Shortcut Bar

The following procedure calls disable the icons in the second folder (index = 1) in
the shortcut bar named by the-bar:

start g2-ui-manage-shortcut-bar (the symbol DISABLE-FOLDER, the-bar, 1,
this window)

start g2-ui-manage-shortcut-bar (the symbol ENABLE-FOLDER, the-bar, 1,
this window)

Here is the shortcut bar with icons disabled:

Clearing a Shortcut Bar

The following procedure call clears all folders and items in the shortcut bar
named by the-bar:

start g2-ui-manage-shortcut-bar (the symbol CLEAR, the-bar, false, this window)
1576

Using Tree Views
Destroying a Shortcut Bar

The following procedure call destroys the shortcut bar named by the-bar:

start g2-ui-manage-shortcut-bar (the symbol DESTROY, the-bar, false, this window)

Using Tree Views
G2 provides a Windows tree view, which you access through Telewindows.

Note Tree views are only supported in Telewindows Next Generation (twng.exe).

The tree view API supports these features:

• Creating and destroying the tree view.

• Populating the tree view with items or texts, using a nested sequence of
structures that list the item and its children.

• Showing and hiding the tree view.

• Clearing the tree view.

• Selecting, expanding, collapsing, deleting, and inserting tree nodes.

• Callback procedure when the user clicks an item in the tree view.

For a description of the G2 system procedures for working with tree views, see
Tree Views in User Interface Operations in the G2 System Procedures Reference
Manual.

Creating a Tree View

This procedure creates a tree view, using callback as the callback. The procedure
stores the resulting integer handle in the integer-parameter named treeview:

make-a-tree-view(title: text, dock: symbol, win: class g2-window)
tv: integer;
begin

tv = call g2-ui-create-tree-view(title, the symbol CALLBACK,
structure(dock: dock), win);

conclude that treeview = tv;
allow other processing;

end
1577

This action button creates a tree view named Classes in the current window,
docked on the left edge of the window:

start make-a-tree-view("Classes Left", the symbol LEFT, this window)

Here is the integer parameter named treeview, which holds the current value of
the tree view handle, which the example references:

Here is the tree view docked along the left side of the window:

You can click the close button to remove the tree view from the window, and you
can click the hide/show toggle button (push pin icon) to hide and show the tree
view. When the tree view is hidden, the title appears in a vertical or horizontal tab
depending on where the tree view is docked. You can click the tab or simply
hover the mouse over the tab to show the tree view if it is hidden. Once the tree
view has been hidden once, the tab always appears.
1578

Using Tree Views
This figure shows the tree view after it has been hidden and shown again:

Creating the Tree View as a Dialog Control

The g2-ui-create-tree-view system procedure allows the container attribute of the
options structure to be a dialog handle, and the neighbor attribute to be a control
ID for a control in a custom dialog. The tree view is placed in the dialog, replacing
the existing control, which must be a label. Also, the dock attribute must be the
symbol within.

For example, this procedure calls g2-ui-create-tree-view to replace the label
control of a dialog with a tree-view:

tree-view-in-dialog (Win: class g2-window)
dialog, control-id: integer;
begin

dialog, control-id = call testdlg (win);
call g2-ui-create-tree-view ("Tree", the symbol CB,
structure(tree: sequence ("Child1", "Child2"),
container: dialog,
dock: the symbol WITHIN,
neighbor: control-id),
Win);

end

This procedure provides the dialog whose label control the tree-view control
replaces:

testdlg(Win: class g2-window) = (integer, integer)
dialog: integer;

ok: structure = structure (control-type: the symbol push-button, control-id: 1,
height: 14, width: 50, left: 5, top: 1, response-action: the symbol OK,
control-value: structure (text-value: "OK"));
1579

placeholder: structure = structure (control-type: the symbol LABEL, control-id: 2,
height: 150, width: 200, left: 5, top: 20, border: true,
anchor: the symbol TOP-LEFT-BOTTOM-RIGHT,
control-value: structure(text-value: "Placeholder"));

begin
dialog = call g2-ui-post-custom-dialog(structure(dialog-title: "Views in dialogs",

resizable: true, dialog-width:250, dialog-height:200,
components: sequence (ok, placeholder),
dialog-dismissed-callback: the symbol DISMISSED-CALLBACK,
dialog-update-callback: the symbol UPDATE-CALLBACK),
false, Win);

return dialog, the control-id of placeholder;
end

Here is the resulting dialog with a tree view control:

Populating a Tree View

This procedure populates a tree view with the G2 class hierarchy of a given class
by calling g2-get-class-hierarchy, which returns a structure of the correct format.
The procedure that populates the tree view associated with the current value of
the integer parameter named treeview.

populate(class: symbol, win: class g2-window)
tree: value;
begin

tree = call g2-get-class-hierarchy (class);
call g2-ui-populate-tree-view (treeview, tree, win);

end
1580

Using Tree Views
This action button populates the current tree view with the tree associated with
the G2 class hierarchy of the item class. The top-level node in the tree is the value
of the item-or-name attribute of the structure, and the children are the value of the
children attribute of the structure. Here is part of the resulting tree view expanded
one level to show the children:
1581

Here is another example, which specifies the tree structure explicitly to show the
format of the tree structure:

populate2(win: class g2-window)
tree: value;
begin

tree = structure
(ITEM-OR-NAME: "parent",
CHILDREN: sequence (structure

(ITEM-OR-NAME: "child1",
CHILDREN: sequence (structure

(ITEM-OR-NAME: "grandchild1",
CHILDREN: sequence (structure

(ITEM-OR-NAME: "great-grandchild1"))))),
structure

(ITEM-OR-NAME: "child2",
CHILDREN: sequence (structure

(ITEM-OR-NAME: "grandchild2")))));
call g2-ui-populate-tree-view (treeview, tree, win);

end

This button creates a tree view that looks like this:
1582

Using Tree Views
Showing and Hiding a Tree View

These buttons show and hide the tree view named by the value of the treeview
integer parameter. The tree view is shown at the same level of expansion as it was
before it was hidden, and the hidden tree view shows just the tab. Once the tree
view has been hidden, the tab always appears.
1583

Selecting Items in a Tree View

This button selects the "parameter" item in the tree view named by the value of
the treeview integer parameter. Selecting a tree view item, either
programmatically or interactively, invokes the registered callback for the tree
view. For details, see Example Callback: Tree View.

Clearing a Tree View

This button clears the contents of the tree view named by the value of the treeview
integer parameter. The tree view still exists but has no items.
1584

Using Tree Views
Destroying a Tree View

This button destroys the tree view named by the value of the treeview integer
parameter:

Example Callback: Tree View

Here is a sample callback procedure that gets called when the user selects an
element in the tree view or when an item is selected programmatically via the
g2-ui-select-tree-view-item system procedure. The procedure changes the text of
the result message to indicate the type event, the integer handle of the tree view
control, the value of the selected item, and the user data for the selected item. If
the event is right-click, then the procedure selects the item and calls the menu-
choose procedure.

callback (event: symbol, Win: class g2-window, control: integer, item: value,
info: structure, user-data: value)

begin
change the text of RESULT to "[event] Control [control] Item [item] info [info]";
if (event is RIGHT-CLICK) then
begin

call g2-ui-select-tree-view-item (treeview, item, Win);
call menu-choose(sequence("One", "Two", "Three"), the X of info, the Y of

info, win);
end;

end

The menu-choose procedure posts a popup menu with a sequence of choices for
the selected item, using cb-menu-choice as the callback when a menu choice is
selected.

menu-choose (choices: sequence, x: integer, y: integer, win: class g2-window)
menu: integer;
choice: text;
begin

menu = call g2-nms-create-menu(the symbol cb-menu-choose, win);
for choice = each text in choices do

call g2-nms-add-choice(menu, choice, choice, win);
end;
call g2-nms-manage-popup-menu(MENU, x, y, win);

end
1585

Here is the result message after selecting the parameter element in the tree view,
which indicates the event type (select), the control handle (7), the selected
element (parameter), and the X-Y coordinates of the selected location, which is the
value of the info argument to the callback (structure (X: -352, Y: 130)):

Here is result of clicking the right mouse button on an item in the tree view, which
posts a popup menu:

Here is the result message after right clicking the parameter item in the tree view,
which indicates that the event type is right-click:
1586

Using Status Bars
This callback procedure is executed when the user selects a menu choice from the
popup menu. The procedure changes the text of the result message to indicate the
selected choice or whether the menu was dismissed.

cb-menu-choose(window: class g2-window, menu: integer, choice: integer,
path: sequence)

user-data: item-or-value;
begin

if (choice = 0) then
change the text of RESULT to "You dismissed the menu."

else
begin

user-data = call g2-nms-get-key(choice, window);
change the text of RESULT to "You chose [user-data].";

end
end

Here is the result message after selecting the One choice in the popup menu:

Using Status Bars
You can configure a status bar to include multiple panes, including text and icons.
You use the system procedures to:

• Show and hide the status bar.

• Add, remove, and modify status bar panes.

• Configure various pane information, including text, icon, background color,
foreground color, tooltips, and borders.

For a description of the G2 system procedure for creating status bars, see Status
Bar Operations in User Interface Operations in the G2 System Procedures Reference
Manual.

Here is an example of a status bar with multiple panes and the code used to
create it:

start g2-ui-configure-status-bar
(structure
(callback: cb,
panes: sequence

(structure(id: "X", text: "Hello", user-data: 123456),
structure(id: "Y", text: "World"))), this window)
1587

This example shows how to add a pane to the status bar:

start g2-ui-manage-status-bar
(the symbol ADD-PANE, structure(id: "X", text: "Again"), this window)

This example shows how to modify a pane by adding an icon:

start g2-ui-manage-status-bar
(the symbol MODIFY-PANE, structure(id: "X", icon: cp-1), this window)

This example shows how to modify the background color of a pane:

start g2-ui-manage-status-bar
(the symbol MODIFY-PANE, structure(id: "X", background-color: the symbol WHEAT),
this window)

Using Workspace Views
You can create Windows views of kb-workspace instances, using a variety of
display options. The options include all those returned by g2-ui-lookup-window-
handle.

For a description of the G2 system procedure for creating workspace views and
registering callbacks, see Window Handles and Views and Selection API in User
Interface Operations in the G2 System Procedures Reference Manual.

The following code fragment shows ws-1 on the current window at 50% scale in
the x and y dimensions, with a height of 200 pixels, and scrolled 50 pixels in the
vertical dimension:

start g2-ui-create-workspace-view(ws-1, structure(x-scale: 0.5, y-scale: 0.5,
height: 200, y-scroll-position: 50), this window)
1588

Using Workspace Views
This procedure calls g2-ui-lookup-window-handle to get the display information
from a workspace, then restores the workspace, using the same display
information:

restore-ws(ws: class kb-workspace, window: class g2-window)
handle: integer;
info, info2: structure;
begin

info = call g2-ui-lookup-window-handle("[the name of ws]", window);
post "Before: [info]";
hide ws;
allow other processing;
wait for 5 seconds;
handle = call g2-ui-create-workspace-view(ws, info, window);
info2 = call g2-ui-lookup-window-handle(handle, window);
post "After: [info2]";

end

Here is the resulting info structure:
1589

Using Tabbed MDI Mode
You can configure Telewindows to use tabbed MDI mode for displaying
workspaces in tab pages.

Note Tabbed MDI mode is only supported in Telewindows Next Generation
(twng.exe).

In tabbed MDI mode, when you show a workspace, either interactively or
programmatically, the workspace appears as a tab page in the overall window
and fills the window. Workspaces include any workspace that appears in its own
window, such as KB workspaces, attribute tables, and the G2 Text Editor. You can
interactively switch the order of the tabs by dragging, scroll through the tabs by
clicking left and right arrows, and close individual workspaces.

For a description of the G2 system procedure for using tabbed MDI mode, see
Window Handles and Views in User Interface Operations in the G2 System
Procedures Reference Manual.

For example, this code fragment causes the current window to use a tabbed
MDI mode:

start g2-ui-tabbed-mdi-mode(true, structure(), this window)
1590

Using Tabbed MDI Mode
This figure shows the result of using tabbed MDI mode with two workspaces
visible. The first tab shows ws-1, which has buttons for controlling the tabbed
MDI mode. Notice that the workspace is shrink wrapped, yet the tab page fills the
entire window.
1591

The second tab show ws-2, which has a procedure and button for
programmatically showing ws-3:
1592

Using Tabbed MDI Mode
Clicking the show ws-3 button shows ws-3 in a tab page. Notice that this
workspace has scroll bars.
1593

On the ws-2 tab, double-clicking the procedure shows its attribute table in a tab
page, where the tab label corresponds to the procedure name and class:
1594

Using Tabbed MDI Mode
Double-clicking the text of the procedure shows the G2 Text Editor in a tab page,
where the tab label indicates the attribute being edited. The tooltip shows the
complete text: Text Editor for the text of MY-PROC, a procedure.
1595

1596

Part VI
Editors and Facilities
Chapter 45: The Text Editor

Describes how to create text items and how to use text inserters.

Chapter 46: The Icon Editor and Icon Management

Describes the G2 Icon Editor and its icon-description language.

Chapter 47: The Inspect Facility

Describes how to use the Inspect facility to search for items.

Chapter 48: Natural Language Facilities

Describes the facilities for using non-English languages in a KB.

Chapter 49: G2 Character Support

Presents a description of the G2 character support through Unicode.
1597

1598

45
The Text Editor
Describes how to create text items and how to use text inserters.

Introduction 1600

Text Editor Features 1602

Opening the Text Editor 1602

Entering Text 1606

Using the Search Facility 1614

Using the Scrollable Text Editor 1617

Using the Clipboard and Scrapbook 1618

Performing Other Edit Operations 1620

Cutting/Pasting between G2 and Other Applications 1621

Using Unicode and Special Characters 1624

Keystroke Commands 1629

Text Editor Buttons 1634
1599

Introduction
G2’s interactive Text Editor lets you enter and edit text for statements, rules,
functions, attributes, and all other textual components of G2. Whenever you
choose to create a new statement, edit a statement, select any text box, or add or
edit any other text item, G2 displays the editor.

The editor includes prompts that guide you through the specification of the
statement. The editor supports standard editing commands, including cutting
and pasting to and from a clipboard. G2 also provides a scrollable editor for
entering longer series of statements.

In addition to the basic editor functionality provided in G2, Telewindows
provides a Windows text editor that supports numerous features, including line
numbers, buttons for expanding and collapsing blocks of code, use of color for
text strings, reserved words, and procedure statements, balanced parentheses,
1600

Introduction
and a toolbar, which includes buttons for cut, copy, paste, undo, redo, delete, find
and replace, go to item, save, and save and exit. For example:

This chapter describe the basic functionality of the classic G2 text editor. For
information on using the text editor in Telewindows, see Editing Text in Using
Telewindows in the Telewindows User’s Guide.

Procedure statement

Text string

Balanced
parentheses

Reserved word

Buttons for
expanding/
collapsing
blocks of code

Toolbar

Line numbers
1601

Text Editor Features
The G2 Text Editor is a special G2 workspace with these features:

• Natural language prompts guide you as you create statements, which you
enter by clicking the item or typing it.

• Text Editor buttons allow you to accept and cancel your edits, as well as to
undo and redo the last edit.

• Edit Operations buttons will display the edit buttons that are appropriate to
the current editing context instead of displaying the default Text
Editor buttons.

• Edit operations menu offers standard editing operations on selected text,
including cut and paste.

• Editor keystroke commands allow you to perform standard editor operations
from the keyboard.

• Text Editor buttons allow you to accept and cancel your edits, as well as to
undo and redo the last edit.

• Scrollable workspaces allow you to enter or edit statements or
compiled attributes.

You can enter text into the editor by typing the text from the keyboard or by
selecting the prompts that appear at the bottom of the Text Editor workspace.

You can enter text into the editor by selecting any text anywhere on any displayed
workspace. You can also insert text into the editor by cutting and pasting to and
from a scrapbook, and by using a type of text item called a text inserter.

In addition, you can enter any character in the Unicode character set, from any of
G2’s supported natural languages, into the editor. You can do this regardless of
the current language setting.

Opening the Text Editor

You can open the editor several ways, depending on what you are editing. You
can open one or more editors by using any of the following techniques.

To open the editor:

 Click on an existing piece of text in the KB, for example, a rule, function,
attribute value in a table, attribute display, free text, and so on.

or

 Click on an item to display its menu, and select the edit menu choice.

or
1602

Opening the Text Editor
 Create a new rule; new definition of type function, foreign function, generic
formula, remote procedure declaration, or language translation; or new free
text, including a text inserter.

When you edit existing text, G2 places the cursor within the editor’s editing area
at the position where you select the text.

For example, the following figure shows the editor as you create a new rule by
using KB Workspace > New Rule. Notice the natural language prompts below the
type-in box, and the editor buttons on the left side of the workspace.

Note Because selecting an existing piece of text automatically displays the editor, you
must select the margin of an existing piece of text, such as a rule, statement, or
piece of free text, in order to display its table or move it.

Setting the Minimum Width of the Editing Area

You can set minimum width of the Text Editor’s editing area. The minimum
width of the editing area is the greater of:

• G2’s default for the minimum width.

• The current value of the minimum-width-for-edit-box attribute in the Editor
Parameters system table.

For the standard Text Editor, G2’s default for the minimum width of the editing
area depends on the text you select to edit. For the scrollable editor, G2’s default
minimum width of the editing area is approximately 500 workspace units.

The default value of the minimum-width-for-edit-box attribute is 0
workspace units.

Natural language prompts

Cursor in editing area
1603

To change the minimum width of the editing area:

 Edit the value of the minimum-width-for-edit-box attribute in the Editor
Parameters system table.

For the minimum-width-for-edit-box attribute’s value to affect the minimum width
of the editing area for the scrollable editor, set the value to 500 or more.

Tip To see even more text in the editor, display text in a smaller font size. To do this,
set the font-for-editing attribute to small in the Fonts system table.

Configuring Editor Menu and Button Options

You can configure your editing operations environment by specifying values for
two attributes on the Editor Parameters system table:

• pop-up-edit-operations-menu

• buttons-for-edit-operations

By default, the values of these attributes are yes and no, respectively,
indicating that:

• The Edit Operations popup menu appears whenever you select text.

• The default edit buttons are displayed, instead of displaying those buttons
that are appropriate to the current context.

Selecting text in the Editor displays the edit operations menu:

To suppress the edit operations menu:

1 Open the Editor Parameters system table.

2 Specify no for the pop-up-edit-operations-menu attribute.
1604

Opening the Text Editor
Selecting text in the Editor no longer displays the edit operations menu:

Note When text is highlighted, using the left, right, top, bottom, home, or end
navigation keys does not delete any text. Instead, the selected text is no longer
highlighted and the cursor moves to the position indicated by the navigation key.

To display context-sensitive Edit Operations buttons:

1 Open the Editor Parameters system table.

2 Specify yes for the buttons-for-edit-operations attribute.

Once you have changed this attribute to yes, selecting a piece of text displays the
edit buttons that are appropriate to the current context. For example, selecting
part of the text displays these edit operations buttons:
1605

Selecting all of the available text displays these buttons:

Note To have the full range of button or popup-menu choices described in this chapter,
specify yes for either the buttons-for-edit-operations attribute or the pop-up-edit-
operations-menu attribute. The buttons-for-edit-operations attribute is only
operational when the pop-up-edit-operations-menu is set to no.

Entering Text
You can enter text by using one of these techniques:

• Typing text at the current cursor location.

• Selecting text and replacing it directly by typing one or more characters.

• Clicking on one of the natural language prompts at the bottom of the editor
workspace, which guide you in entering valid statements.

• Selecting argument names and types from a workspace which automatically
appears when you enter the name of a defined procedure or function.

• Selecting any visible text.

• Selecting text from a text inserter.

As you enter text using any of these methods:

• G2 displays the next allowable term at the bottom of the workspace. You can
use these prompts to guide you in entering valid statements.
1606

Entering Text
• G2 flags text that is syntactically incorrect as you enter it by showing ellipses
in the text as you type.

• You can undo and redo the last edits that you made.

When you accept the text by closing the editor, the effects are immediate.

Entering Text within the Text Editor

You can enter text within the editor three ways.

To enter text by using the keyboard:

 Type the text at the current cursor location.

To replace text:

1 Select the text to be replaced by dragging the mouse cursor over it.

2 Without cutting, replace the selected text directly by typing one or
more characters.

To enter text by using the natural language prompts:

 Click on a prompt at the bottom of the workspace.

When you enter text by selecting a natural language prompt, G2 also inserts the
space following the word. If you have already entered the word without the space
and you click on the prompt, G2 inserts the space. If you have entered only part of
the word and you click on the prompt, G2 completes the word and inserts a space.

Each time you enter a character in the editor, G2 updates the natural language
prompts to indicate the current allowable syntax. For example, when creating a
1607

new rule, if you enter the letter “i” in the editor to enter the word if, G2 updates
the prompts to show the two prompts that begin with the letter “i”:

When you have entered a valid word in the editor and entered a space following
the word, G2 again updates the prompts to show the valid syntax. For example,
after you enter the word if and the following space, G2 displays this editor:

The prompts now contain two types of items: generic class-oriented prompts at
the top, and natural language prompts at the bottom. The class-oriented prompts
indicate the type of item you can enter at this point in the statement. Entering a
Class Name describes the two ways of entering class names.

The scope of the natural
language prompts is narrowed
when you enter a character.
1608

Entering Text
Entering Text by Selecting Visible Text

You can insert any piece of visible text in your KB into the editor. For example,
you can insert attribute names from a table, a statement from a rule, free text, or
any other visible text in the system.

To enter text by selecting existing text, do any of the following:

 Drag the mouse over any piece of text, and release the mouse. The text
appears in the text editor exactly as it appears on the screen.

or

 Click on the name of an attribute in the left-hand column of any attribute
table. The attribute name appears in the editor in lowercase characters, with
any spaces converted to dashes, and any special characters escaped with an
at-sign (@).

or

 Click on the name of any item on a workspace. The name appears in the text
editor in lowercase.

Note Be sure to click, rather than drag, an attribute or item name. Selecting text by
sliding the cursor across it places the attribute or item name in the editor, but will
not convert any spaces to dashes or change uppercase characters to lowercase.

You can also use a type of text item called a text inserter as a way of inserting text
into the editor. Depending on the type of text inserter, you can insert a complete
piece of text, word, character sequence, or character.

For information about how to create and use text inserters, see Using Text
Inserters to Insert Text into the Text Editor.

Entering a Class Name

When a statement requires a class name, you have two options:

• You can display a list of available classes and select a class from the list.

• You can use the natural language prompts to display the classes whose name
begins with the specified letters.

To enter a class name from a menu:

1 Click on one of the class-oriented prompts toward the top of the screen.

G2 displays a temporary workspace that includes all classes of the specified
type defined in the current KB. For example, you might create a rule that tests
1609

for the existence of a certain class. Clicking on any class displays a workspace
such as the following:

2 Click on one of the classes in the list to insert it at the current cursor location
and delete the temporary workspace.

a If you find more classes than fit on the screen, move the workspace up to
see the other classes.

b If you want the workspace to remain after you select a class, name
the workspace.

You can then hide and retrieve the workspace like any other. The class
names workspace is a non-KB workspace, which means G2 does not save
it with the KB.

To enter a class name by using the natural language prompts:

1 Begin typing the name of a class in the editor.

For example, when creating a rule that tests for the existence of a class, you
might enter the letters "ta" in the editor after the expression.
1610

Entering Text
G2 displays all the classes that begin with these letters, including system-
defined classes and user-defined classes, as shown.

2 You can either continue typing the class name at the keyboard, or you can
click on the name of a class that G2 displays in the workspace.

If you click on the name of the class, G2 inserts only the characters that are
necessary to complete the name.

Controlling the Number of Classes that G2 Displays

By default, G2 displays a maximum of 50 classes in the natural language prompts
that appear at the bottom of the editor workspace. Thus, when you type the first
letter of a class, you will typically see a list of all system-defined and user-defined
classes whose name begins with that letter. If you have defined more than fifty
classes that begin with a particular letter, you will only see the first fifty.

You can control the number of classes that G2 displays in the natural language
prompts when typing a class name into the editor.

To set the maximum number of class names that G2 displays:

 Edit the maximum-number-of-names-in-menus attribute in the Editor
Parameters system table.

The default is 7.

Configuring the Grammar Prompts that G2 Displays

You can use the g2-ui-launch-editor system procedure to configure the prompts
that appear in the text editor, both the classic G2 text editor and the Windows text
editor available through Telewindows.

For details, see Editor Operations in User Interface Operations in the G2 System
Procedures Reference Manual.
1611

Using Text Editor Procedure and Function
Signature Prompting

When you type the name of a procedure or function in the text editor, G2 prompts
you with the signature of that procedure or function. In the case of multiple
methods with the same name, G2 prompts you with the signatures of all methods
with that name.

This facility can be disabled by specifying no for the show-procedure-signatures?
of the Editor Parameters system table. The default value for this attribute is yes.

G2 prompts by putting up a workspace that displays the argument names for a
function; and the argument names, argument types, and return values for a
procedure. When you type a defined procedure or function name followed by a
left parenthesis, the signature workspace appears in the upper right-hand corner
of the G2 window. The workspace remains there as long as the cursor is within
the opening and closing parentheses. It automatically disappears when you type
the closing right parenthesis, and reappears when you relocate the cursor within
the parentheses.

If the procedure or function has no arguments, G2 displays:

(no arguments)

Here is an example of the text editor open for editing a procedure. The argument
workspaces display the arguments and types for a G2 system procedure and the
argument for a user-defined function.
1612

Entering Text
Undoing and Redoing the Last Edit

You can undo and redo the last edit by using the Undo and Redo button or the
Alt + u and Alt + r commands, respectively.

For example, if you select a prompt from the bottom of the workspace to enter it,
selecting Undo removes the word; if you type a character, Undo deletes the last
character you typed. By repeatedly selecting Undo, you can undo all of the edits
you have made in the editor.

If you delete a word and select Undo, selecting Redo deletes the word again. By
repeatedly selecting this menu choice, you can redo all of the edits you undid.
You can redo a series of edits only immediately after undoing them.

Controlling the Number of Edits You Can Undo

You can control the number of edits that G2 remembers when you use the Undo
button in the editor. By default, G2 remembers the last 100 edits you perform.

To set the maximum number of undo’s:

 Edit the maximum-number-of-undos-to-remember attribute in the Editor
Parameters system table.

Correcting Errors in the Editor

If you enter text or select a prompt that makes the statement syntactically
incorrect, the editor displays an ellipses (...) at the location of the error. While you
can continue editing the text, G2 does not accept the text when you end the
editing session, as described below. For example:

Ending the Editing Session

When you end an editing session, the edits you make are effective immediately.
For example, if you change the scan interval for a rule, the rule starts scanning at
the new rate immediately. G2 compiles or recompiles as needed to reflect
any changes.
1613

To end an editing session:

 Press the Return key or click the End button, depending on the context.

G2 accepts your edits and closes the editor.

When using the scrollable editor, you can click the End button or enter the
Control + Return command to end the editing session (see Using the Scrollable
Text Editor).

Note The End button only appears when you enter a valid statement or rule; the End
button does not appear when entering simple attribute values.

To update the text without ending the editing session:

 Click the Update button.

G2 accepts your edits without closing the editor.

The Update button appears whenever the End button appears.

To cancel an editing session:

1 Click the Cancel button, enter the Ctrl + a keystroke command, or press the
Escape key.

G2 displays a confirmation dialog:

2 Click the OK button to discard your edits and to close the editor.

Using the Search Facility
You can use the Search facility any time you are using the Text Editor. The facility
lets you search for a character or string of characters anywhere in the text, then
continue searching for additional instances of the search string.
1614

Using the Search Facility
To start searching in the Text Editor:

1 Position the cursor at the location in the code from which you want to start
searching and enter Alt + s to display the Search type-in box. In the next
example, the cursor is positioned at the beginning of the procedure.

2 Type the text you are searching for in the type-in box.

Searching for any character or string of characters is incremental. As you enter
each character, the search facility moves to and highlights the first instance of
that character it locates after the current position. Entering more characters
highlights the first instance of the character string. The next example shows
the search string, wait, being highlighted as the characters are entered:

Note All Text Editor commands for cutting, pasting, and moving text work within
the Search type-in box.

3 To continue searching for the same string, enter Alt + s again. If another
instance is found, highlighting moves to that location in the text.
1615

4 To search backwards, enter Alt + p (for previous).

You can enter Alt + p to search backwards at any time while the Search type-
in box is displayed. If you have been searching forward over successive
matching instances of your search string, using Alt + s, then decide to change
direction, using Alt + p, the first string match will be the same one you have
just found and the highlighted region will not move until you enter Alt + p a
second time.

After the last match has been found, if you enter Alt + s again, the previous
match remains highlighted and the message no match appears in the type-in
box below the search string:

5 To end searching, enter Ctrl + a or press Return.
1616

Using the Scrollable Text Editor
Using the Scrollable Text Editor

G2 provides a scrollable text editor for editing large amounts of text in particular
attributes. A scrollable editor lets you scroll the contents of the text box and enter
line feeds more easily.

The next figure shows how the scrollable editor appears as you edit an
item configuration:

Editing the following attributes opens a scrollable editor:

• The text attribute of a procedure or method.

• Compiled attributes in definitions, such as:

– item-configuration and instance-configuration

– class-specific-attributes, attribute-initializations, attribute-displays, stubs,
and icon-description in class, object, connection, and message definitions

The scrolling editor behaves exactly like the standard editor with two exceptions.

To enter a line feed in a scrollable editor:

 Use the Return key.
1617

To end an editing session in a scrollable editor:

 Enter Control + Return key or click the End button, depending on the context.

Using the Clipboard and Scrapbook

You can cut and paste text in the editor by choosing either the popup menu
choices or clicking buttons, depending on how you have configured your edit-
options environment (see Configuring Editor Menu and Button Options). These
options automatically appear whenever you select text in the editor by dragging
the mouse over a sequence of characters.

Both Windows and X Windows systems have a clipboard, which serves as a
holder for text and data that has been cut or copied from any clipboard-compliant
applications.

The editor has a scrapbook, which is a special workspace that maintains text that
you cut and copy from the editor. The scrapbook was used prior to the clipboard,
but remains as part of the editor. G2 creates a scrapbook workspace the first time
you cut or copy text in the editor. The scrapbook is a transient, non-KB
workspace, which is not saved when you save the KB. The text items stored in the
scrapbook are text inserters, which means that you can also use them to insert text
directly into the editor.

Whenever you complete a cut or copy operation in the editor, or drag your cursor
over text that is outside the editor, G2 copies the text both to the clipboard and the
scrapbook. The clipboard text is then used as the pasting source, and the
scrapbook text remains unused. You can access scrapbook text as described in
Interacting with the Scrapbook Directly.

The amount of text you can cut or copy at one time is limited by the G2 text
clipboard buffer, which can hold a maximum of 32766 characters, including
invisible characters such as a linefeed. Attempting to copy more than the
maximum number of characters to the clipboard truncates the copied text.

To cut and paste text in the editor:

1 Drag the mouse cursor over the sequence of characters you want to cut, and
release the mouse.

2 Choose the cut menu option or click the Cut button to delete the text from the
current cursor location and place it in the scrapbook.

3 Move the cursor to the new location where you want to paste the text.

4 Choose the paste menu option or click the Paste button to insert the text.

Note Clicking the Paste button a second time inserts the same text again.
1618

Using the Clipboard and Scrapbook
Interacting with the Scrapbook Directly

You can look at the contents of the scrapbook by displaying the Scrapbook
workspace. The scrapbook contains text inserters, which allow you to insert the
text item directly into the editor by clicking it. For detailed information about
creating and using text inserters, see Using Text Inserters to Insert Text into the
Text Editor.

To display the scrapbook:

 Choose Main Menu > Get Workspace > scrapbook.

For example, your scrapbook might look like this:

To insert text directly from the scrapbook:

1 Open the editor, and place your cursor in the location in the editor where you
want to insert text from the scrapbook.

2 With the scrapbook, insert text in one of two ways:

• To insert the entire text item, click on a text inserter in the scrapbook.

• To insert part of the text item, drag the cursor over the sequence of
characters you want to insert, starting from the left side.

Controlling the Amount of Text in the Scrapbook

By default, G2 keeps only 50 text items in the scrapbook. When you cut or copy
more than ten items, G2 deletes the last item on the workspace and inserts the
new text item at the top.

You can control the amount of text that the scrapbook holds, and you can delete
individual text items in the scrapbook or the entire scrapbook.

To edit the maximum number of text items in the scrapbook:

 Edit the maximum-number-of-scraps-to-keep attribute in the Editor
Parameters system table.

text inserter
1619

To delete a text item in the scrapbook:

 Click on the border of a text inserter in the scrapbook, and select delete from
its menu.

To delete the entire scrapbook:

 Click on the background of the Scrapbook workspace, and select
Delete Workspace.

G2 creates a new Scrapbook workspace the next time you cut or copy text.

Performing Other Edit Operations

To configure your editing options environment to have the full range of button or
popup-menu choices described in this section, see Configuring Editor Menu and
Button Options.

You can use the Edit Operations menu or buttons in the editor to:

• Delete text without placing it on the clipboard or scrapbook.

• Replace selected text by typing directly, without cutting.

• Insert selected text at the current cursor location.

• Move selected text to the current cursor location.

• Cut selected text and insert it immediately at the current cursor location.

To delete text by using the menu:

1 Drag the mouse cursor over the text you want to delete.

2 Click the Delete button or menu choice.

G2 does not place the deleted text on the clipboard or scrapbook.

To replace text, you can use the pending delete technique:

1 Select the text to be replaced by dragging the mouse cursor over it.

2 Without cutting, replace the selected text directly by typing one or
more characters.

To insert the selected text at the cursor:

1 Move the mouse cursor to the new location where you want to insert text.

2 Drag the mouse cursor over the text to insert.

3 Choose the insert button or menu choice.

G2 inserts the selected text at the cursor location. If you have selected a word, G2
also inserts the following space.
1620

Cutting/Pasting between G2 and Other Applications
To move the selected text to a new location:

1 Move the mouse cursor to the new location where you want to move the text.

2 Drag the mouse cursor over the text to move.

3 Click the move button or menu choice.

G2 moves the selected text to the cursor location. G2 only moves the selected text;
it does not move any following spaces.

To cut the selected text and insert it at a new location:

1 Move the mouse cursor to the new location where you want to insert text.

2 Drag the mouse cursor over the text to cut.

3 Choose the cut and insert button or menu choice.

G2 cuts the selected text, placing it on the clipboard and scrapbook, and inserts
the text at the cursor location. If you have selected a word, G2 inserts the
following space.

Cutting/Pasting between G2 and Other
Applications

You can cut and paste text, including international characters, between G2 and
most other applications that include an edit menu with Cut, Copy, and
Paste options.

Note Telewindows supports all of the G2 cut and paste functionality, but for simplicity,
this section refers only to G2.

You can exchange text between two G2 processes, and all text, including
international characters, can be copied between G2 processes. On Windows
systems, you can copy international text to other applications that support the
Unicode character set. On X Windows systems, you can copy international text to
other applications that support Compound Text.

To cut or copy text from G2 to another application:

1 From the editor, select the text to cut or copy and choose the Cut or Copy
menu selections or buttons.

2 With the destination application in focus, position the cursor and choose that
application’s Paste option.
1621

To copy text from an external application to G2:

1 From the source application, select the text to copy and choose Cut or Copy
from the application Edit menu.

2 With G2 in focus, click Paste in the editor. The new text appears in the editor.

Using the Clipboard for Text Exchange

G2 uses the clipboard to exchange text in both an X Windows and a Windows
environment.

Exchanging text through the clipboard involves a:

• Source: the application from which text is cut or copied.

• Destination: the application into which the text is pasted.

Text Source

When placing text upon the clipboard, the source application has no knowledge
of the destination application, and cannot know which text formats it supports.
To accommodate various possibilities, the source application may copy text to the
clipboard in multiple formats, depending on the platform:

Note The CF_TEXT format is basically the same as ISO Latin-1. Not all applications
support the CF_UNICODETEXT or Compound Text formats.

Source Application Windows X Windows

G2/Telewindows CF_TEXT ISO Latin-1

CF_UNICODETEXT Compound Text

Non-G2/Telewindows CF_TEXT ISO Latin-1

CF_UNICODETEXT Compound Text
1622

Cutting/Pasting between G2 and Other Applications
A major difference between the text formats is their support of international
characters:

When pasting clipboard text from G2 to a destination application, international
character support in text is dependent on:

• Unicode support on Windows platforms.

• Compound Text support on X Windows platforms.

• Installed fonts on both platforms.

Displaying Unicode Characters

Internally, G2 uses and fully supports the entire Unicode character set. Such
support, however, does not guarantee universal character display. You can enter
any Unicode character in the editor, or import any character into a KB, but G2
may be unable to display the character. G2 represents any character that it cannot
display as a solid block ().

Displaying characters in a KB, both within the editor as a character entry facility,
and in other contexts such as messages and name boxes, is largely dependent
upon the languages that G2 supports and the available fonts.

In addition to English and European languages, G2 supports:

• Japanese

• Korean

• Russian

Note To display Japanese and Korean characters in outline fonts requires appropriate
authorization.

This text format... Supports...

CF_TEXT All keyboard characters and some
European characters such as those
for French, German, and so on.

ISO Latin-1 All keyboard characters and some
European characters such as those
for French, German, and so on.

CF_UNICODETEXT All Unicode-supported
international characters.

Compound Text Most international characters.
1623

By default, the fonts G2 uses to display characters reside in a fonts subdirectory
of the G2 product directory. You can use an alternative location for the font files,
but then must specify that location as described in Using G2 Fonts.

If the correct fonts are not installed on either G2 or another application, solid
blocks () appear in place of the international characters.

When pasting text, these are the results you can expect, depending on what the
destination application supports:

No characters are lost when cutting or pasting between two G2 processes.

G2’s intelligent cut and paste, where cutting a word and pasting it into existing
text adds appropriate space characters, works as it normally does, as long as the
text source and destination are the same G2. There is no intelligent cut and paste
from another application into G2, or between two G2 processes.

On Windows platforms, text is null-terminated, as required by the Windows
clipboard standard. On X Windows, text can contain embedded nulls.

Using Unicode and Special Characters

The default language of G2 is English. G2 also supports these other languages:

• Japanese

• Korean

• Russian

If the application... Then Windows... And X Windows...

Supports Unicode and
has proper fonts
installed

Displays all text and
international
characters that G2
copied to the
clipboard.

Does not support
Unicode

Displays only
supported characters.

Supports Compound
Text and has
appropriate fonts
installed

Displays most of the
text and international
characters that G2
copied to the
clipboard.

Does not support
Compound Text

Displays only
supported characters.
1624

Using Unicode and Special Characters
When the current language of G2 is set to one of these supported languages, and
the appropriate fonts are available, the buttons of the editor and other G2 facilities
are localized to the current language.

For more information about entering characters in supported languages, see
Using the Natural Language Facilities.

From the editor, you can enter any character in the Unicode character set,
including characters in languages for which G2 does not include fonts, and
characters or symbols that are not available on your computer’s keyboard,
referred to here as special characters.

For more information about the Unicode character set, see G2 Character Support.

Entering Unicode Character Codes

You can enter any Unicode character sequence in the editor. G2 interprets the
character codes you enter in the context of the current language. For example, if
the current language is japanese, and you enter a hexadecimal value, such as
2522, G2 interprets that value as a JIS code. Conversely, if the current language is
english, and you enter the same hexadecimal value 2522, G2 interprets that as a
Unicode character code, which is one of the box drawing symbols.

If G2 supports the font for the character you enter, the character appears. If not,
G2 displays a solid block (). For more information about character display, see
Displaying Unicode Characters

To enter a Unicode character code:

1 Open the editor.

2 Enter Alt + i.
1625

G2 displays a small type-in box for entering special characters:

3 Enter the four-digit hexadecimal Unicode code of the character you want to
use. For example, in the Latin Extended-A block of the Unicode character set,
the Latin capital letter K with cedilla is listed as U+0136. For this character,
enter 0136.

Entering Special Characters

In addition to entering any Unicode character code, G2 includes some special
characters that are common to English and other natural languages. You can enter
one or more of these special characters by:

• Selecting a special character from the help screen

• Using an escape sequence

You can enter the G2 special characters by either selecting the character from the
help screen, or by entering an escape sequence, described on the help screen.

To enter a special character by selecting it from the help screen:

1 Open the editor.

2 Enter Alt + i.
1626

Using Unicode and Special Characters
G2 displays a small type-in box for entering the escape sequence:

3 Enter Control + /.
1627

G2 displays the following help screen for special characters:

4 Drag your cursor over the special character you want to insert.

To enter a special character by using an escape sequence:

1 Open the editor.

2 Enter Alt + i to display the type-in box.

3 Enter Control + / to display the help screen for reference.

4 Enter a base character in the editor.

For example, to enter à, first enter the letter “a”.

5 Enter the escape sequence.

For example, to enter à, enter the Alt + i ` escape sequence.

When you enter Alt + i, G2 first displays the small type-in box. When you enter
the additional character, in this case, a grave accent (`), G2 then inserts the special
character into the editor and removes the small type-in box.
1628

Keystroke Commands
To enter a stand-alone special character:

 Open the editor, and enter the escape sequence directly.

For example, to enter the copyright character (©), enter Alt + i c.

Keystroke Commands

G2 includes a number of keystroke commands for performing a variety of
editing tasks.

In the explanations that follow, a word means a sequence of characters delimited
by the beginning of the text, the end of the text, a punctuation mark, or one or
more spaces, tabs, or line breaks.

Displaying Help

To display a help screen of all keystroke commands:

1 Open the editor.

2 Press the Help key or use the Control + / command.
1629

The following figure shows the portion of the help screen related to the editor:

Moving the Cursor

These are the keystrokes for moving the cursor from its current position.

Press... To move...

Left arrow One character to the left

Right arrow One character to the right

Ctrl + left arrow One word to the left

Ctrl + right arrow One word to the right

Up arrow Up one line

Down arrow Down one line

End To the end of a line
1630

Keystroke Commands
Note Note that the arrow keys have a different meaning in the context of the editor
than in other G2 contexts.

Cutting, Copying, and Pasting Text

These are the keystrokes for copying, pasting, and cutting text in the Editor:

Using Ctrl + c and Ctrl + v Outside of the Editor

The Ctrl + c and Ctrl + v keystrokes also work outside of the Editor, as follows:

Home To the beginning of a line

Page Up * Up one screen

Page Down * Down one screen

Ctrl + End To the end of a document

Ctrl + Home To the beginning of a document

* Effective only within an editor with scroll bars.

Press... To move...

Press... To...

Ctrl + x Cut selected text to the clipboard.

If no text is selected, Ctrl + x deletes text
backwards from the current cursor position.

Ctrl + c Copy selected text to the clipboard.

Ctrl + v Paste any text from the clipboard to the current
cursor position.

Pressing... In this context.... Has this effect...

Ctrl + c With no Editor active Refreshes the window
display.

Ctrl + v Over a workspace Drops the workspace to the
bottom.

Over the background Does nothing.
1631

Selecting Text

These are the keystrokes for selecting text. Select text and then extend the
selection by holding down the indicated keys to move the insertion point
as follows:

Deleting Text

Press... To...

Shift + right arrow Extend selection one character to right.

Shift + left arrow Extend selection one character to left.

Ctrl + Shift +
right arrow

Extend selection to end of word.

Ctrl + Shift +
left arrow

Extend selection to beginning of word.

Shift + End To the end of a line.

Shift + Home To the beginning of a line.

Shift + down arrow One line down.

Shift + up arrow One line up.

Ctrl + Shift + End To the end of a document.

Ctrl + Shift + Home To the beginning of a document.

To delete... Use this command...

Character left Backspace or Rubout keys.

Character right Delete, Shift + Delete, or Control + g.

Word left Alt + Delete key or Control + w.

Word right Alt + d.

Backward from cursor
to beginning of text

Control + x.
1632

Keystroke Commands
Note Note that the Control + g command has a different meaning in the context of the
editor than in other G2 contexts.

Inserting Tabs and Line Breaks

You enter a Tab character by pressing the Tab key.

You use one of two commands to insert a line break, depending on the type of
editor you are using:

When you enter a tab in the editor, G2 inserts the number of spaces specified by
the number-of-spaces-to-insert-on-a-tab attribute; G2 does not use preset
tab stops unless the value of this attribute is 0. Otherwise, use Alt + i Tab to enter
an actual tab character.

To control the number of spaces that G2 inserts when using a tab:

 Edit the number-of-spaces-to-insert-on-a-tab attribute in the Editor
Parameters system table.

Controlling the Editing Session

You use one of two commands to end the editing session, depending on the type
of editor that you are using. You can also abort the editing session, and undo and
redo by using a keystroke.

To insert a...
Use this command in
the standard editor...

Use this command in
the scrolling editor...

Line break Control + j or
Linefeed key

Return key

Tab Tab key or
Alt + i Tab

Tab key or
Alt + i Tab

To...

Use this
command in the
standard editor...

Use this
command in the
scrolling editor...

Accept the text and
close the editor

End button or
Return key

End button or
Control + Return
key

Abort the editing
session

Cancel button,
Control + a, or
Escape key

same
1633

Inserting Prompts by using the Keyboard

You can insert text directly from the natural language prompts at the bottom of
the workspace by using a keystroke:

Text Editor Buttons

Depending on the context, the editor contains the following buttons along the left
side of the workspace.

Undo Alt + u same

Redo Alt + r same

Search forwards Alt + s same

Search for next
occurrence

Alt + n same

Search backwards Alt + p same

To...

Use this
command in the
standard editor...

Use this
command in the
scrolling editor...

To insert... Use this command...

The first prompt Control + Space Bar

The last prompt Control + Shift + Space Bar

This button... Does this...

Cancel Closes the editor without making any changes to the
text. If you have made changes to the text, G2 displays
a confirmation message. Cancel is always visible.

End Accepts the text and closes the editor. End is only
visible when the current text is a valid, complete
statement. The End button does not appear when you
enter a value into a simple attribute, or when the
statement is not valid or complete.

Paste Inserts the top-most piece of text from the scrapbook at
the current cursor location. Paste is only visible when
text is in the scrapbook.
1634

Text Editor Buttons
Redo Redoes the last edit you undid using Undo. (You can
also use the keystroke command Alt + r.) Redo is only
visible when you have undone one or more edits by
using Undo.

Undo Undoes the last edit you made in the editor. (You can
also use the keystroke command Alt + u.) Undo is only
visible when you have made text edits.

Update Accepts the current text in the editor without closing
the editor. Update is particularly useful for editing
procedures. Update is not available when creating new
statements or rules, when saving and loading KBs, or
when using the Inspect facility.

Cut Cuts the selected text to the clipboard.

Copy Copies the selected text to the clipboard.

Delete Deletes the selected text without placing it on the
clipboard or scrapbook.

Insert Inserts the selected text at the cursor location. If you
have selected a word, the following space is
also inserted.

Move Moves the selected text to the cursor location. Only the
selected text is moved, not any following spaces.

Cut and insert Cuts the selected text, placing it on the clipboard and
scrapbook, and inserts the text at the cursor location. If
you have selected a word, the following space is
also inserted.

This button... Does this...
1635

1636

46
The Icon Editor and
Icon Management
Describes the G2 Icon Editor and its icon-description language.

Introduction 1638

Composition of an Icon 1638

Starting the Icon Editor 1639

Parts of the Icon Editor 1640

Defining Icons 1644

Creating Graphics 1648

Defining Text Components 1652

Applying a Stipple Pattern 1653

Programmatic Access to Stipples 1656

Stipples in the Icon Editor 1657

Including Externally Created Images 1658

Defining Regions 1660

Creating Groups 1660

Saving and Canceling Changes 1661

Tips for Working with Icons 1662

Editing Icons Textually 1662

Specifying an Icon Background Layer 1668

Animated Icons 1670

Defining and Using Icon Variables 1671

Animating Icons 1676
1637

Introduction
The Icon Editor allows you to define a class icon with graphic tools. The Icon
Editor converts the resulting graphical description into G2 code, and sets this
code as the value of the icon-description attribute of the class definition.

If you prefer, you can define an icon with the Text Editor, by editing the text of the
icon-description attribute of the class definition. You can also use the Icon Editor
and Text Editor together to define icons:

• You can use the Icon Editor to define the general appearance of an icon and
the Text Editor to fine-tune the definition.

• You can use the Text Editor to extend the capabilities of the Icon Editor in
various ways.

This chapter shows you how to use the Icon Editor to define icons, discusses
textual icon editing, and shows you how to use the Icon and Text Editors together
for icon definition. For information about the Text Editor, see Chapter 45,
The Text Editor on page 1599.

Composition of an Icon
An object icon is made up of one or more overlapping layers. A layer is like a
piece of transparent film with a one-color image on it. A layer contains one or
more graphic elements (circles, lines, etc.) defined with the Icon Editor and/or the
Text Editor.

For example, the following illustration shows an icon that has four layers, and a
conceptual view of the layers from the side:

Layers can be assigned to regions. A region is a named collection of one or more
layers. All layers in a region have the same color or metacolor. For information
about metacolors, see Identifying the G2 Color Palette on page 417.
1638

Starting the Icon Editor
You can change the color of a region for a particular instance of an object class
with a change action:

change the region icon-color of object to color

This action changes the color of all layers of region of the icon of object to color.
The change does not affect the class default color of region; it affects only the
instance. If an icon does not have any regions, the region specifier can be omitted.
The action then changes the color of all layers of the icon to color.

Starting the Icon Editor
To create or modify the icon for an object class:

 Click the left side of the icon-description attribute in the class definition, then
select edit icon from the menu that appears.

or

 Select edit icon from the menu of the class description.
1639

The following figure shows the Icon Editor open on an icon that represents
a pump:

Parts of the Icon Editor
This section briefly describes each component of the Icon Editor. Subsequent
sections show you how to use the editor’s capabilities to create icons.

Layers Pad

The layers pad shows all layers of the icon. Each layer is accompanied by a
symbol that names the region that the layer belongs to, or the color of the layer if
it does not belong to a region. The example shows four layers in three regions:
alarm, border, and body.

Icon viewerLayers pad

Status indicator Layer Drawing buttons and

Command buttons

Cursor indicator

Size and pattern

indicators command buttons
indicator
1640

Parts of the Icon Editor
One layer in the layers pad is always selected. This layer is called the current
layer. The current layer is surrounded by a box whose color is the layer color. In
the previous example, the first layer is selected. Icon Editor operations that apply
to a particular layer apply to the current layer in the layers pad.

You can use the layers pad, in conjunction with various commands, to create,
reorder, clone, redefine, and delete layers.

Icon Viewer

The icon viewer shows the complete icon. The view consists of all layers,
superimposed on one another in the order shown in the layers pad. The
backgrounds of the layers are transparent, but the graphics on the layers are
opaque. The first layer occludes all others; the second occludes all but the first;
and so on.

The size and shape of the icon viewer are the same as the size and shape of the
icon itself. An outline indicating these dimensions appears on each layer in the
layers pad. The icon size indicator shows the icon’s dimensions numerically in
workspace units.

You can reshape the icon viewer with the mouse to change the size and/or shape
of the icon, and you can use the viewer as a drawing pad to draw new graphics on
the current layer. When you make any change that affects the appearance of the
icon, the icon viewer updates immediately to reflect the change.

Layer Indicators

The four layer indicators show four properties of the selected layer:

• Region Indicator: Names the region (if any) to which the layer belongs. This
name also appears at the bottom of the layer in the layers pad. You can edit
this indicator to specify a layer’s region.

• Color Indicator: Names the color of the layer. The layer’s selection box and
graphics appear in this color. You can edit this indicator to specify a layer’s
color.

• Stipple Area Indicator: Names the stipple pattern that is applied to the layer.
You can edit this indicator to define a stipple pattern for the entire area of the
layer, or for a rectangular area of the layer.

• Image Indicator: For a layer that contains an externally defined image, the
name of the image. You can edit this indicator to specify an image name.

• Text Indicator: For a layer that contains a text element, the text of the element;
or if more than one text element exists, the text of the first element. You can
edit this indicator to specify a text element.
1641

Other Indicators

The Icon Editor includes three other indicators. These are:

• Status Indicator: Displays various messages that name the activity currently
underway in the editor, prompt for user actions, and describe conditions that
prevent the editor from carrying out a command as requested. Check the
status indicator if you are ever unsure of what the editor is doing, or of what
you should do next.

• Size and Stipple Pattern Indicator: Shows the size of the icon in workspace
units and the stipple pattern applied to the icon.

The first number gives the width, the second the height. You can edit these
numbers to change the size and/or shape of the icon; the icon viewer reshapes
accordingly. If you reshape the icon viewer with the mouse, the size indicators
change to reflect the new shape.

The stipple pattern defines a global stipple. This pattern applies to the entire
icon, including the entire area on each of its layers. You can edit this indicator
to define a stipple pattern for the icon.

• Cursor Indicator: Shows the current position of the cursor, in workspace
units, measured from the upper left corner of the icon viewer, whose
coordinates are (0,0).

Drawing Buttons

These buttons control the creation of graphic elements in the icon viewer. You can
use them to add graphics to the current layer. Each button contains a glyph that
indicates the type of element that the button draws. The following table
summarizes the drawing buttons and their actions.

Button Command Description

point Draws a dot that occupies one
workspace nit.

line Draws a line between any two coordinates
in the icon.

segmented
line

Draws a set of lines that form an
open polygon.

arc Draws a circular arc.
1642

Parts of the Icon Editor
Command Buttons

These buttons control all Icon Editor actions except the drawing of graphic
elements. You can use them as needed to invoke editor commands. Each button
contains a label that names its function. The following table summarizes the
command buttons and their actions:

rectangle Draws either an outlined or a
filled rectangle.

circle Draws either an outlined or a filled circle.

polygon Draws either an outlined or a
filled polygon.

Button Command Description

Button Description

Closes the editor without saving changes.

Saves changes and closes the editor.

Saves changes without closing the editor.

Refreshes the icon viewer.

Creates a new layer in the layers pad.

Deletes the current layer.

Groups two layers, making them a single layer.
1643

Defining Icons
Creating and modifying icons with the Icon Editor entails some or all of
the following:

• Creating, reordering, cloning, and deleting layers.

• Assigning colors to layers.

• Drawing graphical elements.

• Defining text elements.

• Importing external images.

• Defining regions and groups.

You must create a layer before you can use it, but otherwise you can perform
these operations in any desired order. You can also use the Text Editor in

Ungroups the current layer, placing each
constituent graphical element on a
separate layer.

Clones the current layer, creating another layer
that contains all of the same graphic elements.

Changes any outlined elements in the current
layer into filled elements.

Changes any filled elements in the current layer
into outlined elements.

Moves graphics within a layer.

Displays the icon viewer at normal size (x1), or
magnifies it to two (x2) or three (x3) times
normal size.

Removes the most recently created graphic
element in the current layer.

Ends a drawing sequence.

Button Description
1644

Defining Icons
conjunction with the Icon Editor to give an icon extended capabilities that the Icon
Editor alone does not provide:

• A background layer, as described under Specifying an Icon Background Layer
on page 1668.

• The ability to animate icons, as described in Animated Icons on page 1670 and
subsequent sections.

Starting an Icon Definition

You cannot invoke the icon editor on a class-definition until you have specified a
superior class that has an iconic representation.

When you invoke the Icon Editor on an object-definition that has no superior
class, the editor creates by default a single layer whose color is the metacolor
foreground. You can use this layer as a starting point to create an icon for the class
definition. When you later specify a superior class, the icon you have defined will
override the inherited icon.

When you invoke the editor on a class definition that already has an icon, either
locally defined or inherited from a superior class, the editor displays the layers of
the icon in the layers pad. You can edit this icon as desired. Changes will affect
only the icon definition of the class itself; the definition in the superior class will
not be affected.

Controlling Icon Size and Shape

The default icon size is a square whose side is 100 workspace units. You can
reshape an icon to have different dimensions. The length and width need not
be equal.

To reshape an icon:

 Use the mouse to drag the right side, the bottom, and/or the lower right
corner of the icon viewer as needed to give the viewer the desired size
and shape. As you drag the corner, the icon size indicator changes
accordingly.

or

 Edit the length and/or width shown in the icon size indicator to specify the
desired values.

The corner of the icon viewer moves to reflect the specified shape.

You can reshape an icon for which graphics already exist. Such changes do not
affect the existing graphics. If you shrink the viewer so that it is smaller than
existing graphics, the graphics are truncated on the right and/or bottom.
However, the obscured information is not lost: it can be recovered at any time by
increasing the size of the icon.
1645

Tip If you intend to rotate an icon, make both the length and the width even numbers.
Then the item-x-position and item-y-position of the icon will not change when it is
rotated.

Controlling Icon Viewer Magnification

By default, the icon viewer shows an icon as it would appear on a normal sized
workspace. You can magnify the icon viewer without affecting the icon itself.
Such magnification can be convenient for drawing finely detailed icons.

To magnify the icon viewer:

 Click the x2 button to double the display size of the viewer, or the x3 button to
triple it.

The actual size of the icon, measured in workspace units, is unaffected.

To demagnify the icon viewer:

 Click the x1 button to restore the viewer to unmagnified size.

The actual size of the icon, measured in workspace units, is unaffected.

You can obtain magnifications much larger than the x3 button provides by using
Control + b to enlarge the Icon Editor workspace. As the editor becomes larger,
the icon viewer grows with it, increasing the effective magnification. Use
Control + s to shrink the editor back to normal size.

Working with Layers

You can create, clone, move, or delete a layer at any time. Before you can do any
of these, you must select one of the existing layers.

To select a layer:

 Click the mouse on the layer.

The layer becomes the current layer.

Creating Layers

To create a new layer:

1 Select the existing layer above which the new layer is to appear.

2 Click the New button.

The editor creates a new empty layer above the selected layer, then selects the
new layer. The new layer has the same color as the previously selected layer, but
does not belong to any region.
1646

Defining Icons
Moving Layers

To move a layer:

1 Select the layer that is to be moved.

2 Drag the layer to the desired position in the layers pad.

The editor shifts layers up or down as needed to make room for the moved layer,
and places that layer in the indicated position. The icon in the icon viewer
changes as appropriate to reflect the new ordering of the layers.

You can move a layer to the right of the layers pad while you are dragging it, so
that you can see the other layers during the move.

Cloning Layers

To clone a layer:

1 Select the layer that is to be cloned.

2 Click the Clone button.

The editor creates a clone of the selected layer immediately below the layer, then
selects the clone. The cloned layer is an exact duplicate of the original, except that
it does not belong to any region.

Deleting Layers

To delete a layer:

1 Select the layer that is to be deleted.

2 Click the Delete button.

The editor deletes the layer, then shifts other layers up as needed to fill the space.

Specifying Colors

Every layer has an associated color or metacolor. All graphics on the layer have
this color. You can change the color of a layer at any time.

To set the color of a layer:

1 Select the layer.

The current color appears in the Color Indicator.

2 Click on the name of the current color.

The color selection workspace appears.

3 Select the desired color or metacolor.

The color of the layer changes to be the selected color.
1647

The color transparent looks opaque in the Icon Editor, so you can see the graphics
in a transparent layer, but is transparent when the icon appears on a workspace,
allowing the workspace background to show through.

Creating Graphics
To create graphics:

1 Select the layer on which the graphics are to appear.

2 Click the drawing button for the desired type of graphic.

Once you click a drawing button, you can draw as many graphics of its type
as you like. The button remains on until you click Done or do something other
than draw additional graphics of the type.

3 Draw the graphic on the icon viewer (not the layer itself).

If you try to draw in the current layer, the Icon Editor will think you are trying to
move the layer. If this happens:

• Restore the layer to its original position (if needed).

• Retry the drawing operation in the icon viewer.

As you draw, the cursor indicator updates continuously to indicate the position of
the cursor in workspace units. You can use this information to draw very precise
graphics. All points are one workspace unit in size; all lines are one workspace
unit thick.

Drawing Points

To draw a point:

1 Click the Point button.

2 Click the mouse at the location of the point.

Drawing Lines

To draw a line:

1 Click the Line button.

2 Click at the location of the beginning of the line.

3 Click again at the location of the end of the line.
1648

Creating Graphics
Drawing Segmented Lines

To draw a segmented line:

1 Click the Segmented Line button.

2 Click at the location of the beginning of the line.

3 Click again at the location of each vertex.

At each click, a line segment appears connecting the vertex to the previous
vertex. When you have created the last vertex:

4 Click the Done button.

Drawing Arcs

To draw an arc:

1 Click the Arc button.

2 Click at the location of the beginning of the arc.

3 Click a second point.

A line appears between the two points. As you move the mouse, this line
flexes and extends so that it always forms a circular section running from the
first point, through the second, to the mouse position. When the arc has the
desired shape:

4 Click a third point.

The arc remains as it was when you clicked the third point.

Drawing Rectangles

To draw a rectangle:

1 Click the Rectangle or Filled Rectangle button.

2 Click at the location of one corner of the rectangle.

3 Click at the location of the diagonally opposite corner of the rectangle.
1649

Drawing Circles

To draw a circle:

1 Click the Circle or Filled Circle button.

2 Click at the position of the center of the circle.

A circle appears. The center remains at the first point. As you move the
mouse, the circle expands and contracts so that its edge is always at the mouse
position. When the circle has the desired radius:

3 Click a second point.

The circle remains as it was when you clicked the second point.

Drawing Polygons

A filled polygon must be a simple polygon (its edges must not cross) or the editor
will delete it after it is complete. An unfilled polygon need not be simple.

To draw a polygon:

1 Click the Polygon or Filled Polygon button.

2 Click at the location of a vertex.

3 Click again at the location of each additional vertex.

At each click, a line segment appears connecting the vertex to the previous
vertex. When you have created the last vertex:

4 Click the Done button.

The editor automatically connects the last vertex to the first.

Toggling Filled and Outlined Graphics

You can change all closed graphics on a layer to be either filled or unfilled
(outlined). The change does not affect any graphics that already have the chosen
appearance.

To set all closed graphics to be filled:

1 Select the layer to be changed.

2 Click the Fill button.

The editor redraws all closed graphics in the layer to be filled. Exception: any
nonsimple polygon will remain unchanged.
1650

Creating Graphics
To change all closed graphics to be outlined:

1 Select the layer to be changed.

2 Click the Outline button.

The editor redraws all closed graphics in the layer to be outlined.

Deleting Graphics

You can delete graphical elements in a layer in the reverse order of their creation.

To delete the most recent graphical element in a layer:

1 Select the relevant layer.

2 Click the Pop button.

The editor deletes the most recently created graphical element in the selected
layer. To delete additional elements, continue clicking Pop.

If you click Pop on an empty layer, the editor deletes the layer itself. The next
layer below the deleted layer, or the bottom-most layer if there was no next layer,
becomes the current layer.

Moving Graphics

You can use the mouse to change the positions of the graphical elements in a
layer. All of the elements move together to the new position.

To move the graphics in a layer:

1 Select the layer whose graphics are to be moved.

2 Click the Move button.

3 Drag the graphics to the desired position.

The editor clips the graphics as needed if you move them outside the borders of
the icon. If you move an element far enough, it may disappear entirely, but it still
exists: it will reappear if you move it back into the viewing area, or expand the
area to expose the graphic.

If you want to change the relative positions of the graphical elements in a layer,
ungroup and group the layer as needed to provide separate access to its elements,
as described under Creating Groups on page 1660.
1651

Reshaping Graphics

You cannot use the mouse to reshape a graphical element after you have drawn it.
If the shape of the element is not satisfactory, you have two options:

• Delete and replace the element.

• Use the Text Editor to modify the icon description.

For information on using the Text Editor to modify an icon, see Editing Icons
Textually on page 1662.

Defining Text Components
You can use the Icon Editor to define a single text string as a component of a layer,
and to combine such layers into a single layer with multiple text components.

The background of a text component is transparent. The text of a text component
has the color of the component’s layer, and occludes components in lower layers,
just as a graphical component does.

The Layer Indicators include a Text Indicator for including a text component in a
layer. When a layer has multiple text components, only the first shows in the Text
Indicator. All text components appear in the icon description in the class
definition’s table.

To specify a text component in an icon layer using the Icon Editor:

1 Make the layer the current layer.

2 Edit the value of the layer’s Text Indicator. The grammar is:

string at (x-position, y-position) in font-size

where:

string: The text of the component.

x-position: The position of the left edge of the text relative to the left edge
of the icon.

y-position: The position of the baseline of the text relative to the top of the
icon.

font-size: Any standard G2 font size: small, large, or extra-large.

If the text is larger than the icon that displays it, G2 clips it to fit the available area,
both in the Icon Viewer and on a workspace. If necessary, G2 also truncates the
text displayed in the Text Indicator. Neither clipping nor truncation affect the text
itself as defined in the icon description.

To put more than one text component into a layer, specify each in a separate layer,
then combine the layers using the Group button, as described under Creating
1652

Applying a Stipple Pattern
Groups on page 1660. Only the first text component in the combined layer
appears in the layer’s Text Indicator. Use Ungroup to regain separate access to the
components of the combined layer.

Applying a Stipple Pattern
A stipple generally is an application of some color as a pattern appearing as dots,
flecks, or short strokes, i.e., as opposed to a solid color. To stipple an area is to
apply a stipple.

In G2, the word stipple refers to one of the named stipple patterns, which are
represented as any of the following symbols:

• light-stipple

• medium-stipple

• dark-stipple

A `stippled icon is one whose icon description contains either a stipple header or
one or more stippled-area elements.

Stippled Header

A stipple header defines a global stipple that applies to the entire icon, including
the complete area of all layers. A stipple header in an icon description appears at
the beginning of the icon description as:

stipple: <stipple pattern>

where stipple pattern is one of the G2 stipple patterns.
1653

For example, the following pump has a light-stipple pattern header defined for
the icon. Notice that the pattern applies to all layers of the icon.

Stippled-Area Elements

A stippled-area element defines a stipple that applies to a particular layer of the
icon. This can include the entire layer or a rectangular portion of a layer. A stipple
area in an icon description appears among the elements of a given icon layer as:

stippled-area <stipple pattern> [(<x1>, <y1>) (<x2>, <y2>)]

where stipple pattern is one of the G2 stipple patterns and x2, y1, x2, and y2 are
points that define the top-left and bottom-right corners, respectively, of the
rectangular area. If the points are undefined, the entire rectangular area of the
icon layer is stippled.

Stipple
header
1654

Applying a Stipple Pattern
For example, the following pump has a light-stipple-area drawing element
defined for the triangle layer of the icon. Notice that the pattern applies to the
triangle layer only, and that the pump itself is a solid color.

Only one stippled-area element per layer in an icon description is supported at
this time. However, the grammar allows you to define any number of such
stippled-area elements. If there are more than one element defined, G2 will use
only one of the stippled-area elements.

Displaying and Printing Stippled Icons

Special limitations apply to stippled areas on different layers drawn in the
same color:

• If a stippled area appears on a layer of a given color, and there is another layer
of the same color further below it, both layers will be drawn with stippling,
just as though both layers were given the identical stipple.

If the two layers differ in colors, this does not occur.

• Also, if the layer without the stipple appears above the layer with the stipple,
rather than below it, this does not occur.

Note The noncolored dots, or "holes", in stippled areas of icon layers show through to
whatever is underneath the icon, not simply to whatever is on the next layer
down in the icon. It is as though these elements were drawn in the metacolor
"transparent", in that elements of an icon layer drawn in the transparent
metacolor similarly show "all the way through".

Stipple-
area
element
1655

Stippled icons are rendered using solid colors when printed using G2's print
facility, for example, using G2's print command on workspaces, the print action,
and so on.

Programmatic Access to Stipples
The only access to stipples in icons is through the attribute access facility. A
stipple header is an optional field in an icon description structure of the form:

stipple: the symbol <stipple pattern>

where <stipple pattern> is one of the G2 stipple patterns.

A stippled-area element is represented as a structure of the form:

structure(
type: the symbol stippled-area,
stipple: the symbol <stipple pattern>,
points: sequence ([<point> <point>])

)

where <stipple> is as defined above, and where <point> is a structure of the form:

sequence (x: <integer>, y: <integer>)

The first and second points represent the top-left and bottom-right corners,
respectively, of the rectangular area for the stipple. If the sequence is empty, the
entire rectangular area of the icon layer is stippled.
1656

Stipples in the Icon Editor
Stipples in the Icon Editor
Most developers see stipples through the icon editor, where developers generally
view and edit the detailed graphical makeup of an icon. The icon editor provides
a way to view and edit both the stipple header and the stipples-area elements of
an icon.

The grammar accepted for the stipple header is:

{none | light-stipple | medium-stipple | dark-stipple}

The grammar accepted for the stipple-area element is:

{ none | {light-stipple | medium-stipple | dark-stipple} [<point> <point>] }

where the first and second <point> elements have the grammar:

(<integer>, <integer>)

and represent the top-left and bottom-right corners, respectively, of the
rectangular area to be stippled. If they are not supplied the entire area of the layer
is stippled.

Stipple-

Stipple
header

area
element
1657

Including Externally Created Images
An image is a JPEG, GIF, or XBM file that has been made available within G2 via
an image definition, as described in Chapter 34, External Images on page 1219.
Images typically contain screen captures, scanned-in photographs, or other
complex graphics.

You can use the Icon Editor to define a single image as a component of a layer,
and to combine such layers into one layer with multiple images. A layer that
includes an image can also contain other graphics and text defined with the Icon
Editor, just as if no image were present.

An image used in an icon appears in monochrome, even though the original
bitmap may be polychrome. An image behaves like any other graphic with
respect to occlusion, color, grouping, and region definition. The same image can
be included in more than one layer. In each layer, it takes on that layer’s color.

The Layer Indicators include an Image Indicator for including an image in a layer.
When a layer has multiple images, only the first shows in the Image Indicator. All
image components appear in the icon description in the class definition’s table.

Various GIFs that can be used as external images in icons are available in the G2
demos directory, as described under GIF Files on page 2163.

To include an image in an icon:

1 Select the layer that is to contain the image.

2 Click on the value of the Image Indicator to invoke the Text Editor.

The editor lists all currently defined images.

3 Edit the Image Indicator to contain the name of the image.

The image appears in the layer as soon as you close the Text Editor.

To put more than one image into a layer, specify each in a separate layer, then
combine the layers using the Group button, as described under Creating Groups
on page 1660. Only the first image in the combined layer appears in the layer’s
Image Indicator. Use Ungroup to regain separate access to the components of the
combined layer.

Image Size and Icon Size

The size of an image does not affect the icon size. When the icon’s width and/or
height is larger than the image, the image occupies only a portion of the icon.
When the icon’s width and/or height is smaller than the image, the image is
cropped at the boundary of the icon.
1658

Including Externally Created Images
To have an image determine the icon size:

 Edit the Icon Editor width and height indicators to have the values of the
width-of-image and height-of-image attributes of the image-definition table.

Image definition tables are described under Creating an Image Definition on
page 1221.

Image Position

By default, G2 positions an image with its top left corner (the image’s (0, 0)) at the
top left corner of its layer (the layer’s (0,0)). To position an image elsewhere in its
layer, you can enter an (X, Y) offset after the image name.

The numbers in the offset represent workspace units, and can be negative. The
editor offsets the image horizontally by the amount of the X offset, and vertically
by the amount of the Y offset. A negative X offsets the image to the left, and a
negative Y offsets the image upwards. Such an offset crops the image on the left
and/or top.

To position an image in a layer:

1 Click in the image value to edit the image name.

After the name of the image, the editor prompts you with at.

2 Enter an (X, Y) offset, for example:

wizard at (18, 20);

The image wizard now appears in its layer with its upper left corner 18 units to the
right and 20 units down from the upper left corner of the icon. If the size of the
icon is 100x100, and the size of the image is 64x54, this offset positions the image
just above the center of the icon:

(18, 20) offset

64

100

54 100
1659

Defining Regions
A region is a collection of one or more layers that have the same region name. The
constituent layers all have the same color, but appear separately in the layers pad.

The layers of a region can be interspersed freely with single layers, groups, and
layers of other regions. You can use this property in combination with the change
color action to define complex alterations of icon appearance.

The members of a region are included in the region by the fact that they have the
same region name. Region names are arbitrary symbols: a region exists as soon as
you name it as the region of one or more layers. A layer’s region name (if any)
appears at the bottom of each layer in the region. It also appears in the Region
Indicator when the layer is selected.

To add a layer to a region:

1 Select the layer.

The first line of the Region Indicator shows the layer’s region, or none if the
layer does not belong to a region.

2 Edit the region name in the Region Indicator to specify the desired region.

You can add additional layers to a region at any time. When you add a layer to a
region, the layer takes on the color of the region. If you change the color of any
layer in a region, the color of all other constituent layers changes to the new color.

Creating Groups
Any layer that contains two or more graphical elements constitutes a group of
elements. You can group the elements on different layers onto a single layer, or
ungroup a layer into its constituent elements.

To combine two layers into a group:

1 Position the layers consecutively in the layers pad.

2 Select the upper layer of the intended group.

3 Click the Group button.

The editor combines the selected layer and the layer immediately below it into a
single layer. The layer appears in the position of the upper constituent layer, and
shows all graphics that were on either layer. If the layers differed in color, the
color of the upper layer predominates.

You can use Group to add the elements on additional layers to a group at any
time. Grouping does not preserve the individual identities of the grouped layers:
it produces a flat collection of graphical elements, indistinguishable from a single
layer on which all constituent elements were drawn without using Group.
1660

Saving and Canceling Changes
To decompose a group:

1 Select the group.

2 Click the Ungroup button.

The editor creates a separate layer for every graphical element in the group that is
not a point, and another (if needed) that contains all points (if any). Each layer has
the color and region of the decomposed group. The topmost layer is in the
position previously occupied by the group; the other layers are strung out
below it.

To ungroup a layer that contains points only:

1 Select the group.

2 Click the Ungroup button.

The editor notes that the layer contains only points, and ungroups each point onto
a separate layer. Each layer has the color and region of the ungrouped layer.

Saving and Canceling Changes
After you have edited an icon, you can do one of three things:

• Save changes and remain in the Icon Editor.

• Save changes and leave the Icon Editor.

• Discard changes and leave the Icon Editor.

To save changes and remain in the editor:

 Click the Update button.

The editor saves all changes, but remains active. You can now make further
changes if desired.

To save changes and leave the editor:

 Click the End button.

The editor saves all changes and exits.

To discard changes and leave the editor:

 Click the Cancel button.

The editor discards any changes, then exits. Any changes previously saved using
the Update button remain in effect.
1661

Tips for Working with Icons
To facilitate creating a complex icon, first design the icon completely using graph
paper on which each gridline represents one workspace unit.

To make working with a complex icon easier, temporarily change the colors of
some of its layers to transparent. This makes the icon’s appearance less cluttered,
so that you can see other graphic elements in the icon.

Many icons look better when their filled elements are surrounded by a border in a
contrasting color. You can use Clone and Outline to create such a
border conveniently.

To create a contrasting border:

1 Select the layer that you want to outline.

2 Clone the layer.

3 Change the color of the cloned layer to be the outline color.

4 Use the Outline button to convert the layer’s graphics to outlined graphics.

Editing Icons Textually
An icon exists as a textual description of its appearance. This description is the
value of the icon-description attribute of the icon’s class definition. The Icon
Editor translates an icon’s description into graphical form, and allows you to edit
the icon definition graphically, as described earlier in this chapter.

Alternatively, you can edit an icon’s definition textually, either creating it from
scratch, or modifying it as desired. Textual icon editing can be useful, because the
Icon Editor does not allow you to modify graphical elements once you have
created them; textual editing allows any type of modification.

Thus you can use the Icon and Text Editors together to define an icon. The Icon
Editor establishes the icon’s overall properties and shows its current appearance;
the Text Editor allows modifications that fine-tune the icon to have precisely the
desired look.

Icon Description Language Example

A simple icon description consists of:

• The width and height of the icon.

• For each region, the region’s color.

• For each layer, the layer’s region, followed by a description of the graphical
elements of the layer. The layers are listed from the bottom up.
1662

Editing Icons Textually
For example, the following figure shows the layers pad, icon viewer, and text
description of the icon shown in the Icon Editor in the beginning of this chapter:
1663

The following figure shows examples of many of the elements that an icon
description can contain. Each element appears in both Icon Editor and textual
form. Each layer belongs to a region whose name is the type of graphics drawn on
the layer.
1664

Editing Icons Textually
Icon Description Language Grammar

This section describes the grammar of the icon description language. You don’t
need to study this grammar unless you intend to edit icons textually. When
studying the grammar, you can skip over any sections that do not relate
specifically to your needs. See the preceding figure for help in interpreting this
grammar.

The optional icon-background-layer section is described under Specifying an Icon
Background Layer on page 1668. The optional variables section is described in
Animated Icons on page 1670 and subsequent sections.

width: integer; height: integer;
[{region-name = color-name} [, ...] ;]

[variables: {variable-name = variable-value} [, ...] ;]
[icon-background-layer:

{color image image-name at (x-pos, y-pos) | region-name | color-name}]
{region-name: {graphic-definition;} [...] } [...]

graphic-definition :=
point-definition |
line-definition |
segmented-line-definition |
arc-definition |
outlined-rectangle-definition | filled-rectangle-definition |
outlined-circle-definition | filled-circle-definition |
outlined-polygon-definition | filled-polygon-definition |
text-definition |
image-definition

The width and height can each be set to a maximum of 100,000, subject to a
maximum area of 40,000,000. This means, for example, that you can create a
100,000x400 icon.

Note Very large icons may quickly exhaust available graphics memory on Windows
platforms, which will lead to an abort of the G2 or TW process displaying the
icons. G2 and Telewindows may draw very large icons incorrectly on UNIX
platforms, because X Windows restricts drawing coordinates to 16-bit signed
integers (-32768 through +32767). You can also experience drawing problems
with very long diagonal connections.

You can provide a symbol of the form RGBrrggbb as a valid color name, where rr,
gg, bb, are the 8-bit hex values for red, green, and blue. For details, see Other
Literal Terms on page 2155.

The various graphic-definitions are based on a small number of primitives which
they use in ways that are sometimes not obvious. The rest of this section gives
details. All numeric coordinates (x, y) are integers (not integer expressions) in
1665

workspace units measured from the upper left corner of the icon, whose
coordinates are (0,0).

Specifying Points

point-definition := point (x, y);

The coordinates specify the location of the point.

Specifying Lines

line-definition := lines (x, y) (x, y);

The two pairs of coordinates specify the beginning and end of the line.

Specifying Segmented Lines

segmented-line-definition := lines (x, y) (x, y) [(x, y)]...;

Each coordinate pair specifies the location of one vertex of the segmented line.

Specifying Arcs

arc-definition := lines (x, y) arc (x, y) (x, y);

The first, second, and third coordinate pairs denote the first, second, and third
points that you click to define an arc with the mouse. The arc is a circular section
that extends from the first point through the second point to the third point.

Specifying Outlined Rectangles

outlined-rectangle-definition := outline (x, y) (x, y) (x, y) (x, y);

The four coordinate pairs specify the four corners of the rectangle.

Specifying Filled Rectangles

filled-rectangle-definition := filled rectangle (x, y) (x, y);

The two coordinate pairs specify the upper left and lower right corners of the
rectangle.

Specifying Outlined Circles

outlined-circle-definition := circle (x, y) (x, y) (x, y);

The three points denote an arc that, when completed, forms the circle. The same
three points, given in order to an arc definition, would produce the
underlying arc.

When you specify an outlined circle definition textually, you can give any three
points on the circumference of the circle.
1666

Editing Icons Textually
When the Icon Editor generates the three points of an outlined circle definition
from graphical input (via the Circle or Filled Circle button), the points specify a
semicircular arc that opens downwards. If the center of the circle is at (XC, YC)
and the radius is R, the three points are (XC-R, YC) (XC, YC-R) (XC+R, YC).
Inversely, if the three points are (X1, Y1), (X2, Y2), and (X3, Y3), the center of the
circle is (X2, Y1) and the radius of the circle is (X3-X1)/2.

Specifying Filled Circles

filled-circle-definition := filled circle (x, y) (x, y) (x, y);

The three points are the same as those in an outlined-circle-definition.

Specifying Outlined Polygons

outlined-polygon-definition := outline (x, y) (x, y) (x, y) [(x, y)]...;

Each point specifies the location of one vertex of the polygon.

Specifying Filled Polygons

filled-polygon-definition := filled polygon (x, y) (x, y) (x, y) [(x, y)]...;

Each point specifies the location of one vertex of the polygon.

Specifying Text Components

text-definition := text string at (x-position, y-position) in font-size

The elements of the definition are:

string: The text of the component.

x-position: The position of the left edge of the text relative to the left edge of
the icon.

y-position: The position of the baseline of the text relative to the top of the icon.

font-size: Any standard G2 font size: small, large, or extra-large.

Including External Images

image-definition := image-name (x, y);

The image-name is a symbol that is the name of an image definition object. The
coordinates give the offset of the upper left corner of the image from the upper
left corner of the icon.

Using the Icon and Text Editors Together

To use the Icon and Text Editors together, invoke them both on the same icon
description, and position them so that both are fully visible. You can now use
1667

either editor to examine and change the icon, and the other editor to see the effect
of the changes.

The two editors function independently even when you use them on the same
icon. Neither editor knows what happens in the other, or is aware of changes
saved by the other. After you save changes made in either editor, you must close
and reopen the other editor to show the changes there also.

Be careful not to make concurrent changes in both editors, or the changes saved
by one editor will be overwritten when you save the changes made in the other.

Specifying an Icon Background Layer
G2 provides an optional icon layer called the icon-background-layer, which
appears behind all other components of an icon. This layer can contain a
monochrome or polychrome image, or can be of any G2 color. Unlike imported
images in other layers, a polychrome image in an icon background layer appears
in polychrome on the screen.

An image in a background layer is called a background image, and the color of a
colored background layer is called the background color. An icon background
layer cannot simultaneously have both an background image and a
background color.

Specifying a Background Image

To specify an icon background image for a class:

1 Use the Text Editor to give the class definition’s icon description an icon-
background-layer section.

2 Specify the name and location of the image using the grammar:

color image image-name at (x-position, y-position)

where image-name is the name of an image-definition, and x-position and
y-position give the position of the upper left corner of the image relative to the
upper left corner of the icon.

For example, if corporate-logo is an image, the definition:

icon-background-layer: color image corporate-logo at (0,0)

displays the image in the background layer at the indicated coordinates.

Notes on Background Images

When you use the Icon Editor to edit an icon that includes a background image,
the image appears in the Icon Viewer, but cannot be edited: it appears only to
facilitate designing the rest of the icon.
1668

Specifying an Icon Background Layer
If a background image is larger than the icon that displays it, G2 clips it to fit the
available area, both in the Icon Viewer and on a workspace.

If you specify a background image that does not exist, G2 puts a warning in the
class definition’s notes attribute, but does not signal an error. The icon looks just
as it would if the unresolved definition did not exist.

A background image definition applies to all instances of a class: you cannot
change background images per-instance.

Various GIFs that can be used as icon background images are available in the G2
demos directory, as described under GIF Files on page 2163.

Specifying a Background Color

A background color can be specified explicitly or by naming a region, in which
case the background layer has the color of that region. When a region gives the
background color, the color can be changed programmatically. A background
color completely fills the background of an icon, irrespective of the icon’s size.

To specify an icon background color for a class:

1 Use the Text Editor to give the class definition’s icon description an icon-
background-layer section.

2 Specify the value of the layer to be either:

• Any G2 color.

• A region-name.

For example:

icon-background-layer: red

or:

icon-background-layer: my-region

where my-region is any defined region.

To change the icon background color of an instance:

1 Specify the icon background color in the class icon description by giving a
region-name rather than a specific color.

2 Execute this action:

change the region-name icon-color of instance to color
1669

where:

region-name: the name of the region that specifies the icon background
color

instance: the instance whose background color is to change

color: any G2 color

For example:

change the my-region icon-color of my-instance to green

Animated Icons
G2 allows you to:

• Specify almost any element of a class’s icon description as an icon variable.

• Use the conclude action to change the value of the icon variable in an instance.

The instance’s icon immediately changes to reflect the new value. Other instances
are unaffected. Changes to icon variable values are permanent: resetting the KB
does not reset the value.

Note Do not confuse icon variables with G2 variables. An icon variable is not an object:
it is just a symbol that has a value.

You can use icon variables to specify:

• The x-position and/or y-position in any coordinate pair except the position of
a background image.

• The text of a text component.

• The font size of a text component.

• The name of the image in any image component except a background image.

You cannot use icon variables to specify:

• The width or height of an icon.

• A region name or color.

• The essential type of a graphical component.

• Any property of a background image.

You cannot use icon variables to specify width and height because the width and
height in an icon description are functionally icon variables already, as described
under Changing Width and Height on page 1676.
1670

Defining and Using Icon Variables
If you change icon appearance so that an icon component extends outside the icon
border, G2 clips the component. If the entire component is outside the border, it
does not appear at all.

Defining and Using Icon Variables
All icon variables (except width and height) are defined in the variables section of
the icon description. The syntax of that section is:

[variables: {variable-name = variable-value} [, ...] ;]

For example:

variables: my-variable = 20, your-variable = 30;

defines the icon variables my-variable and your-variable, and gives each the
default value shown. The values are default values rather than initial values
because they are set once when a class is instantiated, and are not reset when the
KB is reset, as initial values of variables and parameters are.

Once an icon variable is defined, you can use it in place of any component of the
icon description that can be given by an icon variable. For example, given the
above definitions, the graphic definition:

lines (10, my-variable) (your-variable, 40);

defines a line that runs from (10, 20) to (30, 40).

You can define and use icon variables with the Text Editor, the Icon Editor, or
both in combination. The most convenient technique varies with the purpose of
the icon variables, as described in this section.

You can also specify any x-position and/or y-position as an integer expression, as
described under Specifying Locations with Expressions on page 1675. For
simplicity, the following instructions assume that locations are given by single
icon variables.

If you follow the guidelines described under Using the Icon and Text Editors
Together on page 1667, you can use the Icon and Text Editors in parallel. This
technique allows you to see the icon’s visual and textual representations
simultaneously, which can be helpful in designing complex icons.

Specifying Graphical Positions with Icon Variables

The simplest use of icon variables is to specify the positions of the defining points
of graphical icon components: lines, rectangles, circles, and the like. You can then
cause the icon components to move and reshape by changing the values of the
icon variables.
1671

To specify graphical positions using icon variables:

1 Create the icon component(s) whose positions will be given by icon variables,
in approximately their initial locations, as described under Creating Graphics
on page 1648.

2 Use the End button to save the icon description.

3 Use the Text Editor to edit the icon description.

4 Create a variables section (or update an existing one) that defines all needed
x-position and y-position icon variables. Give each icon variable the desired
default value.

5 Substitute icon variables for x-positions and y-positions in the icon description
as desired.

6 Exit the Text Editor to save the icon description.

For example:

width 100; height 100;
variables: x = 89, y = 74, label = "George";
blue: filled rectangle (0,0) (100, 100)
linen: filled rectangle (13, 18) (X, Y)
forest-green: text label at (20, 50) in large

Specifying Text Components with Icon Variables

Defining a text component using icon variables is similar to defining a graphical
component using them. The differences are:

• A text component includes a string and a font, which can be given by
icon variables.

• When a layer contains only one text component, you can use the Icon Editor to
partially automate the work of specifying the icon variables.

To define a single text component that uses icon variables:

1 Use the Icon Editor to define the text component, as described under Defining
Text Components on page 1652.

2 In the Text Indicator, specify any available symbol for any or all of:

• The string itself.

• The x-position of the text string.

• The y-position of the text string.

• The font-size in which the string appears.
1672

Defining and Using Icon Variables
For example:

3 Use the End button to save the icon description and close the Icon Editor.

G2 adds a variables section to the icon description if one did not already exist,
and defines in the icon description’s variables section any icon variables used
in the text description that were not already defined there. Each such
definition specifies a default value for the icon variable:

• "undefined-text" for a string.

• large for a font-size.

• 0 for an x-position or y-position.

The Status Indicator reports each icon variable that the editor adds to the icon
description’s variables section.

4 Use the Text Editor to assign a new value to any icon variable that does not
have the desired default value.

5 Close the Text Editor to save the modified icon description.

To define multiple text components that use icon variables:

1 Use the Icon Editor to specify each component in a separate layer.

2 Use the Text Editor to complete the definitions as needed.

3 Use the Icon Editor Group button to combine the layers into one layer.

Use Ungroup to regain separate access to the components of the combined layer.

To define text components textually:

1 Use the Text Editor to enter the text definitions into the icon description, as
described under Specifying Text Components on page 1667.

2 Use icon variables to specify parts of the definition as needed.

3 Create and/or edit the variables section of the icon description to define the
icon variables and give them default values.

4 Close the Text Editor to save the modified icon description.
1673

Specifying Image Components with Icon Variables

Defining image components is similar to defining text components.

To define a single image component that uses icon variables:

1 Use the Icon Editor to specify the image component, as described under
Including Externally Created Images on page 1658.

2 In the Image Indicator, specify any available symbol for any or all of:

• The image-name itself.

• The x-position of the image.

• The y-position of the image.

3 Use the Update or End button to save the icon description.

At this point, G2 has no way to know whether you intended the symbol that
specifies the image-name as a literal image name or as an icon variable, so the
name does not appear in a variables section. If the icon description contains
nothing that G2 knows to be an icon variable, the definition has no
variables section.

4 If you want image-name to be an icon variable, use the Text Editor to either
add a variables section that defines image-name, or to add the definition of
image-name to the existing variables section. The needed definition gives
image-name a value that names an image-definition: the same value that you
would have put directly into the Image Indicator if you were not using an
icon variable.

If you used icon variables to specify the x-position and/or y-position, the icon
description contains a variables section that defines the icon variable(s) with a
default value of 0.

5 Use the Text Editor to assign a value to any x-position and y-position icon
variable that does not have the desired default value.

6 Close the Text Editor to save the modified icon description.

To define multiple image components that use icon variables:

1 Specify each component in a separate layer.

2 Use the Text Editor to complete the definitions as needed.

3 Combine the layers into one layer using Group.

4 Use Ungroup to regain separate access to the components.
1674

Defining and Using Icon Variables
To define image components textually:

1 Use the Text Editor to enter the image definitions into the icon description.

2 Use icon variables to specify parts of the definition as needed.

3 Create and/or edit the variables section of the icon description to define the
icon variables and give them default values.

4 Close the Text Editor to save the modified icon description.

Specifying Locations with Expressions

Any x-position and/or y-position in an icon description can be specified as an
integer expression consisting of any number of symbols and integers combined
by addition and subtraction. You can use the Icon Editor to specify such
expressions in the Text and Image Indicators, and in the Text Editor to specify
them in any context.

Any symbol that appears in an integer expression specified in the Icon Editor, and
was not already defined in the icon description’s variables section, automatically
appears in the variables section with a default value of 0, just as a single icon
variable does. Edit the default value as needed to provide a different value.

When an expression in an icon description contains more than one constant, G2
collapses all of them into a single constant when it saves the icon description.

Manual Layer Positioning and Icon Variables

If you use the Icon Editor to manually change any position given by an icon
variable or an expression, the editor adds to the icon variable or expression a
constant that reflects the change.

• For a location specified by an icon variable, the effect is to convert the
specification to an expression.

• In an expression that already contained a constant, the editor combines the
new and existing constants into a single value.

If you move a text component or an imported image whose position is defined
using icon variables and appears in the Text Indicator or Image Indicator, the
constants that the editor adds to the icon variables appear in the relevant
indicator.

Errors in Icon Variable Specifications

Whenever you use an icon variable, both the Icon Editor and the Text Editor
check that the usage is syntactically correct. If an error exists, the editor indicates
it, and will not save the icon description until the error is corrected.
1675

Animating Icons
When any part of a class’s icon description is given by an icon variable, you can
use the conclude action to change the value of that icon variable for an instance of
the class whenever G2 is running. The appearance of that instance changes to
reflect the new value(s). Other instances of the class are unaffected. Changes to
icon variable values are permanent: resetting the KB does not reset the value.

G2 performs type checking on all changes to icon variables, and signals an error if
you attempt to conclude a value that is incompatible with the icon variable’s
usage.

Changing Width and Height

You cannot use icon variables to specify width and height because the width and
height in an icon description are functionally icon variables already. Therefore, G2
lets you conclude values to them just as you can to icon variables that appear
explicitly. This section hereafter refers to width and height as if they were ordinary
icon variables.

You change icon size by concluding integer values into width and height. The
maximum allowable value for each dimension is 10,000, subject to a maximum
area of 40,000,000. This means, for example, that you can create a 100,000x400
icon. The minimum allowable value is 1.

Referencing Icon Variables

Suppose that the icon description of the class tank specifies:

• A width and height of 50.

• Three icon variables, x, y, and z, whose values are all 0.

• No other icon variables.

If an instance of tank named tank-1 exists, and none of these values has been
changed by a conclude, the value of:

the icon-variables of tank-1

is:

structure (width: 50, height: 50, x: 0, y: 0, z: 0)
1676

Animating Icons
Replacing Icon Variable Values

You can replace all icon variable values in a single operation by concluding a
structure to them that specifies the new values. Thus:

conclude that the icon-variables of tank-1 =
structure (width:100, height: 100, x: 0, y: 50, z: 75)

sets tank-1’s icon variables to have the values shown.

Replacing Icon Variable Text

You can replace icon variable text by concluding its value. For example, suppose
you have defined an icon variable named text-var. The first example below
concludes the value of the text-var icon variable, using a text parameter. The
second example concludes the text-var icon variable subattribute of the
icon-variables structure.

conclude that the text-var of the icon-variables of test-obj-1 = text-parameter-1

conclude that the icon-variables of test-obj-1 = structure (text-var: "new-text",
width: 100, height 100)

Merging Icon Variable Values

You can change some icon variable values while preserving the existing values of
others. The technique is:

1 Obtain the existing icon values

2 Change values in the returned structure as desired.

3 Conclude the changed structure back into the icon variables.

For example, if tank-1’s icon variable values are:

structure (width:100, height: 100, x: 0, y: 50, z: 75)

then executing:

current-icon-variables: structure;
new-icon-variables: structure;
begin

current-icon-variables = the icon-variables of tank-1;
new-icon-variables =

change-attribute (current-icon-variables, Z, 30);
conclude that the icon-variables of tank-1 = new-icon-variables; end

results in the icon variables of tank-1 being:

structure (width:100, height: 100, x: 0, y: 50, z: 30)
1677

The same logic could be expressed more compactly as:

conclude that the icon-variables of tank-1 =
change-attribute (the icon-variables of tank-1, z, 30)

Alternatively, you can use a subattribute reference to conclude a single variable in
the icon variable structure. Thus the effect of the preceding code could also be
produced by executing:

conclude that the z of the icon-variables of tank-1 = 30;

This technique eliminates the overhead of explicitly retrieving, setting, and
concluding values. However, a sequence of concludes that use subattribute
references executes more slowly than a single conclude that accomplishes the
effect of them all, and might cause icon appearance to pass through unwanted
intermediate stages as the concludes execute one by one.

Conveniently Merging New and Default Values

When you want every icon variable to have either its class default value or a value
to be set in a conclude action, you can conclude a structure that references only
the icon variables that are to have non-default values.

For example, if the tank class is as described under Referencing Icon Variables on
page 1676, and tank-2 has default values for all icon variables (width: 50, height:
50, x: 0, y: 0, z: 0), executing:

conclude that the icon-variables of tank-2 = structure (z: 75)

sets tank-2’s icon variables to:

structure (width: 50, height: 50, x: 0, y: 0, z: 75)

This technique eliminates the overhead of specifying icon variable values that are
to be left unchanged, but it resets any icon variables not referenced in the
concluded structure to have the default values specified for them in the class
definition. For example, executing:

conclude that the icon-variables of tank-2 = structure (width: 100)

on the modified tank-2 sets tank-2’s icon attributes to:

structure (width: 100, height: 50, x: 0, y: 0, z: 0)

The value of z, being unspecified in the concluded structure, has reverted from 75
to the class default value.
1678

47
The Inspect Facility
Describes how to use the Inspect facility to search for items.

Introduction 1680

Using the Inspect Facility 1681

Showing Items on a Workspace 1684

Showing Items with Unsaved Permanent Changes 1686

Writing Items to a File 1694

Locating Items in Your KB 1696

Displaying Item Tables 1696

Replacing Text in Items 1698

Highlighting Text 1701

Checking for Consistent Modularization 1701

Recompiling Items 1702

Filtering Classes of Items 1702

Version Control 1706

Inspect Command History (Enterprise only) 1707
1679

Introduction
You use the Inspect facility to search a knowledge base (KB) for items based on
their type, class, attributes, and location. You can use the Inspect facility to:

• Show short representations of items on the Inspect workspace.

• Display the class, module, workspace, invocation, and method hierarchies.

• Create a file containing the definitions of items.

• Go directly to a particular item in the knowledge base.

• Display a representation of an item’s table on a workspace.

• Replace and highlight text in the knowledge base.

• Check for consistent modularization.

• Recompile specific items.

You can also apply a variety of filter expressions to limit the search when
inspecting classes of items.

Once the Inspect facility has located the item(s), you can interact with the item in a
variety of ways, including going to the item, displaying the item’s table, and
describing the item.

The Inspect facility runs in the background, which means you can launch
multiple searches simultaneously, and users can access the KB while the search
is underway.

A number of system procedures exist for performing Inspect commands
programmatically. For details, see the G2 System Procedures Reference Manual.
1680

Using the Inspect Facility
Using the Inspect Facility

To use the Inspect facility:

1 Select Main Menu > Inspect.

G2 displays the following edit workspace with the Inspect commands.

2 Enter an Inspect command from the list of commands shown above.

For example, to display every action button whose status is OK, enter the
following command:

show on a workspace every action-button whose status is ok
1681

G2 displays an Inspect workspace such as this:

The Inspect workspace displays the progress and results of an inspection in its
search results table. If Inspect is searching for items, the workspace also shows
a short representation of each item that it finds.

3 To hide the Inspect workspace, click the Hide button on the workspace.

The Inspect workspace contains the following buttons:

Inspect command

Search results
table

Short
representations
of items

Note: There may be more
items than can be contained
on the workspace.

Button Description

Hide Hides the temporary workspace by
deleting it.

Suspend Suspends the current search. This button
only appears while the search is in progress.

Continue Continues searching after suspending
a search.

Rerun Reruns the current Inspect command.
1682

Using the Inspect Facility
Interacting with Items on the Inspect Workspace

Each item in the Inspect workspace behaves in many ways like a normal item; you
can display its table in the workspace and describe the item. You can also place
your cursor on the actual item.

To display an item’s table:

 Click on the item to display its menu and select table.

To describe the item:

 Click on the item to display its menu and select describe.

To go directly to the item:

 Click on the item to display its menu and select go to original.

Tip You can accomplish the same thing by using the go to command described in
Locating Items in Your KB.

To transfer the item to another workspace:

 Click on the item to display its menu and select transfer.

Edit Opens the editor for editing the current
Inspect command.

End Executes the current Inspect command
when the cursor is in the text editor.

Button Description
1683

Showing Items on a Workspace

You can use the Inspect facility to search the KB for particular types of items by
using the show on a workspace command as described in Using the Inspect
Facility. G2 can show specific items or classes of items, and graphical
representations of various hierarchies in the KB.

Syntax

show on a workspace
{ item |

the class-name named item-name} |
every class-name [filter] |
the workspace hierarchy [of { kb-workspace-name | object-name }] |
the class hierarchy [of class-name] |
the module hierarchy [of module-name] |
the procedure {caller | calling} hierarchy of procedure-name |
the method hierarchy of method-name |
method inheritance path for class-name [and the method method-name] }

Showing Items and Classes

You can use the show on a workspace Inspect command to show a particular
item, or a named item of a particular class. Here are some examples:

show on a workspace valve-1

show on a workspace the node named server-node

You can also show classes of items and class of items that meet a particular
criteria. When searching for classes of items, you can specify a filter to qualify the
search. For information about filters, see Filtering Classes of Items. For example:

show on a workspace every rule

show on a workspace every class-definition containing pressure

The following command shows every item with permanent changes to attribute
values and newly created items:

show on a workspace every item with unsaved changes

Tip When inspecting classes of items using the every syntax, specify a class as low as
possible in the class hierarchy to uniquely identify the item(s). If you specify a
class that is very high in the hierarchy, such as the object class, the Inspect facility
must search through all items of the specified class, which can be time consuming.
1684

Showing Items on a Workspace
G2 displays a short representation of each item that meets the criteria, or the item
itself. This figure shows two Inspect workspaces, one with a short representation
of an item, and the other with two actual rules.

Note If more than one item has the same name, G2 shows you all of them.
1685

Showing Items with Unsaved
Permanent Changes

To show items with unsaved permanent changes:

 Enter one of these commands in the edit box:

show on a workspace every class-name with unsaved changes

display a table of every class-name with unsaved changes

To access permanent change information from an item’s short representation:

 Select show unsaved attributes from the item menu.

The item’s permanently changed attributes are highlighted in the attribute
table that appears. All attributes are highlighted for a new item. An item that
has no unsaved permanent attribute changes has no show unsaved attributes
menu option.

The next example shows unsaved permanent-change information accessed
through the Inspect facility and from item menus. The only changes made to the
KB were:

• The class-specific-attributes attribute of foundation class was changed from a
one-attribute value to none.

• The item universe was created and named.
1686

Showing Items with Unsaved Permanent Changes
The class-definition and the item-representation and name box for universe have
a show unsaved attributes menu choice. The class-definition has its two changed
attributes highlighted, and all the attributes are highlighted for universe item and
its name-box because they are new items. Because anonymous has lost an
attribute, it is shown on the Inspect workspace, but the item does not have a show
unsaved attributes menu choice.

Note Executing a show on a workspace every item with unsaved changes Inspect
command immediately after launching your G2 process shows changed items.
They are the system tables that have been created during G2 initialization.
1687

Showing the Workspace Hierarchy

You can show the workspace hierarchy of a particular workspace or object, and
you can show the overall workspace hierarchy. G2 displays a graphical
representation of the specified workspace hierarchy on a temporary workspace.

The following example shows the workspace hierarchy of a workspace and
an item:
1688

Showing Items with Unsaved Permanent Changes
Showing the Class Hierarchy

You can show the class hierarchy for a particular class or all classes. G2 displays a
temporary workspace that shows a graphical representation of the class
hierarchy. When showing the class hierarchy for a particular class, G2 also
displays all the superior classes. For example:

When displaying the class hierarchy of a class that uses multiple inheritance, the
graphical representation shows the specified class as a subclass of each superior
class, as shown in this example where the class car-boat has two direct-superior
classes: car and boat.
1689

Showing the Module Hierarchy

You can show the module hierarchy for the entire knowledge base, or for a
particular module. G2 displays a temporary workspace that shows a graphical
representation of the module hierarchy as shown in the following example:

If more than one module in the hierarchy directly requires the same module, the
module appears multiple times in the hierarchy. However, if the directly required
module also has directly required modules, the submodules appear only once. An
example is the sys-mod module shown in the previous example.

Showing Procedure Caller and Calling Hierarchies

You can show the hierarchy of all procedures that call, or are called by, a specified
procedure. The invocation can be either a call or a start. The grammar is:

show on a workspace
the procedure {caller | calling} hierarchy of procedure-name

The procedure-name can be a method name, and the method name can be class-
qualified. If an unqualified method name is given, and more than one method
exists with that name, Inspect displays information for all of the methods.

Inspect can show only invocation hierarchies that are statically defined in the
compiled code. Invocations that are computed at run time, such as a call to a
procedure passed as an argument to the calling procedure, do not appear.

The system procedures g2-get-procedure-caller-hierarchy and g2-get-procedure-
calling-hierarchy give you programmatic access to these hierarchies. These
procedure and other programmatic inspect procedures are documented in the
G2 System Procedures Reference Manual.
1690

Showing Items with Unsaved Permanent Changes
Here is an example of the caller and calling hierarchies:

Showing the Procedure Invocation Hierarchy

You can show the procedure invocation heirarchy that is on the current runtime
stack. The hierarchy is displayed as a tree with the procedure that was invoked
first at the top root with subsequent invocations cascading downwards. The
values displayed are the arguments to the procedure, the local variables, and the
return arguments.

The syntax is:

show on a workspace the procedure invocation heirarchy
1691

Here is an example invocation hierarchy as displayed on an Inspect
temporary workspace:

The system procedure g2-get-procedure-invocation-hierarchy gives you
programmatic access to the invocation heirarchy. This procedure and other
programmatic inspect procedures are documented in the G2 System Procedures
Reference Manual.
1692

Showing Items with Unsaved Permanent Changes
Showing Method Definition Hierarchies

The three method hierarchy examples shown in this section are based on the two
class hierarchies and their related methods and method declaration shown in the
following figure. For example purposes, there is no method declaration defined
for the describe method.

You can show the hierarchy for all classes that define methods with a particular
name. G2 displays a temporary workspace that shows a tree representation of the
method hierarchies, using short representations of the methods defined for
each class.

The following example shows the result of showing the method hierarchies of all
the classes that define the introduce method in the KB:

You can also show the method inheritance path for a particular class, which is
useful for determining all the methods defined specifically for the class and the
1693

methods it inherits from its superior classes. This Inspect command is also useful
for determining what method G2 calls methods when evaluating the call next
method statement.

The following example shows the method inheritance path for plan-c. The
methods are arranged from left-to-right, with the most specific methods on the
left and the least specific methods on the right. There is no method declaration for
the describe method so G2 displays the method name instead of a method-
declaration short representation.

Finally, you can show the method inheritance path for a particular class and a
particular method name, as this example shows:

Writing Items to a File

You can use the Inspect facility to write a report to a file by using the write to file
command. Write to the file allows you to inspect most of the same things that you
can inspect with show on a workspace, except that G2 writes the results to a file
instead of showing them on a temporary workspace.

The generated file contains a text heading indicating what knowledge base you
inspected and the time when the report was generated. The contents of the file
depend on what you are inspecting, as the following sections discuss.

The filename you specify can be a symbol if it just names a file. If it names a
complete pathname, it must be a string. If you do not specify a file extension, G2
adds the suffix .qp. If you do not specify a directory, it writes to the current
directory that is specified by the Load KB command.
1694

Writing Items to a File
Syntax

write to the file filename
{ item |

the class-name named item-name} |
every class-name [filter] |
the class hierarchy [of class-name] }

Writing Items

You can write the contents of any item, class of items, or item of a particular class
with a particular name to a file. You can use any expression to identify the item
or class.

The file contains the file header, the name of the item and its class, where relevant,
the name, notes, and item-configuration attributes for the item, and any user-
defined attributes or specifications for the item.

For example, you might want to write a file of a particular item or a class of items:

write to the file "user/log/pump-1" pump-1

write to the file "user/log/pump-classes" every pump

The output file would be an ASCII text file that might look like this:

** Gensym G2 Knowledge Base Inspection Output
** From KB: pump-text.kb
** File: /home/abc/pump-test.text
** Written at: 26 Jul 9912:39:14 p.m.

** Command:
write to the file "/home/nrs/pump-test.text" every pump

** Results follow this line:

FUEL-PUMP-1, a fuel-pump
Notes OK
Item configuration none
Names FUEL-PUMP-1
Pressure 8

WATER-PUMP-1, a water-pump
Notes OK
Item configuration none
Names WATER-PUMP-1
Pressure 5

You might also issue the following command to write a file of all messages
containing a certain word:

write to the file "/user/log/pump-status" every message
containing the word pump
1695

Writing a Class Hierarchy

You can write a class hierarchy to a file. The contents of the file includes the file
header, a list of classes, appropriately indented to indicate the hierarchy, and the
number of instances of each class.

For example, you could write a file that showed the class hierarchy of a particular
class and all its instances:

write to the file "user/log/pump-classes" the class hierarchy of pump

Locating Items in Your KB

You can use the go to command to locate particular items in a KB. Issuing this
command causes G2 to display the specified item at full scale in the center of the
workspace with your cursor on the item.

The syntax is:

go to symbol

For example, the following command moves the cursor directly to valve-5:

go to valve-5

Tip You can accomplish the same thing by using the show on a workspace command,
and then by using the go to original command on the item.

Note If the item is already on the screen when you go to that item, G2 moves the
workspace so that the item is in the center of the screen.

Displaying Item Tables

You can use the Inspect facility to display attribute tables for an item directly on a
temporary workspace. You can display all attributes of an item or particular
attributes, and you can display the items row by row, or column by column.

The cells of the table serve as items, with which you can interact. For example,
you can display the actual table for the item, go to the original item, and describe
the item. You can also edit attribute values of the item directly in the table.

Note Displaying tables for large numbers of items can require significant amounts of
memory, because each table cell requires memory to display.
1696

Displaying Item Tables
Syntax

display a table
[columnwise] of [the attribute-name [, attribute-name]... of]
{ item |

the class-name named item-name |
every class-name [filter] }

Determining How to Display the Table

You can display a table of attributes where each item is displayed in a row or in a
column. The table includes all user-defined attributes of the item, as well as the
notes and names attributes.

If there are more items that are visible on the workspace, you will have to move
the workspace to see all the cells in the table. Here are two examples:

Specifying Which Attributes to Display in the Table

You can specify particular attributes to display in the display a table command.

The following command displays just the input-signal and output-signal attributes
of every Digital Component object on the schematic workspace:

display a table of the input-signal and output-signal of every
digital-component found on the workspace schematic

When specifying more than two items in the list of attributes to display, the items
should be separated by commas, and the last two items should be separated by
the word and.

The following command displays the name of every digital component, in
addition to the input signal and output signal:

display a table of the names, input-signal, and output-signal of every
digital-component found on the workspace schematic

Display a table of every valve

Display a table columnwise
of every valve
1697

Interacting with the Table

You can interact with the cells in the table as if they were items. For example, you
can display the table for the item, describe the item, go to the original item, as well
as edit attribute values of the item directly in the table.

To interact with the item:

1 Click on a cell that represents the name of the item or its notes to display a
menu for the item representation.

2 To display the table for the item, select table.

3 To place the cursor on the original item, select go to original.

4 To use the Describe facility on the item, select describe.

To edit the attributes of the item:

 Click on a cell that represents the value of an attribute, and enter a new value.

To hide the table:

 Click on any cell that represents the name of the item or its notes, or click on
any header cell, and select hide table.

Replacing Text in Items

You can use the Inspect facility to change every occurrence of a piece of text
within all or part of a knowledge base. You can replace numerous types of text,
for example:

• Attribute values of items.

• Symbols and strings in rules and procedures.

• Text strings in messages, labels, free text, and so on.

Note You cannot replace text when using a deployment license.

Syntax

replace [the { word | symbol }] {string | symbol}
with {string | symbol}
in {item |

the class-name named item-name |
every class-name [filter] }
1698

Replacing Text in Items
Replacing Text

In general, the format of the replace command is:

replace text-to-find with text-to-replace in item

Some examples are:

replace person-class with people-class in every item

replace "connected at the input-port-1" with "connected at the input-port-a"
in every rule

When you follow the replace command with the word or the symbol to specify the
type of text to replace, G2 will not replace subtext. It will only replace text
preceded and followed by white space.

For example, given this text:

There are nine classes that are subclasses of alligator.

if you use this command to replace text:

replace classes with species in text203

the text becomes:

There are nine species that are subspecies of alligator.

If you replace the original text with this command:

replace the word classes with species in text203

the text becomes:

There are nine species that are subclasses of alligator.

As with show on a workspace, you can replace text in specific items, named items
of a specific class, or classes of items that meet a particular criteria. For example:

replace "pump-1" with "p-1" in every procedure found on the workspace pump-ws

The Inspect workspace reports on various information as the replacement is
occurring, and it displays a short representation of the items in which
replacements have occurred, highlighting the replaced text. If there are more
replacements than can fit on one workspace, you will need to move the
workspace to see all items.
1699

This example replaces a word in every item:

Note G2 ignores case when searching for and replacing text.

Replacing Text That is Not Grammatically Correct

G2 does not replace a string if the operation is grammatically incorrect. When G2
attempts a replacement that results in incorrect syntax, it displays a temporary
edit workspace, which shows the item that it could not change. You can edit the
item or hide the workspace.
1700

Highlighting Text
Highlighting Text

If you do not want the Inspect facility to change text immediately, you can use the
highlight command to find every occurrence of a piece of text, and display it on a
temporary workspace. Once it is found, you can edit the text manually, if desired.
G2 highlights text only in editable attributes.

The highlight command has the same syntax as the replace command. Using the
word and the symbol syntax highlights text preceded and followed by whitespace.
sIt does not highlight subtext. For examples, see Replacing Text in Items.

For example:

Checking for Consistent Modularization

You can use the Inspect facility to check that your KB is consistently modularized.
You do this by using the following command:

check for consistent modularization

Executing this command causes G2 to validate that the current KB’s modules
conform to G2’s rules for consistent modularization. For information about these
rules, see Rules for Consistent Modularization.

highlighted text
1701

Recompiling Items

You can use the Inspect facility to recompile individual items or classes of items.
You recompile items when upgrading to new versions of G2 or after declaring a
KB to be stable.

For example, when upgrading to a new version of G2, you can recompile every
item like this to make use of compiler optimization:

recompile every item

Syntax

recompile
{ item |

the class-name named item-name |
every class [filter] |

Filtering Classes of Items

When inspecting classes of items by using every in the command, you can restrict
the search to include only those items that meet certain criteria. This is a powerful
way of identifying particular classes of items to inspect.

This filter applies when you inspect classes of items by using the every syntax
with the following Inspect commands:

• show on a workspace

• write to the file

• display a table

• replace

• highlight

You can provide any number of filters, connected by and and or, and optionally
grouped in parentheses for clarity. For example, to see all the pipes that fall
within an acceptable diameter range, enter the following:

show on a workspace every pipe where diameter >= 5 inches and
where diameter <= 18 inches

Note When combining filters in an Inspect command, it is up to you to insure that the
filter expressions are not mutually exclusive.
1702

Filtering Classes of Items
Filtering Items Based on a Truth-Value Expression

You can filter items based on a condition that you specify as a truth-value
expression. Use the such that phrase as the filter. The syntax for the filter
expression is:

such that truth-value-expression

For example, the following command finds every variable with a current value.

show on a workspace every g2-variable
such that the g2-variable has a current value

For information about truth-value expressions, see Expressions.

Note You cannot use such that to test the value of an attribute; use where instead (see
Filtering Items Based on the Value of an Attribute).

Filtering Items That Contain Specific Text

You can filter items based on the existence of a particular piece of text by using
containing the as the filter. The item can contain a word, a string, or a symbol.

The format for the filter expression is:

containing [the { word | symbol }] text-expression

For example, this command finds every statement containing the specified text.

show on a workspace every statement containing "tank is overflowing"

If you use the word or the symbol in the command, the command only finds text
that exactly matches the specified word or symbol; it does not find partial strings.
For example, the following command only finds statements containing the word
inform; it would not find strings that contained the word information, for example.

show on a workspace every statement containing the word inform

Filtering Items That Contain Notes

You can find items based on whether or not they contain a value other than OK in
the notes attribute. This command allows you to locate all items with unspecified
information. For example:

show on a workspace every tank with notes
1703

Filtering Items Based on the Item Status

Every item has a status that indicates various information about the item:

• The status ok, bad, or incomplete indicates the value of the item’s
notes attribute.

• The status active and inactive indicates whether the workspace on which the
item is located is active or inactive.

• The status enabled and disabled indicates whether the item itself is enabled
or disabled.

You can find items based on their status by using the following as the filter:

whose status is status

For example:

show on a workspace every class-definition whose status is incomplete

Filtering Items Based on the Value of an Attribute

You can filter items based on the value of a numeric or symbolic attribute:

• If the attribute value is numeric, you use one of these relational operators to
test the value: =, /=, >, <, >=, and <=.

• If the attribute value is symbolic, you use the word is with a truth value
(true or false) or any symbol to test the value.

The format for the filter expression is either of these expressions:

where attribute-name relational-operator numeric-expression

where attribute-name is { truth-value-expression | symbolic-expression }

Two examples are:

show on a workspace every tank where inflow >= 14

show on a workspace every bin where recently-emptied is true

Filtering Items Based on Their Category or
Focal Class

Every rule has the attributes categories, focal-classes, and focal-objects. You can
filter rules based on their category, focal class, or focal object by using the
following filter expressions:

in the category symbolic-expression

which has the focal { class | object } symbolic-expression
1704

Filtering Classes of Items
Two examples are:

show on a show on a workspace every rule in the category safety-rules

show on a workspace every rule which has the focal class automobile

Filtering Items Based on Their Workspace

You can filter objects based on the workspace on which the object is located by
using found on the workspace in the command.

show on a workspace every rule found on the workspace
machine-schematic-rules

Filtering Items Based on Their Module

You can filter items based on their assigned module as follows:

• To filter items based on their location in a particular module or a list of
modules, use assigned to module in the filter expression.

• To filter items based on their location in any module in a particular module
hierarchy, use assigned to the hierarchy of module in the filter expression.

For example:

show on a workspace every tracked-vehicle
assigned to module plant-floor-schematic

You can filter items based on a list of modules, by separating the modules names
with or, as follows:

show on a workspace every tracked-vehicle
assigned to module plant-floor-module or
assigned to module vehicle-status-module

If there are more than two modules in the list, separate the module names with a
comma, and separate the last two module names with or.

This example shows how you filter items based on any module in a hierarchy,
as follows:

show on a workspace every tracked-vehicle
assigned to the hierarchy of module plant-floor-module

Filtering Items That Do Not Meet Specified Criteria

You can use the word not in conjunction with any of the previously discussed
filter expressions to restrict the search to those items that do not meet the criteria.

The word not precedes the filter expression.
1705

For example, the following command finds all class definitions whose status is
not OK:

show on a workspace every class-definition whose status is not ok

The following command finds every variable that does not have a current value:

show on a workspace every G2-variable
not such that the G2-variable has a current value

Version Control
You can use the following Inspect command to show the change log for items, tag
change log entries, revert change log entries, delete change log entries, and
enable/disable change logging for items.

show on a workspace the change log entry of the attribute of item
{as of timestamp} | {with revision num} | {with tag tag}

Shows the list of change log entries for the given attribute of item, as of
timestamp, with revision num, or tagged with tag.

show on a workspace the differences between
the change log entry of the attribute of item
{as of timestamp} | {with revision num} | {with tag tag}
and the change log entry of the attribute of item
{as of timestamp} | {with revision num} | {with tag tag}

Shows the differences between two change log entries for the attribute of item,
as of timestamp, with revision num, or tagged with tag. This command uses
the external “diff” program specified by g2-set-external-diff-specification.

use version control to tag the change log entry of every logged attribute of every
item in module module-name [as of timestamp] using tag tag

Tags the change log entry of every item for which change logging is enabled
in module-name, using tag, optionally as of timestamp.

use version control to tag the change log entry of the attribute of item
[as of timestamp | with revision num] using tag tag

Tags the change log entry of the attribute of item, using tag, optionally as of
timestamp or with revision num.

use version control to revert the text of every logged attribute of every item in
module module-name to the change log entry
{as of timestamp} | {using tag tag}

Reverts the text of every item for which change logging is enabled in
module-name to the change log entry as of timestamp or tagged with tag.
1706

Inspect Command History (Enterprise only)
use version control to revert the text of the attribute of item to the change log entry
{as of timestamp} | {with revision num} | {with tag tag}

Reverts the text of the attribute of item to the change log entry as of timestamp,
with revision num, or tagged with tag.

use version control to delete the change log entry of the attribute of item
{as of timestamp} | {with revision num} | {with tag tag}

Deletes the change log entry for the attribute of item, as of timestamp, with
revision num, or tagged with tag.

use version control to enable change logging on item

Enables change logging on item. If change logging is already disabled on the
module, this command has no effect.

use version control to disable change logging on item

Disables change logging on item. If change logging is already disabled on the
module, this command has no effect.

Inspect Command History (Enterprise only)
This is a Enterprise only feature. Now you can use the following Inspect
command to show the inspect command history. Notice that currently G2 Server
only keep 50 history commands, which is shared between server and all clients.

show on a workspace the inspect command history

Shows the list of inspect command history. By double-clicking on historical
commands, it’s possible to modify historical inspect commands and re-
execute, or just re-execute them.
1707

1708

48
Natural
Language Facilities
Describes the facilities for using non-English languages in a KB.

Introduction 1709

Using G2 Fonts 1710

Using the Natural Language Facilities 1711

Localizing Menu Choices and G2 Facilities 1714

Using European Languages 1720

Using the Japanese, Korean, Chinese, and Thai Language Facilities 1722

Using the Russian Language Facilities 1735

Introduction
G2 supports natural languages through these facilities:

• Fonts for working with various European and non-European languages.

• Language-definition items, which provide a means to localize G2 menu
choices and certain G2 facilities.

• The language.kl knowledge library (KL), which provides pre-defined menu
translations in several European languages.

• Japanese language facilities.

• Korean language facilities.
1709

• Chinese language facilities.

• Russian language facilities.

On Windows, when connecting Telewindows in standard mode, your Windows
system must have fonts installed to display all natural language text. For
example, to properly display Japanese text in menus, your system must have
Japanese-capable fonts. Fonts for Japanese and many other languages are
included with the Microsoft Windows 2000 and Windows XP operating system,
but may need to be installed in some cases. Refer to Windows documentation and
support for further information.

Using G2 Fonts

G2 and Telewindows have built-in fonts for Roman alphabet languages. To
display Japanese, Korean, and Chinese characters, G2 requires other fonts. The
fonts for these languages are available in the following subdirectory of your G2
product directory, by default:

g2\fonts (Windows)

g2/fonts (UNIX)

Fonts that reside in this directory are loaded automatically for customers that are
authorized for Japanese, Korean, or Chinese fonts.

You can store font files in a directory other than the default, and then specify that
location when starting G2 by using:

• The -fonts command-line option:

g2 -fonts \directory\my-fonts\
g2 -fonts /directory/my-fonts/

where \directory\my-fonts\ (Windows) or \directory\my-fonts\ (UNIX) is
the directory location of the fonts. The command-line option requires the slash
character following the directory name.

• An environment variable or a logical to specify the location. For a description
of using environment variables and logicals, see Using Environment
Variables.

Once an environment variable or a logical exists, you can override that location
with the -fonts command-line option as described previously.
1710

Using the Natural Language Facilities
Using the Natural Language Facilities

To use the natural language facilities that G2 provides, you can:

• Set the current language to be any available language.

• Use more than one language in the same KB.

• Extend the set of available localizations by creating language
translation definitions.

• Localize one or more properties of G2 facilities.

G2 provides system-defined localizations for some languages. To use these
capabilities, you can:

• Load the language.kl, described in Using Language Translations for
Localization.

• Load japanese.kl, described in Using the Japanese Language Facilities.

• Load korean.kl, described in Using the Korean Language Facilities.

• Use Cyrillic characters, described in Using the Russian Language Facilities.

Setting the Current Language

The current language is part of a KB’s knowledge and is set through the current-
language attribute of the Language Parameters system table. The default
is english.

To set the current language:

 Enter a language other than english in the current-language attribute of the
Language Parameters system table, or conclude a new value
programmatically.

If language translations for the new language exist in the KB, localized menus and
facilities are displayed.

The current language does not affect existing symbol and text values entered in
supported languages. For example, if you set the current language to russian, and
create messages in cyrillic, or name items using cyrillic characters, changing the
current language to japanese does not alter the cyrillic messages and item names
that you entered.

For system-defined localizations, the effect of changing the current language in a
KB depends on:

• The level of support G2 provides.

• The available language KB being loaded.
1711

Changing the current language to one of these languages immediately localizes
the editor and Inspect buttons:

• japanese

• korean

• russian

Changing the current language does not change the system-defined menu choices
unless the corresponding KB is loaded. For example, changing the current-
language attribute to korean immediately localizes the facility buttons, but does
not translate the menu choices until you load the korean.kl file.

Loading the appropriate KB file localizes the G2 menu choices as follows:

User-defined localizations can be added through the use of the language
translation facilities as described in Localizing Menu Choices and G2 Facilities.

Two command-line options can affect the current language:

• -default-language

• -language

Language KB to Load Menu Localizations

japanese japanese.kl Yes

korean korean.kl Yes

chinese Not available No

russian Not available No

french language.kl No

german language.kl Yes

dutch language.kl Yes

italian language.kl Yes

spanish language.kl Yes

swedish language.kl Yes
1712

Using the Natural Language Facilities
Setting a Default Language for a G2 Session

The -default-language command-line option and its corresponding
environment variable, G2_DEFAULT_LANGUAGE, is only for G2. You can set a default
language only by starting G2 with the -default-language command-line option.

Note If you start G2 with the -default-language command when an environment
variable exists for a different language, the command-line option overrides the
environment variable.

Once you start G2 with a default language, that language persists for the entire G2
session with any KB whose current language is english. Loading a KB with a
different current language or changing the system table’s current-language
attribute overrides the default language.

The purpose of the default language command-line option is to set a common
language for the entire G2 session, which can be overridden as necessary. For
example, if multiple developers accessing a KB through Telewindows are French,
you could start G2 with the default-language francais.

If one Telewindows user wanted to use the German menu options, that user could
change the language to German in his or her window in the login dialog.
Changing the language of a Telewindows connection is described in Supporting a
Window-Specific Language.

Setting a Language for the Current Window

The -language command-line option, applicable to both G2 and Telewindows,
affects only the current window, which is the local window for G2. It does not
change G2’s default language or the KB’s current language.

One way to use this option is in conjunction with the default language option.
You could start G2 with a default language. Any Telewindows user who wanted
an alternative language could then connect to G2, using the -language option
with the language they chose.

Connecting to G2 this way would alleviate the need for a Telewindows user to
change the current language.

Supporting Multiple Languages in a KB

If your KB requires multiple language support, you can provide it by changing
the current-language attribute each time you need to enter text in that language.

As an example, the next diagram shows one way to provide access to several
languages programmatically through the use of action buttons. Each of the
buttons uses a conclude action to change the value of the current-language
attribute to a different language. The text of the Italian action button is shown,
1713

along with the sample Main Menu, demonstrating how a menu appears when the
current language is Italiano.

Localizing Menu Choices and G2 Facilities

You can localize menu choices and G2 facilities by using a language-translation
item.

For menu choices, a language translation lets you substitute one symbolic name
for another. For G2 facilities, you can also localize one or more properties of:

• Text Editor buttons.

• Icon Editor buttons.

• All elements of the login dialog, including buttons, messages, and the text of
its attributes.

Creating language translation definitions affects whatever choices you include in
the definitions. Item names, user-defined classes, and class-specific attributes that
include special characters, or characters of another alphabet such as Japanese and
Korean, appear on workspaces and in class and attribute lists as you enter them.
1714

Localizing Menu Choices and G2 Facilities
Using Language Translations for Localization

You can use one or more language translation definitions to localize system-
defined and user menu choices and facilities.

To create a language translation definition:

1 Select KB Workspace > New Definition > language-translation.

G2 invokes the Text Editor immediately for you to enter the translation.

2 Enter the localizations you require for the language you are using.

The language translation definition grammar is:

in language [, context] : symbol-to-localize = localized-symbol-or-text

For example, tabella is the localization for table when Italiano is the current
language. The language translation defined for that choice is:

in italiano : table = tabella

The same localization could be expressed as:

in italiano : table = "tabella"

Definition Element Description

language The symbolic name for the language. For
example, in language.kl, these language
names exist:

• francais

• german

• dutch

• italiano

• spanish

• swedish

context See Specifying a Context.

symbol-to-localize The menu choice or facility to localize.

localized-symbol-or-
text

The localized symbol or text value of what
should appear for the symbol-to-localize
argument.
1715

Note There is currently no restriction for the language symbol, and you can enter
virtually any valid symbol of your choice. The translations you enter will be in
effect any time the current language uses that symbol. Future G2 releases may
restrict this element to a predefined set of accepted language symbols.

Specifying a Context

You localize G2 facilities by specifying a context for the G2 element you wish to
localize into language. A context appears between the specification of the
language and the set of symbols and translations. The notation for a context varies
depending on what you are specifying. You can:

• Specify button labels of G2 facilities.

• Localize each button, label, message, and attribute name in the
G2 Login dialog.

The context can be expressed as:

as {a | an} {attribute of {a | an} | facility-element in the} g2-facility:
symbol-to-localize = localized-symbol-or-text

Using a context in this way permits you to use different words when, for example,
a symbol is the name of a menu choice rather than the name of an attribute, or
when the symbol names a button in an editor or the login dialog.

Only certain combinations of attributes or facility-elements and g2-facility
specifications make sense. Combinations are checked when you close the edit. For
example, for the Text Editor, you can specify a button label as a valid facility-
element, but not any attributes.

Context Element Description

facility-element The button or menu choice to localize. For
example, you could specify any of the Icon
Editor buttons when specifying g2-facility as
Icon Editor.

g2-facility The G2 facility whose buttons, attributes, or
other elements you are localizing.

symbol-to-localize The menu choice or facility to localize.

localized-symbol-or-
text

The localized symbol or text value of what
should appear for the symbol-to-localize
argument.
1716

Localizing Menu Choices and G2 Facilities
Localizing the Text and Icon Editor Buttons

To specify the label on a button in a G2 facility:

 as a button-label in the {text-editor | icon-editor}

For example:

in my-world, as a button label in the text-editor: end = Complete

in my-world, as a button label in the icon-editor: Update = "Finalize"

The buttons available for localizing in the editors are:

Text Editor Buttons Icon Editor Buttons
1717

Localizing the Login Dialog

You can localize each element of the login dialog, including:

• Every button.

• Each attribute.

• The instructional message.

• One or more conditions.

These are the elements of a login dialog:

Specifying the Dialog Buttons

You can localize these buttons:

• Cancel

• End

• Disconnect

Note The buttons on the login dialog do not include the Text Editor buttons Paste,
Undo, and Update that appear when a user edits one of the dialog attributes.

Text Editor Buttons Icon Editor Buttons

Buttons

Attributes

Simple message Simple condition goes here
1718

Localizing Menu Choices and G2 Facilities
To specify a login dialog button:

 as a button-label in the g2-login-dialog : button = local-name

For example:

as a button-label in the g2-login-dialog: end = complete

Specifying or Localizing the Dialog Message

You can change or localize the message that appears as a directive at the top of the
login dialog. The grammar identifies this message as simple-message. By default
in G2, this message reads:

Please modify user settings.

To specify a simple message in the dialog:

 as a simple-message in the g2-login-dialog : g2-login-message = "local-text"

The symbol that denotes this particular message on the login dialog is g2-login-
prompt-message, so to modify it, enter a definition such as:

in my-language, as a simple-message in the g2-login-dialog:
g2-login-prompt-message = "Please login with your user name:"

Note You can enter messages such as this as a text value using quotation marks (") or as
a symbol using hyphens to separate words.

Localizing Dialog Attributes

You can localize all attributes of the login dialog, which is an instance of a g2-login
item.

To localize the login dialog attributes:

 as an attribute of a g2-login : {g2-login-attribute} = "local-text"

For example:

in my-language, as an attribute of a g2-login :
password = "Your password:"

Localizing Condition Messages

You can localize the various condition messages that appear in the login dialog
when, for example, the user enters an incorrect password. The grammar identifies
this message as simple-condition.

To localize the condition messages that can appear:

 as a simple-condition in the g2-login-dialog : {g2-login-condition } = "local-text"
1719

For example:

in my-language, as a simple-condition in the g2-login-dialog :
unknown-user-or-bad-password = "G2 does not recognize your
User name or password. Please reenter both and try again. "

Using European Languages

To access the European language translations provided with G2, you need to
access the language.kl KB.

To merge the KB into your own KB:

1 Select Main Menu > Merge KB.

2 Enter the name of the KL you wish to merge into your KB, language.kl.

The language.kl file is located in the g2\kbs\utils (Windows) or /g2/kb/utils
(UNIX) directory of your G2 product directory. The workspace that appears after
you merge the KL into your own KB is:
1720

Using European Languages
Available Translations

Menu translations are available in these languages:

• French

• German

• Dutch

• Italian

• Spanish

• Swedish

Click on any of the go-to-subworkspace buttons to see the specific language
translation workspaces.

In addition, the KL provides a set of character inserters for the special characters
shown here:

The KL also includes a generic language facilities workspace, containing all of the
menu choices available for translation. Use this as a template for translating other
menu options of your choice.

The menu choice translations that language.kl provides are created by using
language definition items (described in Localizing Menu Choices and G2
Facilities).

All language definitions are arranged in alphabetical order upon their workspace,
each providing translations for the menu choices, beginning with that particular
letter. Alphabetizing the choices is not mandatory, but provides an easy way to
locate G2 menu selections.

Once you merge language.kl into your KB, you can delete any workspaces
containing unused languages.
1721

Using the Japanese, Korean, Chinese, and Thai
Language Facilities

G2 provides these special facilities for the Japanese, Korean, Chinese, and Thai
languages:

• High-quality fonts for characters specified in Unicode Version 2.0.

• Support for the character-input methods built into Windows platforms.

• The ability to specify your preferred style for the display and printing of
Han characters.

Using Windows Character-Input Methods

In G2, you can use the character input methods Windows supplies for platforms
that are specifically configured for Chinese, Japanese, or Korean. The supported
Windows versions are 2000 Professional, 2003 Professional, and XP Professional.

You can use the character-input methods on a G2 local window running on
Windows, and also on Telewindows running on Windows and connecting to a G2
on any platform.

You do not need to set the locale to a specific country in order to enter Asian
language characters in G2 and Telewindows.

See your Windows documentation on how to use these character-input methods.

Specifying a Han Character-Style Preference

The Chinese, Japanese, and Korean writing systems share a set of ideographic,
historically Chinese, Han characters, but each of these languages has developed
its own preference for character style.

The G2 Chinese-Japanese-Korean (CJK) language preference facility determines
what style will be used for displaying Han characters in your G2 local window or
Telewindows, and for printing workspaces. For Chinese, G2 supports the
simplified Chinese characters used mainly in the Peoples Republic of China,
rather than the traditional Chinese characters used mainly in Taiwan.

G2 has a default CJK language preference ranking for Han characters which is:
Japanese first, Korean second, and Chinese third. This ranking corresponds
strictly to the order in which support has been added to G2 for these three
languages, and is preserved for the compatibility of existing applications.
1722

Using the Japanese, Korean, Chinese, and Thai Language Facilities
You can alter this ranking by specifying your CJK language preference:

• Specifying Japanese leaves the default ordering.

• Specifying Korean moves Korean to the front of the ordering.

• Specifying Chinese moves Chinese to the front of the ordering.

If a character is not available in the first-ranking language font, G2 will use the
second-ranking font; or, if necessary, the third-ranking font.

To specify your CJK language preference:

 Use this command-line option when starting your G2 or
Telewindows process:

-cjk-language {chinese | japanese | korean}

If you do not include the -cjk-language command-line option, G2 determines
your CJK language preference by evaluating the following items of information
and choosing the first one that supplies a preference:

1 You specify either Chinese, Japanese, or Korean for the g2-window-specific-
language attribute of the login dialog.

2 You specify either Chinese, Japanese, or Korean in the -language command-
line option when starting your G2 or Telewindows process:

-language {chinese | japanese | korean}

3 Your G2 or Telewindows is authorized for Japanese.

4 Your G2 or Telewindows is authorized for Korean.

5 Your G2 or Telewindows is authorized for Chinese.

The following illustration demonstrates a few stylistic differences between Han
characters in different CJK language-preference fonts. The characters in each
column have the same unicode designation, but each row represents a different
CJK preference, as indicated in the left-hand column.

From left to right, an English translation of the characters is: dark, mind,
institution, world, shadow, well.

Japanese

Korean

Chinese
1723

Note When you are printing workspaces from Telewindows, the CJK language
preference of G2, not Telewindows, determines character style.

Using the Japanese Language Facilities

As a part of G2, the Japanese language facilities support all system-defined G2
features, plus the ability to develop, run, and view applications in Japanese. KBs
developed in Japanese are platform independent and can run without
modification when the current language is not Japanese. The Japanese language
facilities provide this support for developing Japanese KBs:

Support for the Japanese language within G2 consists of the Kanji Front-End
Processor (KFEP), which handles all Japanese keyboard input, and the knowledge
library, japanese.kl, which includes translations of all G2 menu choices.
Japanese outline fonts for screen display are available if you have appropriate
authorization. Outline fonts are currently not supported for printing.

Feature Description

Text transliteration
and conversion

Converts Romaji input to Hiragana or Katakana
automatically.

Customized menus
and other facilities

G2 facilities, such as the editor, have localized
option buttons. Loading japanese.kl provides
localized versions of the G2 system-defined
menu options. Developers can localize any
facility element, as described in Using Language
Translations for Localization.

Knowledge
engineering

Can assign Japanese names to all the items you
define, including objects, workspaces, rules,
procedures, and methods.

Character input Support for the character-input methods built
into Windows platforms configured for
Japanese.

Text editing Provides the system-defined G2 editing
features, as well as special modes added to
support Hiragana, Katakana, and Kanji
characters.
1724

Using the Japanese, Korean, Chinese, and Thai Language Facilities
Accessing Japanese Menus

The Japanese menus are in G2’s Japanese KL.

To merge japanese.kl into your KB:

1 Select Main Menu > Merge KB.

2 Enter the name of the KL you wish to merge into your KB, japanese.kl.

The japanese.kl file is located in the \g2\kbs\utils (Windows) or
/g2/kbs/utils (UNIX) directory of your G2 product directory. Check with your
system administrator if you are unable to locate the sample KBs that ship with G2.

After merging the KL into your own KB, this workspace is displayed:

The current user mode is developer. Starting the KB activates all go-to-
subworkspace and other buttons.

To start the KB:

 Select Main Menu > Start.

The G2 menu translations and the translated Text Editor buttons do not appear
unless the current language is Japanese.
1725

To change the current language to Japanese:

1 Select Main Menu > System Tables > Language Parameters.

2 Edit the current-language attribute and select japanese.

Entering Japanese Text

When japanese is the current language in your KB, the editor includes four
language mode selectors to help you entering Japanese text, as shown in the
following figure:

The language modes are:

Keyboard input is phonetic. The Text Editor accepts several phonetic variations
for Japanese characters, including si and shi; ti and chi, and tu and tsu.

Cancel

Update

Paste

Kanji

Katakana

Hiragana

English

End

Language mode selectors

Mode Description Character Interpretation

Kanji The Japanese writing system using
characters borrowed from Chinese.

Hiragana, and displays Kanji
choices whenever a
convertible sequence occurs.

Katakana The form of Japanese writing used
for scientific and technical terms,
official documents, and words
adopted from other languages.

Romaji, and transliterates the
characters to Hiragana.

Hiragana A Japanese script, the second of two
forms of Japanese writing.

Romaji, and transliterates the
characters to Hiragana.

English American English language. Latin characters. This is the
default mode.
1726

Using the Japanese, Korean, Chinese, and Thai Language Facilities
The KFEP interprets character input based on the language mode you select, as
noted in the previous table. You can choose a mode by clicking an activity button
directly with the mouse, or by using Control + k to cycle through the choices.

To illustrate the effect of each language mode, the next diagram shows what
happens when you enter the characters chi in Kanji, Katakana, and Hiragana.
Notice that, while in Kanji mode, the characters are interpreted as Hiragana, and
the editor displays various Kanji choices appropriate for that input.

When the current language is japanese, you can input an explicit Kanji ideogram
that you cannot obtain through the conversion process by entering any character
from the Japanese Industrial Standard (JIS) X 0208-1990 code. G2 supports the
entire code set, which consists of four-digit Hexadecimal values. If you enter a JIS
code when the current language is not japanese, G2 interprets the value as a
Unicode character code.

To enter a JIS code in the Text Editor:

1 Type Alt + i to invoke a secondary text entry box.

2 Enter the four-digit code, as shown next.

Kanji

Katakana

Hiragana
1727

The character appears as soon as you enter a valid four-digit code.

Alternatively, you can merge in the jiscodes.kl KL.

To merge jiscodes.kl into your KB:

 Select Main Menu > Merge KB and enter jiscodes.kl.

The jiscodes.kl file is located in the \g2\kbs\utils (Windows) or
/g2/kbs/utils (UNIX) directory of the G2 product directory, and displays a
series of text inserter workspaces, each with multiple sets of characters:
1728

Using the Japanese, Korean, Chinese, and Thai Language Facilities
Entering Text in the Kanji Language Mode

As noted earlier, when Kanji is the language mode and you enter text, the KFEP
interprets the characters as Hiragana, displaying Kanji choices for any
appropriate conversion options. As a user, you can either convert the Hiragana
input to Kanji, by choosing from one of the options listed, or retain the kana form
for individual characters.

To help you convert text, the Text Editor displays more activity buttons as you
enter text. In addition to the system-defined Text Editor activity buttons (Cancel,
Undo, Redo, End, Paste), and the Japanese language mode buttons (Kanji,
Katakana, Hiragana, and English), the following activity buttons are also
available in Kanji mode:

Using the Korean Language Facilities

The Korean language facilities support all system-defined G2 features, plus the
ability to develop, run, and view applications in Korean (Hangul). KBs developed
in Korean are platform independent and can run without modification in other
languages. Korean outline fonts are available if you have appropriate
authorization. The fonts are identical to the Gulim font supplied with the Korean
version of Windows.

Support for the Korean language within G2 consists of the Hangul Front-End
Processor (HFEP), which handles all Korean keyboard input; korean.kl, which

This
activity button... Translates to... Which lets you...

Convert Convert the Hiragana selection to the
highlighted Kanji character.

Next Highlight the next Kanji character.

Previous Highlight the previous Kanji character.

Skip (Control + ’) Move the Hiragana selection to the next
possible conversion region.

Accept Accept the highlighted Kanji character to
replace the Hiragana selection. If no Kanji
character is selected, G2 accepts the first
character.

Expand
(Control + >)

Expand the conversion region
(if possible).

Shrink
(Control + <)

Shrink the conversion region (if possible).
1729

includes translations of all G2 menu choices; and kscodes.kl, which provides the
KS C 5601 character set as an online reference.

The Korean language facilities provide the following support for developing KBs
in Hangul:

Accessing Korean Menus

You can access Korean menus and facilities by merging in korean.kl.

To merge korean.kl into your own KB:

1 Select Main Menu > Merge KB.

2 Enter the name of the KL you wish to merge into your KB, korean.kl.

The korean.kl file is located in the \g2\kbs\utils (Windows) or /g2/kbs/utils
(UNIX) directory of your G2 product directory.

Feature Description

Customized menus
and other facilities

G2 facilities, such as the editor, have localized
option buttons. Loading korean.kl provides
versions of the G2 system-defined menu
options with both Hangul and English
localizations. Developers can localize any
facility element, as described in Using Language
Translations for Localization.

Knowledge
engineering

Ability to assign Korean names to all the items
you define, including objects, workspaces,
rules, procedures, and methods.

Character input Support for the character-input methods built
into Windows platforms configured for Korean.

Additional characters Full support of all characters from the standard
KS C 5601 Korean character set.

Standard PostScript
compatibility

G2 print functions for Korean KBs fully
compatible with any standard
PostScript printer.
1730

Using the Japanese, Korean, Chinese, and Thai Language Facilities
Once you have merged the KL into your own KB, this workspace appears:

The current user mode is developer. Starting the KB activates all go-to-
subworkspace and other buttons.

To start the KB:

 Select Main Menu > Start.

The G2 menu translations and the translated editor buttons do not appear unless
the current language is Korean.

To change the current language to Korean:

1 Select Main Menu > System Tables > Language Parameters.

2 Edit the current-language attribute and select korean.

Entering Korean Text

When Korean is the current language in your KB, the editor includes two
language modes to help you enter Korean text, as shown in the following figure:

Cancel

Update

Paste

Korean

English

End

Language mode selectors
1731

Each time you invoke the editor, English is the default entry mode and English
characters appear as you type.

To toggle between language modes:

 Click the Korean activity button.

or

 Press Control + k.

When Hangul is the current entry mode, you can enter any Korean characters
directly from the keyboard, using the standard Korean keyboard layout:

While you can enter Korean characters in the editor directly from the keyboard,
you may need to enter other characters as well. When the current language is
korean, you can enter any character from the KS C 5601 character set as a four-
digit hexadecimal value. If you enter the same value when the current language is
not korean, G2 interprets the value as Unicode character. If you do not know the
hexadecimal code for the character you wish to enter, you can locate it in the
kscodes.kl, which provides a complete set of KS C 5601 text inserters.

To enter a KS C 5601 code in the Text Editor:

1 Type Alt + i to invoke a secondary text entry box.

2 Enter the four-digit code, as shown next.

PE R T Y I

:LS D F J K

?.M ,

Q W U O

A G H

Z X C V B N
1732

Using the Japanese, Korean, Chinese, and Thai Language Facilities
The character appears as soon as you enter a valid four-digit code:

Alternatively, you can merge in the kscodes.kl KL and copy a character from the
text inserters.

To merge kscodes.kl into your KB:

1 Select Main Menu > Merge KB.

2 Enter the name of the KL you wish to merge into your KB, kscodes.kl.

Entering a
KS C 5601
hexadecimal
code.

The KS C 5601 character
1733

The kscodes.kl file is located in the \g2\kbs\utils (Windows) or
/g2/kbs/utils (UNIX) directory of your G2 product directory, and displays a
series of text inserter workspaces, each with multiple sets of characters:

The hexadecimal codes are listed in series in the upper left-hand corner of each
workspace containing the KS C 5601 character set. Chinese characters begin at
4A21 hexadecimal on the workspace called KS C 5601-4900.

You can use text inserters to access Hangul or Chinese characters from these
workspaces to use in your KB.

Instead of typing characters in the Text Editor, you can click on any character
from one of the KS-5601 text insertion menus included in the kscodes.kl. G2
copies the character to the editor.

Using the Chinese Language Facilities

The Chinese language facilities support all system-defined G2 features, plus the
ability to input characters from G2 on Windows platforms, and to run and view
applications in Chinese. KBs developed in Chinese are platform independent and
can run without modification in other languages. Chinese fonts are available for
Chinese characters specified in Unicode Version 2.0.

A knowledge library, gbcodes.kl, is supplied and contains codes for the GB 2312
characters. These characters are the simplified characters used mainly by the
Peoples Republic of China. This knowledge library is useful for reference
purposes, but not as a primary method for character input. The Windows Chinese
language facility is recommended for inputting Chinese text.
1734

Using the Russian Language Facilities
Currently, G2 has no facilities for automatically customizing G2 Menus for
Chinese. Changing the current-language attribute of the Language Parameters
system table or the g2-window-specific-language attribute of the login dialog to
Chinese has no effect on G2 menus. However, you can create your own language-
definitions that localize system-defined and user menu choices and other facilities
for Chinese. See the G2 Reference Manual for information on language translation
definitions.

Using the Thai Language Facilities

G2 uses the correct character images to display symbol and text values that
include Thai characters.

Because Thai text typically does not use spaces, G2 supports the zero-width-space
character. This character functions as a space character for purposes of word
wrapping, but it takes up no horizontal space between characters on either side.
You can insert the character by using its Unicode hexadecimal character code,
which is 200B. To insert this Unicode hexadecimal code in the editor, you enter
Alt+I 2 0 0 B.

Using the Russian Language Facilities
The Russian language facilities can help you to develop, run, and view
applications in Russian using the Cyrillic alphabet (ISO 8859-5). KBs developed in
Russian are platform independent, and can run without modification in any G2
language environment.

To enter Cyrillic text, you need only change the current language to Russian.

To change the current language:

1 Select Main Menu > System Tables > Language Parameters.

2 Edit the current-language attribute and select russian.

When Russian is the current language in your KB, the editor includes two
language modes to help you enter Cyrillic, as shown in the following figure:
1735

Each time you invoke the editor, English is the default entry mode and English
characters appear as you type.

To toggle between language modes:

 Click the Cyrillic activity button.

or

 Press Control + k.

Entering Cyrillic Characters

When Cyrillic is the current entry mode, you can enter any letters from the
Cyrillic alphabet directly by using the standard keyboard layout:

Entering Additional Cyrillic Characters

While you can enter Cyrillic characters in the editor directly from the keyboard,
you may need to enter other characters as well. When the current language is

Language mode selectors
1736

Using the Russian Language Facilities
russian, you can enter any character from the ISO-8859-5 character set as a two-
digit hexadecimal value.

To enter an ISO-8859-5 code in the editor:

1 Type Alt + i to invoke a secondary text entry box.

2 Enter the two-digit code, as the next example shows.

The character appears as soon as you enter a valid two-digit code. This example
shows entering 36 for the Cyrillic small letter zhe:

1737

1738

49
G2 Character Support
Presents a description of the G2 character support through Unicode.

Introduction 1739

Unicode Character Support 1740

Defining the Gensym Character Set 1741

Using Escape Characters 1743

Encoding ASCII Characters and Special Characters 1745

Encoding Japanese Characters 1748

Encoding Korean Characters 1750

Encoding Russian Characters 1750

Translating from the Gensym Character Set 1751

Introduction
Characters constitute the information in all text that G2 displays, imports from
files and other sources of data, and exports to files and other data destinations.
Characters also constitute the information contained in each value declared with
the G2 types symbol or text.

G2 character representation is provided by the Unicode Worldwide Character
Standard, which supports the storage, exchange, processing, and display of text
for most of the world’s modern and classical written languages. Supported
characters cover the principal languages of the Americas, Europe, Middle East,
Africa, India, Asia, and Pacifica.
1739

KBs supporting multiple languages, or those importing data into a KB from an
external character set, or exporting data from a KB to an external source, need
information about G2 character support.

Unicode Character Support
Unicode represents each character code as a 16-bit unsigned integer in the range
0 - 1000000. Within that encoding space, Unicode separates character
representation into four consecutive zones:

• Alphabetic (A zone), containing all general alphabetic, punctuation, and
symbolic characters.

• Ideographic (I zone), containing the Han ideographic characters.

• Open (O zone), reserved for future use.

• Restricted (R zone), for private and compatibility characters.

Representing each character within two-bytes guarantees a uniform presentation.
Regardless of the character or language, whether an English A, or a Japanese
ideograph, text handling facilities are certain of a single character within every
two bytes of data. Such uniformity prevents the need for numerous methods and
techniques employed with previous character sets to determine how many bytes
character encoding entailed.

Detailed information about the Unicode character set is not presented in this
document. Information about the Unicode standard and the numerical
representation of its supported characters is available online at the time of this
publication at:

http://www.unicode.org

Non-Unicode Character Support

As the Unicode character set continues to be adopted on a global basis,
developers may still need to support numerous other character sets for importing
and exporting KB data. G2 provides several file I/O system procedures, described
in the G2 System Procedures Reference Manual. To facilitate conversion to and from
Unicode to other character sets, G2 provides the functionality to convert:

• Characters from various imported character sets into Unicode characters.

• Unicode characters into other character sets for exporting data.

Functions for character conversion are presented in Character Set Conversion
Functions.

One of the character sets that G2 provides conversion functionality for is the
Gensym character set. The Gensym character set was the default character set in
previous G2 releases.
1740

Defining the Gensym Character Set
This chapter identifies the characters in the Gensym character set and shows how
to encode each character in files and in data streams that are composed and
manipulated outside of G2.

You can use the Gensym character set to:

• Compose attribute files, especially those that load attributes that must contain
symbol and text values.

Attribute files are a superseded capability. For more information, see
Appendix F, Superseded Practices.

• Compose GFI input files, especially those that load symbol and text values
into symbolic variables, text variables, symbolic parameters, and
text parameters.

GFI is a superseded capability. For more information, see Appendix F,
Superseded Practices.

• Write GSI bridge applications, especially those that send and receive symbol
and text values to and from G2.

• Write applications outside of G2 that communicate with G2 through a remote
procedure call (RPC) interface, especially those that pass and return symbol
and text values to and from G2.

• Write applications outside of G2 that work with files written by G2’s
Inspect facility.

Tip With few exceptions, you can use G2’s Text Editor to input any character in the
Unicode character set. These features are described in The Text Editor and in
Natural Language Facilities.

Defining the Gensym Character Set
The Gensym character set is comprised of these sets of characters:

• A subset of the ASCII standard character set.

• The newline character.

• The tab character.

• A set of alphabetic and symbol characters common to English and other
natural languages, referred to as special characters.

• The characters in the Japanese Industrial Standard (or JIS) X 0208-1990
standard character set.
1741

• The characters in the KS C 5601 standard Korean character set.

• The characters in the International Standards Organization (or ISO) 8859-5
standard Russian character set.

Subset of ASCII Character Set and
Special Characters

The Gensym character set includes 95 characters of the standard ASCII character
set. The Gensym character set also includes 69 special characters. The figure Two
Groups of Characters in the Gensym Character Set shows how these characters
appear when shown in free-text items upon a workspace in a G2 window.

To encode these characters in a file or data stream outside of G2, see Encoding
ASCII Characters and Special Characters.

Note The characters @ (at sign), \ (backslash), and ~ (tilde) are escape characters in the
Gensym character set. To express these as literal characters, you must use the
escape sequences defined for them, as shown in the table Encoding for ASCII and
Special Characters.

Other Standard Character Sets

The Gensym character set includes the hiragana, katakana, and kanji characters
specified in the JIS X 0208-1990 standard character set. To encode these characters
in a file or data stream outside of G2, see Encoding Japanese Characters.

The Gensym character set includes the Hangul characters specified in the
KS C 5601 standard character set. To encode these characters in a file or data
stream outside of G2, see Encoding Korean Characters.

The Gensym character set includes the Cyrillic characters specified in the
ISO 8859-5 standard character set. To encode these characters in a file or data
stream outside of G2, see Encoding Russian Characters.
1742

Using Escape Characters
Two Groups of Characters in the Gensym Character Set

Using Escape Characters
For file import operations, the Gensym character set defines three characters,
called escape characters, for the following special uses:

• Use the ~ (tilde) character as the escape character for encoding a special
character in the Gensym character set. You also use ~ as the escape character
to encode the characters @ ~ and \ themselves as literal characters. The table
Encoding for ASCII and Special Characters shows each character in the
Gensym character set that must encoded using the ~ character.
1743

Note Using @ as an escape character for the Gensym character set is different from
using @ as the quoting character in a symbol value or text value in G2. Using
@ as the quoting character is described in Working with Characters in a
Symbol Value and in Working with Characters in a Text Value.

• Use the \ (backslash) character as the escape character for encoding a
character in the Gensym character set that is a Japanese, Korean, or
Russian character.

Using the ~ Escape Character

Use the ~ (tilde) character as an escape character to encode a special character in
the Gensym character set for importing text into G2.

For example, you might wish to include the trademark (™) character from the
Gensym character set in a symbol or text value that G2 can use. To do so, specify
the pair of characters ~: in the value. Thus, to produce this series of characters:

Acme™

as a text value, you must encode this series of characters:

"Acme~:"

Using the @ Escape Character

Use the @ (at sign) escape character only in the two-character sequence @L,
to encode the newline character in the Gensym character set. This corresponds to
the explicit line-feed that you produce using the Text Editor by pressing
Control + j.

Note The newline character in the Gensym character set does not signify the ASCII line-
feed character.

You might also wish to use the @ as a literal character in a symbol or text value. To
do so, the value in G2 must specify the two characters @@. Thus, to produce this
series of characters:

service@gensym.com

you must utilize the @ character as both a quoting character and as a literal
character. To produce these characters in a symbol value in G2, specify this series
of characters as its value:

service@@gensym.com
1744

Encoding ASCII Characters and Special Characters
To encode the @ character for use in this way, you must express the intended text
value as this series of characters:

" service~@~@gensym.com"

Note Text imported into a KB using the @ escape character may not display correctly in
an item attribute display or a readout table.

Using the \ Escape Character

You might wish to include a character from the Japanese, Korean, or Russian
alphabets in a symbol or text value that G2 can use. To do so, you use the \
character to signify a series of ASCII characters whose combined value represents
the encoded character. For an explanation of this encoding scheme, see Encoding
Japanese Characters.

Thus, to encode a Japanese, Korean, or Russian character, you specify a series of
characters that signify two or three 8-bit values, represented as hexadecimal
values. For example, this series of characters:

\+;

represents the encoded value 11067 (or 0x2b3b hexadecimal) in the Gensym
character set.

Encoding ASCII Characters and Special
Characters

When creating an external file to import characters into G2, you need to encode
the subset of characters in the Gensym character set comprised of ASCII
characters and other special characters. To do so, use the encoding summarized in
the table Encoding for ASCII and Special Characters.
1745

Encoding for ASCII and Special Characters

Character Encoding Character Encoding Character Encoding

(space)
!
"

$
%
&
'
(
)
*
+
,

(space)
!
"

$
%
&
'
(
)
*
+
,

A
B
C
D
E
F
G
H
I
J
K
L
M

A
B
C
D
E
F
G
H
I
J
K
L
M

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

-
.
/
:
;
<
=
>
?
[
]
^
_

-
.
/
:
;
<
=
>
?
[
]
^
_

a
b
c
d
e
f
g
h
i
j
k
l
m

a
b
c
d
e
f
g
h
i
j
k
l
m

n
o
p
q
r
s
t
u
v
w
x
y
z

n
o
p
q
r
s
t
u
v
w
x
y
z
1746

Encoding ASCII Characters and Special Characters
‘
{
|
}

‘
{
|
}

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

@
~
\
Tab

~@
~~
~\
\ ()

ä
Ä
á
Á
ç
Ç
â
Â
é
É
ê
Ê
è
È
ì
Ì
í
Í
î
Î
à
À
ñ

~a
~A
~b
~B
~c
~C
~d
~D
~e
~E
~f
~F
~g
~G
~h
~H
~i
~I
~j
~J
~m
~M
~n

Ñ
ö
Ö
ó
Ó
ô
Ô
å
Å
ß
ø
Ø
ü
Ü
ú
Ú
œ (oe)
Œ (OE)
æ (ae)
Æ (AE)
ò
Ò
ù

~N
~o
~O
~p
~P
~q
~Q
~r
~R
~s
~t
~T
~u
~U
~v
~V
~w
~W
~x
~X
~y
~Y
~z

Ù
ë
Ë
ï
Ï
ã
Ã
õ
Õ
û
Û
©
™
®
¿
¡
«
»
£
¥
ƒ
•

~Z
~0
~1
~2
~3
~4
~5
~6
~7
~8
~9
~|
~:
~;
~?
~!
~<
~>
~#
~$
~&
~*

Encoding for ASCII and Special Characters

Character Encoding Character Encoding Character Encoding
1747

Encoding a Tab Character

To encode a tab character in a file for the Gensym Character Set:

 Enter these characters sequentially:

backslash (\) space () left-parenthesis (() right-parenthesis ())

Such a character sequence would appear in a file as:

\ ()

Encoding Japanese Characters
The Gensym character set includes the characters defined in the Japanese
Industrial Standard (or JIS) X 0208-1990 character set. G2 uses the correct
ideograms to display symbol and text values that include these characters,
regardless of whether the Japanese language facility is in use.

For information about the Japanese language facility, see Using the Japanese
Language Facilities.

Each JIS character has a distinct representation in the Gensym character set. A JIS
character is represented as a kanji code, which is a positive integer that can be
represented in two bytes. The first byte contains the most significant eight bits of
the kanji code’s value.

To express a JIS character that is part of the Gensym character set:

 Specify the \ (backslash) escape character, followed optionally by a prefix
ASCII character, followed by two ASCII characters.

The bit pattern of the two or three ASCII characters represents the value of the JIS
character in the Gensym character set. Either the prefix ASCII character or the first
ASCII character represents the most significant eight bits of the character in the
Gensym character set.

To determine a kanji code’s representation in the Gensym character set, you
perform the following algorithm (expressed in pseudocode):

/* Operators:
!= : is not equal to
>> : shift bits right
& : AND operator
% : MODULO operator

*/
/* Include a prefix ASCII character? */
if (kanji_code >> 13) != 1 then

/* Produce the prefix ASCII character */
prefix_character = (kanji_code >> 13) + 32
1748

Encoding Japanese Characters
/* Produce first ASCII character */
first_character = ((kanji_code & 0x1fff) / 95) + 40

/* Produce second ASCII character */
second_character = ((kanji_code & 0x1fff) % 95) + 32

For example, to represent the kanji code 8504 (or 0x2138 hexadecimal), follow this
sequence of steps:

1 (0x2138 >> 13) is 1.

2 The condition (1 is not equal to 1) is false, so derive no prefix ASCII character.

3 (0x2138 & 0x1fff) is 312.

4 (312 / 95) is 3.28, rounded down to 3.

5 (3 + 40) is 43, or 0x2b hexadecimal, so the first ASCII character is the + (plus
sign) character.

6 (312 % 95) is 27.

7 (27 + 32) is 59, or 0x3b hexadecimal, so the second ASCII character is the
; (semicolon) character.

Thus, encode the kanji code 8504 in the Gensym character set as this series of
characters:

\+;

For example, to represent the kanji code 17228 (or 0x434c hexadecimal), follow
this sequence of steps:

1 (0x434c >> 13) is 2.

2 The condition (2 is not equal to 1) is true, so derive a prefix ASCII character.

3 2 + 32 is 34, so the prefix ASCII character is the " (double quotes) character.

4 (0x434c & 0x1fff) is 844.

5 (844 / 95) is 8.88, rounded down to 8.

6 (8 + 40) is 48, or 0x30 hexadecimal, so the first ASCII character is the 0 (zero
digit) character.

7 (844 % 95) is 84.

8 (84 + 32) is 116, or 0x74 hexadecimal, so the second ASCII character is the
t (lowercase T) character.

Thus, encode the kanji code 17228 in the Gensym character set as this series of
characters:

\"0t
1749

Encoding Korean Characters
The Gensym character set includes the characters defined in the KS C 5601
standard character set for the Korean language. G2 uses the correct ideograms to
display symbol and text values that include these characters, regardless of
whether the Korean language facility is in use.

For information about the Korean language facility, see Using the Korean
Language Facilities.

Each KS C 5601 character has a distinct representation in the Gensym character
set. A KS C 5601 character can be represented in two bytes. The first byte contains
the most significant eight bits of the KS C 5601 character’s value.

To express a KS C 5601 character that is part of the Gensym character set:

 Increment the second byte’s value by 94 (or 0x5e hexadecimal), then encode
the character’s two bytes as described in Encoding Japanese Characters.

For example, given the KS C 5601 character code 8483 (or 0x2123 hexadecimal),
the character’s second byte contains the hexadecimal value 0x23. Add the
hexadecimal value 0x5e to this, to obtain the sum 0x81. Next, encode the
character’s incremented value 8577 (or 0x2181 hexadecimal) as for a JIS character.

Encoding Russian Characters
The Gensym character set includes the characters defined in the International
Standards Organization (or ISO) 8859-5 standard character set. G2 uses the correct
Cyrillic characters to display symbol and text values that include these characters,
regardless of whether the Russian language facility is in use.

For information about the Russian language facility, see Using the Russian
Language Facilities.

A ISO 8859-5 character consists of one byte, representing a 7-bit value. Each
ISO 8859-5 character has a distinct representation in the Gensym character set.

To express a ISO 8859-5 character that is part of the Gensym character set:

1 Assign the value zero into a two-byte value.

2 Assign the character’s 7-bit code value into the two-byte value. The
character’s 7-bit value must be the least significant seven bits of the resulting
two-byte value.

3 Increment the entire two-byte value by 8192 (or 0x2000 hexadecimal), then
encode the resulting two bytes as described in Encoding Japanese Characters.

For example, given the ISO 8859-5 character code 81 (or 0x51 hexadecimal), assign
its value into a two-byte value containing the value 0 (zero), producing the
1750

Translating from the Gensym Character Set
sum 81 (or 0x0051 hexadecimal). Increment this value by 8192, and encode the
value of the resulting sum 8273 (or 0x2051 hexadecimal) as for a JIS character.

Translating from the Gensym Character Set
Use the pseudocode procedure shown below as the basis for your own routine to
translate a series of characters in the Gensym character set to characters in another
format, such as the KS C 5601, JIS, ASCII, or ISO Latin-1 character sets.
Alternatively, you can use the character set conversion functions described in
Character Set Conversion Functions.

The following procedure should be used in a program that maintains an index
into a string, beginning at character zero (0). The program calls this procedure to
get the next character and to update the index, based on how many characters
were used to represent the Gensym character set character.

This pseudocode procedure gets the character code for the Gensym character set
character at position i in string s; that is, s(i).

1 Let c be the character s(i). Let i = i + 1.

2 If:

• c is the character @, then let c be the character s(i) and i = i + 1.

• c is the character L, then return the character code or codes for newline.

• c is an alphabetic character, then consider this to be an undefined situation
(that is, an error) and exit.

Otherwise, return the ASCII character code for c. The result is an ASCII-
encoded character.

3 If:

• c is the character ~, then let c be the character s(i) and i = i + 1.

• c is not in the table Encoding for ASCII and Special Characters, then
consider this to be an undefined situation (that is, an error) and exit.

Otherwise, return the character code or codes for the character that c
corresponds to in the table Encoding for ASCII and Special Characters. This
result might be in ASCII or in some other (undefined) character encoding.
Note that the characters ~ @ and \ are included in this set.

4 If:

• c is the character \, then let c be the character s(i) and i = i + 1.

• The character code for c is less than 40, then let d1 = the character code
for c, let d2 = the character code for s(i), let i = i + 1, let d3 = s(i), and return
the result of the following formula:
1751

/* arithmetically shift d1 left 13 bits */
(d1 << 13)
+ (d2 * 95)
+ d3
+ -265976

Otherwise, let d1 = the character code for c, let d2 = the character code for s(i),
let i = i + 1, and return the result of the following formula:

(d1 * 95)
+ d2
+ 4360

The result is a JIS-encoded character.

5 Return the code for c. The result is an ASCII-encoded character.

When this procedure completes, the index i points either to the next possible
character or to the end of the string s.
1752

Part VII
Debugging and
Optimization
Chapter 50: Error Handling

Describes the G2 error-handling capabilities.

Chapter 51: Debugging and Tracing

Describes G2 facilities that can assist in debugging your KB.

Chapter 52: Explanation Facilities

Describes the facilities that collect and display data about rules and formulas and the objects
they reference.

Chapter 53: Profiling and KB Performance

Describes techniques for evaluating and improving KB performance.

Chapter 54: G2-Meters

Shows how to create, configure, and use G2-meters.

Chapter 55: Memory Management

Describes G2’s memory regions and shows how to manage them.

Chapter 56: Task Scheduling

Describes the G2 scheduler, the G2 clock, and task queues.
1753

1754

50
Error Handling
Describes the G2 error-handling capabilities.

Introduction 1756

Superseded Error Handling Techniques 1756

G2 Error Handling Concepts 1757

G2 Error Classes 1757

Defining an Error Handler 1758

Handling Errors in a Procedure 1759

Error Object Memory Management 1763

Reusing Error Objects 1764

Handling Non-Procedural Errors 1764

Signaling Errors in a Procedure 1764

Shadowing the Default Error Handler 1767

Mixing Error Handling Techniques 1769
1755

Introduction
G2 error handling is object-oriented, and is based on the following capabilities:

• The system-defined class error, an extensible instantiable class for controlling
error handling.

• The on error statement, which takes a local variable whose class is error or a
subclass of error.

• The signal statement, which specifies an instance of error or of a subclass
of error.

• The ability to use object-oriented techniques to handle different types of errors
in different ways.

• The ability to shadow the system-defined default error handler with a user-
supplied procedure or a method definition.

Note This chapter covers the essentials of G2 error handling. More sophisticated
techniques for managing errors are available through GFR and GERR. See the
G2 Foundation Resources User’s Guide and G2 Error Handling Foundation User’s
Guide for details.

Superseded Error Handling Techniques
This chapter covers only object-oriented error handling, in which errors are
described by instances of class error. Such error handling is standard in G2 5.0 and
higher. In G2 4.0, an error was described using a symbol and a text string. Object-
oriented error handling supersedes this practice.

If your KB was new beginning in G2 5.0, you can ignore symbol/text error
handling. If your KB already uses G2 4.0 symbol/text error handling, you can
continue to use it if you prefer. The syntax is described under Superseded On
Error Statement Syntax and Superseded Signal Statement Syntax.

The two types of error handling can be freely intermixed: G2 translates
automatically between them, as described under Mixing Error Handling
Techniques. New code should use only the object-oriented techniques described
in this chapter.
1756

G2 Error Handling Concepts
G2 Error Handling Concepts
G2 provides two levels of error handling:

• A block error handler can be defined on any block in a procedure. This
handler traps errors that occur within the associated block.

• A default error handler traps any error that no block error handler traps.

Block error handlers can be nested in two ways:

• A block with an error handler can contain a subordinate block that defines its
own error handler.

• A block with an error handler can execute a call that passes control to a block
in another procedure that defines its own error handler.

When an error occurs, G2 first looks for an error handler defined on the block that
experienced the error. If none exists, G2 searches back through any containing
and calling blocks looking for a block error handler. If no block error handler
exists, G2 invokes the default error handler, which always exists.

G2 provides two statements for managing errors:

• on error: Associates an error handler with a block.

• signal: Invokes the applicable error handler.

Block error handlers (on error statements) can be defined only in procedures.
When an error occurs in any other context, such as a rule, G2 invokes the default
error handler.

G2’s default error handling capabilities are synchronous: they do not enter a wait
state during handling of an error. This protects the context within which the error
occurred from asynchronous changes. User-defined error handling capabilities
can allow other processing if appropriate. For information on wait states, see
Allowing Other Processing.

G2 Error Classes
G2 error handling is object-oriented. The basis is a system-defined extensible
instantiable class, error. The error class defines one class-specific attribute: a text
attribute called error-description.

Any class that is or inherits error is called an error class. Every error class defines
a separate type of error. G2 provides the following system-defined error classes:

• g2-error: An error that occurred during the ordinary execution of G2.

• g2-rpc-error: An error that occurred in the context of a remote procedure call.

• default-error: Provides compatibility with G2 4.0 error handling.
1757

The class inheritance of the system-defined error classes is:

The class error is inheritable and instantiable in user code. However, the
subclasses g2-error, g2-rpc-error, and default-error are reserved for use by G2, and
are neither inheritable nor instantiable in user code.

You can define as many additional types of errors as you like by defining
additional subclasses of error. You can add class-specific properties to such
subclasses as desired, and use multiple inheritance to combine them in arbitrarily
complex ways.

Both G2 and a user-supplied procedure can instantiate any error class. Such an
instance is called an error object. You can use such an object to:

• Specify a particular type of error by providing an error object of the
appropriate class.

• Associate text with a particular error by setting the error-description attribute
of an error object.

Error objects have a read-only hidden attribute called error-source-trace, which
provides a history of error descriptions and source information, and is updated
each time the error is signaled. The error-source-trace attribute has this syntax:

sequence
(structure

(error-trace-description: text,
error-trace-source-item: symbol,
error-trace-source-line: integer,
error-trace-source-column: integer)

. . .)

Each structure uses the current values from the error at the time it was signaled,
where the first entry corresponds with the most recent error that was signalled.

For more information, see Obtaining Source Information From the Error Object,

Defining an Error Handler
The syntax of an on error statement is:

on error (local-name)
statement [; statement]...

end
1758

Handling Errors in a Procedure
An on error statement appears immediately after the end statement of the block to
which it applies. For example:

demonstrate-block-error-handler()
errobj: class error;
begin

post "Call sigproc now.";
call sigproc(0);
post "Return from sigproc."

end
on error (errobj)

post "An error of the class [the class of errobj] occurred:
[the text of the error-description of errobj]";

delete errobj
end

An on error statement executes if and only if G2 signals an error within the scope
of the statement, or a signal statement executes within the scope of the statement.
Otherwise, control skips over the on error block and continues sequentially.

Handling Errors in a Procedure
When G2 signals an error during procedure execution, or a user-supplied
procedure signals an error, the signaler specifies the type of the error by
supplying an error object of appropriate type.

• When G2 signals an error during KB execution, the error object is a transient
g2-error or g2-rpc-error, and G2 places a description of the error in the object’s
error-description attribute.

• When a user-supplied signal statement signals an error, the error object is a
transient or permanent instance of any instantiable error class, and the user
code optionally places a description of the error in the object’s error-
description attribute.

In either case, G2 searches the call stack back from the point where the error was
signalled, looking for a block error handler whose type matches that of the error
object. Since error is the parent all error classes, a block error handler that specifies
the class error matches any error. A handler that specifies a more specific subclass
matches only errors of that class and its subclasses.

If G2 encounters a block error handler whose class matches the class of the error
object, G2 executes the statement(s) in the body of the error handler. These
statements can reference the error object in any standard way.

Argument Description

local-name A local name whose type is class error or
any subclass of error.
1759

If G2 never finds a matching block error handler, it executes the default error
handler. The system-defined default error handler is an implicit on error
statement that:

• Takes an object of class error, and thus matches any error.

• Posts the class of the error, and the contents of its error-description attribute, to
the Operator Logbook.

After a user-defined block error handler has executed, control passes to the first
statement after the end of the block that experienced the error. If no such
statement exists, the procedure containing the block returns.

Obtaining Source Information From the Error Object

If the error-generating procedure has been compiled with source-code position
information and you have defined your own error handler, G2 can tell you what
statement in your procedure caused the error. G2 does through three attributes on
your error object: error-source-line, error-source-column, and error-source-item.

In the next example procedure, the on error statement directs G2 to create a
g2-error object. The procedure simply posts the name of the error-causing
procedure and the line and column positions of the error to the Message Board:

test-error-location()
procedure-error: class error;
begin

call undefined-procedure()
end
on error (procedure-error)

post "An error occurred in [the error-source-item of procedure-error]
on line [the error-source-line of procedure-error]
and in column [the error-source-column of procedure-error].";

delete procedure-error
end

The error source line is indexed beginning at 1; and the error column position is
indexed starting at 0. The line-column location is within the statement that
generated the error, but G2 is not always able to pinpoint the exact position
within the statement. The line and column values are -1 if G2 is unable to
determine what procedure statement generated the stack error.

For more information on G2’s source-code error location facility, see Obtaining
Procedure Source-Code Error Location Information.

Synchronous and Asynchronous Error Handling

Error handler invocation is synchronous: nothing else will execute in the G2 that
executes the handler until that handler returns. If the error did not occur during
execution of an RPC call, and the error handler does not execute an RPC call, the
1760

Handling Errors in a Procedure
G2 context is guaranteed to be the same when the handler returns as it was when
the handler was invoked, except insofar as the handler itself has changed it.

When error handling either executes or occurs during execution of an RPC call,
the remote process runs asynchronously from the error handler, and can change
the context of the code that invoked the handler. When the handler returns, code
that validates context may have to be rerun before code that assumes that context
can safely continue execution.

Default Handler Example

The following procedure attempts to call an undefined procedure named sigproc:

demonstrate-block-error-handler()
begin

post "Call sigproc now.";
call sigproc(0);
post "Return from sigproc."

end

If you invoke demonstrate-default-error-handler, the procedure:

1 Posts "Call Sigproc Now:” on the Message Board.

2 Attempts to call sigproc.

G2 cannot find the nonexistent procedure, so it:

1 Creates a transient error object of class g2-error and sets its error-description
attribute to describe the error.

2 Signals an error with that error object.

To process the signaled error, G2:

1 Seeks a block error handler that takes a g2-error.

2 Does not locate such a handler,

3 Invokes the default error handler, passing it the error object.
1761

The system-defined default error handler:

1 Posts the following message on the Operator Logbook:

2 Deletes the error object. See Error Object Memory Management for
information on error object deletion.

An error handled by the default error handler aborts the procedure, so the
statement posting “Return from Sigproc:” on the Message Board never executes.

Block Error Handler Example

The following procedure attempts to call an undefined procedure named sigproc.
It is the same as the preceding example, except that it defines a block error
handler on the calling procedure’s begin-end block:

demonstrate-block-error-handler()
errobj: class error;
begin

post "Call sigproc now.";
call sigproc(0);
post "Return from sigproc."

end
on error (errobj)

post "An error of the class [the class of errobj] occurred:
[the text of the error-description of errobj]";

delete errobj
end

If you invoke demonstrate-block-error-handler, the procedure:

1 Posts "Call Sigproc Now:" on the Message Board.

2 Attempts to call sigproc.

G2 cannot find the nonexistent procedure, so it:

1 Creates a transient error object of class g2-error and sets its error-description
attribute to describe the error.

2 Signals an error with that error object.
1762

Error Object Memory Management
To process the signaled error, G2:

1 Seeks a block error handler that takes a g2-error.

2 Locates the error handler associated with the procedure’s begin-end block.

3 Invokes the handler, passing it the error object.

The block error handler:

1 Posts the following message on the Message Board (not the logbook):

2 Explicitly deletes the error object. See Error Object Memory Management for
information on error object deletion.

The error aborts the block, and demonstrate-block-error-handler contains no
further statements, so the procedure returns.

Note that the value of error-description in the Message Board is the same as in the
Operator Logbook message in the previous example. It is the same because the
error object generated by G2 is the same in both cases. The only difference is the
handler that posts the information: the system-defined default error handler in
the previous example, and a block error handler in this one.

Error Object Memory Management
During KB execution, error objects can be instantiated in indefinitely large
numbers. Such objects must not be allowed to accumulate without limit, or the
resulting memory leak will eventually consume all memory and abort G2.

When the system-defined default error handler receives a transient error object, it
automatically deletes the object before returning. In all other cases, code that
signals and handles errors must explicitly delete error objects as needed to
prevent them from accumulating.

Since G2 cancels execution of a block that signals an error, the code that deletes an
error object cannot follow the signal statement in that block. The most convenient
place to delete an error object is in the error handler that receives it. Any other
technique will do as well, provided that it can never fail.
1763

Reusing Error Objects
When the system-defined default error handler receives a permanent error object,
it does not delete the object before returning, and a block error handler need not
delete the error object that it receives. An undeleted error object persists, and can
be used by signal statements as desired.

This provision allows you to avoid the overhead of creating and deleting an object
with every signaled error. You can create libraries of permanent error objects, and
select from them as needed when errors occur.

Handling Non-Procedural Errors
Block error handlers can be defined only within procedures. When G2 signals an
error in any context other than a procedure, it invokes the default error handler,
passing it a transient g2-error object whose error-description attribute describes
the error.

The system-defined default error handler posts to the Operator Logbook a
message similar to that in the preceding example, then:

1 Deletes the error object.

2 Aborts the construct within which the error occurred.

3 Proceeds with the next scheduled task.

If the error occurred within the simulator, G2 halts the simulator.

The G2 Simulator is a superseded capability. For more information, see
Appendix F, Superseded Practices.

Signaling Errors in a Procedure
You can use the signal statement to signal an error during procedure execution.
Such an error is essentially the same as an error signaled by G2 itself. The only
difference is that the signal statement, rather than G2, supplies the error object.

The syntax of the signal statement is:

signal error-object;

When a signal statement executes, G2 looks for a block error handler whose class
matches that of the error-object specified in the statement. If G2 finds such a

Argument Description

error-object An instance of the class error or of any
subclass of error.
1764

Signaling Errors in a Procedure
handler, it invokes the handler, passing it error-object. If G2 does not find a block
error handler, it invokes the default error handler on error-object.

Thus the signal statement, rather than G2, defines the type of a signalled error.
This feature, in conjunction with the ability to define error classes using multiple
inheritance, allows very complex handling of signaled errors.

The signal statement affects the error message that appears on the Operator
Logbook. Regardless of whether both the error-object creation and signalling are
done within the same procedure, or a procedure signals an error object created in
another procedure, the error message on the Operator Logbook contains
information for both the error object and the signal. Selecting the go to source
code menu option on the combined message locates the signal statement, not the
error-generating statement.

The examples in this section assume that you have read Handling Errors in a
Procedure, and do not reiterate the detailed descriptions of error handling that
appear in that section.

Signaling the Default Error Handler

The following procedures are demonstrate-default-error-handler, the same
procedure that appeared in Default Handler Example, and sigproc, the procedure
that was undefined in that example. The procedure sigproc contains an example
of a signal statement:

demonstrate-block-error-handler()
begin

post "Call sigproc now.";
call sigproc(0);
post "Return from sigproc."

end

sigproc(index: integer)
zdev: class zerodivide;
begin

create a zerodivide zdev;
change the text of the error-description of zdev to "Cannot divide by zero.";
if index = 0 then signal zdev;
post "Ratio: [45387 / index]"

end

The signal statement in the example specifies an error object of class zerodivide, a
subclass of error. Calling demonstrate-default-error-handler calls sigproc with an
argument of 0, invoking sigproc’s signal statement on an error object of class
zerodivide.
1765

Since no block error handler is in effect, G2 passes zdev to the default error
handler. The system-defined default error handler posts the following to the
Operator Logbook:

The system-defined default error handler has added additional information to the
error-description of zdev. G2 provides such information as a convenience
whenever a signaled error reaches the default error handler.

Signalling a Block Error Handler

The following procedures are demonstrate-block-error-handler, the same
procedure that appeared in Block Error Handler Example, and sigproc, the
procedure that was undefined in that example.

demonstrate-block-error-handler()
errobj: class error;
begin

post "Call sigproc now.";
call sigproc(0);
post "Return from sigproc."

end
on error (errobj)

post "An error of the class [the class of errobj] occurred:
[the text of the error-description of errobj]";

delete errobj
end

sigproc(index: integer)
zdev: class zerodivide;
begin

create a zerodivide zdev;
change the text of the error-description of zdev to "Cannot divide by zero.";
if index = 0 then signal zdev;
post "Ratio: [45387 / index]"

end
1766

Shadowing the Default Error Handler
Calling demonstrate-default-error-handler calls sigproc with an argument of 0,
invoking sigproc’s signal statement on zdev. G2 passes zdev to the block error
handler of the calling block, which posts the following to the Message Board (not
the logbook):

When a signal statement communicates directly with a block error handler, G2
does not add any additional information: it uses the error object exactly as
supplied by the signal statement.

Shadowing the Default Error Handler
You can shadow the system-defined default error handler with a user-defined
default error handler. Such a handler is a procedure that takes one argument: an
error object.

Shadowing the system-defined handler with a user-defined handler allows you to
specify the handling of any or all errors, including those that originate outside the
context of a procedure, such as rule, formula, and simulator errors.

The G2 Simulator is a superseded capability. For more information, see
Appendix F, Superseded Practices.

When a user-defined default error handler exists, G2 invokes it for any error
whose type matches the class of the handler’s argument. G2 then invokes the
system-defined default error handler only for:

• Errors whose type does not match that specified by the user-defined handler.

• Errors that originate in the user-defined handler itself and are not trapped by
a block error handler defined within it.

A user-defined default error handler can be a method declaration. When G2
invokes such a handler, it looks for a method defined for the class of the error
object, and invokes it if it exists. If no such method exists, G2 invokes the system-
defined default error handler.

Note More sophisticated techniques for managing error messages are available through
GFR. See the G2 Foundation Resources User’s Guide for details.
1767

Creating a User-Defined Default Error Handler

Any procedure (including a method) that takes one argument of class error, or of
any subclass of error, can be a user-defined default error handler. The procedure
need have no other special properties.

To put a user-defined default error handler into effect, you must register the
handler. G2 provides system procedures to register and deregister default error
handlers, and to obtain the name of the handler currently in effect.

Resetting G2 does not affect handler shadowing: any registered handler remains
in effect when G2 restarts.

To register a default error handler:

 g2-register-default-error-handler
(procedure: class procedure)

Registers a procedure or a method declaration to handle all errors.

To deregister a default error handler:

 g2-deregister-default-error-handler ()

Deregisters the currently registered default error handler. The system-defined
handler is then unshadowed, and behaves as if no user-defined handler had ever
been registered.

To get the default error handler:

 g2-get-default-error-handler ()
-> {handler: class procedure | false }

If the procedure’s argument is... The procedure traps these errors...

error All errors signalled by G2 or by a
signal statement supplied by the
user.

g2-error All errors signaled by G2.

g2-rpc-error Errors signaled by G2 as a result of a
remote procedure call, such as a
broken connection. This error
handler does not trap g2-errors
signalled in the remote procedure
call itself.

A user-defined error class. Any error of the user-defined class
or any subclass of it.
1768

Mixing Error Handling Techniques
Returns the procedure or method declaration currently registered as the default
error handler, or false if none is registered.

Each of these procedures is described in more detail in the G2 System Procedures
Reference Manual.

Caution When you shadow the default error handler, be sure that the user-defined
handler manages transient error objects correctly, or a memory leak will result.
For details see Error Object Memory Management.

Mixing Error Handling Techniques
Error handling in G2 4.0 used a symbol and a text string, rather than an object, to
describe an error. The essential nature of G2 4.0 error handling is the same as in
G2 5.0 and higher, but the syntax is different: in the G2 4.0 implementation, the on
error and signal statements each take two arguments—the symbol and the text
string that describe the error—rather than one.

The syntax of the G2 4.0 error handling statements is described under Superseded
On Error Statement Syntax and Superseded Signal Statement Syntax.

G2 distinguishes between the G2 4.0 and 5.0 and higher on error and signal
statements by the number of arguments in the statement. To allow code to mix the
two techniques without requiring special action, G2 automatically interconverts
between them. Such interconversion is possible because:

• The error-name argument to a G2 4.0 on error or signal statement is analogous
to the class name of the error-class argument to the corresponding G2 5.0 and
higher statement.

• The error-text argument to a G2 4.0 on error or signal statement is analogous to
the error-description attribute of the error-class argument to the corresponding
G2 5.0 and higher statement.

The following table shows how G2 interconverts between one-argument and
two-argument error handling:

• The rows of the table show the three ways in which a search for an error
handler can originate.

• The columns show the two types of error handler on which the search
can terminate.
1769

Note The object-oriented default error handler is effectively a one-argument
on error statement.

A one-argument
on error statement

A two-argument on error statement

An
execution
error

No conversion needed. G2 supplies the on error statement
with an error-symbol and an error-
text.

A one-
argument
signal
statement

No conversion needed. G2 converts the error object’s class
name to an error-symbol and the
error object’s error-description to
an error-text, and supplies the two
arguments to the on error
statement.

A two-
argument
signal
statement

G2 supplies the on error
statement with an error object
whose error-description is error-
text, and whose class name is:

• g2-error if error-name is error.

• g2-rpc-error if error-name is
rpc-error.

• default-error otherwise.

No conversion needed.
1770

51
Debugging
and Tracing
Describes G2 facilities that can assist in debugging your KB.

Introduction 1771

Displaying Error and Warning Messages 1772

Obtaining Procedure Source-Code Error Location Information 1773

Displaying Trace Messages 1779

Saving Tracing Data to a File 1782

Specifying Breakpoints and Tracing 1783

Using Dynamic Breakpoints 1786

Stepping Through Procedure Source Code 1790

Stepping Through Procedure Source Code 1792

Removing Tracing and Breakpoints 1795

Showing Disassembled Code 1796

Obtaining Information from Abort Workspaces 1796

Writing Logbook Messages to a Log File 1797
1771

Introduction
G2 provides facilities for tracing and debugging items in your knowledge base
(KB) by:

• Displaying error and warning messages about stack errors and
KB discrepancies.

• Making source-code error location information available to you when a
procedure generates a stack error.

• Displaying trace messages that give information on the execution state of
procedures, methods, rules, formulas, and display expressions.

• Setting breakpoints that pause G2 between steps in your executing code so
you can view trace messages and examine other KB data.

• Using dynamic breakpoints and stepping through procedure code, using the
Windows debugger.

• Displaying the disassembled code for procedures, methods, and rules.

• Writing G2-state information after an internal error to an abort workspace and
to the launch window.

• Writing logbook messages to a file.

Many of the debugging facilities are controlled by the values you specify for the
Debugging Parameters system table. For a summary description of these
attributes, see Debugging Parameters.

Displaying Error and Warning Messages

By default, G2 displays Operator Logbook messages for some KB discrepancies
and all stack-errors that do not have user-defined error handlers. The value of the
warning-message-level attribute in the Debugging Parameters system table
determines which messages G2 displays.

Note See Error Handling for information on error handling and its effect on error
display.

To specify the level of warning and error messages for display:

 Edit the warning-message-level attribute in the Debugging Parameters
system table, and specify one of the following values:

• 0 (no warning messages)

• 1 (kb errors only)
1772

Displaying Error and Warning Messages
• 2 (kb errors and deficiencies)

• 3 (kb errors, deficiencies, and other conditions)

The default level is 2, which specifies that G2 display all Level 1 and Level 2
warning messages, as well as all logbook-bound stack-error messages. Stack-error
messages are displayed for all levels except Level 0. Specifying Level 0 directs G2
not to display any warning or stack-error messages.

Internally, each warning message has a warning-message level, which is
sometimes included in the message display. You might want to specify a higher
level when debugging your KB, and a lower level when you are
finished debugging.

Note See Controlling Error and Warning Message Displays for more information on
what kinds of KB deficiencies are displayed for each warning-message level.

This example shows a variable that has a non-existent data server in its data-
server attribute, and shows the warning message that is displayed when the
warning-message level is set to Level 1 or higher:
1773

Obtaining Procedure Source-Code Error
Location Information

When a procedure in your KB generates a stack error, G2 can tell you what
statement in your code is responsible for the error. G2 does this by retrieving the
source-code annotation location information it creates when it compiles your
procedure code. The position information is within the statement in your
procedure which is responsible for the error. Only procedures are compiled with
source-code location information, and the information is saved with the KB.

When a stack-error is generated by a procedure compiled with annotation
information, G2 makes the error source-code location available from two sources:

• From the error message G2 posts to the Logbook.

• From your error-handler object.

Controlling the Creation of Error-Location
Information

G2 generates source-code position information only when the generate-source-
annotation-info attribute of the Debugging Parameters system table is set to its
default value of yes. The creation of annotation information slightly increases
compile time and results in a slightly larger KB, but has little impact on run-time
performance. At any time, you can direct G2 to refrain from creating
annotation information.

To control the creation of source-code annotation information:

1 Select Main Menu > System Tables > Debugging Parameters.

2 Specify yes/no for the generate-source-annotation-information attribute.

G2 does not generate source-code position information when the generate-
source-annotation-info attribute is no. If you wish to remove existing source-code
location information from procedures, you must recompile them.

To remove existing source-code annotation information from your procedures:

1 Set the generate-source-annotation-information attribute on the Debugging
Parameters system table to no.

2 Select Main Menu > Inspect and enter recompile every procedure in the edit
box, or recompile procedures individually.

Note G2 always removes source-code information when you text strip a procedure
regardless of the value of the generate-source-annotation-information attribute.
1774

Obtaining Procedure Source-Code Error Location Information
Obtaining Error-Location Information from the
Logbook

When G2 signals an error, it posts an error message to the Operator Logbook.

To find the source-code location of that error:

1 Click on the error message to bring up its menu.

2 Select the go to source menu choice.

If there are other procedures on the call stack, G2 displays a menu that contains
the error-generating procedure and its calling procedures. For example:

When you select one of the callers, G2 opens a text editor on the calling
procedure, and places the cursor within the statement that calls another
procedure on the stack:
1775

When you select the error-generating procedure, G2 opens a text editor and
places the cursor within the statement that caused the error:

If the call stack contains only the error-generating procedure, selecting go to
source code immediately brings up the text editor on that procedure.

Obtaining Error-Location Information from the
Error Object

If you shadow G2’s error handler by defining your own error handler, the source-
code location information is accessible from the error-source-line, error-source-
column, and error-source-item attributes of the error object.

In this example procedure there is a call to an undefined procedure. The on error
statement directs G2 to create an error object. The procedure simply posts the
name of the error-causing procedure and the line and column positions of the
error to the Message Board:

test-error-location()
procedure-error: class error;
begin

call undefined-procedure()
end
on error (procedure-error)

post "An error occurred
in [the error-source-item of procedure-error]
on line [the error-source-line of procedure-error]
and in column [the error-source-column of procedure-error].";

delete procedure-error
end

The error source line is indexed beginning at 1; and the error column position is
indexed starting at 0. The line-column location is within the statement that
generated the error, but G2 is not always able to pinpoint the exact syntax within
the statement. The line and column values are -1 if G2 is unable to determine what
procedure statement generated the stack error.

If you call a signal statement from within the on error statement, G2 replaces the
information in the error-source-item, error-source-line, and error-source-column
attributes with values that correspond to the signal statement. If an error object
already contains values for these attributes, G2 overwrites them. If you want to
retain this information, you must save it before signaling the error.
1776

Obtaining Procedure Source-Code Error Location Information
Caution Procedure code that handles errors must explicitly delete any error objects that
are created to prevent them from accumulating and consuming memory.

Procedure Statements That Divert Error Location

Your procedures can contain code that causes G2 to point to statements that are
not directly responsible for a stack error. This occurs in these cases:

• When a procedure statement contains a function invocation and the function
causes an error, the error position is within the procedure statement that
invokes the function, not within the function itself.

• When a procedure statement contains a call to an inlined procedure and the
inlined procedure causes an error, the error position is within the procedure
statement that calls the inlined procedure, not within the inlined
procedure itself.

• When a procedure has a signal statement, the error position is within the
signal statement, not within the statement that caused the error. The error
message that appears on the Operator Logbook contains information for both
the error object and the signal.

The example below shows location diversion due to a signal statement. There are
two procedures on the call stack. The procedure color-workspace has a change
statement that references an illegal color symbol, and an on-error statement that
creates an error object but does not signal the error. Instead, color-workspace calls
the procedure signal-error which signals the error with the error object created by
color-workspace.

Here is the code for the two procedures:

color-workspace (ws: class kb-workspace)
error-object: class error;
begin

change the background-color of ws to lurid-color
end
on error(error-object)

call signal-error(error-object, the symbol color-error)
end

signal-error(error-object: class error, error-type: symbol)
begin

change the name of error-object to error-type;
signal error-object

end
1777

The double error message that appears from the signal statement is shown below.
The error-message menu-choice go to source code has been selected:

Selecting signal-error brings that procedure into the text editor with the cursor
within the signal statement:
1778

Displaying Trace Messages
Selecting color-workspace brings that procedure into the text editor with the
cursor within the statement that calls signal-error.

Go-to-Source-Code Errors

Selecting the go to source code menu choice fails in these error situations:

• The location information in the Logbook error is not the same as the
annotation location information in the procedure. This happens when you
recompile a procedure after the procedure Logbook error is posted. G2
notifies you by posting this Logbook error message:

This message is no longer valid because the procedure has been
recompiled.

• The procedure is currently not editable because it is proprietary. G2 posts this
message to the Logbook:

Can’t edit the procedure.

• This message is posted to the Logbook when G2 is unable to determine the
source-code error location:

Couldn’t find source code mapping information.

Displaying Trace Messages

During debugging, you might want to display messages in the Operator Logbook
that trace the execution of procedures, methods, rules, formulas, and display
expressions. This can be helpful for determining what is being evaluated and in
what order.

By default, G2 does not display trace messages.

To enable trace messages:

 Set the tracing-and-breakpoints-enabled? attribute in the Debugging
Parameters system table to yes.
1779

This attribute provides a convenient way of turning tracing and breakpoints on
and off without re-editing the attributes that specify what items should be traced
and at what level they should be traced.

To display trace messages:

 Edit the tracing-message-level attribute of the Debugging Parameters system
table to specify tracing for the entire KB.

or

 Individually edit the tracing-and-breakpoints attribute of selected
executable items to specify the tracing message level.

You can specify item-specific tracing by editing the tracing-and-breakpoints
attribute of these classes of items:

• Procedures

• Methods

• Variables

• Readout-tables

• Meters

• Dials

For variables, G2 traces the formulas specified on the variable attribute tables; and
for readout-tables, meters, and dials, G2 traces the display expressions.

You can specify the tracing message level to be one of these values:

• 0 (no trace messages)

• 1 (trace messages on entry and exit)

• 2 (trace messages at major steps)

• 3 (trace messages at every step)

Note The value of the tracing-message-level attribute of the Debugging Parameters
system table overrides the values of the tracing-and-breakpoints attributes of
individual items.

Specifying tracing for the entire KB causes G2 to display messages for all
executing items. Unless your KB is small or has been selectively disabled, this
might generate more information than you would like and make it difficult to
perform other KB activities.

Pressing Control + z pauses the KB and the tracing messages, but when you
resume, G2 resumes tracing message display until you change your tracing
specification. Specifying no for the tracing-and-breakpoints-enabled? attribute of
1780

Displaying Trace Messages
the Debugging Parameters system table disables tracing and breakpoints
regardless of related attribute specifications.

The following example shows the tracing messages that appear on the Operator
Logbook for a KB in which Level 1 tracing has been specified for three
individual items:

• rule-to-start-test-procedure-1, a whenever rule

• test-procedure-1, a procedure that calls test-procedure-2

• test-procedure-2

When tracing is specified for the entire KB, tracing messages would also be
displayed for the initially rule and for any other executable items in the KB:
1781

The next example shows the tracing messages G2 displays when a variable
receives a value twice from the formula defined for its formula attribute. These
tracing messages are displayed when the variable tracing level is Level 1 or 2.

Saving Tracing Data to a File

You can save the tracing messages that are displayed in the Operator Logbook to
a file.

To enable writing tracing data to a file:

 In the Miscellaneous Parameters system table, set the enable-explanation-
controls attribute to yes.

G2 does not open a tracing file, but it now has the option to do so.

To start writing tracing data to a file:

 In the Debugging Parameters system table, enter a file name as a text value in
the tracing-file attribute.

If G2 is running and tracing is enabled, G2 immediately opens the specified file
and begins writing tracing information to it. Any existing file having the specified
name is overwritten.

Writing continues as long as G2 runs. Once writing is underway, you can perform
the following actions to effect output to the tracing file:

This action... Has this effect...

Change the value of the tracing-file
attribute to none

The trace file closes.

Change the value of the tracing-file
attribute to a different filename

The trace file closes, a new file with
the new name opens, and writing
begins to the new file.
1782

Specifying Breakpoints and Tracing
To view the trace file:

1 Perform one of the following operations to close the trace file:

• Turn tracing off by specifying no for the tracing-and-breakpoints-enabled?
attribute.

• Specify none for the tracing-file attribute.

• Specify a different filename for the tracing-file attribute.

• Reset G2.

2 Open the trace file for viewing.

Note You can also write the text of all the messages that are sent to the Logbook to a
file. See Writing Logbook Messages to a Log File of this chapter for information
on this related facility.

Specifying Breakpoints and Tracing

By setting breakpoints, you can both display trace messages and pause the KB
during code execution. This feature allows you to step through the execution of
procedures, methods, formulas, and display expressions, pausing between steps
so you can view trace messages and examine other changes in the state of your
running KB.

By default, G2 does not set breakpoints.

Pause G2 Writing stops, but the trace file
remains open.

Resume G2 Writing to the trace file continues
from the point where G2 paused.

Reset G2 Writing to the trace file stops and
the file closes. To preserve the data
already in the trace file, change the
name in the tracing-file attribute
before starting G2 again.

Restart G2 The trace file closes and is
immediately overwritten by a new
empty file with the same name.
Writing begins to the new file.

This action... Has this effect...
1783

To enable breakpoints and tracing:

 Set the tracing-and-breakpoints-enabled? attribute in the Debugging
Parameters system table to yes.

This enables breakpoint and display functionality, but code execution does not
pause until you specify breakpoints for the KB or for individual items, or until
you use the halt action.

To specify breakpoints and tracing:

 Edit the breakpoint-level attribute in the Debugging Parameters system table
to specify breakpoints for the entire KB.

or

 Edit the tracing-and-breakpoints attribute of selected items to specify the
breakpoint level.

or

 Use the halt action to halt the execution at a particular point in the code for
an item.

Specifying breakpoints for the entire KB causes G2 to pause for all executing
procedures, rules, formulas, and display expressions. You can specify item-
specific breakpoints by editing the tracing-and-breakpoints attribute of these
classes of items:

• Procedures

• Methods

• Variables

• Readout-tables

• Meters

• Dials

For variables, the breakpoints apply to the formulas specified on the variable
attribute tables. For readout-tables, meters, and dials, the breakpoints apply to the
display expressions.

You can specify the breakpoint level to be one of these values:

• 0 (no breakpoints)

• 1 (breakpoints on entry and exit)

• 2 (breakpoints at major steps)

• 3 (breakpoints at every step)

For example, suppose you have an action button that executes a procedure, which
in turn calls another procedure. Setting the breakpoint-level of the Debugging
1784

Specifying Breakpoints and Tracing
Parameters system table to level 1 (breakpoints on entry and exit) causes G2 to
display a trace message and pause each time the action button and the two
procedures begin and end, as well as for all other executing items.

This example shows the initial display that appears when G2 begins executing the
action button:

At this point, you can click:

• The Pause button to pause the KB and remove the breakpoint.

If the show-procedure invocation-hierarchy-at-pause-from-breakpoint
attribute of the Debugging Parameters system table is yes, clicking the Pause
button also automatically executes the Inspect command show on a
workspace the procedure invocation hierarchy. The resulting workspace is
slightly different than it is when invoked directly from Inspect. The currently
running procedures appear at the left of the workspace, so the procedure that
contains the most recent breakpoint appears at the bottom left.

• The Continue button to create a trace message and breakpoint for the
next step.

• The Disable debugging button to turn tracing and breakpoints off entirely.

To continue running after pausing, choose Continue from breakpoint from the
Main Menu. G2 displays a trace message and pauses at the next step in
the execution.
1785

Using Dynamic Breakpoints
You can set breakpoints dynamically in procedure code in the client through the
Windows text editor or the standard debugger. You can also set and remove
dynamic breakpoints in the server through a hidden attribute on the procedure
called dynamic-breakpoints.

When you execute the procedure with dynamic breakpoints set, G2 performs the
same operation as it does when the halt action is executed.

Dynamic breakpoints are saved in and loaded from a KB.

Note If procedure A inlines procedure B, procedure A does not inherit procedure B’s
dynamic breakpoints.

For information on using the Windows text editor, see Editing Text in Using
Telewindows in the Telewindows User’s Guide.

Setting Dynamic Breakpoints in the Client

To set a dynamic breakpoint in the client, edit the procedure to display the
standard text editor, then click in the column to the right of the line number at
which you want to set a breakpoint for a line of code. You can also set a dynamic
breakpoint directly from within the standard debugger. The dynamic breakpoint
appears as a filled circle next to the line of code.

To disable a dynamic breakpoint, click the filled circle. The dynamic breakpoint
appears as an open circle. To remove the breakpoint, click the open circle again.
Disabling a breakpoint behaves as if the breakpoint were not there.

Before you can edit dynamic breakpoints in the standard text editor, you must
apply all pending edits to compile the procedure.

You can only set dynamic breakpoints for valid lines of code, such as procedure
statements. You cannot set dynamic breakpoints for invalid lines of code, such as
the procedure name, local variables, begin/end statements, comments, and blank
lines. The text editor beeps if you attempt to place a dynamic breakpoint next to
an invalid line of code.

You cannot set dynamic breakpoints on the first line of a for statement.
1786

Using Dynamic Breakpoints
For example, this procedure sets dynamic breakpoints on each line in the body of
the procedure:
1787

When you execute the procedure, G2 displays the debugger and places an arrow
next to the line that is about to execute at which a breakpoint has been set:

At this point, you can set and remove dynamic breakpoints, as needed. Click in a
column to set a breakpoint or click an existing breakpoint once to disable it or
twice to remove it, then click Continue to continue executing the procedure. You
can also enable Source Stepping.

Setting Dynamic Breakpoints in the Server

Procedures define a hidden attribute called dynamic-breakpoints, which has the
following signature:

sequence
(structure (line-number: integer,

is-enabled: truth-value,
is-valid: truth-value)

. . .)

where:

• line-number is the line number of the source code on which to set a
dynamic breakpoint.

• is-enabled determines whether dynamic breakpoints are enabled or
disabled for the specified line of source code.
1788

Using Dynamic Breakpoints
• is-valid indicates whether the specified line of source code is a valid line on
which to set a breakpoint. A line of source code is invalid if the specified
line does not exist or if it is a line of source code on which you cannot set a
breakpoint, such as the procedure name and begin/end statements. Invalid
dynamic breakpoints are ignored at runtime. This attribute is read-only
and is ignored when setting via the hidden attribute.

To set dynamic breakpoints in the server, you can conclude a value for the
dynamic-breakpoints hidden attribute. All attributes of the structure except
is-valid are required when specifying the sequence of structures. An empty
sequence means the procedure has no dynamic breakpoints.

For example, the value of the dynamic-breakpoints hidden attribute for the
previous procedure looks like this, where dynamic breakpoints are set for lines 3
and 4, where is-enabled and is-valid are both true:

When an invalid dynamic-breakpoint is added, G2 automatically sets is-enabled
to false and is-valid to false for the corresponding line of source code. G2 ignores
invalid breakpoints at runtime. A procedure with invalid dynamic breakpoints
has notes indicating invalid dynamic breakpoints.

Setting and removing dynamic breakpoints via the hidden attribute does not
recompile the procedure.

Note You can create invalid breakpoints through the text editor as a side-effect of
editing a procedure with existing breakpoints, which are subsequently made
invalid by editing the procedure.
1789

Stepping Through Procedure Source Code
G2 allows you to single-step through procedure source code. To use this feature,
tracing-and-breakpoints-enabled? must be set to yes in the Debugging
Parameters system table.

You enable this feature in one of two ways:

• To enable it globally, set the source-stepping-level attribute in the Debugging
Parameters system table to 1 (source stepping). By default, the value is
0 (no source stepping), which means do not allow single-stepping.

• To enable it for individual procedures, set the tracing-and-breakpoint attribute
for an individual procedure to source stepping level 1 (source stepping). The
other option is source stepping level 0 (no source stepping).

When G2 is single-stepping through source code, before the next line of source
code is executed, it performs a similar action as when a halt action is executed. In
the client, the Windows debugger appears, and in the server, a dialog appears
that shows the source code around the line of source code G2 is about to execute,
the line numbers, the contents of the stack, and the local variable bindings.

Note When single-stepping through source code, if procedure A inlines procedure B,
procedure A does not step into procedure B, because the source code of procedure
B is not in procedure A. Instead, procedure A steps over the call to procedure B.
1790

Stepping Through Procedure Source Code
Here is the result of setting tracing-and-breakpoints to source stepping level 1
(source stepping), then executing the procedure in the client to display the
debugger. Notice that the Source Stepping option is enabled at the bottom of the
dialog.
1791

In the server, you see the following dialog, which shows the line of source code
being executed and one line of source code above and below the line currently
being executing.

Stepping Through Procedure Source Code
G2 allows you to single-step through procedure source code. When G2 is single-
stepping through source code, before the next line of source code is executed, it
performs a similar action as when a halt action is executed. In the client, the
standard Windows debugger appears, and in the server, a dialog appears that
shows the source code around the line of source code G2 is about to execute, the
line numbers, the contents of the stack, and the local variable bindings.

For information on using the standard debugger in the client, see the Telewindows
User’s Guide.

To enable single-stepping through source code:

 Set the tracing-and-breakpoints-enabled? attribute in the Debugging
Parameters system table to yes.

This enables breakpoint and display functionality, but code execution does not
pause until you single step through code.

Source code
line number.

Current line of source
code being executed.

Surrounding
source
code.
1792

Stepping Through Procedure Source Code
To specify single stepping:

 Edit the source-stepping-level attribute in the Debugging Parameters system
table to specify breakpoints for the entire KB.

or

 Edit the tracing-and-breakpoints attribute of selected items to specify the
source stepping level.

You can specify the source stepping level to be one of these values:

• 0 (no source stepping)

• 1 (source stepping)
1793

Here is the result of setting tracing-and-breakpoints to source stepping level 1
(source stepping), then executing the procedure in the client to display the
standard debugger in the Telewindows client:
1794

Removing Tracing and Breakpoints
In the server, you see the following dialog, which shows the line of source code
being executed and one line of source code above and below the line currently
being executing.

Removing Tracing and Breakpoints

You have three options for removing tracing and breakpoints once they
are enabled.

To remove tracing and breakpoints:

 Choose Main Menu > Run Options > Remove Tracing and Breakpoints.

This sets the tracing-and-breakpoints attribute of every item to default, and
sets the tracing-and-breakpoints-enabled?, tracing-message-level, and
breakpoint-level attributes in the Debugging Parameters system table to their
default values.

or

 Select the disable debugging button from a breakpoint.

This sets the tracing-and-breakpoints-enabled? attribute in the Debugging
Parameters system table to no. It does not effect the value of the tracing-and-
breakpoints attribute of individual items.

Source code
line number.

Current line of source
code being executed.

Surrounding
source
code.
1795

or

 Change the value of the tracing-and-breakpoints-enabled? attribute to no in
the Debugging Parameters system table.

This attribute has no effect on the value of the tracing-and-breakpoints
attributes of individual items.

Showing Disassembled Code

G2 translates procedures, methods, rules, and a few other classes of items into an
internal format called byte code. Although the format of byte code is
undocumented and may change in the future, you can sometimes use the byte-
code representation of a procedure to locate an error or a breakpoint in the
source code.

The disassembler-enabled? attribute of the Debugging Parameters system table
controls whether disassembled code is ever displayed.

When the disassemble-enabled? attribute is yes, three changes occur to the G2
environment that facilitate debugging:

• The describe menu choice for a procedure, method, or rule shows the
corresponding byte-code representation.

• G2 error messages indicate the byte-code instruction that was running when
the error was generated.

• The Inspect command show on a workspace the procedure invocation
hierarchy indicates the byte-code instruction that is running for every
procedure invocation.

Obtaining Information from Abort Workspaces

If G2 aborts during execution, G2 displays an abort workspace, that contains
information about the state of the program at the time that G2 stopped executing.

Before contacting Customer Support, make a note of all information in the abort
workspace so you can provide Gensym’s Customer Support staff with the most
complete information.

This information also appears in the window such as the UNIX console window
from which the G2 process was launched. This makes it easier to place the
information into a file, which you can send to Gensym via electronic mail (e-mail)
or facsimile (FAX).
1796

Writing Logbook Messages to a Log File
Note The abort workspace recommends that you save the current KB to a KB file.
Please save the current KB to a new KB file, not to the same KB file from which
you loaded the current KB.

Writing Logbook Messages to a Log File

You can write warning and trace messages to a log file by using the Log File
Parameters system table.

To enable the log file:

1 Select Main Menu > System Tables > Log File Parameters.

2 Set the log-file-enabled? attribute to yes.

G2 automatically writes all Logbook messages to the log file.

By default, G2 writes the log file in the default directory. You can specify a
different directory by editing the directory-for-log-files attribute in the Log File
Parameters system table.

G2 adds a prefix to all log filenames; the default is g2-log-.

For more information on setting log file parameters, see Log File Parameters.
1797

1798

52
Explanation Facilities
Describes the facilities that collect and display data about rules and formulas and
the objects they reference.

Introduction 1799

Example KB in the Demos Directory 1800

Enabling the Explanation Facilities 1800

Displaying Current Chaining and Rule Invocation 1801

Displaying Explanation Trees of Cached Chaining and Rule Invocation
Knowledge 1806

Introduction
You can use G2’s explanation facilities to:

• Statically display one level of forward and backward chaining for a variable.

• Dynamically display:

– All invocations of backward-chaining rules for a variable.

– All invocations of rules for an object that contain a generic reference to
that object.

– All invocations of a particular rule.

• Cache explanation data for variables, parameters, and rules and create
explanation items that display the data on explanation trees.
1799

Note The explanation facilities are solely for use during KB development and
debugging, and are therefore restricted from appearing within a deployed KB.
Gensym reserves the right to limit access to any or all explanation facilities to a
development license in future releases.

For information on programmatic access to the explanation facilities, see the
description of g2-get-explanation-hierarchy in Get Hierarchy Operations in the
G2 System Procedures Reference Manual.

Example KB in the Demos Directory
There are examples of all explanation facilities in explnfac.kb in the demos directory
that is supplied with G2. This KB contains detailed instructions and procedures
for demonstrating and experimenting with the explanation facilities.

Enabling the Explanation Facilities
The explanation facilities are not available until you explicitly enable them, either
programmatically or interactively.

To interactively enable the explanation facilities:

1 Display the Miscellaneous Parameters system table:

Main Menu > System Tables > Miscellaneous Parameters

2 Specify yes for the Enable-explanation-controls attribute.

To programmatically enable the explanation facilities:

 Use the conclude action:

conclude that the enable-explanation-controls of miscellaneous-parameters
is true

When you set the Enable-explanation-controls attribute to yes, the following
changes occur in your KB:

• These choices appear on the Miscellany menu:

– Turn On All Explanation Caching

– Turn Off All Explanation Caching

• This option appears in the Options attribute of every variable, parameter, and
rule table:

[do not] cache data for explanation
1800

Displaying Current Chaining and Rule Invocation
• The choices below appear on variable, parameter, object, and rule popup
menus. They do not appear on the subtables of objects that are the values of
attributes. However, you can programmatically initiate displays for
subobjects, and for items on workspaces, by calling the system procedure,
g2-system-command which is described in the G2 System Procedures Reference
Manual.

• There are improvements to the facility that saves tracing data to a file. See
Saving Tracing Data to a File for more information.

• Separate tracing messages for rule invocations are collected into a single
message.

The rest of this chapter describes the explanation facilities. This chapter assumes
that you have specified yes for the Enable-explanation-controls attribute of the
Miscellaneous Parameters system table.

This chapter uses interactive menu-choice examples for initiating explanation
displays. You can also initiate the displays programmatically by calling the
system procedure, g2-system-command, which is fully described in the G2 System
Procedures Reference Manual. An example call to this procedure is:

call g2-system-command(the symbol dynamic-rule-invocation-display,
my-window, probe-rule, the symbol none)

Displaying Current Chaining and Rule
Invocation

You can use the explanation facilities to obtain static displays and displays that
dynamically update while G2 is executing.

For static displays, G2 selects the rules and formulas that would update a variable
when G2 is executing. It bases its selection on such information as the priorities
that rules and formulas have for updating a variable and on the chaining options
specified for rules. See Obtaining Requested Values for update priorities, and
Invoking Rules for information on using chaining options.

Menu Choice Variable Parameter Rule Object

describe chaining 

dynamic backward chaining 

dynamic generic rule display   

dynamic rule invocation display 
1801

Note The chaining display appears on a temporary workspace that you should delete
when you no longer wish to view the display.

Statically Displaying One-Level of Chaining for a
Variable

You can display a static view of one level of forward and backward chaining for a
variable while G2 is running, paused, or reset.

To display a static view of one level of chaining:

1 Click any variable that is on a workspace to display its item menu.

2 Choose describe chaining.

Static displays include:

• A representation of the variable.

• Representations that appear above the variable are the specific and generic
rules that reference the variable and may execute through forward chaining
when the variable receives a value.

• Representations that appear below the variable are:

– The specific formula of the variable that will execute when the variable
needs a value. A variable formula takes precedence over any rules for
supplying the value for a variable.

or

– The specific and generic rules that backward chaining will invoke when
the variable needs a value. When the variable has a specific formula, no
backward chaining rules will be displayed because the variable will
receive its value from the specific formula.

This example shows a specific forward chaining rule and a specific formula which
is the value of the formula attribute of the variable:
1802

Displaying Current Chaining and Rule Invocation
Dynamically Displaying Backward Chaining for a
Variable

You can display a dynamic view of all backward chaining rules that are being
invoked for a variable.

To display a dynamic view of backward chaining rules for a variable:

1 Click any variable to display its item menu.

2 Choose dynamic backward chaining.

The display appears on a temporary workspace and updates dynamically as the
KB executes. To cancel the display, delete the temporary workspace.

This example shows two invocations of the same rule, one for each instance of the
class foo that satisfied the rule antecedent condition:

Dynamically Displaying Generic Rule Invocations
for an Object

You can display a dynamic view of all invoked rules that reference an object
generically.
1803

To display generic rule invocations:

1 Click any object to display its item menu.

2 Choose dynamic generic rule display.

The display appears on a temporary workspace and updates dynamically during
KB execution. To cancel the display, delete the temporary workspace.

This example shows the generic rule display for an object that has been referenced
generically in two rule invocations:

Dynamically Displaying the Invocations of a Rule

You can display a dynamic view of all active invocations of a rule.

To display current rule invocations:

1 Click any rule to display its item menu.

2 Choose dynamic rule invocation display.

The display appears on a temporary workspace that updates dynamically during
KB execution. To cancel the display, delete the temporary workspace.
1804

Displaying Current Chaining and Rule Invocation
For example, this display shows that there were two invocations of the rule, one
for foo-1and one for foo-2:

Delaying Dynamic Display Updates

All G2 processing halts during the interval between dynamic display updates. To
avoid slowing G2 unnecessarily, the default interval is 200 milliseconds, which is
typically not enough time to examine the data.

You can change the default to be any integer from 0 to 60,000 milliseconds. Setting
this attribute delays the update of all explanation facility dynamic displays for the
specified number of milliseconds before allowing processing to continue. No G2
processing of any kind occurs during the delay interval.

To set a dynamic display update delay:

1 Choose:

Main Menu > System Tables > Debugging Parameters

2 In the Dynamic-display-delay-in-milliseconds attribute, enter an integer between 0
and 60,000.

Note Pausing or resetting the KB discontinues dynamic-display updating, but it does
not cancel it. Restarting the KB causes dynamic displays to begin updating again.
To cancel dynamic displays, delete the temporary workspace containing the
display.
1805

Displaying Explanation Trees of Cached
Chaining and Rule Invocation Knowledge

The explanation facilities let you cache knowledge about how a variable or
parameter received its latest value, and what caused the invocation of a generic
rule. You can then create an instance of the explanation class to display the cached
data for that variable or parameter.

The display is in the form of an explanation tree that appears on the
subworkspace of an explanation item. The display is a graphical depiction of the
source of the current value of the variable or parameter, including any relevant
rule invocations. For a generic rule, an explanation shows which variables were
referenced during its execution.

Caching Explanation Data

There are two ways to start and stop caching explanation data in items:

• Individually in specific items

• Globally for the entire KB

Data Caching for Specific Items

You set a variable, parameter, or rule to cache or not cache explanation data
through specifying one of two options in the Options attribute:

Cache Data for Explanation

Do Not Cache Data for Explanation

These options are available on variables, parameters, and rules when the Enable-
explanation-controls attribute of the Miscellaneous Parameters system table is set to
yes. By default, items do not cache explanation data.

Choosing the Cache Data for Explanation option directs the variable, parameter, or
rule to begin caching knowledge of its value or its execution, and to display the
current state of that knowledge at the time you create an EXPLANATION item for a
specific variable or parameter. By creating multiple explanations for a single
variable or parameter, you can capture cached data about the variable as its
values change over time.

To set data caching for a variable, parameter, or rule:

 In the options attribute of a variable, parameter, or rule, specify:

Cache Data for Explanation
1806

Displaying Explanation Trees of Cached Chaining and Rule Invocation Knowledge
To stop data caching for a variable, parameter, or rule:

 In the Options attribute of the item specify:

Do Not Cache Data for Explanation

Data Caching for the Entire KB

You can globally set the cache data for explanation/do not cache data for explanation
options on the Options attribute for all variables, parameters, and rules in the
entire KB.

To start data caching for all variables, parameters, and rules in your KB:

 Choose:

Main Menu > Miscellany > Turn On All Explanation Caching

To stop data caching for all variables, parameters, and rules in your KB:

 Choose:

Main Menu > Miscellany > Turn Off All Explanation Caching

Creating Explanation Items

When explanation data is being cached, you can create EXPLANATION items to view
the cached data for a variable or parameter.

To create an explanation item:

create an explanation [local-name] for {variable | parameter} [; transfer local-name to
kb-workspace]

This action creates a transient EXPLANATION item that holds the cached explanation
data of a variable or parameter. The information contained in an explanation is
static. By creating multiple explanations for a single variable or parameter, you
can capture the cached data as its values change over time.

For a . . . Setting this option describes . . .

variable Whatever formula, rule, or data server provided
the latest value for the variable.

parameter Whatever rule or data server provided the latest
value for the parameter.

rule Which variables were used in generic rule
references.
1807

Displaying Explanations

The graphical depiction that explains the value of a variable or parameter at the
time the create an explanation action was performed appears on the subworkspace
of the explanation item.

To display an explanation tree, do one of the following:

 Enter a command such as:

show the subworkspace of explanation

or

 Choose go to subworkspace on the explanation item table.

Understanding Explanation Trees

Each variable and parameter in the explanation tree is shown with the value,
value expiration period, and value collection time it had when its explanation was
last cached before the creation of the explanation item.

For example, this diagram shows an explanation for the sym-param-1 parameter:
1808

Displaying Explanation Trees of Cached Chaining and Rule Invocation Knowledge
The explanation is an inverted tree which displays a representation of the create-
action parameter or variable argument at its root (top). In this example, the root is
the parameter sym-param-1; and immediately below sym-param-1, and linked to
it, is the rule that concluded its value.

If sym-param-1 were the only item caching explanation data, the tree would
contain only two items: sym-param-1 as its root and the rule as a leaf. There
would be no items linked to the rule from below.

In this example, the rule does cache explanation data; and because it is a generic
rule, the variables that were evaluated during its execution appear below, and
linked with, the rule. Only one variable, int-var-1, was evaluated in this example;
and because int-var-1 also caches data, the formula that supplied its value is
linked to int-var-1 from below.

The caching of information for this example could have been started by either
setting caching for the entire KB, or by individually setting caching for the
parameter, the rule, and the variable.

These are the items that can be the leaves of an explanation tree:

• Variables that do not cache explanation data.

• Rules that do not cache explanation data, or which are specific, rather than
generic.

• Specific formulas that determine values for a variable or parameter

Deleting Explanations

Since explanations are items that can accumulate and consume memory, you
should delete them when they are no longer useful.

Deleting an explanation also deletes its subworkspace and the explanation tree on
the subworkspace.
1809

1810

53
Profiling and
KB Performance
Describes techniques for evaluating and improving KB performance.

Introduction 1811

Profiling the Execution of Your KB 1811

Using Compilation Configurations 1826

Introduction
The study of techniques for improving your knowledge base’s performance is an
advanced topic. The information presented in this chapter is directed toward
experienced G2 users.

You can use G2’s profiling system procedures to gather information about your
KB’s execution. After identifying which portions of your KB can benefit from
further optimization, you can apply compilation configurations to the
appropriate definition items and executable items, so that G2 compiles the
statements and actions in those items more efficiently.

Profiling the Execution of Your KB
G2 can collect profile data about the executable items in your KB. Profile data
show which parts of your KB executed during a particular time interval and
reveal how long each part executed.
1811

G2 collects profile data about these executable items:

• Procedures

• Methods

• Rules

• Functions

• Formulas

• Display items: meters, readout-tables, trend-charts, freeform tables, and so on

The profile data that G2 collects include three kinds of information:

• The real time that passed during the profiling period.

• Execution timings and number of invocations for each item that was invoked
during the profiling period.

• Number of times performed for each invocable action or statement in each
invoked item.

Techniques for Profiling

G2 provides various essential capabilities that support profiling, as described in
this chapter. These do not in themselves constitute a profiling capability: they are
the nuts and bolts from which such a capability can be constructed. If you prefer,
you can write your own profiler and give it any properties and user interface you
need, using the techniques described in this chapter in the G2 GUIDE User’s
Guide.

The G2 software includes three KBs that supply higher-level profiling capabilities:

• profile-demo.kb in the G2 samples directory.

• profiler.kb in the G2 utils directory.

• profroot.kb in the G2 utils directory.

The first is an example of a simple profiler; it can be useful for studying the
essential techniques for designing profilers and as a basis to extend and
customize. The second is a complete profiling utility; it provides sophisticated
profiling capabilities, but is more difficult to extend and customize due to its
greater specialization. The third provides a front-end to profiler.kb.

Both the profile-demo.kb sample and the profroot.kb utility are self-
documenting. To use either of them, merge it into the KB that you want to profile,
then follow the directions in the KB to start and stop collecting profile data, and
display reports of the KB’s activity.

In most cases, the profiler.kb utility provides all the profiling capabilities that
are needed. However, even if you do not intend to create your own profiler or
1812

Profiling the Execution of Your KB
extend one that is provided with G2, you should skim this chapter to gain a
general understanding what a profiler does, and how and why it does it.

Understanding the Profiling Process

G2 collects profile data in memory. G2 retains profile data in memory until you
direct it to clear all profile data.

You can direct G2 to start collecting profile data, to stop collecting data, and to
start and stop again as many times as necessary. G2 always adds new profile data
to any profile data already collected. By starting and stopping profiling more than
once as your KB runs, you can measure different parts of the KB at various times
without losing data.

You direct G2 to create a system-profile-information item that contains a copy of
the profile data collected so far.

Identifying Resource Requirements for Profiling

While collecting profile data does not significantly impact KB performance,
profiling a large KB can consume large amounts of memory. Always have
sufficient memory available for G2’s use before you begin collecting profile data.

Using System Procedures for Profiling

To collect profile data about the current KB, the KB’s items must call G2’s
profiling system procedures. Merge sys-mod.kb into your KB before you attempt
to collect profile data. The KB defines these system procedures for profiling:

Add actions or statements in your KB’s items so that they call the procedures in a
manner that supports your profiling strategy. Identifying Your Profiling Strategy
offers basic recommendations.

g2-enable-profiling Directs G2 to start collecting profile data.

g2-disable-profiling Directs G2 to stop collecting profile data.

g2-get-profiled-information Creates and returns a system-profile-
information item, which contains a copy
of the profile data that currently resides in
G2’s own memory.

g2-clear-profile Directs G2 to discard any collected
profiled data that currently resides in G2’s
own memory.
1813

Note Profiling does not track activities performed by the same item from which
profiling is enabled.

Collecting Profile Data

G2 starts collecting profile data when your KB invokes the g2-enable-profiling
system procedure. G2 stops collecting profile data when your KB invokes the
g2-disable-profiling system procedure.

The first time that your KB calls g2-enable-profiling, G2 collects a new set of
profile data. If your KB calls g2-disable-profiling to stop collecting profile data,
and, later in the KB’s processing, calls g2-enable-profiling again, G2 adds the
newest profile data to the data already collected.

Note G2’s profile data exists only as long as the G2 process itself exists. When you exit
or close a G2 process, G2 discards any profile data already collected.

Changing the run-state of the current KB does not affect whether profiling is
enabled. If profiling is enabled when the current KB is reset or paused, profiling
remains enabled, but G2 collects no additional profiling data until the KB starts
again. When the KB resumes, G2 adds any new profile data to the existing
profile data.

See the G2 System Procedures Reference Manual for a complete description of the
g2-enable-profiling and g2-disable-profiling system procedures.

Creating a Copy of the Collected Profile Data in G2

While G2 is collecting profile data, or after G2 has stopped collecting profile data,
you can direct G2 to create an item that contains a copy of the profile data
collected so far. The g2-get-profiled-information system procedure creates a
transient system-profile-information. You can optionally transfer this system-
profile-information to the workspace of your choice.

Note You cannot add data to, or remove data from, a system-profile-information item.

See the G2 System Procedures Reference Manual for a complete description of the
g2-get-profiled-information system procedure.
1814

Profiling the Execution of Your KB
Identifying the Contents of a System-Profile-
Information

Each call to the g2-get-profile-information system procedure creates a new system-
profile-information. The definition for the system-profile-information class is
stored in sys-mod.kb.

Each system-profile-information contains three kinds of information:

• An attribute whose value represents the length of the profiling period in
real time.

• Attributes whose values represent the time that G2 spent performing tasks
managed by the G2 task scheduler.

• An item-list attribute whose elements are items of the item-profile-information-
class class.

Use a system-profile-information’s data to analyze how well your KB uses the
CPU timeslice that your computer gave to your G2 process during profiling. In
other words, a system-profile-information’s data shows how efficiently G2
spends its time performing your KB’s work relative to other tasks maintained by
the G2 task scheduler.

A system-profile-information’s data does not show the sum of the CPU timeslices
within which your G2 process executed during the profiling period. Therefore,
you cannot use the data from a system-profile-information to evaluate how
efficiently G2 uses your computer’s resources in relation to the computer’s other
activities. Such an analysis requires platform-specific techniques to monitor
operating-system processes.

The following table summarizes the attributes specific to the system-profile-
information class:

Attribute Description

total-profiled-time The interval of real time that passed during
profiling.

idle-time G2 clock time spent not performing activities that
are managed by the G2 task scheduler.

clock-tick-time G2 clock time spent servicing the G2 clock.

icp-time G2 clock time spent on ICP data transfer and
other network-related tasks, such as performing
or checking for G2-to-G2 communication,
G2 foreign functions, or remote procedure calls.
1815

Understanding Relationships among System-Profile-Information
Attributes

As you attempt to make your KB perform more efficiently, you should observe
the ratio of its processing-time to its total-profiled-time and the ratio of its idle-time
to its total-profiled-time.

workstation-time G2 clock time spent receiving user input and
setting up G2 output to the workstation for
activities such as keyboard and mouse events.

cisplay-time G2 clock time spent rendering information on the
workstation’s display.

scheduling-time G2 clock time spent by the G2 scheduler itself.

data-service-time G2 clock time spent performing data service tasks
for the current KB.

kb-io-time G2 clock time spent on interactively saving the
current KB.

overhead-time G2 clock time spent on printing and licensing
tasks managed by the scheduler, but not
attributable by G2 to a particular task.

processing-time (Derived) G2 clock time spent performing the
KB’s actions and statement; calculated as:

total-profiled-time - (idle-time + icp-time +
 workstation-time + display-time +
 scheduling-time + data-service-time +
 kb-io-time + overhead-time)

profiled-items An item-list whose elements are items of the item-
profiling-information class.

Attribute Description
1816

Profiling the Execution of Your KB
For example, in the table below, the attributes of profile-data indicate that, during
this particular profiling period, G2 spent more of its time waiting for user-defined
processing to execute than performing that processing.

The ratio of processing-time to total-profiled-time (t0.257 / 5.982 = 0.04, or 4%) is
much smaller than the ratio of idle-time to total-profiled-time (5.528 / 5.982 = 0.92,
or 92%).

Representing Empty Profile Data

If your KB has not called g2-enable-profiling since your G2 process started, or
since your KB most recently called g2-clear-profile, and your KB calls g2-get-
profiled-information, G2 creates a system-profile-information whose timing
attributes are values of zero and whose profiled-items item-list contains
zero elements.

Understanding the Processing-Time Attribute

G2 derives system-profile-information’s processing-time value from the total-
profiled-time minus the sum of the time spent performing schedulable tasks,
which consists of the values in the idle-time, icp-time, workstation-time, display-
time, scheduling-time, data-service-time, kb-io-time, and overhead-time attributes.
1817

Note G2 calculates the value of the processing-time attribute from a real time measure,
not from G2’s CPU timeslice measure. Therefore, to allow g2-get-profiled-
information to return a processing-time measure that most accurately reflects your
KB’s actual performance within G2, you should profile your KB when G2 is the
only process running, or one of very few processes running, on your computer.

Note If you are profiling a G2 process whose process window (or connected
Telewindows) displays under the control of an X Windows server process, the
actual time spent during scheduled screen-drawing cannot be included in the
processing-time attribute’s value.

Understanding the Profiled-Items Attribute

The profiled-items attribute of a system-profile-information is an item-list. If G2
has collected profile data before g2-get-profiled-information was most recently
called, then G2 inserts item-profile-information items into this item-list. Each item-
profile-information contains profile data about each executable item that was
invoked during profiling.

The definition for the item-profile-information class is stored in sys-mod.kb. The
following table summarizes the attributes specific to the item-profile-information
class:

For each item-profile-information inserted in the profiled-items attribute’s item-
list, G2 automatically concludes an instance of a profiled-by relation between the
item-profile-information and the item it references. Find the profiled-by relation
definition in the Profiling Procedures workspace in the sys-mod.kb file.

Attribute Description

procedure-id Item’s names attribute, or a G2-generated name.

calls Number of times the item was invoked during
profiling.

total-time Total G2 clock time spent executing this item
during profiling.

time-per-call (Derived) Average G2 clock time spent per
invocation of the item calculated as:

total-time / calls

profiled-activities An item-list of activity-profile-information items.
1818

Profiling the Execution of Your KB
Tip Use the profiled-by relations in conjunction with the g2-name-for-item system
procedure to assign G2-generated names to unnamed items that were invoked
during profiling.

Understanding the Profiled-Activities Attribute

The profiled-activities attribute of an item-profile-information is an item-list. For
each action or statement that G2 performed within an invoked item during
profiling, G2 creates an activity-profile-information item and inserts it into this
item-list.

The definition for the activity-profile-information class is stored in the Profiling
Procedures workspace in sys-mod.kb. The following table summarizes the
attributes specific to the activity-profile-information class.

The following table lists the activities in an invocable item for which G2 collects
profile data. Each activity represents either an action or a statement.

Attribute Description

activity-name Name of a G2 executable activity (See the table
Actions and Statements that G2 Profiles below.)

activity-count Number of times this activity executed for this
item during profiling

Actions and Statements that G2 Profiles

Activity Name (as reported) Description

abort action Abort a procedure or procedure invocation.

activate action Activate an activatable subworkspace.

allow other processing
statement

allow other processing statement.

assign local variable
statement

Assignment to a local name.

begin rule actions Invoke a rule.

call next method statement Call another procedure.

call statement Call another procedure.

case statement case ... of statement.
1819

change action All change actions other than change color
attribute/color pattern, change the text of, and
change element in list or array.

change array or list element
action

change element in list or array.

change color action Change color attribute or color pattern of an item.

change text action Change value of a text attribute.

collect data statement collect data statement.

conclude action Assign value to a table attribute.

conclude has no current
value action

Force a variable’s value to be expired.

conclude has no value
action

Assign value to a table attribute.

conclude not related action Remove a relation instance between two items.

conclude relation action Create a relation instance between two items.

create action Create a transient item (not a connection).

create by cloning action Create a transient item (not a connection) by cloning.

create connection action Create a transient connection.

create an explanation
action

Create an explanation item.

deactivate action Deactivate an activatable subworkspace.

delete action Delete a transient item.

do in parallel statement do in parallel statement.

do in parallel until one
completes statement

do in parallel until one completes statement.

exit if statement exit if statement.

focus action Invoke rules of specific focal class.

for in parallel statement Parallel iteration.

Actions and Statements that G2 Profiles

Activity Name (as reported) Description
1820

Profiling the Execution of Your KB
for in parallel until one
completes statement

Parallel iteration with race condition.

for statement for statement.

halt action G2 stops running the current KB.

hide action Hide a workspace.

if-then statement if ... then statement.

if-then-else statement if ... then ... else statement.

inform action Place a message on the specified workspace.

insert action Add an element to a g2-list.

invoke action Invoke a rule.

make permanent action Make an item permanent

make subworkspace action Create a subworkspace of an item.

make transient action Make a item transient.

move action Change position of an item’s icon within
a workspace.

on error statement on error statement.

pause kb action Change the run-state of the current KB to paused.

print action Print a workspace.

remove action Remove an element from a g2-list.

repeat statement repeat statement.

reset kb action Change the run-state of the current KB to
initial/reset.

return statement return statement.

rotate action Rotate an item’s icon on a workspace.

Actions and Statements that G2 Profiles

Activity Name (as reported) Description
1821

Profiling Executable Items and Activities

G2 profiles executable items starting with the first operation executed in the item
and ending with the first operation executed in the next executable item that the
KB’s processing invokes, or ending with the first operation in the next distinct G2
task that is invoked.

Because individual G2 activities are fine-grained, G2 does not collect timing data
on each activity invocation. Rather, when profiling, G2 collects only the number
of times each activity is invoked within a given executable item.

Resetting Profile Data in G2

In some situations, you might prefer to clear G2’s existing profile data before
collecting more profile data. To clear all profile data from G2, invoke the g2-clear-
profile system procedure.

set action Assign a value to a GSI variable or a simulation
variable.

The G2 Simulator, which can use simulation
variables, is a superseded capability. For more
information, see Appendix F, Superseded Practices.

show action Display a workspace.

shut down G2 action Shut down G2.

signal error statement signal statement.

start action Invoke a G2 procedure.

start rpc action Invoke a remote procedure.

system call statement Call an internal G2 operation or procedure.

transfer action Transfer an item to a workspace.

update action Update a display item or variable.

wait for interval statement wait for interval statement.

wait until event statement wait until statement with event predicate.

wait until statement wait until statement.

Actions and Statements that G2 Profiles

Activity Name (as reported) Description
1822

Profiling the Execution of Your KB
After your KB has invoked g2-enable-profiling once, G2 retains a set of profile
data in memory until g2-clear-profile is invoked.

See the G2 System Procedures Reference Manual for a complete description of the
g2-clear-profile system procedure.

Identifying Your Profiling Strategy

Typically, you collect profile data for some length of time that is significant for
testing purposes. You can begin by collecting profile data for all executable items
in your KB. For example, to do so, you could include an initially rule in your KB
that invokes g2-enable-profiling.

You must code your own actions or statements in your KB that call these system
procedures, as follows:

• Include a call to g2-enable-profiling in the item that represents the start of the
portion of KB processing that you want to profile.

Note Profiling does not track activities performed by the same item from which
profiling is enabled.

• Include a call to g2-disable-profiling in the item that represents the end of the
portion of KB processing that you want to profile.

• Include a call to g2-get-profiled-information; you might prefer to transfer the
new system-profile-information to a particular workspace.

• Include a call to g2-clear-profile in an item that is invoked when you wish to
collect an entirely new set of profile data.

For example, code the actions or statements in your KB’s items so that they call
the profiling system procedures in this order:

1 Call g2-enable-profiling to begin collecting profile data.

2 Call g2-disable-profiling to stop collecting profile data.

3 Whether automatically or manually, invoke the item that calls g2-get-profiled-
information.

4 After calling g2-clear-profile or not, repeat Steps 1 through 3 to capture and
report on your KB’s processing again under different circumstances.

5 Whether automatically or manually, invoke the item that calls your own
reporting procedure for the profile data contained in a particular system-
profile-information item.
1823

Reporting the Contents of a System-Profile-
Information

You can code your own procedure that reports the contents of a system-profile-
information. Use the procedure code below as a foundation for your
report procedure.

Hint Some items that are profiled might not have a name. As shown in the sample
procedure that follows, you can use the g2-name-for-item system procedure to
assign a generated name to any unnamed profiled item. See the G2 System
Procedures Reference Manual for a full description of g2-name-for-item.

The following procedures demonstrates profiling system procedures:

report-profile-data (spi : class system-profile-information)
{
This procedure reports the contents of a system-profile-information.
This procedure uses the g2-name-for-item system procedure and the
profiled-by relation (also found in sys-proc.kb).

This procedure calls three procedures that you must also create:

* Report the value of an attribute of a system-profile-information:
report-spi-attribute

(spi-value : item-or-value , report-workspace : class kb-workspace)

* Report the value of an attribute of an item-profile-information:
report-spi-profiled-item-attribute

(profiled-item-value : item-or-value,
report-workspace : class kb-workspace)

* Report the value of an attribute of an activity-profile-information:
report-spi-profiled-activity-attribute

(profiled-activity-value : item-or-value , report-workspace : class
 kb-workspace)

Code your own versions of the three procedures above to report the
attributes of a system-profile-information, item-profile-information, and
activity-profile-information in the manner you prefer.
}
report : class kb-workspace ;
item-profile : class item-profile-information ;
activity-profile : class activity-profile-information ;

use-this-name : item-or-value ;
1824

Profiling the Execution of Your KB
begin
{ Create a kb-workspace to display the report. }

create a kb-workspace report ;
change the name of report to the symbol profile-report ;

{ Call report-spi-attribute once for each attribute of the
system-profile-information }

call report-spi-attribute (the clock-tick-time of spi, report);
{ call report-spi-attribute (the ... of spi , report) ; }

{ Report on each profiled item for the system-profile-information. }

for item-profile =
each item-profile-information in the profiled-items of spi do
begin

use-this-name =
call g2-name-for-item (the item that is profiled-by item-profile);
call report-spi-profiled-item-attribute (use-this-name, report);

{ Call report-spi-profiled-item-attribute once for each attribute
 of this item-profile-information ... }

call report-spi-profiled-item-attribute (the calls of item-profile,
 report) ;
{ call report-spi-profiled-item-attribute (the ... of item-profile ,

report) ; }

{ Report on each profiled activity for this profiled item. }
for activity-profile = each activity-profile-information in the
 profiled-activities of item-profile do

begin

{ Call report-spi-profiled-activity-attribute once for each
 attribute of this activity-profile-information . . . }

call report-spi-profiled-activity-attribute (the
 activity-name of activity-profile , report) ;
{ call report-spi-profiled-activity-attribute (the ... of

 activity-profile , report) ; }

end { begin }
end { do }

end { begin }
end ; { do }

end
1825

Analyzing Profiling Data

Collecting and analyzing profile data are the first steps in evaluating your KB’s
performance. With this information, you can use several techniques to improve
your KB’s efficiency of execution:

• From your best assessment of the data that your KB must process, implement
the most appropriate algorithm in each procedure and function whose
operation is time-critical.

• For rules, procedures, and functions that execute most often, apply
compilation configurations (see Using Compilation Configurations) for best
performance.

• Use G2’s data-service features to collect the least amount of data that your
application requires.

• Design and organize your KB’s rules so that they fire under the minimum set
of circumstances that your application must support.

Using Compilation Configurations
Compilation configurations make possible an incremental improvement in the
performance of your KB. Some compilation configurations are designed to work
in conjunction with each other, while others can be used alone.

G2 offers several compilation configurations:

• inlineable: Declares that a procedure or method can be inlined into another.

• stable-hierarchy: For modules and related items, this configuration declares
that changes will not be made to the module in which the configuration
appears, or to the class hierarchy with which a module is associated.

• stable-for-dependent-compilations: Declares that an item is not subject to
further change. This allows G2 to compile more efficiently other items that
refer to the configured item.

• independent-for-all-compilations: For an item whose attributes refer to another
item that is declared stable-for-dependent-compilations, directs G2 not to
compile the item to take advantage of the other item’s stability.

In this section we present the rationale behind using compilation configurations
and their role in improving the performance of your KBs.

Stability Configurations

Use the stable- prefix configurations to declare that a portion of your KB is not
subject to change, even when the KB is running. G2 consults these declarations
when compiling items that refer to the stable portion of the KB.
1826

Using Compilation Configurations
G2 compiles references to a stable item differently than it compiles references to
an item that is not stable. For stable items, G2 can assume that the name, class,
and item location in the KB’s workspace will not change as the KB runs.
Therefore, G2 compiles the referencing item in a way that reduces the number of
validation checks G2 must perform when executing or evaluating the actions,
statements, or expressions that refer to the stable item.

Declaring the Configurations

An item can fall within the scope of configurations declared in other items that are
higher in the KB’s workspace and class hierarchies. Use the describe configuration
menu choice to see all configurations that apply to an item.

You declare an item to be stable or not by including one or more of these
configuration statements in the item’s item-configuration or instance-configuration
attributes:

declare properties ... as follows : stable-hierarchy

declare properties ... as follows : stable-for-dependent-compilations

declare properties ... as follows : independent-for-all-compilations

See Configuring Properties of Items for an introduction to G2’s configurations
features and for the complete syntax of the declare properties ... as follows
configuration statement.

Understanding Compiled Attributes

In general, G2 compiles each item attribute that can contain an expression, an
action, or a statement. These are called compiled attributes.

When a compiled attribute contains an action or statement, G2 can invoke that
attribute’s contents, such as the text of a procedure or rule. When a compiled
attribute contains an expression, G2 can evaluate or reference the attribute’s
contents, such as the formula of a variable or the expression-to-display of a
readout-table.

Note If you change a compiled attribute’s value using the Text Editor, G2 recompiles
that attribute after you direct G2 to save the attribute’s edited text. If you make a
valid change to a compiled attribute’s value using a change the text of or
conclude action, G2 automatically recompiles the attribute.
1827

Validating References at Run-Time

The contents of a running KB are always subject to change. Therefore, when G2
compiles an attribute that refers to another item, G2 does not, by default, record
any assumptions about the referenced item, such as whether that item actually
exists or whether it is of a certain class.

Instead, by default, G2 compiles such an attribute to include run-time validation
instructions. When that compiled attribute is invoked, evaluated, or referenced,
the attribute’s run-time validation instructions cause G2 to verify whether the
attribute’s own assumptions about the referenced item (its name, class, etc.) are
still true.

To illustrate, consider the rule dependent-rule, shown in the following figure. The
text of dependent-rule refers to a user-defined object named first-vehicle, whose
class is vehicle, a user-defined procedure named update-tracked-vehicle-routes,
and a user-defined object named current-checkpoint, whose class is checkpoint:

By default, when G2 compiles this rule’s text, G2 does not assume that first-
vehicle, update-tracked-vehicle-routes, and current-checkpoint exist. (Even if, for
example, first-vehicle does exist at the time that G2 compiles this rule, the item
might cease to exist, or its class’s class inheritance path might change, before your
KB next invokes the rule.) Therefore, in the rule’s compiled instructions G2
includes run-time validation instructions.

In this case, before G2 allows the rule to be invoked, the rule’s run-time validation
instructions verify the following:

• first-vehicle exists, and its class is vehicle.

• update-tracked-vehicle-routes exists, and its one argument is of type class
checkpoint.

• current-checkpoint exists, and its class is checkpoint.

On the other hand, when G2 compiles this rule’s text, if G2 can assume the items
referenced by name do exist, then G2 can avoid including the run-time validation
instructions that the rule’s references require.

To apply this idea to your KB as a whole: the more items whose compiled
attributes can avoid including run-time validation instructions, the greater the
potential for an incremental improvement in your KB’s performance.

Items referenced
in dependent-rule
1828

Using Compilation Configurations
Understanding Compilation Dependencies

An item with a compiled attribute whose text refers to another item has a
compilation dependency relationship to that other item. When G2 compiles an
attribute, it automatically identifies and maintains any compilation dependency
relationships between the compiled item and the item (or items) that its compiled
attributes reference.

To illustrate, dependent-rule’s antecedent refers to the item first-vehicle. Due to
this reference, for your KB to invoke this rule without error requires that an item
named first-vehicle exists in the KB, that first-vehicle’s class is vehicle, and that the
vehicle class maintain the same direct superior classes and direct subclasses that it
has at the time dependent-rule is compiled.

These requirements represent a compilation dependency between the rule and
first-vehicle. The diagram in the following figure represents this
relationship graphically:

Likewise, dependent-rule has compilation dependencies on the existence of
current-checkpoint and update-tracked-vehicle-routes.

depends-upon

depends-upon

depends-upon
1829

When compiling an attribute, G2 can identify the compilation dependency
relationships shown in the following table:

You can make changes to stable items that do not affect those characteristics, such
as concluding values into attributes, establishing relation instances, or storing
items in lists.

Declaring Procedures and Methods as Inlineable

The inlineable configuration is applicable to:

• Procedures

• Methods

When procedures and methods are declared as inlineable, they exist as separate
items, but are compiled as part of the method or procedure code from which they
are called. Inlining can improve performance by:

• Avoiding the overhead of procedure invocations, which consume runtime
memory.

• Reducing the total number of instructions executed between the calling
procedure or method and the inlined procedure or method.

When declaring a procedure as inlineable, you must also declare it to be stable-
for-dependent-compilations.

When the reference
that causes compilation
dependency... Then the compiled item depends on...

Refers to an item by name The existence of the named item.

Refers to an item’s type The named item being of a particular type
specification.

Refers to an item’s class The named item being of a particular
class.

Invokes a procedure (or
remote-procedure) by
name using a start action or
call statement

The existence of the named procedure (or
remote-procedure) and on the types and
number of its arguments and return
values.

Refers to a class as being a
subclass of another class

One class being a subclass of another.

Refers to a class as not
being the subclass of
another class

One class not being a subclass of another.
1830

Using Compilation Configurations
When declaring a method as inlineable, you must also declare it to be stable-
hierarchy and stable-for-dependent-compilations.

Recompilation Considerations

After configuring a procedure or method as inlineable, and making it stable with
its other required configuration statements, you must manually recompile both
the inlineable item and the procedure or method that calls it. G2 does not present
a recompilation dialog, though a message about recompiling is added to the notes
of the procedure or method.

By recompiling the calling procedure or method, G2 compiles the inlined code as
part of the calling code. Since inlined procedures and methods are compiled in
their calling procedure, they do not require a procedure invocation at run time,
and performance improves.

Editing an existing inlined procedure or method causes G2 to display a dialog
indicating that the item is stable and editing could make recompilation necessary.

Declaring Items as Stable-Hierarchy

The stable-hierarchy configuration is applicable to:

• A method.

• A method declaration.

• The class for which a method exists.

Declaring an item as stable-hierarchy indicates that neither the class hierarchy of
the method, nor the class associated with a method will be changed in any way.

Declaring a method as stable-hierarchy also implies that the return value types
and the number and type of method arguments will not change.

When you declare an item as stable-hierarchy, G2 can complete optimizations,
including inlining, only if these conditions are met:

• The method or method-declaration is configured as stable-hierarchy.

• In the calling procedure or method, the class for which the method is called
(the first argument of the method) has no subclass that defines a method of
the same name with the same number of arguments.

For example, if there is a fill method whose first argument is vessel, for
optimization to occur, the class vessel could not have a subclass that defined a
fill method with the same number of arguments. At run time, such a method
hierarchy would make it impossible for G2 to know which method was
actually being called, since the vessel class passed to the fill method could be
either vessel or one of its subclasses.
1831

Declaring Items Stable-for-Dependent-Compilations

You apply a stable-for-dependent-compilations configuration to an item upon
which other items have a compilation dependency. If the item is an instance of a
user-defined class, then for G2 to consider that item as stable, you must also apply
a stable-for-dependent-compilations item configuration to the definition item for
its class.

Note After applying a stable-for-dependent-compilations configuration to a set of
items, use the Inspect facility to recompile your entire KB. Until you do so, your
KB’s performance cannot take advantage of the newly declared item stability.

In our example, if you apply a stable-for-dependent-compilations configuration
on first-vehicle then recompile your KB, the compiled attributes in dependent-rule
that have a compilation dependency upon first-vehicle no longer include
instructions that check, for instance, whether first-vehicle exists. This helps
dependent-rule execute more quickly than it could before first-vehicle was
configured stable-for-dependent-compilations.

Identifying Potential Performance Improvements

To gain the greatest potential performance improvements in your KB, we
recommend that you take this approach:

1 Configure the entire KB as stable-for-dependent-compilations. To do so,
include a declare properties as follows : stable-for-dependent-compilations
statement in the item-configuration attribute of each top-level workspace in
your KB. (This approach is especially preferred for modular KBs.)

2 Configure each workspace subhierarchy containing items whose knowledge
can change as the KB runs as not being stable. You do this by including a
declare properties as follows : not stable-for-dependent-compilations
statement in the item-configuration attribute of the workspace representing
each subhierarchy of items that is subject to change.

To take this approach, you must organize the workspaces in your KB’s workspace
hierarchy so that some workspace hierarchies are designed to remain stable
during your KB development project, while other regions are designed to contain
1832

Using Compilation Configurations
transient items and other items whose knowledge is subject to change as the KB
runs. The following figure illustrates this approach:

This Inspect workspace shows the workspace hierarchy for a simple KB that
contains five workspaces. The items located in the development-utilities-
workspace and classes-workspace workspaces contain items that represent the
KB’s stable knowledge (items whose definitional characteristics don’t change as
the KB runs).

On the other hand, the global-schematic-view-workspace and zoom-schematic-
view-workspace workspaces contain items that represent the KB’s dynamic
knowledge (the items whose knowledge is expected to change as the KB runs).

For this sample KB, after configuring the entire KB as stable-for-dependent-
compilations, you would configure only the global-schematic-view-workspace
and zoom-schematic-view-workspace workspaces as not stable-for-dependent-
compilations.

Items in these
workspaces
are expected to
change as the
KB is running.

Items in these
workspaces
are designed to
remain stable as

the KB is running.
1833

If you choose not take this approach, the following principles determine the
potential performance improvement for your KB:

• As more compiled attributes are recompiled to take advantage of item
stability by including run-time validation instructions, a greater potential
exists to improve incrementally your KB’s performance.

• When your KB is running, the KB’s processing invokes, evaluates, and
references some compiled attributes more often than others. When G2
compiles a more frequently used compiled attribute without run-time
validation instructions, your KB has a greater potential for an incremental
performance improvement than when a less frequently used compiled
attribute is so compiled.

Identifying Knowledge That is Not Eligible for Performance
Improvements

Some aspects of your KB’s processing are not subject to performance
improvements based on declaring item stability:

• Graphics drawing operations.

• Network transmission operations.

Understanding Guidelines for Configuring Groups of Items

Keep the following guidelines in mind before adding a stable-for-dependent-
compilations configuration that has a wide scope:

• Avoid configuring too many items as stable-for-dependent-compilations too
early in your KB development project. Doing so will require you to recompile
dependent items more frequently, as you make changes to your KB.

• Avoid configuring a class’s definition as stable-for-dependent-compilations
unless its direct superior classes are also configured stable-for-dependent-
compilations. While G2 does not prevent you from constructing your KB’s
class hierarchy to consist of unstable classes with stable direct subclasses, such
a practice is likely to lead to problems.

• Apply the stable-for-dependent-compilations configuration and perform KB-
wide compilation before text-stripping any of the KB’s items.

Understanding Guidelines for Configuring Items in a Modular KB

In a modular KB, items in a required module should not have compilation
dependences upon items (such as definitions) in a requiring module. In general,
do not declare compilation configurations based upon compilation dependencies
that run contrary to the KB’s module dependencies.
1834

Using Compilation Configurations
Declaring Items Independent-for-All-Compilations

When G2 compiles any attribute in an item declared as independent-for-all-
compilations, G2 does not compile the item to take advantage of compilation
dependencies upon any other items declared as stable-for-dependent-
compilations. Declaring an item independent-for-all-compilations affects that
item’s compilation only if the item’s compiled attributes reference other items. In
general, only use this option if you don’t trust stable configured items to remain
stable, probably a rare occurrence.

For example, if a compiled attribute in item A depends upon other items, one of
which (item B) is configured as stable-for-dependent-compilations, then you can
declare item A as independent-for-all-compilations. This causes G2 to compile
item A without taking advantage of any optimizations due to its dependency on
item B.

Note You do not gain any potential improvement in your KB’s performance when you
configure items as independent-for-all-compilations. Rather, use this
configuration to isolate an item from requiring a recompilation whenever another
item, upon which it depends, changes its name, its class, and so on.

For an item that has compilation dependencies on other items, configuring that
item as independent-for-all-compilations allows you to choose when that item is
next recompiled. This can be preferable in the following two situations.

Isolating a Group of Items From Automatic Recompilation

Assume that you have created an item, such as a procedure, that has compilation
dependencies on a few other items, such as other procedures and functions, and
those other items will change often as you develop your KB. Assume also that
many other items depend upon your item, such as more general-purpose
procedures and functions that must call your procedure. In this case, by
configuring your procedure as independent-for-all-compilations, you can prevent
your procedure from being subject to automatic recompilation due to changes in
an item upon which it depends.

Further, because other items in your KB depend upon your procedure, you can
also configure it as stable-for-dependent-compilations.

Isolating a Group of Items from Items Provided by Other Developers

In a modular KB that directly requires a proprietary modular KB provided by
other G2 developers, assume that you have created a procedure that has
compilation dependencies upon other procedures and functions in the provided
modular KB. If the next version of the provided modular KB contains a change in
the procedures and functions that your procedure depends upon, you must
recompile your procedure, as well any other items in your modular KB that
depend upon your procedure.
1835

To manage the activity of recompiling items in your own modular KB that
depend on items in other modular KBs that you do not control, declare as
independent-for-all-compilations all items in your modular KB that depend upon
items in the provided KB.

Changing Items That Have Compilation
Configurations

As items change during your KB’s processing, the compilation dependency
relationships declared among the KB’s items can also change. This section
describes the kinds of changes to compilation dependencies that G2 recognizes
and how the dependencies themselves are changed.

After Deleting an Item Declared Stable-for-Dependent-Compilations

The most drastic change to a stable item is to delete it. When you interactively
delete an item declared as stable-for-dependent-compilations, G2 first displays a
confirmation dialog. For instance, if deleting a definition item whose instances are
within the scope of a stable-for-dependent-compilations configuration, G2
displays this dialog:

If your KB’s processing deletes stables items programmatically, G2 does not
prompt for confirmation.

After G2 deletes an item that is within the scope of a stable-for-dependent-
compilations configuration, G2 removes the compilation dependency
relationships between the deleted item and its dependent items.

After Changing the Knowledge of Items Declared Stable-for-
Dependent-Compilations

For items that depend on an item declared stable-for-dependent-compilations, G2
compiles those items with the assumption that the following knowledge will
not change:

• The stable item’s name.

• The stable item’s class.

• The direct superior classes of the stable item’s class.
1836

Using Compilation Configurations
• The direct subclasses of the stable item’s class.

• If the stable item is a procedure or remote-procedure-declaration, the number
and types of arguments and return values.

Therefore, G2 prevents a KB’s processing from performing the following actions
on items declared stable-for-dependent-compilations:

• For any item, a change the name of action applied to the item that changes its
names attribute.

• For a class definition, a change the text of or conclude action applied to the
class-name or direct-superior-classes attribute that changes the defined
class’s name or any direct superior class.

• For a procedure or remote procedure declaration, a change the text of action
applied to the item’s text that changes the item’s name, or the number and
types of its arguments and returned values.

• For a permanent item, a make transient action applied to the item.

If your KB performs one of these actions programmatically, G2 denies the attempt
and signals an error. A sample Operator Logbook error message appears below:
1837

If you interactively edit a compiled attribute of an item declared stable-for-
dependent-compilations, G2 displays the following dialog:

Press OK to enter the Text Editor. Press Cancel to rescind your attempt to edit
the attribute.

When you finish editing the compiled attribute in the Text Editor, G2 compiles
the attribute, then checks whether any compilation dependency relationships
with dependent items are affected by the edit. For each dependent item whose
compilation dependency is affected, G2 changes its OK/incomplete/bad status to
incomplete. Before G2 can again use the affected item in your KB’s processing, you
must recompile the item so that its compilation status (shown in the item’s notes
attribute) is again OK.

After Removing a Stable-for-Dependent-Compilations Configuration

Assume that your KB contains an item declared stable-for-dependent-
compilations, and contains other items, each with its own compilation
dependency relationship with the stable item. Further, assume that the dependent
items have been compiled to take advantage of their dependency on the
stable item.

Given these assumptions, if you remove the declare properties ... as follows :
stable-for-dependent-compilations configuration statement from the stable item,
you break the compilation dependencies among the KB’s items. Therefore, after
you remove a stable-for-dependent-compilations configuration from an item,
G2 sets the OK/incomplete/bad status of the dependent items to incomplete.
G2 also displays the dialog shown next:
1838

Using Compilation Configurations
You have two choices:

• Press OK to direct G2 to recompile all items in the KB whose
OK/incomplete/bad status is incomplete. This is equivalent to performing the
directive within the Inspect facility:

recompile every item whose status is incomplete

• Press Cancel to direct G2 not to recompile at this time the KB’s items whose
OK/incomplete/bad status is incomplete.

Tip Your KB’s processing cannot use items whose OK/incomplete/bad status is
incomplete until they are successfully recompiled.

After Changing an Unconfigured Dependent Item to an
Independent Item

For an item that has a compilation dependency on another item, but is not itself
subject to any compilation configuration, G2 recognizes the following ways to
change the item’s compilation status:

• Add a declare properties ... as follows : independent-for-all-compilations item
configuration to the item.

• Transfer the item from a workspace that is dependent on a stable item to a
workspace that is subject to a declare properties ... as follows : independent-
for-all-compilations item configuration.

Performing any of these operations causes G2 to set the item’s
OK/incomplete/bad status to incomplete, then displays the following dialog that
initiates a recompilation of all items with incomplete status in the KB:
1839

1840

54
G2-Meters
Shows how to create, configure, and use G2-meters.

Introduction 1841

Working with G2-Meters 1842

Enabling and Disabling G2 Meter Service 1842

Specifying the Meter Lag Time 1843

Creating G2-Meters 1844

Disabling and Enabling Individual G2-Meters 1845

Interpreting G2-Meters That Measure Memory 1845

Types of G2-Meters 1846

Introduction
G2-meters are specialized quantitative variables that monitor G2 and compute
statistics about its performance, such as how much memory it is using, and how
fast it is processing.

Caution Don’t confuse G2-meters with display meters. A display meter is a graphical item
that shows a numeric value, as described in Readout Tables, Dials, and Meters.

G2-meters measure G2's actual performance, not its capability. For example, the
meter percent-run-time measures how much processing time G2 is using per
1841

second. It does not measure the amount of processing time that G2 is capable of
using within a second.

Note All G2-meters put an extra load on the system. They should be used only when
needed.

This chapter does not describe G2 memory organization and management. For
information on these topics, see Memory Management.

Working with G2-Meters
The general technique for working with G2-meters is:

• Set system table attributes that control G2-meters. You can set these attributes
at any time.

• Define a subclass of quantitative-variable that inherits the g2-meter-data-
service mixin.

• Instantiate the class to create a G2-meter.

• Edit the G2-meter’s attributes as needed to specify the meter’s name, type,
and other properties.

• Use the meter to measure performance statistics.

Enabling and Disabling G2 Meter Service
You can enable and disable all G2-meters at any time by changing the g2-meter-
data-service-on? attribute in the Data Server Parameters system table. When you
enable G2-meter service, all G2-meters begin to function; when you disable it,
they cease to function.

G2-meter service is disabled by default. When G2-meter service is disabled, G2-
meters do not put any load on the system. You can create a new G2-meter while
G2-meter service is disabled, but the meter will not function until you enable
the service.

To enable G2-meter service:

 Edit the g2-meter-data-service-on? attribute in the Data Server Parameters
system table to specify yes.

To disable G2-meter service:

 Edit the g2-meter-data-service-on? attribute in the Data Server Parameters
system table to specify no.

For more information, see Data Server Parameters.
1842

Specifying the Meter Lag Time
Specifying the Meter Lag Time
You can change the degree to which all G2 meters smooth data by changing them
meter-lag-time attribute of the Timing Parameters system table. You can change
this attribute at any time; the change takes effect immediately.

G2-meters monitor events in time. G2-meters can compute values for the most
recent clock-tick, or they can compute values based on a smoothed result of recent
clock-ticks. Such values are called lagged values, because they do not vary as
drastically as the instantaneous events they measure. Rather, they represent a
first-order delayed reaction to the event. The time interval over which a G2-meter
smooths values is called the meter lag time.

To clarify this, it may be helpful to think of meter lag time as it exists on the
dashboard of a car. For example, the fuel gauge in a car has a large meter lag time,
because you don't want the needle on the fuel gauge to swing wildly as the
gasoline sloshes in your fuel tank. Conversely, the speedometer has a small meter
lag time, because you want it to respond immediately as the car goes faster and
slower.

G2 computes lagged values as follows:

new lagged value = (1 - ) * previous lagged value + ( * current value)

where:

The meter-lag-time attribute of the Timing Parameters system table holds a value
of 0 seconds or any longer time interval. If it holds 0 seconds, G2-meters reflect
only the activity in the most recently completed clock tick. As its value increases,
the values of G2-meters change more smoothly over time.

To set the meter lag time:

 Edit the meter-lag-time attribute of the Timing Parameters system table to
specify the desired value.

The change takes effect immediately. For more information, see Timing
Parameters.

Some G2-meters keep absolute counts of events, so they do not provide lagged
values. This is noted in the descriptions of particular G2-meters later in this
chapter.

 = min (1.0, clock
tick length / meter
lag time)

Is an Euler approximation of first-order delay.
Note that if the meter lag time is zero or is less
than the latest clock tick length, then  = 1.0, and
the new lagged value equals the current value,
with no lag.
1843

Creating G2-Meters
This section describes the steps for creating any kind of G2-meter. Types of G2-
Meters lists all G2-meters and describes what each type does.

Before you can create a G2-meter, you must create a user-defined class called a
G2-meter class. Every G2-meter is an instance of such a class.

To create a G2-meter class:

1 Select KB Workspace > New Definition > class definition > class definition to
create a new class definition on a workspace.

2 Give the class a unique name.

3 Specify the class’s direct superiors as quantitative-variable and
g2-meter-data-service.

The g2-meter-data-service is a mixin class that sets the data server to g2-meter,
and gives the class an additional attribute called g2-meter-name. For information
about mixin classes, see Using Mixin Classes.

You can customize and subclass a G2-meter class in any way, as with any user-
defined class. You can define as many customized G2-meter classes as you need.
Such customization does not affect the essential operation of the class, so this
chapter refers only to G2-classes in general.

To create a G2-meter:

1 Create an instance of a G2-meter class.

2 Edit the g2-meter-name attribute of the meter to specify the type of meter.

3 Edit the meter’s names attribute to specify any available name.

4 Edit the meter’s validity-interval attribute to be 0 seconds.

The meter’s validity-interval cannot be supplied, because data derived by
monitoring G2’s performance has no intrinsic validity interval. Hence the
g2-meter data server cannot supply explicit expiration times.

5 Edit the meter’s default-update-interval to be 1 second.

To correctly reflect the simulator’s performance, the meter must be updated
every second. The G2 Simulator is a superseded capability. For more
information, see Appendix F, Superseded Practices.

6 If you want to display the meter's readings on a graph, change history-
keeping-spec to keep history.

7 Create a display to show the meter's value. You can use any type of display.
For information on displays, see Readout Tables, Dials, and Meters.
1844

Disabling and Enabling Individual G2-Meters
If g2-meter-data-service-on? is enabled, the G2-meter begins functioning and
displaying data as soon as you have completed its definition.

Disabling and Enabling Individual G2-Meters
After you have created a G2-meter, you can disable it without deleting it, then
reenable it when desired. You can also disable and enable all meters at once, as
described under Enabling and Disabling G2 Meter Service.

To disable a G2-meter:

 Edit the meter’s g2-meter-name attribute to be none.

To enable a G2-meter:

 Edit the meter’s g2-meter-name attribute to specify the type of the meter.

You can enable a meter to have any meter type, not just the type it had previously.

Interpreting G2-Meters That Measure Memory
Many G2-meters measure memory: how much has been allocated by the
operating system, how much of this allocation is currently in use, and how much
remains available. All memory measurements are in 8-bit bytes.

The values shown by G2 memory meters reflect only the space that G2 uses for
storing data and graphics; they do not include the space that holds G2 itself. G2’s
intrinsic memory requirement is largely determined when G2 is compiled for a
particular platform, and does not vary significantly with KB size or activity, so
including it in memory meter measurements would accomplish little.

G2-Meter and Operating System Measurements

Unlike G2 memory meters, operating system commands that measure memory,
such as:

• UNIX: ps -l

• Windows: The Process tab of the Task Manager

show both the memory that G2 itself occupies and the memory that it uses for
storing data. Depending on the platform, they may or may not also include the
memory G2 uses for storing graphics. See your system documentation for
information on these commands, and to identify the analogous command(s) on
other platforms.
1845

Note On some UNIX systems, measurements printed by ps -l omit memory that has
been allocated but has never been used.

For information on G2 memory management, see Memory Management.

Approximations in Memory Meter Readings

Small inaccuracies in memory meter readings, on the order of a few kilobytes,
may occur due to the round-off necessary for efficient internal memory
measurement. For this reason, the sum of the sizes reported for parts of G2
memory may not exactly equal the size reported for the whole.

Types of G2-Meters
The following table lists all G2-meters. A brief description of each type of meter
follows the table. Some general considerations about memory meters appear in
the previous section. All meters can have lagged values except where
otherwise noted.

Memory Meters Time Meters

instance-creation-count-as-float clock-tick-length

memory-size maximum-clock-tick-length

memory-usage percent-run-time

memory-available simulator-time-lag

region-1-memory-size priority-1-scheduler-time-lag

region-1-memory-usage priority-2-scheduler-time-lag

region-1-memory-available priority-3-scheduler-time-lag

region-2-memory-size priority-4-scheduler-time-lag

region-2-memory-usage priority-5-scheduler-time-lag

region-2-memory-available priority-6-scheduler-time-lag

region-3-memory-size priority-7-scheduler-time-lag

region-3-memory-usage priority-8-scheduler-time-lag
1846

Types of G2-Meters
The G2 Simulator is a superseded capability. For more information, see
Appendix F, Superseded Practices.

Instance-Creation-Count-as-Float

Historically, G2 has had an upper limit on the number of instances that it could
create in a single session, both explicitly and as a side-effect of other actions. In
previous releases, this limit was 229 - 1, which was the largest integer that G2
could represent. In some cases, this limit is known to have been reached, in which
case G2 behaves unpredictably.

To address this problem, beginning with G2 Version 6.0, this limit was increased
to 258 - 1, an increase of more than eight orders of magnitude over the previous
limit, which allows for virtually unlimited object creation.

G2 Version 5.1 Rev. 9 introduced a new g2-meter, which allows you to monitor
the creation of instances. The g2-meter is also available in G2 Version 6.0 and
higher versions; however, you should no longer encounter this limit and,
therefore, should not need to use the meter to monitor the creation of items.

In addition, G2 issues warnings on the console or to the log file on Windows
platforms when 95, 96, 97, 98, and 99% levels of utilization are reached.

Memory-Size

Measures the total memory allocated to G2 by the operating system for holding
data. The figure includes both used and available memory. The sum of memory-
usage and memory-available should equal memory-size.

Memory-Usage

Measures the total amount of memory that G2 currently uses. As G2 creates more
items, schedules more tasks, and the like, memory usage increases.

Memory-Available

Measures the total amount of memory currently allocated by the operating
system but not used by G2.

region-3-memory-available priority-9-scheduler-time-lag

priority-10-scheduler-time-lag

Memory Meters Time Meters
1847

Region-N-Memory-Size

Each meter measures the memory in the G2 region specified by n. The figure
includes both used and available memory. For each region, the sum of memory
available and memory usage should equal memory size.

Region-N-Memory-Usage

Each meter measures the amount of memory that G2 currently uses in the G2
region specified by n.

Region-N-Memory-Available

Each meter measures the total amount of memory currently available to G2 but
not used by it in the G2 region specified by n.

Clock-Tick-Length

Computes how many seconds a G2 clock tick lasts. If the scheduler mode is real
time, this value varies closely around 1 second. In other modes, clock-tick-length
may vary more widely.

Maximum-Clock-Tick-Length

Holds the duration in seconds of the longest clock tick that G2 has experienced
since the knowledge base started running. If the scheduler mode is not real time,
the maximum clock tick length can be large, for example if you pause the
knowledge base for a long time. maximum-clock-tick-length is not a lagged value.

Percent-Run-Time

Computes how much processing time G2 is using, as a percent of the processing
time available for it to use. The value of the meter is recalculated at each clock tick
by computing:

(elapsed-time - sleep-time) / elapsed-time

The time that G2 sleeps even though it could be processing acts as a reserve of
processing power on which it could draw if the demand on it increased. The
percent-run-time meter measures the size of that reserve: the lower the value, the
more reserve exists.

In general, the percent-run-time should not be more than 80% unless you have
used priorities to be sure that high-priority tasks will get done even if demand
exceeds available time, causing G2 to lag.
1848

Types of G2-Meters
Simulator-Time-Lag

Computes how many seconds behind the current system time the G2 simulator is.
If the value is positive, this means that the simulator is behind schedule; if it is
negative, the simulator is ahead. This value cannot be positive if the scheduler
mode is simulated time. simulator-time-lag is not a lagged value.

The G2 Simulator is a superseded capability. For more information, see
Appendix F, Superseded Practices.

Priority-N-Scheduler-Time-Lag

These meters compute how many seconds behind current system time the
scheduler is for a given priority. There are ten such meters, each representing the
queue of tasks of a particular priority, within the current task queue. Tasks of
priority one are first in the current task queue, then tasks of priority two, and so
on.

If the value of one of these meters is positive, the scheduler is behind schedule on
that priority's queue. For example, if the value of the priority-1-scheduler-time-lag
meter is 0 and the value of the priority-2-scheduler-time-lag meter is 3, then all
tasks of priority one are being completed, but task of priority two (and probably
the lower priorities, as well) are behind by three clock ticks.

The value of any of these meters will always be 0 when the scheduler mode is
either simulated time or as fast as possible. Scheduler-time-lag is not a
lagged value.
1849

1850

55
Memory Management
Describes G2’s memory regions and shows how to manage them.

Introduction 1852

Managing KB Data Memory 1852

G2 and System Services 1853

G2, RAM, and Virtual Memory 1853

Introduction to G2 Memory Management 1854

Memory Management Problems 1854

Memory Management During Development 1855

G2 Memory Regions 1856

Measuring G2 Memory Usage 1856

Determining Region 1 and Region 2 Memory Requirements 1862

Restricting Region 3 Memory 1863

Specifying G2 Memory Allocation 1863

Causes of Unbounded Memory Requirements 1867

Correcting Unbounded Memory Requirements 1868
1851

Introduction
G2 memory management differs from that of most programs. Because G2
performs real-time process control, it must avoid pausing for memory
management to the greatest possible extent. This requirement affects every aspect
of G2’s use of memory.

G2 uses memory of various kinds in various contexts:

• Memory belonging to system services, such as the window system.

• RAM on the computer that runs G2.

• Virtual memory provided by the operating system.

• Memory that holds G2’s executable code.

• Memory that holds data constituting or kept by a KB.

This chapter describes all of these uses of memory, and shows you how to achieve
optimal performance with each of them.

Managing KB Data Memory
Most G2 memory management decisions relate to memory that holds the data
associated with a KB. The essential principles for managing such memory are:

1 Allocating and deallocating memory causes unpredictably long synchronous
waits for the operating system to process the request. Such waits are
incompatible with real-time performance. The goal of G2 memory
management is to eliminate them.

2 When G2 starts, it receives an initial memory allocation, which is specified on
the command line or with environment variables. G2 never asks for more
memory unless an executing KB has exhausted this initial allocation. A
correctly configured KB never exhausts its initial allocation.

3 Except for some memory used for icons and fonts, G2 never returns memory
to the operating system. It retains all allocated memory in internal memory
pools. Creating an item withdraws memory from a pool; deleting it returns
memory to the pool. The memory is then available for reuse by G2.

4 A correctly configured KB does not require ever-increasing amounts of
memory. The usual cause of unbounded memory requirement is code that
creates transient items and does not explicitly delete them, causing them to
accumulate as the KB executes. Other possible causes also exist.

After describing other types of memory, this chapter expands the four principles
listed into a complete description of KB data memory management, the problems
that can arise with it, and ways in which such problems can be solved.
1852

G2 and System Services
G2 and System Services
As G2 runs on a system, it makes use of various services that the system provides,
such as the network manager, the file system, and the window system. All of
these use memory to accomplish their tasks, and their use of it is intrinsically
beyond G2’s knowledge and control.

G2 can be very demanding of system services, and may ask more of them than
they are configured to provide, causing them to run out of memory. Such
problems are a function of the particular system and its configuration, and not of
G2 per se, so this chapter cannot provide an exact formula for preventing them.

Determining System Adequacy

The readme-g2.html file and the G2 Bundle Release Notes describes various
requirements that a system must meet before G2 can run on it. However, due to
the great variety of systems, problems can occur even when these guidelines are
met. The best defense is testing: be sure that your application has made the
maximum possible demands on the system it runs on before you conclude that
the system is adequate for your needs.

G2, RAM, and Virtual Memory
Virtual memory can provide the effect of very large amounts of real memory but
the benefit in space is bought with a sacrifice in time. Virtual memory is much
slower than real memory, because it requires paging data between real memory
and the disk.

Virtual memory systems page only when they must. If you have enough RAM to
hold all executing programs in real memory, none of them will ever be paged. If
G2 needs more than the amount of RAM your computer provides, or some other
program competes with G2 for that memory, the operating system will page G2
as needed to provide the necessary memory virtually.

Moderate amounts of paging do not typically cause significant performance
problems. However, incessant paging (thrashing) caused by lack of RAM can
drastically degrade performance. Gensym strongly advises against attempting to
use G2 under such circumstances.

Determining RAM Requirements

To determine how much RAM you need, measure the total G2 memory
requirement as described under Measuring Memory with Operating System
Commands. You should have at least that much RAM in your machine,
preferably at least 16 MB more, and in no event less than 128 MB for Alpha AXP
1853

machines and 64 MB for other platforms. See the readme-g2.html for further
information.

If you intend to run other programs on the machine that runs G2, you should
provide additional RAM as needed to prevent them from competing excessively
with G2. Many installations provide monitoring tools that can be used to measure
how different processes use virtual memory. These can be helpful in deciding
how much more RAM to provide when G2 does not run alone.

Introduction to G2 Memory Management
Providing an adequate system and sufficient RAM is necessary to ensure good G2
performance, but such provision does not constitute memory management. G2
memory management consists of two things:

• Preallocate all memory that G2 will need while executing the current KB.

• Ensure that the KB does not require ever-increasing amounts of memory.

The goal in both cases is the same: to minimize and if possible eliminate memory
allocation requests to the operating system while a KB executes.

Most programs manage memory by calling on the operating system to allocate
space, and returning space to the operating system when the program no longer
needs it. G2 does not manage most memory in this way, because calling the
operating system to allocate or free memory can cause waits of arbitrary length
while the system processes the call. Such waits can impair real-time performance.

When G2 begins execution, it obtains an allocation of memory from the operating
system. G2 thereafter manages memory internally. G2 does not obtain additional
memory unless it has exhausted its allocation and needs more. G2 never returns
memory to the operating system under any circumstances, including clearing the
current KB or loading another KB.

G2 uses many strategies internally to minimize the time spent managing memory.
For example, when you delete a KB item, G2 does not return its memory to a
generic pool, but retains it for future reuse if you create a similar-sized object. Due
to this technique, a G2-meter that shows memory usage never goes down, no
matter how many items you delete.

Memory Management Problems
If G2 has enough memory to work with, it automatically handles all other details
of memory management. You do not need to select or tune the strategies that it
uses, and there is no way for you to do so. Correct G2 memory management
consists of one thing: ensuring that G2 never runs out of memory while executing
a KB.
1854

Memory Management During Development
Two problems can cause G2 to require additional memory during KB execution:
insufficient memory allocation and unlimited memory consumption.

Insufficient Memory Allocation

Insufficient memory allocation exists when a KB’s memory requirement is
bounded, but the initial allocation of memory was insufficient to provide it. For
example, a KB that creates many new items, or keeps long histories, needs
increasing amounts of memory over time. If this memory was not allocated in
advance, G2 will have to request more as the KB executes. After the KB has
reached its maximum size, G2 will not request any more memory.

The problem in this case is not with the KB, but with the size of the initial memory
allocation. This chapter tells you how to gauge a KB’s maximum memory
requirement, and how to allocate the needed memory.

Unlimited Memory Consumption

Unlimited memory consumption exists when an executing KB creates and retains
an indefinitely increasing number of items, symbols, text strings, procedure
invocations, or other things that occupy memory. Their accumulation will
eventually exhaust any possible preallocation of memory. G2 will then have to
request more, which will again be consumed, and so on until no more can be
obtained.

A KB that requires indefinitely increasing amounts of memory has a memory
leak. The problem in this case is with the KB itself: it is fundamentally incorrect,
and must be tested and changed as needed to eliminate the problem. This chapter
describes the necessary techniques.

Memory Management During Development
Since G2 can obtain more memory as it runs, and KB development often does not
involve real-time testing until late in the development cycle, developers often
neglect memory requirements while they develop a KB.

If you are aware of memory requirements throughout KB development, you will
develop an understanding of how the KB’s requirements vary with different
conditions. This understanding can help you to determine how much memory to
allocate when the KB is used for real-time processing.
1855

G2 Memory Regions
To understand G2 memory management, you need a general understanding of
how G2 uses the memory that it receives from the operating system.

When you invoke G2, the operating system provides the memory necessary for
the G2 process to run. This memory comes in two blocks: one for code, and one
for data.

Code memory holds G2’s executable code, a table of constants, and a stack. You
do not need to understand code memory internal organization, and you cannot
control code memory allocation: G2 and the operating system automatically
handle everything relating to code memory.

Data memory holds everything relating to the particular KB that G2 is executing.
G2 memory management consists almost entirely of managing data memory.
When this chapter refers to memory without qualification, the reference is to data
memory only.

G2 subdivides its data memory into two regions, named Region 1 and Region 2.
Each of these regions holds a particular kind of data:

• Region 1: Items, non-symbolic values, and a cache for workspace and icon
background images.

• Region 2: Symbols and related internal data.

When you start G2, you can accept default sizes for these regions, or you can
preallocate memory to either or both of them as needed by your KB. G2 cannot
swap memory between these regions, so exhausting the memory available to one
region will cause G2 to request more memory even if there is unused memory in
the other.

The background image cache that exists in Region 1 acts like a separate region in
many ways. When it must be referred to separately, it is called Region 3. Since
Region 3 is a subset of Region 1, you cannot explicitly preallocate Region 3
memory: the Region 1 preallocation supplies Region 3 also. However, you can
specify a maximum size for Region 3 when you start G2. This maximum limits the
size of the background image cache.

Measuring G2 Memory Usage
There is no simple way to determine in advance how much memory a particular
KB will need, because the maximum requirement depends on what the KB
actually does as it runs. Therefore, determining the correct amount of memory to
allocate to G2 for use with a particular KB requires measurement rather than
calculation.

The general technique is to run the KB until it reaches its maximum memory
allocation, then find out how much memory it has obtained for each region. Since
1856

Measuring G2 Memory Usage
G2 never returns allocated memory except for memory for icons and fonts, the
figure for each region is the maximum that the region needed at any time during
KB execution. With this information, you can:

• Obtain additional RAM as needed to prevent excessive paging.

• Preallocate the needed memory to each region when you start G2.

The KB can then execute without thrashing, and will not need additional memory
as it executes.

Generating the Maximum Memory Allocation

The best technique is to run your KB until you believe it has done everything it
will ever do when used, specifically, until it has:

• Created the maximum number of items.

• Created every symbol the KB will ever use.

• Created the maximum number of strings of all lengths possible in your KB.

• Displayed every workspace that it will ever display while running.

• Filled every history.

• Invoked each procedure the maximum number of times that the procedure
will ever run concurrently.

• Executed all for any rules for a stable number of items. (If the number of items
that are iterated over by a for any rule increases, the number of for any rule
invocations will increase, which increases memory usage.)

• Imported the maximum number of data points per any given time interval
from a G2 Gateway interface or a G2-to-G2 interface.

• Stabilized all priority queues. (Use G2-meters to measure these, as described
in G2-Meters.)

Unfortunately, it is not always easy to determine when all these maxima have
been reached. To increase confidence that you have obtained as much memory as
1857

you will ever need, you can evaluate some or all of the following factors
individually:

To evaluate this maximum... Use this approach...

The number of transient items at
any single time, including the
messages on the message board
and in the logbook.

The number of procedure
invocations at any single time.

The number of relations.

Measure these using the expression the
maximum value of xxx, where xxx is a history-
keeping variable whose formula is the count
of each yyy, and where yyy is the class of all
transient objects you will create, the class
procedure-invocation, or the class relation.
You should run your knowledge base until
these numbers are stable. Note that the
history keeping specification in these
variables may affect memory use until they
fill with history data.

The number of rule instances at
any single time.

This reaches its maximum when each rule in
your knowledge base that involves multiple
items (those containing the word any) has
concurrently fired for the maximum possible
number of such items.

The amount of history kept by all
variables.

You can use the Inspect facility to find every
variable that keeps history, and run your
knowledge base until the histories are
completely full.

The number of elements in all
arrays.

Use the expression the sum over each
g2-array of (the array-length of the g2-array)

The number of elements in all lists. Use the expression the sum over each g2-list
of (the length of the g2-list)

The total count of new symbols G2
will encounter during a process,
regardless of whether all symbols
are in use at the same time.

If your KB contains any statement that creates
a new symbol at every call, there is no
maximum number of symbols, and G2 will
eventually run out of memory.

The number of messages you keep
on the message board.

The maximum number of messages is set in
the Message Board Parameters system table.

The number of logbook pages you
keep.

The maximum number of logbook pages is set
in the Logbook Parameters system table.

The number of ICP connections
you make.

Activate every ICP interface and send data
through it. G2 thereafter needs no more
memory for ICP connections.
1858

Measuring G2 Memory Usage
Measuring the Maximum Memory Allocation

When you have run your knowledge base until it has maximized its memory use,
you can measure the memory that it uses in any of three ways:

• Create G2 memory meters.

• Obtain measurements from allocation reports on the console.

• Execute operating system commands that print memory usage.

These techniques differ somewhat in the nature and accuracy of the
measurements they yield, as described in the rest of this section.

Measuring Memory with G2 Memory Meters

You can use a G2-meter to measure the amount of memory G2 uses in any region,
or in all regions together. All G2-meter memory measurements are in 8-bit bytes.
The relevant meters are:

These measurements provide very precise information about memory usage, but
give no information about code memory. For information on how to create G2-
meters and use them to measure memory, see G2-Meters.

Meter Name Memory Measured

region-1-memory-usage Memory used in Region 1

region-2-memory-usage Memory used in Region 2

region-3-memory-usage Memory used in Region 3

memory-usage Total memory used in all regions
combined
1859

Measuring Memory with Allocation Reports

When G2 launches, it prints an allocation table that lists the memory
measurements for each region. The appearance of this table varies with the
system on which G2 runs, but is always similar to this:

All numbers represent 8-bit bytes of memory. The columns are:

The numbers in an allocation table may vary on different systems. The example
above shows a typical allocation table when G2 starts with no explicit memory
specification; hence the desired value of unsupplied for all three regions.

G2 does not assign Region 1 memory to Region 3 unless there is a specific need
for it, so the measured size of Region 3 is always zero in an allocation table.

If G2 needs additional memory, it prints an allocation message on the console for
each allocation request. The appearance of such a message varies with the system,
but is always similar to this:

2000/03/25 08:21:16 Obtaining more memory (region 2 at 2949120)

The second line of the message lists the region that needed more memory, and the
size in bytes of that region after the allocation. If any allocation message(s) appear
for a region during KB execution, the current size of that region is given by the
last such message. If no such message appears, the region continues to have the
size indicated in the measured column of the allocation table.

region# minimum default desired measured

1 4,750,000 10,000,000 unsupplied 10,000,000

2 3,000,000 3,000,000 unsupplied 3,000,000

3 400,000 2,500,000 unsupplied 0

-------------- -------------- -------------- --------------

Totals: 8,150,000 15,500,000 13,000,000

Column Measurement

region# The number of the region to which the row applies.

minimum The smallest size possible for that region.

default The size of the region if you specify no other size.

desired The size (if any) that you specify for the region; or
unsupplied.

measured The actual size of the region.
1860

Measuring G2 Memory Usage
If the memory allocated to G2 was sufficient, no Region 1 or Region 2 allocation
messages appear during KB execution. Since Region 3 is actually a cache within
Region 1, Region 3 allocation messages never appear. If Region 3 needs more
memory than Region 1 can provide, Region 1 obtains more memory and assigns it
internally to Region 3.

Allocation tables and allocation messages are collectively called allocation
reports. The measurements obtained from allocation reports are less precise than
those obtained via memory meters, because G2 may not actually have used all of
the memory that it was allocated. As with memory meters, allocation reports give
information only about data memory, not about code memory.

Measuring Memory with Operating System Commands

Operating systems typically offer various commands that tell you how much
memory executing programs use. Such measurements include all memory
allocated to a process for any purpose, but do not show any subdivisions. The
relevant commands are:

• UNIX: ps -l

• Windows: The Process tab of the Task Manager

Unlike G2-meters and allocation reports, operating system memory
measurements include both code and data memory. Depending on the platform,
they may or may not also include the memory G2 uses for storing graphics. See
your system documentation for information on these commands, and to identify
the analogous command (s) on other platforms.

Note On some UNIX systems, measurements printed by ps -l omit memory that has
been allocated but has never been used. However, if your KB has done everything
it ever will do, G2 will have used all memory it needs to use, and this omission
will not distort ps -l measurements.

The measurements obtained with operating system commands are useful for
determining how much RAM you need, but cannot be used to decide how much
memory to allocate to the two memory regions. Use G2-meters and/or allocation
reports to obtain that information.

Monitoring Instance Creation Count

Historically, G2 has had an upper limit on the number of instances that it could
create in a single session, both explicitly and as a side-effect of other actions. In
previous releases, this limit was 229 - 1, which was the largest integer that G2
could represent. In some cases, this limit is known to have been reached, in which
case G2 behaves unpredictably.
1861

To address this problem, beginning with G2 Version 6.0, this limit was increased
to 258 - 1, an increase of more than eight orders of magnitude over the previous
limit, which allows for virtually unlimited object creation.

G2 Version 5.1 Rev. 9 introduced a g2-meter named instance-creation-count-as-
float, which allows you to monitor the creation of instances. The g2-meter is also
available in G2 Version 6.0 and higher; however, you should no longer encounter
this limit and, therefore, should not need to use the meter to monitor the creation
of items.

In addition, G2 issues warnings on the console or to the log file on Windows
platforms when 95, 96, 97, 98, and 99% levels of utilization are reached.

Determining Region 1 and Region 2
Memory Requirements

To determine how much memory to preallocate to Regions 1 and 2, use the
measurement techniques listed under Measuring G2 Memory Usage. If the
memory usage in either region never stops growing, see Causes of Unbounded
Memory Requirements and Correcting Unbounded Memory Requirements.

When your KB uses memory correctly, and your measurements have satisfactory
accuracy and reliability, follow the guidelines in this section and the instructions
in Specifying G2 Memory Allocation.

Excess Memory Preallocation

G2 uses no more memory than it needs to represent all the objects in a running
KB, so preallocating more memory than a KB needs does not increase
performance. Neither does it degrade performance, because virtual memory
systems page out unused memory and never page it in again.

However, needless memory preallocation should be avoided because it wastes
memory that other programs could use, and inflates the figures for G2 memory
usage obtained with operating system commands. Such inflation can produce the
impression that more RAM is needed, when the real problem is that the
preallocation should be reduced.

Safety Factors

To be sure that unexpected events will never require more memory that any test
run showed to be necessary, you should add a safety factor of at least 10% to the
memory sizes that you obtain by measurement. If your KB has a history of
unexpected increases of memory requirement, the safety factor should be
even higher.
1862

Restricting Region 3 Memory
Allocating Less Than the Default

The allocation table that G2 prints when invoked shows the default size of each
region. If your KB needs less memory in any region than G2 provides by default,
you can preallocate less memory than the default. However, you cannot allocate a
region less than the minimum memory size shown for the region in the allocation
table. G2 increases any such specification to the minimum value.

Restricting Region 3 Memory
Since Region 3 is a cache within Region 1, preallocating Region 3 memory is a
special case of preallocating Region 1 memory. Sufficient Region 3 memory is
available when no Region 1 allocation messages appear during KB execution.

Region 3 exists to cache workspace and icon background images. Such images
require large amounts of memory. Every time a background image is rescaled, G2
computes a new image of the appropriate size and stores it in Region 3. If
Region 3 becomes full, G2 does not obtain more memory, but recycles the
memory already available.

If you have many background images and/or frequently rescale them, and find
that background images display too slowly, you might obtain faster display by
increasing the maximum size of Region 3, thereby reducing time spent recycling
and recalculating background images. To prevent run-time allocation from
resulting, be sure to increase the preallocation for Region 1 accordingly.

Conversely, if your application is nearing the limits of available memory, devotes
much memory to Region 3, and can accept slower background image display,
reducing the size of Region 3 can free memory for other uses within Region 1, or
allow its preallocation to be reduced.

G2 does not assign Region 1 memory to the Region 3 cache unless the memory is
actually needed, so a Region 3 maximum need not be reduced just because it is
greater than necessary. It only needs to be reduced when Region 3 is actively
using more memory than is desired.

Specifying G2 Memory Allocation
If you do not explicitly specify the size of Region 1 or 2, G2 initially gives the
region the default size shown for it in the memory allocation table. If you do not
explicitly specify the size of Region 3, G2 restricts its size to be to be the default
size shown for it in the table.
1863

You can override the default memory size for any region. Though the meaning of
a memory size specification is different for Region 3 than for Regions 1 and 2,
both types of specification use the same syntax. You can specify memory size in
two ways:

• Give arguments to the G2 command when you invoke G2. This technique is
the same on all platforms.

• Set environment variables before you invoke G2. This technique differs
somewhat on different platforms.

This section shows you how to use both of these techniques. Additional reference
information appears under:

• rgn1lmt

• rgn2lmt

• rgn3lmt

Specifying Memory in the G2 Command Line

The syntax for specifying memory in the command line that invokes G2 is the
same on all platforms, regardless of the syntax characteristic of the host operating
system, because G2 processes its own command-line options.

When you specify memory in the command line, the specification overrides any
specification given by an environment variable, and applies only to the particular
G2 invocation.

The memory specification for each region is controlled by a separate command-
line option. Any or all of these can be given at each G2 invocation.

-rgn1lmt: The number of bytes to preallocate to Region 1

-rgn2lmt: The number of bytes to preallocate to Region 2

-rgn3lmt: The maximum number of bytes in Region 3

To specify memory using command-line options:

 Invoke G2 by executing:

G2 [-rgn1lmt size] [-rgn2lmt size] [-rgn3lmt size]

where size is the number of 8-bit bytes to specified for the region. Do not
include commas in size.

For example:

G2 -rgn2lmt 6000000 -rgn3lmt 6000000

specifies that Region 2 is to be allocated 6 MB when G2 is invoked, and Region 3 is
to be limited to 6 MB, irrespective of any environment variable that may be
defined for either region. Since Region 1 memory is not specified on the command
1864

Specifying G2 Memory Allocation
line, if an environment variable exists for Region 1, the variable will determine the
region’s size. If not, Region 1 will have the default size shown for it in the
allocation table.

Specifying Memory with UNIX Environment
Variables

When you invoke G2 under UNIX, G2 checks the environment for the following
three variables:

G2RGN1LMT: The number of bytes to preallocate to Region 1

G2RGN2LMT: The number of bytes to preallocate to Region 2

G2RGN3LMT: The maximum number of bytes in Region 3

If any of these is defined, and no contradictory specification appears as an
argument to the G2 command, G2 specifies the number of bytes indicated by the
variable for the corresponding region.

To specify memory using a UNIX environment variable:

 Define the variable by executing:

setenv G2RGNnLMT size

where:

n is 1, 2, or 3, representing Region 1, Region 2, or Region 3

size is the number of bytes to specify for Region n. Do not include commas
in size.

For example:

setenv G2RGN2LMT 6000000

specifies that Region 2 is to be allocated 6 MB when G2 is invoked.

To cancel memory allocation specified with a UNIX environment variable:

 Undefine the variable by executing:

unsetenv G2RGNnLMT

where:

n is 1, 2, or 3, representing Region 1, Region 2, or Region 3

For example:

unsetenv G2RGN2LMT

cancels the specification in the previous example.
1865

Specifying Memory with Windows Environment
Variables

When you invoke G2 under Windows, G2 checks the environment for the
following three variables:

G2RGN1LMT: The number of bytes to preallocate to Region 1

G2RGN2LMT: The number of bytes to preallocate to Region 2

G2RGN3LMT: The maximum number of bytes in Region 3

If any of these is defined, and no contradictory specification appears as an
argument to the G2 command, G2 specifies the number of bytes indicated by the
variable for the corresponding region.

To specify memory using a Windows environment variable:

 Define the variable by executing:

set G2RGNnLMT=size

where:

n is 1, 2, or 3, representing Region 1, Region 2, or Region 3

size is the number of bytes to specify for Region n. Do not include commas
in size.

For example:

set G2RGN2LMT=6000000

specifies that Region 2 is to be allocated 3 MB when G2 is invoked.

Note You can also set Windows environment variables in the Environment section of
the System Control Panel.

To cancel memory allocation specified using a Windows environment variable:

 Undefine the variable by executing:

set G2RGNnLMT=

where:

n is 1, 2, or 3, representing Region 1, Region 2, or Region 3

For example:

set G2RGN2LMT=

cancels the specification in the previous example.
1866

Causes of Unbounded Memory Requirements
Note You can also delete Windows environment variables in the Environment section
of the System Control Panel.

Causes of Unbounded Memory Requirements
No preallocation of memory for a KB can suffice unless the KB’s need for memory
is bounded. If a KB’s memory requirement grows without limit during execution,
the increase will exhaust any preallocation, then consume additional memory
until no more is available, forcing G2 to shut down.

Two types of problems can cause unbounded increases in a KB’s memory
requirement:

• The KB creates and retains an indefinitely increasing number of permanent
items, symbols, incomplete calls, or other things that occupy memory.

• The KB recurrently creates transient items in procedures or methods, or in
some other way, and fails to explicitly delete them.

Unnecessary Retention of Storage

Any system can exhaust memory by creating ever more things and retaining them
indefinitely, or by initiating ever more actions and failing to complete them. G2
does not differ from other systems in this regard.

Failure to Delete Transient Items

To understand why failure to delete transient items is a problem, you must
understand how G2 manages the memory that such items occupy.

Some programming environments allow you to obtain storage as needed and
abandon it when you are done with it. Such an environment includes a capability
that periodically identifies all abandoned storage and reclaims it for reuse. Such
reclamation is often called garbage collection.

Garbage collection entails moving data as needed to consolidate free memory into
a single block. Such consolidation must be done carefully, or concurrent changes
to memory will result in data loss. Some garbage collection algorithms suspend
all other processing while they consolidate memory. Other algorithms are
incremental, but this just distributes their overhead more finely.

G2 does not perform garbage collection, because pausing or slowing to do so
would impair real-time performance. After G2 uses a block of memory, it does not
return the memory to a generic pool, but retains it intact for future reuse when G2
again needs a block of that size. This technique manages memory with minimal
impact on performance, which helps G2 provide real-time response.
1867

When G2 allocates memory, as for a procedure call, it knows how much it has
allocated, so it can reclaim and reuse the memory after the procedure returns.
However, G2 does not attempt to manage memory that it allocates when a
procedure creates transient items, because such management would slow
performance.

When a procedure or method creates transient items (create action) but does not
delete them (delete action) before returning to its caller, the item continues to
exist after the procedure returns. Unless something else deletes the item, the
memory that it occupies remains unavailable until you reset G2. Chronic failure
to delete transient items causes an insidious loss of memory as G2 executes. Such
a problem is called a memory leak.

G2 also creates transient items when you pass objects between different G2’s,
using the G2-to-G2 interface, or between G2 and a G2 Gateway bridge. To prevent
memory leakage, you must explicitly delete all such items when you are done
with them.

Correcting Unbounded Memory Requirements
Unexpected increases in KB memory requirements can occur in three different
ways. In order of frequency, these are:

• The KB takes longer than expected to reach a memory requirement that
actually is bounded.

• The KB contains an error that wastes or leaks memory.

• The current release of G2 contains a bug that leaks memory.

If your KB appears to require indefinitely increasing memory as it executes, you
have two options:

• You can obtain a diagnostic KB from Gensym Customer Support. This KB
performs automated tests that find most memory problems.

• You can use the techniques described in this section to perform the same
tests manually.

You will probably find it easier to use the diagnostic KB, because making the
changes required to perform the tests manually can be time consuming. Do not
hesitate to call Gensym Customer Support at (781) 265-7301 (Americas) or
+31-71-5682622 (EMEA) if your KB experiences unbounded memory increase.

The diagnostic KB contains complete instructions for performing the tests that it
provides. However, you will find the KB easier to use, and the data it provides
easier to interpret, if you understand the tests that it performs. Therefore you
should read this section even if you intend to use the diagnostic KB.
1868

Correcting Unbounded Memory Requirements
Caution Some tests that diagnose memory problems change a KB in ways that slow down
its execution and are difficult to undo. When you use the diagnostic KB, or
manually apply any technique listed in this section, be sure to work with a copy
of your KB, not the original.

Checking Region 1 Memory Increases

If your KB appears to experience unbounded memory increase in Region 1, check
each of the following.

Accumulating Items

To determine whether your KB is accumulating items, put up a display of the
count of each item. If this increases with time, your KB is creating items and not
deleting them.

To detect accumulations of permanent items, put up a display of the count of
each class-name for every class whose instances may be accumulating. If you
detect any class that accumulates without limit, use the Inspect facility to locate
statements that instantiate that class, and correct the error(s).

To detect accumulations of transient items, use the Inspect facility to locate
statements that create them, and rewrite the KB to explicitly delete them after it is
done with them.

For more information, see Monitoring Instance Creation Count.

Non-Returning Procedures

G2 allocates memory when it invokes a procedure, and reclaims that memory
when the procedure returns. If a procedure never returns, the procedure
invocation memory will not be reclaimed. If such a procedure is invoked
recurrently, unbounded memory increase results.

To detect such a problem, first be sure that uninterrupted-procedure-execution-
limit in the Timing Parameters system table has a low value, say 30 seconds (the
default). This will cause any procedure that neither returns nor allows other
processing to time out. G2 prints a message in the Operator Logbook identifying
any such procedure, allowing you to locate and correct it.

Timeouts do not catch procedures that do not return because they enter wait
states and never emerge. To identify such procedures, change the class-of-
procedure-invocation of every procedure that allows other processing (directly or
by waiting) to procedure-invocation. Then put up a display of the count of each
procedure-invocation.

If this number increases, use Inspect to locate the procedures that aren’t returning,
then modify the KB as needed to ensure that they eventually return.
1869

Accumulating Transient Class Definitions

G2 allows you to create transient class definitions programmatically. G2 must
allocate new memory for every such definition, and this memory cannot be
reclaimed. If your KB creates an unlimited number of transient class definitions, it
will consume memory without bound. To test for this problem, remove the
creation of transient class definitions from your KB, and see if G2 still consumes
memory.

If your KB creates an unlimited number of transient class definitions, there are
two possible solutions:

• Rewrite the KB so that it creates only a bounded and acceptably small number
of transient definitions.

• Substitute a hierarchy of definitions that is fixed before G2 starts, eliminating
the need for transient definitions.

Such rewrites are also likely to improve the KB’s clarity and efficiency.

Accumulating History

In general, G2 allocates memory in one block at start time for
variables/parameters that keep history with number of data points, but allocates
it incrementally for variables/parameters that keep history with maximum age.
The stepwise pattern in the latter could look like a leak.

Some histories kept by number of data points also show a stepwise allocation
pattern, namely, text variables/parameters and quantitative
variables/parameters whose histories contain a mixture of integer and float
values. Given these facts, make the following changes to your KB as a test:

• Arrange for all history-keeping quantitative variables/parameters in your KB
to have a full history, consisting either entirely of floats or entirely of integers,
but not a mixture of the two.

• Arrange for all text variables/parameters in your KB to have a full history.
Since G2 stores text by length, arrange for all text in the history to have the
same length, or a finite number of different lengths.

• Use the Inspect facility to locate and reduce the maximum age of all history-
keeping variables/parameters to a small interval like five minutes. Allow
your KB to run past that interval.

The following Inspect command finds all variables/parameters keeping the age
of datapoints:

show on a workspace every variable-or-parameter VAR such that
(is-contained-in-text ("maximum age", the history-keeping-spec of VAR))
1870

Correcting Unbounded Memory Requirements
Accumulating Process IDs

When you use a system procedure to spawn a process, G2 allocates memory to
hold the process ID. G2 does not automatically reclaim this memory after the
process completes. A KB that spawns an indefinitely large number of processes
without reclaiming the storage holding their IDs will eventually consume
all memory.

To reclaim the memory that holds a process ID, you must explicitly kill the
process after it completes. To kill a local process spawned with g2-spawn-
process-to-run-command-line or g2-spawn-process-with-arguments, call g2-kill-
process. To kill a remote process spawned with g2-spawn-remote-process-to-run-
command-line or g2-spawn-remote-process-with-arguments, use g2-kill-remote-
process.

Accumulating Log Book Pages

Check maximum-number-of-pages-to-keep-in-memory in the Logbook Parameters
system table. The default is 200 pages. If this number is large, G2 may not have
created that many logbook pages yet. Until G2 creates the maximum number of
logbook pages, it continues to use more memory for each page that it creates.

As a test, reduce the maximum number of pages to a small number like 2, and see
if G2 still consumes more memory.

Accumulating Message Board Entries

Check maximum-number-of-entries in the Message Board Parameters system
table. The default is 10 entries. If this number is large, G2 may not have created
that many messages yet. Until G2 creates the maximum number of messages, it
continues to use more memory for each message that it writes.

As a test, reduce the maximum number of entries to a small number like 2 to see if
G2 still consumes more memory.

Generic Rules

G2 uses memory to create each instance of a generic (for any) rule. This could look
like a memory leak if such rules are run on increasing numbers of items.

As a test, arrange to run all generic rules simultaneously on the maximum
number of items for each rule. This will cause G2 to create the maximum number
of rule instances it will ever create in your KB. See if G2 still consumes memory
after this test.

Multiple Data Service Requests

If you are running G2 Gateway or G2-to-G2 data service, G2 uses memory to
queue up requests for each data point. (G2 does not allocate memory for more
than one request per data point, however.) If you have many data points, or
1871

several groups of data points whose values are requested at overlapping times,
the queueing of requests could look like a memory leak.

As a test, arrange for G2 to request information simultaneously for all data points
in your KB. See if G2 memory use increases after that.

Lagging Priorities

Check the scheduler-lag G2-meters to see if any priorities are lagging. G2 uses
memory to store the tasks it must run at each priority. If G2 is running behind,
this could appear to be a memory leak.

As a test, reduce the number of rules, formulas, and procedures active at any one
time, or otherwise decrease the load on G2 so that scheduler lag no longer occurs,
and see if G2 memory use still increases.

Checking Region 2 Memory Increases

If your KB appears to experience unbounded memory increase in Region 2, check
each of the following.

Accumulating Symbols

To determine whether your KB is accumulating symbols, check statements
containing the change the text of action and calls to the symbol function.

Every time you execute change the text of with a new value that is not a number,
truth-value, or text string, the action creates a new symbol. Developers sometimes
miss this case, because change the text of suggests text strings rather
than symbols.

Every time you call symbol with a value it has never received before, the function
creates a new symbol. For example, an expression like symbol ("TEMP-[the
current time]") uses different text in each call. Recurrent execution of such an
expression causes unbounded memory consumption.

Accumulating Text Strings

G2 stores text strings grouped by the number of characters in the text. If your KB
intermittently creates text with new lengths, or uses an indeterminate number of
text strings of the same length at the same time, memory consumption increases
without limit.

Run your KB until you are sure that it has created the maximum number of text
strings that will exist simultaneously at each length you expect. Or, as a test, alter
the text-manipulation machinery in your KB to produce text of a single length.
After taking either of these steps, see if G2 memory use still increases.
1872

Correcting Unbounded Memory Requirements
If All Else Fails

The tests provided by the diagnostic KB described in Correcting Unbounded
Memory Requirements and the tests described in this section can help you resolve
almost any problem that causes unbounded memory increase. If the problem
persists, you should produce a series of statistics files that contain details of
memory use for examination by Gensym Customer Support.

You can use these system procedures to generate G2 statistics:

• g2-measure-memory

• g2-write-stats

For details on these procedures, see Memory Operations in the G2 System
Procedures Reference Manual.

Caution For very large applications, generating memory statistics can take a very long
time to execute, effectively requiring you to kill the G2 process. In addition, you
should be aware that memory statistics can be very inaccurate.

To create statistics files:

1 Start with a version of your KB that you have fully tested with the diagnostic
KB or the techniques described in this section.

2 Run the KB until you believe that it should not require any more memory (all
histories filled, logbook pages at maximum, and so on).

3 Choose Save KB from the Main Menu.

4 Use Control + x to delete the pathname from the dialog that appears.

5 Enter write g2 stats as pathname, where pathname is the name of the statistics
file to be written. If you supply a filename, G2 puts the statistics file in the
directory that holds the executing KB.

6 Click End to save the statistics file.

7 Similarly produce several statistics files at intervals that make the problem
apparent, say once every half hour.

8 After you have written all statistics files, save a copy of the KB itself.

Note that you do not need to pause a KB in order to gather statistics on it. Pausing
the KB would yield statistics that all reflect the same instant, while letting it run
yields statistics gathered over a brief interval, but the difference is insignificant
for diagnosing memory leaks.

When the statistics files are complete:

 Contact Gensym Customer Support.
1873

What’s inside the statistics file:

1 Overall Memory Usage Statistics

2 System Object Pool Usage Statistics

3 LRU Queue Statistics

4 Short Simple Text String Pools

5 Long Simple Text String Pools

6 Adjustable Text String Pools

7 Byte-vector-16 Pools

8 Simple Vector Pools

9 Frame Vector Pools

Meaning of some columns in the statistics file:

• Out: the number of objects currently being taken “out" of the pool for actual
use.

• Out%: the percentage of used objects in the pool (= Out / Count * 100)

• Count: the total number of allocated objects from OS for the pool, this number
will never decrease

• dCount: the changes (difference) of Count since last time you write G2 stats (=
Count - lastCount)

• Memory: the total memory (in bytes) of all objects allocated in this pool, (for
Type CONS, Memory = Count * 8 in 32-bit G2, or Count * 16 in 64-bit G2)

• dMemory: the changes (difference) of Memory since last time you write G2
stats (= Memory - lastMemory)
1874

56
Task Scheduling
Describes the G2 scheduler, the G2 clock, and task queues.

Introduction 1875

The Main Processing Cycle 1876

The G2 Scheduler 1877

Introduction
The scheduler directs task processing in G2. While a user never interacts with it
directly, the scheduler controls all of the activity that the user sees, as well as
many of G2’s background activities.

G2 activity occurs within a main processing cycle, of which the scheduler is a
major part. The scheduler is the G2 time keeper and task master; it is responsible
for:

• Scheduling and prioritizing all tasks

• Executing tasks between clock ticks

• Ticking the G2 clock

The remaining sections describe G2’s main processing cycle and the scheduler’s
functions.
1875

The Main Processing Cycle
All KB processing occurs by G2 performing a set of tasks within a continuous
main processing cycle. The scheduler is a part of the main processing cycle.

The main processing cycle is constantly active as long as G2 is running as a
process on your system. For instance, when you first start G2, it is the processing
cycle that enables G2 to respond to a mouse click in the background area and
display the Main Menu. In G2, a mouse click is a user interface request, one of the
requests that the processing cycle services continuously.

Ticking the G2 Clock

Tasks are time-related, they are either executing currently or awaiting execution
at a future time. For G2 processing, time passes according to the G2 clock.

A clock tick is the fundamental unit of time within G2. The scheduler advances
the G2 clock and, between every clock tick, completes tasks scheduled for that
particular time segment.

Caution The G2 clock has a limit of 17 calendar years. Reaching that limit, for example
when using the as fast as possible mode for simulation purposes, will abort G2.

The G2 Simulator is a superseded capability. For more information, see
Appendix F, Superseded Practices.

The minimum-scheduling-interval attribute of the Timing Parameters system table
determines the interval between the scheduling of each clock tick. The value of
the attribute is either a specific time interval or continuous. The default value is 1
second.

Within the main processing cycle, the scheduler constantly checks to see if it is
time to tick the G2 clock. If it is not time to tick, the scheduler continues
processing any outstanding tasks in the task queue. If it is time, the scheduler
ticks the G2 clock and continues the subsequent tasks in the processing cycle.

The G2 clock is completely separate from the computer’s system clock, known as
the real-time clock, even though both may be set to the same time and advance at
the same rate as the real-time clock.
1876

The G2 Scheduler
Major Events in the Processing Cycle

These are the six major events that occur during each processing cycle. Shaded
events are those that the scheduler completes.

The G2 Scheduler
The G2 real time scheduler manages a set of tasks which execute atomically
without preemption. Tasks are selected by G2 time and priority, strictly and in
that order. G2 time is driven by the scheduler mode you specify in the schedule-
mode attribute of the Timing Parameters system table. You can specify one of
three modes:

• Real Time: G2 time is synchronized with the operating system time.

• Simulated Time: Time intervals are allowed to expand in order to
accommodate more tasks than could fit in a given interval.

• As Fast As Possible: All tasks are allowed to complete in the desired interval.
G2 does not attempt to synchronize with the operating system.

1 Check to see if it is time to tick the G2 clock based on the values
of the minimum-scheduling-interval and the scheduler-mode
attributes, and the current real time.

2 Schedule any tasks from the future time queues for the current
clock tick. All tasks are placed in the current task queue
according to their priorities.

3 Execute tasks in the current task queue. Any tasks not completed
are deferred to later in the current clock tick or to the next.

4 Service network packets. G2 sends and receives network packets
during each processing cycle. Any packets not serviced during
the current cycle are deferred to the next processing cycle.

5 Service user interface requests, including drawing and mouse
events. G2 receives input from and sends output to the user
interfaces of all users logged into the current G2 process,
including any Telewindows users.

6 Prepare to loop. G2 checks to see if it was active in this clock tick.
If it was, it returns to step 1. If it is not yet time to tick, G2 goes
directly to step 3 (or 4) to complete any tasks.

If G2 was not active and there are no tasks left to execute, G2
idles its process for up to one second, or the time of the next
future task, whichever is shorter.
1877

The G2 scheduler breaks tasks into two main categories, current tasks and future
tasks. Current tasks are tasks which are ready to run immediately. The G2 start
action start p1() will enqueue a current task. Future tasks are tasks that should be
executed with some non-zero delay. The G2 start actions start p1() after 10
seconds will enqueue a future task.

G2 attempts to execute all current tasks before any future tasks. One could also
think of current tasks as future tasks with a delay of 0 seconds. The set of current
and future tasks forms the outermost sorting for the G2 scheduler.

At a given G2 time (including the current time) priority is used to resolve
scheduling conflicts. G2 has 12 priorities for task execution, 0 through 11.
Priorities 1 through 10 can be used by user tasks, and by system tasks, for
example, G2 internal tasks. Priority 0 is reserved for system tasks that must occur
before user code runs. Priority 11 is reserved for low priority system tasks that
should not be given favor over any user code.

Priorities usually come from the attributes of computable G2 Items. They can also
come from overrides in explicit task creation, for example, start p1() at priority 7.
Priorities are contagious through recursion. For example, when p1 is started at
priority 4 and calls p2, which has a default priority of 9, if p2 enters a wait state,
its resumption is scheduled at priority 4.

Wait States

A computational task is either running or in a wait state in which all wait states
are equal. Whenever a task enters a wait state, the G2 scheduler determines the
next task to execute by using the methods described above.

Most G2 tasks make use of time slices to help determine when to go into a wait
state. By default, time slices are 100 milliseconds in G2 4.x and 50 milliseconds in
G2 5.0 and higher. Because G2 is not pre-emptive, the time-slice interval can vary
to some degree.

Task Scheduling

G2 has four principal kinds of tasks: computation tasks, network tasks, UI tasks,
and miscellaneous internal tasks. Because G2 is non pre-emptive, the scheduled
interleaving of tasks is completely determined by the conditions that cause tasks
to be placed on the schedule, to go into wait states, or to complete.

Computation Tasks

Computation tasks execute G2 procedures, methods, expressions, and rules.

Procedures and methods will create a task if called from a local or remote start, or
from a remote call. Expressions are normally embedded in other items and are
run periodically.
1878

The G2 Scheduler
The scheduling of rules (the actions in the rule consequent) is more involved:

1 If the conditions in the antecedent of a rule are met, a rule context is created
that contains the set of items that satisfy the conditions.

For example if G2 has the rule whenever the level of any tank receives a value
then start p1(), and some other part of the KB concludes a value into the level
of my-tank, the rule context is the set of one item, my-tank.

2 This context is combined with the rule itself to form a key into a table of all
pending rule computation tasks. This table is a secondary index into the G2
scheduler data structures.

3 If the key indicates that there is currently no pending task to execute the rule
a new task is created to execute the actions in the rule consequent.

4 Otherwise, the new rule context will update any values in the existing rule
task.The rule-context is then discarded and no new rule task is created.

Wait States in Computation Tasks

Embedded expressions do not go into wait states. A procedure or method task
runs until an unhandled error occurs, the task completes, or a statement executes
that causes a wait state. The following statements can cause a wait state:

• wait for some condition or period of time

Waiting for 0.0 seconds does not cause a wait state.

• allow other processing

Allows the task to wait if its time slice has expired, or if a higher-priority task
is ready to run.

• call P across (remote call)

• collect data

• do in parallel [until one completes]

• on error

Causes a wait state in G2 Version 4.0, but not in Version 5.0 and higher.

Rules execute their consequents in order or in parallel. Wait states can happen in
scheduled rule tasks in order to obtain the values of variables used in the
consequent. The actions themselves are atomic.

Network Tasks

Network tasks handle network messages and perform connection management,
remote procedure calls, and data service. The receipt of remote calls or starts
always enqueues tasks. Data-service requests are enqueued in a separate queue to
be handled at the priority of data service specified in the Data-server-parameters
1879

system table. The network task itself limits itself to a time slice whose expiration is
checked after handling all requests for a given socket.

The data service task runs in a loop, performing each data service request. After
each tasks is atomically handled, two things are checked:

1 The data service task will put itself into a wait state if its time slice
has expired.

2 The G2 scheduler is queried to see if any new higher-priority tasks have been
enqueued as a result of processing the data service request.

For example, a gsi-return-values request could cause the invocation of some rule.
If such a task is found, the data service task goes into a wait state.

UI Tasks

Input handling is done in time slices that are distributed round-robin to the G2
windows. Input handling tasks do not execute KB code directly, but schedule the
execution of procedures and the rule consequents for buttons and user-menu-
choices.

When the Drawing-parameters system-table attribute, allow-scheduled-drawing is
set to yes, UI output is scheduled as well, instead of being done in the execution
of state changes in G2 directly.

Miscellaneous Internal Tasks

Saving KBs, printing, and trend-chart updates, are examples of other tasks that
the G2 scheduler manages. Most of these tasks time themselves out after their
time slice expires.

Procedural versus Rule-Based Tasks

KB writers have synchronous (procedural) and asynchronous (rule-based) means
of reacting to changes in the outside world. The former is straightforward but
sometimes requires more code. The latter can be more elegant, but exposes the
developer to some subtle interactions between rules, certain procedure
statements, the G2 scheduler, and data service. Care must be taken to ensure that
rules are given the opportunity, through wait states and priority, to fire at the
appropriate times.
1880

The G2 Scheduler
Default Task Priorities

The default priorities of some common G2 tasks are:

Task Priority Comments

Action and update
buttons

2 Includes radio buttons, check
boxes, type-in boxes, and sliders.

Remove or unhighlight
messages

2

Update displays
(readout tables, meters,
dials, graphs, trend-
charts, charts, and
freeform-tables)

Graphs are a
superseded capability.
For more information,
see Appendix F,
Superseded Practices.

2 Updating screen displays consists
of two parts. First, the value of the
display is found; second, the
screen display is changed. You can
override the default in an
individual display's attribute table.

Complete data service 4 When G2 cannot receive all of the
values from a data server in the
time that is allotted, the scheduler
schedules a task to finish reading
that data. This task has priority 4.
You can change this priority with
the priority-of-data-service option
in the Data Server Parameters
system table.

Update variable values 4 Variable values are obtained
through backward chaining and
other data-seeking.

Invoke rules 6 You can set an individual rule's
priority in its attribute table.

Start procedures 6 You can set a procedure’s priority
in its attribute table.

Reply to outside
requests for data from
G2

6
1881

The scheduling priority 8 is considered a background process. Whenever tasks
are scheduled at a higher level priority, such as rules and procedures, background
tasks with a priority level of 8 proceed slowly.

Optimizing Task Scheduling

Optimum task scheduling requires a fine balance between:

• The total number and management of future time queues.

• The scheduling interval, which determines the amount of time G2 has to
perform tasks between each clock tick.

Two factors determine the number of future time queues:

• The number of tasks scheduled for future processing.

• The scheduling interval.

The number of tasks scheduled for future processing is an arbitrary value,
determined by the individual requirements of a KB. You control the scheduling
interval by adjusting the time between clock ticks in the minimum-scheduling-
interval attribute.

You can set this attribute in one of these ways:

• A scheduling interval, which may be subsecond or not.

• Continuous mode.

The scheduler runs in one of three modes: real time, simulated time, and as fast as
possible. Each of these modes is described in Defining the Scheduler Mode.
Because simulated time and as fast as possible modes are used primarily for
simulation or demonstration purposes, and this discussion centers around

Detect variable failure,
and retry variables

8 For a description of failed
variables, see Handling a Variable
Failure.

Drawing and printing 8 You can change the printing
priority using the printing-priority
attribute of the Printer Setup
system table. There is no way to
change drawing priority.

KB Save operation 8 The priority for saving a KB using
the KB Save option on the Main
Menu. The priority

Task Priority Comments
1882

The G2 Scheduler
scheduling for runtime applications, this section assumes that the scheduler is in
real time mode.

The G2 Simulator is a superseded capability. For more information, see
Appendix F, Superseded Practices.

Using the Default Scheduling Interval

In most cases, the default 1 second scheduling interval provides an optimum
balance between the number of tasks processed during each processing cycle and
the number of future time queues that G2 has to manage. The default scheduling
interval limits the amount of overhead in moving tasks from future queues to the
current task queue.

If your KB does not require any subsecond processing, the 1 second scheduling
interval usually supplies satisfactory KB performance. In general, we do not
recommend setting the scheduling interval to a value greater than 1 second.

Using a Subsecond Timing Interval

You can set a subsecond timing interval up to .05 seconds. A future time queue
exists for each subsecond interval at which tasks are scheduled, up to 20
per second.

When subsecond timing is in effect, tasks scheduled for less than a second are
processed at the subsecond interval. Tasks cannot be processed at an interval less
than the scheduler’s setting.

For example, if you set the minimum-scheduling-interval attribute to .5 seconds,
setting the default-update-interval of a variable to .05 seconds is allowable, but
has no effect. G2 will update the variable at .5 seconds, since that is the smallest
increment of time at which processing occurs.

During subsecond scheduling, G2 incurs some processing overhead from the
additional future time queues it has to manage and the calls required to move
those tasks to the current task queue. Also, a subsecond processing cycle means
there is less time between clock ticks in which to execute tasks.

For KB’s requiring subsecond updates, intervals or scanning, use the subsecond
interval that fulfills your requirements, keeping in mind the overhead of
managing more future time queues and having less time per cycle to complete
tasks.
1883

Using Subsecond Interval Expressions

When subsecond timing is in effect, the KB can use subsecond time intervals to
control processing. You can specify a subsecond time interval for many interval
expressions that determine when the scheduler controls a task, including:

• Scan-interval attribute in rules.

• Display-update-interval and display-wait-interval attributes in dials, graphs,
meters, and readout-tables.

Graphs are a superseded capability. For more information, see Appendix F,
Superseded Practices.

• Initial-scan-wait-interval attribute in freeform table.s

• Default-update-interval attribute in variables.

• The wait for time-interval statement in procedures.

• The start procedure after time-interval action.

• Default-simulation-time-increment of the Simulation Parameters system table.

The G2 Simulator is a superseded capability. For more information, see
Appendix F, Superseded Practices.

Using a Continuous Scheduling Interval

When a continuous scheduling interval is in effect, future time queues are created
for each interval at which tasks are scheduled, and the clock ticks to tasks, rather
than to a set interval. This can incur clock ticks of variable lengths, depending on
when tasks are scheduled. G2 idles between clock ticks in continuous mode.

Because continuous mode ticks the clock to tasks, rather than to an interval, task
processing can occur at a faster speed than the minimum scheduling interval that
G2 allows, if a task is set to less that .05 seconds.

Consider the two extreme examples presented next, one of infrequent scheduling
demands, once every 2 minutes, and critically fast subsecond scheduling, at one
hundredth of a second.

Infrequent Scheduling Demands

If KB tasks are scheduled less frequently than once every 2 minutes, in continuous
mode, the clock would tick at that speed, and G2 would idle between clock ticks.

Critically Fast Subsecond Scheduling

When using continuous mode, you can schedule tasks at a rate that is faster than
the minimum subsecond interval of .05 seconds. For example, G2 permits the use
of subsecond scan intervals to an infinitesimal value, though computer speed and
other factors would likely preclude an unreasonable subsecond value from taking
effect.
1884

The G2 Scheduler
As an example, setting the scan interval of a rule to .01 seconds causes G2 to create
a future time queue for one-hundredth of a second, and to place the scan task on
that queue. In continuous mode, the scheduler would then have one-hundredth
of a second to complete current tasks before ticking the clock to the next
scheduled task, one-hundredth of a second later. While such task scheduling may
be critical for some rules, it is likely not the most efficient scheduling for the
remainder of the KB.

Continuous mode is useful if, for instance, you have a very small number of rules
that require a high scanning frequency, and you set that frequency to a reasonable
rate for G2 to be able to complete executing other tasks.
1885

1886

Part VIII
Application
Deployment
Chapter 57: Package Preparation

Describes removing a KB’s source code and making a proprietary KB.

Chapter 58: Licensing and Authorization

Presents licensing and authorization for G2.
1887

1888

57
Package Preparation
Describes removing a KB’s source code and making a proprietary KB.

Introduction 1889

Preparing a KB for Customer Distribution 1890

Text Stripping Items 1891

Removing KB Change Logging and Version Information 1893

Making Workspaces Proprietary 1893

Distributing a Proprietary Application Package 1897

Introduction
Before distributing a completed knowledge base (KB) to customers and end users,
you can hide source code, or limit access to certain knowledge by making
workspaces proprietary.

Hiding the source code you have developed protects the integrity of the KB
design and methodology from unauthorized reuse. Making workspaces
proprietary limits access to certain functionality, and can be used to make an
entire KB proprietary. Proprietary KBs are inaccessible without Gensym
authorization codes. For a description of how to create a proprietary workspace,
see Making Workspaces Proprietary.

G2 refers to the process of hiding source code or making workspaces proprietary
as package preparation.
1889

Preparing a KB for Customer Distribution
You prepare a KB for customer distribution by using G2’s package preparation
mode. The purpose of package preparation mode is to let you perform
these tasks:

• Mark items for text stripping.

• Remove change logging and version information.

• Configure proprietary workspaces.

The processes are independent, but can be combined. You can strip the text from
items, remove change logging and version information, make workspaces
proprietary, or complete all three tasks.

The process of preparing a KB for distribution is one in which the original KB is
irreversibly changed into a different version, which may not have source code, or
which may be proprietary. To refer to these two KB versions, this chapter uses the
terms source, referring to the original, comprehensive version of the KB, and
target, indicating the KB version that will exist once package preparation
is complete.

Saving a Copy of the Source KB

The changes that you make to a KB in package preparation mode are irreversible.
Before making such changes, save a copy of the source KB in its completed form
for future development.

To save a copy of the source KB:

1 Select Main Menu > Save KB.

2 Enter the name of the source KB to save for future use.
1890

Text Stripping Items
Entering Package Preparation Mode

To enter package preparation mode:

1 Select Main Menu > Miscellany > Enter Package Preparation Mode.

This dialog appears:

2 Click OK to enter package preparation mode.

You can now mark items for text stripping and mark any workspaces you want to
make proprietary.

Text Stripping Items
Text stripping means to remove source code from compiled attributes. Upon
command, G2 strips the text of any items marked for text stripping.

When the KB is in package preparation mode, the menus of each item can include
either of the following menu choices:

• Mark To Strip Text or Mark Not To Strip Text

• Remove Strip Text Mark or Remove Do Not Strip Text Mark

The menu choices in each pair are mutually exclusive. Choosing one replaces the
original menu choice with another to reverse the marking, as follows:

You mark each item in the KB with one of the choices, so that G2 knows what to
text strip. You then have G2 perform text stripping on the items on a
marked workspace.

Marking an item this way... Replaces the menu choice with...

Mark to Strip Text Remove Strip Text Mark

Mark Not To Strip Text Remove Do Not Strip Text Mark
1891

To text strip KB items:

1 Select each item in your KB and choose one of the text stripping menu choices.
If you make a mistake, select the appropriate menu choice to undo it.

Marking a workspace as Mark To Strip Text changes the item menu of every
item upon the workspace, and each of its subworkspaces and their items. The
text stripping menu choices of each of these items appear with an asterisk next
to them, such as this partial menu:

When text stripping occurs, G2 text strips all of the compiled attributes of any
item upon the workspace, along with any of its subworkspaces and their
items. To retain the text of any individual items upon a workspace marked for
text stripping, choose the Mark Not To Strip Text option from its item menu.

2 If you did not save the source KB before starting text stripping, save it now
before completing the target KB.

3 Pause the KB and select Main Menu > Miscellany > Strip Texts Now.

This dialog appears:

4 Click OK for G2 to text strip every marked item.

The Operator Logbook displays the messages: Stripping texts now! and
Finished stripping texts to let you know when G2 has finished.

5 Select Main Menu > Miscellany > Leave Package Preparation Mode to exit
package preparation mode.

6 Save the target KB with a different name than the source KB, or save the target
KB in a different directory.
1892

Removing KB Change Logging and Version Information
Removing KB Change Logging and
Version Information

You can remove KB change logging and version information from a KB whenever
necessary. For example, you would probably remove change logging and version
information from an application before KB deployment.

Since flushing a KB of its change log and version information is a permanent and
irreversible change, it is accessible only when the KB is in package
preparation mode.

When your KB is in package preparation mode, these menu choices are available
for flushing logging information:

• The change-log attribute submenu of rules and other definition items includes
an additional choice:

flush change log

Choosing this option permanently deletes all entries in the item’s change log.

• The kb-version-information-for-change-logging attribute submenu of the
Saving Parameters system table includes an additional choice:

flush version information

Choosing this option permanently deletes all of the KB version information.

• The Main Menu > Miscellany menu includes the choice:

Flush Change Log For Entire KB

Choosing this option flushes the change log of every KB item.

Caution Choosing the Flush Change Log For Entire KB menu choice flushes change log
entries for every module in the current KB, not just the top level module or any
other single module. Be very cautious about choosing this option.

Making Workspaces Proprietary
Making workspaces proprietary confines the behavior of the workspace, its items,
and their subworkspaces and items. G2 restricts the functionality of proprietary
workspaces so that users cannot:

• Transfer items on or off the workspace.

• Clone items on the workspace.
1893

• Edit the item configuration of the workspace or items upon the workspace.

• Edit the instance configuration of any class definitions upon the workspace.

In addition to these limits, G2 provides configuration statements that affect only
proprietary items. When in effect, such configurations cannot be overridden by
any user mode, including administrator mode.

Use proprietary workspaces to:

• Hide information from users and provide configurations that cannot be
overridden by administrator mode.

• Create a proprietary KB that requires special authorization codes from
Gensym, to use knowledge in the KB.

When proprietary restrictions are in effect, the user can load the KB; however,
attempting to start the KB results in an error message such as:

G2 is not licensed to run with the package <package>.
G2 cannot be started or resumed.

Creating a Proprietary KB

A proprietary KB is one that requires special authorization codes from Gensym.
You create a a proprietary KB while making proprietary workspaces, by
configuring one or more workspaces with a proprietary package name.

To make a proprietary workspace:

1 Open the attribute table of the workspace to make proprietary by selecting
KB Workspace > Table.

2 Edit the proprietary-package attribute of the attribute table.

This attribute is only available when the KB is in package preparation mode.
For details, see Entering a Proprietary Statement.

3 Complete the attribute with a proprietary statement.

Entering a Proprietary Statement

In the proprietary-package attribute, enter the statement for a proprietary
workspace using this syntax:

{none | not proprietary | potentially private | potentially package-name }
1894

Making Workspaces Proprietary

Specifying private for the proprietary-package attribute on your workspaces lets
you protect proprietary information without requiring end users to modify the
g2.ok file for authorization. To obtain appropriate authorization codes for a
package-name that you provide, end users must call the Production and Licensing
Department at Gensym.

Tip When restricting knowledge, never make a top-level proprietary workspace non-
deletable, unless you want to prevent end users from hiding one of your
workspaces. Typically, end users may wish to use the parts of the KB that they
created in your delivered application. To do this without authorization, they must
be able to delete your proprietary workspaces.

Creating and Configuring Proprietary Items

An item is considered proprietary if it resides upon a proprietary workspace.

Making items proprietary is a simple way to limit item behavior within your KB.
For example, to make all instances of an automobile class proprietary, do so by
making a workspace proprietary, and then placing the automobile class definition

Proprietary Statement Description

none Indicates that the workspace inherits the
value of its superior workspace.

not proprietary Specifies that the workspace is not
proprietary. When you direct G2 to make
workspaces proprietary, this value changes
to none.

potentially private Specifies that the workspace is proprietary,
but does not require special authorization.

The term private is a system-defined package
name that is always authorized. Once
workspaces are proprietary, configuration
statements that restrict proprietary items will
be in effect.

potentially package-name Indicates the name of the package for which
users require authorization to use this KB.
Once workspaces are proprietary, this value
causes the KB to become proprietary,
requiring authorization to access it.
1895

upon it. By adding a configuration statement to either the proprietary workspace
or the class definition, you could then further restrict the object’s behavior.

You enter a configuration for proprietary items, using the restrict proprietary
items as follows configuration clause. While you can include this configuration
statement in any item’s item-configuration attribute, such statements take effect
only if the item, or its definition, resides upon a proprietary workspace, or its
subworkspaces or items. For example, if you click on an automobile object
residing on a proprietary workspace, and see a configuration statement such
as this:

restrict proprietary items as follows: selecting any automobile does nothing

then the configuration is in effect and clicking on the item does nothing. For a
detailed description of configuration statements, see Configurations.

Testing a Proprietary KB before Completion

Before completing the process of making workspaces proprietary, you can
simulate the behavior of your target proprietary KB or workspaces.

To test a proprietary KB before compiling:

 Select Main Menu > Miscellany > Enter Simulate Proprietary Mode.

This option simulates the behavior of your KB as if your computer were
authorized to use the named package. You can enter and leave simulate
proprietary mode as many times as you need to change the KB behavior until you
are satisfied.

To exit from the simulated proprietary mode:

 Select Main Menu > Miscellany > Leave Simulate Proprietary Mode.

Tip You do not have to be running the KB in package preparation mode to simulate
proprietary mode. You can simulate proprietary mode at any time.

Completing Proprietary Workspaces

To finish making workspaces proprietary:

1 If you did not save your source KB before starting to make proprietary items,
save the KB now for future development.

2 Pause the KB and select Main Menu > Miscellany > Make Workspaces
Proprietary Now.
1896

Distributing a Proprietary Application Package
This dialog appears, reminding you that the changes you are about to make
are irreversible:

3 Select OK for G2 to make the marked workspaces proprietary.

4 Save the target KB using a different name than the source KB, or save the
target KB in a different directory. The target KB is the one for distribution.

5 Leave package preparation mode by selecting Main Menu > Miscellany >
Leave Package Preparation Mode.

Distributing a Proprietary Application Package
If you distribute a proprietary KB to your end users, you must register the name
of the application package with Gensym. If the proprietary-package attribute or
any workspace specifies the package name (instead of private or none), your end
users must modify the g2.ok files to be authorized to use the KB.
1897

1898

58
Licensing and
Authorization
Presents licensing and authorization for G2.

Introduction 1899

G2 Licensing 1899

G2 Authorization and the g2.ok File 1902

Authorizing Users at a Secure Site 1904

Telewindows Licensing Structure 1915

Simulating License Types 1917

Introduction
This chapter provides information about licensing and authorization in G2 and
Telewindows, beginning with an overview of G2’s licensing options. It describes
licensing and authorization in a non-secure and secure G2. It also describes the
Telewindows licensing structure.

G2 Licensing
G2 provides two types of licenses and two options for each type. Licenses are
designed to provide the level of access and functionality that you, or your users
and customers require. For example, as a G2 developer, you may require a fully
functional, online developer’s license. An end user of your finished KB, however,
would typically require a license offering only minimal access to and
manipulation of the KB.
1899

G2 License Types

G2 is available in either an offline or an online license.

While the two types of licenses provide similar capabilities, they differ in their
ability to access or communicate with other systems:

• A G2 offline license is intended for development environments where
interfacing to external real-time data systems, or supervisory systems is
not required.

• A G2 online license is intended for use in applications that require a high-
performance interface to databases or external real-time data systems such as
PLCs, DCSs, or supervisory systems. It provides offline license capabilities,
with the addition of an external device interface.

Both offline and online licenses are available in development or deployment
licensing options. A summary of the capabilities and features of both licenses is:

GFI and the G2 Simulator are superseded capabilities. For more information, see
Appendix F, Superseded Practices.

Licensing Capabilities and Features Online Offline

G2 object code for one CPU  

Structured natural language editor  

Object-oriented knowledge base development
tools—fully portable KB

 

Integrated, animated color graphics  

Real-time inference, procedure, and
rule execution

 

Dynamic simulator and modeling  

External C source-code interface
(via foreign functions)

 

Warmboot facility  

G2 GUIDE for building Motif-like graphical
user interfaces

 

Online documentation  

ICP application layer network protocol for
TCP/IP

 

G2 file interface (GFI)  

G2 Gateway high performance data server
for live data



1900

G2 Licensing
G2 License Options

You can purchase one of two license options for both G2 online and
G2 offline licenses:

• Development

• Deployment

You can run your KBs under either G2 license option.

The development license is the most powerful license, providing unlimited G2
capabilities and unrestricted system access. A G2 online license with the
development option includes G2 Gateway and GFI. All G2 license options include
ICP. The other license option permits KBs to run, but it limits interactive access to
G2 capabilities.

GFI is a superseded capability. For more information, see Appendix F,
Superseded Practices.

The functionality of each license type is as follows:

Note The capability of editing item icons and attributes, available under run-time and
embedded license options, refers to transient items only.

This license... Includes...

Development Full functionality.

Deployment All functionality of a development
licence except:

• Inspect: Menus that enter the Inspect facility
are disabled.

• Profiling: Calls to use the profiler are
disabled and signal an error.

• Rule/Procedure editing: Menus and mouse
gestures to enter the Text Editor on the text
of rules, procedures, and methods
are disabled.
1901

Finding License Types and Options in a KB

Within G2, license types and options appear as values of the authorized-optional-
modules attribute, located in the KB Configuration system table.

Within G2, the representation of licensing options differs slightly from when you
purchase licenses and options. For example, you can purchase either an online or
an offline G2 license, then choose one of the two available license options, as G2
License Types explains. However, within the KB Configuration system table, the
attribute values online and offline are interpreted as follows:

• When listed alone, an online or offline value means an online or offline G2
license with the development license option.

• When listed with a license option, a runtime or restricted-use and an online or
offline value means an online or offline G2 license with whatever
option follows.

For example, this value indicates an online license type with the restricted option:

online, restricted-use

G2 Authorization and the g2.ok File
While G2 as a product includes all license options, each Gensym customer
requires both the license and the corresponding authorization codes to use each
option. The g2.ok file provides this authorization, based on your license type.
When you install G2, the installer generates authorization codes, based on your
license type, and automatically updates the g2.ok file to use these codes. This file
must exist with the proper codes in order to run G2.

Note G2 provides another authorization file named gsi.ok for authorizing the
following bridge products: G2 WebLink, G2-Oracle Bridge, G2-Sybase Bridge,
G2-ODBC Bridge, and G2-OPCLink. For more information on this authorization
file, see the G2 Database Bridge User’s Guide.

When G2 is not secure, there is no need to edit the g2.ok file. When G2 is secure,
you must edit the g2.ok file, either manually or programmatically, to specify
named users and user passwords. For information, see Authorizing Users at a
Secure Site.
1902

G2 Authorization and the g2.ok File
How G2 Locates the g2.ok File

Each time G2 starts, it searches for the g2.ok file in these locations:

• The directory from which you started G2.

• The directory indicated with either of the optional command-line options -ok,
or -v11ok, which let you specify a location of your choice for the OK file.

• The directory specified in the G2V11_OK environment variable.

On operating systems with file versioning, G2 always uses the most recent
version of the OK file.

If G2 does not find the g2.ok file, it is unable to start.

For information about using environment variables, see Using Environment
Variables. For information about using the -ok and -v11ok command-line
options, see ok, and v11ok.

Description of the g2.ok File

The g2.ok file is a text file containing:

• Machine authorizations for each machine that is licensed to run G2. This file
includes the following information:

– The machine name and ID.

– The license type and expiration date.

– The authorization codes, which are automatically generated as part of the
installation process.

– The authorized packages and their authorization codes, which are
automatically generated during the installation process.

– The maximum number of concurrent floating Telewindows clients.

– Whether the G2 is secure.

• When the G2 is secure, the authorized named users, user modes, passwords,
and password validity.
1903

Here is a sample g2.ok file that specifies a machine authorization for a machine
named my-machine. The machine authorization is not secure; therefore, the g2.ok
file does not contain any named users.

begin g2-ok-file
-- This generated from a G2 Knowledge Base file-format-version: 2;
-- Machine Authorizations
begin machine

name: my-machine;
machine-id: "123abc45";
authorized-products: (online jl);
expiration-date?: none;
authorization: (68019 2369 592 3623 311214);
make-g2-secure?: false;
authorized-kb-packages:

((gensym-corbalink-runtime-v1 6949 317947 510403)
(gensym-corbalink-dev-v1 483151 483480 439561)
(gensym-activexlink from 1 oct 2002 to 25 mar 2003

372873 339152 480929)
(gensym-gqs5 482834 185618 511204)
(gensym-gda4 160092 253521 111643)
(gensym-protools5 526378 181648 32301));

number-of-processes-authorized: 1;
maximum-number-of-concurrent-floating-telewindows-allowed: 8;
maximum-number-of-concurrent-floating-tw2-allowed: 8;

end machine
-- There were no named users in the KB.
-- End of file marker
end g2-ok-file

How G2 Uses the g2.ok File

G2 maintains a record of the g2.ok file that it uses during the launch process. It
uses the file to monitor the number of licenses and license types under which
developers are running. Monitoring occurs on a per G2 process basis. For
example, if your company purchases two development licenses and two
deployment licenses, and three developers are working with two development
and one deployment license, a fourth developer could use G2 in deployment
mode, but not in development mode.

Authorizing Users at a Secure Site
A G2 site is secure when the make-g2-secure? attribute of the g2.ok file that
authorized G2 to run has the value true. At a secure site, a user must provide a
password before G2 grants access to a KB. User names and passwords are stored
in the g2.ok file that authorizes G2 execution.

Passwords are stored in encrypted form. In most cases, encrypted passwords
generated on one platform will work on other platforms, but such transportability
1904

Authorizing Users at a Secure Site
is not guaranteed, because differences between platforms can affect the
encryption algorithm.

Note G2 has a single built-in user mode: Administrator. To start secure G2 as a specific
user, a KB with that user defined must be provided. See kb, for information about
using the -kb command-line options.

How G2 Uses a Secure g2.ok File

When the g2.ok file indicates that a G2 process is secure, G2 displays a login
dialog when there is an attempt to login to G2. G2 uses the g2.ok file data to
validate the user name and mode information.

For each user that connects with G2, G2 dynamically creates a g2-window item
and associates it with the user. For each authorized user, G2 sets the following
g2-window item read-only attributes to true:

• g2-window-user-is-valid

• g2-window-mode-is-valid

Secure G2 OK File Syntax

The syntax of an OK file that specifies a secure G2 is as follows:

begin g2-ok-file
version-element
machine-element
[machine-element]
user-element
[user-element]

end g2-ok-file

The machine elements are syntactically the same as in a non-secure G2: the only
difference is that the make-g2-secure? attribute of the machine element is true.
Each user element authorizes one user to access G2. The syntax of a user
element is:

begin user
name: name;
password: "";
permitted-user-modes: (list-of-modes);
password-validity: numer-of-days

end user

where:

name: A symbol that is the user name of the user authorized by the element.
1905

list-of-modes: A parenthesized list of symbols that specify user modes that the
user can set in G2. The modes are separated by blanks. Do not separate the
modes with commas.

number-of-days is the number of days since Jan. 1, 1900 that the password
should remain valid, where 1/1/1900 is day 0. For example, to configure the
password to expire on Jan 1, 2006, use 38690 (365 x 106).

The value of password is initially an empty string. The g2passwd program fills in
an encrypted value, as specified under Specifying a Password in a G2
Authorization File.

Version Element

The version element allows files produced for different versions of the OK file
parser to be distinguished. For G2 Version 5.1 and later OK files, the version is 2.
The version number is not the same as the G2 version.

The syntax of a version-element is:

file-format-version: integer;

For example, the version-element in a G2 Version 2011 OK file is:

file-format-version: 2;

User Name and Password Syntax

Both the user name and the password that identify an authorized user of a secure
G2 must have the following syntax:

• The first character is alphabetic.

• All subsequent characters are alphanumeric and can include hyphen,
underscore, period, and question mark characters.

• Alphabetic characters are case insensitive.

If these requirements are not met, the user will be unable to use G2 until the error
is corrected.
1906

Authorizing Users at a Secure Site
Secure G2 OK File Example

An OK file with two machine elements and two user elements could look like this
before passwords were added:

begin g2-ok-file
begin machine

-- Authorization Information Appears here
end machine

begin machine
-- Authorization Information Appears here

end machine

begin user
name: kanti;
password: "";
permitted-user-modes: (user);

end user

begin user
name: john;
password: "";
permitted-user-modes: (administrator developer);

end user
end g2-ok-file

Adding User Elements to the Authorization File
Interactively

To add a user element to an OK file, you must first determine the user name and
the user mode(s) that the user can set.

To add user elements to the authorization file interactively:

1 Open the g2.ok file using any text editor.

2 Edit the make-g2-secure? attribute to be true.

3 Add the necessary element(s), using the syntax given previously.
1907

Specifying a Password in a G2 Authorization File

Gensym provides a program, g2passwd, for setting or changing a user’s
password. This program is in the same directory that holds the G2 executable file.
Before a user can set or change a password, a user element that names the user
must be defined in the relevant OK file, as described previously in this section.

Caution Do not attempt to set a password except via g2passwd, as described in the
following instructions. A password entered literally would be unencrypted, and
would not match the encrypted password that G2 uses for validation.

To specify or change a password:

1 Select or launch a command-line interpreter.

2 Connect to the directory that contains the G2 executable file.

3 Execute:

g2passwd ok-file-name

where ok-file-name is the pathname of the relevant OK file.

4 Supply information in response to the program’s prompts, as follows:

The program does not echo the characters that constitute any password typed. If
no errors occur, g2passwd changes the user’s password as indicated, then quits.
If any error occurs, the program prints an error message, then quits, leaving the
OK file unchanged. To try again, relaunch g2passwd.

Prompt Response

User Name Enter the name of the user whose
password is to be set or changed. The
password must have the syntax described
under User Name and Password Syntax.

Current Password Enter the existing password of the user. If
no password has previously been
registered, press Return without entering
anything.

New Password Type the password to be set in this
invocation of g2passwd. The password
must have the syntax described under
User Name and Password Syntax.

New Password Again Retype the password to verify it.
1908

Authorizing Users at a Secure Site
Updating the g2.ok File

Site administrators can freely change the g2.ok file and reinstall it from within
G2 without having to relaunch G2. A site administrator can update the g2.ok file
for any of several reasons, including:

• Adding users.

• Deleting users.

• Changing the valid modes of users.

• Resetting a user’s password.

An administrator can also make changes that affect the status of a user who is
currently logged in. Such a change can remove:

• A currently logged-in user’s entry.

• The authorized mode of a currently logged-in user.

To edit the OK file interactively:

 Open the g2.ok file using any text editor and edit the user element portion of
the file, as needed.

A number of system procedures also exist for editing the g2.ok file. For the syntax
of these system procedures, see User and Security Information Operations in the
G2 System Procedures Reference Manual.

Adding and Deleting Users Programmatically

System administrators can use the following system procedures to add and delete
users to and from the g2.ok file programmatically:

• g2-add-user

• g2-delete-user

Resetting a User’s Password Programmatically

System administrators can use the following system procedures to reset
user passwords:

• g2-set-user-password

• g2-change-password-expiration-date

If a user forgets his or her current password, a G2 site administrator can reset an
existing password by changing the encoded string in the g2.ok file to an empty
string ("").

Since a user cannot log in to G2 with a password that has no characters, the user
cannot change the password online. Instead, the user must run the g2passwd
program from a command console to enter a new password for the first time.
1909

Any new password entered through the g2passwd program remains unusable
until the g2.ok file is reinstalled and the new password information
communicated to G2.

Reinstalling the g2.ok File

After changing the g2.ok file while G2 is executing, you must reinstall it from
within G2 for the changes to take effect.

Reinstalling a g2.ok file updates user:

• Names

• Modes

• Passwords

G2 ignores machine ID and other g2.ok information when you reinstall a
g2.ok file.

You can reinstall your g2.ok file interactively or programmatically.

To reinstall the g2.ok file interactively:

1 Select Main Menu > Miscellany > Reinstall Authorized Users.

A dialog appears describing the action about to occur and naming the file to
be loaded.

2 Click OK to start the reloading process.

Note The Reinstall Authorized Users menu option only appears on the Miscellany Menu
of secure G2 sites.

To reinstall the g2-ok file programmatically:

 Execute the g2-reinstall-authorized-users system procedure.

This procedure takes no arguments and does not return a value. It directs G2 to
reread the OK file for the G2 process and install the authorized users.

When G2 is reinstalling the g2.ok file, messages are sent to the logbook and
console indicating that the process has started. Other messages are sent when the
process is complete.

If G2 encounters a syntactic error in the g2.ok file while it is attempting
reinstallation, processing stops and none of the changes take effect. An error
report is sent both to the logbook and the console.

How Reinstalling a g2.ok File Affects Current Users

When you reinstall the g2.ok file, G2 validates the contents of the file you are
reinstalling against information gathered during the launch process. Specifically,
1910

Authorizing Users at a Secure Site
G2 checks the user-name and user-mode entries of both files, noting any changes
to current users and information about new users.

Reinstalling an g2.ok file from which you have removed user names or modes
can affect the values of the g2-window items corresponding to current users, and
has the following effect upon users:

Monitoring g2.ok File User Changes

While G2 takes no immediate action as a result of changes either to the
g2-window-user-is-valid or g2-window-mode-is-valid attributes, developers can
use whenever rules to monitor updates. By reasoning about value changes to
these attributes, a secure G2 KB could take any appropriate action to deal with
invalid users or user modes.

For example, this rule monitors changes to the g2-window-mode-is-valid attribute
and invokes a procedure to check user modes upon any change of value in a
particular window:

whenever the g2-window-mode-is-valid of any g2-window W
receives a value then start check-current-mode(W)

These two g2-window item attribute values are updated as necessary each time
the g2.ok file is reinstalled. Thus, if a user name or mode is removed erroneously
from the g2.ok file, the administrator need only restore the information to the
g2.ok file and reinstall it once more.

Additional System Procedures for Verifying User and Security
Information

System administrators can also use the following system procedures to verify
user modes, licenses, and login attempts:

• g2-floating-client

• g2-get-floating-licenses-remaining

If you remove the... G2 changes to false... And the user...

User name of a
currently logged in
user

The g2-window
g2-window-user-is-valid
attribute

Can remain logged in as a
current user, but will be
unauthorized to login again
after logging out from the
current session.

User mode that a user
is currently using

The g2-window
g2-window-mode-is-valid
attribute

Is not affected unless or
until he or she changes
modes, at which point the
originally authorized mode
becomes inaccessible.
1911

• g2-get-modes-for-authorized-user

• g2-get-window-license-type

• g2-register-login-handler

• g2-set-maximum-login-attempts

• g2-validate-user-and-password

For the syntax, see User and Security Information Operations in the G2 System
Procedures Reference Manual.

Changing User Passwords Interactively

Users at secure G2 sites can change their password from within G2, provided that
the administrator configures relevant user modes to have access to this option.

When a user changes his or her password from within G2, G2 spawns the
g2passwd program with the new password information. If an error occurs while
spawning the g2passwd process, G2 signals an error. If a problem occurs while the
spawned process is executing, a message appears on the command console, but
G2 does not signal an error. If G2 cannot find the g2passwd program, it writes an
error in the log file.

To change a password interactively:

1 Select Main Menu > Miscellany > Change Password.

G2 displays the Change Password dialog with your current user name, which
you cannot change:

Note The Change Password menu option only appears on the Miscellany menu of
secure G2 sites. Also, the g2passwd program must be in the g2 directory for
the Change Password menu option to appear.

2 Enter your old password in the Old password field.

3 Enter your new password in the New password field.
1912

Authorizing Users at a Secure Site
4 Enter your new password a second time in the Confirm new password field.

5 Click End to save your new password in the site OK file.

If the first and second passwords to not match, the dialog prompts you to enter
your password again.

Localizing the G2 Password Change Dialog

You can localize each element of the G2 Password change dialog, including:

• Button labels

• Attributes

• Simple messages

The following three sections briefly outline the steps for localizing the password
facilities. Refer to Localizing Menu Choices and G2 Facilities for more information
on localization.

Localizing the Dialog Buttons

You can localize these buttons:

• Cancel

• End

Note The buttons on the G2 Password change dialog do not include the Text Editor
buttons Paste, Undo, and Update that appear when a user edits one of the
dialog attributes.

To specify a G2 Password change dialog button:

1 Create a language translation definition by selecting KB Workspace >
New Definition > language translation.

G2 invokes the text editor for you to enter the translation.

2 Enter your translation using this grammar:

in my-lang, as a button-label in the password-change-dialog:
button = local-name

For example:

in local-language, as a button-label in the password-change-dialog:
end = done
1913

Specifying or Localizing Dialog Messages

You can change or localize the message that appears as a directive at the top of the
G2 Password change dialog. The grammar identifies this message as a simple-
message. By default in G2, this message reads:

Change your password.

To specify a simple message in the dialog:

1 Create a language translation definition by selecting KB Workspace >
New Definition > language translation.

G2 invokes the text editor for you to enter the translation.

2 Enter your translation using this grammar:

in my-lang, as a simple-message in the password-change-dialog :
g2-password-change-message = “local-text”

The symbol that denotes this particular message on the Password change dialog is
g2-password-change-prompt, so to modify it, enter a definition such as:

In local-language, as a simple-message in the password-change-dialog :
g2-password-change-prompt = "Use this dialog to change your password."

Note You can enter messages such as this as a text value using quotation marks (") or as
a symbol using hyphens to separate words.

Simple Messages for the Password Change Facility

The following simple messages are part of the password change facility, and can
all be changed using the technique shown above:

• g2-password-change-prompt

• password-required

• new-password-required

• duplicate-new-password-required

• new-password-must-be-at-least-4-characters-long

• new-password-too-long

• new-password-has-invalid-characters

• new-passwords-do-not-match

• cannot-find-g2-ok-file

• problem-saving-password-in-g2-ok-file
1914

Telewindows Licensing Structure
Localizing Dialog Attributes

You can localize all attributes of the G2 Password change dialog, which is an
instance of a password-change item. The attributes of a password-change
item are:

• user-name

• old-password

• new-password

• confirm-new-password

To localize the G2 Password change dialog attributes:

1 Create a language translation definition by selecting KB Workspace >
New Definition > language translation.

G2 invokes the text editor for you to enter the translation.

2 Enter your translation using this grammar:

in my-lang, as an attribute of a password-change :
{g2-password-change-attribute} = “local-text”

For example:

in local-language, as an attribute of a password-change :
User name = "Name:"

Telewindows Licensing Structure
Gensym offers two separate license options for its client/server-based
Telewindows product—floating and dedicated. Dedicated Telewindows licenses
are available in two options: development and deployment.

The two versions of dedicated licenses allow the Telewindow clients to
correspond either directly with the G2 server’s license option, or with a less
powerful option offering fewer capabilities. For example, a dedicated deployment
Telewindows client cannot connect to a G2 running a development license option,
because the G2 license is more powerful than the Telewindows license.

This Telewindows license... Connects to...

Floating Any G2 license option authorized for one
or more floating Telewindows
connections.

Dedicated development Any G2 license option.

Dedicated deployment Restricted G2 license option.
1915

Floating Telewindows licenses receive their level of authorization from the G2
server to which they connect. There is no distinction between development and
deployment for such a license.

The Telewindows license options can connect to G2 running with a particular
authorization level as follows:

An exception to these corresponding license types occurs when the G2 server also
has authorization for one or more floating Telewindows connections. In this case,
if a Telewindows client with a dedicated deployment license attempts a
connection to a G2 server with development authorization, G2 detects that the
client has a less powerful license than it requires. Instead of rejecting the
connection, however, G2 tries to use one of its floating Telewindows licenses for
the dedicated deployment client.

If a license is available, G2 permits the Telewindows system to connect as a
floating Telewindows client. Such a connection effectively provides a less-
powerful, dedicated Telewindows client with connection to a more powerful
authorization level running on the G2 server.

For more information about using Telewindows, see Accepting a Connection
from a Telewindows Process.

Floating Telewindows

Floating Telewindows provides a flexible licensing scheme in which a G2 server
maintains and provides authorization for a set number of Telewindows
connections.

Within a floating Telewindows environment, you purchase G2 with licensing for
a specific number of concurrent Telewindows connections. To increase the
number of Telewindows connections, G2 requires new authorization codes. The
client Telewindows software accompanying G2 can be installed on an indefinite
number of client systems.

Can connect to a G2 with this authorization...

This client... Development Restricted
Development
(Floating)

Restricted
(Floating)

Floating  

Dedicated
development

   

Dedicated
deployment

  
1916

Simulating License Types
Authorization for floating Telewindows occurs in the maximum-number-of-
concurrent-floating-telewindows-allowed attribute of the g2.ok file of the
server G2. The limit on floating Telewindows licenses 2047.

To require Telewindows clients to provide a user name and password when
connecting to G2, which restricts access to a particular user mode, configure G2 to
be secure, as described in Authorizing Users at a Secure Site.

Whenever a Telewindows client attempts to log in to a G2 server, G2 first
determines the client’s authorization level. When the Telewindows client is a
floating license, and if the new client will not exceed the total number of
authorized connections, G2 permits login. If a new Telewindows client will
exceed the allowable number of connections, G2 rejects the Telewindows login
attempt and informs the user that no more licenses are available.

Note A dedicated Telewindows client connecting to a G2 with authorization for a finite
number of floating Telewindows clients does not decrease the number of
available licenses. Dedicated Telewindows clients require a different
authorization process, as the next section describes.

Dedicated Telewindows

In a dedicated Telewindows environment, you purchase a separate license for
each system on which you install the Telewindows software. Each license is
authorized for use on a specific client system by a specific user. The concept of
dedicated Telewindows licensing is the model in use for all Telewindows licenses
prior to G2 Version 5.0.

Each client requires its own tw.ok file, authorizing that system to use
Telewindows with its particular authorization level.

Once authorized, the client is capable of connecting to any available G2 server
operating with the same or less powerful authorization level. Unlike floating
Telewindows clients, the G2 server has neither knowledge of nor authorization
capabilities for named Telewindows clients.

Simulating License Types
You can simulate the licensing options available for G2 through the KB
Configuration system table, simulate-optional-modules attribute. For information
about this attribute, see Simulating Optional Modules.

Simulating optional modules lets you test functionality within a KB for any less
powerful authorization. For instance, if you are developing a KB for a
manufacturing operator who will run the KB with a Run-time G2 license option,
you can simulate that mode of operation.
1917

Simulating optional modules cannot give you more functionality than your
current license provides. For example, if you have purchased a Run-time G2
license option, you cannot simulate a developer’s license option.
1918

Part IX
Networking
and Interfacing
Chapter 59: Network Security

Describes how to limit network access to a KB.

Chapter 60: Secure Communication and Authentication (SSL)

Describes how to encrypt communication and connect to TCP/IP sockets securely.

Chapter 61: Telewindows Support

Describes G2’s features that support Telewindows connections.

Chapter 62: G2-to-G2 Interface

Describes how to connect two G2 processes and pass data between them.

Chapter 63: G2 Gateway

Describes the system-defined items that permit GSI interfacing.

Chapter 64: Interfacing with COM Applications

Describes the system-defined items that allow communication with COM appliations.

Chapter 65: Interfacing with Java Applications

Describes the system-defined items that allow communication with Java appliations.

Chapter 66: Interfacing with Web Services

Describes how to interface with Web service applications.
1919

Chapter 67: Interfacing with TCP/IP Sockets

Describes the system-defined items that allow communication with TCP/IP sockets.

Chapter 68: Foreign Functions

Describes how to call C or C++ foreign functions from within G2.

Chapter 69: Windows Services

Describes how to run G2 and G2 bridges as a service under Windows.
1920

59
Network Security
Describes how to limit network access to a KB.

Introduction 1921

Determining the Level of Network Security 1921

Defining Network Security for a KB 1922

Introduction
G2 provides security for network access to G2. This chapter discusses these topics:

• Level of network security.

• Defining network security for a KB.

Determining the Level of Network Security
Network security permits you to prevent network access to a KB. Network access
refers to:

• Another G2 process

• G2 Gateway

• Telewindows

G2 supports the TCP/IP protocol only.

Network security lets you secure any KB from network access at any level you
choose. At the most restrictive level, you can secure an entire KB, preventing any
1921

network access, or at a more lenient level, you can restrict one or more classes of
items to have limited types of network access.

Defining Network Security for a KB
G2 provides network access security by using configuration statements such
as this:

set up network access as follows: configuration-statements

where configuration-statements define the level of access you permit.

As with all configuration statements, network access configurations can affect
items within the workspace hierarchy that use item-configuration, or items in a
particular class hierarchy that use instance-configuration.

Using Configuration Statements for Network Access

By using the set up network access as follows: configuration statements, you can
allow or prohibit different kinds of network access, using several clauses as
follows. For a complete description of using configurations, see Configurations.

This configuration clause... Allows or prohibits...

connect Other G2 processes, G2 Gateway, or
Telewindows from connecting. This
configuration can be set only in the KB
Configuration system table.

read Another G2 process from reading variable
values. You cannot allow or prohibit read
access to or from G2 Gateway and
Telewindows.

write Another G2 process from writing variable
values. You cannot allow or prohibit write
access to or from G2 Gateway and
Telewindows.

execute Execute access to any item from another
G2 process or from G2 Gateway.

inform Messages being sent to the operator (the
message board) from another G2 process.
1922

Defining Network Security for a KB
Allowing or Prohibiting Connect Access

The allow/prohibit connect clauses are different from other configurations in
these ways:

• You can set them only in the KB Configuration system table.

• They refer to the entire KB and are all inclusive.

For example, if you prohibit connect access to an entire KB by adding the
configuration statement to the KB Configuration system table, you cannot
override that prohibitive state with a subsequent configuration statement.

When you require network access with security, you can configure the KB to
allow network access at a broad level, and prohibit access at specific levels. For
example, to implement network access with security, you could allow connect
access but restrict reading, writing, and executing objects that need to be hidden.
In this way, you can provide a restricted KB view to an external connecting
process, while still allowing network access.

Prohibiting access can be absolute, by including a prohibit absolutely clause in the
configuration statement, which indicates that no other configuration clauses
anywhere in the class hierarchy can override the configuration.
1923

1924

60
Secure Communication
and Authentication (SSL)
Describes how to encrypt communication and connect to TCP/IP sockets securely.

Introduction 1926

Encrypting Communication between G2 and Telewindows 1926

Encrypting Communication between G2 and G2 Gateway 1927

Connecting to Sockets with SSL Security 1929
1925

Introduction
G2 and Telewindows provide command-line options for encrypting
communication on TCP/IP connections, using SSL on both Windows and UNIX
platforms.

G2 supports secure communication between G2 and G2 Gateway, G2 and
G2 ActiveXLink, and G2-to-G2 connections.

When connecting to TCP/IP sockets programmatically, you can also specify a
secure connection.

Encrypting Communication between G2 and
Telewindows

To encrypt communication on TCP/IP connections, you use the following
command-line options:

-secure

Use SSL on all TCP/ICP connections.

-cert name | file

Specifies the name of the SSL server certificate to use.

On Windows, you specify the Common Name (CN) of the certificate in the
local machine’s my certificate store.

On UNIX, you specify a file containing a private key and a certificate in PEM
format, which consists of the DER format base64 encoded with additional
header and footer lines.

You can also use the G2_CERT environment variable to provide the default
certificate name.

For example, the following command creates a self-signed certificate, suitable for
testing, named test. Makecert is included in the Platform SDK.

makecert -r -pe -n "CN=test" -e 01/01/2036 -len 2048
-eku 1.3.6.1.5.5.7.3.1 \

-ss my -sr localMachine -sky exchange \

-sp "Microsoft RSA SChannel Cryptographic Provider" -sy 12

When the connection is encrypted, the padlock icon appears in the status bar.
1926

Encrypting Communication between G2 and G2 Gateway
Encrypting Communication between G2 and
G2 Gateway

G2 Gateway supports the -secure and -cert command-line options, which are
available for G2.

To access SSL, you need to include the following new libraries, depending on
your platform:

If you do not want to use SSL, you need to include the following new libraries
instead:

Failure to include one of these libraries or attempts to include both results in
link errors.

In addition, you must also provide the following platform-specific libraries:

• Windows: crypt32.lib, available with your Microsoft compiler.

• Solaris, Linux, HP-UX, IBM AIX: libssl.a and libcrypto.a, which are
supplied with G2 Gateway. Note that you must supply these two libraries in
exactly this order; failure to do so will result in link errors.

• HP-UX: You must also include libgcc.a, also provided with G2 Gateway.

UNIX Windows

libgsec.a libgsec.lib

UNIX Windows

libnogsec.a libnogsec.lib
1927

On the Windows platforms, the default gsi.dll is linked without SSL support; a
separate library gsi_ssl.dll is provided to include SSL support as a DLL.

Currently, G2 Gateway does not support SSL on the alphaosf platform, but
libnogsec.a must be linked in anyway. The example is not present.

The example makefile for G2 Gateway compiles most of the examples without
SSL support. The skeleton_ssl example includes SSL support.

Attempting to give the -secure option to a G2 Gateway bridge that has not been
linked with SSL support results in a warning message; however, the bridge will
start up normally, but without SSL support.

Upon startup, a bridge gives the port number with /SSL appended when
-secure is requested and available. For example:

GSI Version 2011 Rev. 0 IBM POWERstation (JA28)
2007-01-30 15:00:05 Waiting to accept a connection on:
2007-01-30 15:00:05 TCP_IP:cs-aix4:22000/SSL

To establish a secure connection and test the secure status, use these procedures,
described in the G2 Gateway User’s Guide:

gsi_int gsi_current_context_is_secure()

gsi_int gsi_establish_secure_listener
(network, port, exact, certificate)

gsi_int gsi_initiate_secure_connection
(interface_name, class_name, keep_connection, network, host,port,
rpis)

gsi_int gsi_initiate_secure_connection_with_user_data
(interface_name, class_name, keep_connection, network, host,
port, rpis, context_user_data)

Note that if G2 is not listening for secure connections, this connection fails and
G2 Gateway becomes inoperative. We recommend that you determine whether
G2 is listening securely before executing either of these procedures.

To establish a GSI connection with security, use the secure yes option in the
gsi-connection-configuration attribute, after the host and port number.
For example:

tcp-ip host "localhost" port-number 22044 secure yes

For G2-G2 connections, use the icp-connection-specification attribute.

Specifying the secure yes option attempts to make a secure connection to the port
number on the specified host. Note that if the host is not listening for secure
1928

Connecting to Sockets with SSL Security
connections on the specified port, this connection fails and G2 becomes
inoperative. If no host is listening at the port, then the connection simply fails.

In addition, the gsi-interface class defines the gsi-interface-is-secure attribute, and
the g2-to-g2-interface class defines the interface-is-secure attribute, whose value
is yes or no, which determines whether or not security was established on the
connection from the remote system.

Note that you cannot make a secure G2-to-G2 connection to the same G2. This
condition is detected, and an insecure connection is created instead, with a
warning on the logbook.

Connecting to Sockets with SSL Security
When connecting to TCP/IP sockets using the g2-tcp-connect system procedure,
you can use SSL security by specifying the secure attribute in the options
structure as true. For example, this code fragment makes a secure connection to
my-host on port 1111:

socket: class g2-socket;
socket = g2-tcp-connect ("my-host", 1111, structure(secure: true))

When listening to TCP/IP sockets using the g2-tcp-listen system procedure, you
can use SSL security and specify the certificate to use by specifying these
attributes in the options structure:

• secure — Whether to accept SSL security for clients that connect to this port.
This option does not require the client to use SSL; it also accepts insecure
connections. The new connection is reported as connected if it is insecure, and
connected-secure if it is secure. The default is false.

• certificate — A string that identifies the SSL certificate to be used if the secure
option is set to true. If the -cert G2 command line option has been given, it
overrides the certificate option in the structure. Also, if another certificate was
used to establish security, either for general G2/Telewindows communication
or in another g2-tcp-listen call, that certificate is used instead. Thus, only one
certificate may be active in a G2 session at one time, and once established, it is
used for the remainder of the session.

For example, this code fragment creates a secure listener connection to my-host on
port 1111:

socket: class g2-socket;
socket = g2-tcp-listen ("my-host", 1111, structure(secure: true,

certificate: “CN=test”))

For details on these system procedures, see Network Connection Management in
Network Operations in the G2 System Procedures Reference Manual.
1929

1930

61
Telewindows Support
Describes G2’s features that support Telewindows connections.

Introduction 1931

Accepting a Connection from a Telewindows Process 1932

Logging Out from a Secure G2 1937

Closing a Telewindows Connection 1937

Rerouting Telewindows Connections 1938

Introduction
Gensym’s Telewindows product allows more than one user to access the same G2
independently. Each Telewindows user can open a telewindow, or remote view,
into a running G2 process.

A Telewindows process can run on the same computer as the G2 process, or on a
different computer to which the Telewindows connects across a network. You can
also run Telewindows as a plugin in a Netscape browser or as an ActiveX control
inside any COM-compliant container, such as Internet Explorer or Visual Basic.

Each Telewindows user has all the capabilities of a G2 user; in fact, to a user, a
Telewindow can behave just like G2’s own window seen by a G2 user. With
sufficient access privileges, and depending on the configurations declared in the
current KB’s items, a Telewindows user can not only access the KB workspaces
shown in a Telewindow, but also create rules, edit attributes, even save
knowledge bases (KBs), using the remote G2 process.
1931

Tip Associating User Modes with G2-Window Items describes how configurations
determine how the current KB’s knowledge appears in a G2 window.

A G2 interacts with a connected Telewindows by means of a g2-window item in
the current KB. When the Telewindows process successfully connects with the G2
process, G2 automatically associates a g2-window item with that Telewindows
process’s own window. The G2 then updates what appears in the Telewindow
through its associated g2-window item.

This chapter gives an overview of interacting with Telewindows from the G2 side.
For information on using Telewindows itself, see the Telewindows User’s Guide.

Accepting a Connection from a Telewindows
Process

To start a Telewindows process, the Telewindows user must indicate which G2 to
connect with by specifying:

• The machine name on which the G2 is running.

• The network address across which to make the connection.

For example, to connect to a G2 running on the machine athens and connected to
TCP/IP network port 1122, the Telewindows user enters:

tw athens 1122

Tip When G2 starts, it displays its own TCP/IP network port number in the title bar
of the window and in the title block.

You can also specify a number of command-line options for starting
Telewindows, which are similar to those you use to start G2. For details, see the
Telewindows User’s Guide.

The maximum number of TCP/IP network connections to or from a single G2
process on Windows platforms is 2048.

Displaying the Telewindow

After G2 has accepted a connection from a Telewindows, the Telewindows
displays its own window on the Telewindows user’s machine. This window
represents a view into the connected G2’s current KB.

If specified in the command that launches Telewindows, the -height and -width
command-line options determine the height and width of the Telewindows own
window. If the size of this window is less than the size of the screen, the window
1932

Accepting a Connection from a Telewindows Process
manager on the Telewindows user’s machine determines the user-interface
controls that enclose the Telewindow.

When Telewindows fails to connect to G2 on a particular host and port, a dialog
appears indicating the failure.

Connecting with a G2 that is Not Secure

If the G2 and Telewindows product licenses are compatible, and if the G2 is not
secure, the G2 allows a connection with the Telewindows. After G2 has accepted a
connection from a Telewindows, the Telewindows displays its own window on
the Telewindows user’s machine. This window represents a view into the
connected G2’s current KB. The window manager on the Telewindows user’s
machine determines the appearance of this Telewindow.

Connecting with a Secure G2

If the product licenses of the G2 and Telewindows processes are compatible, and
if the G2 is secure, the G2 first displays a login dialog such as:

Tip The login dialog shown above presents custom values in its fields. The current
KB’s own knowledge can determine the default values that display in the fields in
the login dialog. For more information about how to initialize the values in the
login dialog’s fields, see Using the Login Dialog.

By displaying the login dialog, this G2 indicates that it requires the Telewindows
user to log in before allowing a connection. This is called a secure G2. Whether a
G2 is secure depends upon information supplied in the G2 authorization file,
which is typically named g2.ok.

To login, the user must type a user name and password, and can optionally type a
G2 user mode, G2 window name or class, and G2 window specific language.

Allowable values
determined by
the G2
authorization file

Allowable values
determined by the
KB’s knowledge
1933

After six unsuccessful attempts to login to a secure KB, a G2 refuses to accept any
further attempts to connect by a Telewindows process.

Remember these facts about the fields in the login dialog:

• The authorization file for this G2 determines the acceptable values for the user
name, password, and G2 user mode fields.

• The knowledge found in the G2’s current KB determines whether the user
must enter values in the G2 user mode, G2 window name or class, and G2
window specific language fields, and what are the allowable values for
these fields.

For information on configuring a secure G2, see Authorizing Users at a Secure
Site.

Logging Login Activities

You can register a login handler that is to be run whenever a user attempts to log
into your secure G2. The login handler is a G2 procedure you write that specifies
the actions you want performed when successful or failed login events occur.
Changing a user’s password is not considered a login event and will not call your
login handler.

You must register this procedure with G2, using the system procedure
g2-register-login-handler. Its single argument is the procedure, and its return
value is a truth-value indicating whether the procedure has been successfully
registered. See the G2 System Procedures Reference Manual for a description of this
system procedure.

The login handler must accept a structure as an argument. The structure is
returned by the system login function and has the following attributes:

Attribute Value

success true if the login succeeded, false
otherwise.

system The symbol tw for Telewindows.

status A symbol describing the event.

user-name A symbol.

user-mode A symbol.

network-info The icp-connection-name string for
connections over the network and false
otherwise.
1934

Accepting a Connection from a Telewindows Process
The icp-connection-name string provides information about the protocol of the
connection and the host name of the machine attempting to connect. Your login
handler can use this information in any way desired.

The following example shows a login-handler that simply prints the information
in the structure to the Message Board:

default-login-handler(info-structure: structure)
msg: text;
begin

if (the success of info-structure)
then msg = "succeeded"
else msg = "didn’t happen [the status of info-structure]";

post "Login [msg] in system [the system of info-structure]
for user [the user-name of info-structure]
in mode: [the user-mode of info-structure]
from [the network-info of info-structure]"

end

Accepting a Password

We recommend that G2 application administrators direct users to establish
acceptable passwords. Note that, depending on the operating system and
international character set that is in use, using the -password command-line
option to specify passwords might constrain which specific passwords are
possible for the application’s users.

Associating the Telewindow with a G2-Window Item

For each connection with a Telewindows process that a G2 accepts, it also
associates that connection with an item in the current KB of the class g2-window
or a user-defined subclass of g2-window, as follows:

1 If the Telewindows user enters a class name in the G2 window name or
class field:

• If an item of that class (but not of a subclass) exists and is not associated
with a Telewindow, G2 assigns that item to the new Telewindow. If the
current KB contains more than one such item, G2 picks one of the items at
random.

• If the specified class exists and no item of that class exists or is available,
G2 automatically creates an item of that class and associates it with the
new Telewindow. G2 does not place this new item on any workspace;
however, your KB’s processing can do so.

• If the specified class does not exist, the Telewindows displays an error
message and allows the user to enter another G2 window name or class.
1935

2 If the Telewindows user enters the name of an item of the g2-window class, or
any user-defined subclass of g2-window, in the G2 window name or
class field:

• If an item of that name and of the g2-window class exists and is not
associated with a Telewindow, G2 associates that item with the
new Telewindow.

• If an item of that name and of the g2-window class exists but is associated
with a Telewindow, the Telewindows process displays an error message
and allows the user to enter another G2 window name or class.

• If no item with that name and of the g2-window class exists, the
Telewindows process displays an error message and allows the user to
enter another G2 window name or class.

Tip See The G2-Window Class for more information about the attributes of g2-
window items. See Associating an Existing G2-Window with a Telewindow about
whether your G2 application should utilize user-defined subclasses of the g2-
window class.

Establishing a Window Style for Your
Telewindows Process

You can override the default window-style value defined for the G2 process. G2
makes it easy for you to find the g2-window item associated with your connection
with G2.

To access the g2-window associated with your Telewindows process:

 Select Main Menu > System Tables > This Window.

To specify a default window style for your interaction with G2:

 Edit the g2-window-style attribute on your g2-window item to one of these
four values:

default, standard-large, g2-5.x, or standard

The g2-window-style of the Server Parameters system table determines your
window-style when you specify default. You can also configure the default
window style when you start Telewindows, using a command-line option.

For information on G2 window styles, see Specifying Window Styles of The
Developer’s Environment.
1936

Logging Out from a Secure G2
Logging Out from a Secure G2

When a Telewindows user is finished using a secure G2, he or she should log out
from that G2. This is true regardless of whether the user intends to close the
Telewindows connection.

To log out from a secure G2:

 Select Main Menu > Miscellany > Logout.

This menu choice is available only under a secure G2.

Alternatively, your G2 application can provide a different user-interface object,
such as an action-button or dedicated user-defined object that, in turn, invokes
the Logout menu choice.

When the user logs out, the Telewindows process continues to run and remains
connected to the G2, although it is no longer associated with a g2-window item
(or other item of a subclass of the g2-window class) in that G2’s current KB.

After the user logs out, the Telewindows process again displays the
G2 Login dialog.

Closing a Telewindows Connection

To close a Telewindows connection:

 Select Main Menu > Miscellany > Close Telewindows Connection.

Alternatively, your G2 application can provide a different user-interface object,
such as an action button or dedicated user-defined object that, in turn, invokes the
Close Telewindows Connection menu choice.

Selecting Close Telewindows Connection causes G2 to log out the Telewindow
(that is, to break the association between the Telewindow and its associated
g2-window item or item of a subclass of g2-window). The Telewindows process
then shuts down on the user’s machine.

Tip To close a particular Telewindows connection programmatically, use the
g2-system-command system procedure, as described in the G2 System Procedures
Reference Manual.
1937

Rerouting Telewindows Connections

You can organize your G2 application so that a client Telewindows on the user’s
computer provides a front-end interface to one or more G2s, each of which runs a
KB, and whose collective knowledge is distributed (using, for instance, G2’s
G2-to-G2 data service features).

One G2 can switch or reroute a Telewindows connection to another G2 process.
That is, the KB running on one G2 can pass the information associated with a
Telewindows connection to another G2, where the same Telewindows attempts a
new connection to that G2. To the user, the new connection represents a
continuation of the previous application session that took place via the (now
rerouted) connection to the previous G2.

To accomplish this, G2 supports opening and closing Telewindows connections in
a programmatic manner:

• Two system procedures (g2-reroute-window and g2-system-command)
support connecting and disconnecting a Telewindows session
programmatically.

• Attributes for the g2-window class support rerouting Telewindows
connections.

These features enable a G2 application to provide a seamless means of routing a
client Telewindows connection among more than one G2, subject to the
availability of network resources and to the number of Telewindows connections
authorized for those G2s.

Tip The sample KB twtour.kb, shipped with your G2 product, demonstrates the basic
features that a distributed G2 application should support, while also supporting
reroutable Telewindows connections. See the Telewindows User’s Guide for an
overview of this KB.

A G2 process represents a Telewindows connection as a g2-window item whose
g2-window-management-type attribute has the value remote. Such a g2-window
item has other attributes whose values include, in order:

1 When rerouting a Telewindows connection, the first G2 process passes the
attribute values in that connection’s G2 window to the second G2. This
information, which was used to open the original Telewindows connection to
the first G2, enables a new Telewindows connection with the second G2.

2 If the attempt to open a new Telewindows connection with the second G2 is
successful, the active KB on that G2 responds to the new connection as if the
Telewindows user had just connected directly.
1938

Rerouting Telewindows Connections
If the second G2 is, in fact, running on a particular machine name and network
port, the attempt to open a new Telewindows connection to the second G2 may
not be successful under these circumstances:

• The attempted new connection exceeds the number of simultaneous
authorized Telewindows connections allowed for the second G2.

• The KB running in the second G2 does not accept the login information
passed to it from the first G2 process.

• A conflict exists in the licensing options between the attempted connection
and the second G2.

If the attempt to reroute the Telewindows connection to the second G2 is
unsuccessful, the first G2 attempts to re-establish the connection that it attempted
to reroute. For this attempt to succeed, the KB running on the first G2 must
include an application-specific capability to accommodate this situation.

Rerouting a Telewindows Session to a Secure G2

There are two ways to start a Telewindows session to a secure G2:

• Enter user information on the command line, using the command-line options
(-user-name, -user-mode, -password, -language).

• Enter user information in the login dialog after starting a
Telewindows session.

Any user information entered in the login dialog is retained and passed to the
receiving G2 when rerouting a Telewindows process. Password information is
encrypted. Retaining and passing user information to a G2 process has the
advantage that users need not enter their user information at the command level
when starting the initial Telewindows process.

A Telewindows command-line option, -discard-user-settings, exists to
override the transfer of user information during rerouting. Telewindows users
who do not want to transfer their user information should start the initial
Telewindows session with this command-line option:

% tw -discard-user-settings

Using this command-line option causes a rerouted Telewindows process to
discard user information.
1939

Using System Procedures

You can use the g2-system-command system procedure to close a Telewindows
connection programmatically. This procedure allows your G2 application to
perform several G2 system-level operations that are otherwise available only
using configurations.

• To close a Telewindows connection programmatically, pass to the g2-system-
command system procedure the symbol close-telewindows-connection as the
first argument and the g2-window item (associated with the Telewindows
connection itself) as the second argument.

• To open a new Telewindows connection that uses knowledge from another
Telewindows connection, use the g2-reroute-window system procedure.
g2-reroute-window opens a new Telewindows connection and the new target
G2 associates that connection with a g2-window item in its own current KB,
using the attribute values of the existing Telewindows connection’s associated
g2-window item.

Using G2 Window Attributes

The attributes in a g2-window item contain the knowledge that your application
can pass between Telewindows sessions connected to different G2 processes.

Two attributes of a g2-window item support rerouting Telewindows connections:

• The g2-window-initial-window-configuration-string attribute contains a text
value that the KB running in the target G2 uses to set up the user’s access to
that KB.

For instance, in a G2 application designed to support access by users via
reroutable Telewindows sessions, the KB running on one G2 can hand off a
user’s processing to another KB running on another G2. The donor KB can log
the user (via Telewindows) into another G2 and pass to its current KB a
g2-window-initial-window-configuration-string value that represents the state of
that user’s activity within the application.

• The g2-window-reroute-problem-report attribute is a read-only attribute that
presents an error message returned from an unsuccessful rerouting (via the
g2-reroute-window system procedure) of a Telewindows user’s session to
another G2.

Applications that Reroute Telewindows
Connections

The g2-system-command and g2-reroute-window system procedures, and the
relevant attributes of the g2-window class, provide very specific capabilities. The
KBs that comprise your distributed G2 application must perform the bulk of the
1940

Rerouting Telewindows Connections
work required to reroute a Telewindows connection. The following subsections
outline these requirements and offer recommendations on how to proceed.

Knowledge External to the KB

A G2 application that reroutes a Telewindows connection must acquire and
manage knowledge of the application’s system environment, such as:

• The machine IDs of the computers on which the application’s related G2s run.

• A technique for acquiring the network locations, that is, the TCP/IP port
numbers of the application’s related G2s.

• Knowledge, in the form of rules, assumptions, or otherwise, about the
licensing of the Telewindows that you want to connect to the application.

Application Requirements

Overall context: The application must present the application user with a context
(or application metaphor) within which the rerouting of the Telewindows
sessions takes place.

For example, the application can represent each G2 to which the application user
can connect as a room in a virtual building that represents the scope of the
application. This helps the user to understand intuitively that, in an actual
building, he or she cannot occupy more than one room at a time.

Available candidates for rerouting: The application must support presenting to
the application user a list of G2 processes that are suitable targets for rerouting.

Failed attempts at rerouting: The application must manage a failed attempt at
rerouting a Telewindows connection, as in the case where no more available
Telewindows connections were authorized for a particular G2 on a particular
machine.

Depending on the licensing arrangements for G2 and Telewindows that the
application users’ organization has purchased, you might authorize one machine
that runs G2 to allow connections with a maximum number of Telewindows
users, while authorizing other machines that support your application to allow
fewer concurrent Telewindows connections.

Continuity: The application can provide a continuing context (such as a history
list of connections) for the application user, as the application opens and closes
Telewindows connections on one machine after another.

For instance, the application can use the g2-window-initial-window-configuration-
string attribute to accumulate information that the distributed KBs can use to
reroute the application user’s Telewindows back to some starting point.
1941

1942

62
G2-to-G2 Interface
Describes how to connect two G2 processes and pass data between them.

Introduction 1943

Using the G2-to-G2 Interface to Exchange Data 1944

Using the G2-to-G2 Interface 1945

Using Remote Data Service 1952

Using Remote Procedure Calls 1955

Value and Item Passing Arguments and Return Types for RPCs 1959

Value Passing 1962

Passing an Item as a Network Handle 1965

Passing Variables and Parameters 1967

Passing User- and System-Defined Classes 1969

Introduction
The G2-to-G2 interface lets two or more G2 processes connect for the purpose of
exchanging data. G2 supports the TCP/IP protocol. Once two systems are
connected, you can exchange various types of data. This chapter describes how to
connect two (or more) G2 systems, and how to prepare a KB for remote data
service or value and item passing across that connection.
1943

Two sample KBs that demonstrate item and object passing are:

• itempass.kb

• objpass.kb

Both are available in the samples subdirectory of the kbs directory.

Using the G2-to-G2 Interface to Exchange Data
The G2-to-G2 interface is the general facility that permits one G2 to communicate
with another. Each of the G2s can send and receive data. This lets you create
applications that use distributed information processing on distinct G2s.

To enable communications between two or more G2s, you create a g2-to-g2-data-
interface item on the client G2, which is the G2 making a connection to a remote
server G2. This object specifies the protocol to use, along with other useful
information about the remote system. This chapter calls such an object a data
interface object.

A data interface object acts as a doorway between two G2s. Through the interface
object, the KB receives data from a remote G2 and sends data to that remote
process. The client G2 requires only one data interface object for the connection,
though multiple interface objects can be used in a single KB. The G2 server
manages the connection with the client G2 internally and does not create or
require a corresponding data interface object.

An active data interface object provides:

• A point-to-point connection, allowing one process to talk to a single other
process. A G2 data interface is not designed to broadcast to
multiple processes.

• Data service to variables, remote expression evaluation, and remote
procedure (RPC) execution.

Once you create and complete the data interface object and start both G2 systems,
communication begins. The local system requests a connection to the remote
system. If the connection is valid, the two systems connect and the status of the
interface object is running. Once both G2 processes are started and the connection
is running, the two systems can exchange data.

You should explicitly check the connection status before communicating across a
network because a network connection cannot happen immediately or within a
set amount of time.
1944

Using the G2-to-G2 Interface
Two G2s can pass knowledge between each other in these ways:

All data service and value or item passing requires the use of at least one data
interface object for each remote G2.

You can use G2’s publish/subscribe facility for event notification in distributed
applications. For details, see Publish/Subscribe Facility.

Using the G2-to-G2 Interface
Using the G2-to-G2 interface requires that you configure the local knowledge base
(KB) with one or more data interface objects, which are items of the g2-to-g2-data-
interface class. These objects inform the local G2 of the remote G2 process (or
processes) with which to communicate. You then need to configure the KB for one
or more types of data service or value or item passing.

Note Though you need to configure only the client G2 with a G2 data interface, the
remote server G2 process must allow the correct form of network access. Network
access is described in Network Security.

Creating Data Interface Objects

To create a data interface object:

 Select KB Workspace > New Object > network-interface >
g2-to-g2-data-interface.

Type of Exchange Description

Remote data
service

A remote server G2 provides a value for a variable,
using either another variable or a parameter, or
through evaluating an expression on the
remote system.

Item passing as a
reference only

Passes any KB item as an integer reference, called a
network handle.

Value or item
passing

Passes any value or item, with some set of its
attributes, and optionally also as a reference, to a
remote G2 process. The reference passed is an
integer network handle.
1945

Naming the Interface Object

For data service to operate properly, you must name each data interface object
and that name must be unique within the KB. You use the name of the interface
object to identify it within other objects and items. For example, if you use remote
data service for a variable, use the name of the data interface object as the value of
the variable’s g2-to-g2-interface-name attribute.

Identifying Attributes

The identifying-attributes attribute is only used with GSI interfaces and is not
applicable to G2-to-G2 interfaces as this time.

Setting the Warning Message Level

The interface-warning-message-level attribute sets the severity level for error and
warning messages that G2 will provide for the data interface object.

Warning message levels range from 0 to 3. Level 0 is the lowest severity level, and
provides the least information. Increasing the warning message level causes G2 to
provide more information about errors and failures that are otherwise only
detectable through the value of the interface-status attribute. Messages are posted
to the Operator Logbook.

For example, when the warning message level is at 0 or 1, a failure to connect to
the remote G2 process causes the interface-status to change to failed, but no
information is available about why the failure occurred. If the warning message
level were set to 3 and the same connection failure occurred, G2 would post a
message to the Operator Logbook describing why the connection failed.

The values for this attribute are:

Attribute Value Description

default to warning message level Error message defaults to the
system-wide message level set in
the warning-message-level
attribute of the Debugging
Parameters system table.

0 (no warning or error messages) Provides no information about
errors and failures for the data
interface object.

1 (serious error messages only) Provides additional information
about serious errors.
1946

Using the G2-to-G2 Interface
During KB development and testing, it may be useful to set the value of this
attribute to 3 to detect all data interface error and warning messages, and then to
reset the value to 0 for KB deployment.

Defining the Connection Details

The icp-connection-specification attribute defines information the KB needs to
connect to a remote system. The connection information includes:

• The protocol to use.

• The name of the remote system.

• Either a host-machine name or port number.

• Whether the connection is secure.

G2 supports the TCP/IP protocol. You can also create a data interface object that
connects to the G2 process itself. Such a connection is referred to as a local
emulator. You can use the local emulator to test a KB running on a single G2
process that eventually will be connected to one or more remote G2s.

The syntax for the connection specification is:

{local emulator |
tcp-ip host "host-machine-name" port-number port-number [secure yes] }

2 (all error messages) Provides additional information
on all error messages, including
loss of a connection for active
interfaces.

3 (all error and warning messages) Provides additional information
on all error and warning messages
provided by level 2, and other
messages about connection
attempt failure.

Attribute Value Description
1947

To obtain the host machine name and either port number or task name:

 Select Main Menu > Miscellany > Network Info.

Alternatively, you can obtain this information programmatically, using the
system procedures g2-get-host-name and g2-get-port-number-or-name, available
in the sys-mod.kb.

Setting the Interface Timeout Interval

The interface-timeout-period attribute controls how much time should elapse
before the local G2 assumes that the G2-to-G2 connection is inoperative and times
out. You can create whenever rules in your KB to take appropriate action for a
data interface object timeout.

The time specified here refers to the timeout limit for the network
communications link, not to the update interval of any variable being used. Even
if the update interval of every variable exceeds the interface timeout period, the
local data interface object will not time out unless the network connection is lost.

Element Description

"host-machine-name" The host-machine-name is a case-sensitive string
that you enter within quotation marks.

port-number The unique port identifier used in TCP/IP
systems.

secure yes Attempts to make a secure connection to the
port number on the specified host, using SSL
(Windows) or OpenSSL (UNIX).

Note: If the host is not listening for secure
connections on the specified port, this
connection fails and G2 becomes inoperative. If
no host is listening at the port, then the
connection simply fails.

Note: You cannot make a secure G2-to-G2
connection to the same G2. This condition is
detected, and an insecure connection is created
instead, with a warning on the logbook.
1948

Using the G2-to-G2 Interface
Obtaining the Current Connection Status

The interface-status attribute indicates the current status of the G2-to-G2
connection. This is a read-only value, which changes with the state of the
connection. Possible values are:

When you are creating a data interface object, the value of this attribute is always
inactive until the interface object is activated.

Using Whenever Rules That Refer to the Connection Status

You can refer to the value of the interface-status attribute to obtain the connection
status, but you cannot change this value either interactively or programmatically.
For instance, you could write a rule such as the following, to test for and take
action upon a particular status.

whenever the interface-status of world-connection receives a value
and when the interface-status of world-connection is running
then change the background-color of the
subworkspace of world-connection to green

This value... Indicates that...

inactive The interface is either on an inactive workspace, has
no name, is otherwise not OK, or the local G2 has
not started yet.

attempting The interface is trying to make a connection to a
remote G2, but has not yet completed the process
and is not ready to transmit or receive data.
Typically, the interface is in this state only briefly
before obtaining either a connected or failed status.

connected The interface has successfully connected to a
remote G2 and is ready to transmit or receive data.

failed The interface has attempted to make a connection to
a remote G2, but the attempt was unsuccessful.

paused The remote G2 is paused.

running The remote G2 has been started or restarted and is
not paused.

reset The remote G2 has not been started or restarted.

timed-out The local G2 has received no data from the remote
G2 within a time interval given by the interface-
timeout-interval attribute of the interface object.
1949

Starting the G2 Processes

To start the G2-to-G2 connection, start G2 on both computers. When the local G2
needs data from the remote G2 process, it obtains it in whatever way the KB is
configured to pass data: data service, or value or item passing through remote
procedure execution.

Activating Data Interface Objects

Locating data interface objects upon an activatable subworkspace lets you control
the objects programmatically. By activating or deactivating the subworkspace
upon which a data interface object resides, you can activate or deactivate the
object.

You can also use a conclude action to control activation. Concluding the icp-
connection-specification attribute to have no value closes the connection. Here are
two states that use conclude actions to activate and deactivate the connection.

This statement closes a connection:

conclude that the icp-connection-specification of connection3 has no value

This statement activates a connection:

conclude that the icp-connection-specification of connection3 =
structure(network-transport: the symbol TCP-IP,

hostname: "GHWSYS", port: 1111)

The G2-to-G2-Data-Interface Class

The class-specific attributes of g2-to-g2-data-interface items are:

Attribute Description

names The name of the interface object.

Allowable values: Any unique name

Default value: none

identifying-
attributes

For GSI interface only.

Allowable values: Not applicable.

Default value: none
1950

Using the G2-to-G2 Interface
Creating Data Interface Subclasses

If you need additional user-defined attributes for your data interface object or
want to provide a specific icon-description, create a new subclass by using a class
definition. Specify the g2-to-g2-data-interface class as the direct superior class.

interface-warning-
message-level

The severity level of error and warning messages about
which G2 provides information.

Allowable values: 0 - 3

Default value: default to warning message level

ICP-connection-
specification

The information required for connecting, including the
remote system, the protocol, and host name.

Allowable values: See Defining the Connection Details.

Default value: none

interface-timeout-
period

The length of time G2 waits before timing out after
attempting to connect to the remote system.

Allowable values: use default
any time-interval

Default value: use default (10 seconds)

interface-status The current status of the interface object.

Allowable values: See Obtaining the Current Connection Status.

Default value: inactive

interface-is-secure (Read-only) Whether the connection is secure. See
Defining the Connection Details.

Allowable values: yes | no

Default value: N/A

Attribute Description
1951

Once you have created a G2 data interface subclass, you can create any number of
instances of it, each of which can specify a different remote G2 process. As a
result, you may want to define a standard interface class as part of a KB and
merge it into other KBs whenever they require the G2-to-G2 interface facility.

If you are creating a subclass that uses multiple inheritance, the G2 data interface
can be either a primary or a secondary superior class. For more information about
creating subclasses, see Creating Class Definitions. For a description of primary
and secondary superior classes, see Specifying the Superior Class(es).

Using Remote Data Service
One use of a G2-to-G2 connection allows remote data service to one or
more variables.

To configure the KB for remote data service:

1 Create at least one data interface object, as described in Creating Data
Interface Objects.

2 Create one or more G2-to-G2-variables as described next, which are variables
that can receive values from (and, in some cases, send data to) the remote
G2 process.

Creating a G2-to-G2 Variable

A g2-to-g2 variable is a variable subclass that includes the g2-to-g2-data-service
class as one of its direct superior classes.

To create a g2-to-g2 variable:

1 Define a subclass of any of the system-defined variable classes, and include
the mixin class g2-to-g2-data-service as one of the direct superior classes. The
mixin provides the additional attributes needed for G2-to-G2 data service.
Give the subclass any unique name.

2 Edit the Attribute-initializations validity-interval attribute to specify any time
interval, or indefinite. Data servers other than the Inference Engine cannot
have a validity interval of supplied, which is the default.

3 Optionally, customize the new class in any other way.

4 Create an instance of the new class and open its table.

Using the g2-to-g2-data-service mixin class sets the data-server attribute of the
variable to G2 data server, and adds two additional attributes, g2-to-g2-interface-
name and remote g2-expression.
1952

Using Remote Data Service
Specifying the G2 Data Interface

The g2-to-g2-interface-name attribute specifies the data interface object through
which you want G2 to obtain values for the variable.

Enter the name of the data interface object that this variable should use.

Defining the Remote G2 Expression

Edit the remote-g2-expression attribute to indicate what expression you want G2
to evaluate on the remote G2.

G2 uses this expression to compute a value for the variable. The expression can
include references to any item in the remote G2, but it cannot contain references to
items on the local system. For example, to get the current time from the remote
machine, you could enter the current time for the remote-g2-expression attribute.

Considering Network Access Configurations

Be aware that all items can include configuration statements that can affect
network access. For example, an item could be configured with this statement:

set up network access as follows: prohibit read access to this item by g2

If the expression in this attribute references a remote item configured this way, G2
will be unable to compute a value for the variable. To the local G2, an item with
such a configuration statement is indistinguishable from a deactivated item.

Examples of Remote Data Service

The next figure illustrates how a symbolic variable has been defined and is
displaying the current run state of the remote G2, available as an attribute of the
Miscellaneous Parameters system table, using the expression:

the g2-run-state of miscellaneous-parameters
1953

When the variable requires a value, it receives one by evaluating its expression
through the kmann-to-jmann object, which is a g2-to-g2-data-interface object.

A variable in the local KB can evaluate to a variable in the remote G2, simply by
referring to the remote variable by name. When a local variable refers to a remote
variable in this way, the two variables are further associated. If the local G2
executes a set action on the local variable, the remote G2 concludes that the
remote variable is equal to the value of the local G2 variable. In this way, the local
G2 can send information to (as well as receive information from) the remote
G2 process.

Also, multiple variables in the local KB can use a single G2-to-g2 data-interface
object through which to obtain their values, or you can create multiple data
interface objects to provide remote data service to different variables.

The following examples demonstrate inform and set actions evoked from a KB
running on a local computer connected to a to a KB running remotely. The local
KB contains local-integer-variable a g2-to-g2 data-served integer variable whose
Remote G2 expression attribute has remote-integer-variable as its value. Evoking
the inform and set actions through local-integer-variable results in a message
appearing on the Message Board of the remote KB and the value of remote-
integer-variable being set to the value in the set expression.

The local KB invokes this action code from an action button:

in order
inform local-integer-variable that "Remote-integer-variable is receiving a

value through local-integer-variable."
and set local-integer-variable to 1234
1954

Using Remote Procedure Calls
The actions have these effects on the items on a local KB workspace and the items
on a remote KB workspace:

Using Remote Procedure Calls
You can use remote procedure calls (RPCs) in any application that requires G2 to
execute a procedure in another G2 across an ICP interface object. In particular,
you can use RPCs for value- and item-passing, and to build interfaces to external
devices and database systems. You can also use RPCs to allow G2 Gateway to call
procedures in G2 and receive return values.
1955

The G2 that issues the remote procedure call is the client. The G2 that executes
that call is the server. To use RPCs, the client G2 declares that a particular
procedure is remote by using a remote procedure declaration. The remote
procedure declaration specifies the name, argument types, and return types of the
procedure as it exists on the remote G2.

Depending on the arguments of the remote procedure, and thus how you declare
the remote procedure on the client G2, you can send or receive:

• Variable or parameter values.

• A reference to any item.

• A copy of any item with any number of its user-defined, and user-accessible
system-defined attributes.

Note For RPC calls, the order is stable when passing sequences, structures, g2-list
elements, and g2-array elements; but the order is not stable for the attributes
of items.

The next three sections describe how to create, declare, and call or start a remote
procedure. Subsequent sections present the valid arguments for RPCs, and
various ways to use RPCs to pass values and items to and from remote systems.

Creating and Declaring a Remote Procedure

To create a remote procedure declaration:

 Select KB Workspace > New Definition > remote-procedure-declaration.

G2 invokes the Text Editor immediately so that you can complete the remote
procedure. After completing the declaration, you can place the remote procedure
onto the workspace and then open its attribute table.

You complete the remote procedure declaration by stating the name of the
procedure you will call from the local KB, but which resides on a remote G2
process. The syntax is:

declare remote remote-procedure-name ([argument] [,...]) = (return [,...])
1956

Using Remote Procedure Calls

Using an Alternative Procedure Name

The name you enter in the declaration statement is duplicated as a string in
capital letters in the name-in-remote-system attribute of the remote procedure
declaration’s attribute table, as shown in this diagram.

You can use the name-in-remote-system attribute to declare a remote procedure
with a different name so that you do not have two procedures with the same
name in your local KB.

Once you edit this attribute, G2 decouples the name from the remote-procedure-
name in the remote procedure declaration syntax. This means that further edits to
the declaration will not affect the name-in-remote-system attribute. You will have
to edit that attribute directly to change it.

The name-in-remote-system attribute of the remote procedure declaration is a
case-sensitive string. For example, if the name of the remote procedure is my-proc,
and you enter my-proc, G2 will be unable to locate the appropriate procedure on
the remote system. By default, G2 procedure names are uppercase.

Element Description

remote-procedure-
name

The name of the procedure on the remote
system.

argument One or more arguments that the procedure
accepts. You can specify up to 200 arguments
within the parentheses. For a complete
description of RPC arguments, see Value and
Item Passing Arguments and Return Types for
RPCs.

return Indicates the return value (or values) of the
procedure.
1957

Invoking Remote Procedures

You can invoke a remote procedure from the client G2 in one of two ways:

• A start action with the across g2-to-g2-interface phrase.

• A call statement with the across g2-to-g2-interface phrase.

You can use the start action for remote procedures in both rules and procedures.
When you use start, the client G2 continues to execute the calling rule
or procedure.

You can use the call statement only in procedures. When you use call, the client
G2 waits until the remote procedure completes before continuing with the
calling procedure.

It is possible for a call to a remote procedure to be aborted at the client, for
example, when a different branch of a do in parallel statement within a procedure
finishes first. In this case, the client procedure continues processing and the
remote procedure is aborted.

Starting a Remote Procedure

To use the start statement for a remote procedure, the syntax is:

start remote procedure (argument [,...])
[at priority integer-expression] [after time-interval]
across g2-to-g2 interface

Element Description

remote-procedure An expression that returns a procedure.

at priority integer-
expression

Specifies the priority of the procedure. This
priority setting overrides the default priority
only within the client; within the server, the
execution of the remote procedure call begins at
that procedure's default priority.

after time-interval Specifies a time interval after which the remote
procedure should start in the client.

across g2-to-g2
interface

Indicates the ICP interface through which the
RPC is being called.

If the ICP interface object is not connected, an
G2 signals an error in the client process
executing the start action, but the executing rule
or procedure continues processing.
1958

Value and Item Passing Arguments and Return Types for RPCs
If the remote procedure does not exist in the server, or if an error occurs in
starting the remote procedure, G2 signals an error in the client.

If an error occurs during the execution of the remote procedure after it has
started, the server G2 handles the error as if the procedure were called locally.
The client G2 does not signal an error. If the remote procedure was called from a
higher-level procedure, that procedure continues processing.

Calling a Remote Procedure

To use the call statement for a remote procedure, the syntax is:

[return [,...] =] call remote procedure (argument [, ...]])
across g2-to-g2 interface

In the client G2, the processing to initiate the call occurs at the same priority as
that of the procedure containing the call. This priority does not affect the priority
of the call within the server G2, where the execution of the remote procedure call
begins at the default priority of the remote procedure.

If an error occurs during the execution of the called remote procedure, the remote
procedure is aborted in the server G2 and the error message is propagated back to
the client. On the client G2, the procedure that initiated the remote call is aborted
and a message is displayed on the client logbook.

Value and Item Passing Arguments and Return
Types for RPCs

All item instances have system-defined attributes, such as notes, names, and
item-configuration. User-defined classes usually include user attributes, defined
by the user in the class definition.

Using a remote procedure declaration, you can specify which values, user-
defined attributes or user-accessible system-defined attributes you want to pass to
or from a remote G2.

Element Description

remote-procedure An expression that returns a procedure.

across g2-to-g2
interface

Indicates the ICP interface through which the
RPC is being called.

If the ICP interface object is not connected, an
error occurs in the client process and G2 signals
an error on the client.
1959

You can pass any value to a remote G2. Since structure and sequence values can
consist of items as their attributes and elements, and those items include their
own attributes and values, the RPC grammar for specifying a value argument lets
you specify attributes and values. For more information about value passing, see
Value Passing.

G2 can pass an item in various ways, including:

• As a handle only.

• With all of its user attributes and no system attributes (the default).

• With all user attributes, except those in a specified set, and zero or more
allowed system attributes.

• With only a specified set of user attributes, and zero or more allowed
system attributes.

• All of the above, and with a handle.

You can specify one or more of these possibilities as part of the remote procedure
declaration syntax.

The following figures illustrate the grammar that you can use in G2 remote
procedure declarations:

Grammar for Remote Procedure Declarations

Argument Grammar for Remote Procedure Declarations

declare remote procedure-name
([argument [,...]] [all remaining argument]) =
([argument [,...]] [all remaining argument])

integer
float
quantity
text
truth-value
symbol
item-passing-argument
(item-passing-argument)
1960

Value and Item Passing Arguments and Return Types for RPCs
Item-Passing Argument Grammar for RPC Declarations

Note In a list of argument- or return types, specifying class as an argument followed by
anything more than a class-name, requires that you enclose the argument or
return type in parentheses, followed by a comma if other arguments follow.

Considerations for Item Passing

Before completing the required steps for item passing, consider these things:

• Both G2 processes must have compatible definitions for user-defined classes.

• The type and name of user-defined attributes of items must align.

• Transient items may accumulate through item passing.

item-or-value
value
class class-name

as handle

with handle

including

excluding the user attribute(s)

all system attributes

the system attribute(s)

only the user attribute(s)

including

excluding the user attribute(s)

all system attributes

the system attribute(s)

only the user attribute(s)

Argument types Item-passing grammar
1961

Creating Compatible Definitions

Compatible definitions must exist on both the client and the server G2 when you
pass user-defined items between two G2s. The system defined items have
compatible definitions automatically.

For user-defined classes, the degree of definitional compatibility can vary. At the
very least, the two definitions must have the same class name. For example, to
pass an item called PC, a definition for an item called must PC exist in both the
client and the server KBs.

Compatible definitions do not have to be identical, and the attributes in one
definition can be a subset of the other. For a receiving definition to contain a
subset of the sending definition’s attributes, you can use the statements for
including or excluding particular attributes in the remote procedure declaration.

Aligning User-Defined Attributes

User-defined attributes passed from one G2 process to another must be of the
same name and type in both definitions. For instance, you could not define a user-
attribute in one definition like this:

temp is given by a quantitative-variable

and specify the attribute as temp is an integer, in the other definition. The
attribute temp must be either an integer or given by a quantitative variable in both
definitions to pass that attribute successfully between two G2 processes.

Accumulating Transient Items

Item passing creates a transient item on either the local or remote G2. As with any
transient item, you can handle placing the item on a workspace, or manipulating
it in any other way, programmatically.

Keep memory resources in mind when using item passing. All transient items
consume memory, so you must explicitly delete them when they are no longer
needed. For additional information, see Memory Management.

If your KB needs to maintain the items that are passed to it, make the transient
items permanent, using the make permanent action. For more information on this
action, see make.

Value Passing
The G2-to-G2 interface lets you pass values to and get values from a remote
G2 process.

The argument and return types for a remote procedure declaration can be of any
value type:

• value
1962

Value Passing
• quantity

• integer

• float

• text

• symbol

• truth-value

• sequence

• structure

When passing an argument or return value declared as a structure or sequence,
G2 passes the value in its entirety. You cannot specify that some attributes and
values of a structure, or certain elements of a sequence, be passed.

Since structure and sequence values can include items, which include user- or
system-defined attributes, the RPC argument and return value grammar lets you
specify one or more user- or system-defined attributes and their values, just as
you would when passing an item, rather than a value.

For the grammar to specify user- or system-defined attributes, see Passing User-
and System-Defined Classes.

In a list of arguments, each must be separated by a comma, or parentheses and a
comma when specifying a class, as described in Value and Item Passing
Arguments and Return Types for RPCs.

Configuring the KB for Value Passing

You configure your KB to pass a value to a remote G2 by using a remote
procedure declaration (RPC).

To configure a KB for value passing using an RPC:

1 Create a data interface object and complete it as explained in Creating Data
Interface Objects.

2 Create a procedure on the remote G2 that declares one or more values as an
argument and/or as a return value.

3 In the client G2, create a remote procedure declaration with the correct
arguments of the procedure on the remote G2.

4 In the client G2, create a rule or procedure that starts or calls the remote
procedure across the appropriate data interface object to obtain a value.
1963

Example of Passing an Integer Value

Here is a simple example of passing an integer value.

1 A procedure in the local G2 that calls a remote procedure across the kmann-to-
jmann data interface object.

get-remote-items()
total-items: integer;
begin

total-items = call get-remote-item-count() across connection3;
post "The total number of items on the remote system is [total-items]."

end

2 The remote procedure that returns the number of items on one of its
workspaces.

get-remote-item-count() = (integer)
begin

return the count of each item upon gds-g2-remote-workspace
end

Example of Passing a Structure Value

Whenever you pass a structure or sequence to or obtain a structure or sequence
from a remote system, G2 includes all of the attributes or elements of that value. If
a structure attribute consists of an item, you can optionally choose which user- or
system-defined attributes of that item to pass.

Here is a basic example of passing a structure value:

1 A procedure in the local G2 that calls the remote composite-value-proc
procedure and displays the results.

get-remote-structure()
history-spec: structure;
begin

history-spec = call composite-value-procedure() across connection3;
post "The history-keep-spec of a remote variable is [history-spec]."

end

2 The remote procedure, which obtains a structure representing the history-
keeping-spec of a variable called V1, and returns that structure to the local G2.

composite-value-procedure() = (structure)
S: structure;
begin

S = the history-keeping-spec of v1;
return S

end
1964

Passing an Item as a Network Handle
Passing an Item as a Network Handle
You can configure your KB to pass an item as a network handle only.

To pass an item as a handle:

 declare remote procedure (class class-name as handle) = (return [,...])

where class-name is any system- or user-defined G2 class.

You can pass an item as a handle as one of two or more arguments or return types
by entering the item argument in parentheses, followed by a comma if any
arguments follow.

To pass an item as a handle with other arguments:

 declare remote procedure (float, (class class-name as handle), integer) =
(return [,...])

Configuring the KB for Item Passing as a Network
Handle

To configure a KB for item passing as a handle:

1 Create a data interface object and complete it as explained in Creating Data
Interface Objects.

2 Create a procedure on the remote system that declares an integer (for the
network handle) as an argument or a return value.

3 Create a remote procedure declaration with the correct syntax for passing an
item as a handle, as described in Value and Item Passing Arguments and
Return Types for RPCs.

4 Start or call the remote procedure from the local G2 across the
appropriate interface.

Obtaining Network Handles

A network handle is an integer used to refer to an item. If you register the item in
the local G2, the remote G2 can then refer to it as a reference.

An item can acquire a network handle in three ways. The third way is applicable
only to GSI interfaces.

• Automatically, by declaring that an item is a handle in the argument
specification of a remote procedure declaration.

During remote procedure invocation, if an item does not have a network
handle, G2 registers it automatically, associating the item with the ICP
interface object across which the procedure has been invoked. The item’s
handle is then passed to the remote procedure.
1965

• Manually, by using the g2-register-on-network system procedure, described in
the next section.

The system procedure returns a network handle for any item passed to it,
associating the item with the specified interface object. The interface object
could be either a data interface object, or a GSI interface object, because item
passing works through GSI interfaces as well.

• Automatically, through the GSI data service. This applies only to items that
are a subclasses of GSI-data-service being data served through a GSI
interface object.

For more information about data service and item passing in GSI, see the
G2 Gateway Bridge Developer’s Guide.

Using a System Procedure to Obtain a Network Handle

To obtain a network handle for an item manually:

 g2-register-on-network
(item-to-register: class item, icp-interface: class item)
-> network-handle: integer

Example of Obtaining a Network Handle

For example, the next procedure accepts any item and any data interface object as
its arguments, and returns a handle.

get-item-handle(register-item: class item,
data-interface: class g2-to-g2-data-interface) = (integer)

handle: integer;
begin

handle = call g2-register-on-network(register-item, data-interface);
return handle

end

You cannot maintain network handles across interface activations. You must
register items each time you activate a data interface object.

You can typically acquire network handles automatically, using the remote
procedure argument declarations. If, however, the local process requires
information about network handles before they are acquired automatically
during a remote procedure call, you can acquire them manually, using the system
procedure.

Element Description

item-to-register The item for which you need a network handle.

icp-interface The network interface you are using.
1966

Passing Variables and Parameters
The following system procedures work in conjunction with item passing and
network handles:

For more information on the network registering, and other system procedures,
see the G2 System Procedures Reference Manual.

Example of Passing an Item as a Handle

The statement below shows an example of how you declare a remote procedure
with a float argument type, followed by a procedure class as a handle (in separate
parentheses), with an integer return type value.

declare remote adding-procedure(float, class procedure as handle)) = integer

Passing Variables and Parameters
Within G2, in almost all cases when you refer to a variable or parameter, the
expression returns the value of the variable or parameter. When passing variables
and parameters across a G2-to-G2 connection, the value is not passed unless you
explicitly state that it should be.

To... Use this system procedure...

Register an item on the network to
obtain a network handle associated
with the item and the ICP
interface object.

g2-register-on-network

Deregister an item from the
network handle number assigned
it, and from the interface. G2 may
use that network handle again to
assign to a new item during
network registration.

g2-deregister-on-network

Obtain the item associated with a
network handle number and
its interface.

g2-get-item-from-network-handle

Obtain the network handle
associated with an item already
registered with an interface,
whether through the g2-register-
on-network system procedure or
through a remote
procedure invocation.

g2-get-network-handle-from-item
1967

These are the ways in which you can pass variables and parameters:

• As an item, which passes a copy of the variable or parameter. As with all
items being passed, by default, passing a copy includes all user-defined
attributes but no system-defined attributes. Thus, the variable or parameter
value is not passed automatically.

• As a handle. Passes the handle number to the remote system, not the variable
or parameter value.

• As a value by using the RPC grammar:

including the system attribute current value of variable-or-parameter

Passing a Variable or Parameter as a Copy or
Handle

You can pass a copy of a variable or parameter with all of its user-defined
attributes and none of its system-defined attributes by using a declaration such as:

declare remote variable-copy ((class variable-or-parameter)) = (return [,...])

You can pass a variable or parameter as only a handle. For example, use a
declaration such as this to pass a variable or a parameter as a handle:

declare remote syria-proc((class integer-variable as handle),
(class integer-parameter as handle)) = (integer)

Passing the Current Value of a Variable or
Parameter

You can pass the current value of a variable or parameter by specifying that in the
RPC grammar.

To pass a variable or parameter value:

 declare remote procedure ((class variable-or-parameter including the
system attribute current value of variable-or-parameter)) = (return [,...])

Here is a basic example of passing a variable value:

1 A procedure in the local G2 that calls the remote variable-value procedure
across the data interface object and displays the return results.

get-variable-value(VAR: class integer-variable)
T: text;
begin

T = call variable-value(VAR) across connection203;
post "[T]"

end
1968

Passing User- and System-Defined Classes
2 The remote procedure declaration indicating that the value of the local
variable should be passed to the remote procedure.

declare remote
variable-value((class integer-variable including the system attribute

current value of variable-or-parameter)) = (text)

3 The remote procedure that:

• Transfers the variable passed from the local G2 onto the workspace of
the procedure.

• Names the variable.

• Performs a collect data statement to get the current value of the variable.

c Returns a text string that includes the value, and which is what the local
procedure displays:

variable-value(V: class integer-variable) = (text)
T: text = "The value of the passed variable is:";
current-value: class integer-variable;
begin

transfer V to this workspace at (50, 50);
change the name of V to the symbol RemVar;
collect data

current-value = V;
T = "[T][V]"

end;
return T

end

Passing User- and System-Defined Classes
Item passing lets you copy an item from one G2 to another. The item may be a
user-defined class, or any system-defined class, including definitions.

Most user-defined classes have user-defined attributes, and all classes have
system-defined attributes, such as notes, item-configuration, and names. Item
passing lets you determine which user- or system-defined attributes to pass from
one G2 to another.

G2 supports item passing in several ways:

• As a handle only.

• As a copy with all of user-defined attributes and no system-defined attributes.

• As a copy with one or more user-defined attributes, and zero or more system-
defined attributes.

• As a copy with all user-defined attributes and all user-accessible
system-defined.
1969

• As a copy with user- and system-defined attributes, and additionally with
a handle.

Passing an item either as a handle or with an handle, means passing any item
with an integer value network handle. Obtaining Network Handles describes
how to get and use handles.

Note User-accessible system-defined attributes are those that are available through the
attribute access facility, and which appear in the G2 Class Reference Manual.

Configuring the KB for Passing an Item
with Attributes

To configure a KB for item passing using a remote procedure declaration:

1 Create a data interface object and complete it as explained in Creating Data
Interface Objects.

2 For items of user-defined classes, ensure that both G2 systems have
compatible definitions for the class or classes being passed as discussed in
Creating Compatible Definitions.

3 In the remote G2, create a procedure that declares one or more items or values
as its arguments and/or return type. The remote procedure can also include
an integer argument if you wish to optionally include a handle for the item
you are passing.

4 In the local G2, create a remote procedure declaration with the correct syntax
for passing an item with user- and/or system-defined attributes, as described
in Value and Item Passing Arguments and Return Types for RPCs.

5 In the local G2, start or call the remote procedure across the appropriate data
interface object.

Passing an Entire Item or a Specific Attribute Set

By default, passing an item automatically includes all of its user-defined
attributes and none of its system-defined attributes. You can include or exclude
user-defined attributes explicitly. Including one or more user-defined attributes
excludes the remainder. Excluding one or more user-defined attributes includes
the remainder.

You can include all system attributes or those that you declare explicitly, but you
cannot exclude system attributes as you can user attributes.

You can specify one or more of these possibilities as part of the remote procedure
declaration syntax.
1970

Passing User- and System-Defined Classes
Item-Passing Examples

You use a remote procedure declaration to specify which attributes to pass to or
from a remote G2.

The including or excluding of user- or system-defined attributes is specified
through the grammar of a remote procedure declaration. Though a remote
procedure declaration can include multiple variations of its grammar, this section
describes the grammatical options separately. You can combine these options in
any syntactically meaningful way. For example, see:

• Passing a Copy of any Item.

• Passing an Item Excluding User-Defined Attributes.

Within a remote procedure declaration, you can combine such statements, along
with others, to include some attributes and to exclude others.

Passing a Copy of any Item

By default, an item is passed as a copy, with no handle, with all of its user-defined
attributes, and none of its system attributes.

To pass an item with all user-defined attributes:

 declare remote procedure-name (class class-name)

You can pass an item with one or more of its user attributes, by specifying what to
include. Explicitly including one or more user-defined attributes excludes
the remainder.

Example of Passing Copies of Items

Compare the previous example with passing items by copy, using RPCs.

The following example shows that when declaring a remote procedure that takes
an item as its argument, the receiver creates a copy of the original item. Here is the
receiver procedure in the local G2:
1971

The receiver-2 procedure takes an item as argument, posts the name and UUID of
the item to the Message Board, and transfers the item to the workspace:

receiver-2(i: class item)
begin

post "received an item named [the name of i] with UUID "[the text of the uuid of
i]"";

transfer i to this workspace;
end

The remote procedure declaration in the remote G2 takes as its argument an item
and includes the name attribute only:

In the remote G2, the send-item procedure makes a remote procedure call to
receiver-2 across the network interface, passing the item con-post-2 as the
argument:

Here is the send-item procedure:

send-item(itm: class item)
begin

call receiver-2(itm) across interface;
end

Clicking the button in the remote G2 calls receiver-2 across the network, which
creates a new connection post named con-post-2 in the local G2 with this UUID:
1972

Passing User- and System-Defined Classes
This item is a copy of the original item in the remote G2, as the UUID for the
original item in the remote G2 shows:

Including and Excluding Attributes

The next few sections describe the various ways in which you declare a remote
procedure call to include or exclude user- and system-defined attributes through
the item passing argument grammar.

An important point to note is that including or excluding any user- or system-
defined attributes can be declared only once for each argument. Making such
inclusions and exclusions can, therefore, be applicable to multiple items. As an
example, an argument for a remote procedure xproc consists of a sequence. The
sequence being passed to xproc consists of several instances of the same class:

sequence (my-object1, my-object2, my-object3, my-object4)

While the item passing argument grammar permits you to declare which
attributes of the items in an item, sequence, or structure you wish to include or
exclude, the specification applies to all items in the same argument. Thus, in the
example given here, if the my-object class included attributes temperature and
volume, and you specified the remote procedure declaration to include only the
temperature attribute:

declare remote procedure xproc
(sequence including only the user attribute temperature) = (truth-value)

all four objects would be passed with the temperature attribute, and none could
include the volume attribute.

Passing an Item Including User-Defined Attributes

You can pass an item by explicitly including one or more of its user-defined
attributes. Using the including only the user attributes grammar excludes all
remaining user-defined attributes by default.
1973

To pass an item including certain user-defined attributes:

 declare remote procedure-name (class class-name
including only the user {attribute | attributes:} attribute-name [,...]

When specifying more than one attribute, a colon (:) is required after the attributes
statement, and the attributes themselves are separated with a comma (,).

Example of Passing an Item Including User-Defined Attributes

If you specify more than one class in the list of procedure arguments, separate the
class and its attribute specifications within parenthesis, as in this example,
passing a user-defined subclass of procedure as a procedure argument:

declare remote gds-proc-1
(

(class my-proc including only the user attribute height),
(class my-proc including only the user attributes: height, width)

)
= (structure)

Passing an Item Excluding User-Defined Attributes

You can pass an item with all of its user-defined attributes, except for those you
exclude. Explicitly excluding one or more user-defined attributes includes the
remainder. By default, passing any item includes all of its user-defined attributes
and none of its system-defined attributes.

To pass an item excluding certain user-defined attributes:

 declare remote procedure-name (class class-name
excluding the user {attribute | attributes:} attribute-name [,...]

Element Description

class-name The object class.

attribute-name One or more user-defined attributes of the class,
separated by commas. You can precede a single
user attribute with the statement:

including only the user attribute

Such a declaration passes only the user
attributes of the class that you list with the
including only statement. It is incompatible with
the excluding the user attributes: syntax.
1974

Passing User- and System-Defined Classes

When specifying more than one attribute, a colon (:) is required after the attributes
statement, and the attributes themselves are separated with a comma (,).

Passing Attributes with Object Values

User-defined classes can include attributes whose value is an object. An attribute
with an object value can be:

• A user-defined object.

• A list or array.

• A variable or a parameter.

• Any subclass of object.

Further, the object that is the value of an attribute can itself have attributes with
object values.

When passing object values, keep in mind that:

• For objects, the remote G2 must include a compatible class definition for every
object passed, including those included as object values. For a description of
what constitutes a compatible definition, see Creating Compatible Definitions.

• For an object value that is given by a variable or parameter, G2 does not pass
the value unconditionally.

To pass the value of one or more object attributes given by a variable or a
parameter, you must explicitly include the statement:

with system attribute current value of variable-or-parameter

in addition to any other statements about which user- or system-defined
attributes to pass. In the absence of this statement, G2 passes the object, but any
attributes whose values are given by a variable or parameter do not have values.

Element Description

class-name The object class.

attribute-name One or more user-defined attributes of the class,
separated by commas. You can precede a single
user attribute with the statement excluding the
user attribute, omitting the colon.

Such a declaration passes all of the user
attributes of the class, except those listed with
the excluding statement. It is incompatible with
the including only statement.
1975

Example of Passing an Attribute with an Object Value

In this example, the local G2 defines an auto class that includes a tire-pressure
attribute, which is given by a float-variable. The purpose of the RPC is to pass:

• An auto object to the remote procedure, check-pressure.

• Include the float-variable object of the tire-pressure attribute and its
current value.

To do this, use a remote procedure declaration such as the following:

declare remote
check-pressure(class auto including only the user attribute tire-pressure

and including the system attribute current-value of
variable-or-parameter)

= (class auto)

Passing an Item with System-Defined Attributes

You can pass one or more user-accessible system-defined attributes, or those that
you include explicitly. The system attributes that you can pass are those that are
accessible through the attribute access facility and that appear in the G2 Class
Reference Manual.

While many system attributes are user-accessible, not all attributes for every item
are available. For example, you can access most attributes of a workspace, but not
the data structure that represents the items that reside upon a workspace. Thus,
passing a workspace from one G2 to another results in a new workspace on the
remote system, but without any of its associated items. Similarly, you can pass an
item, but if the item has a subworkspace, its subworkspace is not passed to the
remote system.

To determine which system attributes are accessible for each G2 item, see the
G2 Class Reference Manual.

You can pass an item with one or more of its system-defined attributes. By
default, passing any item excludes all of its system-defined attributes.

To pass an item including one or more system-defined attributes:

 declare remote procedure-name (class class-name
including {all system attributes |
the system {system-attribute | system-attributes:} attribute-name [,...]
1976

Passing User- and System-Defined Classes
If an item has more than one name and you specify:

including the system attribute: name of item

only the first name is passed.

Specifying a system attribute that is not applicable for the class, such as entering
current value of variable-or-parameter when the item is not a variable or
parameter subclass, passes the item to the remote G2 process with only its
appropriate user- or system-attributes.

Note Using the special grammar for passing the name of an item, the current value of a
variable or parameter, or the history of a variable or parameter, is the
recommended way of passing each of these three system attributes.

Examples of Passing System-Defined Attributes

The next example specifies two arguments of a user-defined subclass of
procedure. It passes all system-defined attributes with the first argument, and
includes only two attributes with the second:

declare remote gds-proc-1
(

(class my-proc including all system attributes)
(class my-proc including the system attributes:

tracing-and-breakpoints, default-procedure priority)
)
= (integer)

Element Description

class-name The item class.

system-attributes One or more user-accessible system-defined
attributes.

You can precede a single system attribute with
the statement including the system attribute,
omitting the colon. Such a declaration passes
the system-defined attributes that you specify.

You can specify these system-defined attributes
explicitly:

• name of item, which specifies the name of
the item being passed

• current value of variable-or-parameter

• history of variable-or-parameter
1977

This example shows the remote procedure declaration passing the current value
and the history of an integer variable, and the name of a tank item:

declare remote special-attributes
(

(class integer-variable including the system attributes:
current value of variable-or-parameter,
history of variable-or-parameter),

(class tank including the system attribute name of item)
)

= (sequence)

Passing Both User- and System-Defined Attributes

You can specify both user- and system-defined attributes for a single remote
procedure argument, using any combination of values. Here is an example of how
to pass history values along with a user-defined attribute.

declare remote
pc-check(class pc including only the user attribute memory-size and

including the system attribute history of variable-or-parameter)
= (class pc)

Passing an Item with Attributes and a Handle

The ability to pass an item handle, in addition to any user or system attributes,
has been implemented for use in G2 Gateway. While the grammar to support this
functionality exists, using the optional [with handle] statement is not applicable to
G2-to-G2 item passing.

Specifying One or More Remaining Arguments

After declaring the specific arguments of a procedure, you can optionally specify
zero or more remaining arguments of one type using the all remaining statement
as the last part of the remote procedure declaration.

To specify a remaining number of arguments:

 all remaining {item-or-value | value }

Example of Passing Remaining Arguments

This example declares a procedure with the first three arguments as:

• item-or-value

• value

• sequence
1978

Passing User- and System-Defined Classes
The remaining arguments are declared as all remaining item-or-value:

declare remote test-proc1
(

(item-or-value including only the user attribute foo),
(value excluding the user attributes: volume, temperature

and including all system attributes),
(sequence including only the user attribute capacity),
all remaining item-or-value

)

= (integer)

Passing Network Handles as the Class in RPCs

You can pass the network handle of an item as an argument to an RPC in remote
G2, where the receiving procedure in the local G2 expects an item, and G2
attempts to replace the handle with the item before calling the procedure. If G2
does not find an item with that network handle, or if the handle is not of the class
the procedure is expecting, it signals a type-mismatch error to the caller.

Note To call a G2 procedure with a network handle in order to rendezvous with an
item, the procedure must declare its argument type to be a class of item; the
procedure cannot declare it to be an item-or-value.

Note To use this feature, you must register the item in the local G2 and pass the local
network handle as the argument to the RPC. For example, you might register a
number of items in the local G2 and pass a list of network handles to the remote
G2, which can then be used to call a procedure remotely in the originating G2
where item rendezvous can now occur.
1979

This figure illustrates how item rendezvous occurs when passing network
handles:

This feature is similar to the feature whereby you can pass the UUID of an item to
a G2 procedure via an RPC call when the receiving procedure expects an item. For
details, see Passing UUIDs Referring to Items in RPCs.

Example of Passing Handles as the Class

For example, in the local G2, suppose you have an item named con-post that you
want to pass as the argument to a procedure named receiver, which you are
calling from a remote G2:

Here is the receiver procedure in the local G2, which takes an item as its argument
and simply posts the name of the item to the Message Board. Notice that the
procedure argument is declared to be a class of item, not item-or-value.

receiver(i: class item)
begin
post "received an item named [the name of i]";

end

Local G2 Remote G2

receiver(itm: class item)
begin

. . .
end

Remote
Procedure
Declaration

declare remote
receiver (value) = ()

network registration
handle in local G2

Item

Item

Receiving
procedure

Procedure
sending
network
handle

Item must
be registered
in local G2.
1980

Passing User- and System-Defined Classes
In the remote G2, you would define a G2-to-G2 interface and declare the remote
procedure. Notice that the remote procedure declaration takes as its argument a
value, which is the argument type that is being passed to the RPC in the remote
G2, namely, a network handle.

In the remote G2, you can make a remote procedure call to receiver across the
network interface, passing the network handle as the argument, in this case, the
integer 1. Note that this integer is the network handle of the item registration in
the local G2, which you must generate locally and pass to the remote G2.

Here is the send-handle procedure, which makes the remote procedure call,
passing the network handle as the argument, instead of the item:

send-handle(handle: integer)
begin
call receiver(handle) across interface;

end

Clicking the button in the remote G2 calls receiver across the network, replacing
the network handle with the item, which posts the name of the item in the
Message Board:
1981

Passing UUIDs Referring to Items in RPCs

You can pass the text of the UUID of an item as an argument to an RPC in a
remote G2, where the receiving procedure in the local G2 expects an item, and G2
attempts to replace the UUID with the item before calling the procedure. If G2
does not find an item with that UUID, or if the UUID is not of the class the
procedure is expecting, it signals a type-mismatch error to the caller.

Note To call a G2 procedure with a UUID in order to rendezvous with an item, the
procedure must declare its argument type to be a class of item; the procedure
cannot declare it to be an item-or-value.

This figure illustrates how item rendezvous occurs when passing UUIDs:

This feature is similar to the previously undocumented feature whereby you can
pass a network handle to a G2 procedure via an RPC call, where the receiving
procedure expects an item.

Local G2 Remote G2

receiver(itm: class item)
begin

. . .
end

Remote
Procedure
Declaration

declare remote
receiver (value) = ()

UUID

Item

Item

Receiving
procedure

Procedure
sending
UUID
1982

Passing User- and System-Defined Classes
Example of Passing UUIDs Referring to Items

For example, in the local G2, suppose you have an item named con-post that you
want to pass as the argument to a procedure named receiver, which you are
calling from a remote G2:

Here is the receiver procedure in the local G2, which takes an item as its argument
and simply posts the name of the item to the Message Board. Notice that the
procedure argument is declared to be a class of item, not item-or-value.

receiver(i: class item)
begin
post "received an item named [the name of i]";

end

In the remote G2, you would define a network interface and declare the remote
procedure. Notice that the remote procedure declaration takes as its argument a
value, which is the argument type that is being passed to the RPC in the remote
G2, namely, a UUID.
1983

In the remote G2, you can now make a remote procedure call to receiver across
the network interface, passing the text of the UUID as the argument:

Note You can also pass the UUID in compressed format; however, note that you cannot
see the value of the UUID in compressed format like you can the text format.

Here is the send-uuid procedure, which makes the remote procedure call, passing
the UUID as the argument, instead of the item:

send-uuid(uuid: text)
begin
call receiver(uuid) across interface;

end

Clicking the button in the remote G2 calls receiver across the network, replacing
the UUID with the item, which posts the name of the item in the Message Board in
the local G2:
1984

63
G2 Gateway
Describes the system-defined items that permit GSI interfacing.

Introduction 1985

Using G2 Gateway to Exchange Data 1986

Using GSI Interface Objects 1987

Creating GSI Variables 1988

Using GSI Message Servers 1989

Introduction
The G2 Gateway standard interface (GSI) product is a network-oriented toolkit
used for developing software interfaces, or bridges, between G2 and other
external systems. G2 Gateway allows knowledge bases (KBs) to exchange various
types of data between the G2 process and the bridge.

The G2 Gateway bridge is itself a process that communicates with G2 over the
TCP/IP protocol, using a gsi-interface object.

This chapter describes the system-defined objects that enable data exchange
between a G2 process and G2 Gateway. For a complete description of G2 Gateway
and the objects that support it, see the G2 Gateway Bridge Developer’s Guide.
1985

Using G2 Gateway to Exchange Data
To enable communications between a G2 process and a bridge, you create one or
more gsi-interface items, which specify the protocol to use, along with other
relevant information about the remote process.

The GSI interface object acts as a doorway between G2 and the G2 Gateway
bridge (formerly known as GSI). Through the interface object, the KB receives
data from and sends data to a bridge process.

Both the G2 process and the bridge are capable of sending and receiving data. G2
has the ability to pass knowledge as follows:

A G2 Gateway bridge process provides these additional capabilities:

• Once-per-second G2 polling, which permits G2 to obtain unsolicited data
from the bridge process once every second.

• External scheduling (reporting by exception), indicating that value updates
for variables occur automatically from the bridge process. G2 essentially turns
off data seeking for the GSI variable, since it infers that updates will occur
from the bridge. For a description of how G2 performs data seeking, see
Obtaining Values for Variables.

Both of these capabilities are invoked by certain attribute settings in the GSI
interface object, and are described fully in the G2 Gateway Bridge Developer’s Guide.

From the G2 process, use remote procedure declarations to pass values, items,
and objects to the GSI process. For a description of how to specify remote
procedure declarations for data passing, see Using Remote Procedure Calls. The
arguments are identical whether G2 is communicating to another G2 process or to
a bridge.

G2 can also send text messages and acknowledgments to a bridge. Passing text
and acknowledgments requires the use of GSI message objects.

You can use G2’s publish/subscribe facility for event notification in distributed
applications. For details, see Publish/Subscribe Facility.

Type of Exchange Description

Value passing Provides a value for a GSI variable from the bridge.
GSI variables have GSI as their data server.

Item passing Passes any item or object, with some set of its
attributes, to the bridge process.
1986

Using GSI Interface Objects
Using GSI Interface Objects
The GSI interface object is an item of the gsi-interface class that lets you send
values to, and receive values from, an external GSI process, using the TCP/IP
communications protocol.

Creating a GSI Interface Object

To create a GSI interface object:

 Select KB Workspace > New Object > network-interface > gsi-interface.

The attribute table of a GSI interface object is:

For a complete description of each of the gsi-interface object attributes, see the
G2 Gateway Bridge Developer’s Guide.

Locating GSI Interface Objects on Activatable
Subworkspaces

Locating GSI interface objects on an activatable subworkspace lets you control the
objects programmatically. By activating or deactivating the subworkspace upon
which a GSI interface object resides, you can activate or deactivate the object.
1987

You can also use a conclude action to control activation. Concluding the
gsi-connection-configuration attribute to have no value closes the connection.

Creating GSI Variables
A GSI variable is a variable subclass that includes gsi-data-service as one of its
direct superior classes.

To create a GSI variable:

1 Define a subclass of any of the system-defined variable classes, and include
the mixin class gsi-data-service as one of the direct superior classes. The mixin
provides the additional attributes needed for GSI data service. Give the
subclass any unique name.

2 Edit the Attribute-initializations validity-interval attribute to specify any time
interval, or indefinite. Data servers other than the Inference Engine cannot
have a validity interval of supplied, which is the default.

You can also customize the new class in any other way.

3 Create an instance of the new class and open its table.

By using the gsi-data-service mixin class, the data-server attribute of the variable
is set to GSI data server, and two additional attributes, gsi-interface-name and
gsi-variable-status have been added.

Specifying the GSI Interface Name

The gsi-interface-name attribute specifies the name of the GSI interface object
through which this variable will obtain values from the bridge. You must specify
an interface object name to enable data services from the GSI process.

When creating GSI variables programmatically, complete this attribute last, since
its completion causes the variable to become active immediately, unless the
variable resides on an activatable subworkspace not yet activated.

Determining the Status of the Variable

The gsi-variable-status attribute indicates the status code of the external data
point or the variable mapped to this GSI variable. You cannot change the value of
this attribute since it is provided by the bridge process.

For information about using the attribute-initializations attribute and creating
subclasses, see Specifying Default Values for Inherited Attributes.
1988

Using GSI Message Servers
Using GSI Message Servers
A GSI message server is a user-defined object or message class that includes
gsi-message-service as one of its direct superior classes. Such items can send and
receive text messages and acknowledgments from a bridge process.

To create a GSI message server:

1 Define a subclass of any item, object, or message class, and include the mixin
class gsi-data-service as one of the direct superior classes. The mixin provides
the additional attribute needed for GSI data service. Give the subclass any
unique name.

You can also customize the new class in any other way.

2 Create an instance of the new class and open its table.

By using the GSI message service class, the item includes the gsi-interface-name
and the data-server-for-messages attributes. Enter the name of the GSI interface
object through which you wish to transmit messages and acknowledgments. By
default, the value of the Data-server-for-messages attribute is gsi-data-server.

Use inform actions to send messages to the bridge through the GSI message
server. For example, if P1 is a GSI message server object with a temp attribute, a
whenever rule such as this would inform the bridge about some event that
occurred in P1.

whenever the temp of P1 receives a value and when the temp of P1 >= 200
then inform P1 that "The temperature of [the name of P1]

is above average."
1989

1990

64
Interfacing with
COM Applications
Describes the system-defined items that allow communication with COM
appliations.

Introduction 1991

Using the G2Gateway Control 1992

Managing G2 Items 1993

Using the WorkspaceView ActiveX Control 1993

Introduction
G2 ActiveXLink enables you to establish communications between G2 and a
COM-compliant application running under Windows XP, Windows 2003, or
Windows 2000. This chapter discusses the G2Gateway control and the
WorkspaceView control for use within COM-compliant containers.

For a detailed description of G2 ActiveXLink, see the G2 ActiveXLink User’s Guide.
1991

Using the G2Gateway Control
G2 ActiveXLink enables container applications and languages that support
Microsoft COM, such as Microsoft Office, Microsoft Visual Basic, Visual C++,
Microsoft Internet Explorer, and Active Server Page (ASP) to communicate with
G2. G2 ActiveXLink provides the G2Gateway control, which:

• Enables users to invoke procedures in a G2 server, passing any number of
arguments and returning any number of arguments with as little as a single
line of code.

• Automatically maps data types.

• Supports both synchronous (blocking) and nonblocking calls.

• Can be used safely in multi-threaded applications because G2 ActiveXLink is
thread-safe.

• Creates connections to multiple G2 servers at the same time.

• Automatically manages connections to the G2 server.

• Stores configuration information, such as the G2 server location as a visually
configurable property.

Additionally, the G2 server can invoke logic in the COM-compliant container
application with or without return arguments. Clients, the container applications,
can post messages on the G2 Message Board.

The following Visual Basic code fragment shows how compact and powerful calls
to G2Gateway can be:

Private Sub Form_Load()
Call G2Gateway1.PostMessage("Hello from Visual Basic!")
Call G2Gateway1.Call("My-Procedure",1,123,3.1415,True)

End Sub

The Form_Load() function automatically:

• Creates a connection to a G2 server.

• Posts a message to the G2 Message Board.

• Calls the G2 procedure my-procedure with four arguments.

The G2 server resides at the TCP/IP address specified in the G2Location property
of the G2Gateway1 object inserted in the Visual Basic form. The G2Gateway1 object
is an instance of the G2Gateway class in G2 ActiveXLink.
1992

Managing G2 Items
Managing G2 Items
G2Gateway is a control that you normally place on a form at design time, although
it is not visible at run time. G2 ActiveXLink also defines a number of classes,
which are not controls so they are not visible and are, therefore, only available at
run time. These classes include:

• G2Symbol

• G2Structure

• G2Item

• G2List and G2Array

• G2Workspace

• G2Window

You use these classes to represent G2 items in you COM application. By default, a
G2Item is a static copy of the item in G2. You can also create a G2Item so that is
linked to the item in G2, which means the item updates automatically in both
directions when changes occurs.

G2Item defines a number of methods for subscribing to various events on the
item. These events occur on the G2Gateway to which the G2Item is linked.
G2Gateway provides notification for these events: attribute changes, item
deletions, icon color changes, variable or parameter value changes, and custom
events.

Using the WorkspaceView ActiveX Control
The WorkspaceView ActiveX control allows you to view KB workspaces inside
Microsoft COM-compliant containers, such as Internet Explorer or Visual Basic.

Note The WorkspaceView ActiveX control only works with Microsoft Internet Explorer,
Version 4.0 or higher. We recommend that you use Version 5.5 or higher.

The WorkspaceView control connects to the G2 server through a G2Gateway
ActiveX control, which is available as part of G2 ActiveXLink. Before you can use
the WorkspaceView control, you must register the G2Com DLL. You must also
register the control.

Each G2Gateway connection that displays a workspace view starts an embedded
Telewindows, without a top-level window, and, therefore, consumes a
Telewindows license. Each G2Gateway can display multiple workspace views.
You are restricted as to the number of connections you can make, based on the
number of Telewindows licenses you have.
1993

The control provides properties and methods that allow you to:

• Connect to a G2Gateway instance.

• Specify the name or UUID of a KB workspace to show in the view.
1994

65
Interfacing with
Java Applications
Describes the system-defined items that allow communication with Java
appliations.

Introduction 1995

Ui-Client-Interface 1996

Ui-Client-Item and Ui-Client-Session 1996

Introduction
G2 JavaLink provides a set of Java components and classes that you can use to
communicate with Java/RMI applications. To create G2 applications that
interface with Java, you use the following classes:

• ui-client-interface

• ui-client-item

• ui-client-session

For information on how to use these classes, see the G2 JavaLink User’s Guide.
1995

Ui-Client-Interface
The ui-client-interface class is a subclass of the gsi-interface class as this
hierarchy shows:

You create a ui-client-interface class to communicate between G2 and G2 JavaLink
clients. For more information, see G2 Gateway.

Ui-Client-Item and Ui-Client-Session
The ui-client-item class is the superior class of the g2-window class and the
ui-client-session class, as this hierarchy shows:

Typically, you refer to a ui-client-item as an argument to procedures and methods
when you want to include the G2 window, as well as any G2 JavaLink clients. For
example, the following G2 system procedure takes a ui-client-item as an argument
to determine the remote process to kill:

g2-kill-remote-process
(process-id: float, remote-win: class ui-client-item, timeout: value)
-> process-killed: truth-value

When a G2 JavaLink client connects to G2, a ui-client-session is created for each
connected client.
1996

66
Interfacing with
Web Services
Describes how to interface with Web service applications.

Introduction 1997

Web Services 1998

HTTP 2003

SOAP 2004

Introduction
According to the World Wide Web Consortium (W3C) Web Services Architecture
Working Group Note (http://www.w3.org/TR/ws-arch/):

A Web service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface described
in a machine-processable format (specifically WSDL). Other systems interact
with the Web service in a manner prescribed by its description using SOAP
messages, typically conveyed using HTTP with an XML serialization in
conjunction with other Web-related standards.

This chapter provides an overview and examples of how G2 can interface with
Web service applications.

For detailed information on the system procedures used in this chapter, see Web
Operations in the G2 System Procedures Reference Manual
1997

Web Services
G2 can act as a Web service requester agent (client), using the following system
procedures:

• g2-import-web-service-description — Creates a Web service description item
from a URL on the Web.

• g2-import-web-service-description-from-xml-text — Creates a Web service
description item from XML text.

• g2-invoke-web-service-operation — Invokes a remote web service operation.

These system procedures are located in g2web.kb, which is located in the
\g2\kbs\utils or /g2/kbs/utils directory of your installation, depending on
your platform.

Web Service Messages

A Web service message is a structure whose attributes correspond to WSDL
message parts. The value of a message part attribute is either a text, an XML
element value, or a sequence of XML element values.

An XML element value is a structure representing an XML element with this
syntax:

structure
(tag-name: text,
attributes: structure,
children: sequence)

where:

• tag-name is the element tag name. This attribute is required.

• attributes is a structure containing named attribute values, which are texts.
This attribute is optional.

• children is a sequence of XML elements and/or texts. This attribute is
optional.

Attribute names use the same correspondence between XML names and G2
symbols used by G2GL, for example, myAttribute becomes my-attribute.
1998

Web Services
For example, this XML text:

<elt attrName="attrValue"><child>text1</child>text2</elt>

corresponds to this XML element value:

structure
(tag-name: "elt",
attributes: structure (attr-name: "AttrValue"),
children: sequence

(structure (tag-name: "child", children: sequence("text1")), "text2"))

Importing Web Service Descriptions

The first step in interfacing with a Web service is to create a Web service
description object from the XML text that describes a Web service. G2 creates a
web-service-description item based on the XML text.

For example, http://www.webservicex.net/WeatherForecast.asmx?WSDL
provides the XML service description for a Web service that provides weather
forecasts for a given location. To interface with the Web service, you create a Web
service description object by calling the g2-import-web-service-description system
procedure, providing the URL as the argument. This downloads the WSDL
document from the Web. Alternatively, you can provide the WSDL document
directly in a text, by calling the g2-import-web-service-description-from-xml-text
system procedure.

The following procedure calls g2-import-web-service-description on a URL. The
procedure transfers the resulting web-service-description object to the workspace
of an item.

import (URL: text, item: class item)
description: class web-service-description;
begin

description = call g2-import-web-service-description(URL);
transfer description to the workspace of item at (the item-x-position of item,
the item-y-position of item - 50);

end
1999

This example shows the result of importing the XML text on the subworkspace of
the weather.wsdl button. The resulting web-service-description object appears on
the workspace of the import button. The Web service description object is defined
in the http://www.webservicex.net target namespace.

Here is part of the free-text named weather.wsdl-text on the subworkspace of the
import button:

Invoking Web Service Operations

To invoke a Web service operation, you call g2-invoke-web-service-operation
with the following arguments:

• An endpoint-reference structure with this syntax:

structure
(service-namespace: text,
service-name: text,
endpoint-name: text)
2000

Web Services
• An operation name, as a symbol.

• An input message, which is a Web service message structure.

For example, the following procedure invokes the Web service operation named
GetWeatherByZipCode. The input message is a structure with -ZIP-CODE as the
attribute name, which corresponds to the ZipCode message part name. The
endpoint name and output message part name are provided as arguments to the
procedure.

weather-forecast-get-weather-by-zip-code(zip-code: text, endpoint-name: text,
result-field: symbol)

endpoint-reference: structure =
structure (service-namespace: "http://www.webservicex.net",

service-name: "WeatherForecast",
endpoint-name: endpoint-name);

operation-name: text = "GetWeatherByZipCode";
input-message: structure = structure(-ZIP-CODE: zip-code);
output-message: structure;
weather: sequence;
begin

output-message = call g2-invoke-web-service-operation(endpoint-reference,
operation-name, input-message);

weather = call remove-whitespace(the value that is an attribute of
output-message named by result-field);

post "[weather]";
end

This action invokes the weather-forecast-get-weather-by-zip-code procedure for
the given zip code, using a SOAP request. The -GET-WEATHER-BY-ZIP-CODE-
RESULT result field corresponds to the WSDL element named
GetWeatherByZipCodeResult.

start weather-forecast-get-weather-by-zip-code("04553", "WeatherForecastSoap",
the symbol -GET-WEATHER-BY-ZIP-CODE-RESULT)

Similarly, this action invokes the weather-forecast-get-weather-by-zip-code
procedure for the given zip code, using an HTTP request. The -WEATHER-
FORECASTS result field corresponds to the WSDL element named
WeatherForecasts.

start weather-forecast-get-weather-by-zip-code("04553", "WeatherForecastHttpGet",
the symbol -WEATHER-FORECASTS)
2001

Here is the resulting Message Board, which shows a sequence of XML element
values with information about the zip code location and details about the weather
for various days.

Invoking Web Service Operations from G2GL

You can invoke Web service operations from a G2GL Invoke activity by
specifying the default-value-for-g2gl-variable attribute of a partner link variable to
be an endpoint reference specification, to represent a link to a remote Web service,
with the following syntax:

service-namespace: service-namespace, service-name: service-name,
endpoint-name: endpoint-reference

Header data

WeatherData
2002

HTTP
The endpoint-reference is a structure with this syntax:

structure
(service-namespace: text,
service-name: text,
endpoint-name: text)

An Invoke activity that uses a partner link variable containing an endpoint
reference invokes an operation on the remote Web service specified by the
endpoint reference. The g2\kbs\utils\g2web.kb module must be loaded to
enable G2GL to communicate with remote Web services.

Note that the Invoke activity waits for the operation to complete, even in the case
of one-way communication where there is no reply; for example, invoking an
HTTP operation waits for the HTTP response before continuing, because HTTP is
a synchronous protocol.

For an example, see the Shakespeare demo in g2web-demo.kb located in the
g2\kbs\demos directory.

HTTP
G2 can act as a Web server and client, using the following system procedures:

• g2-start-http-server — Starts a task that listens on a given TCP/IP port for
HTTP requests and passes them to the dispatch procedure of the specified
server. The dispatch procedure processes HTTP requests on the server.

• g2-shutdown-http-server — Stops the listener task of the specified server.

• g2-send-web-request — Sends a request to a Web server at a given URL,
returning the response when it arrives, where:

– The request is a structure with these attributes: method, headers,
and entity.

– The response is a structure with these attributes: http-version, status-code,
reason-phrase, headers, transfer-length, and connection.

Listening for HTTP Requests

The following example shows the result of starting an HTTP server that listens on
port 8080 for HTTP requests. The echo-server object is an http-server, which
specifies echo-dispatch as the http-server-dispatch procedure for handling HTTP
requests. When the server is started, the http-server-port of the http-server is set to
the specified port.
2003

Here is the echo-dispatch procedure, which takes an http-server and a request
structure as arguments. The procedure handles SOAP requests, HTTP requests,
and HTTP file requests.

echo-dispatch(server: class http-server, request: structure) = (structure)
filestring: text;
response: structure;
begin

post "Echo server received:
[request]";
if the path of request = sequence("soap") then

response = call g2-handle-http-request-as-soap(server, request, soap-echo)
else if the path of request = sequence("echo") then

response = call http-echo(request)
else begin

filestring = call resolve-http-request-path(the path of request, server-root);
response = call handle-http-request-from-file(server, request, filestring)

end;
 post "Echo server replied:
[response]";
 return response
end

For a description of handling HTTP requests as SOAP, see SOAP.

For the procedures used to handle HTTP requests and HTTP file requests, see the
g2web-demo.kb.

Sending a Web Request

SOAP
G2 can send and receive SOAP 1.1 requests, using the following system
procedures:

• g2-send-soap-request — Sends a SOAP request to a SOAP receiver at a given
URL, returning the SOAP response when it arrives, where:
2004

SOAP
– The request is a structure with these attributes: header-entries,
body-entries, and action.

– The response is a structure with these attributes, header-entries and
body-entries.

• g2-handle-http-request-as-soap — Converts an HTTP request message into a
SOAP request structure, passes it to a dispatch procedure, and converts the
resulting SOAP response structure into an HTTP response. This system
procedure is intended to be called by the http-server-dispatch procedure of an
http-server, as shown in Listening for HTTP Requests.

For a description of XML elements for the request, see Web Service Messages.

Sending a SOAP Request

This procedure sends a SOAP request to an HTTP URL by calling g2-send-soap-
request:

send-soap-echo-request()
URL: text = "http://localhost:[the http-server-port of echo-server]/soap";
request: structure = structure(

action: "http://gensym.com/soap-echo",
body-entries: sequence(sequence("testing", "123")));

response: structure;
body-entries: sequence;
begin

post "SOAP echo request:
[request]";
response = call g2-send-soap-request(URL, request);
body-entries = call remove-whitespace(the body-entries of response);
post "SOAP echo response:
[body-entries]";

end

Here is the soap-echo procedure that is the action of the SOAP request:

soap-echo(server: class http-server, request: structure) = (structure)
header-entries: sequence = sequence();
begin

if the header-entries of request exists then header-entries = the header-entries of
request;

return structure (body-entries: sequence(
sequence("action", structure(uri: the action of request)),
insert-at-beginning(header-entries, "header-entries"),
insert-at-beginning(the body-entries of request, "body-entries")));

end
2005

This figure shows the result of calling send-soap-echo-request:
2006

67
Interfacing with
TCP/IP Sockets
Describes the system-defined items that allow communication with TCP/IP
sockets.

Introduction 2007

TCP/IP Socket Communication 2007

Socket I/O 2008

Introduction
This chapter describes the classes and system procedures for communicating with
TCP/IP sockets.

For details, see Network Reading and Writing in Network Operations in the
G2 System Procedures Reference Manual.

TCP/IP Socket Communication
G2 provides the g2-socket class and various system procedures for managing
network connections, using TCP/IP sockets, such as HTTP, and performing
input/output operations to read and write data.

You use the following system procedures to manage connections to TCP/IP
sockets, all of which allow other processing:

• g2-tcp-connect

• g2-tcp-listen
2007

• g2-tcp-accept

• g2-tcp-close

Socket I/O
The following system procedures, implemented as methods on the g2-socket
class, write data to a socket:

• g2-write-string

• g2-write-bytes

The following system procedures read data from a socket:

• g2-read-block

• g2-read-byte

• g2-read-bytes-as-text

• g2-read-bytes-as-sequence

• g2-read-line

In general, the system procedures that perform I/O through sockets uses the
same procedure names as the system procedures that perform I/O using streams.
However, note that the I/O system procedures for both sockets and streams are
implemented as methods rather than as procedures. All system procedures allow
other processing.
2008

68
Foreign Functions
Describes how to call C or C++ foreign functions from within G2.

Introduction 2009

Foreign Functions Examples 2010

Using Foreign Functions 2012

Creating a Foreign Function Template File 2013

Using the Overlay Utility through the Makefile 2016

Starting and Connecting to the Foreign Image 2018

Declaring a Foreign Function in a KB 2020

Using a Foreign Function 2022

Disconnecting from the External Foreign Function 2023

Introduction
In G2, the term foreign function refers to a function written in C or C++ code that
a KB can access as if it were a local function. The foreign function interface is
platform-independent and efficient, allowing you to isolate G2 from the effects of
possible coding errors.

The term foreign image describes an executable file, external to G2, that contains
the foreign functions you plan to call from your KB.

A foreign function call is synchronous. G2 does not perform other tasks until the
function returns or times out. For asynchronous calls to C functions, see the
2009

description of GSI remote procedure calls, described in the G2 Gateway Bridge
Developer’s Guide.

You can start foreign images two ways:

• As an external process, independent of G2 control.

• By spawning a process from within G2.

Several advantages to using external foreign image processes are:

• You can run a foreign image on a computer other than the one on which G2
is running.

• Using an external foreign image can prevent excessive memory usage on
certain platforms during process spawning.

• A separately running foreign image is easier to debug.

Note On Windows platforms, you need G2 Gateway in order to build foreign
functions. If you have installed the G2 Bundle without G2 Gateway, you must
install this component in order to build foreign functions.

Foreign Functions Examples
The ext subdirectory of the G2 product directory contains files that help you
build a sample foreign image.

The samples subdirectory of the kbs directory in the g2 directory contains
fgntest.kb, which contains examples of foreign function invocation.
2010

Foreign Functions Examples
Creating a Sample Foreign Image

The files for creating a sample foreign image are:

To create a sample executable foreign image:

 Use the makefile to build an executable foreign image called fgntest.fgn.

Creating fgntest.fgn makes an executable from which the foreign functions in
fgntest.c can be called from G2.

Calling the Sample Foreign Functions

Once the executable foreign image exists, you can use its functions from within
G2 by loading the fgntest.kb file, which includes sample foreign function
declarations that use the functions declared in the foreign image.

File Description

fgntest.tpl A template file that includes several functions,
and their argument descriptions. The sample
functions are:

cc_add_integers
cc_add_reals
cc_append_text
cc_append_symbols

fgntest.c A sample C file that contains the functions listed
in the template file, and which can be linked
into a foreign image.

foreign.h The header file to include for foreign functions.

makefile A makefile that you complete to build an
executable foreign image, and which invokes
the overlay.exe program to build an
executable foreign image: fgntest.fgn.

overlay The Overlay utility, which you use to build an
executable foreign image. Depending on the
platform, this file may have a .exe extension.
2011

To call the sample foreign functions available in fgntest.fgn:

1 Start G2.

2 Load this KB:

\g2\kbs\samples\fgntest.kb (Windows)
/g2/kbs/samples/fgntest.kb (UNIX)

3 One way to connect to the foreign image you created is by choosing
Main Menu > Miscellany > Connect To Foreign Image.

Starting and Connecting to the Foreign Image and Connecting to an External
Process Foreign Image provide more information about starting a foreign
image.

4 Enter the name of the foreign image you created.

After connecting to the foreign image, you can use the simple examples of
invoking foreign functions that the fgntest.kb provides.

Using Foreign Functions
To use foreign functions, you collect existing C source files into an executable
foreign image to which G2 connects. Gensym provides utilities to help you
complete the steps for creating and using a foreign image.

To use foreign functions in a KB:

1 Create the template file based on the functions in one or more C source files.

2 Use the Gensym-provided makefile as a basis for using the Overlay utility to
create an overlay C source file from the template file and for compiling and
linking the appropriate files.

3 If the foreign image is a separate external process, start it. The foreign image
must be running by the time the connect to external foreign image command
is executed in G2, as described in Starting and Connecting to the Foreign
Image.

4 If the foreign image is not presently running as an external process, connect to
the foreign image from within G2. Note that connecting also starts the foreign
image, unless you are connecting to an external image, as in Step 3. For a
description of connecting to the image from within G2, see Connecting to an
External Process Foreign Image.

5 Create a foreign function declaration in G2 that indicates the name of the
functions.

6 Use the foreign function as you use any other function within G2.
2012

Creating a Foreign Function Template File
7 Disconnect from the foreign image when you no longer need its functions.
Disconnecting does not cause an external foreign image to exit, although it
does terminate a foreign image spawned by G2.

Note Typically, you complete steps 1 – 3 at the command line of your system
(independently from G2) and steps 4 – 7 from within G2. To automate one or
more of the command line steps, you can use the system procedure g2-spawn-
process-to-run-command-line along with other various file accessing system
procedures, described in the G2 System Procedures Reference Manual.

The remaining sections describe each of these steps, which you should
complete sequentially.

Creating a Foreign Function Template File
This is the first step to using a foreign function. The template file declares the
names, arguments, and return value of each of the foreign functions in the foreign
image. Each foreign function can return only a single value.

While there is no limit to the number of arguments for a foreign image, each
symbol or text argument or result cannot exceed 64K.

Gensym provides the fgntest.tpl template file, located in the \g2\ext
(Windows) or /g2/ext (UNIX) subdirectory of your G2 product directory. Create
a new template file, or edit the sample template file, with any text editor. The
template file describes the arguments and return values of each function in the
existing C source file. The template file can have any name and extension. The
example here uses the sample file name fgntest.tpl.

The template file lists each function on a separate line, using the syntax:

return-type function-name-in-c function-name-in-G2 argument-types

Template Syntax Description

return-type The G2 data type of the value the foreign
function returns. Foreign functions return a
single value. They do not return multiple values
or non-values as do C structures or pointers.

Possible data types are integer, float, symbol,
and text.

function-name-in-c The name of the foreign function as it appears in
the original C source code. In keeping with C
coding rules, do not use hyphens in names.
2013

C and C++ Data Types and Character Conversion

The data types of C and C++ convert to the G2 data types as the next table
describes:

function-name-in-G2 The name of the function as it will appear in the
foreign image, and thus what you will call in G2.

argument-types The number and data types of the C function
arguments. Possible argument types are integer,
float, symbol, and text.

Template Syntax Description

C Or C++ Data Type G2 Data Type

double float

G2 floats are transformed to and from C doubles
in IEEE format.

long integer

G2 integers are transformed to and from C longs.

It is not possible to get more than 30-bit integers
in G2 by returning them from a foreign function;
the values simply wrap around to fit inside 30
bits.

If you need more precision, consider casting to
type double and using G2 type float.
2014

Creating a Foreign Function Template File
A single template file can contain functions from multiple C source files, as long
as each function appears on its own line.

For example, the next diagram shows part of the sample C source file, fgntest.c,
containing two functions that you want to access from within G2:

cc_add_integers
cc_add_reals

*char text

G2 text is transformed between C character arrays
as is, including G2’s internal representations of
some character sequences.

Due to G2’s internal representation of text
characters, we recommend against returning
anything other than alphanumeric characters
from a foreign function. As a special case that is
useful with special character sets, it is permissible
to return a text string exactly as received from G2
as the argument of a foreign function.

*char symbol

G2 symbols are transformed to and from C
character arrays, so the previous description is
applicable.

C Or C++ Data Type G2 Data Type
2015

The diagram also shows the template file you would create to hold information
about the functions that the original C source file contains:

You should now have two files:

• The original C source file(s), fgntest.c.

• The new template file, fgntest.tpl, which you require for the next step.

Using the Overlay Utility through the Makefile
The next step to creating a foreign image is to use the Overlay utility and to
compile and link the appropriate files.

Gensym provides the Overlay utility specifically for use with foreign functions.
The utility takes the template file as an input file and outputs a C source file,
called an overlay file, which marshals the arguments and return types for use by
G2. The Overlay utility resides in the ext subdirectory of the G2
product directory.

Gensym also provides the foreign.h and the icp.h header files, and the
libforgn.lib library, which are all used by the makefile as part of compiling and
linking the files.

In conjunction with using the Overlay utility, Gensym also provides a platform-
specific makefile, also located in the ext subdirectory. The makefile calls the
Overlay utility, and compiles and links the files you need to create the
foreign image.

C source file

Template file
2016

Using the Overlay Utility through the Makefile
Completing the Makefile Global Variables

The makefile that Gensym provides is an example. As such, you need to complete
several global variables before using the makefile:

If you are building the example foreign image with the files Gensym provides,
edit the makefile as the preceding table describes.

If you are building a foreign image with your own C source and template files,
edit the makefile as the preceding table describes and include the appropriate
source and template files.

Note The name that you provide for the executable foreign image must have a suffix of
.fgn so that G2 can locate it in your directory. In the sample makefile, the file
name is fgntest.fgn.

Use this variable name... For the...

C_DIR Location of the C source file if
other than the makefile directory.

OBJ_DIR Location of the obj files if other
than the makefile directory.

EXE_DIR Directory in which to place the
resulting executable.

TEMPLATE_DIR Location of the template file you
created if other than the makefile
directory. By default, the makefile
assumes that the template file
resides in the same directory as the
C source file, so you do not have to
complete this value.

OVERLAY_DIR The location of the overlay
executable.

H_DIR The location of the required
header files.

CC_FLAGS

LIB_DIR The location of the required
libraries.
2017

Running the Makefile

On UNIX platforms, run the Gensym makefile as you would any other makefile
on your platform.

On Windows platforms, you must use the Microsoft Visual C++ compiler, version
6.0 or higher.

Starting and Connecting to the Foreign Image
To use a foreign image once it exists, the image must be started as a process, and
G2 must connect to the foreign image. The two ways to start a foreign image are:

• From the command line by starting the foreign image as a process. If you start
a foreign image a s separate process, you must then connect to the image from
within G2 as described in Connecting to an External Process Foreign Image.

• From within G2 by connecting to the foreign image as described in Starting a
Foreign Image from within G2.

Starting the Foreign Image as an External Process

To start the foreign image as a separate process:

 Enter the command for your operating system.

The sample commands use the example foreign image, fgntest.fgn.

The sample commands associate the operating system UNIX and Windows with
the network type TCP/IP. On some platforms, the opposite network type is also
available. For example, entering a numeric-only value after fgntest.fgn directs the
foreign image to use a TCP/IP network connection type.

Operating System Example

UNIX fgntest.fgn 1234

where fgntest.fgn is the name of the foreign image file you
compiled and linked, and 1234 is the TCP/IP port number
to which you want G2 to connect.

Windows fgntest.fgn 1234

where fgntest.fgn is the name of the foreign image file you
compiled and linked, and 1234 is the TCP/IP port number
to which you want G2 to connect. The name you substitute
for fgntest.fgn must have a maximum of eight characters to
work in the Windows file system.
2018

Starting and Connecting to the Foreign Image
Connecting to an External Process Foreign Image

If you start a foreign image as an external process, you must connect to it from
within G2 before using the foreign image.

To connect to a foreign image that is an external process:

1 Pause G2 to be able to get to the Connect to Foreign Image menu choice.

2 Select Main Menu > Miscellany > Connect to Foreign Image.

G2 displays the Text Editor with the statement Connect to Foreign Image,
followed by a path name.

3 Enter Control + x to remove the current text in the Editor and to display a set
of prompts.

4 Selecting the prompts, enter this command:

connect to external foreign image at connection-specification

and complete the connection-specification.

The syntax for connection-specification to connect to a foreign image over a
TCP/IP connection is identical to the syntax for the icp-connection-specification
attribute of a G2 data interface object. For more information about this syntax, see
Defining the Connection Details.

The values you enter for the connection-specification arguments are determined by
the values you used to start the foreign image process, as described in Starting the
Foreign Image as an External Process.

Starting a Foreign Image from within G2

You can start a foreign image from within G2.

To start a foreign image:

1 Pause G2 to be able to get to the Connect to Foreign Image menu choice.

2 Select Main Menu > Miscellany > Connect to Foreign Image.

G2 displays the Text Editor with the statement Connect to Foreign Image,
followed by a path name.

3 Enter the path name for the foreign image file so that the command
appears as:

Connect to Foreign Image foreign.fgn

where foreign.fgn is the name of the foreign image file, including a path if
necessary. For example, to start the sample file on Windows, enter a
command such as:

Connect to Foreign Image "c:\gensym\myfiles\fgntest.fgn"
2019

Connecting to a foreign image from within G2 in this way starts the image and
connects to it.

Connecting to a Foreign Image with a G2-Init File

Further, you can add a connect to external foreign image command to an
initialization file as long as you arrange for the image to be running by the time
G2 issues the connect to external foreign image command. For information about
using an initialization file, see Using an Initialization File.

Declaring a Foreign Function in a KB
Before using a foreign function within an expression, you must declare it to G2.

To declare a function as foreign:

 Select KB Workspace > New Definition > foreign-function-declaration.

Selecting this declaration creates an instance of the foreign-function-declaration
class, and invokes the Text Editor immediately so that you can complete the
declaration.

The following figure shows an example declaration of one of the sample functions
used throughout this chapter, g2-demo-add.

declare foreign function add_integers(integer, integer) = integer

The declaration text of this item is the declare foreign function statement
(followed by the name of the function, its arguments and return type) that has
been compiled and linked into the foreign image to which G2 is connected.

After you close the edit of the foreign function declaration, place the declaration
on the workspace, and open its attribute table. The next figure shows such an
attribute table with the declaration text:

After connecting to a foreign image, G2 maintains an internal list of the functions
contained in the foreign image file. When you enter the foreign function name, G2
2020

Declaring a Foreign Function in a KB
checks the arguments and return value against the information it has in the
internal list. If a function of the name you enter does not exist, or if argument or
return value discrepancies do exist, G2 displays an appropriate message in the
notes attribute of the foreign function declaration.

The class-specific attributes of foreign-function-interface items are:

Providing the Name of the C Function

The name-in-foreign-image attribute indicates the exact name of the C function as
it appears in the foreign image (the name you entered in the template file). By
default, the value of this attribute is a lowercase version of the function name you
enter in the declaration text.

If you edit the default name provided here, subsequently editing the declaration
text will not update the name-in-foreign-image attribute.

For instance, if you enter a function name as my-foreign-function in the declaration
text, that name will appear in this attribute. If you then change the value to:

"my-foreign-function"

(using underscore characters instead of dashes as word separators), G2 will not
change this value if you edit the declaration text later. Instead, you must edit this
attribute directly.

Attribute Description

name-in-foreign-
image

The name of the C function as it appears in the foreign
image.

Allowable values: Any foreign function name, text string.

Default value: The name of the function in the declaration text, in
lowercase.

timeout-interval The amount of time before G2 times out while waiting for
a foreign function to return.

Allowable values: any positive value up to 536870 seconds
(6 days, 5 hours, 7 minutes, and 50 seconds)
use default

Default value: use default (the value of the foreign-function-timeout-
interval attribute of the timing parameters system table)
2021

Setting the Timeout Interval

The timeout-interval attribute determines the amount of time allowed before G2
times out while waiting for a value from a foreign function. The value of this
attribute (other than use default) overrides the foreign-function-timeout-interval
value set in the Timing Parameters system table, which is 30 seconds by default.

Caution Foreign functions run synchronously. G2 will not perform any task until the
foreign function returns or times out.

Typically, when G2 fails to receive a value from a foreign function, it means that
the foreign image has exited due to a coding error.

Handling Possible Name Collisions

G2 maintains a name-to-image association between the name-in-foreign-image
attribute and the function name as it appears within the foreign image.

Because G2 can connect to more than one foreign image, the possibility of a name
collision exists. A name collision occurs when a foreign image transmits a foreign
function name for which G2 already has an association. G2 may have obtained
that name from a different foreign image or from a name previously transmitted
by the foreign image to which G2 is connecting. When checking for name
collisions, G2 distinguishes between upper-and lower-case names.

If G2 detects a name collision, it issues a warning in the logbook and replaces the
old name-to-image association with the new one. Although G2 can detect the
collision and issue a warning, we recommend that you make sure that each
foreign function in your KB has a distinct name and that you do not depend on
this behavior.

Using a Foreign Function
After you have connected to, and declared a foreign function in your KB, you can
use that function in a statement. Using the add_integers example, the following
diagram shows the text of a procedure. The procedure includes two integers as its
arguments, passes those integer values to the external foreign function, add_
integers, which adds the values and returns the total.

foreign_add_ints(X: integer, Y: integer)
result: integer;
begin

result = add_integers(X, Y);
post "The result is [result]."

end
2022

Disconnecting from the External Foreign Function
Note G2 does not perform other processing while waiting for a foreign function to
return. If you expect processing to take a long time, you may wish to adjust the
value of the foreign-function-timeout-interval attribute in the Timing Parameters
system table.

Disconnecting from the External
Foreign Function

To disconnect from an external foreign image:

 Select Main Menu > Miscellany > Disconnect From Foreign Image.

which invokes the Text Editor for Disconnect From Foreign Image so that you can
enter the name of the foreign image.

By default, the Text Editor displays the disconnect from foreign image statement,
followed by a default path name.

To select the Disconnect from external foreign image at option, click after the from
in the default statement to display the available disconnect prompts. Once the
Disconnect from external foreign image at statement displays, the Text Editor
prompts include the syntax for network connections.

If you select the per directory menu syntax when disconnecting G2 from a foreign
image, the Text Editor prompts include both the names of any foreign image files
(filename.fgn) to which G2 is already connected, and the network connections of
foreign images to which G2 had been previously connected.

Choosing the appropriate item disconnects G2 from the associated foreign image.

Note Disconnecting from a spawned foreign image kills the process. Disconnecting
from an external foreign image disconnects, but does not kill the process. The
external image is then ready for future connection requests
2023

2024

69
Windows Services
Describes how to run G2 and G2 bridges as a service under Windows.

Introduction 2025

Running GService 2026

Examples 2031

Introduction
GService allows you to install and manage G2 and G2 bridges as services under
Windows. You may use this utility to install any number of G2 or bridge
processes as services as long as you provide a unique service name for each
installed service. GService runs each service as a separate process. GService is
installed in the g2 directory of your G2 installation directory.

To use GService, you must have sufficient privileges to make modifications to the
Service Control Manager and Windows Registry. We recommend that you log on
with administrative privileges. You can also install and run GService by logging
on with a local user account that supports the “Log on as a service” policy. To do
this, choose Control Panel > Administrative Tools > Local Security Policy, then
choose Local Policies > User Rights Assignment > Log on as a service, then choose
Properties and add the user or group for that policy.
2025

The following are benefits to running G2 processes as services:

• Allows G2 or a bridge to start and service requests when the operating system
(or machine) starts, even when no user is logged on. This is very desirable if
you wish G2 or a bridge to restart following a power failure or machine
reboot, which is especially important when running mission-critical
applications in an unattended mode.

• Allows G2 or a bridge to survive logoff/logon sequences, which saves the
overhead and inconvenience of restarting them for each new user.

• Allows G2 or a bridge to run under a specific login account, different from the
currently logged-in user. This is desirable when you have security concerns or
account privilege issues.

The main features of GService are the ability to:

• Install, remove, start, stop, and obtain information about any service.

• Direct console output from the service and the G2 or bridge process to a
log file.

• Direct service and G2 or bridge process output to a console window that is
automatically created when the service starts.

• Specify command-line arguments for use by the G2 or bridge process when it
is started, such as port number, network transport type, and so on.

Running GService
You run GService from the command-line, using the following syntax:

gservice command service-name [install-argument-spec] [...]

Note All references to files in command-line arguments must be to files on the local
machine; you cannot install a service over the network or specify parameters that
refer to files located on the network.
2026

Running GService
Argument Description

command Specifies the command to run. The options are:

• install

Installs a service in the Service Control
Manager and allows you to specify various
run-time options, that is, install arguments,
for the service.

• remove

Removes or uninstalls a service from the
Service Control Manager.

• start

Starts an installed service. When the service
is started, the G2 or bridge process is also
started.

• stop

Stops an installed service. When the service
is stopped, the G2 or bridge process is also
terminated.

• info

Displays information about the installed
service such as log file name, bridge name,
and so on.

• debug

Runs the service in a console window but
does not start G2 or the bridge in the Service
Control Manager. This is useful for
diagnosing problems with the G2 or bridge
process.

service-name Any valid text string. The name must not
contain spaces. The name must be unique, that
is, no other service may have the same name.
2027

install-argument-spec Used to specify certain run-time configuration
options for the service and to indicate which G2
or bridge to run. You can specify one or more
install arguments, separated by spaces, using
the following syntax:

install-argument=value

Following are the install arguments that you can
specify when you install a service.

• program=executable-path-name

(Required) Specifies the G2 or bridge
process to run when the service starts. You
must specify the full path to the G2 or
bridge executable name. If the path includes
spaces, you must surround it with double-
quotes.

• console=truth-value

Indicates whether to create a console
window when the G2 or bridge process
starts. This option is true by default. If a log
file is specified and this option is true, then
you can only receive startup messages for
the service. If a log file is not specified, all
messages from both the service and the G2
or bridge process are directed to the console
window.

Note: If you start GService with the
colsole=false argument, a G2 window
automatically appears. To start G2 with no
window, you must explicitly start G2 with
the -no-window command-line option.

Argument Description
2028

Running GService
• dependson= service [, ...]

Causes GService to ensure that another
service is running before starting the current
service, where service is the name of an
existing service. For example, you might
want to ensure that a bridge service starts
before starting G2 as a service.

With Windows 2000, you can check your
service properties for dependences by
choosing Start > Programs > Administrative
Tools > Services to verify successful
installation of the dependencies.

Note that this install argument requires the
actual service name as opposed to the
application display name, which may be
different. It is up to the user to determine
the appropriate name for the service. If the
name is misspelled, for example, it fails to
enter the dependency.

• logfile=log-file-path-name

Indicates the log file name that will receive
console messages from the service and G2 or
bridge process. If you specify a log file,
console output is automatically redirected to
the log file. A log file is not required. If the
path includes spaces, surround it with
double-quotes.

• module-search-path="'search-path-2'
'search-path-2' ..."

Provides an alternative to using the
parameters specification with the
-module-search-path keyword, which
requires backslashes to allow nested quotes
when specifying path names with spaces.

Argument Description
2029

• parameters="command-line-arg [, ...]"

Allows you to specify command-line
arguments for the G2 or bridge process. This
is useful if you wish to specify a port
number or network transport. You must
surround the list of parameters with double
quotes. If a pathname within the list of
parameters contains spaces, you must
surround it with single quotes.

Note: When starting G2 as a service, the
default directory is no longer the directory
in which the G2 executable resides.
Therefore, unless you have defined an
environment variable for the location of the
g2.ok file, you should specify parameters:
"-ok ok-file" to identify its location.

Note: Similarly, we recommend that you
use the -log command-line option when
starting G2 to specify the location of the G2
log file; otherwise, it might be difficult to
find the log file.

Note: When running G2 as a service, you
must start G2 with the -no-tray command-
line option to suppress the G2 server icon in
the notification area; otherwise, an error
occurs when you start G2 as a service.

• restart=truth-value

Indicates whether to restart GService when
the installed service terminates, either
intentionally or due to an error. When true,
Windows restarts the service after 60
seconds when it terminates. When false,
the default, the service will not restart when
it terminates, regardless of its error status.

Argument Description
2030

Examples
Caution When starting a service with a console, you should avoid closing the console
without first stopping the service; otherwise, the process remains running the
background and you cannot stop it, using either the Service Control Manager or
the Windows Task Manager. If this happens when running G2 as a service,
Telewindow into the service and shut it down. If this happens when running a G2
bridge, you must reboot your computer to shut down the process.

Examples
The following examples are one-line commands specified in a command window.

Examples of Using GService with a Bridge Process

To install a service named myservice that starts the G2-ODBC Bridge on port
number 22055:

gservice install myservice program="c:\Program Files\Gensym\
g2-2011\odbc\g2-odbc.exe" parameters=22055

To install a service named myservice that starts the G2-ODBC bridge and
disables console output:

gservice install myservice program="c:\Program Files\Gensym\
g2-2011\odbc\g2-odbc.exe" console=false

To install a service named myservice that starts the G2-ODBC bridge and
redirects output to a log file:

gservice install myservice program="c:\Program Files\Gensym\
g2-2011\odbc\g2-odbc.exe" logfile=c:\temp\odbc.log

To install a service named myservice that starts the G2-ODBC Bridge on port
number 22055 and to shut down the service if the port is not open:

gservice install myservice program="c:\Program Files\Gensym\
g2-2011\odbc\g2-odbc.exe" parameters="-tcpport 22055
-tcpipexact"

To start the installed service named myservice:

gservice start myservice

To remove the installed service named myservice:

gservice remove myservice
2031

Examples of Using GService with a G2 Process

This example shows how to install a service named g2-executable that loads a
KB named myapp.kb on port 1234, uses the specified OK file, launches and starts
the process with no window, uses the specified log file, and does not start a
console. Note the use of double and single quotes around the path names with
spaces.

gservice install g2-executable program="c:\Program Files\Gensym\
g2-2011\g2\g2.exe" parameters="-kb 'c:\Program Files\Gensym\
g2-2011\g2\kbs\demos\myapp.kb' -tcpport 1234
-ok 'c:\Program Files\Gensym\g2-2011\g2\g2.ok'
-no-window -no-tray" logfile="c:\Program Files\Gensym\g2-2011\
g2\g2-service.log" console=false
2032

Part X
Appendixes
Appendix A: Launching a G2 Process

Describes techniques, command-line options, and environment variables that can launch and
configure the startup and execution of a G2 process.

Appendix B: Reserved Symbols

Explains and lists G2’s reserved symbols.

Appendix C: Mouse Gestures, Key Bindings, and Shortcut Keys

Presents the default mouse gestures, key bindings, and shortcut keys.

Appendix D: Syntax Conventions

Describes the notation and user-specified terms used in G2 syntax.

Appendix E: G2 KBs and GIF Files

Describes the demonstration, sample, and utility KBs, and the GIF files that ship with G2.

Appendix F: Superseded Practices

Describes G2 capabilities that are obsolete and may not be supported indefinitely.
2033

2034

A

Launching a G2 Process
Describes techniques, command-line options, and environment variables that can
launch and configure the startup and execution of a G2 process.

Introduction 2037

Starting the G2 Process 2037

Writing Standard Output Messages to a Log File 2038

Writing Network I/O Tracing Messages to a File 2038

Using an Initialization File 2039

Using Command-Line Options 2042

Dictionary of Command-Line Options 2043
background 2045
cert 2046
cjk-language 2047
default-language 2048
display 2050
do-not-catch-aborts 2052
exit-on-abort 2053
fonts 2054
fullscreen 2056
g2passwdexe 2057
geometry 2058
height 2060
help 2061
icon 2062
init 2063
init-string 2065
kb 2066
kfepindex, kfepkojin, and kfepmain 2068
language 2070
local-window 2072
log 2073
2035

magnification 2074
manually-resolving-conflicts 2075
module-map 2077
module-search-path 2078
name 2080
netinfo 2081
network 2082
never-start 2083
no-backing-store 2084
no-log 2086
no-tray 2087
no-window 2088
ok 2089
password 2091
private-colormap 2092
regserver 2094
resolution 2096
rgn1lmt 2097
rgn2lmt 2099
rgn3lmt 2101
screenlock 2103
secure 2104
start 2105
tcpipexact 2106
tcpport 2107
ui 2109
unregserver 2110
user-mode 2112
user-name 2113
v11ok 2114
verbose 2116
width 2117
window 2118
window-style 2119
x-magnification and y-magnification 2120
x-resolution and y-resolution 2122
2036

Introduction
Introduction
This appendix contains reference information about starting G2 and specifying
arguments that configure its startup and execution. This information is essentially
the same for all platforms; minor variations between platforms are noted where
appropriate.

Some techniques for starting G2 are platform dependent. For details on such
techniques, see the readme-g2 file and the G2 Bundle Release Notes. Be sure to
consult these documents if you have any trouble starting.

You can use this information to:

• Start G2.

• Identify the operating system environment within which executes.

• Specify how utilizes certain of the computer’s resources, such as the initial
size of memory pools.

• Configure execution in various other ways.

Note In this appendix, the term Windows refers to any version of Microsoft Windows
on which runs.

Starting the G2 Process
You can start a G2 process by entering an appropriate operating system
command, using a command window or any other interface available on your
platform. The default name of the executable file is:

• Windows: g2.exe

• UNIX: g2

On Windows platforms, you can start G2 from the Start menu, as well as from a
batch file.

See the readme-g2.html file for information about platform-dependent
techniques for starting G2.

On Windows platforms, you can run G2 as a service. For details, see Chapter 8,
“GService” on page 53.
2037

Writing Standard Output Messages to a
Log File

As a new process starts up, it creates standard output messages, which describe:

• The initial allocations for memory regions.

• Network port numbers.

• Errors encountered while processing an authorization (OK) file.

A process also displays standard output messages when it must attempt to
allocate additional memory and when it detects an internal error. The location of
the messages depends on the platform:

• Under UNIX, standard output messages are displayed in the command
window from which you launched G2. You can launch G2 with the -log
command-line option to write standard output messages to the log file you
specify. See log.

• Under Windows platforms, standard output messages are written to a log file.
You have three options:

– Launch G2 with the -log command-line option to write standard output
messages to the log file you specify. See log.

– Launch G2 without the -log command-line option to create a uniquely
named log file in the directory specified by your TEMP
environment variable.

– Launch G2 with the -no-log command-line option to write standard
standard output messages to the command window and not in a log file.
See no-log.

Writing Network I/O Tracing Messages to a File
You can direct G2 to write network-event trace messages to a specified file. The
trace messages concern read, write, connect, accept, and close events to and
from G2.

Use the G2_NETWORK_TRACE_FILE environment variable to specify the pathname
of the file. For example, on a UNIX platform:

G2_NETWORK_TRACE_FILE /usr/gensym/g2-2011/g2/io-trace.txt

There is no equivalent command-line option.
2038

Using an Initialization File
Using an Initialization File
When you launch a new G2 process, you can cause it to execute a series of
commands automatically. You do this by creating an initialization file that the
new G2 process executes. When you use the -init command-line option, the
initialization file can have any filename; without the command-line option it must
have the name g2.init.

Each time you launch a new G2 process, it automatically looks for a file named
g2.init. If the process finds such a file, it executes the commands in the file
sequentially in the order in which they appear.

To use an initialization file, do one of the following:

• Place the file in the default G2 directory, that is, the directory from which the
G2 process loads the g2.ok file.

• Place the file in a location that you specify to G2 using the -init command-
line option. See init.

If you do not provide an initialization file, the G2 process continues executing
without initialization.

Coding an Initialization File

A g2.init file is an ASCII file that contains one or more commands. Each
command must begin on a new line. Blank lines can appear between the
command lines. All texts are case-insensitive, unless they appear inside double-
quoted strings.

The most commonly used commands are for loading, which have the same
functionality as the corresponding menu choices in the G2 Main Menu: load kb
and merge kb.

In addition, you can start G2 automatically, using start g2. If you include the
start g2 command, it should be the final command in the initialization file. The
G2 process does not execute any commands that it reads after executing a
start g2 command.

In addition, you can include any command that appears in the Save KB dialog in
the classic G2 user interface. These commands include variations on the
commands that appear in the Miscellany menu for connecting to and
disconnecting from foreign images, writing G2 statistics files, and loading
attribute files. They also include commands for saving the KB and saving a
module.

If G2 detects an error in any initialization command, it stops executing the rest of
the initialization file, and therefore might load only part of the knowledge that
your G2 process requires. To avoid this situation, you should thoroughly test the
command sequences found in your initialization file.
2039

Note Starting from September 2016 release (G2 2015.9), comments (texts started with a
semicolon “;”) are supported in G2 initialization files, so that notes and temporary
disabled commands can be kept in the same file.

The following table lists the initialization commands and their purposes. In the
syntax, filename is a path to any file, including a UNC network path on Windows
platforms.

Initialization Command Purpose

load KB "filename"
[,{starting afterwards |
not starting afterwards |
warmbooting afterwards |
automatically resolving conflicts |
manually resolving conflicts |
bringing formats up-to-date}]

Load the specified knowledge base.

For more information, see “Loading a
KB” on page 79.

merge KB "filename" Merge the specified knowledge base
into the current KB.

For more information, see “Merging a
KB File” on page 92.

start G2 Start the current KB. This command
must appear last in the initialization
file.

shut down G2 Shut down G2 Server.

save current KB as
(quoted-file-path by default)
[{overriding-file-name-symbol |

overriding-quoted-file-path}]

Save the current KB to the specified
file, by default, or to the specified file
name that overrides the default. This
command pops up a dialog
confirming the save.

For more information, see “Saving an
Unmodularized KB” on page 75.
2040

Using an Initialization File
save module module-name as
(default-quoted-file-path by default)
[{overriding-file-name-symbol |

overriding-quoted-file-path}]
[, including all required modules]
[, using clear text]

Save the specified module to the
specified file, by default, or to the
specified file name that overrides the
default. This command automatically
saves the module without popping up
a dialog.

For more information, see “Saving a
Modularized KB” on page 74.

save module module-name into
(default-quoted-directory-path by default)
[overriding-quoted-directory-path]
[, including all required modules]
[, using clear text]

Save the specified module to the
specified directory, by default, or to
the specified directory that overrides
the default. The saved file name is the
same as the previous loaded one.

This command automatically saves
the module without popping up a
dialog.

save top-level module as
(default-quoted-file-path by default)
[{overriding-file-name-symbol |

overriding-quoted-file-path}]
[, including all required modules]
[, using clear text]

Save the current top-level module to
the specified file, by default, or to the
specified file name that overrides the
default.

This command automatically saves
the module without popping up a
dialog.

save top-level module into
(default-quoted-directory-path by default)
[overriding-quoted-directory-path}]
[, including all required modules]
[, using clear text]

Save the current top-level module to
the specified directory, by default, or
to the specified directory that
overrides the default. The saved file
name is the same as the previous
loaded one.

This command automatically saves
the module without popping up a
dialog.

connect to foreign image "filename"

connect to external foreign image at

Connect to the specified foreign image
or external foreign image.

For more information, see “Starting
and Connecting to the Foreign Image”
on page 1626.

Initialization Command Purpose
2041

Using Command-Line Options
You can include one or more command-line options in the command that starts
G2. The syntax is:

g2 [option]...

In command-line syntax summaries, brackets [] indicate optional elements,
braces {} group elements, a vertical bar | separates alternatives, and an ellipsis
(. . .) indicates zero or more repetitions of the preceding element.

Command-line options pass various kinds of information to a new process.
Regardless of your computer’s operating system, each command-line option must
begin with the - (hyphen) character, as in this sample command line:

g2 -rgn1lmt 7500000

The command-line options can appear in any order. Some options require or
allow an argument: a keyword, pathname, expression, or other value that specifies
the exact meaning of the option.

Note When referring to pathnames with spaces on Windows platforms, you must
surround the pathname with double quotes, for example, "c:\Program
Files\Gensym\g2-2011\g2\".

disconnect from foreign image

disconnect from all foreign images

disconnect from external foreign image at

Disconnect from the specified foreign
image, all foreign images, or external
foreign image.

For more information, see
“Disconnecting from the External
Foreign Function” on page 1632.

write g2 stats as Create a statistics file related to
memory usage.

For more information, see “Correcting
Unbounded Memory Requirements”
on page 1498.

load attribute file "filename" Load attribute values for a set of items
from the specified attribute file. This is
a superseded practice.

For more information, see “Attribute
Files” on page 1764.

Initialization Command Purpose
2042

Dictionary of Command-Line Options
Supported Command-Line Characters

When you launch from the command line, interprets the command line as a string
of 8-bit bytes representing Latin-1 characters. Any two-byte Unicode characters,
such as Korean or Japanese characters, therefore become pairs of Latin-1
characters, and the command line is processed accordingly.

Using Environment Variables

Many command-line options have as counterparts a similarly named
environment variable. For example, the -v8ok command-line option has a
counterpart G2V8_OK environment variable.

If you start processes many times for similar purposes, setting environment
variables once can be more convenient than specifying the same options in each
command line. Using G2 command-line options, rather than setting environment
variables, might be more appropriate when your G2 process is running a
delivered application.

Note If you specify a command-line option when its counterpart environment variable
is already set, the command-line option setting takes precedence.

Dictionary of Command-Line Options
The rest of this chapter describes all command-line options in alphabetical order.

The description of each command provides the following sections.

Summary

A brief description of the option, to allow you to determine quickly whether it
relates to your needs.

Platforms

The platforms on which the option is available. Most are available on
all platforms.

Syntax

The syntax to use when specifying the option on the command line. In command
line syntax summaries, brackets [] indicate optional elements, braces {} group
elements, a vertical bar | separates alternatives, and an ellipsis (...) indicates
zero or more repetitions of the preceding element.
2043

Equivalent Environment Variable

You can also specify many options using environment variables. An environment
variable automatically applies each time you start, obviating the need to specify a
command-line option.

Description

A detailed description of the option and its effects.

Special Considerations

When needed, additional information to keep in mind when using the option.

Example

One or more applications of the option in a typical command line.
2044

background
background
Changes the gray background of your G2 window to a solid color or to a gray-
and-white tiling pattern derived from a GIF or XBM image file you specify.

Platforms

All platforms

Syntax

-background { color | file-path | gensym }

color: A symbol that represents a supported G2 color.

file-path: A full pathname to a .gif or .xbm file to use as the background. If the
pathname contains spaces, surround it with double quotes.

gensym: The G2 “bricks” background, which G2 used as background until
Version 8.1.

Equivalent Environment Variable

None

Description

For a list of supported G2 colors, see Identifying the G2 Color Palette.

For information on customizing the background pattern, see Customizing the
Gensym Background Pattern”Customizing the Gensym Background Pattern” in
Chapter 2 “The Developer’s Environment” in the .

The image file must contain no more than 128x128 pixels.

On Windows platforms, you can specify a UNC network path as the file-path,
such as \\my-server\my-dir\.

Examples

g2 -background red

g2 -background
"c:\Program Files\Gensym\g2-2011\tile.gif"
2045

cert
Specifies the name of the SSL server certificate to use.

Platforms

All platforms

Syntax

Windows:

-cert name

name: The Common Name (CN) of the certificate in the local machine’s my
certificate store.

UNIX:

-cert file

file: The name of the OpenSSL server certificate to use, where file is a file
containing a private key and a certificate in PEM format, which consists of the
DER format base64 encoded with additional header and footer lines.

Equivalent Environment Variable

G2_CERT

Description

You specify the certificate when encrypting communication, using the -secure
command-line option. G2 uses SSPI on Windows and OpenSSL on UNIX.

Example

(Windows) The following command creates a self-signed certificate, suitable for
testing, named test. Makecert is included in the Platform SDK.

makecert -r -pe -n "CN=test" -e 01/01/2036 -len 2048
-eku 1.3.6.1.5.5.7.3.1 \

-ss my -sr localMachine -sky exchange \

-sp "Microsoft RSA SChannel Cryptographic Provider" -sy 12
2046

cjk-language
cjk-language
Directs the new G2 process to use your specified Han character-style when
displaying and printing ideographic, historically Chinese, Han characters.

Platforms

All platforms

Syntax

-cjk-language { chinese | japanese | korean }

Equivalent Environment Variable

None

Description

For documentation on the G2 Chinese-Japanese-Korean (CJK) language
preference, see Specifying a Han Character-Style Preferencee G2 Reference Manual.

Example

g2 -cjk-language chinese
2047

default-language
Specifies the default language of the G2 process.

Platforms

All platforms

Syntax

-default-language language-name

language-name: Name of a system-defined G2 language facility—english,
japanese, or korean—or name of a language—francais, italiano, or any other
symbol—for which a language-translation item in the current KB provides
translations of G2 system-defined menu choices.

Equivalent Environment Variable

G2_DEFAULT_LANGUAGE

Same as the language-name argument, described above.

Description

G2 uses its default language when determining the current KB’s current
language. For a description of how G2 determines the current language for the
current KB, see Natural Language Facilities.

Special Considerations

By default, each g2-window item in the current KB, including those that result
from a Telewindows connection, can be associated with a distinct language-
translation item, independent from the G2 process’s default language and from
the current KB’s current language. For more information, see G2-Windows.

Example

On a Windows platform, this command directs a new G2 process to load the KB
file factory.kb as its new current KB and to use francais, a language-translation
item, presumably in factory.kb, as the default language:

g2 -default-language francais
-kb "c:\Program Files\g2-2011\g2\kbs\factory.kb"
2048

default-language
On a UNIX platform, this command directs a new G2 process to load the KB file
factory.kb as its new current KB and to use francais, a language-translation
item, presumably in factory.kb, as the default language:

g2 -default-language francais
-kb /usr/gensym/g2-2011/g2/kbs/factory.kb
2049

display
Directs the new process to display its window on a platform running an
X Windows server.

Platforms

UNIX

Syntax

To route the display to a platform via a TCP/IP network connection:

-display machine-name:server-number.screen-number

machine-name: Identifier of a machine running an X Windows server that
communicates via a TCP/IP network connection.

server-number: Identifier of an X Windows server process on machine-name.

screen-number: Identifier of an X Windows virtual screen managed by X Windows
server process server-number on machine-name.

Equivalent Environment Variable

DISPLAY

The DISPLAY environment variable for most window managers is usually
configured, by default, to be “local host”, server 0, screen 0. See your X Windows
documentation for more information.

Description

This option allows you to display a process’s window on a specific machine that
runs an X Windows server, specified by its machine-name. Note that machine-name
must already be assigned for each machine connecting to a network using
TCP/IP transport protocol.

If you omit machine-name, the process assumes the local node is the destination. If
you omit screen-number, it assumes screen 0.

For more information see your platform’s X Windows reference documentation.
2050

display
Example

This command directs the new process to display its window on the X Windows
server 1, screen 1 running on machine mynode, reached via a TCP/IP network
connection:

g2 -display mynode:1.1
2051

do-not-catch-aborts
When fetal errors happen, do not catch aborts and let Operating System take over.

Platforms

All platforms

Syntax

To stop catching aborts on G2 startup:

-do-not-catch-aborts

Description

This option will disable all internal error trappings and let Operating System take
over when fetal errors happen. This option could be useful if user need to
generate core dumps for sending to G2 support team.
2052

exit-on-abort
exit-on-abort
Casues G2 to exit if a G2 abort occurs.

Platforms

All platforms

Syntax

-exit-on-abort

Equivalent Environment Variable

None

Description

Exits G2 if an abort occurs.
2053

fonts
Identifies the directory that contains standard font files.

Platforms

All platforms

Syntax

-fonts fonts-directory-path

fonts-directory-path: Path, with trailing delimiter character, of a directory that
contains standard font files.

Equivalent Environment Variable

FONTS

A directory path, with trailing delimiter character.

Description

G2 includes a set of standard font files. When a new process starts up, it expects
by default to find the standard font files in a subdirectory named fonts under the
home directory, that is, the directory where the executable is installed.

Use the -fonts option to direct to look for its standard font files in a custom
location.

Special Considerations

The directory delimiter character to use as a trailing character depends on
the platform:

• On UNIX platforms, include a trailing / (slash) character.

• On Windows platforms, include a trailing \ (backslash) character.

On Windows platforms, you can specify a UNC network path as the fonts-
directory-path, such as \\my-server\my-dir\.

Example

On a Windows platform, this command starts a process and directs it to finds its
standard font files in the directory c:\fonts\custom-g2\fonts\:

g2 -fonts c:\fonts\custom-g2\fonts\
2054

fonts
On a UNIX platform, this command starts a process and directs it to finds its
standard font files in the directory /usr/kmm/custom-g2/fonts/:

g2 -fonts /usr/kmm/custom-g2/fonts/
2055

fullscreen
Directs the new process to display its window so that it is the same size as the
screen where it displays.

Platforms

All platforms

Syntax

-fullscreen

Equivalent Environment Variable

None

Description

If this option is omitted, the new process opens a window that is, by default, 90%
of the size of the screen.

In contrast, on a Windows platform, the -screenlock command-line option
displays window so that it is the same size as the screen and so that it cannot
appear behind any other open window. See screenlock.

Special Considerations

Use of the -fullscreen option prevents viewing the window border and its
selectable components that are managed by your platform’s window manager
that is, X Windows, DECwindows, or Windows.

Example

This command starts a process and displays its window so that its extent is the
same size as the screen where it displays:

g2 -fullscreen
2056

g2passwdexe
g2passwdexe

Allows you to specify an alternative location for the g2passwd program, which
you can rename.

Platforms

All platforms

Syntax

-g2passwdexe file-path

file-path: The directory location for the possibly renamed g2passwd file.

Equivalent Environment Variable

None

Description

The g2passwd file is used for changing user passwords at secure G2 sites, either
from within G2 or from a command console. This command-line option allows
you to specify a pathname to that file, which you might have renamed.

On Windows platforms, you can specify a UNC network path as the file-path,
such as \\my-server\my-dir\.

Example

g2 -g2passwdexe c:\mydir\mypasswd.exe

g2 -g2passwdexe /mydir/mypasswd.exe
2057

geometry
For the window of a new process, specifies the dimensions in pixels and position
as an offset in pixels from the upper-left corner of the screen.

Platforms

All platforms

Syntax

-geometry widthxheight{+|-}x-offset{+|-}y-offset

width: Width of the window in pixels.

height: Height of the window in pixels.

+x-offset: Pixels from the left of the screen.

-x-offset: Pixels from the right of the screen.

+y-offset: Pixels from the top of the screen.

-y-offset: Pixels from the bottom of the screen.

Equivalent Environment Variable

None

Description

This option specifies the height and width in pixels of your window, which is
stored in the g2-window-height and g2-window-width attribute of the g2-window.

On platforms that runs the X Windows window manager, if you omit any values
in the geometry string, the process takes the missing values from defaults used by
the X Windows resource manager.

On all platforms, you must provide the widthxheight argument and the x-offset
and y-offset if you want to specify an offset; otherwise, the offset arguments are
ignored.

You can also use negative offsets.

For more information see the X Windows reference documentation for
your platform.
2058

geometry
Example

This command launches the G2 process with a window that is 800 pixels wide,
600 pixels high, and is offset from the upper-left corner by 20 pixels in each
dimension.

g2 -geometry 800x600+20+20
2059

height
Specifies the height in pixels of the new window.

Platforms

All platforms

Syntax

-height number-of-pixels

number-of-pixels: A positive integer from 1 to 32,767

Equivalent Environment Variable

None

Description

This option specifies the height in pixels of your window, which is stored in the
g2-window-height attribute of the g2-window.

By default, G2 displays a window whose height is 90% of the height of the screen.

On Windows platforms, the height refers to the entire window, including the title
bar and the black frame around the window. On UNIX platforms, the height
refers to the client window area only; it does not include the height of the title bar
and window frame.

Example

This command starts a process with a window whose height in pixels is 1000 and
whose width in pixels is equivalent to 90% of the width of the screen, the default:

g2 -height 1000
2060

help
help
Directs the new process to output text that shows the syntax of all command-line
options.

Platforms

All platforms

Syntax

-help

Equivalent Environment Variable

None

Description

After issuing this command-line option, the process exits.

G2 writes the help text as follows:

• On UNIX platforms, to the launch window.

• Under Windows, to the console window that appears when G2 is launched,
unless the -log command-line option is given, in which case the help text is
logged to the log file.

Since the console window disappears when G2 exits, you can specify a log file to
preserve the help text for future use.

Example

This command directs G2 to output text that shows the syntax of all command-
line options, then exit:

g2 -help
2061

icon
Specifies the text that appears below the icon that appears when you iconize the
new window.

Platforms

All platforms

Syntax

-icon icon-text

icon-text: Text of the name of the icon for the process.

Equivalent Environment Variable

None

Description

When you iconize a window, your platform’s window manager hides the
window and displays a named icon instead. The -icon option specifies the name
that appears below that icon.

The text must conform to the requirements for icon names, in terms of the length
in characters, the case of alphabetic characters, and so on, established by your
platform’s window manager.

Special Considerations

To embed a blank in icon-text or to specify a mixed case icon-text on a platform
that does not support commands in mixed-case characters, surround icon-text
with double quotes, such as:

g2 -icon "OpAsst"

Example

This command starts a new process and causes the text “OPA” to appear below
the icon whenever you minimize the window:

g2 -icon OPA -name "Operator’s Assistant"

This command also causes the text “Operator’s Assistant” to appear in the title
bar of the local G2 window. See name.
2062

init
init
Directs the new G2 process to use a particular G2 initialization file.

Platforms

All platforms

Syntax

-init init-file-path

init-file-path: Location and name of a G2 initialization file.

Equivalent Environment Variable

G2_INIT

Description

A G2 initialization file is a text file that contains one or more commands. A G2
initialization file can have any name and extension when you use the command-
line -init option or the environment variable.

If you do not specify the -init option, G2 searches for a file named g2.init in the
directory from which G2 is launched. If G2 finds this file, it loads it as the G2
initialization file.

For more information about the initialization file, see Coding an Initialization File.

When both -kb and -init options are present on the command line, the KB
specified by -kb option is loaded first, then rest commands in the g2.init file are
executed normally. See kb.

When both -start and -init options are present on the command line, the new
G2 process also starts the new current KB, after all commands in the g2.init file
are executed, unless there is a command to shut down G2. See start.

On Windows platforms, you can specify a UNC network path as the init-file-path,
such as \\my-server\my-dir\.

Special Considerations

If the file NOCMD.INIT is stored in the root directory, that is, in the directory / on
UNIX platforms or the directory \ on Window platforms), G2 checks whether the
file name specified by init-file-path is listed in NOCMD.INIT.
2063

If NOCMD.INIT resides in the root directory, G2 loads an initialization file only if its
full pathname is listed there.

Example

This command starts a new G2 process on a Windows platform and, after starting
up, executes the initialization commands in the file c:\Program Files\
Gensym\g2-2011\g2\my-g2.init:

g2 -init "c:\Program Files\Gensym\g2-2011\g2\my-g2.init"

This command starts a new G2 process on a UNIX platform and, after starting up,
executes the initialization commands in the file /usr/gensym/g2-2011/g2/
myg2.init:

g2 -init /usr/gensym/g2-2011/g2/myg2.init
2064

init-string
init-string
Passes a text value that assigns into the g2-window-initial-window-configuration-
string attribute of the g2-window item that is associated with this window.

Platforms

All platforms

Syntax

-init-string init-string-text

init-string-text: An unquoted, blank-delimited string of characters.

Equivalent Environment Variable

None

Description

By default, after G2 starts, it creates a new g2-window item. It then assigns the text
value specified as the argument to the -init-string option to the g2-window-
initial-window-configuration-string attribute of the new window.

Before assigning the specified text into the g2-window-initial-window-
configuration-string attribute, G2 first normalizes the string as a symbol. That is, it
converts all lowercase characters to uppercase, except for any character that
follows an @ (at sign) quoting character.

You can provide user-defined command-line arguments when starting G2, using
the -init-string command-line option, then use the g2-get-command-line-
arguments-from-launch system procedure to access those user-defined arguments
in G2. The information is stored in the window object inside G2. For example, you
can use this argument when displaying Telewindows as an ActiveX control inside
of a COM-compliant container. For an example, see the Telewindows User’s Guide.

Example

This command starts a G2 process and passes the value “Manager” to the
g2-window-initial-window-configuration-string attribute of the G2 window:

g2 -init-string Manager
2065

kb
Directs the new G2 process to load the specified KB file as the new current KB.

Platforms

All platforms

Syntax

-kb kb-file-path

kb-file-path: Location and name of a KB file.

Equivalent Environment Variable

None

Description

If you include the -kb option in a command line that starts G2, after the new G2
process starts up, G2 loads the file specified by kb-file-path as its new current KB.

If you do not specify the directory in which the file is stored, G2 looks for the file
in the directory from which G2 was launched. If you do not supply a filename
extension in kb-file-path, G2 assumes that the extension is .kb.

If the -start option is present on the command line, the new G2 process also
starts the new current KB. If the -never-start is the KB will not be started
automatically, even if the KB specifies otherwise.

On Windows platforms, you can specify a UNC network path as the kb-file-path,
such as \\my-server\my-dir\.

Special Considerations

If the -init option is also specified in the command line, the new G2 process
loads the KB specified in the -kb option first, and then execute all commands in
the g2.init file.

If the file NOCMD.KB is stored in the root directory (that is, in the directory / on
UNIX platforms or the directory \ on Window platforms, G2 checks whether the
file name specified by kb-file-path is listed in NOCMD.KB.

If NOCMD.KB resides in the root directory, G2 loads a KB file only if its full
pathname is listed there.
2066

kb
Example

This command starts a new G2 process on a Windows platform, which also loads
the file c:\Program Files\Gensym\g2-2011\g2\kbs\factory.kb as its new
current KB:

g2 -kb "c:\Program Files\Gensym\g2-2011\g2\kbs\factory.kb"

This command starts a new G2 process on a UNIX platform, which also loads the
file /usr/gensym/g2-2011/g2/factory.kb as its new current KB:

g2 -kb /usr/gensym/g2-2011/g2/factory.kb
2067

kfepindex, kfepkojin, and kfepmain
Specify custom locations of dictionary files that the new G2 process uses when
translating between the Kanji, Hiragana, and Katakana alphabets of the Japanese
language.

Platforms

All platforms

Syntax

-kfepindex kfepindex-file-path
-kfepkojin kfepkojin-file-path
-kfepmain kfepmain-file-path

kfepindex-file-path: Custom location of the index.dic file.

kfepkojin-file-path: Custom location of the kojin.dic file.

kfepmain-file-path: Custom location of the main.dic file.

Equivalent Environment Variable

None

Description

When the new G2 process loads a KB into which the japanese.kl file has been
merged, and if the files index.dic, kojin.dic, and main.dic, do not reside in
their default location, then you must include the -kfepindex, -kfepkojin, and
-kfepmain options, respectively. By default, the files index.dic, kojin.dic, and
main.dic reside in a subdirectory of the G2 installation directory.

See Natural Language Facilities for information about using the language.kl file.

On Windows platforms, you can specify a UNC network path as the file-path,
such as \\my-server\my-dir\.

Special Considerations

If you move the index.dic, kojin.dic, and main.dic files from their default
location after installing G2, you must specify the appropriate option to identify
the file’s new location.
2068

kfepindex, kfepkojin, and kfepmain
Example

This command starts a new G2 process on a Windows platform and specifies a
custom location for the index.dic file:

g2 -kfepindex c:\lang\index.dic

This command starts a new G2 process on a UNIX platform and specifies a
custom location for the index.dic file:

g2 -kfepindex /usr/kmm/lang/index.dic
2069

language
Specifies a window-specific G2 natural language facility or language-translation
item for the g2-window item that is associated with the window.

Platforms

All platforms

Syntax

-language language-name

language-name: Name of a standard G2 language facility—english, japanese,
korean, or russian—or name of an existing language-translation item—francais,
italiano, or any other symbol—in the G2 KB.

Equivalent Environment Variable

None

Description

G2 can specify a window-specific language. Use the -language option to specify a
standard G2 natural language facility (english, korean, japanese, or russian) or a
language-translation item in the G2 KB. This option determines how system-
defined menu choices, Text Editor buttons, and so on appear in your G2 window.

Using the -language option sets the g2-window-specific-language attribute in the
g2-window item of the local window. Specifying this command-line option is
equivalent to specifying the G2 Window Specific Language in the login dialog. If
you don’t specify the -language option, the default value of the g2-window-
specific-language attribute of this g2-window is none, and the language-
translation item used to translate text in your window is determined by the
current language of the G2 KB.

When you specify -language, the option takes effect only if you also specify a KB
with the -kb option. Otherwise, the default language of the subsequently loaded
KB will override the value of -language.
2070

language
Example

This command starts a secure G2 process, specifying a language and other
information necessary to start the process. The command assigns the symbol
korean into the g2-window-specific-language attribute of the g2-window:

g2 -window viper -user-name howard -password fearnoevil
-kb secure.kb -user-mode manager -language korean

The result is that your window displays the text of G2 system-defined menu
choices, and so on, based on the language-translation item named korean found
in the G2 KB.
2071

local-window
Explicitly starts G2 with a local window.

Platforms

All platforms

Syntax

-local-window

Equivalent Environment Variable

None

Description

Currently, this command-line option is redundant, because G2 starts with a local
window, by default. However, in a future release, G2 will start without a
window, by default. Therefore, we recommend that you explicitly add this option
to your startup scripts now if you want G2 to start with a local window, so that in
the future, you will not have to change your scripts.
2072

log
log
Specifies a particular pathname to which standard output messages should
be written.

Platforms

All platforms

Syntax

-log log-file-path

log-file-path: Location and name of a file to which the new process writes
standard output messages.

Equivalent Environment Variable

None

Description

If the specified log-file-path names an existing file, G2 overwrites the existing file.
G2 does not append version information to user-defined log file names.

On Windows platforms, in the absence of the -log command-line option, G2
creates a uniquely named log file in the directory specified by your TEMP
environment variable. The log file name consists of these components:

productname-date-unique-id.log

For example, for a log file created on January 1, 2002, which is the fifth log file
generated during the G2 session, G2 would use this file name:

%PATH%\G2-000101-5.log

To avoid writing a log file on Windows platforms, use the -no-log command-line
option. See no-log. This is the default on UNIX platforms.

On Windows platforms, you can specify a UNC network path as the log-file-path,
such as \\my-server\my-dir\.

Example

This command starts a new process and routes its standard output messages to
the file c:\g2\logs\G2-000410-4.log:

g2 -log c:\g2\logs\G2-000410-4.log
2073

magnification
Specifies the new process’s default ratio of magnification, that is, pixels per G2
workspace unit, for workspaces displayed at full scale.

Platforms

All platforms

Syntax

-mag[nification] magnification-ratio

magnification-ratio: A decimal value from 0.50 to 2.66.

Equivalent Environment Variable

None

Description

If you specify neither the -magnification option nor the -x-magnification or
-y-magnification options, the new process uses a -magnification setting of 1.0.
For more information about using the -magnification, -x-magnification, and
-y-magnification options, see Specifying the Resolution and Magnification.

Special Considerations

Alternatively, for a display device that supports distinct settings for horizontal
and vertical resolutions, you can use the -x-magnification and
-y-magnification command-line options to specify distinct horizontal and
vertical magnifications. However, don’t combine the -magnification argument
with either the -x-magnification or -y-magnification options. See
x-magnification and y-magnification.

Example

This command starts a process that displays workspaces at full scale at the
magnification of two pixels per G2 workspace unit:

g2 -magnification 2.0
2074

manually-resolving-conflicts
manually-resolving-conflicts
Loads the specified KB without automatically resolving conflicts.

Platforms

All platforms

Syntax

-manually-resolving-conflicts

Equivalent Environment Variable

None

Description

Beginning with G2 Version 6.0, when you load a KB from the command line with
the -kb option, G2 automatically resolves conflicts, as if you had enabled the
automatically resolve conflicts option in the Load KB dialog. Prior to G2 Version
6.0, loading a KB with the -kb option did not automatically resolve conflicts.

If there are conflicts in your KB, you might want a chance resolve those conflicts
manually, just as you can when you load a KB from within G2. G2 provides this
command-line option, as well as a command for the g2.init file, to allow you to
load a KB without automatically resolving conflicts. If this option is not specified,
any conflicts will be resolved automatically.

You must use this command-line option with the -kb command-line option to
specify the KB file to load.

For general information on resolving conflicting class-definitions, see:

• “Detecting Conflicting Class-Definitions” on page 96.

• “Automatically Resolving Conflicting Class-Definitions” on page 96.

• “Manually Resolving Conflicting Class-Definitions” on page 98.

For information on the equivalent command to use in the g2.init file, see Using
an Initialization File.
2075

Example

This command starts a new G2 process on a Windows platform and loads the
specified KB, without resolving conflicts:

g2 -kb "c:\Program Files\Gensym\g2-2011\g2\kbs\factory.kb"
-manually-resolving-conflicts

This command starts a new G2 process on a UNIX platform and loads the
specified KB, without resolving conflicts:

g2 -kb /usr/gensym/g2-2011/g2/factory.kb
-manually-resolving-conflicts
2076

module-map
module-map
Specifies the location of the optional module-map file.

Platforms

All platforms

Syntax

-module-map module-map-file-path

module-map-file-path: Location and name of the module-map file.

Equivalent Environment Variable

G2_MODULE_MAP

Same syntax as module-map-file-path.

Description

G2 uses the optional module-map file when loading and saving modular KBs that
contain directly required modules. Each record in a module-map file associates a
module name with either a fully qualified directory pathname or a fully qualified
file pathname.

If no -module-map option is specified, and if the G2_MODULE_MAP environment
variable is not set, G2 looks for a file named g2.mm in the directory from which
you launched G2.

For more information about using a module-map file and the -module-map
option, see Using a Module Map File to Load and Save a KB.

On Windows platforms, you can specify a UNC network path as the module-map-
file-path, such as \\my-server\my-dir\.

Example

This command starts a new G2 process on Windows and directs G2 to use the
module-map file named c:\Program Files\Gensym\g2-2011\g2\modmap.txt:

g2 -module-map "c:\Program Files\Gensym\g2-2011\g2\modmap.txt"

This command starts a new G2 process on UNIX and directs G2 to use the
module-map file named /usr/gensym/g2-2011/g2/modmap.txt:

g2 -module-map /usr/gensym/g2-2011/g2/modmap.txt
2077

module-search-path
Specifies the search path for locating modular KB files.

Platforms

All platforms

Syntax

-module-search-path search-dir-path

-module_search_path search-dir-path
or

-module-search-path "search-dir-path [search-dir-path] ... "

-module_search_path "search-dir-path [search-dir-path] ... "

search-dir-path: A fully qualified directory path that names a location where G2
searches for a modular KB file that contains a directly required module.

Equivalent Environment Variable

G2_MODULE_SEARCH_PATH

The value of the environment variable is limited to 1023 characters. Under UNIX
and VMS, the syntax is the same as for the command-line option.

Description

This option specifies a list of one or more directories that G2 searches to locate KB
files that contain directly required modules. G2 searches this list of directories in
the order in which they appear if it cannot find a directly required module’s KB
file in the directory that contains the top-level module’s KB file.

Previous versions of G2 required that the KB file for a top-level module and the
KB files for its directly required modules reside in the same directory. By default,
G2 still searches in this manner for the KB files of directly required modules.

If you specify more than one directory, enclose the list of directories in double
quotes. Use a space character to separate the directory paths in the list.

On Windows platforms, if the pathname includes spaces, you must surround it
with single quotes (' ').

On Windows platforms, you can specify a UNC network path as the search-dir-
path, such as \\my-server\my-dir\.
2078

module-search-path
For more information about using a module search path and the
-module-search-path option, as well as examples, see Using a Module Search
Path to Load KB Files.

Example

This command starts a new G2 process on Windows and declares two directory
paths in the module search path, where one path includes a space and is,
therefore surrounded by single quotes:

g2 -module-search-path "\kbs\current-release\
'c:\Program Files\Gensym\g2-2011\g2\kbs\'"

This command starts a new G2 process on UNIX and declares two directory paths
in the module search path:

g2 -module-search-path "/kbs/current-releases/
/usr/gensym/g2-2011/g2/kbs/"
2079

name
Specifies the text that appears in the title bar of the new G2 window.

Platforms

All platforms

Syntax

-name window-title-text

window-title-text: A string of characters; must conform to the requirements of
your platform’s window manager for title bar text.

Equivalent Environment Variable

None

Description

The location, appearance, allowable characters, and allowable length of the title
text are determined by the requirements of your platform’s window manager.

Special Considerations

To use this option with Japanese, use 8-bit characters; 16-bit characters do not
display correctly.

To embed a blank in window-title-text or to specify a mixed case window-title-text
on a platform that does not support commands in mixed case characters,
surround window-title-text with double quotes, such as:

g2 -name "Operator’s Assistant"

Example

This command starts a new process and specifies the text “Operator’s Assistant”
to appear in the title bar of its window:

g2 -name "Operator’s Assistant" -icon OPA

This command also causes the text “OPA” to appear below the process’s icon,
when it is minimized.
2080

netinfo
netinfo
Specifies that the host name and port number should appear in the title bar of the
G2 window.

Platforms

All platforms

Syntax

-netinfo

Equivalent Environment Variable

None

Description

This feature allows you to immediately see the host and port to which to connect
via Telewindows. The format of the title bar text is:

G2 - [host:port]

If you start G2 with the -name command-line option, the specified name replaces
G2 in the title bar.

When launching the G2 server from the Start menu on Windows platforms, the
network information appears in the title bar, by default. As a result, the network
information also appears in the G2 icon in the Windows task bar.

Example

This command starts a new process with the network information in the title bar:

g2 -netinfo
2081

network
Specifies the network transport protocol on which G2 should listen for incoming
network connections.

Platforms

All platforms

Syntax

-network { tcpip }

tcpip: Listen for network connections that use the TCP/IP transport protocol.

Equivalent Environment Variable

None

Description

When a new G2 process is running on a machine that connects to a network via
multiple transport protocols, use the -network option to direct G2 to listen for
incoming network connections using a particular transport protocol. Currently,
the only supported network protocolo is TPC/IP. Thus, this command-line option
is reserved for future use.

By default, G2 listens on all the transports that it can.

If you supply more than one -network option on the command line, G2 listens on
all the specified network transports.

However, G2 will not exit, warn, or otherwise signal an error if there is a transport
on which it cannot listen. G2 will exit if it is unable to use the network to the
minimal extent necessary to begin its per-process license census.

Example

This command starts a new G2 process and directs it to listen for incoming
network connections only via the TCP/IP transport protocol:

g2 -network tcpip
2082

never-start
never-start
Directs the new G2 process to not start the KB identified in the accompanying
-kb option.

Platforms

All platforms

Syntax

-never-start

Equivalent Environment Variable

None

Description

When used with the -kb option, setting of the start-kb-after-load? attribute of the
Miscellaneous Parameters system table in the KB is overridden. If the -kb option
is not included with the -never-start option in the command line, G2 ignores
the -never-start option.

Example

This command starts a new G2 process on a Windows platform, which loads the
KB stored in the file c:\Program Files\Gensym\g2-
2011\g2\kbs\demos\axldemo.kb and inhibits auto-start, specified in its system-
tables:

g2 -never-start -kb "c:\Program Files\gensym\g2-
2011\g2\kbs\demos\axldemo.kb"

This command starts a new G2 process on a UNIX platform, which loads the KB
stored in the file /usr/gensym/g2-2011/g2/kbs/demos/axldemo.kb and and
inhibits auto-start, specified in its system-tables:

g2 -never-start -kb /usr/gensym/g2-2011/g2/kbs/demos/axldemo.kb
2083

no-backing-store
Disables the use of the default backing-store facility.

Platforms

 UNIX

Syntax

-no-backing-store

Equivalent Environment Variable

None

Description

Using an X-Server Backing-Store

By default, with backing-store in effect, the X-server caches a window image in its
own memory each time a window is obscured or iconized. Then, whenever a
window, or part thereof, is redrawn, the X-server simply redraws the window
from memory, rather than requesting an update from the G2 server.

The advantage of this facility is for Telewindows users, especially those
connecting to G2 across a slow network. Using this default option precludes the
need for a Telewindows client to make G2 redraw requests each time a window,
or any portion of a window, must be redrawn after being iconized or obscured in
any way. Caching the window on the X-server in such an environment can then
significantly improve window redraw performance.

Two disadvantages exist when using the backing-store option:

• The X-server may require more memory.

• If the server stops responding, redrawn windows may not be current.

X-Server Memory Requirements

The X-server can potentially require more memory when using the backing-store
feature. The amount of memory required depends on:

• The size of the window being cached

• The number of colors in use

If the X-server has sufficient memory when you start G2 or Telewindows, it uses
what is available to cache the window. If more memory is required for backing-
2084

no-backing-store
store, the X-server allocates whatever it needs. Additionally allocated memory for
backing-store then remains in use for the duration of the G2 or
Telewindows process.

Updating Cached Windows

Using backing-store does not affect regular window updates from the G2 server.
For example, G2 continually updates display items, such as readout-tables and
trend-charts, even if a window is obscured. Thus, when the X-server redraws a
window containing display items, its data is always current.

An obscured or iconized window can potentially become out of date if the G2
server stops responding to the client. In this case, with backing-store in effect, the
X-server redraws the window from its previous state, even if that state is no
longer current. Conversely, if backing-store is not in use (G2 was launched with
the -no-backing-store command-line option), attempting to redraw an
obscured window results in an entirely blank window that remains until the G2
server responds once more.

Example

This command starts a new process and disables the use of the backing-
store facility:

g2 -no-backing-store
2085

no-log
Specifies that Windows should not write a log file for the G2 process.

Platforms

Windows

Syntax

-no-log

Equivalent Environment Variable

G2_NO_LOG

Description

By default, if you launch G2 without the -log command-line option, Windows
creates a uniquely named log file in the TEMP directory, as described in Writing
Standard Output Messages to a Log File.

The only way to avoid generating a log file is to use the -no-log option.

G2 accepts the G2_NO_LOG environment variable, which causes G2 not to generate
a log file, as if you had started G2 with the -no-log command-line option. To use
the variable, set it to a value of 1.

Example

This command starts a new G2 process with no log file:

g2 -no-log
2086

no-tray
no-tray
Starts a G2 process with no icon in the system tray.

Platforms

Windows

Syntax

-no-tray

Equivalent Environment Variable

None

Description

When running G2 as a service, you must start G2 with the -no-tray command-
line option to suppress the icon; otherwise, an error occurs when you start G2 as a
service.

Example

This command starts a new G2 process with no icon in the system tray.

g2 -no-tray
2087

no-window
Starts a G2 process with no visible window.

Platforms

All platforms

Syntax

-no-window

Equivalent Environment Variable

None

Description

Use the -no-window option to run G2 where no visible window is needed.
Typically, you use Telewindows to connect to G2 on such a machine.

Note When you launch G2 from a Microsoft Windows icon, G2 needs somewhere to
put standard output messages, and will expose a console window to hold them
unless -log was also specified in the command line. Specifying -log allows G2 to
redirect the standard output messages to a log file, avoiding the need for a
console window. No windows then appear when G2 starts.

Example

This command starts a new G2 process that has no visible window:

g2 -no-window
2088

ok
ok
Specifies the location of the G2 authorization file.

Platforms

All platforms

Syntax

-ok ok-file-path

ok-file-path: Location and name of the authorization file; you can specify a file
with any name and location.

Equivalent Environment Variable

G2_OK

Same as ok-file-path.

Description

The default name of the authorization file is g2.ok.

If the file NOCMD.OK is stored in the root directory, G2 checks whether the
authorization file name specified by ok-file-path is listed in NOCMD.OK. G2 loads the
file only if it is listed there. The root directory is the directory / on UNIX
platforms or the directory \ on Windows platforms.

If you omit the -ok option, the new process looks for the authorization file in the
directory from which you launched G2.

On Windows platforms, you can specify a UNC network path as the ok-file-path,
such as \\my-server\my-dir\.

Special Considerations

You can also use the -v11ok command-line option, the G2V11_OK environment
variable, and the g2v11.ok file to specify the location of the authorization file. The
order of precedence for identifying the authorization file to use is:

1 The -v11ok command-line option.

2 The -ok command line arg.

3 The G2V11_OK environment variable.

4 The G2_OK environment variable.
2089

5 A file named g2v11.ok in the G2 home directory.

6 A file named g2.ok in the G2 home directory.

For more information, see v11ok.

Example

On a Windows platform, this command starts a new process and identifies
c:\Program Files\Gensym\g2-2011\g2\my.ok as the authorization file:

g2 -ok "c:\Program Files\Gensym\g2-2011\g2\my.ok"

On a UNIX platform, this command starts a new process and identifies
/usr/gensym/g2-2011/g2/my.ok as the authorization file:

g2 -ok /usr/gensym/g2-2011/g2/my.ok
2090

password
password
Specifies the password for starting a secure G2 process.

Platforms

All platforms

Syntax

-password password-string

password-string: A series of characters that constitute a password.

Equivalent Environment Variable

None

Description

Specifying the -password option corresponds to filling in the Password field in
the login dialog.

Example

This command starts a secure G2 process, specifying a password and other
information necessary to start the process.

g2 -window viper -user-name howard -password fearnoevil
-kb secure.kb -user-mode manager -language korean
2091

private-colormap
Causes G2 to request a dedicated colormap from the X server. The default is to
use the standard colormap, which is shared by all applications.

Platforms

 UNIX

Syntax

-private-colormap

Equivalent Environment Variable

None

Description

Although most color X workstations are capable of displaying many more than
256 colors, most X servers can represent only 256 colors at a time. What those
colors are depends on the applications that access the X server and sometimes on
the order in which they are run.

When an application wants to display a pixel in a certain color, it asks the X server
to map the color to an index in the colormap. If the color is not already present in
the colormap, the X server adds it, using up one more slot in the colormap. If this
continues, the colormap becomes full. When an application asks for a new
mapping and the colormap is full, the X server responds by using the closest
available color to the one requested. The result may not be an acceptable color.

Applications, such as Web browsers, which display images (GIFs, JPEGs, and so
on) typically need many colors, increasing the chance that the colormap will
become full. For example, if you run Netscape on your UNIX machine before
running G2, there is a chance that G2 will not be able to find space in the
colormap for even its 64 basic colors, and the display will look wrong.

The alternative is to use a private colormap. When a private colormap is in use, no
other applications can fill up the slots. In the case of G2, this guarantees that the 64
basic colors will always be available.

An additional benefit to using a private colormap is that more color cells will be
available should G2 need them. In fact, G2 does need them to display GIFs well. If
you change the image-palette attribute in the Color Parameters system table to
Custom colors from my-image-def, G2 displays the GIF rendered better than it has
been able to before under X.
2092

private-colormap
Special Considerations

The disadvantage of using a private colormap is that the X server has to actively
switch between color maps. It does this based on focus. If G2 is using a private
colormap and some other application has the focus, the colors in G2 will appear
obviously wrong. When G2 is given focus, the X server installs its colormap, and
the G2 window looks fine. However, the colors of all other applications, as well as
icons and other items drawn by the X server and the window manager, will be
wrong. They are still using the same indices into the colormap as they were
before, but those indices no longer make sense because a different colormap is
in use.

Since users may find this color change problem disconcerting, the -private-
colormap flag is off by default.

Note This option will be ignored if you are using 24-bit display because the colormap
would be too large.

Example

This command starts a new process and requests a private colormap from the
X server:

g2 -private-colormap
2093

regserver
Registers Telewindows.

Platforms

Windows

Syntax

-regserver

Equivalent Environment Variable

None

Description

When you install the G2 Bundle, Telewindows automatically calls -regserver to
register both Telewindows Next Generation (twng.exe) and Telewindows
(tw.exe).

Telewindows looks in the registry when connecting to G2, as follows:

To use Telewindows instead of Telewindows Next Generation when using the
Connect Telewindows menu choice, unregister Telewindows Next Generation.
See unregserver.

The command-line option supports an optional argument, -s, to suppress the
dialog that appears when you successfully register Telewindows.

Note You can specify the command-line option by using -regserver and -s, or you
can use the Windows style command-line options, /regserver and /s.

When connecting... Telewindows connects...

Using the Connect Telewindows
menu choice on the G2 server icon

Telewindows Next Generation, if it can
find it in the registry; otherwise,
Telewindows

Telewindows ActiveX control Telewindows

WorkspaceView ActiveX control Telewindows Next Generation
2094

regserver
Telewindows writes its location is these Windows registry keys, depending on
the executable:

The location in the registry for both keys is:

HKEY_LOCAL_MACHINE\SOFTWARE\Gensym\Telewindows\version

where version is the Telewindows version and revision, including Beta, if
appropriate. For example, the location for Telewindows Version 2011 Rev. 0 is:

HKEY_LOCAL_MACHINE\SOFTWARE\Gensym\Telewindows\8.3 Rev. 0

Executable Registry Key

twng.exe installDir

tw.exe installDirClassic
2095

resolution
Specifies the resolution of the monitor on which the G2 window appears.

Platforms

All platforms

Syntax

-resolution dots-per-inch

dots-per-inch: An integer in the range 36 to 200.

Equivalent Environment Variable

None

Description

This option specifies the resolution, in pixels per inch, at which the new process
displays its local window and any Telewindows to which it is connected. Use this
option to adjust the absolute size of window to the resolution characteristics of
your display device. For more information see Specifying the Resolution and
Magnification.

By default, displays a window at 75 dots per inch (dpi).

Special Considerations

For a display device that supports distinct settings for its vertical (y-axis)
resolution and horizontal (x-axis) resolution, you can specify separate default
vertical and horizontal resolutions, as follows:

g2 -x-resolution 75 -y-resolution 100

Do not combine the -resolution option with either the -x-resolution or
-y-resolution options. If you specify the -x-resolution option, you should
also specify the -y-resolution option, and vice versa. See x-resolution and
y-resolution.

Example

This command starts a new G2 process that displays its window at a resolution of
150 dots per inch:

g2 -resolution 150
2096

rgn1lmt
rgn1lmt
Specifies the initial supply of available memory for data other than symbols and
graphics images.

Platforms

All platforms

Syntax

-rgn1lmt number-of-bytes

number-of-bytes: The integer 4750000 or higher, up to the maximum per-process
allocation determined by your platform’s operating system settings.

Note Do not include commas when specifying number-of-bytes.

Equivalent Environment Variable

G2RGN1LMT

Same syntax as number-of-bytes.

Description

G2 maintains its supply of available memory in three regions. This option
controls the initial supply of available memory in its Region 1 memory pool. G2
uses its Region 1 memory pool to store all data other than symbols and graphics
images.

The new process allocates Region 1 memory when it is launched. G2 standard
output messages at startup indicate the memory allocation.

The default amount of Region 1 memory is 10,000,000 bytes.

Special Considerations

If your -rgn1lmt option specifies less than the minimum number of bytes, G2
displays a warning standard output message and supplies the minimum amount.
2097

For information about G2 memory management, see Memory Management. For
details about Region 1 memory allocation, see in that chapter:

• G2 Memory Regions.

• Determining Region 1 and Region 2 Memory Requirements.

• Specifying G2 Memory Allocation.

Example

This command starts a new process and directs it to allocate 8,500,000 bytes as its
initial supply of Region 1 memory:

g2 -rgn1lmt 8500000

G2 attempts to allocate more Region 1 memory as is required by the current
KB’s processing.
2098

rgn2lmt
rgn2lmt
Specifies the initial supply of available memory for symbol data.

Platforms

All platforms

Syntax

-rgn2lmt number-of-bytes

number-of-bytes: The integer 3000000 or higher, up to the maximum per-process
allocation determined by your platform’s operating system settings.

Note Do not include commas when specifying number-of-bytes.

Equivalent Environment Variable

G2RGN2LMT

Same syntax as number-of-bytes.

Description

G2 maintains its supply of available memory in three regions. This option
controls the initial supply of available memory in its Region 2 memory pool. G2
uses its Region 2 memory pool to store symbols and related internal data.

The new process allocates Region 2 memory when it is launched. G2 standard
output messages at startup indicate the memory allocation.

The default amount of Region 2 memory is 3,000,000 bytes.

Special Considerations

If your -rgn2lmt option specifies less than the minimum number of bytes, G2
displays a warning standard output message and G2 supplies the minimum
amount.

For information about G2 memory management, see Memory Management. For
details about Region 2 memory allocation, see in that chapter:

• G2 Memory Regions.

• Determining Region 1 and Region 2 Memory Requirements.

• Specifying G2 Memory Allocation.
2099

Example

This command starts a new process and directs it to allocate 4,500,000 bytes as its
initial supply of Region 2 memory:

g2 -rgn2lmt 4500000

G2 attempts to allocate more Region 2 memory as is required by the current
KB’sprocessing.
2100

rgn3lmt
rgn3lmt
Specifies the maximum memory used by to render the background images
of workspaces.

Platforms

All platforms

Syntax

-rgn3lmt number-of-bytes

number-of-bytes: The integer 400000 or higher, up to the number of bytes of
memory actually available to the target platform’s window manager.

Note Do not include commas when specifying number-of-bytes.

Equivalent Environment Variable

G2RGN3LMT

Same syntax as number-of-bytes.

Description

G2 maintains its supply of available memory in three regions. This option
controls the maximum memory that a new process can allocate for its Region 3
memory pool. G2 uses its Region 3 memory pool to manage the graphics image
data that displays as the background images of workspaces and icons.

The new process does not allocate Region 3 memory when it is launched. Instead,
G2 allocates Region 3 memory at the time that the KB must display a background
image.

The default maximum amount of Region 3 memory is 2,500,000 bytes. If you
specify a number-of-bytes larger than 2,500,000 bytes, the new process can manage
more precomputed image renderings, which, in turn, means that background
images can display more quickly.

Special Considerations

If your -rgn3lmt option specifies less than the allowable minimum (400,000), G2
displays a warning standard output message and substitutes the minimum
specification.
2101

For information about G2 memory management, see Memory Management. For
details about Region 3 memory allocation, see in that chapter:

• G2 Memory Regions.

• Restricting Region 3 Memory.

• Specifying G2 Memory Allocation.

Example

This command starts a new process and restricts it to allocating at most 500,000
bytes of Region 3 memory:

g2 -rgn3lmt 500000

G2 attempts to allocate Region 3 memory as is required by the current KB’s
processing.
2102

screenlock
screenlock
Displays the new window so that it occupies the entire screen.

Platforms

Windows

Syntax

-screenlock

Equivalent Environment Variable

None

Description

On Windows platforms, this option displays the new window at the top of the
window hierarchy and prevents any other application window from being
on top.

In contrast, on any supported platform, the -fullscreen command-line option
displays the window so that it is the same size as the screen and so that the
window can appear behind any other open window.

Example

This command starts a new process and directs it to display its window so that its
extent occupies the entire screen:

g2 -screenlock

After executing this command, the user also cannot cause any other application’s
window to appear on top of the window that displays.
2103

secure
Encrypts communication.

Platforms

All platforms

Syntax

-secure

Equivalent Environment Variable

None

Description

This command-line option causes G2 and Telewindows to use SSL on all
TCP/ICP connections. G2 uses SSPI on Windows and OpenSSL on UNIX.

When the connection is encrypted, the padlock icon appears in the status bar.
2104

start
start
Directs the new G2 process to start the KB identified in the accompanying
-kb option.

Platforms

All platforms

Syntax

-start

Equivalent Environment Variable

G2_START

Description

When used with the -kb option, G2 starts the specified KB. If the -kb option is not
included with the -start option in the command line, G2 ignores the
-start option.

Specifying the -start option overrides the setting of the start-kb-after-load?
attribute of the Miscellaneous Parameters system table in the KB specified as the
argument to the accompanying -kb option.

Special Considerations

If the -init option is also specified in the command line, the new G2 process
executes all commands in the g2.init file first, then starts the newly loaded KB, if
it’s not started yet by any command in the g2.init file, unless there is a
command to shut down G2.

Example

This command starts a new G2 process on a Windows platform, which loads and
begins running the KB stored in the file c:\Program Files\Gensym\
g2-2011\g2\kbs\my-kb.kb:

g2 -start -kb "c:\Program Files\gensym\g2-2011\kbs\my-kb.kb"

This command starts a new G2 process on a UNIX platform, which loads and
begins running the KB stored in the file /usr/gensym/g2-2011/g2/kbs/
my-kb.kb:

g2 -start -kb /usr/gensym/g2-2011/g2/kbs/my-kb.kb
2105

tcpipexact
Prohibits the new G2 process from attempting to open a network connection to
any TCP/IP port other than that specified in the accompanying -tcpport
command-line option.

Platforms

All platforms

Syntax

-tcpipexact

Equivalent Environment Variable

None

Description

This option directs the new G2 process to exit before completing its startup, if it
cannot open a network connection to the TCP/IP port specified in the
accompanying -tcpport command-line option.

This option requires that you also include the -tcpport option in the command
line that launches a G2 process. G2 ignores this option unless the command line
also includes the -tcpport option.

Example

This command starts a G2 process that attempts to open a network connection to
the TCP/IP port 1711:

g2 -tcpport 1711 -tcpipexact

If this attempt is not successful, the G2 process does not attempt to open a
network connection to another TCP/IP port, and automatically exits.
2106

tcpport
tcpport
Directs the new G2 process to open a network connection to the specified TCP/IP
port, with additional attempts to connect to other TCP/IP ports as necessary.

Platforms

All platforms

Syntax

-tcpport tcpip-port-number

tcpip-port-number: A positive integer; however, TCP/IP port numbers under 1000
are often reserved by your platform and should be avoided for use with G2.

Equivalent Environment Variable

None

Description

This option directs the new G2 process to open a network connection to a TCP/IP
port. Specify the port’s name as an argument, following the option.

If the new G2 process cannot open a connection to the specified port, this option
also directs G2 to attempt to open a connection to the G2 default TCP/IP
port 1111. If this is not successful, G2 increments the port’s last digit (to 1112),
attempts to connect to that port, and so on. G2 stops after trying to connect to
TCP/IP port 1210, that is, after incrementing the G2 default TCP/IP port number
100 times.

Special Considerations

Including the -tcpipexact option in the command line modifies how the new G2
process attempts to open a TCP/IP network connection. See the section
tcpipexact.

The number of sockets available to G2 at run time is determined by various
operating system specified limits. These limits can vary between operating
system releases and as such it is difficult to predict exactly how many network
connections a given G2 can service. Further complicating this situation is that in
many operating systems, descriptors for files and sockets are derived from a
shared resource. That is to say, the maximum number of sockets can be decreased
for every file opened.
2107

The following table lists the theoretical maximum number of outstanding sockets
available to G2. In practice, you will never be able to manage exactly this many
sockets. Before deploying an application which may approach these upper limits
of socket usage, you should test your operating system’s ability to safely
accommodate G2’s resource needs.

Example

This command starts a G2 process that attempts to open a network connection to
TCP/IP port 1711:

g2 -tcpport 1711

Sockets Available to G2

Operating System Maximum Number of Sockets

Microsoft Windows 64

RedHat Linux 1024

Sun Solaris 1024

IBM AIX 2048

HP HP-UX 1024

Compaq Tru64 Unix 4096
2108

ui
ui
Specifies the user interface style when starting G2.

Platforms

All platforms

Syntax

-ui standard | classic

Equivalent Environment Variable

None

Description

Both options provide a standard user interface, where “standard” implies the
Windows standard, which includes standard selection-style, mouse gestures,
keystrokes, and key bindings. On UNIX platforms, you get as many native
features as the platform supports.

For backward compatibility, you can also run G2with its classic user interface,
where “classic” implies G2 6.x behavior. The classic user interface uses a single
document interface (SDI), and classic G2 selection-style, menus, and mouse
gestures, keystrokes, and key bindings.

Examples

To start G2 with its default user interface, use this command:

g2

Starting G2 with no command line options is equivalent to:

g2 -ui standard

To start G2 with its classic user interface:

g2 -ui classic
2109

unregserver
Unregisters Telewindows.

Platforms

Windows

Syntax

-unregserver

Equivalent Environment Variable

None

Description

When you install the G2 Bundle, Telewindows automatically calls -regserver to
register both Telewindows Next Generation (twng.exe) and Telewindows
(tw.exe). See regserver.

Telewindows looks in the registry when connecting to G2, as follows:

To use Telewindows instead of Telewindows Next Generation when using the
Connect Telewindows menu choice, unregister Telewindows Next Generation.

The command-line option supports an optional argument, -s, to suppress the
dialog that appears when you successfully unregister Telewindows.

Note You can specify the command-line option by using -unregserver and -s, or you
can use the Windows style command-line options, /unregserver and /s.

When connecting... Telewindows connects...

Using the Connect Telewindows
menu choice on the G2 server icon

Telewindows Next Generation, if it can
find it in the registry; otherwise,
Telewindows

Telewindows ActiveX control Telewindows

WorkspaceView ActiveX control Telewindows Next Generation
2110

unregserver
Telewindows writes its location is these Windows registry keys, depending on
the executable:

The location in the registry for both keys is:

HKEY_LOCAL_MACHINE\SOFTWARE\Gensym\Telewindows\version

where version is the Telewindows version and revision, including Beta, if
appropriate. For example, the location for Telewindows Version 2011 Rev. 0 is:

HKEY_LOCAL_MACHINE\SOFTWARE\Gensym\Telewindows\8.3 Rev. 0

Executable Registry Key

twng.exe installDir

tw.exe installDirClassic
2111

user-mode
Specifies the user mode for starting a secure G2 process.

Platforms

All platforms

Syntax

-user-mode user-mode-string

user-mode-string: Series of characters that names a user mode.

Equivalent Environment Variable

None

Description

Specifying the -user-mode option corresponds to filling in the User Mode field in
the login dialog and sets the g2-user-mode attribute of the current g2-window.

When you specify -user-mode, the option takes effect only if you also specify a
KB with the -kb option. Otherwise, the default user mode of the subsequently
loaded KB will override the value of -user-mode.

Example

This command starts a secure G2 process, specifying a user mode and other
information necessary to start the process.

g2 -window viper -user-name howard -password fearnoevil
-kb secure.kb -user-mode manager -language korean
2112

user-name
user-name
Specifies the user name under which to start a secure G2 process.

Platforms

All platforms

Syntax

-user-name user-name-string

user-name-string: A user name defined in the authorization file for a secure G2.

Equivalent Environment Variable

None

Description

Specifying the -user-name option corresponds to filling in the User Name field in
the login dialog and sets the g2-user-name attribute of the current g2-window.

Example

This command starts a secure G2 process, specifying a user name and other
information necessary to start the process.

g2 -window viper -user-name howard -password fearnoevil
-kb secure.kb -user-mode manager -language korean
2113

v11ok
Specifies a custom location for an authorization file that is specific to G2
Version 2011.

Platforms

All platforms

Syntax

-v11ok v11-ok-file-path

v11-ok-file-path: Location and name of the authorization file for Version 2011; you
can specify a file with any name and location.

Equivalent Environment Variable

G2V11_OK

Same syntax as v11-ok-file-path.

Description

Like the -ok option, the -v11ok option specifies the path of an authorization file
for this process.

Specifying the -v11ok option allows the site manager to configure a system
environment so that processes launched using a previous version authorize using
an authorization file for that previous version, while processes launched using
Version 2011 authorize using a separate authorization file.

If the file NOCMD.OK is stored in the root directory, G2 checks whether the
authorization file name specified as v11-ok-file-path is listed in NOCMD.OK. G2 loads
the file only if it is listed there. The root directory is the directory / on UNIX
platforms or the directory \ on Windows platforms.)

On Windows platforms, you can specify a UNC network path as the v11-ok-file-
path, such as \\my-server\my-dir\.
2114

v11ok
Special Considerations

You can also use the -ok command-line option, the G2_OK environment variable,
and the g2.ok file to specify the location of the authorization file. The order of
precedence for identifying the authorization file to use is:

1 The -v11ok command-line option.

2 The -ok command line arg.

3 The G2V11_OK environment variable.

4 The G2_OK environment variable.

5 A file named g2v11.ok in the G2 home directory.

6 A file named g2.ok in the G2 home directory.

For more information, see ok.

Example

On a Windows platform, this command starts a new process and identifies
c:\Program Files\Gensym\g2-2011\g2\my-g2.ok as the Version 2011
authorization file:

g2 -v11ok "c:\Program Files\Gensym\g2-2011\g2\my-g2.ok"

On a UNIX platform, this command starts a new process and identifies
/usr/gensym/g2-2011/g2/my.ok as the Version 2011 authorization file:

g2 -v11ok /usr/gensym/g2-2011/g2/my-g2.ok
2115

verbose
Prints information about the current G2 to the console or log file, such as the
location of the G2 OK file.

Platforms

All platforms

Syntax

-verbose

Equivalent Environment Variable

None

Description

Example

g2 -verbose

For example:

2004-09-30 10:00:28
2004-09-30 10:00:28 [Using G2 OK file: "C:\Program Files\Gensym\
g2-2011\g2\g2.ok"]
2004-09-30 10:00:28
2004-09-30 10:00:28 It is now OK to run G2!
2116

width
width
Specifies the width in pixels of the window.

Platforms

All platforms

Syntax

-width number-of-pixels

number-of-pixels: A positive integer from 1 to 32,767.

Equivalent Environment Variable

None

Description

This option specifies the width in pixels of your window, which is stored in the
g2-window-width attribute of the g2-window.

By default, G2 displays a window whose width is 90% of the height of the screen.

On Windows platforms, the width refers to the entire window, including the title
bar and the black frame around the window. On UNIX platforms, the width refers
to the client window area only; it does not include the width of the title bar and
window frame.

Example

This command starts a process with a window whose width in pixels is 1000 and
whose height in pixels is equivalent to 90% of the height of the screen, the default:

g2 -width 1000
2117

window
Specifies the window name or class of g2-window that a secure G2 uses as its local
window.

Platforms

All platforms

Syntax

-window window-name-or-class

window-name-or-class: Name or class of a g2-window item or of an item whose
class is a subclass of g2-window.

Equivalent Environment Variable

None

Description

Specifying the -window option corresponds to the G2 Window Name or Class
field in the login dialog.

Examples

This command starts a secure G2 process, specifying a window and other
information necessary to start the process.

g2 -window viper -user-name howard -password fearnoevil
-kb secure.kb -user-mode manager -language korean
2118

window-style
window-style
Specifies the window style that G2 uses as its local window.

Platforms

All platforms

Syntax

-window-style {default | standard-large | g2-5.x | standard}

Equivalent Environment Variable

None

Description

This command-line option allows you to choose a larger version of the standard
window style or the traditional G2 window style. By default, uses the standard
window style in which workspaces have editable title bars and close buttons.
Specifying default as the window style is the same as specifying standard.

For examples of each of these window styles, see “G2 Window Styles” in
Chapter 2 “The Developers Environment” in the G2 Reference Manual.

Example

This command starts a G2 process, using a larger version of the standard
window style:

g2 -window-style standard-large
2119

x-magnification and y-magnification
Specifies the window’s default ratio of horizontal (x-axis) or vertical (y-axis)
magnification, in pixels per G2 workspace unit, for workspaces displayed at
full scale.

Platforms

All platforms

Syntax

-x-mag[nification] magnification-ratio
-y-mag[nification] magnification-ratio

magnification-ratio: A decimal value from 0.50 to 2.66.

Equivalent Environment Variable

None

Description

For a display device that supports distinct settings for vertical and horizontal
resolutions, you can use the -x-magnification and -y-magnification options
to specify distinct horizontal and vertical magnifications.

These options specify the ratio of pixels per workspace unit at which the new
window displays workspaces. For either option, specify a decimal value in the
range 0.50 to 2.66.

If you do not specify the -x-magnification or -y-magnification options or the
-magnification option, the new window uses a -magnification setting of 1.0;
this is equivalent to a -x-magnification setting of 1.0 and a -y-magnification
setting of 1.0.

By specifying different combinations of -x-magnification and
-y-magnification settings, you can display workspaces in the process’s window
at an effectively equivalent absolute size on different display devices.

For more information about using the -magnification, -x-magnification, and
-y-magnification options, see Specifying the Resolution and Magnification.
2120

x-magnification and y-magnification
Special Considerations

Alternatively, you can use the -magnification option to specify the same setting
for both the horizontal and vertical axes. However, do not combine the
-magnification argument with either the -x-magnification or
-y-magnification options. See magnification.

Example

This command starts a process whose window displays full-scale workspaces
with a horizontal magnification of two pixels per G2 workspace unit and with a
vertical magnification of one and a half pixels per G2 workspace unit:

g2 -x-magnification 2.0 -y-magnification 1.5
2121

x-resolution and y-resolution
Specifies the horizontal (x-axis) and vertical (y-axis) resolution of the monitor on
which a window appears.

Platforms

All platforms

Syntax

-x-res[olution] dots-per-inch
-y-res[olution] dots-per-inch

dots-per-inch: An integer in the range 36 to 200.

Equivalent Environment Variable

None

Description

For a display device that supports distinct settings for its horizontal and vertical
resolution, you can use the -x-resolution and -y-resolution options to specify
separate default horizontal and vertical resolutions.

These options specify the resolution as the number of dots per inch (dpi). By
default, displays a window at a default resolution of 75 dpi.

These values are stored in the g2-window-x-resolution and g2-window-y-resolution
attributes of the g2-window.

By specifying different combinations of -x-resolution and -y-resolution
settings, you can display workspaces on a window at an effectively equivalent
absolute size on different display devices.

For more on the -resolution, -x-resolution, and -y-resolution options, see
Specifying the Resolution and Magnification.

Special Considerations

Alternatively, you can use the -resolution option to specify the same setting for
both the horizontal and vertical axes. However, do not combine the -resolution
option with either the -x-resolution or -y-resolution options. See
resolution.
2122

x-resolution and y-resolution
Example

This command line starts a process that displays its window at a horizontal
resolution of 150 dpi, and a vertical resolution of 175 dpi:

g2 -x-resolution 150 -y-resolution 175
2123

2124

B

Reserved Symbols
Explains and lists G2’s reserved symbols.

Introduction 2124

List of Reserved Words 2124

Generating a List of System-Defined Attributes 2132
2123

Introduction
G2 reserved symbols are symbols that cannot serve as a user-defined name in G2.
In the Text Editor, the prompt any unreserved-symbol indicates where you must
enter a user-defined name. In the example below, the text editor is open for
specifying the name of a class. The G2 compiler will not accept a reserved word or
the name of an existing class.

If you enter a reserved word for a class name, the G2 compiler will prevent you
from exiting the editor and display this error message: This cannot be parsed.
You cannot use a reserved symbol as the name of an item, the name of a class, the
name of a class-specific attribute in a class definition, a region name in an icon
description, or the name left of the colon in a language-translation.

List of Reserved Words
The three categories of reserved words are:

• Reserved words in the G2 language.

• Reserved ordinary system-defined attributes.

• Reserved hidden system-defined attributes.

.

..
2124

List of Reserved Words
Reserved Words in the G2 Language

Here is a list of reserved words that are keywords in the G2 language:

a
above
across
ago
all
an
and
any
at
available-frame-vector
average

be
becomes
begin
below
between
by

call
case
change
checking
collection
color-pattern
conclude
connected
could
count
current

day
days
deviation
do
down
during

else
end
every
everything
exists
exit
expiration

false
first
focus
for
format

giving
go

has
hour
hours

if
in
infer
input
integral
interpolated
invoke
is

last maximum
minimum
minute
minutes
moved

name
named
nearest
no
none
not
nothing

of
on
one
or
output
over

past
per
product

rate
repeat
return
rules
2125

-this
n

Reserved Ordinary System-Defined Attributes

Here is the list of reserved ordinary system-defined attributes:

same
second
seconds
send
set
should
simulated
standard
start
subworkspace
sum
symbol

that
the
then
there
this
to
true

undefined
unspecified
until
upon

value
values
via

wait
was
week
weeks
were
when
will
with
workspace

yes

action
action-priority
allow-duplicate-elements
annotations
applicable-class
array-is-permanent
array-length
attribute-displays
attribute-initializations
authors

background-color
background-images
blank-for-type-in?

categories
change
change-log
characters-procedure
chart-style
class
class-inheritance-path
class-name
class-of-object-computed-by
class-of-procedure-invocatio
class-specific-attributes
comment-procedure
condition
connection-arrows
connector-formats
cross-section-pattern
2126

List of Reserved Words
data-series
data-server
data-server-for-messages
data-type
default-cell-format
default-evaluation-setting
default-message-properties
default-procedure-priority
default-simulation-time-increment
default-update-interval
depth-first-backward-chaining-
precedence
depth-of-image
description-of-frame
dialog-height
dialog-title
dialog-type
dialog-width
dialog-x-position
dialog-y-position
direct-superior-classes
disable-interleaving-of-large-
messages
dismissed-callback
display-format
display-update-interval
display-update-priority
display-wait-interval

element-type
end-document-
procedure
end-element-
procedure
error-description
error-procedure
error-source-column
error-source-item
error-source-line
expression-to-display
external-simulator-
configuration
external-system-has-a-
scheduler

fatal-error-procedure
file-name-of-image
file-status
file-system
first-class
focal-classes
focal-objects
foreground-color
format-for-type-in-box
format-of-image
formula
frame-style
2127

al-

lator

t-

level

m

el
g2-connection-status
g2-meter-name
g2-routing-information
g2-to-g2-interface-name
g2-user-mode
g2-user-name
g2-window-height
g2-window-initial-window-
configuration-string
g2-window-management-type
g2-window-mode-is-valid
g2-window-operating-system-type
g2-window-remote-host-name
g2-window-reroute-problem-report
g2-window-specific-language
g2-window-style
g2-window-time-of-last-connection
g2-window-user-is-valid
g2-window-user-name-in-operating-
system
g2-window-width
g2-window-x
g2-window-x-resolution
g2-window-y
g2-window-y-resolution
gfi-input-file-format
gfi-input-file-pathname
gfi-input-interface-object
gfi-input-time-stamp-format
gfi-input-variables-update-mode
gfi-input-when-active
gfi-output-file-format
gfi-output-file-pathname
gfi-output-file-update-frequency
gfi-output-time-stamp-format
gfi-output-values
gfi-output-when-active
grouping-specification
gsi-application-name
gsi-connection-configuration
gsi-interface-name
gsi-interface-status
gsi-variable-status

have-edit-option-
buttons-for-type-in?
height-of-image
history-keeping-spec

icon-description
icp-connection-specification
identifying-attributes
ignore-gfi-input-base-time
include-in-menus
increment-per-dial-ruling
increment-per-meter-ruling
inherited-attributes
initial-value
initial-value-for-simulation
initial-values
initializable-system-attributes
initialization-vector-for-extern
simulator
input-vector-to-external-simu
instance-configuration
instantiate
integration-algorithm
interface-initialization-timeou
period
interface-status
interface-timeout-period
interface-warning-message-
interpolate
interval-to-poll-external-syste
inverse-of-relation
item-configuration
items-belonging-to-this-mod
2128

List of Reserved Words

-

ame
junction-block keep-sorted label
label-to-display
last-recorded-value
line-pattern
list-is-permanent
low-value-for-dial-ruling
low-value-for-meter-ruling

maximum-number-of-output-lines
maximum-value
message-keywords
minimum-value
model-simulation-status
module-assignment

name-in-foreign-image
name-in-remote-
system
names
native-window-height
native-window-left
native-window-state
native-window-top
native-window-width
notes
number-of-pending-
callbacks

off-value
on-value
options
output-vector-from-external-
simulator

patterns-definition
plots
point-formats
poll-external-system-for-data
prefer-buffered-drawing
proprietary-package

qualified-name readout-table-display-value
relation-is-permanent
relation-is-symmetric
relation-name
relation-summary
remote-g2-expression
remote-process-initialization
string
renamed-gfi-output-file-pathn
requires-call-next-method?
rule-priority
2129

save-image-data-with-kb
scan-interval
second-class
send-all-values-at-beginning-of-cycle
set-value-while-sliding?
show-operator-logbook-in-this-
window?
show-prompts-for-type-in
show-simulated-values
simulation-control-specifications
simulation-details
simulation-formula
simulation-procedure
start-document-procedure
start-element-procedure
stub-length
stubs
superior-connection
synchronized

table-size
text
text-conversion-style
time-axis
time-increment-for-
update
timeout-for-rule-
completion
timeout-interval
title
title-bar-text
tokens-definition
tracing-and-
breakpoints
trend-chart-format
type-of-relation

uninterrupted-procedure-
execution-limit
update-callback
uuid

validity-interval
value-axes
value-on-activation
variable-or-parameter
view-preferences

warning-procedure
when-to-show-value
width-of-image
workspace-margin
2130

List of Reserved Words

e

Reserved Hidden System-Defined Attributes

Here is the list of hidden system-defined attributes:

active-stubs
attribute-display-items

background-color
border-color
button-status

cached-media-bin
chart-axis-computed-details
chart-data-series
class
connection-input
connection-is-directed
connection-output
connection-position-sequenc
connection-style
connection-vertices
containing-module
current-attribute-displays

default-window-position-and-scale
do-not-strip-text-mark
dynamic-breakpoints

edges-of-workspace
effective-data-type
evaluation-attributes

following-item-in-workspace-
layering
format-type
foundation-class

g2-array-sequence
g2-hash-table-number-of-entries
g2-hash-table-sequence
g2-list-sequence
g2-priority-queue-number-of-entries
g2-priority-queue-sequence
g2-window-client-version
g2-window-is-embedded
g2-window-of-view
g2-window-ui-style

history
history-using-unix-time

icon-color
icon-heading
icon-reflection
icon-variables
image-data
inlined-calls
internal-media-bin
item-active
item-color-pattern
item-height
item-notes
item-status
item-width
item-x-position
item-y-position
items-in-this-relation

last-recorded-value-text
latent-listeners
layer-position

manually-disabled?
minimum-size-in-
workspace
mouse-cursor

name-box
name-box-item
2131

e

Generating a List of System-Defined Attributes
If g2-attribute is the name of a reserved attribute of a system-defined class, then
you cannot use it as the name of an attribute of a user-defined class.

Some system-defined classes such as object or connection are user-extensible;
other system-defined classes such as logbook-parameters are not user-extensible.
To avoid possible inheritance problems, you cannot use system-defined attributes
of user-extensible system-defined classes as user-defined attributes; thus, these
attributes are considered reserved words in G2. However, you can use system-
defined attributes of non user-extensible system-defined classes as user-defined
attributes; these attributes are considered unreserved.

parent-of-subworkspace
permanent
position-in-workspace

relationships
representation-type

selected-items
selected-window-handle
selected-workspace
size-in-workspace
slider-value
strip-text-mark
stripe-color

table-cells
table-header
table-rows
text-alignment
text-color
text-font
text-x-magnification
text-y-magnification
transient
type-in-box-value
type-in-box-variable-or-parameter

ui-client-connection-
status
ui-client-mode-is-valid
ui-client-operating-
system-type
ui-client-remote-host-
name
ui-client-specific-
language
ui-client-time-of-last-
connection
ui-client-user-is-valid
ui-client-user-mode
ui-client-user-name
ui-client-user-name-in-
operating-system
uses-floating-license

value-structure
value-structure-using-unix-tim
value-to-display
values-for-table-of-values

window-handles
2132

Generating a List of System-Defined Attributes
If you attempt to use a reserved word as a user-defined attribute, G2 takes the
following actions:

• When entering a reserved word in the G2 Text Editor, an error such as the
following appears in the text editor:

This is uncompilable. HEIGHT-OF-IMAGE is the name of a G2 system
attribute and cannot be a user-defined attribute."

• When loading a KB from an older version of G2 in which the reserved word
was not a system-defined attribute, an error such as the following appears in
the Operator Logbook:

HEIGHT-OF-IMAGE is the name of a G2 system attribute and cannot be a
user-defined attribute.

Also, the notes of the user-defined class-definition contains an error such as
the following:

OK, and note that the class-specific-attribute height-of-image is now a
reserved G2 attribute. You must rename it before starting G2.

To obtain the name of the user-defined class that uses the reserved word, use the
following Inspect command:

highlight the symbol height-of-image in every class-definition

You can use the following system procedure to get a list of all reserved words:

g2-get-all-reserved-system-attribute-names
(type: symbol)
-> reserved-words: sequence

Returns a sequence of all reserved system-defined class attribute names, in
alphabetical order, where type is one of these symbols:

• ordinary — Returns all non-hidden attributes.

• hidden — Returns all hidden attributes of user-extensible classes.

• all — Returns both ordinary and hidden attributes.

If g2-hidden-attribute is the name of a hidden attribute of a system-defined
class, you may use it as the name of an attribute of a user-defined class.
However, we recommend that you avoid this practice. For example, using
history as the name of an attribute of a user-defined class would shadow its
use as a hidden attribute of a float-parameter. Similarly, using containing-
module as the name of an attribute of a user-defined class would shadow its
use in GFR and GMS.

Note that you cannot use reserved symbols as the name of a user-defined
attribute.
2133

2134

C

Mouse Gestures, Key
Bindings, and Shortcut Keys
Presents the default mouse gestures, key bindings, and shortcut keys.

Introduction 2135

Mouse Gestures for Selection 2136

Mouse Gestures for Interacting with Selections 2137

Mouse Gestures for Interacting with Workspaces 2138

Key Bindings for Scrolling Workspace Views 2139

General Key Bindings 2140

General Shortcut Keys 2141

Shortcut Keys for Workspaces 2142

Changes from Earlier G2 Versions 2145

Introduction
Both G2 and Telewindows support standard mouse gestures for selection, where
“standard” implies the Windows standard. They also support a number of other
mouse gestures, key bindings, and shortcut keys for interacting with selection,
workspaces, and items. G2 uses a selection style user interface where commands
apply to the current selection.

The mouse gestures, key bindings, and shortcut keys are available on all
platforms, and in both G2 and Telewindows, unless otherwise noted.
2135

You can use configurations to change G2’s default key bindings and shortcut keys
and to make new assignments. For more information, see Configuring
Keystrokes.

Note G2 configurations that restrict capabilities such as cloning an item do not, by
default, restrict those capabilities in Telewindows. For example, if cloning is
restricted for an item in G2, you can still copy the item by holding down the CTRL
key and dragging the item. To restrict these types of user interface interactions,
you can create configurations that restrict non-menu choices for selecting an
object and selecting an area. For more information, see Configurations.

Mouse Gestures for Selection

Mouse Gesture Action

Left-click an item Select the item

Hold down the SHIFT key and
click an item that is not selected

Add the selected item to an
existing selection

Hold down the SHIFT key and
click a selected item

Toggle the membership of the
selected item in the selection

Left-click a workspace Cancel the current selection and
select the workspace

Drag in the open area of
a workspace

Select all items in the rectangular
area

Hold down the SHIFT key and
drag an item

Expand the selection to include the
item, then move the selection

Hold down the SHIFT key and
drag in the open area of
a workspace

Expand the selection to include the
items in the rectangular area

Hold down the ALT key and click
a connected network of items

Select the connected network of
items

Hold down the ALT and SHIFT
keys and left-click a connected
network of items

Toggles the membership of the
selected network of items in the
selection
2136

Mouse Gestures for Interacting with Selections
Mouse Gestures for Interacting with Selections

Mouse Gesture Action

Right-click an item Select the item and display its
popup menu

Right-click an item that is part of a
selection

Display a popup for interacting
with the selection, which includes:
Move, Clone, Transfer, Align, and
Delete

Right-click in the open area of a
workspace

Select the workspace and display
its popup menu

Double-click an item Select the item and display its
attribute table

Double-click an attribute value in
a table

Open the classic G2 text editor for
editing the attribute value

Drag an item or selection • For an item, select and move
the item

• For a selection, move the entire
selection

• For a connection between two
items, move the connection
and the items on both ends of
the connection

Hold down the CTRL key and
drag an item

Copy the item and attach it to the
mouse, then lift the mouse button
to place the copied item on the
workspace
2137

Mouse Gestures for Interacting with
Workspaces

Key Binding Action

Drag the title bar of a workspace Move the workspace

With the right mouse button, drag
the open area of a workspace or
workspace view

Hold down the CTRL or ALT key
and drag the open area of a
workspace or workspace view

With the middle mouse button,
drag the open area of a workspace
or workspace view

Move the workspace or workspace
view (Windows only)

Move the mouse wheel forward in
a workspace

Move the workspace down by ten
percent

Move the mouse wheel back in a
workspace

Move the workspace up by ten
percent

Hold down the CTRL key and
move the mouse wheel forward in
a workspace

Display the selected workspace at
80% of its current scale with the
selected item in the center

Hold down the CTRL key and
move the mouse wheel back in a
workspace

Display the selected workspace at
120% of its current scale with the
selected item in the center
2138

Key Bindings for Scrolling Workspace Views
Key Bindings for Scrolling Workspace Views
The following key bindings are only available for scrolling workspace views;
therefore, they are only available when running Telewindows on Windows
platforms. For more information on workspace views, see Chapter 3, “Using the
Standard Telewindows Interface” in the Telewindows User’s Guide.

Key Binding Action

HOME Scroll the workspace view to the
top-left corner

END Scroll the workspace view to the
bottom-left corner

CTRL+HOME Scroll the workspace view to the
top-right corner

CTRL+END Scroll the workspace view to the
bottom-right corner

PAGE UP Scroll the workspace view up

PAGE DOWN Scroll the workspace view down

CTRL+PAGE UP Scroll the workspace view left

CTRL+PAGE DOWN Scroll the workspace view right

Arrow keys Scroll the workspace view in the
direction of the arrow

Hold down the CTRL key and
press an arrow key

Scroll the workspace view one
pixel at a time in the direction of
the arrow
2139

General Key Bindings
.

Key Binding Action

DELETE on a selection Delete all items in the selection
with confirmation.

SPACEBAR on a selection Perform the default action on the
selected item, for example,
displaying the item’s table, editing
an attribute, or pressing an action
button.

RETURN or ALT+RETURN on
a selection

Display the table(s) for the selected
item(s).

Note: Pressing Return when a
workspace is selected does not
display its table so as to avoid
displaying the table in undesirable
situations, such as when a G2 XL
Spreadsheet (GXL) cell is selected.

ESC on a selection, table, or
dialog box

Cancel the current selection, hide
the table, or cancel the dialog box

Menu key or SHIFT+F10 on a
selected item

Display the popup menu for the
selected item.

TAB on a workspace Select the next item in the layering
from top to bottom.

SHIFT+TAB on a workspace Select the previous item in the
layering from top to bottom.

TAB in a table Move the selected cell to the next
cell in the table.

SHIFT+TAB in a table Move the selected cell to the
previous cell in the table.

DOWN ARROW or UP ARROW
in a table

Move the selected cell to the next
or previous cell, respectively.

Arrow key on a pulldown menu or
menu choice

Move the selected pulldown menu
or menu choice to the next or
previous pulldown menu or
menu choice.
2140

General Shortcut Keys
General Shortcut Keys

RETURN on a selected menu
choice

Execute the menu choice.

RETURN on a selected pulldown
menu

Dismiss the pulldown menu.

Arrow key on a selection Move all items in the selection by
10% in the direction of the arrow.

Arrow key on a workspace Move the selected workspace by
10% in the direction of the arrow.

Hold down the CTRL key and
press an arrow key on a selection

Move all items in the selection by
1% in the direction of the arrow.

Hold down the CTRL key and
press an arrow key on a workspace

Move the selected workspace by
1% in the direction of the arrow.

F1 Display a list of help topics, using
Windows HTML Help
(Windows only).

F5 Refresh.

Keystroke Command Action

CTRL+A In a workspace, select all items on
the workspace; in the G2 Text
Editor, dismiss the editor with
confirmation.

CTRL+C Refresh

Key Binding Action
2141

Shortcut Keys for Workspaces

CTRL+O Display the Load KB dialog

CTRL+Y Display the Login dialog.

CTRL+Z
Pause/Break key or Fn+Pause key

Pause G2.

CTRL + /
CTRL + ?

Display the help screen for G2’s
default key bindings.

The help screen can be also
displayed programmatically by
calling the g2-system-command
system procedure, described in the
G2 System Procedures Reference
Manual.

Keystroke Command Action

Workspace Scaling

CTRL+B
CTRL+PLUS SIGN (+)
CTRL+EQUAL SIGN (=)

Display the selected workspace at
120 percent of its current scale.

CTRL+F
CTRL+0 (zero)

Display the selected workspace at
full scale.

ALT+F Display the selected workspace at
normalized full scale, where one
window unit = one workspace
unit = one pixel.

CTRL+N Display the selected workspace at
80 percent of its current horizontal
scale.

CTRL+P Circulate the selected workspace
up in the stack of workspaces.

Keystroke Command Action
2142

Shortcut Keys for Workspaces
CTRL+Q Display the selected workspace at
one-sixteenth of its current scale,
that is, at one-fourth of the
workspace’s current x-axis scale
and one-fourth of its current y-axis
scale.

CTRL+S
CTRL+MINUS SIGN (-)
CTRL+UNDERSCORE (_)

Display the selected workspace at
80 percent of its current scale.

CTRL+W Display the selected workspace at
120 percent of its current
horizontal scale.

CTRL + . Display the selected workspace
centered within its window, at full
scale, or the largest scale that
makes the workspace completely
visible, whichever is smaller.

ALT + . Display the selected workspace at
its maximum scale to fit within its
window.

CTRL+4 Display the selected workspace at
four times its current scale.

Workspace Movement

CTRL+D
 (DOWN-ARROW)

Move the selected workspace
down by ten percent of its height.

ALT+D
ALT + 

Move the selected workspace
down by one percent of its height.

CTRL+U
 (UP-ARROW)

Move the selected workspace up
by ten percent of the height of its
window.

ALT+U
ALT + 

Move the selected workspace up
by one percent of the height of its
window.

CTRL+L
 (LEFT-ARROW)

Move the selected workspace left
by ten percent of the width of its
window.

Keystroke Command Action
2143

ALT+L
ALT + 

Move the selected workspace left
by one percent of the width of its
window.

CTRL+R
 (RIGHT-ARROW)

Move the selected workspace right
by ten percent of the width of its
window.

ALT+R
ALT + 

Move the selected workspace right
by one percent of the width of its
window.

CTRL+T Lift the selected workspace to the
top.

CTRL+V Drop the selected workspace to the
bottom.

CTRL+I Lift the bottom workspace to the
top.

CTRL+TAB
CTRL+F6

Select the next workspace in the
stack of workspaces.

CTRL+SHIFT+TAB
CTRL+SHIFT+F6

Select the previous workspace in
the stack of workspaces.

CTRL+F4 Close the selected workspace.

Keystroke Command Action
2144

Changes from Earlier G2 Versions
Changes from Earlier G2 Versions
To implement standard selection and other standard interactions, G2
reimplemented the behavior of the following mouse gestures and shortcut keys
available in earlier versions of G2.

Mouse Gesture/
Keystroke Command G2 6.x Behavior G2 7.0 Behavior

Left-click an item Display the popup
menu for the item

Select the item and give
focus to the workspace
of the selected item.

Left-click a workspace Display the KB
Workspace menu

Cancel the current
selection and select
the workspace.

Drag in the open area
of a workspace

Move the workspace Select all items in the
rectangular area.

CTRL+A In a text editor, dismiss
the text editor; no effect
in a workspace

Select all items on the
selected workspace.

CTRL+O Move the selected
workspace so that its
origin is at the center of
its window

Display the Load KB
dialog.
2145

2146

D

Syntax Conventions
Describes the notation and user-specified terms used in G2 syntax.

Introduction 2147

Syntax Notation 2147

User-Specified Terms 2148

Introduction
This book uses these types of conventions for describing G2 syntax:

• Descriptive notation describes how you specify the syntax.

• User-specified terms describe the type of information you can specify.

Syntax Notation
The following notation describes G2 syntax. In the descriptions of the syntax
notations, a syntax element is a self-contained piece of syntax, for example, a
stand-alone user-specified term, or a set of self-contained syntax enclosed by { } or
[]. Except for the last notation, do not enter these notation characters in G2 code.

This notation... Has this meaning...

{ } Groups syntax elements.

{choice | choice} Separates alternative syntax elements enclosed
by { }.
2147

All other characters that appear in syntax descriptions are literal characters that
you must enter.

User-Specified Terms
The syntax descriptions use a number of standard terms to represent user-
specified syntax. User-specified terms are shown like this: term. When entering a
statement in the G2 editor, substitute your own term for term.

There are two general types of user-specified terms:

• Expressions, which G2 evaluates to return an item or value.

• Literal terms, which are a sequence of characters that G2 does not evaluate.

There are several categories of user specified terms:

• Values terms, which are expressions and literal terms that represent values of
a particular type.

• Item terms, which are expressions and literal terms that represent items of a
particular class.

• Class terms, which are literal symbols that name a particular class or one of
its subclasses.

• Attribute terms, which are literal symbols that name an attribute.

• Other terms, which are expressions and literal terms that represent various
types of G2 entities other than those mentioned above.

[] Encloses optional syntax elements.

...
[, ...]
[; ...]

Indicates that the preceding syntax element can
be repeated any number of times, with or
without a separator, depending on the notation.

[] Required characters used to signify list and
array elements and text expressions.

:= Defines a user-specified term.

-> Indicates the value returned by an expression.

This notation... Has this meaning...
2148

User-Specified Terms
Value Expression Terms

These are terms that represent expressions that evaluate to values of a particular
type. They do not evaluate to items.

For expressions that evaluate to a value of type item-or-value, see Item Expression
Terms.

For more information, see Expressions.

Literal Value Terms

These are terms that represent literal values of a particular type. They do not
represent value expressions or items.

This term...
Is an expression that
evaluates to a value of type...

value-expression float, integer, symbol, text, or truth-value

quantity-expression float or integer

float-expression float

integer-expression integer

symbolic-expression symbol

text-expression text

truth-value-
expression

truth-value

This term...
Is a series of characters
that signifies a value of type...

value float, integer, symbol, text, or truth-value

quantity float or integer

float float

integer integer

symbol symbol

text text

truth-value truth-value
2149

For more information on literal values, see Evaluating Expressions.

Also, when the syntax requires a literal symbol, it rarely uses the term symbol.
Instead, it uses a more specific term that indicates the kind of symbol. For
example, the following user-specified terms are literal symbols: class-name,
attribute-name, connection-class-name, and local-name.

Item Expression Terms

These are terms that represent expressions that evaluate to items. They do not
represent values. Here are a few common examples.

In addition, the following expression evaluates to an item or value:

Note Anywhere that the syntax uses the expression item or item-or-value, you can
substitute a generic-reference-expression, preceded by one of the generic-reference
prefixes (the, any, every, each, a, or an), depending on the context. For more
information, see Other Expression Terms.

This term...
Is an expression that evaluates
to an item of the class or a subclass of...

item item

variable variable

parameter parameter

g2-array g2-array

g2-list g2-list

connection connection

g2-window g2-window

kb-workspace kb-workspace

This term... Is an expression that evaluates to...

item-or-value • A value of type float, integer, symbol, text, or
truth-value, or

• An item of any class.
2150

User-Specified Terms
Attribute Reference Terms

This term represents an expression that refers to an attribute.

Item Name Terms

These are terms that represent literal symbols that name an item. Here are some
examples that appear most commonly in syntax.

Class Name Terms

These are terms that represent literal symbols that name a class.

For convenience, the value of the class-name attribute of a class-definition refers
to the class-definition item. For example, the action move tank by (20, 20) moves
the class-definition item that defines the tank class.

This term... Is an expression that evaluates to...

attribute Any direct or indirect reference to any system-
defined or user-defined attribute.

This term...
Is a literal symbol that names
an item of the class or a subclass of...

item-name item

procedure-name procedure

relation-name relation

kb-workspace-name kb-workspace

This term...
Is a literal symbol that names
an item of the class or a subclass of...

class-name Any class.

connection-class-
name

The connection class.
2151

Attribute Name Terms

These terms represent literal symbols that name an attribute.

This term... Is a literal symbol that names...

attribute-name Any system-defined or user-defined attribute.

quantity-attribute-
name

Any user-defined attribute declared with
type quantity.

item-attribute-name An attribute declared to be an instance of some
class or given by a variable or parameter.

simple-attribute-name Any system-defined or user-defined attribute
that contains any value, except an item.

typed-attribute-name A user-defined attribute declared with any type.

untyped-attribute A user-defined attribute not declared with
a type.
2152

User-Specified Terms
Other Expression Terms

These are general-purpose and special-purpose expressions that the syntax uses.

This term... Is an expression that...

time-expression Evaluates to a value of type integer or float,
which is interpreted as a number of seconds.
The syntax is:

integer-expression {seconds | minutes |
hours | days | weeks}

For example, 5 seconds, 5 minutes, 5 hours,
the current time +15, and 2000 return integer
values, whereas 1.5 seconds and the current
subsecond time + 12.5 return float values.

ddd.dddd-format Formats the display of a floating point
number, by indicating the number of decimal
digits to display to the left and right of the
decimal point.

For example, the expression ddd.dd formats a
floating point number to the hundredths
decimal place. See Formatting Numeric
Values.

x, y Evaluates to a value of type integer or float,
which is interpreted as x and y coordinates
measured in workspace units.

generic-reference-
expression

Refers generically to a set of classes or types. It
has the following syntax:

{class-name | type} [local-name]
[generic-reference-qualifier]

A generic reference expression is always
preceded by a generic reference prefix, which
depends on the context. The available prefixes
are: the, any, every, each, a, or an.

The syntax only uses this reference when it
requires a generic reference. In addition, you
can use a generic reference expression
preceded by the prefix the, any, or every
whenever the syntax refers to item.
2153

generic-reference-
qualifier

Is used in the composition of a generic
reference expression. It has the following
syntax:

generic-reference-qualifier :=
{upon kb-workspace} | {connected
connected-expression} | {at at-expression} |
{nearest to item} | {superior to item} | {that
is relation-name item} |
{named by symbolic-expression} |
{in {g2-list | g2-array} } | {name of item}

event-expression Refers to an event that G2 detects when
processing whenever rules. It has the
following syntax:

{variable | parameter} receives a value |
variable fails to receive a value |
object is moved {by the user | by g2} |
item {becomes | ceases to be}

relation-name item

statement Defines a clause in a procedure, which can be
any action or another procedure statement.

action Defines an action in a rule or procedure
statement.

This term... Is an expression that...
2154

User-Specified Terms
Other Literal Terms

These are terms that represent literal terms other than items or values.

This term... Is a literal term that...

argument Names an argument in a procedure, whose
type you declare in the procedure.

color-name A symbol naming one of G2’s supported
colors.

You can also provide a symbol of the form
RGBrrggbb as a valid color name, where rr,
gg, bb, are the 8-bit hex values for red, green,
and blue. The full 24-bit color is used for
drawing if the window is capable of it;
otherwise, the closest Gensym standard color
is used. You use the rgb-symbol function to
convert the RGB values to a symbol. See Rgb-
Symbol Function.

color-attribute-name Any attribute of a class that defines a color
region, which vary depending on the item:
foreground-color, background-color, text-color,
border-color, icon-color, stripe-color.

item-location Is any of: center, left center, right center, top
center, top left corner, top right corner, bottom
center, bottom left corner, bottom right corner.

local-name Names a local name in a procedure, whose
type you declare in the procedure.

module-name Names a module.

portname Names a port, used in stub definitions.

region-name Names an icon region.

rule-category-name Names a category specified in the Categories
attribute of a rule.

time-unit Represents a unit of time: second, seconds,
minute, minutes, hour, hours, day, days, week,
weeks.
2155

type Refers to any G2 value type (item-or-value,
value, quantity, float, integer, symbol, truth-
value, or text).

window-location Is any of: center, left, right, top, or bottom.

workspace-location Is any of: top left, top right, top center, right
center, bottom left, bottom center, bottom
right, or left center.

This term... Is a literal term that...
2156

E

G2 KBs and GIF Files
Describes the demonstration, sample, and utility KBs, and the GIF files that ship

Introduction 2157

Demonstration KBs 2158

Sample KBs 2159

Tutorial KBs 2160

Utility KBs 2161

GIF Files 2163

Introduction
The g2 directory of your G2 product installation directory includes a subdirectory
named kbs, which contains a variety of KBs and other resources that can be useful
to the G2 developer. The kbs directory contains four subdirectories:

• demos

• samples

• tutors

• utils

This appendix describes the resources that are available in these subdirectories.
2157

Demonstration KBs
The following KBs are available in the demos directory:

KB Name Description

axldemo.kb Provides a demonstration for G2 ActiveXLink.

business.kb Simulates a number of different business processes,
including orders, inventory, stocking, and purchasing.

dialogs-demo.kb Provides examples of how to implement custom and built-in
Windows dialogs for viewing in Telewindows.

explnfac.kb Provides an example of how to use the Explanation facility
for tracing rule execution through variables.

g2-80r0-doc-examples.kb Provides examples used in the documentation for G2
Version 8.0 Rev. 0 features.

g2-80r0-doc-examples-
remote.kb

Provides examples used in the documentation for the G2
publish-subscribe facility.

g2gl-credit-rating-
example.kb

Provides a demonstration of the G2 Graphical Language
(G2GL).

gms-native-language-
demo.bk

Shows how localized G2 Menu System (GMS) menus render
as native Windows menus when viewed through
Telewindows.

gms-native-large-menu-
demo.bk

Shows various features of the G2 Menu System (GMS) menu
bar template, which renders as a native Windows menu bar
in Telewindows.

gms-native-multiple-
menu-bar-demo.bk

Shows various features of the G2 Menu System (GMS)
menus rendered as native Windows menus in Telewindows.

gms-native-popup-menu-
demo.kb

Shows G2 Menu System (GMS) popup menus rendered as
native Windows popups when viewed through
Telewindows.

kbtools.kb The top-level module of a library of buttons subclasses from
uil-button.

mill.kb Illustrates how to develop a simulation of discrete events.
Also demonstrates icon animation techniques.
2158

Sample KBs
Note This directory also contains a number of KBs found in the utils directory to
support some of the demos. For a description, see Utility KBs.

Sample KBs
The following KBs are available in the samples directory:

nms-demo.kb Provides examples of how to use the Native Menu System
(NMS) to create and manipulate native Windows menus
when viewed through Telewindows.

publish-subscribe-doc-
ex.kb

Provides examples used in the documentation for the G2
publish-subscribe facility.

publish-subscribe-
remote-doc-ex.kb

Provides examples used in the documentation for the G2
publish-subscribe facility.

space.kb Simulates and diagnoses various failures on board an
orbiting satellite.

KB Name Description

KB Name Description

chaos.kb Demonstrates the ability of a trend-chart to plot what is known in
chaos theory as a bifurcation diagram.

charts.kb Provides examples and demonstrations of all G2 charts, including
Windows chart views as well as classic G2 charts.

fgntest.kb A sample KB that works in conjunction with sample foreign
function test files to demonstrate how one might use foreign
functions.

g2tog2.kb Demonstrates a technique for moving objects between
different G2s.

gsi_exam.kb Contains seven examples that exercise various aspects of GSI.
Three examples demonstrate item passing features.

image.kb Demonstrates background images in workspaces, workspace
borders, and image definitions.

itempass.kb Demonstrates item passing between G2 processes and between
G2 and GSI.
2159

Tutorial KBs
The following G2 utilities are available in the tutors directory.

japanese.kb Provides local translations of all G2 system-defined
menu choices.

language.kb Provides local translations of all G2 system-defined menu choices
for several European languages.

objpass.kb Demonstrates the object-passing capabilities between two
G2 processes.

profile-demo.kb Provides a simple example of how to obtain profile data about
executable items in a KB.

sptools.kb The top level module of a set of several system
procedure examples.

statfun.kb Provides a library of statistical functions.

twgame.kb Presents a simple game to play between two or more concurrent
Telewindow’s users.

twtour.kb A documented demonstration KB that illustrates methodology
for switching a Telewindows session from one G2 process
to another.

KB Name Description

KB Name Description

ch2.kb
ch2soln.kb

The starting KB and solution KB for Chapter 2 in the Getting
Started with G2 Tutorials.

ch3.kb
ch3soln.kb

The starting KB and solution KB for Chapter 3 in the Getting
Started with G2 Tutorials.

ch4.kb
ch4soln.kb

The starting KB and solution KB for Chapter 4 in the Getting
Started with G2 Tutorials.

ch5.kb The starting KB for Chapter 5 in the Getting Started with G2
Tutorials.

solution.kb The solution KB for Chapter 5 in the Getting Started with G2
Tutorials.
2160

Utility KBs
Utility KBs
The following G2 utilities are available in the utils directory.

KB Name Description

g2com.kb The KB used to run G2 ActiveXLink.

g2cuidev.kb The top-level module of GDI, which requires g2uimenu,
g2uifile, g2uitree, and g2uiprnt.

g2uifile.kb The dialogs used by GDI, triggered from menu selections in
g2uimenu.

g2uimenu.kb The GMS menus for the G2 menus of GDI.

g2uiprnt.kb The print dialog.

g2uitree.kb The tree-view control and object manager.

gdddemo.kb Demo KB for GDD. Contains examples of dynamic displays.

gdddev.kb Tools for developing GDD displays. Once the dynamic display
has been created, the gdddev module can be removed from
your KB.

gddlib.kb Samples of the three basic kinds of dynamic displays. Each
sample can be easily customized by using the icon editor and
updating the attributes.

gddroot.kb The tools procedures to maintain a dynamic display once it has
been installed in an application. This is the only GDD KB
necessary once the displays are developed.

gfr.kb The G2 Foundation Resources utility.

gms.kb The G2 Menu System utility for adding a pulldown menu system
to a KB.

gmsdemo.kb A demo of the features of GMS.

gold.kb The G2 OnLine Documentation system KB.

goldui.kb The GOLD user interface KB.

guicolor.kb A guitools.kb module that provides color selection dialog.

guidata.kb A guitools.kb module that provides support for editing
attributes configured as lists or arrays.
2161

guide.kb The top-level GUIDE/UIL module. Provides graphical editors
and front-end to all UIL objects. Load this module to build
GUIDE applications.

guidelib.kb The GUIDE library.

guidemo.kb An online tutorial for using GUIDE.

guidesa.kb GUIDE objects for creating and editing scroll areas.

guigfr.kb A guitools.kb module that provides dialogs for editing
GFR resources.

guimove.kb A guitools.kb module that provides a move dialog with which
you can adjust the x and y coordinates of any item.

guislide.kb A module that provides an example of subclassing a UIL object;
in particular, a slider control. Can load as a stand-alone module.

guitools.kb The top-level module of a set of GUI tools.

gxl.kb The G2 XL Spreadsheet (GXL) utility.

gxldemo.kb A demonstration of the GXL features.

japanese.kl The Japanese language facilities.

jiscodes.kl The Japanese Industrial Standard (JIS) codes.

korean.kl The Korean language facilities.

kscodes.kl The KSC-5601 codes on a series of workspaces.

language.kl All of the language facilities (except for Japanese and Korean)
appear in this KB.

profiler.kb A complete profiling utility for obtaining information about
executable items in a KB.

profroot.kb The top-level KB for the profiler.kb.

starter.kb A module that contains the GOLD book objects for documents in
the G2 Starter Kit.

sys-mod.kb A modularized KB containing all of the G2 system procedures.

uil.kb A UIL module that provides a general API to all UIL objects.

uilcombo.kb A UIL module that supports combo boxes.

KB Name Description
2162

GIF Files
GIF Files
Several GIF files are also included in the demos directory. They can be used in
images and definitions, and as the backgrounds of workspaces. These icons are
for use only within G2 knowledge bases. Use with any other application
is prohibited.

uildefs.kb A UIL module that provides definitions for UIL objects.

uillib.kb The UIL main library.

uilroot.kb A UIL module that supports the creation, configuration,
activation and deletion of navigation buttons.

uilsa.kb UIL API and support for scroll areas.

uilslide.kb UIL API and support for sliders.

uiltdlg.kb UIL API and support for tabbed dialogs.

KB Name Description

GIF File Example or Description

agitatr1.gif A large agitator.

agitatr2.gif A second large agitator.

attank.gif A large tank.

bin.gif A large bin.

blower.gif
2163

car.gif

comprssr.gif

disttwr.gif A large distiller.

exchgr.gif

GIF File Example or Description
2164

GIF Files
filter1.gif A large filter.

filter2.gif A large filter.

furn1.gif A large furnace.

furn2.gif A large furnace.

gashldr.gif

hopper1.gif A large hopper.

kiln1.gif

mixer.gif

GIF File Example or Description
2165

pump.gif

reactor.gif A large reactor.

tankroof.gif

turbine.gif

vessel1.gif A large vessel.

vessel2.gif A large vessel.

vessel3.gif A large vessel.

GIF File Example or Description
2166

GIF Files
vessel4.gif A large vessel.

vlv3way.gif

vlvcklg.gif A large version of vlvcksm.gif.

vlvcksm.gif

vlvmanlg.gif A larger version of vlvmansm.gif.

vlvmansm.gif

world.gif A large world map.

GIF File Example or Description
2167

2168

F

Superseded Practices
Describes G2 capabilities that are obsolete and may not be supported indefinitely.

Introduction 2169

Attribute Files 2170

Drawing Modes 2170

G2 File Interface (GFI) 2171

G2 Simulator 2171

Icon Position and Size Attributes 2171

OLE Drag and Drop 2172

Introduction
The following G2 practices and capabilities are superseded as of G2 5.0 and might
or might not be supported in future releases of G2. These capabilities should not
be used in new code and should be replaced in existing code:

• Attribute files

• Unscheduled drawing mode

• XOR drawing mode

• G2 File Interface (GFI)

• G2 Simulator
2169

• Icon position and size attributes

• OLE drag and drop

This chapter contains a brief description of each of the capabilities listed. For
information about them, see the G2 Superseded Practices document, which is
available from Gensym upon request.

Some other G2 practices are also superseded, but Gensym currently intends to
support them indefinitely. Such practices and their replacements are described
where appropriate in the G2 Reference Manual.

Attribute Files
G2 can set item attributes by loading values from a text file, called an attribute file,
via the Main Menu > Miscellany > Load Attribute File menu choice.

Attribute files are a superseded capability as of G2 5.0. In place of attribute file
I/O, G2 provides a number of system procedures that do file I/O in a much more
convenient and efficient way. These are described in the G2 System Procedures
Reference Manual in the File Operations section.

For information about attribute file operations, see the G2 Superseded Practices
document, available from Gensym on request.

Drawing Modes
Two drawing modes have been superseded as of G2 5.0:

• Unscheduled drawing mode

• XOR drawing mode

For information about drawing modes, see the G2 Superseded Practices document,
available from Gensym on request.

Unscheduled Drawing

The allow-scheduled-drawing? attribute in the Drawing Parameters system table
determines whether drawing is performed immediately (attribute is no) or by a
scheduled task (attribute is yes).

As of G2 5.0, immediate drawing is a superseded practice. In place of immediate
drawing, always use scheduled drawing by specifying allow-scheduled-drawing?
as yes.
2170

G2 File Interface (GFI)
XOR Drawing Mode

The paint-mode? attribute in the Drawing Parameters system table specifies
whether drawing is done in XOR mode (attribute is no) or Paint mode (attribute
is yes).

As of G2 5.0, XOR mode is a superseded practice. In place of XOR mode, always
use Paint mode by specifying paint-mode? as yes. Paint mode is the default mode
when you start G2.

G2 File Interface (GFI)
The G2 File Interface (GFI) utility can read and write external data files. Such files
can capture a log of KB execution, initialize a KB when execution begins, and
provide synchronous or asynchronous events during KB execution.

GFI is a superseded capability. In place of GFI, G2 provides a number of system
procedures that do file I/O in a more convenient and efficient way. These are
described in the G2 System Procedures Reference Manual.

For information about GFI, see the G2 Superseded Practices document, available
from Gensym on request.

G2 Simulator
The G2 simulator is a special kind of data server that provides simulated values
for variables and parameters while G2 runs. The Simulation Parameters system
table has a simulator-on? attribute, which controls the simulator and is no by
default. The simulator does nothing unless you explicitly turn it on.

The G2 simulator is a superseded capability. In place of the simulator, use rules
and procedures to simulate data, or obtain one of the many third-party software
products that do simulation.

For information about the G2 simulator, see the G2 Superseded Practices document,
available from Gensym on request.

Icon Position and Size Attributes
The icon-x-position, icon-y-position, icon-height, and icon-width attributes have
been superseded in favor of item-x-position, item-y-position, item-height, and
item-width. The superseded attributes still appear as prompts in the editor,
because they exist for backward compatibility.
2171

OLE Drag and Drop
The OLE drag and drop facility is a superseded practice. Use the following
facilities as alternatives to OLE drag and drop:

For information on these alternative facilities, see:

• Cutting/Pasting between G2 and Other Applications.

• Passing User- and System-Defined Classes.

Use this facility... Instead of this superseded facility...

Cutting and pasting Dragging text between applications using copy to
OLE and cut to OLE.

Item passing Dragging items between G2 processes using ole-
clone and ole-transfer.
2172

Glossary
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z
A

abstract class: User- or system-defined class that cannot be instantiated. An
abstract class can be a direct superior class, and can provide definitions common
to its subclasses. Contrast with concrete class.

abstract type: A name declared with an abstract type contains a value whose
specific type is any of that abstract type’s subtypes. G2 offers these abstract types:
item-or-value, value, and quantity. Contrast with specific type and composite type.

action: A command that G2 can execute within a rule, procedure, action button,
or user menu choice.

activatable subworkspace: The subworkspace of an item that has been config-
ured using this configuration statement:

declare properties as follows : activatable-subworkspace

allocation message: A message that G2 prints on the console when it allocates
more memory during KB loading or execution.

allocation report: An allocation table or message.

allocation table: A table that G2 prints on the console when G2 begins execution.
The table describes memory requirements, defaults, requests, and initial alloca-
tions.

annotation: The textual representation of compound attributes. For charts, the
annotation describes the chart type and format. For trend charts, an annotation is
a detailed syntactical description of the non-default values of component attri-
butes and component defaults.

antecedent: In a rule, the phrase that specifies the conditions for executing the
actions in the rule’s consequent. A rule’s antecedent specifies a truth-value
expression. Contrast with consequent.

area box: A heavy-bordered rectangle within which you select an area of a work-
space, as part of the Operate on Area workspace menu choice.

argument: A value or item that is passed to an invoked procedure or function.

asynchronous mode: A GFI input mode that typically provides a KB with asyn-
chronous events that occur over the course of the KB’s execution.
2173

attribute: A characteristic or property of an item (any object, connection, work-
space, and so on) in a G2 knowledge base. An item’s set of attributes is defined by
the item’s class.

attribute descriptions: The detailed internal specifications of an attribute. All
attribute descriptions appear in the G2 Class Reference Manual.

attribute display: A display that shows the values, and optionally the names, of
one or more attributes of an item. You can move an attribute display by dragging
with the mouse, and you can edit an attribute’s value after clicking the mouse on
an attribute display. You can also apply configurations to an item’s attribute
displays. Contrast with name box.

attribute file: A text file, external to G2, that specifies values for one or more attri-
butes of one or more existing items in a KB. Use an attribute file to populate
programmatically the attribute values of existing items.

attribute table: A two-column table that shows the name and value of each attri-
bute of an item.

authorization file: Also known as the g2.ok file. This file identifies each autho-
rized user and optionally associates each user name with a user mode.

authorization level: A method for managing G2 license options with Gensym’s
Telewindows license options.

B

background: In G2’s window, the visible pattern upon which G2 displays the
current KB’s workspaces. (Clicking the mouse on this background displays the
Main Menu.) In a workspace, the visible color or image upon which the work-
space’s items appear to reside. (Clicking the mouse on this background displays
the KB Workspace menu.)

background-color color attribute: A color attribute for a workspace, rule, generic
formula, or other item with a text box representation style.

backward chaining: An inferencing technique related to data seeking, in which
G2 seeks the value of a variable by invoking rules that can conclude the variable’s
value. Contrast with forward chaining.

base time: The time on which the time-stamps in a GFI file are based. For a file
that uses explicit time-stamps, the base time is the earliest time in the file. For a
file that uses relative time-stamps, the base time is kept separately in the file’s
header line.

begin-end block: A compound statement in a procedure or method. The
compound statement begins with the reserved symbol begin, includes two or
more statements, and ends with the reserved symbol end.

border-color color attribute: The color attribute for the border of a workspace,
rule, generic formula, or other item with a text box representation style.
2174

breadth-first backward chaining: The activity where G2 simultaneously invokes
every rule that is able to conclude a new value for the target variable.
G2 schedules each invoked rule according to its declared priority. Contrast with
depth-first backward chaining.

breakpoint: A certain point within an executing statement at which the KB stops
processing. Breakpoints are a debugging tool. G2 provides four levels of break-
points, ranging from no breakpoints to breakpoints at every step, which you can
set for global scope in the Debugging Parameters system table and for local scope
in the tracing-and-breakpoints attribute of individual executable items.

bridge: An application program that passes items and values to and from G2.
A bridge application exchanges data between G2 and another application, device
(such as a programmable logic controller), or system. A bridge application typi-
cally calls functions provided in Gensym’s G2 Gateway product.

buttons: Items that are among the components of a G2 application’s user inter-
face. Buttons perform actions or provide values for variables and parameters.

C

cardinality: A property of a relation that indicates how many instances of a rela-
tion’s first class can be related to how many instances of the relation’s second
class. A relation’s cardinality can be one-to-one, one-to-many, many-to-one, or
many-to-many.

category: A named association of rules. To associate a rule with a rule category,
enter a non-reserved symbol in the rule’s categories attribute; this names a rule
category and associates the rule with that category. Use the invoke action to
invoke all rules for a category.

causal knowledge: Knowledge about cause and effect relationships.

class: A group of items that have the same icon, attributes, and behavior. Classes
are organized into a hierarchy, in which each class inherits the attributes of its
superior class, but may have additional attributes of its own.

class hierarchy: A hierarchical structure of class definitions that is built into G2,
but can be extended by the user.

class inheritance path: A linear list of all the classes from which a class inherits.

class list workspace: A particular kind of workspace that presents lists of classes,
items, or other entities for entering in the Text Editor.

class-specific attribute: An attribute that is specified by a class’s definition, rather
than inherited from the definitions of its superior classes.

clock tick: The fundamental unit of time within G2. The time interval of each
clock tick is determined by the user-settable minimum-scheduling-interval attri-
bute of the Timing Parameters system table.
2175

collection time: The instant in time when a variable or parameter receives a value.
For a variable, G2 uses this value and the variable's validity interval to determine
an expiration time for each collected value.

color attribute: A named portion of an item’s knowledge that can have a color
value, such as the background-color color attribute of workspaces. Color attri-
butes do not appear in the attribute tables of items.

Color Indicator: In the Icon Editor, a display that names the color of the current
layer.

command-line option: Included in the operating system command that launches
a new G2 process, this keyword affects how the new G2 starts and runs.

compilation configuration: A configuration that affects how G2 compiles attri-
butes that refer to classes, items, and attributes.

compilation dependency: A relationship between an item with compiled attri-
butes and other items, where the item’s compiled attributes refer to the knowl-
edge of those items.

compiled attribute: An attribute that can contain an expression, an action, or a
statement.

component: For a trend chart, a building block that customizes a charting feature
or a representation of data.

component reference: In a trend chart, the number or name by which you specify
a particular component of a compound attribute.

component subtable: One method of displaying compound attribute components
in trend charts. A component subtable lists all of the component attributes, and
provides a means of interactively customizing a component.

composite attributes: Attributes that appear in an attribute table as one attribute,
but which are composed of more than one subattribute.

composite type: A type that is composed of one or more values of any general,
specific, or composite type. The G2 composite types are structure and sequence.
Contrast with abstract type and specific type.

compound attribute: One or more components in a trend chart.

concrete class: User- or system-defined class that can be instantiated. Contrast
with abstract class.

concurrent execution: The process of executing statements, including actions,
in parallel. When G2 executes a set of statements concurrently, the result is as if all
statements had executed at the same time. Contrast with sequential execution.

configuration: A declaration that changes the default behavior of items.
2176

conflict workspace: A permanent, named workspace that G2 creates and displays
after loading two or more modularized KB files, or after merging a KB file into the
current KB, where definitions of classes differ among the loaded KB files.

connection post: An object that you use to draw a connection from one work-
space to another, from one object to another object on its subworkspace, or across
a single workspace. G2 considers that items connected to two connection posts
with the same name are also connected to each other.

consequent: In a rule, the phrase that specifies one or more actions for G2 to
perform, either sequentially or simultaneously. G2 performs these actions only if
evaluating the expression in the rule’s antecedent produces a sufficient truth-
value. Contrast with antecedent.

consistently modularized: A KB file or the current KB is consistently modular-
ized when: every module is named in its own Module Information system table;
there is only one module that is not directly required by any other module; every
top-level workspace is associated with a module; for each attribute table that is
transferred to a workspace, that workspace and the table’s superior item are asso-
ciated with the same module; modules containing definitions are directly
required by all modules that contain instances of those definitions’s classes; there
are no cyclic dependencies in the module hierarchy. Contrast with unmodular-
ized.

current KB: The items contained in the memory of a running G2 process.

current knowledge: The parts of an item’s knowledge that have been updated
since the current KB started. G2 discards the current knowledge of items when
you reset or restart the current KB, or when you save the current KB to a KB file.
Contrast with permanent knowledge.

current language: An existing language translation item (or the symbol english)
that G2 uses to display the names of menus and menu choice text (and for some
languages, a custom Text Editor interface) in the G2 developer’s environment.
Contrast with default language.

current layer: In the Icon Editor, the layer that is being edited. The current layer is
indicated by a heavy border.

current scale: For a workspace, the scale at which G2 displays that workspace,
which is a factor of its default scale. By specifying a new current scale, you can
interactively or programmatically change the displayed size of a workspace.
Contrast with default scale.

current task queue: The internal queue that the scheduler maintains for tasks
currently eligible for execution. After G2 performs a task, the scheduler removes
it from the current task queue.

Cursor Indicator: In the Icon Editor, a display that shows the current cursor posi-
tion as x, y coordinates.
2177

cyclic dependency: In a module hierarchy, the condition in which a module M is
directly required by another module that module M directly or indirectly
requires.

D

data interface object: The common term for a g2-to-g2-data-interface object.

data point: For variables keeping history, the value of the variable and its corre-
sponding collection times.

data seeking: The attempt to obtain a new current value for a variable.

data server: The source of values for a variable, or the destination where G2 can
send data with the set action.

datatype: See type.

dedicated license: One type of G2 license for Telewindows. In a dedicated Telew-
indows environment, each license is authorized for a specific level of access to the
server.

default attribute: For a user-defined class U and its superior classes that define
more than one attribute with the same name, the version of the attribute defined
by the class closest to class U on U’s class inheritance path.

default language: The language translation item (or the symbol english) that G2
uses to display the names of menus and menu choice text (and for some
languages, a custom Text Editor interface) in the G2 developer’s environment.
You set the current KB’s default language only with the -default-language
command-line option. Contrast with current language.

default scale: By default, a new workspace’s current scale is the normalized scale
for the G2 process, which G2 determines by calculating the ratio of workspace
units per pixel of resolution on your computer’s display device.

default value: The value that an attribute other than a variable or parameter value
has on instantiation. This value persists until something changes it. Resetting G2
does not change it. See also initial value.

dependent variable: A simulated variable whose value is not based on the vari-
able's previous value. A dependent variable does not require an initial value.

depth-first backward chaining: For a set of rules that can conclude a new value
for a particular variable, the activity where G2 invokes those rules in order of
precedence, according to the depth-first-backward-chaining-precedence attribute
of each rule in the set. Contrast with breadth-first backward chaining.

direct superior class: The class or classes from which a class inherits directly.
A class also inherits indirectly from all the superior classes of its direct superior
class or classes.
2178

directly-requires: The relationship between two modules, where the knowledge
in one module depends upon the knowledge in the other. Before loading or
merging the modularized KB file F that contains module M, G2 first loads each
modularized KB file that contains a module that module M directly requires, then
loads the modularized KB file F.

display: System-defined classes whose instances are items that show the value of
a parameter, variable, or expression. Readout tables, dials, meters, graphs, trend
charts, and freeform tables are displays.

duplicate definitions: Duplicate items that are class definitions. Contrast with
identical definitions.

duplicate methods: Methods that have the same name, and are defined on the
same class, but differ in the number of arguments each method takes.

duplicate items: Items that have the same name, whether or not the items have
the same type or are functionally equivalent. Contrast with identical items.

E

element: A member of a list or array. Elements can be numeric values, truth
values, symbols, text strings, or items.

element index: A numeric value specified within square brackets, used as a posi-
tional reference to a list or array element.

encapsulation: In object-oriented programming, the technique of including in an
object and its context the knowledge of how to perform an operation on that
object, rather than in the code that invokes the operation.

error condition: An unexpected discrepancy that occurs while G2 is handling
information.

error handler: The portion of an application that responds to error conditions.
G2 provides a default error handler, which responds to an error condition by
placing a message on the Operator Logbook. You can write a custom error
handler in a G2 procedure by coding an on error statement whose block of state-
ments respond to error conditions that arise within that procedure.

evaluation attributes: A special type of attribute that controls the way G2 evalu-
ates expressions. Evaluation attributes are currently used only in freeform tables.

event: A system-defined occurrence. The antecedent of a whenever rule can refer
to events.

event detection: G2’s activity of invoking certain rules after detecting an event.

event log format: A GFI file format in which data is stored in rows. Each row
contains a time-stamp, a variable or parameter name, and a value.
2179

event-driven: Acting in response to events. Forward chaining is one kind of
event-driven processing, where G2 invokes certain rules after detecting new
knowledge.

exceptional float values: Values of type float that represent the values negative
infinity (-Inf), positive infinity (+Inf), and not a number (NaN). Using these values
in an arithmetic expression produces another exceptional float value.

expiration time: The time when the value of a variable will expire. This is calcu-
lated for all values of variables and displayed in the attribute table.

explicit time-stamp: A GFI time-stamp format in which a date and time are
explicitly listed.

expression: A phrase that G2 evaluates to produce a value or a reference to an
item.

extensible class: A class that can be the direct superior class of a user-defined
class.

extent: The visible, rectangular portion of a workspace. Also, the visible, rectan-
gular region within which G2 displays an item’s representation.

external interface: An interface between G2 and external systems.

external variable: A kind of object in the external system to which data is sent or
from which a GSI (G2 Gateway) variable receives data.

F

filter expression: Identifies a set of items to which an Inspect command applies.

floating license: One type of G2 license for Gensym’s Telewindows product.
Floating Telewindows licenses are G2-server based; that is, the G2 license
includes a finite number of floating Telewindows connections.

focal class: The class of items to which one or more generic rules apply.

focusing: The technique of invoking multiple generic rules to apply to a partic-
ular item or set of items.

foreground-color color attribute: A color attribute for a workspace. For the items
on a workspace, the workspace’s foreground-color can determine the color value
of color attributes for items with system-defined default settings.

foreign function: A function written in C or C++ code that a KB can access as if it
were a local function.

foreign function interface: An external interface that allows you to call C and
C++ functions from within G2, just as you would any G2 function.

foreign image: An executable file, external to G2, that contains the foreign func-
tions to call from a KB.
2180

formatting attributes: Special attributes that determine the visual aspects of
certain items, such as charts and freeform tables.

formula: An equation that provides values for variables or parameters.

forward chaining: An inferencing technique related to event detection, in which
G2 invokes certain rules whose antecedent refers to a variable or parameter that
has received a new value. Contrast with backward chaining.

foundation class: Any extensible system-defined class except a mixin.

free text: A type of text item called to label various items in your KB. Free text lets
you label your KB informatively and attractively.

future task queue: The internal queue that G2 maintains for tasks that are eligible
for execution at a future point in time.

fuzzy truth value: A truth value, in the range of -1.0 true to +1.0 true, that indi-
cates a degree of certainty in the truth of a condition, assertion, or comparison.
For example, +0.9 true is a fuzzy truth value that indicates a high degree of
certainty in the truth of a particular comparison.

G

G2 clock: The internal clock by which G2 tracks time.

G2 Gateway standard interface (GSI): A Gensym product that supports building
applications that interface with G2 in various ways. See also GSI message service;
GSI variable.

G2 linearization: The algorithm that G2 uses to linearize multiple inheritance.

G2 GUIDE: See GUIDE.

G2 Standard Interface: See G2 Gateway.

G2-meter class: A class that inherits from quantitative-variable and the mixin
g2-meter-data-service. You can use such a class to instantiate G2-meters, and use
these to measure how G2 uses time and memory.

G2-to-G2 variable: For passing values between two G2s, a variable subclass that
includes the g2-to-g2-data-service mixin class as one of its direct superior classes.
Instances of a g2-to-g2-variable include two additional attributes, g2-to-g2-inter-
face-name and remote-g2-expression.

garbage collection: A capability that identifies abandoned storage and reclaims it
for reuse.

generic formula: An algebraic formula that G2 can evaluate to calculate a value
for a class of variables. In contrast with simulation formulas, generic formulas are
evaluated only as a result of data seeking. Contrast with specific formula.
2181

generic reference expression: In certain contexts and depending on the accompa-
nying quantifier, refers either to one or to a set of items, attributes, variable or
parameter values, or list or array elements. The expression:

... any custom-object connected to my-valve ...

is a generic reference expression.

generic reference qualifier expression: In a generic reference expression,
an expression that qualifies the set of items with respect to their system-defined
relationships with other items. In this expression:

... any custom-object connected to my-valve ...

the phrase connected to my-valve is a generic reference qualifier expression.

generic rule: A rule that can apply to more than one item. When G2 invokes a
generic rule, it creates one rule invocation for each item or value that meets the
conditions specified in the antecedent’s generic reference expression.

generic simulation formula: An expression that provides simulated values for an
attribute of any class of variable. It exists in its own statement box, the same way
that a generic formula does.

Gensym character set: The characters that are valid to specify in a symbol or text
value in G2. G2 provides facilities for its Text Editor that allow you to enter any
character in the Gensym character set. When inputting or outputting symbol and
text values, G2 also observes rules for translating those values using the character
codes of standard character sets.

gfi-variable: A variable that specifies GFI as its data server. The direct superiors
of a gfi-variable class include any G2 variable class, and the gfi-data-service mixin
class.

graphic elements: Components that make up any single-color layer in an icon.
Examples of graphic elements are: circles, lines, and points.

group: In the Icon Editor, collection of two or more graphical elements on one
layer.

GSI: See G2 Gateway standard interface.

GSI message server: A user-defined G2 class with gsi-message-service as one of
its direct superior classes. A GSI message server permits messages to be sent via
the item to a bridge process. See Also G2 Gateway standard interface.

GSI variable: A user-defined G2 variable subclass with gsi-interface as one of its
direct superior classes. A GSI variable must specify a valid GSI interface object.
See Also G2 Gateway standard interface.

GUIDE: A Gensym product, also known as G2 GUIDE. A knowledge base that
allows you interactively to create the user-interface components for a G2-based
application. Objects created using GUIDE are a permanent part of your knowl-
edge base.
2182

H

hash table: An internal data structure that allows G2 to quickly locate, among
many instances of a user-defined class, one or more items with an indexed attri-
bute that contains a particular value. G2 automatically creates and maintains one
hash table for each indexed attribute declared in any user-defined class in
your KB.

heuristic knowledge: Knowledge that is based on experience or observation, but
not necessarily verifiable.

hidden attributes: Attributes inherent within an item, but which are not visible in
its attribute table. Hidden attributes include:

• attribute-displays

• name-box

hierarchy of classes: An organization of classes into superior and subclasses to
allow for inheritance of attributes and other knowledge. Each class inherits the
attributes of its superior classes.

history: The past values of a variable or parameter. Each value is stored with the
date and collection time.

I

icon: The graphic representation of objects and items of other system-classes with
an iconic representation style. In G2, items of many system-defined classes appear
as icons. Use the Icon Editor to define the icon for user-defined subclasses of the
object class.

icon-color: For items of system-defined classes that have an iconic representation
style, this is both the name of a color attribute and an icon region.

Icon Size Indicator: In the Icon Editor, a display that shows the size of the icon in
workspace units.

ICP (Intelligent Communications Protocol): Gensym’s proprietary communica-
tions protocol, which allows G2s, G2 Gateways, and Telewindows to share infor-
mation and distribute control among one or more G2 processes. ICP is a layer
built on top of the TCP/IP networking protocol.

identical definitions: Identical items that are class definitions. Contrast with
duplicate definitions.

identical items: Items that are the same in every respect whatsoever. The tables of
two identical items are indistinguishable. Contrast with duplicate items.

image: A bitmap or other graphical image created outside G2. You can use an
external image as part of an icon, or as the background of a workspace.
2183

Image Indicator: In the Icon Editor, a display that shows the name of an exter-
nally defined image that is included in a layer.

immediate class: In a discussion of a class and its properties, the class that is the
subject of the discussion.

immediate drawing: One of two drawing modes. When drawing is immediate,
G2 updates the display as soon as some visible change is made to the KB, either
interactively or programmatically. Drawing in immediate mode temporarily
defers other KB processing until drawing is complete. Contrast with scheduled
drawing.

implicit local name: An undeclared local name.

independent-for-all-compilations: One of two G2 compilation configurations.
For an item whose attributes refer to another item that is declared stable-for-
dependent-compilations, this configuration directs G2 not to compile the item to
take advantage of the other item’s stability. Contrast with stable-for-dependent-
compilations.

indexed attribute: A user-defined attribute whose value G2 retrieves using an
internally maintained hash table. G2 can perform efficient searches to locate an
item of a user-defined class by a particular value of one of its indexed attributes.

inference engine: The G2 component that monitors events and reasons about
changing conditions while invoking rules by means of forward chaining, back-
ward chaining, event detection, focusing, and scanning.

inheritance: An important property of object-oriented development environ-
ments. A class inherits the attributes of its superior. Inheritance facilitates rapid
development, eliminates redundancy in an application, and builds reusable appli-
cation components.

inherited attributes: Attributes that a class has by inheriting them, rather than by
defining them in the class’s definition.

initial value: The value that a variable or parameter has on instantiation. Reset-
ting G2 restores this value. See also default value.

initialization mode: A GFI input mode that typically provides a KB with values
read in as soon as the KB begins execution.

input interface object: Used by GFI to read data from an external data file and to
provide data service for variables and parameters in a knowledge base.

Inspect facility: A component of the G2 developer’s environment that supports
searching for items based on their type, class, attributes, and location. When
Inspect locates an item, you can conveniently navigate to it or simply modifying
its attributes using an attribute table. To open the Inspect facility, select the
Inspect choice on the Main Menu.

Inspect workspace: The workspace that displays the results of Inspect
commands.
2184

installed system tables: The system tables whose values are in effect for the
current KB. In a modularized KB, there are as many sets of system tables as there
are modules; however, only one set of system tables is installed at a time.

instance: One of a class of items, for example, pump-1 is instance of the pump
class.

instance configuration: A configuration whose scope is determined by the
current KB’s class hierarchy. Instance configuration statements are contained in
the instance-configuration attribute of an object, connection, and message defini-
tion. Contrast with item configuration.

instantiate: To create an instance of one or more classes.

Intelligent Communications Protocol: See ICP.

interface object: An object that GFI uses as an interface between a knowledge
base and an external data file.

interpolated value of expression: The interpolated value of a variable or param-
eter at some time in the past. G2 performs a straight-line interpolation and
requires that you keep a history of the values for the parameter or variable.

inverse relation: A relation between the relation object (the second class) and the
relation source (the first class), as defined in a relation definition. You specify the
name of the inverse relation in a relation definition’s inverse-of-relation attribute.

item: An entity in G2 that represents a set of knowledge that has identity and that
persists. Each item represents a set of information that is distinct from other infor-
mation and that you can reference directly or indirectly.

item configuration: A configuration whose scope is determined by the current
KB’s workspace (or containment) hierarchy. Item configuration statements are
contained in the item-configuration attribute of any item. Contrast with instance
configuration.

item hierarchy: The hierarchy of the item class and its subclasses.

item layer position: For an item upon a workspace, the relative position of an
item on top of or beneath other items that are upon the same workspace.

item layering: Whether items upon the same workspace appear on top of or
beneath each other.

item passing: For G2-to-G2, or G2 to a bridge process, the ability to pass a copy of
any item as a reference, using a network handle.

J

junction block: An object that represents the junction of two or more connections.
A connection definition specifies a junction box class.
2185

K

KB: See knowledge base.

KB file: The file that G2 writes when you save the current KB. This file contains
only ASCII characters, and thus is portable to any G2 of a compatible version or
earlier that runs on any supported platform. By default, a KB file’s name has the
extension .kb.

KB snapshot file: The file that G2 writes when the current KB invokes the
g2-snapshot system procedure. A KB snapshot file contains a copy of all perma-
nent and transient knowledge (including the run-time information for all
executing rules and procedures, the contents of all lists and arrays, and all history
values for all variables and parameters) that existed in the current KB at the
moment g2-snapshot was invoked.

KB workspace: An item of the kb-workspace class, which is the only kind of
workspace in G2 that the current KB can work with programmatically. Contrast
with workspace.

KL: See knowledge library.

knowledge base: A set of items that is either contained in G2’s memory (the
current KB) or stored in a KB file.

knowledge library: A set of items, such as standard object definitions, that
contain information for use in more than one G2-based application. A knowledge
library is stored in a KB file whose name has the extension .kl. In G2 Version 3.0
and later, modules replace the use of knowledge libraries; however, Gensym
distributes knowledge libraries with G2 that contain language-specific extensions
to the product.

L

lagged values: For G2-meters, values that are averaged over time, smoothing out
transient excursions and thereby clarifying their overall behavior.

last recorded value: The last value that G2 recorded for a variable or parameter.
The last recorded value may be current or expired.

layer: In the Icon Editor, a component of an icon that contains one or more
graphic elements. Layers can be grouped into regions.

layers pad: The part of the Icon Editor that allows you to view the layers of an
icon and work with them individually.

linearization: The process of ordering the ancestors of a multiple inheritance class
into a sequential list that can be used to search for inherited definitions and
resolve conflicts among them.

literal value: In an expression, a series of characters that literally signifies a value
of type integer, float, truth-value, text, or symbol.
2186

local data server: Anything within G2 that supplies computed, inferred, or simu-
lated values. The G2 simulator and the G2 inference engine are examples of local
data servers.

local emulator: Within a g2-to-g2-data-interface object, the name of a connection
specification that specifies that the interface is connecting to the current G2
process, rather than a remote process.

local name: A non-reserved symbol that represents an item or value in an expres-
sion. In rules and procedures, you can use implicit, or undeclared, local names.
In procedures, you must declare local names that can receive an assignment. Use
a local name to represent an item of any class or a value of any G2 type.

local window: The visible window that is a client of a G2 process. Among
computers running the X Windows window manager, a G2 process’s local
window can be displayed either on the screen of the computer where G2 is
running or on another computer’s screen. Contrast with remote window.

log file: A file to which G2 can optionally write informational messages.

M

main simulation procedure: A special user-defined procedure for the G2 simu-
lator. The simulator executes the main simulation procedure once each simulation
cycle.

many-to-many: The cardinality of a relation, where more than one instance of the
first class can be related to one or more instances of the second class.

many-to-one: The cardinality of a relation, where more than one instance of the
first class can be related to one instance of the second class.

margin: The distance in workspace units between the outermost items upon a
workspace and the workspace’s border. Each workspace’s margins are automati-
cally maintained by G2. Set the default margin for all new workspaces in the
Miscellaneous Parameters system table.

memory leak: A loss of usable storage space caused by the application’s failure to
correctly reclaim the memory occupied by the current KB’s transient items.

menu: A list of choices that G2 displays when you click the mouse on the G2
window’s background or on an item. Selecting some menu choices causes G2 to
display another menu, called a submenu.

Message Board: A named KB workspace that can be the destination of messages
from an inform action.

metacharacters: Special characters that let you specify a wildcarded name expres-
sion. For example, the asterisk (*) matches zero or more characters.

metacolor: A symbol that indirectly assigns a color value to a color attribute of an
item. There are three metacolors: transparent, background, and foreground.
2187

meter: A display item showing the value of an arithmetic expression as a vertical
bar along a numeric scale.

meter lag time: A time interval that represents how much data G2 should average
when computing values displayed by G2 meters. Set this time interval in the
meter-lag-time attribute of the Timing Parameters system table.

method: A specially constructed procedure that performs a generic operation in a
class-specific manner.

mixin class: An abstract extensible class that you use in conjunction with a foun-
dation class to define subclasses via multiple inheritance. Mixin classes define sets
of attributes that would not be useful alone, but can be used to customize other
classes to serve particular purposes.

modularized KB: A KB is modularized as long as the top-level-module attribute
of its installed Module Information system table has a value other than the
symbol unspecified and the KB’s modules are consistently modularized.
A current KB that contains more than one module also contains more than one set
of system tables; the Module Information system table for each set represents one
module. If the current KB is modularized, the installed Module Information
system table is associated with the current KB’s top-level module.

If the current KB is consistently modularized, G2 can save each module it contains
(and the items associated with that module) to a distinct KB file. If the current KB
is not consistently modularized, G2 can only save the current KB as a whole into
one KB file. If a stored KB file is consistently modularized, it contains only one set
of system tables. If a stored KB file is modularized but not consistently, it contains
one set of system tables for each module that it contains.

module: An entity in a knowledge base that G2 automatically associates with a set
of system tables and optionally with a set of top-level workspaces. In this set of
system tables, the Module Information system table names the module. If the
current KB contains modules, it is modularized.

module hierarchy: The network of directly requires relationships among a set of
modules. A module hierarchy consists of one top-level module, and optionally
one or more modules that are directly required by the top-level module, modules
that are directly required by those modules, and so on.

module search path: A list of directories that G2 searches to load a modularized
KB file that contains a directly required module.

module-map file: An ASCII text file in which each line associates the name of a
module in the current KB with either a directory pathname or a fully qualified
filename. G2 uses the module-map file when you direct G2 to save a module in
the current KB to its own KB file.

mouse click: The act of pressing and releasing any button on the hand-held
mouse.
2188

mouse-tracking procedure: A user-defined G2 procedure that can be invoked
from a configuration statement that includes the phrase pressing ... on ... start.
The procedure exists to respond to a change in the mouse pointer’s location
within a particular window, until the next mouse-click event within that window.

multiple inheritance: In object-oriented programming, the practice of allowing a
class to have two or more direct superior classes, and inheriting the properties of
them all.

multiple inheritance class: A class that has, or inherits from any class that has,
more than one direct superior class.

N

name box: The display containing the name of an item. You can move the name
box by dragging it with the mouse, and you can edit an item’s name by clicking
the mouse over the name box. You can also apply configurations to an item’s
name box. Contrast with attribute display.

natural language prompts: In the Text Editor, the prompts that G2 displays
below the edit area to guide you through the statement syntax and available
options.

network handle: For item passing, an integer value, obtained by registering any
item as a network entity.

no value condition: The condition that results when G2 cannot successfully eval-
uate an expression. If evaluating an expression produces a no value condition,
G2 signals an error. G2 displays a no value condition as the reserved symbol none.

non-KB workspace: A workspace that G2 creates for some specific purpose, but is
not saved in the KB. Text Editor workspaces, Operator Logbook pages, and
temporary workspaces are examples of non-KB workspaces.

non-menu choices: Operations that G2 performs in response to user actions,
including: dragging the mouse, characters entered at the keyboard, and showing,
hiding, resizing, and scaling workspaces. Configurations can customize G2’s
behavior in response to non-menu choices.

non-standard characters: Characters that are not standard characters including:
non-alphanumeric characters other than hyphens, underscores, apostrophes, and
periods; permanently lowercase letters; and special characters.

normalized scale: The ratio of workspace units per pixel for a G2 process.
By default, the current scale of a new workspace is this G2’s normalized scale.
2189

O

object: An abstract or concrete thing of interest in your application, such as a
product, space station, bottle, event, or workstation. Every object has an attribute
table, and may have an icon and connection stubs. Every object is an instance of a
class, which is defined through an object definition.

object passing: The ability to pass a copy of an object from one G2 process to
another via an external interface. Object passing is accomplished through the use
of a remote procedure declaration to specify which attributes of the object to send.

offline license: A fundamental G2 license type providing G2 for a stand-alone
system.

online license: A fundamental G2 license type providing the capability to
communicate or access other systems.

one-to-many: The cardinality of a relation, where one instance of the first class
can be related to any number of instances of the second class.

one-to-one: The cardinality of a relation, where one instance of the first class can
be related to, at most, one instance of the second class.

operand: In an expression, a term that participates in an arithmetic, class-quali-
fied, concatenation, logical, or relational operation.

operation: In object-oriented programming, a function or transformation that can
be applied to instances, typically in different ways for members of different
classes.

operator: In an expression, a reserved symbol or character that specifies a type-
specific operation.

Operator Logbook: A special workspace for displaying informational messages
and signalling G2 errors. You control the placement and other properties of the
logbook workspaces using the Logbook Parameters system table.

output frequency: In GFI, the interval at which to write data to a GFI output file.

output interface object: An object that GFI uses to obtain values from variables
and parameters in a knowledge base and write them to an external data file.

overlay file: The output file created after using the Overlay utility, described next.

Overlay utility: A Gensym-provided utility for creating an overlay C source file
from a template file as one of the steps in using foreign functions.
2190

P

package preparation: Your activity of removing source code or making work-
spaces proprietary. Package preparation is typically the last step in preparing a
KB for delivery to customers.

package preparation mode: A system-defined user mode that permits making a
knowledge base proprietary.

paint mode: The default G2 drawing method.

palette: A menu that presents G2’s default colors. Also, a workspace that contains
each type of object that you can create in a knowledge base. You can create new
objects by cloning from the palette.

permanent item: An item that continues to exist in the current KB after the KB is
reset or restarted. When you save the current KB to a file, only the KB’s perma-
nent items are stored in the KB file. Items that you create interactively are perma-
nent by default. Contrast with transient item.

permanent knowledge: The version of an item’s knowledge that persists after
you reset the current KB and that are saved when G2 stores the current KB in a KB
file. Contrast with current knowledge.

permanent-membership list or array: A list or array whose elements remain
elements when G2 is reset, provided that the list and elements are permanent, and
are saved when the KB is saved, provided that the list is permanent and the
elements are both permanent and uniquely identifiable. Permanent membership
does not affect the permanence of the list or array itself, or of any items that are
members of it.

permanent relation: A relation that persists when G2 is reset, provided that the
related items are permanent, and is saved when the KB is saved, provided that the
related items are permanent and uniquely identifiable.

platform: A combination of a brand of computer and a brand of operating system.
G2 runs on several Unix and Windows platforms.

polymorphism: In object-oriented programming, the technique whereby the
same operation means different things, depending on the class of the operand to
which it is applied.

port: The place on an item’s icon where a connection attaches. You can provide
names to ports, portnames, and refer to those names in connection expressions.

precedence (of configurations): G2’s rules that determine the order in which it
searches among conflicting configurations that pertain to the same item.

primary definition: When class definitions are merged, the definition that the
secondary definition is merged into.

primary direct superior: The first class in a list of multiple direct superior classes
given in a class definition.
2191

procedure: A list of statements that G2 can execute, either in sequence or concur-
rently, on zero or more arguments supplied when the procedure is invoked.

procedure invocation: An item that represents the invocation of a procedure. If
you set the class-of-procedure invocation attribute of a procedure to procedure-
invocation, G2 creates a procedure invocation when the procedure starts and
deletes the invocation when the procedure ends.

profile data: Information about the duration and order in which G2 performed an
identified set of executable items in the current KB.

proposition: A statement, such as valve-is-broken or tank-is-overflowing, that is
either true or false.

proprietary item: An item or its object definition that resides upon a proprietary
workspace.

proprietary KB: A knowledge base that contains proprietary workspaces that
require authorization.

protocol: A specification of the format and content of information sent between
one process and another, such as between G2 and Telewindows.

Q

qualified filename: A filename that includes an extension.

qualified name: The name of an attribute prefixed by the name of the class that
defines it, or the name of a method prefixed by the name of the class to which it
applies. Syntax: class-name:: attribute-name, or class-name:: method-name. Used in
expressions to refer unambiguously to attributes and methods.

quantifier: In a generic reference expression, a reserved symbol that indicates
whether the expression produces one, one and only one, at least one, or any
number of items or values.

R

real-time clock: The time clock kept by the computer on which the G2 process is
running. The default value for the scheduler-mode attribute in the Timing Param-
eters system table of G2 is real-time, indicating that G2 time is passing in relation
to true clock time.

region: A named group of one or more icon layers. All the layers in a region have
the same color. You can use the change action to change the color of any named
region.

Region 1: A block of memory used by G2 to hold items and non-symbolic values.

Region 2: A block of memory used by G2 to hold symbols and related internal
data.
2192

Region 3: A block of memory used by G2 to hold any external images used in
icons and as the backgrounds of workspaces.

Region Indicator: In the Icon Editor, a display that names the region (if any) to
which the current layer belongs.

relation: An actual association of a particular kind between two items in the
current KB. Contrast with relation definition.

relation definition: The definition of a kind of association between two classes of
items. A relation definition has a name, cardinality, a first class, a second class.
A relation definition can also be symmetrical. A relation definition can optionally
name a kind of relation that is the inverse of this relation definition. Contrast with
relation.

relation object: The second class in a relation definition.

relation source: The first class in a relation definition.

relative time-stamp: A GFI time-stamp format that consists of a non-negative
integer that specifies a number of seconds since the base time of the file.

remote data server: A process external to G2 that supplies G2 with data or that
accepts set actions from G2. A remote G2 can be a remote data server, for
example, as can a G2 Gateway interface. See Also G2 Gateway standard interface.

remote window: The visible window that is a client of a Telewindows process
connected to a running G2 process. Contrast with local window.

rendezvous failure: The inability to restore membership in a permanent-member-
ship list or array, or participation in a saved permanent relation, when a saved KB
is reloaded.

representation: The appearance of an item, which is of a particular representation
style.

representation style: One of several forms in which class of items appear. Each
system-defined class in G2 has a representation style. A class’s representation
style determines whether items of that class appear as icons, text boxes, displays,
connections, and so on.

request mode: A GFI input mode in which GFI provides a KB with data when the
KB requests it via data seeking.

required module: A module that contains items required by another module.

reserved classes: System-defined classes in G2 that can be inherited only by
system-defined subclasses. An example of a reserved class is variable.

reserved symbol: A symbol that cannot serve as a user-defined name in G2. In the
Text Editor, the prompt any unreserved-symbol indicates where you must enter a
user-defined name.
2193

reserved words: Symbols that cannot be used as names or symbol values in
expressions.

root class: The topmost class in a class hierarchy, or the topmost class of interest
in a subset of a class hierarchy.

rule: An item whose text expresses a programmatic response to a set of condi-
tions. A rule’s text contains a two-part statement, which can take one of several
forms; for example: when fire-alarm is sounding then invoke fire-safety rules.
G2 invokes rules using several different mechanisms.

rule invocation: A executing copy of a rule. When G2 invokes a specific rule,
G2 creates one rule invocation. When G2 invokes a generic rule, G2 creates one
rule invocation for each item or value that meets the conditions specified in the
generic reference expression in the rule’s antecedent. Consequently, several invo-
cations of the same generic rule might execute simultaneously.

run-state: Whether the current KB is running, paused, or reset. Changing the
current KB’s run-state affects the KB’s knowledge.

run-time validation: Instructions that G2 includes, by default, in a compiled attri-
bute. When the compiled attribute is invoked, evaluated, or referenced, the attri-
bute’s run-time validation instructions cause G2 to verify whether the attribute’s
own assumptions about the referenced item–that is, its name, its class, and so on–
are still true.

S

scan interval: An attribute that gives the rate at which G2 should invoke a rule.
For many applications it is more efficient to invoke rules through forward
chaining than through scanning.

scanning: For a rule, the process of invoking the rule at some regular interval
specified in the scan-interval attribute. Use scanning as a means of monitoring
conditions in an application.

scheduled drawing: One of two drawing modes. Scheduled drawing lets you
control when KB drawing occurs. You can control KB drawing by calling the g2-
work-on-drawing system procedure from within any procedure where you want
drawing to occur. Contrast with immediate drawing.

scheduler: The part of G2 that directs all other processing. The scheduler works in
clock ticks; within a single clock tick it does the following: schedules new tasks,
runs tasks that have been scheduled (running a rule, for example), services
external data servers, services the user interfaces, and services the simulator.

schematic: A picture of the application; consists of objects and their connections.

scope: For a configuration, the set of items to which the configuration pertains.

scrapbook workspace: A special workspace used for holding pieces of text used
for insertion in the Text Editor.
2194

secondary definition: When class definitions are merged, the definition that is
merged into the primary definition.

secondary direct superiors: The second and later classes (if any) specified in a list
of direct superior classes in a class definition. The first class in the list is called the
primary superior class. All remaining classes in the list are secondary superior
classes with a declining order of precedence.

secure G2: A G2 process that requires its users to log in. If the installed G2
product has a valid license, you run a G2 process that is secure by creating an
authorization file (the g2.ok file) and including it in entries for this G2’s users.

scrollable text editor: One of two interfaces to the G2 Text Editor, for editing attri-
butes that typically have large amounts of text, such as procedures and methods.
The scrollable editor allows you to scroll the contents of the editor’s edit area and
to enter newline characters more easily.

sequential execution: One of two methods of computational execution, the
process of executing commands one after another, using the in order statement.
Each command completes before G2 continues to process the next. Contrast with
concurrent execution.

shallow simulation: A collection of simple heuristics that model observed
behavior.

shrink wrapping: For a workspace, the operation of decreasing its extent, yet
with its borders still outside those items upon the workspace that are farthest
apart vertically and horizontally.

simple attribute: An attribute that is neither given by a parameter or variable, nor
by an instance of a class. A simple attribute can have values of any type. No type-
checking occurs.

simulation formula: For a variable, a formula entered in the simulation-formula
attribute of its simulation subtable, which the simulator uses to calculate a value.

simulation procedure: A procedure that the simulator calls either when the appli-
cation is initialized or once each simulation cycle. Although there is no separate
subclass of procedure used specifically for simulation, a simulation procedure
behaves in a slightly different manner from other procedures.

simultaneous execution: See concurrent execution.

single inheritance: In object-oriented programming, the practice of allowing a
class to have only one direct superior class.

single inheritance class: A class that neither has, nor inherits any class that has,
more than one parent.

source G2: For a remote procedure call, the G2 from which a remote procedure
call originates. Contrast with target G2.
2195

specific formula: For a variable, a formula entered in its formula attribute to
calculate a value for a specific variable. G2 evaluates a specific formula as a result
of data seeking. A specific formula overrides any generic formulas for the vari-
able, and requires that the data server be the inference engine. Contrast with
generic formula.

specific type: An actual value must be of a specific type. G2 offers these specific
types: integer, float, symbol, text, and truth-value. Contrast with abstract type and
composite type.

spreadsheet format: A GFI file format in which data is stored in rows and
columns that resemble the layout of a spreadsheet.

stable-for-dependent-compilations: One of two G2 compilation configurations.
This configuration declares that an item is not subject to further change, and
allows G2 to compile more efficiently other items that refer to the configured
item. Contrast with independent-for-all-compilations.

standard characters: Letters, digits, hyphens, underscores, apostrophes, and
periods.

standard output messages: A report of the initial allocations for G2’s memory
regions and network port numbers. As a new G2 process starts up, it displays
standard output messages. A G2 process also produces standard output messages
when it must attempt to allocate additional memory allocations and when it
detects an internal error.

state variable: A variable that depends on its own previous value. In G2, state
variables are explicitly created only within simulation formulas.

statement: A rule, a regular formula, a simulation formula, a user-defined func-
tion, or an executable instruction in the body of a procedure.

status: One of several pieces of knowledge that an item contains, about its ability
to participate in the current KB’s processing. An item’s statuses are perma-
nent/transient, active/inactive, enabled/disabled, and OK/bad/incomplete.
An item’s statuses are distinct from its attributes, though G2 reports item statuses
in an item’s notes attribute.

Status Indicator: In the Icon Editor, a display that shows various message that
describe the current state of the editor or prompt for user input.

stubs: An extendable connection segment at the edge of an object. Object defini-
tions define the number, appearance, and placement of connection stubs on a
class of objects. You can also add and delete stubs for individual objects.

subattribute: An attribute that is part of another attribute’s value. For example,
History-keeping-spec of a variable or parameter has three subattributes:

• maximum-number-of-data-points

• maximum-age-between-data-points
2196

• minimum-interval-between-data-points

subattribute reference: The expression to reference any subattribute of an
attribute, which may itself consist of other subattributes, such as:

the minimum-interval-between-data-points of the history-keeping-spec of x

subclass: A class subordinate to another in the hierarchy of classes. A class can
have any number of subclasses.

subexpression: An expression that is a term of another expression.

subobject: The object contained in the attribute of an item.

subtable: The attribute table of any subobject.

subworkspace: A workspace that is subordinate to an item. Only items of certain
classes can have a subworkspace, and an item of the proper class can have only
one subworkspace. A subworkspace can be affected by the activatable-subwork-
space configuration property on its superior item. (See activatable subworkspace.
) Contrast with top-level workspace.

superior class: A class that is at a higher level than another in the hierarchy of
classes. Classes inherit attributes from their superiors.

symmetric relation: A relation definition whose relation-is-symmetric attribute
contains the symbol yes. This means that concluding a relation of this kind also
concludes an inverse relation of the same name and kind.

system-defined attribute: An attribute provided by one of G2’s system-defined
classes. Contrast with user-defined attribute.

system-defined class: A class that G2 provides by default, and which is a member
of the default class hierarchy. For example, object, variable, procedure, and rule
are system-defined classes. You cannot remove a system-defined class from G2.
Contrast with user-defined class.

T

table: See attribute table.

tabular function: The common term for an item of the tabular-function-of-1-arg
class.

target G2: For a remote procedure call, the G2 that executes the procedure.
Contrast with source G2.

task: In scheduling, the smallest unit of activity that G2 performs.

TCP/IP: A transport layer protocol for communications between computers.
TCP/IP is one of two communication protocols supported by G2 and related
Gensym products.
2197

Telewindows: A Gensym product. When running, allows a user to connect to a
running G2 process and view a window that displays the contents of the G2’s
current KB. Multiple Telewindows users can access one G2.

template file: A file external to G2 that declares the arguments and return values
of each foreign function in a foreign image.

term: A syntactic element of an expression. In an expression, each term is either a
literal, an operator, or another expression.

Text Editor workspace: The workspace displayed by the Text Editor for editing
text.

text inserter: A type of free text item. When you click on the text of a text inserter
while a text-edit workspace is active, G2 enters some or all of the text into the
editor at the cursor. There are four types of user-created text inserters: text, word,
character, and character sequence.

text stripping: The process of removing source code from items such as proce-
dures and rules, as part of making a KB proprietary for customer distribution.

text-color color attribute: Determines the color of the text that appears in an item
whose class has the text box representation style.

time-stamp: In an expression, a value that represents an instant in time. In a GFI
file, there are two types of time-stamps: relative time-stamp and explicit time-stamp.

title block: The workspace that G2 displays at start-up in its local window. The
title block reports: the G2 version, the platform, network ID (or host name) of this
computer, and the TCP/IP port number on which this process listens for network
connections.

top-level module: The module at the top of the current KB’s module hierarchy.
This module is not directly required by any other module in the current KB.
A top-level module can directly require other modules.

top-level workspace: A workspace that has no superior item. A KB can contain
any number of top-level workspaces. You specify an association between a top-
level workspace and a module in the workspace’s module-assignment attribute.
Contrast with subworkspace.

transaction: A sequence of KB processing in which the set of values in use must
remain valid, unchanged, and consistent with respect to each other.

transaction scope: The set of G2 actions and statements that correspond to a
transaction.

transient item: An item that does not continue to exist in the current KB after the
KB is reset or restarted. When you save the current KB to a file, the KB’s transient
items are not stored in the KB file. Items created with the create action are tran-
sient by default. Contrast with permanent item.
2198

two-dimensional array: A nested array of arrays. You can create a g2-array or an
item-array, whose elements consist of arrays.

type: A value’s type determines the set of valid operations in which it can
participate. G2 offers these types: item-or-value, item, value, quantity, integer, float,
symbol, text, truth-value, sequence, and structure. Each type is abstract, specific,
or composite. See abstract type, specific type, and composite type.

U

unit of measure: A unit such as meters or seconds suffixed to a quantity. G2
provides system-defined units of measure, and you can define additional units of
measure as needed.

unmodularized: A KB file or the current KB is unmodularized when it contains
no modules, or when it contains modules that are not consistently modularized.
Contrast with consistently modularized.

unqualified filename: A filename without an extension.

user menu choice: An item that associates an action and menu choice text with a
class. You can select a valid user menu choice from the menu of an eligible (suffi-
ciently configured) item of the specified class or any of its subclasses. You can
select a user menu choice only while the current KB is running and while the
expression specified in the user menu choice item’s condition attribute produces
the truth-value true.

user mode: A non-reserved symbol that represents a category of usage or level of
access to the current KB’s knowledge. Declare a user mode simply by naming it in
at least one configuration statement in at least one item in your KB. A G2 authori-
zation file associates each authorized user name with a user mode.

user modes clause: A syntactic element of a configuration statement that names a
user mode.

user-defined attribute: For a user-defined class, an attribute that is defined in the
class-specific-attribute attribute of this class’s definition item, or in the same attri-
bute in the definition of some user-defined superior class of this class. Contrast
with system-defined attribute.

user-defined class: The class that is defined by an object definition, connection
definition, or message definition. Create a user-defined class to represent a
template for set of knowledge not provided by instances of G2’s system-defined
classes. Contrast with system-defined class.

user-defined function: The result of creating and specifying a function definition
item. A user-defined function names an operation that takes zero, one, or more
than one item or value as arguments, and returns the item or value that results
from G2’s using the arguments to evaluate the function’s specified expression.
2199

V

validity interval: For the value of a variable, the length of time after its collection
time that G2 considers the value to be valid. G2 uses the validity interval to
compute the expiration time of a variable’s value.

value: In the G2 type hierarchy, the value type includes all types except item-or-
value and item. When used as an argument, value and value-expression include
only the simple types (integer, float, symbol, text, truth-value), not the composite
types (sequence and structure).

value passing: The process of obtaining a value for a g2-to-g2-variable from a
remote G2 process through the use of an external interface.

variable failure: The result of an attempt to obtain a new current value for a vari-
able, where the variable does not receive a value within its specified time-out
period. The variable can also fail to obtain a new current value after G2 has used
all appropriate means to obtain the value and has failed to do so.

W

wait state: For a procedure, the occurrence of a suspension of the procedure’s
execution, during which other KB processing can occur. A wait state occurs, for
example, when a procedure executes a collect data statement or allow other
processing statement.

wakeup: For the G2 scheduler, the activity of resuming execution of a task after a
previously requested value for a variable arrives from the variable’s data server.

warmboot: The activity of resuming execution of the current KB after loading its
knowledge from a snapshot file.

wildcard: When specifying an operating system directory to search or a KB file to
load or merge, use a wildcard, or reserved character, to signify one or more other
characters in a specified directory name and/or filename. G2 uses wildcard char-
acters and conventions that are independent of the operating systems of the plat-
forms on which G2 runs.

window: A display on a computer screen that is a client of a process, such as G2
or Telewindows. A window’s user interface (for example, whether and how it can
be moved, resized, or iconized) is determined by the window manager software
in use on your computer.

workspace: An item in G2 that organizes a set of items within an abstract, three-
dimensional region. A workspace appears in a G2 window or Telewindows
window as a bounded rectangle. A workspace both contains items and arranges
them schematically with respect to each other. A workspace can be the inferior
item of another item; thus, your KB can contain a hierarchy of workspaces.
Contrast with KB workspace.
2200

workspace hierarchy: The containment hierarchy in the current KB: the KB’s top-
level workspaces, the items upon those workspaces, the items contained in the
attributes of those items, the subworkspaces of those items, the items upon those
subworkspaces, and so on.

workspace origin: The location with coordinates (0, 0) in workspace units. The
origin of a new workspace is its center. After placing items upon a workspace,
moving them, and shrink wrapping the workspace, the workspace’s origin might
no longer be within the workspace’s displayed portion, or extent.

workspace unit: A unit of measure within a workspace that is equivalent to one
pixel (one screen dot) when the workspace is shown at full size, which is
proportionately larger or smaller as the workspace’s scale is increased or
decreased, respectively.
2201

2202

Index
 @ A B C D E F G H I J K L M
 # N O P Q R S T U V W X Y Z
Symbols
^ arithmetic operator
:= syntax notation
! wildcard character
? wildcard character
...

in text of cloned rules
rules
syntax notation
Text Editor

.kl files
"diff" operations
[]

concatenation operator
getting Unicode character codes, using
in text expressions
syntax notation

[, ...] syntax notation
[; ...] syntax notation
{ }

comments
syntax notation
wildcard character

@
in text
quoting character

@L character sequence
*

arithmetic operator
readout tables
variables
wildcard character

/ arithmetic operator
//

comments
/= relational operator
\ Escape character
- arithmetic operator
+ arithmetic operator
+Inf and -Inf value
=

procedure assignment
relational operator
| syntax notation
~ escape character

A
a generic reference quantifier
abort action
abort workspace
abs function
absolute-labels-visible? attribute, of trend

charts
abstract classes
access keys
across g2-to-g2-interface phrase

for remote procedures
action attribute

of action buttons
associating with this window
entering actions in

of user menu choices
associating with this item
entering action in

action buttons
action syntax term
action-button class
action-priority attribute

of action buttons
of user menu choices

actions
abort
activate
change
change the name of
change the size of
change the text of textual items
conclude
create
deactivate
delete
dictionary
focus on
halt
hide
2203

inform
insert
invoke
make permanent
make the subworkspace of
make transient
move
pause
print
remove
reset
resume knowledge-base
rotate
set
show
shut down g2
specific to attributes
start
transfer
update
using

executing
in action buttons
in messages
in procedures
in rules
in user menu choices

activatable subworkspaces
activating and deactivating

programmatically
configuring for items
declaring
expression for determining activation

status of
locating

G2 data interface objects upon
GSI data interface objects upon

setting the activation status of
using

activate action with
deactivate with
to activate GSI variables

activatable-subworkspace configuration
statement

creating activatable subworkspaces by
using

declaring for items
for items

activate action
activating subworkspaces by using
using
2204
active/inactive status
of items
propagating

activities
Assign

assigning values to variables
assigning variables to general value

types
assigning variables to message parts

Breakpoint
Call
debugging
Do
Empty
flow-related
handlers

Alarm Event Handler
Compensation Handler
Fault Handler
Message Event Handler

Invoke
miscellaneous
Pick
Receive
Reply
Return
Scope
summary of differences between G2GL

and BPEL
Switch Fork
Switch Join
Throw
Wait
While

activity-profile-information class
add another attribute menu choice
add column menu choice, of freeform table

other edits menu
add name of attribute menu choice, of attribute

displays
add optional subtable menu choice, of

attributes
add or delete rows menu choice, of tabular

functions
add row menu choice, of freeform tables other

edits menu
adding

attribute displays
example of
programmatically
to user-defined classes

comments
system table attribute for
to a KB

entries to module map file
name of attribute to attribute display
user elements to a G2 OK file
user mode by using subattribute

references for
administrator mode
Alarm Event Handler activity

handling alarm events, using
algorithms

multiple inheritance linearization
alias, for data servers
alignment-for-menu-choices attribute, of Menu

Parameters system table
alignment-grid attribute, of Drawing

Parameters system table
all remaining grammar, in RPCs, for item

passing
allocation tables
allow connect clauses configuration statement
allow other processing procedure statement

allowing other processing by using
definition of
iterating over lists and arrays by using

allow-duplicate-elements? attribute
errors caused when set to no
of lists
result of setting to no

allow-scheduled-drawing? attribute, of
Drawing Parameters system table

allow-selection-of-outside-text-from-editor
configuration clause

allow-selection-of-text configuration clause
alphabetic value, for ordering color menus
Alt + i keystroke command

entering special characters by using
entering Unicode characters by using
for entering

Cyrillic character codes
JIS codes
KS C 5601 codes

Alt + n keystroke command, in Text Editor
Alt + p keystroke command, in Text Editor
Alt + s keystroke command, in Text Editor
an generic reference quantifier
and logical operator
animating icons
annotations

changing
of charts
annotations attribute, of charts
antecedent

coding in a rule
evaluating

any generic reference quantifier
using in generic reference expressions
using in the consequent of rules

applicable-class attribute, of user menu
choices

applications
See also KBs
data servers for variables in
natural language support in
planning
prototyping or engineering
timekeeping features in
user interface paradigm in
user interface utilities for
workspace roles in

arcs, drawing in icons
arctan function
argument syntax term
argument variables

calling G2GL processes with
using system procedure

creating
creating processes with

arguments
declaring

for methods
for procedures
for remote procedure calls
for tabular functions
for user-defined functions

passing
to methods
to procedures

passing to remote procedure calls
classes
items
values
variables and parameters

arithmetic functions
arithmetic operators

coercing return values from
constraints on exponential
order of evaluation of
parentheses in
precedence of
reserved characters for
2205

array elements
See arrays
See elements

array-is-permanent attribute, of arrays
array-length attribute, of arrays
arrays

See also g2-array class
attribute initializations for
attributes containing

accessing
specifying

changing
elements of
initial values of
length of

charting data series by using
classes of
comparing with lists
copying
creating
describing
effect on elements when changing

definition attributes
elements of

accessing by index
changing in attributes
computing values for
describing
inserting into
introduction
referencing in attributes containing
replacing
using insert action for inserting

expressions using
initial values of
iterating over

for particular items
using procedures for

maintaining permanent
nested
populating

general
using a procedure for

resetting KB, effects on
restoring permanent
run-state status of

effects of
summary

saving
as permanent knowledge
in snapshot file
2206
saving and reloading permanent arrays
subclasses of
system procedures for

arrowheads, on connections
as fast as possible scheduler mode

using
as fast as possible scheduling mode

G2 scheduler
Timing Parameters system table

as handle grammar, in RPCs for item passing
ASCII characters

encoding, using Gensym character set
subset of Gensym character set

Assign activity
assigning

values to variables
assigning variables

to general value types
to message parts

assigning top-level workspace to a module
at-standard-position symbol, for positioning

attribute displays
attempting status, of G2-to-G2 interface
attribute access

accessing system-defined attributes
attribute descriptions
changing freeform tables by using
overview of
referencing system-defined attributes
system procedures for
terminology

attribute descriptions
See also class descriptions
definition of
information contained in
system procedure for obtaining

attribute displays
adding

attribute name to
interactively
programmatically
to class definitions
to items

configuring
defining for classes
definition of
deleting attribute name from
determining font for
example of adding programmatically
menu for
not supported for readout tables

positioning by using at-standard-position
symbol

referring to programmatically
for definitions
for items

removing programmatically
attribute files, superseded practice
attribute syntax term
attribute tables

dismissing
display precision of
displaying

interactively
menus of
subtables of
using mouse gesture

editing attributes in
navigating
positioning
scheduling updates for
transferring
updating automatically
using

attribute texts
system procedure for obtaining

attribute values
restoring former values of
system procedure for obtaining

attribute-displays attribute
defining attribute displays by using
of definitions
of object definitions
updating while running

attribute-initializations attribute
of definitions
updating while running

attribute-name syntax term
attributes

actions for
changing

the text of
to default value

class-specific
defining
in class inheritance

color
compiled

concluding the text of
definition of
item and instance configurations
knowledge contained in
profiling
using bitwise functions in

composite
compound, in trend charts
concluding values for

in tables
unnamed by using a list or an array
using conclude action

configuring which appear in tables
containing

lists and arrays
object instances
object instances, referencing
object instances, subtable of
variables and parameters, referencing

displaying with items
editing in tables
evaluation

concluding
hidden attribute
using

expressions for referring to
filtering items in Inspect based on value
formatting
formatting class-specific
hidden
indexed

defining
using

inherited
attribute for determining
default values of
duplicate
through class hierarchy

instantiation
knowledge contained in
localizing, in password change dialog
moving from one class to another
name conflicts when merging
of classes
of items

definition of
identifying knowledge in

order of in tables
passing through RPCs

simple
system-defined
user-defined
with object values

qualified
for preventing ambiguity
2207

referencing
referring to

through symbolic expressions
user-defined

renaming
run-state status of
showing

in attribute displays
unsaved

simple
specifying

as object instance
initial values of
using symbolic reference
with an index
with data types
with initial values in a definition
with initial values using the initially is

phrase
with no type or default value

subtable menu choice for
subtables of
superior/subordinate relationship of
suppressing editing of
system-defined

accessing
comparing with user-defined
of system-defined classes

tables of
text

in items
referencing in expressions
storing in items

text-readable only
the text of
the value of
transferring objects to and from
updating

displays of
programmatically

user-defined
aligning for item passing
comparing with system-defined
creating for classes
declaring types for
defining for a class
excluding through RPCs
overriding inherited values of

values, checking the existence of
viewing values and text

authorization file
2208
effects of reinstalling
authorization files

adding user elements to
example
for G2
for Telewindows
specifying passwords in
syntax
version element

authorized-optional-modules attribute
of KB Configuration system table

license types and options in
using

of OK objects
authorizing

G2
users at a secure site

author-recording-enabled? attribute
of Editor Parameters system table
updating

authors attribute
enabling
using

automatically resolve conflicts load KB option
description of
for merging KBs

average function
average, computing for variables and

parameters
axis-crossover attribute, of chart annotations
axis-maximum attribute, of chart annotations
axis-minimum attribute, of chart annotations
axldemo.kb

B
-background command-line option

customizing GENSYM background
pattern by using

using
background images

displaying multiple
reading graphics file
saving in KBs
using in workspaces

background metacolor
background-color color attribute

associated with representation styles
message property
of chart annotations
of freeform tables

of messages
of workspaces
setting in Color Parameters system table
using change action to change
workspace representation

background-colors attribute, of graphs
background-images attribute, of workspaces

definition of
displaying graphic as background by

using
including name of image definition in
specifying multiple images in

backing-store facility
for Telewindows users
updating windows from

backups, saving
backward chaining

breadth-first
caused by action buttons
definition of
depth-first
displaying dynamically for a variable
for variables

to rules
without formulas

invoking rules by using
options for variables
summary table

backward-compatibility-features attribute, of
Miscellaneous Parameters system table

bad status
bar charts
baseline-color attribute, of trend charts
baseline-visible? attribute, of trend charts
begin procedure statement
begin-end procedure statement
bitmap files

See graphics
bitwise functions
bitwise-and function
bitwise-left-shift function
bitwise-not function
bitwise-or function
bitwise-right-shift function
bitwise-set function
bitwise-test function
bitwise-xor function
black and white palette
blank-for-type-in? attribute, of type-in boxes
block error handlers

See error handling
border-color color attribute
associated with representation styles
changing for items
of chart annotations
of freeform tables
of message definitions
of messages

borderless-free-text class
borders

creating custom workspace
printing workspaces without

bottom option, of Operate on Area menu
choice

BPEL compliance
summary of differences between G2GL

and BPEL activities
BPMS toolbox
bpms.kb

breadth first backward chain option, of
variables

default settings for
specifying
using

break-on-all-execution-faults
Breakpoint activity

creating breakpoints, using
breakpoint-level attribute

of Debugging Parameters system table
using for debugging

breakpoints
breaking on execution faults

automatically
using Fault Handler

displaying the procedure invocation
hierarchy while paused at

dynamic
enabling the display of disassembled code

at
removing

from individual items
using system table

resuming from
setting

for debugging and tracing
on G2GL processes
temporary
using system table

setting dynamically
in the client
in the server

showing disassembled code at
2209

single-stepping through the execution
specifying

breaks, menu
NMS API

bring formats up-to-date load KB option
Bring Up Source menu choice
buffer, maximum size for Telewindows cut

and paste in
built-in G2 menus

example
menu bar
popup menu

Business Process Management System (BPMS)
using G2GL within

business.kb

buttons
action buttons
attributes of
check boxes
default task priority of
examples of
localizing

for login dialog
for password change dialog

radio buttons
sliders
type-in boxes
types of

buttons-for-edit-operations-menu attribute, of
Editor Parameters system table

C
C and C++ programming languages

accessing foreign functions for
converting data types from
creating a foreign image of source files for
IEEE format for data types in

cached chaining knowledge
displaying

cached knowledge
for X-server windows

cached rule invocation knowledge
displaying

caching
chaining and rule invocation knowledge

calendar control
standard dialogs

calendar format, for representing time as a
string
2210
call ... across procedure statement, allowing
other processing by using

Call activity
calling G2 procedures

example
using

call next method procedure statement
execution of
for invoking superior methods
introduction to

call procedure statement
allowing other processing by using
definition of
invoking procedures using
using for remote procedures

callbacks
creating
custom Windows dialogs
overview
publish/subscribe facility

registering remotely
call-function function
calling

G2 procedures, using Call activity
G2GL processes as procedures

using G2 system procedure
capitalize-words function
cardinality, of relations
cascade menus
cascading menus

native GMS
NMS API

case procedure statement
categories

filtering rules in Inspect by
of rules

categories attribute
of rules
specifying symbols for
using invoke action in conjunction with

ceiling function
cells, of freeform tables
-cert command-line option

using
chaining

See also backward chaining and forward
chaining

displaying backward chaining for a
variable

displaying cached chaining

displaying one-level chaining for a
variable

removing display
chaining knowledge

caching
change action
change attribute

of definition classes
options

add connection
change attribute
change stubs
copy icon
delete connection
merge
move attribute
move the connection
rename attribute
update

updating while running
change logging

commenting change log entries
deleting

change log entries
change log entry tags

deleting entries
getting change log entries
performing "diff" operations
reverting change log entries
See KB change logging
tagging all items in a module
tagging change log entries
using for version control
using Inspect

Change Mode menu choice
displaying login dialog by using
Main Menu

Change Password dialog
Change Password, Miscellany menu option
change size menu choice

of items
using

change-attribute function
change-element function
change-evaluated-attribute function
change-log attribute

of definitional items
viewing entries of

changing
array length
background colors of icons
color attributes
of items
of messages

color patterns of items
evaluation attributes of whenever rules
freeform tables, programmatically
icons

regions of
width and height of

initial values of arrays
item names
item size
list and array elements
passwords, from within G2
text of messages
using change action

array elements
attribute text
color attribute of items
icon color regions
item names
list elements
named icon color regions
textual item text
workspace size

chaos.kb

char datatype for C and C++
character classes

precedence in
system-defined
term definition

character sets
conversion functions for
custom text conversion styles for
external
external line separators for
ISO-8859-5
JIS
non-Unicode translation of Chinese

characters
representing, using conversion styles
working with

character-codes-to-text text processing
function

characters
conventions for
converting

from C to G2
to lowercase
to titlecase
to uppercase
2211

determining
lowercase
titlecase
uppercase

entering Unicode codes for
G2 representation of
getting Unicode character codes

using an index
support for cut and paste for international
Unicode

displaying
replacement for

chart class
chart views

creating
bar chart
simple chart
simple chart and table

deleting
example callback
exporting
populating
printing
using

charts
annotations of
attributes of
axis component attributes of
component attributes of
creating
data point component attributes of
data series components of
determining data point indicator
displaying
displaying annotations
examples of data point indicators
styles of
updating

charts.kb
charts.kb

chart-style attribute
of charts
specifying style with

check boxes
check for consistent modularization Inspect

command
check marks, menu choice
checkable-list-box control, custom Windows

dialogs
check-box control, custom Windows dialogs
Chinese language
2212
entering characters, using text inserters
non-Unicode translation of characters
specifying Han character styles for
using
Windows character-input methods for

circles, drawing in icons
-cjk-language command-line option
class definitions

See also classes
attributes of
creating

connection definitions
message definitions
new
object definitions

descriptions of system-defined
initializable system attributes of
initializing icon descriptions of
merging superseded definitions into
overview

class hierarchy
See also classes
adding classes to
defining in bottom-up order
definition of
designing for use with methods
guidelines for planning
inheritance in
introduction to
showing, using Inspect

duplicate display for multiple
inheritance

for multiple inheritance
for single inheritance
for viewing

specifying for generic rules
writing to a file

classes
See also class definitions and class

hierarchy
applicable, for user menu choices
attributes of
class hierarchy

adding to
guidelines for defining
inheritance within
introduction to
multiple inheritance
viewing, using Inspect

class inheritance path of
class hierarchy

of class definitions
class-specific attributes and methods of
deleting
direct superior

attribute
single inheritance

inferior
inheritance and class definition types
inheritance within
inherited

attributes of
default attribute values of
methods of

instances of
in G2
system-defined
user-defined

introduction to
merging classes defined on different

definition types
methods of
mixin
nonextensible
organizing knowledge by
qualified names of
root
subclasses
superior

expression for referring to
single inheritance

syntax terms for
system-defined
types of inheritance
user-defined

introduction to
using sequences in
using structures in

class-inheritance-path attribute
determining default attribute values by

using
of definition classes

class hierarchy
determining

class-name attribute
of definition classes
updating while running

class-name syntax term
class-of-procedure-invocation attribute

expression for using
of methods
of procedures
class-qualified names
in symbol expressions
invoking methods directly by using

class-specific-attributes attribute, of definition
classes

Clear Compilation Postings menu choice
Clear KB menu choice

clearing the current KB by using
Miscellany Menu

clearing, current KB
clicking ... implies configuration clause

for associating mouse click with an
operation

for configuring mouse clicks
click-to-edit configuration clause
clipboard, using for text exchange
clock-adjustment-in-minutes attribute, of

Timing Parameters system table
clocks

adjusting
clock tick
digital
G2

definition of
in KB processing
specifying clock tick length

referring to current times of
scheduler

clock-tick-time attribute, of system profile
information

clone menu choice
of items
of Operate on Area menu
using

Clone Workspace menu choice
cloning

items
groups of, programmatically
interactively
programmatically
using create by cloning action
using mouse gesture

specific knowledge
workspaces

effects of
programmatically

Close and Continue menu choice
coalescing multiple whenever rule invocations
collect data procedure statement

accessing variables by using
allowing other processing by using
2213

definition of
collection time

of variables and parameters
referencing in expressions

Color menu choice
of items
of workspaces
using interactively

color-attribute-name syntax term
color-menu-ordering attribute, of Color

Parameters system table
color-name syntax term
color-on-1st-level-color-menu attribute, of

Color Parameters system table
color-on-2nd-level-color-menu attribute, of

Color Parameters system table
color-parameters system table class
color-picker control, custom Windows dialogs
colors

adding to icons
assigning to color attributes
attributes, of items
changing

attributes
for items
patterns

color indicator in Icon Editor
controlling order of, in menus
determining available set of
editing for item selection
metacolors

background
foreground
transparent

palette of
printing using
selecting palette of, for drawing
setting for menu choices
system table for

column charts
creating
data point indicator of

COM, interfacing with
combo-box control

with tree view
standard dialogs

combo-box control, custom Windows dialogs
command-line options

dictionary of
G2

-no-tray
2214
introduction to
related environment variables

comment as follows configuration statement
comments

configuring in items
entering in procedures
in KBs

adding
example of
using

communications
assigning variables to message parts
choosing between multiple messages

using Pick activity
creating processes that communicate
handling

faults
message events

instantiation triggers
one-way

invoking operations
that send messages

two-way synchronous
introduction to
using Reply activity

compare-text text processing function
comparing

permanent and current item knowledge
sequences and lists
structures and items
text, function for

Compensation Handler activity
not implemented

compilation
clearing compilation postings
compiling G2GL processes
errors and warnings

compilation configurations
changing items with
compilation dependencies
compiled attributes affected by
declaring for items
declaring items

independent for all compilation
stable for dependent compilations

definition of
for profiling

inlineable
stable-hierarchy

guidelines for using
independent-for-all-compilations

performance improvements by using
run-time validation
stable-for-dependent-compilations

Compile Process menu choice
compiled attributes

concluding the text of
item and instance configurations
of items
optimizing compilation of

compile-texts-for-execution-displays
compiling items

See recompiling
complex types
component subtables, of trend charts
composite

attributes
definition of
description of

types
compound attributes, of trend charts
computation

actions
formulas
functions
methods
procedures
rules
task scheduling

computational capabilities
locking mechanism for objects
referencing a time interval ending with the

collection time
concatenate function, for sequences
concatenation operators

formatting
numeric values
using newline

using
conclude action
concluding

array length
attribute values

for attributes
of definition classes
using conclude action

icon variables of items
initial values of arrays
list or array element values
relations

between classes
between items
general
with a sequence

unnamed object attribute that is a list or an
array

variable and parameter values
variable attributes have no value

concluding values for G2 items
concrete classes
condition attribute, of user menu choices
condition messages, localizing, for login dialog
configuration clauses

allow-selection-of-outside-text-from-editor
allow-selection-of-text
click-to-edit
do-not-clear-text-for-edit-in-place
full-editor
inlineable statement

for methods
for procedures

menus-for-edit-in-place
move-connection
move-object
move-objects-beyond-workspace-margin
move-workspace
move-workspaces-beyond-window-margin
option-buttons-for-edit-in-place
scale-workspace
select-area
select-object
show-workspace

configurations
See also configuration clauses, instance

configurations, and item configurations
aligning items on a grid by using
appropriate operations in
associating keystrokes with G2 operations

by using
clauses, separating
combining

absolutely
cooperatively
general

commenting items
compiled attributes of
configuring

activatable subworkspaces of items
any network access to G2
attribute displays
attributes in tables
attributes shown in tables
based workspace hierarchy
2215

connect access to G2
example of menu choices
execute access to G2
inform access to G2
Main Menu
manual connections
menu choices
Miscellany Menu selection
mouse clicks
network access to G2
non-menu choices
non-menu choices example
not manual connections
properties of items
subworkspace connection posts
table menu choices
table menu choices example
user interface of items

constraining movement of items
declaring

exceptions
for classes
for items
for proprietary items
for single items
generic
independent for all compilations
localized exceptions
stable for dependent compilation
subworkspace connection posts

definition of
describing

for items
using menu

determining precedence of
example of configuring the user interface
kinds of

instance
instance in definitions
item

obtaining attributes visible in a user mode
optimizing compilation
precedence of
readout tables using
scope of
stable-for-dependent-compilation clause

for inlining procedures
stable-for-dependent-compilations clause

for inlining methods
statements, summary
using in modularized KBs
2216
configure the user interface as follows
configuration statement

combining
example of
for item and instance configurations

confirm-run-state-changes attribute of
Miscellaneous Parameters system table

conflicting definitions
See also conflict workspaces and name

conflicts
conflict scenarios

accidental name conflicts
between definitions and instances
new version of same definition
separate development of attributes
separate development of definitions

conflict workspaces
detecting
resolving

typical
resolving manually
when loading modularized KBs

connect network access configuration clause
connect to external foreign image at, Text

Editor prompt
connect to foreign image initialization

command
Connect to Foreign Image menu choice

Miscellany Menu
using

connected status, of G2-to-G2 interface
connected to expression, for connections
connecting

objects
to foreign image

as external process
through an initialization file

to objects without stubs
connecting-shading-target attribute, of trend

charts
connection caching

controlling
determining

connection class
connection definitions

creating
defining regions for
determining junction blocks for
specifying stub length for
using

connection evaluator functions

connection posts
See also connection-post class
configuring for subworkspaces
creating

classes
on subworkspaces
subclasses

using
general
with subworkspaces

connection-arrows attribute, connections
connection-caching-enabled? attribute

controlling connection caching by using
of Miscellaneous Parameters system table

connection-definition menu choice
connection-direction connection function
connection-line-visible attribute, of chart

annotations
connection-portname connection function
connection-position connection function
connection-post class
connection-post menu choice
connections

See also connection class, connection
definitions, and stubs

actions using
arrowheads on
changing vertices
color attributes of
configuring manual
connecting to objects

with stubs
without stubs

connection posts
creating classes
using

creating
between objects
general
on a side
transient

definition of
definition terms for
deleting

interactively
programmatically
using delete action

describing
detecting events

connection
directly connected to
generic
disallowing

manual
through configurations

drawing
diagonal
orthogonal

expressions using
functions using
G2-to-G2
interactively changing vertices
item count of
iterating over
junction blocks

defining
using

layering of
making permanent

example
using make action

properties of
referencing

classes of
connected objects
direction
flow direction
port names

regions
stripe color of
stubs

connecting objects by using
specified in object definition

system procedures using
using
vertices of

creating
obtaining
specifying

connection-side connection function
connection-style connection function
connector formats menu choice
connector formats, of trend charts
connector-format-name-or-number attribute

of trend charts
specifying

connector-interpolation attribute, of trend
charts

connector-line-color attribute, of trend charts
connector-line-width attribute, of trend charts
connectors-visible? attribute, of trend charts
consequent
2217

coding in a rule
specifying

sequential actions in
simultaneous actions in

consistent modularization
constrain moving configuration clause

such that the item aligns on a grid
to the rectangle

contextual keystroke commands
continuing without debugging
continuous minimum scheduling interval
controls

calendar
custom dialogs

descriptions of
types of

duration
G2 Version 8.1 Rev. 0

grid-view
G2 Version 8.1 Rev. 0

progress-bar
slider
time-of-day
toolbars

example
track-bar
tree-view-combo-box
workspace

conventions
character strings
module names

converting
character codes to Unicode text
characters

to lowercase
to titlecase
to uppercase

text to Unicode character codes
copying

See also cloning
lists into sequences
sequences into lists

cos function
create action
create by cloning action
create instance menu choice
Create New Module menu choice

Miscellany Menu
create subworkspace menu choice

of items
using interactively
2218
creating
default error handlers
explanation items
G2GL processes
generic formulas
items

on workspaces
programmatically
using create instance menu choice

language translation definitions
local and argument variables
module hierarchy
modules

interactively
programmatically

partner link variables
processes that communicate
relation definitions
specific formulas
subattribute references
subtables for items
subworkspaces
tokenizers
top-level module
using create action

items by cloning
items by indirect reference to a class
items of a particular class
transient connections

workspace hierarchy
workspaces

interactively
programmatically

cross-section-pattern attribute
example of
of connection definitions

Ctrl + c keystroke, in Text Editor
Ctrl + End keystroke, in Text Editor
Ctrl + Home keystroke, in Text Editor
Ctrl + left arrow keystroke, in Text Editor
Ctrl + right arrow keystroke, in Text Editor
Ctrl + Shift + End keystroke, in Text Editor
Ctrl + Shift + Home keystroke, in Text Editor
Ctrl + Shift + left arrow keystroke, in Text

Editor
Ctrl + Shift + right arrow keystroke, in Text

Editor
Ctrl + v keystroke, in Text Editor
Ctrl + x keystroke, in Text Editor
current KB

See KBs

current time
current value of variable-or-parameter

grammar, in RPCs, for item passing
current-attribute-displays attribute, of items
current-file-for-module attribute

determining if module is savable by using
current-language attribute

of Language Parameters system table
setting current language by using
supporting multiple languages by using
using for g2-windows

current-log-file attribute, of Log File
Parameters system table

cursor movement, in Text Editor
cursor, mouse
custom Windows dialogs

callbacks
dialog dismissed
dialog dismissed example
dialog update
dialog update example
generic callback
generic callback example
introduction to

component structure attributes
control actions for modify specification
control types
dialog component structure
dialog controls

checkable-list-box
check-box
color-picker
combo-box
full-color-picker
group
image
introduction to
label
list-box
masked-edit
push-button
radio-button
spinner
summary of control values
tab-frame
tabular-view
text-box
toggle-button
Win32 control types

dialog specification
introduction to
modify specification
modifying

API procedure
example

posting
API procedure
example

response actions for callbacks
Windows-specific control styles

customer support services
cutting text between G2 and other applications
cyclic dependencies, in modules
Cyrillic characters

entering
keyboard layout for

D
data files

See input data files
data interface objects

activating and deactivating
configuring KB with
creating
determining connection details of
introduction
naming
obtaining connection status for
setting timeout interval for

data passing, using G2-to-G2 interface
data points

computing for variables and parameters
in charts
keeping history by using

collection time for
maximum number for
using specific time period for

data seeking
in expressions containing variables

has a current value
has a value
the first of the following expressions

that has a value
value of

in freeform tables
in procedures
in trend charts
not caused by

changing lists and arrays
GSI external variables
2219

local name assignments of procedures
when obtaining variable values
when updating readout tables, dials, and

meters
data series, of charts
data servers

available for variables
external
for variables
GSI, G2 data service
inference engine
internal
providing alternate names for
specifying for variables
superseded capabilities

GFI
simulator

data service
default task priority of
G2-to-G2 interface
remote

for g2-to-g2-variables
through G2-to-G2 interface

run-state status of
system table for

data types
See types

data-point-collection-time attribute of value-
structure hidden attribute

data-point-value attribute of value-structure
hidden attribute

data-series attribute, of charts
data-server attribute

of G2-to-G2 variables
of GSI variables
of variables

data-server-aliases attribute, of Data Server
Parameters system table

data-server-for-messages attribute, of GSI
message service class

data-server-parameters system table class
data-type attribute, of variables and

parameters
data-window-background-color attribute, of

trend charts
data-window-border-visible? attribute, of trend

charts
data-window-time-span attribute, of trend

charts
daylight-savings time, effect of on different

operating systems
2220
day-of-the-month function
day-of-the-week function
ddd.dddd-format

in class-specific attributes
in readout tables
in type-in boxes
syntax term

deactivate action
deactivating

activatable subworkspaces
contrast with activating
using deactivate the subworkspace of

action
dead-connection-timeout attribute, of

Miscellaneous Parameters system table
debugging

See also tracing
abort workspaces
activities for
breaking on execution faults

automatically
using Fault Handler

breakpoints
enabling
setting
specifying

configuring for individual execution
instances

continuing without
controlling error and warning messages
displaying error and warning messages
displaying the procedure invocation

hierarchy
dynamic breakpoints
G2GL processes
obtaining source-code error location
removing tracing and breakpoints

in system table
options for

saving tracing data to a file
showing disassembled code at breakpoints
showing superimposed tracings execution

displays
single-stepping through source code
single-stepping through the execution
specifying the display interval for

explanation data
stepping through procedure code
system parameters for
thread tokens
trace messages

displaying
specifying

tracing G2GL processes
using halt action
writing message to a log file

debugging-parameters system table class
declare foreign function statement, in foreign

function declarations
declare properties ... as follows configuration

statement
description of
not
using

declaring
directly required modules
foreign functions in a KB
methods

for inlining
to be stable-for-dependent-

compilations
to be stable-hierarchy

procedures
for inlining
to be inlineable
to be stable-for-dependent-

compilations
types

dedicated Telewindows license
deductive reasoning, using forward chaining
default error handlers

See error handling
default-cell-format attribute

of freeform tables
specifying

default-error class
default-evaluation-setting attribute

determining
of freeform tables

default-junction class
automatic creation of
creating connections by using

-default-language command-line option
using

default-message-properties attribute
of message definitions

default-priority-for-runtime-saving attribute
of Saving Parameters system table
prioritizing tasks by using

default-procedure-priority attribute
of methods
of procedures
default-scale-for-execution-displays
default-simulation-time-increment attribute

setting simulated time by using
using subsecond time

default-thread-token-class
default-thread-token-color
default-update-interval attribute

of variables
using subsecond time

defining
See also creating
block error handler
icon variables
inverse relations
patterns
symmetric relations
tokens

definition
primary
secondary

definition classes
attributes of
authors attribute for
creating

class definitions
specialized

deleting
duplicate
effects of instance configurations on
for item passing
how type affects inheritance
identical
merging
moving attributes between
referencing when inactive
run-state status of
saving in modularized KBs
specifying
types of

connection definitions
message definitions
object definitions

unresolvable conflicts between
updating

attributes of
while running

user subclasses of
definitional items

definition of
reverting changes to
term definition
2221

tracking changes to with KB change
logging

delaying
display updates

in explanation facilities
delete action
delete menu choice
Delete Module menu choice

Miscellany Menu
delete name of attribute menu choice, of

attribute displays
Delete option, of Operate on Area menu choice
Delete Process Instance menu choice
Delete Workspace menu choice
deleting

explanations
items

general
programmatically

modules
interactively
programmatically

deleting G2GL process instances
demos

dialogs-demo.kb

Telewindows
gms-native-language-demo.kb
gms-native-large-menu-demo.kb
gms-native-multiple-menubar-demo.kb
gms-native-popup-demo.kb
nmsdemo.kb
pub_subscribe.c
publish-subscribe-doc-ex.kb,
publish-subscribe-remote-doc-ex.kb

dependencies, compilation
depth first backward chain option

of variables
using for rules

depth-first-backward-chaining-precedence
attribute

of rules
specifying

depth-of-image attribute, of image definitions
deregistering

default error handlers
message board message handlers
Operator Logbook message handlers

describe configuration menu choice
of items
viewing configurations using

Describe facility
for items
2222
for lists and array elements
for methods
for modules
for relation items
for variables and parameters
obtaining module information by using

describe menu choice
description-of-frame attribute, of frame-style

definitions
desired-range-for-horizontal-axis attribute, of

graphs
desired-range-for-vertical-axis attribute, of

graphs
detecting

connectedness, using functions
through whenever rule

connection events
disconnection events
failure of variable value
item activation or deactivation
item creation
item enablement or disablement
loss of variable value
new values

developer menu bar, controlling
developer? environment

configuring
introduction to

development license
dialog boxes

Change Password
dismissing
login

See login dialog
dialog units
dialogs-demo.kb

dials
class-specific attributes of
common attributes of
using

digital-clock class
digits

determining
readable
readable, in radix
Unicode

direct superior classes
definition of
determining
specifying in class definition

directly connected to expression, for
connection events

directly connected, definition of
directly required modules, merging
directly-required-modules attribute

declaring
of Module Information system table

directories, displaying in Load KB workspace
directory-for-log-files attribute, of Log File

Parameters system table
direct-superior-classes attribute

of a class definition
specifying for class definitions
updating while running

Disable debugging button
disable menu choice

of items
using

disabled status, of items
disabling

items
detecting through whenever rule
interactively
programmatically

workspaces
disabling menu choices
disassembled code, showing at breakpoints
disassembler-enabled? attribute

of Debugging Parameters system table
showing disassembled code, using

-discard-user-settings command-line option,
for Telewindows

disconnect from all foreign images
initialization command

disconnect from external foreign image at
initialization command

Disconnect from external foreign image at
option

disconnect from foreign image initialization
command

Disconnect From Foreign Image menu choice
invoking Text Editor by using
Miscellany Menu

disconnect from foreign image statement
disconnect-dead-connections? attribute, of

Miscellaneous Parameters system table
disconnected from expression, for connections
disconnecting

from foreign images
dismiss-color-menu-after-choosing? attribute,

of Color Parameters system table
dismissing, item menus
display a table Inspect command
-display command-line option

for using remote windows
using

DISPLAY environment variable
display meters

comparing with G2-meters
versus G2-meters

display updates
delaying

in explanation facilities
display-format attribute, of readout tables
displaying

See also showing
attribute tables
cached chaining and rule invocation

knowledge
dynamically

backward chaining for a variable
generic rule invocations

explanations
floating point values

in attribute tables
in readout tables

history values dynamically
invocations for a rule
item menus
item table
module assignment of items

interactively
programmatically

statically
one-level chaining for a variable

subattribute values
table menus
Unicode characters

displaying source for process instances
displays

See also attribute displays
attributes of
creating
default task priority of
dials

introduction to
using

digital clocks
freeform tables
meters

introduction to
using
2223

readout tables
introduction to
using

subsecond time in
trend charts
updating

display-time attribute, of system profile
information

display-update-interval attribute
of readout tables, dials, and meters
using subsecond time for

display-update-priority attribute, of readout
tables, dials, and meters

display-wait-interval attribute
of readout tables, dials, and meters
using subsecond time in

distributed applications, support for
distribution, preparing KBs for
Do activity

concluding values for G2 items, using
do forward chain option

of parameters
of variables

default setting for
specifying
use in rules

do in parallel procedure statement
do not backward chain option, of variables
do not forward chain option

of parameters
of variables

Do Not Highlight Invoked Rules menu choice
do not seek data option, of variables
Do Not Single-Step menu choice
do procedure statement
documentation

missing
passing network handles as the class

in RPCs
do-not-clear-text-for-edit-in-place

configuration clause
double data type in C and C++
double-buffering, support for
double-clicking ... implies configuration clause
double-quote character
Down arrow keystroke, in Text Editor
drawing

default task priority of
definition of
immediate mode
item layer position when
2224
paint mode
scheduled mode
superseded modes
XOR mode

drawing-parameters system table class
Drop to bottom menu choice

of items
of workspaces

duplicate
definitions
items
names

ignoring modules with
naming items

duration control
standard dialogs

G2 Version 8.1 Rev. 0
Dutch language, in language.kl
dynamic breakpoints
dynamic menus

standard GMS
dynamic-breakpoints hidden attribute,

procedures
dynamic-display-delay-in-milliseconds

attribute, of Debugging Parameters system
table

E
each generic reference quantifier

using in expressions
using in procedures

edit cell expression menu choice
edit cell format menu choice
Edit Icon menu choice
Edit Operations menu, of Text Editor
editing session

cancelling
ending

editing text
See Text Editor

editor
See Icon Editor
See Text Editor

editor-parameters system table class
elements

accessing by using expressions
computing values for
determining number of
inserting

at beginning or end of lists
at element location in lists
before or after elements

of lists and arrays
viewing by using Describe

element-type attribute, of lists and arrays
Empty activity

performing no action, using
Enable All Items menu choice
enable menu choice

of items
using

enabled/disabled status
of items
propagating

enable-KB-change-logging? attribute
of Saving Parameters system table
setting to yes in all modules

enabling
items

detecting through whenever rule
interactively
programmatically

KB change logging
workspaces

enabling menu choices
encapsulated PostScript files
encapsulation, of methods
End keystroke, in Text Editor
end procedure statement

in case statement
in collect data statement
in do in parallel statement
in for each ... do statement
in on error statement
in procedure body syntax
in repeat statement

end-time attribute, of trend charts
Enter Package Preparation Mode menu choice

Miscellany Menu
using

Enter Simulate Proprietary Mode menu choice
entering

Cyrillic characters
Korean characters
special characters
text, in Text Editor
Unicode character codes

environment variables
DISPLAY
FONTS
for memory allocation
G2RGN1LMT
G2RGN2LMT
G2RGN3LMT

G2_MODULE_MAP
G2_MODULE_SEARCH_PATH
G2_OK
G2V8_OK

memory allocation
UNIX
Windows

related to command-line options
EPS files
equations

See differential equations
error classes

See error handling
error handlers

See error handling
error handling

block error handlers
defining
example
signaling
term definition

concepts
default error handlers

creating
deregistering
example
obtaining
registering
shadowing
signaling
term definition

error classes
default-error
g2-error
g2-rpc-error
introduction
user-defined

error handlers
error objects

definition of
memory management
re-using

in a procedure
introduction to
mixing techniques
obtaining procedure source code error

location
on error statement
2225

outside a procedure
signaling errors

error messages
controlling display of
controlling, using warning-message-level

attribute
writing to a log file

error objects
See error handling

errors, compilation
escape characters, in Gensym character set
evaluated with these settings statement, of

freeform tables
evaluated-structure function
evaluation attributes

hidden attribute
may-refer-to-inactive-items
may-run-while-inactive
of items
using

evaluation settings
changing
debugging in freeform tables
event updating in freeform tables
freeform tables
requesting data seeking in freeform tables
scanning in freeform tables
scheduling for freeform tables

evaluation-attributes hidden attribute
event detection

comparing with scanning
detecting

connection event
directly connected to events
disconnection events

history keeping using
indirect references not supported
invoking rules using
summary for rules
using whenever rules

event updating
in freeform tables
lists and arrays
updating readout tables, dials, and meters

event-expression syntax term
every generic reference quantifier
examples

calling a G2 procedure from a G2GL
process

credit rating partner processes
introduction to
2226
exclude absolutely configuration clause
exclude additionally configuration clause
execute network access configuration clause
execute process menu choice
executing

G2GL processes
introduction to
manually
programmatically
simultaneously

statements
execution faults

breaking on
automatically
using Fault Handler

existence checks
expressions for

attributes
items

for deactivated workspaces
for disabled workspaces

Exit activity
terminating the process, using

exit if procedure statement
exiting G2
-exit-on-abort command-line option
exp function
expiration

determining by using validity-interval
attribute

of variable values
specifying for variables
time stamps

explanation facilities
enabling
example KB
specifying display interval for
statically displaying one-level chaining

explanation items
creating

explanation trees
understanding

explanations
deleting
displaying

explnfac.kb

exporting G2GL processes to XML documents
exporting Unicode text
export-text text processing function
expression attribute, of trend charts
expressions

conditional
connected to
containing-module of statement
directly connected to
disconnected from
display items with
evaluating
expiration time of

affecting the
determining

for attributes
for indexed attributes
for iterating over user-defined attributes
for notes

the item-notes of
the item-status of

for relation participation
for sequences
for structures
generic references in
has no value used with variable attributes
have no value used with change action
involving relations
items-in-this-relation
local names in
module-assignment of statement
no-value condition
operators

arithmetic
concatenation
fuzzy truth values
general
logical
relational

qualifying attributes in
reading
referring to attributes

by name
using symbolic

relations
event
logical
now syntax

the item-notes of statement
the item-status of statement
to attributes

containing instances
containing objects
given by variables or parameters
indirectly using symbols
referring to the parent attribute name
of a subobject

text attributes
to item existence

testing for no-value condition
using

to item knowledge
an instance of
item superior to object
location
relationships
rotation
size
superior to workspace
the class of
the name of
workspace activation
workspaces

to items
by association with event or location
by evaluation
by generic reference
by identity
by iterating over a set
by location upon a workspace
by name
by symbol
by variable or parameter

to superior or inferior classes
to symbol values
to time
to values

current value
first of following that has a value
has a value
value of

to variables
current value
expiration time
value of

to variables and parameters
collection time
giving the attribute value
history datapoints
simulated value
values

using class-qualified names in
using G2GL expression language
using in freeform tables

expression-to-display attribute, of graphs
2227

expression-to-display attribute, of readout
tables, dials, and meters

expt function
extent, of workspaces
external character sets, using
external images

See also graphics
including in icons

external line separators
external processes, connecting to foreign

images
external-line-separator attribute, of text-

conversion-style items
extra vertices in g2-get-connection-vertices

value, of backward-compatibility-features
attribute

extracting tokens from a string
extra-grid-lines attribute, of graphs
extra-grid-lines attribute, of trend charts

F
failed status, of G2-to-G2 interface
Fault Handler activity

handling faults
in processes that communicate
using

faults
automatically breaking on execution
handling

in processes that communicate
using Fault Handler

fgntest.c, foreign function sample C file
fgntest.kb

fgntest.tpl foreign function template file
file names, KB
filename-of-basis-kb attribute, of Saving

Parameters system table
file-name-of-image attribute

of image definitions
specifying

files
See attribute files
See authorization files
See font files
See graphics files
See header files
See initialization files
See KB files
See language files
See log files
2228
See module map files
See snapshot files

filtering classes, using Inspect
find-and-replace-pattern string-handling

function
find-next-pattern string-handling function
find-next-substring-matching-pattern string-

handling function
first-class attribute, of relations
flickering, reducing
float syntax term
float type
float-array class
float-expression syntax term
floating point numbers

displaying precision in attribute tables
precision

in class-specific attributes
in readout tables
in type-in boxes

representation of
using in foreign functions

floating Telewindows license
float-list class
float-parameter class
float-variable class
floor function
Flow Discriminator activity

merging concurrent threads, using
Flow Gate activity

synchronizing flows, using
Flow Signal activity

synchronizing flows, using
Flow Split activity

splitting flows, using
Flow Sync activity

synchronizing flows, using
Flow Terminator activity

merging concurrent threads, using
flow-related activities
flush change log menu choice
flush version information menu choice
focal classes and objects

filtering rules in Inspect by using
of rules

focal-classes attribute
associating rules with focal classes
of rules
used by focus action

focal-objects attribute
associating rules with focal objects

of rules
used for focus action

focus on action
invoking rules
using

general
with rules

focusing
invoking rules by
using focus action

font
changing

for free text
font-for-attribute-displays attribute, of Fonts

system table
font-for-attribute-tables attribute, of Fonts

system table
font-for-descriptions attribute, of Fonts system

table
font-for-editing attribute, of Fonts system table
font-for-free-text attribute

changing font size by using
of Fonts system table

font-for-statements attribute, of Fonts system
table

fonts
available sizes of
changing

for rules
for supported languages
locating files on command line
storing in a separate directory

-fonts command-line option
locating fonts by using
using

FONTS environment variable
fonts message property
fonts system table class
for ... each ... do in parallel procedure

statement, allowing other processing by
using

for every generic reference expression
for expression

using in action buttons
using in generic rules

for procedure statement
foreground metacolor
foreground-color color attribute

as part of workspace representation
changing using the color action
displaying for a workspace
of workspaces
foreign functions

calling
in a procedure
sample

controlling timeout for
conversion of data types and characters

using
creating declarations for
creating template files
declaring in KBs
disconnecting from foreign images
examples of
header files for

foreign.h

using
library files for
makefile for

makefile

using
Overlay utility for
reconnecting to
sample

C file
declaration
KB
template file

using
general
in statements

foreign images
connecting to

an external process
through an initialization file
using Connect to Foreign Image menu

choice
creating a sample
definition of
disconnecting from

an external process
using Disconnect from Foreign Image

menu choice
failing to receive values from
handling name collisions in
naming convention for executable
started as an external process
starting

as a separate process
from within G2
general

foreign.h header file
2229

for foreign functions
using

foreign-function-declaration class
foreign-function-declaration menu choice
foreign-function-timeout-interval attribute

of Timing Parameters system table
overriding

format-for-type-in-box attribute, of type-in
boxes

format-numeric-text function
format-of-image attribute, of image definitions
formats, bringing up to date when loading KB

file
formatted as statement, for attributes
formatting

attributes
class-specific
in charts and free-form tables

floating point numbers
in class-specific attributes
in readout tables
in type-in boxes

freeform tables
changing
introduction to

numeric values in expressions
text values

formula attribute, of variables
creating specific formulas by using
for creating specific formulas
using in formulas

formulas
See also generic formulas
creating

generic
specific

kinds of
run-state status of

forward chaining
caused by

action buttons
relation events
variables and parameters in rules

defining for rules and variables
definition of
feature of variables and parameters
in procedures
looping using
not caused by lists and arrays
obtaining variable values using
on unchanged variables and parameters
2230
setting option for variables and
parameters

summary table for rules
frame-style attribute

creating custom workspace borders by
using

of workspaces
frame-style-definition menu choice
free text

changing
color
font
font in system table

formatting class-specific attributes as
using

freeform tables
adding rows and columns to
changing

formatting
programmatically
the size of

debugging and tracing evaluation settings
of

evaluation settings of
expressions for cells of
formatting
scheduling evaluation settings of
using subsecond time in

freeform-table menu choice
free-text class
French language, in language.kl
full-color-picker control, custom Windows

dialogs
full-editor configuration clause
-fullscreen command-line option
function, great-circle-distance
function-definition class
function-definition menu choice
functions

arithmetic
bitwise
call
connection evaluator
for connections

connection-direction
connection-portname
connection-position
connection-side
connection-style
items-are-connected
items-are-connected-at-ports

items-are-connected-with-direction
for detecting connectedness
for sequences
for structures
foreign
format-numeric-text
limiting recursion in
quantity
rgb-symbol
run-state status of
sequence

change-element
concatenate
insert-after
insert-after-element
insert-at-beginning
insert-at-end
insert-before-element
portion
remove
sequence

string-handling
find-and-replace-pattern
find-next-pattern
find-next-substring-matching-pattern

structure
change-attribute
change-evaluated-attribute
evaluated-structure
remove-attribute
remove-evaluated-attribute
structure

symbol
system-defined
tabular
text conversion
text processing

character-codes-to-text
compare-text
export-text
import-text
is-digit
is-lowercase
is-readable-digit
is-readable-digit-in-radix
is-titlecase
is-uppercase
readable-symbol-text
readable-text
readable-text-for-value
text-to-character-codes
to-lowercase
to-titlecase
to-uppercase
transform-text-for-G2-4.0-comparison
transform-text-for-unicode-comparison

text-to-symbol
time
user-defined

fuzzy truth band
fuzzy truth threshold value
fuzzy truth values

operators for
producing
specifying the fuzzy truth band
using
using with logical operators

G
G2

authorization files
bridges

for networking and interfacing
installing as Windows service

character support
clock

defining for scheduler
definition of

command-line options
computational features
current KB
demos
determining if secure
developer? environment
exiting
icon in Windows taskbar
initialization files
installing as Windows service
interacting with
knowledge bases
licensing
localizing
logging in to
menus

Main Menu
Miscellany

naming conventions
Native Menu System (NMS)
navigating KB knowledge
network access for
2231

network I/O tracing messages
network information for
OK files
overview

actions
classes and class hierarchy
compilation
components

basic
extensible
graphical

computational capabilities
configurations
data service
deployment
developers? utilities
development environment
editors and facilities
error handling and debugging
explanation facilities
expressions
fonts
foreign functions
functions
G2 character support
G2 Gateway
G2 meters and memory management
G2 windows
G2-to-G2 interface
graphical language
icon editor
icons
images
inspect facility
item passing
Java interface
knowledge bases
knowledge representation
licensing and authorization
modules
natural language facilities
network security
networking and interfacing
overview of
package preparation
procedures, methods, and rules
profiling KBs
publish/subscribe
system procedures
system tables
2232
task scheduling
telewindows
text and XML parsing
text editor
textual items
user interfaces
utilities
workspaces

run state
effects on GMS and NMS menus

standard output messages
starting
superseded practices of
timekeeping
title bar
title block
window styles

G2 ActiveXLink
G2 Class Reference Manual
G2 Developer? Interface (GDI), G2 utility
G2 Dynamic Displays (GDD), G2 utility
G2 File Interface (GFI)

GFI data server
licensing with online license
superseded practice

G2 Foundation Resources (GFR)
G2 utility
handling errors with
managing error messages with
Message Board message management

with
module management with
Operator Logbook message management

with
warmbooting a snapshot of a KB with

G2 Gateway (GSI)
activating and deactivating interface

objects
creating

interface objects
interface variables

exchanging data
licensing with online license
memory increases due to multiple data

service requests
setting value of variables
using

as variable data server
message servers

G2 Graphical Language (G2GL)
invoking instantiation trigger operations

invoking remote Web service operations
G2 GUIDE/UIL

G2 utility
using

G2 Main Menu
See Main Menu

G2 Menu System (GMS)
classic

comparing with native GMS
displaying in Telewindows
effects of G2 run state in

demos
native

alternate menu bar example
dynamic menus example
effects of G2 run state in
localization example
menu icons
menus
popup menu example

G2 Menu System (GMS), G2 utility
G2 OnLine Documentation (GOLD), G2 utility
G2 ProTools, G2 utility
G2 simulator

See simulator
superseded practice

G2 Standard Interface
See G2 Gateway (GSI)

G2 utilities
G2 Developer? Interface (GDI)
G2 Dynamic Displays (GDD)
G2 Foundation Resources (GFR)
G2 GUIDE/UIL
G2 Menu System (GMS)
G2 OnLine Documentation (GOLD)
G2 ProTools
G2 XL Spreadsheet (GXL)

G2 windows
See telewindows
See windows

G2 XL Spreadsheet (GXL), G2 utility
G2_CERT environment variable
G2_DEFAULT_LANGUAGE environment variable

specifying
using

G2_MODULE_MAP environment variable
specifying
using

G2_MODULE_SEARCH_PATH environment variable
specifying
using
G2_NETWORK_TRACE_FILE environment variable
G2_OK environment variable
g2.init file

loading from command line
using to initialize G2

g2.ok file
g2-80r0-doc-examples.kb
g2-80r0-doc-examples-remote.kb

g2-add-trend-chart-component system
procedure

g2-array class
See also arrays

g2-array menu choice
g2-array-copy-elements-to-initial-values

system procedure
g2-array-sequence hidden attribute
g2-call-g2gl-process-as-procedure system

procedure
g2-clear-movement-limits system procedure
g2-clear-profile system procedure
g2-clone-and-transfer-items system procedure
g2com.kb

g2-compile-g2gl-process system procedure
g2-connection-status attribute, of g2-windows
g2-create-module system procedure
g2cuidev.kb

g2-delete-module system procedure
g2-delete-trend-chart-component system

procedure
g2-deregister-on-network system procedure
g2-disable-profiling system procedure
g2-enable-profiling system procedure
g2-error class
g2-export-g2gl-process-as-xml system

procedure
g2-export-g2gl-process-as-xml-text system

procedure
g2-files-in-directory system procedure
G2Gateway control
g2-get-all-g2gl-process-instances system

procedure
g2-get-attribute-descriptions-of-class system

procedure
example of using
getting attributes by using

g2-get-attributes-visible-in-mode system
procedure

g2-get-attribute-texts-of-item system procedure
g2-get-attribute-values-of-item system

procedure
g2-get-connection-vertices system procedure
2233

for obtaining list of vertices
getting connection vertices by using
using to revert to previous G2 behavior

g2-get-item-from-network-handle system
procedure

g2-get-items-in-area system procedure
g2-get-movement-limits system procedure
g2-get-network-handle-from-item system

procedure
g2-get-port-number-or-name system

procedure
g2-get-profiled-information system procedure
g2-get-text-of-trend-chart-component system

procedure
G2GL

terms and concepts
using within the BPMS module

G2GL activities
overriding default icons for

G2GL Parameters system table
attribute for BPEL-compliance
configuring

G2GL process instances
definition of
deleting
getting for a process
managing
overriding default icons for
pausing and resuming

G2GL processes
attributes for BPEL-compliance
calling as procedures

example
using G2 system procedure

compiling
creating
creating processes the communicate
debugging
deleting execution instances for
executing

by calling from a G2 procedure
manually
programmatically

exporting to XML documents
getting all process instances for
importing from XML documents
invocations of
managing process instances
overriding default icons for
process body
process instances
2234
returning values from
tracing

G2GL System Attributes menu choice
g2gl-activity-elbow-room
g2gl-credit-rating-example.kb
g2gl-credit-rating-example.kb file
g2gl-object-icon-substitutions
g2gl-parameters system table
g2gl-process-instance class
g2-import-g2gl-process-from-xml system

procedure
g2-import-g2gl-process-from-xml-text system

procedure
g2-indexed-attribute-item-list system

procedure
g2-kill-all-g2gl-process-instances system

procedure
g2-kill-g2gl-process-instance system

procedure
g2-launch-online-help procedure
g2-list class

See also lists
g2-list menu choice
g2-list-sequence hidden attribute
g2-merge-kb system procedure

merging KBs by using
merging modularized KBs by using

g2-merge-kb-ex system procedure
merging KBs by using
merging modularized KBs by using

g2-meter-data-service class
g2-meter-data-service-on? attribute, of Data

Server Parameters system table
g2-meters

clock tick length
comparing with display meters
creating
enabling and disabling
enabling g2 meter service
interpreting
maximum clock tick length
measuring memory by using
memory

available
meters
size
usage

percent run time
priority scheduler time lag
region memory

available

size
usage

simulator time lag
specifying

meter time lag
meter time lag in system table

time meters
turning on
types of

g2-move-items system procedure
g2-name-for-item system procedure
g2passwd program

specifying location of
using when changing passwords

-g2passwdexe command-line option
g2-refresh-image-definition system procedure
g2-register-on-network system procedure
g2-reroute-window system procedure

rerouting Telewindows by using
using

G2RGN1LMT environment variable
for UNIX
for Windows
using

G2RGN2LMT environment variable
for UNIX
for Windows
using

G2RGN3LMT environment variable
for UNIX
for Windows
using

g2-rpc-error class
g2-save-module system procedure

saving module hierarchy by using
saving modules by using

g2-set-movement-limits system procedure
g2-set-text-of-trend-chart-component system

procedure
g2-snapshot system procedure
g2-sort-array system procedure
g2-sort-list system procedure
g2-subdirectories-in-directory system

procedure
g2-system-command system procedure
g2-system-predicate system procedure
G2-to-G2 interface

connection status
creating data interface objects
memory increases due to multiple data

service requests
starting connection
using to exchange data
value passing

g2tog2.kb

g2-to-g2-data-interface class
g2-to-g2-data-service class
g2-to-g2-interface-name attribute

of data interface objects
of data interface variables

g2-transfer-items system procedure
g2uifile.kb

g2-ui-grid-view-delete-column
g2-ui-grid-view-insert-column
g2uimenu.kb
g2uiprnt.kb
g2uitree.kb

g2-user-mode attribute
specifying

in login dialog
on command line

g2-user-name attribute
of g2-windows
specifying

in login dialog
on command line

G2V8_OK environment variable
locating OK file by using
using

g2-variable class
See also variables

g2-warmboot-kb system procedure
g2-window class

See also g2-windows
g2-window-height attribute

of g2-window
specifying on the command line

g2-window-initial-window-configuration-string
attribute

of g2-window
rerouting telewindows by using
specifying on command line

g2-window-management-type attribute, of
g2-window

g2-window-mode-is-valid attribute
determining user mode by using
of g2-window

g2-window-operating-system-type attribute, of
g2-window

g2-window-remote-host-name attribute, of
g2-window

g2-window-reroute-problem-report attribute
of g2-window
2235

using
g2-windows

associating with
local windows
remote windows
telewindows

determining
connection status
connection time
local or remote status
login name
operating system login ID
operating system type
remote host name
user modes

expressions for
identifying by using the this window

expression
special properties of
window-specific languages for

g2-window-specific-language attribute
interaction with current-language attribute
of g2-windows
specifying

in login dialog
on command line

g2-window-time-of-last-connection attribute, of
g2-windows

g2-window-user-is-valid attribute
determining user name by using
of g2-window

g2-window-user-name-in-operating-system
attribute, of g2-window

g2-window-width attribute
of g2-window
specifying on the command line

g2-window-x-resolution attribute
of g2-window
specifying on the command line

g2-window-y-resolution attribute
of g2-window
specifying on the command line

g2-work-on-drawing system procedure
GDD

See G2 Dynamic Displays (GDD)
gdddemo.kb
gdddev.kb
gddlib.kb
gddroot.kb

GDI
See G2 Developer? Interface (GDI)
2236
general types
generic formulas

creating
font for
using for variables

generic reference expressions
definition of
generic reference qualifiers in
generic rules using
qualifiers
quantifiers
syntax of

generic rule invocations
displaying dynamically

generic rules
creating
focusing on
forms of
invocations of
local names in
scanning

suggestions for use
using

specifying class hierarchy for
generic simulation formulas

See simulator
generic-formula class
generic-formula menu choice
generic-reference-expression syntax term
generic-reference-qualifier syntax term
GENSYM background pattern, customizing
Gensym character set

definition of
effect of Unicode upon
encoding tab characters
translating from

Gensym Customer Support
contacting for

G2 aborts
memory management issues

Gensym Overlay utility
See Overlay utility

-geometry command-line option
German language, in language.kl
Get Workspace menu choice

Main Menu
showing a workspace by using

get-from-text function
getting

See obtaining
gfi-data-service class, superseded practice

gfi-input-interface, superseded practice
gfi-output-interface, superseded practice
GFR

See G2 Foundation Resources (GFR)
gfr.kb

GIF files
displaying color images using
supported graphics format

GMS
See G2 Menu System (GMS)

gms.kb
gmsdemo.kb
gms-multiple-menu-bar-demo.bk
gms-native-language-demo.bk
gms-native-large-menu-demo.bk
gms-native-popup-menu-demo.kb

go to Inspect command
go to procedure statement
go to referenced item menu choice
go to subworkspace menu choice

for determining if a subworkspace exists
to show a subworkspace
using

Go To Superior menu choice
to show a superior workspace

GOLD
See G2 Online Documentation (GOLD)

gold.kb
goldui.kb

grammar
for item passing
for remote procedure declarations

graphics
creating in icons
filling in icons
specifying maximum memory for
using images for workspace background

Graphics Interchange Format
See GIF files

graphs
attributes of
axis values of
background color of
changing the size and shape of
expression to display in
grid lines of

specifying visibility
using

label of
scrolling
tickmarks of

defining interval between
using
time span of

great-circle-distance function
greater than or equal to relational operator
greater than relational operator
grid-color attribute

of chart annotations
grid-lines-visible? attribute

of trend charts
grids, displaying on workspaces
grid-view control

standard dialogs
G2 Version 8.1 Rev. 0

grid-visible attribute
of chart annotations

Group button
in Icon Editor

group control, custom Windows dialogs
GService

examples of using
installing G2 and bridges as Windows

service, using
running

GSI
See G2 Gateway (GSI)

gsi_exam.kb

gsi.ok file
gsi-connection-configuration attribute, of GSI

interface objects
gsi-data-service class
gsi-interface class
gsi-interface menu choice
gsi-interface-name attribute

completing when creating objects
of GSI interface objects
of GSI message servers

gsi-message-service class
gsi-variable-status attribute, of GSI interface

objects
guicolor.kb
guidata.kb
guide.kb

GUIDE/UIL
See G2 GUIDE/UIL

guidelib.kb
guidemo.kb
guidesa.kb
guigfr.kb
guimove.kb
guislide.kb
guitools.kb

GXL
See G2 XL Spreadsheet (GXL)
2237

gxl.kb
gxldemo.kb

H
halt action
Han character styles

specifying
specifying on command line

Han unification mode
handles, menu
handles, obtaining for item passing
handling

alarm events
faults

in processes that communicate
using Fault Handler activity

message events
in processes that communicate
using Message Event Handler activity

handling errors
See error handling

Hangul
characters of
entering text using text inserters
using

has no value expression
hash tables

application programmer? interface
introduction to

hash tables, for indexed attributes
hash-table class

description of
example
hidden attributes

have no value expression
have-edit-option-buttons-for-type-in? attribute,

of type-in boxes
header files for foreign images

foreign.h
icp.h

height attribute
of chart annotations
of freeform tables

-height command-line option
height-for-pages attribute, of the Logbook

Parameters system table
height-of-image attribute

of image definitions
setting to determine icon size

help
2238
displaying
for default key bindings
using command-line option
using F1

setting for menu choices
Text Editor

keystroke commands
special characters

-help command-line option
heuristics, for backward chaining
hidden attributes

definition of
displaying tables of
evaluation attributes
of items

current-attribute-displays
identifying

of relations
hide action

hiding a workspace
using

hide attribute display menu choice
hide name menu choice
Hide Workspace menu choice
hiding

item name box
interactively
programmatically

Operator Logbook pages
workspaces

hierarchy
class

defining in bottom-up order
definition of
inheritance
suggestions for defining

inheritance in classes
module
showing for a class

for multiple inheritance
using Inspect

workspace
highlight Inspect command
Highlight Invoked Rules menu option
highlighting text
highlight-new-messages? attribute, of

Message Board system table
Hiragana Japanese language mode
history

expressions
collection time

datapoint values
example of computing averages
example of computing the rate of

change
example of integral
example of standard deviation
example of summing
example of the interpolated value
examples of minimum and maximum

values
expiration time
general
number of data points

keeping
changing specification for
event-based
interval-based
removing
specifying programmatically
using History-keeping-spec attribute

variables and parameters
using subsecond data points
using variables and parameters
with a maximum age of data points
with a maximum number of data

points
with a maximum number of data

points over a period of time
with a minimum interval between

data points
saving in snapshot file
storing and accessing

history hidden attribute of variable-or-
parameter class

history of variable-or-parameter grammar, in
RPCs, for item passing

history-collection-time attribute of history
hidden attribute

history-keeping-spec attribute
minimal interval between history data

points statement
of variables and parameters

history-value attribute of history hidden
attribute

Home keystroke, in Text Editor
host name

obtaining
interactively
using command-line option

hour function
HTML help
displaying in Telewindows
HTML views

creating
destroying
example callback
going to a Web page
using

hue value, for ordering color menus

I
-icon command-line option
Icon Editor

color indicator in
command buttons in
displaying
drawing buttons in
image indicator in
localizing buttons
magnifying icon view
parts of
region indicator in
saving changes in
specifying icons by using
stipple area indicator in
workspace of

icon-color color attribute
changing with the change action
identifying

icon-description attribute
of class definitions

completing to use an image in a KB
specifying
to access the Icon Editor
value as icon description

updating while running
icon-height superseded attribute
icons

adding
colors to
layers to
regions to

animating
changing width and height
introduction to
merging icon variable values
referencing icon variables
replacing icon variable text
replacing icon variable values
using icon variables
2239

background colors
changing
specifying

background images
background layers
changing

background colors
region icon color of
regions
the icon-color of
the region icon color of

color attributes of
controlling size and shape of
copying inherited descriptions of
creating

graphics for
groups in
hints for
using Icon-description attribute

defining in Icon Editor
displaying in menus

using GMS
heading
icon variables

animating icons using
defining
graphical positions of
image components of
merging values of
referencing
replacing text of
replacing values of
term definition
text components of

initializing in class definitions
layers
overriding

for G2GL objects
regions
rotating
specifying

background colors
background images
background layers
for object definitions
graphical positions using icon

variables
image components using icon

variables
locations with expressions
on command line
2240
text components using icon variables
superseded practices
text components
using images in

icon-width superseded attribute
icon-x-position superseded attribute
icon-y-position superseded attribute
ICP, included in all G2 licenses
icp.h, header file for foreign functions
icp-connection-specification attribute, of data

interface objects
identical definitions
identifier-of-basis-kb attribute, of Saving

Parameters system table
identifiers, universal unique
idle-time attribute, of system profile

information
IEEE standard for floating-point numbers
if rules

invoking by using forward chaining
using

if-then procedure statement
ignore-duplicate-list-element-error value, of

backward-compatibility-features attribute
image attribute, in Icon Editor

for including images in icons
for using images in a KB

image control, custom Windows dialogs
image.kb

image-palette attribute
of Color Parameters system table

effect on printed output
using

of Drawing Parameters system table
using

images
See also graphics
color
creating definitions of
including in icons
indicator in Icon Editor
saving with KBs
updating in KBs
workspace backgrounds

importing G2GL processes from XML
documents

importing Unicode text
import-text text processing function
in order phrase

of action buttons
of rules

example of specifying sequential
execution in consequent

executing action in parallel by using
in creating and managing rule

invocations
use in consequent

inactive status, of G2-to-G2 interface
include additionally configuration clause
include-in-menus attribute, updating while

running
including all required modules phrase, using
including all required modules statement, in

Save KB workspace
INCOMPLETE status
increment-per-meter-ruling attribute, of meters
indefinite interval, for variable validity
independent-for-all-compilations configuration

clause
changing an item to use
effect on compilation
effect on item
for items
using

index.dic file, specifying location on
command line

indexed attributes
accessing values of
expressions for use with
in items
specifying in a definition
use of hash tables for
using g2-indexed-attribute-item-list with

indicator-visible attribute, of chart annotations
indirect references, to attributes
indirectly connected, definition of
individual execution displays

configuring debugging for
definition of
deleting execution instances
displaying source for process instances
showing superimposed tracings

inference engine
system table parameters for
using as data server for variables

inference-engine-parameters system table
class

inferior classes, referencing in expressions
infinite loops, in procedures
infinity, positive and negative for exceptional

float values
inform action
debugging procedures by using
displaying messages
restricting remote access to
sending messages to GSI
using

inform network access configuration clause
inheritance

definition of
determining

class inheritance path
default attribute values
inherited attribute values
through class-inheritance-path

attribute
linearizing multiple inheritance
multiple
shadowing
single

inherited-attributes attribute, of definitions
-init command-line option
initial/reset run-state

definition of
effect on KB

initial-g2-user-mode-for-this-kb attribute
for determining certain login dialog values
of KB Configuration system table

initial-height-of-message-board attribute, of
Message Board system table

initializable-system-attributes attribute, of class
definitions

initialization files
connecting to a foreign image by using
G2
loading from command line

initializing
arrays
G2

from command line
using initialization file
using initialization string

icon descriptions
initially rules

invoking
after warmbooting
by activating the workspace of a rule
by scanning
by using the activate action

using
initial-margin-for-workspaces attribute, of

Miscellaneous Parameters system table
initial-scan-wait-interval attribute
2241

of freeform tables
using subsecond time

initial-value attribute, of variables and
parameters

initial-values attribute, of lists and arrays
initial-width-of-message-board attribute, of

Message Board system table
-init-string command-line option
inlineable configuration clause

declaring for profiling
definition of
use in profiling

inlined-calls hidden attribute of procedures
inlining

declaring
methods to be
procedures to be

methods
declaring configuration for
general
recompiling after
restrictions

procedures
declaring configuration for
general
recompiling after
restrictions

insert action
backward compatibility feature of
inserting list elements

at beginning or end
based on location
before or after existing elements

populating lists by using
using

insert-after function
insert-after-element function
insert-at-beginning function
insert-at-end function
insert-before-element function
inserting

list elements
at beginning or end
at element location
before or after elements

insert-in-text function
Inspect facility

checking for consistent modularization
modules
syntax

describing items
2242
displaying
item tables, on Inspect workspace
item tables, syntax for
module hierarchy

filtering classes of items
highlighting text
locating

items
items directly
workspaces

recompiling items
replacing text in items
showing

class hierarchy
items on a workspace
method definition hierarchies
module hierarchy
procedure caller hierarchy
procedure calling hierarchy
the procedure invocation hierarchy
unsaved permanent changes
workspace hierarchy

transferring items
using
version control
workspace of
writing to a file

class hierarchy
items

Inspect menu choice
install its system tables statement
installing G2 and bridges as Windows service
instance configurations

definition of
effect on definition items
scope of, example

instance creation, monitoring
instance-configuration attribute

declaring configurations using
how G2 stores
of definition classes

instance-creation-count-as-float meter
description of
monitoring instance creation count by

using
instances

changing attributes to default value
creating

interactively
programmatically

definition of

saving in modularized KBs
updating attribute displays of

instantiability
controlling for classes
specifying

manual
programmatic

instantiate attribute, updating while running
instantiation attributes, definition of
instantiation triggers, definition of
instantiation, definition of
integer syntax term
integer type
integer-expression syntax term
integer-list class
integer-parameter class
integers, maximum internal size for foreign

functions
integer-variable class
integral, computing for variables and

parameters
Intelligent Communications Protocol

See ICP
intensity value, for ordering color menus
interactively, working with items
interface-mode attribute, of Timing Parameters

system table
interface-status attribute, of data interface

objects
obtaining

interface-timeout-period attribute, of data
interface objects

internal tasks, scheduling
international characters

See also character sets and individual
languages

support for in cut and paste operations
Internet Explorer, embedding in Telewindows
interpolated values, computing for variables

and parameters
interval format

for class-specific attributes
for representing time as a string

interval-based history keeping
interval-between-horizontal-grid-lines attribute,

of graphs
inverse relations

defining
definition of

inverse-of-relation attribute
invocable via backward chaining option, of
rules

invocable via forward chaining option, of rules
invocation, of G2GL processes
invocations

of procedures
of rules

invoke action
Invoke activity

invoking operations
that send and receive messages
that send messages

invoking
remote procedures
rules by category

feature
syntax for
using

is less true than fuzzy truth operator
is more true than fuzzy truth operator
is not less true than fuzzy truth operator
is not more true than fuzzy truth operator
is not relational operator
is relational operator
is-contained-in-text function
is-digit text processing function
is-lowercase text processing function
ISO 8859-5 character set, included in Gensym

character set
is-readable-digit text processing function
is-readable-digit-in-radix text processing

function
is-titlecase text processing function
is-uppercase text processing function
Italian language, in language.kl
item class

attributes of
inheriting from

item configurations
definition of
propagating
scope of, example
setting for entire KB

item layer position
definition of
effect of drawing mode upon
upon same workspace

item layering
definition of
upon a workspace

item passing
2243

accumulation of transient items during
aligning attributes for
as a handle only
configuring KBs for
configuring the KB for passing as a

network handle
considerations for
creating compatible definitions for
example of obtaining network handle for
excluding user-defined attributes
handles

example of
with other arguments

including
system-defined attributes
user- and system-defined attributes
user-defined attributes

including and excluding attributes
introduction
items

copy of
with attributes
with attributes and a handle

specifying remaining arguments in RPCs
system procedures for
using G2 Gateway
using the all remaining grammar in RPCs
using the as handle grammar in RPCs
using the current value of variable-or-

parameter grammar in RPCs
using the history of variable-or-parameter

grammar in RPCs
using the name of item grammar in RPCs
using the with handle grammar in RPCs
variables and parameters

as a copy
as a handle
as a value
introduction to

ways of passing
item rendezvous

passing network handles referring to items
network interfaces

passing UUIDs referring to items
network interfaces

item syntax term
item-array class
item-configuration attribute

declaring configurations by using
how G2 stores
inheriting
2244
of definition classes
of items
of KB Configuration system table

defaults for
used in applicable configurations

item-list class
item-location syntax term
item-name syntax term
item-notes attribute

of notes
referencing

item-or-value syntax term
item-or-value type
itempass.kb

items
actions for
adding and removing attribute displays of
aligning
aligning on a grid
attribute displays of
attribute tables

using
using menus in

attributes
transferring items to and from
transferring to workspace

attributes of
color
evaluation
formatting
general
indexed
system-defined
user-defined

authors attribute
changing

color
color attribute of
color, using change action
color-pattern of
name
size
text alignment

classes and
cloning

groups of
groups programmatically
interactively
programmatically
programmatically, using create by

cloning action

using the mouse
commenting
common menu choices for
configuring

network access
properties
proprietary items
user interface
user interface of proprietary

constraining movement of
creating

interactively
programmatically

declaring
activatable subworkspaces
as stable-hierarchy, for profiling
configurations
independent for all compilations
stable for dependent compilations
stable for dependent compilations, for

profiling
stable-hierarchy for

deleting
general
groups of
interactively
permanent
using DELETE key

describing
configuration
font for
general

detecting
activation and deactivation
creation of
enabling and disabling

determining permanent/transient status
using g2-system-predicate system

procedure
disabling

interactively
programmatically

disallowing manual connections
displaying

attribute table for, interactively
popup menu, interactively
popup menu, using the mouse
subtables
tables
tables, using Inspect
displaying attribute tables for, using the
mouse

distributing
drawing parameters for
duplicate
enabling

interactively
programmatically

go to by using Inspect
hidden attribute tables of
hidden attributes

identifying
logical components

hiding name box of
icon region of
inheriting from item class
knowledge in

introduction
permanent

layer position
determining
dropping to bottom
lifting to top
of connections

location upon a workspace
logging changes for definitional items
logical components of
making

permanent
transient

memory increases due to accumulation of
module assignments

displaying
obtaining

modules and
moving

connected
using arrow keys
using the mouse

naming
obtaining

groups of, programmatically
module information for
network handles for

overview of
participation status of
passing between G2s

attributes with object values
through G2-to-G2 interface
using G2-to-G2 interface
using GSI
2245

passing copies through G2-to-G2 interface
position of
referencing

associated workspaces
icon heading
in expressions
instances of
location
names of
size
subworkspaces of
superior to objects
superior to workspace
syntax for classes of
using the class of expression

referring to relationships of
relating
replacing text
representation

definition of
logical component

representation style
resizing
rotating and reflecting
saving in modularized KBs
selecting

all
mouse gestures for

sets of
averaging
counting
iterating over
operations over

showing
on a workspace
unsaved attributes

size of
status of

active/inactive
enabled/disabled
introduction
logical component of
permanent/transient

stubs, removing or retaining when
deleting

subtables of
creating
deleting
displaying

superior/subordinate relationships of
syntax terms for
2246
in expressions
literal symbols of
referencing attributes of

table attributes of
testing for existence of
text attributes of
text stripping
transferring

groups of
groups of, programmatically
to a workspace
to the mouse
to workspaces

transient
accumulation during item passing
limitations to making

updating
user menu choices of
using in COM applications
working with

interactively
programmatically

writing to a file
items, concluding values for G2
items-are-connected connection function
items-are-connected-at-ports connection

function
items-are-connected-with-direction connection

function
items-in-this-relation hidden attribute, of

relations
item-status attribute

of items
of notes attribute
referencing

iterating
over lists and arrays
over user-defined attributes

iteration

J
Japanese Industrial Standard (JIS) codes

entering
X 0208-1990 character set

Japanese language
accessing menus in
changing current language to
encoding characters in
entering text

entering text in Kanji
specifying dictionary files for
specifying Han character styles for
using
Windows character-input methods

japanese.kb
japanese.kl

japanese.kl language file
merging
using

Java, interfacing with
jiscodes.kl

dictionary file
jiscodes.kl file

merging
JPEG file
jump-scroll? attribute

of trend charts
jump-scroll-interval attribute

of trend charts
junction blocks

creating
general
subclasses of

defining for connections
using

junction-block attribute
of connection definitions
updating while running

K
Kanji Front-End Processor (KFEP)
Kanji Japanese language mode

description of
entering text in

Katakana Japanese language mode
KB change logging

contents of
enabling
enabling in all modules
flushing version information
removing information from KB
tracking KB versions
using
using to revert changes
viewing an item

-kb command-line option
KB Configuration system table

for configuration network security
for setting network access
KB files
See also KBs and snapshot files
backup copies of
file names for
loading

See also Load KB workspace
from command line
introduction to
Load KB workspace
modularized
options
results of
using module map file
using module search path
using wildcards

merging
introduction
options
results of
system tables

saving
inconsistently modularized
knowledge in
modularized
modules in
modules in separate
parameters for
programmatically
snapshot file
unmodularized
while running
workspace state

searching for
KB snapshot files

See snapshot files
KB Workspace menu
KB workspaces

See workspaces
kb-configuration system table class
kb-file-comments attribute, of Saving

Parameters system table
KBs

See also KB files and modularized KBs
change logging in
comments in
configuring

for G2-to-G2 interface
for remote data service
for value passing
with data interface objects

conflicts while loading
2247

contents
initial
items and system tables

current
clearing
independent views of
operating
pausing
resetting
restarting
resuming
saving
starting interactively
starting on command line
using menus to operate

declaring foreign functions in
default task priority for saving
distributing proprietary
effect of changing current language
effect of saving

on lists and arrays
when changing definition attributes

foreign function sample
license types required to run
logging changes
memory management for
modularized
organizing knowledge

by class
by module
by workspace
how to

preparing for distribution
printing

color printers
printer setup

providing network security for
resetting programmatically
restricting access across networks
run state of
run states of
setting

current language of
user mode of

starting automatically after loading
supporting multiple languages in
system table for
testing in proprietary mode
tracking versions of
using with source code control systems
version numbers of
2248
kbtools.kb

kb-version-information-for-change-logging
attribute

of Saving Parameters system table
tracking KB versions by using

kb-workspace class
See also workspaces

keep history statement, history-keeping-spec
attribute

keep-sorted attribute, of tabular functions
key bindings

for scrolling workspace views
general

keyboard layout
for Cyrillic characters

keyboard-command-restrictions attribute
of KB Configuration system table

keyboard-command-restrictions attribute, for
global configurable keyboard commands

keys, menu choice
keystroke commands

configuring global
for controlling the editing session
for cursor movement
for cut, copy, paste
for deleting text
for displaying help
for inserting language prompts
for inserting tabs and line breaks
for selecting text
in Text Editor
restricting global
using cut-copy-paste outside of Text

Editor
KFEP

See Kanji Front-End Processor
-kfepindex command-line option
-kfepkojin command-line option
-kfepmain command-line option
KB knowledge

See knowledge
knowledge

cloning
of items

comparing permanent and current
current
location of workspace within a

window
location upon workspace
not stored in attributes
permanent

knowledge bases
See KBs

kojin.dic file, specifying location on
command line

Korean language
accessing Korean menus
changing current language to
encoding characters
entering text
specifying Han character styles for
using
Windows character-input methods

korean.kl language file
KB file
merging

KS C 5601 character set. included in Gensym
character set

kscodes.kl file
KB file
merging

L
L/R Center option, of Operate on Area menu

choice
label attribute, of user menu choices
label control, custom Windows dialogs
label-alignment attribute, of trend charts
label-frequency attribute, of trend charts

for time axis
for value axis

labels, menu choice
label-to-display attribute, of graphs
language

See also languages and language
translation definitions

effect of changing
localization facilities
setting current

for current window
in system tables
on command line

setting default
for G2 session
on command line

supporting multiple languages
using Japanese
using Korean
using Russian

-language command-line option
setting current language by using
setting language for G2 window by using
using

language translation definitions
See also language and languages
creating
for menus
grammar for
selecting language
setting for g2-windows
specifying a context for
using for localization

language, for language translation definitions
language.kb

language.kl language file
KB file
merging

language-parameters system table class
languages

See also language and language translation
definitions

Chinese
Dutch
European
French
German
Italian
Japanese
Korean
Russian
Spanish
Swedish
Thai

language-translation menu choice
last-recorded-value attribute, of variables and

parameters
layer position, of items

choosing interactively
described

layers
adding to icons
in Icon Editor
of icons

Leave Package Preparation Mode menu
choice

after making proprietary workspaces
after text stripping items

Leave Simulate Proprietary Mode menu choice
Left arrow keystroke, in Text Editor
Left option, of Operate on Area menu choice
legend-color attribute, of trend charts
2249

legend-visible? attribute, of trend charts
length-of-text function
less than or equal to relational operator
less than relational operator
let statement, of generic formulas
lexemes, definition of
libforgn.lib library file
library files
licenses

offline
online
simulating
Telewindows

floating
named user
structure of

types
development
options for
restricted-use

licensing
finding license type and options
G2
licensing types
options for
simulating

different types
optional modules

Telewindows
Lift to Top menu choice

of items
of workspaces

lift-logbook-to-top-when-new-pages-are-
added? attribute, of Logbook Parameters
system table

line charts
line separators
linearization algorithm, of class inheritance
line-color attribute, of chart annotations
line-color is attribute, formatting attribute of

charts
line-from-last-first-point-visible attribute, of

chart annotations
lines, drawing in icons
list elements

See elements
listbar

displaying arbitrary views in
using in shortcut bars

list-box control, custom Windows dialogs
list-is-permanent attribute, of lists
2250
lists
See also g2-list class
attribute initializations for
attributes containing

accessing
defining

changing elements of
classes of
comparing with arrays
copying
creating

interactively
subclasses of

describing
effect on elements when changing

definition attributes
elements of

accessing by index
changing attributes containing
computing values for
describing
determining number
duplicate
inserting
inserting at beginning or end
inserting at element location
inserting before or after elements
introduction
iterating over
iterating over by position
iterating over by type
referencing in attributes containing
removing
removing a specific
removing using remove action
replacing
testing for membership
using insert action for inserting

expressions using
ignoring duplicate entries in
iterating over

by position
by type
for particular items
using procedures

permanent
maintaining
restoring
saving

resetting KB, effects on
run-state status of

effects on
summary

saving and reloading permanent lists
saving in snapshot files
system procedures for
using for chart data series

literal terms
for literal values of a particular type
other
using to represent values

ln function
load attribute file initialization command
Load Attribute File menu choice

Miscellany Menu
superseded practice

load KB initialization command
Load KB menu choice

loading KB files by using
Main Menu

Load KB workspace
loading KB files

general
results of

merging KB files
general
results of
system tables

options on
using

general
wildcards

loading
KB files

interactively
programmatically

versions of modules
local emulator, in G2 data interface object
local names

assigning values in procedures
in expressions
in generic rules
in procedures
in specific rules
not using for disconnected connection

events
use of values for

local variables
See local names

local variables, creating
local window
localization
demo
example
using language translation definitions for
using natural language facilities

localizing
G2 facilities
Icon Editor buttons
login dialog

condition messages
dialog attributes
dialog buttons
dialog messages
general
simple messages

menu choices and G2 facilities
password change dialog

dialog attributes
dialog buttons
dialog messages
general
simple messages

Text Editor buttons
local-name syntax term
-local-window command-line option
locating

items
module map file
substring index using a pattern
substring using a pattern
tokens in a string

locking mechanism for objects
-log command-line option
log files

See also KB change logging
parameters for
specifying location by using -log

command-line option
log function
logbook

See Operator Logbook
logbook-parameters system table class
log-file-enabled? attribute, of Log File

Parameters system table
log-file-parameters system table class
logging

changes in KBs
login activities
out of Telewindows

logging login activities
logical components, of items

hidden attributes
2251

position
representation
size
status
table attributes

logical expressions
See truth-value expressions

logical operators
affects on expiration time of variables
precedence of
using
with fuzzy truth values

logical-parameter class
logical-variable class
login dialog

default language
specifying on command line

default values in
G2 window name or class

specifying interactively
specifying on command line

localizing
attributes of
buttons
condition messages of
elements of
message
simple message of

logging login activities
login handlers

registering
writing

password
changing from within G2
specifying in G2 OK file
specifying interactively
specifying on command line

setting current language in
user mode

specifying interactively
specifying on command line

user name
specifying in G2 OK file
specifying interactively
specifying on command line

using
window-specific language

specifying interactively
specifying on command line

login handlers
registering
2252
writing
log-inform-messages? attribute, of Logbook

Parameters system table
long datatype in C and C++
Long Menus menu choice

Miscellany Menu
long menus, using
looping, default task priority of
lower-case-text function
low-value-for-dial-rule attribute, of dials
low-value-for-meter-ruling attribute, of meters

M
magnification

of window
specifying window x and y axes

-magnification command-line option
specifying for g2-window
using

Main Menu
choices in
configuring menu choices in
restricting available choices in
restricting help menu choice in

main.dic file, specifying location on command
line

main-menu-user-restrictions attribute
configuring Main Menu using
of KB Configuration system table
restricting Help

maintaining permanent
arrays
lists

make kb-workspace the subworkspace of action
make permanent action
make transient action
Make Workspaces Proprietary Now menu

choice
makefile

for foreign functions
completing global variables for

makefile foreign functions make file
makefile, for foreign functions

running
making

permanent items transient
transient items permanent

limitations to
using make permanent action

manual-connections configuration clause
disallowing
for items

-manually-resolving-conflicts command-
line option

many-to-many relation type
many-to-one relation type
margin-for-pages attribute, of Logbook

Parameters system table
margins, workspaces
Mark Not To Strip Text menu choice
Mark to Strip Text menu choice
marker-frequency attribute, of trend charts
markers

page index on workspace printout
trend charts

marker-style attribute, of trend charts
markers-visible? attribute, of trend charts
masked-edit control, custom Windows dialogs
max function
maximum, computing for variables and

parameters
maximum-number-of-entries attribute, of

Message Board system table
maximum-number-of-names-in-menus

attribute
using

maximum-number-of-names-in-menus
attribute, of Editor Parameters system table

maximum-number-of-pages-to-keep-in-
memory attribute, of Logbook Parameters
system table

maximum-number-of-pages-to-show attribute,
of Logbook Parameters system table

maximum-number-of-scraps-to-keep attribute
of Editor Parameters system table
using

maximum-number-of-undos-to-remember
attribute

of Editor Parameters system table
using

maximum-value attribute, of sliders
may cause data seeking option, of rules
may cause forward chaining option, of rules
may-refer-to-inactive-items subattribute, of

evaluation attributes
may-request-data-seeking evaluation setting,

of freeform tables
may-request-data-seeking? attribute, of trend

charts
may-request-event-updates evaluation
attribute, of freeform tables

may-request-event-updates? attribute, of
trend charts

may-run-while-inactive subattribute, of
evaluation attributes

MDI, tabbed mode
membership

testing for, in lists
testing for, in sequences

memory management
allocation tables
data memory requirements

region 3
regions 1 and 2

for backing-store facility on X-Servers
measuring

maximum memory allocation
memory requirements

memory regions
of error objects
overview of
paging
RAM requirements
specifying memory allocation

command-line options
UNIX environment variables
Windows environment variables

system requirements
unbounded memory requirements

causes of
correcting

virtual memory
memory meters

interpreting
measuring memory by using
memory

available
size
usage

region memory
available
size
usage

memory pools, setting limits
using -rgn1lmt command-line option
using -rgn2lmt command-line option
using -rgn3lmt command-line option

memory regions
menu bars

creating
2253

native GMS
using NMS API
using NMS API, example

menu choices
checking and unchecking
configuring

general
using mouse clicks

creating
native GMS
using NMS API
using NMS API, example

enabling and disabling
executing, using the mouse

menu icons
standard GMS

menu-parameters system table class
menus

common choices for items
controlling color order in
creating

localized GMS
native GMS
using NMS API
using NMS API, example
using NMS API, overview

dismissing for items
dismissing, using the mouse
displaying classic GMS
displaying for items
editing title bar text of
for affecting developer? environment
for operating on items
item
navigating, using arrow keys
selecting long or short
system table for
walking

menus-for-edit-in-place configuration clause
merge in this KB

load KB option
merging interactively

merge in this KB and install its system tables
load KB option
using

merge KB initialization command
Merge KB menu choice

Main Menu
merging KB files by using
merging modularized KBs by using

merge option, change attribute
2254
merging
icon variable values
japanese.kl language file
jiscodes.kl file
korean.kl language file
kscodes.kl file
language.kl language file
modules

interactively
programmatically
without installing system tables

superseded class definitions
Message Board

displaying messages on
memory increases due to accumulating

messages
message handlers

deregistering
obtaining
registering
shadowing

using inform action with
working with
workspace of

message browser
message definitions

creating
specifying properties of
updating default properties of
using

Message Event Handler activity
handling message events

in processes that communicate
using

message events
handling

in processes that communicate
using Message Event Handler activity

message menu choice
message transmissions, definition of
message-board-parameters system table class
messages

See also message definitions, Message
Board, and Operator Logbook

assigning variables to message parts
attributes of
choosing between multiple

using Pick activity
classes of
color attributes of
creating

default task priority of
definition of
definitions
deleting
displaying trace
localizing in login dialog
localizing in password change dialog
message transmissions
parameters for log files
properties of
receiving
run-state status of
sending

to a bridge process
to objects

specifying debugging traces
writing to a log file

metacolors, definition of
meter-lag-time attribute

of Timing Parameters system table
setting

meters
See also g2-meters
class-specific attributes of
common attributes of
using

method class
method declarations

binding to methods
creating

method menu choice
method synchronization
method-declaration class
method-declaration menu choice
methods

attributes of
binding

to its class
to method declarations

call next method
calling from G2GL processes
class hierarchy, designing for
class-specific
comparing with procedures
declaring

stable-for-dependent-compilations
stable-hierarchy
to be inlineable
to be inlineable, for profiling

defining
general
introduction to
definition of
describing
duplicate

general
introduction to

encapsulation
example of
inheritance of
inherited

definition of
example of

inlineable
declaring
declaring configuration for
recompiling
testing for

invoking
directly
generically
superior
using start or call

method declarations
multiple inheritance
polymorphism
qualified

attribute for
syntax for specifying

showing definitions by using Inspect
mill.kb

min function
minimal interval between history data points

statement, history-keeping-spec attribute
minimum interval between data points

statement
minimum values, computing for variables and

parameters
minimum-display-interval attribute, of the

Message Board Parameters system table
minimum-height message property
minimum-scheduling-interval attribute

in reference to the current time expression
of Timing Parameters system table
scheduling tasks by using
used for scheduler
using with Scan-interval

minimum-value attribute, of sliders
minimum-width message property
minimum-width-for-edit-box attribute

of Editor Parameters system table
setting
2255

mini-tracing-step-size
minute function
miscellaneous internal tasks, scheduling
miscellaneous-parameters system table class
Miscellany Menu

configuring selection of
Miscellany menu

choices on
Miscellany menu choice

choices on
Main Menu

mixin classes
specifying superior class using
using for G2-to-G2 data service
variable subclasses

modes, scheduler
modularization

checking for consistent
saving inconsistently modularized KBs

modularized KBs
configuring items in
definition of
detecting conflicts when loading
ignoring duplicate names when merging
installing system tables of
loading

general
particular versions

merging
general
particular versions

system tables of
using configurations in

module hierarchy
creating
displaying using Inspect
example of
requirements for creating
using Inspect to display

module map file
adding entries to
loading KBs by using
locating
specifying location by using -module-map

command-line option
module search path

loading KB files by using
specifying by using -module-search-path

command-line option
specifying in Server Parameters
2256
specifying on the Server Parameters
system table

module-assignment attribute, for associating
items with a module

module-assignment attribute, of workspaces
module-assignment of statement
module-file-name attribute

of Module Information system table
module-information system table class
-module-map command-line option
module-name syntax term
modules

See also modularized KBs
associating

items with
with top-level workspace

programmatically
workspaces with

checking for consistent modularization
reasons for
using Inspect

creating
hierarchies
interactively
new
programmatically
top-level
using Create New Module menu

choice
cyclic dependencies in
deleting

interactively
programmatically
using Delete Module menu choice

describing
for displaying the module assignment

of items
for performing operations on modules

directly required
declaring
loading
merging
module hierarchy
saving

displaying
assignment of items, interactively
assignment of items,

programmatically
hierarchy

filtering items in Inspect based on
installed system tables for

items and
license information of
load status of
loading versions of
merging

interactively
programmatically
without installing system tables

modularized KBs
module map file

adding entries to
using

module search paths
naming conventions for
naming top-level
obtaining information about
organizing KB knowledge by
saving

directly required
filenames
in a single file
in separate files
inconsistently modularized
individual modules
interactively
module hierarchy
programmatically

simulating optional
system table for
system tables associated with new
system tables for
top-level
tracking changes made to
understanding
using

-module-search-path command-line option
modulo

See remainder
monitors, color
monochrome palette
month function
mouse clicks

configuring
mouse tracking

mouse clicks, configuring
general
mouse down with a menu choice

mouse cursor, controlling
mouse gestures

changes from earlier G2 versions
configuring
mouse click with an operation
mouse double-click with an operation
mouse down with an operation
mouse up with a menu choice
mouse up with an operation
mouse wheel events with an operation

for interacting with
selections
workspaces

for interacting with selections
for selection

mouse pointer, transferring an item to
mouse wheel

configuring mouse down with a menu
choice

moving workspaces by using
mouse-cursor attribute, of g2-window
mouse-tracking procedures

in configurations
move action
move attribute option, change attribute
Move option, of Operate on Area menu choice
move the connection option

change attribute
move-connection configuration clause
move-object configuration clause
move-objects-beyond-workspace-margin

configuration clause
move-workspace configuration clause
move-workspaces-beyond-window-margin

configuration clause
moving

connected items
items

using arrow keys
using the mouse

selections
using arrow keys
using the mouse

workspaces
using arrow keys
using keystroke commands
using the mouse

multiple inheritance
class hierarchy
creating classes using
default attribute values
duplicate attributes
explained
illegal patterns of
linearization of
2257

methods
qualified attributes
showing class hierarchy
using G2 data interface objects

N
name box, of items

definition of
editing item name
hiding
hiding programmatically
opening menu of
showing programmatically

-name command-line option
name conflicts

attribute declarations
handling in foreign images
unresolvable

name menu choice
name of item grammar, in RPCs, for item

passing
name-box attribute, structure of
name-in-foreign-image attribute, of foreign

function declarations
name-in-remote-system attribute, of remote

procedure declarations
name-of-window-for-g2gl-execution-displays
names

class-qualified
duplicate

names attribute
changing
classes without
inheriting
of connection posts
of image definitions
of items
referencing in expressions

naming
items
top-level module

interactively
programmatically

naming conventions
establishing
for modules

NaN value
Native Menu System (NMS)

comparison between menu types
2258
effects of G2 run state on menus
introduction

Native Menu System (NMS) API
callbacks

creating
example

demo
examples
features, additional
menu bars

creating
example

menu choices
creating
example

menus
creating
example
example hierarchies

overview
popup menus

creating
example

using
native Windows menus

natural language facilities
See also language and languages
European languages
fonts
for localization
Japanese language
Korean language
language translations
multiple languages
Russian language
setting current language
using
using in applications

natural language prompts
controlling

grammar prompts that appear
number of classes of

entering in Text Editor
inserting using keystroke

Neatly Stack Windows menu choice
cascading workspace by using
Miscellany Menu

-netinfo command-line option
-network command-line option
network handles

definition of

example of obtaining, for item passing
introduction
obtaining

for item passing
using a system procedure

passing in RPCs
network interfaces

passing, with other arguments in RPCs
system procedures for

network I/O tracing messages
Network Info menu choice

getting host name and port by using
Miscellany Menu

network security
allowing/prohibiting connect access
configuring access to G2 for
determining level of
G2-to-G2 interface
setting up network access
using levels of

networking tasks
default priority of
scheduling

network-interface menu choice
networks

displaying information about host
obtaining host and port

interactively
on command line
programmatically

registering items for use with
specifying protocol for
types for different operating systems

never start afterwards
load KB option
overriding system table setting

-never-start command-line option
New Button menu choice
New Definition menu choice

creating
class definitions by using
connection definitions by using
message definitions by using
object definitions by using

New Display menu choice
New Free Text menu choice
New Object menu choice
New Rule menu choice
New Title Block menu choice

Miscellany Menu
New Workspace menu choice
Main Menu
New Workspace menu choice

creating workspaces by using
newline character, in the Gensym character set
nms-demo.kb

-no-backing-store command-line option
nocmd.init file
nocmd.kb file
nocmd.ok file
-no-log command-line option
nonextensible classes, definition of
non-menu choices
normalized scale, of workspaces
not logical operator
not manual-connections configuration

statement
notes attribute

determining status by using
filtering items containing, in Inspect
inheriting
of items
referring to item-notes information of
referring to Item-status information of
referring to item-status information of

-no-tray command-line option
Version 8.1 Rev. 0

N-Out-Of-M Flow Join activity
merging concurrent threads, using

no-value condition
-no-window command-line option
number-of-columns-for-1st-level-color-menu

attribute, of Color Parameters system table
number-of-columns-for-2nd-level-color-menu

attribute, of Color Parameters system table
number-of-pages-to-shed-at-limit attribute, of

Logbook Parameters system table
number-of-significant-digits attribute, of chart

annotations
number-of-spaces-to-insert-on-a-tab attribute,

of Editor Parameters system table
number-of-tickmarks attribute, of chart

annotations

O
object definitions

attributes displays in
creating
creating icons for
external images in
icon descriptions
2259

stubs
adding
changing
deleting
specifying

transient
using

object passing, using G2 Gateway
object-name-menus-in-upper-case?, of Editor

Parameters system table
objects

See also items
attribute displays in definitions of
attributes containing

referencing
specifying
subtables of

connecting
definitions of
error

See error handling
icons of
passing between G2s
referencing transferred
stubs of
superior items, referencing
transferring to and from attributes

objpass.kb

obsolete features
backward compatibility for
sensors

obtaining
attribute texts
attribute values
attributes visible in a user mode
default error handlers
groups of items programmatically
information about modules
message board message handlers
module version information
Operator Logbook message handlers
readable symbol from text
readable text

offline licenses
offsets, specifying for G2 window
off-value attribute, of check boxes
-ok command-line option

locating OK file by using
using

OK files
See authorization files
2260
OK status
OLE drag and drop, superseded facility
omit-from-text function
on error procedure statement

See also error handling
description of
syntax for

one-to-many relation type
one-to-one relation type
online licenses
on-value attribute

of check boxes
of radio buttons

operands
of expressions
of methods

Operate on Area menu choice
operating on a workspace area

interactively
programmatically

operations
invoking to send messages

Operator Logbook
hiding and showing logbook pages
limiting number and size of pages
memory increases due to accumulating

pages
message handlers

deregistering
obtaining
registering
shadowing

messages
navigating to procedure code from
navigating to referenced items from

system table for
working with
workspace of
writing messages to a file
writing to a file

operators
arithmetic
concatenation
fuzzy truth value
logical
relational
using in expressions

option-buttons-for-edit-in-place configuration
clause

options attribute
of rules

for backward chaining
for forward chaining

of variables
for breadth-first backward chaining
for depth-first backward chaining
for forward chaining

of variables and parameters
or logical operator
origin, workspace
otherwise procedure statement
overhead-time, of system profile information
Overlay utility

introduction
using

overlay.exe foreign function utility

P
package preparation

entering or simulating
leaving proprietary mode
making workspace proprietary
modes of
removing KB change logging
simulating proprietary mode
text stripping items

Page Down keystroke, in Text Editor
page index, for printing workspaces
page sizes, for printing
Page Up keystroke, in Text Editor
page-layout attribute, of Printer Setup system

table
paging, in virtual memory
paint drawing mode

item layer position in
specifying

paint-mode? attribute, of Drawing Parameters
system table

palettes
black and white
color
gray

paper-size attribute, of page-layout attribute
parameter class
parameters

See also variables
attribute initializations for
attributes containing

referencing
subtable of
attributes of
buttons containing
chaining options for
classes of
comparing with variables
concluding values for
creating
data types of
debugging and tracing
describing
expressions using
expressions using name of
features of
forward chaining on unchanged
histories

average
collection time
expressions
integral
interpolated value
keeping
maximum and minimum
memory increases
number of data points
rate of change
specifying history-keeping-spec for

keeping
standard deviation

initial values of
item passing
last recorded value of
memory considerations for
message text for
referencing

collection times
giving the attribute value
simulated values

referencing a time interval ending with the
collection time

rules containing
run-state status of
saving in snapshot file
summary of differences with variables
units of measure type of
values of

parameters, displaying history in graphs
parsers, definition of
parsing

strings into tokens
XML code

participation status, of items
2261

partner link variables
attribute for BPEL-compliance
creating
definition of

partner link, definition of
-password command-line option
passwords

changing from within G2
localizing password change dialog

attributes of
buttons
elements of
message
simple message of

specifying
in G2 OK file
in login dialog
location of password file
on command line

syntax
pasting text, between G2 and other

applications
pattern definition, definition of
patterns, defining
patterns-definition attribute, of tokenizer
pause knowledge-base action
Pause menu choice

Main Menu
pausing G2 by using

pause process instance menu choice
paused run-state

definition of
effect on KB

paused status, of G2-to-G2 interface
pausing

current KB
interactively
programmatically

pausing G2GL process instances
per directory menu syntax, for disconnecting

from foreign image
percentage-extra-space-to-leave attribute, of

graphs
performance

considerations for indexed attributes
impaired by insufficient RAM
improving through

inlining methods
inlining procedures

suggestions for improving
permanent arrays
2262
maintaining
restoring
using

permanent change information
accessing from Inspect
accessing from item menus

permanent items
definition of
deleting
making transient

permanent knowledge
comparing with current
complying to requirements for
definition of

permanent lists
maintaining
restoring
using

permanent/transient status
of items
propagating

Pick activity
choosing between multiple messages,

using
Pick Join activity

choosing between multiple messages,
using

pixels, determining scale by using
plots attribute, of trend charts
plots menu choice
plots, of trend charts
point formats menu choice
point formats, of trend charts
point-format-name-or-number attribute

of trend charts
specifying

point-formats attribute, of trend charts
points, drawing in icons
polling

run-state status of
polling, using G2 Gateway
polygons, drawing in icons
polymorphism, of methods
Pop button, in Icon Editor
popup menus

creating
using GMS
using GMS, demo
using NMS API
using NMS API, example

displaying

for items
for selected item
for selections
for workspaces

pop-up-edit-operations-menu attribute, of
Editor Parameters system table

port names
naming conventions for
specifying for stubs

port number
obtaining

interactively
using command-line option

specifying on command line
exact

port numbers
specifying on command line

additional
portion function
port-name syntax term
ports

See connections
positioning

attribute tables
items upon workspaces
workspaces within window

position-of-text function
post action
posting to the Message Board

debugging procedures by
displaying messages by

PostScript files
precedence, depth-first backward chaining
precision, displaying floating point values in

attribute tables
prefer-buffered-drawing attribute, of

workspaces
prefer-native-logbook attribute, of Logbook

Parameters system table
prefer-native-login-dialog attribute, of

Miscellaneous Parameters system table
prefer-native-message-board attribute, of

Message Board Parameters system table
prefer-native-text-editor attribute, of Editor

Parameters system table
pressing ... implies configuration clause

for associating mouse down with an
operation

for configuring mouse clicks
pressing ... on ... starts configuration clause
primary definition
primary direct superior class
primary-selection-color attribute, of Drawing

Parameters system table
print action
Print menu choice
printer-setup system table class
printing

default task priority of
page index for
system table for setup
workspaces

printing-details attribute
configuring for a color printer

printing-priority attribute
default priority for
of Printer Setup system table

print-spooling attribute, of Printer Setup
system table

priorities
defaults for various tasks
for display items
in the
memory increases due to lagging
of user menu choices
scheduling for action buttons

priority queues
application programmer? interface
introduction to

priority-of-data-service attribute
of Data Server Parameters system table

priority-queue class
description of
example
hidden attributes

private colormap
advantages
disadvantages

-private-colormap command-line option
using

procedure caller hierarchy, showing
procedure calling hierarchy, showing
procedure invocation hierarchy

displaying at breakpoints
showing

at a breakpoint
using Inspect

procedure invocations
aborting
creating
referencing in expressions

procedure menu choice
2263

procedure-invocation class
procedures

actions in
allowing other processing in
arguments

declaring in
passing to

assignments in
attributes of
begin-end block syntax
branching in
calling foreign function within
calling from G2GL processes

using Call activity
cloning
comments in
comparing with methods
comparing with rules
data seeking in
debugging and tracing
declaring

as remote
to be inlineable
to be inlineable, for profiling
to be stable-for-dependent-

compilations
default task priority of
defining
effects on changing definition attributes
error handling

description of
using on error statement

event predicates in wait statements
example of
expressions using
font for
forward chaining in
header syntax of
infinite loops in
inlineable

declaring configuration for
determining, using hidden attribute
recompiling
testing for
using

invocations of
invoking
iterating

over each instance of an item class
using a counter

limiting execution time of
2264
local names
assigning values
declaring in
specifying types for

memory increases due to non-returning
memory management in
name of
priority of
resetting cumulative execution time
return values types for
run-state status of
starting
statements

begin-end
compound
dictionary
in body
labels
summary

stepping through source code
subsecond time in
syntax of
uninterrupted limit for
updating relations while executing, effects

on
using procedure signature prompts in

editor
variables in

process body, definition of
Process Display Attributes menu choice
processing

scheduling tasks
the main processing cycle

processing cycle, major events in
processing-time attribute, of system profile

information
profile data

actions that G2 profiles
analyzing
collecting
contents of
copying
executable items for
introduction
resetting
resource requirements for
sample procedure for collecting
statements that G2 profiles
strategies for collecting
system procedures for
system profile information

attributes of
collecting in
contents of
empty contents
relationship among attributes

profiled-by relation
profile-demo.kb
profiler.kb
profroot.kb

programmatically, definition of
progress-bar control

standard dialogs
prohibit connect clauses configuration

statement
prompts

controlling
classes that appear in Text Editor
grammar prompts that appear in Text

Editor
property grid

Version 8.2 Rev. 0
proprietary mode

configuring the user interface of items
proprietary items
proprietary KBs

creating
distributing

setting for workspaces
simulating
text stripping items

proprietary-package attribute, of workspaces
protocols

data interface
TCP/IP

publish/subscribe facility
application programmer? interface
examples

demo KBs
deregistering subscriptions
registering callbacks remotely over a

G2 Gateway bridge
registering callbacks remotely over a

network interface
subscribing to attribute changes
subscribing to custom events
subscribing to deletion events
subscribing to variable or parameter

events
subscribing to workspace events

introduction to
registering callbacks remotely
publish-subscribe-doc-ex.kb
publish-subscribe-remote-doc-ex.kb

pulldown menus
push-button control, custom Windows dialogs

Q
qualified attributes

referencing
syntax for

qualified methods
qualified-name attribute, of methods
qualifying class names

See class-qualified names
quantitative-parameter class
quantitative-variable class
quantity function
quantity syntax term
quantity type
quantity-array class
quantity-expression syntax term
quantity-list class
Quit option, of Operate on Area menu choice
quitting G2
quotation marks, removing from attribute

displays
quotient function

R
radio buttons
radio-button control, custom Windows dialogs
RAM requirements, determining
random function

arithmetic function
repeating

range-bounds attribute, of trend charts
range-mode attribute, of trend charts
range-slack-percentage attribute, of trend

charts
rate of change, computing for variables and

parameters
read network access configuration clause
readable-symbol-text text processing function
readable-text text processing function
readable-text-for-value text processing

function
read-only module files, controlling edits to
readout tables

attributes of
2265

common attributes of
displaying floating point values in
updating
using

readout-table class
using
using to display subattribute values

readout-table-display-value attribute, of
readout tables

real time scheduling mode
Real Time task scheduler mode
Receive activity

receiving messages that an Invoke activity
sends

recompile Inspect command
recompiling

after compilation configurations
after inlining

methods
procedures

items, using Inspect
reconnect-to-foreign-image-after-timeout?

attribute, of Timing Parameters system table
rectangles, drawing in icons
Redo Layout menu choice
redo, in Text Editor
region-name syntax term
regions

adding to icons
for connections
memory
of icons
region indicator in Icon Editor

registering
default error handlers
message board message handlers
Operator Logbook message handlers

-regserver command-line option
using

regular expressions, syntax of
Reinstall Authorized Users, Miscellany menu

option
relatedness, detecting

cessation of, through whenever rules
through whenever rules

relation class
relation definitions

creating
definition of

relation source, definition of
relation target, definition of
2266
relational operators
producing fuzzy truth values by using
using

relation-is-permanent attribute
relation-is-symmetric attribute
relation-name attribute

choosing name for
of relations

relations
active/inactive items in
cardinality of
concluding

between classes
between items
general

creating
using conclude action
using conclude with a sequence

defining
general
inverse
symmetric

describing
effects when changing definition attributes
enabled/disable items in
event expressions for
expressions for
invoking rules

using
using generic reference
using generic reference to variables
when checking for existence
when creating
when deleting

items participating in
logical expressions for
many-to-many
many-to-one
names of
now syntax
obtaining relationships of items
one-to-many
one-to-one
participation expressions for
permanent

rendezvous failure when restoring
requirements for
restoring

permanent/transient items in
removing

by concluding

by deleting items
replacing

multiple one-to-one relations
single many-to-one relation
single one-to-many relation
single one-to-one relation
using now syntax

run-state status of
saving in snapshot file
types of
understanding how G2 saves
updating

first and second class
symmetric
type of
while executing procedure
while rule is executing
while running
while saving KB snapshot

using whenever rules
to detect cessation of
to detect relatedness

relations, definition of
relationships, expression for referring to item
relative-labels-visible? attribute, of trend

charts
releasing ... implies configuration clause

for associating mouse up with an
operation

for configuring mouse clicks
remainder function
remote procedure declarations

arguments and return types for values
creating
grammar for
item-passing grammar for
using

with G2-to-G2 interface
with GSI

remote windows
See also telewindows

remote-g2-expression attribute, of data
interface variables

remote-procedure-declaration menu choice
remove action

removing elements from lists
using

Remove Do Not Strip Text Mark menu choice
remove function, for sequences
Remove Strip Text Mark menu choice
remove temporary breakpoint menu choice
Remove Tracing and Breakpoints menu option
remove-attribute function
remove-evaluated-attribute function
removing

attribute-displays programmatically
KB change logging and version

information
list elements
relations

by concluding
by deleting items

stubs while deleting an item
rename attribute option, change attribute
rendezvous failure, restoring

for permanent lists and arrays
for permanent relations

repeat procedure statement
repeat-random-function-on-reset? attribute

of Miscellaneous Parameters system table
replace Inspect command
replacement characters, for Unicode
replacement-character attribute, of text-

conversion-style items
replacing

icon variable text
icon variable values
relations

multiple one-to-one
single many-to-one
single one-to-many
single one-to-one
using now syntax

substrings by using a pattern
text by using Inspect

Reply activity
sending a response message

representing time
as a float
as a string
as an integer

reserved symbols
reset action
Reset menu choice

compared to reset action
Main Menu
resetting KBs by using

reset status, of G2-to-G2 interface
resetting KBs

effects on lists and arrays
interactively
programmatically
2267

resizing items
resizing objects interactively
-resolution command-line option

specifying for g2-window
using

resolution of monitor
for Telewindows window
specifying horizontal and vertical axes

Restart menu choice
Main Menu
restarting G2 by using

restarting
current KB

restoring
permanent arrays
permanent lists
permanent relations

restrict proprietary items as follows
configuration statement

combining with other statements
definition of
for configuring proprietary items

restricted-use license
resume knowledge-base action
Resume menu choice

Main Menu
resuming paused G2 by using

resume process instance menu choice
resuming

from a breakpoint
paused KB

interactively
programmatically

resuming G2GL process instances
retry-interval-after-timeout attribute

of Inference Engine Parameters system
table

Return activity
returning values, using

return procedure statement
return types, for remote procedure calls
reverting

KB changes
-rgn1lmt command-line option

for preallocating memory
using

-rgn2lmt command-line option
for preallocating memory
using

-rgn3lmt command-line option
for preallocating memory
2268
using
Right arrow keystroke, in Text Editor
right justification

NMS API
using in NMS menu choices

Right option, of Operate on Area menu choice
rolling ... implies configuration clause

associating mouse wheel events with an
operation

for configuring mouse clicks
Romaji input, converting to Hiragana or

Katakana
root class in class hierarchy
root-name-for-log-files attribute

of Log File Parameters system table
rotate action
rotate/reflect menu choice
round function
RPCs

See also remote procedure declarations
arguments and return types for
invoking
passing

UUIDs referring to items
network interfaces

passing network handles referring to items
network interfaces

using the all remaining grammar in
using the as handle grammar in
using the current value of variable-or-

parameter grammar in
using the history of variable-or-parameter

grammar in
using the name of item grammar in
using the with handle grammar in

rule class
rule invocations

definition of
generic

displaying dynamically
knowledge about

caching
rule-category-name syntax term
rule-priority attribute

of rules
overriding default

rules
actions for
antecedent

coding
evaluating

invoking
changing the font size
cloning

effects of
for creating new

coding the text of
comparing with procedures
consequent

coding
executing
executing sequentially
executing simultaneously

creating
debugging and tracing
displaying invocations
editing
effects of

changing definition classes on
invoking by scanning
scanning generic
updating relations while executing

error handling in
executing consequent

sequentially
simultaneously

expressions for
filtering items in Inspect

based on category
based on focal class or object

focusing on a particular object
font for
for use with variables and parameters
fuzzy truth threshold for
generic

creating
definition of
memory implications of using

highlighting
invocations of

creating and managing
understanding

invoking
after warmbooting
by activating parent workspace
by backward chaining
by category
by detecting events
by focusing on
by forward chaining
by relation events
by scanning
by using the activate action to activate
parent workspace

example of focusing on
introduction to
summary of
using invoke action

kinds of
if rules
initially rules
summary of
unconditionally rules
when rules
whenever rules

local names in
prioritizing
run-state status of
scheduling
scoping
specific

creating
definition of

subsecond time in
tables of
task priority of
timeout interval for

in system table
setting

variables and parameters in
whenever

a variable fails to receive a value
a variable loses its values
a variable receives a value
an item is activated or deactivated
an item is created
an item is enabled or disabled
directly connected to events
for connection and disconnection

events
to detect cessation of relations
to detect relatedness

Run Options menu choice
enabling all items
enabling and disabling rule highlighting
Main Menu
removing tracing and breakpoints

run states
confirming changes
determining for current KB
effect on GMS and NMS menus
effect on NMS menus
of the current KB
2269

summary of
running run-state

definition of
effect on KB

running status, of G2-to-G2 interface
run-time validation
Russian language

See also Cyrillic characters
changing current language to
encoding characters
entering Cyrillic text
using

S
save current KB as initialization command
Save KB menu choice

for saving a module
hierarchy into separate KB files
in a separate KB file

Main Menu
saving current KB by using

save module initialization command
save-image-data-with-kb attribute

for saving a KB background image
of image definitions

saving
all required modules
backup copies of KB files
current KB
effect on lists and arrays
KB knowledge
modularized KBs
modules

directly required
in separate files
interactively
programmatically

programmatically
tracing data to a file
unmodularized KBs
while running
workspace state

saving-parameters system table class
SAX (Simple API for XML)
sax-parser class
scale-workspace configuration clause
scaling workspaces

interactively
programmatically
2270
shortcut keys for
using the mouse

scan-interval attribute
of freeform tables
of rules
using
using subsecond time

scanning
comparing with event detection
generic rules
in freeform tables
invoking rules by
scan interval for
summary for rules
updating readout tables by

scatter charts
chart style
data point indicator

scheduler
essentials
G2
modes
priorities
wait states and

scheduler modes
as fast as possible
real time
simulated time

scheduler-mode attribute
of Timing Parameters system table
resetting

after warmbooting
when warmbooting

setting task scheduler by using
scheduling

See also task scheduling
computation tasks
network tasks
other tasks
procedural versus rule-based tasks
tasks
UI tasks

scheduling-mode attribute, of Timing
Parameters system table

scheduling-time attribute, of system profile
information

Scope activity
defining scopes, using

scopes
Alarm Event Handler activity
Compensation Handler activity

definition of
Fault Handler activity
Message Event Handler activity
Scope activity

scrapbook
controlling number of text items
creating text inserters from
cutting and pasting
deleting entire
inserting text directly from
interacting with
workspace of

-screenlock command-line option
scrollable Text Editor

opening
using

scroll-continuously attribute, of graphs
scrolling workspace views
search facility, in Text Editor
search paths, of modules
searching

for text in Text Editor
for tokens in a string

second function
secondary definition
secondary direct superior class
secondary-selection-color attribute, of

Drawing Parameters system table
second-class attribute
-secure command-line option
secure G2

definition of
logging login activities

secure site, authorizing users of
secure, determining if G2 is
security

See also network security
making workspaces proprietary
providing across networks

select-area configuration clause
selecting

items
all
using the mouse

text in Text Editor
workspaces

selecting ... implies configuration clause
associating selection with menu choices by

using
comparing with typing ... implies
configuring mouse clicks using
selections
cancelling

using a key
using the mouse

changes from earlier G2 versions
deleting
displaying popups for
editing colors used for
interacting with
mouse gestures for creating
mouse gestures for interacting with
moving

using arrow keys
using the mouse

select-object configuration clause
sensor class, superseded practice
separators
sequence function
sequences

definition of
expressions for
functions for

change-element
concatenate
insert-after
insert-after-element
insert-at-beginning
insert-at-end
insert-before-element
portion
remove
sequence

passing through RPCs
testing for membership
used to represent matrices
using

in user-defined classes
to conclude a relation

value type
server-parameters system table class
set action
set temporary breakpoint menu choice
set up network access as follows configuration

statement
definition of
for defining network security

setting breakpoints
on G2GL processes
temporary

set-value-while-sliding? attribute, of sliders
shadowing
2271

default error handlers
in class inheritance
message board message handlers
Operator Logbook message handlers

Shift + down arrow keystroke, in Text Editor
Shift + End keystroke, in Text Editor
Shift + Home keystroke, in Text Editor
Shift + left arrow keystroke, in Text Editor
Shift + right arrow keystroke, in Text Editor
Shift + up arrow keystroke, in Text Editor
Short Menus menu choice

Miscellany Menu
short menus, using
short references, for variables and parameters
shortcut bars

changing icon size
clearing
creating
destroying
disabling and enabling
displaying arbitrary views in listbars
example callback
interacting with items in
using
using listbar style

shortcut keys
changes from earlier G2 versions
for workspaces
general
including in NMS menu choices

show action
show attribute display menu choice
show on a workspace Inspect command
show-grid-lines attribute, of graphs
showing

class hierarchy
item name box, programmatically
items on a workspace
method definitions
module hierarchy
Operator Logbook pages
procedure invocation hierarchy at a

breakpoint
workspace hierarchy
workspaces

changing its scale or position
interactively
programmatically
without changing its scale or position

show-operator-logbook-in-this-window?
attribute
2272
of g2-windows
show-operator-logbook-in-this-window?

attribute, of g2-windows
show-procedure-invocation-hierarchy-at-

pause-from-breakpoint attribute
of Debugging Parameters system table

show-procedures-signatures attribute
of Editor Parameters system table

show-prompts-for-type-in attribute of type-in
boxes

show-selection-handles attribute, Drawing
Parameters system table

show-simulated-values? attribute, of readout
tables, dials, and meters

show-workspace configuration clause
Shrink Wrap menu choice

minimizing workspace borders by using
using

shrink wrapping workspaces
shut down g2 action
Shut Down G2 menu choice

comparing with shut down g2 action
Miscellany Menu

shutting down G2
signal procedure statement
signaling

block error handlers
default error handlers
errors

signature prompting, in the Text Editor
significant-digits-for-labels attribute, of trend

charts
Simulate Package Preparation Mode menu

choice
Miscellany Menu

simulated time scheduling mode
simulated time, task scheduler mode
simulated-optional-modules attribute, of KB

Configuration system table
simulate-optional-modules attribute, of KB

Configurations system table
simulation formulas

See simulator
simulation models

See model definitions
simulation parameters, system table for
simulation variables

displaying in display items
saving in snapshot file

simulation-parameters system table class
simulator

See also simulation variables
error handling in
superseded capability
superseded practice
system table for

sin function
single inheritance
Single-Step menu choice
single-stepping through the execution
size, changing for items
slider control

standard dialogs
sliders
snapshot files

contents of
effects of updating relation while saving
filenames of
options for loading
saving
warmbooting

general
using warmboot procedure
with catch-up feature

source code control systems
source code, stepping through
source-code error location information

controlling the creation of
obtaining from the error object

source-stepping-level attribute
of Debugging Parameters system table

space.kb

spacing-between-entries attribute
of Logbook Parameters system table
of Message Board system table

Spanish language, in language.kl
special characters

definition of
entering
in language.kl
introduction to

specific formulas, for variables
specific interval, for variable validity
specific types
spinner control, custom Windows dialogs
sptools.kb

sqrt function
stability declarations

for methods
stable hierarchy
using for profiling
stable-for-dependent-compilation
configuration clause

for inlining
procedures

stable-for-dependent-compilations
configuration clause

declaring
declaring for profiling
definition of
effect of deleting item
effect of removing clause
for inlining

methods
use in profiling

stable-hierarchy configuration clause
declaring for profiling
definition of
use in profiling

standard deviation, computing for variables
and parameters

standard output messages
not writing to log file by using -no-log

command-line option
of G2 process
writing to log file by using -log command-

line option
start action
start afterwards load KB option
-start command-line option
start G2 initialization command
Start menu choice

Main Menu
starting current KB by using

starter.kb

starting
to log KB changes See also enabling
current KB

interactively
restarting

foreign image
as a separate process
from within G2

G2
invoking procedures

by using start action
using subsecond time

remote procedures by using start action
start-kb-after-load? attribute

of Miscellaneous Parameters system table
overridden by start afterwards KB load

option
2273

statement syntax term
statements

on error
See error handling

font for
procedure

going to statement label
summary of
syntax for

statements, executing
statfun.kb

status bars
using

status, of items
definition of
filtering in Inspect
identifying
using Inspect to filter

stippled icons
strings

extracting tokens from
locating tokens in
parsing into tokens
searching for in Text Editor
searching for tokens in

Strip Texts Now menu choice
stripe-color color attribute

changing using the change attribute
identifying

structure function
structures

definition of
expressions for
functions for

change-attribute
change-evaluated-attribute
evaluated-structure
remove-attribute
remove-evaluated-attribute
structure

passing through RPCs
using in user-defined classes
value type

stub-length attribute, of connection definitions
stubs

See also connections
connecting objects by using
creating subworkspace connections for
deleting interactively
in object definitions

adding to
2274
changing
deleting
specifying

inheriting default values for
length of
moving from one location to another
removing or retaining while deleting items

stubs attribute
of object definitions

specifying
using

updating while running
subattribute references

creating an expression
definition of
example of creating
sequence within a sequence
structure within a sequence
tips for using

subattributes
definition of
displaying values of

subclasses
definition of
inheritance for
multiple inheritance in
single inheritance in
user-defined

submenus
subobjects

attributes containing
creating subtable for
definition of
deleting subtable for

subsecond time
referring to current
task scheduling
using
using in trend charts
using with history keeping

subtable menu choice
subtables

creating interactively
defining in class definition
deleting
displaying for attributes with objects

subworkspace-connection-posts configuration
clause

declaring for items
declaring subworkspace connection posts

explanation of

definition of
example of declaration
using to organize knowledge in

subworkspaces
subworkspaces

activatable
activating

and deactivating
using the activate action

activation status of
changing the item association
creating

connection posts for
connection posts for, example
programmatically
workspace hierarchy

deactivating
and activating
using the deactivate action

declaring activatable
determining existence of
displaying for an item
effects of activation
referencing

items associated with
programmatically

showing
superior/subordinate relationship of

sum, computing for variables and parameters
superimposed tracings execution displays
superior classes

inheriting from
referencing in expressions

superior/subordinate relationships, of items
superior-class attribute

See direct-superior-classes attribute
superior-connection attribute

of connection posts
specifying

superseded practices
attribute files
G2 File Interface (GFI)
G2 Simulator
of G2
unscheduled drawing
XOR drawing mode

supplied interval, for variable validity
suppress-unspecified-partner-link-variable-

type-faults
Swedish language, in language.kl
Switch Fork activity
choosing between multiple paths, using
Switch Join activity

choosing between multiple paths, using
symbol function

using
symbol syntax term
symbol type
symbol-array class
symbolic-expression syntax term
symbolic-parameter class
symbolic-variable class
symbol-list class
symbols

data type of
expressions containing class-qualified

names
managing memory for
memory increases due to accumulation of
producing using an expression
referencing

attributes containing
by using symbolic expressions
items using

reserved
using in foreign functions
valid characters in

symmetric relations
creating
defining
definition of

synchronization, method
synchronized attribute, of methods
synchronous communication, two-way

figure
introduction to

syntax
conventions
G2 OK file
notation
regular expression
username and password
user-specified terms

sys-mod.kb file
for network information procedures
for profiling procedures
KB file

System
system attributes, initializable
system parameters
system procedures

custom Windows dialogs
2275

modifying
posting

for attribute access
for copying arrays to sequences and

sequences to arrays
g2-call-g2gl-process-as-procedure
g2-compile-g2gl-process
g2-export-g2gl-process-as-xml
g2-export-g2gl-process-as-xml-text
g2-get-all-g2gl-process-instances
g2-import-g2gl-process-from-xml
g2-import-g2gl-process-from-xml-text
g2-kill-all-g2gl-process-instances
g2-kill-g2gl-process-instance
get classes for rules
hash tables
priority queues
publish/subscribe facility
See entries with a g2- prefix

system requirements, determining
system table, G2GL Parameters
system tables

active and installed
associated with new modules
changing

interactively
programmatically

color parameters
data server parameters
debugging parameters
drawing parameters
editor parameters
fonts
for modules
G2GL Parameters
inference engine parameters
installed
KB configuration
language parameters
log file parameters
logbook parameters
menu parameters
merging modules without installing
merging with KB file
miscellaneous parameters
module information
printer setup
saving parameters
timing parameters

System Tables menu choice
changing system table values by using
2276
Main Menu
system time
system-defined attributes

accessing
comparing with user-defined
definition of
referencing
referencing those with limited-access

system-defined classes
system-profile-information class

T
T/B Center option, of Operate on Area menu

choice
Tab characters, encoding for Gensym

Character Set
tabbed MDI mode
tab-frame control, custom Windows dialogs
table menu choice
table of values menu choice
tables

See also attribute tables
attribute, displaying
configuring menu choices
determining fonts in
displaying menus in
displaying using Inspect
hash, for indexed attribute searches

table-size attribute, of freeform tables
tabs, menu choice
tabular functions

adding and deleting values
changing programmatically
creating
general

tabular-function-of-1-arg menu choice
tabular-view control, custom Windows dialogs
tan function
task scheduling

continuous
setting in system table
using

evaluation settings of freeform tables
for action buttons
for rules
how G2 performs
memory increases due to lagging priorities
minimum scheduling interval for
optimizing

subsecond time
ticking the scheduler clock
using GSI

tasks, definition of
TCP/IP protocol

available sockets for G2
specifying by using -network command-

line option
specifying for g2-to-g2 interface
specifying port on command line

additional
exact

used by GSI bridge
-tcpipexact command-line option
-tcpport command-line option
Telewindows

See also telewindows
command-line options for
controlling display of developer menu bar
definition of
licensing
maximum buffer size for cut and paste

operations
using backing-store facility

telewindows
See also Telewindows
assigning to a G2 window
associating with an existing g2-window
connections

accepting
closing
developer responsibility for rerouting
rerouting
to secure G2
to unsecure G2

described
logging out of
overview of
passwords for
rerouting
sample KB

template files, for foreign functions
temporary breakpoints, setting
testing

for inlineable
methods

for list membership
text

getting Unicode character codes
using an index

obtaining
readable
readable symbol from

searching for, in Text Editor
transforming

for G2 4.0 comparison
for Unicode comparison

text alignment, changing
text attributes

of items
referencing in expressions

text boxes
See also free text
color attributes of

text conversion styles
using

a custom
the default

working with
Text Editor

... (ellipsis) in
aborting editing session
accepting text
buttons in
buttons in type-in boxes
configuring

button options
menu options

configuring buttons in
controlling

grammar prompts that appear
number of classes that appear

cutting and pasting
deleting text
displaying

using the mouse
displaying list of available classes by using
edit operations menu
editing area

identified
setting minimum width of

ellipsis in
entering text

class names, from menus
class names, using prompts
line breaks
selecting visible text
special characters
tabs
using keystrokes
using natural language prompts
using text inserters
2277

using the keyboard
using various text inserters

errors in
fonts for
keystroke commands
keystrokes

Ctrl + c
Ctrl + End
Ctrl + Home
Ctrl + left arrow
Ctrl + right arrow
Ctrl + Shift + End
Ctrl + Shift + Home
Ctrl + Shift + left arrow
Ctrl + Shift + right arrow
Ctrl + v
Ctrl + x
Down arrow
End
Home
Left arrow
Page Down
Page Up
Right arrow
Shift + down arrow
Shift + End
Shift + Home
Shift + left arrow
Shift + right arrow
Shift + up arrow
Up arrow

localizing buttons
menu options

configuring
opening
overview of
prompts in type-in boxes
replacing text
scrollable Text Editor
search facility
signature prompting
suppressing editing of attributes by using
undo and redo

controlling editing session
using

using procedure signature prompts in
workspace of

text exchange, in Telewindows
text formats, for Telewindows clipboard
text inserters

creating
2278
in scrapbook
text processing functions
text readable attributes, accessing

programmatically
text stripping
text syntax term
text type
text values

allowable Unicode characters in
data type of
formatting
memory increases due to accumulation of
using in foreign functions

text, attribute
text, free
text-alignment attribute, of freeform tables
text-alignment message property
text-array class
text-begins-with-quantity function
text-box control, custom Windows dialogs
text-color color attribute

changing using the change action
for text box representations
of messages

text-color formatting attribute, of freeform
tables

text-color message property
text-conversion-style attribute

in G2 stream items
in GFI-input-interface items
in GFI-output-interface items
in Language Parameter system table
of Language Parameters system table

text-conversion-style class
naming text-conversion-style items
using

text-expression syntax term
text-list class
text-parameter class
text-size attribute, of freeform tables
text-to-character-codes text processing

function
text-to-symbol function
text-variable class
Thai language
that contains expression, iterating over lists by

using
the generic reference quantifier
the item-notes of expression

for obtaining an item? notes
referencing for the notes attribute

the item-status of expression
referencing the notes attribute by using

the item-status of statement
obtaining item status by using

the relationships of statement, referring to item
relations by using

this window expression, using
thread tokens

configuring default class and color
definition of

Throw activity
throwing faults, using

tickmarks of graphs
configuring
defining interval between

tickmarks-interval attribute, of chart
annotations

tiled workspace backgrounds
time

clock ticks
definition of
specifying length of

current
daylight-savings
defining scheduler modes for keeping
expressions using
real
representing

as a float
as a string
as an integer

scheduled
simulated
subsecond
system

time axes, of trend charts
time axis subtable menu choice
time function
time functions
time meters

clock tick length
maximum clock tick length
percent run time
priority scheduler time lag
simulator time lag

time-axis attribute
of trend charts

time-between-maxi-tracing-steps
time-between-mini-tracing-steps
time-between-time-slice-for-execution-of-

thread
timed-out status, of G2-to-G2 interface
time-expression syntax term
time-of-day control

standard dialogs
timeout-for-inference-completion attribute

of Inference Engine Parameters system
table

overriding with rule
timeout-for-rule-completion attribute

effect on execution
exceeding value
of rules
setting
time-out processing

timeout-for-variables attribute
handling variable failures by using
of Inference Engine Parameters system

table
timeout-interval attribute, of foreign function

declarations
timeouts

for data seeking in variables
for rule completion
foreign functions

timeout-when-requesting-data-seeking
evaluation setting

of freeform tables
timestamp format

for class-specific attributes
for representing time as a string

time-unit syntax term
timing meters, testing for memory leaks by

using
timing-parameters system table class
title bar text

editing
specifying on command line

title block
description of
displaying

title-bar-text attribute
of workspaces

title-position attribute, of trend charts
title-visible? attribute, of trend charts
toggle-button control, custom Windows

dialogs
tokenizers

creating
patterns-definition attribute
term definition

tokens
2279

defining
extracting from a string
locating in a string
parsing strings to locate
searching for in a string
specifying syntax for extracting
term definition

to-lowercase text processing function
toolbars

example
Top option, of Operate on Area menu choice
top-level module

checking for consistent modularization
creating
definition of
naming

interactively
programmatically

saving when missing
steps for naming

top-level-module attribute
of Module Information system table
saving a KB file by using

total-profiled-time attribute, of system profile
information

total-time-span attribute, of trend charts
to-titlecase text processing function
to-uppercase text processing function
trace-message-level evaluation setting, of

freeform tables
tracing

disabling
displaying trace messages
enabling

for debugging
though system table

messages for
defining
displaying

system parameters for
tracing data

configuring in Debugging Parameters
system table

enabling a trace file
saving to a file
viewing

tracing G2GL processes
tracing-and-breakpoints attribute

of methods
of procedures
of readout tables, dials, and meters
2280
of rules
of trend charts
of variables and parameters

tracing-and-breakpoints-enabled? attribute
disabling
of Debugging Parameters system table
using for debugging
using for tracing

tracing-file attribute, of Debugging Parameters
system table

tracing-message-level attribute
of Debugging Parameters system table
using for tracing

track-bar control
standard dialogs

tracking KB version information
transaction scope

of expressions
of rules

effect of sequential execution
evaluating consequent

transfer action
transfer menu choice

for transferring items
of items

Transfer option, of Operate on Area menu
choice

transfer to the mouse action, interaction with
mouse tracking

transferring
attribute tables
groups of items

interactively
programmatically

items off workspaces
items to the mouse
items to workspaces

interactively
programmatically

messages
objects to and from attributes

transforming text
for G2 4.0 comparison
for Unicode comparison

transform-text-for-G2-4.0-comparison text
processing function

transform-text-for-unicode-comparison text
processing function

transient items
accumulating during item passing
definition of

making permanent
changing status of items
connections
using the make action

run-state status of
saving in snapshot file

translations
See language translation definitions

transparent metacolor
tree views

clearing
creating
creating as dialog control
destroying
example callback
populating
selecting items in
showing and hiding
using

tree-view-combo-box control
standard dialogs

trend chart format subtable menu choice
trend charts

attribute summary
graphical
textual

changing size of
components of

accessing
adding and deleting
defaults
introduction
naming
referencing

compound attributes of
configuring
connector formats

attribute summary
configuring

creating
features of
format components

attribute summary
configuring

markers
multiple value axes in
naming
plots

attribute summary
configuring
drawing
point formats
attribute summary
configuring

redrawing and reformatting
system procedures for
time axes

attribute summary
configuring

value axes
attribute summary
configuring

trend-chart class
trend-chart menu choice
trend-chart-format attribute, of trend charts
truncate function
truth values

data type of
filtering items in Inspect by using
fuzzy
fuzzy truth threshold for

truth-threshold attribute
effect of value in fuzzy truth values
evaluating consequent of rule when using
of Inference Engine Parameters system

table
truth-value function
truth-value syntax term
truth-value type
truth-value-array class
truth-value-expression syntax term
truth-value-list class
tw command
tw.ok file
twgame.kb

two-way synchronous communication
description of
figure
using Reply activity

twtour.kb

type syntax term
type-in boxes

button type
type-of-relation attribute
types

See also values
complex
composite
converting from C to G2
declaring

attributes with default values
for class-specific attributes
2281

for procedure return values and local
names

for variables and parameters
in user-defined class definitions

definition of
float

coercing from integers
exceptional
general

general
integer

coercing to floats
general

item-or-value
mismatches
of attributes
of values
overriding user-defined attributes using
quantity
specific
symbol

characters in
general

text
characters of
general

truth-value
value

typing ... implies configuration clause
comparing with selecting ... implies
using

U
UI

See user interface
-ui command-line option
ui-client-interface class
ui-client-item class
ui-client-session class
uil.kb
uilcombo.kb
uildefs.kb
uillib.kb
uilroot.kb
uilsa.kb
uilslide.kb
uiltdlg.kb

unconditionally rules
implied by action buttons
using
using in action buttons
2282
understanding
explanation trees

undo
controlling the number of undos
in Text Editor
KB changes

Ungroup button, in Icon Editor
Unicode

character codes
converting text to
entering
getting, using an index

characters
displaying
in symbols
in text values

definition of
digits, determining
replacement characters for
text

converting character codes to
exporting
importing

Unicode Character Set
See Unicode

uninterrupted-procedure-execution-limit
attribute

of methods
of procedures
of Timing Parameters system table

units of measure
creating
font for

units-of-measure-declaration class
units-of-measure-declaration menu choice
universal unique identifiers

display
how changing affects KB saving and

loading
introduction to

UNIX operating system
computing time using
memory allocation environment variables
network type for
starting foreign image using

unregistering
See deregistering

-unregserver command-line option
using

unscheduled drawing, superseded practice
Up arrow keystroke, in Text Editor

update action
displaying charts
updating charts
updating readout tables
using

update interval
specifying

default
for variables

update option, of change attribute
update-interval attribute, of trend charts
update-priority attribute, of trend charts
updating

attribute tables
charts

introduction to
using the update action

items programmatically
readout tables programmatically
relations

first and second class
symmetric
type of
while executing procedure
while KB is running
while rule is executing
while saving KB snapshot

variables programmatically
upper-case-text function
use version control Inspect commands
use-local-history? attribute, of trend charts
user elements, adding to a G2 OK file
user interface

scheduling tasks for
setting when starting G2
utilities for developing

user interface items
buttons
default task priority of
run-state status of
text items
user menu choices
using GUIDE/UIL

user menu choice menu choice
user menu choices

actions of
attributes of
availability of
configuring mouse clicks for
creating
order of
user modes
adding using subattribute references
administrator
associating with users
configuring in login dialog
declaring in configurations
example of configuring the user interface

using
logging into a secure G2 process
obtaining attributes visible in
setting default for a KB
specifying in configuration statements
system procedure for obtaining attributes

visible in
user names

configuring
in G2 OK file
in login dialog
using command-line option

syntax
user-defined

attributes
aligning for item passing
comparing with system-defined
declaring types for
of user-defined classes
using structures within

classes
functions

user-menu-choice class
-user-mode command-line option

description of
-user-name command-line option

description of
users, authorizing at a secure site
user-specified syntax terms
UUIDs

displaying on every item
how changing affects KB saving and

loading
introduction
on connection items
passing in RPCs

network interfaces

V
-v8ok command-line option

locating OK file by using
validation, run-time
2283

validity interval
for variables

effect on expiration time stamp
specifying
using indefinite
using specific
using supplied

validity-interval attribute
determining expiration of expressions
of GSI variables
of variables

value axes menu choice
value axes, of trend charts
value passing

configuring KBs for
for remote data service
introduction to
using RPCs

example
passing integers
structures

introduction
remote procedure calls for
using GSI

value syntax term
value type
value-array class
value-axis-name-or-number attribute, of trend

charts
diagram of
on a plot subtable
specifying

value-axis-visible? attribute, of trend charts
value-expression syntax term
value-list class
value-on-activation attribute

of check boxes
of radio buttons
of sliders
of type-in boxes

values
See also types
attribute
coercing integers to floats
configuring a KB for passing
definition of
displaying using units of measure
distinguishing type
expiration of variables
expressions

using
2284
using current
introduction to
literal
passing between G2s

introduction to
using G2 Gateway (GSI)
using G2-to-G2 interface

referencing
current variable
of variables
of variables and parameters
types

sequences
storing

in attributes of items
in text attributes of items
in variables and parameters

structures
syntax terms for

expressions
literals

testing for existence of
updating
using local names for

value-structure hidden attribute of variable-or-
parameter class

variable-or-parameter attribute, of buttons
variables

See also parameters
See also simulation variables
activating GSI variables
assigning values to
attribute initializations for
attributes containing

referencing
subtable of

attributes of
attributes shared with parameters
buttons containing
chaining options for
classes of
comparing with parameters
concluding

that it has no value
values for

creating
local and argument
partner link

creating for G2-to-G2 connection
data servers

G2, GSI

identifying
inference engine

data types of
debugging and tracing
default task priority of
default update interval of
describing
detecting

failure to receive a value
loss of a value
new values

displaying backward chaining for
displaying history in a graph
expiration of

due to logical operators
specifying

expressions using
failing to receive values for
features of
formulas of
forward chaining on unchanged
GSI
histories

average
collection time
expressions
integral
interpolated value
keeping
maximum and minimum
memory increases
number of data points
rate of change
specifying whether to keep
standard deviation

initial values of
invoking whenever rules
item passing
last recorded value of
memory considerations for
message text for
receiving values from remote KBs
referencing a time interval ending with the

collection time
referencing in expressions
remote data service for
rules containing
run-state status of
saving in snapshot file
setting number of retries for
setting timeout for data seeking
specifying data servers
summary of parameter differences
units of measure type of
updating
using

backward chaining
breadth-first backward chaining
depth-first backward chaining
forward chaining
generic formulas with
specific formulas
subsecond time in
with rules

validity interval of
values

accessing in procedures
detecting expiration of
expiration of
obtaining
requested
unrequested

-verbose command-line option
version control

Inspect commands
performing "diff" operations
using change logging for

version information
maintained during change logging
removing from KB

versions
of modules, loading

view change log attribute, submenu choice of
change-log attribute

viewing
attribute

text
view-preferences attribute

of workspaces

W
Wait activity

causing the process to wait, using
wait for statement, using subsecond time
wait procedure statement

allowing other processing by using
definition of

wait states
and the scheduler
in computation tasks
2285

of procedures
wait-interval attribute, of trend charts
walking menus
walking-menus? attribute, of Menu Parameters

system table
warmboot afterwards load KB option

description of
effect of not selecting

warmboot afterwards with catch-up feature
load KB option

description of
for catching up to current real time

warmboot user-defined procedure
creating
warmbooting snapshot files

warmbooting
snapshot files
with catch-up feature

warning messages
controlling display of
controlling, using warning-message-level

attribute
warning-message-level attribute

of Debugging Parameters system table
of freeform tables

warnings, compilation
Web

embedding browser in Telewindows
interfacing with Web services

Web services
invoking from G2GL

when rules
when statements, using in action buttons
whenever rules

constraints on detectable events
design requirements
event expressions in
event sequences
for detecting

activation and deactivation
connection and disconnection events
enablement or disablement
failure of a variable value
item creation
loss of a variable value
new value

for obtaining G2-to-G2 connection status
invoking

by detecting events
when variable fails to receive values
when variable receives values
2286
reducing the number of invocations per
firing

reporting every value
scanning
single firing for multiple invocations
using

when-to-allow-multiple-menus attribute, of
Menu Parameters system table

when-to-back-up-current-log-file-other-than-
when-closing attribute, of Log File
Parameters system table

when-to-close-current-log-file-and-open-next-
one attribute, of Log File Parameters system
table

when-to-show-value attribute, of sliders
While activity

performing iteration, using
width attribute

of chart annotations
of freeform tables

-width command-line option
width-for-pages attribute, of Logbook

Parameters system table
width-of-image attribute

of image definitions
using to have image determine icon size

-window command-line option
window style

overriding the default on your g2-window
specifying default

window styles
attribute table examples
G2
menu examples
overriding default

for current KB
for current window

specifying
specifying default
workspace examples

window-location syntax term
windows

See also g2-windows
assigning telewindows to
cached

on X-server
updating from backing-store

displaying
independent views of current KB

using
displaying on X Windows servers

identifying
dimensions of
resolution of

language of, for current
local
referencing items in
remote
specifying

appearance of
full-screen
geometry
height
initialization string for
network info by using -netinfo

command-line option
title bar text

specifying magnification
general
with -magnification option
with -x-magnification and -y-
magnification options

specifying resolution
general
with -resolution option
with x-resolution and y-resolution

options
telewindows support for
window-specific languages for

Windows operating system
character-input methods
computing time using
file name restrictions for
installing G2 and bridges as services
memory allocation environment variables
network type for
starting foreign image using

Windows services, installing G2 and bridges
as

Windows user interface
property grid

window-specific language, specifying
in login dialog

-window-style command-line option
with handle grammar, using in RPCs for item

passing
without permanence check grammar, of delete

action
workspace control

standard dialogs
workspace hierarchy

creating
displaying using Inspect
showing using Inspect

Workspace Miscellany Menu, configuring
selection of

workspace views
key bindings for scrolling

workspace-location syntax term
workspace-margin attribute, of workspaces
workspaces

actions for
activating and deactivating
activating subworkspaces
activation status of
adding items to
associating

top-level with a module
with modules

background images
using image definitions for
using in workspaces

borders of
changing the size of
cloning

effects of
interactively
programmatically
using the create by cloning action

color attributes of
colors of
configuring by using item configurations
configuring implies move for
creating

interactively
deactivated, including in existence checks
deleting
dialog control for
disabled, including in existence checks
displaying

grid
hierarchy
KB Workspace menu
neatly
popups for

double-buffering support for
dropping to bottom
editing title bar text of
enabling and disabling
example

setting view-preferences to fixed size
setting view-preferences to

unselectable
2287

expressions for
extent of
features of
filtering items in Inspect by using
hiding

interactively and programmatically
using the hide action

hierarchy of
creating
displaying

invoking rules by activating
parent
summary

item layering upon
KB workspaces
kinds of
lifting to top
location of items upon
making an item subworkspace

programmatically
margins

definition of
specifying

merging into current KB
module assignments of
mouse gestures for interacting with
moving

mouse gestures for
using arrow keys
using the mouse
using the move action

operating on an area
programmatically

operating on area
interactively

organizing KB knowledge by
origin of
other than kb workspaces
overview of
positioning

items upon
within window

printing
interactively
using the print action

printing without borders
programmatically

interactively
proprietary
referencing

associated with items
2288
items associated with
items upon
superior items of

saving
in snapshot file
state in KB files

scaling
general
using the mouse

selecting
in sequence
using the mouse

shortcut keys
for moving
for scaling

showing
interactively and programmatically
using the show action

shrink wrapping
interactively and programmatically
using Shrink Wrap menu choice

stacking neatly
subworkspace activation status
subworkspaces

creating
making a workspace the

subworkspace of an item
making for items

superior items of
superior/subordinate relation of
tiled backgrounds for
top-level
transferring items off

interactively
programmatically

transferring items to
example of
interactively
programmatically
using transfer action

transferring items upon, to attributes
unit measurements of
viewing in COM applications
working with
workspace units

WorkspaceView control
workstation-time attribute, of system profile

information
write g2 stats as initialization command
Write G2 Stats menu choice

Miscellany Menu

write network access configuration clause
write to the file Inspect command

X
X Bit Map (XBM) file
X Windows servers

displaying window on
specifying window geometry on
using for backing-store facility

X1, X2, X3 buttons, in Icon Editor
-x-magnification command-line option
XML documents

exporting G2GL processes to
importing processes from

XML parsing
converting XML code to text
example
introduction
SAX callback procedure
sax-parser class

x-offset-for-logbook attribute, of Logbook
Parameters system table

x-offset-for-next-page attribute, of Logbook
Parameters system table

XOR drawing mode
specifying
superseded practice

-x-resolution command-line option
for initializing g2-window
using

Y
year function
-y-magnification command-line option
y-offset-for-logbook attribute, of Logbook

Parameters system table
y-offset-for-next-page attribute, of Logbook

Parameters system table
-y-resolution command-line option

for initializing g2-window
using
2289

2290

	Contents Summary
	Contents
	Preface
	About this Manual
	Audience
	Organization
	Conventions
	Related Documentation
	Customer Support Services

	Introduction to G2
	Overview of G2
	Introduction
	Basic Components
	Knowledge Bases
	Workspaces
	Modules
	Classes and Class Hierarchy
	Knowledge Representation
	Configurations
	System Tables
	G2 Windows
	G2 Developer’s Environment

	Computational Capabilities
	Procedures, Methods, and Rules
	Expressions
	Actions
	Formulas
	Text and XML Parsing
	Functions
	System Procedures

	G2 Graphical Language
	Extensible and Graphical Components
	Icons
	Images
	Textual Items

	Custom User Interfaces
	Editors and Facilities
	Text Editor
	Icon Editor
	Inspect Facility
	Natural Language Facilities
	G2 Character Support

	Development and Deployment
	Compilation
	Error Handling and Debugging
	Explanation Facilities
	Profiling a KB
	G2 Meters and Memory Management
	Task Scheduling
	Package Preparation
	Licensing and Authorization

	Networking and Interfacing
	Network Security
	Telewindows
	G2-to-G2 Interface
	G2 Gateway
	Item Passing
	Publish/Subscribe
	Java Interface
	Foreign Functions Support
	G2 as Data Service

	Additional Capabilities and Information
	G2 Utilities
	G2 Developer’s Utilities
	G2 Bridges

	The Developer’s Environment
	Introduction
	Capturing Knowledge in a Knowledge Base
	Using Computational Features in G2
	Starting G2
	The G2 Title Block
	Customizing the Gensym Background
	Interacting with the G2 Server Icon on Windows Platforms

	Exiting from G2
	Interacting with G2
	G2 Window Styles
	Window-Style Menu Examples
	Window-Style Workspace Examples
	Window-Style Attribute Table Examples
	Specifying Window Styles
	Editing Title Bar Text

	Using Menus to Operate the Current KB
	Using Menus to Operate on an Item in the KB
	Using Menus to Affect the Developer’s Environment
	Choices on the Main Menu
	Choices on the Miscellany Menu

	Navigating KB Knowledge
	Notifying the User of Errors
	Working with the Operator Logbook
	Hiding and Showing Logbook Pages
	Limiting the Number and Size of Logbook Pages
	Navigating to an Item Referenced in an Operator Logbook Message
	Navigating to the Procedure Code That Causes an Error
	Shadowing the Operator Logbook Message Handler

	Working with the Message Board Workspace
	Shadowing the Message Board Message Handler

	Organizing KB Knowledge
	Distinguishing Functional Behavior by Class
	Using Workspaces to Organize KB Knowledge
	Partitioning Knowledge into Modules

	Planning Your Work
	Configuring the Default Developer’s Environment
	Prototyping or Engineering
	Identifying Roles for Workspaces
	Identifying the User Interface Paradigm
	User Interface Utilities
	Other Developer Utilities
	Identifying Data Servers for Variables
	Using Timekeeping Features
	Establishing Naming Conventions
	Considering Natural Language Support

	Global G2 Components
	Knowledge Bases
	Introduction
	Contents of a KB
	Items
	System Tables

	Operating the Current KB
	The Initial Contents of a KB
	Clearing the Current KB
	Starting the Current KB
	Pausing and Resuming the Current KB
	Resetting the Current KB
	Restarting the Current KB
	Determining the Run-State of the Current KB

	Saving Your KB Knowledge
	Saving the Current KB
	Saving a Modularized KB
	Saving an Unmodularized KB
	Backup Copies of KB Files
	Platform File Systems and KB File Names
	Using Comments
	Using Change Logging for Version Control
	Performing “Diff” Operations
	Saving a Running Current KB
	Using System Procedures that Pause G2 before Saving Your KB
	Saving the State of Workspaces
	Supporting Source-Code Control Systems

	Loading a KB
	Using the Load KB Dialog
	Loading the KB File
	Using Wildcards in Filenames when Loading a KB
	Selecting Options when Loading a KB File
	Searching for KB Files

	Saving Permanent and Transient Data in Snapshot KBs
	Saving a KB Snapshot File
	Contents of a KB Snapshot File
	Naming Conventions for KB Snapshot Files
	Warmbooting a KB Snapshot File
	Creating Warmboot Procedures
	Warmbooting with Catch-Up

	Merging a KB File
	Working with Duplicate Items in KBs
	Duplicate Definitional Items
	Duplicate Class-Definitions

	Detecting Conflicting Class-Definitions
	Automatically Resolving Conflicting Class-Definitions
	Manually Resolving Conflicting Class-Definitions
	G2 Notification of Conflicting Class-Definitions
	Responding to Conflict Workspaces
	Examples of Manual Conflict Resolution

	Workspaces
	Introduction
	Kinds of Workspaces
	Common Features of Workspaces
	KB Workspaces
	Other Workspaces

	Working with Workspaces
	Operating on an Area of a Workspace Interactively
	Operating on an Area of a Workspace Programmatically
	Cloning a Workspace
	Deleting a Workspace
	Disabling and Enabling a Workspace
	Hiding and Showing a Workspace
	Scaling a Workspace
	Positioning a Workspace within its Window

	Positioning Items upon a Workspace
	Using the Workspace Origin
	Displaying the Visible Portion of a Workspace
	Specifying Margins within the Border of a Workspace
	Shrink Wrapping the Size of a Workspace

	Creating and Using a Workspace Hierarchy
	Creating a Subworkspace for an Item
	Making a Workspace the Subworkspace of an Item
	Displaying the Workspace Hierarchy
	Determining Whether a Subworkspace Exists
	Referring to Subworkspaces Programmatically
	Configuring Items Based on the Workspace Hierarchy
	Organizing Knowledge in Subworkspaces by Using Connection Posts
	Associating Top-Level Workspaces with Modules

	Activating and Deactivating Workspaces
	Activating Top-Level Workspaces
	Activating and Deactivating a Subworkspace

	Printing a Workspace
	Printing Multiple Pages
	Generating Encapsulated PostScript Files
	Generating JPEG Files
	Printing a Workspace on a Color PostScript Printer
	Printing Workspaces without Borders
	Using Double Buffering

	Setting the Color of Workspaces
	Creating Custom Workspace Borders
	Using a Graphic as a Background Image
	Specifying the Center of the Background Image
	Using Tiled Workspace Backgrounds
	Displaying More Than One Background Image
	Saving the Background Image in the KB
	Other Considerations for Using Background Images

	The Kb-Workspace Class
	Using View-Preferences
	Actions That Apply to KB Workspaces
	Expressions That Refer to KB Workspaces

	Modularized KBs
	Introduction
	Understanding Modules
	The Module Hierarchy
	Modules and System Tables
	Modules and Items

	Creating, Populating, and Saving Modules
	Naming Conventions for Modules
	Naming the Top-Level Module
	Associating Items with a Module
	Saving a Module in a Separate KB File

	Creating a Module Hierarchy
	Creating a Top-Level Module
	Creating a New Module
	Declaring Directly Required Modules
	Rules for Consistent Modularization
	Checking for Consistent Modularization
	Saving the Module Hierarchy
	Deleting a Module
	Determining Programmatically Whether a Module is Loaded

	Obtaining Information about Modules
	Displaying the Module Hierarchy
	Displaying Module Information System Tables
	Displaying the Module Assignment of Items
	Obtaining the Containing Module for Items Programmatically

	Working with Modularized KBs
	Loading a Modularized KB
	Merging a Modularized KB into the Current KB

	Using a Module Search Path to Load KB Files
	Specifying a Module Search Path
	Module Search Path Syntax
	How G2 Searches for KB Modules

	Using a Module Map File to Load and Save a KB
	Locating the Module Map File
	Adding Entries to the Module Map File

	System Tables
	Introduction
	Using System Tables
	Changing System Tables Values Interactively
	Changing System Table Values Programmatically

	Color Parameters
	Controlling the Menu Order of Colors
	Specifying the Colors on the First Color Menu
	Defining the Colors on the Second Color Menu
	Specifying the Number of Columns for the First Color Menu
	Specifying the Number of Columns for the Second Color Menu
	Indicating Whether to Dismiss the Color Menu
	Class-Specific Attributes of Color Parameters

	Data Server Parameters
	Specifying a Data Server Alias
	Specifying Data Service Scheduling Priority
	Turning on G2 Meters
	Class-Specific Attributes of Data Server Parameters

	Debugging Parameters
	Controlling Error and Warning Message Displays
	Specifying Debugging Trace Messages
	Specifying Breakpoints for Debugging
	Specifying Single-Stepping through Source Code
	Enabling Tracing and Breakpoints for Debugging
	Displaying the Procedure Invocation Hierarchy while Paused
	Enabling the Display of Disassembled Code
	Saving Tracing Data to a File
	Specifying the Display Interval for Explanation Data
	Class-Specific Attributes of Debugging Parameters

	Drawing Parameters
	Specifying Scheduled Drawing
	Specifying the Paint Drawing Mode
	Controlling the Set of Rendering Colors
	Editing the Color Used for Selection
	Displaying a Visible Grid on Workspaces
	Interactively Resizing Objects and Changing Connection Vertices
	Class-Specific Attributes of Drawing Parameters

	Editor Parameters
	Specifying the Maximum Number of Names to Show
	Defining the Minimum Text Editor Width
	Specifying Whether to Enable Author Recording
	Edit Operations Menus and Buttons
	Controlling the Display of Calling Signatures
	Displaying the Native Text Editor
	Class-Specific Attributes of Editor Parameters

	Fonts
	Class-Specific Attributes of Fonts

	G2 Graphical Language (G2GL) Parameters
	Inference Engine Parameters
	Limiting the Depth of Recursion
	Defining the Timeout for Getting a Variable Value
	Specifying the Timeout for Rule Completion
	Specifying the Retry Interval for a Variable Value
	Specifying the Fuzzy Truth Threshold
	Class-Specific Attributes of the Inference Engine Parameters

	KB Configuration
	Specifying Item Configurations for the KB
	Restricting Main Menu Options
	Providing or Restricting Global Keyboard Commands
	Setting the Initial User Mode for a KB
	Noting Your Optional Modules
	Simulating Optional Modules
	Class-Specific Attributes of KB Configuration

	Language Parameters
	Specifying the Current Language
	Using a Text-Conversion-Style
	Class-Specific Attributes of Language Parameters

	Logbook Parameters
	Defining the Logbook Page Size
	Specifying the Margin for Logbook Messages
	Defining Where to Position Logbook Pages
	Specifying Where to Position the Logbook
	Controlling How Many Logbook Pages to Show
	Controlling the Number of Logbook Pages
	Displaying the Native Logbook
	Include Date in Messages
	Default Docking Position
	Class-Specific Attributes for Logbook Parameters

	Log File Parameters
	Saving a Log File
	Specifying the Log File Directory Location
	Specifying a Log File Root Name
	Specifying the Current Log File
	Defining When to Close a Log File
	Defining When to Back Up Log Files
	Class-Specific Attributes of Log File Parameters

	Menu Parameters
	Specifying How to Align Menu Choices
	Allowing Multiple Menus to Display
	Allowing Walking Menus
	Controlling the Display of Developer Menu Bar
	Class-Specific Attributes of Menu Parameters

	Message Board Parameters
	Defining the Minimum Display Interval
	Displaying the Native Message Board
	Class-Specific Attributes of Message Board Parameters

	Miscellaneous Parameters
	Defining Whether to Repeat the Random Function
	Specifying the Workspace Margin
	Starting a KB Automatically After KB Load
	Determining the KB Run State
	Enabling the Explanation Facilities
	Determining Connection Caching
	Determining Connection Inactivity
	Changing the Backward Compatibility
	Displaying the Native G2 Login and Change Mode Dialogs
	Confirming Run State Changes
	Use Unicode for Filenames
	Class-Specific Attributes of Miscellaneous Parameters

	Module Information
	Specifying a Module File Name
	Specifying the Top-Level Module
	Specifying the Required Modules
	Class-Specific Attributes of Module Information

	Printer Setup
	Specifying the Printing Details
	Specifying the Printer Page Layout
	Specifying How to Spool the Print File
	Controlling the Printing Priority
	Determining the Print File Format
	Printing a Workspace without Borders
	Class-Specific Attributes of Printer Setup

	Saving Parameters
	Defining the Priority for KB Saving
	Identifying the Current KB
	Identifying the KB File Name
	Adding Comments to a KB
	Viewing KB Version Information
	Using KB Change Logging
	Class-Specific Attributes of Saving Parameters

	Server Parameters
	Specifying a Module Search Path
	Controlling Edits to Read-Only Module Files
	Specifying the Default Window-Style
	Determining if G2 is Secure
	Class-Specific Attributes of Server Parameters

	Simulation Parameters
	Timing Parameters
	Defining the Scheduler Mode
	Specifying the Minimum Scheduling Interval
	Specifying the G2-Meter Lag Time
	Specifying the Interface Mode to Use
	Adjusting the G2 Clock
	Controlling the Foreign Function Timeout Interval
	Controlling Foreign Image Reconnection
	Setting the Uninterrupted Procedure Limit
	Scheduling Attribute Table Updates
	Class-Specific Attributes of Timing Parameters

	Configurations
	Introduction
	Declaring Configurations for Items
	Kinds of Configuration Statements
	Scope of Configurations
	Precedence of Configurations
	Example of the Scope of Configurations
	How G2 Searches for Applicable Configurations
	Instance Configurations and Definition Items

	Configuring the User Interface of Items
	Specifying the Applicable User Modes
	Specifying Appropriate Operations for the Target Class

	Configuring Menu Choices and Attributes in Tables
	Configuring Attributes That Appear in Tables
	Configuring Menu Choices
	Configuring Non-Menu Choices
	Configuring Table Menu Choices
	Configuring Attribute Displays

	Configuring Keystrokes
	Constraints on Configuring Keystrokes
	Considering the Target of a Configured Action
	Example of Configuring Keystrokes

	Configuring Mouse Gestures
	Syntax Summary
	Example
	Associating Selection with a Menu Choice or User Menu Choice
	Associating a Mouse Click with the Miscellany Menu
	Associating a Mouse Click with an Operation
	Associating a Mouse-Wheel Event with an Operation
	Associating a Mouse Click with a Mouse-Tracking Procedure
	Coding the Mouse-Tracking Procedure
	Example of Mouse-Tracking Procedure
	Conflicts between Mouse-Tracking and Other User Interface Operations

	Constraining the Movement of Items
	Aligning Items to an Invisible Rectangle
	Aligning Items on an Invisible Grid

	Configuring the User Interface of Proprietary Items
	Configuring Access to and from Other G2, G2 Gateway, and Telewindows Processes
	Allowing or Prohibiting Network Access
	Allowing Read and Write Access
	Allowing Execute Access
	Allowing Inform Access

	Configuring Properties of Items
	Specifying the Scope of the Declared Properties
	Specifying Exceptions to the Declared Properties
	Declaring a Procedure to be Inlined
	Declaring a Method to be Inlined
	Declaring Items as Stable Hierarchy
	Declaring an Item Independent for All Compilations
	Declaring an Item Stable for Dependent Compilations
	Declaring an Activatable Subworkspace for an Item
	Declaring Subworkspace Connection Posts for Items
	Disallowing Manual Connections for an Item

	Including Comments in Configurations
	Describing Configurations
	Declaring User Modes in Configurations
	Associating User Modes with G2-Window Items
	Associating User Modes and Users
	Example of Configuring the User Interface of an Item
	Obtaining the Attributes Visible for a User Mode Programmatically

	Declaring Generic and Exception Configurations
	Combining Configurations
	Combining Cooperatively
	Combining Additionally
	Combining Absolutely

	Configuring the G2 Main Menu and Global Key Bindings and Shortcuts
	Configuring the G2 Main Menu
	Restricting Help
	Keyboard Command Restrictions

	Using Configurations in Modularized KBs

	G2-Windows
	Introduction
	Windows and G2-Windows
	Using Local Windows and Remote Windows
	Representing Local and Remote Windows
	Special Properties of Local and Remote Windows

	Displaying Independent Views of the Current KB
	The G2-Window Class
	Attributes of the G2-Window Class
	Hidden Attributes

	Working with G2-Windows
	Accessing the G2-Window Item Associated with Your Interaction with G2
	Overriding the Default Window Style
	Determining When G2 Associates a G2-Window with a Window
	Determining Whether the Connection is Local or Remote
	Determining the G2 User Name for a G2-Window
	Determining the Login Name at the Operating System
	Determining the User Mode
	Determining the Remote Host Name
	Determining the Time of Connection
	Determining the Operating System Type
	Controlling the Mouse Cursor

	Expressions that Refer to G2-Window Items
	Specifying the Appearance of the G2 Window
	Specifying the Resolution and Magnification
	Identifying the Dimensions of the G2 Window
	Identifying the Resolution of the G2 Window

	Rerouting a Telewindow
	Setting up Access to Telewindows
	Reporting Errors

	Supporting a Window-Specific Language
	Using the Login Dialog
	Displaying the Login Dialog
	Determining Default Values in the Login Dialog

	Logging Login Activities
	Writing the Login Handlers
	Registering the Login Handler

	Associating an Existing G2-Window with a Telewindow

	Knowledge Representation
	Values and Types
	Introduction
	Using Values Stored in Items
	Using Attribute Values
	Using Text Attribute Values of Items
	Using Values Given by Variables and Parameters
	Checking for the Existence of an Attribute Value
	Using Local Names for Values
	Expiration of Variable Values

	Distinguishing Value Types
	Complex Types
	Declaring Types

	Working with General Types
	Using the Item-or-Value Type
	Using the Value Type
	Using the Quantity Type

	Working with Specific Types
	Using the Integer Type
	Using the Long Type
	Using the Float Type
	Working with Exceptional Float Values
	Coercing Numeric Values
	Using Units of Measure for Numeric Values
	Using the Symbol Type
	Using the Text Type
	Using the Truth-Value Type

	Representing Time Values
	Time as an Integer
	Time as a Float
	Time as a String

	Working with Composite Types
	Using the Structure Type
	Structure Functions
	Structure Expressions
	Using the Sequence Type
	Sequence Functions
	Sequence Expressions

	Using Structures and Sequences in User-Defined Classes
	Comparing Structures and Items
	Comparing Sequences and Lists

	G2 Items
	Introduction
	Logical Components of Items
	Understanding Item Inheritance
	Understanding the Knowledge Contained in Items
	Identifying the Knowledge in Attributes
	Identifying the Knowledge Not Stored in Attributes
	Identifying the Status Knowledge of Items
	Identifying the Superior and Subordinate Relationships among Items

	Item Representation
	Identifying the G2 Color Palette
	Identifying the Color Attributes of Items
	Actions That Affect Item Appearance

	Locating Items upon a Workspace
	Layering Items upon the Same Workspace
	Distinguishing Permanent, Transient, and Current Knowledge

	Working with Items Interactively
	Using Item Menus
	Common Item Menu Choices
	Changing the Size of an Item
	Cloning an Item
	Cloning Specific Knowledge
	Changing the Text Alignment of an Item
	Changing the Color of an Item
	Deleting an Item
	Describing an Item
	Describing the Configuration of an Item
	Showing Unsaved Attributes
	Lifting to the Top and Dropping to the Bottom
	Naming an Item
	Showing and Hiding an Item Name Box Programmatically
	Rotating and Reflecting an Item
	Displaying the Tables for an Item
	Transferring Items to Another Workspace

	Item Expressions
	Referring by Item Name
	Referring through a Symbolic Expression
	Referring by Variable or Parameter Name
	Referring by Workspace Location
	Referring by Identity
	Referring by Association with an Event or Location
	Referring by Item Evaluation

	Referring to Other Item Knowledge
	Referring to the Name and Class
	Referring to the Superior Item
	Referring to the Workspaces Associated with an Item
	Referring to the Relationships of an Item
	Referring to the Size of an Item
	Referring to Degrees of Rotation
	Referring to the Position of an Item

	The Item Class
	System Procedures for Working with Item Groups

	Attributes and Tables
	Introduction
	Attribute Contents
	Distinguishing System- and User-Defined Attributes

	Using Attribute-Tables and Hidden-Attributes- Tables
	Displaying an Attribute Table for an Item
	Updating Attribute Tables
	Using Attribute Menus on an Attribute Table

	Adding Attribute Displays to Attribute Tables
	Defining Attribute Displays in Class Definitions
	Manipulating an Attribute Display from its Menu
	Adding or Removing Attribute Displays Programmatically

	Loading Attribute Values from an Attribute File
	Using the Authors Attribute
	Using Indexed Attributes
	Performance Considerations
	Expressions for Indexed Attributes

	Using Universal Unique Identifiers
	Uniqueness within a G2 Process
	Changing a UUID at Load Time
	Displaying the UUID of Every Item
	Connections and UUIDs

	Using Other Special-Purpose Attributes
	Formatting Attributes
	Evaluation Attributes

	Actions That Affect Attributes
	Changing an Item Name
	Concluding Attribute Values

	Expressions That Refer to Attributes
	Referring to Attributes by Name
	Referring to Attributes through a Symbolic Expression
	Iterating Over User-Defined Attributes
	Referring to the Text Attribute of an Item
	Referring to an Attribute That is an Instance of an Object
	Referring to an Attribute Given by a Variable or Parameter
	Referring to an Untyped Attribute That Contains an Object
	Referring Indirectly Using a Symbol
	Referring to the Parent Attribute Name of a Subobject

	Attribute Access Facility
	Introduction
	Accessing System-Defined Attributes
	Attribute Access Terminology
	Attribute Descriptions
	Obtaining Class Descriptions
	Differences between the Value and Text of an Attribute
	Hidden Attributes
	Composite Attributes

	Referencing System-Defined Attributes
	Creating Subattribute References
	Tips for Using Subattribute References
	Concluding Values Directly or Incrementally

	Attribute Access System Procedures

	Classes and Class Hierarchy
	Introduction
	The G2 Class Hierarchy
	Items and Classes
	Methods
	Inheritance

	System-Defined Classes
	Varieties of System-Defined Classes
	Instantiating System-Defined Classes

	Viewing the Class Hierarchy with the Inspect Facility
	User-Defined Classes
	Extending G2’s Machinery with User-Defined Classes
	Representing Knowledge with User-Defined Classes
	Creating User-Defined Classes
	Instantiating User-Defined Classes

	Inheritance in Class Hierarchies
	Direct-Superior-Classes Attribute
	Class-Inheritance-Path Attribute

	Single Inheritance
	Inheritance of Default Values
	Inheritance of Methods
	Duplicate Attributes

	Multiple Inheritance
	Multiple Inheritance and Class Inheritance Paths
	Linearizing Multiple Inheritance

	How G2 Linearizes Multiple Inheritance
	The G2 Linearization Algorithm
	Linearizing Two Superior Classes
	Linearizing Several Superior Classes
	Linearizing Networks of Classes

	Why G2 Linearizes As It Does
	Ideal Linearization
	Feasible Linearization
	G2 Linearization

	Illegal Patterns of Multiple Inheritance
	Disordered Multiple Inheritance
	Meaningless Multiple Inheritance

	Viewing Multiple Inheritance with the Inspect Facility
	Default Values in Multiple Inheritance
	Inheriting a Default Value from a Direct Superior
	Overriding the Default Value of a Direct Superior
	Overriding an Inherited Value with an Explicit Value
	Inheriting Default Values for Stubs

	Duplicate Attributes in Multiple Inheritance
	Defining Classes in Bottom-up Order
	Deleting a Class Definition
	Planning a Class Hierarchy

	Definitions
	Introduction
	Terminology
	Overview of the Class Definition Process
	Creating Class Definitions
	Storing Definitions on Workspaces

	Class Definition Attributes
	Formatting the Text of Attributes
	Order of Attributes in Tables

	Configuring Class Definitions
	Specifying the Item Configuration
	Providing a Class Name
	Specifying the Superior Class(es)
	Specifying Instance Configurations
	Determining the Class Inheritance Path
	Determining the Initializable System Attributes
	Determining the Inherited User-Defined Attributes
	Defining and Initializing Class-Specific Attributes
	Specifying Default Values for Inherited Attributes

	Specifying Instantiability
	Effects of Setting Instantiability Attributes
	Order of Classes in the G2 Menu Hierarchy
	Uninstantiable Subclasses

	Specifying an Icon
	System-Defined and User-Defined Icons
	Icon Inheritance
	Using the Icon Editor

	Creating Object Classes
	System-Defined Object Attributes
	Specifying Attribute Displays
	Specifying Connection Stubs
	Specifying Other Object Class Attributes

	Creating Connection Classes
	System-Defined Connection Attributes
	Defining Connection Regions
	Specifying a Stub Length
	Defining the Junction Block to Use

	Creating Connection Post Classes
	System-Defined Connection Post Attribute
	Specifying the Superior Connection

	Creating Message Classes
	System-Defined Message Attribute
	Specifying Default Message Properties

	Using Specialized Definitions
	Class Inheritance and Class Definition Types
	Creating an Object Definition
	Creating a Connection Definition
	Creating a Message Definition

	Customizing Definition Classes
	Creating New Classes Programmatically
	Changing Definitions
	Using the Change Attribute
	Changing Definitions with the Conclude Action
	Effect on Subclasses and Instances
	Effect on Procedure Statements and Other Items

	Merging Classes
	Merging Definitions of the Same Type
	Merging Classes Defined on Definitions of Different Types
	Completing a Merge

	Deleting a Definition

	Variables and Parameters
	Introduction
	Comparing Variables and Parameters
	Parameter Features
	Variable Features
	Memory Considerations
	Summary of Variable and Parameter Differences

	Variables, Parameters, and Rules
	Obtaining Values for Variables
	Obtaining Unrequested Values
	Obtaining Requested Values
	Handling a Variable Failure

	Obtaining Values for Parameters
	Creating Variables and Parameters
	Specifying Forward and Backward Chaining
	Forward Chaining on Unchanged Variables and Parameters
	Defining Debugging and Tracing
	Specifying the Type
	Specifying an Initial Value
	Obtaining the Last Recorded Value
	Specifying Whether to Keep a History of Values
	Specifying a Validity Interval
	Creating a Specific Formula
	Specifying Simulation Details
	Determining the Initial Simulation Value
	Specifying a Data Server
	Specifying a Default Update Interval

	History Keeping in G2
	Storing and Accessing History Values
	Collection Time
	Saving a Maximum Number of Data Points
	Saving Data Points over a Maximum Time Period
	Saving a Maximum Number of Data Points over a Specific Time Period
	Specifying a Minimum Interval between History Data Points
	Working with History Keeping Using Attribute Access

	History Expressions
	Obtaining a History Value
	Computing the Number of History Datapoints
	Computing the Average History Value
	Computing the Sum of Values in Histories
	Computing the Integral
	Computing the Interpolated Value
	Computing Maximum and Minimum Values
	Computing the Rate of Change
	Computing the Standard Deviation
	Concluding the History Directly

	Actions to Use with Variables and Parameters
	Concluding an Attribute Variable to Have No Value
	Concluding Values for Variables and Parameters

	Variable and Parameter Rules
	Whenever a Variable or Parameter Receives a Value
	Whenever a Variable Fails to Receive a Value
	Whenever a Variable Loses Its Value

	Variable and Parameter Expressions
	Directly Referring to a Variable or Parameter
	Using the Value of Expression
	Using the Has a Value Expression
	Using Current Value Expressions
	Obtaining the Simulated Value of a Variable or Parameter
	Obtaining the Collection Time for a Variable or Parameter
	Obtaining the Expiration Time for a Variable
	Referring to a Variable or Parameter That Gives the Value of an Attribute
	Referring to a Time Interval Ending with the Collection Time

	The Variable and Parameter Classes
	Common Attributes
	Variable-Specific Attributes
	Value-Structure and History Hidden Attributes

	Describing Variables and Parameters

	Lists and Arrays
	Introduction
	KB Saving of Permanent Lists and Arrays
	Lists and Sequences

	Comparing Lists and Arrays
	Choosing Lists
	Choosing Arrays
	List or Array Contents
	Effect of Run States on Lists and Arrays
	Summary of List and Array Differences

	Creating Lists and Arrays
	Setting the Array Length
	Defining the Element Type
	Allowing Duplicate List Elements
	Providing Initial Values for Array Elements
	Using Permanent-Membership Lists and Arrays

	Populating a List
	Inserting Based on Element Location
	Inserting at the Beginning or End of a List
	Inserting Before or After an Existing Element
	Inserting into Lists with Duplicate Elements

	Removing List Elements
	Removing a Particular List Element
	Removing Using an Element Index
	Removing a Type of List Element

	Populating an Array
	Changing the Initial Values of an Array
	Iterating over an Array
	Using an Attribute File

	Replacing List and Array Elements
	Using Change
	Using Conclude
	Altering the Length of an Array
	Changing Elements to Have No Values
	Data Seeking and Event Updating

	Iterating over Lists and Arrays
	Iterating According to Element Type
	Iterating over Lists For a Particular Item
	Specifying a Relative List Position
	Allowing Other Processing During List and Array Iteration

	Using Other List and Array Expressions
	Accessing List or Array Elements by Index
	Performing Computations over Sets of Elements
	Testing for List Membership
	Obtaining the Number of List Elements
	Finding the Length of an Array

	Accessing Lists or Arrays That are Object Attributes
	Changing Attribute List and Array Elements

	Copying Lists and Arrays
	g2-list-sequence
	g2-array-sequence

	Representing Sparse Arrays
	Representing Matrixes with Arrays
	Using System Procedures with Lists, Arrays, and Matrixes
	The List and Array Classes
	Creating Subclasses of Lists and Arrays
	Class-Specific Attributes

	Describing Lists and Arrays

	Hash Tables and Priority Queues
	Introduction
	Hash-Table Class
	Hidden Attributes
	Application Programmer’s Interface
	Example: Hash Tables

	Priority-Queue Class
	Hidden Attributes
	Application Programmer’s Interface
	Example: Priority Queue

	Connections
	Introduction
	Properties of Connections
	Controlling Connection Caching
	Connecting to Objects
	Creating a Connection
	Connecting Objects

	Using Connections
	Drawing Orthogonal Connections
	Drawing Diagonal Connections
	Changing Connection Vertices
	Using Connection Arrowheads
	Connecting to Objects without Stubs
	Defining Connectedness
	Disallowing Connections
	Determining the Item Count for Connections
	Deleting Stubs and Connections Interactively
	Deleting Stubs and Connections Programmatically
	Connection Layering

	Using Junction Blocks
	Creating Junction Blocks
	Creating a Junction Block Subclass

	Using Connection Posts
	Creating Connection Posts on Subworkspaces Automatically
	Creating a Connection Post Subclass

	Using Connection Expressions
	Referring to Connected Items
	Referring to Input or Output Stubs
	Referring to Port Names
	Referring to the End of a Connection
	Referring to the Connection Class

	Iterating over Connections
	Using Actions with Connections
	Changing the Stripe-Color
	Creating Transient Connections
	Creating a Connection on One Side of an Object
	Creating a Directional Connection
	Creating a Connection with Vertices
	Creating an Existing Connection Programmatically
	Making a Transient Connection Permanent
	Deleting a Connection

	Detecting Connection and Disconnection Events
	Generic Connection and Disconnection Events
	Direct Connection and Disconnection Events

	System Procedures for Connections
	Functions for Connections
	Checking Connection Information
	Detecting Connectedness

	Describing Connections

	Relations
	Introduction
	Using Relation Definitions and Relations
	Creating a Relation Definition
	Choosing a Relation Name

	Using Permanent Relations
	Understanding How G2 Saves Relations
	Complying to Permanency
	Restoring Permanent Relations

	Specifying the Cardinality of Relations
	Defining an Inverse Relation
	Defining a Symmetric Relation
	Creating a Relation
	Using Conclude to Create Relations
	Example of Creating a Relation between Two Items
	Example of Creating a Relation between an Item and a Class
	Using a Sequence to Conclude a Relation

	Removing a Relation
	Removing Relations by Deleting Items

	Replacing a Relation
	Using the Now Syntax
	Example of Replacing a One-to-One Relation
	Example of Replacing Multiple One-to-One Relations
	Example of Replacing a Many-to-One Relation
	Example of Replacing a One-to-Many Relation

	Invoking Rules Using Relations
	Using Whenever Rules to Detect Relatedness
	Using Whenever Rules to Detect Cessation of Relations
	Invoking Rules When a Relation is Created
	Invoking Rules When a Relation is Deleted
	Invoking Rules That Test Whether a Relation Exists
	Invoking Rules That Refer to Items with Relations
	Invoking Rules That Refer to Variables with Relations

	Working with Transient Items
	Working with Deactivated and Disabled Items

	Updating Relations While a KB is Running
	Updating the First Class and Second Class
	Updating the Type of Relation
	Updating Symmetric Relations
	Updating Relations While Executing Procedures
	Updating a Relation While a Rule is Executing
	Updating a Relation When Saving a KB Snapshot File

	Expressions Involving Relations
	Event Expressions
	Logical Expressions
	Relation Participation Expressions
	Generic Item References

	The Relation Class
	Describing the Items That Participate in a Relation

	Computational Capabilities
	Actions
	Introduction
	Executing Actions
	Executing Actions in Procedures
	Executing Actions in Other Contexts
	Executing Iterative Actions
	Further Information

	Dictionary of Actions
	abort
	activate
	change
	conclude
	create
	deactivate
	delete
	focus
	halt
	hide
	inform
	insert
	invoke
	make
	move
	pause
	post
	print
	remove
	reset
	rotate
	set
	show
	shut down g2
	start
	transfer
	update

	Expressions
	Introduction
	Forming an Expression
	Evaluating Expressions
	Never Obtaining a Value
	Not Obtaining a Value at this Time
	Finding a Type Mismatch

	Determining When Expressions Expire
	Understanding Transactions and Transaction Scopes
	Using Generic Reference Expressions
	Including a Generic Reference Qualifier Expression
	Using Quantifiers
	Embedded Generic Reference Expressions

	Using Class-Qualified Names
	Using Local Names in Expressions
	Implicit Use
	Explicit Use
	Class or Attribute Name Use

	Using Literals
	Using Operators in Expressions
	Using Arithmetic Operators
	Using Logical Operators
	Using Relational Operators
	Producing Fuzzy Truth Values from Relational Operations
	Using the Concatenation Operator

	Producing a Symbol Value
	Referring to a Superior or Inferior Class
	Referring to Items or Values
	Existence of an Item or Value
	There Exists
	Class or Type of Item or Value
	By Generic Reference
	Conditional Evaluation
	Value Expressions
	Current Value of an Expression
	By Iterating Over a Set

	Referring to the Current Time
	Current Subsecond Time
	Current Time by Time Unit
	Current System Time
	Current Day of the Week

	Referring to Specific Items

	Procedures
	Introduction
	Procedure Syntax
	Local Names in Procedures
	Procedure Header Syntax
	Local Declarations Syntax
	Procedure Body Syntax
	Error Handler Syntax
	Comments

	Defining a Procedure
	Compiling a Procedure with Error-Location Information
	Procedure Attributes
	Sample Procedure
	Using Procedures
	Invoking a Procedure
	Passing Arguments to a Procedure
	Using the Procedure Signature Prompts in the Editor
	Accessing Variables in a Procedure
	Memory Management in Procedures
	Allowing Other Processing
	Limiting Procedure Execution Time
	Setting Procedure Priority
	Debugging a Procedure
	Displaying the Invocation Hierarchy of a Procedure
	Inlining a Procedure
	Creating Procedure Invocations
	Aborting a Runaway Procedure
	Expressions for Procedures

	Procedures and Rules
	Dictionary of Procedure Statements
	allow other processing
	assignment (=)
	begin-end
	call
	case
	collect data
	do in parallel
	exit if
	for
	go to
	if-then
	on error
	repeat
	return
	signal
	wait

	Methods
	Introduction
	About Methods
	Methods and Procedures
	The Vessel Example
	Filling Vessels Using Procedures
	Filling Vessels Using Methods
	Encapsulation
	Duplicate Methods
	Inheriting Methods
	Defining Methods

	Designing a Class Hierarchy
	Implementing a Class Hierarchy
	Creating Method Declarations
	Flagging Call Next Method Requirements

	Defining a Method
	Method Attributes

	Describing a Collection of Methods
	Invoking a Method
	Invoking a Method Generically
	Invoking a Method Directly
	Invoking a Superior Method

	Duplicate Methods
	Duplicate and Superior Methods

	Inlining a Method
	Inlining Restrictions
	Declaring a Method as Inlineable
	Recompiling an Inlineable Method
	Testing for an Inlined Method

	Considerations for Multiple Inheritance
	Locking Mechanism for Objects
	Example: Calling a Synchronized Method from a Procedure
	Example: Calling a Synchronized Method from the Same Method
	Detecting and Releasing Deadlocks
	Example: Detecting and Releasing Deadlocks Using an Error Handler
	Example: Detecting and Releasing Deadlocks with No Error Handler

	Rules, Inferencing, and Chaining
	Introduction
	Creating a Rule
	Displaying the Table for a Rule
	Cloning a Rule
	Changing the Font Size of a Rule

	Coding the Text of a Rule
	Coding the Antecedent
	Coding the Consequent

	Kinds of Rules
	If Rules
	Initially Rules
	Unconditionally Rules
	When Rules
	Whenever Rules

	Event Expressions
	Using Whenever Rules
	Event Expressions in Whenever Rules
	Multiple Invocations Result in a Single Firing
	Reducing the Number of Invocations per Firing
	Coalescing Multiple Whenever Rule Invocations
	Whenever Rule Design Requirements
	Possible Event Sequences
	Reporting Every Value

	Specifying the Scope of the Rule
	Creating Specific Rules
	Creating Generic Rules

	Invoking Rules
	Forward Chaining
	Backward Chaining
	Activating the Parent Workspace of a Rule
	Detecting Events
	Scanning Rules
	Focusing on Rules and Invoking Rules by Category

	Debugging Rules
	Debugging and Tracing Rules
	Highlighting Rules

	Understanding Rule Invocation and Execution
	Prioritizing Rules
	Setting the Timeout Interval for a Rule
	Creating and Managing Rule Invocations
	Evaluating the Antecedent
	Executing Actions in the Consequent in Parallel
	Executing Actions in the Consequent Sequentially

	The Rule Class
	Actions That Manipulate Rules
	Expressions That Refer to Rules

	Formulas
	Introduction
	Creating Generic Formulas
	Creating Specific Formulas

	Text Parsing and Manipulation
	Introduction
	G2 Text Manipulation Functions
	G2 Conventions for Manipulating Text
	Ordinary Text Manipulation Functions
	Obtaining Text Length
	Testing for a Substring
	Locating a Substring
	Obtaining a Substring
	Inserting a Substring
	Replacing One Substring with Another
	Deleting a Substring
	Capitalizing Text
	Converting Text to Uppercase
	Converting Text to Lowercase
	Testing for a Quantity

	Regular Expression Syntax
	Character Classes
	Precedence

	Text Functions Using Regular Expressions
	Locating a Substring Using a Regular Expression
	Extracting a Substring Using a Regular Expression
	Replacing a Substring Using a Regular Expression

	Parsing Strings into Tokens
	Specifying the Syntax for Extracting Tokens
	Locating Tokens in a String
	Extracting Tokens from a String

	G2 Character Representation
	Working with Multiple Character Sets

	Working with Text Conversion Styles
	Naming the Conversion Style
	Determining the External Character Set to Use
	Using a Replacement Character
	Specifying the Han-Unification Mode
	Specifying the External Line Separator
	Using a Custom Text Conversion Style
	Using the Default Text Conversion Style

	Character Set Conversion Functions
	Converting Character Codes to Unicode Text
	Converting Text to Unicode Character Codes
	Comparing Text
	Exporting Unicode Text
	Importing Unicode Text
	Determining Unicode Digits
	Determining Lowercase Characters
	Determining Readable Digits
	Determining Readable Digits in Radix
	Determining Titlecase Characters
	Determining Uppercase Characters
	Obtaining a Readable Symbol from Text
	Obtaining a Readable Text
	Converting a Value into a Readable Representation
	Converting Characters to Lowercase
	Converting Characters to Titlecase
	Converting Characters to Uppercase
	Transforming Text for Unicode Comparison
	Transforming Text for G2 4.0 Comparison

	XML Parsing
	Introduction
	Providing the XML Code as Text
	SAX-Parser Class
	SAX Callback Procedure
	Example

	Functions
	Introduction
	Invoking Functions
	Executing Functions
	User-Defined Functions
	Tabular Functions of One Argument
	Naming the Tabular Function
	Sorting the Items in the Table
	Interpolating Function Values
	Adding and Deleting Values and Arguments
	Changing Tabular Functions Programmatically

	System-Defined Functions
	Arithmetic Functions
	Vector Functions
	Attribute Access Functions
	Bitwise Functions
	Call-Function Function
	Character Manipulation Functions
	Connection Functions
	Format-Numeric-Text Function
	Great-Circle-Distance Function
	Quantity Function
	Symbol Function
	Text-to-Symbol Function
	Rgb-Symbol Function
	Text Functions
	Time Functions

	Publish/Subscribe Facility
	Introduction
	Application Programmer’s Interface
	Registering Callbacks Remotely
	Examples
	Example: Subscribing to Attribute Changes
	Example: Deregistering Subscriptions
	Example: Subscribing to Deletion Events
	Example: Subscribing to Workspace Events
	Example: Subscribing to Variable Events
	Example: Subscribing to Custom Events
	Example: Registering Callbacks Remotely Over a Network Interface
	Example: Registering Callbacks Remotely Over a G2 Gateway Bridge

	G2 Graphical Language (G2GL)
	Introduction
	Terms and Concepts
	Creating G2GL Processes
	Using G2GL within the Business Process Management System Module
	Summary of G2GL Activities
	Creating a G2GL Process
	Creating Local and Argument Variables
	G2GL Expressions
	G2GL Statements
	Assigning Values
	Returning Values
	Interacting with G2 Items
	Using Flow-Related Activities
	Defining Scopes and Handlers
	Miscellaneous Activities
	Debugging
	Summary of Differences Between G2GL and BPEL Activities

	Communicating Between G2GL Processes
	Invocation
	BPEL Compliance
	Creating Processes that Communicate
	Handling Message Events
	Handling Faults
	Invoking Web Service Operations
	Example: Credit Rating Partner Processes

	Interacting with G2GL Processes
	Compiling G2GL Processes
	Executing G2GL Processes
	Managing G2GL Process Instances
	Debugging G2GL Processes
	Configuring G2GL
	Exporting G2GL Processes as XML
	Importing G2GL Processes from XML Documents

	User Interface Components
	Buttons
	Introduction
	Types of Buttons
	Subclassing Buttons

	Creating Buttons
	Common Attributes of Buttons
	Providing a Label for the Button
	Representing the Variable or Parameter

	Action Buttons
	Entering the Actions to Execute
	Controlling the Scheduling Priority
	Class-Specific Attributes

	Check Boxes
	Specifying the Activation Value
	Specifying the On and Off Values
	Class-Specific Attributes

	Radio Buttons
	Specifying the Value Upon Activation
	Defining the Selected Value
	Class-Specific Attributes

	Sliders
	Specifying the Activation Value
	Setting the Minimum and Maximum Values
	Specifying When to Update a Value
	Specifying When to Show a Value
	Class-Specific Attributes

	Type-in Boxes
	Specifying the Activation Value
	Specifying the Formatting Style
	Defining the Selection Status
	Specifying Editor Options
	Showing Editor Prompts
	Class-Specific Attributes

	Text Items
	Introduction
	Using Free Text to Label Your KB
	Creating Free Text
	Changing the Color of Free Text
	Changing the Font of Free Text

	Using Text Inserters to Insert Text into the Text Editor
	Creating and Editing a Text Inserter
	Using Text Inserters from the Scrapbook
	Using Text Inserters to Insert Text

	User Menu Choices
	Introduction
	Working with User Menu Choices
	Labelling the Menu Choice
	Defining the Applicable Class
	Controlling When the Menu Choice is Available
	Specifying the Action to Execute
	Specifying the Scheduling Priority
	User Menu Choice Attributes

	External Images
	Introduction
	Supported Graphics Formats
	Working with External Images
	Creating an Image Definition
	Specifying the Name of the Image
	Specifying the Pathname of the Image File
	Using an Image in a KB
	Saving an Image with a KB
	Advantages and Disadvantages
	Omitting the Pathname of an Image Saved with a KB

	Updating an Image in a KB

	Messages
	Introduction
	Using Messages
	Creating a Message
	Creating a New Message Class

	Using Actions with Messages
	Changing the Color Attributes of Message Properties
	Changing the Text of a Message
	Concluding Message Text into a Variable or Parameter
	Creating and Transferring Transient Messages
	Deleting Transient Messages

	Readout Tables, Dials, and Meters
	Introduction
	Working with Displays
	Specifying Tracing and Breakpoints
	Specifying the Display Expression
	Specifying the Update Interval
	Specifying the Display Update after G2 Start-Up
	Defining the Update Priority
	Specifying Simulated Value Display
	Common Attributes of Readout Tables, Dials, and Meters

	Readout Tables
	Digital Clocks
	Specifying the Label to Display
	Specifying the Display Format
	Reading the Current Value
	Class-Specific Attributes of Readout Tables

	Dials and Meters
	Setting the Meter’s Lower Value
	Determining the Meter’s Dial Increment
	Class-Specific Attributes of Dials and Meters

	Freeform Tables
	Introduction
	Creating a Freeform Table
	Specifying the Table Size
	Specifying Default Formats for Table Cells
	Determining the Default Evaluation Settings

	Formatting Freeform Tables
	Expressions for Freeform Table Cells

	Changing Formatting Attributes
	Changing Evaluation Settings
	Entering Evaluation Settings
	Data Seeking Evaluation Settings
	Event-Updating Evaluation Settings
	Scanning Evaluation Settings
	Debugging and Tracing Evaluation Settings
	Scheduling Evaluation Settings
	Other Evaluation Settings

	Changing Freeform Tables Programmatically
	The Freeform Table Class

	Charts
	Introduction
	Using Charts
	Chart Styles
	Specifying the Chart Style
	Sizing a Chart
	Defining the Data Series for the Chart

	Displaying and Updating a Chart
	Using Chart Annotations
	Default Chart Annotations
	Axis Component Attributes
	Chart Component Attributes
	Data Point Component Attributes
	Data Series Component Attributes
	Defining the Line Colors

	Updating Charts Programmatically
	The Chart Class

	Graphs
	Introduction
	Creating a Graph
	Sizing a Graph
	Specifying the Data Window Time Span
	Specifying Numerical Bounds for the Value Axis
	Specifying Graph Scrolling
	Defining the Graph Percentage to Extend
	Specifying Whether Grid Lines are Visible
	Defining the Interval between Tickmarks
	Specifying the Number and Style of Grid Lines
	Defining a Graph’s Background Color
	Specifying the Expression to Display
	Specifying the Graph Label
	Using Grid Lines and Tickmark Labels in Graphs

	Trend Charts
	Introduction
	About Trend Charts
	Compound Attributes
	Accessing Component Subtables
	Selecting Compound-Attribute Value Views
	Changing Compound Attributes
	Using Component References
	Setting Component Defaults

	Configuring Trend Charts
	Creating a Trend Chart
	Sizing a Trend Chart
	Summarizing Trend Chart Attributes

	Configuring Plots
	Defining Where to Obtain History Values
	Specifying the Value Axis for the Plot
	Specifying the Point Format
	Specifying the Connector Format
	Defining the Update Interval
	Specifying the Activation Interval
	Specifying the Update Priority Level
	Specifying Data Seeking Capabilities
	Using Simulated History Values
	Specifying Event Updates
	Defining the Debugging Level
	Entering an Expression
	Summarizing Plot Attributes

	Configuring Value Axes
	Displaying the Value Axis
	Specifying the Value Range
	Specifying Range Limits
	Defining the Range Slack Percentage
	Specifying the Label Frequency
	Displaying Labels as Percentages
	Specifying the Significant Digits for Labels
	Showing Grid Lines
	Adding Extra Grid Lines
	Displaying a Baseline
	Specifying the Baseline Color
	Summarizing Value Axis Attributes

	Configuring the Time Axis
	Defining the Data Window Time Span
	Specifying How Long to Maintain Local History
	Specifying the Last Plot Value
	Updating the Trend Chart Data
	Specifying How Data Scrolls
	Shifting the Data Window
	Displaying Current Real-Time Clock Labels
	Displaying Negative Offset Labels
	Defining the Label Frequency
	Specifying the Label Alignment
	Summarizing Time Axis Attributes

	Configuring Point Formats
	Displaying Markers
	Specifying the Marker Style
	Defining the Marker Frequency
	The Effect of Markers on Trend Chart Drawing
	Summarizing Point Format Attributes

	Configuring Connector Formats
	Displaying Connectors
	Specifying How Connectors are Drawn
	Specifying the Connector Line Width
	Displaying Block Shading
	Summarizing Connector Format Attributes

	Configuring the Trend Chart Format
	Displaying an Outer Border
	Displaying a Data Window Border
	Adding a Trend Chart Legend
	Providing a Trend Chart Title
	Summarizing Trend Chart Format Attributes

	Working with Trend Charts
	Updating Trend Charts
	How Plots are Drawn
	Causes of Redrawing and Reformatting

	System Procedures for Trend Charts
	Trend Chart Attributes Reference

	Windows Menus
	Introduction
	Comparison between Native GMS, Classic GMS, and NMS Menus
	Using Native G2 Menu System (GMS) Menus
	Example: Alternate GMS Menu Bar
	Example: GMS Popup Menu
	Example: GMS Localization
	Example: GMS Dynamic Menus
	Example: GMS Menu Icons
	Example: Built-in G2 Menu

	Using the Native Menu System API
	Using the NMS API to Create Menus and Toolbars
	Examples

	Displaying Classic GMS Menus in Telewindows
	GMS and NMS Menus and the G2 Run State
	Demos
	gms-native-multiple-menubar-demo.kb
	gms-native-large-menu-demo.kb
	gms-native-popup-demo.kb
	gms-native-language-demo.kb
	nmsdemo.kb

	Windows Dialogs
	Introduction
	Running the Dialogs Demo
	Posting Basic Dialogs
	Posting Query Dialogs
	Posting Notification Dialogs
	Posting Delay Notification Dialogs
	Viewing the Source Workspace for Basic Dialogs
	Posting Custom Dialogs
	Viewing the Source Workspace for Custom Dialogs
	Posting Messages to an Alert Queue
	Viewing the Source Workspace for the Alert Queue

	Custom Windows Dialogs
	Introduction
	Posting a Custom Dialog
	Dialog Specification
	Dialog Component Structure
	Example: Posting a Simple Dialog
	Example: Creating Groups of Controls

	Dialog Callbacks
	Response Actions
	Dialog Update Callback
	Example: Dialog Update Callback
	Dialog Dismissed Callback
	Example: Dialog Dismissed Callback
	Generic Dialog Callback
	Example: Generic Dialog Callback

	Modifying a Custom Dialog
	Modify Specification
	Control Actions
	Example: Modifying a Custom Dialog

	Querying a Dialog
	Dialog Controls
	calendar
	check-box
	checkable-list-box
	color-picker
	combo-box
	duration
	full-color-picker
	grid-view
	group
	image
	label
	list-box
	masked-edit
	progress-bar
	push-button
	radio-button
	slider
	spinner
	tab-frame
	tabular-view
	text-box
	time-of-day
	toggle-button
	tree-view-combo-box
	Example: Modifying a Tree-View-Combo-Box
	track-bar
	workspace
	Summary of Control Values

	Win32 Control Types
	WIN32 Window Style Symbols
	WIN32 Static Control Style Symbols
	WIN32 Edit Style Symbols
	WIN32 Button Style Symbols
	WIN32 Combo-Box Style Symbols
	WIN32 Spinner Style Symbols
	WIN32 Tabular-View Style Symbols

	Windows Views, Panes, and UI Features
	Introduction
	Using Chart Views
	Creating a Simple Chart
	Creating a Simple Bar Chart
	Creating a Simple Chart and Table
	Populating a Chart View
	Displaying Annotations
	Exporting a Chart View
	Printing a Chart View
	Deleting a Chart View
	Example Callback: Chart View

	Using HTML Views
	Creating an HTML View
	Going to a Web Page
	Destroying an HTML View
	Example Callback: HTML View

	Using HTML Help
	Displaying a Topic
	Displaying the Table of Contents
	Displaying the Index
	Displaying Popup Help

	Using Property Grid
	Using Shortcut Bars
	Creating a Shortcut Bar
	Using the Listbar Style
	Displaying Arbitrary Views in a Listbar Style Shortcut Bar
	Example Callback: Shortcut Bar
	Interacting with Items in the Shortcut Bar
	Changing the Icon Size
	Disabling and Enabling a Shortcut Bar
	Clearing a Shortcut Bar
	Destroying a Shortcut Bar

	Using Tree Views
	Creating a Tree View
	Creating the Tree View as a Dialog Control
	Populating a Tree View
	Showing and Hiding a Tree View
	Selecting Items in a Tree View
	Clearing a Tree View
	Destroying a Tree View
	Example Callback: Tree View

	Using Status Bars
	Using Workspace Views
	Using Tabbed MDI Mode

	Editors and Facilities
	The Text Editor
	Introduction
	Text Editor Features
	Opening the Text Editor
	Setting the Minimum Width of the Editing Area
	Configuring Editor Menu and Button Options

	Entering Text
	Entering Text within the Text Editor
	Entering Text by Selecting Visible Text
	Entering a Class Name
	Using Text Editor Procedure and Function Signature Prompting
	Undoing and Redoing the Last Edit
	Correcting Errors in the Editor
	Ending the Editing Session

	Using the Search Facility
	Using the Scrollable Text Editor
	Using the Clipboard and Scrapbook
	Interacting with the Scrapbook Directly
	Controlling the Amount of Text in the Scrapbook

	Performing Other Edit Operations
	Cutting/Pasting between G2 and Other Applications
	Using the Clipboard for Text Exchange
	Displaying Unicode Characters

	Using Unicode and Special Characters
	Entering Unicode Character Codes
	Entering Special Characters

	Keystroke Commands
	Displaying Help
	Moving the Cursor
	Cutting, Copying, and Pasting Text
	Selecting Text
	Deleting Text
	Inserting Tabs and Line Breaks
	Controlling the Editing Session
	Inserting Prompts by using the Keyboard

	Text Editor Buttons

	The Icon Editor and Icon Management
	Introduction
	Composition of an Icon
	Starting the Icon Editor
	Parts of the Icon Editor
	Layers Pad
	Icon Viewer
	Layer Indicators
	Other Indicators
	Drawing Buttons
	Command Buttons

	Defining Icons
	Starting an Icon Definition
	Controlling Icon Size and Shape
	Controlling Icon Viewer Magnification
	Working with Layers
	Specifying Colors

	Creating Graphics
	Drawing Points
	Drawing Lines
	Drawing Segmented Lines
	Drawing Arcs
	Drawing Rectangles
	Drawing Circles
	Drawing Polygons
	Toggling Filled and Outlined Graphics
	Deleting Graphics
	Moving Graphics
	Reshaping Graphics

	Defining Text Components
	Applying a Stipple Pattern
	Stippled Header
	Stippled-Area Elements
	Displaying and Printing Stippled Icons

	Programmatic Access to Stipples
	Stipples in the Icon Editor
	Including Externally Created Images
	Image Size and Icon Size
	Image Position

	Defining Regions
	Creating Groups
	Saving and Canceling Changes
	Tips for Working with Icons
	Editing Icons Textually
	Icon Description Language Example
	Icon Description Language Grammar
	Using the Icon and Text Editors Together

	Specifying an Icon Background Layer
	Specifying a Background Image
	Specifying a Background Color

	Animated Icons
	Defining and Using Icon Variables
	Specifying Graphical Positions with Icon Variables
	Specifying Text Components with Icon Variables
	Specifying Image Components with Icon Variables
	Specifying Locations with Expressions
	Manual Layer Positioning and Icon Variables
	Errors in Icon Variable Specifications

	Animating Icons
	Changing Width and Height
	Referencing Icon Variables
	Replacing Icon Variable Values
	Replacing Icon Variable Text
	Merging Icon Variable Values
	Conveniently Merging New and Default Values

	The Inspect Facility
	Introduction
	Using the Inspect Facility
	Interacting with Items on the Inspect Workspace

	Showing Items on a Workspace
	Syntax
	Showing Items and Classes

	Showing Items with Unsaved Permanent Changes
	Showing the Workspace Hierarchy
	Showing the Class Hierarchy
	Showing the Module Hierarchy
	Showing Procedure Caller and Calling Hierarchies
	Showing the Procedure Invocation Hierarchy
	Showing Method Definition Hierarchies

	Writing Items to a File
	Syntax
	Writing Items
	Writing a Class Hierarchy

	Locating Items in Your KB
	Displaying Item Tables
	Syntax
	Determining How to Display the Table
	Specifying Which Attributes to Display in the Table
	Interacting with the Table

	Replacing Text in Items
	Syntax
	Replacing Text
	Replacing Text That is Not Grammatically Correct

	Highlighting Text
	Checking for Consistent Modularization
	Recompiling Items
	Syntax

	Filtering Classes of Items
	Filtering Items Based on a Truth-Value Expression
	Filtering Items That Contain Specific Text
	Filtering Items That Contain Notes
	Filtering Items Based on the Item Status
	Filtering Items Based on the Value of an Attribute
	Filtering Items Based on Their Category or Focal Class
	Filtering Items Based on Their Workspace
	Filtering Items Based on Their Module
	Filtering Items That Do Not Meet Specified Criteria

	Version Control
	Inspect Command History (Enterprise only)

	Natural Language Facilities
	Introduction
	Using G2 Fonts
	Using the Natural Language Facilities
	Setting the Current Language
	Setting a Default Language for a G2 Session
	Setting a Language for the Current Window
	Supporting Multiple Languages in a KB

	Localizing Menu Choices and G2 Facilities
	Using Language Translations for Localization
	Specifying a Context
	Localizing the Text and Icon Editor Buttons
	Localizing the Login Dialog

	Using European Languages
	Available Translations

	Using the Japanese, Korean, Chinese, and Thai Language Facilities
	Using Windows Character-Input Methods
	Specifying a Han Character-Style Preference
	Using the Japanese Language Facilities
	Using the Korean Language Facilities
	Using the Chinese Language Facilities
	Using the Thai Language Facilities

	Using the Russian Language Facilities

	G2 Character Support
	Introduction
	Unicode Character Support
	Non-Unicode Character Support

	Defining the Gensym Character Set
	Subset of ASCII Character Set and Special Characters
	Other Standard Character Sets

	Using Escape Characters
	Using the ~ Escape Character
	Using the @ Escape Character
	Using the \ Escape Character

	Encoding ASCII Characters and Special Characters
	Encoding a Tab Character

	Encoding Japanese Characters
	Encoding Korean Characters
	Encoding Russian Characters
	Translating from the Gensym Character Set

	Debugging and Optimization
	Error Handling
	Introduction
	Superseded Error Handling Techniques
	G2 Error Handling Concepts
	G2 Error Classes
	Defining an Error Handler
	Handling Errors in a Procedure
	Obtaining Source Information From the Error Object
	Synchronous and Asynchronous Error Handling
	Default Handler Example
	Block Error Handler Example

	Error Object Memory Management
	Reusing Error Objects
	Handling Non-Procedural Errors
	Signaling Errors in a Procedure
	Signaling the Default Error Handler
	Signalling a Block Error Handler

	Shadowing the Default Error Handler
	Creating a User-Defined Default Error Handler

	Mixing Error Handling Techniques

	Debugging and Tracing
	Introduction
	Displaying Error and Warning Messages
	Obtaining Procedure Source-Code Error Location Information
	Controlling the Creation of Error-Location Information
	Obtaining Error-Location Information from the Logbook
	Obtaining Error-Location Information from the Error Object
	Procedure Statements That Divert Error Location
	Go-to-Source-Code Errors

	Displaying Trace Messages
	Saving Tracing Data to a File
	Specifying Breakpoints and Tracing
	Using Dynamic Breakpoints
	Setting Dynamic Breakpoints in the Client
	Setting Dynamic Breakpoints in the Server

	Stepping Through Procedure Source Code
	Stepping Through Procedure Source Code
	Removing Tracing and Breakpoints
	Showing Disassembled Code
	Obtaining Information from Abort Workspaces
	Writing Logbook Messages to a Log File

	Explanation Facilities
	Introduction
	Example KB in the Demos Directory
	Enabling the Explanation Facilities
	Displaying Current Chaining and Rule Invocation
	Statically Displaying One-Level of Chaining for a Variable
	Dynamically Displaying Backward Chaining for a Variable
	Dynamically Displaying Generic Rule Invocations for an Object
	Dynamically Displaying the Invocations of a Rule
	Delaying Dynamic Display Updates

	Displaying Explanation Trees of Cached Chaining and Rule Invocation Knowledge
	Caching Explanation Data
	Creating Explanation Items
	Displaying Explanations
	Understanding Explanation Trees
	Deleting Explanations

	Profiling and KB Performance
	Introduction
	Profiling the Execution of Your KB
	Techniques for Profiling
	Understanding the Profiling Process
	Identifying Resource Requirements for Profiling
	Using System Procedures for Profiling
	Collecting Profile Data
	Creating a Copy of the Collected Profile Data in G2
	Identifying the Contents of a System-Profile- Information
	Profiling Executable Items and Activities
	Resetting Profile Data in G2
	Identifying Your Profiling Strategy
	Reporting the Contents of a System-Profile- Information
	Analyzing Profiling Data

	Using Compilation Configurations
	Stability Configurations
	Declaring the Configurations
	Understanding Compiled Attributes
	Validating References at Run-Time
	Understanding Compilation Dependencies
	Declaring Procedures and Methods as Inlineable
	Declaring Items as Stable-Hierarchy
	Declaring Items Stable-for-Dependent-Compilations
	Declaring Items Independent-for-All-Compilations
	Changing Items That Have Compilation Configurations

	G2-Meters
	Introduction
	Working with G2-Meters
	Enabling and Disabling G2 Meter Service
	Specifying the Meter Lag Time
	Creating G2-Meters
	Disabling and Enabling Individual G2-Meters
	Interpreting G2-Meters That Measure Memory
	G2-Meter and Operating System Measurements
	Approximations in Memory Meter Readings

	Types of G2-Meters
	Instance-Creation-Count-as-Float
	Memory-Size
	Memory-Usage
	Memory-Available
	Region-N-Memory-Size
	Region-N-Memory-Usage
	Region-N-Memory-Available
	Clock-Tick-Length
	Maximum-Clock-Tick-Length
	Percent-Run-Time
	Simulator-Time-Lag
	Priority-N-Scheduler-Time-Lag

	Memory Management
	Introduction
	Managing KB Data Memory
	G2 and System Services
	Determining System Adequacy

	G2, RAM, and Virtual Memory
	Determining RAM Requirements

	Introduction to G2 Memory Management
	Memory Management Problems
	Insufficient Memory Allocation
	Unlimited Memory Consumption

	Memory Management During Development
	G2 Memory Regions
	Measuring G2 Memory Usage
	Generating the Maximum Memory Allocation
	Measuring the Maximum Memory Allocation

	Determining Region 1 and Region 2 Memory Requirements
	Excess Memory Preallocation
	Safety Factors
	Allocating Less Than the Default

	Restricting Region 3 Memory
	Specifying G2 Memory Allocation
	Specifying Memory in the G2 Command Line
	Specifying Memory with UNIX Environment Variables
	Specifying Memory with Windows Environment Variables

	Causes of Unbounded Memory Requirements
	Unnecessary Retention of Storage
	Failure to Delete Transient Items

	Correcting Unbounded Memory Requirements
	Checking Region 1 Memory Increases
	Checking Region 2 Memory Increases
	If All Else Fails

	Task Scheduling
	Introduction
	The Main Processing Cycle
	Ticking the G2 Clock
	Major Events in the Processing Cycle

	The G2 Scheduler
	Wait States
	Task Scheduling
	Procedural versus Rule-Based Tasks
	Default Task Priorities
	Optimizing Task Scheduling

	Application Deployment
	Package Preparation
	Introduction
	Preparing a KB for Customer Distribution
	Saving a Copy of the Source KB
	Entering Package Preparation Mode

	Text Stripping Items
	Removing KB Change Logging and Version Information
	Making Workspaces Proprietary
	Creating a Proprietary KB
	Creating and Configuring Proprietary Items
	Completing Proprietary Workspaces

	Distributing a Proprietary Application Package

	Licensing and Authorization
	Introduction
	G2 Licensing
	G2 License Types
	G2 License Options
	Finding License Types and Options in a KB

	G2 Authorization and the g2.ok File
	How G2 Locates the g2.ok File
	Description of the g2.ok File
	How G2 Uses the g2.ok File

	Authorizing Users at a Secure Site
	How G2 Uses a Secure g2.ok File
	Secure G2 OK File Syntax
	Version Element
	User Name and Password Syntax
	Secure G2 OK File Example
	Adding User Elements to the Authorization File Interactively
	Specifying a Password in a G2 Authorization File
	Updating the g2.ok File
	Changing User Passwords Interactively
	Localizing the G2 Password Change Dialog

	Telewindows Licensing Structure
	Floating Telewindows
	Dedicated Telewindows

	Simulating License Types

	Networking and Interfacing
	Network Security
	Introduction
	Determining the Level of Network Security
	Defining Network Security for a KB
	Using Configuration Statements for Network Access
	Allowing or Prohibiting Connect Access

	Secure Communication and Authentication (SSL)
	Introduction
	Encrypting Communication between G2 and Telewindows
	Encrypting Communication between G2 and G2 Gateway
	Connecting to Sockets with SSL Security

	Telewindows Support
	Introduction
	Accepting a Connection from a Telewindows Process
	Displaying the Telewindow
	Connecting with a G2 that is Not Secure
	Connecting with a Secure G2
	Logging Login Activities
	Accepting a Password
	Associating the Telewindow with a G2-Window Item
	Establishing a Window Style for Your Telewindows Process

	Logging Out from a Secure G2
	Closing a Telewindows Connection
	Rerouting Telewindows Connections
	Rerouting a Telewindows Session to a Secure G2
	Using System Procedures
	Using G2 Window Attributes
	Applications that Reroute Telewindows Connections

	G2-to-G2 Interface
	Introduction
	Using the G2-to-G2 Interface to Exchange Data
	Using the G2-to-G2 Interface
	Creating Data Interface Objects
	Naming the Interface Object
	Identifying Attributes
	Setting the Warning Message Level
	Defining the Connection Details
	Setting the Interface Timeout Interval
	Obtaining the Current Connection Status
	Starting the G2 Processes
	Activating Data Interface Objects
	The G2-to-G2-Data-Interface Class
	Creating Data Interface Subclasses

	Using Remote Data Service
	Creating a G2-to-G2 Variable
	Examples of Remote Data Service

	Using Remote Procedure Calls
	Creating and Declaring a Remote Procedure
	Using an Alternative Procedure Name
	Invoking Remote Procedures

	Value and Item Passing Arguments and Return Types for RPCs
	Considerations for Item Passing

	Value Passing
	Configuring the KB for Value Passing
	Example of Passing an Integer Value
	Example of Passing a Structure Value

	Passing an Item as a Network Handle
	Configuring the KB for Item Passing as a Network Handle
	Example of Obtaining a Network Handle
	Example of Passing an Item as a Handle

	Passing Variables and Parameters
	Passing a Variable or Parameter as a Copy or Handle
	Passing the Current Value of a Variable or Parameter

	Passing User- and System-Defined Classes
	Configuring the KB for Passing an Item with Attributes
	Passing a Copy of any Item
	Including and Excluding Attributes
	Passing an Item Including User-Defined Attributes
	Passing an Item Excluding User-Defined Attributes
	Passing Attributes with Object Values
	Passing an Item with System-Defined Attributes
	Passing Both User- and System-Defined Attributes
	Passing an Item with Attributes and a Handle
	Specifying One or More Remaining Arguments
	Passing Network Handles as the Class in RPCs
	Passing UUIDs Referring to Items in RPCs

	G2 Gateway
	Introduction
	Using G2 Gateway to Exchange Data
	Using GSI Interface Objects
	Creating a GSI Interface Object
	Locating GSI Interface Objects on Activatable Subworkspaces

	Creating GSI Variables
	Specifying the GSI Interface Name
	Determining the Status of the Variable

	Using GSI Message Servers

	Interfacing with COM Applications
	Introduction
	Using the G2Gateway Control
	Managing G2 Items
	Using the WorkspaceView ActiveX Control

	Interfacing with Java Applications
	Introduction
	Ui-Client-Interface
	Ui-Client-Item and Ui-Client-Session

	Interfacing with Web Services
	Introduction
	Web Services
	Web Service Messages
	Importing Web Service Descriptions
	Invoking Web Service Operations
	Invoking Web Service Operations from G2GL

	HTTP
	Listening for HTTP Requests
	Sending a Web Request

	SOAP
	Sending a SOAP Request

	Interfacing with TCP/IP Sockets
	Introduction
	TCP/IP Socket Communication
	Socket I/O

	Foreign Functions
	Introduction
	Foreign Functions Examples
	Creating a Sample Foreign Image
	Calling the Sample Foreign Functions

	Using Foreign Functions
	Creating a Foreign Function Template File
	C and C++ Data Types and Character Conversion

	Using the Overlay Utility through the Makefile
	Completing the Makefile Global Variables
	Running the Makefile

	Starting and Connecting to the Foreign Image
	Starting the Foreign Image as an External Process
	Connecting to an External Process Foreign Image
	Starting a Foreign Image from within G2
	Connecting to a Foreign Image with a G2-Init File

	Declaring a Foreign Function in a KB
	Providing the Name of the C Function
	Setting the Timeout Interval
	Handling Possible Name Collisions

	Using a Foreign Function
	Disconnecting from the External Foreign Function

	Windows Services
	Introduction
	Running GService
	Examples
	Examples of Using GService with a Bridge Process
	Examples of Using GService with a G2 Process

	Appendixes
	Launching a G2 Process
	Introduction
	Starting the G2 Process
	Writing Standard Output Messages to a Log File
	Writing Network I/O Tracing Messages to a File
	Using an Initialization File
	Coding an Initialization File

	Using Command-Line Options
	Supported Command-Line Characters
	Using Environment Variables

	Dictionary of Command-Line Options
	background
	cert
	cjk-language
	default-language
	display
	do-not-catch-aborts
	exit-on-abort
	fonts
	fullscreen
	g2passwdexe
	geometry
	height
	help
	icon
	init
	init-string
	kb
	kfepindex, kfepkojin, and kfepmain
	language
	local-window
	log
	magnification
	manually-resolving-conflicts
	module-map
	module-search-path
	name
	netinfo
	network
	never-start
	no-backing-store
	no-log
	no-tray
	no-window
	ok
	password
	private-colormap
	regserver
	resolution
	rgn1lmt
	rgn2lmt
	rgn3lmt
	screenlock
	secure
	start
	tcpipexact
	tcpport
	ui
	unregserver
	user-mode
	user-name
	v11ok
	verbose
	width
	window
	window-style
	x-magnification and y-magnification
	x-resolution and y-resolution

	Reserved Symbols
	Introduction
	List of Reserved Words
	Reserved Words in the G2 Language
	Reserved Ordinary System-Defined Attributes
	Reserved Hidden System-Defined Attributes

	Generating a List of System-Defined Attributes

	Mouse Gestures, Key Bindings, and Shortcut Keys
	Introduction
	Mouse Gestures for Selection
	Mouse Gestures for Interacting with Selections
	Mouse Gestures for Interacting with Workspaces
	Key Bindings for Scrolling Workspace Views
	General Key Bindings
	General Shortcut Keys
	Shortcut Keys for Workspaces
	Changes from Earlier G2 Versions

	Syntax Conventions
	Introduction
	Syntax Notation
	User-Specified Terms
	Value Expression Terms
	Literal Value Terms
	Item Expression Terms
	Attribute Reference Terms
	Item Name Terms
	Class Name Terms
	Attribute Name Terms
	Other Expression Terms
	Other Literal Terms

	G2 KBs and GIF Files
	Introduction
	Demonstration KBs
	Sample KBs
	Tutorial KBs
	Utility KBs
	GIF Files

	Superseded Practices
	Introduction
	Attribute Files
	Drawing Modes
	Unscheduled Drawing
	XOR Drawing Mode

	G2 File Interface (GFI)
	G2 Simulator
	Icon Position and Size Attributes
	OLE Drag and Drop

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

