
Customizing ReThink

User’s Guide
Version 5.1 Rev. 1

Customizing ReThink User’s Guide, Version 5.1 Rev. 1

February 2015

The information in this publication is subject to change without notice and does not represent a
commitment by Gensym Corporation.

Although this software has been extensively tested, Gensym cannot guarantee error-free
performance in all applications. Accordingly, use of the software is at the customer’s sole risk.

Copyright (c) 1985-2015 Gensym Corporation

All rights reserved. No part of this document may be reproduced, stored in a retrieval system,
translated, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of Gensym Corporation.

Gensym®, G2®, Optegrity®, and ReThink® are registered trademarks of Gensym Corporation.

NeurOn-Line™, Dynamic Scheduling™ G2 Real-Time Expert System™, G2 ActiveXLink™, G2
BeanBuilder™, G2 CORBALink™, G2 Diagnostic Assistant™, G2 Gateway™, G2 GUIDE™,
G2GL™, G2 JavaLink™, G2 ProTools™, GDA™, GFI™, GSI™, ICP™, Integrity™, and SymCure™
are trademarks of Gensym Corporation.

Telewindows is a trademark or registered trademark of Microsoft Corporation in the United States
and/or other countries. Telewindows is used by Gensym Corporation under license from owner.

This software is based in part on the work of the Independent JPEG Group.

Copyright (c) 1998-2002 Daniel Veillard. All Rights Reserved.

SCOR® is a registered trademark of PRTM.

License for Scintilla and SciTE, Copyright 1998-2003 by Neil Hodgson, All Rights Reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/).

All other products or services mentioned in this document are identified by the trademarks or
service marks of their respective companies or organizations, and Gensym Corporation disclaims
any responsibility for specifying which marks are owned by which companies or organizations.

Gensym Corporation
52 Second Avenue
Burlington, MA 01803 USA
Telephone: (781) 265-7100
Fax: (781) 265-7101 Part Number: DOC076-510

Contents Summary
Preface xiii

Part I Introduction 1

Chapter 1 Introduction to Customization 3

Chapter 2 How to Customize ReThink 7

Part II Customizing ReThink Objects 81

Chapter 3 Customizing Blocks 83

Chapter 4 Customizing Instruments 119

Chapter 5 Customizing Resources and Work Objects 129

Chapter 6 Customizing the User Interface 147

Chapter 7 Customizing Menus 153

Part III ReThink Internals 167

Chapter 8 Block Processing 169

Chapter 9 Application Programmer’s Interface 181

Chapter 10 Relations 229

Glossary 237

Index 241
iii

iv

Contents
Preface xiii

About this Guide xiii

Audience xiv

A Note About the API xiv

Conventions xv

Related Documentation xv

Customer Support Services xvii

Part I Introduction 1

Chapter 1 Introduction to Customization 3

Introduction 3

What You Can Customize 4

Customizing the Behavior of Objects 5

Required G2 Knowledge 6

Chapter 2 How to Customize ReThink 7

Introduction 8

Switching User Modes 8

Making Customizations in the Module Hierarchy 9
Understanding the Module Hierarchy 9
Creating a Customization Workspace 14
Customizing System Tables 15

Working with Modules 16
Showing the Module Hierarchy 17
Rules of Consistent Modularization 18
Checking for Consistent Modularization 18
Merging Modules 19
Renaming Modules 20
Creating Modules 21
v

Creating Top-Level Workspaces for Modules 22
Saving Individual Modules 22
Deleting Modules 23
Assigning Top-Level Workspaces to Different Modules 24
Merging Multiple Models into a Single Model 26
Saving ReThink Definitions in the Appropriate Module 27

Working with Snapshot Files 29
Saving a Model in a Snapshot File 29
Warmbooting from a Snapshot 29

Common Customization Features 30
Customizing Blocks 30
Customizing Paths 32
Customizing Instruments 33
Customizing Work Objects and Resources 34
Customizing Resource Managers 36
Customizing Surrogates 37
Customizing Scenarios 38

Creating Subclasses of ReThink Objects 38
Creating a Subclass 38
Configuring the Superior Class 39

Adding Attributes to the Class 42

Customizing the Default Behavior of Blocks or Instruments 42
Customizing the Stop Method 43
Customizing the Start Method 46

Customizing Procedures 48
Editing Procedure Names 48
Customizing Reset, Delete, and Update Procedures 53
Customizing Animation, Duration, and Cost Procedures 56
Customizing Specific Procedures 56

Editing Subobjects 56
Techniques for Editing Subobjects 57
Displaying Default Subobject Classes 57
Displaying Default Subobject Procedures 60
Editing Color Attributes of Animation Subobjects 62
Creating New Attributes for Subobjects 63
Customizing Subobjects of Work Objects 66
Customizing Animation 68

Configuring User Preferences 69
Configuring Filters 73
Configuring Message Details 75

Configuring the Excel Macros for Formatting the Report 76
vi

Part II Customizing ReThink Objects 81

Chapter 3 Customizing Blocks 83

Introduction 83

Adding Attributes to a Custom Block 84

Customizing the Default Behavior of a Block 85

Customizing How Blocks Animate 88
Editing the Default Colors of a Block 89
Creating Custom Icon Regions 91

Customizing the Duration of a Block 94
Displaying the Block Duration Subtables Workspace 95
Creating a Custom Block Duration Procedure 96

Customizing the Paths of a Block 100

Customizing Specific Blocks 103
Customizing Specific Block Procedures 104
Customizing the Batch Block 106
Customizing the Branch Block 107
Customizing the Copy Block 108
Customizing the Reconcile Block 108
Customizing the Remove Block 109
Customizing the Retrieve Block 110
Customizing the Source Block 111
Customizing the Store Block 112
Customizing the Yield Block 114

Common Customization Attributes of Blocks 115
Common Attributes of Animation Subtable 116
Common Attributes of Duration Subtable 117
Common Attributes of Cost Subtable 117

Chapter 4 Customizing Instruments 119

Introduction 119

Creating a Custom Feed 120

Creating a Custom Probe 123

Common Customization Attributes of Instruments 126
Common Attributes of Animation Subtable 127
Common Attributes of Instrument Paths 127

Customizing Specific Instruments 127
Customizing the Change Feed 128
Customizing the Copy Attributes Feed and Probe 128
vii

Chapter 5 Customizing Resources and Work Objects 129

Introduction 129

Customizing Resource Animation 130

Customizing How Resource Managers Allocate Resources 135
Choosing the Resource that has Worked the Shortest Amount of

Time 137

Common Customization Attributes of Resources and Work Objects 141
Attributes of Animation Subtable 142
Attributes of Duration Subtable 143
Attributes of Cost Subtable 143

Customization Attributes of Resource Managers 144
Attributes of Resource Manager Paths 146

Chapter 6 Customizing the User Interface 147

Introduction 147

Customizing Properties Dialogs 148

Customizing the ReThink Toolbox 149

Chapter 7 Customizing Menus 153

Introduction 153

Displaying the Menu Bars Layout Workspace 154

Creating an Applications Menu 155
Creating an Applications Menu 155
Adding a Menu Choice that Displays Your Model 157
Creating a Named Workspace to Display 158
Using a Local Text Resource to Create Your Custom Menu Choice 159
Editing the Workspace Templates 160

Adding a Custom Palette to the Palettes Menu 162

Saving the Menus Module 165

Part III ReThink Internals 167

Chapter 8 Block Processing 169

Introduction 169

The High-Level View 170

The Planning Phase 171
viii

Check to See If the Block Is Ready 171
Create An Activity 172
Synchronize Inputs 172
Establish a Relation Between the Activity and the Block 172
Update Block Statistics 172
Pause the Simulation 173
Request Resources 173
Schedule the Start Activity 173
Dequeue the Work Objects 173

The Start Activity Phase 173
Compute Block Duration and Costs 174
Start Input Work Objects 174
Start Allocated Resources 174
Evaluate Instruments When Phase is Start 174
Update Block Statistics 174
Animate the Block 175
Execute the Block’s Start Method 175
Schedule the Stop Activity 175

The Stop Activity Phase 175
Execute the Block’s Stop Method 175
Update Block Statistics 175
Stop Allocated Resources 176
Stop the Work Objects 176
Update Total Cost of Work Objects 176
Evaluate Instruments When Phase is Stop 176
Send the Work Object Downstream 176
Clean Up 176

Block Processing Summary 177

Working with Time 178
G2’s Real-Time Clock 178
ReThink’s Simulation Clocks 178
Referencing Real Time in ReThink 179

Chapter 9 Application Programmer’s Interface 181

Introduction 182

bpr-activate-scenario 184

bpr-block-evaluator 186

bpr-clone-object 187

bpr-continue 190

bpr-copy-list-of-attributes 192

bpr-create-object 195
ix

bpr-delete-object 197

bpr-dequeue-object 198

bpr-detach-input 200

bpr-get-item-for-label 202

bpr-get-item-for-label-class-scenario 203

bpr-handle-event-error 204

bpr-indicate 205

bpr-indicate-connection 207

bpr-lookup-by-id 209

bpr-message-to-all-users 211

bpr-pause 212

bpr-post 213

bpr-post-path 215

bpr-remove-from-pool 217

bpr-reset 219

bpr-schedule-an-event 221

bpr-update-pool 225

bpr-updated-attributes 227

Chapter 10 Relations 229

Introduction 229

Working With Relations During Modeling 230

Understanding Naming Conventions 231

Creating Relations When a Block Evaluates 232

Creating Relations When a Resource Evaluates 232

Creating Relations When You Create a Resource Manager 233

Creating Relations When You Add Objects to a Pool 234

Creating Relations When You Activate Scenarios 234

Creating Relations When You Use the Associate Block 235

Creating Relations When Replacing Details 235

Creating Relations When Choosing the Root Workspace of a Report 236
x

Glossary 237

Index 241
xi

xii

Preface
Describes this guide and the conventions that it uses.

About this Guide xiii

Audience xiv

A Note About the API xiv

Conventions xv

Related Documentation xv

Customer Support Services xvii

About this Guide
This guide describes the internal operations of ReThink so developers can
customize its behavior. It describes:

• What you can customize, which includes blocks, instruments, resources, work
objects, resource managers, and scenarios.

• How to customize ReThink, which includes subclassing objects, adding
attributes, editing subobjects, and customizing procedures.

• How to customize blocks, including block behavior, animation, duration, and
paths.

• How to customize instruments, including behavior and animation.

• How to customize resources and work objects, including animation and
resource allocation.

• How to customize the user interface, including popup menus, dialogs, and the
ReThink toolbar.
xiii

This guide also provides a reference to the internal ReThink operations, which
consists of:

• Block processing, which determines the order in which events occur.

• Application programmer’s interface, which provides procedures that you can
call to perform ReThink operations.

• Relations, which ReThink creates as part of block processing.

In addition, it provides a glossary of key terms.

Audience
This guide is written for ReThink developers to teach them how to customize
ReThink objects to obtain specific behavior. This guide explains how to customize
each type of ReThink object and shows examples of typical customizations. This
guide also contains a reference section, which provides reference documentation
on the application programmer’s interface (API) and related topics.

This guide assumes that you have a basic understanding of how to program in the
G2 environment in which ReThink runs. In particular, ReThink developers write
custom procedures, which use the API and refer to internal relations. ReThink
developers also create object class definitions that contain attributes that are
subobject.

If you are a ReThink modeler who wants to build and run models in ReThink, see
Getting Started with ReThink and the ReThink User’s Guide.

A Note About the API
The ReThink API, as described in this guide, is not expected to change
significantly in future releases, but exceptions may occur. A detailed description
of any changes will accompany the ReThink release that includes them.

The techniques by which ReThink implements its capabilities, however, are
subject to change at any time without notice or explanation, and are expected to
change as the product evolves. These techniques will not be described in any
ReThink documentation.

Therefore, it is essential that you use ReThink exclusively through its API, as
described in this guide. If you bypass the API, you cannot rely on your code to
work in the future, since ReThink may change, or in the present, because the code
may not correctly manage the internal operations of ReThink.

Conversely, if you use the ReThink API exclusively, you can rely on Gensym to
notify you of any ReThink changes that might affect your code, and you can rely
on ReThink to manage all internal operations correctly.
xiv

Conventions
If ReThink does not seem to provide the capabilities that you need, please contact
Gensym Customer Support. For details, see Customer Support Services.

Conventions
This tutorial uses the following typographic conventions:

Related Documentation

ReThink

• Getting Started with ReThink

• ReThink User’s Guide

• Customizing ReThink User’s Guide

G2 Core Technology

• G2 Bundle Release Notes

• Getting Started with G2 Tutorials

• G2 Reference Manual

• G2 Language Reference Card

• G2 Developer’s Guide

• G2 System Procedures Reference Manual

• G2 System Procedures Reference Card

• G2 Class Reference Manual

• Telewindows User’s Guide

• G2 Gateway Bridge Developer’s Guide

Example Description

true Parameter and metric values

 task Glossary terms

c:\Program Files\Gensym\
g2-2011\rethink\
kbs\rethink.kb

Pathnames and filenames
xv

G2 Utilities

• G2 ProTools User’s Guide

• G2 Foundation Resources User’s Guide

• G2 Menu System User’s Guide

• G2 XL Spreadsheet User’s Guide

• G2 Dynamic Displays User’s Guide

• G2 Developer’s Interface User’s Guide

• G2 OnLine Documentation Developer’s Guide

• G2 OnLine Documentation User’s Guide

• G2 GUIDE User’s Guide

• G2 GUIDE/UIL Procedures Reference Manual

G2 Developers’ Utilities

• Business Process Management System Users’ Guide

• Business Rules Management System User’s Guide

• G2 Reporting Engine User’s Guide

• G2 Web User’s Guide

• G2 Event and Data Processing User’s Guide

• G2 Run-Time Library User’s Guide

• G2 Event Manager User’s Guide

• G2 Dialog Utility User’s Guide

• G2 Data Source Manager User’s Guide

• G2 Data Point Manager User’s Guide

• G2 Engineering Unit Conversion User’s Guide

• G2 Error Handling Foundation User’s Guide

• G2 Relation Browser User’s Guide

Bridges and External Systems

• G2 ActiveXLink User’s Guide

• G2 CORBALink User’s Guide

• G2 Database Bridge User’s Guide

• G2-ODBC Bridge Release Notes
xvi

Customer Support Services
• G2-Oracle Bridge Release Notes

• G2-Sybase Bridge Release Notes

• G2 JMail Bridge User’s Guide

• G2 Java Socket Manager User’s Guide

• G2 JMSLink User’s Guide

• G2 OPCLink User’s Guide

• G2-PI Bridge User’s Guide

• G2-SNMP Bridge User’s Guide

• G2-HLA Bridge User’s Guide

• G2 WebLink User’s Guide

G2 JavaLink

• G2 JavaLink User’s Guide

• G2 DownloadInterfaces User’s Guide

• G2 Bean Builder User’s Guide

G2 Diagnostic Assistant

• GDA User’s Guide

• GDA Reference Manual

• GDA API Reference

Customer Support Services
You can obtain help with this or any Gensym product from Gensym Customer
Support. Help is available online, by telephone, by fax, and by email.

To obtain customer support online:

 Access G2 HelpLink at www.gensym-support.com.

You will be asked to log in to an existing account or create a new account if
necessary. G2 HelpLink allows you to:

• Register your question with Customer Support by creating an Issue.

• Query, link to, and review existing issues.

• Share issues with other users in your group.

• Query for Bugs, Suggestions, and Resolutions.
xvii

To obtain customer support by telephone, fax, or email:

 Use the following numbers and addresses:

Americas Europe, Middle-East, Africa (EMEA)

Phone (781) 265-7301 +31-71-5682622

Fax (781) 265-7255 +31-71-5682621

Email service@gensym.com service-ema@gensym.com
xviii

Part I
Introduction
Chapter 1: Introduction to Customization

Provides an overview of what you can customize in ReThink.

Chapter 2: How to Customize ReThink

Provides an overview of how to customize ReThink objects, and how to make your
customizations permanent.
1

2

1

Introduction to
Customization
Provides an overview of what you can customize in ReThink.

Introduction 3

What You Can Customize 4

Customizing the Behavior of Objects 5

Required G2 Knowledge 6

Introduction
You can tailor the behavior of ReThink objects to reflect the processes of the
business you are modeling. For example, you can change the behavior of ReThink
blocks and instruments, create new types of resources and work objects, and
customize the way ReThink computes cost and duration. These are called
customizations.

To customize ReThink, you must be a developer, which means you need to have
a detailed understanding of the structure of ReThink objects, including the
customizable subobjects, methods, and procedures. You also need to know
something about the internals of ReThink, including how blocks execute and how
ReThink establishes relations. Finally, when you customize ReThink procedures,
you need to understand how to use the ReThink internal procedures or
application programmer’s interface (API).
3

What You Can Customize
You can customize the following ReThink objects, using the techniques described
in How to Customize ReThink:

Sample Icon Class Name Description

bpr-block User-level blocks that
process work objects.

bpr-probe Instruments that obtain
values from the model.

bpr-feed Instruments that supply
values to the model.

bpr-object Work objects that blocks
create and process.

bpr-resource Resources that blocks
require to process work.

bpr-resource-manager Resource Managers that
allocate and deallocate
resources for an activity.

bpr-surrogate Copies of resources that
appear in another pool.
4

Customizing the Behavior of Objects
Customizing the Behavior of Objects
You can customize the behavior of objects in your model, including:

• The class-specific attributes of the object.

• The default behavior of a block or instrument.

• The way ReThink calculates duration and cost for a block, work object, or
resource.

• The way a Resource Manager allocates and deallocates resources.

• The reset behavior of a Scenario tool.

You customize the default behavior of blocks and instruments by editing the
default stop method for the object. The stop method is a method that a block
executes after it computes duration and cost, and that an instrument executes
before it probes or feeds a value. For example, you might create a custom
instrument that generates an alarm when an attribute exceeds a threshold; you
might create a custom Branch block that schedules work in progress before new
work; or, you might create a custom Store block that stores objects in a pool to
produce a scatter chart.

You can also create a start method for a block, which ReThink executes before it
computes duration and before it executes the stop method. For example, you
might want a block to perform a remote procedure call to an external program
before it executes its default behavior.

ReThink provides several default procedures that compute the duration of blocks,
including a random normal delay, a random exponential delay, and a duration
based on an eight hour a day work week. You can customize the duration
procedures for blocks, work objects, and resources. You can also customize the
procedure that computes total cost for blocks, work objects, and resources.

bpr-path Paths between blocks
that carry work objects.

bpr-scenario Tools that controls the
simulation clock for a
model.

Sample Icon Class Name Description
5

You can customize the way Resource Managers allocate and deallocate resources
from a pool. For example, you might want to allocate the least expensive available
resource for an activity.

You can customize the behavior of a Scenario tool when you reset a model. For
example, you might want to start a particular Source block each time you reset.

Finally, you can customize the behavior of a remote, which is the intermediate
object that ReThink creates when you create a chart from a probe. To customize
the computed values of the remote, you edit attributes in its table.

Required G2 Knowledge
To customize ReThink, you need to know more of the fundamentals of G2 than
you do if you are using ReThink “off-the-shelf.” Specifically, you need to know
how to:

• Define classes of objects.

• Write and edit methods and procedures.

• Work with G2 relations and lists.

• Create and edit parameters, using subtables.
6

2

How to
Customize ReThink
Provides an overview of how to customize ReThink objects, and how to make your
customizations permanent.

Introduction 8

Switching User Modes 8

Making Customizations in the Module Hierarchy 9

Working with Modules 16

Working with Snapshot Files 29

Common Customization Features 30

Creating Subclasses of ReThink Objects 38

Adding Attributes to the Class 42

Customizing the Default Behavior of Blocks or Instruments 42

Customizing Procedures 48

Editing Subobjects 56

Configuring User Preferences 69

Configuring the Excel Macros for Formatting the Report 76
7

Introduction
The ReThink objects that appear on the palettes are instances of G2 classes, whose
definitions you can customize. To customize objects, you must be in Developer
mode.

When you customize ReThink objects, the first step is always to create a subclass
of an existing ReThink class definition. You place your custom class definitions on
a customization workspace, which you save in a separate module of ReThink.

Once you have created a subclass, you can customize any of the following
properties of the subclass:

• The attributes that define its characteristics.

• The method that defines the default behavior of the block or instrument.

• The animation, duration, and cost procedures of the subobjects that define the
default behaviors.

• The attributes of the subobjects.

Note ReThink implements some default behaviors as methods and other default
behaviors as procedures. In a future release, all default behavior will be
implemented as methods.

Switching User Modes
To customize ReThink, you must be in Developer mode. In Developer mode, the
tables for ReThink objects include customization attributes and the menus include
customization menu choices. These attributes and menu choices are hidden in
Modeler mode.

To switch to Developer mode:

 Choose Tools > User Mode > Developer.

When you are in Developer mode, all user interactions are the same as they are in
Modeler mode. The primary difference between Modeler mode and Developer
mode is the number of menu choices and attributes that are visible. In Modeler
mode, you see only the menu choices and attributes necessary for building
ReThink models, whereas in Developer mode, you see a number of additional
menu choices and attributes necessary for customizing ReThink models.

When you customize ReThink, you will always be in Developer mode.
Furthermore, this manual assumes you are in Developer mode, unless otherwise
stated.
8

Making Customizations in the Module Hierarchy
Making Customizations in the Module
Hierarchy

When you customize ReThink, you save your customizations in a separate
module, which ReThink loads automatically with your application. Because the
customizations are located in a separate module, you can share customization
modules across ReThink applications.

For more information, see Working with Modules on page 16.

Understanding the Module Hierarchy

To understand where to store your customizations, you need to understand
ReThink’s module hierarchy:

Module Description

rethink-online Default top-level module for ReThink.

rethink-core-online The directly required module of the top-level
rethink-online module, which every new
application requires.
9

Following is a more detailed description of the core ReThink modules.

The rethink-online and rethink-core-online Modules

The rethink-online module is the default, top-level module, which requires the
rethink-core-online module. Typically, you create a new project, which creates a
new top-level module with your project name, which requires the rethink-core-
online module.

If you do not want to share customization across applications, you can save
customizations and G2 system tables in the top-level module. For more
information, see Customizing System Tables on page 15.

customiz User-level module in which you save
customizations to ReThink objects.

methods Definitions and procedures for ReThink blocks,
instruments, and resources.

methods-online Definitions and procedures for the ReThink
blocks found on the Online Activities palette.

menus Specifies the top-level menu bar, which you can
customize.

bpr Internal, proprietary module containing
ReThink’s core technology.

brms Business Rules Management System (BRMS)

gfr G2 Foundation Resources (GFR).

g2com G2 ActiveX Link for connectivity to Microsoft
Excel, Microsoft Access, and other COM-
compliant applications.

gevm G2 Event Manager.

gdsm G2 Data Source Manager.

grpe G2 Reporting Engine

gweb G2 Web

bprui ReThink’s proprietary user interface module.

Module Description
10

Making Customizations in the Module Hierarchy
Caution In general, you should not create customizations in the rethink-online module,
unless you do not care about sharing your customizations across different
ReThink applications.

The customiz Module

The customiz module is where you can create and save customizations to
ReThink objects, when you plan to share these customizations across different
ReThink applications.

Once you have created your custom class definitions, methods, and procedures
on a customization workspace, you assign this workspace to the customiz
module, as described in Creating a Customization Workspace on page 14. The
next time you load ReThink, the customiz module is automatically loaded.

The methods and methods-online Modules

The methods module contains the class definitions for the basic ReThink objects
and subobjects, and the methods and procedures that control their behavior.
When you customize ReThink, you create subclasses of these class definitions and
copy these methods and procedures.

The methods-online module contains definitions, methods, and procedures for
the blocks on the Online Activities palette.

To display the methods module workspace:

1 Choose Workspace > Get Workspace and choose the methods-top-level
workspace to display this top-level workspace:
11

2 Click the Programmer’s Interface button to display this workspace:

Each button contains the class definition, methods, procedures, and rules that
define the ReThink objects:

This workspace... Contains...

Block Definitions Class definitions, methods, and procedures that
define the default ReThink blocks.

Instruments
Definitions

Class definitions, methods, and procedures that
define the default feeds and probes.

Animation Subtables,
Cost Subtables, and
Duration Subtables

Class definitions of subobjects and associated
procedures that control the cost and duration
computations for blocks, resources, and work
objects, and the animation of blocks, resources,
work objects, Resource Managers, surrogates,
and paths.

Resource Methods Procedures that define how Resource Managers
allocate and deallocate resources.

Other Methods Methods for adding work objects to the path
queue and resetting the scenario.
12

Making Customizations in the Module Hierarchy
3 Click the Palettes button to display this workspace:

This workspace contains all the palettes that appear in the ReThink toolbox
except the Online Activities palette, which is contained in the methods-online
module.

To display the methods-online module workspace:

1 Choose Workspace > Get Workspace and choose the methods-online-top-level
workspace to display this top-level workspace:

2 Click the Programmer’s Interface button to display this workspace:
13

Here are the Online Block Definitions and Scenario Definitions workspaces:

The bpr Modules

The bpr module is the proprietary core of ReThink. It contains the discrete event
simulation engine and other internal mechanisms that are fundamental to the
ReThink environment. It also contains the default layout of the ReThink menus.

The statements in this core part of ReThink are text-stripped so that you cannot
access or delete any of the items.

Creating a Customization Workspace

When you customize ReThink, you typically create a separate workspace on
which you place your custom class definitions, methods, and procedures. You
assign this workspace to the customiz module and save it in the customiz.kb file.

When you load ReThink, the customizations module is automatically loaded, and
the customizations automatically take effect.

When you install a new version of ReThink, you replace the default customiz
module with your customiz module to maintain the customizations. In addition,
you can share your customizations across multiple ReThink applications by using
this module in another application.
14

Making Customizations in the Module Hierarchy
Note If you do not care about sharing your customizations across multiple
applications, you can create your customizations in the top-level module.
However, we recommend always saving your customizations in the customiz
modules to make it easy to share customizations in the future.

To create a customizations workspace:

1 Choose Workspace > New to create a new named workspace.

You create your customizations on this workspace.

2 Choose Table from the popup menu for the workspace.

3 Edit the module-assignment attribute to be the customiz module.

The workspace is now assigned to the customiz module, which means it will
be saved in the customiz.kb file.

4 Choose File > KB Modules > Save and save the customiz module in the
customiz.kb file.

You can also save the rethink-online module, using the Including All Required
Modules option, which saves all the ReThink modules.

After you save your customizations, open the top-level module of your current
ReThink application to load the customiz module automatically.

Customizing System Tables

G2 provides a number of system tables, which you can customize to suit your
needs. For example, you can edit the default fonts and colors that G2 uses by
editing the Fonts system table and the Color Parameters system table. G2 uses the
system table definitions in the top-level module; therefore, you should customize
system tables in the top-level module.

To customize the system tables for a ReThink application:

 Display the module hierarchy, then select the top-level module and choose
any system table in the module.
15

For example, here is how you would edit the Timing Parameters system table for
the top-level module:

For more information on editing system tables, see the chapter “System Tables” in
the G2 Reference Manual.

Working with Modules
You might need to merge a module into an existing model and save it as part of
your model. You might also want to rename the top-level module to reflect the
name of your application, create a new module and include it in your model, or
delete a module you have created or merged that you do not want to save with
the current model.

You work with modules as a way of organizing your application, for example,
when:

• Multiple individuals are building different parts of the same model.

• You create objects that you will share between multiple models.

• You customize the default menus that ReThink provides to add custom menu
choices and custom palettes.
16

Working with Modules
When you are working with modules, the list of available modules reflects the
current user mode. To see all ReThink modules, you must be in Developer mode.

Merging a module into an existing model loads the merged module and any
directly required modules below it in the module hierarchy.

This topic describes how to:

• Showing the module hierarchy.

• Understand the rules of consistent modularization.

• Check for consistent modularization.

• Merge existing modules into the current model.

• Rename modules.

• Create new modules.

• Create top-level workspaces assigned to modules.

• Save individual modules.

• Delete modules.

• Assign top-level workspaces to different modules.

• Merge multiple modules into a single model.

• Save ReThink definitions in the appropriate module.

Showing the Module Hierarchy

To begin working with modules, you should become familiar with the existing
module hierarchy. When showing the module hierarchy, you can see which
modules require which other modules in a tree view. You can also see the
contents of each module, including all the top-level workspaces assigned to the
module and all the system tables associated with the module.

To show the module hierarchy:

 Choose View > Module Hierarchy.

By default, the top-level module is rethink or rethink-online, depending on your
license. When you create a new project, the top-level module is the same as the
project name. The directly required module of the top-level module is rethink-
online-core, which, in turn, requires the customiz module.

For a description of the modules in the hierarchy, see Making Customizations in
the Module Hierarchy on page 9.
17

Rules of Consistent Modularization

When working with modules, it is important to understand two important rules
for consistent modularization:

• Top-level workspaces must be assigned to modules that are part of the
module hierarchy.

• Any work object, block, or resource must exist in either the same module as its
class definition or in a module that is above it in the module hierarchy.

If a top-level workspace is assigned to a module that is not part of the module
hierarchy, when you attempt to save the model, you will receive an error that
states that the modules are inconsistently modularized. Similarly, if an instance of
a class is in a module below its definition in the hierarchy, you will be unable to
save the model as a modularized KB.

Checking for Consistent Modularization

When working with modules, you might encounter a situation in which your
model is not consistently modularized when you attempt to save it. This can
occur when:

• You delete a module without deleting its associated workspaces.

• You merge a module that has conflicts without automatically resolving those
conflicts.

• Modules exist but are not required by the KB.

• Class definitions exist in a module, but instances of those classes are located in
a directly required module.

To avoid module inconsistencies:

• When you delete a module, be sure to delete all its associated workspaces or
reassign the workspaces to a new module.

• When merging modules, be sure to resolve all conflicts or assign items to a
new module.

• When merging modules or creating new modules, be sure that the modules
are required by the KB.

• When creating class definitions and instances, be sure the definitions are
located in the same module as the instances or in a directly required (lower
level) module, not vice versa.
18

Working with Modules
When module inconsistencies occur and you attempt to save a model, ReThink
displays a message at the bottom of the progress dialog indicating that the KB is
not consistently modularized.

To find module inconsistencies:

 Choose Tools > Inspect and enter this command:

check for consistent modularization

ReThink displays a message indicating why the model is inconsistently
modularized. If a module contains instances or class definitions with conflicts,
ReThink displays those instances and definitions in the dialog. You can choose Go
To and Properties on any item in the list.

Merging Modules

When you merge a module into your ReThink model, ReThink loads the specified
module and any directly required modules that are not already open. ReThink
automatically adds the merged module to the module hierarchy as a directly
required module of the top-level module.

When saving the merged module with the model, you must click the Including
Required Modules option on; otherwise, the merged modules will not be saved as
part of the model.

When merging modules, you must consider how ReThink should handle conflicts
if they arise. For example, if the module you are merging contains class
definitions with the same name as those in the existing model, you typically want
the definitions in the existing model to take precedence. By default, ReThink
automatically resolves conflicts when merging modules by using definitions in
the existing model.

When merging a module that was developed in an earlier version of ReThink,
you might want the merged module to use the formats and system tables of the
current model and ReThink version, thereby bringing the module up to date with
the current version. By default, ReThink does not bring formats up to date or
install system tables when merging modules.

To merge a module into an existing model:

1 Choose File > KB Modules > Merge.

2 Navigate to the file to merge.
19

3 Configure the options, as follows:

• Resolve Conflicts Automatically, which has this behavior when conflicts
exist:

– When selected, the model replaces definitions of the same name in the
merged module with existing definitions. To ensure that all definitions
are consistent, we recommend that you select this option whenever
you merge a module. This option is the default.

– When not selected, the model renames conflicting definitions in the
merged module to include the module name, thereby retaining the
merged module’s definitions. If you believe the merged module
contains newer definitions than the existing model, use this option,
then integrate the merged module’s definitions into the existing
model’s definitions and delete the merged definitions.

• Bring Formats Up To Date, which, when selected, replaces system-
defined formats in the merged KB, such as the width of text boxes, with
those defined in the current KB. We recommend that you not select this
option when merging models developed in an earlier version of ReThink,
unless you want to use the older formats. This option is not selected, by
default.

• Install System Tables of Merged KB, which, when selected, replaces
existing system table settings with the system tables in the merged KB. In
general, we do not recommend that you select this option when merging
models developed in earlier versions. This option is not selected, by
default.

4 Click OK to merge the module into the current KB.

The module hierarchy now includes the merged module below the top-level
module in the hierarchy.

Renaming Modules

If you create an application without first creating a project, you might need to
rename the top-level module to reflect the name of your application. Each new
workspace that you create is automatically assigned to the top-level module. Any
existing workspaces are also automatically reassigned to the renamed module.

For information on configuring the Module Assignment of a workspace, see
Assigning Top-Level Workspaces to Different Modules on page 24.

Caution You should only rename the top-level module or user-defined modules. Do not
rename any of the built-in modules; otherwise, your model will no longer run.
20

Working with Modules
To rename a module:

1 Choose File > KB Modules > Rename.

ReThink show an alphabetical listing of all modules.

2 Select the module to rename, for example, the top-level module named
rethink-online.

3 Enter the new name for the module in the New Name field and click OK.

The module name must be a symbol.

For example, this dialog shows how to rename the rethink module to my-app:

Creating Modules

When multiple individuals are building different parts of the same model, it is
often useful to break the model up into separate modules. That way, individual
modelers can build and save their modules separately. One way to do this is to
create new modules below the top-level module, which each modeler works on
separately. For example, you might create an as-is module and a vision module,
and use the top-level module as a way of loading both lower-level modules.

ReThink automatically adds new modules to the module hierarchy as a directly
required module of the top-level module. When you show the module hierarchy,
the new module appears below the top-level module in the hierarchy.

When you create a new module, you typically edit the Directly Required Modules
of the module, that is, the module that appears below the new module in the
hierarchy. Typically, you make new modules directly require the rethink-core
module so they have access to all built-in definitions.

You should always create a top-level workspace for newly created modules.
21

When you create a new module, you must save the model with the Including
Required Modules option checked; otherwise, the new modules will not be saved
as part of the model.

To create a new module:

1 Choose File > KB Modules > New.

2 Enter a name for the new module in the Module Name field.

The module name must be a symbol.

ReThink adds the new module to the module hierarchy just below the top-level
module in the hierarchy.

Creating Top-Level Workspaces for Modules

Whenever you create a new module, you should create a top-level workspace
associated with the module. You create your model on this top-level workspace.

To create a top-level workspace assigned to a new module:

1 Choose Workspace > New Workspace.

2 Display the properties dialog for the workspace and configure the Names
attribute to be a unique name.

ReThink creates a new workspace that is assigned to that module.

Saving Individual Modules

When you merge a module or create a new module and add it to the module
hierarchy, you must save the top-level module, including all required modules.

If you have made changes to an individual module that is lower down in the
hierarchy, you can save just that module, rather than saving the entire model,
including required modules. For example, when customizing ReThink, you might
make changes to the customiz module, which you can save as an individual
module.

To save an individual module:

1 Choose File > KB Modules > Save.

ReThink displays the Save Module dialog.

2 Navigate to the file you want to save.

For example, if you are saving the individual module named customiz, you
would navigate to the customiz.kb file in the rethink\kbs directory.
22

Working with Modules
3 Choose the module to save from the Module dropdown list.

By default, saving an individual module shows a progress dialog, saves the
layout of workspaces, and does not save directly required modules.

4 Configure the saving options, as needed:

• Including all required modules, which saves the specified module and all
modules below it in the module hierarchy. In general, you should only
save the specified module.

• Save all modules to one file, which saves the entire project to a single file,
which is no longer modularized. In general, you should not save all
modules to a single file, unless it cannot be modularized.

5 Click the Save button to save the specified module.

Deleting Modules

You might have merged a module into your model or created a new module that
you do not actually want to save with your model. Before you save your model,
you must delete these modules.

Caution You should only delete merged modules or user-defined modules. Do no delete
ReThink required modules of the top-level module; otherwise, your model will
not work correctly.

When you delete a module, ReThink automatically removes all references to the
module in the module hierarchy. By default, ReThink deletes all associated
workspaces. When deleting modules, we recommend that you use this default.

You can also delete a module without deleting associated workspaces. However,
if you use this option, before you save your model, you must ensure that the
workspaces have an associated module. To do this, you must manually edit the
Module Assignments of each workspace, which is only available in Developer
mode.

To delete a module:

1 Choose File > KB Modules > Delete.

2 Select the module to delete.

By default, deleting the selected module deletes all workspaces associated
with the module and removes references to it in the directly-required-modules
from other modules in the hierarchy.

3 To delete the module without deleting its associated workspaces, disable the
Delete Associated Workspaces option.
23

4 To delete the module without removing references to it in the module
hierarchy, disable the Remove References to Module in Hierarchy option.

5 Click OK to delete the module.

The module hierarchy no longer includes the deleted module. If the module
hierarchy is currently showing, you must refresh the view to see the updated
module hierarchy.

Assigning Top-Level Workspaces to Different
Modules

Once you create a new module, you can explicitly assign top-level workspaces to
the module to save the workspaces in that module. For example, you can replace
the default details of two different Model tools with top-level workspaces, then
assign those workspaces to different modules.

You can only assign top-level workspaces to a particular module; details are
automatically assigned to the module associated with their superior objects. Thus,
if you have already created a model or organizer detail and you want to assign
this workspace to a user-defined module, you must follow these steps.

Tip We recommend that you edit the background color of each top-level workspace in
a model to distinguish between workspaces assigned to different modules. That
way, when you make changes, you will remember to save both modules.

To assign a top-level workspace to a module and use it as a model detail:

1 Create a new module for each detail you want to assign to its own module.

For example, you might create two new modules named as-is and vision,
which are directly required modules of the top-level module, whose name
might be aero.

For details, see Creating Modules on page 21.

2 Create a new top-level workspace for each module, whose name corresponds
to the name of the model or organizer whose detail you want to assign to its
own module.

For example, you would create two new top-level workspaces named as-is-
model-detail and vision-model-detail.

3 Assign each top-level workspace to its own module:

a Display the table for the workspace that you want to assign to a new
module.

b Configure the module-assignment to refer to the new module.
24

Working with Modules
For example, you would assign the as-is-model-detail workspace to the as-is
module, and the vision-model-detail workspace to the vision model.

4 If you have already created detail for the model, transfer the contents of the
existing detail to the new top-level workspace.

For example, if you had already created a model named as-is, you would
transfer the contents of the existing model detail to the workspace named
as-is-model-detail, which is assigned to the as-is module.

5 Delete the existing model detail.

6 Display the properties dialog for the model, click the Customize tab, and
configure the Name to be a unique name.

For example, as-is-model and vision-model.

7 Choose the Choose Detail menu choice on the existing Model tool, then
choose Select on a top-level workspace that has been assigned to its own
module.

For example, you would assign the as-is-model-detail workspace as the detail
of the as-is-model model.

The following figure shows the top-level workspace of the Aero model, and the
details of the As-Is and Vision models. The module assignments of each
workspace appear in the upper-right corner of each workspace. The model details
are top-level workspaces whose name boxes have been hidden. The background
25

colors have been changed to indicate that the workspaces are assigned to different
modules.

Notice that the Model Definitions organizer is assigned to the top-level aero
module because it contains definitions that both the As-Is and Vision models
share. However, this might not always be the case as the following section
explains.

Merging Multiple Models into a Single Model

Another common technique for creating a model is to build separate models,
which you later merge together to create a single model. This technique works
well when multiple individuals are working on the same model.

To merge multiple models into a single model:

1 Create a new project.

2 Rename the top-level module to reflect the name of your combined model.

For details, see Renaming Modules on page 20.

3 Merge into the empty model each individual module that you want to include
in the combined model.

For details, see Merging Modules on page 19.
26

Working with Modules
The merged modules are automatically required modules of the top-level
module.

4 Create a new workspace, assign it to the customiz module, and transfer all
common definitions to this workspace.

For details, see Assigning Top-Level Workspaces to Different Modules on
page 24.

5 Save the top-level module of the new model with its required modules.

For details, see Saving Individual Modules on page 22.

Saving ReThink Definitions in the Appropriate
Module

When you create class definitions for work objects, blocks, instruments, or
resources, you place them on one of several different workspaces, and you save
them in one of several different modules, depending on how you plan to use
them:

Thus, if your model consists of a single top-level module with no user-defined
modules, and if you do not plan to share definitions among multiple models, then
you can save definitions in the top-level module. If, on the other hand, you create
a user-defined module and have definitions that are unique to a particular
module, you typically save those definitions in the user-defined module.

However, if you create definitions that you plan to share between multiple
models, then you should save them in the customiz module.

If you use
the definitions in...

Then you place them
on this workspace...

Which you assign
to this module...

All modules of a single
model

The top-level workspace
of the model

The top-level module.

Individual modules of
a single model

A detail of the top-level
model

A user-defined module
that is directly required
by the top-level module,
or the top-level module
if you have not created
user-defined modules.

Multiple models A unique top-level
workspace that is separate
from the top-level model
workspace

The customiz module.
27

To save definitions in the customiz module, create a new top-level workspace,
assign it to the customiz module, then save the customiz module.

For example, suppose you wanted to share the definitions in the top-level Model
Definitions organizer with other models. To do this, replace the default detail of
the Model Definitions organizer with a new top-level workspace, then assign the
workspace to the customiz module, as the following figure shows:

To share these definitions between different models, replace the default customiz
module with the customiz module that contains shared definitions, then open the
model.
28

Working with Snapshot Files
Working with Snapshot Files
You can save the contents of a running model in a snapshot file at any time during
the simulation. When you save a model in a snapshot file, ReThink pauses all
running models, saves the entire model in its current running state, then starts all
the models running again.

The snapshot file is a single, unmodularized KB file with a .snp extension.

The advantage to saving a snapshot is that when you load the snapshot, the
simulation can continue running at exactly the point at which you saved it.

You load a snapshot file to continue running a model from the point at which you
saved the snapshot. This process is known as “warmbooting.” A snapshot file is a
single, unmodularized KB file with a .snp extension.

Warmbooting from a snapshot file replaces the existing KB with the snapshot,
which includes the complete application, and automatically starts the server. The
model continues running from exactly the point at which it was saved.

By default, when warmbooting from a snapshot file, ReThink uses catch-up
mode, which means it sets the internal current time to the current time saved in
the snapshot file. For simulations that run continuously, you should always
warmboot from a snapshot file with catch-up mode enabled.

Saving a Model in a Snapshot File

To save a running model in a snapshot file:

1 While a model is running, choose File > Save Snapshot.

2 Enter the name of the snapshot file to save and click Save.

Note The filename of the snapshot file must end in the .snp file extension.

Warmbooting from a Snapshot

To warmboot from a snapshot file:

1 Choose File > Warmboot from Snapshot.

2 Navigate to the desired snapshot file and click Open.

3 Click Yes in the confirmation dialog.
29

Common Customization Features
This section provides summary information on the common customization
methods, attributes, procedures, and subobjects available for each type of
ReThink object. Depending on the type of object, you can customize a variety of
features, including:

• Start and stop methods.

• Reset, delete, and update procedures.

• Duration, cost, and animation procedures.

• Duration, cost, and animation subobjects.

To customize the start and stop methods, you define new start and stop methods
for your custom objects, based on the default methods. For details, see
Customizing the Stop Method on page 43 and Customizing the Start Method on
page 46.

To customize reset, delete, and update procedures, and duration, cost, and
animation procedures, you define new procedures, based on the default
procedures, then you edit the procedure name through the table. For details, see
Customizing Animation on page 68.

To customize the duration, cost, and animation subobjects, you create new
subobjects, based on the default subobjects, then you configure your custom class
definition to use the custom subobject.

In addition to the common customization features, many objects provide specific
customization attributes, such as the Branch Procedure Name of a Branch block.

The following tables describe the customization attributes that are common to all
objects of a particular type. The tables refer to the internal G2 attribute names,
which you need when referring to them in procedures. The workspaces on which
the default methods, procedures, and subobjects appear are subworkspaces of the
Methods workspace.

Customizing Blocks

You can customize these features of blocks:

• Start and stop methods.

• Reset, delete, and update procedure names.

• Animation, duration, and cost procedure names.

• Animation, duration, and cost subobjects.

The default start and stop methods are located on the individual block
workspaces on the Block Definitions workspace. The default procedures are
30

Common Customization Features
located on the Block Animation Subtable, Block Cost Subtable, and Block
Duration Subtable workspaces.

Bpr-block Methods and Customization Attributes

Method/Attribute Default Value

bpr-stop-method N/A

bpr-start-method N/A

names none

reset-procedure-name bpr-reset-block

delete-procedure-name bpr-delete-block

update-procedure-name bpr-update-block

needs-all-inputs false

Bpr-block Subobjects

Subobject Default Value Attribute Default Value

animation-subtable bpr-block-animation-subtable

reset-procedure-name bpr-animate-block

procedure-name bpr-animate-block

active-color aquamarine

inactive-color thistle

error-color yellow

detail-color salmon

duration-subtable bpr-default-block-duration-subtable

reset-procedure-name bpr-block-
duration-subtable-
reset

procedure-name bpr-random-
normal-duration
31

Customizing Paths

You can customize these features of paths:

• Reset, delete, and update procedure names.

• Queue procedure name.

• Animation procedure name.

• Animation subobject.

The default procedures and subobjects are located on the Path Animation
Subtable and Other Methods workspaces.

cost-subtable bpr-block-cost-subtable

reset-procedure-name bpr-reset-cost-
subtable

procedure-name bpr-block-cost

Bpr-block Subobjects

Subobject Default Value Attribute Default Value

Bpr-path Customization Attributes

Method/Attribute Default Value

names none

maximum-waiting none

reset-procedure-name bpr-reset-path

delete-procedure-name bpr-delete-path

update-procedure-name bpr-update-path

enqueue-procedure-name none
32

Common Customization Features
Customizing Instruments

You can customize these features of instruments:

• Stop methods.

• Reset procedure name.

• Animation procedure name.

• Animation subobject.

The default stop methods are located on the individual instrument workspaces on
the Instrument Definitions workspace. The default animation procedures and
subobjects are located on the Instrument Animation Subtables workspace.

Bpr-path Subobjects

Subobject Default Value Attribute Default Value

animation-subtable bpr-path-animation-subtable

procedure-name bpr-animate-path

waiting-color green

empty-color grey

error-color yellow

selected-color magenta

Bpr-instrument Methods and Customization Attributes

Method/Attribute Default Value

bpr-stop-method N/A

names none

reset-procedure-name bpr-reset-instrument
33

Customizing Work Objects and Resources

You can customize these features of work objects and resources:

• Start and stop procedure names.

• Reset, delete, and update procedure names.

• Animation, duration, and cost procedure names.

• Duration and cost reset procedure names.

• Animation, duration, and cost subobjects.

The default procedures and subobjects are located on the Object Animation
Subtable, Object Duration Subtable, and Object Cost Subtable workspaces.

Bpr-probe Subobjects

Subobject Default Value Attribute Default Value

animation-subtable bpr-probe-animation-subtable

procedure-name bpr-animate-
instrument

active-color sky-blue

inactive-color blue

error-color yellow

Bpr-feed Subobjects

Subobject Default Value Attribute Default Value

animation-subtable bpr-feed-animation-subtable

procedure-name bpr-animate-
instrument

active-color magenta

inactive-color violet-red

error-color yellow
34

Common Customization Features
Bpr-object Methods and Customization Attributes

Method/Attribute Default Value

names none

reset-procedure-name bpr-reset-object

delete-procedure-name bpr-delete-object

update-procedure-name bpr-update-object-metrics

Bpr-object Subobjects

Subobject Default Value Attribute Default Value

animation-subtable bpr-object-animation-subtable

procedure-name bpr-animate-
object

active-color red

inactive-color black

error-color yellow

duration-subtable bpr-object-duration-subtable

procedure-name bpr-object-
duration

reset-procedure-name bpr-reset-object-
duration-subtable

cost-subtable bpr-object-cost-subtable

procedure-name bpr-object-cost

reset-procedure-name bpr-reset-cost-
subtable
35

Customizing Resource Managers

You can customize these features of resource managers:

• Procedure name for choosing resources from a pool.

• Procedure name for sequencing resources when multiple blocks are waiting.

• Procedure name for updating the utilization of the Resource Manager.

• Reset procedure name.

• Animation, duration, and cost procedure names.

• Animation, duration, and cost subobjects.

The default procedures are located on the Resource Methods, Resource Manager
Animation Subtable, Resource Manager Duration Subtable, and Resource
Manager Cost Subtable workspaces.

Bpr-resource-manager Customization Attributes

Attribute Default Value

choose-resource-procedure-name bpr-random-available-resource

sequence-block-procedure-name bpr-random-waiting-block

update-utilization-procedure-name none

reset-procedure-name bpr-reset-resource-manager

Bpr-resource-manager Subobjects

Subobject Default Value Attribute Default Value

animation-subtable bpr-resource-manager-animation-subtable

procedure-name bpr-animate-
resource-
manager

active-color red

inactive-color black

error-color yellow
36

Common Customization Features
Customizing Surrogates

You can customize these features of a surrogate:

• Animation procedure name.

• Animation subobject.

The default animation procedure and subobject are located on the Surrogate
Animation Subtable workspace.

duration-subtable bpr-resource-manager-duration-subtable

reset-procedure-name bpr-reset-
resource-
manager-
duration-subtable

cost-subtable bpr-resource-manager-cost-subtable

Bpr-resource-manager Subobjects

Subobject Default Value Attribute Default Value

Bpr-surrogate Subobjects

Subobject Default Value Attribute Default Value

animation-subtable bpr-surrogate-animation-subtable

procedure-name bpr-animate-
surrogate

active-color red

inactive-color black

error-color yellow
37

Customizing Scenarios

You can customize the reset procedure name of a scenario. You can find a sample
scenario reset procedure on the Other Methods workspace.

Creating Subclasses of ReThink Objects
The first step in customizing any ReThink object is to create a subclass of an
existing ReThink object.

Creating a Subclass

You can create subclasses of ReThink objects in one of two ways, depending on
the type of object. In either case, you use a class definition to define the subclass.

For blocks, instruments, and resources, you can create the subclass directly from
an existing object. For work objects, you must explicitly create a class definition.

To create a subclass of an existing ReThink block, instrument, or resource:

 Create a block, instrument, or resource from the ReThink toolbox and choose
Make Subclass.

ReThink automatically creates a class definition, whose superior class is the same
as the object you created. ReThink appends a numeric suffix to the name of the
class to make it unique, for example, bpr-task-1. You can edit the name of the
custom class as desired.

You must use the following technique to create a custom work object; however,
you can also use this technique to create a custom block, instrument, or resource.

To create a custom subclass explicitly:

1 Create a Class Definition from the Tools tab of the ReThink toolbar and place
it on your customization workspace.

2 Configure the direct-superior-classes to be any available ReThink classes that
supports customization.

For details, see Configuring the Superior Class on page 39.

Bpr-scenario Customization Attribute

Attribute Default Value

names none

reset-procedure-name none
38

Creating Subclasses of ReThink Objects
Once you have created the class definition, you create an instance of the class and
edit the instance. You can either use the instance directly in a model, or you can
place the instance on a custom palette.

To create an instance of the custom class:

 Choose create instance on the class definition.

Configuring the Superior Class

Depending on what you are customizing, you can provide any number of built-in
ReThink classes as the superior class of the custom object:

• To create a custom version of one of the built-in ReThink blocks or
instruments, use one of the specific ReThink class names as the superior class.
For example, to create a custom version of the Change feed, specify the
superior class as bpr-change-feed.

• To create a completely new type of object, use one of the high-level ReThink
classes as the superior class. For example, to create a completely new type of
block, specify the superior class as bpr-block.

The following tables list all the built-in ReThink classes, organized by object
category, upon which you can build custom definitions. The indentation of the
class names reflects the class hierarchy of the objects. For example, bpr-source is a
subclass of bpr-block.

Block Classes

Class Name Description

bpr-block Superior class for all blocks

bpr-source Source block

bpr-sink Sink block

bpr-task Task block

bpr-copy Copy block

bpr-merge Merge block

bpr-branch Branch block

bpr-batch Batch block

bpr-associate Associate block

bpr-reconcile Reconcile block
39

bpr-store Store block

bpr-retrieve Retrieve block

bpr-insert Insert block

bpr-remove Remove block

bpr-copy-attributes Copy Attributes block

bpr-yield Yield block

Instrument Classes

Class Name Description

bpr-instrument Superior class for all instruments

bpr-feed Superior class for all feeds

bpr-timestamp-feed Timestamp feed

bpr-accumulate-feed Accumulate feed

bpr-increment-feed Increment feed

bpr-change-feed Change feed

bpr-parameter-feed Parameter feed

bpr-attribute-feed Attribute feed

bpr-copy-attribute-feed Copy Attributes feed

bpr-probe Superior class for all probes

bpr-delta-time-probe Delta Time probe

bpr-sample-probe Sample Value probe

bpr-average-probe Average probe

bpr-moving-average-probe Moving Average probe

interval-sample-probe Interval Sample probe

Block Classes

Class Name Description
40

Creating Subclasses of ReThink Objects
bpr-parameter-probe Parameter probe

bpr-copy-attribute-probe Copy Attributes probe

bpr-statistic-probe Metric probe

bpr-criteria-probe Criteria probe

bpr-update-trigger-probe Update Trigger probe

bpr-n-dim-sample-probe N-Dimensional Sample probe

bpr-message-probe Message probe

Work Object and Resource Classes

Class Name Description

bpr-object Superior class for all work objects

bpr-resource Superior class for all resources

person Person resource

truck Truck resource

computer Computer resource

machine Machine resource

bpr-pool-resource Pool resource

bpr-container Container work object that defines a
container list attribute that is an item-
list

bpr-surrogate A copy of a resource

Instrument Classes

Class Name Description
41

Adding Attributes to the Class
You can add class-specific attributes to the definition of any ReThink object to
track specific information that is relevant to your business. Typically, you refer to
these unique attributes in a custom method or procedure to change the default
behavior of the object.

For example, you could associate resources with work objects by adding an
attribute to each work object that refers to its associated resource; or, you could
create a custom instrument that feeds a random number into the model, where
the minimum and maximum values are attributes of the feed that you supply
when you configure the instrument.

By default, user-defined attributes appear on the User tab of the properties dialog.
You can configure the properties dialogs of any object to include user-defined
attributes on custom tabs, as described in Customizing Properties Dialogs.

To add attributes to a class:

 Display the properties dialog for the custom class definition and configure the
class-specific-attributes.

To display user-defined attributes in dialogs and to prevent run-time errors,
specify the type and default values for these attributes, for example:

cost-of-order is a quantity, initially is 0.0;
commission is a quantity, initially is 0.0

When you run the simulation, you supply a value to the custom attribute through
the properties dialog or by using a feed. Alternatively, you might create a custom
method or procedure that computes a value for the custom attribute.

For an example of adding attributes to a custom class, see Adding Attributes to a
Custom Block.

Customizing the Default Behavior of Blocks or
Instruments

You can customize the basic functionality of a block or an instrument by editing
the following methods:

• Bpr-stop-method, which specifies the default behavior of a block or
instrument. For example, the method that defines the behavior of the Sink
block is bpr-sink::bpr-stop-method. This particular method calls a ReThink
API named bpr-delete-object, which deletes the objects on each input path.

• Bpr-start-method, which allows you to create an additional method that a
block executes before it’s duration; this method is only available for blocks.
42

Customizing the Default Behavior of Blocks or Instruments
ReThink calls the stop method at the end of processing the block or instrument,
and it calls the start method at the beginning of block processing, as described in
Chapter 8, Block Processing.

ReThink does not call the start and stop methods for a Task block with details; it
only calls the start and stop methods for the blocks on the detail subworkspace.

ReThink uses both methods and procedures to customize the behavior of objects.
For example, you customize the basic behavior of blocks and instruments with
methods, and you customize the additional aspects of the behavior of particular
blocks with procedures. You cannot customize the default behavior of resources
and work objects other than to customize the duration, animation, and cost
subobjects, as described in Editing Subobjects on page 56.

Customizing the Stop Method

To customize the stop method of a block or instrument, create a subclass and edit
the default stop method for the class, which is called bpr-stop-method.

Note Instruments execute the stop method either before or after the attached block
applies its duration to the simulation, according to the instrument’s Phase
attribute. For more information, see the ReThink User’s Guide.

To customize the stop method for a block or instrument:

1 Create a subclass of the block or instrument you want to customize.

2 Display the Block Definitions or Instrument Definitions workspace from the
Methods workspace.

3 Click the button associated with the class whose stop method you want to
customize.

ReThink displays the class definitions and associated stop methods that
define the behavior of all the blocks and instruments.

4 Copy the default bpr-stop-method and place it on your customizations
workspace.

5 Choose edit on the stop method and configure its text, as follows:

a Edit the first argument to the stop method to refer to the custom subclass
you just created.

Editing the method’s first argument changes the qualified name of the
method so that it corresponds to the custom subclass.

b Delete the local name initializations and the body of the default method.
43

c Add a call next method statement to the procedure in the desired location.

To cause the block or instrument to perform the custom portion of the
method before it performs the default behavior, place the call next method
statement at the end of the method. Otherwise, place the call next method
statement at the beginning of the method.

d Specify the custom portion of the procedure in the desired location.

6 Create an instance of your custom class.

The custom class now obtains its default behavior from the custom stop method.

For example, suppose you wanted to compute the commission for a sale, based on
the purchase price of an order. To do this, first create a subclass of a work object
with two user-defined attributes: cost-of-order and commission. Next, create a
subclass of a Task block and edit the default stop method to compute the
commission, based on the order cost.

This simple model uses a custom Task block to compute the commission of an
order, whose cost is a random number. The User Tab of the properties dialog for
the order on the output path of the custom task shows the Cost of Order as 57 and
the Commission as 5.7, which is 10% of the order price.
44

Customizing the Default Behavior of Blocks or Instruments
Here is the class definition of the order class, which defines the two class-specific
attributes:

Here is the custom stop method for the custom Task block and its class definition,
which is a subclass of bpr-task. The first argument to the stop method is the
custom class, bpr-task-1. The stop method obtains the current order from the
activity and concludes that the commission of the order is 0.1 times the cost-of-
order. The method includes a call next method statement before the custom
portion of the method so that the custom portion of the method executes after the
default stop method.
45

Customizing the Start Method

In addition to customizing the custom stop method for a block, you can customize
the start method; you can only customize the start method of a block, not an
instrument. The start method executes at the beginning of block processing,
before the block executes the stop method and before the block computes its
duration.

To customize the start method of a block:

1 Create a subclass of the block you want to customize.

2 Create a new method named bpr-start-method that has the desired behavior,
as follows:

a Choose View > Toolbox - G2 and display the Procedures and Rules
palette:

b Create a Method and place it on your customization workspace.

c Choose edit on the stop method.

d Edit the first argument to the start method to refer to the custom subclass
you just created.

Editing the method’s first argument changes the qualified name of the
method so that it corresponds to the custom subclass.

e Edit the second argument to the method to refer to the bpr-activity class.

f Edit the third argument to the method to refer to the ui-client-item class.

g Specify the custom portion of the procedure, as desired.

h Add a call next method statement to the procedure in the desired location.

To cause the block to perform the custom portion of the method before it
performs the default behavior, place the call next method statement at the
end of the method.
46

Customizing the Default Behavior of Blocks or Instruments
Note Currently, blocks do not define a default start method; however, this might
change in the future. Therefore, we recommend you always include a call next
method statement in your custom start method for future compatibility.

3 Create an instance of your custom class.

The custom class now obtains its default behavior from the custom stop method.

For example, suppose you wanted to display the detail of a Task block whenever
a work object arrives at a task with detail. To do this, first create a custom subclass
of a Task block, then create a custom start method that shows the workspace of
the custom task.

This simple model shows a Task block with detail, which contain the custom Task
block. If you step through the model, the detail automatically appears when the
work object arrives at the Custom Task block on the detail.

Here is the custom start method for the Custom Task block and the bpr-task-2
class definition. The custom task is an instance of the bpr-task-2 custom class, thus
the first argument to the custom start method is the custom class, bpr-task-2. The
method tests to see if the workspace of the custom task exists, and then shows the
workspace on the current window. The start method includes a call next method
47

statement after the custom portion of the method so the subworkspace displays
before the block does any processing.

Customizing Procedures
You can customize various procedures for blocks, paths, instruments, work
objects, resources, resource managers, surrogates, and scenarios. To do this, you
define a custom procedure, then refer to this custom procedure name in the
properties dialog of the object.

Certain default procedures exist on the various subworkspaces of the Methods
workspace, while others do not.

For information on the procedures that you can customize, see Common
Customization Features on page 30.

Editing Procedure Names

To edit procedure names:

 In Developer mode, display the properties dialog for the object, click the
various tabs, and edit the procedure name attributes, as needed.
48

Customizing Procedures
For example, the following figures show the procedure name attributes that you
can edit in Developer mode on the Duration, Cost, Animation, and Customize tab
pages of the properties dialog for a Task block. The other objects provide similar
procedure name attributes.
49

50

Customizing Procedures
51

52

Customizing Procedures
Customizing Reset, Delete, and Update Procedures

The reset, delete, and update procedures are proprietary and, therefore, do not
exist on any workspace. To create custom reset, delete, and update procedures for
the various types of objects, create a new procedure with these signatures:

Class Procedures

bpr-block bpr-reset-block (block: class bpr-block)

bpr-delete-block (block: class bpr-block)

bpr-update-block (block: class bpr-block)

bpr-path bpr-reset-path (path: class bpr-path)

bpr-delete-path (path: class bpr-path)

bpr-update-path (path: class bpr-path)

bpr-instrument bpr-reset-instrument
(instrument: class bpr-instrument)

bpr-object bpr-reset-object (object: class bpr-object)

bpr-delete-object (object: class bpr-object)

bpr-update-object-metrics (object: class bpr-object)

bpr-resource-
manager

bpr-reset-resource-manager
(manager: class bpr-resource-manager)
53

To customize reset, delete, and update procedures:

1 Create a subclass of the block you want to customize.

2 Create a new procedure with the desired behavior, as follows:

a Choose View > Toolbox - G2 and display the Procedures and Rules
palette:

b Create a Procedure and place it on your customization workspace.

c Choose edit on the procedure and edit the text of the procedure, using the
signatures in the table above, as desired.

The procedure name should be unique, for example, bpr-reset-task-3.

3 Create an instance of your custom class.

4 Edit the appropriate procedure name attribute in the properties dialog for the
custom block.

For example, you might create a custom reset procedure for a custom Task block
that posts a message to the Message Board when the block resets, as this example
shows:
54

Customizing Procedures
Here is the custom procedure named bpr-reset-task-3 and the custom block class
definition:

You edit the Reset Procedure Name attribute on the Customize tab of the custom
block to refer to the custom procedure:
55

Customizing Animation, Duration, and Cost
Procedures

To customize the animation, duration, and cost procedures of objects, you follow
the steps described in Customizing Reset, Delete, and Update Procedures on
page 53, except that:

• You can copy the default procedure and edit it, as needed.

• You edit the procedure names on the Animation, Duration, and Cost tabs of
the properties dialog.

For details, see Displaying Default Subobject Procedures on page 60.

Customizing Specific Procedures

You can customize procedures for specific blocks, instruments, and resource
managers. To do this, you follow the steps described in Customizing Reset,
Delete, and Update Procedures on page 53, except that:

• You can copy the default procedure and edit it, as needed.

• You edit the procedure names on the Block tab, the Instrument tab, and the
Allocate and Deallocate tabs, respectively.

For details, see:

• Customizing Specific Blocks.

• Customizing Specific Instruments.

• Customizing How Resource Managers Allocate Resources.

Editing Subobjects
ReThink objects define certain attributes, whose values are subobjects that you
can customize. These attributes are:

• Animation-subtable, which defines the default colors and animation
procedure.

• Duration-subtable, which defines the default procedure that computes
duration and utilization statistics.

• Cost-subtable, which defines the default procedure that computes total cost.

Blocks, work objects, resources, and resource managers allow you to customize
the animation, duration, and cost subtables. Paths, instruments, and surrogates
allow you to customize the animation subtable, only.
56

Editing Subobjects
Techniques for Editing Subobjects

You customize subobjects differently, depending on the type of customization:

The following headings explain how to perform each of these types of
customizations in a generic way, as well as how to customize particular types of
subobjects.

Displaying Default Subobject Classes

The default values of the attributes that define subobjects depend on the type of
object, as this table shows:

To customize... Do this...

The default procedure of a
subobject

Edit the procedure in an instance
of the custom class.

The default attributes of a
subobject

Edit the subobject in an instance of
the custom class.

New attributes for a subobject Replace the subobject in the
custom class definition.

The subobjects of a work object Replace the subobject in the
custom class definition, because
you cannot edit an instance of a
work object.

Attribute Default Value Example Description

animation-
subtable

a bpr-object-type-
animation-
subtable

a bpr-instrument-
animation-subtable

Specifies the procedure
the object uses to animate,
and specifies the default
colors the object uses
when it is in an active,
inactive, or error state.
57

For the specific default values of each ReThink class, see Common Customization
Features on page 30.

To display the default subobject class:

1 Display the Methods workspace.

For details, see The methods and methods-online Modules on page 11.

2 Click the button associated with Animation Subtables, Duration Subtables, or
Cost Subtables workspace, as needed.

3 Click the button associated with the type of object whose subobject you want
to customize.

duration-
subtable

a bpr-object-type-
duration-subtable

a bpr-object-
duration-subtable

Specifies the procedure
the object uses to compute
duration, specifies the
timing parameters you
configure during
modeling, and computes
summary timing statistics
for the object.

cost-
subtable

a bpr-object-type-
cost-subtable

a bpr-block-cost-
subtable

Specifies the procedure
the object uses to compute
total cost, specifies the
fixed and variable costs
you configure during
modeling, and computes
summary cost statistics for
the object.

Attribute Default Value Example Description
58

Editing Subobjects
For example, here is the bpr-block-animation-subtable class definition on the
Block Animation Subtable workspace:

bpr-block-animation-subtable
class
59

Displaying Default Subobject Procedures

Each subobject has an attribute named procedure-name, which determines the
default procedure for the subobject. The default procedure name varies,
depending on the type of object and the type of subobject. This table summarizes
the default procedures for each type of subobject and for each type of object:

As the table shows, not all types of ReThink objects define procedures for every
subobject. Specifically, instruments, resource managers, surrogates, and paths
only define an animation procedure.

Also, the default procedure-name of the duration-subtable object for all blocks
except the Source block is bpr-random-normal-duration. The default procedure-
name for the Source block is bpr-random-exponential-duration.

To edit the default procedure of any type of object except a work object, create an
instance of a custom class and edit the Procedure Name on the appropriate tab
page of the properties dialog. For details, see Customizing Procedures on page 48.

To edit the default procedure of a subobject for a work object, you must edit the
default procedure in the definition of the class. For details, see Customizing
Subobjects of Work Objects on page 66.

Object Type

Subobject Block Instrument
Resource/
Work Object

Resource
Manager Surrogate Path

animation-
subtable

bpr-
animate-
block

bpr-animate-
instrument

bpr-animate-
object

bpr-
animate-
resource-
manager

bpr-
animate-
surrogate

bpr-
animate-
path

duration-
subtable

bpr-
random-
normal-
duration

N/A bpr-object-
duration

N/A N/A N/A

cost-
subtable

bpr-block-
cost

N/A bpr-object-
cost

N/A N/A N/A
60

Editing Subobjects
To display the default subobject procedures:

1 Display the Methods workspace.

For details, see The methods and methods-online Modules on page 11.

2 Click the button associated with Animation Subtables, Duration Subtables, or
Cost Subtables workspace, as needed.

3 Click the button associated with the type of object whose subobject procedure
you want to customize.

For example, here is the bpr-block-animation procedure on the Block Animation
Subtable workspace:

bpr-animate-block
procedure
61

Editing Color Attributes of Animation Subobjects

You can edit the default colors of subobjects by editing the color attributes on the
Animation tab of an instance of a custom class. These attributes are available in
Modeler mode.

You can edit these attribute attributes of animation subobjects:

To edit the color attribute of an animation subobject:

1 Create a custom class of ReThink object.

For example, you might create a custom resource class named custom-
animation-resource that animates, using different colors.

2 Create an instance of the custom class.

3 Display the properties dialog for the object and click the Animation tab.

4 Edit the color attributes, as needed.

Attribute Name Description

active-color The color blocks flash when they evaluate, the
color work objects flash when they are active,
the color resources flash when they are
allocated, and the color instruments flash when
they evaluate.

inactive-color The idle color for blocks, work objects,
resources, and instruments.

error-color The color all objects flash when they are in an
error state.

detail-color The color a Task block uses when it has detail.

waiting-color The color a path uses when it is waiting for the
attached block to start processing. A block
might be waiting for resources, for other work
objects, or because the number of current
activities is equal to the Maximum Activities of
the block.

empty-color The color a path uses when it is not waiting for
the attached block.

selected-color The color a path uses when the user selects it for
some operation, such as choosing the empty
container output path of a Remove block.
62

Editing Subobjects
For example, you might edit the Active Color and Inactive Color of a custom
resource, as follows:

Creating New Attributes for Subobjects

Suppose you are adding a new attribute to a subobject, for example, a new color
for the animation procedure of a resource. In this case, you must replace the
default subobject with a new subobject in the definition of the class. That way,
each new instance has the custom attributes in its subtable.
63

To create new attributes for a subobject:

1 Create a subclass of an existing subobject, whose attributes you want to
customize.

For example, you might create a new animation subobject for a custom
resource class, as follows:

2 Configure new attributes with default values for the custom subobject in the
class-specific-attributes of the custom subobject’s class definition.

For example, you might define a new color attribute named custom-color,
which a custom animation procedure named custom-animate-person uses:

3 Edit the existing attributes of the subobject, as needed, by configuring
attribute-initializations for the class.

For example, you might define a default animation procedure by using a
custom procedure named custom-animate-resource:

Note If you define the existing attributes in the class-specific-attributes of the class,
rather than in the attribute-initializations, the instance creates a class-qualified
attribute name for the original attribute, according to G2’s multiple
inheritance mechanism. However, the internal ReThink procedures use the
unqualified attribute name. For more information, see G2 Reference Manual.

4 Create the custom procedure by creating and editing an existing procedure,
for example, bpr-animate-object.

The new procedure might use the new attributes that the custom subobject
defines, in this example, custom-color.

Attribute Value

class-name custom-person-animation-subtable

direct-superior-classes bpr-object-animation-subtable

Attribute Value

class-specific-attributes custom-color is a symbol,
initially is green

Attribute Value

attribute-initializations procedure-name initially is
custom-animate-person
64

Editing Subobjects
5 Create a custom subclass of ReThink object, whose attribute-initializations
refers to the custom subobject class.

For example, your class definition might define these attributes:

6 Create an instance of the custom class.

This figure shows this example, where the custom-animate-person procedure
uses the custom-color of the custom-animation-person-resource as the active
color:

Attribute Value

class-name custom-animation-person-resource

direct-superior-classes bpr-resource

attribute-initializations animation-subtable initially is an
instance of a custom-person-animation-
subtable
65

Here is the text of the custom-animate-person procedure:

custom-animate-person(m: class bpr-object-animation-subtable)
object: class bpr-object;
ws: class kb-workspace;
begin

if the item superior to m does not exist then
return;

object = the item superior to m;
if (the error of object exists and length-of-text(the error of object) > 0) then

change the flashing icon-color of object to the error-color of m
else

if the total-starts of object > the total-stops of object then
change the flashing icon-color of object to the custom-color of m

else
change the flashing icon-color of object to the inactive-color of m;

if the workspace ws of object exists then
call g2-work-on-drawing(ws);

end

For information about adding custom attributes to tab pages of the properties
dialog, see Customizing Properties Dialogs.

Customizing Subobjects of Work Objects

Unlike other types of objects, work objects require that you always replace the
existing subobject in the definition of the class, whether you are editing existing
attributes or adding new ones; you cannot edit an instance of a work object
because work objects are transient.

To customize the subobject of a work object:

1 Create a subclass of an existing ReThink subobject, which is the subobject you
are going to replace.

For example, you might create a new cost subobject for a custom work object
class, as follows:

Attribute Value

class-name custom-object-cost-subtable

direct superior classes bpr-object-cost-subtable
66

Editing Subobjects
2 Configure new attributes with default values, as needed, for the custom
subobject in the class-specific-attributes of the custom subobject’s class
definition.

For example, you might add a new attribute named conversion-factor that the
work object uses to compute total cost, using a different currency:

3 Edit the existing attributes of the subobject, as needed, by configuring
attribute-initializations for the class.

For example, you might define the default cost procedure by using a custom
procedure named custom-object-cost:

For information on why you configure attribute-initializations, see the note in
Creating New Attributes for Subobjects on page 63.

4 Create the custom cost procedure by copying an existing procedure, for
example, bpr-object-cost.

The new procedure might use the new attributes the custom subobject
defines, for example, conversion-factor.

5 Create a custom subclass of ReThink object, whose attribute-initializations
refers to the custom subobject class.

For example, your class definition might define these attributes:

6 Configure the path type of a block to be the custom subclass.

Attribute Value

class-specific-attributes conversion-factor initially is 1.5

Attribute Value

attribute-initializations procedure-name initially is
custom-object-cost

Attribute Value

class-name custom-cost-object

direct-superior-classes bpr-object

attribute-initializations cost-subtable initially is an
instance of a custom-object-cost-
subtable
67

Customizing Animation

You can customize the animation of objects by:

• Customizing the default colors.

Follow the steps described in Editing Color Attributes of Animation
Subobjects on page 62.

• Customizing the default animation procedure.

Follow the steps described in Displaying Default Subobject Procedures on
page 60.

• Animating custom icon regions.

Follow the steps described in Creating New Attributes for Subobjects on
page 63.

The default animation procedures for ReThink objects cause an icon region
named flashing to animate. You can edit the default colors ReThink uses when it
animates the flashing icon region, or you can create a new animation procedure
that animates a custom icon region. You can also add different types of animation
to the procedure, such as moving or rotating the object.

For an example of customizing animation, see Customizing Resource Animation.

Note ReThink generates an error when you run the model if the object you are
customizing does not have an icon region named flashing.

In addition to customizing the animation of blocks, instruments, work objects,
and resources, you can customize the animation of:

• Resource Managers

• Surrogates

• Paths

To customize the animation of a resource manager:

1 Copy and edit the bpr-animate-resource-manager procedure on the Resource
Manager Animation Subtable workspace.

2 Edit the Procedure Name on the Animation tab of a particular Resource
Manager to use the new procedure.
68

Configuring User Preferences
To customize the animation of a path:

1 Copy and edit the bpr-animate-path procedure on the Path Animation
Subtable workspace.

2 Edit the Procedure name on the Animation tab of a particular path to use the
new procedure.

For more information, see Customizing the Paths of a Block.

To customize the animation of a surrogate:

1 Copy and edit the bpr-animate-surrogate procedure on the Surrogate
Animation Subtable workspace.

2 Edit the Procedure name on the Animation tab of a particular surrogate to use
the new procedure.

Configuring User Preferences
In System-Administrator and Administrator modes, you can configure additional
attributes for each user preference. For information about basic user preferences,
see “Configuring User Preferences” in Chapter 3 “Working with Models” in the
ReThink User’s Guide.

In addition to configuring user preferences that ReThink creates automatically
when you start the server and client, you can also create new user preferences for
specific clients, based on their user name.

To configure user preferences:

1 Switch to System-Administrator or Administrator mode.

2 Choose Project > System Settings > Users and choose the user preference to
configure or create a new user preference, using the Manage dialog.
69

The User Preferences dialog appears:
70

Configuring User Preferences
3 Configure the customization attributes, as follows:

Attribute Description

General

User Name The user name associated with the user preference.
The default User Name is the user name for the
current user. To create a user preference for a new
user, enter the user name of a user in the g2.ok file,
which must be a symbol. For details, see Chapter 62
“Licensing and Authorization” in the G2 Reference
Manual.

Configuration
Permission

Whether to allow the user to switch to configure the
application in Modeler mode. By default,
Configuration Permission is enabled, which means
when the operator clicks the close button in the
operator interface, ReThink switches to Modeler
mode. In Modeler mode, you can create and
configure applications, using the top menu bar.
When Configuration Permission is disabled,
ReThink closes the client when the operator clicks
the close button in the operator interface. We
recommend that you disable this option for
operators.

Disconnect
Permission

Whether to allow the user to disconnect the client
from the server, using the File > Close menu choice.
By default, all users can disconnect the client from
the server.

Shutdown
Permission

Whether to allow the user to shut down the server,
using the File > Exit menu choice. By default,
modelers and operators cannot shut down the
server.

Show Logbook Whether to show the G2 Logbook when an error
occurs.
71

Message Browser

Subscribe to Queues The message queues to which the specified user
subscribes. By subscribing to a queue, the user sees
messages associated with that queue in the Message
Browser view of the operator interface. Messages
for the Messages queue appear in the Message
Browser.

Subscribed Queues
Filter

The default filter to apply for filtering messages in
the subscribed queues. For details, see Configuring
Filters on page 73.

Visible Message
Attributes

The properties to show in the message details. By
default, all properties are showing. For details, see
Configuring Message Details on page 75.

Acknowledge
Messages Permission

Whether to allow the user to acknowledge
messages in the Message Browser view of the
operator interface. By default, operators can
acknowledge messages.

Delete Messages
Permission

Whether to allow operators to delete messages in
the Message Browser view of the operator interface.
By default, users can delete messages.

Attribute Description
72

Configuring User Preferences
Configuring Filters

By default, the Message Browser shows all messages. You might want to restrict
the messages that appear for a particular user in a given user mode. You can filter
messages, based on a variety of criteria, including priority, object type, category,
and age.

To configuring filters:

 In the user preferences dialog, click the Subscribed Queues Filter button and
configure the filter criteria.

Here is the default filter dialog:

Attribute Description

Filter Messages by
Priority

The priority of the messages to show.

Process Map

Process Map Filter

The process map for which to show messages
when Process Map Filter is enabled.

Class

Class Filter

The classes for which to show messages when
Class Filter is enabled.
73

Category

Category Filter

The category of messages to show when
Category Filter is enabled.

Target

Target Filter

The target object for which to show messages
when Target Filter is enabled.

Target Class

Target Class Filter

The target class for which to show messages
when Target Class Filter is enabled.

User

User Filter

The user for which to show messages when
User Filter is enabled.

Group

Group Filter

The group for which to show messages when
Group Filter is enabled.

Maximum Age

Update Time Filter

The maximum age of messages to show when
Update Time Filter is enabled.

Unacknowledged
Messages Only

Whether to show unacknowledged messages
only. By default, acknowledged messages are
visible.

Exclude Messages
For Inactive Targets

Whether to exclude messages if the target object
status is inactive.

Attribute Description
74

Configuring User Preferences
Configuring Message Details

By default, when you click the Properties button for a message in the Message
Browser, all message details appear. You can restrict the contents of the message
details dialog.

To configure message details:

 In the user preferences dialog, click the Message Details button and configure
the attributes to appear in the Message Detail Selection dialog by removing
attributes from the Selected Attributes column, as needed.

By default, all message details appear:

Here is the default message details for a message with all attributes showing:
75

Here is the message details for a message with just four attributes visible:

Configuring the Excel Macros for Formatting
the Report

The default Excel report defines two macros, which ReThink uses to format the
report:

• DefaultFormatSheet, which is the default macro for formatting the report
template when you choose Create Report on a report object.

• DefaultFormatData, which you can use to format the report data when the
report updates.

The DefaultFormatSheet macro creates the column headers and other header
text.

To save computational resources, the default Excel report does not use the
DefaultFormatData macro to format the report data. The macro exists, however,
in the default report, as an empty macro.

You use Visual Basic to customize the macros, which have these signatures:

DefaultFormatSheet (SheetName As String, Activate As Boolean,
InputReport As Boolean)

DefaultFormatData (SheetName As String, Activate As Boolean,
InputReport As Boolean)

If you edit the macro, you can either create the report again to format it, using the
new macro, or you can explicitly format the report in Excel.

To configure the Excel macros for formatting the report:

 In System-Administrator or Administrator mode, display the properties
dialog for a report, click the Excel tab, and configure the Excel Format Sheet
Macro and Excel Format Data Macro parameters.
76

Configuring the Excel Macros for Formatting the Report
This figure shows the default dialog for configuring the Excel macros of a Block
Summary Report:

To format an existing report, using the new macro:

 Choose Report > Format from the floating toolbar in Excel.

For details, see “Creating Reports in Excel” in Chapter 8 “Using Reports” in the
ReThink User’s Guide.

To display the VB code that calls the default macros:

1 In Excel, choose Tools > Macro > Visual Basic Editor.

2 In the Project tree view in the upper-left of the editor, expand the Modules
node under the VBAProject for the Default-Summary-Reports.xlsReThink-
Summary-Reports.xls, then double-click the ReThinkModule.

Visual Basic displays an editor that shows the VB code associated with the
default spreadsheet.

3 Choose the DefaultFormatSheet macro from the scroll list at the upper-right
of the code window to view the default macro.

By default, the report uses the default
macro for formatting the report template,
and it uses no macro to format the data.
77

The Visual Basic Editor looks like this:
78

Configuring the Excel Macros for Formatting the Report
4 Choose the DefaultFormatData macro from the scroll list to view the
arguments to the macro that formats data when the report updates.

Using Visual Basic, you would record a new macro for formatting the report
template and/or report data, which would appear in this code file. See the Visual
Basic documentation for details.
79

80

Part II
Customizing
ReThink Objects
Chapter 3: Customizing Blocks

Provides specific descriptions and examples of how to customize blocks in general, as well as
how to customize specific blocks.

Chapter 4: Customizing Instruments

Provides specific descriptions and examples of how to customize instruments.

Chapter 5: Customizing Resources and Work Objects

Provides specific descriptions and examples of how to customize resources, work objects,
Resource Managers, and surrogates.

Chapter 6: Customizing the User Interface

Describes how to customize various aspects of the user interface.
81

82

3

Customizing Blocks
Provides specific descriptions and examples of how to customize blocks in general,
as well as how to customize specific blocks.

Introduction 83

Adding Attributes to a Custom Block 84

Customizing the Default Behavior of a Block 85

Customizing How Blocks Animate 88

Customizing the Duration of a Block 94

Customizing the Paths of a Block 100

Customizing Specific Blocks 103

Common Customization Attributes of Blocks 115

Introduction
You can customize the following aspects of any block:

• Its characteristics by adding new attributes.

• Its behavior by modifying its default methods.

• Its appearance when it changes from active to inactive by modifying its
default colors and animation procedure.

• The way it computes duration statistics.
83

• The way it computes cost statistics.

• The behavior of its input paths.

To perform any of these customizations, first create a subclass of the block you are
customizing, then make the customizations to the subclass of the block.

To customize the default behavior of a block, you edit the stop method for the
block. To customize the default behavior of particular blocks, you customize
specific block procedures. For example, you might want to create a different
version of the Retrieve block that retrieves objects from a pool based on some
criteria other than an association name or an attribute value.

For general information on how to customize, see How to Customize ReThink.

Adding Attributes to a Custom Block
You can add attributes to the definition of a block to:

• Provide information to the block, such as a priority, which the block refers to
in its custom procedures and methods.

• Compute information about the block in its custom procedures and methods,
and store the value in the custom attribute.

For general information about adding attributes to block definitions, see Adding
Attributes to the Class.

For example, a custom Task block that notifies people about a meeting might
require a new attribute called meeting-time, which you configure during
modeling by specifying the time of the meeting. The block notifies the user of the
meeting time when it executes.

When you add attributes to a custom block, you typically edit the block’s icon, as
described in the ReThink User’s Guide.

To add attributes to a custom block:

1 Create a subclass of bpr-task by creating a class definition as follows:

Attribute Value

class-name meeting-task

direct-superior-classes bpr-task
84

Customizing the Default Behavior of a Block
2 Edit the class-specific-attributes of the meeting-task to create an attribute
named meeting-time:

For example, here is custom Task block class definition:

In the next section, you will use this attribute to announce the time of the meeting.

Customizing the Default Behavior of a Block
To customize the default behavior of a block, you customize the bpr-stop-method
or the bpr-start-method.

For general information about how to customize the default behavior of blocks,
see Customizing the Default Behavior of Blocks or Instruments.

Building on the Meeting task example, suppose you want to customize the default
operations of the block to inform the operator of the meeting time.

Attribute Value

class-specific-attributes meeting-time is a text,
initially is ""
85

To customize the default behavior of a custom block:

1 Display the Methods workspace, choose Block Definitions, then click the
button next to the block whose behavior you want to customize.

For example, here is the Task Block workspace:

2 Copy the bpr-stop-method method for the block and place it on your
customization workspace.

In this example, you would copy bpr-task::bpr-stop-method.

3 Edit the method by changing its first argument to be the name of your custom
class, for example, meeting-task.

4 Customize the method, as needed.

For example, you might add a post statement to notify the operator of the
meeting-time of the task, as follows:

post "There is a meeting at [the meeting-time of task]"

Meeting-time is a custom attribute of the block, and meeting-task is the
argument to the method that refers to the custom Task block class.

5 Delete the default statements in the method.

6 Add a call next method statement at the end of the method.

7 Create an instance of the custom block.

The custom block uses the custom stop method.
86

Customizing the Default Behavior of a Block
This figure shows an example that uses the custom task block. When the work
object passes to the block downstream of the Meeting Task, the following message
appears:

Here is the User Tab of the properties dialog for the custom task block:
87

Here is the class definition for the meeting-task and its custom stop procedure:

Customizing How Blocks Animate
You can customize the default colors a block uses to animate and the default
procedure that defines how the block animates.

You customize the colors in the animation subobject when you want to create a
class of blocks that uses custom colors. Otherwise, you can customize the colors of
individual blocks on the Animation tab of the Set Block dialog, as described in the
ReThink User’s Guide.

When you customize block animation, you can either:

• Use the default animation procedure, bpr-animate-block, to animate the
flashing icon region and edit the existing colors in the animation subtable of
an instance of a custom class.

• Add new regions to your icon, add new attributes to a subclass of bpr-block-
animation-subtable that animate the new regions, and create a custom
animation procedure that animates the new regions.

Note ReThink generates an error when you run the model if the block you are
customizing does not have an icon region named flashing.
88

Customizing How Blocks Animate
Editing the Default Colors of a Block

Suppose you want all instances of a class to turn to magenta when they are active,
blue when they are inactive, and red when an error condition occurs. To do this,
edit the color attributes of the animation-subtable in an instance of the class.

To edit the default colors of a block:

1 Create a subclass of block whose default colors you want to edit, or use an
existing ReThink class, such as bpr-source.

For example:

2 Create a new instance of the custom block.

3 Display properties dialog for the custom block and configure the Active
Color, Inactive Color, and Error Color attributes.

Note The colors you specify animate the icon region named flashing.

For information on... See...

Editing the default
animation procedure
for a block

 Displaying Default Subobject Procedures.

Editing the default
colors for animating
blocks

 Editing Color Attributes of Animation
Subobjects.

Adding new color
attributes to the
animation subtable

 Creating New Attributes for Subobjects.

Attribute Value

class-name custom-source-block

direct-superior-classes bpr-source
89

This example shows how you would edit the default color of a custom block:
90

Customizing How Blocks Animate
Creating Custom Icon Regions

You might want to create and animate custom icon regions for your icon. To do
this, edit the icon to add new regions, add new colors to a custom animation
subtable for the block, and create a custom animation procedure that references
these custom colors.

To animate custom icon regions:

1 Create a subclass of block and place it on your customization workspace.

For example:

2 Choose Edit Icon on the class definition and add new named regions, which
you will animate.

For details, see the ReThink User’s Guide.

3 Create a subclass of bpr-block-animation-subtable that specifies new color
attributes of the custom icon regions.

For example, if you add a region called new-region, the class definition might
look like this:

4 Edit the class definition of the custom block to refer to the subclass of
bpr-block-animation-subtable by specifying attribute-initializations for the
class.

Attribute Value

class-name custom-task-with-new-region

direct-superior-classes bpr-task

Attribute Value

class-name custom-task-animation-subtable

direct-superior-classes bpr-block-animation-subtable

class-specific-attributes new-region-active-color initially is red;
new-region-inactive-color initially is
black
91

For example, the following specification overrides the default animation-
subtable in the definition of the custom task:

For information on why you use Attribute Initializations, see the note in
Creating New Attributes for Subobjects.

5 Copy the bpr-animate-block procedure from the Block Animation Subtables
workspace and place it on your customizations workspace.

This is the default procedure-name for the bpr-block-animation-subtable.

6 Change the name of the procedure and edit the procedure to animate the
custom icon regions by using the custom color attributes.

For example, the procedure might be named animate-task-block, and you
might change the procedure to animate the new-region icon region rather than
the flashing icon region by referring to the custom color attribute of the
custom block class.

7 In the class definition of the subclass of bpr-block-animation-subtable,
initialize the procedure-name to refer to the custom procedure by specifying
attribute-initializations for the class.

For example, if the custom procedure is named animate-task-block, the
specification would be:

Attribute Value

class-name custom-task-with-new-region

attribute-initializations animation-subtable initially is an instance of
a custom-task-animation-subtable

Attribute Value

class-name custom-task-animation-
subtable

attribute-initializations procedure-name initially is
animate-task-block
92

Customizing How Blocks Animate
The following simple example shows a custom task block with a new region.
When the work object arrives at the block, the region at the right of the icon turns
green. The custom block and animation subtable class definitions show the
attributes that you must configure.

New icon region.
93

Customizing the Duration of a Block
ReThink provides numerous default procedures for the duration-subtable of
blocks:

This procedure... Computes duration based on...

bpr-fixed-duration A fixed value with no variation.

bpr-random-normal-
duration

A random normal distribution, which takes a
mean and a standard deviation. This is the
default procedure for all blocks except the
Source block.

bpr-random-
exponential-duration

A random exponential distribution, which takes
a mean. This is the default procedure for a
Source block.

bpr-random-uniform-
duration

A random uniform distribution, which takes a
minimum and a maximum.

bpr-random-
triangular-duration

A random triangular distribution, which takes a
minimum, a maximum, and a mode.

bpr-random-erlang-
duration

A random Erlang distribution, which takes a
mean and a number of samples.

bpr-random-weibull-
duration

A random Weibull distribution, which takes a
shape and scale.

bpr-random-
lognormal-duration

A random lognormal distribution, which takes a
mean and a standard deviation.

bpr-random-gamma-
duration

A random gamma distribution, which takes an
alpha and beta.

bpr-random-beta-
duration

A random beta distribution, which takes a
minimum, a maximum, and an alpha and beta.

bpr-file-duration An input duration file.

bpr-work-object-
duration

An attribute of a work object.

bpr-report-indexed-
lookup-duration

An indexed report lookup.
94

Customizing the Duration of a Block
Displaying the Block Duration Subtables Workspace

The default duration procedures are located on the Block Duration Subtables
workspace.

To display the default duration procedures for blocks:

 Display the Methods workspace, then choose Duration Subtables > Block
Duration Subtables.

bpr-report-key-
lookup-duration

A report lookup that uses attributes of a work
object as search criteria for looking up durations
in a report.

bpr-arrival-rate-input-
duration

Uses an Arrival Rate Input Graph to determine
duration.

This procedure... Computes duration based on...
95

Here is the Block Duration Subtables workspace:

Creating a Custom Block Duration Procedure

You might want to create a custom duration procedure for a block. For example,
you might create a block that dynamically sets its duration based on an attribute
of the work object, so that certain types of work objects take longer to process than
others. For example, you might create a custom duration procedure that
multiplies the duration by the number of line items in an order.

Note This capability is available in Modeler mode by using the Time per Unit Attribute
attribute on the Duration tab of the properties dialog.
96

Customizing the Duration of a Block
To create a custom block duration procedure:

1 Create a custom procedure, based on one of the existing duration procedures,
which obtains an attribute from a work object and multiplies the duration
calculations by the value of the attribute.

For example, you might create an attribute of a work object named number-of-
line-items, which will impact the duration of the custom task.

2 Create a custom procedure that implements the custom duration, based on
one of the existing duration procedures.

For example, you might create a procedure named custom-per-line-item-
duration, which is based on the bpr-fixed-duration procedure and which
obtains the value of number-of-line-items of each work object as it arrives at
the block and multiplies the duration by the value of this attribute.

To do this, you must also configure the Mean of the block, which you do
through the dialog.

3 Create a custom subclass of a block and create an instance of the class, or edit
any existing ReThink block.

4 Display the properties dialog for the custom task block and click the Duration
tab.

5 First, configure the Distribution Mode to be Fixed Distribution, configure the
Mean, and click Apply.

The block retains this value, which it will use in the custom duration
procedure.

6 Configure the Distribution Mode to be Custom.

7 Configure the Procedure Name to be the custom procedure and click Apply.

For example, you would specify custom-per-line-item-duration as the procedure
name.
97

This model uses a Change feed to supply random value into the number-of-line-
items attribute of each order as it arrives at the Custom Task block. The custom
block then computes the duration based on the value of the random attribute. The
class definition declares number-of-line-items as an attribute of the order.

Here is the User tab for a work object where the number of line items is 8:
98

Customizing the Duration of a Block
Here is the Utilization tab for the work object, which shows that the Total Work
Time is 8 hours:

Here is the procedure that implements the customization of the task:

custom-line-item-duration (Subtable: class bpr-block-duration-subtable, Activity: class
bpr-activity)
number-of-line-items: quantity;
WorkTime: quantity;
begin
{
This procedure implements the fixed distribution for block duration subtables. It
generates a sample based on the mean and then allows customization of the duration
based upon the input objects and/or the resources associated with the activity.
}
 WorkTime = round(the mean of Subtable);

 if WorkTime < 0 then
 WorkTime = 0; { make any negative values be zero }
{
Set the work and elapsed times.
}
 conclude that the work-time of Activity = WorkTime;
 conclude that the elapsed-time of Activity = WorkTime;
99

{Get the number of line items of the input work object}

 if there exists a order-with-line-items obj that is a-bpr-input-of-activity activity

such that (the number-of-line-items of obj exists and the number-of-line-items of
obj is a quantity) then

 begin
 number-of-line-items = the number-of-line-items of obj;
 end
 else
 post "Error";

 WorkTime = round((number-of-line-items * the mean of SubTable));

 call bpr-modify-duration(Subtable, Activity);
end

Customizing the Paths of a Block
By default, when work backs up in a process, ReThink places work objects in the
path queue with the newest work objects at the end of the queue. When ReThink
processes work objects from the queue, it processes the oldest work objects first,
using a first-in first-out ordering (FIFO).

You can customize the procedure that ReThink uses to store work objects in the
path queue when there are work backups. You customize this procedure for a
particular path on a block. You can then copy the block to use it in your model, or
you can place the block on a custom palette for general use.

When you customize the procedure for a particular path, you typically also edit
the active and inactive colors of the path to distinguish it from the default paths.

To customize the queue behavior of a path:

1 Display the properties dialog for the path whose procedure you want to edit
and click the Customize tab.

The dialog has paths has an attribute named Enqueue Procedure Name.

Internally, ReThink calls the procedure named bpr-enqueue-fifo, which is
available for you to customize.

2 Display the Methods workspace and display the Other Methods workspace.

3 Copy the bpr-enqueue-fifo procedure and place it on your customization
workspace.

4 Edit the procedure to obtain the desired behavior.

For example, you might edit the procedure to place work objects at the
beginning of the path queue, rather than at the end, to create a last-in first-out
(LIFO) ordering.
100

Customizing the Paths of a Block
5 In the properties dialog for the path, configure the Enqueue Procedure Name
to refer to the custom procedure.

ReThink now removes the newest work objects from the path queue first.

To customize the default colors of a path:

1 Display properties dialog for a path and click the Animation tab.

2 Edit one or more of the following path colors:

Path Color Description

waiting-color The path color when work objects back up
in the queue or when the path is waiting for
an input on another path, for example,
when a block synchronizes its inputs.

empty-color The path color when no work objects are
traveling on the path.

error-color The path color when the path is in an error
state.

selected-color The path color when you select the path for
particular block operations, such as
selecting the container input path of an
Insert block.
101

This example shows a custom input path to a Task block that specifies a custom
Empty Color:
102

Customizing Specific Blocks
On the Customize tab, the path specifies a custom Enqueue Procedure:

The bpr-enqueue-lifo procedure inserts waiting work objects at the beginning of
the path queue, rather than at the end:

Customizing Specific Blocks
You can customize specific block procedures to change the behavior of a custom
block. ReThink provides these specific default procedures on the various
subworkspaces of the Block Definitions workspace.

Caution The subworkspaces of the Block Definitions workspace provide a number of
additional procedures, user menu choices, rules, and relations. These items are
available so you can understand how particular blocks work; we do not
recommend that you customize them.
103

When you work with blocks in Developer mode, you can also customize certain
attributes to change the default behavior of specific blocks.

The following sections describe the:

• General technique for customizing specific block procedures.

• Specific block behavior you can customize for each relevant block.

Only certain blocks have specific behaviors you can customize.

Customizing Specific Block Procedures

To customize a specific block procedure, create a custom block procedure, based
on the default procedure and use this custom procedure in a custom subclass of
the particular block.

For specific information about the procedures you can customize for specific
blocks, see the following sections.

To customize specific block procedures:

1 Create a block whose procedure you want to customize or create a custom
subclass of the block you want to customize and create an instance of the
class.

2 Display the Block Definitions workspace and choose the subworkspace of the
block whose specific procedure you want to customize.

Note Only certain blocks have customizable procedures; the other blocks define
only default stop methods.

3 Copy the specific block procedure you want to customize and place it on your
customization workspace.

4 Click the Block tab and configure the mode attribute to be Custom.

For example, for a Batch block, you would configure the Batch Mode to be
Custom.

5 Edit the procedure name to create a new custom block procedure and edit the
text of the procedure to obtain the desired behavior.

6 Edit the attribute that defines the procedure name in the properties dialog of
the block.
104

Customizing Specific Blocks
For example, here is a custom Batch block that specifies a custom Batch Procedure
Name:
105

Customizing the Batch Block

Customizing the Batch Procedure

You can customize the procedure the Batch block uses to pass the batch or
container by editing this attribute on the Block tab of the properties dialog when
the Batch Mode is Custom:

The procedures you can customize are:

Determining Whether the Block Needs All Inputs

By default, if the Batch block has multiple input paths, it requires all inputs to
arrive at the block before processing. You can configure this attribute on the
Customize tab:

Customizing the Batch Reset Procedure

The default Reset Procedure of the Batch block is bpr-reset-batch, which you can
customize on the Customize tab of the properties dialog:

Attribute Description

Threshold Procedure
Name

Specifies the procedure name that determines
when the Batch block passes the batch. The
default value depends on the Batch Mode.

Attribute Description

Needs All Inputs Specifies whether the block requires inputs on
all input paths before processing. By default, the
block does not require all inputs.
106

Customizing Specific Blocks
Customizing How the Block Computes Duration in Interval Mode

When Batch Mode is Interval, the Batch block computes its duration based on the
mode-specific attributes, Start Time, End Time, Period, and Days. You can
customize the bpr-batch-interval-duration procedure, which the Batch block uses
to compute its duration when the Batch Mode is Interval:

Customizing the Branch Block

Customizing the Branch Procedure

You can customize the procedure the Branch block uses to branch work objects by
editing this attribute on the Block tab of the properties dialog when the Branch
Mode is Custom:

The procedures you can customize are:

Attribute Description

Branch procedure
Name

Specifies the procedure name that determines
how the block branches work objects. The
default value depends on the Branch Mode.
107

Customizing the Copy Block

Copying Item-List Attributes and Their Items

By default, the Copy block copies the contents of all attributes that contain item
lists and the items within those lists. You can customize this behavior by editing
these attributes on the Block tab of the properties dialog:

Adding to Associations

You can customize the procedure the Copy block uses when it adds a copy to an
existing association by editing this procedure:

The block calls this procedure when the Add to Associations option is on.

Customizing the Reconcile Block

Customizing the Match Procedure

You can customize the procedure the Reconcile block uses to determine how it
reconciles objects by editing this attribute on the Block tab of the properties dialog
when the Reconcile Mode is Custom:

Attribute Description

Copy Item Lists A truth-value that specifies whether the block
should copy the contents of attributes of work
objects that contain item-lists. The default
value is true.

Copy Item List Items A truth-value that specifies whether the block
should copy the items within item-list
attributes of work objects. The default value is
true.

Attribute Description

Match Procedure
Name

Determines the criteria the block uses to
reconcile objects. The default value is
bpr-match-by-association, which reconciles
objects, based on an association name.
108

Customizing Specific Blocks
You can edit the following procedure to customize how the block reconciles work:

Customizing the Reconcile Reset Procedure

The default Reset Procedure Name of the Reconcile block is bpr-reset-reconcile,
which you can customize on the Customize tab of the properties dialog:

Customizing the Remove Block

Customizing What the Remove Block Considers “Empty”

You can customize what the Remove blocks considers “empty” by editing the
following attribute on the Block tab of the properties dialog:

Attribute Description

Empty Breakpoint Determines when the container object is
considered empty and, thus, when the Remove
block passes the container to the empty output
path. The block looks at the contents of the
item-list of the container when the container
first arrives at the block. By default, if the item-
list contains a single object upon arrival, it
passes the input object to the empty container
output path. The default is 1.
109

Customizing the Retrieve Block

Customizing the Retrieve Procedure

You can customize the procedure the Retrieve block uses to retrieve work objects
from a pool or database by editing this attribute on the Block tab of the properties
dialog when the Retrieve Mode is Custom:

The procedures you can customize are:

Attribute Description

Lookup Procedure
Name

A procedure that determines how the block
retrieves objects from a pool. The default
value depends on the value of the Retrieve
Mode.
110

Customizing Specific Blocks
Copying Item-List Attributes and Their Items

By default, when the Retrieve Copy option is on, the Retrieve block copies the
contents of all attributes that contain item lists and the items within those lists.
You can customize this behavior by editing these attributes on the Block tab of the
properties dialog:

Customizing the Retrieve Reset Procedure

The default reset-procedure-name of the Reconcile block is bpr-retrieve-reset,
which you can customize:

Customizing the Source Block

You can customize the procedure the Source block uses to generate work objects
by editing this attribute on the Block tab of the properties dialog when the Source
Mode is Custom:

Attribute Description

Copy Item Lists A truth-value that specifies whether the block
should copy the contents of attributes of work
objects that contain item-lists. The default
value is true.

Copy Item List Items A truth-value that specifies whether the block
should copy the items within item-list
attributes of work objects. The default value is
true.

Attribute Description

Source Procedure
Name

Specifies the procedure the block uses to
determine how it generates work objects. The
default value depends on the Source Mode.
111

The procedures you can customize are:

Customizing the Source Reset Procedure

The default Reset Procedure Name of the Reconcile block is bpr-source-reset,
which you can customize:

Customizing the Store Block

Customizing the Store Procedure

You can customize the procedure the Store Block uses to store objects in a pool by
editing this attribute on the Block tab of the properties dialog when the Store
Mode is Custom:

Attribute Description

Store Procedure
Name

Specifies the procedure that determines how
and where the block stores objects. The default
value depends on the Store Mode.
112

Customizing Specific Blocks
The procedures you can customize are:

For example, you could use the subworkspace of the pool to create a scatter plot
of the objects, whose position in the chart is a function of its cycle time.
Alternatively, you could use the subworkspace of the pool as an inventory by
positioning each item vertically according to its type.

Customizing Database Mode

You can customize various aspects of database store mode by editing these
attributes on the Database tab of the properties dialog when the Store Mode is
Database:

Attribute Description

Database Input
Object Name

When you have a SQL query that include an
expression in square brackets to be evaluated,
specifies the name by which you reference the
input work object. The default value is the
symbol InputObject, which is case insensitive.
113

Customizing the Store Reset Procedure

The default Reset Procedure Name of the Reconcile block is bpr-store-reset,
which you can customize on the Customize tab of the properties dialog:

Customizing the Yield Block

Customizing the Yield Procedure

You can customize the procedure the Yield Block uses to compute the yield by
editing this attribute on the Block tab of the properties dialog when the Yield
Mode is Custom:

Database Quote
String

Specifies the character that ReThink uses to
specify a text string. The default value is ‘,
which is the default character that the Microsoft
Access database uses to specify a text string.
You can change this default character
depending on the database you are accessing.

Database Quote In
Text String

Specifies the character that ReThink uses to
specify an embedded quote character within a
text string. The default value is ", which is the
default character that the Microsoft Access
database uses to specify an embedded quote
character in a text string. You can change this
default character depending on the database
you are accessing.

Attribute Description

Attribute Description

Yield Procedure
Name

Specifies the procedure that determines how the
block computes the yield when Yield Mode is
Custom.
114

Common Customization Attributes of Blocks
The procedure you can customize is:

The bpr-yield::bpr-stop-method describes the default behavior of the Yield block
for each of the yield modes.

Common Customization Attributes of Blocks
The common customization attributes of blocks, which are visible on the
Customize tab, are:

Attribute Description

GFR UUID The internal identification number of the object.

Notes The current status of the block.

Name A symbol that represents the name of the block.
ReThink uses the Label attribute rather than the
names attribute to identify blocks, to avoid
naming conflicts.

Reset Procedure The procedure name the block uses when the
simulation is reset. The default value for most
blocks is bpr-reset-block. See also Customizing
Specific Blocks.

Delete Procedure The procedure name the block uses when it is
deleted. The default value is bpr-delete-block.

Update Procedure The procedure name the block uses when the
Update button is clicked. The default value is
bpr-update-block.

Animation Subtable Subobject that specifies the default colors the
block uses when it is in an active, inactive, or
error state. The default value is an instance of a
bpr-block-animation-subtable. This attribute is
available through the table only.
115

For additional information, see:

• G2 Reference Manual

• Customizing the Default Behavior of Blocks or Instruments.

• Editing Subobjects.

Common Attributes of Animation Subtable

The customization attributes of the animation-subtable of a block, which are
visible on the Animation tab, are:

For additional information, see the references in this table:

Duration Subtable Subobject that specifies the timing parameters
of the block, and computes summary timing
statistics. The default value is an instance of a
bpr-default-block-duration-subtable. This
attribute is available through the table only.

Cost Subtable Subobject that specifies how the block computes
cost statistics. The default value is an instance of
a bpr-block-cost-subtable. This attribute is
available through the table only.

Attribute Description

Attribute Description

Reset Procedure
Name

The name of the procedure the block uses to
reset the animation subtable when the
simulation resets. The default value is
bpr-animate-block.

Procedure Name The default animation procedure for the block.
The default value is bpr-animate-block.

For information on... See...

Customizing the
default colors of a
block

Editing the Default Colors of a Block.

Customizing the
default animation
procedure of a block

Creating Custom Icon Regions.
116

Common Customization Attributes of Blocks
Common Attributes of Duration Subtable

The customization attributes of the duration-subtable of a block, which are visible
on the Duration tab, are:

For an example of how to customize the duration of a block, see Customizing the
Duration of a Block.

Common Attributes of Cost Subtable

The customization attributes of the cost-subtable of a block, which are visible on
the Cost tab, are:

Attribute Description

Distribution Mode Specifies how the block computes duration.
When the value is Custom, you configure the
Procedure Name to be the name of a custom
procedure for computing block duration.

For details, see Customizing the Duration of a
Block.

Procedure Name The name of the procedure the block uses to
compute duration. The default value for all
blocks except the Source block is bpr-random-
normal-duration. The default value for the
Source block is bpr-random-exponential-
duration.

In the duration-subtable, this attribute is called
procedure-name.

Duration Reset
Procedure Name

The name of the procedure the block uses to
reset the duration subtable when the simulation
resets. The default value is bpr-block-duration-
subtable-reset.

Attribute Description

Cost Reset Procedure
Name

The name of the procedure the block uses to
reset the cost subtable when the simulation
resets. The default value is bpr-reset-cost-
subtable.

Cost Procedure Name The name of the procedure the block uses to
compute Total Cost. The default value is
bpr-block-cost.
117

118

4

Customizing
Instruments
Provides specific descriptions and examples of how to customize instruments.

Introduction 119

Creating a Custom Feed 120

Creating a Custom Probe 123

Common Customization Attributes of Instruments 126

Customizing Specific Instruments 127

Introduction
You can create custom feeds and probes that have the behavior you want. For
example, you might want a custom feed that supplies a random value to an
attribute, or you might want a custom probe that signals an alarm when the value
of an attribute exceeds a threshold.

You base the definition of the custom instrument on the definition of one of the
existing instruments.

You can customize the following aspects of any instrument:

• Its characteristics by adding new attributes.

• Its behavior by modifying its default stop method.

• Its appearance when it changes from active to inactive by modifying its
default colors and animation procedure.

• The behavior of the connection when you move the attached instrument.
119

To perform any of these customizations, first create a subclass of the instrument
you want to customize, then customize the subclass.

For general information on how to customize, see How to Customize ReThink.

Creating a Custom Feed
Suppose you want to create a custom feed that supplies a random value to the
attribute of a work object.

Note This behavior is available in Modeler mode by using a Change feed with the
Change Mode attribute set to Random.

For general information on how to customize the behavior of instruments, see
Customizing the Default Behavior of Blocks or Instruments.

To create a custom feed that supplies a random value to a work object:

1 Create a subclass of bpr-change-feed, the feed subclass most similar to that of
the custom feed.

2 Edit the class-name to be a name that reflects the behavior of the new custom
feed, such as randomize-feed.

3 Because the feed will store a random value between a given minimum value
and a given maximum value, define two class-specific attributes to store these
values.

The class definition for the custom feed looks like this:

The class-specific attributes appear on the User Tab of the custom feed.

4 To define the behavior of the custom feed, copy the bpr-change-feed::
bpr-stop-method method, the default stop method of the Change feed, and
modify the method, as follows:

a Edit the first argument to the method to refer to the custom subclass.

b Delete the existing body and local names of the method.

c Add a local name for the random value.

Attribute Value

class-name randomize-feed

direct-superior-classes bpr-change-feed

class-specific-attributes minimum-allowable;
maximum-allowable
120

Creating a Custom Feed
d Edit the custom portion of the method to compute a random value based
on the maximum-allowable and minimum-allowable of the custom feed.

e Conclude that the destination-attribute-name of the Randomize feed is the
random value the method computes.

Here is the class definition and stop method for the randomize-feed, which
computes a random value and then concludes a value for the destination-attribute-
name of the feed:

To test the custom feed:

1 Create a model with a Source block, Task block, and Sink block.

2 Create a new class of work object with an attribute, such as weight, which the
feed updates.

The class definition looks like this:

3 Configure the path type of the output path of the Source block to be box.

4 Attach an instance of randomize-feed to the Task block.

5 On the User tab of the custom feed, configure the Minimum Allowable and
Maximum Allowable attributes.

Attribute Value

class-name box

direct-superior-classes bpr-object

class-specific-attributes weight
121

6 Assign weight as the value of the Destination Attribute Name of the feed.

7 Configure the Apply to Class Name attribute of the feed to be box.

When the simulation runs, the feed updates the weight attribute of the work object
by using a random value between the maximum-value and minimum-value of the
feed.

Here is a running model that shows how the Randomize Feed updates the weight
attribute of the work object:

box
122

Creating a Custom Probe
Creating a Custom Probe
Suppose you want to create a custom probe that signals an alarm when a value
exceeds a threshold. When the value exceeds a threshold, the probe pauses the
simulation, displays a message to the user, and displays an arrow next to the
probe. This probe is similar to a Sample Value probe because it must obtain a
value from the model.

For general information on how to customize the behavior of instruments, see
Customizing the Default Behavior of Blocks or Instruments.

To create a probe that signals an alarm when a value exceeds a threshold:

1 Create a subclass of bpr-sample-probe, the probe subclass most similar to the
custom probe.

2 Edit the class-name to be a name that reflects the behavior of the new probe,
such as alarm-probe.

3 Assign the probe an attribute to store a threshold value.

The class definition looks like this:

The class-specific attribute appears on the User tab of the properties dialog for
the custom probe.

4 To define the behavior of the custom probe, copy the bpr-sample-probe::
bpr-stop-method, the default stop method for a Sample Value probe, and
modify the method:

a Edit the first argument to the method to refer to the custom subclass.

b Delete the existing body of the method.

c Add a call next method statement to call the default stop method for the
Sample Value probe at the beginning of the custom method.

d Edit the procedure to check if the probed value exceeds the threshold
value, and, if so, pause the simulation, display a message to the user, and
display an arrow next to the probe.

Attribute Value

class-name alarm-probe

direct-superior-classes bpr-sample-probe

class-specific-attributes threshold initially is 1.0
123

Tip To pause the simulation and display an arrow next to the probe, use the ReThink
API procedures bpr-pause and bpr-indicate.

For information on these procedures, see Application Programmer’s Interface.

Here is the class definitions and stop method for the alarm-probe:

Here is the text of the bpr-stop-method:

bpr-stop-method (alarm-probe: class alarm-probe, scenario: class bpr-scenario,
object: class object, ui-client-item: class ui-client-item)
begin
 call next method;
 if the sample-value of alarm-probe > the threshold of alarm-probe then
 begin
 call bpr-pause(scenario);
 inform the operator for the next 10 seconds that "Alarm: [the sample-value of

alarm-probe] > [the threshold of alarm-probe]";
 start bpr-indicate(alarm-probe, "Alarm", ui-client-item);
 end;
end

To test the custom probe:

1 Create a model with a Source block, Task block, and Sink block.

2 Attach the alarm probe to the Task block.

You can test the alarm by probing the current-activities of the Task block. The
alarm signals when the number of concurrent activities of the block exceeds
the threshold.

3 On the User tab of the custom probe, configure the Threshold, for example, 3.

4 Configure the Source Attribute Name of the probe to be current-activities.

5 Configure the Apply to Class Name attribute of the probe to be bpr-task.

6 Configure the duration of the Source block to be 1 hour.

7 Configure the duration of the Task block to be 3 hours.

8 Run the simulation.
124

Creating a Custom Probe
When the value the probe receives exceeds the threshold, the simulation pauses,
and ReThink notifies the operator and displays an arrow next to the probe:
125

Common Customization Attributes of
Instruments

The common customization attributes of instruments, which are visible on the
Customize tab, are:

For additional information, see:

• G2 Reference Manual.

• Customizing the Default Behavior of Blocks or Instruments.

• Editing Subobjects

Attribute Description

GFR UUID The internal identification number of the object.

Notes The current status of the instrument.

Name A symbol that represents the internal name of
the instrument. ReThink uses the label attribute
rather than the names attribute to identify
instruments and avoid naming conflicts
between ReThink models.

Reset Procedure The procedure name the instrument uses when
the simulation is reset. The default value is
bpr-reset-instrument.

Animation Subtable Subobject that specifies the default colors the
instrument uses when it is in an active, inactive,
or error state. The default value is an instance of
a bpr-probe-animation-subtable or a bpr-feed-
animation-subtable, depending on the type of
instrument. This attribute is available through
the table only.
126

Customizing Specific Instruments
Common Attributes of Animation Subtable

The customization attribute of the animation-subtable of an instrument, which is
visible on the Animation tab, is:

Customizing the default colors of instruments is similar to customizing the
default colors of blocks. Similarly, customizing the animation procedure of
instruments is similar to customizing the animation procedure of blocks.

For additional information, see:

• Editing the Default Colors of a Block.

• Creating Custom Icon Regions.

Common Attributes of Instrument Paths

By default, the paths connected to instruments automatically reconfigure
themselves whenever you move the connected instrument. You can customize
this behavior by editing this attribute:

Customizing Specific Instruments
You can customize specific instrument procedures to change the behavior of a
custom instrument. ReThink provides these specific default procedures on the
various subworkspaces of the Instrument Definitions workspace.

When you work with instruments in Developer mode, you can also customize
certain attributes to change the default behavior of specific instruments.

The following sections describe the specific behavior you can customize for each
relevant instrument. Only certain instruments have specific behaviors you can
customize.

Attribute Description

Procedure Name The default animation procedure for the
instrument. The default value is bpr-animate-
instrument.

Attribute Description

Redraw Connection Set to false to cause instrument paths
not to reconfigure themselves along the
object when you move the connected
instrument. The default value is true.
127

For information about customizing specific instrument procedures, see
Customizing the Default Behavior of Blocks or Instruments.

Customizing the Change Feed

You can customize the procedure the Change feed uses to generate new values by
configuring this attribute on the Instrument tab of the properties dialog when the
Change Mode is Custom:

The procedures you can customize are:

Customizing the Copy Attributes Feed and Probe

The Copy Attributes feed and Copy Attributes probe define the list-of-operations
attribute, which specifies a sequence of operations to perform between the source
and target objects. The bpr-copy-attribute-feed::bpr-stop-method and bpr-copy-
attribute-probe::bpr-stop-method refer to this attribute when they call the bpr-
copy-list-of-attributes API to copy the attributes. For details, see bpr-copy-list-of-
attributes.

Attribute Description

Change Procedure
Name

Specifies the procedure the instrument uses to
generate values. The default value depends
on the Source Mode.
128

5

Customizing Resources
and Work Objects
Provides specific descriptions and examples of how to customize resources, work
objects, Resource Managers, and surrogates.

Introduction 129

Customizing Resource Animation 130

Customizing How Resource Managers Allocate Resources 135

Common Customization Attributes of Resources and Work Objects 141

Customization Attributes of Resource Managers 144

Introduction
You can customize resources, work objects, resource managers, and surrogates
by:

• Customizing the colors and animation behavior of resources when they are
allocated and deallocated.

• Customizing the colors and animation behavior of work objects when they are
active and inactive.

• Customizing how a resource or work object computes duration and
utilization statistics.

• Customizing how a resource or work object computes total cost.

• Customizing how resource managers choose which resources to allocate to an
activity.
129

• Customizing how resource managers determine which block allocates a
resource first when multiple blocks are waiting for the same resource.

• Animating the colors and animation behaviors of a surrogate.

To customize a resource or work object, create a subclass of the object you are
customizing and customize the subclass. To customize a resource manager or
surrogate, customize a particular instance in the model.

Customizing Resource Animation
You can change the colors, appearance, and behavior of resources when the
model allocates and deallocates them by customizing resource animation. To do
this, you can either:

• Animate the flashing region of the icon.

• Add new regions to the icon and edit the animation procedure to animate the
new icon regions.

Note ReThink generates an error when you run the model if the resource you are
customizing does not have an icon region named flashing.

You use the same techniques to customize the animation of work objects and
surrogates.

For example, you might want to move truck resources around a map when the
model allocates them, or you might want to animate a person resource or a
machine resource when it is active.

For information on... See...

General information on how to
customize

How to Customize ReThink.

Customizing the duration and cost
of resources

Editing Subobjects.

Customizing the duration,
animation, and cost of work
objects

Customizing Subobjects of Work
Objects.

Summary information on how to
customize Resource Managers

Customizing Resource Managers.

Summary information on how to
customize surrogates

Customizing Surrogates.
130

Customizing Resource Animation
To animate a custom icon region of a resource:

• Define appropriate icon regions.

• Copy bpr-animate-object, the default procedure that controls resource
animation.

• Edit the procedure to change the region colors as desired.

• Specify the custom animation procedure in the resource’s animation subtable.

For additional information, see the references in this table:

For example, suppose you have a worker resource whose icon is a face. The face
has a smile region and a frown region. The worker is happy when it is working
and unhappy when it is idle. Therefore, you want the smile region to become
visible when the resource is allocated, and you want the frown region to become
visible when the resource is deallocated.

To animate a resource when it is allocated:

1 Define a subclass of bpr-resource named worker with class-specific attributes,
as follows:

mouth-color initially is black

2 Edit the icon to create the following icon regions:

a A region named smile that contains a representation of a smile.

Its color should be the inactive-color of your resource, for example, gold.

For information on... See...

How to edit the
default animation
procedure of a
resource

Displaying Default Subobject
Procedures.

How to edit the
default colors of a
resource

Editing Color Attributes of
Animation Subobjects.

How to add new
color attributes to the
animation subtable of
a resource

Creating New Attributes for
Subobjects

Customizing the
animation of work
objects

Customizing Subobjects of Work
Objects
131

b A region named frown that contains a representation of a frown.

Its color should be any color, such as black, that is visible when the region
sits on top of a region that contains the active-color of the resource.

c A region named flashing that contains a solid, round face.

Its color should be the inactive-color of your resource.

For details, see the ReThink User’s Guide.

3 Copy the bpr-animate-object procedure from the Object Animation Subtable
workspace, which is the default procedure-name of the bpr-object-animation-
subtable.

4 Edit the name of the procedure to be animate-worker.

5 Edit the procedure to animate the frown and smile regions, using the
appropriate colors.

6 Edit the procedure-name in the animation-subtable of the worker resource to
refer to the custom animation procedure, animate-worker.

7 Edit the active-color and inactive-color in the animation-subtable of the worker
resource to be the default color of the smile icon region, for example, gold.

8 Edit the label attribute of the resource to be worker.

Here is a simple model that shows how the worker resource looks when it is idle
and when it is allocated:

Resource is idle. Resource is allocated.
132

Customizing Resource Animation
Here is the class definition and icon of the worker resource:
133

Here is the animate-worker procedure:

animate-worker(m: class bpr-object-animation-subtable)
object: class bpr-object;
ws: class kb-workspace;
begin
 object = the item superior to m;

 if the error of object exists then
 change the flashing icon-color of object to the error-color of m
 else
 if the total-starts of object > the total-stops of object then
 begin
 change the smile icon-color of object to the mouth-color of object;
 change the frown icon-color of object to the inactive-color of m;
 end
 else
 begin
 change the flashing icon-color of object to the inactive-color of m;
 change the smile icon-color of object to the inactive-color of m;
 change the frown icon-color of object to the mouth-color of object;
 end;

 if the workspace ws of object exists then
 call g2-work-on-drawing(ws);
end
134

Customizing How Resource Managers Allocate Resources
Here is the Animation tab of the properties dialog of the worker resource:

Customizing How Resource Managers Allocate
Resources

A Resource Manager allocates and deallocates resources to and from an activity.
Each time a block processes a work object, the attached manager:

• Checks to see if a resource is available; if so, it allocates a resource for the
duration of the activity, according to the value of the Choose Resource
attribute on the Allocate tab of the Resource Manager dialog.

• If no resources are available, queues the block for processing when a resource
becomes available.

• If more than one block requires the same resource, keeps track of the blocks
that are waiting for the resources and allocates the resource to each block that
is waiting, according to the value of the Choose Manager attribute on the
Deallocate tab of the Resource Manager dialog.
135

Resource Managers specify the following two attributes and default values to
determine how it allocates and deallocates resources:

These two attributes have different values, depending on the values of the Choose
Resource and Choose Manager attributes of the Resource Manager:

Attribute Default Value Description

Choose Resource bpr-random-available-
resource

Checks to see if there are any idle
resources:

• If so, it allocates the first
available resource to the activity
and randomly reorders the
resources.

• If not, it returns the symbol
none.

In the table, this attribute is called
choose-resource-procedure-name.

Choose Manager bpr-random-waiting-
block

Queues the activities that are
waiting for resources by inserting
the block in the blocks-waiting list
of the pool. The procedure then
allocates a resource to the first block
in the list and randomly reorders
the waiting blocks.

In the table, this attribute is called
sequence-block-procedure-name.

Attribute Possible Values Descriptions

Choose
Resource

bpr-lowest-cost-
available-resource

Chooses the resource with the lowest
total-cost.

bpr-lowest-utilization-
available-resource

Chooses the resource with the lowest
average-utilization.

bpr-highest-priority-
available-resource

Chooses the resource whose resource-
priority is the smallest number.

bpr-lowest-priority-
available-resource

Chooses the resource whose resource-
priority is the largest number.
136

Customizing How Resource Managers Allocate Resources
For a summary of how to customize Resource Managers, see Customizing
Resource Managers.

Choosing the Resource that has Worked the
Shortest Amount of Time

You might want to choose the resource that has worked the shortest amount of
time or the resource that has been allocated the fewest number times.

To customize which resource the model allocates to an activity, you customize the
choose-resource-procedure-name of the Resource Manager. The following
example shows how to customize the procedure that chooses resources from a
pool to choose the resource whose total-work-time is the smallest number.

To choose the resource that has been worked the shortest amount of time:

1 Copy the bpr-lowest-cost-available-resource procedure from the Resource
Methods workspace.

This procedure is the procedure that is most similar to the one you will create.

2 Edit the procedure name to be bpr-most-idle-resource.

The procedure takes three arguments: the activity that requires the resource, a
usage object, and a resource.

A usage object is an interim object that computes how much of a resource is
used by an activity. The usage object is related to the Resource Manager in the
same way that an activity is related to a block.

3 Edit the procedure to choose the resource whose total-work-time is the
smallest number.

Here is the custom procedure:

bpr-most-idle-resource(activity:class bpr-activity, usage:class bpr-usage,
resource:class bpr-object) = (item-or-value)

{
 This procedure selects the available resource with the smallest
 total-work-time. It recursively searches of of the resources in the

Choose
Manager

bpr-highest-priority-
waiting-block

Allocates a resource to the block in the
blocks-waiting list whose manager-
priority is the largest number.

bpr-lowest-priority-
waiting-block

Allocates a resource to the block in the
blocks-waiting list whose manager-
priority is the smallest number.

Attribute Possible Values Descriptions
137

 resource pool, returning the available resource in the resource pool
 with the smallest work time.
}

current-resource:class bpr-object;
temp-resource:item-or-value;
temp-work-time:quantity;
most-idle-resource:item-or-value = the symbol none;
smallest-work-time:quantity;

begin
 {
 If the resource is a resource pool, the search all of the members in the
 resource pool.
 }
 if the subworkspace of resource exists then begin
 for current-resource = each bpr-object in the members of resource do
 temp-resource = call bpr-most-idle-resource(activity, usage, current-resource);
 {
 If the resource pool has an available resource, compare its
 total-work-time with the smallest work time so far.
 }
 if temp-resource is a bpr-object then begin
 temp-work-time = the total-work-time of the duration-subtable of temp-resource;
 {
 If this is the first available resource or if the total-work-time is smaller,
 make this the most-idle-resource.
 }
 if most-idle-resource is not a bpr-object or temp-work-time < smallest-work-time
then begin
 most-idle-resource = temp-resource;
 smallest-work-time = temp-work-time;
 end;
 end;
 end
 end else begin
 {
 If the resource is not a resource pool, simply return the resource if it
 is available.
 }
 if the maximum-utilization of the duration-subtable of resource - the current-utilization
of the duration-subtable of resource >= the utilization of usage then
 most-idle-resource = resource;
 end;

 return (most-idle-resource);
end
138

Customizing How Resource Managers Allocate Resources
To test the model:

1 Create a simple model with a Source block, a Task block, and a Sink block.

2 Create a resource pool with three resources.

3 Create a Resource Manager from the resource pool and attach it to the Task
block.

4 Display the properties dialog for the Resource Manager, click the Allocate tab,
and configure Choose Resource to be bpr-most-idle-resource.

5 Configure a duration of 1 hour for the Source block.

6 Configure a duration of 1 hour with a deviation of 15 minutes for the Task
block.

7 Run the model in Step mode and observe how the Resource Manager allocates
resources.

The manager chooses the available resource that has the shortest total work time
for each activity.

This figure shows a running model, where the Task block allocates resources from
a pool of three resources:
139

This figure shows the result of taking one more step in the simulation. ReThink
allocates the resources with the smallest total-work-time, which is the last resource
in the pool.

Here is the Allocate tab of the properties dialog for the Resource Manager that
chooses resources from the pool, using the custom procedure:

ReThink allocates the resources with
the smallest total-work-time.
140

Common Customization Attributes of Resources and Work Objects
Common Customization Attributes of
Resources and Work Objects

A resource is a subclass of a work object, which means they define some of the
same attributes. The common G2 and ReThink customization attributes of
resources and work objects, which are visible on the Customize tab, are:

Attribute Description

GFR UUID The internal identification number of the object.

Notes The current status of the resource or work
object.

Names The internal name of the resource or work
object. ReThink uses the label attribute rather
than the names attribute to identify objects and
avoid naming conflicts.

Reset Procedure The procedure name the object uses when the
simulation is reset. The default value is
bpr-reset-object.

Delete Procedure The procedure name the object uses when it is
deleted. The default value is bpr-delete-object.

Update Procedure The procedure name the object uses when the
Update button on the object is clicked. The
default value is bpr-update-object.

Animation Subtable Subobject that specifies the default colors the
resource or work object uses when it is in an
active, inactive, or error state. The default value
is an instance of a bpr-object-animation-
subtable. This attribute is only visible through
the table.
141

For additional information, see:

• G2 Reference Manual.

• Editing Subobjects.

Attributes of Animation Subtable

The customization attributes of the animation-subtable of a resource or work
object, which are visible on the Animation tab, are:

Customizing the colors of a resource is similar to customizing the colors of a
block. To customize the colors or animation of a work object, you must create a
custom subclass of the animation subobject and edit the subobject.

For additional information, see the references in this table:

Duration Subtable Subobject that specifies the timing and
utilization parameters of the resource or work
object, and computes summary timing and
utilization statistics. The default value is an
instance of a bpr-object-duration-subtable. This
attribute is only visible through the table.

Cost Subtable Subobject that specifies how the resource or
work object computes cost statistics. The default
value is an instance of a bpr-object-cost-
subtable. This attribute is only visible through
the table.

Attribute Description

Attribute Description

Procedure Name The default animation procedure for the
resource or work object. The default value is
bpr-animate-object.

For information on... See...

How to customize the
default colors of a
block

Editing the Default Colors of a Block.
142

Common Customization Attributes of Resources and Work Objects
Attributes of Duration Subtable

The customization attributes of the duration-subtable of a resource or work object,
which are visible on the Utilization tab, are:

For general information on how to customize subobjects, see Editing Subobjects.

Attributes of Cost Subtable

The customization attributes of the cost-subtable of a resource or work object,
which are visible on the Cost tab, are:

How to customize the
default animation
procedure of a
resource

Customizing Resource Animation.

Customizing sub-
objects of work
objects

Customizing Subobjects of Work
Objects.

For information on... See...

Attribute Description

Reset Procedure The name of the procedure the resource or work
object uses to reset the duration subtable when
the simulation resets. The default value is
bpr-reset-object-duration-subtable.

Duration Procedure The name of the procedure the resource or work
object uses to compute duration and utilization.
The default value is bpr-object-duration.

Attribute Description

Cost Reset Procedure
Name

The name of the procedure the resource or work
object uses to reset the cost subtable when the
simulation resets. The default value is bpr-reset-
object-cost-subtable.

Cost Procedure Name The name of the procedure the resource or work
object uses to compute total-cost. The default
value is bpr-object-cost.
143

Customization Attributes of Resource
Managers

The customization attributes of Resource Managers, which are visible in the
dialog, are:

Attribute Description

Choose Resource

(Allocate tab)

Attribute that defines the procedure that
determines how the Resource Manager
allocates and deallocates resources. The default
value is bpr-random-available-resource.

The attribute is called choose-resource-
procedure-name in the table.

Update Utilization
Procedure Name

(Allocate tab)

Attribute that defines the procedure that
determines how the Resource Manager
configures utilization. ReThink automatically
calls this procedure each time a block is
evaluated and before resources are allocated.
Therefore, this procedure may update the
Utilization attribute of the Resource Manager,
based on the context of the model or based on
information from the work object. For example,
the work object may specify the number of
resources required to perform a task. This
procedure would copy the utilization from an
attribute of the work object to the Utilization
attribute of the Resource Manager.

The signature of this procedure is:

my-custom-update-resource-utilization
(block: class bpr-task, manager: class
bpr-resource-manager,
activity: class bpr-activity)
144

Customization Attributes of Resource Managers
Choose Manager

(Deallocate tab)

Attribute that defines the procedure that
determines how the Resource Manager
allocates blocks waiting for resources when
multiple blocks allocate resources from the
same pool. The Resource Manager update the
Blocks-waiting attribute of the resource,
according to the procedure. The default value is
bpr-random-waiting-block.

The attribute is called sequence-block-
procedure-name in the table.

Animation Subtable Subobject that specifies the default colors the
resource or manager uses when it is in an active,
inactive, or error state. The default value is an
instance of a bpr-resource-manager-animation-
subtable. This attribute is only available in the
table.

Duration Subtable Subobject that specifies the timing and
utilization parameters of the resource or
manager, and computes summary timing and
utilization statistics. The default value is an
instance of a bpr-resource-manager-duration-
subtable. This attribute is only available in the
table.

Cost Subtable Subobject that specifies how the resource or
work object computes cost statistics. The default
value is an instance of a bpr-resource-manager-
cost-subtable. This attribute is only available in
the table.

Attribute Description
145

Attributes of Resource Manager Paths

By default, the paths connected to Resource Managers automatically reconfigure
themselves whenever you move the connected manager along the block. You can
customize this behavior by editing this attribute:

Attribute Description

Redraw Connection Set to false to cause Resource Manager
paths not to reconfigure themselves
along the block when you move the
connected manager. The default value is
true.
146

6

Customizing the
User Interface
Describes how to customize various aspects of the user interface.

Introduction 147

Customizing Properties Dialogs 148

Customizing the ReThink Toolbox 149

Introduction
ReThink allows you to customize these aspects of the user interface:

• Properties dialogs for blocks, instruments, resources, and work objects.

• ReThink toolbox to add custom tabs with custom objects.

ReThink does not currently support customization of these aspects of the user
interface:

• Top-level menu bar.

• Toolbars other than the ReThink toolbox.

For more elaborate customizations or to build a completely new user interface to
provide a custom product identification ReThink includes extensive libraries to
build G2-based user interfaces. For details, see the G2 Developers’ Utilities, as
well as G2 custom dialogs.
147

Customizing Properties Dialogs
When subclassing ReThink blocks, instruments, resources, and work objects, you
often define class-specific attributes. By default, ReThink creates a new tab on the
properties dialog named User tab on which it places all the class-specific
attributes of the object.

ReThink determines the appropriate user interface control for displaying and
editing the attribute value, based on the attribute type. For example, if the
attribute is a numeric value it will display an editable field with spin buttons to
increment or decrement the value. If the attribute is a color, ReThink creates a
dropdown list of all available colors.

When subclassing ReThink blocks, instruments, resources, and work objects, you
can control the organization of the information to place the attributes on different
tabs.

You can only add and modify attributes on user-defined tabs; you cannot add
attributes to the default tabs or modify the controls used for the default attributes.

To create custom tabs and to control the order of the attributes that appear on
each tab, implement the following method:

bpr-dialog-add-user-tabs
(o: class subclass, dlg: class gdu-dialog-definition, tab-control-id: symbol,
tab-names: sequence, win: class g2-window)
-> tabs: sequence

where:

• subclass is the class of the object for which you're redefining the user tabs.

• dlg is the associated gdu-dialog-definition.

• tab-names is a sequence of texts of tabs added so far for the object.

• tabs is the sequence of texts of tabs to be added.

For example, if you have a custom block with a custom attribute, and you don’t
want any user tabs to appear, create a method with the signature above that
simply returns tab-names.
148

Customizing the ReThink Toolbox
If you have a custom block with two custom attributes, and you want to show
each on a separate tab, create a method such as this:

bpr-dialog-add-user-tabs (o: class custom-task, Dlg: class gdu-dialog-definition,
tab-control-id:symbol, tab-names:sequence, Win: class g2-window) = (sequence)

x:integer = 0;
y:integer = 1;
w:integer = 1;
h:integer = 1;
tab-label:text;
begin

tab-label = call gdu-localize-text(dlg, the symbol bpr-custom-user-tab,
"Custom User", win);

tab-names = insert-at-end(tab-names, tab-label);
call gdu-add-text-box-control(dlg, the symbol custom-counter, the symbol

custom-counter, true, true, false, x, y, w, h, tab-control-id, tab-label);
tab-label = call gdu-localize-text(dlg, the symbol bpr-custom-user-tab2,

"Custom User 2", win);
tab-names = insert-at-end(tab-names, tab-label);
call gdu-add-text-box-control(dlg, the symbol custom-counter2, the symbol

custom-counter2, true, true, false, x, y, w, h, tab-control-id, tab-label);
return tab-names;

end

Note that you could split up individual tabs in separate methods or procedures if
you desire. For more examples, see the gdu-demo.kb located in the g2i\examples
directory of your ReThink installation.

Customizing the ReThink Toolbox
When subclassing ReThink blocks, instruments, and resources, you might want to
make the custom objects available on the ReThink toolbox. You can add any
number of user tabs with custom objects.

To customize the ReThink toolbox, you create a Palette Workspace object, place
custom objects on its detail, and configure the objects on the detail for palette
behavior.

Note You must configure the Palette Workspace detail label and objects in the server,
using Administrator mode.
149

To customize the ReThink toolbox:

1 Choose View > Toolbox - ReThink and display the Tools palette:

2 Create a Palette Workspace and place it on your customization workspace.

3 Configure the names attribute to be a unique name.

4 Configure the palette-name to be the name of the palette to appear in the
ReThink toolbox.

5 Configure the palette-group to be "ReThink".

ReThink uses a default icon for the palette button at the bottom of the toolbox,
which looks like this:

You can specify the name of any class or any of the GMS built-in icons. For
details, see G2 Menu System User’s Guide.

6 Configure the icon-name, as desired.

7 Choose show detail on the palette tab.

8 Click the label of the detail and edit it to be the palette label.

9 Place objects on the detail and enable GFR palette behavior for each object,
as follows:

a Enable GFR palette behavior by choosing Tools > GFR Palette Behavior.

a Place custom objects on the detail to make them appear on the custom tab.

b For each object, choose add palette behavior.

c Once you have added all the objects you want, disable GFR Palette
Behavior.

Palette Workspace
150

Customizing the ReThink Toolbox
10 Switch back to Developer mode.

11 Restart G2 and display the ReThink toolbox.

The custom tab appears in the toolbox with the custom objects. By default, the
label for the custom object is the class name. To customize the label, configure the
GRF text resource. For details, see the G2 Foundation Resources User’s Guide.

Here is an example that shows a custom tab on the ReThink toolbar:

Here is the palette workspace object and its properties dialog:

Custom palette
button
151

Here is the detail of the palette workspace with the custom object:
152

7

Customizing Menus
Provides specific descriptions and examples of how to customize ReThink menus
and palettes.

Introduction 153

Displaying the Menu Bars Layout Workspace 154

Creating an Applications Menu 155

Adding a Custom Palette to the Palettes Menu 162

Saving the Menus Module 165

Introduction
You can customize the ReThink menus to provide menu choices relevant to your
ReThink application. For example, you can:

• Add menu choices to the Application menu that display the workspaces of
your ReThink models.

• Extend the Palettes menu to include custom palettes of ReThink objects.

You use the G2 Menu System (GMS) module and the G2 Foundation Resources
(GFR) module to customize the ReThink menus.
153

Displaying the Menu Bars Layout Workspace
You customize ReThink’s menus by configuring objects on the Menu Bars Layout
workspace.

To display the Menu Bars Layout workspace:

1 Choose Workspace > Get Workspace and choose MENUS.

2 Click the menu-bars-layout icon to display its subworkspace.

The two vertical connection posts represent extensions to ReThink’s proprietary
top-level menu choices: File and Palettes. The horizontal connection posts allow
you to add menu choices to the top-level menu. The objects on this workspace are
part of the G2 Menu System (GMS), a module of G2.

The Menu Bar Layout workspace also contains a resource icon with flags, which
you use to extend the menus. This object, and the object on its subworkspace, are
part of the G2 Foundation Resources (GFR), a module of G2.

Here are the Menus and Menu Bar Layout workspaces:

GFR text

GMS menu connection
posts for extending the
Palettes menu.

GMS connection post
for adding top-level
menu choices.

resource
154

Creating an Applications Menu
The Menus and the Menu Bar Layout workspaces are assigned to the menus
module. You make all customizations to the ReThink menu structure by editing
the objects on the Menu Bar Layout workspace and saving these edits to the
menus module.

The proprietary ReThink menus are defined on a different workspace, named the
Menu System Layout workspace, which is assigned to the bpr proprietary
module.

Note Do not customize the menu layout on the Menu System Layout workspace;
otherwise, your customizations will be overwritten the next time you install a
new version of ReThink. You can extend the existing menus by customizing the
Menu Bar Layout workspace in the menus module.

Creating an Applications Menu
You can create an Applications menu choice to the top-level menu, with menu
choices that display the workspaces of your ReThink models. To do this:

• Create an Applications menu choice.

• Add menu templates to the diagram for each workspace you wish to display.

• Create named workspaces for each workspace you wish to display.

• Edit the local text resource object to include symbol definitions for the top-
level menu choice and each new menu choice.

• Edit the definition of the menu templates to display the desired workspace.

To customize the menu, you use the GMS and GFR modules of G2. These
modules are included in the ReThink module hierarchy.

For more information on these modules, see the G2 Menu System User’s Guide and
the G2 Foundation Resources User’s Guide.

Creating an Applications Menu

You can create a top-level menu choice called the Applications menu, which
allows you to display top-level workspaces of your ReThink models. To do this,
you add a Cascade Menu Template to the Menu Bar Layout workspace.
155

To add an Applications menu choice to the top menu bar:

1 In Developer mode, click the connection between the bpr-application-cp and
bpr-other-cp connection posts to display the path menu and choose delete to
delete the connection.

2 Choose Workspace > Get Workspace and choose GMS-TOP-LEVEL to display
the GMS top level workspace.

This workspace contains a number of GMS items for customizing menus.

3 Clone a Cascade Menu Template from the palette and place it between the
two unconnected connection posts.

The Cascade Menu Template is the top-left item under Cascading Entries:

4 Drag the stubs from each connection posts into the Cascade Menu Template.

5 Click the none label on the menu template to display the G2 Text Editor.

6 Edit the label of the menu template to be applications and drag the label above
the menu template box so it is visible.

You have now added the top-level Applications menu choice to the menu bar.
The Menu Bar Layout workspace looks like this:

Cascade Menu Template
156

Creating an Applications Menu
Adding a Menu Choice that Displays Your Model

Now you will add a menu choice that displays the top-level workspace of your
ReThink application. GMS supplies a special purpose menu template item, called
a Show Workspace Template, which automatically displays a named workspace.
You will use a Show Workspace Template to add a custom menu choice to the
Applications menu.

To add a menu choice that displays your model workspace:

1 Display the GMS top-level workspace and clone a Show Workspace Template
and position it under the Applications menu template item.

The Show Workspace Template is the middle item under Leaf Entries:

Now you need to add stubs to the Show Menu Template so you can connect it
to the Cascade Menu Template above.

2 Click the border of the Show Menu Template that you just cloned to display
its menu and choose add submenu stubs.

GMS creates yellow stubs on all four sides of the menu template.

3 Connect the stub leading out of the top of the Show Menu Template to the
bottom of the Cascade Menu Template.

4 Display the Show Menu Template menu again and choose remove stubs to
remove the unconnected stubs.

5 Click the none label, enter the text label for the menu template, and drag the
label to below the template item.

For example, if you are going to use this menu choice to display an order
fulfillment model, the label might be order-fulfillment.

6 Hide the GMS top-level workspace.
157

The Menu Bar Workspace looks like this:

Creating a Named Workspace to Display

Once you have added the menu template item to the diagram, the next step is to
create the named workspace to display.

Note If you already have a model workspace to display, skip this step.

To create a named workspace to display:

1 Choose Workspace > New Workspace.

2 Choose KB Workspace > Name to specify the name of the workspace to
display.

For example, if your ReThink application is a model of an order fulfillment
process, you might name the workspace order-fulfillment-top-level. This
workspace is assigned to the models module.

For demonstration purposes, you might want to display the top-level workspace
of the Order Fulfillment model that ships with ReThink. To do this, merge the
orderful.kb file from the ReThink directory into the current model. The name of
the top-level Order Fulfillment model workspace is order-fulfillment-tutorial.

Tip Named workspaces appear in the list of available workspaces when you choose
Workspace > Get Workspace.

Show Workspace
Template
158

Creating an Applications Menu
Using a Local Text Resource to Create Your Custom
Menu Choice

Now you must edit the GFR local text resource on the subworkspace of the
custom-menu-system-resources text resource group on the Menu Bar Layout
workspace. To identify each new menu choice, you create a unique symbol and
associated text string that identifies the menu choice and specifies the menu
choice text. You edit the local text resource on the subworkspace of the text
resource group by using an external editor.

To display the local text resource for the custom menus:

 Click the icon labeled CUSTOM-MENU-SYSTEM-RESOURCES and choose
go to subworkspace.

ReThink displays the Custom Menu System Resources workspace, which
contains a GFR local text resource named english. This is the local text resource in
which you add symbols and associated strings for each custom menu choice you
create.

Here is the custom-menu-system-resources object and its subworkspace, which
contains a local text resource named english:

To edit this local text resource, you use any text editor.
159

To edit the GFR local text resource:

1 Click the local text resource labeled english on the Custom Menu System
Resources workspace and choose table.

2 Edit the Gfr-file-location attribute to specify the complete pathname of a new
text file, including double quotes.

3 Choose write resource to file on the local text resource to write the file.

4 Go to any editor and edit the file by adding a line of text for each new menu
choice that you have created.

The line of text contains a symbol name, followed by a comma, followed by a
string that is the menu choice to display.

In the previous example, you added the Applications menu choice to the top
menu bar, and you added a submenu choice that displays the order
fulfillment model workspace. The text lines you would enter would look as
follows, where applications is the label for the Applications menu, and order-
fulfillment is the label for the submenu choice.

applications, "Applications"
order-fulfillment, "Order Fulfillment Model"

5 Save the text file.

6 Choose load text resource on the local text resource to use the edited text
resource file.

7 Choose make resource permanent to make the edits permanent.

Here is a external text resource file with the Applications menu and the custom
menu choice added. Application and order-fulfillment are both unique symbols,
and "Applications" and "Order Fulfillment Model" are the text strings to display in
the menu:

CUSTOM-MENU-SYSTEM-RESOURCES
4.1 Rev. 0
ENGLISH
applications, "Applications"
order-fulfillment, "Order Fulfillment Model"

Editing the Workspace Templates

Now that you have created a local text resource for the custom menu choices, you
can edit the definition of the Cascade Workspace Template and the Show
Workspace Template on the Menu Bar Layout workspace to refer to the text
resource group of which they are a part.
160

Creating an Applications Menu
To edit the cascade workspace template to refer to the text resource group:

1 Click the Cascade Workspace Template item on the Menu Bar Layout
workspace and choose table.

2 Edit the Gms-text-resource-group attribute to be the name of the GFR text
resource group on the Menu Bar Layout workspace.

In this example, the name of this resource group is custom-menu-system-
resources.

Notice that the Gms-label attribute is the label you entered in a previous step,
applications.

For the Show Workspace Template, you must also specify the name of the
workspace to display.

To edit the show workspace template to show your model workspace:

1 Click the Show Workspace Template item on the Menu Bar Layout workspace
and choose table.

2 Edit the Gms-text-resource-group attribute to be the name of the GFR text
resource group on the Menu Bar Layout workspace.

In this example, the name of this resource group is custom-menu-system-
resources.

Notice that the Gms-label attribute is the label you entered in a previous step,
order-fulfillment.

3 Edit the Gms-display-target attribute to be the name of the workspace to
display.

In this example, the name of the workspace is order-fulfillment-top-level.
Alternatively, to display the top-level workspace of the Order Fulfillment
model that ships with ReThink, specify the workspace named order-
fulfillment-tutorial. Be sure that you have merged the file orderful.kb into the
current model first.

To see the effects of the changes to the menus:

 Restart G2.

The Application menu choice is now available on the top menu bar, and the Order
Fulfillment Model menu choice is available as a submenu.

To test the custom menu choices:

1 Click the Application menu.

The Order Fulfillment Model menu choice is available. This menu choice is
the text string you entered in the text file associated with the GFR local text
resource, which corresponds to the GMS label you entered in the Show
Workspace Template item.
161

2 Click the Order Fulfillment Model menu choice.

ReThink displays the Order Fulfillment Top Level workspace:

Note By default, GMS displays the workspace in its previous location on the G2
window. To specify the default location of the workspace, edit the attributes
Gms-window-symbolic-location and Gms-workspace-symbolic-location in the
Show Workspace Template item.

Adding a Custom Palette to the Palettes Menu
In the ReThink User’s Guide, you learned how to create a named workspace of
commonly used icons from the ReThink icon library, which you can display by
using Workspace > Get Workspace. You might want to create a palette of custom
icons and objects, which you access from a menu choice on the Palettes menu.

Caution Do not add custom objects to the default ReThink palettes; otherwise, your KB
will be inconsistently modularized, and your customizations will be deleted the
next time you install a new version of ReThink.
162

Adding a Custom Palette to the Palettes Menu
This example shows how you add a custom palette named Custom Blocks to the
Palettes menu.

For the detailed steps of each major step, see Creating an Applications Menu on
page 155.

To add a menu choice that displays a custom palette:

1 Clone a Show Workspace Template item from the GMS Top Level workspace
and connect it below the bpr-palettes-cp connection post on the Menu Bar
Layout workspace.

For the steps of how to do this, see Adding a Menu Choice that Displays Your
Model on page 157.

2 Create a named workspace that contains your custom blocks.

For the steps of how to do this, see Creating a Named Workspace to Display
on page 158.

3 Replace the workspace name with a workspace label that hides the workspace
when you select it in Modeler mode.

To replace the label:

a Choose hide name on the title.

b Go into Administrator mode.

c Clone a workspace label from any ReThink subworkspace, for example,
the Scenario Control Panel.

d Edit the title.

e Choose change min size on the label to adjust its width, as needed.

4 Assign the workspace to the customiz module by editing the Module-
assignments attribute in the table for the workspace.

5 Add a unique symbol and text string that identifies the Custom Blocks menu
choice to the text file associated with the GFR local text resource named
english, then load the text resource and make the resource permanent.

For example, you might add the following line to the text file:

custom-blocks-palette, Custom Blocks

For more information, see Using a Local Text Resource to Create Your Custom
Menu Choice on page 159.

6 Edit the Show Workspace Template item to display the local text resource you
just added.

For the steps of how to do this, see Editing the Workspace Templates on
page 160.
163

7 Specify the default location of the workspace to be the top-left corner of the G2
window:

a Edit the Gms-window-symbolic-location attribute of the Show Workspace
Template item to be top-left-corner.

b Edit the Gms-workspace-symbolic-location attribute of the Show
Workspace Template item to be top-left-corner.

8 Restart G2.

Here is the Menu Bar Layout workspace with the custom blocks menu choice
added to the Palettes menu, as well as the order fulfillment menu choice added to
the Application menu:

Custom palette menu choice.
164

Saving the Menus Module
Here is the top-level menu bar with the custom menu choice added and a sample
Custom Blocks palette with some custom ReThink objects:

Saving the Menus Module
Once you have finished customizing the ReThink menus, you save the menus
module in the menus.kb modularized KB file. The next time you load ReThink,
ReThink automatically loads the menu customizations because the menus
module is a required module in the module hierarchy.

If you install a new version of ReThink, you need to copy your customized menus
module to the new ReThink directory, overwriting the default module in the new
version of the software. For information on how to do this, see the ReThink
Installation Guide.

To save your customizations to the menus module:

1 Choose File > Save As.

2 To save the menus module, save the models module and click the Save
Module, Including All Required Modules option on, or save just the menus
module to the file menus.kb.
165

166

Part III
ReThink Internals
Chapter 8: Block Processing

Describes the internal processing that ReThink performs when a work object arrives at a
block.

Chapter 9: Application Programmer’s Interface

Defines the ReThink API, which are the internal procedures you can call when you customize
the behavior of ReThink objects.

Chapter 10: Relations

Describes the relations that ReThink creates and deletes during processing.
167

168

8

Block Processing
Describes the internal processing that ReThink performs when a work object
arrives at a block.

Introduction 169

The High-Level View 170

The Planning Phase 171

The Start Activity Phase 173

The Stop Activity Phase 175

Block Processing Summary 177

Working with Time 178

Introduction
When any block evaluates within a model, ReThink executes a number of
procedures. These procedures establish relations between objects, compute cost
and duration statistics for objects, animate objects, allocate and deallocate
resources, and activate instruments. When you customize ReThink, it is essential
to understand the order in which these events take place so you can write your
methods and procedures accordingly.
169

The High-Level View
Block processing consists of three basic phases:

• The planning phase

• The start activity phase

• The stop activity phase

Whenever a block receives a work object, ReThink must first determine whether
the block is ready to run by checking to see if the current number of activities is
below the maximum that the block specifies.

If the block is ready, it enters a planning phase for the activity. It checks to see if
all the required inputs are available for the block. If the block has an attached
Resource Manager, it checks to see if all the required resources are available for
the activity. If the resources are not available, the block waits for the resources to
become available.

When all the required resources are available, ReThink creates an activity object
for the block and schedules the start event for the activity. Every activity has a
start event, which invokes the procedures that process the block. The block
executes the start event at the same simulation time at which it schedules the
event.

When the activity’s start event completes, it schedules the activity’s stop event to
occur after the duration. The stop event invokes the actions that conclude the
processing of the block. After the stop event concludes, the work object moves to
the next block in the simulation, which activates the processing of that block.

ReThink sorts and processes the start and stop events, based on their timestamps
and their priorities. Within each second of simulation time, ReThink sorts the
events by priority, then processes events with the lowest priority first. Note that
the scheduling of events is not limited to the start and stop activities of blocks; it is
also used to update reports, calculate metrics, and schedule parameter changes.

The internal priorities that ReThink uses for various events are:

Priority Event

5 The end of the statistic period for a Statistic
probe.

10 Attribute changes scheduled from a Scenario
Manager or an Attribute Change Event Report.

100 Start and stop phase events of blocks.
170

The Planning Phase
If the scenario is online mode and your model uses the online blocks, the
processing order of work objects cannot be deterministic. ReThink always
processes work objects, using the event timestamp and priority. However, the
online blocks use asynchronous calls to remote procedures or execute SQL
statements. ReThink does not wait until the remote process or database has
completed the task to process other work objects. Instead, it spawns a new
processing thread in the remote program, remote ReThink model, or database,
and continues processing other work objects. Once the processing thread
completes, the work object is propagated through the ReThink diagram. Thus,
because the execution time of the processing thread or database SQL statement
may vary, the order in which work objects are processed may vary as well.

Note that if the scenario is in online mode, the duration specified in a block is
ignored, that is, the work-time and elapsed-time of the activity are set to 0. The
exception is the Delay block and the Source block, including any subclass. When
using ReThink as a workflow engine, block durations are not relevant because the
timing of events is driven by other constraints. You use the Delay block to
implement specific operational process delays. The Time Period of a Statistics
probe and the Update Interval of a report are still based on scenario time in online
mode.

The Planning Phase
When a block receives an input, ReThink calls an internal API procedure that
causes the block to evaluate.

Check to See If the Block Is Ready

First, the block evaluator checks to see if the block is ready to create an activity. It
does this by checking to see if the maximum-activities attribute of the block has a
value. If it has a value, the block checks to see whether the value exceeds the
current-activities for the block. If so, the block waits; otherwise, it proceeds to the
next step.

500 Update events associated with Update Trigger
tools and probes.

9999 Update events that automatically update
reports when the Update Mode of the report is
set to Simulation Time.

Priority Event
171

Create An Activity

If the block is ready, the block evaluator creates an activity. The block then relates
the activity to the work object and the work object to the path by creating these
relations:

• A a-bpr-input-of-activity relation between the work object and the activity.

• A a-bpr-object-of-input-path relation between the work object and the path
leading out of the block.

For information on relations, see Relations.

Synchronize Inputs

Every block has a needs-all-input attribute, which is visible in Developer mode on
the Customization tab. If needs-all inputs is true, the block requires inputs on all
of its input paths before it can execute. For example, a Task block synchronizes its
inputs, which means it must wait until all of its inputs have arrived before it
processes them.

If needs-all-inputs is false, the block can evaluate whenever it receives a value on
any of its input paths. For example, a Merge block, which merges separate
streams of work, can process its inputs whenever it receives them.

Once an activity is created, ReThink checks to see if it has all of its required
inputs. If so, the block proceeds to the next step; otherwise, it waits to receive all
of its inputs.

Establish a Relation Between the Activity and the
Block

Once the required inputs to the block are available, ReThink establishes a
a-bpr-activity-of-block relation between the activity and the block.

Update Block Statistics

ReThink sets the time of the start event of the activity to the current time of the
scenario.

ReThink then updates the following summary statistics related to the duration,
cost, and status of the block:

• Duration statistics: average-in-process, last-update-time, total-work-time,
total-elapsed-time

• Cost statistics: total-cost

• Status statistics: total-starts, total-stops, current-activities
172

The Start Activity Phase
Pause the Simulation

If there is a break point set for the block, that is, if the user has chosen the
set break menu choice, ReThink pauses the simulation at this stage.

Request Resources

ReThink is ready to request resources for the block. It does this by following these
steps:

• The block checks to see if there is an attached Resource Manager.

• If so, it creates a usage object and establishes the following relations:

– A a-bpr-usage-of-activity relation between the usage object and the
activity.

– A a-bpr-usage-of-resource-manager relation between the usage object
and the Resource Manager.

– A a-bpr-usage-of-object relation between the usage object and the
resource.

• The block then finds the first resource in the pool with sufficient availability,
randomly reordering the resources as it chooses.

• When the block finds a resource or set of resources with sufficient availability
for each resource manager attached to the block, it proceeds to the next step.

Schedule the Start Activity

ReThink now schedules the start activity phase.

Dequeue the Work Objects

At the end of the planning phase, ReThink removes the input work objects from
the path queue.

The Start Activity Phase
Each activity has a start-event, which is a subobject of bpr-event, which defines
the following attributes:

Attribute Description

time The start time of the event.

priority The priority of the event.
173

To implement the behavior of any event, you implement the following method:

bpr-event-method
(event: class bpr- event, scenario: class bpr-scenario,
ui-client-item: class ui-client-item)

For details, see bpr-schedule-an-event.

Compute Block Duration and Costs

The block calls the procedure defined by the procedure-name of the block’s
duration-subtable attribute, which calculates duration statistics.

The block then calls the procedure-name of the block’s cost-subtable attribute,
which calculates cost statistics.

Start Input Work Objects

The block now “starts” each input work object, which does the following:

• Calls the procedure-name of the cost-subtable attribute of each work object,
which calculates cost statistics.

• Calls the procedure-name of the duration-subtable of each work object, which
computes all the summary duration statistics.

• Increments the total-starts and current-activities attributes of each work object.

• Calls the procedure-name of the animation-subtable of each work object,
which animates the input work objects.

Start Allocated Resources

The block also “starts” each allocated resource, which performs the same actions
as starting the input work objects, as described in Start Input Work Objects.

Evaluate Instruments When Phase is Start

If the Phase attribute of any attached instrument is start, the block evaluates the
bpr-stop-method of the instrument, which happens before the attached block
applies its duration to the simulation.

Update Block Statistics

The block again updates its activity, duration, and cost statistics, as described in
Update Block Statistics.
174

The Stop Activity Phase
Animate the Block

ReThink animates the block by calling the procedure-name of the block’s
animation-subtable.

Execute the Block’s Start Method

Now, the block calls the bpr-start-method. This is a method you can customize for
a block, as described in Customizing the Start Method.

Schedule the Stop Activity

ReThink now sets the time of the stop event of the activity to the current
simulation time plus the elapsed time of the activity. It then schedules the stop-
event of the activity.

The Stop Activity Phase
Each activity has a bpr-stop-event, which is a subobject of bpr-event, which
defines the following attributes:

To implement the behavior of any event, you implement the following method:

bpr-event-method
(event: class bpr-event, scenario: class bpr-scenario,
ui-client-item: class ui-client-item)

For details, see bpr-schedule-an-event.

Execute the Block’s Stop Method

The block executes the bpr-stop-method, which typically defines its specific
behavior. You can customize this method to refer to any of the attributes or
relations computed up to this point.

Update Block Statistics

The block again updates various statistics, as described in Update Block Statistics.

Attribute Description

time The start time of the event.

priority The priority of the event.
175

Stop Allocated Resources

Now that the block is finished processing, it “stops” the resources. Stopping a
resource does the following:

• Deallocates the resource and signals the availability of the resource for use
elsewhere in the model.

• Recomputes costs, utilization, and duration of the resource.

• Increments total-stops and decrements current-activities of the resource.

• Animates the resource to its idle state.

Stop the Work Objects

Similar to stopping the resources, the block now stops the work objects. If there is
no output path whose type matches the class of the work object, the block deletes
the work object.

Update Total Cost of Work Objects

The block computes the new total cost of the work object by adding the cost of the
activity.

Evaluate Instruments When Phase is Stop

If the Phase attribute of any attached instrument is Stop, the block evaluates the
bpr-stop-method of the instrument, which happens after the attached block
applies its duration to the simulation.

Send the Work Object Downstream

The block now sends the work object to the downstream block for processing.
This triggers the planning phase of the downstream block, which repeats this
entire process.

Clean Up

The block updates its statistics once more, and it deletes the activity and usage
objects.
176

Block Processing Summary
Block Processing Summary
The following time-line summarizes the steps in each internal procedure. The
arrows represent the direction of execution and the looping that occurs.

block evaluator

• Checks to see if block
is ready

• Creates an activity

• Synchronizes inputs

• Creates relations
between work object
and activity, and work
object and path

• Updates the block
statistics

• Pauses for breaks

• Requests resources

• Schedules the start
activity

• Dequeues work object

Upstream block places work object
on the block’s input path or in the

start activity

• Calls block duration
procedure

• Calls block cost
procedure

• Starts work objects
and computes
statistics

• Starts allocated
resources and
computes statistics

• Evaluates instruments
when Phase is Start

• Updates the block
statistics

• Animates block

• Executes the block’s
internal start
procedure

• Schedules the stop
activity

stop activity

• Executes the block’s
internal stop
procedure

• Updates the block
statistics

• Stops allocated
resources and
computes statistics

• Stops input work
objects and deletes
untransferred inputs

• Computes work
object’s total cost

• Evaluates
instruments when
Phase is Stop

• Sets outputs onto
paths

• Calls downstream
block evaluator

• Updates the block
statistics

• Deletes activity and
breaks relations
177

Working with Time
ReThink allows you simulate multiple independent models simultaneously. To
support this capability, each model must have its own Scenario tool, which in
turn has its own simulation clock. Typically, these simulation clocks are separate
from and independent of G2's real-time clock. This section briefly describes G2's
real-time clock, ReThink’s simulation clocks, and the relationship between them.

G2’s Real-Time Clock

G2's real-time clock represents a number of seconds since a fixed time, typically
the time at which the G2 session was started. So, the G2 expression the current
time returns the number of seconds since the fixed reference time. For example,
evaluating the expression the current time one and a half minutes after starting
the G2 session returns the value 90. G2 keeps its clock synchronized with time in
the real world, so 10 seconds later the expression returns 100. G2 provides
numerous expressions and functions for displaying and manipulating time. For
example:

• The G2 expression the current time as an interval displays the time in the more
readable format of 1 minute and 30 seconds.

• The G2 expression the current time as a time stamp displays the time as a
fixed time, such as, 1 Jan 2006 12:01:30 a.m., assuming the G2 session was
started on January 1, 2006 at 12 AM.

See Task Scheduling in the G2 Reference Manual for a more detailed explanation of
the G2 real-time clock.

ReThink’s Simulation Clocks

ReThink simulation clocks work in a similar but independent way to G2’s real-
time clock by maintaining a relative time from a fixed reference time. In ReThink,
the fixed reference time is the start time of the scenario, which is January 1, 2006 at
12:00 AM, by default. The scenario time attribute represents the number of
seconds of simulation time that has elapsed since the start time. So after 1 hour of
simulation time, on January 1, 2006 at 1 AM, the time of the scenario will be 3600.

It is important to note that this is simulated time, which has no relation to time in
the real world. Running the simulation for that hour might have taken only 10
seconds in the real world. Thus, a discrete-event simulation models only
significant changes that take place in the process being modeled. For example, the
simulation clock advances when blocks start and stop, and then jumps forward in
time between those events.

Working with Time
Referencing Real Time in ReThink

Because G2 provides very useful expressions and functions for displaying and
manipulating time, ReThink scenarios maintain an additional attribute that you
can use with these expressions and functions. This attribute is called g2-time and
represents the number of simulated seconds since the G2 fixed reference time.
This allows you to evaluate expressions such as the g2-time of scenario as a time
stamp, which is the definition of the clock-time attribute of a scenario that appears
as an attribute display showing the current simulation time.

Thus, the g2-time attribute is an alternative representation of the simulation time,
or time of the scenario, which is convenient for use with G2's time expressions and
functions.
179

180

9

Application
Programmer’s Interface
Defines the ReThink API, which are the internal procedures you can call when you
customize the behavior of ReThink objects.

Introduction 182

bpr-activate-scenario 184

bpr-block-evaluator 186

bpr-clone-object 187

bpr-continue 190

bpr-copy-list-of-attributes 192

bpr-create-object 195

bpr-delete-object 197

bpr-dequeue-object 198

bpr-detach-input 200

bpr-get-item-for-label 202

bpr-get-item-for-label-class-scenario 203

bpr-handle-event-error 204

bpr-indicate 205

bpr-indicate-connection 207

bpr-lookup-by-id 209

bpr-message-to-all-users 211

bpr-pause 212

bpr-post 213

bpr-post-path 215
181

bpr-remove-from-pool 217

bpr-reset 219

bpr-schedule-an-event 221

bpr-update-pool 225

bpr-updated-attributes 227

Introduction
ReThink calls a number of internal procedures to define the behavior of objects.
These procedures define the ReThink application programmer’s interface, or
API. When you customize ReThink, you can call any of these internal procedures
to define custom behaviors for blocks and other ReThink classes. This chapter
describes these procedures and provides a signature, description, and example of
each.

Note ReThink supports only the API procedures that appear in this chapter; it does not
support any other internal procedures the ReThink methods and procedures
might call.

The categories of APIs are:

Scenarios

bpr-activate-scenario
bpr-continue
bpr-pause
bpr-reset

Blocks

bpr-block-evaluator
bpr-detach-input
182

Introduction
Work Objects

bpr-clone-object
bpr-create-object
bpr-delete-object

Paths

bpr-dequeue-object
bpr-detach-input
bpr-post
bpr-post-path

Resources

bpr-remove-from-pool
bpr-update-pool

Miscellaneous

bpr-copy-list-of-attributes
bpr-get-item-for-label
bpr-get-item-for-label-class-scenario
bpr-handle-event-error
bpr-indicate
bpr-indicate-connection
bpr-lookup-by-id
bpr-message-to-all-users
bpr-schedule-an-event
bpr-updated-attributes
183

bpr-activate-scenario
Activates a scenario.

Synopsis

bpr-activate-scenario
(scenario: class bpr-scenario, workspace: class kb-workspace,

ui-client-item: class ui-client-item)

Description

This procedure activates scenario and changes its color to indicate an active state.
Calling this procedure is equivalent to activating a scenario manually by choosing
the activate scenario menu choice, except that it does not display the
subworkspace of the scenario. A scenario must be active to run its associated
model.

Example

The following custom procedure activates the scenario upon the current
workspace, resets the scenario, evaluates the Source block on the current
workspace, and continues running the scenario. You can activate the procedure
with an action button.

For information about the other internal procedures in this example, see bpr-reset,
bpr-continue, and bpr-block-evaluator.

Argument Description

scenario The scenario associated with the model.

workspace The top-level workspace associated with
scenario.

ui-client-item A ui-client-item, which is the superior class of:

• A g2-window, which is a window in the
current G2 session or a remote connection to
G2 through a Telewindows client.

• A ui-client-session, which is a remote
connection to G2.
184

bpr-activate-scenario
Here is the text of the start-model procedure:

start-model (scenario: class bpr-scenario, client: class ui-client-item)
begin

call bpr-activate-scenario(scenario, the workspace of scenario, client);
call bpr-reset (scenario);
allow other processing;
call bpr-block-evaluator (the bpr-source upon this workspace);
call bpr-continue(scenario);

end
185

bpr-block-evaluator
Starts a block by evaluating it.

Synopsis

bpr-block-evaluator
(block: class bpr-block)

Description

This procedure initiates the execution of a block. Evaluating a block is the first
step in the block processing described in Block Processing.

Calling this procedure for a Source block is similar to choosing the start menu
choice from a Source block’s menu, except that the start menu choice also calls
bpr-continue.

For a detailed description of all of the actions this procedure performs, see The
Planning Phase.

Example

You can create an action button that calls this procedure. The action button starts
the blocks named leads and continues running the current scenario. You
configure the name of the block on the Customize tab.

For information about the other internal procedure in this example, see bpr-
continue.

Argument Description

block The block to evaluate.
186

bpr-clone-object
bpr-clone-object
Creates a copy of a bpr-object.

Synopsis

bpr-clone-object
(original: class bpr-object)
-> copy: class bpr-object

bpr-clone-object
(original: class bpr-object, copy-item-lists: truth-value,

copy-item-list-items: truth-value)
-> copy: class bpr-object

Description

This procedure creates a copy of original, including its attribute values, by cloning
original. When the Copy block receives an input, bpr-copy::bpr-stop-method, the
method that defines the behavior of the Copy block, calls this API to output as
many copies as it has output paths, as the example below shows.

The first version of the procedure clones the contents of attributes that are item-
lists and the items within those lists. It also clones associations of the object.

If you do not want the procedure to clone the contents of attributes that are item-
lists or the items within those lists, use the second version of the procedure.

Argument Description

original The bpr-object to be cloned.

copy-item-lists True if you want to clone the
contents of attributes that are
item-lists, false otherwise.

copy-item-list-items True if you want to clone the
items within item-lists, false
otherwise.

Return Value Description

copy The bpr-object that is the copy.
187

Example

The following method is bpr-copy::bpr-stop-method, the method that defines the
behavior of the Copy block. The method loops through the block’s output paths.
For every bpr-object input to the block, the method calls bpr-clone-object to create
a copy of the bpr-object for each output path. The method then posts the original
and the copied objects to the output paths.

For information about the other API in this example, see bpr-post-path.

bpr-stop-method (copy: class bpr-copy, activity: class bpr-activity, ui-client-item: class
ui-client-item)
original-path: class bpr-path;
object, object-copy: class bpr-object;
path:class bpr-path;
i: integer = 0;
association: class bpr-association;
counter: integer;
begin
{
This method defines the default stop behavior for the Copy block. The Copy block
creates copies of each input object for each output path. It puts the orginal input
objects on either the specified original output path or the first of the output paths.
}
 if the bpr-path that is the-bpr-path-of-reference the original-output-path of copy

exists then
 original-path = the bpr-path that is the-bpr-path-of-reference the

original-output-path of copy;

 for path = each bpr-path connected at an output of copy
 do
 for object = each bpr-object that is a-bpr-input-of-activity activity
 do
 if (original-path exists and path is not the same object as original-path) or

(original-path does not exist and i > 0) then
 begin
 for counter = 1 to the output-count of copy
 do
 object-copy = call bpr-clone-object(object, the copy-item-lists of

copy, the copy-item-list-items of copy);
 call bpr-stop-object-activity(object-copy, activity, the bpr-scenario that is

the-bpr-scenario-of-object object-copy, the symbol none);

{

188

bpr-clone-object
If the add to associations attribute of the copy block is true, then add the object copy
to the associations of the object.
}
 if the add-to-associations of copy then
 call bpr-add-to-associations(object, object-copy);

 call bpr-post-path(activity, object-copy, path);
 end;
 end
 else
 call bpr-post-path(activity, object, path);
 end;

 i = i + 1;
 end;
end
189

bpr-continue
Continues a simulation after it has been paused or initially starts a simulation
running.

Synopsis

bpr-continue
(scenario: class bpr-scenario)

Description

This procedure sets the state of scenario to running and changes its color to
indicate a running state. Calling this procedure is equivalent to continuing a
simulation manually by clicking the Continue button on the subworkspace of
scenario.

Example

The following custom procedure activates the scenario upon the current
workspace, resets the scenario, evaluates the Source block on the current
workspace, and continues running the scenario. You activate the procedure with
an action button.

For information about the other internal procedures in this example, see bpr-reset,
bpr-activate-scenario, and bpr-block-evaluator.

Argument Description

scenario The scenario associated with the model.
190

bpr-continue
Here is the text of the start-model procedure:

start-model (scenario: class bpr-scenario, client: class ui-client-item)
begin

call bpr-activate-scenario(scenario, the workspace of scenario, client);
call bpr-reset (scenario);
allow other processing;
call bpr-block-evaluator (the bpr-source upon this workspace);
call bpr-continue(scenario);

end
191

bpr-copy-list-of-attributes
This procedure copies attributes from a source object to a destination object.

Synopsis

bpr-copy-list-of-attributes
(source-item: class item, destination-item: class item,
operations: sequence, copy-all-attributes: truth-value,
add-to-associations: truth-value, scenario: item-or-value,
ui-client-item: class ui-client-item)

Description

This procedure is a general-purpose routine for copying attributes from a source
item to a destination item. The “copy” operation can be a simple copy of values or
a more complex operation that adds, subtracts, multiplies, divides, averages, or
applies any user-defined function. Valid operations are: =, +, -, *, *, AVG, and
FCT, as a text string.

Argument Description

source-item The class name of the source item.

destination-item The class name of the destination item.

operations A sequence describing the list of operations to
perform. See Description.

copy-all-attributes Whether to copy all common user-defined
attributes from the source to the destination
object.

add-to-associations Whether to add the source object to the list of
associations of the destination object.

scenario The scenario associated with the item.

ui-client-item A ui-client-item, which is the superior class of:

• A g2-window, which is a window in the
current G2 session or a remote connection to
G2 through a Telewindows client.

• A ui-client-session, which is a remote
connection to G2.
192

bpr-copy-list-of-attributes
Optionally, this procedure can copy all user-defined attributes from the source to
the destination object before doing any operations, and it can copy the source
object to the associations of the destination object.

These operations always store the result in the destination attribute of the
destination-item. FCT allows you to specify a more complex mathematical
operation, such as adding several attributes from the source and destination items
and storing the result in the destination object by specifying a user-defined G2
function to call.

The user-defined function can refer to attributes of the source-item, destination-
item, or scenario by using this syntax:

the attribute of source-item

the attribute of destination-item

the attribute of scenario

The format of the sequence describing the operations is:

sequence (
structure

(SOURCE-ATTRIBUTE-NAME: the symbol attribute-name,
SOURCE-SUBTABLE-NAME: the symbol subtable-name,
DESTINATION-ATTRIBUTE-NAME: the symbol attribute-name,
DESTINATION-SUBTABLE-NAME: the symbol subtable-name,
OPERATION: "operator",
FCT: "function”)
193

Example

Here is the bpr-stop-method of the bpr-task block, which calls bpr-copy-list-of-
attributes to copy attributes from the source to the destination work object:

bpr-stop-method (task: class bpr-task, activity:class bpr-activity, ui-client-item: class
ui-client-item)
object: class bpr-object;
path:class bpr-path;
counter: integer;
source-object: class bpr-object;
scenario: class bpr-scenario;
begin
{
This method defines the default stop behavior for the Task block. The Task block first
tries to post all of its input objects on the output paths of the block. It then creates and
posts objects for all of the output paths which do not already have an input object
posted. Optionally it may also copy attributes from the input object to newly created
output objects.
}
 for object = each bpr-object that is a-bpr-input-of-activity activity
 do
 source-object = object;
 call bpr-post(activity, object);
 end;

 for path = each bpr-path connected at an output of task
 do
 if not(there exists a bpr-object that is a-bpr-object-of-output-path path) then
 begin
 for counter = 1 to the output-count of task
 do
 object = call bpr-create-object(activity, task, the type of path);

 { Copy attributes ito new type if applicable }
 if the copy-attributes of task and source-object exists and the bpr-scenario

scenario that is the-bpr-scenario-of-activity activity exists then begin

 call bpr-copy-list-of-attributes (source-object, object,
the list-of-operations of task, the copy-all-attributes of task,
true, scenario, ui-client-item);

 end;

 call bpr-post-path(activity, object, path);
 end;
 end;
 end;
end
194

bpr-create-object
bpr-create-object
Creates a new work object.

Synopsis

bpr-create-object
(activity: class bpr-activity, creator: class object, object-type: symbol)
-> object: class bpr-object

Description

This procedure creates a new bpr-object, whose class-name matches object-type.
It creates a new class definition for the bpr-object, if none exists, and it places the
new definition on the workspace near creator. The class-name for the new class
definition is object-type, and the direct-superior-classes is bpr-object.

The default bpr-stop-method for the Task block and the Batch block call
bpr-create-object to generate objects on the output paths of the block. The various
procedures that the Source block uses as its source-procedure-name also call this
procedure.

Example

Here is the bpr-source-type procedure, which is the default procedure that the
Source block calls as its source-procedure-name.

For information about the other API in this example, see bpr-post-path.

Argument Description

activity The activity related to the scenario that controls
the model.

creator The object from which the new bpr-object is
created.

object-type The type of the output to be created.

Return Value Description

object The new object of type object-type.
195

bpr-source-type (activity: class bpr-activity)
block: class bpr-source;
path: class bpr-path;
counter: integer;
object: class bpr-object;
begin
{
This procedure implements the type operating mode for the Source block. It bases the
output object type on the class specified in the type attribute of the paths.
}

 block = the bpr-source that is the-bpr-block-of-activity activity;

 for path = each bpr-path connected at the output of block
 do
 for counter = 1 to the output-count of block
 do
 object = call bpr-create-object(activity, block, the type of path);
 call bpr-post-path(activity, object, path);
 end;
 end;
end
196

bpr-delete-object
bpr-delete-object
Deletes a work object.

Synopsis

bpr-delete-object
(object: class bpr-object)

Description

This procedure deletes a work object and its associated subobjects. It also deletes
the association objects related to the work object, if any exist. ReThink uses this
procedure internally to delete any work objects that are not posted on output
paths. For example, the Sink block calls bpr-delete-object to delete its inputs.

Example

This method is bpr-sink::bpr-stop-method, the method that defines the default
behavior of the Sink block. It calls bpr-delete-object to delete the input work
objects.

bpr-stop-method (sink: class bpr-sink, activity:class bpr-activity, ui-client-item: class
ui-client-item)
object: class bpr-object;
begin
{
This method defines the default stop behavior for the Sink block. The Sink block
simply deletes all of its input objects.
}
 for object = each bpr-object that is a-bpr-input-of-activity activity
 do
 call bpr-delete-object(object);
 end;
end

Argument Description

object The bpr-object to delete.
197

bpr-dequeue-object
Removes a work object from the input path queue of a block.

Synopsis

bpr-dequeue-object
(path: class bpr-path, object: class bpr-object)

Description

This procedure deletes the specified work object from the path queue of a block.
The procedure updates the path statistics and animates the path, if animation is
specified.

Example

This partial method is bpr-insert::bpr-stop-method, the method that defines the
default behavior of the Insert block. It calls bpr-dequeue-object to remove the
input work objects from the path queue when the container object arrives at the
block.

bpr-stop-method (insert: class bpr-insert, activity:class bpr-activity, ui-client-item: class
ui-client-item)
r: class bpr-path-reference;
path: class bpr-path;
container, object: class bpr-object;
list: class item-list;
queue-object: class bpr-object;
usage: class bpr-usage;
begin
{
This method defines the default stop behavior for the Insert block. The Insert block
inserts input objects received by the block into an item-list of the container input
object. The first input objects in the path queues can be inserted the beginning or end
of the container item-list or all of the waiting input objects can be inserted at the
beginning of the container item-list.
}

Argument Description

path The bpr-path whose path queue contains the
object.

object The bpr-object to be removed from the path
queue.
198

bpr-dequeue-object
{
Get the container input path and the container input object.
}
. . .
{
For each input object, insert it if it is not the container input object.
}
. . .
{
For each object in the queue of the path; remove it from the queue, insert it into the
container item-list, update its statistics, and transfer the object off of the workspace.
}
 for queue-object = each bpr-object in the queue of path
 do
 call bpr-dequeue-object(path, queue-object);

 insert queue-object at the end of the item list list;
{
This simply updates the statistics of the objects in the path queue.
}
. . .
{
If there is a resource that should remain allocated while the object is inserted into the
container, then relate the usage back to the object.
}
. . .
{
Post the container input object on the output paths.
}
 call bpr-post(activity, container);
end
199

bpr-detach-input
Breaks relations between a work object and a path and between a work object and
its activity.

Synopsis

bpr-detach-input
(object: class bpr-object)

Description

This procedure breaks the relations named a-bpr-object-of-input-path and
the-bpr-input-path-of-object between object and its related bpr-path. The
procedure also breaks the relations named a-bpr-input-of-activity and the-bpr-
activity-of-input between object and its related bpr-activity.

The method that defines the default behavior of a Batch block, bpr-batch::
bpr-stop-method, calls this internal procedure prior to inserting a bpr-object into a
batch.

Argument Description

object The bpr-object whose relations are
broken.
200

bpr-detach-input
Example

This partial method is from bpr-batch::bpr-stop-method, the method that defines
the behavior of the Batch block. It calls bpr-detach-input before it inserts a
bpr-object into a batch.

bpr-stop-method (batch: class bpr-batch, activity:class bpr-activity, ui-client-item: class
ui-client-item)
e, x, g: class bpr-object;
full: truth-value;
usage: class bpr-usage;
TriggerPath: class bpr-path;
BatchPath: class bpr-path;
begin
{
This method defines the default stop behavior for the Batch block. The Batch collects
input objects until a threshold criteria is met. When the threshold criteria is met, it
either posts all of the input objects on the output path or it inserts the input objects into
a container output object which then gets posted on the output path.
}
 for e = each bpr-object that is a-bpr-input-of-activity activity
 do
{
Remove the input object from the path and put it into the batch item-list.
}
 call bpr-detach-input(e);
 insert e at the end of the item-list list the batch of batch;
. . .
end
201

bpr-get-item-for-label
Returns the item with a particular label.

Synopsis

bpr-get-item-for-label
(label: text)
-> item-or-value

Description

This procedure lets you search for items in a model, based on a label. The label
argument can be the:

• Label attribute of an object, such as a block, instrument, or model.

• Report-title of a report object.

• Gfr-uuid of any object.

• Names attribute of any object.

Example

bpr-get-item-for-label (“Generate Order”)

bpr-get-item-for-label (“Block Summary Report”)

bpr-get-item-for-label (“custom-scenario”)

Argument Description

label A text value that identifies the item.

Return Value Description

item-or-value Returns the item associated with the label.
202

bpr-get-item-for-label-class-scenario
bpr-get-item-for-label-class-scenario
Returns the item with a particular label, of a particular class, and associated with
a particular scenario.

Synopsis

bpr-get-item-for-label-class-scenario
(label: text, class-name: symbol, scenario: item-or-value)
-> item-or-value

Description

This procedure is similar to bpr-get-item-for-label except that it allows you to
search for items of a specified class name that are also associated with a particular
scenario. If the scenario is specified, the procedure returns only those items that
are related to the scenario, that is, on the same workspace or any subworkspace.

For a description of the label argument, see bpr-get-item-for-label.

Example

bpr-get-item-for-label-class-scenario (“Generate Order”, my-custom-task,
“scenario-1”

Argument Description

label A text value that identifies the item.

class-name A symbol that names the class of item to find.

scenario The scenario associated with the item.

Return Value Description

item-or-value Returns the item associated with the label and
scenario.
203

bpr-handle-event-error
Provides a default error handler for scenarios.

Synopsis

bpr-handle-event-error
(scenario: class bpr-scenario, event: class bpr-event, error-symbol: symbol,
error-text: text)

Description

This method is defined on bpr-scenario and is called whenever a run-time error
occurs when the model is running. To catch the error and perform custom
operations, you can subclass bpr-scenario and provide your own error handler by
implementing this method.

Example

For an example, see methods-online.kb included with ReThink Online.

Argument Description

scenario The scenario whose errors the method handles.

event The bpr-event that causes the error.

error-symbol The error symbol.

error-text The error text.
204

bpr-indicate
bpr-indicate
Places an indicator arrow and text next to an item on a workspace to draw
attention to it.

Synopsis

bpr-indicate
(item: class item, note: text, ui-client-item: class ui-client-item)

Description

This procedure displays a magenta arrow and text next to an item until you select
it, or for ten seconds, depending on the value of the Indicate Mode on the Indicate
tab of the Set Scenario dialog. You use the procedure to draw attention to a piece
of information, such as the attribute value of an object.

For example, the method that defines the default behavior of an Insert block calls
bpr-indicate if you have not identified a container path by choosing the Choose
Container Input Path menu choice.

Note You cannot use bpr-indicate to highlight a path.

Example

This customized procedure for an Alarm probe first calls the default stop method
for a Sample Value probe. The method then checks the sample value against a
threshold, which is an attribute of the custom probe. If the sample value is greater
than the threshold, the method pauses the simulation, sends a message to the

Argument Description

item The item to which the arrow points.

note The text string to display next to the arrow.

ui-client-item The ui-client-item on which the indicator is
displayed, which is the superior class of:

• A g2-window, which is a window in the
current G2 session or a remote connection to
G2 through a Telewindows client.

• A ui-client-session, which is a remote
connection to G2.
205

message board, and calls bpr-indicate to display an arrow and the text “Alarm”
next to the probe.

For a description of bpr-pause, see bpr-pause.

For the complete example of creating an Alarm probe, see Creating a Custom
Probe.

bpr-stop-method (alarm-probe: class alarm-probe, scenario: class bpr-scenario,
object: class object, ui-client-item: class ui-client-item)
begin
 call next method;
 if the sample-value of alarm-probe > the threshold of alarm-probe then
 begin
 call bpr-pause(scenario);
 inform the operator for the next 10 seconds that "Alarm: [the sample-value of

alarm-probe] > [the threshold of alarm-probe]";
 start bpr-indicate(alarm-probe, "Alarm", ui-client-item);
 end;
end
206

bpr-indicate-connection
bpr-indicate-connection
Places an arrow and text next to a connection on a workspace to draw attention
to it.

Synopsis

bpr-indicate-connection
(object: class object, connection: class connection,

ui-client-item: class ui-client-item)

Description

This procedure displays a magenta arrow and text next to a connection until you
select it, or for ten seconds, depending on the value of the Indicate Mode on the
Indicate tab of the Set Scenario dialog. You use the procedure to draw attention to
a connection, such as the not found path of a Retrieve block.

For example, the show not found output path menu choice for a Retrieve block
uses bpr-indicate-connection to identify the path to be used when no work object
is found.

The text for the magenta arrow indicates if the connection is an input or output
connection of the object.

Argument Description

object The object to which the connection is connected.

connection The connection to which the arrow points.

ui-client-item The ui-client-item on which the indicator is
displayed, which is the superior class of:

• A g2-window, which is a window in the
current G2 session or a remote connection to
G2 through a Telewindows client.

• A ui-client-session, which is a remote
connection to G2.
207

Example

Here is the expression attribute of the user menu choice named show-not-found-
output-path for the Retrieve block:

start bpr-indicate-connection
(the item, the bpr-path that is the-bpr-path-of-reference the not-found-output-path
of the item, this window)
208

bpr-lookup-by-id
bpr-lookup-by-id
Returns an object of a specific class with the specified ID for the model.

Synopsis

bpr-lookup-by-id
(class: symbol, id: value, scenario: class bpr-scenario)
-> object: item-or-value

Description

This procedure finds an object of a specific class with the specified id associated
with the current active scenario.

Example

This procedure is bpr-lookup-from-pool-by-association, one of the available
default procedures for the procedure-name of the bpr-lookup-subtable of a
Retrieve block. This procedure implements the association lookup mode of a
Retrieve block.

bpr-lookup-from-pool-by-association(subtable: class bpr-lookup-subtable, object:
class bpr-object) = (item-or-value)
block: class bpr-block;
pool: item-or-value;
resource: item-or-value = the symbol none;
associated-objects: class item-list;
found-one: truth-value = false;
begin
{
This procedure implements the association lookup operating mode for the Retrieve
block. It selects an associated object in the resource pool by calling the bpr-get-

Argument Description

class The class of the object to be identified.

id The id to be matched.

scenario The currently active scenario of the
model.

Return Value Description

object The object with the specified id, or the
symbol none, if no such object exists.
209

association procedure.
}
 block = the bpr-block superior to subtable;

 pool = call bpr-lookup-by-id(the symbol bpr-object, the pool-id of
subtable, the bpr-scenario that is the-bpr-scenario-of-workspace the
workspace of block);

 if pool is a bpr-object then
 associated-objects = call bpr-get-associations(object, the lookup-argument of
subtable);

 for resource = each bpr-object in associated-objects
 do
 if resource is a-bpr-member-of-object pool then
 begin
 found-one = true;
 end
 else
 remove resource from associated-objects;
 end;

 if found-one = false then
 begin
 resource = the symbol none;

 delete associated-objects;
 end
 else
 if the retrieve-all of block = true then
 resource = associated-objects
 else
 begin
 resource = the first bpr-object in associated-objects;

 delete associated-objects;
 end;

 return resource;
end
210

bpr-message-to-all-users
bpr-message-to-all-users
Sends a message to connected clients.

Synopsis

bpr-message-to-all-users
(msg: text, type: text)

Description

This procedure sends msg to all connected clients of the server, which includes
the client application and connected Excel workbooks. The procedure can send
the message to the Message Board or Logbook.

Example

bpr-message-to-all-users("You should not be working on Saturday!",
"WARNING")

Argument Description

msg The text of the message to send.

type The type of message to send as a text. The
options are "WARNING" and "ERROR". A
warning sends the message to the Message
Board, and an error sends the message to the
Logbook.
211

bpr-pause
Pauses a simulation.

Synopsis

bpr-pause
(scenario: class bpr-scenario)

Description

This procedure pauses scenario and changes the color of scenario to indicate a
paused state. Calling this procedure is equivalent to pausing a simulation
manually by clicking the Pause button on the subworkspace of scenario. Pausing
ReThink is not the same as pausing G2.

Example

This customized procedure for an Alarm probe first calls the default stop method
for a Sample Value probe. The method then checks the sample value against a
threshold, which is an attribute of the custom probe. If the sample value is greater
than the threshold, the method calls bpr-pause to pause the simulation, sends a
message to the message board, and displays an arrow and the text “Alarm” next
to the probe.

For a description of bpr-indicate, see bpr-indicate.

For the complete example of creating an Alarm probe, see Creating a Custom
Probe.

bpr-stop-method (alarm-probe: class alarm-probe, scenario: class bpr-scenario,
object: class object, ui-client-item: class ui-client-item)
begin
 call next method;
 if the sample-value of alarm-probe > the threshold of alarm-probe then
 begin
 call bpr-pause(scenario);
 inform the operator for the next 10 seconds that "Alarm: [the sample-value of

alarm-probe] > [the threshold of alarm-probe]";
 start bpr-indicate(alarm-probe, "Alarm", ui-client-item);
 end;
end

Argument Description

scenario The scenario associated with the model.
212

bpr-post
bpr-post
Locates an output path of the correct type for a work object and sets the work
object onto the path. This is called posting a work object to a path.

Synopsis

bpr-post
(activity: class bpr-activity, object: class bpr-object)

Description

This procedure loops through all the output paths of a block to locate a path
whose type matches the object, or whose type is a superior class of the Class-
name of object. When it locates such a path, bpr-post calls bpr-post-path to set
object onto that path. If bpr-post fails to locate a path with a matching type, it
returns without calling bpr-post-path.

For information on bpr-post-path, see bpr-post-path.

The methods that define the default behavior for many of the blocks call bpr-post
when the intended path has not yet been identified.

Argument Description

activity The bpr-activity related to object.

object The bpr-object posted to the
path.
213

Example

This method is bpr-merge::bpr-stop-method, the default stop method of a Merge
block. The method loops through each input work object to the block and calls
bpr-post to locate a path of the type that matches the class of the work object.

bpr-stop-method (merge: class bpr-merge, activity:class bpr-activity, ui-client-item:
class ui-client-item)
object: class bpr-object;
begin
{
This method defines the default stop behavior for the Merge block. The Merge block
simply tries to post all of its input objects on the output paths of the block.
}
 for object = each bpr-object that is a-bpr-input-of-activity activity
 do
 call bpr-post(activity, object);
 end;
end
214

bpr-post-path
bpr-post-path
Transfers a work object to an output path of a block when the output path for the
object has already been determined. This is called posting an object onto a path.

Synopsis

bpr-post-path
(activity: class bpr-activity, object: class bpr-object,

output-path: class bpr-path)

Description

This procedure establishes a number of internal relations between activity and
object, and between object and output-path. Various internal ReThink procedures
use these relations to transfer objects between blocks.

After the bpr-post procedure identifies a path of the correct type for object, it calls
bpr-post-path to transfer the objects between blocks.

If the output path has not yet been determined, use bpr-post to identify the output
path whose type matches the Class-name (or a superior class) of the bpr-object.
Once the output path has been determined, use bpr-post-path to post the
bpr-object to that specific path.

The procedures that define the default procedures for many of the blocks call
bpr-post-path when the intended path has already been identified.

Example

This method is bpr-task::bpr-stop-method, the method that defines the default
behavior of the Task block. The block first posts the inputs to the output paths for
which there are corresponding path types, using bpr-post. If output paths with no
corresponding output work objects type exist, the method creates a new
bpr-object of the output path type, and then calls bpr-post-path to post the
bpr-object onto the output path.

Notice the difference between the use of bpr-post and bpr-post-path; the method
uses bpr-post to both locate and post the object to the output path, whereas the

Argument Description

activity The bpr-activity related to object.

object The bpr-object posted to output-path.

output-path The path onto which object is posted.
215

method uses bpr-post-path to post the object to the output path when the
intended path has already been determined.

bpr-stop-method (task: class bpr-task, activity:class bpr-activity, ui-client-item: class
ui-client-item)
object: class bpr-object;
path:class bpr-path;
counter: integer;
source-object: class bpr-object;
scenario: class bpr-scenario;
begin
{
This method defines the default stop behavior for the Task block. The Task block first
tries to post all of its input objects on the output paths of the block. It then creates and
posts objects for all of the output paths which do not already have an input object
posted. Optionally it may also copy attributes from the input object to newly created
output objects.
}
 for object = each bpr-object that is a-bpr-input-of-activity activity
 do
 source-object = object;
 call bpr-post(activity, object);
 end;

 for path = each bpr-path connected at an output of task
 do
 if not(there exists a bpr-object that is a-bpr-object-of-output-path path) then
 begin
 for counter = 1 to the output-count of task
 do
 object = call bpr-create-object(activity, task, the type of path);

 { Copy attributes ito new type if applicable }
 if the copy-attributes of task and source-object exists and the bpr-scenario

scenario that is the-bpr-scenario-of-activity activity exists then begin

 call bpr-copy-list-of-attributes (source-object, object,
the list-of-operations of task, the copy-all-attributes of task,
true, scenario, ui-client-item);

 end;

 call bpr-post-path(activity, object, path);
 end;
 end;
 end;
end
216

bpr-remove-from-pool
bpr-remove-from-pool
Removes an object from a pool.

Synopsis

bpr-remove-from-pool
(pool: class bpr-object, object: class bpr-object)

Description

Removes object from pool, by removing it from the list of items in the pool and
from the subworkspace of the pool. The method that defines the default behavior
of the Retrieve block calls bpr-remove-from-pool to retrieve objects from a pool.

Example

Here is the partial bpr-retrieve::bpr-stop-method method, which defines the
default behavior of the Retrieve block. The method retrieves objects from the pool
according to the procedure-name of the lookup-subtable of the block. The lookup
subtable determines how the block retrieves objects from the pool.

bpr-stop-method (retrieve: class bpr-retrieve, activity:class bpr-activity, ui-client-item:
class ui-client-item)
s: class bpr-scenario;
e: class bpr-object;
p: item-or-value = the symbol none;
r: item-or-value;
o: class bpr-object;
nr: class bpr-path-reference;
original: class bpr-object;
begin
{
This method defines the default stop behavior for the Retrieve block. The Retrieve
block operates in different modes depending upon the procedure named in the
procedure-name attribute of the lookup-subtable. This method invokes the named
procedure and then post the current input object and the retrieved object on the output
paths.
}
. . .

Argument Description

pool A bpr-object with a subworkspace that contains
object.

object The bpr-object that is removed from pool.
217

{
If the add to associations attribute of the retrieve block is true, then add the object
copy to the associations of the object.
}
 if the add-to-associations of retrieve then
 call bpr-add-to-associations(original, r);
 end
 else
 call bpr-remove-from-pool(p, r);
 end;

 if r is not a member of the objects of s then
 insert r at the end of the objects of s;

 call bpr-post-except-not-found-output-path(activity, r);

 call bpr-post-except-not-found-output-path(activity, e);
 end
 else
. . .
end
218

bpr-reset
bpr-reset
Resets a scenario.

Synopsis

bpr-reset
(scenario: class bpr-scenario)

bpr-reset
(scenario: class bpr-scenario, ui-client-item: class ui-client-item)

Description

The first version of this procedure resets all of the objects in the model, sets the
state of scenario to reset and changes its color to indicate a reset state. Calling this
procedure is equivalent to resetting a simulation manually by clicking the Reset
button on the subworkspace of scenario. Resetting ReThink is not the same as
resetting G2.

The second version of this procedure activates the scenario, if necessary, and then
calls the first version of the procedure.

Example

The following custom procedure activates the scenario upon the current
workspace, resets the scenario, evaluates the Source block on the current
workspace, and continues running the scenario. You can activate the procedure
with an action button.

For information about the other internal procedures in this example, see bpr-
activate-scenario, bpr-continue, and bpr-block-evaluator.

Argument Description

scenario The scenario associated with the model.

ui-client-item The ui-client-item whose model is to be reset,
which is the superior class of:

• A g2-window, which is a window in the
current G2 session or a remote connection to
G2 through a Telewindows client.

• A ui-client-session, which is a remote
connection to G2.
219

Here is the text of the start-model procedure:

start-model (scenario: class bpr-scenario, client: class ui-client-item)
begin

call bpr-activate-scenario(scenario, the workspace of scenario, client);
call bpr-reset (scenario);
allow other processing;
call bpr-block-evaluator (the bpr-source upon this workspace);
call bpr-continue(scenario);

end
220

bpr-schedule-an-event
bpr-schedule-an-event
Schedules a custom event.

Synopsis

bpr-schedule-an-event
(scenario: class bpr-scenario, event: class bpr-event)

Description

To schedule a custom event to occur in your model at a specified time, based on
the simulation or online clock, you create a subclass of bpr-event and configure
these attributes:

In addition, you must implement the following method for the subclass:

bpr-event-method
(event: class bpr-event, scenario: class bpr-scenario,
ui-client-item: class ui-client-item)

To schedule the event, call the method bpr-schedule-an-event for the scenario.
The bpr-event-method is called when the simulation time reaches the time of the
event.

Argument Description

scenario The scenario associated with the model.

event The bpr-event to schedule.

Attribute Description

time The simulation time at which the event should
occur, relative to the start time of the simulation
in units of seconds.

priority The priority of the event.
221

Example

This example schedules an event for a scenario:

Here is the bpr-event-method for the bpr-demo-event:

bpr-event-method(event: class bpr-demo-event, scenario: class bpr-scenario, client:
class ui-client-item)
begin

if the counter of event = 0 then begin
post "End of demo";
delete event without permanence checks;

end else begin
conclude that the time of event = the time of scenario + the repeat-period of

event;
call bpr-schedule-an-event(scenario, event);
conclude that the counter of event = the counter of event - 1;
post "Event counter = [the counter of event]. Current time is [the time of

sceario as an interval]";
end

end

Here is the bpr-demo-reset-procedure, which is the reset-procedure-name of a
scenario:

bpr-demo-reset-procedure(scenario: class bpr-scenario)
event: class bpr-demo-event;
begin

create a bpr-demo-event event;
insert event at the end of the objects of scenario;
conclude that the priority of event = 8;
conclude that the time of event = 0.0;
call bpr-schedule-an-event(scenario, event);
post "Reset: schedule demo event with period of [the repeat-period of event as an

interval] "
end
222

bpr-schedule-an-event
Here is the scenario that uses the custom reset procedure:
223

Here is the Message Board after resetting the scenario and starting the simulation
running:
224

bpr-update-pool
bpr-update-pool
Adds an object or surrogate to a pool.

Synopsis

bpr-update-pool
(object: class object)

Description

This procedure adds an object to a pool. The resource is either an object of type
bpr-resource or a subclass, or it is a surrogate object that you create by choosing
create surrogate on a resource.

The default procedure of the store-procedure-name attribute of a Store block calls
bpr-update-pool.

Example

This partial procedure is from bpr-store-pool, the default procedure of the
store-procedure-name attribute of a Store block. The procedure stops the activity
associated with the work object it stores in the pool, then it updates the pool.

The body of the procedure identifies the pool to use and transfers the work object
from the workspace to the subworkspace of the pool.

bpr-store-pool (activity: class bpr-activity, object: class bpr-object)
block: class bpr-store;
scenario: class bpr-scenario;
ui-client-item: class ui-client-item;
pool: item-or-value;
x: integer;
y: integer;
usage: class bpr-usage;
begin
{
This procedure implements the pool operating mode for the Store block. It stores the
input object in the resource pool specified by the pool-id attribute of the block.
}
 block = the bpr-store that is the-bpr-block-of-activity activity;

 make object transient;
 transfer object off;

Argument Description

object The object that is applied to the pool.
225

{
Find the resource pool specified in the pool-id attribute of the block. The resource pool
is uniquely identified by the id of the resource pool and its associated scenario.
}
 if the pool-id of block does not exist then
 begin
 if the workspace of block exists and the bpr-scenario scenario that is the-bpr-
scenario-of-workspace the workspace of block exists and the ui-client-item ui-client-
item that is the-ui-client-item-of-scenario scenario exists then
 start bpr-indicate(block, "This store block needs to have a resource pool
specified", ui-client-item);

 return;
 end;

 pool = call bpr-lookup-by-id(the symbol bpr-object, the pool-id of block, the bpr-
scenario that is the-bpr-scenario-of-workspace the workspace of block);
{
Add the input object to the resource pool by transferring it to the subworkspace of the
resource pool and then updating the resource pool.
}
 if pool is a bpr-object then
 begin
 if the subworkspace of pool exists then
 begin
 x = 0;
 y = - the number of elements in the members of pool * (2 * the item-height of
object);
 transfer object to the subworkspace of pool at (x, y);
 end;

 call bpr-update-pool(object);
 end;
{
If there is a resource that should remain allocated while the object is stored in the
pool, then relate the usage back to the object.
}
 for usage = each bpr-usage that is a-bpr-usage-of-activity activity
 do
 if the deallocate-resource of the bpr-resource-manager that is the-bpr-resource-
manager-of-usage usage is false then
 begin
 conclude that usage is not a-bpr-usage-of-activity activity;

 conclude that usage is the-bpr-usage-of-output-object object;
 end;
 end;
end

bpr-updated-attributes
bpr-updated-attributes
Updates attribute values after they have been set.

Synopsis

bpr-updated-attributes
(item: class object)

Description

This method is called whenever attribute values are set through a properties
dialog, a report, or a call to bpr-set-attribute-value. You implement this method to
perform additional validation or to update additional attributes or objects.

Argument Description

item The class name of the object whose attributes
are to be updated.
227

228

10
Relations
Describes the relations that ReThink creates and deletes during processing.

Introduction 229

Working With Relations During Modeling 230

Understanding Naming Conventions 231

Creating Relations When a Block Evaluates 232

Creating Relations When a Resource Evaluates 232

Creating Relations When You Create a Resource Manager 233

Creating Relations When You Add Objects to a Pool 234

Creating Relations When You Activate Scenarios 234

Creating Relations When You Use the Associate Block 235

Creating Relations When Replacing Details 235

Creating Relations When Choosing the Root Workspace of a Report 236

Introduction
ReThink creates a number of relations at various stages in its evaluation process,
as well as when you create various types of ReThink objects. The methods and
procedures that you customize make frequent use of these relations. Therefore, it
is critical that you understand what these relations are and when ReThink creates
and deletes them.
229

ReThink creates a number of categories of relations when various events occur
during modeling. ReThink creates relations when:

• Blocks evaluate.

• You create a Resource Manager from a resource.

• You add a resource to a resource pool.

• You create or activate a Scenario tool.

• An Associate block evaluates.

For examples of procedures and methods that refer to these relations, see
Application Programmer’s Interface.

This chapter describes the relations that you are most likely to see during
modeling; ReThink creates other relations as well.

Working With Relations During Modeling
You can see the relations that ReThink creates while a model is running by using
the describe facility.

To see the relations that ReThink creates:

 In Developer mode, choose describe on an object.

The following figure shows the workspace that appears when you choose
Describe on a work object that is currently active. You can mouse-right on the
representation of the related object on the workspace to get a menu, as shown.
You can then describe the related object, display its table, or go to the object.
230

Understanding Naming Conventions
ReThink creates additional internal relations that are not visible because ReThink
establishes, uses, and breaks these relations within a single step of block
processing, rather than between steps.

Understanding Naming Conventions
ReThink uses standard conventions for relation names:

A many-to-one relation means many instances of the relation source can be
related to only one instance of the relation target. A one-to-many relation means
only one instance of the relation source can be related to many instances of the
relation target. For more information on relations, see the G2 Reference Manual.

If the relation
starts with...

The type of
relation is... For example...

a Many-to-one
or
Many-to-many

A-bpr-activity-of-block creates a
relation between one of many
activities and a single block.

the One-to-many
or
One-to-one

The-bpr-block-of-activity creates a
relation between a single block and
one of many activities.
231

Creating Relations When a Block Evaluates
ReThink creates a number of relations whenever a block evaluates. The relations
are between these types of objects:

Blocks
Activities
Work objects
Paths

ReThink creates all of the following relations in the planning phase of block
evaluation, as described in The Planning Phase.

ReThink deletes these relations when the block deletes the activity.

Creating Relations When a Resource Evaluates
ReThink creates a number of relations whenever a block with an attached
Resource Manager evaluates. The relations are between these types of objects:

Resource
Resource Manager
Usage object
Activity

A usage object is an internal object that ReThink creates to track the utilization of
current resources. A usage object is related to a Resource Manager in the same
way that an activity is related to a block.

a-bpr-activity-of-block

the-bpr-block-of-activity

a-bpr-input-of-activity

the-bpr-activity-of-input

a-bpr-object-of-input-path

the-bpr-input-path-of-object

block activity

activity work object

work objectpath
232

Creating Relations When You Create a Resource Manager
ReThink creates the following relations in the planning phase of evaluation, as
described in The Planning Phase. ReThink deletes these relations when the block
deletes the activity.

Creating Relations When You Create a
Resource Manager

ReThink creates relations when you create a Resource Manager from a resource
by using the create manager menu choice. The relations are between these two
types of objects:

Resource
Resource Manager

ReThink deletes these relations when you delete the Resource Manager.

a-bpr-usage-of-activity

the-bpr-activity-of-usage

a-bpr-usage-of-object

the-bpr-object-of-usage

activity

a-bpr-usage-of-resource-manager

the-bpr-resource-manager-of-usage

usage object

usage objectresource manager

resource usage object

resource managerresource

a-bpr-resource-manager-of-object

the-bpr-object-of-resource-manager
233

Creating Relations When You Add Objects to a
Pool

ReThink creates relations between a resource pool and objects stored in the pool.
A pool is a resource with a subworkspace. ReThink creates the relation when the
object is transferred to the subworkspace of the pool. The relations are between
these types of objects:

Resource pool
Resource

ReThink deletes these relations when you delete a resource from a pool.

Creating Relations When You Activate
Scenarios

ReThink creates relations when you activate a Scenario tool. If the scenario has a
subworkspace, it creates a relation of the same type between the scenario and the
subworkspaces of the scenario as well. The relations are between these types of
objects:

Scenario
Workspace
UI client item

A ui-client-item is the superior class of:

• A g2-window, which is a window in the current G2 session or a remote
connection to G2 through a Telewindows client.

• A ui-client-session, which is a remote connection to G2.

resourceresource pool

a-bpr-entry-of-object

the-bpr-object-of-entry
234

Creating Relations When You Use the Associate Block
ReThink deletes these relations when you deactivate the scenario.

Creating Relations When You Use the
Associate Block

ReThink creates the following relations when the Associate block evaluates. The
relations are between these types of objects:

Work object
Association object

ReThink deletes these relations when a block deletes the associated work object.

Creating Relations When Replacing Details
You can replace the default detail of a Model tool and Organizer tool with a top-
level workspace in a different module, using the Choose Detail menu choice.
When you replace the detail, ReThink establishes relations between these types of
objects:

Model tool
Workspace

Organizer tool
Workspace

a-workspace-of-bpr-scenario

the-bpr-scenario-of-workspacescenario tool a workspace

scenario tool

the-ui-client-item-of-scenario

the-bpr-scenario-of-ui-client-item a UI client item

a-bpr-association-of-object

a-bpr-object-of-associationwork object association object
235

Creating Relations When Choosing the Root
Workspace of a Report

You can assign the root workspace of a report by using Choose Root Workspace.
When you choose the root workspace, ReThink establishes relations between
these types of objects:

Report
Workspace

the-bpr-model-of-workspace a workspacea model

the-kb-workspace-of-model

the-bpr-organizer-of-workspace a workspacean organizer

the-kb-workspace-of-organizer

a workspacea report

the-root-workspace-of-summary-report

the-bpr-summary-report-of-root-workspace
236

Glossary
A

allocate: To assign a resource to an activity. By default, Resource Managers
allocate resources to activities at random. You can customize how a particular
Resource Manager allocates resources to an activity.

animation subtable: A subobject that defines the default colors and animation
procedure for a block, work object, resource, instrument, Resource Manager,
surrogate, or path.

application programmers’ interface (API): Internal ReThink procedures that you
use to customize objects. You use these procedures to perform actions on ReThink
objects programmatically.

association object: An internal object that ReThink creates when an Associate
block evaluates. ReThink creates relations between the association object and the
associated objects.

B

block processing: The actions that ReThink performs when a block evaluates.
During block processing, ReThink establishes relations between objects,
computes cost and duration statistics for objects, animates objects, allocates and
deallocates resources, and activates instruments. When you customize ReThink, it
is essential to understand the order in which these events take place so that you
can write your methods and procedures accordingly.

bpr module: The proprietary core of ReThink. This module contains the discrete
event simulation engine and other internal mechanisms that are fundamental to
the ReThink environment.

C

class-specific attributes: The attributes of a class that are specific to that class.
When you customize ReThink objects, you can add class-specific attributes to
custom classes. Typically, you refer to these attributes in the custom methods and
procedures that determine the behavior of the object.

cost subtable: Subobject that determines the default procedure that computes
total cost for blocks, resources, and work objects.
237

customiz module: The module in which you create and save customizations to
ReThink objects, when you plan on sharing these customizations across different
applications of ReThink.

customization: The ability to create ReThink objects that are specific to your
particular business process. As a ReThink developer, you can customize such
things as the way a ReThink object behaves, the way it looks or animates, the way
it computes duration, and the way it computes cost. To customize ReThink, you
must be in Developer mode.

D

deallocate: To release a resource assigned to an activity. You can customize how a
particular Resource Manager deallocates resources from an activity.

developer: A ReThink user who uses G2, Gensym’s core technology upon which
ReThink is built, to create custom ReThink objects. Developers create new
ReThink objects that are specific to a particular application and are based on
existing ReThink objects. Developers work in Developer mode.

Developer mode: The user mode in which you customize ReThink. In Developer
mode, the tables for ReThink objects include customization attributes, and the
menus include customization menu choices.

duration subtable: Subobject that defines the default procedure that computes
duration and utilization statistics for blocks, resources, and work objects. The
default duration of most blocks is computed based on a random normal function
and represents the amount of simulation time the block has been processing work
objects. The duration of a resource is the amount of simulation time the resource
has been allocated to activities in the model. The duration of a work object is the
amount of simulation time the blocks in the model have spent processing the
work object.

G

G2 Foundation Resources (GFR) module: A G2 module that provides the text
resource group and local text resources that you edit when you customize the
ReThink menus.

M

methods module: The module that contains the class definitions for ReThink
objects and subobjects, and the methods and procedures that control their
behavior. When you customize ReThink, you create subclasses of these class
definitions and copy these methods and procedures. You should not edit the
definitions in the methods module, otherwise your edits will be overwritten when
you upgrade to a new version of ReThink.
238

P

posting: Locating an output path of the correct type for a work object and setting
the work object onto the path.

R

relation: A type of association between two objects that is not visible. ReThink
creates a number of relations at various stages in block processing, as well as
when you create various types of ReThink objects. The methods and procedures
you customize make frequent use of these relations.

rethink-online module: The top-level ReThink module in which you create your
ReThink applications.

S

start method: A method that a block executes before its duration and before it
executes the stop method. You can customize the start method of a subclass of
ReThink block to provide custom behavior.

stop method: A method that defines the default behavior of a block or
instrument. You can customize the stop method of a subclass of a ReThink block
or instrument to provide custom behavior.

subclass: A class of objects that inherits part of its definition from another class of
object. When a ReThink model processes work objects, ReThink automatically
creates subclasses of the built-in bpr-object class when you specify the output
path type to be a user-defined object. In addition, when you customize ReThink,
you define subclasses of ReThink classes, whose icon, attributes, methods,
procedures, and subobjects you customize.

subobject: The value of an attribute that contains an object. ReThink objects
define three types of subobjects: animation subobjects, duration subobjects, and
cost subobjects, all of which you can customize. The type of subobjects that an
object defines depends on the type of object.

superior class: The class from which a subclass inherits. You can specify any
ReThink block, instrument, work object, or resource class as the superior class of a
custom class.

U

usage object: An internal object that ReThink creates to track the utilization of
current resources. ReThink creates relations between usage objects and resources,
Resource Managers, and activities. A usage object is related to a Resource
Manager in the same way that an activity is related to a block.
239

240

Index
Index
A
a-bpr-activity-of-block relation
a-bpr-association-of-object relation
a-bpr-entry-of-object relation
a-bpr-input-of-activity relation
a-bpr-object-of-association relation
a-bpr-object-of-input-path relation
a-bpr-resource-manager-of-object relation
a-bpr-usage-of-activity relation
a-bpr-usage-of-object relation
a-bpr-usage-of-resource-manager relation
acknowledging messages

configuring permissions for
active-color attribute

editing
activities

breaking relations programmatically
relations for

when blocks evaluate
when resources evaluate

a-g2-window-of-scenario relation
alarm probe

bpr-indicate example
bpr-pause example
custom probe example

animation
customizing

for blocks
for objects
for resources

Animation Procedure Name customization
attribute

of animation-subtable
of blocks

Animation Subtable customization attribute
of instruments

animation-subtable attribute
attributes of

for blocks
for instruments
for resources
for work objects

default value of
editing
procedure-name of
subobject

of blocks
of resource managers
of resources
of work objects

Application menu
adding models to

application programmers? interface (API)
Applications menu

creating
assigning top-level workspaces to new

modules
Associate block

customizing
relations for

association objects
attributes

adding
to custom classes
to custom subobjects

color
editing in subobjects

a-workspace-of-bpr-scenario relation

B
Batch block

customizing
general
specific

block processing
high-level view
planning phase
start activity phase
stop activity phase
summary

blocks
API for
class names of
customization attributes of
customizing
241

Index
customization attributes
default behavior of
procedures of specific blocks
specific
start method of
stop method of

examples of customizing
adding attributes
creating custom icon layers
customizing animation
customizing duration
customizing path queue
editing default behavior
editing default colors

relations for
starting programmatically

blocks-waiting attribute
updating, using Resource Managers

bpr module
bpr-accumulate-feed class
bpr-activate-scenario API procedure
bpr-animate-block procedure

editing
of blocks

bpr-animate-instrument procedure
editing
of instruments

bpr-animate-object procedure
editing
of resources
of work objects

bpr-animate-path procedure
customizing path animation, using
editing

bpr-animate-resource-manager procedure
customizing path animation, using
editing

bpr-animate-surrogate procedure
customizing surrogate animation, using
editing

bpr-associate class
bpr-attribute-feed class
bpr-average-probe class
bpr-batch class
bpr-batch-interval-duration procedure
bpr-block class

customization attributes
description of
methods
specifying as superior class
subobjects
242

Index
bpr-block-animation-subtable subobject
bpr-block-cost procedure

editing
of blocks

bpr-block-cost-subtable subobject
bpr-block-duration-subtable-reset procedure
bpr-block-evaluator API procedure
bpr-branch class
bpr-branch-attribute-value procedure
bpr-branch-prompt procedure
bpr-branch-proportion procedure
bpr-branch-type procedure
bpr-change-feed class
bpr-clone-object API procedure
bpr-container class
bpr-continue API procedure
bpr-copy class
bpr-copy-attribute-feed class
bpr-copy-attribute-probe class
bpr-copy-attributes class
bpr-copy-list-of-attributes API procedure
bpr-create-object API procedure
bpr-criteria-probe class
bpr-default-block-duration-subtable subobject
bpr-delete-object API procedure
bpr-delete-object procedure
bpr-delta-time-probe class
bpr-dequeue-object API procedure
bpr-detach-input API procedure
bpr-enqueue-fifo procedure
bpr-feed class

description of
specifying as superior class
subobjects

bpr-feed-animation-subtable subobject
of instruments

bpr-get-item-for-label API procedure
bpr-get-item-for-label-class-scenario API procedure
bpr-handle-event-error API procedure
bpr-increment-feed class
bpr-indicate API procedure
bpr-indicate-connection API procedure
bpr-insert class
bpr-instrument class

customization attributes
methods
specifying as superior class

bpr-interval-sample-probe class
bpr-lookup-by-id API procedure
bpr-match-by-association procedure
bpr-merge class
243

Index
bpr-message-probe class
bpr-message-to-all-users API procedure
bpr-moving-average-probe class
bpr-n-dim-sample-probe class
bpr-object class

customization attributes
description of
methods
specifying as superior class
subobjects

bpr-object-animation-subtable subobject
of resources
of work objects

bpr-object-cost procedure
editing
of resources
of work objects

bpr-object-cost-subtable subobject
of resources
of work objects

bpr-object-duration procedure
editing
of resources
of work objects

bpr-object-duration-subtable subobject
of resources
of work objects

bpr-palettes-cp connection post
extending

bpr-parameter-feed class
bpr-parameter-probe class
bpr-path class

customization attributes
description of
subobjects

bpr-pause API procedure
bpr-pool-resource class
bpr-post API procedure
bpr-post-path API procedure
bpr-probe

subobjects
bpr-probe class

description of
specifying as superior class

bpr-probe-animation-subtable subobject
of instruments

bpr-random-available-resource procedure
description of
example of customizing
of resource managers

bpr-random-exponential-duration procedure
244

Index
editing for a Source block
of blocks

bpr-random-normal-duration procedure
editing
of blocks

bpr-random-waiting-block procedure
description of
of resources managers

bpr-reconcile class
bpr-remove class
bpr-remove-from-pool API procedure
bpr-reset API procedure
bpr-reset-batch procedure
bpr-reset-cost-subtable procedure
bpr-reset-instrument procedure
bpr-reset-object procedure
bpr-reset-object-cost-subtable procedure

of resources
of work objects

bpr-reset-object-duration-subtable procedure
bpr-reset-reconcile procedure
bpr-resource class

description of
specifying as superior class

bpr-resource-manager class
customization attributes
description of
subobjects

bpr-resource-manager-animation-subtable subobject
bpr-resource-manager-cost-subtable subobject
bpr-resource-manager-duration-subtable subobject
bpr-retrieve class
bpr-retrieve-reset procedure
bpr-sample-probe class
bpr-scenario class

customization attributes
description of

bpr-schedule-an-event API procedure
bpr-sink class
bpr-source class
bpr-source-reset procedure
bpr-start-method method

customizing for blocks
editing

bpr-statistic-probe class
bpr-stop-method method

customizing
for blocks
for instruments

editing
bpr-store class
245

Index
bpr-store-reset procedure
bpr-surrogate class

description of
specifying as superior class
subobjects

bpr-task class
bpr-timestamp-feed class
bprui module
bpr-update-object procedure
bpr-update-pool API procedure
bpr-update-trigger-probe class
bpr-yield class
Branch block

customizing
general
specific

Branch Procedure Name customization attribute
brms module

C
call next method statement

of start methods
of stop methods

catch-up mode
Change Procedure Name customization attribute
Choose Detail menu choice

assigning top-level workspace as detail, using
Choose Manager attribute
Choose Resource attribute
choose-resource-procedure-name attribute

allocating resources, using
of resource managers

Class Definition
saving in appropriate modules

class definitions
clocks

G2 real-time
ReThink simulation

clock-time attribute
Close menu choice

configuring in user preferences
colors, editing
computer class
configuring

reports
Excel macros for formatting

Copy Attributes block, customizing
Copy block

customizing
246

Index
general
specific

Copy Item List Items customization attribute
of Copy block
of Retrieve block

Copy Item Lists customization attribute
of Copy block
of Retrieve block

Cost Procedure Name customization attribute
of cost-subtable

of blocks
of resources
of work objects

Cost Reset Procedure Name customization attribute
of cost-subtable

of resources
of work objects

cost-subtable attribute
attributes of

for blocks
for resources
for work objects

default value of
editing

procedure-name of
subobject

of blocks
of resource managers
of resources
of work objects

Create Instance menu choice
creating

modules
customer support services
customiz module

creating workspaces in
description of

customizing
animation

of blocks
of resources
subobject

API for
attributes of custom classes
behavior

custom block example
custom feed example
custom probe example
of blocks
of instruments
of objects
247

Index
of resource managers
block processing for
blocks

examples of
specific
summary tables for

common features
cost

of objects
subobject

duration
of blocks
of objects
subobject

editing customization attributes
feeds
how to customize
instruments

examples of
specific
summary tables for

menus
examples of

methods of blocks and instruments
module hierarchy
paths
probes
relations for
resource managers

example of
summary tables for

resources
animation of
customization attributes
examples of

scenarios
start methods
stop methods
subclasses of ReThink objects
subobjects
surrogates
system tables
what you can customize
work objects
workspaces for

custom-menu-system-resources item
editing, using GFR
248

Index
D
Database Input Object Name customization attribute
Database Quote In Text String customization attribute
Database Quote String customization attribute
DefaultFormatData Excel macro
DefaultFormatSheet Excel macro
Delete menu choice

KB Modules menu
Delete Procedure Name customization attribute

of blocks
of resources
of work objects

deleting
messages, permissions for
modules

describe menu choice
detail-color attribute

editing
details, relations for
Developer mode menu choice
disconnecting

from the client
permissions for

Distribution Mode attribute
Duration Procedure customization attribute

of duration-subtable
of resources
of work objects

Duration Reset Procedure Name customization attribute
of duration-subtable

duration-subtable attribute
attributes of

for resources
for work objects

attributes of, for blocks
default value of
editing

procedure-name of
subobject

of blocks
of resource managers
of resources
of work objects

E
Empty Breakpoint customization attribute
Empty Color attribute

customizing for paths
empty-color attribute
249

Index
editing
english local text resource

editing
Enqueue Procedure Name customization attribute
Error Color attribute

customizing for paths
error-color attribute

editing
Excel

configuring macros in
Excel Format Data Macro attribute
Excel Format Sheet Macro attribute
Excel tab
Exit menu choice

configuring in user preferences

F
feeds, customizing
files

.snp

merging models from KB
saving models

to snapshot
warmbooting from snapshot

filtering messages
in user preferences

flashing icon region
Format menu choice, Excel toolbar
formatting Excel reports

sheet and data

G
G2 Foundation Resources (GFR) module

adding menu choices, using
editing local text resources, using
local text resource
text resource group

G2 Menu System (GMS) module
adding menu choices, using
Show Workspace Template item

G2 real-time clock
g2com module
g2-time attribute
gdsm module
gevm module
gfr module
Gfr-file-location attribute

editing for local text resource
250

Index
Gms-display-target attribute
editing in Show Workspace Template item

Gms-label attribute
editing in Show Workspace Template item

Gms-text-resource-group attribute
editing in Show Workspace Template item

GMS-TOP-LEVEL workspace
displaying

Gms-window-symbolic-location attribute
editing for Show Workspace Template

Gms-workspace-symbolic-location attribute
editing for Show Workspace Template

GRF UUID customization attribute
of blocks
of instruments
of resources
of work objects

grpe module
gweb module

I
icons, customizing
inactive-color attribute

editing
Insert block, customizing
Inspect menu choice

checking for consistent modularization
instances, creating
instruments

class names of
customization attributes of
customizing

customization attributes
default behavior of
specific
stop method of

examples of customizing
feeding random values
signaling an alarm

K
KB Modules menu

Delete
Merge
New
Rename
Save
251

Index
L
list-of-operations attribute

of Copy Attributes feed
of Copy Attributes probe

load text resource menu choice
loading local text resource, using

local text resources
editing

Lookup Procedure Name customization attribute

M
machine class
macros, configuring Excel
make resource permanent menu choice

making edits to local text resource permanent, using
Make Subclass menu choice
Match Procedure Name customization attribute
Menu Bar Layout workspace

displaying
menus

adding
custom palettes to
menu choices to
models to Application menu

creating a workspace to display, using
creating top-level menu choices
displaying Menu Bar Layout workspace
local text resources of

menus module
customizing menu layout in
saving

Merge block, customizing
Merge menu choice

KB Modules menu
merging

modules
multiple models into a single model

message browsers
subscribing to queues

message queues
configuring filters in user preferences

messages
configuring

visible attributes
messaging

configuring permissions for
acknowledging messages
deleting messages

methods module
252

Index
methods-online module
Modeler mode

configuring
permissions for accessing

models
merging multiple into a single model
opening

from snapshot files
saving

to snapshot files
warmbooting from snapshot files

models, relations for
module hierarchy

customizing
description of

Module Hierarchy menu choice
modules

assigning top-level workspaces to new
bpr
bprui
brms
checking for consistent modularization of
creating

new
top-level workspaces for

customiz
deleting
g2com
gdsm
gevm
gfr
grpe
gweb
hierarchy of
menus
merging
methods
methods-online
renaming
rethink-core-online
rethink-online
rules for consistent modularization of
saving

class definitions in appropriate
individual

showing hierarchy of
working with
253

Index
N
Name customization attribute

of blocks
of instruments

Names customization attribute
of resources
of work objects

Needs All Inputs customization attribute
New menu choice

KB Modules menu
Notes customization attribute

of blocks
of instruments
of resources
of work objects

O
opening models

from snapshot files
organizers, relations for

P
Palettes menu

example of custom palette
extending

paths
API for
breaking relations programmatically
customizing animation of
example of editing behavior of queue for
posting objects to

when path type is known
when path type is not known

relations for
person class
posting work objects

when path type is known
when path type is not known

probes, customizing
Procedure Name attribute

of animation-subtable
of instruments

Procedure Name customization attribute
of animation-subtable

of resources
of work objects

of duration-subtable
of blocks
254

Index
procedure-name attribute
of subobjects

procedure-name customization attribute
of duration-subtable

of blocks

R
real-time clock
Reconcile block

customizing
general
specific

Redraw Connection customization attribute
of instrument connections
of Resource Manager connections

relations
creating

when activating scenarios
when adding objects to pools
when Associate block evaluates
when blocks evaluate
when choosing root workspace of reports
when creating Resource Managers
when replacing details
when resources evaluate

customizing, using
describing during modeling
naming conventions for

Remove block
customizing

general
specific

Rename menu choice
KB Modules menu

renaming modules
reports

configuring
Excel macros for formatting

reports, relations for
Reset Procedure customization attribute

of duration-subtable
of resources
of work objects

of instruments
Reset Procedure Name customization attribute

of animation-subtable
of Batch block
of blocks
of Reconcile block
255

Index
of resources
of Retrieve block
of Source block
of Store block
of work objects

resource managers
customization attributes of
customizing

allocation and deallocation
animation of
customization attributes
example of choosing the lowest cost resource
subobjects

relations for
when creating Resource Managers
when resources evaluate

resources
API for
class names of
customization attributes of
customizing

customization attributes
example of customizing resource animation

relations for
when adding objects to pools
when creating Resource Managers
when resources evaluate

removing from pools programmatically
rethink module

customizing system tables in
rethink-core-online module

description of
rethink-online module

description of
Retrieve block

customizing
general
specific

S
Save menu choice

Modules menu
Save Snapshot menu choice
saving

class definitions
models

to snapshot files
modules

scenarios
256

Index
activating programmatically
API for
continuing programmatically
customizing
identifying objects programmatically
pausing programmatically
relations for, when activating
resetting programmatically

Selected Color attribute
customizing for paths

selected-color attribute
editing

sequence-block-procedure-name attribute
allocating resources, using
of resource managers

server
shutting down

permission for
Show Logbook attribute
Show Workspace Template item

editing, using local text resource
GMS template item

shutting down server
permission for

simulation clock
Sink block, customizing
snapshot files

working with
.snp files
Source block

customizing
general
specific

Source Procedure Name customization attribute
start method
stop method

editing
for blocks
for instruments

example of
Store block

customizing
general
specific

Store Procedure Name customization attribute
subclasses

adding attributes to
configuring the superior class of
creating

subobjects
default values of
257

Index
displaying
default classes of
default procedures of

editing
adding attributes to
color attributes of
for objects
for work objects
procedures of
techniques of

subscribing to message queues
surrogates

customizing
animation of
customization attributes

system tables
system tables, customizing

T
Task block, customizing
the current time expression
the-bpr-activity-of-input relation
the-bpr-activity-of-usage relation
the-bpr-block-of-activity relation
the-bpr-input-path-of-object relation
the-bpr-model-of-workspace relation
the-bpr-object-of-entry relation
the-bpr-object-of-resource-manager relation
the-bpr-object-of-usage relation
the-bpr-organizer-of-workspace relation
the-bpr-resource-manager-of-usage relation
the-bpr-scenario-of-window relation
the-bpr-scenario-of-workspace relation
the-bpr-summary-report-of-root-workspace relation
the-kb-workspace-of-model relation
the-kb-workspace-of-organizer relation
the-root-workspace-of-summary-report relation
Threshold Procedure Name customization attribute
time

real
simulation
working with

time attribute
truck class

U
UI client item, relations for
Update Procedure Name customization attribute
258

Index
of blocks
of resources
of work objects

Update Utilization Procedure Name attribute
of resource managers

usage objects
customizing resource managers, using
establishing relations for during block processing
relations for

user modes
User Name attribute

Administrator mode
user preferences

configuring
in Administrator modes

V
View menu

Module Hierarchy menu choice

W
Waiting Color attribute

customizing for paths
waiting-color attribute

editing
Warmboot from Snapshot menu choice
warmbooting from snapshots
work objects

API for
breaking relations programmatically
class names of
copying programmatically
creating programmatically
customization attributes of
customizing

customization attributes
subobjects of

deleting programmatically
posting to paths

when path type is known
when path type is not known

relations for
when blocks evaluate
when using Associate block

removing from path queue programmatically
workspaces

assigning to new modules
assigning top-level to new modules
259

Index
creating
top-level for modules

creating relations when replacing details of
creating relations with reports
relations for, when activating scenarios

write resource to file menu choice
writing local text resource, using

Y
Yield block

customizing
general
specific

Yield Procedure Name customization attribute
260

	Contents Summary
	Contents
	Preface
	About this Guide
	Audience
	A Note About the API
	Conventions
	Related Documentation
	Customer Support Services

	Introduction
	Introduction to Customization
	Introduction
	What You Can Customize
	Customizing the Behavior of Objects
	Required G2 Knowledge

	How to Customize ReThink
	Introduction
	Switching User Modes
	Making Customizations in the Module Hierarchy
	Understanding the Module Hierarchy
	The rethink-online and rethink-core-online Modules
	The customiz Module
	The methods and methods-online Modules
	The bpr Modules

	Creating a Customization Workspace
	Customizing System Tables

	Working with Modules
	Showing the Module Hierarchy
	Rules of Consistent Modularization
	Checking for Consistent Modularization
	Merging Modules
	Renaming Modules
	Creating Modules
	Creating Top-Level Workspaces for Modules
	Saving Individual Modules
	Deleting Modules
	Assigning Top-Level Workspaces to Different Modules
	Merging Multiple Models into a Single Model
	Saving ReThink Definitions in the Appropriate Module

	Working with Snapshot Files
	Saving a Model in a Snapshot File
	Warmbooting from a Snapshot

	Common Customization Features
	Customizing Blocks
	Customizing Paths
	Customizing Instruments
	Customizing Work Objects and Resources
	Customizing Resource Managers
	Customizing Surrogates
	Customizing Scenarios

	Creating Subclasses of ReThink Objects
	Creating a Subclass
	Configuring the Superior Class

	Adding Attributes to the Class
	Customizing the Default Behavior of Blocks or Instruments
	Customizing the Stop Method
	Customizing the Start Method

	Customizing Procedures
	Editing Procedure Names
	Customizing Reset, Delete, and Update Procedures
	Customizing Animation, Duration, and Cost Procedures
	Customizing Specific Procedures

	Editing Subobjects
	Techniques for Editing Subobjects
	Displaying Default Subobject Classes
	Displaying Default Subobject Procedures
	Editing Color Attributes of Animation Subobjects
	Creating New Attributes for Subobjects
	Customizing Subobjects of Work Objects
	Customizing Animation

	Configuring User Preferences
	Configuring Filters
	Configuring Message Details

	Configuring the Excel Macros for Formatting the Report

	Customizing ReThink Objects
	Customizing Blocks
	Introduction
	Adding Attributes to a Custom Block
	Customizing the Default Behavior of a Block
	Customizing How Blocks Animate
	Editing the Default Colors of a Block
	Creating Custom Icon Regions

	Customizing the Duration of a Block
	Displaying the Block Duration Subtables Workspace
	Creating a Custom Block Duration Procedure

	Customizing the Paths of a Block
	Customizing Specific Blocks
	Customizing Specific Block Procedures
	Customizing the Batch Block
	Customizing the Batch Procedure
	Determining Whether the Block Needs All Inputs
	Customizing the Batch Reset Procedure
	Customizing How the Block Computes Duration in Interval Mode

	Customizing the Branch Block
	Customizing the Branch Procedure

	Customizing the Copy Block
	Copying Item-List Attributes and Their Items
	Adding to Associations

	Customizing the Reconcile Block
	Customizing the Match Procedure
	Customizing the Reconcile Reset Procedure

	Customizing the Remove Block
	Customizing What the Remove Block Considers “Empty”

	Customizing the Retrieve Block
	Customizing the Retrieve Procedure
	Copying Item-List Attributes and Their Items
	Customizing the Retrieve Reset Procedure

	Customizing the Source Block
	Customizing the Source Reset Procedure

	Customizing the Store Block
	Customizing the Store Procedure
	Customizing Database Mode
	Customizing the Store Reset Procedure

	Customizing the Yield Block
	Customizing the Yield Procedure

	Common Customization Attributes of Blocks
	Common Attributes of Animation Subtable
	Common Attributes of Duration Subtable
	Common Attributes of Cost Subtable

	Customizing Instruments
	Introduction
	Creating a Custom Feed
	Creating a Custom Probe
	Common Customization Attributes of Instruments
	Common Attributes of Animation Subtable
	Common Attributes of Instrument Paths

	Customizing Specific Instruments
	Customizing the Change Feed
	Customizing the Copy Attributes Feed and Probe

	Customizing Resources and Work Objects
	Introduction
	Customizing Resource Animation
	Customizing How Resource Managers Allocate Resources
	Choosing the Resource that has Worked the Shortest Amount of Time

	Common Customization Attributes of Resources and Work Objects
	Attributes of Animation Subtable
	Attributes of Duration Subtable
	Attributes of Cost Subtable

	Customization Attributes of Resource Managers
	Attributes of Resource Manager Paths

	Customizing the User Interface
	Introduction
	Customizing Properties Dialogs
	Customizing the ReThink Toolbox

	Customizing Menus
	Introduction
	Displaying the Menu Bars Layout Workspace
	Creating an Applications Menu
	Creating an Applications Menu
	Adding a Menu Choice that Displays Your Model
	Creating a Named Workspace to Display
	Using a Local Text Resource to Create Your Custom Menu Choice
	Editing the Workspace Templates

	Adding a Custom Palette to the Palettes Menu
	Saving the Menus Module

	ReThink Internals
	Block Processing
	Introduction
	The High-Level View
	The Planning Phase
	Check to See If the Block Is Ready
	Create An Activity
	Synchronize Inputs
	Establish a Relation Between the Activity and the Block
	Update Block Statistics
	Pause the Simulation
	Request Resources
	Schedule the Start Activity
	Dequeue the Work Objects

	The Start Activity Phase
	Compute Block Duration and Costs
	Start Input Work Objects
	Start Allocated Resources
	Evaluate Instruments When Phase is Start
	Update Block Statistics
	Animate the Block
	Execute the Block’s Start Method
	Schedule the Stop Activity

	The Stop Activity Phase
	Execute the Block’s Stop Method
	Update Block Statistics
	Stop Allocated Resources
	Stop the Work Objects
	Update Total Cost of Work Objects
	Evaluate Instruments When Phase is Stop
	Send the Work Object Downstream
	Clean Up

	Block Processing Summary
	Working with Time
	G2’s Real-Time Clock
	ReThink’s Simulation Clocks
	Referencing Real Time in ReThink

	Application Programmer’s Interface
	Introduction
	bpr-activate-scenario
	bpr-block-evaluator
	bpr-clone-object
	bpr-continue
	bpr-copy-list-of-attributes
	bpr-create-object
	bpr-delete-object
	bpr-dequeue-object
	bpr-detach-input
	bpr-get-item-for-label
	bpr-get-item-for-label-class-scenario
	bpr-handle-event-error
	bpr-indicate
	bpr-indicate-connection
	bpr-lookup-by-id
	bpr-message-to-all-users
	bpr-pause
	bpr-post
	bpr-post-path
	bpr-remove-from-pool
	bpr-reset
	bpr-schedule-an-event
	bpr-update-pool
	bpr-updated-attributes

	Relations
	Introduction
	Working With Relations During Modeling
	Understanding Naming Conventions
	Creating Relations When a Block Evaluates
	Creating Relations When a Resource Evaluates
	Creating Relations When You Create a Resource Manager
	Creating Relations When You Add Objects to a Pool
	Creating Relations When You Activate Scenarios
	Creating Relations When You Use the Associate Block
	Creating Relations When Replacing Details
	Creating Relations When Choosing the Root Workspace of a Report

	Glossary
	A
	B
	C
	D
	G
	M
	P
	R
	S
	U

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y

