SymCure

User’s Guide
Version 5.1 Rev. 0

A MODEL-BASED
APPROACH

FOR FAULT

MANAGEMENT

SymCure User’s Guide, Version 5.1 Rev. 0
July 2018

The information in this publication is subject to change without notice and does not represent a
commitment by Gensym Corporation.

Although this software has been extensively tested, Gensym cannot guarantee error-free
performance in all applications. Accordingly, use of the software is at the customer’s sole risk.

Copyright (c) 1985-2018 Gensym Corporation

All rights reserved. No part of this document may be reproduced, stored in a retrieval system,
translated, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of Gensym Corporation.

Gensym®, G2®, Optegrity®, and ReThink® are registered trademarks of Gensym Corporation.

NeurOn-Line™, Dynamic Scheduling™ G2 Real-Time Expert System™, G2 ActiveXLink™, G2
BeanBuilder™, G2 CORBALink™, G2 Diagnostic Assistant™, G2 Gateway™, G2 GUIDE™,
G2GL™, G2 JavaLink™, G2 ProTools™, GDA™, GFI™, GSI™, ICP™, Integrity™, and SymCure™
are trademarks of Gensym Corporation.

Telewindows is a trademark or registered trademark of Microsoft Corporation in the United States
and/ or other countries. Telewindows is used by Gensym Corporation under license from owner.

This software is based in part on the work of the Independent JPEG Group.

Copyright (c) 1998-2002 Daniel Veillard. All Rights Reserved.

SCOR® is a registered trademark of PRTM.

License for Scintilla and SciTE, Copyright 1998-2003 by Neil Hodgson, All Rights Reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/).

All other products or services mentioned in this document are identified by the trademarks or
service marks of their respective companies or organizations, and Gensym Corporation disclaims
any responsibility for specifying which marks are owned by which companies or organizations.

Gensym Corporation

52 Second Avenue

Burlington, MA 01803 USA

Telephone: (781) 265-7100

Fax: (781) 265-7101 Part Number: DOC100-510

Contents

Chapter 1

Chapter 2

Preface xi

About this Guide xi
Audience xii

Conventions xii

Related Documentation xiv

Customer Support Services xvi

Introduction to SymCure 1
What is SymCure? 2

Fault Management 2

Features 3

Benefits 4

Terms and Concepts 5

Event Propagation 7

Causal Models 8

Guidelines for Building a SymCure Application 9
Prerequisite Information 9
Creating Domain Maps 10
Creating Generic Fault Models 11
Debugging and Analyzing Generic Fault Models 12
Configuring the SymCure Application 12
Testing the SymCure Application 12

Architecture of a SymCure Application 13

Getting Started 15
Introduction 15

Creating a SymCure Application 16
Setting up the Application 17
Creating Generic Fault Models 18

Running the Application 19
Configuring Initialization Parameters 19

Running the SymCure Demos 19

Chapter3 SymCure Modeling Language 21
Introduction 21

Introduction to SymCure Event Propagation 23
SymCure Event Logic 24

Generic Events 26
OR-AND Event 27
AND-AND Event 31
N/M-AND Event 33
IF-AND Event 37
OR-N/M Event 39
N/M-N/M Event 42
OR-OR Event 45

Chapter4 Creating Generic Fault Models 49
Introduction 50

Elements of a Generic Fault Model 50
Prerequisites 51
Diagnostic Knowledge 51
Generic Events 51
Fault Model Folders and Generic Event Views 52
Generic Tests and Repair Actions 52

Creating Fault Model Folders 53
Creating and Configuring Generic Fault Model Folders 53
Creating a Fault Model Hierarchy 55
Asserting the Target Class 56
Searching for Generic Fault Models 56

Creating Generic Events 57
Creating and Connecting Generic Events 58
Configuring General Properties of Generic Events 60
Configuring User-Defined Procedures for Generic Events 62
Controlling the Size of the Specific Fault Model 64
Configuring Operator Messages for Generic Events 66
Describing When an Event Occurs 70
Configuring Generic OR-AND, AND-AND, and OR-OR Events 71
Configuring Generic N/M-AND Events 71
Configuring Generic IF-AND Events 72
Configuring Generic OR-N/M Events 73

Configuring Generic N/M-N/M Events 73

Converting Generic Event Logic 74

Going to Generic Event-Detection Diagrams 76
Showing Detailed Explanations of Generic Events 76
Searching for Generic Events 77

Creating Generic Event Views 78
Using Generic Event Views to Bridge Events in Separate Fault Model
Folders 78
Using Generic Event Views in the Same Fault Model Folder 80
Going to the Associated Generic Event 81
Showing Detailed Explanations of Generic Event Views 82

Configuring Causal Connections 83

Built-In Propagation Relations 84

Configuring Causal Connections by using a Built-In Propagation
Relation 85

Configuring Causal Connections by using a User-Defined Propagation
Relation 89

Configuring Virtual Propagation Relations 90

Configuring Propagation Delays 91

Showing Detailed Explanations of Causal Connections 99

Creating Generic External Actions 99
Creating the Activation Procedure 100
Running Tests Manually 101
Scheduling External Actions 102
Types of Enabling Transitions 102
Types of External Actions 103
Creating and Configuring Generic External Actions 104
Configuring Operator Messages for Generic Actions 107
Customizing the Scheduling of External Actions 109
Example: Generic Repair Action 110
Going to Generic Event-Detection Diagrams 112
Showing Detailed Explanations of Generic Actions 113
Searching for Generic Actions 113

Associating Mutually Exclusive Events 114
Asserting NOT Relations between Generic Events 116

Compiling a Generic Fault Model 117
Compiling a Fault Model Folder 118
Viewing Errors 120
Viewing Warnings 122

Exporting and Importing Generic Fault Models 123

Chapter5 Running SymCure Applications 125
Introduction 126

SymCure’s Diagnostic Reasoning 127
Specific Events and Actions 127
Specific Fault Models 128
Diagnosis Managers 129

Simulating Specific Events 129
Example: Simulating Events 130
Event Propagation Algorithm 133

Interacting with Specific Events and Actions through Diagnostic Console
Browsers 137
Displaying the Browsers 138
Toolbar Buttons 140
Showing the Event Target 142
Showing Event Properties 143
Sorting Events and Actions 143
Locking the Browser 143
Filtering Events and Actions 144
Interacting with Alarms and Root Causes 145
Interacting with External Actions 149

Interacting with Specific Fault Models 151
Showing Specific Fault Models 151
Showing Specific Event Properties 152
Associating User-Defined Attributes with Specific Events 153
Showing Detailed Explanations of Specific Events 154
Setting a Specific Event Value 156
Showing the Generic Event for a Specific Event 156
Showing the Specific Event Target 157
Showing the Event Summary 158
Showing the Causal Model 158
Showing the Specific Event History 158
Showing Specific Action Properties 159
Showing the Generic Action for a Specific Action 161
Running a Specific Action 161
Showing the Properties of the Diagnosis Manager 162
Showing Diagnostic Console Browsers for Individual Diagnosis
Managers 162
Refreshing Specific Fault Models 164
Deleting All Diagnoses 164

Learning Generic Models from Specific Events 165
Detecting Chattering Events 166
Exporting and Importing Specific Fault Models 167

Vi

Chapter 6

Chapter 7

Chapter 8

Debugging SymCure Fault Models 169
Introduction 169

Enabling Debugging 170

Debugging Modes 171

Accessing the Debugger 171
The Control Panel 172
The Debug Display Workspace 177

Debugging with Sequential and Parallel Mode 177
Sequential Mode 178
Parallel Mode 182

Notes 184

Root Cause Episode Management 185
Introduction 185

Motivation 187
Diagnostic Introspection 187
Effective Repair and Maintenance 187
Episodes are a Critical Requirement for Service Management 188

SymCure Root Cause Episode Management 188
Definitions 189
Enabling Root Cause Episode Management 189
Displaying the Root Cause Episode Manager 189
Displaying Root Cause Episodes 190
Charting Root Cause Duration and Frequency Distributions 193
Saving Root Cause Episodes 194

Configuring SymCure Applications 195
Introduction 196

Loading Fault Model Configuration Parameters 196
Specific Fault Model Creation 197

Diagnosis Timing 198

Event Unchanged Procedure 199

Priority 200

Specific Action Scheduling 201

Specific Fault Model Display 201

Debugging 201

Vii

Chattering Events 202

Root Cause Episode Management 202
User-Defined Methods 203

Default Browsers 205

Archiving 206

Chapter9 Application Programmer’s Interface 207

Introduction 208

Sending Events 209
Sending Events 210
Diagnosing Events 210
Predicting Events 211
Updating Events 212
Sending User-Defined Data 212

Root Causes 214

Diagnosis Managers 216
Getting and Deleting the Diagnosis Manager 216
Getting Specific Events 217
Getting Specific Actions 218
Getting Diagnosis Information 219
Re-Creating Event and Action Sequences for a Diagnosis Manager 220
Performing a Topological Sort 222

Generic and Specific Events 224
Getting Generic Event Information 224
Getting Specific Event Information 226
Getting Specific Event Message Information 228
Getting the State of Specific Events 229
Getting Fraction of Causes and Effects 231
Getting and Setting User-Defined Data 232
Getting Explanations and Evidence for Specific Events 233
Getting Specific Actions of Specific Events 236
Upgrading Message Attributes 237

External Actions 238
Getting Generic Actions 239
Getting Specific Actions and Information 239
Getting Action Execution Information 240
Getting Specific Action Message Information 241
Getting Explanations for Actions 242
Setting Enabling Transitions 242
Sending Action Results 243

Fault Model Folders 243

viii

Debugging 244

Root Cause Episode Management 244
Charting 246

Run-Time Behavior 247

Minimal Candidates 247

Subclassing SymCure Events and Actions 250
Generic Event Subclasses 250
Generic Event Display Subclasses 250
Specific Event Display Subclasses 251
Generic Action Subclasses 252
Generic Action Display Subclasses 252
Specific Action Display Subclasses 253

Exporting and Importing Fault Models 254
Object lookup 256

Index 257

Preface

Describes this guide and the conventions that it uses.

About this Guide xi
Audience xii

Conventions xii

Related Documentation xiv

Customer Support Services xvi

About this Guide

SymCure is a development and deployment environment for building and
implementing fault management applications that automate real-time fault
isolation, testing, repair, and availability management tasks of large-scale
operations.

This guide describes:

* SymCure’s features and benefits, terms and concepts, and how to build a
SymCure model, in general.

* How to begin using SymCure.

* SymCure’s modeling language, which provides a wide range of event logic
for representing causal diagrams.

* How to build and compile generic fault models, which include generic events,
event views, and external actions.

* How to run SymCure applications and to interact with alarms and root causes
through browsers.

* How to debug specific fault models.

Xi

* How to use root cause episode management.

* Parameters that you can configure at startup to customize SymCure’s default
behavior.

* The SymCure Application Programmer’s Interface (API), which provides
programmatic access to SymCure.

Audience

This guide is written for developers who want to build fault management
applications. Developers should have some familiarity with fault management
and with the G2 environment, including the G2 Developers’ Utilities, or with

Optegrity or Integrity.

Conventions

Xii

This guide uses the following typographic conventions and conventions for

defining system procedures.
Typographic

Convention Examples

Description

g2-window, g2-window-1,
ws-top-level, sys-mod

User-defined and system-defined
G2 class names, instance names,
workspace names, and

module names

history-keeping-spec, temperature

User-defined and system-defined
G2 attribute names

true, 1.234, ok, “Burlington, MA”

G2 attribute values and values
specified or viewed through
dialogs

Main Menu > Start
KB Workspace > New Object
create subworkspace

Start Procedure

G2 menu choices and button labels

conclude that the x of y ...

Text of G2 procedures, methods,
functions, formulas, and
expressions

Note

Convention Examples

Description

Conventions

new-argument

User-specified values in
syntax descriptions

text-string

Return values of G2 procedures
and methods in syntax
descriptions

File Name, OK, Apply, Cancel,
General, Edit Scroll Area

GUIDE and native dialog fields,
button labels, tabs, and titles

File > Save GMS and native menu choices
Properties
workspace Glossary terms

c:\Program Files\Gensym\

Windows pathnames

/usr/gensym/g2/kbs

UNIX pathnames

spreadsh.kb

File names

g2 -kb top.kb

Operating system commands

public void main()
gsi start

Java, C and all other external code

Syntax conventions are fully described in the G2 Reference Manual.

Procedure Signatures

A procedure signature is a complete syntactic summary of a procedure or
method. A procedure signature shows values supplied by the user in italics, and
the value (if any) returned by the procedure underlined. Each value is followed by

its type:

g2-clone-and-transfer-objects

(list: class item-list, to-workspace: class kb-workspace,
delta-x: integer, delta-y: integer)

-> transferred-items: g2-list

xiii

Related Documentation

SymCure is designed to be used within the G2 environment, or within Optegrity
or Integrity.

Optegrity

® Optegrity Heater Tutorial

* Optegrity User’s Guide

* SymCure User’s Guide

Integrity

* Integrity User’s Guide
* Integrity Utilities Guide
* SymCure User’s Guide

G2 Core Technology

® G2 Bundle Release Notes

* Getting Started with G2 Tutorials

® G2 Reference Manual

® G2 Language Reference Card

* G2 Developer’s Guide

® G2 System Procedures Reference Manual
® G2 System Procedures Reference Card

® G2 Class Reference Manual

* Telewindows User’s Guide

* G2 Gateway Bridge Developer’s Guide

Xiv

Related Documentation

G2 Utilities

G2 ProTools User’s Guide

G2 Foundation Resources User’s Guide

G2 Menu System User’s Guide

G2 XL Spreadsheet User’s Guide

G2 Dynamic Displays User’s Guide

G2 Developer’s Interface User’s Guide

G2 OnLine Documentation Developer’s Guide
G2 OnLine Documentation User’s Guide

G2 GUIDE User’s Guide

G2 GUIDE/UIL Procedures Reference Manual

G2 Developers’ Utilities

Business Process Management System User’s Guide
Business Rules Management System User’s Guide
G2 Reporting Engine User’s Guide

G2 Web User’s Guide

G2 Event and Data Processing User’s Guide

G2 Run-Time Library User’s Guide

G2 Event Manager User’s Guide

G2 Dialog Utility User’s Guide

G2 Data Source Manager User’s Guide

G2 Data Point Manager User’s Guide

G2 Engineering Unit Conversion User’s Guide
G2 Error Handling Foundation User’s Guide

G2 Relation Browser User’s Guide

Bridges and External Systems

G2 ActiveXLink User’s Guide
G2 CORBALink User’s Guide
G2 Database Bridge User’s Guide
G2-ODBC Bridge Release Notes

XV

® G2-Oracle Bridge Release Notes

® (G2-Sybase Bridge Release Notes

® G2 JMail Bridge User’s Guide

® G2 Java Socket Manager User’s Guide
* G2 JMSLink User’s Guide

® G2-OPC Client Bridge User’s Guide
® G2-PI Bridge User’s Guide

* G2-SNMP Bridge User’s Guide

® G2-HLA Bridge User’s Guide

* G2 WebLink User’s Guide

G2 JavalLink

* G2 JavaLink User’s Guide

* G2 DownloadInterfaces User’s Guide
® G2 Bean Builder User’s Guide

G2 Diagnostic Assistant
* GDA User’s Guide

® GDA Reference Manual

®* GDA API Reference

Customer Support Services

XVi

You can obtain help with this or any Gensym product from Gensym Customer
Support. Help is available online, by telephone, by fax, and by email.

To obtain customer support online:
= Access G2 HelpLink at www.gensym-support . com.

You will be asked to log in to an existing account or create a new account if
necessary. G2 HelpLink allows you to:

® Register your question with Customer Support by creating an Issue.
* Query, link to, and review existing issues.
® Share issues with other users in your group.

* Query for Bugs, Suggestions, and Resolutions.

Customer Support Services

To obtain customer support by telephone, fax, or email:

= Use the following numbers and addresses:

Americas Europe, Middle-East, Africa (EMEA)
Phone (781) 265-7301 +31-71-5682622
Fax (781) 265-7255 +31-71-5682621
Email service@gensym.com service-ema@gensym.com

Xvii

Xviii

Introduction to
SymCure

Provides an overview of fault management, describes SymCure’s features and
benefits, defines concepts and terms, describes event propagation logic, provides
guidelines for building a generic fault model, and describes the architecture of a
SymCure application.

What is SymCure? 2

Fault Management 2

Features 3

Benefits 4

Terms and Concepts 5

Event Propagation 7

Causal Models 8

Guidelines for Building a SymCure Application 9
Architecture of a SymCure Application 13

gensym.

What is SymCure?

Fault

SymCaure is a development and deployment environment for building and
implementing fault management applications that automate real-time fault
isolation, testing, repair, and availability management tasks of large-scale
operations.

Management

Fault management plays a vital role across a broad spectrum of commercial and
industrial applications, ranging from service level management and
telecommunications network management in the Information Technology (IT)
world, to abnormal condition management in manufacturing, chemical, oil and
gas industries. The size and complexity of these applications often necessitates
automated expert-system support for fault management. A small number of root
cause problems in IT communication networks often result in a large number of
messages and alarms that human operators cannot handle in real time. Failure to
identify and repair the root cause problems results in increased system downtime
and poor service levels. Abnormal conditions in manufacturing and processing
plants may result in unplanned shutdowns, equipment damage, safety hazards,
reduced productivity, and poor product quality.

Fault management across these industries shares some common goals, such as
improving application availability and utilization, reducing operator overload,
and minimizing operation costs. To achieve these goals, it is necessary to develop
fault management tools with the following capabilities:

* Symptom monitoring. Symptoms are manifestations of underlying root causes
and must be monitored to detect the occurrence of problems as soon as they
happen.

* Diagnosis. Diagnosis identifies the root causes of known symptoms. Diagnosis
is also often referred to as fault isolation. Some studies have shown that 80%
of the fault management effort is spent in identifying root causes after the
manifestation of symptoms.

® Correlation. Correlation is the process of recognizing and organizing groups of
events that are causally related to each other for diagnostic inference and
presentation to system operators. Usually such events share one or more root
causes.

* Prediction. Early prediction of the impacts of underlying root causes before the
effects are manifested is critical for proactive maintenance, safety, and optimal
system utilization.

Features

® Testing. In large systemes, it is impractical and sometimes impossible to
monitor every variable. Instead, key observable variables are monitored to
generate symptom events. Diagnostic inference typically identifies a set of
suspected root causes. Additional variables can then be examined by running
associated tests to complete the diagnosis process.

* Automated recovery. Identifying and automating recovery procedures allows
for growth in equipment, processes, and services, without increasing the
supervisory burden on system operators.

* Notification. Operators must be notified of the presence of root causes and
their potential impacts. Raw alarms, which can overload an operator with
redundant information, must be replaced with concise diagnostic summaries
of root causes and their impacts.

® Postmortem. Information from the diagnostic problem solving is fed back to
the fault management system for historic record keeping and proactive fault
management in the future.

Features

SymCure addresses a number of fault management functions, including
diagnosis, correlation, prediction, testing, automated recovery, and notification. It
provides a powerful object-oriented, model-based framework to specify diagnosis
knowledge in the form of a persistent, generic (class-based), graphical, fault
model library. It performs diagnosis and prediction by combining the fault
models with specific domain information and incoming events at run time. It
detects and resolves multiple system failures, and notifies the results of its
diagnostic reasoning to external systems by using messages and other suitable
means. SymCure’s methodology is domain independent. It has been used for
fault management in diverse applications across different industries, including
abnormal condition management for heaters and service management for
enterprise wide software systems.

SymCure provides the following capabilities:

® Automates fault and availability management of operations in domains as
diverse as communications networks, enterprise-wide software applications,
and manufacturing process plants.

® Performs online event correlation and interactive diagnosis to address the full
life cycle of problem identification, based on symptoms, root-cause analysis,
diagnostic testing, fault isolation, and recovery.

® Provides a powerful model-based framework consisting of generic, class-
based fault models, which are tied to an object-oriented domain
representation and scalable algorithms.

® Understands the complex relationships between each object, process,
and event.

Anticipates and diagnoses problems, based on this understanding.

Requires minimal on-site customization for practical deployment. SymCure
automatically accounts for configuration changes in equipment, topology, or
operating modes in managed operations. Minimal customization eliminates
the need for expensive reconfigurations of the fault management applications,
enabling application developers to build reusable solutions that implement
fault and availability management capabilities quickly and reliably.

Accepts events and data from external sources.

Provides a graphical language for automating labor- or reasoning-intensive
tasks, such as root cause analysis, testing, fault mitigation, response, and
recovery.

Performs impact analysis to predict the effects of problems, and to measure
the potential business impacts, for example, the impact on service level
agreements in the networking industry or the impact of shutdowns in the
manufacturing industry. SymCure can perform offline “what-if” simulation
of failures to rapidly identify any potentially harmful effects of suspected root
causes in a system.

Guides operators through testing and recovery.

Provides built-in configurable message browsers for system operators and
developers.

Benefits

The depth and breadth of SymCure’s causal reasoning capability; its ability to
automate time-consuming, labor-intensive, and reasoning-intensive fault
management tasks; and its ability to factor in the business impact of each event
make SymCure the most powerful solution for managing complex fault
management applications. SymCure’s major benefits include:

Rapid diagnosis and response to problems.
Increased system availability.
Optimization of personnel and system resources.

Comprehensive impact analyses for more accurate contingency planning and
other system-related business modeling.

Improved service and equipment availability.

Terms and Concepts

Terms and Concepts

Term or Concept

Definition

SymCure

The name of the product, which addresses the full life cycle
of root cause diagnosis, including monitoring, fault isolation,
impact analysis, diagnostic testing, and recovery from
failure. The name is derived from Symptom Cure.

correlation

The process of recognizing that a group of events are
causally related.

diagnosis

The process of identifying the root causes of a group of
correlated events.

event

A logical assertion about a domain object, which is used to
indicate the presence or absence of a problem. An event can
represent a symptom, that is, an effect, or it can represent an
underlying failure, that is, a root cause.

Events can be observable or they can be introduced in the
system purely for convenience in modeling to represent
effects that cannot be seen directly but are required for fault
propagation and root-cause analysis.

For typical diagnostic management problems, SymCure
must respond to an event with one or more of the following
actions:

* Investigate it in further detail by looking for its causes.
® Predict its impact.
® Reportit.

* Initiate one or more tests to obtain a true or false value
for the event.

* Initiate recovery actions to “repair” the target object of
the event.

test

Events can be asynchronous, which means they can arrive
without notice at any time. It is, however, possible to request
a value for an event. Typically, the value of an event is
determined by executing a test that yields its value. A test
can be arbitrarily complex. After a test is initiated, it can
return a value for the event asynchronously.

Term or Concept

Definition

root cause An event that is an underlying cause for manifested alarms
and other events. A root cause cannot itself be caused by any
other event.

alarm An event that is a manifestation of an underlying root cause,

which is considered to be important enough to notify
operators.

upstream propagation

The propagation of event values from effects to their root
causes. Upstream propagation is required for root cause
analysis, that is, fault isolation.

downstream
propagation

The propagation of event values from causes to their effects.
Downstream propagation is required for impact prediction.

context-dependent
propagation

Event propagation that depends on the state of the domain,
for example, propagation through a valve or a switch might
depend on its position.

generic fault model

Generic causal relations among generic events defined over a
set of classes. Events defined on different domain objects
propagate to each other when the domain objects are
connected or related in some way. A generic fault model for
a class of domain objects defines the propagation of failures
within its instances and to domain objects of other classes via
generic domain relationships. Such fault models constitute a
generic “library”, independent of any specific collection of
domain objects and relationships actually present at any
particular site. Generic fault models are created by domain
experts at development time.

domain map

An object-oriented model of a managed system, which can
represent physical equipment and abstract entities, such as
sensors, controllers, services, and software applications. The
domain map includes domain object classes and their
instances representing the managed entities, their
connectivity, containment, and other relationships. The
domain map is an input to SymCure.

Event Propagation

Term or Concept Definition

specific fault model Describes the propagation of events within and across

specific domain objects. SymCure constructs a specific fault
model at run time, starting from any incoming event, by
combining the generic fault models and the domain map of
the managed system.

mutually exclusive Set of events defined on the same target object such that only

events

one of them can be true at any given time. In other words, if
any event in a set of mutually exclusive events is true, all the
other events in that set must be false. It is possible for all the
events to be false at the same time.

Event Propagation

An event can have the following values:

True — The event is known to have occurred.
False — The event is known not to have occurred.
Unknown —It is not known whether the event has occurred.

Suspect—It is suspected that the event may be true.

The status of an event indicates the justification for the event’s value. The status
can be:

Specified — The value of the event is observed.
Upstream inferred — The value of the event is inferred from one of its effects.

Downstream inferred — The value of the event is inferred from one of its
causes.

SymCure uses event propagation to compute the value and status of an event
during diagnosis and impact analysis. Propagation takes place in two directions:

Upstream propagation refers to the inference process that determines the
values of upstream events from their downstream effects. SymCure uses
upstream propagation to diagnose root causes from observed symptoms.

Downstream propagation is the inference process that predicts the values of
downstream events from their upstream causes. SymCure uses downstream
propagation to predict effects and invoke downstream tests.

Causal Models

Note

A fault model describes the relationship between events in the form of a

causal directed graph or causal model. Two events X and Y are causally related
when there is a directed edge between them; when the edge is directed from X to
Y, we say that X causes Y. A directed path is a collection of one or more edges.
When a directed path leads from X to Y, then X is upstream of Y, and Y is
downstream of X.

SymCure’s module name is cdg, which stands for causal directed graph.

The following figure illustrates the most basic forms of event propagation for the
simplest kind of event. In this causal directed graph, E1, E2, and E3 represent
events. The edges between them specify that E1 causes E2 and E3. If E2 (or E3)
becomes true, then SymCure propagates a value of true to E1, then concludes that
E3 (or E2) is also true. In general, if E1 is true, then both E2 and E3 must be true.

In this causal directed graph, E4 or E5 cause E6. If either E4 or E5 is true, SymCure
concludes that E6 is true. If E6 becomes true, SymCure concludes that at least one
of E4 and E5 must be true, or that both are suspect. If E6 becomes false, both E4
and E5 must be false.

O @

N

Guidelines for Building a SymCure Application

In addition to the simple event propagation logic described in these diagrams,
SymCure supports other forms of event propagation logic that allow you to
describe complex relationships between events.

Guidelines for Building a SymCure Application

Building a SymCure application consists of the following high-level steps:

Obtain prerequisite information about your domain.
Develop the domain map.

Create the generic fault models.

Perform debugging and analysis of the generic fault models.

Configure the SymCure application.

The following sections explain these steps in more detail.

Prerequisite Information

Prior to developing your SymCure application, you need to identify essential
information about the domain, including;:

Major components in the domain.

The crucial problems faced in the domain and the specific scenarios that
result.

How these problems are detected and how their unique root cause(s) are
currently determined.

Corrective actions taken in response to the scenarios.

Interfaces that might be needed between SymCure and external systems that
send in events.

Identify the information you need by identifying and interviewing key resources
that are knowledgeable about the domain. Examples of key resources include
operations staff, engineers, systems administrators, facilities support personnel,
and managers concerned about specific problems relating to the domain and its
operation.

10

Creating Domain Maps

The next step in the design of a SymCure application is to develop the specific
domain model, which involves these steps:

1 Obtain a thorough understanding of the domain, including its functionality,
operation, and current management.

2 Use this information to create class and relation definitions, which reflect the
desired level of detail to be used in the domain map.

3 Create a domain model, which requires:

a Creating the object definitions and relationships to be represented in the
domain map.

b Constructing the domain map.

4 Obtain external data through an interface.

Creating Class Definitions and Relations

You create the domain map by creating instances of class definitions that inherit
from the grtl-domain-object class. This class provides all the mechanisms required
for creating intelligent domain objects that know how to respond to SymCure
events.

To determine which managed object classes to represent in the domain model,
you need to:

® Identify the major entities of the domain you are modeling.
® Determine the level of detail for representing the domain entities.

* Identify the relationships between domain entities that are important for fault
propagation.

For example, in a manufacturing environment, the domain model might
represent a manufacturing process, where the domain objects might include
heaters, pumps, valves, and sensors. Similarly, in a network environment, the
domain model might represent a company’s computer network, where the
domain objects might include hardware, network infrastructure, operating
system software, and other software applications running on the system.

As a guideline for determining the level of detail, consider representing only
those domain entities with events of interest. This practice limits the
representation of domain entities to those that significantly participate in the fault
analysis scenarios.

Guidelines for Building a SymCure Application

Creating the Domain Map

To create a domain map, first you must create class definitions and relationship
definitions between domain object classes that describe your process.

Once you have defined the domain object classes and relationships, you construct
the domain map by creating instances of the class definitions and by relating
those instances through containment, connectivity, and other G2 relations.

Obtaining External Data

Finally, you must obtain data from the external system that the domain map
represents. You obtain external data by configuring interfaces that communicate
with external systems via a bridge.

Creating Generic Fault Models

Each domain object class defined in the domain model should have an associated
generic fault model, which describes the failure propagation within an object of
that class and to other related objects. To define a generic fault model for a
domain object class, you need to identify:

* Root cause events.

* Events that are caused by the root causes.

® Causal relations between pairs of events.

SymCure typically responds to symptoms of problems by initiating:
* Root cause analysis.

* Tests for suspected root causes.

® Repair actions on detected root causes.

Tests

You might need to define test objects that are associated with certain events.
These tests can include observations that the operator performs on request, and a
set of actions and analysis of the measured data.

11

12

Repair Actions

You can associate repair actions with events that SymCure can invoke to recover
from the occurrence of the event.

Debugging and Analyzing Generic Fault Models

As you build generic fault models for a SymCure application, you must compile
the models to eliminate any modeling and configuration errors.

For detailed descriptions of these generic fault model debugging and analysis
features, see Creating Generic Fault Models.

Configuring the SymCure Application

User-defined configurations for a SymCure application include parameters that:
® Control the size and rate for building the specific fault model at run time.

* Influence when the diagnosis algorithm terminates.

® Determine when older diagnostic problems are deleted from memory.

® Determine how SymCure handles events that have not been changed over
long periods of time.

® Specify user-defined methods to be executed at various points of
SymCure processing.

For more information, see Configuring SymCure Applications.

Testing the SymCure Application

To ensure that your SymCure application and the related generic fault models
reflect the correct fault propagation behavior, they must be reviewed, tested, and
verified against various fault occurrence and diagnosis scenarios.

To help debug your SymCure application, you can use the SymCure debugger to
build a specific fault model and step through the specific events.

For information related to testing your generic fault models, see Running
SymCure Applications.

For information on run-time debugging, see Debugging SymCure Fault Models.

Architecture of a SymCure Application

Architecture of a SymCure Application

This diagram shows the architecture of a SymCure application:

Inputs Diagnostic Processing Outputs

Domain map Root causes

Incoming
events

Run-time fault
management

Specific fault
model

Diagnostic knowledge

Fault management
procedures

Generic fault
model

Diagnostic knowledge consists of generic fault models that allow SymCure to
perform fault diagnosis. Fault management procedures built around generic fault
models specify the procedural knowledge required for testing diagnostic
processes and running corrective procedures to recover from failures. Incoming
specific events trigger SymCure’s run time fault management and diagnostic
reasoning. During diagnosis, SymCure performs the following tasks:

Builds a specific fault model, using the generic fault model and domain map
specification for the managed system as inputs.

Correlates incoming events by propagating their values across the specific
fault model.

Identifies root causes and predicts alarms.

Integrates diagnostic knowledge and intelligent testing by selecting and
executing appropriate tests to resolve suspected root causes.

When SymCure has determined the root cause(s), it runs repair actions to
recover from known faults or it presents such procedures to the operator for
manual execution.

13

14

SymCure provides a run-time diagnostic console that enables you to view the
current status of diagnosis and run user-initiated tests and repair actions. For
detailed information on run-time processing, see Running SymCure Applications.

Getting Started

Describes the steps for setting up, creating, running, and configuring a
SymCure application, and describes how to load the SymCure demos.

Introduction 15

Creating a SymCure Application 16
Setting up the Application 17

Creating Generic Fault Models 18
Running the Application 19

Configuring Initialization Parameters 19

Running the SymCure Demos 19

gensym.

Introduction

SymCure is distributed as a set of modularized KB files, with symcure.kb as the
top-level module. Typically, you create and run SymCure applications within the
Optegrity or Integrity environment. You can also create and run SymCure
applications within any G2 application, independent of Optegrity and Integrity.

Before you can use SymCure for diagnosis, you must create a domain map, which
defines the specific domain objects that SymCure uses at run-time when it
constructs specific fault models. You must also set up interfaces to provide
external data from the managed system to G2 and SymCure. You can then use the
external data to generate SymCure events.

15

If you are running SymCure within a stand-alone G2 environment, you can use
GSl interfaces to import external data, G2 class definitions to create domain object
classes, and G2 procedures to monitor data and generate events. You can use the
SymCure Application Programmer’s Interface (API) to generate SymCure events
and obtain diagnosis information at run time.

If you are running SymCure within the Optegrity and Integrity environments,
you can use the built-in modules that these products provide to facilitate building
domain maps, managing data sources, and monitoring data and generating
events.

This chapter assumes you are familiar with the environment in which you will
run SymCure: G2, Optegrity, or Integrity.

SymCaure is distributed as part of the G2 Developers” Utilities (g21), which is part
of the G2 Bundle.

SymCure is packaged with two simple demos in a single KB, cdg-modguide . kb,
which you can run to become familiar with SymCure.

Creating a SymCure Application

16

We recommend that you create a new top-level module that requires the top-level
SymCure module.

To create a SymCure application:

1 Start the environment in which you plan to run SymCure, typically, Optegrity
or Integrity.

Optegrity and Integrity provide all the SymCure KBs that you need to build a
SymCure application.

If you are running in a pure G2 environment, merge the KB named
g2i\kbs\symcure.kb into your application and make it a required module of
your module.

2 Create a new top-level module with a prefix that you will use to identify all
items in your application, for example, myapp.

3 Configure the new module to require symcure.
For details, see the G2 Reference Manual.

4 Save your application to a file name that matches the top-level module name,
for example, myapp . kb.

Setting up the Application

Setting up the Application

This section describes, at a very high level, how to set up your application so it
can use SymCure for diagnostic reasoning. The techniques you use depend on the
environment in which you are running SymCure.

To set up the application

1

Create a domain map.

A domain map consists of domain objects that are subclasses of the
grtl-domain-object class. If you are running SymCure within an Optegrity
environment, the top-level domain object class is opt-domain-object-with-key.

You can create your own domain object classes by subclassing this class, or
you can use the built-in classes that your environment provides for this
purpose. When using SymCure within Integrity, you can also import domain
maps.

For background information, see Creating Domain Maps.

Create one or more interfaces to obtain external data.

If you are running within a G2 environment, you create your own
gsi-interface objects to import data through a bridge.

If you are running Optegrity, you can use the Gensym Data Point
Management (GDPM) module to manage external data sources. This module
automatically configures external datapoints from CSV files and links those
datapoints with internal datapoints within the domain map.

Set up a system that monitors external data and generates SymCure events,
based on the data.

If you are running within a stand-alone G2 environment, you can use
procedures and methods to monitor external data and generate SymCure
events. To generate events programmatically, you can use the SymCure API
procedures, which are described in Application Programmer’s Interface.

If you are running Optegrity, you can use the Gensym Event and Data
Processing (GEDP) module to monitor intelligent domain object datapoints,
which obtain their values from the monitored system, and generate events,
based on the data. GEDP provides a graphical language for creating event-
detection diagrams.

17

Creating Generic Fault Models

18

Once you have set up the application, you create generic fault models for domain
object classes. These fault models describe causal relationships between events.
The models allow SymCure to diagnose faults, based on observed symptoms, and
to predict effects. The fault models also describe external actions that SymCure
can execute to test its diagnoses and to repair and recover from faults.

SymCure provides a graphical modeling language to create generic fault models.
You clone generic fault model events from a palette and connect them to form a
causal fault model. You create causal fault models within containers called Fault
Model folders.

To display the SymCure palettes:
= Choose View > Toolbox - Fault Models to display these palettes:

: Toolbox - Fault Models X

Fault Model Folder

=

! Toolbox - Fault Models 1 x

User-Defined Procedures and Methods
|

Audit
Diagna. ..

Fault Model
Falder

! Toolbox - Fault Models o x
Generic Events

: Toolbox - Fault Models xx

Generic Actions

O ©

Repair Action Tests Action

Running the Application

For a description of the SymCure modeling language for representing causal
relationships between events, see SymCure Modeling Language.

For details on how to create generic fault models, using generic events and
generic actions, see Creating Generic Fault Models.

Running the Application

Once you have created generic fault models for your domain object classes, you
can run a diagnostic application. Running the application involves monitoring
external data and generating fault model events. When an event is generated,
SymCure creates a specific fault model for specific domain objects, which is
derived from generic fault models defined for domain object classes. The specific
fault model consists of specific events, including alarms and root causes, and
specific actions to run tests and repair faults. You can interact with alarms, root
causes, test actions, and repair actions through various browsers.

SymCure also provides a mechanism for simulating events, which allows you to
test generic fault model logic. For details, see Running SymCure Applications.

Configuring Initialization Parameters

You can configure a number of initialization parameters that affect the behavior
of your application. These include parameters that affect the behavior of
SymCure’s diagnosis algorithm and user-defined procedures that SymCure can
run at various points during diagnosis for auditing purposes.

For details, see Configuring SymCure Applications.

Running the SymCure Demos
SymCure is packaged with two demos, which are available in the
cdg-modguide . kb module:

* SymCure application diagnostics — Diagnoses faults when building a
SymCure application.

* Computer diagnostics — Diagnoses faults in a computer network.

For more information on running the SymCure application diagnostics demo, see
Running SymCure Applications.

To run the SymCure demos:
1 Start G2.

2 Load cdg-modguide.kb, which is located in the g2i\examples directory of
your installation directory.

19

20

3 Choose View > Navigator to view the fault models in the demo application:

Navigator 1 x

Cdg Modguide
F"F" System Models
i Logic
El'ﬁq Diagrose
S Generic Faulk Madels
: 'ﬁ“ Computer Diagnaoskics
- Symcure Madeling
i 'ﬁ“ Unspecified
[Specific Fault Models
F‘.F" Reporks
& Chatts
{2 Object Models
[]—-EF: Swskem Settings

The demo provides two generic fault models, one for computer diagnostics and
the other for SymCure application diagnostics. The generic fault models describe
causal relationships between events and external actions that the model can run
during diagnosis. SymCure creates specific fault models for domain objects at run
time to diagnose faults.

You can also access items in the demo through the cdg-modguide-demo top-level
workspace, which also provides access to domain objects and their associated
class definitions.

This document frequently uses examples from the SymCure application
diagnostics demo.

SymCure
Modeling Language

Describes the SymCure modeling language, which provides graphical generic
events that are used to create fault models in the form of causal directed graphs.

Introduction 21
Introduction to SymCure Event Propagation 23

Generic Events 26
OR-AND Event 27
AND-AND Event 31
N/M-AND Event 33
IF-AND Event 37
OR-N/M Event 39
N/M-N/M Event 42
OR-OR Event 45

gensym.

Introduction

SymCure has been used for diagnosing a wide variety of real world problems
across different industries from telecommunication and satellite networks, to
petroleum refineries. Real world applications often require modeling
sophisticated interactions amongst events and have motivated the development
of SymCure’s powerful causal modeling framework.

21

22

To understand the sophisticated interactions amongst causal relationships
between discrete events, consider the following causal directed graph, which is
composed of root causes F1, F2, and F3, and their corresponding effects S1, S2,
and S3.

Consider the following examples.

Example 1. Assume that F2 is true. Consider the set of causal relations at the
“output” of event F2:

F2->S1
F2 ->S2
F2 ->S53

If these relations are “equal” in every respect, propagation occurs through all
three relations identically, and all three of S1, S2, and S3 must occur. We refer to
this type of causal relationship as AND logic at the output of F2.

In the real world, propagation might not occur uniformly across all pathways of
causal interaction. In the presence of propagation delays, threshold errors, and
noisy sensors, a symptom that is downstream of a root cause is sometimes
incorrectly reported as false when in fact, it should be reported as true, or vice
versa. Thus, it is possible that not all of S1, S2, and S3 will be manifested when F2
is true. This situation motivates an alternative interpretation of causal
propagation that supports OR logic at the output of F2.

Finally, in the real world, the value of an event might depend on the state of the
system rather than on any of the causes of the event. This situation is known as
context dependent propagation logic, referred to as IF logic. An example appears later
in this section. Thus, it is possible that none of S1, S2, and S3 will be manifested
unless certain external conditions are met.

Introduction to SymCure Event Propagation

Example 2. Assume that S1 is true. Consider the set of causal relations at the
“input” of event S1:

F1->S1
F2->S1
F3->51

Suppose there are dependencies among the causal relations. For example, F1 and
F2 and F3 might have to be true for S1 to be true. Such a dependency gives rise to
the notion of AND logic at the input of an event, where the event is true if and only
if all of its inputs are true.

On the other hand, causal relations can also be independent of each other, so the
occurrence of any one of F1 or F2 or F3 may cause S1. This interpretation is known
as OR logic at the input of an event.

In real world scenarios, there can also be partial dependencies among causal
relations, for example, 50% or more of the causes of S1 must become true for S1 to
be true. We characterize this type of causal relationship as fractional event
propagation logic, referred to as N/M logic.

Introduction to SymCure Event Propagation

This section describes some of the basic concepts for event propagation that are
crucial to understanding the behaviors of SymCure events.

At a high level, SymCure performs event propagation in a fault model, as follows:

for any incoming event ¢ do

propagate upstream to causes = all causes of ¢;

propagate downstream to effects = all effects of causes + e;
end for

23

24

The following example illustrates the high level algorithm:

®—'<@/@
@/@
™

In the figure above, suppose that the incoming event is D. In this example:
causes = {A, B, E}
effects = {C, F, H}

Note that the event G is not affected in response to incoming event D.

The values computed for the events depend on SymCure’s event propagation
logic, which is described in detail below.

SymCure Event Logic

Whenever an event e gets a new value, SymCure must propagate that value
upstream and downstream to the causes and effects of the event. This requires the
following computations:

* Based on its propagation logic, its new value and its previous state, e must
compute what values to propose for its inputs and outputs.

* Each cause and effect of e that receives the proposed values from e must
decide whether or not it should accept these changes.

Let’s look at how an event can get a new value. The value of an event can be
obtained by observation. In this document, the observed value for an event is
frequently referred to as an incoming value or a specified value. The following

Introduction to SymCure Event Propagation

table shows how the value of any SymCure event (independent of its propagation
logic) is affected by an observation.

Incoming Value
Old Value
true false suspect
true true false true
false true false suspect
suspect true false suspect
unknown true false suspect

Typically, an observation provides a value of true or false for the event. When the
value of an event is attained by observation, SymCure associates that status
“specified” with the event. SymCure also allows you to specify that an event is
suspect. This is not strictly an observation, but may be useful for diagnostic
reasoning. SymCure ignores values that are specified as unknown because they
do not provide any meaningful information.

A triggering event is any event that causes the propagation of a value to another
event. The value of an event may also be changed by upstream or downstream
propagation as a consequence of a change in a triggering event.

A fundamental principle of causal modeling is that any event, unless it is a root
cause, is a consequence of its causes. This is valid regardless of whether the event
is observed or inferred. A change in the value of a downstream event can only be
explained by changes in one or more of its causes, which can in turn, be traced
back to one or more root causes. This impacts SymCure’s propagation logic in the
following ways:

* In general, when the triggering event is downstream of an event ¢, ¢’s value is
changed by the triggering event. This is captured by AND logic at the output
of the event.

* When the triggering event is upstream of an event ¢, ¢’s value is computed by
analyzing all events that could cause e, as specified by the input logic for e,
that is, OR, AND, N/M, IF.

You can use the following rules of thumb to compute proposed values for the
causes and effects of any event. Keep in mind that these are only guidelines; the
computation of event values depends on a number of factors, such as its
propagation logic, the topology of the fault model in its neighborhood, and the
nature of neighboring events, which may override the rules of thumb.

* If an event has only one unknown cause (input), then if the event is true, we
can conclude that its sole cause is also true. (Events with OR and N/M logic
and multiple effects may be exceptions to this rule.)

25

®* Whenever possible, SymCure tries to reconcile new information with existing
knowledge. Thus, it ignores unknown values in favor of what is already
known about an event. However, existing values are overridden when they
are not consistent with new information.

* In general, SymCure processes an event only when the value of the event
changes. The only time that SymCure will process an event whose value has
not changed is if the status of the event changes to specified.

Generic Events

26

Note

SymCure defines generic event objects that are equipped with powerful causal
propagation logic, which facilitates modeling a wide range of diagnostic
situations. SymCure defines seven different types of generic events, which use
different types of propagation logic to compute their values.

The icons identify the propagation logic that the event uses at the input and
output of the event, as follows:

* Parallel lines (| |) implies OR logic.

* Ampersand (&) implies AND logic.

® Percent (%) implies a fraction or N/M (read as “N out of M”).

* Question mark (?) implies state or context-dependent logic, using IF logic.

Events share common behavior depending on their input and output logic, that is,
N/M-AND, OR-AND, AND-AND, and IF-AND events all use AND logic at the
output, while the N/M-AND and N/M-OR use N/M logic at their input.

Currently, SymCure provides all types of events to avoid harming existing
applications; however future versions might provide just the N/M-N/M event
and the IF-AND event to build models of arbitrary complexity.

OR-AND Event

OR-AND Event

@ An OR-AND event uses OR logic at its input and AND logic at its output. The
value of an OR-AND event is true if one or more of its causes are true.

Note The OR-AND event is the most common event for creating causal models.

In the following example, “Retarded chemical reaction” is caused by one or more
of the upstream events:

¥y Fault model for OR AND tutorial =101 x|

Impure reagent

Impure catalyst Impure product Low ROl

|
|

reaction-chamber reaction-chamber

reaction-chambe

reaction-cha

Amhbient temperature too low Fetarded chemical reaction YWasted reagent

|
i

reaction-chamber reaction-chamber

reaction-chamber

Insufficient rea

reaction-chamber

OR-AND event

27

28

Upstream Propagation

The following table specifies the logic for computing the value of an OR-AND
event when a triggering event downstream of the OR-AND event changes value:

When the value proposed

by the trigger is... Conclude that event is...
true true

false false

suspect suspect

unknown unknown

OR-AND Event

This table describes the rules that propose values for the inputs of an OR-AND
event when the value of the OR-AND event changes during upstream

propagation:
New Value
Old Value
true false suspect unknown
true If there is no true Change all Change all true Change all true
input, but thereisa |inputs to false. |inputs to suspect. |and suspect
single unknown or inputs to
suspect input, unknown.
change it to true.
false If there is only one |Change all Change all inputs |Change all
input, changeitto |inputstofalse. |to suspect. inputs to
true, unknown.
else change all
inputs to suspect.
suspect If there is only one |Change all Change all Change all
input, change itto |inputs to false. [unknown inputs |suspect inputs
true, to suspect. to unknown.
else if there is a
single suspect
input, change it to
true and change all
unknown inputs to
suspect.
unknown If there is a single Change all Change all No change.
unknown, false, or |inputs to false. |[unknown inputs
suspect input, to suspect.
h. it to true,
chahge 1o frue If there are no
else change all unknown and no
unknown inputs to suspect inputs,
suspect. then change all
false inputs to
suspect.

29

30

Downstream Propagation

SymCure computes the value of an OR-AND event during downstream
propagation when a triggering event upstream of the OR-AND event changes
value.

In general, SymCure uses traditional OR logic for computing the value of the
event, as follows:

If there is at least one true input, conclude that the event is true,

Else if there is at least one suspect input, conclude that the event is suspect,
Else if there is at least one unknown input, conclude that the event is
unknown,

Else conclude that the event is false.

There is an exception to the general rule for computing the value of an event
using OR logic during a downstream propagation.

The causal graph shown below illustrates the situation when an OR-AND event
suspends the use of OR logic. Each event in the graph is an OR-AND event and is
shown with a value. Event values that have changed most recently are shown

in italics.

B B B
suspect false false

In this example, initially C becomes true, which causes A and B to be suspect.
When B changes from suspect to false, A is the last remaining suspect event. Thus,
for C to be true, A must be true. Hence, instead of making C suspect according to
the OR logic rule above, SymCure sets A to be true.

AND-AND Event

AND-AND Event

@ An AND-AND event uses AND logic at its input and AND logic at its output. The
= value of an AND-AND event is true if all of its causes are true.

In this example, “Power supply failure” is caused by the conjunction of
“Primary supply failure” and “Backup supply failure”:

AND-AND event

T Fault model for AND AND tutoria ' -10] x|
Primary supply failure

reaction-ch

Paower supply failure Inadequate heating Ambient temperature too low

—— @ |
reaction-chamber reaction-chamber reaction-chamber

reaction-chamber

Upstream Propagation
The following table specifies the logic for computing the value of an AND-AND

event during upstream propagation (same as OR-AND event) when a triggering
event downstream of the OR-AND event changes value:

When the value proposed

by the trigger is... Conclude that the event is...
true true

false false

suspect suspect

unknown unknown

31

This table shows proposed values for the inputs of an AND-AND event when the

value of the AND-AND event changes during upstream propagation:

New Value
Old Value
true false suspect unknown
true Change all If there are any |Change all Change all
inputs to true. |unknown or inputs to inputs to
suspect inputs, |suspect. suspect.
change them to
false,
else change all
true inputs to
suspect.
false Change all Change all Change all false |Change all false
inputs to true. |inputs to false. |and unknown |inputs to
inputs to unknown.
suspect.
suspect Change all Change all Change all Change all
inputs to true. suspect and unknown inputs to
unknown inputs to unknown.
inputs to false. |suspect.
unknown Change all Change all Change all No change.
inputs to true. |inputs to false. |unknown
inputs to
suspect.

32

Downstream Propagation

SymCure computes the value of an AND-AND event during downstream
propagation when a triggering event upstream of the AND-AND event changes

value.

SymCure uses traditional AND Logic for computing the value of the event

as follows:

If every input is true, conclude that the event is true,
Else if there is at least one suspect input and the rest are true, conclude that

the event is suspect,

Else if there is at least one unknown input and the rest are suspect or true,
conclude that the event is unknown,
Else conclude that the event is false.

N/M-AND Event

N/M-AND Event

ZC2

Note

SymCure provides N/M logic at the input of an event, which is a numerical
generalization of OR logic at the input of an event. The value of an N/M event is
true if at least N/M of its causes are true, where N/M is a real number ranging
from 0.0 to 1.0. The N/M AND event uses AND logic at its output.

Consider the case of an IT service provider that uses a number of server objects to
provide a service, for example, data communications and telephony, to its
customers. Typically, individual servers can be shutdown without any significant
impact on the service provided to customers; however, if the number of servers
suffering outages exceeds a certain threshold, the quality of service starts to
deteriorate.

The N/M-AND event is not a probabilistic event, because SymCure only
calculates qualitative truth values (true, false, suspect, or unknown) for an event,
not degrees of confidence.

In the following example, “ISP service outage” becomes true when at least 50% of
the servers that are required-by an ISP service undergo “Outage”. The required-by
relation describes the causal relationship between the ISP service that is
experiencing “ISP service outage” and the servers it relies on that are undergoing
“Outage”. The events in the fault model are generic; at run time, the domain
representation provides SymCure with the number of specific servers required by
a specific service and the number of specific “Outage” events that are true.

propagation relation

fraction

N/M-AND event

¥ Fault model for N/M AND event

=0l

Outage _ |5P service outage
required-hby KOE
Server isp-service

33

34

Upstream Propagation
The following table specifies the logic for computing the value of an N/M AND

event during upstream propagation (same as OR AND event) when a triggering
event downstream of the N/M AND event changes value:

When the value proposed

by the trigger is... Conclude that the event is...
true true

false false

suspect suspect

unknown unknown

N/M-AND Event

The table below describes the rules that propose values for the inputs of an
N/M-AND event when the value of the N/M-AND event changes during
upstream propagation:

New Value
Old Value
true false suspect unknown
true Change all Change all Change all true |Change all true
unknown inputs |true inputs to |inputs to and suspect
to suspect. suspect. suspect. inputs to
unknown.
false If there only one |Change all Change all Change all
input, change it true inputs to |inputs to inputs to
to true, suspect. suspect. unknown.
else change all
inputs to suspect.
suspect If there only one |Change all Change all Change all
input, change it true inputs to |[unknown suspect inputs
to true, suspect. inputs to to unknown.
suspect.
else change all P
unknown inputs
to suspect.
unknown If there is a single |Change all Change all No change.
unknown, false, inputs to false. |[unknown
or suspect input, inputs to
change it to true, suspect.
else change all If there are no
unknown inputs unknown and
to suspect. no suspect
inputs, then
change all false
inputs to
suspect.

35

36

Downstream Propagation

The following rule describes the behavior of an N/M-AND event during
downstream propagation, that is, when the triggering event is upstream of the
N/M-AND event:

If the number of causes that are true/total number of causes >= N/M then the
event is true,

Else if (the number of causes that are true + the number of causes that are
suspect)/total number of causes >= N/M then the event is suspect,

Else if (the number of events that are unknown + the number of events that
are suspect + the number of events that are true)/total number of causes >=
N/M then the event is unknown,

Else the event is false.

Note The N/M-AND does not provide any exceptions to this rule, unlike the exception
case described for the OR-AND event.

IF-AND Event

IF-AND Event

f@H

In rare cases, the value of an event depends on the state of its target object, rather
than on any of the causes of the event. SymCure provides context-dependent
propagation in the form of an IF-AND event. You associate with an IF-AND event
a user-defined procedure that dynamically determines the value of the event. The
state-dependent procedure is invoked each time SymCure attempts to propagate
a value to the event from its causes. The procedure returns a value for the IF-AND
event by examining the state of its target object. The event uses AND logic at its
output.

In the following example, “Outage” on the phone service is a potential cause for
“Violation” on a related service-level-agreement. You represent “Violation” in the
fault model to enable diagnosis of its causes whenever it occurs. However, you
cannot conclude that “Violation” has occurred whenever there is a phone-service
“Outage”. Violations of service level agreements might depend on a number of
factors that are not captured by the fault model, such as the time of the day the
outage occurs, the history of all outages in a corresponding period, and the
duration of the present outage.

IF-AND event

¥ Fault model for IF AND tutorial =10l x|
Cutage
switchboard
Outage Violation
I@rs @A
nhone-service service-level-agreement

cdg_egs-check-sla-status

@ COG_EGS-CHECK-SLA-STATUS

Cahle outage

phone-service

state-dependent procedure

37

38

The only difference between this event and an OR-AND event is as follows:

SymCure does not define the behavior for concluding a value for the event
from its inputs during downstream propagation. This behavior is defined by
the user-defined procedure that will be associated with this event.

SymCure propagates to an IF-AND event whenever any of its upstream events
gets a value, even if the value has not changed. This is required because an
IF-AND event depends not only on its causal events, but on the state of the
managed system. Triggering the event whenever an upstream event gets a new
value ensures that the state-dependent procedure is run each time an event
occurs, regardless of whether the value has changed.

OR-N/M Event

OR-N/M Event

@ The OR-N/M event is a generalization of an OR-OR event. An OR-N/M event is
- true whenever there are at least N/M downstream effects that are true.

In the following example, the fraction defines the behavior of the event
“Centrifuge overloaded”. When the centrifuge of a reaction chamber is
overloaded, it causes above-normal temperature, flow rate, pressure and torque
levels. However, because of noise and sensor errors, the temperature, flow rate,
pressure, and torque symptoms might or might not be manifested. In this model,
as long as at least 50% of its symptoms are true, the event is believed to be true.

OR-N/M event

fraction

Tg Fault model For OR. M;/M {causal) tutorial A - |EI|§|
Temperature ahowe normal

reaction-chamber

Flow rate ahove normal

reaction-chamber

Pressure above normal

reaction-chamber

reaction-chamber

Torgue level above normal

reaction-chamber

39

40

Upstream Propagation

SymCure computes the value of an OR-N/M event during upstream propagation
when a triggering event downstream of the OR-N/M event changes value.

SymCure uses traditional OR Logic for computing the value of the event from its
outputs independently of the value of the triggering event, as follows:

If the number of true outputs/total number of outputs >= N/M, conclude that the
event is true,

Else if (the sum of true and suspect outputs)/total number of outputs >= N/M,
conclude that the event is suspect,

Else if (the sum of true & suspect & unknown outputs)/total number of outputs
>= N/M, conclude that the event is unknown,

Else conclude that the event is false.

The table for proposing values for the inputs of an OR-N/M event during
upstream propagation is identical to that of the OR-AND event.

Downstream Propagation

SymCure computes the value of an OR-N/M event during downstream
propagation when a triggering event upstream of the OR-N/M event changes
value.

SymCure uses the same logic for computing the value of an OR-N/M event
during downstream propagation that is does for an OR-AND event.

Consider the values propagated by an OR-N/M event to its effects when its value
changes:

If Fraction = 1.0, the OR-N/M event behaves like an OR-AND event.
If Fraction = 0.0, the OR-N/M event behaves like an OR-OR event.

If 0 < Fraction < 1.0, the behavior of the OR-N/M event is described by the
table below.

OR-N/M Event

New Value
Old Value
true false suspect unknown
true Change all Change all Change all true |Change all true
unknown true outputs outputs to outputs to
outputs to to suspect. suspect. unknown.
suspect.
false Change all Change all Change all Change all false
outputs to unknown outputs to outputs to
suspect. outputs to suspect. unknown.
false.
suspect Change all No change. Change all No change.
unknown unknown
outputs to outputs to
suspect. suspect.
unknown Change all Change all Change all No change.
outputs to unknown unknown
suspect. outputs to outputs to
false. suspect.

41

N/M-N/M Event

0L

42

The N/M-N/M event is a generalization of all event types, which allows you to
configure the input and output event logic. You can use this event in place of any
of any of these events:

e OR-AND
e AND-AND
* N/M-AND
e ORN/M
e OR-OR

The N/M-N/M event provides two fractions, the Input Fraction and Output
Fraction, whose event logic is configured as follows:

* Input logic:
- Input Fraction = 0.0 -> OR logic
- 0.0 <Input Fraction < 1.0 -> N/M logic
- Input Fraction = 1.0 -> AND logic

* Output logic:
- Output Fraction = 0.0 -> OR logic
- 0.0 < Output Fraction < 1.0 -> N/M logic
- Output Fraction = 1.0 -> AND logic

OR logic at the input (output) implies that if the event is true, at least one of its
causes (effects) must be true; it is possible for some causes (effects) to be false,
while the event is true. When the event with OR logic at the input (output)
becomes true, if there is a single cause (effect), that cause (effect) must also be
true. If there are multiple causes (effects), at least one of them must be true; if
SymCure cannot identify at least one cause (effect) that might be true or suspect, it
treats all causes (effects) as suspect.

AND logic at the input (output) implies that when the event is true, all of its
causes (effects) must be true. AND logic at the output is "all-or-nothing" when an
event is true, i.e,, if a single effect is inferred or observed to be true, both the event
and all other effects must be true. When any of the effects of the event become
false, by applying AND logic, the event itself becomes false; however, this does
not affect the remaining effects of the event, which may continue to be true.

For all event types except the N/M-N/M event, SymCure makes the assumption
that when all of the effects of the event become false, the event itself must also be
false, that is, its underlying root cause must have been fixed. However, there is no
fundamental reason to prefer this assumption over another, for example, a

N/M-N/M Event

propagation delay may preclude the manifestation of any of the effects of the
event.

The N/M-N/M event with output OR logic, that is, the output fraction = 0.0, may
retain a value of true or suspect if its status is "specified" or "downstream
inferred", even when each of its effects is false. To achieve this, the N/M-N/M
event provides an option called Independent Of Effects. If enabled, this option
permits a specified or downstream inferred N/M-N/M event with OR logic to
retain a true or suspect value, even when all its effects are observed or inferred to
be false. By default, this option is disabled.

43

44

In the following example, all the events are N/M-N/M events, which behave
differently, depending on the Input and Output Fractions. For example, the
“Power Failure” event has an Input Fraction of 1 and an Output Fraction of 0,
which means it behaves like an AND-OR event. The “Green giant explosion”
event, on the other hand, has an Input Fraction of 0 and an Output Fraction of 1,
which means it behaves like an OR-AND event.

N/M-N/M event behaves
like an AND-OR event.

Ta MM N/M events =lOl x|

Mo moonlight

reaction-cha

Mo sunlight

reaction-chamber Mo light

reaction-chamhber

Prlmary power supplhy failur

Power failure

reaction-chamb

L

reaction-chamber

No TV

Secondarypow upply failure

reaction-chamber

=
i)

reaction-chamber

Creates Incredible Hulk

reaction-chamber

Calmfcatlon

=
2k

reaction-chamber Green giant ex

Builds indelible bulk

reaction-chamhber

CthFIfCﬁUOﬂ reaction-chamber

=
2

reaction-chamber

N/M-N/M event behaves
like an OR-AND event.

OR-OR Event

OR-OR Event

(i@

Note

An OR-OR event uses OR logic at its output. When the event is true, this
propagation logic allows the event to retain its value even after one or more of its
downstream effects become false, as long as there is at least one downstream
effect that is either suspect or true. Thus, SymCure can model situations where
some of the effects of a true event might not be manifested.

This event is a legacy event that exists for compatibility with older applications.

In the following example, “Build up of dirt” causes “Vibration”, “Increased
Differential Pressure” and “Fouling” in a reaction chamber. Assume that
“Vibration” is not easy to detect. Suppose further that “Build up of dirt”,
“Vibration”, “Increased Differential Pressure”, and “Fouling” are initially
suspect. If “Build up of dirt” is modeled as an OR-AND event, the absence of
“Vibration” could lead SymCure to prematurely conclude that “Build up of dirt”
is no longer true and that the problems that cause “Build up of dirt” have been
fixed. SymCure would then conclude “Increased Differential Pressure” and
“Fouling” to be false, because the event that causes them is false. Using an OR-OR
event for “Build up of dirt” allows SymCure to persist in the belief that “Build up
of dirt” is suspect, as long as “Increased Differential Pressure” and “Fouling” are
suspect. The OR-OR event uses OR logic at its input, thus “Build up of dirt” is
true if any one or both of its causes are true.

OR-OR event

¥y Fault model for OR. OR. tutorial o] 4|
Vibration

Unclean interiar

. reaction-chamber
reaction-chamber

Build up of di Increased Differential Pressure
>I@
reaction-charhgr reaction-chamber

Fouling

High concentration of dirt in reagents

@ reaction-chamber
reaction-cham Impure reagent

reaction-chamber

45

46

Upstream Propagation

SymCure computes the value of an OR-OR event during upstream propagation
when a triggering event downstream of the OR-OR event changes value.

SymCure uses traditional OR Logic for computing the value of the event from its
outputs independently of the value of the triggering event as follows:

If there is at least one true output, conclude that the event is true,

Else if there is at least one suspect output, conclude that the event is suspect,
Else if there is at least one unknown output, conclude that the event is
unknown,

Else conclude that the event is false.

This is the only difference between an OR-OR event and an OR-AND event. The
rest of the behavior of the OR-OR event is identical to the OR-AND event. This
behavior allows an OR-OR event to retain a value of true or suspect despite one or
more of its outputs being false which distinguishes it from an OR-AND event

Comparing OR-N/M and OR-OR Events

Setting the Fraction of an OR-N/M event to 0% models genuine OR logic
behavior, while the OR-OR event is an expedient mixture of OR and AND logic.
For this reason, we recommend that you use an OR-N/M event with a Fraction of
0 as opposed to an OR-OR event. The following description captures the
differences between the two events for upstream and downstream propagation:

® Upstream propagation

Suppose that the OR-OR or OR-N/M event with a Fraction of 0.0 is true, and
that one or more of its effects are true. Now suppose that one by one, its effects
become false. As long as at least one of its effects is true, the event remains
true. This behavior is consistent with OR logic at its output.

The OR-N/M event behaves differently from the OR-OR event in one other
respect during upstream propagation. With the OR-N/M event, it is possible
for the event to be true and for all of its effects to be suspect, as described in
“Downstream Propagation” below. Now, suppose that one after the other, its
effects become false, until there is just one suspect effect remaining. At this
point, SymCure concludes that the last remaining effect is true. This behavior
is identical to SymCure’s OR logic at the input of an OR-AND event, where
the last unknown cause becomes true when all other causes have been ruled
out. If the last effect now also becomes false, then at that point, SymCure
concludes that the OR-N/M event is false.

OR-OR Event

Downstream propagation

When an OR-N/M event has a Fraction of 0.0 becomes specified as true or
downstream inferred as true, applying OR logic at its output, any one of its
effects must be true. Therefore, SymCure tries to propagate suspect to each
effect.

When an OR-OR event becomes specified as true or downstream inferred as
true, applying AND logic, SymCure tries to make all the effects of the event
true, even if some are already true. In other words, the OR-OR event behaves
like an OR-AND event when its value is specified as true or downstream
inferred as true.

47

48

Creating Generic
Fault Models

Describes how to build a generic fault model, using fault model folders, generic
events, event views, and external actions.

Introduction 50

Elements of a Generic Fault Model 50

Creating Fault Model Folders 53

Creating Generic Events 57

Creating Generic Event Views 78

Configuring Causal Connections 83

Creating Generic External Actions 99

Associating Mutually Exclusive Events 114
Asserting NOT Relations between Generic Events 116
Compiling a Generic Fault Model 117

Exporting and Importing Generic Fault Models 123

gensym.

49

Introduction

To build a generic fault model, you need to:
* Understand elements that make up a generic fault model.
® Create a SymCure fault model folder.

* Create and configure the appropriate events and event views in the generic
fault model.

® Create and configure causal connections between the events and event views
in the generic fault model.

* Compile the generic fault model.

This chapter describes the SymCure modeling language used to create, configure,
and compile generic fault models, and to create tests and repair actions, configure
them, and relate them to generic events.

This chapter uses examples from the cdg-modguide . kb application. For more
information, see Running the SymCure Demos.

Elements of a Generic Fault Model

50

A generic fault model defines the propagation of the effects of root causes for a
particular class of domain object. Generic fault models can be inherited from
parent classes in a class hierarchy in accordance with object-oriented
programming principles.

Generic fault models are independent of any specific collection of domain objects
and relationships that exist at a particular site. Thus, diagnosis knowledge is
impervious to changes in system topology and operating modes. This allows you
to reuse generic fault models across different applications.

You can develop generic fault models from “first principles” models, expert
knowledge, or Failure Mode Effects Analysis (FMEA) results.

Elements of a Generic Fault Model

Prerequisites

Before developing class-level generic fault models, you must:

Create an appropriate domain-object class hierarchy for the diagnostic
problem.

Understand the nature of root causes, their effects, tests, and recovery
methods most suited to that application. Typically, this involves answering
the following questions:

* What are the classes of objects and types of faults for which you want to
receive messages and the simplest set of classes that you can use to
reasonably model propagation of failures?

* How do domain objects fail?

* What are the most common failures?

* What are the most significant or costly failures?

* What are the symptoms and tests you would see in these failures?

® From the top 20 or so messages that operators get, can you determine
additional failure modes?

* How are events related to each other?

* What are the specific relationship definitions required for the above
associations, for example, is-upstream-of, is-downstream-of?

Diagnostic Knowledge

SymCure integrates two kinds of diagnostic knowledge for fault management:

Fault propagation knowledge comprises generic fault models in the form of
causal relations among generic events defined over generic classes. This
knowledge is used for diagnosis, correlation, and impact prediction.

Procedural knowledge supplements the fault models by specifying processes for
responding to diagnostic conclusions and predictions. It includes test
mechanisms for resolving suspected root causes and repair actions for
recovering from identified, predicted, and suspected failures.

Generic Events

A generic fault model for a class of domain objects defines the propagation of
events within its instances and to instances of other classes via generic domain
relationships. Events can represent:

Observable symptoms.

Alarms that are used to alert operators of potential problems.

51

52

® Underlying failures, that is, root causes of the manifested alarms.

* Events that are neither alarms nor root causes but that exist for modeling
convenience only.

Fault Model Folders and Generic Event Views

Generic fault models are stored in containers called fault model folders. You can
distribute generic events for a class definition across different fault model folders,
but we recommend that you create one fault model folder for each domain object
class definition.

You can use a generic event view to act as a bridge between events in different
fault model folders or within the same folder.

Generic Tests and Repair Actions

SymCure supports two types of fault management procedures to supplement
generic fault models:

® Test actions are used to verify the occurrence of an associated event.
® Repair actions are used to recover from failures.

Fault management procedures have a set of associated actions that can be applied
to the managed system. The actions can be automated, they can simply be a
request to an operator, or they can be a combination of the two. Such actions
include extracting a datapoint from a database, “pinging” an IP address to test for
network connectivity, and even sending a repair technician to a remote site to
conduct manual tests and repairs. Upon completion, a test action must send a
"true" or "false" event to SymCure.

The specification for a fault management procedure has three parts:

® An attribute specification that includes its name, its target domain object, the
conditions for activating the procedure, and the resources, costs, and other
information necessary for scheduling and executing the action.

* Arelation linking it to an event in the generic fault model. The action is
invoked in response to suitable state changes of an associated event.

® A procedural specification, which can be written in any computer
programming language, that lays down the sequence of steps that must be
performed to obtain the result for a test or to fix a problem.

Creating Fault Model Folders

Creating Fault Model Folders

-

You must build generic fault models within a generic fault model fault model
folder. A fault model folder is a container that provides a way of organizing
generic fault models. You can compile a fault model folder to view errors and
warnings about the fault models.

We recommend that you organize fault model folders in an object-oriented class
hierarchy with one folder per class and with inheritance according to the class
hierarchy. Fault model folders can also have subfolders that correspond with
subclasses in the class hierarchy.

Creating and Configuring Generic Fault Model
Folders

You create and configure generic fault model folders by using the Project menu or
the SymCure toolbox. The generic fault model folders appear in the Navigator.

For information on using the Project menu and Navigator, see the Optegrity User’s
Guide.

To create and configure a generic fault model folder:

1 Create a Generic Fault Model Folder from the SymCure palette and place it on
any workspace.

You can also create the folder by using the Project > Logic > Diagnose >
Generic Fault Models > Manage menu choice.

2 Choose Properties on the fault model folder and configure the Folder Name.
The folder name appears below the folder’s icon.

3 Configure the Category to be any user-defined text used for organizing fault
models in the Project > Logic > Diagnose > Generic Fault Models menu or
Navigator.

If you do not specify a category, the generic fault model diagram appears
under the category Unspecified.

4 Configure the Description to be a general description of the fault model.

53

Here is the top-level fault model folder associated with the SymCure application
diagnostics example and its properties dialog;:

E’.—_’_J
SymCure application fault models

Generic Fault Model Folder: |

~General

Folder Name: | SymCure application Fault models

Categary: I SymiCure Madeling j

Target Class: [INSPECIFIED =]

Sef: Target: Class for Events and Actions |

Cormpilation Status: | COMPLETE

Compiled At: I 4/27(2007 15:03:28

=

Description:
[
OF | Apply I Cancel |

Note In Optegrity, if you change the name of a class definition in the Domain Object
Definition dialog and that class has been configured as the Target Class of a
generic fault model folder, generic event, generic event view, or generic action,
SymCure automatically updates the Target Class. Changing the name of a class
definition that is assigned as the target class for a generic fault model does not
impact existing specific fault models. However, we do not recommend changing
the name of a class definition that is the target class for any fault model during an
ongoing diagnostic process.

The Target Class is optional. For more information, see Asserting the Target
Class.

For information about the Compilation Status and Compiled At, see Compiling a
Generic Fault Model.

Creating Fault Model Folders

Creating a Fault Model Hierarchy

You can create a fault model folder hierarchy to organize generic fault models.
One way to organize generic fault models is by class. By organizing diagrams by
class, you can assign the target class of the fault model folder to all events in

the folder.

To create a fault model folder hierarchy:
1 Create and configure a fault model folder.

For details, see Creating and Configuring Generic Fault Model Folders.

2 Choose Show Details on the fault model folder.
SymCure creates a subworkspace, which is called the detail.
3 Create and configure additional fault model folders on the detail.
4 Repeat steps 2 and 3 to create as many nested fault model folders as you need.

For example, here is the top-level fault model folder for the SymCure application
diagnostics example:

L]

===k LI
SymCure application fault models

L=

=

==K
SymCure fault model errors

BT %
External action errars

=== _’ _=
Diagram folder errars

(==
Tests and Repair actions

55

56

Asserting the Target Class

For modeling convenience, you can configure the target class of all events
contained in a fault model folder, using a menu choice on the folder. This menu
choice automatically configures the target class of all generic events in the fault
model folder; it does not affect any of its subfolders. The menu choice affects
generic events only; it does not affect generic event views.

To assert the target class of all generic events in a fault model folder:

1 In the properties dialog for the generic fault model folder, configure the
Target Class.

This property is for modeling convenience only; it has no impact on
processing.

2 Choose Assert Class on the fault model folder to configure the Target Class for
each generic event in the folder, using the target class of the folder.

You can manually override the target class for particular events in the folder,
as needed.

For information on configuring the target class of individual generic events, see
Configuring General Properties of Generic Events.

Searching for Generic Fault Models

You can search for generic fault models by keyword, target class, keyword and
target class, or keyword or target class.

To search for generic events:

1 Choose Tools > Search > Fault Models > Generic Fault Models or click the
equivalent button in the Fault Modeling toolbar (.=).

2 Provide the Keyword and/or Target Class to search for.

3 Configure Search By to determine how to combine Keyword and Target Class
in the search.

4 Click the Search button.

A list of generic fault models that meet the search criteria appears; otherwise,
No Matches Found appears.

5 Select a generic fault model and click the Go To button to go to the generic
fault model.

Creating Generic Events

Creating Generic Events

Note

Note

Note

To create a causal fault model, you place generic events on the detail of a diagram
folder and connect them to establish causal relations. In a causal model, the
direction of the arrowhead on a connection determines causality. Thus, an
upstream event in the model is said to cause a downstream event.

Generic events can only be placed in a fault model folder. Generic events placed
anywhere else are automatically deleted.

At run time, SymCure derives a specific fault model for a collection of specific
domain object from its generic fault model library.

When creating a generic event, you must configure its event name and
target class.

You can also configure:

* The message that appears in the built-in message browsers when a specific
event corresponding with the generic event occurs on a domain object.

® User-defined procedures that SymCure executes at run time when a specific
event corresponding with the generic event either occurs or does not occur for
a specified period of time.

* Whether the event can trigger diagnostic processing.
* Whether the event is to be treated as an alarm or a root cause.

* Additional properties for the various types of generic events.

If you change the name of a generic event, SymCure automatically updates any
GEDP Send Fault Model Event blocks that refer to the event.

During an active deployment of a SymCure application, you should not delete
generic events from a generic fault model; otherwise, errors will occur. If you
need to delete a fault model, be sure to bring the application offline first.

57

58

Tip

For information on configuring the target class automatically for all events in a
fault model folder, see Asserting the Target Class.

For information on connecting generic events when the target classes are related,
such as “connected to” or “contained in,” see Configuring Causal Connections.

For information on specific fault models, see Running SymCure Applications.

Creating and Connecting Generic Events

By default, causal connections assume that the connected events have the same
target class.

To create and connect generic events:

1 Show the fault model folder detail on which you want to place a generic
event.

For details, see Creating Fault Model Folders.

2 Create a generic event from the SymCure palette and place it on the fault
model folder detail.

3 Choose Properties on the generic event and configure the Event Name to be
any user-defined text.

The event name is displayed above the icon for the generic event.

4 Configure the Target Class to be the domain object class to which the generic
event applies.

The target class is displayed below the icon for the generic event.

5 Create as many generic events as you need to describe the causal relationships
in the generic event model.

6 Drag the downstream connection stub from one event into the upstream
connection stub of another event.

By default, the causal connection establishes a causal relationship between
generic events on the same object. Such connections appear blue in the
diagram.

7 For root cause events, drag the upstream connection stub into the event object
to remove it, indicating it has no upstream causes.

8 For events with no downstream effects, drag the downstream connection stub
into the event object to remove it, indicating it has no downstream effects.

Use the Add Stubs menu choice on the generic event to add input and output
stubs, as needed.

Creating Generic Events

Tip Compiling a fault model folder automatically removes extraneous stubs.

For example, here is the detail of the “External action errors” fault model folder in
the SymCure application diagnostics example. Notice that the target class of each

connected generic event is external-action, which means it uses the default
directed connection, which is blue.

Event with no
downstream effects.

==)
External action errors

¥ External action errors

Activation logic is manual

®

cdgm-external-acti

External action procedure does not g%t

automatically

®

cdgm-external-action

Incorrect arguments to external action cdgm-external-action

nrocedure

®

cdgm-external-action

Prewvious invocation of edure has not yet

terminated

cdgm-external-action
|

External action is not being executed

=10l |

‘ Ablue connection establishes
Root cause event a causal relationship between
events on the same object.

59

60

Here is the “Activation logic is manual” event and its properties dialog, which
applies to the cdgm-external-action class:

Activation logic is manual

cdgm-external-action

Generic OR AND Event - =|

General |F‘rocedures | Barriers | Advanced I

Event Mame: | Activation logic is manual

Target Class: ICDGM-EXTERNF\L-F\CTION b
Type: £ Alarm {* Root-Cause { Unspecified
Prigrity: I 1 =
[~
Drescripbion:
[~

(o] 4 | Apply I Cancel |

Configuring General Properties of Generic Events

In addition to configuring the event name and target class of a generic event,
which are required, you can configure these additional general properties:

* Type — Whether the event is an alarm, root cause, or unspecified. SymCure
uses the event type for reporting events in one of the built-in message
browsers for operator notification and intervention. The event type does not
impact diagnostic reasoning in any way.

By default, the event type is unspecified, which means it does not appear in
any message browser. Alarm events appear in the Alarms Browser, and root
cause events appear in the Root Causes browser.

The background color of the generic event icon indicates the event type,
as follows:

- Root cause is orange.
- Alarmis violet.

- Unspecified is light-gray.

Creating Generic Events

® Priority — An integer that represents the level of importance of the event, the
likelihood that the event has occurred, or any other numerical measure.
SymCure uses the priority to prioritize suspected root causes. The priority
appears in the built-in browsers as the priority, which you can use for sorting
and filtering messages.

By default, all events can initiate diagnostic processing.

For information on interacting with alarms and root causes in the built-in
message browsers, see Interacting with Specific Events and Actions through
Diagnostic Console Browsers.

You can configure the default priority of all generic events with the same target
object in the configuration file. You can also configure a procedure to compute the
priority for all specific events or a particular specific event, based on the generic
event priority and the domain object on which the root cause event occurs. For
more information, see Priority in Configuring SymCure Applications.

To configure general properties of a generic event:

1 Display the properties dialog for the generic event and configure the Type to
be alarm, root-cause, or unspecified.

If the event is neither an alarm nor a root cause, use the default, which is
unspecified.

2 Configure the Priority to be any integer that prioritizes the event, as needed.

The “Activation logic is manual” event type is root-cause and the priority is 1:

Generic OR AND Event x|

General |Procedures| Barriersl advanced

Event Mame: | Activation logic is manual

Target Class: ICDGM—EXTERNAL—ACTION j

Type: = Alarm % Root-Cause Unspeciﬁea
tiority: I 1 j:)
[~

Descripkion:

(a4 | Apphy I Cancel

61

62

Configuring User-Defined Procedures for Generic
Events

You can configure generic events with these user-defined procedures that can
execute at run time under different conditions:

* Event Changed procedure — A user-defined procedure that is invoked when
the state of a specific event associated with the generic event changes.

* Event Unchanged procedure — A user-defined procedure that is invoked
when the state of a specific event does not change over a specified time
interval.

® Occurs At procedure — A user-defined procedure that is invoked to compute
the inferred occurrence time of an event, for example, based on the fraction of
true inputs over a time period.

When using the Event Changed and Event Unchanged procedures, a change in
state includes a change in event value or status. The event value can be true, false,
unknown, or suspect, and the event status can be specified, upstream inferred, or
downstream inferred. For details, see Event Propagation.

For example, you might use the Event Changed procedure to invoke some type of
audit procedure when the event value changes to “suspect” or whenever the
status is “upstream inferred” or “downstream inferred.”

You might use the Event Unchanged procedure when an event is true or suspect
and, for some reason, it is not attended to for a long time. For fault management
applications, it might be necessary to alert the operator or perform some action
when the event state does not change after a period of time. You can use the event
unchanged procedure to alert operators that a fault has not been repaired or that a
symptom remains unexplored, even after the passage of a considerable period of
time.

You might use the Occurs At procedure to determine when an event is true, based
on the fraction of true inputs over a period of time. For example, an event might
become true in 5 days if only 1/5th of its inputs are true, butin 1 day if 4/5th of its
inputs are true. Aircrafts are often equipped with multiple engines. Often a plane
can fly even if one or more of its engines are malfunctioning, but as the number of
malfunctioning engines increase, the amount of time that the plane can safely stay
in the air is reduced.

Creating Generic Events

You can create the procedures from the palettes by choosing View > Toolbox -
Fault Models > User-Defined Procedures and Methods and creating one of the
following, which have these signatures:

® Generic Event Changed Procedure or Generic Event Changed Method.

my-event-changed-proc
(Target: class grtl-domain-object,
SpecificEvent: cdg-specific-event,
TimeStamp: integer, Client: class object)

where:
Target is the target class of the generic event.

SpecificEvent is the specific event associated with an instance of the target
class.

TimeStamp is the timestamp at which the procedure executes, in seconds.
Client is the G2 window on which the procedure should execute.
® Generic Event Unchanged Procedure or Generic Event Unchanged Method.

my-event-unchanged-proc
(Target: class grtl-domain-object,
SpecificEvent: cdg-specific-event,
EventUnchangedDuration: integer)

where:
Target is the target class of the generic event.

SpecificEvent is the specific event associated with an instance of the target
class.

EventUnchangedDuration is the duration of time, in seconds, that the
event has not changed state, that is, the time for which neither the value
nor the status of the event has changed. The procedure executes when this
time period has passed.

® Generic Event Occurs At Procedure

my-compute-inferred-occurrence-time-proc
(SpecificEvent: class cdg-specific-event)
-> inferred-occurrence-time: quantity

where:

SpecificEvent is the specific event associated with an instance of the target
class.

inferred-occurrence-time is the inferred occurrence time of SpecificEvent.

63

64

The procedure’s signature is automatically populated from its signature attribute.
You can configure the procedure for the generic event by choosing from a list of
such procedures in the properties dialog for the generic event.

If you use SymCure’s specialized procedures to implement one of an event’s user-
defined procedures, these procedures appear in the dropdown list for the event’s
Event Changed, Event Unchanged, and Occurs At attributes. If you use a G2
procedure for this purpose, the procedure will not appear in the dropdown list.

You can control the behavior of the event unchanged procedure mechanism. For
details, see Event Unchanged Procedure in Configuring SymCure Applications,

The procedures are invoked by SymCure’s diagnostic algorithm in separate
threads.

To configure user-defined procedures for a generic event:

1 Clone one of the appropriate types of procedures or methods from the
User-Defined Procedures and Methods palette of the Fault Modeling toolbox
and configure the procedure or method, as desired.

2 Display the properties dialog for a generic event.

3 On the Procedures tab, configure the Event Changed, Event Unchanged,
and/or Occurs At to be your user-defined procedure.

To go to the user-defined procedure from a generic event:

= Choose Go to Event Changed Procedure, Go to Event Unchanged Procedure,
or Go To Occurs At Procedure on a generic event.

If the specified procedure exists, SymCure displays the procedure with a red
arrow pointing to it.

Note that these menu choices are enabled only if the corresponding attribute is
specified.

Controlling the Size of the Specific Fault Model

Typically, if an event is false or unknown, constructing the specific fault model
upstream of that event does not contribute towards isolating the root causes
responsible for other observed true events. Similarly, constructing the specific
fault model downstream of that event does not contribute toward identifying
predicted alarms.

To preserve memory and increase efficiency of diagnostic processing, you can
control the size of the specific fault model to construct only the events that are
relevant to diagnostic problem solving by configuring the following attributes on
generic events:

* Upstream Barrier — The set of event values for which upstream construction
of the specific fault model does not occur.

Note

Creating Generic Events

* Downstream Barrier — The set of event values for which downstream
construction of the specific fault model does not occur.

By default, SymCure blocks upstream and downstream construction of the
specific fault model when the value of a specific event is false or unknown. To
block upstream or downstream construction completely, include every possible
event value in the set.

For accurate propagation, the upstream barrier of an event that is connected
downstream of an N/M-N/M or an OR-N/M event must be empty.

The upstream and downstream barriers do not preclude propagation to events
that have already been constructed upstream and downstream of an event.

You can also configure various parameters to control the rate at which the events
are constructed upstream and downstream. For details, see Specific Fault Model
Creation.

To control the size of the specific fault model:
1 Display the properties dialog for a generic event and click the Barriers tab.

2 Configure the Upstream and/or Downstream barrier to include event values
for which upstream and downstream specific event construction does not
occur.

65

66

Here is the Barriers tab of the “Activation logic is manual” event, which uses the
default Upstream and Downstream barrier:

Activation logic is manual

cdgm-external-action

Generic OR AND Event X

General | Procedures Barriers I.ﬂ\dvanced

—Upskream

[~ True
v False
[~ Suspect

W Unknown

— Dawnskrearn
[~ True
v False

[~ Suspect

W Unknown

oK | Apply I Cancel |

Configuring Operator Messages for Generic Events

You can configure a generic event so that when an alarm or root cause event
occurs, a suitable message is sent to the default operator message browser.

To customize the operator message and to provide additional information to the
operator, you can configure the event to generate messages when the value of the
event is true, false, suspect, and/or unknown. By default, operator messages are
disabled for all event values. You must explicitly enable message generation for
one or more event values.

You can only configure operator messages for events of type Alarm or Root
Cause; you cannot configure messages for events of type Unspecified.

You can configure these properties:

®* Message — The message text to display in the Alarms Browser or Root Causes
Browser when the event has the specified value.

® Detail — Detailed information about the event, which the operator can view
by showing details for the event.

Creating Generic Events

® Advice — Advice about how to recover from the event, which the operator
can also view in the message details.

® Priority — A priority from 1 to 9 for the message. The default priorities are 1
when the value is true, 5 when the value is false, 3 when the value is suspect,
and 7 when the value is unknown.

The message text and message details can include text substitutions, which are
references to any attribute of the specific event, using this syntax:

$event-attribute
By default, the message that appears has the following format:
$EVENT-NAME on $TARGET-OBJECT is SEVENT-VALUE
The corresponding message looks similar to this:
Activation logic is manual on TEST-1 is TRUE

You can also refer to any attribute of the underlying target object, using the same
syntax. For example, if the domain object defines an attribute named
process-temp, you could refer to the value of this attribute in the message by
using $PROCESS-TEMP.

The Detail attribute contains a complete list of available text substitutions that
you can use in either the message text or detail text. You configure the message
text, using the desired substitutions and delete the rest.

Here is a list of text substitutions that you can use:

Text Substitution Description

$EVENT-NAME The event name.

$TARGET-OBJECT The name of the domain object on which the event
occurred.

$EVENT-VALUE The value of the event (true, false, suspect, or
unknown).

$EVENT-STATUS The status of the event (specified, upstream
inferred, downstream inferred, or mutually
exclusive)

$HISTORY The history of event values.

$TIME-STAMP The time at which the event occurred.

67

68

Text Substitution Description

$INFERRED- The time at which the event value was inferred.
OCCURRENCE-TIME

$OCCURS See Describing When an Event Occurs
$BECOMES

By default, any message about an event depends only on changes to its value;
thus, when an event is inferred to be true (false), the message it generates
(retracts) overrides any previously generated messages for the event, regardless
of whether the previously generated message is a consequence of a specified
event.

You might want a message generated by an inferred event not to override a
message generated when that event is specified. Consider that a symptom event
is specified to be true. Now suppose that after due processing, SymCure infers
that the symptom event is false, perhaps because it ran a repair action on the
underlying root cause for the symptom. From the fault model’s perspective, it is
quite reasonable to infer that the symptom is no longer true. However, from an
operator’s perspective, particularly in the process world where events are
monitored continuously, until the symptom is reported to be false, the operator
should not be told that it is false. In this example, while the underlying event may
be inferred to be false, the message displayed to an operator must continue to
treat the event as true. To accomplish this, you disable the Override Specified
Event Messages option.

For general information on interacting with messages in the built-in message
browsers, see Interacting with Specific Events and Actions through Diagnostic
Console Browsers. For information on viewing message details and advice, see
Showing Event Properties.

For information about the properties of specific events, see Showing Specific
Event Properties.

To configure operator messages for generic events:
1 Choose Configure Messages on the generic event.

You can also click the Configure Messages button on the Advanced tab of the
generic event properties dialog.

2 On the General tab, configure the Generate Message When Event Is to be true,
false, suspect, and/or unknown.

SymCure generates messages when the value of the specific event becomes
any one of the enabled values.

Creating Generic Events

3 Configure the Override Specified Event Messages, as needed.

4 Click the True, False, Unknown, and/or Suspect tab for the values whose
message you want to configure, and configure the Message, Details, and/or
Advice to be any text, including text substitutions.

Here is the General tab for a generic event that generates messages only when the
value of the underlying event is true and uses the default behavior for overriding
specified event messages:

Generic Event Message Configuration ﬂ

General |True| False I Suspectl Unknown

Bt e Activation logic is manual ﬂ

Target Class: I CDGEM-EXTERMAL-ACTION

Generate Message when Event is:

[~ True [~ False

[Suspect [Unknown

v owerride Specified Event Messages

(a4 | Apply I Cancel |

Here is the default message configuration of the True tab for the generic event:

Generic Event Message Configuration 1[
General True |False| Suspect | Unknawn I
| $EVENT-MAME on $TARGET-OBJECT =]
Messa0e:! | $pECOMES $EVENT-VALLUE
($EVENT-STATUS) =
|| List of attribute substitutions for event; 3
Detall: | gEvENT-MAME
$TARGET-OBIECT LI
[
Advice:
=
Priarity: | 1 5
(o] 4 | Apphy Cancel

69

70

Describing When an Event Occurs

A message may describe a past event, that is, one that has already occurred, a
present event, that is, one that is in process, or a future event, that is, one that may
happen in time. For many applications, predicting future events in order to
prevent them from ever occurring is paramount.

SymCure recognizes whether an event has occurred, is occurring, or will occur,
and can construct the message text and set its priority accordingly. To do this, you
use the text substitution SOCCURS in an event message configuration, for which
SymCure substitutes “has occurred,” “is occurring,” or “will occur,” depending
on whether the event described by the message is in the past, present, or future.

You can also use the text substitution $BECOMES, for which SymCure
substitutes “became”, “has become”, or “will become”, as required.

You can also extend the set of verbs that you can use to configure the text of a
message, as follows.

To extend the set of verbs that you can use to configure the text of a message:

1 Add the tags to the parameter CDG-MESSAGE-SUBSTITUTION-VERB-TAGS in the
config.txt file, located in the g2i\kbs directory.

The default value for this parameter is:
CDG-MESSAGE-SUBSTITUTION-VERB-TAGS=$BECOMES $OCCURS

For example, you can add verb tags for the verbs “explodes” and “implodes,”
as follows:

CDG-MESSAGE- SUBSTITUTION-VERB-TAGS=$BECOMES $OCCURS $EXPLODES
$IMPLODES

2 For each verb tag, add the following lines to resources-english. txt:
CDG-MESSAGE- [verb] -PAST-TENSE, "your text"
CDG-MESSAGE- [verb] -PRESENT-TENSE, "your text"
CDG-MESSAGE- [verb] -FUTURE-TENSE, "your text"

For example, to use the correct tense for the verb “explodes” in your message,
add the following lines to your resources-english. txt file:

CDG-MESSAGE-EXPLODES-PAST-TENSE, "has exploded"
CDG-MESSAGE-EXPLODES-PRESENT-TENSE, "is exploding"
CDG-MESSAGE-EXPLODES-FUTURE-TENSE, "will explode"

3 Use your new verb tag while configuring the text, detail, or advice of the
message.

gée

Creating Generic Events

For example:

$EVENT-NAME $EXPLODES at $TIME-STAMP

Configuring Generic OR-AND, AND-AND, and
OR-OR Events

To configure generic OR-AND, AND-AND, and OR-OR events, configure the
properties described in these sections:

* Creating and Connecting Generic Events.

* Configuring General Properties of Generic Events.

* Configuring User-Defined Procedures for Generic Events.

¢ Controlling the Size of the Specific Fault Model.

* Configuring Operator Messages for Generic Events.

For descriptions of these generic events, see:
* OR-AND Event.

* AND-AND Event.

* OR-OR Event.

Configuring Generic N/M-AND Events

To configure generic N/M-AND events, you configure the same properties as the
OR-AND event. In addition, configure the following property on the
Properties tab:

fraction — The percentage of inputs that must be true during downstream
propagation for the event to be true. When the value is 0.0, this event behaves
like an OR-AND event. When the value is 1.0, the event behaves like an
AND-AND event.

For a description of this event, see N/M-AND Event.

For information on configuring generic OR-AND events, see Configuring Generic
OR-AND, AND-AND, and OR-OR Events.

7

72

Configuring Generic IF-AND Events

To configure generic IF-AND events, you configure the same properties as the
OR-AND event. In addition, configure the following property on the
Properties tab:

State Dependent Procedure — The name of a G2 procedure or method that the
generic IF-AND event executes to get the value of the event. The procedure
must return a value for the IF-AND event.

You can create the procedure from the palettes by choosing View > Toolbox -
Fault Modeling > User-Defined Procedures and Methods and creating a Generic
IF-AND Event State Dependent Procedure or Method. The procedure’s signature
is automatically populated from its signature attribute. You can configure the
procedure for the generic event by choosing from a list of such procedures in the
properties dialog for the generic event.

The signature of the procedure is:

my-state-dependent-proc
(target: class grtl-domain-object,
specific-event: class cdg-specific-event,
specific-cause: class cdg-specific-event)
-> event-value: text

where:
target is the target domain object of the specific event.
specific-event is the specific event.

specific-cause is the upstream specific event that is responsible for the
propagation to the IF-AND event, if there are multiple events upstream of
the IF-AND event.

The procedure returns the value of the event as a text.

You can go to the state dependent procedure from a generic event, using a menu
choice.

To go to the state dependent procedure:

= Choose Go to State Dependent Procedure on a generic event.

SymCure places an arrow next to the specified procedure, if one is specified.
For a description of this event, see IF~FAND Event

For information on configuring generic OR-AND events, see Configuring Generic

OR-AND, AND-AND, and OR-OR Events.

Creating Generic Events

Configuring Generic OR-N/M Events

To configure generic OR-N/M events, you configure the same properties as the
OR-AND event. In addition, configure the following property on the
Properties tab:

Fraction — The percentage of directly connected downstream effects that
must be true during upstream propagation for the event to be true.

For information on this event, see OR-N/M Event.

Configuring Generic N/M-N/M Events

To configure generic N/M-N/M events, you configure the same properties as the
OR-AND event. In addition, configure the following properties on the
Properties tab:

* Input fraction — The percentage of inputs that must be true during
downstream propagation for the event to be true, where:

- Input Fraction = 0.0 -> OR logic
- 0.0 <Input Fraction <1.0 -> N/M logic
- Input Fraction = 1.0 -> AND logic

® Output Fraction — The percentage of directly connected downstream effects
that must be true during upstream propagation for the event to be true,
where:

- Output Fraction = 0.0 -> OR logic
- 0.0 < Output Fraction < 1.0 -> N/M logic
- Output Fraction = 1.0 -> AND logic

* Independent Of Effects — When Output Fraction = 0.0 (OR logic) and this
option is enabled, the event retains a value of true or suspect if its status is
"specified" or "downstream inferred", even when each of its effects is false. By
default, this option is disabled.

For information on this event, see N/M-N/M Event.

For information on tuning the input and output properties of a generic
N/M-N/M event from a specific event, see Learning Generic Models from
Specific Events.

73

74

Converting Generic Event Logic

Each type of generic event defines menu choices for converting the upstream and
downstream event logic that the event uses. Note that the N/M-N/M event does
not define menu choices for converting event logic, because you can obtain most
desired behaviors by configuring the input and output fractions of the event.

Generic OR-AND Event Menu Choices

Generic OR-AND events define these menu choices:

Menu Choice

Description

Convert Output Logic to NM

Converts the output logic to NM, causing the
event to become an OR-N/M event.

Convert Output Logic to Or

Converts the output logic to OR, causing the
event to become an OR-OR event.

Convert Input Logic to NM

Converts the input logic to NM, causing the
event to become an N/M-AND event.

Convert Input Logic to If

Converts the input logic to IF, causing the
event to become an IF-AND event.

Convert Input Logic to And

Converts the input logic to AND, causing the
event to become an AND-AND event.

Generic AND-AND Event Menu Choices

Generic AND-AND events define these menu choices:

Menu Choice

Description

Convert Input Logic to NM

Converts the input logic to NM, causing the
event to become an N/M-AND event.

Convert Input Logic to If

Converts the input logic to IF, causing the
event to become an IF-AND event.

Convert Input Logic to Or

Converts the input logic to OR, causing the
event to become an OR-AND event.

Creating Generic Events

Generic OR-OR Event Menu Choices

Generic OR-OR events define these menu choices:

Menu Choice Description

Convert Output Logic to NM Converts the output logic to N/M, causing
the event to become an OR-N/M event.

Convert Output Logic to And ~ Converts the output logic to AND, causing
the event to become an OR-AND event.

Generic N/M-AND Event Menu Choices

Generic N/M-AND events define these menu choices:

Menu Choice Description

Convert Input Logic to Or Converts the input logic to OR, causing the
event to become an N/M-OR event.

Convert Input Logic to And Converts the input logic to AND, causing the
event to become an N/M-AND event.

Generic OR-N/M Event Menu Choices

Generic OR-N/M events define these menu choices:

Menu Choice Description

Convert Output Logic to And Converts the output logic to AND, causing
the event to become an OR-AND event.

Convert Output Logic to Or Converts the input logic to OR, causing the
event to become an OR-OR event.

75

76

Generic IF-AND Event Menu Choices

Generic IF-AND events define these menu choices:

Menu Choice Description

Convert Input Logic to NM Converts the input logic to N/M, causing the
event to become an [F-N/M event.

Convert Input Logic to Or Converts the input logic to OR, causing the
event to become an IF-OR event.

Convert Input Logic to And Converts the input logic to AND, causing the
event to become an IF-AND event.

Going to Generic Event-Detection Diagrams

SymCure generic events allow you to navigate to generic event-detection
diagrams that contain a Send Fault Model Event block that refers to the generic
event. Similarly, the GEDP Send Fault Model Event block provides the Show
Fault Model Event menu choice for navigating to the generic event in the fault
model.

For more information, see the G2 Event and Data Processing User’s Guide.

To go to generic event-detection diagrams:
= Choose Show Event Detection Diagrams on a generic event.

This menu choice only appears if the generic event is specified in a generic event-
detection diagram.

Showing Detailed Explanations of Generic Events

You can view a detailed explanation about a generic event, which includes
information about:

* Logical relationship with upstream events.
* Logical relationship with downstream events.
® Associated actions.

® Mutually exclusive events.

To show a detailed explanation about a generic event:

=2 Choose Detailed Explanation on the generic event.

Creating Generic Events

For example, here is the detailed explanation for a generic event with two
upstream events, a downstream event, and an associated action:

Detailed Explanation i x

Compilation status incomplete is a generic event defined on the class CDGM-GENERIC-FAULT-MODEL.

~Upstream Events ~ Downskrearn Events
This event is true when at least one of the following causally withen this event is true, all of the Fallowing causally
upstream events on the same or different target object is downstream events on the same or different target object are
true. expected ta be true.
Event Mame | Target Class Event Name | Target Class |
Compilation errors CCnaM-GEMERIC-FALLT-ME Generic edges do not e, CDGM-GEMERIC-FALLT-MODEL
Generic Fault model is not compi... COGM-GEMERIC-FALULT-MC
dl | ©
—Mutually Exclusive Events — Associated Actions
This event forms a mutually exclusive set with the Following The Following actions are associated with this event.
ewvents on the same target object. When any event in this set
is true, every other event in the set must be False., Type | iction Marme
test act,.. Check compilation status and errors For Fault mode
Event Mame |
A | 2

Clase |

Searching for Generic Events

You can search for generic events by keyword, target class, keyword and target
class, or keyword or target class.

To search for generic events:

1 Choose Tools > Search > Fault Models > Generic Events or click the equivalent
button in the Fault Modeling toolbar (| .).

2 Configure the Keyword and/or Target Class.
3 Configure Search By to determine how to search.
4 Click the Search button.

A list of generic events that meet the search criteria appears; otherwise,
No Matches Found appears.

5 Select a generic event and click the Go To button to go to the generic event.

77

Creating Generic Event Views

(@]

You can establish a causal relationship between events in separate fault model
folders by using event views, which act as bridges between different fault model
folders. Event views are typically used when generic fault models are organized
by class to trigger events on related classes defined in separate folders.

Instances of the classes can be related, using any built-in G2 relation, such as
containment or connection, or any user-defined relation. For more information on
how events can be related, see Configuring Causal Connections.

You can also use event views to provide a bridge between events in the same fault
model folder, which can help to organize the fault model to make it easier to read.

Using Generic Event Views to Bridge Events in
Separate Fault Model Folders

A single event view can map to as many generic events that match its event name
and target class.

To use a generic event view to bridge two diagrams:
1 Create and configure a generic event on the detail of a fault model folder.

For details, see Creating Generic Events.

2 Create a generic event view from the SymCure palette and place it on the
detail of another fault model folder.

3 Choose Properties on the generic event view and configure the Event Name to
be the same as the event name of a generic event in another diagram.

The event name is displayed above the icon for the generic event view.

4 Configure the Target Class to be the domain object class to which the
associated generic event applies.

The target class for a generic event view maps to the target class of the generic
event or any subclass of the target class. The target class is displayed below
the icon for the generic event view.

5 Use the event view in the diagram as if it were a generic event by connecting
upstream or downstream events to the event view.

Note You cannot connect two event views together; an event view must connect to a

78

generic event.

Creating Generic Event Views

Here is part of the subworkspace of the “SymCure application errors” fault model
folder with a generic event view named “Generic edges do not exist”. The event
view propagates events to the generic event with the same name in the “Diagram

folder errors” fault model folder.

—

[==== [.2
Specific fault model problems

Upstream and downstream limits are not large
enough

Generic edges do not 3«ist Incomplete specific fault model
Generic cof-contained-in

event view

-

Diagram folder errors

cdgm-generic-fault-mogel cdgm-symcure-application

Generic event with the
—— same event name and
target class.

=10l x|

Tg Diagram folder errors

Generic fault model is not compiled

¢

cdgm-generic-fault-rm Compilation status incomplete [Generic edges do\ot exist
| .

@

cdgm-generic-fault-maodel \ cdgm-generic-fay#-model

Compilation errars

¢

cdgm-generic-fault-model

Undefined class definitions

cdgm-generic-1a

Incorrect propagation relations Compilation errors

¢

cdgm-generic-fault-model cdgm-generic-fault-model

Mo generic eve

o

cdgm-generic-fault-rmodel

79

Using Generic Event Views in the Same Fault Model
Folder

To use generic event views in the same diagram:

1 Create and configure a generic event on the detail of a fault model folder.

For details, see Creating Generic Events.

2 Create, configure, and connect a generic event view on the same fault model
folder.

For details, see Using Generic Event Views to Bridge Events in Separate Fault
Model Folders.

Here is part of the “Diagram folder errors” fault model in which the “Compilation
errors” generic event and generic event view appear in the same fault model

folder:

Ty Diagram Folder errors

Generic fault model is not compiled

cdgm-generic-fault-m

Compilation errars

cdgm-generic-faulti-model

Lndefined class definitions

J

codgm-generic-fa

Incorrect propagation relations

Compilation status incomplete

=101 x|

Generic edges do not exist

cdgm-generic-fault-model

e

cdgm-generic-fault-mode

Mo %eneric EVE

cdgm-generic-fault-model

revent views

Compilation errars

cdgm-generic-fault-model

|
-

cdgm-generic-fault-model

80

of the generic
event view

Creating Generic Event Views

Going to the Associated Generic Event

You can show the generic events associated with a generic event view, then go to

an associated generic event.

To go to the associated generic event:
1 Choose Show Generic Events on a generic event view.

For example:

Undefined class definitions

cdgm-generic-fal

Incorrect propagation relations

Compilation errors
7 Delete Delete

cdgm-generic-fault-model cdg
Transfer
’ Clane
Mo generic eve
Mudge 3
4 ;
cdgm-generic-faul-model (R 2Bhos ™
Add Stubs
| Show Generic Events
Detailed Explanation. ..

SymCure displays a workspace with objects that represent the generic event

view and its associated generic event. The generic-event label describes the

relation between the generic event view and the generic event.

Tw Generic Events for Event Yiew Compi - |EI|1|

. Compilation erraors
Representation Compilation errors

S @ = Representation of
cdgm-generic-fault-mod @ the generic event

cdgm-generic-fault-model

Relation type between events

81

82

2 Choose Go To Generic Event on the representation of the generic event.

SymCure places an arrow next to the generic event in its associated fault model

folder:
Ts Diagram folder errors - |EI|5|
Generic fault model is not compiled
cdgm-generic-fault-ri Compilation status incamplete Generic edges do not exist
gll
cdgm-generic-fault-madel cdgm-generic-fault-model

Incorrect propagation relations Compilation errors

cdgm-generic-fault-model cdgm-generic-fault-model

Mo generic eve

cdgm-generic-fault-model

Showing Detailed Explanations of Generic Event
Views

You can show detailed explanations about a generic event view, which includes

information about mapped events.

To show a detailed explanation about a generic event view:

= Choose Detailed Explanation on the generic event view.

Configuring Causal Connections

For example, here is the detailed explanation for a generic event view:

Detailed Explanation : i x|

Compilation errors is a generic event view defined on the dass CDGEM-GENERIC-FAULT-MODEL. & single event views can map to
as mary generic events that match its event name and target class.

—Mapped Events

The following generic events are mapped ko this view,

Target Class | Event Mame
COEM-GEMERIC-FALULT-MODEL - Compilation errors

4| | »]
Close |

Configuring Causal Connections

Causal connections between events in a generic fault model define a
propagation relation, which qualifies the causal connection. The default
propagation relation self specifies propagation among events on the same domain
object. The propagation relation can also be the name of any relation that exists
between two domain objects in a domain map. If the specified relation exists, at
run time, SymCure propagates events between the domain objects.

The propagation relation can be one of a set of built-in G2 relations. These
relations define connectivity and containment relations between domain objects
in a domain map. The propagation relation can also be any user-defined relation
that you define between domain objects or a dynamically computed relation.

The color of the connection between two generic events or event events indicates
whether the causal relationship uses the default propagation relation or a
user-specified relation, as follows:

This connection color... Indicates the propagation relation is...
Blue The default, which is self.
Green A built-in, user-defined, or dynamically created

propagation relation.

You can create a label that displays the propagation relation next to the event.
You might want to do this when configuring the propagation relation to be a
value other than self, the default. The color of the label matches the color of the
causal link. If you delete a connection, the label is automatically deleted. If you
change the propagation relation, the label is automatically updated.

83

84

Built-In Propagation Relations

You can configure the propagation relation to be any of these built-in relations:

Propagation

Relation Name Description

self The default propagation relation, which propagates
events within the same object.

cdg-connected- A directed connection from the target class of the

upstream upstream event to the target class of the downstream
event.

cdg-connected- A directed connection from the target class of the

downstream downstream event to the target class of the upstream
event.

cdg-connected-to An undirected connection between the target classes

of the upstream and downstream events.

cdg-contained-in The containment of the target class of the upstream
event on the subworkspace of the target class of the
downstream event.

cdg-the-container-of The containment of the target class of the
downstream event on the subworkspace of the target
class of the upstream event.

cdg-the-embedded- An attribute of an object that is a subobject.

object-of

cdg-the-embedding- An object that contains an attribute that is a subobject.
object-of

cdg-virtual-relation A dynamically computed relation.

Thus, the following relations exists between domain objects in a domain map:

® An upstream domain object is cdg-connected-upstream of a downstream
domain object.

* A downstream domain object is cdg-connected-downstream of an upstream
domain object.

* Anupstream domain object is cdg-connected-to a downstream domain object,
and a downstream domain object is also cdg-connected-to an upstream
domain object.

Configuring Causal Connections

® A domain object that exists on the subworkspace of another domain object is
cdg-contained-in that domain object.

* A domain object that contains another domain object on its subworkspace is
cdg-the-container-of that domain object.

To use the embedded object relations, you must either define the embedded
object to be an instance of grtl-domain-object-with-key (or opt-domain-object-
with-key for Optegrity applications) or a subclass, or you must provide each
embedded object with a name. For more information on this class, see the
G2 Developers” Utilities Runtime Library User’s Guide.

Configuring Causal Connections by using a Built-In
Propagation Relation

You use the built-in propagation relations when domain objects in a domain map
are either not related or are related by either connectivity or containment:

Relation Type Description
Self The domain objects are not related.
Connectivity One domain object is connected to another domain

object by either a directed or an undirected connection.

Containment One domain object is contained on the subworkspace of
another domain object or one domain object is a
subobject of another domain object and does not
appear on a domain map.

To configure causal connections by using a built-in propagation relation:

1 Create a domain map in which one domain object is related to another by
either connectivity or containment.

For more information, see Creating Domain Maps. In this scenario, it is not
necessary to define any relations between domain object classes, because
containment and connectivity relations already exist.

2 Create, configure, and connect generic events and generic event views, as
needed, in which the target classes of the connected events are related by
either connectivity or containment.

For details, see Creating Generic Events and Creating Generic Event Views.

3 Choose Properties on the directed connection between two events or between
and event and an event view.

The default propagation relation is self.

85

86

4 Configure the Type of Relation to be Self, Connectivity, or Containment,
depending on the type of built-in relation that exists between the two domain
object instances of the target classes defined for the connected events.

5 Depending on the Type of Relation, configure these additional properties:

Type of Relation Property Value
Connectivity Connection ® cdg-connected-downstream
Direction

* cdg-connected-upstream

* cdg-connected-to

Connection Class The class of connection, whose
superior class is connection.

Containment Containment * cdg-contained-in
Relation . .
* cdg-contained-in
* cdg-an-embedded-object-of

¢ cdg-the-embedding-object-of

6 Optionally, enable the Show Label option to display the propagation relation
next to the connection.

The causal relationship between the events is now defined, based on this relation.
When SymCure builds the specific fault model, it propagates events if the

specified propagation relation exists between specific instances of the target
classes.

Configuring Causal Connections

Example: Relation Type is Self

This example shows a connection between two generic events that use the default
propagation relation, which is self:

Ty External action errors ;lglﬂ

Activation logic is manual

[@s

cdgm-external-a

External action procedure does not ex

[@s

codgm-external-action

External action is not being executed
automatically

Incorrect arguments to external action cdgm-external-action

procedure

@s

codgm-external-action

Previous invocation of edure has nat yet

terminatec

[@s

cdgm-external-action

Type of Relation is Generic Causal Connection 4 x|
self, the default,
which propagates
events within the
same target class.

General | Advanced I

f+ Self £ Connectivity
Type of Relation: o cinment " GZ-Relation

€ yirtual Relation

Connection Direckion: ICDG-CONNECTED-TO j
Connection Class: | CONNECTION =]
Conkainment Relation: ICDG-AN-EMBEDDED-OBJECT-OF ﬂ
&2 Relation Name: [DEPENDENT-OT) =]
Yirtual Relation MName: I UMSPECIFIED
Wirtual Relation Procedure: I j
[~ sShow Label
(a4 | Apphy | Cancel |

87

88

Example: Relation Type is Containment

This example shows a connection between a generic event view and a generic
event that uses one of the built-in propagation relations, which is cdg-contained-
in. The generic event view named “Generic edges do not exist” is defined for the
cdgm-generic-fault-model class. The generic event named “Incomplete specific
fault model” is defined for the cdgm-symcure-application class. Notice that the
connection with the built-in propagation relation is green, as opposed to blue, and
it's propagation relation is labeled.

lUpstream and downstream limits are not large
enough

Generic edges do not exist

Incomplete specific fault model
cg-contained-in

cdgm-generic-fault-model cdgm-symcure-application

The generic event view target class

) ! The generic event target class
is cdgm-generic-fault-model

is cdgm-symcure-application.

Propagation-relation is Generic Causal Connection x|
cdg-contained-in, which

General | Advanced
propagates events

whenever ar.1 instance of seff Connectivity
cdgm-generic-fault-
model is "contained in" Type of Relation: @ opsinment " Gz-Relation

an instance of cdgm-

symcure-application. " Wirtual Relation

Connection Direction: ICDG—CONNECTED—TO j
Connection Class: ICONNECTION j
Conkainment Relation: ICDG-CONTAINED—IN j
52 Relation Mame: IDEPENDENT-ON j
Yirtual Relation MName: I UMSPECIFIED
Yirtual Relation Procedure: I j
[V Show Label
0K | Apply Cancel |

Configuring Causal Connections

In the domain map for the application, symcure-application-1 contains two
generic fault models on its detail, gfm-1 and gfm-2.

Because gfm-1 and gfm-2 are on the detail of symcure-application-1, the
propagation relation is cdg-contained-in. During diagnosis, the “Generic edges do
not exist” event for both gfm-1 and gfm-2 propagates to the “Incomplete specific
fault model” event for symcure-application-1.

Tw SymCure - O] x|
”E SYMCURE-APPLICATICON-1
ol
Show Details
T ¥R Waorkenarg i IDIiI
u GFM-1 TE=T-1
-

-
e
Wq GFM-Z
.’

The gfm-1 and gfm-2

objects are "contained-in"
symcure-application-1.

REPAIR-ACTION-1

Configuring Causal Connections by using a
User-Defined Propagation Relation
In this scenario, first, you must create a relation definition between two domain

object classes, then you must programmatically conclude the relation between
instances of those classes.

Note Configuring user-defined propagation relations requires knowledge of G2.

To configure causal connections by using a user-defined propagation relation:
1 Create a relation definition between two classes.

For details, see the G2 Reference Manual.
2 Create a domain map that uses instances of these domain object classes.

For more information, see Creating Domain Maps.

89

90

3 Create, configure, and connect generic events and generic event views, as
needed, in which the target class of the connected events are related, based on
the user-defined relation.

For details, see Creating Generic Events and Creating Generic Event Views.

4 In the properties dialog for the causal link between connected generic events,
configure the Type of Relation to be g2-relation.

5 Configure the G2 Relation Name to be user-defined relation name.

6 Before performing SymCure diagnosis, programmatically conclude a relation
between specific domain object instances for which the relation has been
defined.

For details, see the G2 Reference Manual.

The causal relationship between the events is now defined, based on the user-
defined relation. When SymCure builds the specific fault model, it propagates
events if the specified propagation relation exists between specific instances of the
target classes.

Configuring Virtual Propagation Relations

SymCure allows you to specify causal connections by using a virtual propagation
relation. A virtual relation can be used in highly dynamic domains for
determining “on the fly” what objects are related to a target domain object,
without requiring the establishment of any G2 relations, connectivity, or
containment.

To use a virtual propagation relations, you provide a name for the virtual relation
and you write a procedure or method to compute related objects at run time.

SymCure provides the following classes of user-defined procedures/methods for
computing virtual relations, which are available from the User-Defined Methods
and Procedures palette:

® cdg-virtual-relation-computation-procedure
® cdg-virtual-relation-computation-method
The signatures for the procedure or method are:

my-virtual-relation-computation-procedure
(Target: class grtl-domain-object, VirualRelationName: symbol,
DirectionOfPropagation: symbol)
-> RelatedDomainQObjects: sequence

Configuring Causal Connections

Note Configuring virtual propagation relations requires knowledge of G2.

To configure causal connections by using a virtual propagation relation:
1 Create a domain map that uses instances of these domain object classes.

For more information, see Creating Domain Maps.

2 Create, configure, and connect generic events and generic event views, as
needed, in which the target class of the connected events are related, based on
the virtual relation.

For details, see Creating Generic Events and Creating Generic Event Views.

3 Create a Virtual Relation Computation Method or Procedure from the User-
Defined Procedures and Methods palette of the Fault Models toolbox, and
configure the text of the method or procedure to compute the virtual relation.

4 In the properties dialog for the causal link between connected generic events,
configure the Type of Relation to be virtual relation.

5 Configure the Virtual Relation Name to be a symbol to use as the virtual
relation name.

6 Configure the Virtual Relation Procedure to be the method or procedure you
created above.

The causal relationship between the events is now defined, based on the virtual
relation. When SymCure builds the specific fault model, it computes the virtual
relation and propagates events if the virtual propagation relation exists between
specific instances of the target classes.

Configuring Propagation Delays

Causal connections define the Propagation Delay attribute, which allows you to
model the delay between each generic cause and its effect. Propagation delays
provide a foundation for computing the inferred time of an occurrence while
propagating events in the specific fault model. The use of a propagation delay
enables SymCure to construct a suitable message that will provide meaningful
advance notice to the operator about predicted events.

In addition, SymCure calculates the Inferred Occurrence Time of specific events,
which represents the time at which an event is inferred to be true. This is distinct
from the time stamp of the event.

For example, consider the following scenario. If the flame of a furnace is
extinguished, then oxygen builds up in the furnace. If oxygen is allowed to build
up indefinitely, it can cause a furnace explosion. This scenario is modeled as
follows: "Flameout" -> "Oxygen buildup" -> "Explosion". For this model to hold
true, we must implicitly assume a propagation delay for the causal relationship

91

92

Note

"Oxygen buildup" -> "Explosion". Now suppose that we infer that "Flameout" is
true. What useful information can we provide to an operator? The model will
conclude that "Flameout" ultimately leads to "Explosion", but without explicitly
representing the propagation delay along the causal relationships, it simply
cannot say whether the explosion has already occurred or, more importantly,
when the explosion is likely to occur. This lack of information diminishes the
utility of the model’s predictive capabilities and could be misunderstood as
"crying wolf", namely, predicting that an event has occurred when in fact it may
be hours away and, if the underlying problem is treated in time, will never
happen.

To provide another example, consider a root cause event that becomes suspect at
time t0 because some of its symptoms are manifested. Suppose that it takes a
finite amount of time to test the root cause, and an affirmative test result is
returned at time t; (t; > ty). The value of the event is set to true and its timestamp
is set to t; — the time at which the event becomes true. However, in all likelihood,
the event must have been true before t; to cause the symptoms at ty. The
timestamp can lead to the misinterpretation that the root cause became true only
at t. In this example, the inferred occurrence time of the root cause event would
be ty while its timestamp is t;.

We believe that propagation delays are inherently approximations and should be
used for informational purposes only. They do not in any manner impact the
values computed by diagnostic propagation algorithm and are not required by
the model. If, however, such delays can be modeled with desired accuracy, not
only will they provide vital information to operators about predicted events, but
they may aid the diagnostic process by pinpointing the respective times at which
the set of candidate root causes must have occurred to explain the known
symptoms. Such information may be invaluable in validating the candidate

root causes.

When specifying a propagation delay, you can specify a procedure for computing
the propagation delay. For example, consider a simple model where "Leak" in
TANK causes "Empty" on TANK, that is, a leak in the tank causes the tank to
become empty. The propagation delay between these two events depends on the
volume of fluid in the tank and the rate at which fluid flows out of the tank.

SymCure allows you to specify the name of a cdg-causal-propagation-delay-
computation procedure or method with the following signature:

cdg-compute-causal-propagation-delay-procedure
(UpstreamEventTarget: class opt-domain-object,
DownstreamEventTarget: class opt-domain-object,
DefaultPropagationDelay: quantity
-> propagation-delay: quantity

Returns the propagation delay between UpstreamEventTarget and
DownstreamEventTarget.

Configuring Causal Connections

If such a procedure is specified on a causal link, it is used to compute the
propagation delay; otherwise, by default, it uses the propagation delay specified
in the causal connection.

Configuring a Propagation Delay

To configure a propagation delay:

1 Display the properties dialog for a causal connection and click the
Advanced tab.

2 Configure the Propagation Delay or configure the Compute Delay Procedure
to be a user-defined cdg-causal-propagation-delay-computation procedure or
method.

You can create the procedures from the palettes by choosing View > Toolbox -
Fault Models > User-Defined Procedures and Methods and creating a Causal
Propagation Delay Computation Method or Procedure. The procedure’s
signature is automatically populated from its signature attribute. You can
configure the procedure for the causal connection by choosing from a list of such
procedures in the properties dialog for the causal connection.

Example: Specifying Generic Propagation Delays

The following hypothetical generic fault model has the following propagation
delays:

* 30 seconds

Disgruntled operator chucks hand grenade -> Explosion
* Thour

- Oxygen buildup -> Explosion

- Damper closed -> Oxygen buildup

- Flameout -> Oxygen buildup

Disgruntled operator chucks hand grenade

reaction-cha r

Damper closed Explosion

reaction-cham : reaction-chamber
Dxygen buildu

reaction-chamber
Flameout

reaction-chamber

93

Example: Calculating Inferred Time of Occurrence During
Propagation

During upstream propagation, SymCure computes the Inferred Occurrence Time
for a specific event by subtracting the propagation delay of the causal link from
the effect’s inferred time of occurrence. During downstream propagation, it
computes the inferred time of occurrence for an event by adding the propagation
delay of the causal link to the cause’s inferred time of occurrence.

Consider the following example. When "Oxygen buildup" is specified to be true,
SymCure generates the following specific fault model:

Tw Relation tree for DIAGNOSIS-MANAGER-0001 : _|O] x|

Damper closed

exploding-cha

Flameout Oroygen buildup Explosion

exploding-chamber exploding-chamber exploding-chamber

94

The timestamp of "Oxygen buildup" is same as its inferred occurrence time
("Occurs At"):

Specific Or And Event il

~General

Event Name: IOWQBH buildup

Target Object: Iexploding—chamber

Event Value: IU'UE

Event Status: ISPECiﬁEd

Time Stamp: |5/1/2006 15:56.00

Occurs At [5/1/2006 15:56.00

Close |

Configuring Causal Connections

"Explosion" is expected to occur 30 minutes after "Oxygen buildup" as shown
below. Note the difference between Time Stamp and Occurs At for "Explosion".

Spedific Or And Event ' il

~ General

Event Mame: |E¥P|05i0ﬂ

Target Object |exp|oding—chamber

EventValue: Itrue

Event Status: |downstream inferred

Time Stamp: [5/1/2006 15:56:00

Occurs At |5J'1f2{]’05 16:56:00

Close

After "Damper closed" is reported to be false, SymCure concludes that "Flameout"
is the root cause of "Oxygen buildup":

Tw Relation tree for DIAGNOSIS-MANAGER-0001 o [=] 5

Damper closed

exploding-chal

Flameout Oroygen buildup Explosion
gl

exploding-chamber exploding-chamber exploding-chamber

95

96

Note that "Flameout" is deemed to have occurred one hour prior to "Oxygen
buildup", and again note the difference between the time stamp and the time of
occurrence.

Spedific Or And Event il

~ General

EventName: |F|Em80ut

Target Object |exp|oding—chamber

Event Value: Itrue

Event Status: |upstream inferred

Time Stamp: [5/1/2006 155915

Occurs At [5/1/2006 14:56.01

Close

Note that the Occurs At field is shown only for specific events that are true. By
definition, a false, suspect, or unknown event is not considered to have
"occurred".

To use the inferred occurrence time in a message configuration, use $INFERRED-
OCCURRENCE-TIME as the substitution pattern. SymCure formats the inferred
occurrence time as specified by the date and time format in config. txt while
constructing messages displayed in the operator message browser.

Limitations

Inferred time of occurrence is not updated unless the event’s value is changed.
This is necessary to avoid expensive recalculation of the occurrence times of
events. As a consequence, it is possible that on occasion the occurrence times of
events may not accurately reflect the propagation delays along the causal edges.
Consider, for example, that while the above diagnosis is in progress, a
disgruntled operator is seen to drop a grenade into the reaction chamber,
resulting in the following specific fault model.

Configuring Causal Connections

T Relation tree for DIAGNOSIS-MANAGER-0002 g - |O] x|

Disgruntled operator chucks hand grenade
Flameout I@
exploding-cha

exploding-chal

Croygen buildup Exlsion
exploding-chamber exploding-chamber

Damper closed

exploding-chamber

Specific Or And Event il

~ General

Event Name: |Disgrun'ded operator chucks hand grenade]

Target Object Iexploding-chamber

Event Value: |true

Event Status: ISPECiﬁEd

Time Stamp: [5/1/2006 16:0155

Occurs At [5/1/2006 16:0155

Close

97

98

Because "Explosion" stays true, there is no downstream propagation of
"Disgruntled operator chucks hand grenade". Now even though a grenade can
cause an explosion much faster than the "Oxygen buildup" (in 30 seconds
according to our model), the time of occurrence for "Explosion" is unchanged.

Specific Or And Event il

~General

Event Name: IEXP|OSi0ﬂ|

Target Object |exp|oding—chamber

Event Value: Itrue

Event Status: Idownstream inferred

Time Stamp: |5/1/2006 16:01:04

Occurs At [5/1/2006 17.01:04

Close

While this example clearly demonstrates a fundamental limitation of SymCure’s
temporal reasoning capability, we believe that in practice this is not a serious
flaw. It is unlikely that while one set of root causes associated with an event is
being explored, a new and completely independent set of root causes for the same
event will arise simultaneously.

There is a practical problem with synchronizing the inferred occurrence time.
Suppose we do recalculate the occurrence time for "Explosion" based on the
occurrence of "Disgruntled operator chucks hand grenade". If there were any
events downstream of "Explosion", we would need to update them as well. Now
suppose that we learn that the object lobbed into the reaction chamber by the
disgruntled operator was not a grenade, but an orange, so "Disgruntled operator
chucks hand grenade" is false. This would require recalculating the occurrence
time for "Explosion" and propagating it once more, by recognizing that it can still
be caused by "Flameout". In general, such recalculations and repeated
propagations will prove to be extremely expensive and will fundamentally
compromise the efficiency and efficacy of the diagnostic propagation algorithm.

Creating Generic External Actions

Showing Detailed Explanations of Causal
Connections

You can show detailed explanations about a causal connection, which provides
the meaning of the propagation relation.

To show a detailed explanation about a causal connection:
= Choose Detailed Explanation on the causal connection.

For example, here is the detailed explanation for a causal connection:

Detailed Explanation : x|

When an instance of CDGM-GENERIC-FAULT-MODEL is contained in an instance of
CDGM-SYMCURE-APPLICATION, the event Generic edges do not exist on the instance of
CDGM-GENERIC-FAULT-MODEL causes the event Incomplete specific fault model on the instance of
CDGM-SYMCURE-APPLICATION.

Close |

Creating Generic External Actions

@

External actions, which include tests and repair procedures are procedural
components of SymCure’s fault management capabilities. As they are extrinsic to
events that form the heart of the SymCure fault models, hence the term external
actions. This distinguishes them from the intrinsic event changed and event
unchanged procedures associated with fault model events.

External actions have properties that you can configure, such as durations and
costs, and they might require resource allocation and scheduling for optimal
performance. When the value of the underlying event changes, then an external
action may be enabled or disabled according to its configuration. You can
schedule external actions to execute either manually or automatically, based on
event transitions.

You can interact with external actions through various built-in browsers. You can
execute manual tests, obtain explanations about why the action was enabled or
executed, and go to the specific event that caused the action to be scheduled.

99

100

Creating the Activation Procedure

Each generic action has an associated activation procedure, which is typically a
G2 procedure that performs the external action. You can also implement the
procedure by using one of Gensym'’s graphical block languages, for example,
Gensym Event and Data Processing (GEDP), which is available with Optegrity, or
Operator Actions (OPAC), which is available with Integrity.

You can call a number of SymCure API procedures in the activation procedure.
These procedures provide programmatic access to numerous SymCure features,
such as sending events, getting root causes, and so on.

The procedure for activating an external action is the same for all types of generic
actions, except that the activation procedure of a test action must send a value for
the underlying event, via an API call.

You can create the procedure from the palettes by choosing View > Toolbox -
Fault Models > User-Defined Procedures and Methods and creating a Generic
Action Activation Procedure. The procedure’s signature is automatically
populated from its signature attribute. You can configure the procedure for the
generic action by choosing from a list of such procedures in the properties dialog
for the generic action.

The activation procedure must have the following signature:

my-activation-proc(Target: class grtl-domain-object,
SpecificAction: class cdg-specific-action,
TriggeringEvent: item-or-value, AssociatedEvents: sequence,
TimeStamp: integer, Client: class object)

where:
® Target is an instance of the target class defined for the generic action.
® SpecificAction is the specific action associated with the target object.

* TriggeringEvent represents the event that is responsible for triggering the
action, when the action is activated automatically. If the action is activated
manually, TriggeringEvent is the symbol none.

* AssociatedEvents is a sequence of all specific events associated with the
specific action, when associating a single specific action with multiple
specific events. The order of events in the sequence AssociatedEvents is
completely arbitrary.

* TimeStamp is the time at which TriggeringEvent changes its value,
in seconds. The timestamp might be necessary if the value of the event
changes during the execution of the procedure. This can occur when many

Note

Creating Generic External Actions

events occur rapidly, because the activation procedure runs in a
different thread.

* C(lient is the G2 window on which to display any data while executing the
action.

A single specific action can be associated with multiple specific events. The events
associated with the action are available from the AssociatedEvents sequence. If
there is only one event associated with the action and the action is executed
automatically, then TriggeringEvent = AssociatedEvents[0]. Otherwise, for any
automatic invocation of the action, TriggeringEvent is a member of
AssociatedEvents.

If an action is associated with multiple events, the activation procedure should
perform the necessary steps on each specific event in the AssociatedEvents
sequence.

Identifying the TriggeringEvent allows the activation procedure some flexibility.
An automatic action that services multiple events may be triggered by any one of
them. You can program the activation procedure to respond to all of its associated
events, or just the triggering event, depending on your requirements.

If the activation procedure of the generic event does not refer to an existing G2
procedure, the action looks for a GEDP diagram with the same name as the action
and with the same target class. If such a diagram exists, the action uses that as the
activation procedure. The GEDP diagram must use the Return block to return a
value to its GEDP diagram folder. Also, ensure that the Activated option is
disabled for the specific diagram or generic diagram template to deactivate the
diagram after the event occurs. For more information, see the G2 Event and Data
Processing User’s Guide.

For more information about API procedures that you can call in activation
procedures, see Application Programmer’s Interface.

Running Tests Manually

SymCure provides a built-in activation procedure named cdg-default-run-test-
manually-procedure, which displays a dialog that allows you to manually select
"true", "false", or "unknown" as a result for the test. Once this procedure is assigned
to a generic action, you can simply select the Execute Action button in the browser
to display the dialog to assign a suitable result for the test.

101

102

For example, here is the Run Test Manually dialog that appears for the Flame
Impingement? test action:

Run Test Manually EE x|

Bckion Marne: I Flame Impingement?

Target Object: I f-102

Select and Send Result

Select Result: ©* True " False € Unknown

Send Result I

Close |

Scheduling External Actions

You can associate generic actions with one or more generic events. An action is
activated when the value of an associated event changes, depending on the type
of external action. This change in the associated event’s value, which enables the
action to be activated, is called an enabling transition of the action.

For example, a test action activates when the value of the underlying event
changes from any value to "suspect" or "unknown", indicating that the event
requires further information to complete the diagnosis. By contrast, a repair
action is activated when the value of the underlying event changes from any
value to "true", indicating that the event, typically a root cause, is known to be true
and, therefore, external intervention is required to repair the root cause.

When the action is activated, it executes its activation procedure either manually
or automatically, depending on its activation type. Manual execution requires
operator intervention, whereas automatic execution does not. The default
activation type is automatic.

For information on customizing the scheduling of external actions, see
Customizing the Scheduling of External Actions.

Types of Enabling Transitions

The enabling transition specifies when the action is activated, based on the change
in value of the underlying event. The enabling transition can be one or more of the
following options:

* AnytoAny — Event changes from any value to any other value.

* Any to True — Event changes from any other value to "true".

Creating Generic External Actions

Any to False — Event changes from any other value to "false".

Any to Suspect — Event changes from any other value to "suspect".
Any to Unknown — Event changes from any other value to "unknown".
Suspect to True — Event changes from "suspect" to "true".

Unknown to True — Event changes from "unknown" to "true".

True to False — Event changes from "true" to "false".

Suspect to False — Event changes from "suspect” to "false".
Unknown to False — Event changes from "unknown" to "false".

True to Suspect — Event changes from "true" to "suspect".

False to Suspect — Event changes from "false" to "suspect".
Unknown to Suspect — Event changes from "unknown" to "suspect".
True to Unknown — Event changes from "true" to "unknown".

False to Unknown — Event changes from "false" to "unknown".

Suspect to Unknown — Event changes from "suspect” to "unknown".

In most cases, you can use the default enabling transition for each type of generic
action, as follows:

External Action Type Default Enabling Transition
Generic test action Any to Suspect, Any to Unknown
Generic repair action Any to True

Generic action Any to Any

Generic mitigation action Any to Suspect

Generic recovery action Any to False

Types of External Actions

The two basic types of external actions are:

Test action, which tests for the occurrence of a specific event and returns the
value of the event via an API call to SymCure. See the description of
cdg-send-event in Sending Events.

Repair action, which performs some type of repair to the domain objects.

In addition to test and repair actions, SymCure provides a generic action, which
triggers whenever the value of an event changes. For backward compatibility,

103

104

Note

SymCure also provides mitigation actions, which are enabled when the
underlying event becomes suspect, and recovery actions which are enabled when
the underlying event changes from true to false. We recommend that you use the
repair actions instead of mitigation and recovery actions by simply configuring
the enabling transitions. These actions are located on the Legacy Items palette of
the Fault Models toolbox.

This table shows the icon for each type of external action:

Icon External Action
@ Test action

Repair action

Generic action

Recovery action

@ O ©

Mitigation action

Creating and Configuring Generic External Actions

To create an external action, you:
* Configure the properties of the external action.
* Associate the external action with a generic event.

You define generic external actions for a domain object class by placing them on
the subworkspace of a generic fault model folder.

Generic actions that do not appear on the subworkspace of a fault model folder
are automatically deleted.

You can associate one or more generic events with a single generic action. You
choose from a list of available events, which include all generic events whose
target class matches the target class of the generic action.

Note

Creating Generic External Actions

External actions and their associated generic events can reside in different fault
model folders and even in different modules. This allows you to build a library of
fault models for domain objects in one module and customize it with external
actions relevant for particular applications in other modules.

If you change the name of a generic action, SymCure automatically updates any
GEDP Send Fault Model Action Result blocks that refer to the event.

Creating an External Action and Configuring its Properties

To create an external action and configure its properties:

1

Create a generic fault model folder to contain the generic actions.

For details, see Creating Fault Model Folders.

Create a generic action, generic test action, generic repair action, generic
mitigation action, or generic recovery action from the SymCure palette and
place it on the fault model folder detail.

Choose Properties on the generic action and on the General tab, configure the
Action Name to be a string, which appears next to the generic action.

Configure the Target Class to be the domain object class to which the action
applies, which must be a subclass of grtl-domain-object.

Configure the Type to be manual or automatic, depending on whether the
generic action should execute automatically upon activation or whether it
should require operator intervention.

Configure the Procedure to be the name of a G2 procedure that specifies the
action to perform.

You can create the procedure from the palettes by choosing View > Toolbox -
Fault Models > User-Defined Procedures and Methods and creating a Generic
Action Activation Procedure. The procedure’s signature is automatically
populated from its signature attribute. You can configure the procedure for
the generic action by choosing from a list of such procedures in the properties
dialog for the generic action.

For more information, see Creating the Activation Procedure.

Configure the Estimated Duration to be the maximum duration of the action,
in seconds.

The default is 0. Specify the duration to be a non-zero value to simulate a
finite delay between the start and end of an external action, when the
activation procedure for the external action has a wait statement.

Configure the Cost and Reliability to be a measure of the cost and reliability of
executing the action, as needed.

105

106

For information on how to use the cost and reliability to schedule external
actions, see Customizing the Scheduling of External Actions.

To override the default enabling transition for the action, click the Advanced
tab, then click the Enabling Transitions button and click the enabling
transitions that should activate the action.

For details, see Scheduling External Actions and Types of Enabling
Transitions.

Associating Generic External Actions with Generic Events

To associate a generic external action with a generic event:

1

Choose Associate Events on a generic external action.

You can also click the Associate Events button on the Advanced tab of the
generic external actions properties dialog.

A dialog that lists all generic events associated with the target class of the
generic action appears. By default, all generic events for the target class are
unrelated to the generic action.

Select one or more generic events from the list of unrelated events and move
them to the list of related events for the generic action, then click OK.

The center of the generic event icon turns a darker shade of purple to indicate it
has an associated external action:

ICE

For an example, see Example: Generic Repair Action.

Showing Related Generic Actions and Generic Events

You can show the related generic events of a generic action, and you can show the
related generic actions of a generic event.

To show the related generic events of a generic action:

= Choose Show Generic Events on a generic action.

To show the related generic actions of a generic event:

=2 Choose Show Related Objects on a generic event.

Creating Generic External Actions

Here is the result of either menu choice:

=10l x|

Ta Generic Events for Action Change event kype E

Change event type to alarm
gm-symcure-application

Ewent type for corresponding generic event

I]EOE unspecified

cdgm-symcure-application

Showing the Activation Procedure

You can go to the activation procedure from a generic action, using a menu
choice.

To go to the activation procedure:
= Choose Go to Activation Procedure on a generic action.

This menu choice is only available if the activation procedure is specified for the
generic action. SymCure places an arrow next to the specified procedure, if one is
specified.

Configuring Operator Messages for Generic Actions

You might want to generate an operator message when a generic action occurs,
just as you do with alarms and root causes.

To customize the operator message and to provide additional information to the
operator, you can configure the generic action to generate messages when the
action is created, enabled, running, and/or inactive. By default, operator
messages are disabled for all generic action status values. You must explicitly
enable message generation for one or more status values.

Messages for generic actions appear in the default Messages Browser.

You configure the same properties for generic action messages as you do for
generic event messages. For details, see Configuring Operator Messages for
Generic Events.

The default message priority for generic action messages is 5 for all generic action
status values: created, enabled, running, and inactive.

You can use the following substitutions for configuring a generic action message:
* S$ACTION-NAME
* $TARGET-OBJECT

107

* J$ACTION-STATUS

* $TAG

* $START-TIME

* S$END-TIME

* $UNDERLYING-ROOT-CAUSES
e $RESULT

* $COST

* S$ESTIMATED-DURATION

* $HISTORY

To configure operator messages for generic actions:
1 Choose Configure Messages on the generic action.

You can also click the Configure Messages button on the Advanced tab of the
generic external actions properties dialog.

2 On the General tab, configure the Generate Message When Action Is to be
created, enabled, running, and/or inactive.

SymCure generates messages when the value of the specific event becomes
any one of the specified values.

3 Click the Created, Enabled, Running, and Inactive tabs for the status values
whose message you want to configure, and configure the Message, Details,
and/or Advice to be any text, including text substitutions.

Here is the General tab of the message configuration dialog for a generic action
that generates messages only when the status of the underlying action is created,
enabled, running, and inactive:

Generic Action Message Configuration 5[

General |Created I Enabled I Running | Inactive I

tction Name: Change event kype to alarm ﬂ

Target class; | CDGM-SYMCURE-APPLICATICN

Generake Message when Action is:

v Created ¥ Enabled

¥ Running V¥ Inactive

[0]4 apply | Cancel

108

Creating Generic External Actions

Here is the default message configuration of the Created tab:

Generic Action Message Eunfiguratiu ﬂ

General Created |Enabled| Running I Inactivel

| $ACTION-NAME on §TARGET-OBJECTis =
Message: | &n-T1oN-5TATUS
=
.| List of attribute substitutions: 3
Detal: | £ACTION-NAME
$TARGET-OBIECT ;I
. The action has been created but it is not ;I
Advice: required to be run at this kime
[-]
Pricrity: |5 3:

k. | apply Cancel |

Customizing the Scheduling of External Actions

Generic external actions provide attributes named Cost and Reliability, which
you can use to schedule execution in some desirable order. To schedule actions,
you create a user-defined procedure that implements a customized scheduling
algorithm, using the cost and reliability attributes of the specific action, as needed.

You can create the procedure from the palettes by choosing View > Toolbox -
Fault Models > User-Defined Procedures and Methods and creating a
User-Defined Scheduling Procedure. The procedure’s signature is automatically
populated from its signature attribute.

The signature for this procedure is:

my-specific-action-scheduling-procedure
(SpecificAction: class cdg-specific-action,
SpecificEvent: class cdg-specific-event, Client: class ui-client-item)

SpecificAction is the specific action to schedule. SpecificEvent is the triggering
event. Client is the client window.

To use your procedure to schedule external actions, configure the cdg-user-
defined-scheduling-procedure parameter in the configuration file, for example:

cdg-user-defined-scheduling-procedure=my-specific-action-scheduling-procedure

109

For more information, see Specific Action Scheduling.

Example: Generic Repair Action

Here is an example of a repair action named “Change event type to alarm”, which
is associated with an activation procedure named cdg-modguide-change-event-
type-to-alarm:

@ Change event type to alarm
cdgm-symcure-application
CDG—MODGUIDE—CHANGE—EVENT—WPE—TO—ALARM

Here is the text of the procedure, which simply posts a message to the G2
Message Board:

cdg-modguide-change-event-type-to-alarm(Target: class cdgm-generic-fault-model,
SpecificAction: class cdg-specific-action, TriggeringEvent: item-or-value,
AssociatedEvents: sequence, TimeStamp: integer, Client: class object)
SpecificEvent: class cdg-specific-event;
begin
for SpecificEvent = each cdg-specific-event in AssociatedEvents do
post "REPAIR ACTION: Change the event type of [the event-name of
SpecificEvent] on [the class of Target] to alarm.";
end;
end

110

Creating Generic External Actions

Here is the properties dialog for the repair action, which specifies the action
name, activation procedure, and target class. It uses the default values for cost,
reliability, activation type, and enabling transitions. This means the action
executes automatically when the value of the underlying event changes from any
value to true.

Generic Repair Action : x|

General | Advanced |

Ackion Mame: | Change event type to alarm

Target Class: |CDGM-SYMCURE-APPLICATION =l

Type: £ Manual %' Automatic

Procedure: ICDG-MODGLIIDE-CHANGE-E\-‘ENT-T'\"PE-TO-F\Ij

Estimated Duration: |000 =000 =1 0n:00:00 =
Cask | a =

Reliability: | 0 =
Description: ;I

| -]

QK | Apply I Cancel

The generic repair action uses the default enabling transitions, which is
Any to True:

Generic Action Enabling Transitions x|
Aiction Mame: Change event bype to alarm j
LI
Target Class! | CDGM-SYMCURE-APPLICATICN
Associated Event Walue Transitions
[~ Amy ba A [+ &y ta True [~ Amy ta False
[~ &ny bo Suspect [~ Amy b Unknown

[True to False [True to Suspect [True to Unknown

[False ko True [False to Suspect [False ko Unknown

[~ Suspect ta True [~ Suspect to False [~ Suspect ta Unknown

[~ Unknown o True [~ Unknown ko False [~ Unknown ko Suspect

OF | apply I Cancel

111

112

Here is the dialog that appears when associating events for the “Check
compilation status and errors for fault model”, whose target class is cdgm-
generic-fault-model. Notice that two generic events are associated with this
generic action: “Compilation errors” and “Undefined class definitions”, both of
which are defined for the cdgm-generic-fault-model class.

The action activates whenever the
value of this event changes to true.

Associate Events E x|

Action Mame: | Change event bype ta alarm

Target Class: I COGM-SY¥MCURE-APPLICATION

Urrelated events Related events

Diagnosis completed before complete Faulk model buillt & |Event type For corresponding generic event sent is unspecif

Disallows event to be true if no effect of the event is true
Downstream barrier of an event upstream is blocking pro
Downstream event inferred true but observed ko be Fals: il
Downstream event prematurely ruled out as False

Ewent changed proc is not executed after sending event

Event values did not change <
Incomplete specific Faulk model |
Missing ot incorrect event changed procedure j

(o] 4 | Apply I Cancel

Going to Generic Event-Detection Diagrams

SymCure generic events allow you to navigate to generic event-detection
diagrams that contain a Send Fault Model Action Result block that refers to the
generic action. Similarly, the GEDP Send Fault Model Action Result block
provides the Show Fault Model Action menu choice for navigating to the generic
action in the fault model.

For more information, see the G2 Event and Data Processing User’s Guide.

To go to generic event-detection diagrams:
= Choose Show Event Detection Diagrams on a generic event.

This menu choice only appears if the generic action is specified in a generic event-
detection diagram.

Creating Generic External Actions

Showing Detailed Explanations of Generic Actions

You can show detailed explanations about a generic action, which includes
information about:

® Associated events.
* Enabling transitions.
® Activation procedure.

® Activation type.

To show a detailed explanation about a generic action:
= Choose Detailed Explanation on the generic action.

For example, here is the detailed explanation for a generic action:

Detailed Explanation] x|

Change event tyvpe to alatm is & repair action defined on the class
(CDaM-SYMCURE-APPLICATION,

~Associated Events r—Enabling Transitions
The Fallowing events are associated with this action, This action is enabled whenever the
values of its associated events change as
Ewvent Mame Follows.
Ewvent kvpe For corresponding genetic event sent is unspecif
Frann | To
False krue

suspect brue
unknown true

< | ||l |+

The activation procedure CLGE-MODGEUIDE-CHANGE-EVEMT-TYPE-TO-ALARM For
this action is invoked automatically, whenever the action is enabled.

Close |

Searching for Generic Actions

You can search for generic actions by keyword, target class, keyword and target
class, or keyword or target class.

To search for generic actions:

1 Choose Tools > Search > Fault Models > Generic Actions or click the
equivalent button in the Fault Modeling toolbar (&).

2 Configure the Keyword and/or Target Class.

3 Configure Search By to determine how to search.

113

4 Click the Search button.

A list of generic actions that meet the search criteria appears; otherwise,
No Matches Found appears.

5 Select a generic event and click the Go To button to go to the generic action.

Associating Mutually Exclusive Events

114

Sometimes, events that occur on the same target object are mutually exclusive,
that is, they cannot occur simultaneously. During diagnosis, if one of the mutually
exclusive events is true, then all the other events must be false. For example, a
pump cannot have a temperature that is too high and too low at the same time.
Note that mutually exclusive events can, however, all be false at the same time.

You can associate mutually exclusive relationships among events with the same
target class and that reside in the same module. Mutually exclusive events can be
defined in separate fault model folders.

To associate mutually exclusive events:

1 Show the generic fault model that includes the generic event that you want to
be mutually exclusive of other events defined for the target class.

2 Choose Associate Mutex Events on the mutually exclusive event.

You can also click the Associate Mutually Exclusive Events button on the
Advanced tab of the generic event properties dialog.

SymCure displays a dialog that includes all generic events defined for the
target class, except the selected generic event.

3 Select one or more events from the Unrelated Events column that are
mutually exclusive of the selected event, click the right arrow button to move
them to the Mutually Exclusive column, then click OK.

The center of the generic event icon turns a darker shade of purple to indicate that
it has an associated mutually exclusive event:

@

Associating Mutually Exclusive Events

Here is part of the detail of the “SymCure application errors” fault model folder
and the dialog for associating mutually exclusive events for the “Upstream and
downstream limits are too large” event. The “Upstream and downstream limits
are not large enough” event is mutually exclusive of the “Upstream and
downstream limits are too large” event, which means that whenever the
downstream effect of these events is true, only one of the mutually exclusive
events can be true; the other event must be false.

T Specific Fault model problems - |EI|1|

Upstream and downstream limits are too large\SymCure takes a long time to build a specific SymCure doesn't respond rapidly enough to

fault model when a new event arrives new events
gl

cdgm-symcure-application cdgm-symcure-application

pstream and downstream limits are not large
enough

cdgm—sywaﬂon

Generic edges do not exist
cdg-contained-in

Incomplete specific fault model

gl

cdgm-generic-fault-maodel cdgm-symcure-application

Related mutually
exclusive event.

Associate Mutually Exclusive Events i x|
L
. Event Mame: | Upstream and downstream limits are too large
Associate
Mutually Target Class: | COGM-S¥MCURE-APPLICATION
Exclusive v
Events Unrelated Events Mutually Exclusive Events

Diagnosis completed before complete Fault model built & (Upstream and downstream limits are not large enough)
Disallow event ko be true iF no effect of the event is true
Downstream barrier of an event upstream is blocking pro
Daownstream event inferred true but observed ta be Fals il
Downstream event prematurely ruled out as False

Event changed proc is nat executed after sending event

Event tvpe For corresponding generic event sent is unsp =
Event values did not change |
Incomplete specific Fault model ﬂ

ik | Apply I Cancel

The "Upstream and downstream limits are not large
enough" event is mutually exclusive of the "Upstream
and downstream events are too large" event.

115

Asserting NOT Relations between Generic
Events

Your fault model might require that certain events be inferred as not true, when
some other events are known to be true. You can assert “not” relations between
generic events to perform such an inference.

For example, consider two events, “Switch is ON” and “Switch is OFF”. If one
event is true (false) the other must necessarily be false (true).

To assert that a generic event is not true:

1 Choose Associate NOT Logic Event on a generic event in a generic fault
model.

You can also click the Associate NOT Logic Event button on the Advanced tab
of generic event properties dialog.

The dialog shows target events that can participate in the “not” logic
relationship with the source event. It also shows a list of all target events in the
generic fault model, from which you can select a single event to be false when
the source event is true.

2 Select an event from the list that is not true when the source event is true, and
click the Assert Event button.

The selected event appears in the NOT Event field.

3 Click Assert Event to assert that the selected event is not true when the source
event is true, then click Apply.

4 To undo the assertion, click the Retract Event button, then click Apply.

This example uses NOT logic. Using NOT logic when “Power LED is on” is true,
“Power LED is off” is false. Likewise, when “Power LED is on” is false, “Power
LED off” is true.

T NOT logic example i =]

ED is on

cdgm-computer
0.0 00

Computer powered down Power LED is off

-
cdgm-camputer cdgm-computer
0.0 0o 0.0

116

Compiling a Generic Fault Model

Here is the Associate NOT Logic Event dialog for the “Power LED is on” event,
which asserts the “Power LED is off” event as its NOT Event:

Associate NOT Logic Event) x|

Event Mame: | Power LED is on

Target Class: I COGM-COMPUTER

MOT Event: I Paower LED is off

Retract Event

Computer lacks up -
Computer povwered dovn
Cursar daes not respond
Inkernet cache Full
Event Mames: |Fevboard does not respond
Mouse locks up
Mew device incompatible
tothing movesiblinks on display
Power LED is off LI

asserh Event I

(o] 4 | Apply I Cancel |

Compiling a Generic Fault Model

Before SymCure can perform its diagnosis, all generic fault models in the
application must be compiled. Compiling a fault model folder identifies any
errors and warnings that exist within the model. If errors exist, SymCure cannot
use the generic fault model for diagnosis. SymCure ignores all warnings; they
represent potential concerns about the fault model, but they are not serious
enough to prevent SymCure from performing its diagnostic tasks.

SymCure reports the Compilation Status of the compilation in the properties
dialog for the generic fault model folder. A status of incomplete means the fault
model folder has errors. A status of complete means the fault model folder has no
errors and can be used for diagnosis.

SymCure also reports the Last Compilation Time. This timestamp can help
determine if it is necessary to recompile a model. It also serves as a visual
indicator that compilation has actually occurred. If the model has never been
compiled, no time stamp appears.

The color of the generic fault model folder indicates its compilation status. If the
compilation status is complete, the folder is blue, and if the compilation status if
incomplete, the folder is red.

If a fault model folder has subfolders, the value of the Compilation Status does
not propagate from a subfolder to a parent folder. Thus, that status of a parent
folder might be complete even though one or more subfolders are incomplete.

117

118

Compiling any fault model folder compiles all fault model folders in the
application. SymCure compiles all fault model folders on start up. Initializing the
application also compiles all fault model folders.

You can view errors and warnings associated with a generic fault model folder in
a dialog.

Compiling a Fault Model Folder

To compile a fault model folder:
= Choose Compile Folder on a fault model folder.

Here is a fault model folder and its associated properties dialog, which has been
compiled and for which no errors exist:

The outline of the fault model folder
is blue, indicating it has no errors.

===k LI
SymCure fault model errors

Generic Fault Model Folder x|
rieneral
Falder Mame: | SymiCure Faulk model errars
Categary: I SymiZure Madeling j
Target Class: |INSPECIFIED =]
Set Target Class For Events and|Actions I The compilation
status of the fault
Compilation Skatus: ICOMPLETE model folder is
Compiled At: | 4/27/2007 16:45:43 complete.
B
Descripkion:
|-

oK | Apply I Cancel |

Compiling a Generic Fault Model

Here is a fault model folder that has been compiled and has errors:

Fault model folders with warnings but

no errors also have a tan outline.
[===] .’ _=
Ewvent logic errors

Generic Fault Model Folder |

- zeneral

Falder Mame: | Event logic errors

Categary: |SymCure Maodeling j
Target Class: |UNSPECIFIED =]
Set Target Class for Events and &ctions I The compilation status
of the fault model
Compilation Status: | INCOMPLETE folder is incomplete,

Compiled At: |4I|'2?I|'zgg? 16:53:06 indicating it has errors.

Description:

(a4 | Apply I Cancel |

119

Viewing Errors

Here are the errors that can occur during compilation, organized by the object on
which the error can occur:

Object Errors

Generic event Target class does not exist.
Duplicate event definition.
Illegal event type.

Mutex event errors: Target class of mutually
exclusive events is different.

Upstream barrier contains an illegal value (i.e.,
isn't true, false, suspect, unknown).

Downstream barrier contains an illegal value
(i.e., isn't true, false, suspect, unknown).

Generic IF event State dependent procedure does not exist.
Generic N/M-AND and OR-N/M event:

Illegal fraction value, i.e., Fraction < 0.0 or
Fraction > 1.0

Causal connection Incorrect propagation relation (e.g., self when it
should be something else).

Undefined propagation relation, i.e., there is no
g2-relation corresponding to the propagation-
relation attribute of a causal connection
connecting two generic events.

Generic event view Target class does not exist for generic event
view

There is no generic event named by the event-
name of generic event view

Cannot connect one generic-event view to
another.

Generic external Target Class does not exist
actions

120

Compiling a Generic Fault Model

To view errors for a fault model folder:

= Choose View Errors from the popup menu on the fault model folder detail or
on the fault model folder itself.

Here are the errors for a fault model folder whose compilation status is
incomplete:

==L
Event logic errors

Generic Fault Model Errors il

Folder Name: IEventlogic eITors

Compiled At [3/30/2006 10:37:36

Description
Error: Target class CODGM-3YMCURE does not exist for generic event Upstream barrier of an event d

Close |

121

Viewing Warnings

Here are the warnings that can occur during compilation, organized by the object
on which the warning can occur, most of which you may ignore:

Object Warnings

Generic event Event changed procedure does not exist.
Event unchanged procedure does not exist.

Two mutually exclusive events share a common
cause. This indicates that the model is not
consistent.

Two generic root causes have the same
signature (i.e., each one will cause the exact
same set of effects thus making it impossible to
distinguish one from the other unless there are
tests designed to do this.)

The downstream barrier for any event upstream
of an N/M AND event must be empty

The upstream barrier for any event downstream
of an OR N/M event must be empty

The event type for an event may not be
consistent with the topology of the model (e.g.,
the left-most event in a generic fault model is
unspecified instead of root-cause)

Generic external Action not assigned to generic event

actions . .
No G2 procedure for generic action

122

Exporting and Importing Generic Fault Models

To view warnings for a fault model folder:

=2 Choose View Warnings from the popup menu on the fault model folder detail
or on the fault model folder itself.

Here are the warnings for a fault model folder whose compilation status is
complete. Notice that a common warning that can occur on generic events is:
"Warning: Event type UNSPECIFIED for event-name on target-class may not be
consistent with the topology of the generic model". Thus, any time you do not
configure the event type, you will get such a warning.

=== .
SymCure fault model errors

Generic Fault Model Warnings x|

Folder Name: IExternaI action errors

Compiled At [3/30/2006 10:37:36

Description

Warning: Previous invocation of procedure has not yetterminated on COGM-EXTERMAL-ACTION ha:
Warning: Previous invocation of procedure has not yet terminated on COGM-EXTERMNAL-ACTION ha:
Warning: Previous invocation of procedure has not yetterminated on COGM-EXTERMNAL-ACTION ha:
Warning: Incorrect arguments to external action procedure on COGM-EXTERMNAL-ACTION has the sa
Warming: Incorrect arquments to external action procedure on COGM-EXTERMNAL-ACTION has the sa
Warning: External action procedure does not exist on COGM-EXTERMAL-ACTION has the same sign

‘ o]
Close |

Exporting and Importing Generic Fault Models

SymCure allows you to export generic fault models to XML files and import them
back into SymCure. This feature allows you to transfer generic fault models from
one application to another without requiring the source module KBs. You can
export and import generic fault models interactively or programmatically.

By default, SymCure exports a generic fault model to an XML file in the archives
subdirectory of your installation directory each time that the fault model is
successfully compiled. You can disable automatic archival or change the target
directory for archiving generic fault models through the config. txt file.

123

124

For information on exporting and importing generic fault models
programmatically, see Exporting and Importing Fault Models.

For information about configuring startup parameters for exporting and
importing, see Archiving.

To export a generic fault model folder:

= Choose Export on a generic fault model folder.

To import a generic fault model folder:

= Choose Project > Logic > Diagnose > Import > Import Generic Fault Model or
click the equivalent button in the Fault Modeling toolbar (&).

When the file is successfully parsed, a corresponding generic fault model folder
is created.

Running
SymCure Applications

Describes how SymCure performs run-time fault management by creating specific
fault models with specific events and specific actions.

Introduction 126
SymCure’s Diagnostic Reasoning 127
Simulating Specific Events 129

Interacting with Specific Events and Actions through Diagnostic Console
Browsers 137

Interacting with Specific Fault Models 151

Learning Generic Models from Specific Events 165
Detecting Chattering Events 166

Exporting and Importing Specific Fault Models 167

gensym.

125

Introduction

SymCure’s run-time fault management is based on creating a specific fault model,
which consists of specific events and specific actions that occur on specific
domain objects. SymCure is responsible for run-time diagnostic processing by
correlating events, propagating event value, and scheduling external actions.

You can view the specific fault model as a causal directed graph and interact with
specific events and specific actions. You can also view and interact with specific
events and specific actions through a set of diagnostic consoles and message
browsers, which display alarms, root causes, test actions, and repair actions.

This diagram shows the architecture of a SymCure application, with these run-
time elements added to the diagram labeled in bold:

Inputs Diagnostic Processing Outputs
Domain map Root
Run-Time Fault oot causes
Management
Diagnosis Alarms

Manager

Incoming
events

Specific fault
model Test actions

/ Specific events

Fault management Specific actions
procedures

Diagnostic knowledge

Repair actions

Generic fault
model

Browsers

126

SymCure’s Diagnostic Reasoning

SymCure’s Diagnostic Reasoning

SymCure’s diagnostic reasoning comprises specific events and actions, specific
fault models, and diagnosis managers and algorithms that use these components
to correlate events, identify the root causes of symptoms, predict impacts, run
tests, and perform repair actions.

Specific Events and Actions

A specific event is a statement about a specific target object, which is uniquely
identified by the combination of its name and target object.

A specific action is an external action that is uniquely identified by a combination
of its name and its associated target object.

Specific events are created from generic events. However, unlike generic events
that are defined on domain object classes, specific events apply to specific domain
objects. SymCure creates specific events during diagnostic reasoning, unlike
generic events, which are built by application developers.

A specific event has a value and a status. An event can take on the
following values:

* “true” — The event is known to have occurred.

* “false” — The event is known to not have occurred.

* “unknown” — Itis not known whether the event has occurred.
* “suspect” — Itis suspected that the event may be true.

The status of an event indicates the justification for the event’s value. The status
can be:

* “specified” — The value of the event is observed.

* “upstream inferred” — The value of the event is inferred from one of
its effects.

o “downstream inferred” — The value of the event is inferred from one of
its causes.

* “mutually exclusive” — The value of the event is inferred by mutual
exclusion.

127

128

In the specific fault model, SymCure uses color and a letter abbreviation to
identify the event state, which is a combination of the event value and the event
status, as follows:

Color Abbreviation Value Status
Red T "true" "specified"
Salmon T "true" "upstream inferred" or

"downstream inferred"

Tan T "true" "mutually exclusive"
Green F "false” "specified"
Yellow-green F "false” "upstream inferred" or

"downstream inferred"

Green F "false” "mutually exclusive"
Yellow S "suspect" Any status
Blue 8] "unknown" Any status

Specific Fault Models

SymCure’s fault management algorithms respond to incoming symptoms by
hypothesizing and identifying root causes, predicting their impacts, running tests
and repair actions, and notifying operators. At the heart of fault management are
a set of specific fault models, which SymCure constructs from the generic fault
models and specific domain objects.

SymCure diagnoses root causes from known symptoms by tracing upstream
along the causal pathways from the symptoms to the faults. SymCure predicts the
impact of root causes by propagating downstream from causes to effects.

SymCure combines the generic fault models with the domain representation to
build focused specific fault models to investigate observed symptoms. Using the
specific fault models, SymCure recognizes that a group of events are correlated to
each other, identifies suspect faults that could have caused the symptoms, and
selects and executes tests and repair actions to resolve the problems.

A specific fault model describes causal interactions among events within and
across the specific domain objects. It also captures the current state of the
diagnostic process, and can be used to generate explanations for symptomes,
diagnostic conclusions, and tests and repair actions. For the sake of efficiency, in
response to an incoming event, SymCure builds the minimal set of specific events,
upstream of the event to diagnose possible causes and downstream of the event to
predict impacts. Like generic fault models, specific fault models are represented

Simulating Specific Events

as causal directed graphs where nodes represent specific events, and edges
represent causal relations among the events.

Diagnosis Managers

A diagnosis manager is an object that SymCure creates to manage a specific fault
model. The diagnosis manager keeps track of the root causes, alarms, tests, and
repair actions associated with the specific fault model and provides access to

the model.

SymCure automatically creates a diagnosis manager to handle each causally
independent diagnostic problem. Diagnostic problems are causally independent
of each other when they share no specific events. In other words, if you have
multiple disjoint, that is, unconnected, specific fault models, SymCure will create
multiple diagnosis managers, one per specific fault model.

Diagnosis managers appear in the Project menu and Navigator. You also have full
access to the information they store through the SymCure APIL. You can display a
dialog of diagnosis manager properties from a specific fault model display or
from the Navigator.

For more information about the diagnosis manager, see Diagnosis Managers.

Simulating Specific Events

Note

You can simulate specific events for domain objects in the domain map, using a
menu choice on the domain object. You use this technique to test the causal logic
of your generic fault models.

To simulate specific events:

1 Ensure that the Enable Fault Model toggle is enabled for the domain object
whose events you want to simulate.

2 Choose Send Fault Model Event on a domain object in the domain map.

SymCure displays a dialog that includes all the generic events defined for the
domain object class.

3 Select the event you want to send, then choose an event value to be true, false,
or suspect.

Because embedded objects do not exist in a process map, you cannot interactively
send fault model events for embedded objects like you can for domain objects.

For more information about enabling the fault model for domain objects, see
Chapter 14, “Running SymCure Fault Models” in the Optegrity User’s Guide.

129

Example: Simulating Events

Suppose you send a value of true for the “Specific fault model is not built” event
on the domain object named symcure-application-1. Here is the send event dialog
and its associated domain object:

T SymCure Application i |EI |i|

Send Fault

Model Event I—E SYMCURE-APPLICATION-1
-4

send Fault Model Event x|

Object Mame: | symcure-application-1

—> Mo alarm messages in diagnostic console AI

Mo change in specific Fault model display

Mo provision made for propagation delay

Past processing procedure is not executed after ser
Event Names: |Propagation delay along causal link is not set

Specific Faulk model is not built

SymCure doesn't respond rapidly enough to new ev
SymiCure takes a long time ko build a specific Fault m

Terminate diagnosis early is true LI
Ewvent value: & True " False " Suspect
Send Event |

Close

Specific Fault Model

Here is the specific fault model that SymCure creates when you send the “Specific
fault model is not built” event. The event is in the middle of the diagram. The
downstream events are inferred to be true, and the upstream events are suspect.
The color of each specific event indicates it state —event value and event status.
Notice that the specific events include text in their icons to indicate the value of
the specific event, which can be T for true, F for false, S for suspect, and U for

130

Simulating Specific Events

unknown. To facilitate viewing, this diagram shows the specific fault model in a
different configuration.

"Specific fault model is not built”
is an observed symptom;
therefore, its color is red.

Ty Relation tree for DIAGNDSIS-MANAGER-0001

the cdg-send-event API

The target object in cdg-send-even
t exist

There is no event corresponding to thejevent

Zpecific fault m

=10l x|

/ symcure-application-1

Post processing procedure is not executeﬂ\

Mo alarm messages in diagnostic console

ksymcure—application%

[
Lt

symcure-application-1

Event changed proc is not executed after

symcure-application-1 J

All events that are upstream of the
observed symptom are suspect,
based on upstream inference;
therefore their color is yellow.

All events that are downstream of
the observed symptom are true,
based on downstream inference;
therefore, their color is salmon.

For information on displaying the specific fault model, see Interacting with
Specific Fault Models.

131

Corresponding Generic Fault Model

Compare the specific fault model with the “Diagnostic console issues” generic
fault model, which defines generic events for the cdgm-symcure-application class.
This diagram associates the generic events with the specific events in the previous
diagram. The “Specific fault model is not built” generic event is in the middle of

the diagram.

==
Diagram folder errors

The upstream events are
inferred to be suspect\

T Diaonostic console issues

Ewent type for corresponding gene
sent is unspecified

"Specific fault model is not built" is

the observed symptom.

C event

cdgm-symcure-application

There is no event corresponding t
name in the cdg-send-event AP|

The downstream event
is inferred to be true.

=0l x|

Mo alarm messages in diagnostic console

cdgm-symcure-application

J

the EF

cdgm-symcure-application

The target ohject in ¢
does not exist,

-

Specific fault mddel is not built

cdgm-symcure-application

t AP

vdgm—symcure—application j

132

Simulating Specific Events

Here is the “Procedure execution” generic fault model, which defines generic
event views for the “Specific fault model is not built” generic event, which defines
additional downstream effects of the “Specific fault model is not built” generic

event.

== LI .
Procedure execution

Ta Procedure execution B il

Missing or incorrect event changed
procedure

Incomplete specific fault model

cdgm—sym cdgm-symcure-application

Specific fault model is nat built
Event changed proc is not executed after
sending event

cdgm-symcure-application

Event values did not change cdgm-symcure-application
cdgm-symcure-app

Incomplete specific fault model Post processing procedure is not executed

after sending event

cdgm-symcure-application

specific fault model is not bui Ry CIR EEED

cdgm-symcure-application

hissing or inggirect post processing

nrocedure

cdgm-symcure-application

Event Propagation Algorithm

SymCure uses heuristic best first search to propagate event values across specific

events. At a very high level, starting from an incoming event, the logic for

propagating event values in a specific fault model from an incoming event is as

follows:

for any event e when its value changes do
propagate the value of the event upstream to all causes;
propagate the value of the event downstream to effects;
end for

133

134

where:
causes are all events that are upstream of event e.
effects include all events that are downstream of causes plus event e itself.

The time complexity of the propagation algorithm is linear in the number of
events and the number of edges in the specific fault model. The maximum
number of events in a specific fault model is bound by the product of the number
of managed domain objects and the size of the largest generic fault model. In
practice, because SymCure constructs only the events that are correlated to
incoming symptoms, the actual size of a specific fault model is usually a small
subset of the maximum possible size.

The following diagrams show the sequence of event propagation, using the
SymCure application diagnostics example. It uses the SymCure debugger to show
the event propagation algorithm.

1 “Specific fault model is not built” on symcure-application-1 is observed to be
true:

Observed symptom

Tw Debug Display Wo - 0] x|
Specific fault model is not built

symcure-application-1

Simulating Specific Events

2 The diagnosis manager builds the specific events upstream of the observed
symptom:

Suspected root
causes Observed symptom

(=l

Ts Debug Display Workspace

There is no event cirresponding to the
Rhame inthe dfig-send-event AP|

symeoure-application

The target ohject in pdg-send-even | Specific fault model is naot built
t exist

symcure-applicationd symcure-application-1

3 The diagnosis manager builds the specific downstream effects of the observed
symptom:

Downstream effects of
Observed symptom observed symptom

T Debug Display Workspace = =1 E3

There iz no event comesponding to e (Fost processing procedune iz not emcua

e in the cdg-zend-avent AFI nding event

symcure-application-1

el iz not built

The target ohject in cdg-zend-even Speciic fauk Mo alarm mezzages in diagnostic conzale

g st N[»)]
symoure-application-1 =ymcure-applicaton-1 =ymcure-application-1

\ symcure-spplication-1)

135

4

“Specific fault model is not built” on symcure-application-1 is observed to be

false. The diagnosis manager propagates event value upstream. Both
upstream root causes are inferred to be false.

Root causes are
inferred to be false.
Observed symptom

T Debug Display Workspace

(There iz no event comresponding to the

The target object in cdg-zend-=wen

Specific fault
T 1 exist

&l iz not buil

=10 %]

Fost procezzing procedure is not exscuted

ﬁ = nding event

syrncure-spplication-1

Mo alarm messages in diagnostic console

symcure-app licstian-1

vacu re-application-1

S[6Z

symecure-application-1

Ewent changed proc iz not executed after

mlin"ﬁ- event

symoure-application-1

5 The diagnosis manager propagates event value downstream. All downstream

effects are inferred to be false.

Observed symptom

T Debug Display Workspace

There is no event comezponding to the
S Eiarne in the cdg-=end-ewvent AF|
IR ;

syrncure-spp licatian-1

The target akject in cdg-zend-even

= k Speoific faukt El im nat buikt
t enizt] %

Downstream effects are
inferred to be false.

=10] %]

Fozt proceszzing procedure is not e:oecutem
nding event

r
¥

syrncure-application-1

Mo alarm messages in diagnostic consale

syrncure-spp lication-1

syrncure-spplicitien -1

S[o3

syricure-application-1

Ewent changed prac iz not executed after
Sgah event

[

\ symcure-application-1)

136

Interacting with Specific Events and Actions through Diagnostic Console Browsers

Interacting with Specific Events and Actions
through Diagnostic Console Browsers

Note

Note

You can view and interact with specific events and actions in four built-in
diagnostic console browsers:

* Alarms Browser — Shows specific events of type alarm.

* Root Causes Browser — Shows specific events of type root-cause.
* Test Actions Browser — Shows specific test actions.

® Repair Actions Browser — Shows specific repair actions.

The built-in SymCure browsers provide a tabular view of specific events and
actions. The browsers show various information about a specific event or specific
action, such as the event or action name, the target object, a text message, the
event value, the action status and type, and the time at which the event or action
was last updated.

The Alarms and Root Causes browsers use the same color scheme as the specific
fault model to indicate event value and status. For details, see Specific Events and
Actions.

You can configure the default browser that SymCure uses for alarms, root causes,
test actions, and repair actions. For example, you might want to display both
alarms and root causes in the same browser, and both test actions and repair
actions in the same browser. To do this, you configure SymCure initialization
parameters. For details, see Default Browsers in Configuring

SymCure Applications.

The following sections use the SymCure application diagnostics example to show
how to interact with alarms, root causes, test actions, and repair actions. The
events that appear in the browsers are the result of sending the “Compilation
status incomplete” event on the domain object named gfm-1. For information on
how to simulate this event, see Simulating Specific Events.

To generate root cause events for this example, you must set the cdg-allow-
unspecified-event-to-be-root-cause startup parameter to true. See Specific Fault
Model Creation.

Unlike the default Message Browser, the SymCure browsers do not allow you to
acknowledge or delete messages. Instead, SymCure handles event creation and
deletion as part of the diagnostic process.

For further information on running SymCure within Optegrity, see the Optegrity
User’s Guide.

137

Displaying the Browsers

You access these browsers through the Project menu or the Fault Modeling
toolbar.

To display the browsers:

= Choose Project > Logic > Diagnose > Diagnostic Console and choose the
browser you want to display or click the equivalent button in the Fault
Modeling toolbar (# & w =).

The Diagnostic Console menu includes the four SymCure browsers: Alarms,
Root Causes, Test Actions, and Repair Actions.

Project

Initialize Application
Uninitialize Application

sp My User Preferences

System Models 3

Logic 4 || Diagnose » | Generic Fault Models 3

Reparts L4 Specific Fault Models »

Charts 4 | Diagniostic Console 3 | 1% Alarms

Object Models 4 Debug Specific Fault Models — » | & Root Causes

System Settings ’ Impart b |V Test Actions
Enable Tuning D:J Repair Actions

Alarms Browser

The Alarms Browser has these columns:

® Target — The domain object that is the target of the event.
* Event Name — The name of the specific event.

¢ Value — The value of the event, which is "true", "false", "suspect”,
or "unknown".

® Status — The status of the event, which is "specified", "downstream inferred",
"upstream inferred" or "mutually exclusive".

* Last Update Time — The time at which the event value or status was
last updated.

Here is the Alarms Browser that results when sending the “Compilation status is
incomplete” event on gfm-1:

Alarms
i +. i

g el@ Y[% 2| a=gli|®2¢] B|H|

Target | Event Name | Yalue | Status | Last Update Time |
Gfm-1 Generic edges do not exist true downstream inferred 571§2007 12:25:05
Gfm-1 G2 Relation not displayed in dialog For propagation relation suspect downstream inferred 5/1§2007 12:25:05

138

Interacting with Specific Events and Actions through Diagnostic Console Browsers

Root Causes Browser
The Root Causes Browser has the same columns as the Alarms Browser.
Here is the Root Causes Browser that results when sending the “Compilation

status is incomplete” event on gfm-1:

Rook Causes

cl@ vga| alz|i s B

Target | Event Name | Yalue | Status | Last Update Time |
afri-1 Carmpilation errors suspect upstream inferred 5112007 12:25:05
GFm-1 Genetic Faulk model is not compiled suspect upstream inferred 51112007 12:25:05
GFm-1 Mo generic events For event views suspect upstream inferred 5/1/2007 12:25:05
afm-1 Incorrect propagation relations suspeck upstream inferred Si1/2007 12:25;05
afri-1 Undzfined class definitions suspect upstream inferred 51112007 12:25:05

Test Actions Browser

The Test Actions Browser has these columns:

* Target — The domain object that is the target of the test action.
* Test Name — The name of the specific test.

® Status — The status of the test. The values are: "create”, "enabled", "running”,
and "inactive".

* Type — The type of test. The values are: "manual" and "automatic”.
® Last Update Time — The time at which the event value was last updated.

Here is the Test Actions Browser that results when sending the “Compilation
status is incomplete” event on gfm-1:

Test Actions

ols| v|[w|a] -—|7|s

Target | Test Marne | Staktus | Type | Last Update Time |
Gfri-1 Check compilation status and errors For Fault model created automatic 5112007 12:02:25
Gfri-1 Check For compilation errors enabled ranual 5112007 12:02:25

Repair Actions Browser
The Repair Actions Browser has the same columns as the Test Actions Browser.

Here is the Repair Actions Browser that results when sending the “Compilation
status is incomplete” event on gfm-1:

Repair Actions

ols| v[w|a] ~|7|s

Target | Action MNarme | Skaktus | Type | Last Update Time
Gfri-1 Cormpile Fault model created automatic 5112007 12:02:25

139

140

Toolbar Buttons
You ;Qfad with eghBty @whagidons iTHe Reeivrersky Rejsstingcthsrevisiweer)

actio

enable thexeglzar buttons, thgwalickingerewitaiztion in the generic fault

This table describes toolbar buttons iﬁ%(g%lofp%ﬂg%rowsers. The toolbar buttons
are avzilable in all @gfi\fﬁ ﬁ?@ﬁ%ﬁ%ﬁ' Otmf %fb%t?fﬂt‘er criteria for filtering events.
Y g

Button Name Description
E Propiétties Showpphieptopeetieted tweat iter.
ﬂ ﬂ Targetck View Sholscitsettelmaiw shject no mubiele tlen tsveart
has appenareih the browser.
] a Shopyeranatic (AIWMRGQ%@@W%WS
EveRfplanation genekic gyeiledh dhglaeneidn gtk ted alarm

|

|

Root Causes

Causal Model

foldgf root cause event.

(Alarms Browser) Shows the root causes for
the selected alarm event.

(Alarms and Root Causes Browsers) Shows
the causal model for an alarm or root cause
event.

lo

Interacting with Specific Events and Actions through Diagnostic Console Browsers

Show Generic
Action

(Test Actions and Repair Actions browser)
Shows the generic action in the generic fault
model folder.

ﬂ Configure Filter Configures filter criteria for filtering events.
E Filters Applies the selected event filter.
ﬂ Lock View Locks the browser so no more events can
appear in the browser.
E Detailed (Alarms and Root Causes Browsers) Shows
Explanation the detailed explanation of the selected alarm

¥

I

Root Causes

Causal Model

or root cause event.
(Alarms Browser) Shows the root causes for

the selected alarm event.

(Alarms and Root Causes Browsers) Shows
the causal model for an alarm or root cause
event.

141

142

Button Name Description

False (Alarms and Root Causes Browsers) Sets the
value of the event to false.

j Events (Test and Repair Actions Browsers) Shows the
underlying event associated with the external
test or repair action.

ﬂ Explanation (Test and Repair Actions Browsers) Describes
the events that led up to creating and
activating the action.

@ Run (Test and Repair Actions Browsers) Runs the

selected manual test or repair action.

Showing the Event Target

You can go to the event target of an alarm or root cause. The event target is the
domain object for which the specific event is generated.

To show the event target:

= Select an event and click the Target toolbar button: ﬂ

The event target for the “Incomplete specific fault model” alarm on
symcure-application-1 is the symcure-application-1 domain object:

Ty SymCure Application

SYMCURE-APPLICATION-1

=10l x|

Interacting with Specific Events and Actions through Diagnostic Console Browsers

Showing Event Properties

To show event properties:
= Select an event and click the Properties toolbar button:

Here are the properties for the “Incomplete specific fault model” alarm on
symcure-application-1:

specific Or And Event x|

- General

Event Mame: | Incomplete specific Faulk mode

Target Object: | symcure-application-1

Event Yalue: I true

Event Status: I downstrean inferred

Tirme Stamp: | S1/2007 12:02:25

Occurs At: | 5112007 12:02:25

Close

Sorting Events and Actions

By default, events and actions are sorted in the order in which they are received,
with the most recent messages at the top. You can sort events and actions, based
on any column.

To sort events based on a column:

= C(lick the column header to sort messages by the information in the selected
column.

The selected column includes an arrow in the column header to indicate that
messages are sorted, based on that column. Click the arrow to sort the events in
reverse order.

Locking the Browser

By default, events and actions appear in the browsers as soon as they are created.
You can lock a browser to prevent further alarms from arriving. When you unlock
the browser, all the events and actions that would have appeared, appear all

at once.

To lock/unlock the browser:
> Click the Lock View toggle button: @ |

143

Note

When the browser is locked, the lock icon appears pressed.

To unlock the browser:

> C(lick the Lock View toggle button when it is pressed: ﬁ

Filtering Events and Actions

You can filter events and actions, based on the target object. To filter events and
actions, you configure the filter criteria, then you apply it to the browser. The
filter criteria is inclusive, that is, it shows the events and actions that meet the
specified criteria.

The only relevant filter criteria for use with SymCure events is the target object;
the other filter criteria are relevant for general operator messages only.

To configure the filter:
> C(lick the Configure Filters toolbar button: ﬂ

This filter dialog shows only events whose target is gfm-1:

Message filter x|

r—Filter Messages by Priority

[w Priarity 1 v Priarity 2 [Priarity 3 v Priarity 4
[Priarity 5 v Priarity & v Priarity 7 [Priarity &

v &l Priarities

r—Additional Filkers

Process Map: ISYITIC'-IFB Application j [Process Map Filker
Class: IGEVM—MESSAGE j [Class Filter
Cakegory: I " Category Filker

(Target: I gfm-1 [v Target Filter)

Target Class: IGRTL-DOMF\IN-OBJECT j [Target Class Filker
(= I Unspecified j [User Filker
Group: I [Group Filker
Maximum age: 000 = |00 000000 = [Update Time Fiter

[Unacknowledged Messages only

[~ Exclude Messages For Inactive Targets

(o] 4 | Apply I Cancel

Only events whose
target is gfm-1 appear
in the browser.

144

Interacting with Specific Events and Actions through Diagnostic Console Browsers

To apply the filter:
=> C(lick the Filters toggle button: E

The Filters button appears pressed when the filter is in effect.

To remove the filter:

=> C(lick the Filters toggle button when it is pressed: Iﬁ

Interacting with Alarms and Root Causes

You can show various information about the specific fault model associated with
alarms and root causes.

Showing Root Causes for Alarms

All alarms have one or more suspected root causes, based on upstream
event propagation.

To show root causes for an alarm:

= Select an alarm and click the Root Causes toolbar button: ﬂ

Here is the specific fault model that shows the root causes for the “Generic edges
do not exist” predicted alarm on gfm-1:

Ty Causal model for Generic edges do not exist ::: gfm-1 ;IEIZI

Undefined class definitions

gfrn-1

=
=]

Mo generic events for eyent views

gim-1

Generic fault model is not compile Compilation errors Compilation status incomplete Generic edges do not exist
[eX I ol ol
girm-1 gfim-1 gfm-1 girm-1

Incarrect prop on relations

gfrn-1

=

145

Showing Causal Models

You can show the causal model for an alarm or root cause, which is the specific
fault model focused around a specific event. The causal model includes observed
symptoms, predicted events, and suspected root causes, based on upstream and
downstream propagation. The causal model includes alarm events, root cause
events, and events that are neither alarms nor root causes.

When the number of specific events is less than or equal to 100, the causal model
show all specific events in the model. When the number of events is greater than
100, the causal model shows an encapsulated view, which includes only
immediately upstream and downstream events, and root causes.

To show the causal model:
= Select an event and click the Causal Model toolbar button: g
Here is the causal model for the “Generic edges do not exist” predicted alarm

on gfm-1:

¥ Causal model for Generic edges do not exist :: gfm-1 8 I [] 5

Undefined class definitions

gfrm

=

Event changed proc is not executed after
sending event

symcure-application-1

Mo generic events for
gfm-1

Generic fault model is not compile Compilation errors ~ Compilation status incomplete Generic edges do not exist Incompletg specific fault model

o n @ IO 0=

gfr-1 gfr-1 gfim-1 gfr-1 symeure-application-1

Incarrect prop on relations

Post processing procedure is not executed
after sending event

-1

=)

symcure-application-1

Showing the Event Summary

The summary view for a specific event summarizes the key relationships between
the event, its causes, effects and actions, without displaying the complete details
of the specific fault model.

You can show a summary of the predicted alarms, observed symptoms, root
causes, and actions for an alarm. For a root cause, you can show the predictions,
symptoms, and actions. The relationships between the alarms and actions are
labeled in the summary view.

146

Interacting with Specific Events and Actions through Diagnostic Console Browsers

To show the event summary:
= Select an event and click the Summary toolbar button: ﬁ

Here is the event summary for the root cause event “Generic fault model is not
compiled” on gfm-1, which shows its predicted alarms, symptoms, and
associated actions:

T Summary view for Generic Fault model is not compiled ::: gfm-1 i - |EI|5|

Post processing procedure is not executed
after sending ewent

Incomplete specific fault model

symcure-application-1

(AR FREDIATION

Compilation status incomplete Generic faplt model is not compiled

gfim-1 gfn-1
[+;]

Generic edges do not exist

gfm-1

ompile fault model
gfn-1

Check compilation status and errors far fault
model

gfm-1

0

Showing the Event Chronology

The event chronology contains a history of all alarm and root cause events, and
actions related to the diagnostic problem. The event chronology supplements the
specific fault model by explicitly outlining the chronological sequence of events
that lead up to the current state of the specific fault model.

Each alarm and root cause has an associated chronology of events that led up to
the alarm or root cause being created. Only alarm and root cause events, and
actions appear in the event chronology.

SymCure represents timestamps of specific events in subsecond real time. As a
result, the event chronology table displays specific events in chronological order
according to subsecond time. Note that the timestamp is displayed as a
combination of date and time in the event chronology table, all message browsers,
and event display objects in all specific fault model displays.

147

To show the event chronology:

= Select an event and click the Chronology toolbar button: @

Here is the event chronology for “Generic fault model is not compiled” root cause
on gfm-1, with the selected event at the top of the list and the events leading up to
that event following.

Chronology of Events and Actions ' 5'
Type | Mame | Target | Walue and Status |
Rook Cause Event Compilation errors afm-1 suspectfupstream inferred
Rook Cause Event Generic Fault model is not compiled gfm-1 suspectfupstream inferred
Root Cause Event Mo generic events For evenk views gfm-1 suspectiupstream inferred
Root Cause Event Incorrect propagation relations gfm-1 suspectiupstream inferred
Ronk Cause Event Undefined class definitions afm-1 suspectfupstraam inferred
Alarm Event Genetic edges do nok exist afm-1 truefdawnstrearn inferred
Alarm Event G2 Relation not displayed in dial... gfm-1 suspect/downstream inferred
Alarm Event Incomplete specific Faul: model symcure-application-1 truefdownstream inferred
Alarm Event Post processing procedure is no,,, svmcure-application-1 truefdownstream inferred
1] | i

Saving the Event Chronology
You can save the event chronology to a .csv file for analysis outside of SymCure.

To save the event chronology:

= Select an event and click the Save toolbar button: ﬂ

Setting the Event Value

You can interactively set the value of a specific event to true or false. A model
developer might do this to test the behavior of the generic fault model. An
operator might do this at run time when the event occurs to inject a new value.

When you set the event value to true or false, the event status is "specified".

To set the event value to true:

= Select an event and click the True toolbar button:

To set the event value to false:

= Select an event and click the False toolbar button:

148

Interacting with Specific Events and Actions through Diagnostic Console Browsers

Interacting with External Actions

An external action is a procedure that SymCure activates when the value of the
underlying event changes, according to the specified enabling transition for the
particular type of action. The external action can execute automatically or
manually, depending on how it is configured.

You can interact with two types of external actions through the built-in browsers:
test actions and repair actions. Test actions test for the occurrence of a specific
event and returns the value of the event via an API call to SymCure. Repair
actions perform some type of repair to the domain model.

For more information, see Creating Generic External Actions.

Showing Underlying Events

To show the underlying event:
= Select a test or repair action and click the Events toolbar button: j

Here is the underlying event for the “Check compilation status and errors for
fault model” specific test action for gfm-1:

Ta Underlying event for Check l:l:ln'lpilatiﬂ?ﬁ - |EI|§|

® Check compilation status and errors for fault
odel

gft

Compilation status incomplete

gfim-1

149

150

Explaining Actions

You can query each test or repair action for an explanation of the event that lead
up to the action being created. The explanation comprises of the list of root causes
tested or repaired by the external action.

To explain a test or repair action:
> Select a test or repair action and click the Explanation toolbar button: ﬂ

Here is the explanation of the “Check compilation status and errors for fault
model” test action for gfm-1:

Explanations for Specific Test Action 1'

Action Mame: I Check compilation status and errors For Faulk model

Target Object: I gfm-1

Aszociated Events:

Event Name | Ewvent Yalue | Evenk Status
Compilation status incomplete true specified
ul | 2]

Underlving Root Causes;

Event Name | Ewvent Yalue | Event Staktus |

Close

Executing Manual Tests and Repair Actions

A test or repair action can be automatic, in which case it executes whenever it is
enabled, based on the enabling transition defined for the action. A manual test or
repair action is enabled when the value of the underlying event changes,
according to its enabling transition; however, you must execute the action
manually.

For more information on enabling transitions, see Creating Generic External
Actions.

To execute a manual test or repair action:
> Select a manual test or repair action and click the Run toolbar button: @

The status of the test changes to “running”. When the test completes, the status
changes to “inactive.”

Interacting with Specific Fault Models

Interacting with Specific Fault Models

You can interact with specific events and actions through a graphical display of
the specific fault model. You can view and interact with a specific fault model by:

® Creating a dynamic view of a specific fault model for a specific event through
one of the built-in browsers.

* Creating a dynamic view of a specific fault model managed by a diagnosis
manager.

SymCure allows multiple clients to view and update specific fault models
simultaneously.

For information on showing specific fault models through the built-in browsers,
see Interacting with Alarms and Root Causes.

For information on debugging specific fault models, see Debugging
SymCure Fault Models.

Showing Specific Fault Models
You can display a specific fault model from the Project menu or the Navigator.

To show a specific fault model:
= Choose Project > Logic > Diagnose > Specific Fault Models menu.

The specific fault model associated with each diagnosis manager appears in the
list, for example:

Projeck

Initialize Application
Uninitialize: Application

s;; My User Preferences

Swstem Madels 3
Logic 4 || Diagnose » | Genetic Faulk Models 3
Reports 4 | Specific Faulk Models » DIAGHOSIS-MARNAGER-0001
Charts 4 Diagnostic Consale 3
Object Madels 4 Debug Spedific Faulk Models — »
System Settings [J Import 4
Enable Tuning

151

Here is a specific fault model:

Ty Relation tree for DIAGNOSIS-MANAGER-0001 _ o) x|

There is no event corresponding to the event Post processing procedure is not executed
the cdg-send-event API IEG ganding event

symcure-application-1

symcoure-applicat

The target object in cdg-send-even
t exist

Zpecific fault m i3 not huilt Mo alarm messages in diagnostic console

[
™

symcure-application-1

symcure-application-1 symcure-applicaton-1

Event changed proc is not executed after

"ﬁﬁEi event

symcure-application-1

Showing Specific Event Properties

Specific events define these properties:
* Event Name — The name of the specific event.

* Target Object — The name of domain object that is the target of the
specific event.

A

* Event Value — The value of the specific event, which can be “true”, “false”,
“Suspect”, or “unknown”.

* Event Status — The status of the specific event, which can be “specified”,
“upstream inferred”, “downstream inferred”, or “mutually exclusive”.

* Timestamp — The last timestamp that the specific event received.
® Occurs At — The time at which the event occurred.

* Last Specified Value — The last value that was specified. This property is only
relevant for specific events whose values are specified.

® Last Specified Timestamp — The time at which the event was last specified.
This property is only relevant for specific events whose values are specified.

You can view the properties of a specific event through a specific fault model.

The icon of a specific event contains an outer circle, whose color indicates the last
specified value, and an inner circle, whose color indicates the present value,
which is either inferred or specified. The color-coding scheme is the same as the
one used for event values: red=true, green=false, yellow=suspect,
blue=unknown.

152

Interacting with Specific Fault Models

To show the specific event properties:

> Choose Properties on a specific event in a specific fault model.

Here is a specific fault model that includes the “Specific fault model is not built”
specific event and its associated properties dialog:

Ty Relation tree for DIAGNOSIS-MANAGER-0001 E -0l x|

There is no event corresponding to the event Post processing procedure is not executed
the cdg-send-event API ERnendi

symcoure-applicat symcure-application-1

The target object in cdg-send-even
t exist

Zpecific fault m Mo alarm messages in diagnostic console

[
™

symcure-application-1

symcure-application-1 symeoure-applicat

Event changed proc is not executed after

"ﬁﬁEi event

symcure-application-1

Properties

\

Specific Or And Event |

General

Bt vy Specific Fault mode! is nok builk

Target Chject: I symcure-application-1

Ewent Yalue: I true

Event Status: | specified

Time Stamp: | 5/1/2007 12:45:21

Gccurs Ak | 5/1/2007 12:48:21

Close |

Associating User-Defined Attributes with Specific
Events

SymCure provides support for quantitative information and reasoning about
events in the form of probabilities and heuristic estimates. End user applications
may find it useful to reason over the fraction of causes and effects that support the
value of an event. Depending on the particular application, the fraction of true
causes or effects supporting a true event may reflect the degree of degradation of
the event.

153

154

For example, first suppose a generic service outage event is defined to occur if
over 50% of the servers providing the service have failed. You typically model
this scenario by using an N/M-AND event. Now, suppose that 80% of the servers
providing the specific service have failed in the domain map. This knowledge,
which is available in a specific fault model, may be used to indicate the extent of
the service outage. Second, suppose that an AND-AND event is considered to be
suspect and that m out of its n causes are true, which means the remaining m - n
causes are suspect. Further, imagine there is no additional information
forthcoming that can decisively determine whether the AND-AND event is true
or false. The fraction m/n indicates the level of confidence in our belief that the
AND-AND event is indeed true.

The fraction of causes or effects may be useful for any class of event, not just the
fractional ones, and can be used for computing the degree of degradation or the
level of confidence, as in the examples above.

Showing Detailed Explanations of Specific Events

You can show a detailed explanation about a specific event, which includes
information about:

® Upstream events.

* Downstream events.

To show a detailed explanation about a specific event:
= Choose Detailed Explanation on the specific event.
or

= Click the Detailed Explanation button on an alarm or root cause event in the
Alarms Browser or Root Causes Browser.

Interacting with Specific Fault Models

For example, here is the detailed explanation for the specific event “Specific fault
model is not built on symcure-application-1:"

Ty Relation tree for DIAGNOSIS-MANAGER-0001 -0l x|

cessing procedure is not executed

There is no event corresponding to the event Post pro
FE nding event

the cdg-send-event API IE“E

symcure-application-1

symcure-applic

The target object in cdg-send-even
t exist

Zpecific fault m i3 not huilt Mo alarm messages in diagnostic console

[
™

symcure-application-1

symcure-application-1 symecure-applic -1

Event

changed proc is not executed after

symcure-application-1

Detailed Explanation

\

Detailed Explanation : |

The event Specific Fault model is not built on symecure-application-1 is observed to be krue,

Applying OR logic, at least one of the Following upstream events must be true (unless any of them can be true independent of its effects):

Event Name | Target Object | Event Yalue | Tirne Starnp
The target object in cdg-send-event API does not exist symoure-application-1 | suspect SI1/2007 12:48:21
There is no event corresponding ko the event name in the cdg-send-event APT symcure-application-1 | suspect SI1/2007 12:48:21

4] | »

Applying AMD logic, all of the Fallowing downstrear events must be true:

Ewvent Name | Target Object | Event Yalus | Time Stamp

Mo alarm messages in diagnostic console symoure-application-1 krue 51172007 12:48:21
Post processing procedure is not executed after sending event symoure-application-1 - krue 51172007 12:48:21
Event changed proc is not executed after sending event symoure-application-1 true SI1/2007 12:48:21

1 |

This ewent is configured ko suppress construction of additional upstream events when its value is: false or unknown. This event is configured to
suppress construction of additional downstream events when its walue is: False or unknown.

Close |

155

156

Setting a Specific Event Value

You can manually set the value of a specific event to true or false through the
specific fault model.

This feature has the same effect as setting the specific event value through one of
the built-in browsers. For details, see Setting the Event Value.

To set a specific event value:

= Choose True or False on a specific event.

Showing the Generic Event for a Specific Event

You can show the generic event from a specific event.

To show the generic event for a specific event:

= Choose Go to Generic Event on a specific event.

Interacting with Specific Fault Models

Here is the generic event associated with the specific event named “Compilation
status incomplete”:

Ty Relation tree for DIAGNOSIS-MANAGER-0001 : -0l x|

There is no event corresponding to the event Post processing procedure is not executed
the cdg-send-event API ERnendi

symcoure-applicat symcure-application-1

Zpecific fault m i Mo alarm messages in diagnostic console
qll

symcure-application-1

The target object in cdg-send-even
t exist

symcure-application-1 symcure-applicat

Event changed proc is not executed after

"ﬁﬁEi event

symcure-application-1

Go to Generic Event

\/

T Diagnostic console issues : i I [=] 3

Ewvent type for corresponding generic event
sent is unspecified

Mo alarm messages in diagnostic consaole

cdgrm-symcure-application cdgm-symecure-application
There is no event corresponding to the event

name in the cdg-send-event AP rrddel is not built

cdgm-symcure-application ncure-application

The target ohject in ¢ end-event API

does not exist

cdgm-symcure-application

Showing the Specific Event Target

You can show the domain object that is the target of the specific event through the
specific fault model.

This feature has the same effect as showing the specific event target through one
of the built-in browsers. For details, see Showing the Event Target.

To show the specific event target:

= Choose Show Target on a specific event.

157

158

Showing the Event Summary

You can view a summary of all the objects that are related to a specific event
through the specific fault model.

This feature has the same effect as showing the event summary through one of the
built-in browsers. For details, see Showing the Event Summary.

To show the event summary:

=2 Choose Show Summary on a specific event.

Showing the Causal Model

You can show the causal model for a specific event through a specific fault model,
which is a focused view of the specific fault model around a specific event.

This feature has the same effect as showing the specific fault model through one
of the built-in browsers. For details, see Showing Causal Models.

To show the focused causal model for a specific event:

= Choose Show Causal Model on a specific event.

Showing the Specific Event History

You can show the history of a specific event through the specific fault model. The
history includes the event value, event status, and timestamp. The event history
does not include information on the current event.

To show the specific event history:
= Choose Show History on a specific event.

Here is the specific event history for the “Compilation status incomplete” event
whose value changed from false to true:

Specific Event History : x|

Event hame: I Specific Fault model is nok built

Target Chject: | symcure-application-1

Event Yalue | Event Staktus | Time Stamp | Occurs Ak
true specified 5/1/2007 12:48:21 5/1/2007 1
L] &

Close |

Interacting with Specific Fault Models

Showing Specific Action Properties

Specific actions define these properties:

Action Name — The name of the specific action.

Target Object — The name of domain object that is the target of the
specific event.

Tag — A unique ID for the specific action.

Action Status — The status of the specific action.

Start Time — The time at which the specific action started executing.
End Time — The time at which the specific action finished executing.

Estimated Duration — The estimated amount of time it took to execute the
action.

Result — The result of running the test.

Cost — The cost of running the test.

You can view the properties of a specific action through a specific fault model or
through the various message browsers, including the Test and Repair Actions
Browsers.

159

160

To show specific action properties:
=> Select a specific test or repair action and choose Properties.

Here is the “Compilation status incomplete” underlying event for the “Check
compilation status and errors for fault model” specific test action and the
properties dialog for the specific action:

Ty Underlying event for Check compilation sk . — |EI|5|

@ Check compilation status and errars for fault
odel

gf

Compilation status incomplete

gfim-1

Properties

\/

Specific Test Action i x|

General

Action Mame: | Check compilation status and errors For Faulk me

Target Obiject: I gfm-1

Tag: =
I
fiction Status: | CREATED
Start Tirme: |
End Time: |

Estimated Duration: I 000,000, 00:00:00

Result: | unknown

Cost: IU-U

Close |

Interacting with Specific Fault Models

Showing the Generic Action for a Specific Action

You can show the generic action from a specific action.

To show the generic action for a specific action:
= Choose Go to Generic Action on a specific action.

Here is the generic action associated with the specific action named “Check
compilation status and errors for fault model”:

Ta Underlying event for Check cnmpilatinfﬁ - |EI|£|

@ Check compilation status and errars for fault
odel
gf

Compilation status incomplete

gfim-1

Go to Generic Action

\/

@% compilation status and errors for fault

maodel .
"8 cdgm-generic-fault-model

CDG-MODGU|DE-CHECK-COMF’ILATION-STATUS

Running a Specific Action

You can run a specific action from a specific fault model.

This feature has the same effect as running the specific action through the Test or
Repair Actions Browser. For details, see Executing Manual Tests and Repair
Actions.

To run a specific action:
= Choose Run Action on a specific action.

This menu choice is only available when the status is not running. When the status
of a specific action is running, the Run Action menu choice is disabled.

161

162

Showing the Properties of the Diagnosis Manager

Diagnosis managers define various properties, which you can view. For an
explanation of these properties, see Diagnosis Managers.

To show the properties of a diagnosis manager:
= Choose Properties on the background of a specific fault model.

Here is the properties dialog of the diagnosis manager associated with a specific
fault model:

Diagnosis Manager

zeneral

Mame: | DI&GNOSIS-MARNAGER -0001

gfm-1:: Compilation status incomplete ;I

I|

Initiaking Event:

Created at: | 5/1/2007 12:55:45

Updated at: | 5/1{2007 12:57:52

Diagnosis Status: | COMPLETE

Fully Built? | true

Fully Explained? I true

Mo Progress Possible? I krue

Close |

For a description of these properties, see Getting Diagnosis Information.

Showing Diagnostic Console Browsers for
Individual Diagnosis Managers

Each specific fault model represents an isolated problem. The diagnostic console
browsers and the operator message browser combine messages from all root
causes, alarms, tests, and repair actions.

You can show alarms, root causes, test actions, and repair actions for individual
diagnosis managers, from a diagnosis manager in the Navigator or from a specific
fault model.

Note that unlike the diagnostic console browsers, which update dynamically,
these dialogs are static. Furthermore, unlike the diagnostic console browsers,
these dialogs do not allow you to interact with the events. When the underlying

Interacting with Specific Fault Models

diagnosis manager is deleted, all associated open dialogs are automatically
deleted.

To show events for individual diagnosis managers:

= In the Navigator, expand the Logic > Diagnose > Specific Fault Models tree
node, mouse right on an individual diagnosis manager, and choose
Show Alarms, Show Root Causes, Show Test Actions, or Show Repair
Actions:

Navigator a
[l 23 Cdg Madguide
Dq' System Models
= Logic
EH“‘.F'" Diagnose
#-Z Generic Faulk Madels
E@ Specific Faulk Models

-----) i -MANAGER-0001
Dﬁ' Reports
(& Charts o :
i ties... F4
-2 Object Models e
-2 System Settings 4L show Details
Expart...
#E Show alarms...
,L Show Root Causes.,,
¥t Show Test Actions...
'I:]. Show Repair Actions. ..
or

= Mouse right on a specific fault model workspace and choose Show Alarms,
Show Root Causes, Show Test Actions, or Show Repair Actions.

163

For example, here is the Alarms, Root Causes, Test Actions, and Repair Actions
browsers for an individual diagnosis manager:

3| Test Actions x|
Marne: | DIAGNOSIS-MANAGER-0001 Name;: | DIAGNOSIS-MANAGER-0001
Initiating Event: I symcure-application-1::Incomplete specific Faulk madel Initiating Event: I symcure-application-1::Incomplete specific Faulk model
Target Object ‘ Event Name | Event Yalue | Event St Target | Test Mame | Status | Type | Skark Time E
symcure-applicatio. ., Incomplete specific Fault modsl trug specified afm-2 Check compilation status and errors For Faul model IMACTIVE AUTOMATIC | 5/1/2007 13:53:34 ¢
gfm-2 Generic edges do not exist trug downstre ofm-2 Check For compilation errors ENABLED MAMUAL
afm-1 Generic edges do not exist False downstre gfm-1 Check compilation status and errors For faul model IMACTIVE | AUTOMATIC | 5/1/2007 13:53:34 ¢
symcure-applicatio.., Post processing procedure is nok executed after sending event true downstre gfm-1 Check For compilation errors ENAELED MAMUAL
gfm-2 a2 Relation not displayed in dialog For propagation relation suspect downstre
gfm-1 a2 Relation not displayed in dialog For propagation relation False downstre
< | B | i
Close | Close
Root Causes S| | repair Actions x|
Mame; | DIAGNOSIS-MANAGER-0001 Mame: | DIAGNOSIS-MANAGER-0001
Tnititing Ewent; | symodre-application-1::Incomplete specific Fault model Initiating Event: | symeare-application-1::Incomplete specific Fault model
Target Object | Event Name | Ewvent Yalue | Event Status A| Target \ Test Mame | Skatus Tvpe Skark Time
symecure-applicatio... Upstream and downstream limits are not large enough | suspect upstream infer symcure-applicatio... | Increase upstream and downstream limit values CREATED | AUTOMATIC
ofm-2 Campilation errors suspect upstream infer af-2 Compile fault model CREATED AUTOMATIC
gfm-2 @eneric Fault model is not compiled suspect upstream infer afrn-1 Cormpile Fault model CREATED ALTOMATIC
gfm-2 Mo generic events For event views suspect upstream infer,
gfm-2 Incorrect propagation relations suspect upstream infer
gfm-2 Undefined class definitions suspect upstream infer
gfm-1 Compilation errors False upstream infer o
1] | B 1 2l
Close Close: |

Refreshing Specific Fault Models

When an underlying event for a diagnosis manager changes, any specific fault
model views that are currently visible are automatically refreshed. SymCure
maintains any positional changes that you have made to the specific fault model
when the model is refreshed.

You can also redraw any view of a specific fault model by choosing Project >
Logic > Diagnose > Specific Fault Models menu, which causes it to revert to its
original size and layout.

Deleting All Diagnoses

During development, you might want to delete all diagnoses.

To delete all diagnoses:
1 Click the Delete All Diagnoses button in the Fault Modeling toolbar:
2 Click OK in the confirmation dialog.

164

Learning Generic Models from Specific Events

Learning Generic Models from Specific Events

You can “tune” an N/M-N/M event in a specific fault model by changing its
Input Fraction, Output Fraction, and Independent Of Effects attributes, without
requiring a change to the underlying generic model. This feature allows you to
tinker with a specific model, then to apply the changes to the underlying generic
fault model when you are satisfied with the settings.

To learn generic models from specific events:

1

Create a generic fault model that uses N/M-N/M events.
For details, see Configuring Generic N/M-N/M Events.

Choose Project > Logic > Diagnose > Enable Tuning or click the equivalent
button in the Fault Modeling toolbar ()-

Tuning is now enabled for specific N/M-N/M events.

Display a specific fault model or any view that includes a specific N/M-N/M
event.

For details, see Interacting with Specific Fault Models.

Choose Tune Event on a specific event in the fault model.
A dialog appears for configuring the specific event.
Configure the properties of the event, as needed.

For example, this dialog sets the input and output fractions to 0.01:

Tune Specific N/M N/M Event EE |

Event Marme: I Zvent changedfunchanged procedure not dis

Target Ohject: I gfm-1

Input Fraction: I 0.01 ::’

Oukpuk Fraction: IU-Ul ﬁ
[T Independert OF EFfects
Mote; IF the Output Fraction is sek to greater than 0.0,

Independent of EFfects is necessarily treated as False and setting
it ko krue has no effect,

(o4 I Cancel |

The dialog notes that the Independent of Effects option can be changed to true
only if the new output fraction is equal to 0.0.

To apply the values from the specific event to the generic event, choose
Update Generic Event on the specific event.

165

SymCure displays a dialog that shows the present values and new values with
options for updating each changed value, for example:

Update Generic N/M N/M Event 5'

Event Mame: | Swent changedjunchanged procedure nok displayved in generic e

Target Class: I CDGM-GENERIC-FALILT-MODEL

rPresent Malue ———— | [Mew Yalue

Input Fraction: IU-U Input Fraction: IU-UI 7 Update
Oukput: Frackion: ID.D Qukput: Frackion: ID.DI ™ Update

Independent OF Effects: IFE|SE Independent OF Effects: IFaIse [~ Update

Moke: The new walue For Independent of Effects can be set ta true anly if the Cukput
Fraction is being changed to 0.0, otherwise the new value of Independent of Effects will
necessarily be False. Thus, if the new walue For Output fraction is greater than 0.0, the
Update checkbox For Independent of Effects is disabled,

QK Apply Cancel

Note Independent of Effects is meaningful only when Output Fraction is 0.0. Its
Update check box is disabled when the old value and new value are the same
and when the old value = false and the new Output Fraction > 0.0.

7 Click the Update option for each new value that you want to use and apply.

The generic event is now configured to use the values specified in the specific
event.

8 When you are finished tuning the generic fault model, disable tuning.

Detecting Chattering Events

If event detection logic for two causally related events in a diagnostic fault model
is inconsistent, this may result in infinite chattering. For example, an incoming
symptom event may cause the fault model to infer that an underlying root cause
event is true or suspect. At the same time, an automatic test associated with the
root cause event may conclude that the root cause is false; consequently, the
original symptom may also be inferred to be false. If the symptom has an
associated test that is run automatically each time it changes value, the test may
return true because event detection logic for the symptom and the root cause and
their causal relationship are inconsistent. This situation can result in an indefinite
causal propagation cycle.

166

Exporting and Importing Specific Fault Models

SymCure detects that an event is chattering when the event gets the same value
repeatedly over a short period of time, where the repetition count and duration
are configurable parameters. In response to this situation, a suitable error
message is generated and the diagnostic engine is taken offline. No further
diagnostic progress is possible until SymCure is taken online again. Thus, a user
can gracefully recover from this situation with some understanding of the nature
of the problem.

You can configure parameters related to chattering events in the config. txt file.
For details, see Chattering Events.

Note In general, SymCure is always online, ready to receive events and perform fault
diagnosis. When SymCure detects chattering events, it automatically goes offline,
in which case you must bring it back online manually.

SymCure also automatically goes offline while generic fault model folders are
compiled, and automatically goes back online when the compilation is complete.

To bring SymCure back online manually:
= C(lick the Take Online button in the Fault Modeling toolbar (: ga |).
This button is only available when SymCure is offline.

Whenever SymCure detects a chattering event, it notifies any registered listeners
that a cdg-chattering-event has occurred. The source of a cdg-chattering-event is
the built-in object cdg-reported-events; thus any object interested in listening to
this event must register with cdg-reported-events. For example, to register the
object MyListener:

call grtl-add-event-listener
(cdg-reported-events, MyListener, the symbol cdg-chattering-event,
sequence())

Exporting and Importing Specific Fault Models

SymCure allows you to export specific fault models to XML files and import them
back into SymCure. Exporting allows recovery whenever the server goes down,
because archived specific fault models can be imported back SymCure.

By default, when a diagnostic problem is suitably resolved, its information is
purged at periodic intervals to reclaim memory. Archiving the information
associated with diagnosis managers and their associated specific fault models
allows you to capture the history of diagnostic processing.

Exporting and importing specific fault models also allows you to perform what-if
simulations in separate SymCure processes. To perform offline what-if
simulations, you need access to the current state of a specific fault model in a
separate SymCure process. You can achieve this by exporting one or more

167

168

diagnosis managers from one process to another through the specific fault model
export import capabilities. Once a specific fault model has been imported into a
separate process, you can simulate any event for that model without impacting
your deployed application.

When importing specific fault models:

®* Warning: Do not import a specific fault model while the model exists in the
SymCure process. This will create duplicate specific events, actions, and
diagnosis managers resulting in a highly unstable application.

* If the action status of a specific action in the stored XML file is RUNNING,
then as soon as it is imported, its activation procedure is executed.

* When you import a specific fault model, SymCure creates messages for the
newly created specific events and actions. These messages are displayed in
the general messages browser and the diagnostic console. Note that:

— The repetition count of the messages is set to 0.

- For the external action messages, the last update time stamps represent the
times that messages are created after importation.

You can export and import specific fault models interactively or
programmatically.

By default, SymCure exports the contents of the specific fault model detail to an
XML file stored in the archives subdirectory of your installation directory, which
you can configure in the config. txt file.

For information on exporting and importing specific fault models
programmatically, see Exporting and Importing Fault Models.

For information about configuring startup parameters for exporting and
importing, see Archiving.

To export a specific fault model:

= Choose Export on the background of a specific fault model.

To import a specific fault model folder:

=2 Choose Project > Logic > Diagnose > Import > Import Specific Fault Model or
click the equivalent button in the Fault Modeling toolbar (&)

When the file is successfully parsed, a corresponding specific fault model is
created.

Debugging
SymCure Fault Models

Describes run-time debugging tools for SymCure applications.

Introduction 169

Enabling Debugging 170

Debugging Modes 171

Accessing the Debugger 171

Debugging with Sequential and Parallel Mode 177
Notes 184

gensym.

Introduction

You can step through the propagation of events in specific fault models. This
feature helps you to understand the behavior of SymCure’s event propagation
algorithm and the propagation logic of different events, and to debug any fault
models that you create for your application.

When debugging is enabled, SymCure creates an internal log of every incoming
event, every edge that is traversed in the specific fault model, and every event
that is processed in response to each incoming event. SymCure provides a user
interface to navigate the debug log graphically.

Debugging does not require access to underlying specific events. The log contains
all information required for debugging. Thus, you can debug fault models even
after the underlying specific events have been deleted. Note that you must have
access to the generic fault models and the target domain objects for proper
operation of the debugging utility.

169

Enabling Debugging
By default, debugging is disabled. Thus, you must explicitly enable it in one of
three ways:
* Interactively through the Project menu or Fault Modeling toolbar.
® At startup through the config. txt file.
® Programmatically by using an API procedure.

The log may become moderately expensive in terms of memory, so we
recommend that you set cdg-enable-debugging to false during the deployment of
any application. Use debugging in a deployed application only if you flush the
log at regular intervals by disabling debugging with this API. You can empty the
debugging log at any time by disabling debugging.

Note If you initialize process maps from the Project menu, debugging is disabled and
the log is emptied.

To enable debugging interactively:

= Choose Project > Logic > Diagnose > Debug Specific Fault Models >
Enable Debugging or click the equivalent button in the Fault Modeling

toolbar ([&]).

You can only enable and disable debugging through the menus in Modeler and
Developer mode. The menu choice is grayed out in Operator mode. Once
debugging is enabled, you can debug models in any of the following modes:
Developer, Modeler, and Operator.

To disable debugging:

2 When debugging is enabled, choose Enable Debugging or click the toolbar
button, and confirm that you want to disable debugging.

To enable debugging at startup:

<> Set this parameter to true in the configuration file:
cdg-enable-debugging=true

For details on this parameter, see Debugging.

To enable debugging programmatically:

> Use this API procedure:

cdg-enable-fault-model-debugging
(enable: truth-value)

For details on this API procedure, see Debugging.

170

Debugging Modes

Debugging Modes

SymCure provides two debugging modes:
® Sequential
* Parallel

Debugging in either mode processes events in the exact same order. The
difference between these two modes arises when an event has one or more causes
and effects. In sequential mode, the debugger visits events and their causes and
effects through a series of steps, one event at a time. In parallel mode, the
debugger first visits an event, next it propagates values to all neighboring events
in parallel, then visits each of the neighboring events.

Accessing the Debugger

You can access the debugger from the menu bar or toolbar by choosing either
sequential or parallel mode. These menu choices are only available when
debugging is enabled.

To access the debugger:

= Choose Project > Logic > Diagnose > Debug Specific Fault Models >
Sequential Mode or Parallel Mode or click the equivalent buttons in the Fault
Modeling toolbar (& =)

Selecting either Sequential Mode or Parallel Mode initiates a new debugging
session and displays the debugging control panel, which manages the debugging
process. The debugging mode for a session is indicated by Mode in the control
panel. You can access the debug display workspace by clicking the View button.

Each debugging session uses a local copy of the log of the specific events. Thus,
different clients can initiate multiple simultaneous debugging sessions. However,
note that currently, only one debugging session is permitted per client. The debug
log is cleared whenever you toggle between enabling and disabling debugging.

171

The following figure shows the debugging control panel. The next section
describes each labeled sections of the control panel.

= 0

iy Debug Specific Fault Models: Sequential Mode
Type Event Name Target Object Value | Status @ EventLog
@ E:I;EE\‘; @ iy Event
rEs @ “iew Gragh
@ Debug Status: ISTART‘OF‘LOG Steps Left Iﬂ' Mode: ISequemjaI Graph Options
@ StartAtI Ll@ Close
@ Advance | Jurng MNext | Back |

172

The Control Panel

The control panel is divided into the following sections.

Event Navigation Table

Start At

Status Indicators

Debug Model Buttons

Event Log Button

View Event Button

View Graph Button

Graph Options Button

© 00 N O a A O DN -

Close Button

Event Navigation Table

Event propagation begins in response to an incoming event. During debugging,
the Event Navigation table displays the latest incoming event in the third row
(Incoming Event). Event propagation traverses the edges of specific fault models
to compute values for each visited event. The latest event to have its value
computed is displayed in the first row (Current Event). The cause, effect, or
mutually exclusive event that precedes the current event is displayed in the
second row (Previous Event). The previous event is relevant to debugging
because it is often a significant influence on the current event.

Accessing the Debugger

This figure shows the control panel and the corresponding debug display
workspace with several events:

il Debug Specific Fault Models: Sequential Mode

Type Event Name Target Object Value Status

CurrEvt | Generic edges do not exist gfm-2 suspect |upstream inferred
PrevEvt | Incomplete specific fault model symcure-application-1 true specified

IncEvt | Incomplete specific fault model symcure-application-1 true specified

Debug Status: IINFER—EVENT

Steps Left IQ9

Mode: ISequenﬁaI

Start At IIncc-mpIet»‘: specific fault model:symcure-application-1:true:5/4/2006 16:26:07

Advance |

Jump MNext

Back

=
|

EventLog

iy Evert

View Graph

Graph Options

Close

Tw Debug Display Workspace

Generic edges do not exist

IUpstream and downstream limits an

large Incomplete specific fault model

symecure-application-1

gl

symcure-application-1

=1o] x|

Start At

The Start At field provides a dropdown list of all logged incoming events sorted
in temporal order. You can “jump start” the debugging process to a chosen
incoming event by selecting it from this list. The Advance button jumps to the
beginning of the selected incoming event, and debugging starts from the selected
event. If no event is selected, debugging starts from the first incoming event in the
internal debug log.

Status Indicators

The control panel has two status indicators:

* Debug Status indicates the status of the debugging process as described by the
following symbols:

- START-OF-LOG indicates that the debugging process is at its beginning.

- INCOMING-EVENT (IncEvt) indicates that the current event displayed in
the event navigation table is an incoming event.

- INFER-EVENT (InfEvt) indicates that the current event in the event
navigation table was processed by the diagnostic algorithm in an attempt
to infer a value by traversing an edge in the specific fault model or
through mutual exclusion.

173

174

- END-OF-PROPAGATION is used at the end of Jump to indicate that the
end of processing an incoming event.

- EXPAND-EVENT is used only in Parallel mode and indicates the
propagation of values to the neighbors of the current event.

- DELETED-EVENT (DelEvt) indicates that the event has been deleted.

- INCREMENTAL-PROCESSING (IncrPro) indicates that diagnostic
propagation is driven not by an incoming event but by a new wave of
incremental processing. For more information on incremental processing,
see Specific Fault Model Display.

- END-OF-LOG indicates that the end of the log has been reached and the
debugging session is complete.

- EMPTY-LOG indicates that the debug log is empty.

Steps Left shows a running count of the remaining items in the debug log.
Pressing Next decrements the value and pressing Back increments it. You can
use this status indicator to recognize when the end of the debug log is being
reached

When the count reaches 0, there are no more events in the log. In Sequential
mode, you can still click the Back button; pressing Next after the count reaches
0 takes you to the end of the event log at which point you can no longer go
back. In Parallel mode, you can click Next once more after the count reaches 0
and still go back; pressing Next a second time takes you to the end of the log
and you can no longer go back.

Mode specifies the debugging mode (Sequential or Parallel) for the debugging
process.

Debug Model Buttons

The Debug dialog has these buttons for debugging the model:

Advance advances the debugging process to any incoming event that is
selected from the Incoming Events list. Select the desired event in this list and
click Advance. This action displays specific events that result from processing
all incoming events starting from the first logged event up to the selected
incoming event. You can advance only once at the start of the debugging
process.

Jump moves the debugging process to the end of the latest incoming event.
This button is enabled whenever there is a new incoming event (Debug Status
= INCOMING-EVENT) and is disabled at the end of the incoming event
(Debug Status = END-OF-INCOMING-EVENT).

Accessing the Debugger

* Next moves the debugging process forward as follows, depending on
the mode:

- In Sequential mode, clicking Next shows the next event encountered by
the event propagation algorithm. In the debug display workspace, the
incoming event or the edge traversed in this propagation and the current
event are highlighted in red.

- In Parallel mode, clicking Next alternates between navigating to the next
event and expanding the current event by showing its causes and effects
in parallel. When the next propagation is shown, the edge traversed by the
propagation algorithm and the current event are highlighted in red. When
the expansion of the current event is shown, only the event is highlighted.

In either mode, when the end of the log is reached (Debug Status = END-OEF-
LOG), the Next button is disabled.

* Back moves the debugging process backward by undoing the effect of the last
Next step. Back does not allow you to undo the effects of a Jump or Advance.

Event Log Button

The Event Log is a static table showing the contents of the internal debugging log
used for the debugging session, for example:

Debug Spedific Fault Models: Event Log il
MNumber | Type | EventName Target Object Value | Status -
1 IncEvt | Incomplete specific fault model symcure-application-1 | true specified
2 InfEvt |Upstream and downstream limits are not large enough symcure-application-1 | suspect |upstream infe
3 InfEvt | Generic edges do not exist gfm-2 suspect | upstream infe
4 InfEvt | Compilation status incomplete gfm-2 suspect | upstream infe
5 InfEvt | Compilation errors gfm-2 suspect | upstream infe
6 InfEvt | Generic fault model is not compiled gfm-2 suspect | upstream infe
7 InfEvt | Mo generic events for event views gfm-2 suspect | upstream infe
8 InfEvt |Incorrect propagation relations gfm-2 suspect upstreamielﬂ
4 3

Close

The Type column indicates the corresponding event type shown as the current
event in the Event Navigation Table. The possible status values are:

* IncEvt = Incoming Event
¢ InfEvt = Infer Event
* DelEvt = Deleted Event

175

176

View Event Button

You can locate the Current Event, Previous Event, and Incoming Event, as shown
in the Event Navigation table, in the debug display workspace by selecting an
event in the table and clicking the View Event button. A red arrow points to the
event in the debug display workspace.

View Graph Button

Click the View Graph button to show the debug display workspace for the
specific fault models constructed during the debugging process. Click the Hide
button to hide the view.

This button is disabled when the display workspace is empty; it is enabled as
soon as the display workspace is populated with specific event display objects.

Graph Options Button

Click the Graph Options button to configure options for displaying the specific
fault model in the graph. You can configure the distance between disjoint specific
models, and the vertical and horizontal distance between correlated specific
events, in pixels. By default, the specific fault model workspace is automatically
zoomed to fit the fault model. Here are the graph options you can configure:

x|
[v Automatically Zoom To Fit
Distance Between Models: I2DD :I
Distance between correlated events
Horizontal: IE"':'El :I
Vertical: I‘IDD :I
OK Cancel |

Close Button

Click the Close button to end the debugging session, close the control panel, and
delete the debug display workspace. Note that clicking Close is the only safe way
to delete the graphical display workspace. You must confirm that you want to exit
the debugging session by selecting Yes in the confirmation dialog, or select No to
continue with the debugging session.

Debugging with Sequential and Parallel Mode

The Debug Display Workspace

The following menu choices are available for the objects in the debug display
workspace:

* Properties

® Go To Generic Event
® Show Target

* Show History

Debugging with Sequential and Parallel Mode

SymCure uses heuristic best first search to propagate event values for a specific
event. At a very high level, starting from an incoming event, the algorithm for
propagating event values is as follows:

for any event e when its value changes do
propagate the value of the event upstream to all causes;

propagate the value of the event downstream to effects;
end for

where:

® causes are all events that are upstream of event e.

® effects include all events that are downstream of causes plus event e itself.

The examples below illustrate the propagation of events in sequential and parallel

modes. Each step is generated by clicking the Next button in the Debug Model
section of the control panel.

177

178

Sequential Mode

In sequential mode, SymCure constructs and propagates events through a series
of steps, one event at a time, as follows. The debugger uses red outline and paths
to indicate the current event, which are circled in the following diagrams.

1 Displays the incoming event “Incomplete specific fault model” on symcure-
application-1 is specified as true. “Incomplete specific fault model” is also the
Current Event.

T Debug Display Wor N [=]

Incomplete specific fault model

symcure-application-1

The color red means that the specified event is true.

2 Shows that “Upstream and downstream limits are not large enough” on
symcure-application-1 is a suspected cause of “Incomplete specific fault
model”. “Upstream and downstream limits are not large enough” is now the
Current Event, while “Incomplete specific fault model” is both the Incoming
Event and the Previous Event.

T Debug Display Workspace - - 10| x|
lUpstream and downstream limits are not Incomplete specific fault model
ough i ||
L
symcure-application-1 symcure-application-1

The color yellow means the specified event is suspect.

Debugging with Sequential and Parallel Mode

3 Constructs another suspected cause “Generic edges do not exist” on gfm-2 of
“Incomplete specific fault model”. “Generic edges do not exist” is now the
Current Event, while “Incomplete specific fault model” is both the Incoming
Event and the Previous Event.

T Debug Display Workspace - 0] x|

Zeneric edges do not exist

gfm-2

Upstream and downstream limits ar Incomplete specific fault model’

ough

symcure-application-1 symcure-application-1

4 Begins to construct the upstream causes of “Generic edges do not exist”

on gfm-2.
Ta Debug Display Workspace i & |EI |i|
Compilation status incomplete Generic edges do not exist
-G

gfm-2 gfm-2

Upstream and downstream limits ar Incomplete specific fault model

ough

symcure-application-1 symcure-application-1

179

5 Constructs all the upstream causes of “Generic edges do not exist” on gfm-2.
Note that in sequential mode, SymCure builds all upstream causes of each
upstream cause until it gets to the root causes before it goes on to the next
upstream cause. This figure shows the results after clicking Next five times.

T Debug Display Workspace - 2% 1= £

In oo mect propagation rektion s Geaneriofauk radel i not compiled

g

T Eenerio wrants for ewent view s

g

Cornpiltion arrore Corpilation statue inccrmplets Genericadger do not axist

Il L |
gi-2 gin-2 gin-2 gin-2
Un definad clm nitione Upetraam and dewnetraam limits i Ineerplate epe cficfaukt rmeodd
cugh
- eyricure-sppiomton-1 eyrours-appiomton-1

6 Constructs another suspected cause “Upstream and downstream limits are
not large enough” on symcure-application-1 of “Incomplete specific fault
model” and all its suspected causes up to the root causes. This figure shows
the results after clicking Next seven times.

Ta Debug Display Workspace I ;Iglil

Incomract propagetion relEtions Ganzricfault medal is not corpiked

g~ g~

e gansric avents for 2vant viwe Compilation arrors Compilation st e incomphte "Genaricadgee do not axist”
IE@ #i »{i

gia-2 ghn-2 ghn-2 g2

Un defined olb G eneriofault rodel is not corpiled "Upetream and down straar limits o “Incomplete spe cfiofault rmodal”

o I

g~ g1 eyracure-appiomton-1 syricure-mppiomton-1
o generio events for event views Tompilation errors Compilation st s inoomplete "G enerioedge n ot exist”

gia-1 gh-1 ghn-1 gi-1

Un defined ol

gim-1

180

Debugging with Sequential and Parallel Mode

7 After constructing all upstream causes up to the root causes, constructs the
two downstream effects of “Incomplete specific fault model”. This figure
shows the results after clicking Next twice.

Ta Debug Display Workspace - O] %]

I
Yo nm-m c.n-iﬂk"c.mmm bz mennphis’ T mrmric mdgm x o natasizt E:nrt chanced prcix ntacacued iar
3 3 i o] it
ndafinnd ca iR EanE G ammricfmittnadal iz mtcon pd Lystramn and davrstmmn i Incangleta tnadal P odt praca i o cxdu s natacired
ugl X P iy wvw
=2 =2 Ly L g
Mo genmric mumrts for suart s Conpiwion mmorz Compiwion Tz nmnphis Gmrmricadgex, TEE

=m cum-application-1 =m cum-application-1
Incarmet prafgation mrionz

While sequential mode makes navigation through the specific fault model a
simple step-by-step procedure, this example demonstrates its only disadvantage.
In step 2, it is not immediately clear why “Upstream and downstream limits are
not large enough” is suspect and not true, until step 3, which shows that there are
alternative explanations (“Generic edges do not exist”) for “Incomplete specific

fault model”. This is why each of the causes of “Incomplete specific fault model”
is suspect.

181

Parallel Mode

In parallel mode, the debugger constructs and propagates to all the known causes
and effects of an event in parallel, as this example shows:

1 Displays the incoming event “Incomplete specific fault model” on symcure-
application-1 is specified as true. “Incomplete specific fault model” is also the
Current Event.

2 Constructs and propagates all causes and effects of Current Event in parallel.
Thus, it is immediately obvious that “Generic edges do not exist”, “Upstream
and downstream limits are not large enough”, and “Generic edges do not
exist” are all causes of “Incomplete specific fault model”, and you can now
understand why each is suspect in that context.

Tw Debug Display Workspace A |EI |i|
Generic edges do not exist Event changed proc iz not executed after

glm-2 =ymcure-application-1

ic fault rmadel Fozt proceszzing procedurs iz not exscuted

Incomplete =
h{mnding st
>

zymcure-app lication-1 zyrncure-spp lication-1

Upstrearn and downztream limits ar

g cugh

=y cure-spplication-1

Generc edge not exist

gfm-1

Note that the current event is still “Incomplete specific fault model”. This is
crucial to understanding parallel mode. As explained earlier, in parallel mode,
the debugger alternates between navigating to a neighboring event and
showing the neighbors of the current event, in parallel.

3 Traverses the edge between “Upstream and downstream limits are not large
enough” and “Incomplete specific fault model” and makes “Upstream and
downstream limits are not large enough” the Current Event, while
“Incomplete specific fault model” is the Previous Event and the Incoming
Event.

182

Ta Debug Display Workspace A |EI |i|

Generc edges do not exist Ewent changed proc iz not executed after

glm-2

Upztream and downstream limits an
B cugh

Debugging with Sequential and Parallel Mode

symoure-application-1

Incomplete = e fault model|

@] gl

Fost proceszing procedurs iz not executed
nding ewent

=ymcure-application-1

Gienerc edge

gfm-1

symoure-app lication-1 symoure-application-1

not exist

Tw Debug Display Workspace A |EI |i|

Generc edges do not exist Event changed proc iz not executed after

gl -2

Upztream and downstream limits ar

g ough

“Upstream and downstream limits are not large enough” has no causes or
additional effects. Thus, there is no expansion of this event. Consequently,
step 4 traverses the edge between “Generic edges do not exist” on gfm-2 and
“Incomplete specific fault model” designating “Generic edges do not exist”
the Current Event, while “Incomplete specific fault model” remains the
Previous Event and the Incoming Event.

4 “Generic edges do not exist” on gfm-2 has no causes or additional effects.
Thus, there is no expansion of this event. Consequently, step 5 traverses the
edge between “Generic edges do not exist” on gfm-1 and “Incomplete specific
fault model” designating “Generic edges do not exist” on gfm-1 the Current
Event, while “Incomplete specific fault model” remains the Previous Event
and the Incoming Event.

m_il'ﬁl avant

=ymcure-application-1

Incomplete = e fault model Fost proceszing procedurs iz not executed

I
1 Ll

=ymcure-application-1

Generc edge not exist

gfn-1

_Imnding ewent

=ymeure-app lication-1 =ymoure-application-1

Note that parallel mode requires a number of extra steps to get to “Generic edges
do not exit” on gfm-1 as the Current Event. This is because of the extra EXPAND-
EVENT step for each event. While parallel mode overcomes the disadvantage of

sequential mode by displaying all causes and effects of an event in a single step, it

183

requires additional steps for expanding events to complete the debugging process
and it is not as simple to navigate through the model as in sequential mode.

Notes

184

Keep in mind these points while using the SymCure debugger:

Do not invoke the debug panel in administrator mode, since it is not possible
to control the user menu choices on the event display objects, some of which
are not relevant for debug display, for example, Set event to true.

You will find the following differences between specific fault model displays
that you access by choosing Project > Logic > Diagnose > Specific Fault
Models and the debug displays:

Each specific fault model display shows a set of correlated events
managed by a single diagnosis manager. The debugger does not concern
itself with different diagnoses managers. Event propagation can be
understood independently of diagnosis managers. The debug display
workspace shows all events even when they are not correlated, that is,
even when they are associated with different diagnosis managers.

When an event receives a value by mutual exclusion, the debug display
workspace draws an undirected edge between the event and its mutually
exclusive counterpart. Such edges do not represent causality; they are
shown for debugging purposes only and are not displayed in the specific
fault model displays.

The debug display workspace is intended to trace event propagation,
which occurs as a result of causal interactions represented by edges in the
graph. In rare situations, SymCure creates edges between events when
there is no propagation across these edges. The debug display omits such
edges, but the specific fault model display shows them.

The debug display layout is different because the debug display builds the
model one event at a time. Vertical spacing between events differs if the
events are not correlated at the time they are first displayed. This is to
ensure that events for different diagnosis managers do not try to occupy
the same “real estate” on the debug display workspace.

You can manually move events on the debug display workspace. The
boundaries of the workspace automatically shrink to fit the events. The
debug display layout algorithm uses the boundaries of the workspace to
position events that are not known to be correlated to existing events on
the workspace.

Root Cause
Episode Management

Describes run-time root cause episode management tools for SymCure
applications.

Introduction 185
Motivation 187

SymCure Root Cause Episode Management 188

gensym.

Introduction

SymCure identifies root causes for problems on managed domain objects by
correlating observed symptoms and test results. It then initiates repair actions to
fix the root causes.

An intelligent fault management system consciously considers the existence of a
fault following the manifestation of one or more of its symptoms. Fault
management allocates various resources towards the isolation and eradication of
the faults suspected to be the root causes of the manifested symptoms: diagnostic
inference identifies suspect faults; testing may be used to exonerate or implicate
suspected faults; repair activity is directed towards resolving implicated failures.
A root cause event thus traces a path of values in the fault management cycle:
initially it is implicitly assumed to be false, i.e., it does not exist. Following the
manifestation of its symptoms it is treated as suspect. Generally, after testing or
the arrival of additional information, it is either considered false (exonerated) or
true (implicated). An implicated root cause event is set to false when it is repaired.

A root cause episode captures the trajectory of values traced by a root cause event
from its manifestation to its eradication. Each symptom leads the diagnostic
engine to identify one or more possible root cause faults. On further testing, a

185

fault may be exonerated, which completes an episode, or it may be detected to be
true, requiring suitable repair actions. On completion of the repair actions, the
fault is resolved, thereby completing the fault's episode. Thus, a root cause
episode comprises a collection of event states that describe the evolution of the
fault from a symptomatic manifestation to its exoneration or repair leading to the
eradication of the fault.

The following figure depicts the time line for two examples Episode 1 and
Episode 2 associated with root cause events Ry and R,. The squares in red, yellow,
and green represent events (red implies the event is "true", yellow implies
"suspect", and green is "false"). The arrows between squares represent fault
management activities (e.g., infer, test, and repair root causes).

186

fifer ot causes Test root canses

1 Symptom S; is manifested at time t,.

2 Atty, root cause Ry is suspected. This sets up Episode 1, whose starting point
is assumed to be t(. Tests may be run to implicate or exonerate the suspected
root cause.

3 At ty root cause R, is suspected. This sets up Episode 2, whose starting point
is assumed to be t(. Tests may be run to implicate or exonerate the suspected
root cause.

4 At t3, the tests for R; are concluded and R; is detected to be true. Any repair
action associated with R; is run at this time.

Motivation

5 At ty, the tests for R, are concluded and R, is exonerated, and Episode 2
spanning from t; to t; comes to an end. Note that fault represented by R, must
actually have been false for the entire duration t; to t,.

6 At ts, root cause R is resolved, and Episode 1 spanning from t; to t5 comes to
an end. Note that fault represented by R; must actually have been true for the
entire duration t to ts.

Motivation

Root cause episodes need to be explicitly represented for the following reasons:
* Diagnostic introspection.
* Effective repair and maintenance.

* Episodes are a critical requirement for service management.

Diagnostic Introspection

An intelligent fault management system should be equipped with some
capability to monitor and report on its own effectiveness. A root cause episode
allows SymCure to answer the following questions about its own performance:

* How quickly did SymCure identify the suspected root causes for a problem?

* How soon after the manifestation of the problem did SymCure detect its root
causes?

* How quickly did SymCure help the managed system to recover from the
problem?

Furthermore, diagnostic introspection opens up the potential to report other
relevant details about fault management, such as:

* What is the cost of testing the problem?
* What is the cost of recovery?

* How long was the domain object offline? How much did that cost?

Effective Repair and Maintenance

Keeping a history of root cause episodes over a period of time facilitates
intelligent proactive repair and maintenance policies that may enhance the
lifetime of domain objects, facilitate better handling of equipment deterioration,
and reduce system downtime, as demonstrated by the following examples.

Repair actions are intended to eradicate a root cause. Usually, they are dependent
on the history of the root cause. For example, if your computer freezes because of
a bad sector on its hard drive, a simple repair action may be to reboot the

187

computer. However, if problem is occurring with increasing frequency, the
appropriate repair action might be to replace the deteriorating hard drive.

The frequency of the occurrence of a root cause event may also point to the need
for accelerated maintenance actions. For example, you might schedule disk
defragmentation on your computer on a frequent basis once you start
experiencing repeated instances of hard drive problems.

Episodes are a Critical Requirement for Service
Management

Service management is a promising domain for fault management applications
that brings together the need for storing individual root cause episodes as well as
their history. Service contracts typically mandate specific targets for the delivery
of a capability. Consequently, fault management in this domain often requires
considering the aggregate of all root cause episodes over a period of time.

For example, a Service Level Agreement (SLA) between a provider and a
consumer may stipulate that the aggregate downtime within a specified time
period should not exceed a certain time duration. While no individual root cause
episode that results in a service outage may exceed this duration, the aggregation
of all such episodes over the specified time period may trigger an SLA violation.
Service outages may be more or less serious depending upon their durations, time
of occurrence, and past history, and may require escalated priority depending on
these factors. Knowledge of the frequency and the details of each episode may be
utilized to identify escalating problems, thus supporting intelligent fault
management that dynamically targets its resources at the most critical problems.

SymCure Root Cause Episode Management

188

SymCure incorporates out-of-the-box root cause episode management to archive,
retrieve, chart, and delete root cause episodes associated with a domain object.

You must enable root cause episode management for individual domain objects,
because it may not be desirable for all domain objects. Once root cause episode
management is enabled, you can view root cause episodes for that object.

SymCure provides a set of APIs that provide access to information contained in
episode archives, as well as for charting root cause episodes. For details, see Root
Cause Episode Management and Charting.

SymCure Root Cause Episode Management

Definitions

SymCure’s root cause episode management capabilities uses these concepts:

® Root Cause Episode — A collection of event states that describe the evolution of
the fault from a symptomatic manifestation to its exoneration or repair
leading to the eradication of the fault.

® Root Cause Episode Archive — A collection of episodes that describe the history
of a fault.

® Root Cause Episode Archive Manager — The manager of all root cause episode
archives associated with a domain object.

Enabling Root Cause Episode Management

You must manually enable root cause episode management for individual
domain objects in a process map.

To enable root cause episode management:

= Choose Enable Root Cause Episode Management on a domain object.

Displaying the Root Cause Episode Manager

A root cause episode manager is associated with a domain object. It manages all
root cause episode archives for the domain object.

By default, the archive manager keeps episodes for 1 day after it is completed.
You can configure the amount of time in the config. txt file. For details, see Root
Cause Episode Management.

To display the root cause episode manager:

= Choose Show Root Cause Episodes on a domain object for which root cause
episode management is enabled.

189

190

Here is the root cause episode manager for the symcure-application-1 domain
object when the “Specific fault model is not built” event is true:

Root Cause Episodes Manager il

- General

Target Object: symcure-application- 1

Rook Cause | Latest Stakus | Mo OF Failures |
Upstream and downstream limits are not .. suspected]
The target object in cdg-send-event APT .., suspected]
There is no event corresponding ko the ev,.. suspected]

Wiew Episodes Atchive I

r Charts

Set Chart Display Options I

View Distributed Aggregated oot Cause Durations I

Wiew Distributed Root Cause Frequencies |

Close |

Displaying Root Cause Episodes

A root cause episode comprises a collection of event states that describe the
evolution of the fault from a symptomatic manifestation to its exoneration or
repair leading to the eradication of the fault.

A root cause episode archive represents the episodic history of each root cause
event. SymCure maintains a separate archive for each root cause. You can query
an archive to provide information about stored episodes over specified time
periods.

SymCure Root Cause Episode Management

The following figure shows how the event value and episode status are related.
The event value "suspect" is a consequence of the transition "suspected", "false" a
consequence of "exonerated" (as a result of a test) or "resolved" (after running a
repair action), and "true" a consequence of "detected".

resolved

detected

exonerated

A root cause episode has the following properties:

* Target Object — The name of the domain object that is the target of the root
cause event.

®* Root Cause — The name of the root cause event.

¢ Event Value — The last known value of the root cause event, which is
"suspect", "false", or "true". The root cause must be "true" or "suspect" to
initiate the recording of a root cause episode. When the root cause becomes
"false", the episode is considered to have ended. If, subsequently, the root
cause becomes "suspect" or "true" again, a new episode is recorded.

* Episode Status — The latest transition of the episode, which is one of these
text values: "exonerated", "resolved", "suspected", or "detected".

® Cost — The cost of detecting and, if required, repairing the root cause. By
default, this is a summation of the costs of each external action associated
directly with the root cause or indirectly through causal links, for example, an
action associated with a causally downstream event that is invoked during the
episode.

®* Manifested At — The time at which the first symptom associated with the
fault is manifested. SymCure treats this as the start time for the episode.

® Suspected At — The time at with SymCure infers that the root cause is
suspect.

* Time Detected — The time that the root cause is inferred or observed to be
true, usually as a consequence of test actions.

® Time Exonerated — The time that a suspected root cause is inferred or
observed to be false, usually as a consequence of test actions.

* Time Resolved — The time that a root cause event transitions from true to
false, usually as a consequence of a repair action.

191

To display a root cause episode:

1 In the Root Cause Episode Manager dialog, select a root cause, then click the
View Episode Archive button.

Here a root cause episode archive for the “The target object in cdg-send-event
API does not exist” root cause for symcure-application-1 when the root cause
has been resolved:

Root Cause Episode Archive x|

Target Chject: I symcure-application-1

Root Cause: | The target object in cdg-send-event API doe

Episode Status | Start Time | End Time | Cost |
suspected 5/1/2007 13:16:10 0.0
Wiew Episode |

Close

2 Select an episode, then click the View Episode button.

Here is the root cause episode, which shows the event value, episode status, and
the time at which the root cause was manifested, suspected, detected, and
resolved:

Root Cause Episode x|
~General r~ Time Line
Target Chject: |'§ymcure—application—l Manifested | 5/1/2007 13:16:10

Rook Cause: |The target object in cdg-send-event APL doe || Suspected at: |5,|'1,I'EDD? 13:16:10

Event Yalue: I suspect

Episode Status: I suspected

Cost: IU-U

Close

192

SymCure Root Cause Episode Management

Charting Root Cause Duration and Frequency
Distributions

You can display aggregated durations distributions and frequency distributions
for root cause episodes associated with a target object in charts.

The aggregate durations chart plots the distributions of the aggregate (total)
durations for each root cause event for a target object over a specified period of
time. For example, you can show the total time for which a root cause event is
manifested per hour for a period of 24 hours, or per day for period of a month, or
per week for a period of year.

The frequency chart plots the distributions of the number of occurrences of each
root cause event for a target object over a specified time period.

You can specify the distribution interval and the overall time period for any chart.
By default, each chart plots the durations/number of occurrences every hour for
the past 24 hours, going backwards from the current time.

To chart root cause durations and frequency distributions:
1 Display the Root Cause Episode Manager dialog.

2 C(Click the Set Chart Display Options button and configure the start time and
end time for the chart and the length of the interval:

Chart Display Options 5[
Start Time: | 5/ 142007, 11:52:02 =
End Time: | 5/ 1/2007, 13:26:15 =
Interval; 000 =000 =1 01:00:00 —|
o4 | Cancel

193

194

3 Click the View Distributed Aggregated Root Cause Durations button to chart
root cause durations.

For example, here is the Aggregated Durations chart for the F-102 demo:

&

Root Caunse Episodes (Aggrepated Durations) for f-102
Duraticn of episodes in seconds every 1.0 minutes over a period of 0,158 botrs ending a1 4162007 11:45:32
1 P 3 - Fyire

=

Cwratien (seconds)
8 B 3

-
=

1 2 3 4 5 G 7 8 o
High Bumer Pressurel 0.000 0.000 0.000 8432 16.625 0.000 0.000 0.000 0.000
Flame impingement] 0 000 0.000 0.000 0.000 6.320 22945 26,865 0.000 0.000
Excess Cokingl 0.000 0.000 0.000 15 466 0.000 0.208 26,565 0.000 0.000
Interval (1.0 minutes)

4 C(lick the View Distributed Root Cause Frequencies button to chart root cause
frequencies.

For example, here is the Frequencies chart for the F-102 demo:

1?_1 Root Cause Episodes (Frequencies) for f-102

Root Cause Episodes (Frequencies) for f-102
Number of occurrences of episodes every | 0 minutes over 2 period of 0,156 bours ending at 4/162007 11:45:32
figh Bumer Pressure Il Flame Impingement Excess Coking

1 2 3] 5 6 7 8 9

High Bumer Pressure| 0000 0.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000
Flame impingement] ©.000 0,000 0,000 0,000 1.000 2,000 1.000 0.000 0.000
Excess Coking| 0.000 0.000 0.000 1.000 0.000 1.000 1.000 0.000 0.000

Interval (1.0 minutes)

Saving Root Cause Episodes

To save a root cause episode to an XML file:

=2 Choose Save Root Cause Episodes on a domain object for which root cause
episode management is enabled.

The XML file is saved to the archives directory of the application root directory,
by default.

Configuring
SymCure Applications

Describes the parameter initializations that you can configure at startup to
customize various aspects of SymCure’s default browser.

Introduction 196

Loading Fault Model Configuration Parameters 196
Specific Fault Model Creation 197
Diagnosis Timing 198

Event Unchanged Procedure 199
Priority 200

Specific Action Scheduling 201
Specific Fault Model Display 201
Debugging 201

Chattering Events 202

Root Cause Episode Management 202
User-Defined Methods 203

Default Browsers 205

Archiving 206

gensym.

195

Introduction

SymCure supports a number of user-defined parameter initializations, which you
to define initial values for various SymCure features and customize its behaviors.
SymCure also provides a number of user-defined procedures that can execute
under various conditions.

You configure these parameters in an external file named config. txt, which
must be located in the same directory as your SymCure application. The
configuration file is loaded at startup when the SymCure application is loaded
and whenever you restart G2.

Here are sample configuration parameters with several parameters specified:

cdg-terminate-diagnosis-early=false

cdg-upstream-1imit=500

cdg-downstream-1imit=500
cdg-compute-priority-procedure=my-compute-priority-proc
cdg-default-target-priority=>5

cdg-audit-incoming-event -procedure=my-audit-incoming-event-proc

You can configure parameters to control:

* The size of the specific fault model that SymCure builds during incremental
builds of the specific fault model.

* How long SymCure keeps diagnostic information before deleting it.
* Event unchanged procedures of generic events.

* How SymCure handles event priority.

* How SymCure schedules specific actions.

* The display of specific fault models.

* The ability to display dynamically updating specific fault models.

* User-defined methods that SymCure runs for auditing purposes.

* The logging of events for debugging purposes.

Loading Fault Model Configuration Parameters

196

You can load fault model configuration parameters from SymCure without
restarting the application. For example, while viewing a specific fault model, you
might want to change the default horizontal and vertical spacing between events
in the config. txt file. Once you modify the file, click the Load Fault Model
Configuration Parameters button on the Fault Modeling toolbar (&).

Specific Fault Model Creation

Note This toolbar button only loads the parameters in the CDG and CDGUI groups.

Specific Fault Model Creation

SymCure’s diagnostic algorithm builds specific fault models incrementally, which
allows it to respond to new information as rapidly as possible. During each
incremental build, the algorithm limits the number of upstream and downstream
events it creates. You can control these limits by configuring upstream and
downstream limit parameters and the amount of time between incremental
builds. Note that these limits apply to the number of specific events built at each
incremental stage, not to the total number of specific events in the specific

event model.

You can also limit the size of the specific fault model by terminating the
diagnosis early.

cdg-upstream-limit=1000

An integer that determines the maximum number of specific events that can
be built upstream of a specific event during any incremental stage of building
the specific fault model. On subsequent diagnostic processing, SymCure
might build additional events upstream. This limit ensures that any observed
event that arrives subsequently will be processed in a finite amount of time.
Additional events can be built following the arrival of new information or by
SymCure’s periodic incremental processing.

cdg-downstream-limit=1000

An integer that determines the maximum number of specific events that can
be built downstream of a specific event during any incremental stage of
building the specific fault model. On subsequent diagnostic processing,
SymCure might build additional events downstream. This limit ensures that
any observed event that arrives subsequently will be processed in a finite
amount of time. Additional events can be built following the arrival of new
information or by SymCure’s periodic incremental processing. As a result, the
number of upstream events built during any pass can exceed this limit.

cdg-incremental-diagnosis-monitor-interval=120

An integer that determines the number of seconds SymCure waits before it
makes an incremental passes to construct a specific fault model. SymCure
builds large specific fault models incrementally within the upstream and
downstream limits described above. Once the specific model has been built to
its limits, SymCure waits for additional information, in the form of new
symptoms and test results, before initiating further construction of the specific
fault model. However, when new information is not forthcoming, SymCure
initiates periodic, incremental construction of any specific fault model that is

197

not complete. During each incremental build, SymCure observes the limits on
the number of events built upstream and downstream.

To use SymCure’s debugging feature, you must set this parameter to a
negative number. For details, see Debugging SymCure Fault Models.

cdg-terminate-diagnosis-early=false

A truth-value that determines whether diagnosis can complete before the
complete specific fault model has been built. When set to true, diagnosis is
said to be complete when all observed events are fully explained by the set of
known root causes, even if the entire specific fault model has not been built.
When set to false, the diagnosis is said to be complete when all observed
events can be explained and the entire specific fault model has been built.

cdg-allow-unspecified-event-to-be-root-cause=false

A truth-value that determines whether unspecified specific events with no
other causes are considered root causes. By default, this parameter is false,
which means unspecified specific events with no other causes are not treated
as root causes. This means they do not appear in the Root Causes Browser
unless the Event Type of the corresponding generic event is explicitly
configured as a root cause. Set this parameter to true to cause all specific
events with no other causes to be considered root causes, which means these
events automatically appear in the Root Causes Browser.

Diagnosis Timing

198

You can configure the amount of time the specific fault model and the diagnosis
manager exist after all the root causes associated with a set of correlated events
become false.

cdg-diagnosis-deletion-interval=300

An integer that determines the number of seconds SymCure waits before
deleting a diagnosis manager that has not been updated. SymCure deletes
every diagnosis manager that has no true and suspect incoming events, no
specific action that is currently running for the diagnosis manager, and that
has not been updated within the diagnosis deletion interval. SymCure also
deletes all specific events and specific actions that the diagnosis manager
manages.

cdg-diagnosis-deletion-monitor-interval=300

An integer that determines the number of seconds that SymCure waits before
checking whether diagnosis managers should be deleted. SymCure
periodically checks all diagnosis managers to see if any of them should be
deleted.

To use SymCure’s debugging feature, you must set this parameter to a
negative number. For details, see Debugging SymCure Fault Models.

Event Unchanged Procedure

Event Unchanged Procedure

You can configure generic events with two user-defined procedures that can
execute at run time under different conditions: the event changed procedure and
the event unchanged procedure. You can configure various parameters related to
the event unchanged procedure.

cdg-unchanged-events-monitor-name=cdg-unchanged-events-monitor

A symbol that specifies the name of a user-defined procedure that SymCure
calls at periodic intervals to determine when to invoke the event unchanged
procedure of an event. Using this procedure, you can access the unchanged
events and provide customized logic to invoke the unchanged event
procedure associated with each unchanged event.

The default unchanged events monitor is cdg-unchanged-events-monitor,
which identifies each specific event that has an event unchanged procedure. If
the value of the specific event is not filtered by the cdg-unchanged-events-
filter, then the default procedure calls the event unchanged procedure for the
specific event. For the signature of this procedure, see the description of the
event unchanged procedure in Configuring User-Defined Procedures for
Generic Events.

If you use the default unchanged events monitor procedure, you can
customize it by configuring cdg-unchanged-events-filter and cdg-unchanged-
events-monitor-interval, described next.

cdg-unchanged-events-filter=false suspect unknown

A text array that specifies the values for unchanged events that the application
does not need to monitor. You use this parameter in conjunction with the
default unchanged events monitor procedure, cdg-unchanged-events-
monitor, to filter unchanged events. By default, the default unchanged events
monitor does not monitor false, suspect, and unknown events.

cdg-unchanged-events-monitor-interval=21600

An integer that specifies the time interval that the default unchanged events
monitor procedure, cdg-unchanged-events-monitor, waits for before looking
for unchanged events.

199

Priority

You can configure the priority of generic events to be an integer that represents

the

level of importance of the event, the likelihood that the event has occurred, or

any other numerical measure. SymCure uses the priority to prioritize suspected
root causes.

You can configure the default priority of all generic events. You can also
configure a procedure to compute the priority of a specific event, based on the
generic event priority and the target domain object.

cdg-default-target-priority=1

An integer that defines the default priority value for every target object.
SymCure defines a method for grtl-domain-object called cdg-get-priority,
which returns the value of this parameter for any grtl-domain-object. You can
create your own cdg-get-priority method to associate different default
priorities for user-defined domain object classes.

cdg-compute-priority-procedure=unspecified

200

A symbol that specifies a user-defined procedure that determines how
SymCure computes priority for specific events with the same target class.

You can create the procedure from the palettes by choosing View > Toolbox -
Fault Models > User-Defined Procedures and Methods and creating a
Compute Specific Event Priority Procedure. The procedure’s signature is
automatically populated from its signature attribute.

The signature of the procedure is:

my-compute-specific-event-priority-procedure
(Target: class grtl-domain-object, GenericEventPriority: integer,
SpecificEvent: class cdg-specific-event)

-> priority: float

where:
Target is the target class for the generic event.

GenericEventPriority is the value of the priority attribute of the generic
event.

SpecificEvent is the specific event whose priority you want to
compute.

The return value of priority is a measure of the priority or probability of the
specific event.

The cdg-sort-events-by-priority API procedure uses this parameter to sort
events by priority. The default value is unspecified, which means SymCure
uses its own default logic for determining the priority of events.

Specific Action Scheduling

Specific Action Scheduling

cdg-user-defined-scheduling-procedure=unspecified

A symbol that specifies a user-defined procedure that determines how
SymCure schedules specific actions, based on the Cost and Reliability of the
specific action. For more information, see Customizing the Scheduling of
External Actions.

You can create the procedure from the palettes by choosing View > Toolbox -
Fault Models > User-Defined Procedures and Methods and creating a
User-Defined Scheduling Procedure. The procedure’s signature is
automatically populated from its signature attribute.

Specific Fault Model Display

You can configure parameters to control the distance between specific events in a
specific event model.

cdg-horizontal-distance=300

An integer that defines the horizontal distance, in pixels, between the columns
of specific event display objects in the display of a specific fault model.

cdg-vertical-distance=100

An integer that specifies the vertical distance, in pixels, between the rows of
specific event display objects in the display of a specific fault model.

Debugging

You can configure SymCure to allow the creation of dynamically updating
specific event models for a specified set of domain objects. You use this feature for
debugging generic fault models.

For details on how to use this feature, see Debugging SymCure Fault Models.

cdg-display-animated-specific-fault-model=false

Whether to allow initialization of dynamically updating specific fault models.
You must set this parameter to true to enable this feature. Note: This
parameter is deprecated.

cdg-enable-debugging=false

Enables the logging of specific events that are used for debugging. For more
information, see Debugging SymCure Fault Models.

201

Chattering Events

You can configure the default criteria for chattering events. For details, see
Detecting Chattering Events.

cdg-enable-check-for-chattering-events=true
Enables/disables chattering detection. By default, it is true.
cdg-lookback-for-chattering=30

Controls how far back in seconds SymCure examines the historical values of
each event to determine if it is chattering. By default, this is 30 seconds. For
the sake of run-time efficiency, the maximum permissible value for lookback
is 300 seconds; any value larger than this is ignored.

cdg-max-chattering-repetitions=10

Determines the number of repetitions of an event's value that results in
chattering behavior. By default, if the event gets the same value 10 times
within the lookback period, the event is chattering. The minimum permissible
repetitions value is 5; any lower value is ignored. This safeguard prevents
SymCure from going offline prematurely.

Root Cause Episode Management

cdg-episode-deletion-monitor-interval=86400

The amount of time a root cause episode should remain in the application
after it is completed. Episodes completed prior to the persistence interval are
automatically deleted by a “garbage collection” background process.

cdg-lookback-for-charting-root-cause-episodes-distributions=86400

The difference between end time and start time for charting root cause
episodes. The default value is 24 hours.

cdg-interval-for-charting-root-cause-episodes-distributions=3600
The interval for charting root cause episodes. The default is 1 hour.

cdg-root-cause-episodes-archiving-directory=$application-root-
directory/archives

The default directory where the XML representations of root cause episodes
are stored.

202

User-Defined Methods

User-Defined Methods

SymCure provides “hooks” at various points at run time for executing user-
defined methods, beginning with the reception of incoming events and the
creation of diagnosis managers through diagnosis completion. You configure
these user-defined methods, using the parameters described in this section.

You can use these methods to:
* Send messages to operators.

* Logall event correlation and diagnosis information to provide an audit trail of
a diagnosis, a diagnosis manager is deleted.

* Send this information to an external database.

* Construct a “trouble ticket” or other sets of information, and export it to an
external system after diagnosis completes.

® Send information on predicted events to an external system for proactive
service and maintenance.

SymCure passes the appropriate correlation manager or event as arguments of
these user-defined methods. You can use SymCure API to access the information
passed into the user-defined methods. For a description of the SymCure API, see
Application Programmer’s Interface.

Some methods execute in a separate thread, while others execute in the same
thread.

You can create the procedures from the palettes by choosing View > Toolbox -
Fault Models > User-Defined Procedures and Methods and creating one of the
audit procedures on the palette. The procedure’s signature is automatically
populated from its signature attribute.

cdg-audit-incoming-event-procedure=unspecified

A symbol that specifies a user-defined procedure that audits incoming events.
The signature of the audit method is:

my-audit-incoming-event-proc
(SpecificEvent: class cdg-specific-event)

The procedure is invoked in a separate thread on the acceptance of an
incoming SpecificEvent. To process incoming events within the same thread,
use the cdg-send-event-with-post-processing API procedure, described in
Sending Events.

203

cdg-audit-root-cause-procedure=unspecified

A symbol that specifies a user-defined procedure that audits root cause
events. The signature of the audit method is:

my-audit-root-cause-proc
(SpecificEvent: class cdg-specific-event)

The procedure is invoked in a separate thread whenever SpecificEvent is
identified to be a root cause for one or more symptoms.

cdg-audit-alarm-procedure=unspecified

A symbol that specifies a user-defined procedure that audits alarm events.
The signature of the audit method is:

my-audit-alarm-proc
(SpecificEvent: class cdg-specific-event)

The procedure is invoked in a separate thread whenever there is a change in
the event-value of SpecificEvent with event-type equal to alarm.

cdg-audit-diagnosis-before-deletion-procedure=unspecified

A symbol that specifies a user-defined procedure that audits diagnosis
managers before they are deleted. The signature of the audit method is:

my-audit-diagnosis-before-deletion-proc
(DiagnosisManager: class cdg-diagnosis-manager)

This procedure is invoked in the same thread just before DiagnosisManager is
deleted.

cdg-audit-diagnosis-status-procedure=unspecified

A symbol that specifies a user-defined procedure that audits the status of a
diagnosis manager. The signature of the audit method is:

my-audit-diagnosis-status-proc
(DiagnosisManager: class cdg-diagnosis-manager,
OldStatus: symbol, NewStatus: symbol)

The procedure is invoked in a separate thread whenever SymCure completes
its processing of an incoming event. If the diagnosis-status of
DiagnosisManager is unchanged, OldStatus and NewStatus are identical;
otherwise, they are different.

204

Default Browsers

cdg-audit-diagnosis-after-merger-procedure=unspecified

A symbol that specifies a user-defined procedure that audits diagnosis
managers following the merger of two diagnosis managers. The signature of
the audit method is:

my-diagnosis-after-merger-audit-procedure
(DiagnosisManager: class cdg-diagnosis-manager)

DiagnosisManager is the surviving diagnosis manager.

Default Browsers

You can configure the default browsers that SymCure uses for displaying alarms,
root causes, test actions, and repair actions. For example, you might want to
combine events and external actions in a single browser.

resources-subdirectory=resources/symcure
The directory in which SymCure GFR text resources are stored.
cdg-alarm-message-queue=alarms

The default queue to use for alarm events, which is the Alarms Browser,
by default.

cdg-root-causes-message-queue=root causes

The default queue to use for roo cause events, which is the Root Causes
Browser, by default.

cdg-test-actions-message-queue=test actions

The default queue to use for test actions, which is the Test Actions Browser,
by default.

cdg-repair-actions-message-queue=repair actions

The default queue to use for repair actions, which is the Repair Actions
Browser, by default.

205

Archiving

206

You can configure the default directory for exporting generic and specific fault
model folders, and whether to archive folders automatically upon compilation.

cdg-archive-generic-fault-models-on-compilation=true

Whether to export generic fault model folders automatically upon
compilation.

cdg-generic-fault-model-archiving-directory=$application-root-
directory/archives

The default directory for exporting generic fault model folders to XML.

cdg-specific-fault-model-archiving-directory=$application-root-
directory/archives

The default directory for exporting specific fault model folders to XML.

Application
Programmer’s Interface

Describes the SymCure application programmer’s interface (API).

Fault Model Folders 243

Debugging 244

Root Cause Episode Management 244
Charting 246

Run-Time Behavior 247

Minimal Candidates 247

Subclassing SymCure Events and Actions 250
Exporting and Importing Fault Models 254
Object lookup 256

gensym.

207

Introduction

208

All interactions with SymCure take place through a small set of procedures,
methods, classes, and attributes. These items are referred to as the Application
Programmer's Interface (API).

This chapter describes the API procedures and methods for SymCure, which you
get by writing your own G2 procedures that call these API procedures and
methods. It also describes the SymCure classes that you can subclass to create
custom implementations of generic and specific events and actions, and their
associated displays.

Sending Events

Sending Events

An event is a cdg-specific-event that is identified by its event-name and
target-object, where:

* event-name is a text string that identifies the event.
* target-object is a text string that identifies an instance of grtl-domain-object.

To send an event, you specify its event-value, which can be "true", "false",
"suspect”, or "unknown". Sending an event:

* Propagates event-value and event-status to all upstream and downstream
events.

* Diagnoses root causes by determining event-value and event-status of all
potential root causes for the event.

® Predicts event-value and event-status for all downstream events.
You can also simply diagnose an event, predict an event, or update an event.

The API provides different versions of the procedures for sending, diagnosing, or
predicting an event, which include the following arguments:

* Target object, event name, and value only.
* Target object, event name, value, and sender.
* Target object, event name, value, sender and window.

The sender is an object that is responsible for sending the event. The sender is not
required for diagnostic reasoning, but it can be used for reporting purposes.

The window is a g2-window on which to send the event. If the window is not
specified, the procedure uses the gfr-default-window.

The API also provides different versions of each procedure for sending,
diagnosing, and predicting an event with a post-processing procedure. The post-
processing procedure executes in the same thread as the event propagation and
has the following signature:

my-post-processing-proc
(TargetObject: class grtl-domain-object,
SpecificEvent: class cdg-specific-event,
DiagnosisManager: class cdg-diagnosis-manager,
Window: class g2-window)

209

210

Sending Events

cdg-send-event
(TargetObject: class grtl-domain-object, EventName: text, EventValue: text,
Sender: class grtl-domain-object, Window: class g2-window)

Sends a value EventValue for the event defined by EventName and
TargetObject, diagnoses its root causes, and predicts its impacts. Sender and
Window are optional arguments, as described in the introduction to this
section.

cdg-send-event
(TargetObject: class grtl-domain-object, EventName: text, EventValue: text,
UserDefinedData: sequence, Sender: class object, Client: class object)

Same as the previous except allows you to send user-defined data with the
event.

cdg-send-event-with-post-processing
(TargetObject: class grtl-domain-object, EventName: text, EventValue: text,
Sender: class grtl-domain-object, Window: class g2-window,
PostProcessingProcedure: symbol)

Sends a value EventValue for the event defined by EventName and
TargetObject, diagnoses its root causes, and predicts its impacts. This
procedure also invokes the procedure specified by PostProcessingProcedure at
the completion of event propagation. Sender and Window are optional
arguments, as described in the introduction to this section.

You can create the procedure from the palettes by choosing View > Toolbox -
Fault Modeling > User-Defined Procedures and Methods and creating a
Send Event With Post Processing Procedure. The procedure’s signature is
automatically populated from its signature attribute.

cdg-send-event-with-post-processing
(TargetObject: class grtl-domain-object, EventName: text, EventValue: text,
UserDefinedData: sequence, Sender: class grtl-domain-object,
PostProcessingProcedure: symbol, Client: class object)

Same as the previous except allows you to send user-defined data with the
event.

Diagnosing Events

cdg-diagnose-event
(TargetObject: class grtl-domain-object, EventName: text, EventValue: text,
Sender: class grtl-domain-object, Window: class g2-window)

Sends a value EventValue for the event defined by EventName and
TargetObject and diagnoses its causes. Sender and Window are optional
arguments, as described in the introduction to this section.

Sending Events

cdg-diagnose-event
(TargetObject: class grtl-domain-object, EventName: text, EventValue: text,
UserDefinedData: sequence, Sender: class grtl-domain-object,
Client: class object)

Same as the previous except allows you to send user-defined data with the
event.

cdg-diagnose-event-with-post-processing
(TargetObject: class grtl-domain-object, EventName: text, EventValue: text,
Sender: class grtl-domain-object, Window: class g2-window,
PostProcessingProcedure: symbol)

Sends a value EventValue for the event defined by EventName and
TargetObject, diagnoses its causes, and predicts its impact. This procedure
also invokes the procedure specified by PostProcessingProcedure at the
completion of event propagation. Sender and Window are optional arguments,
as described in the introduction to this section.

cdg-diagnose-event-with-post-processing
(TargetObject: class grtl-domain-object, EventName: text, EventValue: text,
UserDefinedData: sequence, Sender: class grtl-domain-object,
PostProcessingProcedure: symbol, Client: class object)

Same as the previous except allows you to send user-defined data with the
event.

Predicting Events

cdg-predict-event
(TargetObject: class grtl-domain-object, EventName: text, EventValue: text,
Sender: class grtl-domain-object, Window: class g2-window)

Sends a value EventValue for the event defined by EventName and
TargetObject, and predicts its impact. Sender and Window are optional
arguments, as described in the introduction to this section.

cdg-predict-event
(TargetObject: class grtl-domain-object, EventName: text, EventValue: text,
UserDefinedData: sequence, Sender: class grtl-domain-object,
Client: class object)

Same as the previous except allows you to send user-defined data with the
event.

cdg-predict-event-with-post-processing
(TargetObject: class grtl-domain-object, EventName: text, EventValue: text,
Sender: class grtl-domain-object, Window: class g2-window,
PostProcessingProcedure: symbol)

21

212

Sends a value EventValue for the event defined by EventName and
TargetObject, diagnoses its causes, and predicts its impact. This procedure
also invokes the procedure specified by PostProcessingProcedure at the
completion of event propagation. Sender and Window are optional arguments,
as described in the introduction to this section.

cdg-predict-event-with-post-processing
(TargetObject: class grtl-domain-object, EventName: text, EventValue: text,
UserDefinedData: sequence, Sender: class grtl-domain-object,
PostProcessingProcedure: symbol, Client: class object)

Same as the previous except allows you to send user-defined data with the
event.

Updating Events

cdg-update-event-value
(SpecificEvent: class cdg-specific-event, New Value: text,
Window: class ui-client-item)

Updates the value of SpecificEvent to New Value, where New Value is "true",
"false", "suspect”, or "unknown". Window is an optional argument, as
described in the introduction to Chapter 8 “ Application Programmers’

Interface” in the SymCure User’s Guide.

cdg-update-event-value
(SpecificEvent: class cdg-specific-event, New Value: text, Sender: class object,
Window: class ui-client-item)

Updates the value of SpecificEvent to New Value, where New Value is "true",
"false", "suspect”, or "unknown". Sender and Window are optional arguments,
as described in the introduction to Chapter 8 “ Application Programmers’

Interface” in the SymCure User’s Guide.

Sending User-Defined Data

When sending, diagnosing, or predicting events with user-defined data, the
sequence can include any combination of structures, values, and items. SymCure
can use structures in this sequence to display them as if they are attributes.

For example, the following procedure creates the specific event with the following
user-defined-data attribute:

start cdg-send-event
(symcure-application-1, "Incomplete specific fault model", "true",
sequence
(structure(likelihood: 0.8, reliability: 0.9, tag: "bingo"),
structure(operator: "pluto"),
structure(item-by-name: symcure-application-1)),
symcure-application-1, this window)

Sending Events

User defined data | sequence (structure (likelihood: 0.8,
reliahility: 0.9,
tag: "hingo"),
structure (operator: "pluto),
structure (item-by-name; v-11)

The properties dialog for the specific event display automatically includes all the
user-defined attributes:

Specific Nm Nm Event x|

Incomplete specific Fault model ;I

Event Mame:

Target Cbject: I symcure-application-1

Ewent Yalue: I true

Event Status: | spedfied

Time Stamp: | 5/1/2007 16:46:37

Gccurs Atz | 5/1/2007 16:46:37

Likelibiond: | 0.6

Reliability: | 0.9

Tag: | birigo

Cperatar: I pluto

Close |

Use the following APIs to access to the values of any structures in the user-
defined data:

cdg-get-user-defined-datum

(SpecificEvent: class cdg-specific-event, AttributeName: symbol)
-> attribute-value: value

cdg-set-user-defined-datum

(SpecificEvent: class cdg-specific-event, AttributeName: symbol,
AttributeValue: value)

213

Root Causes

214

A root cause is a cdg-specific-event that is an underlying cause for a specific
event. A root cause cannot itself be caused by any other event. A root cause can
either be a:

¢ Known root cause, in which case its value is either known to be true or known
to be false.

* Plausible root cause, in which case its value is true, false or suspect,
depending on the value of the corresponding alarm. If the alarm is true, all
suspect or true root cause are plausible root causes for explaining the alarm’s
value. If the alarm is false, all false root causes are plausible explanations. If
the alarm is unknown, all unknown root causes are plausible explanations.

You can get the known and plausible root causes of a specific event, and all root
causes for a diagnosis manager. You can also get the effects of a root cause, which
are the specific events that are caused by the root cause.

You can also get the known and plausible explanations of a specific event, using
cdg-get-root-causes and cdg-get-plausible-root-causes-of-event, respectively.
The explanation of a specific event is the path from known or plausible root
causes to an alarm. For a comparison of known and plausible root causes, and
known and plausible explanations, see Getting Explanations and Evidence for
Specific Events.

cdg-get-root-causes-of-event
(SpecificEvent: class cdg-specific-event)
-> RootCauses: sequence

Returns a sequence of cdg-specific-event objects, which are known root
causes of SpecificEvent.

cdg-get-plausible-root-causes-of-event
(SpecificEvent: class cdg-specific-event)
-> PlausibleRootCauses: sequence

Returns a sequence of cdg-specific-event objects, which are suspected root
causes of SpecificEvent. If SpecificEvent is true, it returns the root causes that
are known to be true or are suspect. If SpecificEvent is false, it returns the root
causes that are known to be false. If SpecificEvent is unknown, it returns the
root causes that are unknown.

cdg-get-root-causes-of-diagnosis-manager
(DiagnosisManager: class cdg-diagnosis-manager)
-> RootCauses: sequence

Returns a sequence of cdg-specific-event objects, which are root causes of
DiagnosisManager that are known to be true.

Root Causes

cdg-get-effects-of-event
(SpecificEvent: class cdg-specific-event)
-> Effects: sequence

Returns a sequence of cdg-specific-event objects, which are effects of
SpecificEvent.

215

Diagnosis Managers

216

A diagnosis manager is a cdg-diagnosis-manager, which manages a set of
correlated specific events and their specific external actions. You obtain a
diagnosis manager from a specific event.

You can get the following information from a diagnosis manager:

Known and suspected root causes, alarms, observed symptoms, effects, as
well as all specific events managed by the diagnosis manager.

Known and candidate tests, as well as all specific external actions managed by
the diagnosis manager.

The diagnosis status, which is a combination of the progress status, build
status, and explanation status of the diagnosis manager.

The chronological sequence of specific events and specific actions associated
with the diagnosis manager.

The diagnosis status of the diagnosis manager depends on a combination of these
factors:

Is there an explanation, that is, a root cause for every observed event? In other
words, does the set of known root causes explain the set of observed
symptoms?

Has the entire specific fault model been built, that is, have all possible causes
of all observed events been built?

Have all tests and repair actions that could provide additional information to
the diagnostic reasoning process finished execution?

Getting and Deleting the Diagnosis Manager

cdg-get-diagnosis-manager

(SpecificEvent: class cdg-specific-event)
-> DiagnosisManager: class cdg-diagnosis-manager

Returns the cdg-diagnosis-manager for SpecificEvent.

cdg-delete-diagnosis-manager

(DiagnosisManager: class cdg-diagnosis-manager)

Deletes DiagnosisManager and all the events and actions that it manages.

Diagnosis Managers

Getting Specific Events

cdg-get-suspect-root-causes-for-diagnosis-manager
(DiagnosisManager: class cdg-diagnosis-manager)
-> SuspectedRootCauses: sequence

Returns a sequence of cdg-specific-event objects for DiagnosisManager that
are suspected root causes, that is, root causes whose value is suspect.

cdg-get-known-root-causes-for-diagnosis-manager
(DiagnosisManager: class cdg-diagnosis-manager)
-> KnownRootCauses: sequence

Returns a sequence of cdg-specific-event objects for DiagnosisManager that
are known root causes, that is, known to be "true" or known to be "false".

cdg-get-known-symptoms-for-diagnosis-manager

(DiagnosisManager: class cdg-diagnosis-manager)
-> KnownSymptoms: sequence

Returns a sequence of cdg-specific-event objects for DiagnosisManager that
are observed symptoms, that is, effects, whose value has been specified at
some point during the diagnostic session. Note that the current value of the
specific event might have become false, based on downstream inference.

cdg-get-alarms-for-diagnosis-manager
(DiagnosisManager: class cdg-diagnosis-manager)
-> Alarms: sequence
Returns a sequence of cdg-specific-event objects for DiagnosisManager that
are alarms, that is, specific events whose type is alarm.
cdg-get-known-effects-for-diagnosis-manager
(DiagnosisManager: class cdg-diagnosis-manager)

-> KnownEffects: sequence

Returns a sequence of cdg-specific-event objects for DiagnosisManager that
are effects, that is, specific events that are not root causes.

cdg-get-specific-events
(DiagnosisManager: class cdg-diagnosis-manager)

-> SpecificEvents: sequence

Returns a sequence of all cdg-specific-event objects for DiagnosisManager.

cdg-get-number-of-unprocessed-incoming-events

()

-> Result: integer

Returns the number of incoming events that are waiting to be propagated.

217

218

cdg-get-overridden-specified-events

(DiagnosisManager: class cdg-diagnosis-manager)
-> specific-events: sequence

Returns a sequence of specific events associated with DiagnosisManager
whose last specified values differ from their current event values.

cdg-get-overridden-specified-events

(DiagnosisManager: class cdg-diagnosis-manager,
OverriddenValues: sequence)

-> specific-events: sequence

Returns a sequence of specific events associated with DiagnosisManager
whose last specified values are a member of Overridden Values and differ from
their current event values. Overriden Values must be a subset of
sequence("true”, "false", "suspect"). This API allows you, for instance, to get
all events that were specified to be true but have their values overridden by
diagnostic inference by setting Overridden Values to sequence("true"). Using
all three values in the Overridden Values sequence makes this API identical to

the one without the OverriddenValues argument.

Getting Specific Actions

cdg-get-known-tests-for-diagnosis-manager

(DiagnosisManager: class cdg-diagnosis-manager)
-> CompletedTests: sequence

Returns a sequence of cdg-specific-test-action objects for DiagnosisManager
that are completed tests.

cdg-get-candidate-tests-for-diagnosis-manager

(DiagnosisManager: class cdg-diagnosis-manager)
-> CandidateTests: sequence

Returns a sequence of cdg-specific-test-action objects for DiagnosisManager
that are candidate tests, that is, tests that can be used to resolve suspected root
causes.

cdg-get-specific-actions

(DiagnosisManager: class cdg-diagnosis-manager)
-> SpecificActions: sequence

Returns a sequence of all cdg-specific-action objects for DiagnosisManager.

Diagnosis Managers

Getting Diagnosis Information

cdg-get-diagnosis-completion-status
(DiagnosisManager: class cdg-diagnosis-manager)
-> DiagnosisStatus: symbol

Returns the diagnosis-status for DiagnosisManager, which can be complete or
incomplete. The diagnosis is complete if any of the following conditions is
satisfied:

* All observed events are fully explained by the set of known root causes,
and the specific fault model managed by the diagnosis manager is
fully built.

* All observed events are fully explained by the set of known root causes,
and the cdg-terminate-diagnosis-early initialization parameter of the
diagnosis manager is true.

* The diagnosis manager is fully built, and no further progress is possible
without the arrival of external information.

cdg-get-diagnosis-explanation-status
(DiagnosisManager: class cdg-diagnosis-manager)
-> ExplanationStatus: truth-value

Returns true if DiagnosisManager has identified at least one known root cause
that explains each observed symptom, false otherwise.

cdg-get-build-status
(DiagnosisManager: class cdg-diagnosis-manager)
-> BuildStatus: truth-value

Returns true if the specific fault model managed by DiagnosisManager has
been fully built, that is, every event that can be associated with the diagnosis
manager is included in the specific fault model.

cdg-get-diagnosis-progress-status
(DiagnosisManager: class cdg-diagnosis-manager)
-> ProgressStatus: truth-value
Returns true if no further progress is possible, false otherwise. The progress
status is true if there are no scheduled actions associated with the diagnosis
manager.
cdg-get-diagnosis-start-time
(DiagnosisManager: class cdg-diagnosis-manager)
-> StartTime: quantity

Returns the time at which DiagnosisManager was created.

219

220

Re-Creating Event and Action Sequences for a
Diagnosis Manager

cdg-recreate-events-sequence

(DiagnosisManager: class cdg-diagnosis-manager)
-> EventsAndRootCauses: sequence)

Re-creates the sequence in which incoming events arrive and root causes get
their values. The sequence consists of structures with this syntax:

structure(type: EventType, event-name: EventName,
target-object: TargetObject, event-value: EventValue,
event-status: EventStatus, time-stamp: TimeStamp, sender: Sender)

For example, here is part of a returned event sequence:

sequence (structure (TYPE: "Event”,
EVEMNT-MNAME: "Retarded chemical reaction”,
TARGET-OBJECT: REACTION-CHAMBER-1,
EVENT-WALUE: "true”,
EVENT-STATUS: "specified”,
TIME-STARP: 3309,
SEMDER: REACTION-CHAMBER-1),

cdg-get-incoming-events-sequence

(DiagnosisManager: class cdg-diagnosis-manager)
-> Events: sequence)

Re-creates the sequence in which events arrive. The sequence consists of
structures with this syntax:

structure(type: EventType, event-name: EventName,
target-object: TargetObject, event-value: EventValue,
event-status: EventStatus, time-stamp: TimeStamp, sender: Sender)

For example, here is part of a returned event sequence:

sequence (structure (TYPE: "Event’,
EVEMT-MAME: "Retarded chemical reaction”,
TARGET-OBJECT: REACTION-CHAMBER-1,
EVEMT-YALUE: "true”,
EVEMT-STATUS: "specified”,
TIME-STAMP: 3309,
SEMDER: REACTION-CHAMBER-1),

Diagnosis Managers

cdg-get-external-actions-sequence
(DiagnosisManager: class cdg-diagnosis-manager)
-> Actions: sequence)

Re-creates the sequence in which specific actions are initiated and completed.
The sequence consists of structures with this syntax:

structure(type: ActionType, action-name: ActionName,
associated-event-name: EventName, description: Description,
time-stamp: TimeStamp)

For example, here is part of a returned event sequence:

sequence (structure (TYPE: "Action”,
ACTION-MNAME: "Impure catalyst?",
ASSOCIATED-EVENT-NAME: "Impure
catalyst”,
TARGET-OBJECT: "REACTION-CHAMBER-1",
DESCRIPTION: "Start”,
TIME-STARMP: 3399,

cdg-recreate-events-and-actions-sequence
(DiagnosisManager: class cdg-diagnosis-manager)
-> EventsActionsAndRootCauses: sequence)

Re-creates the sequence in which incoming events arrive, actions are
performed, and root causes get their values. The sequence consists of
structures with this syntax:

structure(type: Type, event-name: EventName, target-object: TargetObject,
event-value: EventValue, event-status: EventStatus,
time-stamp: TimeStamp, sender: Sender)

For example:

seguence; sequence (structure (TYPE: "Event”,
EVEMNT-MNAME: "Retarded chemical reaction”,
TARGET-OBJECT: REACTION-CHAMBER-1,
EVENT-WALUE: "true”,
EVENT-STATUS: "specified”,
TIME-STAMP: 3309,
SEMDER: REACTION-CHAMBER-1),

cdg-get-root-cause-events-sequence
(DiagnosisManager: class cdg-diagnosis-manager)
-> RootCauses: sequence)

Re-creates the sequence in which root causes get their values. The sequence
consists of structures with this syntax:

structure(type: Type, event-name: EventName, target-object: TargetObject,
event-value: EventValue, event-status: EventStatus,
time-stamp: TimeStamp)

221

222

For example, here is part of a returned event sequence:

sequence (structure (TYPE: "Ewent”,
EVEMNT-MNAME: "Insufficient reagent”,
TARGET-OBJECT: REACTION-CHAMBER-1,
EVEMT-WALUE: "suspect”,
EVEMT-STATUS: "upstream inferred”,
TIME-STANMP: 3309),

cdg-get-alarms-sequence
(DiagnosisManager: class cdg-diagnosis-manager)
-> Alarms: sequence)

Re-creates the sequence in which alarms occur and are predicted. The
sequence consists of structures with this syntax:

structure(type: Type, event-name: EventName, target-object: TargetObject,
event-value: EventValue, event-status: EventStatus,
time-stamp: TimeStamp)

For example, here is part of a returned event sequence:

sequence [structure (TYPE: "Event”,
EVENT-MAME: "Impure product”,
TARGET-OBJECT: REACTION-CHAMBER-1,
EVEMNT-VALUE: "true”,
EVENT-STATUS: "downstream inferred”,
TIME-STAMP: 3309),

Performing a Topological Sort

In graph theory, a topological sort of a directed acyclic graph (DAG) is a linear
ordering of its nodes, which is compatible with the partial order R induced on the
nodes where x comes before y (xRy) if there’s a directed path from x to y in the
DAG. An equivalent definition is that each node comes before all nodes to which
it has edges. Every DAG has at least one topological sort and may have many.

The following API allows you to perform a topological sort of a specific fault
model:

cdg-topological-sort
(DiagnosisManager: class cdg-diagnosis-manager,
UserDefinedProcedureName: symbol)

Traverses a fault model in the order of causality, that is, the traversal starts
from the set of root causes, then goes to their immediate effects, then the next
immediate effects, and so on. At each event, you can perform custom
operations by applying a user-defined procedure. This ability complements
an event’s event-changed procedure, which is run only if an event changes, in
that the user-defined procedure will be executed for every event managed by
the diagnosis manager.

Diagnosis Managers

The user-defined procedure is applied in topological order to each event in the
diagnosis manager and has this signature:
my-cdg-topological-sort-event-proc
(Event: class cdg-specific-event)
The User Defined Procedures palette of the Fault Models toolbox contains an

instance of this user-defined procedure called Graph Traversal
Procedure/Method.

The topological sort API will not work on cyclical graphs. In practice, this
limitation is likely to be insignificant.

223

Generic and Specific Events

224

An event is either a:

* Generic event, which is a cdg-generic-event that is identified by its target class
and event name.

* Specific event, which is a cdg-specific-event that is identified by its target
object and event name, or by its target object and generic event.

You can get a generic event from a specific event. You can get a specific event
from its target object and event name, or from its target object and generic event.

You can get the following information for a specific event:
* Event name, description, event status, event value, target object, and sender.

* Current event state, previous event state, event state at a particular point in
time, and event state history. Event state includes the value of the event-status
and event-value of an event.

* Known root causes, plausible root causes, and evidence for root causes of an
event. Evidence includes the symptoms, predicted events, and tests of an
event, where a symptom is a specific event that has been observed and a
predicted event is a specific event that is predicted but not observed.

* External test, repair, recovery, and mitigation actions of an event.
You can get the following information for a generic event:

® The procedure to call when the event-value changes for a corresponding
specific event.

® The procedure to call when the event-value for a corresponding specific event
does not change over a predetermined amount of time.

Getting Generic Event Information

cdg-get-generic-event
(TargetClass: symbol, EventName: text)
-> GenericEvent: item-or-value

Returns the cdg-generic-event defined by EventName and TargetClass. If the
generic event does not exist, it returns the symbol none.

cdg-get-generic-event-for-specific-event
(SpecificEvent: class cdg-specific-event)
-> GenericEvent: class cdg-generic-event

Returns the cdg-generic-event corresponding with SpecificEvent.

Generic and Specific Events

cdg-get-specific-event-for-generic-event
(GenericEvent: class cdg-generic-event,
TargetObject: class grtl-domain-object)
-> SpecificEvent: item-or-value

Returns the cdg-specific-event defined by GenericEvent and TargetObject. If
no such event exists, it returns the symbol none.

cdg-collect-generic-events-for-class
(TargetClass: symbol)
-> GenericEvents: sequence

Returns a sequence of cdg-generic-event objects defined for TargetClass.

cdg-collect-generic-events-for-view
(GenericEventView: cdg-generic-event-view)
-> GenericEvents: sequence

Returns a sequence of cdg-generic-event objects corresponding to
GenericEventView.

cdg-collect-generic-events-for-action
(GenericAction: cdg-generic-action)
-> GenericEvents: sequence

Returns a sequence of cdg-generic-event objects that are acted on by
GenericAction.

cdg-collect-generic-actions-for-event
(GenericEvent: cdg-generic-event)
-> GenericActions: sequence

Returns a sequence of cdg-generic-action objects assigned to GenericEvent.

cdg-collect-mutually-exclusive-events
(GenericEvent: cdg-generic-event)
-> GenericEvents: sequence

Returns a sequence of cdg-generic-event objects that are mutually exclusive
to GenericEvent.

cdg-get-event-changed-procedure
(GenericEvent: class cdg-generic-event)
-> EventChangedProcedure: symbol

Returns the name of the event-changed-proc for GenericEvent.

225

cdg-get-event-unchanged-procedure
(GenericEvent: class cdg-generic-event)
-> EventUnchangedProcedure: symbol

Returns the event-unchanged-proc for GenericEvent.

Getting Specific Event Information

cdg-get-specific-event
(TargetObject: class grtl-domain-object, EventName: text)

-> SpecificEvent: item-or-value

Returns the cdg-specific-event defined by TargetObject and EventName. If the
event does not exist, it returns the symbol none.

cdg-get-targetted-events
(TargetObject: class grtl-domain-object)

-> SpecificEvents: sequence

Returns a sequence of all cdg-specific-event objects associated with
TargetObject.

cdg-get-event-name
(SpecificEvent: class cdg-specific-event)
-> EventName: text

Returns the event-name of SpecificEvent.
cdg-get-event-description
(SpecificEvent: class cdg-specific-event
-> Description: text
Returns the description of the cdg-generic-event that corresponds with
SpecificEvent.

cdg-get-event-type
(SpecificEvent: class cdg-specific-event
-> Type: symbol

Returns the event-type of the cdg-generic-event that corresponds with
SpecificEvent. The event type can be alarm, root-cause, or unspecified.

cdg-get-event-status
(SpecificEvent: class cdg-specific-event)
-> EventStatus: text

Returns the event-status of SpecificEvent. The status can be "specified”,
"upstream inferred", "downstream inferred", or "mutually exclusive".

226

Generic and Specific Events

cdg-get-event-value
(SpecificEvent: class cdg-specific-event)
-> EventValue: text

Returns the event-value of SpecificEvent. The value can be "true", "false”,
"suspect", or "unknown".

cdg-get-event-value-at-time
(SpecificEvent: class cdg-specific-event, TimeStamp: integer)
-> EventValue: text

Returns the event-value of SpecificEvent at TimeStamp.

cdg-get-last-specified-value
(SpecificEvent: class cdg-specific-event)
-> EventValue: text

nn

Returns the last specified value of SpecificEvent ("true", "false", "suspect", or
"unknown"). The default last specified value of an event is "unknown" if no
value has been specified for that event.

cdg-get-last-specified-time-stamp
(SpecificEvent: class cdg-specific-event)
-> TimeStamp: quantity

Returns the timestamp of SpecificEvent when its value was last specified.
Default = 0.0 if no value has been specified for the event.

cdg-get-event-target
(SpecificEvent: class cdg-specific-event)
-> TargetObject: class grtl-domain-object

Returns the target-object for SpecificEvent.

cdg-get-event-sender
(SpecificEvent: class cdg-specific-event)
-> Sender: item-or-value

Returns the event source for SpecificEvent or the symbol none.

cdg-get-event-state-changes
(SpecificEvent: class cdg-specific-event, TimePeriod: quantity)

-> state-changes: sequence

Returns a sequence of event state changes of an event within a time period
ending at the current time. A large number of such changes in a very short
time could indicate an unstable and oscillating system. Such behavior can
occur if the fault model and the data are inconsistent. You can use this API to
detect such behavior.

227

The return value is a sequence of structures, ordered in non-decreasing order
based on the timestamp, that is, from lowest to highest. Each structure has
these attributes:

structure
(EVENT-VALUE: text,
EVENT-STATUS: text,
TIME-STAMP: quantity)

cdg-get-event-value-changes
(SpecificEvent: class cdg-specific-event, TimePeriod: quantity)

-> value-changes: sequence

Returns a sequence of event value changes of an event within a time period
ending at the current time. The return value is the same as for cdg-get-event-
state-changes.

Getting Specific Event Message Information

cdg-get-specific-event-message-text
(SpecificEvent: class cdg-specific-event)
-> Message: text
Returns the message text of SpecificEvent with text substitutions.

cdg-get-specific-event-message-detail
(SpecificEvent: class cdg-specific-event):
-> Detail: text

Returns the message detail of SpecificEvent with text substitutions.

cdg-get-specific-event-message-advice
(SpecificEvent: class cdg-specific-event)
-> Advice: text

Returns the message advice of SpecificEvent with text substitutions.

228

Generic and Specific Events

Getting the State of Specific Events

cdg-get-state-of-event
(TargetObject: class grtl-domain-object, EventName: text)
-> EventState: structure

Returns a structure containing the value and status of the cdg-specific-event
defined by EventName and TargetObject. If the event does not exist, it returns
structure(event-value: ", event-status: ""). The sequence consists of structures
with this syntax:

structure(event-value: EventValue, event-status: EventStatus)

For example:

structure)
(EVEMT-VALUE: "suspect’,
EVENT-STATUS: "upstream inferred")

cdg-get-state-of-event-at-time
(TargetObject: class grtl-domain-object, EventName: text, TimeStamp: integer)
-> EventState: structure

Returns a structure containing the value and status of the cdg-specific-event
defined by EventName and TargetObject at TimeStamp. If the event does not
exist, it returns structure(event-value: ", event-status: ""). The sequence
consists of structures with this syntax:

structure(event-value: EventValue, event-status: EventStatus)

For example:

structure

[EVENT-VALUE: "suspect’,

EVEMT-STATUS: "upstream inferred") at time
700

cdg-get-previous-state-of-event-at-time
(TargetObject: class grtl-domain-object, EventName: text, TimeStamp: integer)
-> EventState: structure

Returns a structure containing the previous value and status of the
cdg-specific-event defined by EventName and TargetObject at TimeStamp.
The sequence consists of structures with this syntax:

structure(event-value: EventValue, event-status: EventStatus)
If the event does not exist, it returns:

structure(event-value: ", event-status: "")

229

For example:

structure (EVENT-YALUE: "unknawn®,
EVENT-3TATUS: "unknown™) at time 700

cdg-get-event-status-at-time
(SpecificEvent: class cdg-specific-event, TimeStamp: integer)
-> EventStatus: text

Returns the event-status of SpecificEvent at TimeStamp.

cdg-get-previous-event-status
(SpecificEvent: class cdg-specific-event)
-> EventStatus: text

Returns the event-status of the previous state of SpecificEvent.

cdg-get-previous-event-value
(SpecificEvent: class cdg-specific-event)
-> EventValue: text

Returns the event-value of the previous state of SpecificEvent.

cdg-get-event-history
(SpecificEvent: class cdg-specific-event)
-> StateChangeHistory: sequence

Returns a sequence of state changes for SpecificEvent. The history is a
sequence of structures that mark the changes in the state of the event. Each
structure consists of one of the following, depending on PreviousStatus:

® If PreviousStatus = "specified"

structure(event-value: PreviousValue, event-status: PreviousStatus,
time-stamp: the time-stamp of SpecificEvent, sender: PreviousSender)

® If PreviousStatus /= "specified"

structure(event-value: PreviousValue, event-status: PreviousStatus,
time-stamp: the time-stamp of SpecificEvent)

where:

PreviousStatus is the value of the event-status of the previous event,
which is a text string.

PreviousValue is the value of the event-value of the previous event, which
is a text string.

230

Generic and Specific Events

The event history does not include information on the current event.

For example:

sequence

(structure (EVENT-YALLUE: "suspect’,
EVENT-STATUS: "upstream inferred”,
TIME-STAMP: 3309))

Getting Fraction of Causes and Effects

The following APIs can be used to compute the fraction (or ratio) of causes or
effects of an event that have a particular value. The results of the API may be
interpreted by an application as the degree of degradation or the level of
confidence in the event, as needed.

cdg-get-fraction-of-true-causes
(SpecificEvent: class cdg-specific-event)
-> Fraction: float

Returns the ratio of causes of SpecificEvent that are true to all the causes of
SpecificEvent.

cdg-get-fraction-of-true-effects
(SpecificEvent: class cdg-specific-event)
-> Fraction: float

Returns the ratio of effects of SpecificEvent that are true to all the effects of
SpecificEvent.

cdg-get-fraction-of-false-causes
(SpecificEvent: class cdg-specific-event)
-> Fraction: float

Returns the ratio of causes of SpecificEvent that are false to all the causes of
SpecificEvent.

cdg-get-fraction-of-false-effects
SpecificEvent: class cdg-specific-event)
-> Fraction: float

Returns the ratio of effects of SpecificEvent that are false to all the effects of
SpecificEvent.

cdg-get-fraction-of-suspect-causes
(SpecificEvent: class cdg-specific-event)
-> Fraction: float

Returns the ratio of suspected causes of SpecificEvent that are true to all the
suspected causes of SpecificEvent.

231

232

cdg-get-fraction-of-suspect-effects
(SpecificEvent: class cdg-specific-event)
-> Fraction: float

Returns the ratio of suspected effects of SpecificEvent that are true to all the
suspected effects of SpecificEvent.

cdg-get-fraction-of-unknown-causes
(SpecificEvent: class cdg-specific-event)
-> Fraction: float

Returns the ratio of unknown causes of SpecificEvent that are true to all the
unknown causes of SpecificEvent.

cdg-get-fraction-of-unknown-effects
(SpecificEvent: class cdg-specific-event)
-> Fraction: float

Returns the ratio of unknown effects of SpecificEvent that are true to all the
unknown effects of SpecificEvent.

Getting and Setting User-Defined Data

Specific events might need to store user-defined data, for example, the likelihood
of an event or the degree of degradation of an event. This feature is necessary
because SymCure cannot predict beforehand what attributes should be provided,
and SymCure does not allow sub-classing of specific events.

User-defined attributes can be displayed automatically in the properties dialogs
of specific events provided that the user-defined data is populated as a sequence
of structures and that the attributes of the structures are quantitative, symbolic, or
text values. SymCure’s import and export capabilities also handle these attributes
automatically. Currently, user-defined attributes are imported as text values.

To support this feature, specific events provide the following APIs for getting and
setting custom information for a specific event:

cdg-set-user-defined-data
(SpecificEvent: class cdg-specific-event, UserDefinedData: sequence)

cdg-get-user-defined-data
(SpecificEvent: class cdg-specific-event)
-> Data: sequence

Typically, you populate the sequence with structures, for example,
sequence(structure(likelihood: 0.1, degree-of-degradation: 0.9)).

Generic and Specific Events

Getting Explanations and Evidence for Specific
Events

You can get the following information for a specific event:

* Known explanations, which is a path from a known root cause to an alarm,
where the value of the root cause justifies the value of the alarm. An event is
known if its value is true or false.

* Plausible explanations, which is a path from a plausible root cause to an
alarm. Plausible root causes have a value of true, false or suspect, depending
on the value of the corresponding alarm. If the alarm is true, all suspect or true
root cause are plausible root causes for explaining the alarm’s value. If the
alarm is false, all false root causes are plausible explanations. If the alarm is
unknown, all unknown root causes are included in its plausible explanations.

Evidence, which includes the symptoms, predicted events, and tests for a specific
event.

Getting known and plausible explanations is similar to getting known and
plausible root causes, using cdg-get-root-causes and cdg-get-plausible-root-
causes-of-event, respectively. For a description of these APIs, see Root Causes.

The following examples provide a comparison between known and plausible root
causes, and known and plausible explanations, using the following four APIs:

1. cdg-get-root-causes-of-event

2. cdg-get-plausible-root-causes-of-event

3. cdg-get-known-explanations

4. cdg-get-plausible-explanations

Suppose you have the following specific fault model:
A->B, B->C, C->D

where C is an alarm and A and D are root causes.

Case 1. Suppose that C is true, and A and D are suspect.
Using C as the argument, the four APIs return the following results:
1. {} as there are no known causes for C
2.{A, D} each of which is a plausible cause for C
3. {} as there are no known causes for C

4. {A->B->C, D->C}, which specify the paths from all the plausible causes of C
to itself

Case 2. Suppose that C is true, and A is true while D is suspect.

Using C as the argument, the four APIs will return the following results:

233

1. {A}
2.{A, D} each of which is a plausible cause for C
3. {A->B->C}

4. {A->B->C, D->C}, which specify the paths from all the plausible causes of C
to itself

Case 3. Suppose that C is false (true), A is false (true), D is false (true).
1. {A, D} each of which is a known cause for C
2.{A, D} each of which is a plausible cause for C
3. {A->B->C, D->C}
4. {A->B->C, D->C}

Thus, plausible root causes and plausible explanations are always supersets of
known root causes and known explanations.

Note that the path A->B->C in the examples above is represented by the following
structure in the APlIs that follow:

structure(Root-cause: A, Explanation: sequence(A, B, C)).

cdg-get-known-explanations
(SpecificEvent: class cdg-specific-event)
-> KnownExplanations: sequence

Returns a sequence of cdg-specific-event objects that are known explanations
of SpecificEvent. Each explanation is a sequence that defines the path from a
root cause to SpecificEvent. The sequence consists of structures with this
syntax:

structure(root-cause: RootCause,
explanation: (sequence SpecificEvent], ...]))

For example:

sequence (structure (ROOT-CAUSE: CDG-
SPECIFIC-OR-AND-EVENT-XXX-1332,
EXPLANATION: sequence (CDG-SPECIFIC-
OR-AMD-EVENT-KXX-1352,
COG-SPECIFIC-OR-AND-EVENT-XxX-
1553)))

cdg-get-plausible-explanations
(SpecificEvent: class cdg-specific-event)
-> PlausibleExplanations: sequence

Returns a sequence of cdg-specific-event objects that are suspected
explanations of SpecificEvent. Each explanation is a sequence that defines the

234

Generic and Specific Events

path from a root cause to SpecificEvent. The sequence consists of structures
with this syntax:

structure(root-cause: RootCause,
explanation: (sequence SpecificEvent], ...]))

For example:

sequence (structure (ROOT-CAUSE;
COG-SPECIFIC-OR-AND-EVEMT-XXX-1352,
EXPLANATION: sequence (CODG-SPECIFIC-
OR-AMD-EVENT-XXX-1358,
COG-SPECIFIC-CR-AND-EVENT-XXX-
1553)))

cdg-get-evidence-for-root-cause
(SpecificEvent: class cdg-specific-event)
-> Evidence: structure

Returns a structure containing three sequences for the cdg-specific-event
objects that are symptoms, predicted events, and tests of SpecificEvent. The
structure has the following syntax:

structure(symptoms: (sequence SymptomEvent [, ...]),
predictions: (sequence PredictedEvent], ...]),
tests: (sequence SupportingTest], ...])

For example:

structure [(SYMPTOMS;

seguence (CDG-SPECIFIC-OR-AND-EVENT-

HHA-83),

PEREDICTIONS: seqguence [CDG-SPECIFIC-0R-
AND-EVEMT-KKX-87,
CDG-SPECIFIC-OR-AND-EVENT-XXX-85,
CDG-SPECIFIC-0OR-AMD-EVENT-XXX-88),

TESTS: sequence (COG-SPECIFIC-TEST-
ACTION-2XX-588))

235

Getting Specific Actions of Specific Events

cdg-get-external-actions
(SpecificEvent: class cdg-specific-event)
-> ExternalActions: sequence

Returns a sequence of cdg-specific-action objects that are external actions of
SpecificEvent, including test, mitigation, repair, and recovery actions.

cdg-get-external-test-actions
(SpecificEvent: class cdg-specific-event)
-> Tests: sequence

Returns a sequence of cdg-specific-test-action objects that are external test
actions of SpecificEvent.

cdg-get-external-repair-actions
(SpecificEvent: class cdg-specific-event)
-> RepairActions: sequence

Returns a sequence of cdg-specific-repair-action objects that are external
repair actions of SpecificEvent.

cdg-get-external-recovery-actions
(SpecificEvent: class cdg-specific-event)
-> RecoveryActions: sequence

Returns a sequence of cdg-specific-recovery-action objects that are external
recovery actions of SpecificEvent.

cdg-get-external-mitigation-actions
(SpecificEvent: class cdg-specific-event)
-> MitigationActions: sequence

Returns a sequence of cdg-specific-mitigation-action objects that are external
mitigation actions of SpecificEvent.

cdg-get-downstream-external-actions
(SpecificEvent: class cdg-specific-event)
-> Actions: sequence

Returns a sequence of all cdg-specific-action objects that are associated with
events that are downstream of SpecificEvent.

cdg-get-downstream-tests
(SpecificEvent: class cdg-specific-event)
-> DownstreamTests: sequence

Returns a sequence of cdg-specific-test-action objects that are associated with
specific events that are downstream of SpecificEvent, where SpecificEvent is
assumed to be a root cause. The sequence includes tests for all downstream
events, including those that might not be used to resolve the value of the
particular specific event.

236

Generic and Specific Events

cdg-get-candidate-tests
(SpecificEvent: class cdg-specific-event)
-> CandidateTests: sequence

Returns a sequence of cdg-specific-test-action objects that are candidate tests
for SpecificEvent, where SpecificEvent is assumed to be a root cause. The
result includes the subset of the downstream tests that can be used to resolve
the value of SpecificEvent and that have not yet been run.

Upgrading Message Attributes

cdg-upgrade-message-attributes-for-folder
(DiagramFolder: class cdg-diagram-folder, EventValue: text)

Copies the old message attributes of each generic event in DiagramFolder,
which includes message text, message detail, and message advice, to the new
value dependent attributes for the generic event as specified by EventValue,
and enables operator messages for EventValue. This APl is recursively
applied to all fault model folders on the subworkspace of DiagramFolder.

For example, to upgrade events in fault model folder DF-1 to use the old
message attributes when the corresponding specific events are false, call cdg-
upgrade-message-attributes-for-folder(DF-1, "false").

cdg-upgrade-message-attributes
(EventValue: text)

Converts message attributes for all generic events in your application as
specified by the EventValue argument, without regard to their fault model
folder.

For example, to upgrade events to use the old message attributes for operator
messages when the underlying specific event is true, call cdg-upgrade-
message-attributes("true").

237

External Actions

238

An external action is a cdg-generic-action that defines a test, repair, recovery, or
mitigation action associated with a specific event. An external action is either a:

* Generic action — A cdg-generic-action that is identified by its target class and
action name.

* Specific action — A cdg-specific-action that is identified by its target object
and action name.

An external action is automatically enabled when the value of the underlying
event changes, depending on the type of action, as follows:

* For a test action, when the underlying event changes from any value to
"suspect" or "unknown".

* For a repair action, when the underlying event value changes from any value
to "true".

* For arecovery action, when the underlying event value changes from "true" to
“false"”.

* For a mitigation action, when the underlying event changes from any value to
"suspect" or "true".

If an external action is enabled, it executes either automatically or manually,
depending on its activation-type. You can also execute an external action
programmatically.

You can get specific external actions from generic actions. You can also get
generic actions from specific actions, target classes, and generic events.

An external action defines the following information, which you can get:

* Execution information, which includes whether the action has been requested,
that is, enabled, based on the status of the underlying event; the status of the
action; and the execution history of the action.

* Known and plausible root causes associated with the action.
® Cost associated with executing the action.

* Unique tag.

* Underlying root causes.

You can also programmatically send the result of a test or repair action.

External Actions

Getting Generic Actions

cdg-get-generic-action
(TargetClass: symbol , ActionName: text)
-> GenericAction: item-or-value

Returns the cdg-generic-action defined by ActionName for TargetClass. If the
action does not exist, it returns the symbol none.

cdg-get-generic-action-for-specific-action
(SpecificAction: class cdg-specific-action)
-> generic-action: class cdg-generic-action

Returns the cdg-generic-action corresponding to SpecificAction.

cdg-collect-generic-actions-for-class
(TargetClass: symbol)
-> GenericActions: sequence

Returns a sequence of cdg-generic-action objects defined for TargetClass.

cdg-collect-generic-actions-for-event
(GenericEvent: cdg-generic-event)
-> GenericActions: sequence

Returns a sequence of cdg-generic-action objects associated with
GenericEvent.

Getting Specific Actions and Information

cdg-get-specific-action
(TargetObject: grtl-domain-object, ActionName: text)
-> SpecificAction: item-or-value

Returns the cdg-specific-action defined by TargetObject and ActionName. If
the action does not exist, it returns the symbol none.

cdg-get-associated-events
(SpecificAction: cdg-specific-action)

-> SpecificEvents: sequence

Returns a sequence of all cdg-specific-event objects associated with
SpecificAction.

cdg-get-cost
(SpecificAction: class cdg-specific-action)
-> Cost: float

Returns the cost of SpecificAction.

239

240

cdg-get-underlying-root-causes
(SpecificAction: class cdg-specific-action)
-> RootCauses: sequence

Get the root causes that underlie the last execution of SpecificAction.

cdg-get-action-history
(SpecificAction: class cdg-specific-action)
-> History: text

Gets the history of all completed executions of SpecificAction.

cdg-set-tag
(SpecificAction: class cdg-specific-action, Tag: text)

Overwrites the default tag of SpecificAction with Tag.
Note: When using this API, you must ensure that each tag is unique.

cdg-get-tag
(SpecificAction: class cdg-specific-action)
-> Tag: text

Gets the tag of SpecificAction.

Getting Action Execution Information

cdg-is-requested
(SpecificAction: class cdg-specific-action)
-> Regested: truth-value

Returns true if SpecificAction has been requested for execution.

cdg-get-execution-status
(SpecificAction: class cdg-specific-action)
-> ActionStatus: symbol

Returns the action-status of SpecificAction. The action status is enabled,
running or inactive.

cdg-reset-execution-status

(SpecificAction: class cdg-specific-action)

Resets the action-status of SpecificAction, that is, sets it to inactive.
cdg-get-action-history

(SpecificAction: class cdg-specific-action)

-> History: sequence

Returns a sequence of the history of SpecificAction. The history includes the

time at which the action was started and completed. The sequence consists of
structures with this syntax:

structure(start-time: TimeStamp, end-time: TimeStamp)

External Actions

For example:

sequence

(structure [START-TIME: 3399,
EMD-TIME: 3429),

structure (START-TIME: 4195,
EMD-TIME; 4223,

structure (START-TIME: 4313,
EMD-TIME: 4549),

structure (START-TIME: 5202,
EMD-TIME; 3232),

structure (START-TIME: 5631,
EMD-TIME: 3BGE1),

structure (START-TIME: 7617,
EMD-TIME: 7647))

cdg-get-action-result
(SpecificAction: class cdg-specific-action)
-> return-value: text

Gets the last result of executing SpecificAction.

Getting Specific Action Message Information

cdg-get-specific-action-message-text
(SpecificAction: class cdg-specific-action)
-> Message: text

Returns the message text for SpecificAction, with text substitutions.

cdg-get-specific-action-message-detail
(SpecificAction: class cdg-specific-action)
-> Detail: text

Returns the message detail for SpecificAction, with text substitutions.

cdg-get-specific-action-message-advice
(SpecificAction: class cdg-specific-action)
-> Advice: text

Returns the message advice for SpecificAction, with text substitutions.

241

242

Getting Explanations for Actions

cdg-get-known-explanations
(SpecificAction: class cdg-specific-action)
-> sequence)

Returns a sequence of cdg-specific-event objects that are known explanations
for SpecificAction. Each explanation is a sequence that defines a path from a
root cause to the event associated with SpecificAction. The sequence consists
of structures with this syntax:

structure(root-cause: RootCause,
explanation: (sequence SpecificEvent], ...]))

For example:

sequence (structure (ROCT-CAUSE:
COG-SPECIFIC-OR-AMND-EVENT-XXX-1350,
EXPLANATION: sequence [CDG-SPECIFIC-
OR-AND-EVEMNT-XXxX-15500)

cdg-get-plausible-explanations
(SpecificAction: class cdg-specific-action)
-> sequence)

Returns a sequence of cdg-specific-event objects that are suspected
explanations for SpecificAction. Each explanation is a sequence that defines a
path from a root cause to the event associated with SpecificAction. The
sequence consists of structures with this syntax:

structure(root-cause: RootCause,
explanation: (sequence SpecificEvent], ...]))

For example:

sequence (structure (ROOT-CALISE:
CDG-5PECIFIC-OR-AMD-EVEMNT-XKKX-1530,
EXPLANATION: sequence (COG-SPECIFIC-
OR-AMD-EVENT-XXX-1350)])

Setting Enabling Transitions

cdg-set-enabling-transitions
(SpecificAction: class cdg-specificaction, EnablingTransitions: sequence)

Disables enabling transitions for a specific action. EnablingTransitions is a
sequence that is the new enabling transitions for SpecificAction, which is an
empty sequence, by default.

Fault Model Folders

Sending Action Results

Use these APlIs to execute actions and send action results.

cdg-execute-action
(SpecificAction: class cdg-specific-action, Window: class g2-window)

Executes SpecificAction and displays any results on Window.

cdg-send-action-result
(SpecificAction: class cdg-specific-action, Result: text , Cost: value,
Win: class ui-client-item)

Sends the result of the action to each specific event associated with the action.
Result is the resulting event value, which can be "true" or "false" for a test, or
"false" for a repair action. If Cost is a quantity, the cost of the specific action is
updated.

cdg-send-action-result
(TargetObject: class grtl-domain-object, ActionName: text, Result: text,
Cost: value, Client: class object)

Sends the result and cost for the action defined by TargetObject and
ActionName.

Fault Model Folders

You create SymCure fault models on the subworkspace of a cdg-diagram-folder.
You can get errors and messages for fault model folders.

cdg-get-diagram-folder-errors
(DiagramFolder: class cdg-diagram-folder)
-> Errors: sequence

Returns a sequence of errors for DiagramFolder. For a list of possible errors,
see Viewing Errors.

cdg-get-diagram-folder-warnings
(DiagramFolder: class cdg-diagram-folder)
-> Warnings: sequence

Returns a sequence of warnings for DiagramFolder. For a list of possible
warnings, see Viewing Warnings.

243

Debugging

cdg-enable-fault-model-debugging
(enable: truth-value)

Enables or disables the cdg-enable-debugging initialization parameter. The
API has no effect if enable is the same as cdg-enable-debugging. When enable
is true, debugging is enabled. This API procedure also enables the menu
choice for accessing the debugging control panel. Any subsequent events
processed by SymCure will be logged and therefore available for graphical
debugging. When enable is false, debugging is disabled and the internal
debugging log is emptied.

This procedure is the equivalent of choosing Project > Logic > Diagnose >
Debug Specific Fault Models > Enable Debugging. For more information, see
Debugging SymCure Fault Models.

Root Cause Episode Management

244

Use these APIs for starting and stopping episode management for any domain
object:

cdg-start-root-cause-episode-management
(DomainObject: class grtl-domain-object,
EpisodePersistencelnterval: integer)

Initializes a root cause episode archive manager for DomainObject that
manages all of its root cause episode archives. EpisodePersistencelnterval is
the interval to persist all root cause episodes after their completion.

cdg-stop-root-cause-episode-management
(DomainObject: class grtl-domain-object)

Deletes all root cause episodes, archives, and stop root cause episode
management for DomainObject. This API deletes all archives, without regard
to the episode persistence interval of the Root Cause Episode Archive
Manager.

Use these APIs for getting root cause episodes:

cdg-get-root-cause-episodes
(DomainObject: class grtl-domain-object, RootCauseEventName: text)
-> episodes: sequence

Gets all episodes of RootCauseEventName on DomainObject. Episodes are
ordered in reverse chronology, i.e., from the latest to the earliest.

Root Cause Episode Management

cdg-get-root-cause-episodes

(DomainObject: class grtl-domain-object, RootCauseEventName: text,
StartTime: quantity, EndTime: quantity)
-> episodes: sequence

Gets all episodes of RootCauseEventName on DomainObject that overlap with
the duration specified by StartTime and EndTime. Episodes are ordered in
reverse chronology, i.e., from the latest to the earliest. Note that if EndTime is
less than StartTime, an empty sequence is returned.

Use these APIs to get episode information:

cdg-get-transitions

(Episode: class cdg-root-cause-episode)
-> transitions: sequence

Gets transitions for the episode. Transitions is a sequence of structures. Each
structure includes the transition ("suspected, "exonerated", "detected", or
"resolved") and the timestamp for the transition. Transitions is ordered
chronologically according to timestamps. Note that oscillating transitions
between "detected" and "suspected" are not stored in the episode.

An example of the transitions sequence is:

sequence
(structure (TRANSITION: "suspected",
TIME-STAMP: 669.82),
structure (TRANSITION: "detected"”,
TIME-STAMP: 737.498),
structure (TRANSITION: "resolved",
TIME-STAMP: 777.026))

When using these APIs, note the following;:

You can start root cause episode management at any time, even during an
existing diagnostic session. Root cause episode management commences
from that point onwards, but any diagnostic activity prior to the starting point
is ignored.

A domain object has at most one root cause episodes archive manager.
SymCure wont let you create a new one for a domain object if one already
exists.

Garbage collection is performed at periodic intervals to delete any old
episodes that may no longer be relevant to the fault management application.
The interval in seconds between successive garbage collections is controlled
by the following parameter in config. txt:

CDG-EPISODE-DELETION-MONITOR-INTERVAL=86400

245

During garbage collection, any episodes that have been completed before the
episode manager's persistence interval are deleted, thus freeing up memory
for other tasks.

* Episodes, archives, and their managers are not designed to have iconic
representations to optimize memory usage.

Charting

246

cdg-show-chart
(Target: class grtl-domain-object, Subsets: sequence, Title: text, Subtitle: text,
XAxisLabel: text, YAxisLabel: text, Win: class g2-window)

Plots a general chart, according to the specification. For example:

start cdg-show-chart

(reaction-chamber-1, sequence(structure(label: "Retarded chemical reaction",
data: sequence(5, 5, 7)), structure(label: "Impure reagent”,

data: sequence(4, 0, 9)), structure(label: "Impure catalyst",

data: sequence(2, 2, 2), "Root Cause Episodes", "Downtime per week", "Weeks",
"Durations", this window)

The following APIs are used to plot aggregated durations of root cause episodes
for a target object:

cdg-show-aggregated-duration-chart-from-start-time-to-end-time
(Target: class grtl-domain-object, StartTime: quantity, EndTime: quantity,
PeriodLength: quantity, Win: class g2-window)

cdg-show-aggregated-duration-chart-from-start-time-with-lookahead
(Target: class grtl-domain-object, StartTime: quantity, Lookahead: quantity,
PeriodLength: quantity, Win: class g2-window)

cdg-show-aggregated-duration-chart-from-end-time-with-lookback
(Target: class grtl-domain-object, EndTime: quantity, Lookback: quantity,
PeriodLength: quantity, Win: class g2-window)

The following APIs are used to plot frequencies of root cause episodes for a
target object:

cdg-show-frequency-chart-from-start-time-to-end-time
(Target: class grtl-domain-object, StartTime: quantity, EndTime: quantity,
PeriodLength: quantity, Win: class g2-window)

cdg-show-frequency-chart-from-start-time-with-lookahead
(Target: class grtl-domain-object, StartTime: quantity, Lookahead: quantity,
PeriodLength: quantity, Win: class g2-window)

cdg-show-frequency-chart-from-end-time-with-lookback
(Target: class grtl-domain-object, EndTime: quantity, Lookback: quantity,
PeriodLength: quantity, Win: class g2-window)

Run-Time Behavior

Run-Time Behavior

cdg-pause

()

Pauses event propagation. Following a call to this API, all incoming events are
queued but not processed. The suspension of event propagation cannot occur
in the middle of the propagation in response to an incoming event. Thus, if
event propagation in response to an incoming event is in effect at the instant
that cdg-pause is called, SymCure loops waiting for 1 second before
attempting to pause event propagation again. Therefore, a call to cdg-pause
might not take effect instantaneously.

cdg-resume

()

Resumes event propagation. The incoming events queue is processed in the
order that events arrived. If SymCure is not paused, a call to cdg-resume has
no effect.

cdg-is-diagnostic-processing-active

()

-> Result: truth-value

Returns true if event propagation is currently taking place; otherwise, returns
false. This API procedure also returns false when SymCure is paused.

cdg-is-online

()

-> Result: truth-value
Returns true if SymCure is ready to receive events; false if it is not yet ready.

cdg-take-offline

()

Takes SymCure offline. While SymCure is offline, all event propagation is
suspended and any incoming events are ignored.

cdg-take-online

()

Takes SymCure online.

Minimal Candidates

A minimal candidate is the smallest set of root causes that must be true to explain
all known symptoms. Any superset of a minimal candidate is not a minimal
candidate. The notion of minimal candidates is particularly useful for analyzing a
diagnosis problem when you have a number of suspected root causes, but you
don't have enough information to resolve them. By extracting the minimal

247

candidates for a diagnosis problem, you can identify the minimal combinations of
root causes that must occur to explain your symptoms.

Here is the signature for the API:

cdg-get-minimal-root-causes
(DiagnosisManager: class cdg-diagnosis-manager)
-> MinimalCandiates: sequence

Here is an example of the use of this procedure:

cdgg-get-minimal-root-causes()
Diagnosisianager: class cdg-diagnosis-manager;
MinimalCandidates, MinimalCandidate: sequence;
SpecificEvent: class cdg-specific-event;
begin
for Diagnosishanager = each cdg-diagnosis-manager do
MinimalCandidates = call cdg-get-minimal-root-causes (Diagnosishanager);
post "Minimal root causes: [MinimalCandidates]”;
for MinimalCandidate = each sequence in MinimalCandidates do
post “Minimal Candidate:";
for SpecificEvent = each cdg-specific-event in MinimalCandidate do
call cdg-display(SpecificEvent);
end;
end;
end;
end

Here is a specific fault model with two symptoms:
* "No alarm messages in diagnostic console" on SYMCURE-APPLICATION-1
® '"Specific fault model is not built" on SYMCURE-APPLICATION-1

“The target object in cdg-send-event API "Event changed proc is not executed after
nm exist” ,/’ ™1 sending event”
APPLICATION-1" /" "SYMCURE-APPLICATION-1"
3 y/
‘_\?“—&_-xh
“There is no event cogesponding 10 Th——. §pi__fmﬁc fault %lel is not built” "Past processing procedure is not executed
A- everd name in he cdy-send-event APT SYMCL JRE-APPLICATION-1- after sending event”
“SYMCURE-APPLICATION-1" "SYMCURE-APPLICATION-1"
J

"Event type for coresponding generic event
sent IS unspeciied
"SYMCURE-APPLICATION-1"

"No alarm messages in diagnostic console”
“SYMCURE-APPLICATION-1"

248

Minimal Candidates

There are three suspected root causes:

* “The target object in cdg-send-event API does not exist” on SYMCURE-
APPLICATION-1.

® “There is no event corresponding to the event name in the cdg-send-event
API” on SYMCURE-APPLICATION-1.

* “Event type for corresponding generic event send is unspecified” on
SYMCURE-APPLICATION-1.

There are seven possible combinations of these three faults; either each by itself
(three possibilities), all of them (one possibility), or any pair (three possibilities).

To determine which of these are minimal candidates, you call the cdgg-get-
minimal-root-causes procedure, which produces the following results:

#530 441:13 pm. Minimal Candidate:

#531 44113 pm. The target object in cdg-
send-event API does not exist, SYMCURE-
APPLICATION-1, suspect, upstream inferred

#3532 44113 pm. Minimal Candidate:

#3533 441113 pm. There I3 no event
corresponding to the event name in the cdg-
send-event API, SYMCURE-APPLICATION-1,
suspect, upstream inferred

It should be clear from the specific fault model that "Event type for corresponding
generic event send is unspecified" on SYMCURE-APPLICATION-1 cannot be a
minimal candidate by itself, because any one of the other two root causes is
required to explain "Specific fault model is not built" on SYMCURE-
APPLICATION-1.

Either of the following root causes can explain all symptoms:

* "The target object in cdg-send-event API does not exist" on SYMCURE-
APPLICATION-1.

* '"There is no event corresponding to the event name in the cdg-send-event
API" on SYMCURE-APPLICATION-1.

Thus, each of these root causes by itself, constitutes a minimal candidate.

249

Subclassing SymCure Events and Actions

250

You can subclass SymCure generic events and actions, as well as their associated
display objects. You might want to subclass these objects to provide your own
icons and class-specific attributes. In some cases, you must provide
implementations of certain methods; in other cases, providing method
implementations is optional.

Generic Event Subclasses

You can create a subclass of any of the following generic events:

* cdg-generic-or-and-event

* cdg-generic-and-and-event

* cdg-generic-or-or-event

* cdg-generic-nm-and-event

* cdg-generic-or-nm-event

* cdg-generic-if-and-event

You can create your own icons and add any class-specific attributes.

When subclassing generic events, you must provide implementations of the
following methods to determine the associated generic and specific event display
objects. In the method signatures described in this section, my-cdg-generic-or-
and-event is an example of a user-defined generic event class.

cdg-get-display-class
(MyGenericEvent: class my-cdg-generic-or-and-event)
-> generic-event-display: symbol

Returns the symbol for the generic event display class.

cdg-get-specific-display-class
(MyGenericEvent: class my-cdg-generic-or-and-event)
-> specific-event-display: symbol

Returns the symbol for the specific event display class.

Generic Event Display Subclasses

You can create a subclass of any of the following generic event display objects.
SymCure uses generic event display objects when displaying relations between
events and external actions, and between events and view nodes.

* cdggrib-generic-or-and-event-display

* cdggrib-generic-and-and-event-display

Subclassing SymCure Events and Actions

* cdggrlb-generic-or-or-event-display

* cdggrib-generic-nm-and-event-display

* cdggrib-generic-or-nm-event-display

* cdggrib-generic-if-and-event-display

You can create your own icons and add any class-specific attributes.

When subclassing generic event displays, you can optionally provide an
implementation of the following method to copy class-specific attributes to the
generic event display object. In the method signature, my-cdggrlb-generic-or-and-
event-display is an example of a user-defined generic event display class.

cdggrib-set-display-attributes
(MyGenericEventDisplay: class my-cdggrlb-generic-or-and-event-display,
MyGenericEvent: class my-cdg-generic-or-and-event)

Within this method, you can use call next method to set the name of the
event and the target class.

Specific Event Display Subclasses

You can create a subclass of any of the following specific event display objects:
* cdggrib-specific-or-and-event-display

* cdggrib-specific-and-and-event-display

* cdggrib-specific-or-or-event-display

* cdggrib-specific-nm-and-event-display

* cdggrib-specific-or-nm-event-display

* cdggrib-specific-if-and-event-display

You can create your own icons and add any class-specific attributes.

When subclassing specific event displays, you can optionally provide
implementations of the following methods to copy class-specific attributes to the
specific event display object or to modify the icon colors and text of its icon. In the
method signatures, my-cdggrlb-specific-or-and-event-display is an example of a
user-defined specific event display class.

cdggrlb-set-display-attributes
(MySpecificEventDisplay: class my-cdggrib-specific-or-and-event-display,
MySpecificEvent: class my-cdg-specific-or-and-event)

Within this method, you can use call next method to set the name of the
event and the target object. If you need access to class-specific attributes
from my-cdg-specific-or-and-event, use the cdg-get-generic-event-for-
specific-event API to access the generic event.

251

252

cdggrlb-set-display-icon
(MySpecificEventDisplay: class my-cdggrib-specific-or-and-event-display,
MySpecificEvent: class my-cdg-specific-or-and-event)

Within this method, you can use call next method only if your icon has the
following regions:

* value-region

* value-text

Generic Action Subclasses

You can create a subclass of any of the following generic actions:

* cdg-generic-action

* cdg-generic-test-action

* cdg-generic-repair-action

You can create your own icons and add any class-specific attributes.

When subclassing generic actions, you must provide implementations of the
following methods to determine the associated generic and specific action display
objects. In the method signatures, my-cdg-generic-action is an example of a user-
defined generic action class.

cdg-get-display-class

(MyGenericAction: class my-cdg-generic-action)
-> generic-action-display: symbol

Returns the symbol for the generic action display class.

cdg-get-specific-display-class
(MyGenericEvent: class my-cdg-generic-action)
-> specific-action-display: symbol

Return the symbol for the specific action display class.

Generic Action Display Subclasses

You can create a subclass of any of the following generic action display objects.
SymCure uses generic action display objects to display relations between external
actions and events.

* cdggrib-generic-action-display
* cdggrib-generic-test-action-display
* cdggrib-generic-repair-action-display

You can create your own icons and add any class-specific attributes.

Subclassing SymCure Events and Actions

When subclassing generic action displays, you can optionally provide an
implementation of the following method to copy any class-specific attributes to
the generic action display object. In the method signatures, my-cdggrlb-action-
display is an example of a user-defined generic action display class.

cdggrib-set-display-attributes
(MyGenericActionDisplay: class my-cdggrib-action-display,
MyGenericAction: class my-cdg-generic-action)

Within this method, you can use call next method to set the name of the
action and the target class.

Specific Action Display Subclasses

You can create a subclass of any of the following specific action display objects:

* cdggrib-specific-action-display

* cdggrib-specific-test-action-display

* cdggrib-specific-repair-action-display

You can create your own icons and add any class-specific attributes.

When subclassing specific action displays, you can optionally provide an
implementation of the following method to copy any class-specific attributes to
the generic event display object, or to modify the icon colors and text of its icon. In

the method signature, my-cdggrib-specific-action-display is an example of a user-
defined specific action display class.

cdggrib-set-display-attributes
(MySpecificActionDisplay: class my-cdggrib-specific-action-display,
MySpecificAction: class my-cdg-specific-action)

Within this method, you can use call next method to set the name of the
event and the target object. If you need access to class-specific attributes
from my-cdg-specific-or-and-event, use the cdg-get-generic-action-for-
specific-action API to access the generic action.

253

Exporting and Importing Fault Models

254

Use these API procedures to export and import specific and generic fault models:

cdg-persist-diagram-folder
(DiagramFolder: class cdg-diagram-folder, Filename: text
-> xml-text: text

Exports DiagramFolder to Filename and returns the XML text of Filename. If
you do not provide the full path for filename, the g2-default-directory is used
for storing the file.

cdg-parse-diagram-folder-xml-document
(Filename: text)

Imports diagram folder from Filename.

cdg-persist-diagnosis-manager
(DiagnosisManager: class cdg-diagnosis-manager, Filename: text)
-> xml-text: text

Archives DiagnosisManager in Filename. If you do not provide the full path
for filename, the g2-default-directory is used for storing the file.

cdg-persist-diagnosis-managers
(Directory: text, FilenamePrefix: text, FilenameSuffix: text)

Stores all diagnosis managers in Directory. The FilenamePrefix and
FilenameSuffix are added before and after the name of each diagnosis
manager to generate unique filenames to avoid overwriting existing files. For
example, the following API stores diagnosis-manager-1 as my-app-diagnosis-
manager-1-275.xml in C: \Temp:

cdg-persist-diagnosis-managers("C:\Temp", "my-app-", "-[the current time]")

cdg-parse-diagnosis-manager-xml-document
(Filename: text)

Imports a diagnosis manager from the XML file specified by Filename. The
API requires the full path to the file. It re-creates the diagnosis manager, and
all associated specific actions and events. It requires the presence of the
domain objects that are the targets of specific events in the XML file and the
underlying generic fault models. Errors during parsing are posted on the
message browser.

You can use the APIs for exporting specific fault models in the audit procedures
specified by config. txt to automatically archive diagnosis managers and their
actions and events.

For instance, to archive a diagnosis manager before it is deleted, create a
cdg-audit-diagnosis-deletion-procedure, call the API cdg-persist-diagnosis-

Exporting and Importing Fault Models

manager in this procedure, and assign the configuration parameter CDG-AUDIT-
DIAGNOSIS-BEFORE-DELETION-PROCEDURE the name of this procedure.

Here is the text of a cdg-audit-diagnosis-deletion-procedure:

foZdemo-diagnosis-deletion-audit-procedure(Diagnosishanager: class cdg-
diagnosis-manager)

begin
call cdg-persist-diagnosis-manager(Diagnosisianager, "[the name of
Diagnosisianager]-[the current time].=ml");

end

Similarly, you can archive a specific fault model each time the status of a
diagnosis manager is updated by using the configuration parameter CDG-AUDIT-
DIAGNOSIS-STATUS-PROCEDURE.

255

Object lookup

cdg-domain-object-lookup
(TargetName: text)
-> DomainObject: item-or-value

Looks up and returns a domain object based on the key TargetName. If no such
object could be found, the symbol none is returned.

TargetName could be either the:
® Symbolic name of a grtl-domain-object
¢ opfo-external-name of an opfo-domain-object

* Key of a grtl-object-with-key

256

#* ®
Z >
o=

= N
Q T
s

n

G H
T U

K
X

I J L
V W Y

M
Z

Symbols

? symbol, IF logic

? symbol, N/M logic,
& symbol, AND logic
| | symbol, OR logic

A

Action Name property, generic external
actions
Action Name property, specific actions
Action Status property, specific actions
actions
See generic external actions and specific
actions
activation procedures
cdg-default-run-test-manually-procedure
showing for generic actions
signature for
activation type, definition of
Add Stubs menu choice, generic actions
Advice property, generic events
alarms
See Also specific events
definition of
displaying browser for
interacting with
showing root causes for
algorithms
for event propagation
for specific event fault model creation
AND logic
& symbol
at the input
at the output
AND-AND generic events
definition of
menu choices for
properties of
API procedures
for charting
for controlling run-time behavior

for debugging
for determining minimal candidates
for diagnosing events
for diagnosis managers
deleting
getting
getting diagnosis information
getting information
for exporting and importing fault models
for fault model folders
for getting event information
for getting external action information
for getting generic actions
for getting generic event information
for predicting events
for root cause episode management
for root causes
for sending action results
for sending events
for setting enabling transitions
for specific actions
getting
getting execution information
getting explanations
getting from diagnosis managers
getting message information
getting specific events
for specific events
getting
getting explanations and evidence
getting information
getting message information
getting state
for updating events
for upgrading message attributes
introduction to

application programmer? interface

See API

applications

creating SymCure
guidelines
for configuring
for testing

257

running
getting started
SymCure
Assert Class menu choice, fault model folders
asserting
"not" relations between generic events
target class of generic events
Associate Events menu choice, external actions
Associate Mutex Events menu choice, generic
events
Associate Not Logic Event menu choice
associating
generic external actions with generic
events
mutually exclusive events

B

blue
causal connection color
specific event color
browsers
displaying
alarms
repair actions
root causes
test actions
using Modules menu
filtering events and actions in
interacting with
alarms and root causes in
external actions in
introduction to
locking
showing event properties
sorting events and actions in
toolbar buttons in
built-in propagation relations

C

Category property, fault model folders
causal connections
configuring
introduction to
using built-in propagation relations
using user-defined propagation
relations
configuring propagation delays
showing detailed explanations

258

causal directed graphs
definition of
understanding
Causal Model toolbar button
definition of
using
causal models
See Also generic fault models, specific fault
models, causal models, and causal
connections
definition of
introduction to
showing
through browsers
through specific event models
cdg module
cdg-audit-alarm-procedure initialization
parameter
cdg-audit-diagnosis-before-deletion-procedure
initialization parameter
cdg-audit-diagnosis-status-procedure
initialization parameter
cdg-audit-incoming-event-procedure
initialization parameter
cdg-audit-root-cause-procedure initialization
parameter
cdg-collect-generic-actions-for-class
cdg-collect-generic-actions-for-event
cdg-collect-generic-events-for-action
cdg-collect-generic-events-for-class
cdg-collect-generic-events-for-view
cdg-collect-mutually-exclusive-events
cdg-compute-priority-procedure initialization
parameter
cdg-connected-downstream propagation
relation
cdg-connected-to propagation relation
cdg-connected-upstream propagation relation
cdg-contained-in propagation relation
cdg-default-run-test-manually-procedure built-
in activation procedure
cdg-default-target-priority initialization
parameter
cdg-delete-diagnosis-manager
cdg-diagnose-event
cdg-diagnose-event-with-post-processing
cdg-diagnosis-deletion-interval initialization
parameter
cdg-diagnosis-deletion-monitor-interval
initialization parameter

cdg-display-animated-specific-fault-model
initialization parameter
cdg-domain-object-lookup

cdg-downstream-limit initialization parameter

cdg-enable-fault-model-debugging
cdg-execute-action
cdg-get-action-history
cdg-get-action-result
cdg-get-alarms-for-diagnosis-manager
cdg-get-alarms-sequence
cdg-get-associated-events
cdg-get-build-status
cdg-get-candidate-tests
cdg-get-candidate-tests-for-diagnosis-
manager
cdg-get-cost
cdg-get-diagnosis-completion-status
cdg-get-diagnosis-explanation-status
cdg-get-diagnosis-manager
cdg-get-diagnosis-progress-status
cdg-get-diagnosis-start-time
cdg-get-diagram-folder-errors
cdg-get-diagram-folder-warnings
cdg-get-display-class
cdg-get-downstream-external-actions
cdg-get-downstream-tests
cdg-get-effects-of-event
cdg-get-event-changed-procedure
cdg-get-event-description
cdg-get-event-history
cdg-get-event-name
cdg-get-event-sender
cdg-get-event-status
cdg-get-event-status-at-time
cdg-get-event-target
cdg-get-event-type
cdg-get-event-unchanged-procedure
cdg-get-event-value
cdg-get-event-value-at-time
cdg-get-evidence-for-root-cause
cdg-get-execution-status
cdg-get-external-actions
cdg-get-external-actions-sequence
cdg-get-external-mitigation-actions
cdg-get-external-recovery-actions
cdg-get-external-repair-actions
cdg-get-external-test-actions
cdg-get-fraction-of-false-causes
cdg-get-fraction-of-false-effects
cdg-get-fraction-of-suspect-causes
cdg-get-fraction-of-suspect-effects

cdg-get-fraction-of-true-causes
cdg-get-fraction-of-true-effects
cdg-get-fraction-of-unknown-causes
cdg-get-fraction-of-unknown-effects
cdg-get-generic-action
cdg-get-generic-action-for-specific-action
cdg-get-generic-event
cdg-get-generic-event-for-specific-event
cdg-get-incoming-events-sequence
cdg-get-known-effects-for-diagnosis-manager
cdg-get-known-explanations
cdg-get-known-root-causes-for-diagnosis-
manager
cdg-get-known-symptoms-for-diagnosis-
manager
cdg-get-known-tests-for-diagnosis-manager
cdg-get-minimal-root-causes
cdg-get-number-of-unprocessed-incoming-
events
cdg-get-plausible-explanations
cdg-get-plausible-root-causes-of-event
cdg-get-previous-event-status
cdg-get-previous-event-value
cdg-get-previous-state-of-event-at-time
cdg-get-root-cause-episodes
cdg-get-root-cause-events-sequence
cdg-get-root-causes-of-diagnosis-manager
cdg-get-root-causes-of-event
cdg-get-specific-action
cdg-get-specific-action-message-advice
cdg-get-specific-action-message-detail
cdg-get-specific-action-message-text
cdg-get-specific-actions
cdg-get-specific-display-class
cdg-get-specific-event
cdg-get-specific-event-for-generic-event
cdg-get-specific-events
cdg-get-state-of-event
cdg-get-state-of-event-at-time
cdg-get-suspect-root-causes-for-diagnosis-
manager
cdg-get-tag
cdg-get-targetted-events
cdg-get-transitions
cdg-get-underlying-root-causes
cdg-get-user-defined-data
cdggrlb-set-display-attributes
cdggrlb-set-display-icon
cdg-horizontal-distance initialization
parameter

259

cdg-incremental-diagnosis-monitor-interval
initialization parameter

cdg-is-diagnostic-processing-active

cdg-is-online

cdg-is-requested

cdg-modguide.kb example KB

cdg-parse-diagnosis-manager-xml-document

cdg-parse-diagram-folder-xml-document

cdg-pause

cdg-persist-diagnosis-manager

cdg-persist-diagnosis-managers

cdg-persist-diagram-folder

cdg-predict-event

cdg-predict-event-with-post-processing

cdg-recreate-events-and-actions-sequence

cdg-recreate-events-sequence

cdg-reset-execution-status

cdg-resume

cdg-send-action-result

cdg-send-event

cdg-send-event-with-post-processing

cdg-set-enabling-transitions

cdg-set-tag

cdg-set-user-defined-data

cdg-start-root-cause-episode-management

cdg-stop-root-cause-episode-management

cdg-take-offline

cdg-take-online

cdg-terminate-diagnosis-early initialization
parameter

cdg-the-container-of propagation relation

cdg-the-embedded-object-of propagation
relation

cdg-the-embedding-object-of propagation
relation

cdg-unchanged-events-filter initialization
parameter

cdg-unchanged-events-monitor-interval
initialization parameter

cdg-unchanged-events-monitor-name
initialization parameter

cdg-update-event-value

cdg-upgrade-message-attributes

cdg-upgrade-message-attributes-for-folder

cdg-upstream-limit initialization parameter

cdg-vertical-distance initialization parameter

cdg-virtual-relation propagation relation
charting

API procedures for
chattering events

detecting

260

initialization parameters for
Chronology toolbar button
using
chronology, event
re-creating programmatically
saving
showing interactively
class definitions, guidelines for creating
colors
of causal connections
of specific event
Compilation Status property, fault model
folders
Compile Folder menu choice
compiling generic fault models
concepts, SymCure
Configure Filters toolbar button
definition of
using
Configure Messages menu choice
generic actions
generic events
configuring
"not" relations between generic events
causal connections
introduction to
using built-in propagation relations
using user-defined propagation
relations
debugging
generic event views
generic events
barriers and description
basic
general properties
operator messages
user-defined procedures
generic external actions
operator messages
properties
generic fault model folders
IF-AND events
initialization parameters
default browsers
for debugging
for diagnosis timing
for displaying specific events
for event unchanged procedures
for priority
for specific event model creation
for SymCure applications

for user-defined methods
getting started with
guidelines for
introduction to
mutually exclusive events
N/M-AND events
N/M-N/M events
OR-AND, AND-AND, and OR-OR events
OR-N/M events
connecting generic events
Connection Class property, causal connections
Connection Direction property, causal
connections
connections, causal
configuring
introduction to
using built-in propagation relations
using user-defined propagation
relations
Connectivity relation type
Containment Relation property, causal
connections
Containment relation type
context-dependent propagation, definition of
Convert Input Logic to AND menu choice
IF-AND generic events
N/M-AND generic events
OR-AND generic events
Convert Input Logic to IF menu choice
AND-AND generic events
OR-AND generic events
Convert Input Logic to NM menu choice
AND-AND generic events
IF-AND generic events
OR-AND generic events
Convert Input Logic to OR menu choice
AND-AND generic events
IF-AND generic events
N/M-AND generic events
Convert Output Logic to AND menu choice
OR-N/M generic events
OR-OR generic events
Convert Output Logic to NM menu choice
OR-AND generic events
OR-OR generic events
Convert Output Logic to OR menu choice
OR-AND generic events
OR-N/M generic events
correlation, definition of
Cost property
generic external actions

specific actions
creating
class definitions
domain maps
fault model folder hierarchies
fault model folders
generic action display subclasses
generic action subclasses
generic event display subclasses
generic event subclasses
generic event views
generic events
generic external actions
how to
introduction to
generic fault models
folders for
getting started
guidelines for
introduction to
relations
specific action display subclasses
specific event display subclasses
SymCure applications
customer support services

D

debugger
control panel
debug display workspace
Debug Model buttons
debugging modes

debugging with sequential and parallel

modes

enabling

Event Log button

event navigation table

initialization parameters for

notes

parallel mode

sequential mode

status indicators

View Event buttons
Delete All Diagnoses button
deleting diagnosis managers
demos, running
Detail property, generic events
Detailed Explanation button

using

261

Detailed Explanation menu choice
causal connections
generic actions
generic event views
generic events
specific events
Detailed Explanation toolbar button
definition of
diagnosing events, API procedures for
diagnosis managers
configuring initialization parameters for
event unchanged procedures
priority
specific fault model creation
specific fault model display
timing
definition of
deleting
programmatically
using toolbar button
getting
getting diagnosis information for
getting information for
performing a topological sort
re-creating event and action sequences for
showing
individual diagnostic console
browsers for
properties of
diagnosis, definition of
Diagnostic Console menu choice
diagnostic reasoning, SymCure
displaying
alarms browser
browsers
repair actions browser
root causes browser
test actions browser
domain maps
creating
class definitions and relations for
guidelines for
introduction to
obtaining external data
definition of
downstream barrier, generic events
downstream inferred
definition of
event status
downstream propagation
definition of

262

terms and concepts

E

effects, definition of
Enable Fault Model menu choice
Enable Root Cause Episode Management
menu choice
Enable Tuning menu choice
enabling transitions
configuring
interactively
programmatically
definition of
types of
End Time property, specific actions
errors, for generic fault models
Estimated Duration property, generic external
actions
Estimated Duration property, specific actions
event changed procedure, generic events
Event Name property
generic event views
generic events
specific events
event propagation
algorithm
definition of
introduction to
event state, definition of
Event Status property, specific events
event type, generic events
event unchanged procedure
configuring
for generic events
initialization parameters for
Event Value property, specific events
events
See Also alarms, root causes, generic
events, generic event views, and specific
events
status of
terms and concepts
values of
Events toolbar button
definition of
using
evidence
definition of
getting for specific events

executing
manual repair actions
from specific actions
from test or repair action browser
manual tests
from specific actions
from test or repair action browser
Explanation toolbar button
definition of
using
explanations
getting for specific events
of external actions
Export menu choice
generic fault models
specific fault models
exporting and importing
API procedures for
generic fault models
specific fault models
external actions
See Also test actions, repair actions, generic
actions, generic external actions, and
specific actions
definition of
executing manual test and repair
from specific actions
from test or repair action browser
explaining
getting information for
interacting with
scheduling

F

False
menu choice, specific events
toolbar button
definition of
using
false
definition of
event value
fault management, SymCure
fault model folders
API procedures for
asserting target class of
compiling
creating
creating for generic fault models

creating hierarchies of
definition of
of generic fault models
fault models
See generic fault models and specific fault
models
files
cdg-modguide. kb
symcure.kb
filtering specific events and actions
Filters toolbar button
definition of
using
Folder Name property, fault model folders
folders
See fault model folders
fraction of causes and effects, APIs for getting
Fraction property
N/M-AND generic events
OR-N/M generic events

G

G2 Relation Name property, causal
connections
Generate Message When Action Is property,
generic actions
Generate Value Dependent Messages
property, generic events
generic actions
configuring operator messages for
creating
subclasses for displays of
subclasses of
running tests manually
searching for
showing
detailed explanations for
for specific actions
generic event views
definition of
going to generic events from
of generic fault models
showing detailed explanations
using
in the same diagram
to bridge two diagrams
generic events
See Also generic event views and generic
fault models
AND-AND

263

menu choices for

properties of
asserting "not" relations between
asserting the target class
associating mutually exclusive
associating with generic external actions
configuring

general properties of

IF-AND events

N/M-AND events

N/M-N/M events

operator messages for

OR-AND, AND-AND, and OR-OR

events
OR-N/M events

upstream and downstream barriers for

user-defined procedures for
connecting
converting event logic for
creating
subclasses for displays of
subclasses of
generic fault models
getting information for
going to generic event-detection diagrams
going to, from event views
icon descriptions
IF-AND
menu choices for
properties of
N/M-AND
menu choices for
properties of
N/M-N/M properties
OR-AND
menu choices for
properties of
OR-N/M
menu choices for
properties of
OR-OR
menu choices for
properties of
searching for
showing
detailed explanations for
for specific events
generic external actions for
SymCure modeling language

generic external actions

See Also external actions

264

associating with generic events
configuring
creating
how to
introduction to
creating activation procedures for
example
getting
icon for
scheduling
showing activation procedure for
showing related generic events for

types of

generic fault model folders

See fault model folders

generic fault models

See Also fault model folders
associating
generic external actions with generic
events
mutually exclusive events
compiling
configuring causal connections
connecting generic events
corresponding with specific fault models
creating
fault model folders for
generic event views in
generic events
generic external actions
getting started with
introduction to
definition of
description of
diagnostic knowledge of
elements of
event views of
exporting and importing
fault model folders of
generic events of
guidelines for creating
introduction to
repair actions
tests
introduction to
learning from specific events
prerequisites for
repair actions of
searching for
terms and concepts
test actions of

viewing
errors
warnings
getting
action execution information
diagnosis information
diagnosis manager information
diagnosis managers
event information
explanations and evidence of specific
events
explanations for specific actions
external action information
generic actions
generic event information
message information
for specific actions
for specific events
root causes
specific actions
specific actions of diagnosis managers
specific actions of specific events
specific event information
specific event state
specific events
Go to Activation Procedure menu choice
Go to Event Changed Procedure menu choice
Go to Event Unchanged Procedure menu
choice
Go to Generic Action menu choice
Go To Generic Event menu choice
Go to Generic Event menu choice
Go To Occurs At Procedure menu choice
Go to State Dependent Procedure menu choice
going to
See Also showing
generic events, from event views
green
causal connection color
specific event color

H

hierarchies, creating fault model folder

IF logic, ? symbol
IF-AND generic events
definition of

menu choices for
properties of

Import Generic Fault Model menu choice
Import Specific Fault Model menu choice

Independent of Effects property
initialization parameters
chattering events
configuring
getting started with
introduction to
debugging
default browsers
diagnosis timing
displaying specific fault models
event unchanged procedures
for specific fault model creation
priority
root cause episode management
specific action scheduling
user-defined methods
Input Fraction property
interacting with
alarms and root causes
external actions
specific events
specific fault models

K

KBs

cdg-modguide.kb
symcure.kb

L

Last Compilation Time property
Last Specified Timestamp property
Last Specified Value property
Lock View toolbar button
definition of
using
locking browsers

manual tests and repair actions
executing
from specific actions

from test or repair action browser

menu choices

265

for AND-AND generic events
for converting generic event logic
for IF-AND generic events
for N/M-AND generic events
for OR-AND generic events
for OR-N/M generic events
for OR-OR generic events
Message property, generic events
messages
configuring
for generic actions
for generic events
when event occurs
upgrading attributes for specific events
viewing in browsers
methods, user-defined
mitigation actions
definition of
icon for
modeling language
AND-AND generic event
IF-AND generic event
introduction to SymCure
N/M-AND generic event
N/M-N/M generic event
OR-AND generic event
OR-N/M generic event
OR-OR generic event
mutually exclusive events
associating
definition of
event status of
terms and concepts

N
N/M logic, symbol
N/M-AND generic events
definition of
menu choices for
properties of
N/M-N/M generic events
definition of
properties of

(0

Occurred At property, specific events
occurs at procedure, configuring for generic
events

266

OR logic
| | symbol
at the input
at the output
OR-AND generic events
definition of
menu choices for
properties of
OR-N/M generic events
definition of
menu choices for
properties of
OR-OR generic events
definition of
menu choices for
properties of
Output Fraction property
Override Specified Event Messages property

P

palettes, SymCure
parallel mode
in debugger
using the debugger in
post-processing procedures, signature of
predicting events
priority
computing for specific events
configuring for generic events
configuring for operator messages
initialization parameters for
Priority property, generic events
Procedure property, generic external actions
procedures, post-processing
process maps
See domain maps
propagation
See event propagation
propagation relations
built-in
configuring causal connections
using built-in
using user-defined
definition of
properties
of causal connections
of fault model folders
of generic actions
messages

of generic AND-AND events
of generic event views
of generic events

barriers

configuring

general

messages

user-defined procedures
of generic external actions
of generic IF-AND events
of generic N/M-AND events
of generic N/M-AND generic events
of generic N/M-N/M events
of generic OR-AND events
of generic OR-N/M events
of generic OR-OR events
of specific actions
of specific events

general

Properties toolbar button

definition of
using

R

recovery actions
definition of
icon for
red, specific event color
refreshing specific fault models
relations
built-in propagation
configuring propagation
using built-in
using user-defined
creating

Reliability property, generic external actions

repair actions
See Also external actions
definition of
displaying browser for
executing manual
from specific actions

from test or repair action browser

icon for

of generic fault models
Result property, specific actions
root cause episode management

API procedures for

displaying

episode manager
root cause episodes
enabling
initialization parameters for
motivation
saving root cause episodes
using
root causes
See Also specific events
definition of
determining minimal candidates for
displaying browser for
getting
interacting with
showing for alarms
terms and concepts
Root Causes toolbar button
definition of
using
Run Action menu choice, specific action
Run toolbar button
definition of
using
running
SymCure applications
getting started with
introduction to
SymCure demos

S

salmon, specific event color
Save toolbar button
using
saving event chronology
scheduling external actions
self propagation relation
Self relation type
Send Fault Model Event menu choice
sending events
API procedures for
interactively
introduction to
sequences, re-creating event and action
sequential mode
in debugger
using the debugger in
setting

enabling transitions for specific actions

event values

267

programmatically
through browsers
through specific fault models
Show Causal Model menu choice, specific
events
Show Details menu choice, fault model folders
Show Event Detection Diagrams menu choice
generic actions
generic events
Show Generic Action toolbar button
Show Generic Event toolbar button
Show Generic Events menu choice
generic actions
generic event views
Show History menu choice, specific events
Show Label property
Show Related Objects menu choice, generic
events
Show Root Cause Episodes menu choice
Show Summary menu choice
Show Target menu choice
showing
causal models
through browsers
through specific event models
event chronology
event summaries
through browsers
through specific event models
root causes for alarms
specific action properties
specific event histories
specific event properties
specific event target
through browsers
through specific event models
underlying events for specific actions
simulating specific events
sorting
specific actions
specific events
specific actions
creating subclasses for displays
definition of
filtering
getting
execution information for
explanations for
from diagnosis managers
message information
of specific events

268

programmatically
interacting with
interacting with, through browsers
properties of
re-creating sequences for diagnosis
managers
sending results
setting enabling transitions
showing
from generic actions
properties of
underlying events for
sorting
specific fault models
See Also causal models
specific events
associating user-defined attributes with
colors of
creating subclasses of
definition of
diagnosing programmatically
displaying browsers for interacting with
filtering
getting
information for
message information
programmatically
specific actions from
state of
interacting with, in browsers
learning generic model from
predicting programmatically
properties of
general
re-creating sequences for diagnosis
managers
saving event chronology
sending
interactively
programmatically
user-defined data
setting values for
through browsers
through specific event model
showing
chronology of
event history
for specific actions
from generic events
root causes for alarms
showing causal models for

through browsers

through specific fault models
showing detailed explanations
showing properties of
showing summaries for

through browsers

through specific event models
showing target of

though browsers

through specific event models
simulating
sorting
updating programmatically
upgrading message attributes

specific fault models

See Also causal models
configuring

display of

size of
definition of
displaying
event propagation algorithm for
example
exporting and importing

generic fault models corresponding with

initialization parameters for
creation of
display of
interacting with
through browsers
through specific fault models
refreshing
showing for alarms and root causes
specific events of
terms and concepts
specified
definition of
event status
Start Time property, specific actions

State Dependent Procedure property, IF-AND

generic events
state, event
status, event
subclassing events and actions
summaries, showing for specific events
Summary toolbar button
using
suspect
definition of
event value
root causes

SymCure

API procedures

application architecture

benefits

browsers

causal models

creating applications
getting started with
guidelines for

definition of

demos

description of

diagnostic reasoning

event propagation

fault management

features

generic fault models

getting started with

guidelines for building applications
configuring applications
creating domain maps
creating generic fault models
debugging generic fault models
introduction to
testing

initialization parameters

introduction to

modeling language

palettes

prerequisites for

running applications
getting started with
introduction to

setting up applications

specific fault models

terms and concepts

symcure.kb file

T

Tag property, specific actions
Take Online toolbar button
tan, specific event color
target class
configuring
by asserting target class
for generic events
showing for specific events
though browsers
through specific event models

269

Target Class property
fault model folders
generic event views
generic external actions
Target Object property
specific actions
specific events
Target toolbar button
definition of
using
terms, SymCure
test actions
See Also external actions
definition of
displaying browser for
executing manual
from specific actions
from test or repair action browser
icon for
of generic fault models
running manually
terms and concepts
tests
See test actions
text substitutions, in messages
Timestamp property, specific events
toolbar buttons in browsers
True
menu choice, specific events
toolbar button
using
true
definition of
event value
Tune Event menu choice, specific events
tuning

Type of Relation property, causal connections

Type property, generic external actions

U

unknown

definition of

event value
Update Generic Event menu choice
updating events
upstream barrier, generic events
upstream inferred

definition of

specific events

270

upstream propagation
definition of
terms and concepts
user-defined attributes
APIs for getting and setting
associating with specific events
user-defined data, sending
user-defined methods
See user-defined procedures
user-defined procedures
configuring
for generic events
initialization parameters for

\'

values, event
View Errors menu choice
View Warnings menu choice
views
See generic event views
Virtual Relation Name property
Virtual Relation Procedure property

w

warnings, for generic fault models

X

XML
exporting and importing
generic fault models
specific fault models

Y

yellow, specific event color
yellow-green, specific event color

	Contents
	Preface
	About this Guide
	Audience
	Conventions
	Related Documentation
	Customer Support Services

	Introduction to SymCure
	What is SymCure?
	Fault Management
	Features
	Benefits
	Terms and Concepts
	Event Propagation
	Causal Models
	Guidelines for Building a SymCure Application
	Prerequisite Information
	Creating Domain Maps
	Creating Class Definitions and Relations
	Creating the Domain Map
	Obtaining External Data

	Creating Generic Fault Models
	Tests
	Repair Actions

	Debugging and Analyzing Generic Fault Models
	Configuring the SymCure Application
	Testing the SymCure Application

	Architecture of a SymCure Application

	Getting Started
	Introduction
	Creating a SymCure Application
	Setting up the Application
	Creating Generic Fault Models
	Running the Application
	Configuring Initialization Parameters
	Running the SymCure Demos

	SymCure Modeling Language
	Introduction
	Introduction to SymCure Event Propagation
	SymCure Event Logic

	Generic Events
	OR-AND Event
	Upstream Propagation
	Downstream Propagation

	AND-AND Event
	Upstream Propagation
	Downstream Propagation

	N/M-AND Event
	Upstream Propagation
	Downstream Propagation

	IF-AND Event
	OR-N/M Event
	Upstream Propagation
	Downstream Propagation

	N/M-N/M Event
	OR-OR Event
	Upstream Propagation
	Comparing OR-N/M and OR-OR Events

	Creating Generic Fault Models
	Introduction
	Elements of a Generic Fault Model
	Prerequisites
	Diagnostic Knowledge
	Generic Events
	Fault Model Folders and Generic Event Views
	Generic Tests and Repair Actions

	Creating Fault Model Folders
	Creating and Configuring Generic Fault Model Folders
	Creating a Fault Model Hierarchy
	Asserting the Target Class
	Searching for Generic Fault Models

	Creating Generic Events
	Creating and Connecting Generic Events
	Configuring General Properties of Generic Events
	Configuring User-Defined Procedures for Generic Events
	Controlling the Size of the Specific Fault Model
	Configuring Operator Messages for Generic Events
	Describing When an Event Occurs
	Configuring Generic OR-AND, AND-AND, and OR-OR Events
	Configuring Generic N/M-AND Events
	Configuring Generic IF-AND Events
	Configuring Generic OR-N/M Events
	Configuring Generic N/M-N/M Events
	Converting Generic Event Logic
	Generic OR-AND Event Menu Choices
	Generic AND-AND Event Menu Choices
	Generic OR-OR Event Menu Choices
	Generic N/M-AND Event Menu Choices
	Generic OR-N/M Event Menu Choices
	Generic IF-AND Event Menu Choices

	Going to Generic Event-Detection Diagrams
	Showing Detailed Explanations of Generic Events
	Searching for Generic Events

	Creating Generic Event Views
	Using Generic Event Views to Bridge Events in Separate Fault Model Folders
	Using Generic Event Views in the Same Fault Model Folder
	Going to the Associated Generic Event
	Showing Detailed Explanations of Generic Event Views

	Configuring Causal Connections
	Built-In Propagation Relations
	Configuring Causal Connections by using a Built-In Propagation Relation
	Example: Relation Type is Self
	Example: Relation Type is Containment

	Configuring Causal Connections by using a User-Defined Propagation Relation
	Configuring Virtual Propagation Relations
	Configuring Propagation Delays
	Configuring a Propagation Delay
	Example: Specifying Generic Propagation Delays
	Example: Calculating Inferred Time of Occurrence During Propagation
	Limitations

	Showing Detailed Explanations of Causal Connections

	Creating Generic External Actions
	Creating the Activation Procedure
	Running Tests Manually
	Scheduling External Actions
	Types of Enabling Transitions
	Types of External Actions
	Creating and Configuring Generic External Actions
	Creating an External Action and Configuring its Properties
	Associating Generic External Actions with Generic Events
	Showing Related Generic Actions and Generic Events
	Showing the Activation Procedure

	Configuring Operator Messages for Generic Actions
	Customizing the Scheduling of External Actions
	Example: Generic Repair Action
	Going to Generic Event-Detection Diagrams
	Showing Detailed Explanations of Generic Actions
	Searching for Generic Actions

	Associating Mutually Exclusive Events
	Asserting NOT Relations between Generic Events
	Compiling a Generic Fault Model
	Compiling a Fault Model Folder
	Viewing Errors
	Viewing Warnings

	Exporting and Importing Generic Fault Models

	Running SymCure Applications
	Introduction
	SymCure’s Diagnostic Reasoning
	Specific Events and Actions
	Specific Fault Models
	Diagnosis Managers

	Simulating Specific Events
	Example: Simulating Events
	Specific Fault Model
	Corresponding Generic Fault Model

	Event Propagation Algorithm

	Interacting with Specific Events and Actions through Diagnostic Console Browsers
	Displaying the Browsers
	Alarms Browser
	Root Causes Browser
	Test Actions Browser
	Repair Actions Browser

	Toolbar Buttons
	Showing the Event Target
	Showing Event Properties
	Sorting Events and Actions
	Locking the Browser
	Filtering Events and Actions
	Interacting with Alarms and Root Causes
	Showing Root Causes for Alarms
	Showing Causal Models
	Showing the Event Summary
	Showing the Event Chronology
	Saving the Event Chronology
	Setting the Event Value

	Interacting with External Actions
	Showing Underlying Events
	Explaining Actions
	Executing Manual Tests and Repair Actions

	Interacting with Specific Fault Models
	Showing Specific Fault Models
	Showing Specific Event Properties
	Associating User-Defined Attributes with Specific Events
	Showing Detailed Explanations of Specific Events
	Setting a Specific Event Value
	Showing the Generic Event for a Specific Event
	Showing the Specific Event Target
	Showing the Event Summary
	Showing the Causal Model
	Showing the Specific Event History
	Showing Specific Action Properties
	Showing the Generic Action for a Specific Action
	Running a Specific Action
	Showing the Properties of the Diagnosis Manager
	Showing Diagnostic Console Browsers for Individual Diagnosis Managers
	Refreshing Specific Fault Models
	Deleting All Diagnoses

	Learning Generic Models from Specific Events
	Detecting Chattering Events
	Exporting and Importing Specific Fault Models

	Debugging SymCure Fault Models
	Introduction
	Enabling Debugging
	Debugging Modes
	Accessing the Debugger
	The Control Panel
	Event Navigation Table
	Start At
	Status Indicators
	Debug Model Buttons
	Event Log Button
	View Event Button
	View Graph Button
	Graph Options Button
	Close Button

	The Debug Display Workspace

	Debugging with Sequential and Parallel Mode
	Sequential Mode
	Parallel Mode

	Notes

	Root Cause Episode Management
	Introduction
	Motivation
	Diagnostic Introspection
	Effective Repair and Maintenance
	Episodes are a Critical Requirement for Service Management

	SymCure Root Cause Episode Management
	Definitions
	Enabling Root Cause Episode Management
	Displaying the Root Cause Episode Manager
	Displaying Root Cause Episodes
	Charting Root Cause Duration and Frequency Distributions
	Saving Root Cause Episodes

	Configuring SymCure Applications
	Introduction
	Loading Fault Model Configuration Parameters
	Specific Fault Model Creation
	Diagnosis Timing
	Event Unchanged Procedure
	Priority
	Specific Action Scheduling
	Specific Fault Model Display
	Debugging
	Chattering Events
	Root Cause Episode Management
	User-Defined Methods
	Default Browsers
	Archiving

	Application Programmer’s Interface
	Introduction
	Sending Events
	Sending Events
	Diagnosing Events
	Predicting Events
	Updating Events
	Sending User-Defined Data

	Root Causes
	Diagnosis Managers
	Getting and Deleting the Diagnosis Manager
	Getting Specific Events
	Getting Specific Actions
	Getting Diagnosis Information
	Re-Creating Event and Action Sequences for a Diagnosis Manager
	Performing a Topological Sort

	Generic and Specific Events
	Getting Generic Event Information
	Getting Specific Event Information
	Getting Specific Event Message Information
	Getting the State of Specific Events
	Getting Fraction of Causes and Effects
	Getting and Setting User-Defined Data
	Getting Explanations and Evidence for Specific Events
	Getting Specific Actions of Specific Events
	Upgrading Message Attributes

	External Actions
	Getting Generic Actions
	Getting Specific Actions and Information
	Getting Action Execution Information
	Getting Specific Action Message Information
	Getting Explanations for Actions
	Setting Enabling Transitions
	Sending Action Results

	Fault Model Folders
	Debugging
	Root Cause Episode Management
	Charting
	Run-Time Behavior
	Minimal Candidates
	Subclassing SymCure Events and Actions
	Generic Event Subclasses
	Generic Event Display Subclasses
	Specific Event Display Subclasses
	Generic Action Subclasses
	Generic Action Display Subclasses
	Specific Action Display Subclasses

	Exporting and Importing Fault Models
	Object lookup

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y

