
Optegrity

User’s Guide
Version 5.1 Rev. 0

Optegrity User’s Guide Version 5.1 Rev. 0

July 2014

The information in this publication is subject to change without notice and does not represent a
commitment by Gensym Corporation.

Although this software has been extensively tested, Gensym cannot guarantee error-free
performance in all applications. Accordingly, use of the software is at the customer’s sole risk.

Copyright (c) 1985-2014 Gensym Corporation

All rights reserved. No part of this document may be reproduced, stored in a retrieval system,
translated, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of Gensym Corporation.

Gensym®, G2®, Optegrity®, and ReThink® are registered trademarks of Gensym Corporation.

NeurOn-Line™, Dynamic Scheduling™ G2 Real-Time Expert System™, G2 ActiveXLink™, G2
BeanBuilder™, G2 CORBALink™, G2 Diagnostic Assistant™, G2 Gateway™, G2 GUIDE™,
G2GL™, G2 JavaLink™, G2 ProTools™, GDA™, GFI™, GSI™, ICP™, Integrity™, and SymCure™
are trademarks of Gensym Corporation.

Telewindows is a trademark or registered trademark of Microsoft Corporation in the United States
and/or other countries. Telewindows is used by Gensym Corporation under license from owner.

This software is based in part on the work of the Independent JPEG Group.

Copyright (c) 1998-2002 Daniel Veillard. All Rights Reserved.

SCOR® is a registered trademark of PRTM.

License for Scintilla and SciTE, Copyright 1998-2003 by Neil Hodgson, All Rights Reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/).

All other products or services mentioned in this document are identified by the trademarks or
service marks of their respective companies or organizations, and Gensym Corporation disclaims
any responsibility for specifying which marks are owned by which companies or organizations.

Gensym Corporation
52 Second Avenue
Burlington, MA 01803 USA
Telephone: (781) 265-7100
Fax: (781) 265-7101 Part Number: DOC118-510

Contents Summary
Preface xvii

Part I Getting Started 1

Chapter 1 Introduction 3

Chapter 2 Running Optegrity 9

Chapter 3 Working with Models 15

Chapter 4 Creating Optegrity Applications 73

Part II Process Maps 79

Chapter 5 Building a Process Map 81

Chapter 6 Configuring Built-in Event Detection 115

Chapter 7 Creating Domain Object Definitions 215

Part III Data Sources 233

Chapter 8 Configuring Network Interfaces 235

Chapter 9 Configuring External Datapoints 249

Chapter 10 Converting Engineering Units 271

Chapter 11 Configuring Logging 289

Chapter 12 Replaying Data 297

Chapter 13 Simulating Datapoint Values 313
iii

Part IV Event Detection 323

Chapter 14 Creating Generic Dataflow Diagrams 325

Chapter 15 Initializing Process Maps 333

Chapter 16 Reporting and Charting 337

Part V Diagnostic Reasoning 349

Chapter 17 Creating Generic Fault Models 351

Chapter 18 Running SymCure Fault Models 359

Part VI Alarm and Message Management 363

Chapter 19 Interacting with Operator Messages 365

Chapter 20 Interacting with SymCure Diagnostic Console Browsers 375

Chapter 21 Using Message Queues 381

Part VII Customization 393

Chapter 22 Creating Custom Event Detection 395

Chapter 23 Customizing Optegrity 413

Chapter 24 Configuring Startup Parameters 441

Index 465
iv

Contents
Preface xvii

About this Guide xvii

Version Information xix

Audience xix

Conventions xx

Related Documentation xxi

Customer Support Services xxiv

Part I Getting Started 1

Chapter 1 Introduction 3

Introduction 3

Process Maps and Domain Objects 4

External and Internal Datapoints 5

Optegrity Modules 5

Data Flow and Module Integration 6

Architecture 8

Chapter 2 Running Optegrity 9

Introduction 9

Starting the Server and Connecting the Client 10

Connecting to a Specific Server at Startup 11
Connecting the Client to the Default Server 12
Starting the Server on a Specific Port 12
Connecting the Client to a Specific Server 12

Starting the Server with Your Application Loaded 13

Starting the Optegrity Server as an NT Service 13

Exiting Optegrity 14
v

Chapter 3 Working with Models 15

Introduction 16

Summary of Common Tasks 16

Using the Project Menu 17
Using the Project Menu 18
Using the Manage Dialog 20
Performing Specific Operations 22
Using the Project Submenus 23

Navigating Applications 25
Using the Navigator 25
Searching for Objects 27

Interacting with Workspaces 27
Displaying a Detail Workspace 28
Hiding a Workspace 28
Deleting a Workspace 28
Editing Workspace Properties 29
Scaling a Workspace 29
Shrink Wrapping a Workspace 30
Showing the Superior Object of a Detail Workspace 32
Printing a Workspace 32
Saving a Workspace to a JPEG File 32
Loading Background Images 32
Creating and Accessing Top-Level Workspaces 32
Initializing Domain Objects and Specific Fault Models 33

Using the Menus 33
Using the File Menu 34
Using the Edit Menu 35
Using the View Menu 35
Using the Layout Menu 37
Using the Go Menu 38
Using the Project Menu 39
Using the Workspace Menu 43
Using the Tools Menu 43
Using the Help Menu 44

Using the Optegrity Toolboxes 45

Using the G2 Toolbox 49

Interacting with Objects 49
Selecting Objects 50
Cutting, Copying, Pasting, and Deleting Objects 50
Controlling the Layout of Objects 51
Displaying the Properties Dialog for an Object 51
Resizing an Object 52
vi

Editing Icon Color Regions 52

Using the Toolbars 52
Standard Toolbar 53
Web Toolbar 54
Layout Toolbar 55
Fault Modeling Toolbar 56
Operator Toolbar 56
Status Bar 57

Switching User Modes 57

Configuring User Preferences 58
Specifying User Preferences for Different Types of Users 59
Configuring User Preferences 61
Delivering Messages by Email 64

Starting the G2 JMail Bridge Process 65
Creating, Configuring, and Connecting the JMail Interface Object

65
Configuring Optegrity to Send Email Messages 68
Examples: Sending Email Messages 69
Configuring Startup Parameter for Sending Email Messages 71

Chapter 4 Creating Optegrity Applications 73

Introduction 73

Building an Optegrity Application 74

Working with Projects 76
Creating a New Project 77
Saving a Project 77
Opening a Project 78

Part II Process Maps 79

Chapter 5 Building a Process Map 81

Introduction 81

Creating a Process Map 82
Creating a Process Map Container 82
Creating Process Equipment 86
Connecting Process Equipment 89
Creating Instruments 92
Connecting Instruments 94

Configuring Domain Objects 96
Configuring Related Sensors 96
vii

Configuring Internal Datapoints 99
Configuring Built-In Event Detection 101

Creating Datapoint Displays 105

Creating a Process Map Hierarchy 105
Navigating Across Process Maps 109
Configuring Message Color Based on the Process Map 110

Interacting with Domain Objects 111

Managing Process Maps 113

Chapter 6 Configuring Built-in Event Detection 115

Introduction 115

Built-in Event Detection for Instruments 116
PV High 117
PV Low 119
PV Projected High 121
PV Projected Low 123
PV Change 125
PV Flatline 127
PV Noisy 129

Built-in Event Detection for Controllers 131
OP Projected High 131
OP Projected Low 134
Setpoint Error 136

Built-in Event Detection for Base Derived Sensors 138

Built-in Event Detection for Heaters 141
Related Sensor Events 142

Draft Oxygen 142
Draft Pressure 144
Stack NOx 146
Tube Skin Temperatures 148

Tube Skin Delta T 150
Efficiency Severe Change 154
Low Efficiency 165
Heat Release Projected High 168

Built-in Event Detection for Compressors 170
Compression Ratio Decrease 170
Power Projected High 173
Polytropic Head Change 180

Built-in Event Detection for Equipment Drivers 182
Motor Power Projected High 182
Turbine Power Projected High 187
viii

Built-in Generic Fault Models 194
Displaying Built-in Generic Fault Models 194
Built-in Generic Fault Models for Sensors 195

Flow Sensor Fault Model 195
Level Sensor Fault Model 197
Temperature Sensor Fault Model 198
Pressure Sensor Fault Model 199
Sensor Fault Model 201
Analyzer Sensor Fault Model 202
Delta P Sensor Fault Model 203
Motor Driver Fault Model 203

Built-in Generic Fault Models for Process Equipment 204
Process Equipment Flow Fault Model 204
Process Equipment Level Fault Model 206
Process Equipment Temperature Fault Model 207
Process Equipment Pressure Fault Model 208

Built-in Generic Fault Models for Heaters 209
Draft Pressure Fault Model 209
O2 Fault Model 210
NOx Fault Model 211
Tube Skin Temperature and Derived Delta T Fault Models 211

Built-in Generic Fault Models for Compressors 213

Chapter 7 Creating Domain Object Definitions 215

Introduction 215

Built-in Domain Object Foundation Classes 217

Built-in Process Equipment and Instrument Classes 218
Process Equipment Classes 218

Absorbers 219
Boilers 219
Compressors 219
Distillation Columns 219
Equipment Drivers 219
Evaporators 220
Fin Fans 220
General 220
Generators 220
Heat Exchangers 220
Heaters 221
Pumps 221
Reactors 221
Storage Tanks 221
Turbines 221
Valves 222
Vessels 222
ix

Instrument Classes 222
Internal Datapoints of Instruments 223
Sensors and Analyzers 223
Controllers 224

Creating Domain Object Definitions 224
Creating the Domain Object Definition 225
Editing the Domain Object Definition Icon 228
Configuring Derived Internal Datapoints 228

Accessing User-Defined Domain Objects 229

Managing Domain Object Definitions 230

Part III Data Sources 233

Chapter 8 Configuring Network Interfaces 235

Introduction 235

Creating and Connecting Network Interfaces 237

Advanced Features 239

Using Interface Pools 242

Managing Network Interfaces 246

Chapter 9 Configuring External Datapoints 249

Introduction 249

Creating External Datapoint Configuration Files 250
Configuring the External Datapoint Name 251
Configuring the Default Update Interval 251
Configuring the Datapoint Tag Type 252
Configuring the Datapoint Type 252
Configuring the Datapoint Units 252
Configuring the Related Internal Datapoint 253
Configuring Data Validation 253
Configuring the DCS Datapoint Data 255
Summary of the CSV File Format 255
Using an Existing CSV File as a Template 257

Creating External Datapoints from a CSV File 258
Creating the External Datapoints Container 258
Creating and Configuring External Datapoints 260
Manually Relating External Datapoints 264

Creating Individual External Datapoints 265
x

Translating External Datapoint Values 266

Managing External Datapoints 269

Chapter 10 Converting Engineering Units 271

Introduction 271

Working with Engineering Unit Conversions 272
Configuring External Datapoint Units in the CSV File 272
Configuring Engineering Units for Domain Objects 273
Displaying Engineering Units for Datapoints 274
Configuring the Internal Units 275

Viewing Built-in Engineering Unit Conversion Definitions 275

Defining Engineering Unit Conversion Synonyms 277
Adding New Synonyms to Existing Engineering Unit Conversion

Definitions 277
Creating New Engineering Units and Synonyms 280

Defining Engineering Unit Conversion Definitions 282

Converting Engineering Units on Demand 283

Managing Engineering Units 284
Managing Engineering Unit Conversions 284
Managing Engineering Unit Synonyms 286

Chapter 11 Configuring Logging 289

Introduction 289

Configuring Datapoints for Logging 290

Log File Format 294

Managing Data Logging 295

Chapter 12 Replaying Data 297

Introduction 297

Creating Data Series 298
Creating a Continuous Data Series 299
Creating a Differential Data Series 300

Creating Data Replay Files 301

Configuring Data Replay 303

Replaying Data from CSV Files 305
Displaying Trend Charts of Datapoint Values 306
xi

Viewing Data Validation Alarms 307

Managing Data Series 309

Managing Data Replay 310

Chapter 13 Simulating Datapoint Values 313

Introduction 313

Creating a Simple Data Simulation 314
Example: Internal Datapoint Simulation for a Sensor 316
Example: External Datapoint Simulation for a Sensor 317

Creating a Data Simulation with Transitions 318
Example: External Datapoint Simulation with Transitions 320

Managing Data Simulations 321

Part IV Event Detection 323

Chapter 14 Creating Generic Dataflow Diagrams 325

Introduction 325

Creating Generic Dataflow Template Folders 326

Creating Generic Dataflow Templates 328

Managing Dataflow Templates and Diagrams 331

Chapter 15 Initializing Process Maps 333

Introduction 333

Initializing Process Maps 334

Showing Specific Dataflow Diagrams 335

Uninitializing Process Maps 335

Chapter 16 Reporting and Charting 337

Introduction 337

Creating GRPE Reports and Charts 338

Configuring Event Metrics Reports 338

Viewing Event Metrics Reports 342

Configuring and Viewing System Performance Reports 343
xii

Part V Diagnostic Reasoning 349

Chapter 17 Creating Generic Fault Models 351

Introduction 351

Creating Generic Fault Model Folders 352

Creating Generic Fault Models 353

Creating Generic Actions 354

Managing Generic Fault Models 356

Chapter 18 Running SymCure Fault Models 359

Introduction 359

Compiling Generic Fault Models 360

Checking for Errors and Warnings 360

Enabling Fault Models 361

Sending Fault Model Events 362

Part VI Alarm and Message Management 363

Chapter 19 Interacting with Operator Messages 365

Introduction 365

Using the Operator Interface 366
Interacting with the Process Model 368
Interacting with Operator Messages 373

Interacting with Operator Messages in Modeler Mode 373

Chapter 20 Interacting with SymCure Diagnostic Console Browsers 375

Introduction 375

Displaying SymCure Browsers 377

Interacting with the Alarms Browser 377

Interacting with the Root Causes Browser 378

Interacting with the Test Actions Browser 379

Interacting with the Repair Actions Browser 380
xiii

Chapter 21 Using Message Queues 381

Introduction 381

Creating a New Message Queue 382

Logging Messages 382
Logging Messages to a File 383
Logging Messages to a Database 385
Logging Messages to a JMS Provider 387
Contents of Log File 388

Configuring the Browser Template for a Message Queue 390

Managing Message Queues 391

Part VII Customization 393

Chapter 22 Creating Custom Event Detection 395

Introduction 395

Creating Custom Domain Objects and Relations 396

Creating a Custom Event Object Hierarchy 397

Configuring the Custom Event Logic 401

Configuring the Generic Event Detection Diagram for the Custom Event 403

Configuring the Specific Event Detection Diagram for the Custom Event 408

Testing the Custom Event 412

Chapter 23 Customizing Optegrity 413

Introduction 413

Interacting with Objects in Developer Mode 414

Using the G2 Toolbox 415

Configuring User Preferences 419
Configuring Filters 423
Configuring Message Details 425

Application Initialization 426

Custom Data Source Integration 426
Creating the Custom Network Interface Class 427
Creating Custom External Datapoint Classes 429

Creating Custom External Datapoint Classes 429
Example: TDC Data Source Integration 429
xiv

Custom Network Interface Class 430
Custom Network Interface Class 430

Custom External Datapoint Classes 431

Working with Engineering Unit Conversions 433
Dimension Types 433
Dimension Units 434
Conversion Status 435
API Procedures 436

Custom Messaging 437

Custom Menus 437
Custom Popups 437

Implementing the Popup Constructor 438
Implementing the Callback that Executes the Popup 439

Chapter 24 Configuring Startup Parameters 441

Introduction 442

Installation Directory 442

GRTL 442
Applications 442
User Preferences 443
User Audit Files 443
UTC Offset 443
Repository 444
Indicator Arrows 444
Timestamp Format 444
User Interface Refresh 445

GDSM 445
Network Connections 445
Enable Interfaces 446

GEVM 446
Messages 446
Message Color 447
Logbook and Message Board Handlers 448
Message Browser 449

GEUC 449

GRLB 449

CDG (SymCure) 450

CDGUI (SymCure) 451

GEVM-GQS-QUEUE Instances 451
Events 451
xv

Messages 453
Alarms 454
Root Causes 455
Test Actions 455
Repair Actions 456

User Interface 457
Default-Menubar 457
Default-Status-Bar 457
Toolbars 457

Standard 457
Layout 458
Web 458

Child Windows 458
Project-Hierarchy 458
Class-Hierarchy 459
Module-Hierarchy 459
Toolbox-G2 460

Intelligent Objects 462

F102Demo 462

Network Interface Connections 462
default-opc-interface 462
default-pi-interface 462
default-sql-interface-pool 462
default-smtp-interface-pool 463
default-http-interface 463
default-snmp-interface 464
default-snmp-trap-receiver-interface 464

Index 465
xvi

Preface
Describes this guide and the conventions that it uses.

About this Guide xix

Version Information xxi

Audience xxi

Conventions xxii

Related Documentation xxiii

Customer Support Services xxvi

About this Guide
This guide describes how to use Optegrity to build applications for abnormal
condition management. It describes:

• Getting Started:

– Understanding the various Optegrity modules and architecture.

– Running Optegrity.

– Working with Optegrity through its menus.

– Creating, saving, and loading Optegrity applications.

• Process Maps:

– Building process maps by creating, configuring, and connecting domain
objects to form a graphical representation of a process and configuring
domain objects for built-in event detection.
xvii

– Configuring built-in event detection for instruments and process
equipment.

– Creating user-defined domain objects that contain internal datapoints to
represent each external tag variable.

• Data Sources:

– Creating and configuring various types of network interfaces for
obtaining data from external data sources, including OPC, PI, databases,
JMail, and JMS providers.

– Configuring external datapoints from CSV files, which obtain values
through network interfaces, perform low-level data validation, and
provide data for internal datapoints in a domain map.

– Configuring engineering unit conversions and synonyms for representing
external and internal datapoints.

– Logging internal and external datapoint values.

– Replaying data to internal and external datapoints for simulation and
testing purposes.

– Creating datapoint simulations for internal and external datapoints.

• Event Detection:

– Creating generic event detection diagrams that monitor internal
datapoints and generate events when certain conditions are met.

– Initializing and uninitializing process maps.

– Creating various types of reports for event metrics and system
performance.

• Diagnostic Reasoning:

– Creating generic SymCure fault models to diagnose events, determine
root causes, and take corrective actions.

– Compiling SymCure diagnostic models and sending fault model events
for testing these models.

• Alarm and Message Management:

– Interacting with operator messages through the Message Browser.

– Interacting with SymCure events through the alarms, root causes, and
external actions diagnostic console browsers.

– Configuring message queues for logging operator messages and events.
xviii

Version Information
• Customization:

– Creating custom event detection.

– Customizing various aspects of Optegrity, including creating custom data
source integration, custom messaging, and custom menus.

– Configuring startup parameters for Optegrity.

Version Information
This guide works with Optegrity Version 5.1, which includes these modules:

• G2 Data Source Management (GDSM)

• G2 Data Point Management (GDPM)

• G2 Event and Data Processing (GEDP)

• G2 Event Management (GEVM)

• G2 Run-Time Library (GRTL)

• G2 Reporting Engine (GRPE)

• G2 Engineering Unit Conversions (GEUC)

• SymCure (CDG)

Audience
This guide is for process modelers and application developers who want to learn
how to use Optegrity to build abnormal condition management applications. It
describes how to create process maps that communicate with external systems,
manage data sources, detect events, perform diagnosis, and manage alarms and
messages.

Users of this guide should be familiar with process modeling, as well as with
Distributed Control Systems such as OPC and PI.

Users of this guide should also be familiar with the general concepts of object-
oriented programming, using classes, class hierarchies, and inheritance.

In general, process modelers do not need to be familiar with G2, Optegrity’s
underlying software environment. However, familiarity with G2 allows modelers
to create application-specific custom procedures that the application can execute
when various events occur.

For a step-by-step tutorial of an existing Optegrity application, see the Optegrity
Heater Tutorial.
xix

Conventions
This guide uses the following typographic conventions and conventions for
defining system procedures.

Typographic

Convention Examples Description

g2-window, g2-window-1,
ws-top-level, sys-mod

User-defined and system-defined
G2 class names, instance names,
workspace names, and
module names

history-keeping-spec, temperature User-defined and system-defined
G2 attribute names

true, 1.234, ok, “Burlington, MA” G2 attribute values and values
specified or viewed through
dialogs

Main Menu > Start

KB Workspace > New Object

create subworkspace

Start Procedure

G2 menu choices and button labels

conclude that the x of y ... Text of G2 procedures, methods,
functions, formulas, and
expressions

new-argument User-specified values in
syntax descriptions

text-string Return values of G2 procedures
and methods in syntax
descriptions

File Name, OK, Apply, Cancel,
General, Edit Scroll Area

GUIDE and native dialog fields,
button labels, tabs, and titles

File > Save

Properties

GMS and native menu choices

workspace Glossary terms
xx

Related Documentation
Note Syntax conventions are fully described in the G2 Reference Manual.

Procedure Signatures

A procedure signature is a complete syntactic summary of a procedure or
method. A procedure signature shows values supplied by the user in italics, and
the value (if any) returned by the procedure underlined. Each value is followed by
its type:

g2-clone-and-transfer-objects
(list: class item-list, to-workspace: class kb-workspace,
delta-x: integer, delta-y: integer)

-> transferred-items: g2-list

Related Documentation

Optegrity

• Optegrity Heater Tutorial

• Optegrity User’s Guide

• SymCure User’s Guide

G2 Core Technology

• G2 Bundle Release Notes

• Getting Started with G2 Tutorials

• G2 Reference Manual

• G2 Language Reference Card

• G2 Developer’s Guide

c:\Program Files\Gensym\ Windows pathnames

/usr/gensym/g2/kbs UNIX pathnames

spreadsh.kb File names

g2 -kb top.kb Operating system commands

public void main()
gsi_start

Java, C and all other external code

Convention Examples Description
xxi

• G2 System Procedures Reference Manual

• G2 System Procedures Reference Card

• G2 Class Reference Manual

• Telewindows User’s Guide

• G2 Gateway Bridge Developer’s Guide

G2 Utilities

• G2 ProTools User’s Guide

• G2 Foundation Resources User’s Guide

• G2 Menu System User’s Guide

• G2 XL Spreadsheet User’s Guide

• G2 Dynamic Displays User’s Guide

• G2 Developer’s Interface User’s Guide

• G2 OnLine Documentation Developer’s Guide

• G2 OnLine Documentation User’s Guide

• G2 GUIDE User’s Guide

• G2 GUIDE/UIL Procedures Reference Manual

G2 Developers’ Utilities

• Business Process Management System User’s Guide

• Business Rules Management System User’s Guide

• G2 Reporting Engine User’s Guide

• G2 Web User’s Guide

• G2 Event and Data Processing User’s Guide

• G2 Run-Time Library User’s Guide

• G2 Event Manager User’s Guide

• G2 Dialog Utility User’s Guide

• G2 Data Source Manager User’s Guide

• G2 Data Point Manager User’s Guide

• G2 Engineering Unit Conversion User’s Guide

• G2 Error Handling Foundation User’s Guide

• G2 Relation Browser User’s Guide
xxii

Related Documentation
Bridges and External Systems

• G2 ActiveXLink User’s Guide

• G2 CORBALink User’s Guide

• G2 Database Bridge User’s Guide

• G2-ODBC Bridge Release Notes

• G2-Oracle Bridge Release Notes

• G2-Sybase Bridge Release Notes

• G2 JMail Bridge User’s Guide

• G2 Java Socket Manager User’s Guide

• G2 JMSLink User’s Guide

• G2-OPC Client Bridge User’s Guide

• G2-PI Bridge User’s Guide

• G2-SNMP Bridge User’s Guide

• G2-HLA Bridge User’s Guide

• G2 WebLink User’s Guide

G2 JavaLink

• G2 JavaLink User’s Guide

• G2 DownloadInterfaces User’s Guide

• G2 Bean Builder User’s Guide

G2 Diagnostic Assistant

• GDA User’s Guide

• GDA Reference Manual

• GDA API Reference
xxiii

Customer Support Services
You can obtain help with this or any Gensym product from Gensym Customer
Support. Help is available online, by telephone, by fax, and by email.

To obtain customer support online:

 Access G2 HelpLink at www.gensym-support.com.

You will be asked to log in to an existing account or create a new account if
necessary. G2 HelpLink allows you to:

• Register your question with Customer Support by creating an Issue.

• Query, link to, and review existing issues.

• Share issues with other users in your group.

• Query for Bugs, Suggestions, and Resolutions.

To obtain customer support by telephone, fax, or email:

 Use the following numbers and addresses:

Americas Europe, Middle-East, Africa (EMEA)

Phone (781) 265-7301 +31-71-5682622

Fax (781) 265-7255 +31-71-5682621

Email service@gensym.com service-ema@gensym.com
xxiv

Part I
Getting Started
Chapter 1: Introduction

Describes the modules that make up the Optegrity Bundle.

Chapter 2: Running Optegrity

Describes how to start the server and connect the client.

Chapter 3: Working with Models

Describes how to work with models through the menus and toolbars.

Chapter 4: Creating Optegrity Applications

Describes how to create a new Optegrity application.
1

2

1

Introduction
Describes the modules that make up the Optegrity Bundle.

Introduction 3

Process Maps and Domain Objects 4

External and Internal Datapoints 5

Optegrity Modules 5

Data Flow and Module Integration 6

Architecture 8

Introduction
Optegrity is an extensible software platform that is used to build abnormal
condition management applications for process manufacturing industries.
Optegrity applications ensure sustained operational performance and continuous
availability of production assets. Its applications detect and resolve abnormal
process conditions early—before they disrupt productivity, and weaken product
quality and profits.

Optegrity is a powerful application platform for OEMs, value-added-resellers
(VARs), system integrators (SIs), consultants, and end users. Combined with
existing control systems, data historians, and databases, Optegrity applications
work in real time to:

• Proactively monitor process conditions to avoid or minimize disruptions.

• Analyze, filter, and correlate alarms to speed up operator responses.
3

• Rapidly isolate the root cause of problems to accelerate resolution.

• Guide operators through recovery to enhance safety levels.

• Provide expert guidance so that operators of all skill levels can effectively
respond to problems.

• Predict the impact of process disruptions so operators can prioritize actions.

Optegrity consists of a broad set of capabilities for meeting the wide-ranging
needs of abnormal condition management, covering the whole life cycle of
projects from modeling to validation and deployment. Optegrity monitors and
evaluates in real time process conditions received from a DCS (Distributed
Control System), provides advisory messages and root cause analysis capabilities.
Fault models reason over process maps to reduce the number of operator alarms
significantly and to isolate the root cause(s) of problems.

Domain experts such as process engineers can graphically model the logic used to
monitor, diagnose, and control the process conditions. Logging and replay
capabilities enable domain experts to validate their logic before deploying it or
replay historical data for in depth analysis of specific situations. Optegrity also
enables domain experts to build libraries of reusable process objects that include a
generic formalization of event detection and causal fault models.

Optegrity is a client/server, multi-user environment, enabling multiple users to
collaborate during the development and deployment phases of a project. Multiple
operators can interact with the server simultaneously to monitor and diagnose in
real time the state of the process condition. You can also run Optegrity in a secure
G2 environment.

Process Maps and Domain Objects
A process map provides a visual representation of your process, where each piece
of equipment and each sensor is represented as a domain object in your
application. External DCS tag variables can be represented as stand-alone domain
objects, such as a temperature or flow sensor. They can also be embedded within
a domain object, such as a heater.

Optegrity provides built-in domain intelligence for a number of domain objects in
the form of:

• Event detection diagrams, which monitor real-time or simulated data, and
generate events, alarms, and messages when pre-defined conditions specified
by the diagrams’ logic occur.

• Diagnostic causal fault models, which receive events from event detection
diagrams and correlate these events to determine root causes and to take
corrective actions.
4

External and Internal Datapoints
For example, all sensors contain built-in event detection diagrams for the
following events: High and Low Limits, Projected High and Low Limits, Noisy,
Flatline, and Change. Similarly, heaters detect Heat Release Projected High, Low
Efficiency, and Efficiency Severe Change events.

You can extend Optegrity’s domain intelligence by defining custom event
detection diagrams, fault models, and domain object definitions.

External and Internal Datapoints
Each DCS tag variable is represented in your application as an external datapoint.
External datapoints obtain data from the external DCS system via an interface
object, which provides connectivity through a bridge. Optegrity supports
connectivity with DCS systems, using G2 OPCLink and the G2-PI Bridge.

External datapoints provide data to a process map via internal datapoints. An
internal datapoint can be a stand-alone domain object or an embedded datapoint
within a domain object.

Internal datapoints provide a link between domain objects and event detection
diagrams. They notify event listeners when datapoint values change, and they
receive new values from external datapoints. Thus, event detection diagrams
monitor internal datapoints to generate events, which may, in turn, trigger
diagnostic analysis.

Optegrity Modules
Optegrity consists of the following modules:

This module... Performs these tasks...

Optegrity Provides domain object classes for building process
maps that integrate with GDSM, GDPM, GEVM,
GEDP, and SymCure.

G2 Data Point
Management
(GDPM)

Configures external datapoints for each DCS tag
variable, using CSV (comma-separated value) files.

Provides the link between external and internal
datapoints within a process map.

Configures and performs data validation, data replay,
and data logging, all using CSV files.

G2 Data Source
Management
(GDSM)

Configures the interface object that provides
connectivity through a bridge.
5

Data Flow and Module Integration
Optegrity integrates its various modules and manages data flow, as follows:

• GDPM creates and configures external datapoints to represent each DCS tag
variable. GDPM performs low-level data validation on external datapoints.
Messages that result from data validation appear in the Messages browser.

• GDPM defines internal datapoints, which obtain their data from external
datapoints. These internal datapoints are embedded in domain objects within
a domain map.

• GEDP monitors internal datapoint values and generates SymCure events for
specific domain objects. GEDP also generates low-level notifications and
operator messages. You can view these messages in the Message browser.

G2 Event
Management
(GEVM)

Manages low-level notifications and messages, and
displays them in various types of message browsers.

G2 Run-Time Library
(GRTL)

Manages the user interface.

G2 Event and Data
Processing (GEDP)

Defines generic logic for monitoring internal datapoint
values and generating low-level notifications, operator
messages, and SymCure events that trigger diagnostic
reasoning.

SymCure

Also known as CDG
(Causal Directed
Graphs)

Defines generic diagnostic models for domain object
classes, which are used to correlate events to determine
root causes and to take corrective actions.

G2 Engineering Unit
Conversion (GEUC)

Specifies engineering units and conversions for
entering and displaying values, as well as a large
number of synonyms for those conversions, in both the
English and metric systems

G2 Reporting Engine
(GRPE)

Manages reports and charts.

Optegrity Events Contains support for built-in domain object events.

Intelligent Object
modules

Provide built-in event detection logic and fault models
for various types of domain objects, such as sensors,
controllers, heaters, pumps, and so on.

This module... Performs these tasks...
6

Data Flow and Module Integration
You build generic event detection templates, which apply to classes of
domain objects.

• SymCure correlates events on specific domain objects across your domain
map to identify root causes, run tests, and perform repair actions. SymCure
also generates messages for alarms, root causes, tests, and repair actions,
which are displayed in the diagnostic console browsers and the Messages
browser. SymCure fault models can also trigger event detection diagrams to
perform actions. You build generic SymCure fault models, which are
associated with classes of domain objects.

• The Intelligent Object modules monitor events for the various built-in
domain objects.

Here is a graphical representation of data flow and module integration in an
Optegrity application:

DCS tag variables

internal
datapoints
& domain
objects

event
detection

diagnostic
reasoning

data

SymCure events

data

alarms

root causes

external data

data

GDPM

GDPM &

GEDP

SymCure

messages

messages

SymCure

SymCureevents

Alarms Browser
Root Causes Browser
Test Actions Browser

Repair Actions Browser

data
validation

external
datapoints

Optegrity

test actions

repair actions

message
browser GEVM

Intelligent Objects
7

Architecture
This figure shows the overall architecture of the Optegrity Heater Tutorial:

DCS
tag

variable

DCS
tag

variable

DCS
tag

variable

DCS
tag

variables

Data point
management

Event
Detection

Messaging and
Alarm Management

CSV files CSV files

external
datapoints

GEDP

GDPM

SymCure (CDG)

GEVM

SymCure

low-level

G2
Bridge

internal

Optegrity Application

domain
object

datapoint

G2-PI Bridge
G2 OPCLink

events

Diagnostic
Reasoning

alarms
root causes

and messages

data
replay

external datapoint
configuration and

raw
data

CSV files

log data

test actions
repair actions

data

data validation data data

SymCure
external

actions

Intelligent Objects

GDSM

notifications
8

2

Running Optegrity
Describes how to start the server and connect the client.

Introduction 17

Starting the Server and Connecting the Client 18

Connecting to a Specific Server at Startup 19

Starting the Server with Your Application Loaded 21

Exiting Integrity 21

Introduction
Optegrity is a client/server application. Optegrity provides a batch file that, by
default, starts the G2 server as a hidden process on the local machine at a default
port (1111).

To run Optegrity, you must connect the Telewindows client to the server. By
default, Telewindows automatically connects to the server running on the local
machine on the default port.

You can run Optegrity in a secure G2 environment, which means users must
provide a password before Optegrity grants access to a KB. User names and
passwords are stored in the g2.ok file. For details on how to configure Optegrity
to run in a secure G2 environment, see Chapter 54 “Licensing and Authorization”
in the G2 Reference Manual.
9

Starting the Server and Connecting the Client
You can start the server and connect the client by using the Start menu.

To start the server and connect the client:

1 Choose Start > Programs > Gensym G2 2011 > G2 Optegrity >
Start G2 Optegrity Server.

This menu choice starts the G2 server, using the StartServer.bat batch file,
located in the g2 directory of your Optegrity installation directory. It starts the
server on the local machine on TCP/IP port number 1111, and it automatically
loads the KB named optegrity.kb.

When the server has been started, the G2 icon appears in the system tray.
When the server is running, the icon looks like this:

2 Once the server is running, connect the client in one of two ways:

 To connect Telewindows to the server running on the default host and
port, choose Start > Programs > Gensym G2 2011 > Telewindows Next
Generation.

or

 To connect Telewindows to the server running on the local host on the
current port, right-click the G2 icon in the system tray and choose Connect
Telewindows.

The Telewindows client is now connected to the G2 server.
10

Connecting to a Specific Server at Startup
When the client is connected and all files have finished loading, you will see this
window:

Optegrity starts in Modeler mode, which is the typical user mode for building
models. Optegrity also provides an operator interface for end users, which you
access in Operator mode. It also provides user modes for developers and system
administrators, in which you can also build models. For details, see Switching
User Modes.

Connecting to a Specific Server at Startup
You can run the Optegrity client and server on different computers, or multiple
Optegrity servers on the same computer.

You can:

• Connect the client directly to the server.

• Start the server on a specific port.

• Connect the client to a specific server.
11

Connecting the Client to the Default Server

To connect the client to the default server:

1 Start the Optegrity server from the Start menu.

By default, the server starts on the local host at port 1111. Each time you start a
new server on the same machine, the port number increments by one. For
example, if you start another server, the port number would be 1112.

2 To determine the host and port, hover the mouse over the G2 server icon in
the system tray.

For example, MY-HOST:1111 means the server is running on the machine
named MY-HOST at port 1111.

3 Right-click the G2 server icon in the system tray and choose Connect
Telewindows.

The Telewindows client connects to the specific host and port of that server.

Starting the Server on a Specific Port

To start the server on a specific port:

1 Right-click the Start G2 Optegrity Server menu choice in the Start menu and
choose Create Shortcut.

2 Rename the shortcut and/or drag it to your desktop, as needed.

3 Display the properties dialog for the shortcut and click the Shortcut tab.

4 Configure the Target property in the dialog to be the specific port on which to
start the server, using the -tcpport command-line option.

For example, to start the server on port 1115, the shortcut would look like this:

"C:\Program Files\Gensym\g2-2011\g2\StartServer.bat"
-kb ..\optegrity\kbs\optegrity.kb -nowindow -tcpport 1115

Connecting the Client to a Specific Server

To connect the client to a specific server:

1 Create a shortcut to the twng.exe file located in the g2 directory of your
Optegrity product installation, either directly or by creating a shortcut from
the Telewindows Next Generation menu choice in the Start menu.

2 Display the properties dialog for the shortcut and click the Shortcut tab.
12

Starting the Server with Your Application Loaded
3 Configure the Target by appending the host and port of the Optegrity server
to which to connect, using this syntax: host:port.

For example, to connect to my-host at port 1115, the shortcut would look like
this:

"C:\Program Files\Gensym\g2-2011\g2\twng.exe"
my-host:1115

Starting the Server with Your Application
Loaded

By default, the server starts up with the default Optegrity application running,
optegrity.kb. Once you create an application, you might want to create a
shortcut to the Optegrity server that automatically loads your application at
startup.

To start the server with your application loaded:

1 Copy the Start G2 Optegrity Server shortcut from the Start menu.

You can rename the shortcut and drag it to your desktop, as needed.

2 Display the properties dialog for the shortcut and click the Shortcut tab.

3 Configure the application to load by editing the Target.

For example, to load the application named f102demo.kb located in the
\optegrity\examples directory, the Target should look like this:

"C:\Program Files\Gensym\g2-2011\g2\StartServer.bat"
-kb "c:\Program Files\Gensym\g2-2011\optegrity\examples\
f102demo.kb" -nowindow

Starting the Optegrity Server as an NT Service
On Windows platforms, you can run the Optegrity server as an NT service, which
means you can control it through the Windows Service Control Panel. It also
means you can configure it to start automatically when the computer boots up
and restart if the process dies.

You run the Optegrity server as an NT service from a batch file. You can provide
the same two arguments that you provide to the batch file or shell script that
starts the server:

• A relative or absolute path name to a .kb file to load at startup.

• The TCP/IP port number that the server should use to listen for
client connections.
13

To run the Optegrity server as an NT service:

1 Create a shortcut to the install-dir\optegrity\bin\
InstallServerAsNTService.bat.

2 Edit the shortcut to provide these arguments:

install-dir\optegrity\bin\InstallServerAsNTService.bat file port

For example, this command launches the server as an NT service from the default
installation directory with the f102demo.kb loaded at port 1112:

"c:\Program Files\Gensym\g2-2011\optegrity\bin\
InstallServerAsNTService.bat" "..\examples\f102demo.kb 1112"

To uninstall the Optegrity server as an NT service:

 Run install-dir\optegrity\bin\UninstallServerAsNTService.bat.

Exiting Optegrity
To exit Optegrity, you disconnect the client from the server, then shut down the
server. By default, you can only exit the server directly from the client in
Developer mode.

To disconnect the client from the server:

 Choose File > Close.

To exit the server:

 Right-click the G2 server icon in the system tray and choose Shut Down G2.

or

1 Choose Tools > User Mode > Developer.

2 Choose File > Exit.

3 Click Yes in the confirmation dialog.
14

3

Working with Models
Describes how to work with models through the menus and toolbars.

Introduction 24

Summary of Common Tasks 24

Using the Project Menu 25

Navigating Applications 27

Interacting with Workspaces 30

Using the Menus 34

Using the Integrity Toolboxes 44

Using the G2 Toolbox 46

Interacting with Objects 46

Using the Toolbars 49

Switching User Modes 53

Configuring User Preferences 54
15

Introduction
To work with Optegrity models, you perform these tasks:

• Use the Project menu.

• Navigate models.

• Interact with workspaces.

• Use the menus.

• Use the Optegrity toolbox.

• Use the G2 Toolbox.

• Interact with objects in the model.

• Use toolbars.

• Switch user modes.

• View messages.

You can also view a summary of command tasks.

Summary of Common Tasks
This section summarizes how to perform common tasks in Optegrity:

To... Do this...

Display the popup menu for an
object on a workspace

Click the right mouse button on the object.

Display the properties dialog for
an object on a workspace

Double-click the object, select the object
and press the F4 key, or choose Properties
from the object’s popup menu. You can
also select the item, then choose Edit >
Properties or click the equivalent toolbar
button:

Display the detail for an object Choose Show Detail from the popup menu
for the object, choose View > Show Details,
enter Ctrl + right click on the object, or
click the equivalent toolbar button:

Display the Optegrity toolbox Choose View > Toolbox - Optegrity.
16

Using the Project Menu
Using the Project Menu
Optegrity provides two basic types of objects, which you use to create an
application:

• Configuration objects, which you use to configure various aspects of the
model:

– Network interfaces configure connectivity with various types of bridges.

– External datapoints configure the external data sources your application
monitors and manages.

– Data logging configures default behavior for logging internal and external
datapoints in a process map.

– Continuous and differential data series configure CSV files from which to
replay data.

– Data replay configures data series for replaying data.

– Data simulations allow you to simulate external and internal datapoint
values.

• Container objects, which have details on which you place objects cloned from
palettes in one of the various Optegrity toolboxes:

– Process maps contain connected domain objects that describe the process
you are managing. You create domain objects from the palettes in the
Process Modeling toolbox.

– Event detection templates and diagrams contain GEDP blocks that
describe event detection models for domain object classes and instances.
You create GEDP blocks from the palettes in the Event Detection toolbox.

– Generic fault model folders contain diagnostic models and external
actions that perform root cause analysis. You create generic fault models
from the palettes in the Fault Modeling toolbox.

Adjust the size of a workspace and
its associated window to fit the
contents of the workspace

Choose Shrink Wrap on the workspace,
choose Layout > Shrink Wrap, or click the
equivalent toolbar button:

Hide a workspace Click the Minimize button on the window,
choose Hide on the workspace, choose
View > Hide, or enter Ctrl + right click on
the workspace.

To... Do this...
17

You create, configure, and interact with Optegrity objects to create a model by
using the Project menu.

You can also create and interact with objects through the Navigator, and you can
search for objects once they exist. For more information, see:

• Using the Navigator.

• Searching for Objects.

Using the Project Menu

The Project menu allows you to create and manage the various objects you need
to build an Optegrity application.These include network interfaces, external
datapoints, manufacturing process maps, datapoint series for data replay,
datapoint logging, data replay, datapoint simulations, event detection diagrams,
and SymCure fault models.

Here is the Project menu with its various submenus:
18

Using the Project Menu
For details, see Using the Project Menu.
19

Using the Manage Dialog

The Manage dialog allows you to create and configure new Optegrity objects,
show model details, copy and delete objects, and perform specific operations.

The Manage dialog provides these toolbar buttons:

The buttons in the Manage dialog are enabled or disabled, as appropriate, for the
particular type of object. For example, the Model button is enabled for process
maps, event detection models, and fault models, but not for interfaces, external
datapoints, datapoint replay, datapoint series, or datapoint logs.

The Go To button is disabled in Modeler mode because, typically, you interact
with objects through properties dialogs and model details. You can go to objects
directly through the Navigator or search, if desired.

For information about interacting with objects directly, see Interacting with
Objects in Developer Mode.

To use the Manage dialog:

1 Choose a submenu from the Project menu and choose Manage.

If the submenu has additional submenus, choose one of the submenus. The
Manage dialog appears, which includes all objects in the submenu.

2 To create a new object, click the New button in the Manage dialog.

A properties dialog appears for configuring the object. The default name is a
unique, system-generated name.

3 Configure the properties, depending on the type of object, and click OK.

For information on configuring the properties, see the various chapters in this
guide.

The object now appears in the Manage dialog.

New

Properties

Model

Go To

Copy

Delete
20

Using the Project Menu
4 Select an object in the list to enable the toolbar buttons, as appropriate for the
type of object.

For example, here is the Process Maps Manage dialog when the f102demo.kb
application is loaded. Notice that the Model button for showing the detail is
active because process maps are containers.

Here is the External Datapoints Manage dialog with the f102demo.kb
application is loaded. Notice that the Model button is not active because
external datapoints is a configuration object, which does not have detail.
21

5 To display the properties dialog for an object, click the Properties button.

Note that the only way to configure the properties of a container object once it
has been created is through the Manage dialog.

6 To display the detail associated with a container object, click the Model
button.

This button is only available for container objects; configuration objects do not
have detail.

7 To copy an existing object, select the object you want to copy, then click the
Copy button.

A properties dialog appears for configuring the copy. The default name is the
existing object name with -copy appended.

8 To delete an object, select the object you want to delete and click the Delete
button.

Performing Specific Operations

The dialog that appears when you choose Manage contains additional buttons for
interacting with specific features of the selected object, as appropriate. The
following objects have these additional buttons:

This object... Has these buttons... Which...

Interface Connect to and disconnect from the external
bridge (Developer mode only). For more
information, see Configuring
Network Interfaces.

Datapoint Replay Start, Stop, Pause, and Resume, which control
the status of the datapoint replay. For more
information, see Replaying Data.

Datapoint
Simulations

Activate and deactivate datapoint simulation.
For more information, see Simulating
Datapoint Values.

Generic Fault
Model

Which compiles the generic fault model, and
displays errors and warnings that occur
during the compile. For more information, see
Running SymCure Fault Models.

Message Queue Shows the browser for the selected message
queue. For more information, see Interacting
with Operator Messages.
22

Using the Project Menu
Using the Project Submenus

Optegrity provides access to the various objects in a model through submenus of
the Project menu. Selecting the menu choice for a configuration object displays the
properties dialog for the object. Selecting the menu choice for a container object
displays its detail.

To use the project submenus:

1 Choose a submenu from the Project menu.

If the submenu has additional submenus, choose a submenu until you see a
submenu that includes the names of all objects of that type.

For example, here is the Datapoint Replay submenu when the f102demo.kb is
loaded, which includes F102 Data Replay:

Here is the System Models > Manufacturing Processes submenu for the
f102demo.kb, which includes F102 Process Map:
23

2 Choose an object from the submenu.

For example, choosing F102 Data Replay displays this properties dialog:

Choosing F102 Process Map displays the process map detail:

To configure the properties of a container object, such as a process map, once you
have created it, you must use the Manage dialog. For details, see Using the
Manage Dialog.
24

Navigating Applications
Navigating Applications
To navigate applications, you can:

• Use the Navigator.

• Search for objects.

For information on creating and managing objects through the Project menu, see
Using the Project Menu.

Using the Navigator

The Navigator displays all the elements of a project.

You can interact with objects in the Navigator, for example, showing its
properties or going to the detail, depending on the type of object. You can also
create new objects from the Navigator.

To display the Navigator:

 Choose View > Navigator or click the equivalent toolbar button () and
expand the tree view to the desired level.
25

Here is the Navigator for the F102demo application with the tree expanded to
show the detail of the F102 Process Map:

To interact with objects in the Navigator:

 Right-click a node in the Navigator and choose the desired menu choice.

In addition to the menu choices that you normally get when you right-click the
object, you can choose Go To to show the selected object. Depending on the type
of object, you might go to the object on a detail or you might go to the object in a
repository.

You can also choose New Instance on the Manufacturing Processes folder to
create a new process map directly from the Navigator.
26

Interacting with Workspaces
Searching for Objects

You can search for specific types of objects, by matching text in the label field
and/or the target class, depending on the type of object. You can also go directly
to named objects.

To search for objects:

1 Choose Tools > Search and choose a category of object to be found.

2 Enter the Keyword text to match and, depending on the type of object,
optionally, the Target Class.

3 Configure Search By to search for the keyword only, class only, keyword or
class, or keyword and class.

4 Click the Search button.

The search results include all objects whose label matches the specified text.

5 Select an object and click the Go To button.

An arrow appears next to the found object, if it exists; otherwise, the Search dialog
display No Matches Found.

Depending on the type of object, you might go to the object on a detail or you
might go to the object in a repository. You can interact with the object through its
menu choices, for example, to go its detail or show its properties.

To go to a named object in the model:

 Enter the exact name of an object in the Go To type-in box on the toolbar:

A red arrow points to the named object on a workspace.

Interacting with Workspaces
You place all model objects on detail workspaces, which appear their own
window. You display and interact with workspaces in these ways:

• Display a detail workspace.

• Hide a workspace.

• Delete a workspace.

• Edit workspace properties.

• Scale a workspace.

• Shrink wrap a workspace to fit the enclosed elements.
27

• Show the superior object for a workspace.

• Print a workspace.

• Save a workspace as a JPEG file.

• Assign a background image to a workspace.

• Create and access top-level workspaces.

• Initialize domain objects and specific fault models.

Displaying a Detail Workspace

A number of objects define detail, which is a workspace associated with the object
on which you place other objects. For example, process maps, event detection
diagrams, and fault models all define detail.

To display detail for an object:

 Right-click the background of a workspace and choose Show Detail, choose
View > Show Details, or click the equivalent toolbar button: ()

Hiding a Workspace

To hide a workspace:

 Right-click the background of a workspace and choose Hide or press
Ctrl + right-click on the workspace.

Deleting a Workspace

Deleting a workspace permanently deletes it from the server, including all objects
on the workspace.

To delete a workspace:

 Select a workspace and choose Edit > Delete, right-click the background of a
workspace and choose Delete, or click the equivalent toolbar button: ()
28

Interacting with Workspaces
Editing Workspace Properties

You can edit the name of the workspace, as well as the background and
foreground colors, and the margins around the objects at the edges of the
workspace. By default, the background color is white and the foreground color is
black.

For information about configuring the background image, see Loading
Background Images.

To edit workspace properties:

1 Select a workspace and choose Edit > Properties, right-click the background of
a workspace and choose Properties, or click the equivalent toolbar button:
()

2 Configure the Names to be any text.

The text is converted to a symbol, with hyphens in place of spaces when you
accept the dialog.

3 Configure the Workspace Margin by entering the number of pixels.

4 Configure the Foreground Color and Background Color by choosing a color.

By default, in Operator mode, the workspace does not scale to fit the entire
screen.

5 Enable the Auto Scale to Full Screen option to fill the screen in Operator mode,
as needed.

The name appears at the top of the workspace when you accept the dialog.

Scaling a Workspace

You can scale a workspace to fit the current window, or zoom a workspace in,
out, or to a specific scale.

To scale a workspace:

 Choose View > Zoom In or Zoom Out, enter Ctrl + = to zoom in or Ctrl + -
(minus) to zoom out, or click the equivalent toolbar buttons: ()

or

 Choose View > Zoom, then choose or enter a zoom scale, or enter a specific
zoom scale in the zoom scale on the toolbar: ()

or

 Choose View > Zoom to Fit or click the equivalent toolbar button: ()
29

Shrink Wrapping a Workspace

When you move objects on a workspace beyond the visible borders, the borders
adjust to fit the objects. When you move objects on a workspace such that the
workspace contains extra space at its borders, you can adjust the borders by
shrink wrapping the workspace. Shrink wrapping a workspace also adjusts the
window size. You can resize the window to make it smaller to add scroll bars to
the window.

To shrink wrap a workspace:

 Select a workspace and choose Layout > Shrink Wrap or click the equivalent
toolbar button: ()

This figure shows a workspace that has extra space around its borders:
30

Interacting with Workspaces
This figure shows the result of shrink wrapping the workspace:

This figure shows the result of dragging the object on the workspace so it has
extra space around its borders, then adjusting the window size to make it smaller,
which adds scroll bars:
31

Showing the Superior Object of a Detail Workspace

You can show the superior object of a detail workspace, for example, the detail of
a Production Site, Production Area, or Process Unit.

To show the superior object of a detail workspace:

 Right-click the background of a workspace and choose Go to Superior, or
select a detail workspace and choose View > Go to Superior or click the
equivalent toolbar button: ()

The workspace with the superior object is now on top with an indicator arrow
next to the object.

Depending on the type of object, you might go to the object in a repository. You
can interact with the object through its menu choices, for example, to show its
properties.

Printing a Workspace

To print a workspace:

 Choose File > Print, or enter Ctrl + P or click the equivalent toolbar button
(), and configure the Print dialog.

Saving a Workspace to a JPEG File

To save a workspace to a JPEG file:

 Choose File > Save as JPEG and specify a file name.

Loading Background Images

You can load one or more JPEG, XMB, or GIF files as the background for a
workspace.

To load a single background image:

 Choose Workspace > Load Background Image, navigate to the image to use as
the background, and click Open.

To remove background images:

 Choose Workspace > Delete Background Image.

Creating and Accessing Top-Level Workspaces

Typically, you create new workspaces when you create process maps through the
Project menu. However, you can also create new workspaces directly through the
32

Using the Menus
Workspace menu, which are top-level workspaces that you can access by name.

To create a new top-level workspace:

1 Choose Workspace > New.

The workspace is assigned a unique number, which starts with unnamed-
workspace.

2 Configure the workspace properties as described in Editing Workspace
Properties.

To access the top-level workspace:

1 Choose Workspace > Get or click the equivalent toolbar button: ()

A list of all top-level workspaces available in the current user mode appears.

2 Select a workspace and click OK.

Initializing Domain Objects and Specific Fault
Models

Process map details provide these menu choices for initializing domain objects:

• Initialize Domain Objects — Initializes all domain objects on the process map,
which creates a specific GEDP model for each domain object, as well as
performing various other required tasks. For details, see Initializing Process
Maps.

• Uninitialize Domain Objects — Uninitializes all domain objects on the process
map, which performs various tasks, including deleting specific GEDP models
for each domain object. For details, see Uninitializing Process Maps.

Using the Menus
The top-level menu bar consists of these menus:

Menu Description

File Standard file operations, and print and export
operations for workspaces.

Edit Standard editing operations for objects on
workspaces.

View Display the various toolboxes and toolbars, display
the Navigator, zoom workspaces, show details, and
show superior objects.
33

The following sections summarize each of these menus.

For information about how to use specific menu choices, see the referenced
sections.

For information about additional menu choices available in Developer mode, see
the Customizing Optegrity.

Using the File Menu

The File menu allows you to perform basic file and module operations.

Layout Standard layout operations for objects on
workspaces, including align, distribute, rotate,
reflect, order, nudge, as well as shrink wrapping
workspaces.

Go Standard browser navigation operations and
interaction with the server.

Project Manage system models, object models, reports,
charts, system settings, and user preferences.

Workspace Create new and get existing workspaces, and edit
background images for workspaces.

Tools Find model objects, show users, and switch user
modes.

Window Control window positioning and choose the active
window.

Help Display online help.

Menu Description

Menu Choice Description

New Creates a new project.

See Working with Projects.

Open Opens an existing project, replacing the one
currently loaded.

Save Saves the top-level module of the current
project.
34

Using the Menus
Using the Edit Menu

The Edit menu allows you to perform basic edit operations for objects.

Using the View Menu

The View menu allows you to show and hide toolboxes and toolbars, and to
control the zoom scale.

For details about each of the toolboxes, see Using the Optegrity Toolboxes.

Save As Saves the top-level module of the current
project to a user filename. You save models to
filenames with a .kb extension.

Save as JPEG Exports the currently selected workspace as a
.jpg file.

Print Prints the currently selected workspace to a
postscript printer.

Close Exits the client.

Menu Choice Description

Menu Choice Description

Delete Deletes the selected object.

Transfer Transfers the selected object to the mouse.
Click on a workspace to transfer the object.

Clone Transfers the selected object to the mouse.
Click on a workspace to clone the object.

Select All Selects all objects on a workspace.

Properties Displays the properties dialog for the selected
object.

Colors Changes the colors of the icon regions of the
selected objects.
35

The View menu contains the menu choices in the following table:

Menu Choice Description

Toolbars > Standard Toggles the Standard toolbar, which contains
standard buttons for file and edit operations.

Toolbars > Layout Toggles the Layout toolbar, which contains
buttons for performing standard layout
operations for objects on workspaces.

Toolbars > Web Toggles the Web toolbar, which contains
standard buttons for browsing HTML and
text pages.

Toolbars > Fault Modeling Toggles the Fault Modeling toolbar, which
contains buttons for configuring SymCure
models.

Toolbars > Operator
Toolbar

Toggles the Operator toolbar, which contains
buttons that provider tools for operators.

Status Bar Toggles the status bar, which displays the
connection status to the server.

Message Board Displays the G2 Message Board, which displays
text messages.

Message Browser Displays a message browser of operator
messages.

Navigator Toggles the display of a tree view of all objects in
the current project.

See Navigating Applications.

Toolbox - Event Detection Toggles the display of the Event Detection
toolbox, which contains blocks for creating GEDP
dataflow diagrams for event detection, testing,
and response.

Toolbox - External
Datapoints

Toggles the display of the External Datapoints
toolbox for manually creating external
datapoints.

Toolbox - Fault Modeling Toggles the display of the Fault Modeling
toolbox, which contains events and other object
used for creating generic fault modeling
templates for SymCure diagnostics.
36

Using the Menus
Using the Layout Menu

The Layout menu allows you to interact with objects on workspaces. For details,
see Interacting with Objects.

Toolbox - Process Modeling Toggles the display of the Process Modeling
toolbox, which contains equipment and
instruments for creating manufacturing process
maps.

Zoom

Zoom In

Zoom Out

Zoom to Fit

Scales the selected workspace.

Hide Hides the currently selected workspace.

Go to Superior Displays the superior object of the currently
selected workspace.

Show Details Shows the detail workspace of the currently
selected object.

Menu Choice Description

Menu Choice Description

Order >

Bring to Front

Send to Back

Controls the stacking order of
selected objects on workspaces.

Nudge >

Nudge Up

Nudge Down

Nudge Right

Nudge Left

Micro-adjusts the position of
selected objects in each
direction.
37

Using the Go Menu

The Go menu allows you to perform standard browser navigation and interact
with the server.

Align or Distribute >

Align Left

Align Center

Align Right

Align Top

Align Middle

Align Bottom

Distribute Horizontally

Distribute Vertically

Aligns two or more selected
objects along various axes.
Distributes three or more
selected objects vertically or
horizontally.

Rotate or Flip >

Normal

90 Clockwise

90 Counterclockwise

180

Flip Horizontally

Flip Vertically

Rotates and reflects the
selected objects.

Shrink Wrap Adjusts the borders of the
selected workspace to just fit
the contained objects.

Menu Choice Description

Menu Choice Description

Back

Forward

Stop

Refresh

Home

Provides standard browser operations for
HTML and text pages.
38

Using the Menus
Using the Project Menu

The Project menu allows you to interact with all the objects in the current project,
as follows:

Menu Choice Description

Initialize Application

Uninitialize Application

Initializes all process maps in the
application, which creates specific
GEDP diagrams for each domain
object with an associated generic
diagram template, resets datapoint
histories, compiles all SymCure
diagrams, and clears all diagnoses
from the various message
browsers.

Uninitialize deletes specific GEDP
diagrams that Optegrity creates for
domain objects associated with
generic diagram templates.

See Initializing Process Maps.

My User Preferences Configures user preferences for the
current user.

See Configuring User Preferences.

System Models >

Manufacturing Processes

Creates manufacturing process
maps, which consist of domain
objects that are created from the
Process Modeling toolbox.

See Building a Process Map.
39

Logic >

Detect >

Dataflow Templates

Dataflow Instances

Test >

Dataflow Templates

Dataflow Instances

Diagnose >

Fault Models

Diagnosis Managers

Diagnostic Console

Debug Specific Fault Models

Import

Enable Tuning

Respond >

Dataflow Templates

Dataflow Templates

Datapoint Replay

Datapoint Simulations

Creates and manages Optegrity
logic models that detect, test, and
respond to abnormal conditions,
using GEDP dataflow models, and
that diagnose faults, using
SymCure fault models. Also
creates and manages datapoint
replay and simulations.

For information on dataflow
templates, see Creating Generic
Dataflow Diagrams.

For information on the menu
choice in the Diagnose menu, see
Creating Generic Fault Models and
the SymCure User’s Guide.

For information on data replay, see
Replaying Data.

For information on data
simulations, see Simulating
Datapoint Values.

Reports Creates and manages a variety of
reports.

See Reporting and Charting.

Charts Creates and manages various
types of charts.

See Reporting and Charting.

Object Models >

Instruments and Equipment

Creates and manages domain
objects.

See Creating Domain
Object Definitions.

Menu Choice Description
40

Using the Menus
System Settings Creates and manages the various
system settings described below.

System Settings >

Interfaces >

OPC

PI

SQL

SMTP

JMS

HTTP

Creates and manages network and
database interface objects for
communicating with various types
of external systems.

See Configuring
Network Interfaces.

System Settings >

Interface Pools >

OPC

PI

SQL

SMTP

JMS

Creates and manages network and
database interface pools for
communicating with various types
of external systems.

See Using Interface Pools.

System Settings >

External Datapoints

Creates and manages external
datapoints, which obtain data from
external systems via interfaces.

See Configuring
External Datapoints.

System Settings >

Datapoint Series >

Continuous

Differential

Creates and manages continuous
and differential data series for
datapoint simulation.

See Replaying Data.

System Settings >

Datapoint Logs

Creates and manages logging for
external and internal datapoints.

See Configuring Logging.

Menu Choice Description
41

System Settings >

Message Browsers >

Queues

Events

Messages

Access Tables

Templates

Creates and manages custom
message browsers and queues.

See Using Message Queues.

System Settings >

External Datapoints

Creates containers for storing
external datapoints, which get
their data through a DCS interface.

See Configuring
External Datapoints.

System Settings >

Datapoint Series

Creates continuous and
differential datapoint series, which
are used for replaying data.

See Replaying Data.

System Settings >

Datapoint Logs

Creates logs for internal and
external datapoints.

See Configuring Logging.

System Settings >

Units

Converter

Conversions

Synonyms

Creates and manages engineering
unit conversions and synonyms,
and provides a unit converter.

See Converting Engineering Units.

System Settings >

Users

Creates and manages user
preferences.

See Configuring User Preferences.

Menu Choice Description
42

Using the Menus
Using the Workspace Menu

The Workspace menu allows you to interact with workspaces. For details, see
Interacting with Workspaces.

Using the Tools Menu

The Tools menu allows you to browse objects in the model.

System Settings >

System Performance

Enables, disables, and configures
system performance metrics.

See Reporting and Charting.

System Settings >

Event and Alarm Metrics

Enables and disables event and
alarm metrics.

See Reporting and Charting.

Menu Choice Description

Menu Choice Description

New Creates a new workspace.

Get Displays a list of named workspaces, which
you can display.

Load Background Image

Delete Background Image

Loads and deletes background images for
the selected workspace.

Menu Choice Description

Search Allows you to search for objects in a
model by name or label.

See Searching for Objects.
43

Using the Help Menu

The Help menu allows you to access online help that displays as a window within
the client:

You can view PDF versions of the following guides:

• Optegrity Heater Tutorial

• Optegrity User’s Guide

Show Users Shows the users currently logged into
the server.

User Mode >

Administrator

System-Administrator

Developer

Modeler

Operator

Changes the user mode. The default
user mode is Modeler, which allows
you to create models by copying,
connecting, and configuring objects,
and to run simulations. Operator
mode allows end users to view models
only. Developer mode allows
developers to customize the
application.

Note: In general, you work in Modeler
mode. Very occasionally, modelers
need to switch to Developer,
Administrator, or System
Administrator mode to perform
particular tasks.

See Switching User Modes.

Menu Choice Description

Menu Choice Description

G2 Help Topics Display the G2 online help.

Optegrity Help Topics Displays the Optegrity online help.

Server Information Displays version information about the
server.

About G2 Displays the G2 title block, which shows
the current version.

About Optegrity Displays the Optegrity title block, which
shows the current version.
44

Using the Optegrity Toolboxes
• SymCure User’s Guide

To view the online manuals:

 Choose Start > Programs > Gensym G2 2011 > Documentation > G2 Optegrity
and choose the manual you want to view.

Using the Optegrity Toolboxes
The Optegrity toolboxes contain all of the objects that you use to create a model.

Optegrity provides the following toolboxes:

• Toolbox - Event Detection — G2 Event and Data Processing (GEDP) blocks for
building dataflow models for event detection, testing, and response.

See Creating Generic Dataflow Diagrams.

• Toolbox - External Datapoints — OPC and PI external datapoints for
representing DCS tag variables; data driver objects for simulating internal or
external datapoint data, and a customization procedure for value translations.

See Configuring External Datapoints

• Toolbox - Fault Models — SymCure generic events and actions for building
generic fault models that perform diagnostic reasoning, testing, and repair
actions, and include user-defined procedures and methods.

See Creating Generic Fault Models

• Toolbox - Process Modeling — Built-in process equipment, sensors, and
controllers used for building process maps. The Process Modeling toolbox
contains additional palettes when the intelligent object libraries are loaded.

See Building a Process Map.

• Toolbox - G2 — G2 objects for advanced modeling (Developer mode only).

See Using the G2 Toolbox

The following examples show the Process Modeling toolbox when all the
intelligent object libraries are loaded. For details, see Working with Projects.
45

To display and interact with the Optegrity toolboxes:

1 Choose a toolbox from the View menu.

The toolbox appears with the first palette in the toolbox visible. The palettes
are organized alphabetically. You access the various palettes in the toolbox by
clicking the buttons at the bottom of the toolbox.

Here is the Absorbers palette of the Process Modeling toolbox:

2 To access the various palettes in the toolbox, hover the mouse over a button to
display its tool tip, then click the button to display the palette.

For example, here is the Controllers palette:

Click the buttons to
display the various
palettes in the toolbox.

Absorbers

Controllers
46

Using the Optegrity Toolboxes
Depending on the size of toolbox, the toolbar at the bottom shows only a
subset of the available buttons in the toolbox.

3 To display the additional buttons in the toolbox, click the configure button at
the far right of the toolbar (), then choose a palette.

For example, here is how you would display the Instruments palette in the
Process Modeling toolbox:

4 To configure the buttons that are visible in the toolbar and associated
configuration menu, choose Add or Remove Buttons to display a list of all
palettes, then choose a button to add or remove.

For example, if you choose Absorbers, the Absorbers button no longer
appears in the toolbar, and if you choose Distillation Columns, the Distillation
columns choice no longer appears in the configuration menu. Thus, you can
use this menu to narrow the visible palettes in the toolbar and configuration
menu.

Once you have configured the buttons you want, you can expand the buttons
to show their labels for some or all of the buttons.

Click configure button to
show additional palettes.
47

5 To show button labels in the toolbox, drag the divider at the bottom of the
toolbox up to expose the buttons with their labels.

For example, here is the Process Modeling toolbox with only a subset of the
buttons visible in the toolbar and with some button labels showing:

Once you have configured the buttons you want to appear in the toolbox, you
can auto hide the toolbox by clicking the pin in the upper right corner of the
toolbox.

Note Do not close the toolbox or the toolbox reverts to the default set of buttons.

Drag the divider up and
down to expose buttons.
48

Using the G2 Toolbox
6 Click the pin to autohide the toolbox, and move the mouse over the tab to
display the toolbox after it has been hidden.

For example, here is the Process Modeling toolbox

You can display, configure, and autohide multiple toolboxes, as needed, each
of which will have its own toolbox tab.

Using the G2 Toolbox
In general, you use the G2 toolbox when customizing models.

For details, see , Customizing Optegrity.

Interacting with Objects
You can interact with objects in a process map by using the Edit menu, the object’s
popup menu, and the Layout menu. Many of the menu choices have shortcuts
and/or equivalent toolbar buttons.

When you create a process map, we recommend that first, you place the domain
objects on the workspace, then you align and distribute them, using buttons on
the Layout toolbar, then you connect them, as needed.

You configure attributes of objects through properties dialogs.

Hover the
mouse over the
toolbox tab to
display the
toolbox when
autohidden.
49

Selecting Objects

To select one or more objects:

 Click an object to select it.

or

 Click and drag a rectangular area to select all the objects in the rectangle.

or

 Use Shift key and click on an object to add or remove it to or from an existing
selection.

or

 Use the Alt key and click on a connected network of objects to select all the
connected objects.

To select all objects on a workspace:

 Choose the Edit > Select All or enter Ctrl + A.

Cutting, Copying, Pasting, and Deleting Objects

When you copy an object, the new object has the same property values as the
existing object. If the object has details, the new object has the same details. You
can transfer objects from one workspace to another.

To copy and paste objects:

 Select one or more objects to copy, choose Edit > Clone, then click on any
workspace to paste the selected objects to the workspace.

To cut and paste objects:

 Select one or more objects to cut, choose Edit > Transfer, then click on any
workspace to paste the selected objects to the new workspace.

To delete objects:

 Select an object, then choose Delete from the Edit menu or from the popup
menu, press the Delete key, or click the equivalent toolbar button (), then
click Yes to confirm the deletion.
50

Interacting with Objects
Controlling the Layout of Objects

To adjust the order of objects:

 Select an object, then choose Layout > Order > Bring to Front or Send to Back
or click the equivalent toolbar button: ()

To rotate or flip objects:

 Select an object, choose Layout > Rotate or Flip, then choose the desired action
from the submenu or click the equivalent toolbar button:

To align objects:

 Select two or more objects, choose Layout > Align or Distribute, then choose
the desired align action from the submenu or click the equivalent toolbar
button: ()

To distribute objects:

 Select three or more objects, choose Layout > Align or Distribute, then choose
the desired distribute action from the submenu or click the equivalent toolbar
button: ()

To nudge an object up, down, right, or left:

 Select an object, choose Layout > Nudge, then choose the desired nudge
action from the submenu; or hold down the Ctrl key while pressing the up,
down, right, and left arrow keys to nudge the item in the desired direction; or
click the equivalent toolbar button:

For information on the Shrink Wrap toolbar button on the Layout toolbar, see
Shrink Wrapping a Workspace.

Displaying the Properties Dialog for an Object

To display the properties dialog for an object:

 Double-click the object.

or

 Select the object and press the F4 key.

or

 Choose Properties from the object’s popup menu.

or

 Select the object, then choose Edit > Properties or click equivalent toolbar
button: ()
51

Resizing an Object

You might need to resize an object.

To resize an object:

 Click an object to select it, and drag the selection handles to resize the object.

Editing Icon Color Regions

You can edit the color of any named region of any icon.

To edit icon colors:

1 Click an object to select it, and choose Edit > Colors.

2 Configure the color of the named icon region for the object, as desired.

For example:

Using the Toolbars
Optegrity provides a number of toolbars that you can use to interact with models.

The toolbars are all docked, by default. You can drag the toolbar to a new location
or off the toolbar to make it a floating toolbar.

The available toolbars are:

• Standard toolbar

• Web toolbar

• Layout toolbar

• Fault Modeling toolbar
52

Using the Toolbars
• Operator toolbar

• Status bar

Standard Toolbar

The Standard toolbar contains many of the toolbar buttons that you need to work
with the model:

To hide and show the Standard toolbar:

 Choose View > Toolbars > Standard.

Open

Save

Print

Delete

Properties

Go to Superior

Zoom In

Zoom Out

Zoom
Percent

Show Details

Zoom to Fit

User Mode
Go ToNavigator

Message
Browser

Get Workspace

For information
on this button... See...

Open Opening a Project.

Save Saving a Project.

Print Printing a Workspace.

Delete Cutting, Copying, Pasting, and Deleting Objects.

Properties Displaying the Properties Dialog for an Object.

Navigator Using the Navigator.

Get Workspace Creating and Accessing Top-Level Workspaces.

Go to Superior Showing the Superior Object of a Detail Workspace.

Show Detail Displaying a Detail Workspace.
53

Web Toolbar

The Web toolbar provides the standard browser navigation buttons and
commands for browsing HTML pages:

To hide and show the Web toolbar:

 Choose View > Toolbar > Web.

You can go to any URL, including any HTML file on the World Wide Web or on
the file system, or any RTF file.

To go to an HTML file on the World Wide Web, you use the standard HTTP
protocol, for example, http://www.gensym.com.

To go to an HTML or RTF file on the file system, you use this protocol:

file:\<drive>:\<directory>\<filename>

For example, to go to the readme file, you would use:

file:\C:\Program Files\Gensym\g2-2011\doc\optegtity\optegtity-readme.
html

You navigate by using standard buttons in the Web toolbar or in the Go menu.

You configure the Home button URL in your user preferences. For more
information, see Configuring User Preferences.

Zoom In, Zoom Out,
Zoom Percent, and
Zoom to Fit

Scaling a Workspace.

User Mode Switching User Modes.

Go To Searching for Objects.

For information
on this button... See...

Refresh

Home AddressBack

Forward

Stop
54

Using the Toolbars
Layout Toolbar

The Layout toolbar contains toolbar buttons that you need to control the visual
layout of objects on a workspace:

To hide and show the Layout toolbar:

 Choose View > Toolbars > Layout.

Nudge Align Distribute

Bring to Front
Send to Back

Shrink
Wrap

Rotate

Flip

For information
on this button... See...

Shrink Wrap Shrink Wrapping a Workspace.

Send to Front, Send to
Back, Nudge, Align,
Distribute, Rotate, Flip

Controlling the Layout of Objects.
55

Fault Modeling Toolbar

The Fault Modeling toolbar contains buttons that you use to configure SymCure:

To hide and show the Fault Modeling toolbar:

 Choose View > Toolbars > Fault Modeling.

For details, see the SymCure User’s Guide.

Operator Toolbar

To hide and show the Operator toolbar:

 Choose View > Toolbars > Operator.

For details, see Interacting with the Process Model.

Take
Online

Alarms

Root

Test

Repair
Actions

Actions

Causes

Enable
Debugging

Sequential
Mode

Parallel
Mode

Import Specific
Fault Model

Search for
Generic Events

Import Generic
Fault Model

Search for
Generic Actions

Search for
Generic Fault Models

Enable
Tuning

Delete
All Diagnoses

Load Fault Model
Configuration
Parameters

Process Map
Instruments

Instrument
Plot
56

Switching User Modes
Status Bar

The status bar shows various status information, such as the host and port of the
client, the current file being loaded, and the progress bar.

By default, the status bar also shows the current message in the operator Message
Browser. For information on how to disable this feature, see Configuring User
Preferences.

To hide and show the status bar:

 Choose View > Status Bar.

Switching User Modes
You build and run applications in one of four built-in user modes, or you can
define you own user mode. The user mode determines what you can and cannot
do when you create your application and run it. For example, the user mode
determines whether you can move, edit, and delete objects, and whether you can
use the full set of G2 features in your model. For example, the user mode
determines the parameters that you can configure.

Optegrity supports the following user modes for these classes of users:

This type of user...
Works in this user
mode... Which allows you to...

Operators and
end users

Operator View pre-built applications without
damaging them in any way. Operators
cannot open, save, run, or configure
applications. Optegrity provides an
Operator interface for end users.

Process modeling
experts who create
applications

Modeler Create, connect, and configure
manufacturing process maps, event-
detection models, and fault models. This
is the default user mode.

Optegrity application
developers

Developer Create, connect, and configure additional
features of Optegrity applications not
available in Modeler mode.

Optegrity experts and
G2 programmers

System-
Administrator

Administrator

 Customize the behavior of Optegrity.
57

End users of fully developed applications generally work in Operator mode.
Operator mode is restricted so that users may run a model but may not create,
configure, or delete objects.

As a model developer, you will almost always be working in Modeler mode. This
manual assumes you are working in Modeler mode, unless otherwise stated.
Occasionally, as a model developer, you will also need to go into Developer mode
to perform certain tasks.

If you are an expert who is customizing Optegrity, you will be working mostly in
Developer mode.

The user mode that is available to you depends on your login privileges.

To switch to a different user mode:

 Choose Tools > User Mode or configure the User Mode on the toolbar.

Configuring User Preferences
Optegrity allows you to configure different levels of access and default behavior
for different categories of users. When a particular user starts Optegrity, the user
preference associated with that user restricts the access and provides default
behavior, as appropriate for the given user.

You can configure the following preferences:

• The default user mode, which determines the level of access to Optegrity
features.

• Subscription to queues, including Messages, Alarms, Root Causes, Test
Actions, Repair Actions, and custom queues.

• Message filter to subscribed queues, for filtering messages based on priority,
process map, type, category, target, assigned to, age, and acknowledgement
status.

• Acknowledgement and deletion permission and behavior in the Message
Browser.

• Client disconnection, server shutdown, and modeling configuration
permissions, and whether the user is an administrator.

• The default behavior for interacting with objects through menus and showing
the logbook.

• Email and mobile email addresses for use with the JMail interface.

• The default view for the home process map and the size of the location history
in the operator view.
58

Configuring User Preferences
Specifying User Preferences for Different Types
of Users

Optegrity creates a default user preference for the Optegrity server to determine
the level of access and default behavior for all users that log into the server.
Similarly, Optegrity creates one user preference for each user associated with a G2
login account. The name of the user preference corresponds with the user name
specified in the g2.ok file. For more information, see Chapter 62 “Licensing and
Authorization” in the G2 Reference Manual.

If you are logged in as the user named administrator, you are automatically
configured to be the Administrative User and can create and configure user
preferences for all users. If you are logged in as any other user, you can only
configure your own user preferences. You can be logged in either to your
windowing system or to the Optegrity server through a secure G2 as
administrator.

We recommend that the user preference for the server provide access to all
available features, and that it use either Modeler or Developer mode. The user
preferences for the clients should provide appropriate levels of access and should
use the appropriate user mode, depending on the type of user. For example, you
might configure user preferences as follows for these types of users:

For this type of user...
Use this default
user mode...

And provide these
permissions and defaults...

Operators, who interact
with messages only

operator • Disconnect permission

• Acknowledge message
permission

• Show message in operator
mode by default

• Subscribe to appropriate
queues, depending on the
model

Modelers, who create
process maps, event-
detection models, and
SymCure diagnostic
models

modeler • Disconnect permission

• Configuration permission

• Acknowledge message
permission

• Delete message permission

• Subscribe to Messages
queue
59

Developers, who use G2 to
customize models

developer • Indicate items upon menu
selection

• Disconnect permission

• Shutdown permission

• G2 Logbook

• Acknowledge message
permission

• Delete message permission

• Subscribe to all queues

Administrators, who
configure user preferences
for all users, using the
Optegrity user interface

system-
administrator

The same as developers, plus
Administrative User.

Administrators, who
configure user preferences
for all users, using G2’s
user interface

administrator Note: You must log in as
administrator to enable the
Administrative User option.

For this type of user...
Use this default
user mode...

And provide these
permissions and defaults...
60

Configuring User Preferences
Configuring User Preferences

In Modeler mode, you can configure these attributes for each user preference. For
information about additional attributes that you can configure in administrator
mode, see Configuring User Preferences.

Attribute Description

General

User Name The user name of the user that starts either the
server or the client, which is read-only.

If you are an administrative user, you can create
new user preferences for specific users. For details,
see Configuring User Preferences.

Default User Mode The default user mode for the specified user, which
is modeler, by default. The options are: operator,
modeler, developer, system-administrator, and
administrator.

User Interface Theme The Windows user interface theme. The default
value is window-theme-2003.

Email Address
Mobile Email

E-mail and mobile e-mail address of the specified
user for sending email when a message occurs. For
more information, see Delivering Messages by
Email.

Home Process Map A process map to use as the background in the
operator interface. The default process map is
default view, which is associated with the process
map named guif-default-main-view. Click Select to
display a list of all process maps in the KB and
choose a map to use as the default background.

Telnet Command The command for launching a Telnet session.

Default Web Location The default URL when clicking the Home button in
the Web toolbar.

Set Default User
Mode

Whether the default user mode should be set upon
startup.
61

Indicate Items Configures the behavior when choosing items from
the Project menu. By default, Optegrity displays the
properties dialog or the model detail, depending on
the type of item.

Developers who are familiar with G2 and prefer to
work with the iconic representations of items might
want to enable the Indicate Items option, in which
case, choosing items from the Project menu goes
directly to the item.

For more information, see Using the Project Menu.

Extended Menus Whether to display the complete list of objects in
the Project submenus, the default. If your project
has many domain models, for example, you might
want to disable this option, in which case, selecting
Project > System Models > Process Maps displays
the Manage dialog for interacting with object.

Show Logbook Whether to show the G2 Logbook when errors
occur. By default, the G2 Logbook does not appear.
Modelers or developers who are familiar with G2
might want to enable the Show Logbook option. We
recommend that you disable this option for
operators and modelers who are not familiar with
G2.

Tabbed Mdi Mode Whether to display workspaces in tabs in the
window.

Restore Last Pane
Settings

Whether to restore the settings for panes upon
connection.

Message Browser

Email Notification
Mobile Email
Notification

The format when sending e-mail and mobile e-mail
messages. By default, the value is never, which
means email messages are not sent. For details, see
Delivering Messages by Email.

Modeler Browser The browser to use in Modeler mode. The default is
gevm-modeler-message-view-template, which is
the browser that appears when you choose View >
Message Browser.

Attribute Description
62

Configuring User Preferences
Operator Browser The browser to use in Operator mode. The default
is gevm-operator-message-view-template, which is
the browser that appears when you are in Operator
mode.

Acknowledge
Messages Upon
Selection

Whether to acknowledge messages automatically
when the operator selects a message in the Message
Browser view of the operator interface. By default,
messages are not automatically acknowledged.
When Ack Msg Upon Selection is enabled, Ack Msg
Permission must also be enabled.

Show Browser in
Operator Mode

Whether to show the Message Browser by default
view in the operator interface, or whether to show
the process map view. By default, the Message
Browser appears as the default view in the operator
interface.

Enable Status Bar
Message Browser

Whether to show the most recent message in the
status bar.

Beep Enabled Whether to enable beeping when new messages
arrive in the Message Browser, as well as when they
are acknowledged and deleted. By default, beeping
is enabled.

Attribute Description
63

To configure user preferences for yourself:

 Choose Project > My User Preferences and configure the user preferences,
as needed.

For example, here is the default user preferences dialog appears for the user
named nrs:

To configure user preferences for other users:

 Choose Project > System Settings > Users and choose the user whose
preferences you want to configure.

For details, see Configuring User Preferences.

Delivering Messages by Email

You can configure the user preference for individual users to provide an email
address and a mobile email address, then configure rules for when to send email
messages when an event occurs.

You can configure Optegrity to format the message as short plain text, suitable for
cell phones, for example, plain text with full message contents, or as an HTML
document. You can also configure when to send a message, based on when it was
created or updated, whether the user is currently connected to the server, and the
priority of the message.
64

Configuring User Preferences
To deliver messages by email, you:

• Start the G2 JMail Bridge process.

• Create, configure, and connect a JMail Interface object.

• Configure Optegrity to send email messages.

• View examples.

• Configure startup parameter for sending email.

Starting the G2 JMail Bridge Process

To deliver messages by email, you must start the G2 JMail Bridge process. You
identify the host and port to which the bridge is connected for configuring in the
JMail Interface object.

To start the G2 JMail Bridge process:

 Choose Start > Programs > Gensym G2 2011 > Bridges > G2 JMail Bridge.

The G2 JMail Bridge process appears in the command window.

To determine the bridge port:

 Open the command window for the bridge process.

The last line indicates the TPC/IP host and port number, for example:

TCP_IP:NSALVO-1165:22080

Creating, Configuring, and Connecting the JMail Interface Object

To deliver messages by email, you must create and configure a JMail Interface
object, which specifies:

• A name.

• The host and port of the machine running the G2 JMail Bridge.

• Information about the SMTP mail server, including the user name, password,
incoming and outgoing SMTP mail host, and SMTP protocol.

If the bridge process is running on the local machine, the host is localhost. The
default port number is 22080, 22081, 22082, etc., depending on the number of
clients that are currently connected on that port.

Note To configure a JMail Interface object, you must be in Developer mode.

Once you have configured the JMail interface object, you can connect it to the
G2 JMail bridge process.
65

To create, configure, and connect a JMail Interface object:

1 Choose Tools > User Mode > Developer.

2 Choose Project > System Settings > Interfaces > SMTP > Manage and click the
New button to create a new JMail Interface object.

Alternatively, you can choose View > Toolbox - G2, click the Network
Interfaces tab, and create a JMail Interface object.

3 In the properties dialog for the JMail Interface object, configure the Interface
Name attribute to be any symbol, for example, my-jmail-interface.

4 Configure the Bridge Host and Bridge Port to be the host and port of the
machine on which you started the G2 JMail Bridge process.

5 Configure the following additional information:

Attribute Description

User Name The user name of the account to which
email should be sent.

Password The password of the user account to
which email should be sent.

Incoming Host The name of the host computer used
for incoming email.

Incoming Port The port number of the host computer
used for incoming mail.

Incoming Protocol The SMTP protocol that the incoming
mail host uses. The default is pop3.

Incoming Folder The folder name of the user account to
which to send email. The default is
inbox.

Delete Messages on Server Whether to delete the email message
on the mail server after it is sent. By
default, messages are not deleted.

Outgoing Host The name of the host computer used
for outgoing email.

Outgoing Port The port number of the host computer
used for outgoing mail.
66

Configuring User Preferences
6 Click Apply to apply these values.

7 Click the Connect button in the dialog to connect the interface to the bridge.

8 Choose Tools > User Mode > Modeler to return to Modeler mode.

For example:

Outgoing From The name to use as the From address
when the email message is sent, which
cannot contain spaces.

Auto Reconnect to Bridge Whether to automatically reconnect if
the connection goes down.

Shutdown Bridge Upon
Disconnect

Whether to shutdown the bridge when
the connection is closed.

Launch Bridge Upon Connect Whether to launch the bridge when a
connection is made.

Bridge Launch Shell Script Pathname to script for launching the
bridge.

Attribute Description
67

Configuring Optegrity to Send Email Messages

You configure Optegrity to send email messages through the user preferences
dialog.

To configure Optegrity to send email messages:

1 Choose Project > My User Preferences.

2 Configure Email Address and/or Mobile Email.

3 Choose the rule to use for each of the configured email addresses, as follows:

• never — Do not send e-mail messages. This is the default rule.

• send-as-text — Send the message text and details as plain text.

• send-as-short-text — Send the message text only as plain text.

• send-as-html — Send the message text and details as HTML.

• only-high-priority-as-text — Send the message text and details as plain text
only if the priority is 1.

• only-high-priority-as-short-text — Send the message text as plain text only
if the priority is 1.

• only-high-priority-as-html — Send the message text and details as HTML
only if the priority is 1.

• if-not-connected-send-short-text — Send the message text as plain text
only if the user is not connected to the server.

• if-not-connected-send-as-text — Send the message text and details as
plain text only if the user is not connected to the server.

• if-not-connected-send-as-html — Send the message text and details as
HTML only if the user is not connected to the server.
68

Configuring User Preferences
When a message occurs, Optegrity also sends an email to the specified addresses.

Here is the User Preferences dialog with both email addresses and rules
configured:

Examples: Sending Email Messages

Here is an example of a message that includes the message text only in plain text:
69

Here is an example of a message that includes the message text and details in
plain text:
70

Configuring User Preferences
Here is an example of a message that includes the message text and details in
HTML format:

Configuring Startup Parameter for Sending Email Messages

You can configure the following startup parameter in the configuration file:

JMAIL-INTERFACE-NAME=none

Specifies the default JMail interface to use for sending email messages.

For details about using the configuration file, see the G2 Run-Time Library User’s
Guide.
71

72

4

Creating
Optegrity Applications
Describes how to create a new Optegrity application.

Introduction 73

Building an Optegrity Application 74

Working with Projects 76

Introduction
This chapter provides a high-level description of the steps you follow to create a
complete Optegrity application for abnormal condition management. It also
describes how to work with projects.

Unlike traditional G2 applications, you do not need to create a workspace
hierarchy to organize your application, and, for the most part, you do not need to
place objects on workspaces when you create them. Optegrity takes care of this
process for you. Instead, you simply create, configure, and manage objects by
using the menus, and you create process maps, event detection diagrams, and
fault models by using the various toolboxes.

When creating a new Optegrity application, you should set up your user
preferences. User preferences control the default user mode, default permissions,
and default behaviors.
73

Building an Optegrity Application
These are the high-level steps required to build a complete Optegrity application.
The details of each step are described in the referenced sections and chapters.

To build an Optegrity application:

1 Create a new project.

You create an empty project, which requires all the Optegrity modules that
you will need to build an application for abnormal condition management.

See Working with Projects.

2 Set up user preferences.

Each user that accesses the application should have a user preference to
determine the default user mode, the permissions, and the default behaviors.

See Configuring User Preferences.

3 Create a process map.

The process map represents the external process you want to monitor
and manage. A process map consists of domain objects, which are created
from built-in equipment and instrument definitions.

a Create a graphical representation of your process in a process map, using
your domain object definitions, and configure each internal datapoint.

See Building a Process Map.

b Create and configure domain objects for built-in event detection.

See Configuring Built-in Event Detection.

c Create custom domain object definitions for the process equipment,
sensors, and controllers in your external system, and create internal
datapoints for each external datapoint you want to monitor and manage.

See Creating Domain Object Definitions.

4 Manage data sources.

You manage the interface between the Optegrity application and your

a Create and configure OPC or PI interfaces to obtain external data through
a bridge.

See Configuring Network Interfaces.

b Use CSV files to create external datapoints that represent each DCS tag
variable in your external system, and link those external datapoints to
internal datapoints in the process map, either through the CSV file or
manually.
74

Building an Optegrity Application
See Configuring External Datapoints.

c Configure engineering unit conversions and synonyms, as needed, to
define datapoint units.

See Converting Engineering Units.

d Configure the process map to log internal datapoint values.

See Configuring Logging.

e Use continuous or differential CSV files for data replay to replay internal
or external datapoint values.

See You replay data to:.

f Use data drivers to simulate internal or external datapoint values.

See Simulating Datapoint Values.

5 Create generic event detection templates and specific event detection
diagrams.

You create generic event detection templates for domain object classes, which
monitor internal datapoints and generate operator messages and low-level
notifications when certain conditions are met.

To use these diagrams in an application, you must initialize the process map,
which creates specific event detection diagrams for each instance of the target
domain object class.

See Creating Generic Dataflow Diagrams.

See Initializing Process Maps.

6 Create reports to monitor events.

You create event metrics reports to monitor frequency and duration statistics
for events. You can also create system performance reports.

See Reporting and Charting.

7 Create generic fault models.

You create generic fault models for domain object classes, which describe
causal relationships between fault model events, based on the relationships
between domain objects in the process map. These events can be alarms and
root causes, which the operator views through a browser, or they can be
unspecified events created for modeling convenience.

You can also create generic test actions and repair actions for domain object
classes, which are associated with particular events. Test actions help
diagnose faults, and repair actions take corrective actions.

You must compile the generic fault models before they can be used in a
diagnostic application.
75

See Creating Generic Fault Models.

See Running SymCure Fault Models.

8 Manage messages and alarms.

You can manage operator messages, alarms, root causes, test actions, and
repair actions through browsers, and configure the message queues for
logging.

See Interacting with Operator Messages.

See Interacting with SymCure Diagnostic Console Browsers.

See Using Message Queues.

9 Customize startup parameters and other features.

Optegrity provides numerous initialization parameters, which you can
configure at startup to customize the behavior of various aspects of
the application.

You can also customize various other aspects of Optegrity, including creating
custom message browsers and messages, custom network interfaces, and
custom menus.

See Configuring Startup Parameters.

See Customizing Optegrity.

Working with Projects
An Optegrity project consists of a set of related files that form a knowledge base.
Each file contains a stand-alone module, which together make up a module
hierarchy. Each module is associated with its own .kb file, whose name typically
corresponds to the module name. The module hierarchy consists of a top-level
module and a number of lower-level modules. The top-level module requires the
lower-level modules to run.

When creating a new project, you can choose various intelligent object libraries to
provide out-of-the-box event detection for abnormal condition management
applications. If you do not plan to use out-of-the-box event detection or if you
plan to use only certain intelligent object libraries, disable the libraries you do not
need. Only those libraries that you enable are available in the Process Modeling
toolbox. By default, all intelligent object libraries are available when you create a
new project.
76

Working with Projects
You can:

• Create a new project.

• Save a project.

• Open a project.

Creating a New Project

When creating a new project, Optegrity creates a new, blank project with the
name you enter. The new project is saved it in the projects directory of your
Optegrity installation directory.

Note Creating a new project replaces the existing model in memory. Therefore, before
you create a new project, be sure to save the existing project, as necessary.

To create a new project:

1 Choose File > New.

2 Enter the name of the project.

The project name cannot contain spaces.

3 Ensure that Optegrity is chosen as the selected library.

4 Check or uncheck any additional libraries, depending on how your
application needs to access external data.

5 Click OK.

Optegrity displays the Operator Logbook as it creates a new project with the
name you specify, then loads the new project and all required modules onto the
server. When all modules have been successfully loaded, the menu bar updates.
You must wait until the KB has finished loading in the server before you can
access your project.

The title bar of the client window displays the default file name for your project,
which is your project name with the .kb extension.

Saving a Project

Projects are stored in the projects directory of your Optegrity installation
directory.

Optegrity saves the top-level module only; it does not save the required modules.
Unless you are customizing Optegrity, you do not generally need to save the
required modules.
77

To save a project:

 To save a project to the project file that was loaded when you started the
client, choose File > Save or click the equivalent toolbar button: ()

or

 To save the project to a different project file, choose File > Save As, enter a
new project name, or choose an existing project name from the list of available
projects on the server.

Note To ensure that the title bar of the client window shows the correct file name for
your project, we recommend that you always save your project to the default
file name.

Opening a Project

To open a project, specify the project name associated with the top-level module
in the module hierarchy.

Note Opening a new project replaces the existing application in memory. Therefore,
before you open a new project, be sure to save the existing project, as necessary.

To open a project:

1 Choose File > Open or click the equivalent toolbar button () to display the
Open Project dialog.

2 Enter or choose the project to open and click Open.

3 Click Yes in the confirmation dialog.

Optegrity displays the Operator Logbook as it loads the project file and all
required modules onto the server. When all modules have been successfully
loaded, the menu bar updates. You must wait until the KB has finished loading in
the server before you can access the application.
78

Part II
Process Maps
Chapter 5: Building a Process Map

Describes how to configure domain objects to create a process map.

Chapter 6: Configuring Built-in Event Detection

Describes how to configure built-in event detection for domain objects.

Chapter 7: Creating Domain Object Definitions

Describes how to create your own domain object definitions, which are based on the built-in
Optegrity equipment and instrument definitions.
79

80

5

Building a Process Map
Describes how to configure domain objects to create a process map.

Introduction 81

Creating a Process Map 82

Configuring Domain Objects 96

Creating Datapoint Displays 105

Creating a Process Map Hierarchy 105

Interacting with Domain Objects 111

Managing Process Maps 113

Introduction
A process map provides a graphical representation of your managed system,
using domain objects that represent different types of equipment, sensors, and
controllers. You construct a process map by creating domain objects from palettes
and connecting those domain objects to represent the equipment and topology of
your plant. The process map can consist of any combination of built-in and user-
defined domain objects.

The simplest type of process map consists of domain objects on the detail of a
process map container. You can also define hierarchical process maps. For
example, you can create a production site, which consists of one or more
production areas, where each production area consists of one or more
process units.
81

SymCure can perform system wide root cause analysis by correlating events
across different objects by using containment hierarchies, relations, and
connections defined by the domain map. For more information, see Creating
Generic Fault Models.

Optegrity provides four types of containers for building process maps:

Creating a Process Map
To construct a process map, first you create a process map container, then you
create process equipment from the various palettes in the Process Modeling
toolbox and place them on the detail. Once you have created domain objects, you
can connect those domain objects.

After creating and connecting domain objects, you can then create sensors and
relate them to the various domain objects, based on the types of events you want
to detect.

Creating a Process Map Container

You create a process map container through the Project menu.

You can also create a process map container through the Navigator. For details,
see Navigating Applications.

Container Description

Process Map Provides a container in which to create and connect
domain objects to create a simple process map. You
can also use a process map to subdivide process units
when modeling a hierarchical process.

Process Unit When modeling a hierarchical process, provides a
container in which to create individual process units.

Production Area When modeling a hierarchical process, provides a
container in which to create a production area, which
consists of one or more process units.

Production Site When modeling a hierarchical process, provides a
container in which to create a production site, which
consists of one or more production areas.
82

Creating a Process Map
To create a process map container:

1 Choose Project > System Models > Manufacturing Processes > Manage, and
click the New button.

The properties dialog for the Process Map container appears.

2 Configure the Name, which is system-generated, by default.

The name can be any text value, with spaces, for example,
Myapp Process Map:

Tip We recommend that you prefix the process map name with your application
name.

You can now go to the process map container detail to begin building the
process map. You access the detail through the Manage dialog or the Project
menu.

3 When you first create a process map container, you can show its detail by
clicking the Show Detail button in the Process Maps Manage dialog.
83

Here is the resulting process map detail, which is initially empty:

You can also access the process map detail by choosing Project > System Models >
Manufacturing Processes, then choosing a process map.

The process map appears in the System Models > Manufacturing Processes
submenu, for example:

For information on... See...

Using the Manage dialog Using the Manage Dialog.

Configuring the process map
background

Editing Workspace Properties.
84

Creating a Process Map
Creating a process map on the
detail of a process map container

Configuring Domain Objects.

Configuring the superior process
map to create a process map
hierarchy

Creating a Process Map Hierarchy.

Configuring message colors Configuring Message Color Based
on the Process Map.

For information on... See...
85

Creating Process Equipment

Optegrity provides numerous types of process equipment domain objects that
you can use to create a manufacturing process map. You create process
equipment from the following palettes in the Process Modeling toolbox:
86

Creating a Process Map
When the intelligent object libraries are loaded, all process equipment can detect a
set of built-in sensor events for process flow, inlet and outlet temperature, and
inlet and outlet temperature sensors that are related to the piece of process
equipment.

Certain process equipment can detect additional built-in events for other types of
related sensors, some of which are derived sensor values. For example, a heater
can detect events for draft oxygen and pressure, stack NOx, and tube skin
temperature related sensors, as well as for heater efficiency and tube skin delta
temperature related derived sensors.

Most domain objects define a set of internal datapoints. In general, when
detecting built-in events, you do not need to configure the internal datapoints for
process equipment. Rather, you configure the internal datapoints for the related
sensors values.

To create process equipment:

1 Choose View - Toolbox - Process Modeling and choose one of the palettes.

For information on displaying and interacting with the Process Modeling
toolbox, see Using the Optegrity Toolboxes.

2 Click a domain object in the palette and click on the detail of the process map
to place the object on the map.

3 Choose Properties on the domain object.

The properties dialog shows the name of the domain object and its built-in
internal datapoints. Optegrity provides a default name for the domain object.

4 Configure the Domain Object Name.

The name can be any text, with or without spaces, for example, myapp fo2,
myapp-fo2, or fo2.
87

5 Accept the dialog.

For example, here is the properties dialog for a user-defined heater named
F-102, which shows the built-in internal datapoints:

6 Continue displaying palettes and placing objects until you have all the
domain objects you need to form your process map.

7 Use the commands in the Layout menu to align and distribute the objects,
as needed.

For details, see Controlling the Layout of Objects.

8 From the process map popup menu, choose Shrink Wrap to shrink the size of
the process map to just fit the contained domain objects.
88

Creating a Process Map
For example, here is a process map with a heater, a valve, a pump, and a tank:

Connecting Process Equipment

Optegrity provides various types of connections that you can use to represent
conduits, pipes, or other connection pathways between process equipment in a
process map.

You can create gas, oil, and hydrogen lines, water and steam lines, or simple
directed and undirected connections. Here are the available connection palettes in
the Process Modeling toolbox:

To connect domain objects, you create a connection stub tool from one of the
connection palettes and use it to create a connection stub on a domain object. To
connect two objects, you drag the connection stub into another object, then you
delete the connection stub tool.
89

You can use general directed and undirected connections to connect instruments
in a process map, although, in general, you do not need to connect sensors in a
process map. For an example, see Connecting Instruments.

For information about how SymCure uses connectivity to perform system-wide
root cause analysis, see the SymCure User’s Guide.

To connect domain objects:

1 Choose View > Toolbox - Process Modeling and choose one of the connection
palettes.

For information on displaying and interacting with the Process Modeling
toolbox, see Using the Optegrity Toolboxes.

2 Click a connection in the palette, then click next to a domain object in the
process map to place it next to the object.

Tip The stub tool remains selected. To unselect it, click in an open area of the
process map detail.

3 Click one of the connection stubs from the stub tool, depending on the
connection direction, drag it into the domain object, and click again to create a
connection stub on the object.

4 Choose Delete on the connection between the object and the stub tool.

The connection stub tool remains for creating additional connections.

5 Continue creating connection stubs, as needed.

6 When you are finished creating connections, delete the connection stub tool.

7 Click the newly created stub, drag it into another domain object, and click
again to create a connection to another domain object.
90

Creating a Process Map
The following series of figures shows the process of creating a water line between
the pump and the tank in the previous example. First, you place a connection stub
tool on the detail, for example, upstream of the pump:

Next, you drag a connection stub into the domain object:

Then, you choose Delete on the connection between the stub tool and the pump,
which leaves a connection stub on the pump:

After moving the stub tool out of the way, you then drag the connection stub from
the pump into the upstream tank to create a connection:

Stub tool

Connection stub

Connection
91

Here is the process map with the equipment connected, where the tank is upstream
of the pump, the pump is upstream of the valve, and the valve is upstream of the
heater:

Creating Instruments

In addition to process equipment, a process map contains various types of
instruments, which include sensors, analyzers, and controllers. All sensors and
analyzers define PV (process value) as an internal datapoint, and all controllers
define PV, SP (setpoint), OP (control output), and Mode as internal datapoints.

When the intelligent object libraries are loaded, all sensors can detect a set of built-in
events for PV high, low, projected high, projected low, noisy, flatline, and change.
Controllers can detect an additional set of built-in events for OP projected high and
projected low, and setpoint error.

You choose instruments, based on the types of events you want to detect. For
example, to detect the PV Low event of the inlet temperature of a heater, you create
a temperature sensor upstream of the heater in the process map.
92

Creating a Process Map
Here are the available instrument palettes in the Process Modeling toolbox:

To create instruments:

1 Choose View > Toolbox - Process Modeling and choose one of the instrument
palettes.

For information on displaying and interacting with the Process Modeling
toolbox, see Using the Optegrity Toolboxes.

2 Click an instrument in the palette and click on the detail of the process map to
place it near its associated process equipment.

For example, you would place an inlet temperature sensor for a heater
upstream of the heater.

3 Choose Properties on the instrument.

The properties dialog shows the name and built-in internal datapoints.

4 Configure the Domain Object Name.

The name can include spaces.

5 Continue creating instruments until you have all you need for the events you
want to detect.
93

Here is the process map with various sensors configured:

Connecting Instruments

In general, it is not necessary to connect instruments in a process map. However,
to provide a more visually accurate representation of your process, you might
want to show connection stubs on instruments so that they appear to be
connected. You typically show instruments with undirected connections.

You can also connect instruments to the connections between domain objects or to
the domain objects themselves. However, note that to connect an instrument to a
connection, you must either use the same type of connection, or you must connect
the instrument through a connection stub, described below.

To configure the built-in heater efficiency event, you must physically connect
sensors to the input fuel gas line. For an example, see Built-in Event Detection for
Heaters.

Flow sensor

Inlet
temperature
sensor

Outlet
temperature
sensor
94

Creating a Process Map
To create a connection stub on an instrument:

1 Choose View > Toolbox - Process Modeling and show the Connections
palette:

2 Create an undirected connection and place it near an instrument in your
process map.

3 Create a connection stub on the instrument in the desired location.

For details, see Connecting Process Equipment.

4 Place the instrument with the connection stub next to a connection or a
domain object so that it appears as to be connected.

It is not necessary that the instrument actually be connected; the connection stub
is simply providing a visual representation.

For example, here is the process map where the sensors appear to be connected:
95

Configuring Domain Objects
Once you have created the process equipment and sensors required for event
detection, you must configure each domain object in the process map, depending
on the type of domain object, as follows:

• Process equipment:

– For each domain object, you must configure the related sensors for the
built-in events you want to detect. For example, to detect the PV Low
sensor event for the draft oxygen of a heater, you would configure the
Draft Oxygen related sensor of the heater.

– If the domain object defines its own events, you must configure the
datapoint limits for those events. For example, to detect the Efficiency
Severe Change event for a heater, you would configure the Change Limit
of the Efficiency Change event, along with additional related sensors.

• Instruments:

– For each instrument, you must configure the source datapoint of each
internal datapoint to refer to the external datapoint that provides its data.
For sensors, you configure the PV, and for controllers, you configure the
PV, SP, OP, and Mode. Typically, you configure the source datapoint
automatically when you create external datapoints from a CSV file. You
can also configure the source datapoint manually.

– You can also configure the description, units, data history for plotting
values on a trend chart, and logging parameters for internal datapoints.

– To detect an event for a sensor that is related to a domain object, you must
configure the datapoint limits for the events you want to detect. For
example, to detect the PV High event, you must configure the Low Limit
for the specific PV Low event detection diagram for the particular sensor.

Configuring Related Sensors

When the intelligent object libraries are loaded, all process equipment defines
related sensors for Process Flow, Process Inlet Temperature, Process Outlet
Temperature, Process Inlet Pressure, and Process Outlet Pressure.

Various other process equipment defines additional related sensors that allow
you to detect additional events. For example, heaters define related sensors for
Draft Oxygen, Draft Pressure, Stack NOx, Heater Efficiency, Tube Skin
Temperatures, and Tube Skin Delta T Temperatures.

To detect one of the built-in events for process equipment, first, you must
configure the related sensors of the domain object. For example, in the sample
process map, you would configure the Process Flow, Process Inlet Temperature,
and Process Outlet Temperature related sensors of the F-102 heater.
96

Configuring Domain Objects
For a description of the related sensors of built-in process equipment, see
Configuring Built-in Event Detection.

You can only configure related sensors if the intelligent object libraries are loaded
or if you have created your own custom events. See Working with Projects and
Creating Custom Event Detection.

To configure related sensors:

1 Display the properties dialog for a domain object, such as a heater.

2 Click the Configuration tab.

Here is the Configuration tab of the properties dialog for the F-102 heater:

3 Select the relation for the event you want to detect and click the Configure
button.

For example, to detect the PV Low sensor event for the process flow of the
heater, click Process Flow.

The list of available domain objects includes all sensors on the process map of
the required type. For example, when configuring the Process Flow, the list of
available domain objects includes only flow sensors. Similarly, when
configuring Process Inlet Temperature and Process Outlet Temperature, the
list of available domain objects includes only temperature sensors.

4 To configure the related sensor, move the sensor from the Available Domain
Objects list to the Related Domain Objects list on the right.
97

For example, here is the Process Flow of the F-102 heater with the F-1001 Flow
Sensor configured as the related sensor:

Here are the Process Inlet Temperature and Process Outlet Temperature of the
F-102 heater with the T-1001 and T-1002 Temperature Sensors, respectively,
configured as the related sensors:
98

Configuring Domain Objects
Configuring Internal Datapoints

When using built-in event detection, there is no need to configure the internal
datapoints of process equipment; you only need to configure the internal
datapoints of instruments.

You can also create your own event detection diagrams and domain object
definitions, which can use the built-in and custom internal datapoints of domain
objects.

To configure internal datapoints:

1 In the properties dialog for a domain object, click the row associated with an
internal datapoint to display its properties dialog.

For example, for a sensor, you configure the PV internal datapoint, and for a
controller, you configure the PV, SP, OP, and Mode.

2 Configure the Category to be any user-defined symbol to use for filtering
datapoints in the domain object properties dialog.

You can choose the category from a list of existing categories by clicking the
Select button, or you can enter a new category.

In general, you only configure the category for the internal datapoints of a
domain object, for example, pressure, temperature, and flow.

3 Configure the Description to provide user-defined information about the
internal datapoint.

4 Configure the Units to describe the units of measurement for the datapoint.

Typically, you configure the units automatically through a CSV file when you
create the external datapoints. For details, see Converting Engineering Units.

5 Configure the Number of Historical Values or the Maximum History Age to
keep a history of internal datapoint values, which you can plot in a trend
chart.

For information on... See...

Creating custom event
detection templates

Creating Generic Dataflow Diagrams.

Creating custom domain
object definitions

Creating Domain Object Definitions.
99

6 You have two options for configuring the Source Datapoint:

• Leave it blank to be fill in automatically when you create the external
datapoints from a CSV file.

• Click the button and choose an existing external datapoint from the list as
the source datapoint.

For information about creating external datapoints and configuring the
Source Datapoint, see Configuring External Datapoints.

If you configure the Source Datapoint, the Datapoint Value is read-only.
Otherwise, you can configure the Datapoint Value manually, and the value
persists when the application is initialized.

7 Configure the logging specification for the internal datapoint.

For more information about configuring logging, see Configuring Datapoints
for Logging.

Here is the default properties dialog for the a-1001.pv internal datapoint of
the A-1001 oxygen analyzer of a heater:

8 Accept the dialog for the internal datapoint.

9 To plot the data history of a domain object that you have configured to keep a
history, select the datapoint and click the Plot History button in the domain
object properties dialog.

When you initialize the process map and data values arrive, the trend chart
plots the data. For an example, see Displaying Trend Charts of Datapoint
Values.
100

Configuring Domain Objects
10 To filter internal datapoints, based on category, choose a category from the
Datapoint Category dropdown list in the domain object properties dialog.

Here is the domain object dialog for the F-102 heater with only the internal
datapoints in the Flow category visible:

Configuring Built-In Event Detection

When the intelligent object libraries are loaded, all instruments have a set of
built-in generic event detection templates, which describe the datapoint to
monitor and the logic for detecting the event. For example, all sensors define the
PV Low event detection diagram, which monitors the PV of the associated sensor,
detects a low limit, applies a fuzzy truth value, filters out unchanged values, and
sends a SymCure Low event if the value is true. The SymCure Low event triggers
diagnostic reasoning, based on a built-in fault model to determine root causes.

When you initialize the process map, Optegrity creates specific event detection
diagrams for all built-in generic event detection templates in the process map, and
it automatically enables event detection for those diagrams. You configure limits
in the specific event detection diagrams to determine when the event occurs in
your particular process. For example, to detect the PV Low sensor event of the
Process Flow related sensor of the F-102 heater, you configure the specific PV Low
event detection diagram for the F-102 heater by configuring the Low Limit of the
F-1001 flow sensor.

For information on configuring built-in event detection diagrams, see
Configuring Built-in Event Detection.
101

To configure built-in event detection:

1 Choose Project > Initialize Application to create the specific event detection
diagrams for each built-in event in your project.

You can also choose Initialize Domain Objects on the process map detail to
initialize only the domain objects in the process map.

2 Choose Enable Dataflow Event Detections on the related sensor whose events
you want to configure.

The built-in events automatically appear in the Active Domain Object Events
list on the right. You can disable events as needed for the particular sensor, or
just leave all the events active and only configure limits for those you want to
detect.

For example, here is the Enable Event Detection dialog for the F-1001 flow
sensor related sensor of the F-102 heater:

3 Close this dialog, and choose Show Logic on the domain object whose event
you want to configure.

This list includes the specific event detection diagrams for all active events of
the domain object. The specific event detection diagram name concatenates
the domain object name and the generic event detection template name.
102

Configuring Domain Objects
For example, here is the list of specific event detection diagrams for the F-1001
flow sensor:

4 Choose the specific event detection diagram whose limits you want to
configure.

For example, to configure the low limit of the PV Low event of the F-1001 flow
sensor, choose F-1001::PV Low to display this specific event detection
diagram:

This diagram uses various GEDP blocks to monitor the PV of the associated
sensor, detect a low limit, convert the value to a fuzzy truth value, filter
unchanged events, display the discrete value, and send a SymCure Low event
when the low limit is detected.

For more information, see Part IV, Event Detection.
103

5 Display the properties of the GEDP block that detects the limit and configure
the values, as appropriate.

For example, here is the properties dialog for the Low Limit block with the
Low Limit and Low Limit Deadband values configured:

The Low Limit Deadband defines a truth range, below which the block passes
a fuzzy truth value of true. The Low Limit block passes a fuzzy truth value of
1.0, which is true, if the detected value is between the Low Limit and the
Low Limit plus the Low Limit Deadband, in this example, between 1300 and
1301.

6 Accept the dialog.

The built-in PV Low event is now configured to generate an event when the
F-1001 flow sensor related sensor of the F-102 heater goes too low.

7 Continue configuring the limits in the specific event detection diagrams for
each domain object whose built-in events you want to detect.

For example, you might configure these specific event detection diagrams for
these related sensors of the F-102 heater: PV Projected Low::T-1001 (Process Inlet
Temperature), PV Projected High::T-1002 (Process Outlet Temperature).
104

Creating Datapoint Displays
Creating Datapoint Displays
To see internal datapoint values update, you can create datapoint displays on a
process map. You can create a datapoint display that shows just the value, or the
datapoint name and its value.

To create a datapoint display:

1 Choose View > Toolbox - Process Modeling and show the Displays palette.

The palette contains two styles of datapoint displays:

2 Click a datapoint display and place it on a process map.

Note You can only create datapoint displays on a process map.

3 Choose Properties and configure the Description to be a text description of the
datapoint.

4 Choose the Source Datapoint to display from the list of available internal
datapoints in the process map.

For example, to display the PV of the F-1001 flow sensor, the Source Datapoint
would be f-1001.pv.

When you run the simulation, the displays show the datapoint values as they
update. For an example, see Replaying Data from CSV Files.

Creating a Process Map Hierarchy
The simplest type of process map consists of domain objects on the detail of a
Process Map container. You can also define process maps hierarchically, based on
Production Site, Production Area, and Process Unit containers. Production sites,
production areas, and process units are all considered to be both process maps
and domain objects, which means they appear in lists that contain both types of
objects, such as the process map view of the operator interface.
105

You can also configure process map hierarchies by explicitly specifying the
superior process map. This approach enables domain objects to be visible in more
than one process map. For example, a sensor might be the output of equipment on
one process map and the input of equipment on another.

Operators can navigate across process maps hierarchically in the process map
view of the operator interface.

You can configure the process map so that messages that occur on domain objects
in the map take on the assigned color. To do this, you must also set a parameter in
the configuration file.

For information on reasoning across process maps, based on containment, see
“Configuring Causal Connections” in Chapter 4 “Creating Generic Fault Models”
in the SymCure User’s Guide.

To create a process map hierarchy:

1 Choose Project > System Models > Manufacturing Processes > Manage, and
click the New button to create a top-level process map, which will contain
your production sites.

For example, here is a process map named Gensym, which will contain all of
Gensym’s production sites:

You can use Superior Process Map to configure process map hierarchies
explicitly by choosing the superior process map.

Tip You can define SymCure fault models that reason across process maps that
are defined hierarchically by using the cdg-contained-in and cdg-the-
container-of relation types. This feature works for production sites,
production areas, process units, and any domain object. However, SymCure
requires that a contained object must be placed on the subworkspace of its
container object for its built in containment relations to be applied.

2 Choose Project > System Models > Manufacturing Processes and choose the
process map you just created to show its detail.
106

Creating a Process Map Hierarchy
3 Choose View > Toolbox - Process Modeling and show the Process Maps
palette:

4 Create one or more Production Site containers and place them on the top-level
process map detail.

5 Show the detail of a Production Site, then create one or more Production Area
containers and place them on the Production Site detail.

6 Show the detail of a Production Area, then create one or more Process Unit
containers and place them on the Production Area detail.

7 Configure the Name of each process map container you created.

Note You must configure the name in order to access the detail through the
Project > System Models > Manufacturing Processes menu.

8 Show the properties of each container and configure the Background Color,
as desired.

Process map containers
107

Here is an example of a process map hierarchy:
108

Creating a Process Map Hierarchy
Navigating Across Process Maps

You might want to create navigation buttons between process maps to break up
large maps into several smaller maps or to provide navigation between
hierarchical process maps.

To create navigation buttons between process maps:

1 Create two process maps between which you want to navigate.

2 Choose View > Toolbox - Process Modeling and show the Process Maps
palette:

3 Clone one of the navigation buttons from the Process Maps palette and place
it on one of the process maps.

4 Choose Properties and configure the Name to be the text to display in the
navigation button.

5 Configure the Process Map to go to by choosing the other map from the drop
down list.

6 Clone and configure a navigation button on the other process map to navigate
to the first map.

Process map
navigation buttons
109

This figure shows navigation buttons between two process maps:

To navigate across process maps:

 Choose Go To Process Map on a navigation button.

To navigate hierarchically across process maps:

 Click the Go to Superior button on a process map, whose Superior Process
Map has been configured.

Configuring Message Color Based on the
Process Map

By default, messages that occur on domain objects in a process map use colors
that are based on the priority of the message.

To configure message color based on the process map, you configure the message
color of each process map container in the hierarchy. You must also configure a
parameter in the config.txt file located in the g2i\kbs directory of your
Optegrity installation directory.

For more information on configuring message color, see Message Color.
110

Interacting with Domain Objects
To configure message color based on the process map:

1 Display the properties dialog of a process map through the Process Maps
Manage dialog.

2 Configure the Message Text Color and Message Background Color of each
process map to specify colors for messages that occur on domain objects in
that process map.

3 In the configuration file, set the message-color-based-on parameter to
process-map.

Interacting with Domain Objects
Domain objects provide the following popup menu choices:

Standard menu choices.

Domain object menu choices

Intelligent object menu choices

SymCure menu choices
111

All domain objects provide these popup menu choices:

Menu Choice Description

Initialize Domain
Object

Initializes the domain object, which creates a specific
GEDP diagram for the domain object, as well as
performing various other required tasks. For details,
see Initializing Process Maps.

Uninitialize Domain
Object

Uninitializes the domain object, which performs
various tasks, including deleting specific GEDP
diagrams for the domain object. For details, see
Uninitializing Process Maps.

Enable Dataflow
Event Detection

Displays a dialog that allows you to activate and
deactivate built-in and user-defined dataflow event
detection diagrams. See Configuring Built-In Event
Detection.

Show Logic Shows the specific event detection, test, and response
diagrams associated with the domain object. For
details, see Showing Specific Dataflow Diagrams.

Run Detection Logic Runs the specific dataflow event detection diagrams
associated with the domain object.

Run Test Logic Runs the specific dataflow test diagrams associated
with the domain object.

Run Response Logic Runs the specific dataflow response diagrams
associated with the domain object.

Enable Fault Model Enables SymCure diagnostics for the domain object.
For details, see Enabling Fault Models.

Send Fault Model
Event

Simulates sending a SymCure fault model event for the
domain object. For details, see Sending Fault Model
Events.

Enable Root Cause
Episode Management

Show Root Cause
Episodes

Save Root Cause
Episodes

For information about these menu choices, see
Chapter 7, “Debugging SymCure Applications” in the
SymCure User’s Guide.
112

Managing Process Maps
Managing Process Maps
To manage process maps:

1 Choose Project > System Maps > Manufacturing Processes.

All process map containers appear in the submenu, for example:

2 To display the detail of a process map, choose one from the Manufacturing
Process Maps submenu of the Domain Models menu.

3 To display a dialog for managing all process maps, including displaying the
properties dialog, choose Manage.

Here is the Process Maps Manage dialog:

For information on using this dialog and the Project menu to manage process
maps, see Using the Project Menu.
113

114

6

Configuring Built-in
Event Detection
Describes how to configure built-in event detection for domain objects.

Introduction 115

Built-in Event Detection for Instruments 116

Built-in Event Detection for Controllers 131

Built-in Event Detection for Base Derived Sensors 138

Built-in Event Detection for Heaters 142

Built-in Event Detection for Compressors 171

Built-in Event Detection for Equipment Drivers 183

Built-in Generic Fault Models 195

Introduction
When the intelligent object libraries are loaded, Optegrity provides built-in event
detection for various domain object classes. This chapter describes how to
configure built-in event detection for:

• Instruments

• Controllers

• Base Derived Sensors

• Heaters
115

• Compressors

• Equipment Drivers

Optegrity defines built-in generic fault models for domain objects that use the
built-in generic event detection templates.

The built-in generic event detection templates use the Fetch Intelligent Object
GEDP block to get the domain object instance of the target class. The diagrams
then use one of the built-in event blocks, such as the Low Limit or High Limit
sensor event block, to test an internal datapoint of the domain object, for example,
the pv of a sensor.

The built-in generic event detection templates are scheduled to evaluate on a
regular basis. Most diagrams are configured to evaluate once every 15 seconds,
with some exceptions. However, you can configure the specific diagrams to
evaluate at any interval required by the frequency of your application’s data
acquisition.

When you initialize your application, Optegrity creates specific event detection
diagrams for each built-in event detection template. By default, these diagrams
are persistent, which means you can configure event limits in the specific
diagrams and the configurations will persist when the application is initialized or
uninitialized.

The built-in event detection templates provide typical events that you might want
to detect for various domain object classes. However, you can also create custom
event detection templates for built-in or custom domain object classes. For more
information, see Creating Custom Event Detection.

Note You cannot delete the built-in event detection templates or generic fault models.

For general information on configuring domain objects for event detection, see
Configuring Domain Objects.

The following sections assume the intelligent object libraries are loaded.

Built-in Event Detection for Instruments
Instruments provide a generic methodology for monitoring and diagnosing
common problems with process sensors, online analyzers, and controllers.
Instruments perform these functions by analyzing current and historical process
values. Recognizing a sensor or online analyzer problem or failure can be critical
to preventing process upsets.

All instruments can detect these events:

• PV High

• PV Low
116

Built-in Event Detection for Instruments
• PV Projected High

• PV Projected Low

• PV Change

• PV Flatline

• PV Noisy

All events generate operator messages when the event occurs. Some events also
generate a SymCure fault model event when the event is true, which triggers
diagnostic reasoning to determine root causes.

For information about the generated SymCure events, see Built-in Generic Fault
Models for Sensors.

In the description of configuring each of the following events, you must first
create and configure an instrument from the Instruments or Controllers palette of
the Process Modeling toolbox, then you must initialize the process map. For
details, see:

• Creating Instruments.

• Configuring Internal Datapoints.

• Initializing Process Maps.

PV High

The PV High event detects when a process value exceeds a high PV limit and
generates an operator message when the event is true.

To configure the PV High event:

1 Choose Show Logic on an instrument and choose the PV High event.

Here is the specific event detection diagram for the PV High event of the
T-1001 sensor:

The event detects process values above a specified limit, converts the value to
a fuzzy truth value, filters out unchanged values, and generates a SymCure
High event when the high limit is detected.

2 Display the properties dialog for the High Limit block in the specific event
detection diagram.
117

3 Configure the High Limit to be the high PV limit for the sensor.

4 Configure the High Limit Deadband to be a range for determining when to
pass a fuzzy truth value.

The High Limit block passes a fuzzy truth value between -1.0 (false) and 1.0 (true)
if the PV is between the High Limit minus the High Limit Deadband and the High
Limit.

The Discretize Fuzzy Value block that follows the High Limit block acts as a filter
to prevent event chattering. It passes a discrete value of true if the input is above
the Max Threshold and a discrete value of false if input is below the Min
Threshold. By default, the Max Threshold is 1.0 and Min Threshold is -1.0, which
means that the input must be 1.0 before it passes a value of true and -1.0 before it
passes a value of false.

Here is the properties dialog for the High Limit block that detects process values
between 0.75 and 1.0:
118

Built-in Event Detection for Instruments
PV Low

The PV Low event detects when a process value falls below a low PV limit and
generates an operator message when the event is true.

To configure the PV Low event:

1 Choose Show Logic on an instrument and choose the PV Low event.

Here is the specific event detection diagram for the PV Low event of the
T-1001 sensor:

The event detects process values below a specified limit, converts the value to
a fuzzy truth value, filters out unchanged values, and generates a SymCure
Low event when the low limit is detected.

2 Display the properties dialog for the Low Limit block in the specific event
detection diagram.

3 Configure the Low Limit to be the low PV limit for the sensor.

4 Configure the Low Limit Deadband to be a range for determining when to
pass a fuzzy truth value.

The Low Limit block passes a fuzzy truth value between -1.0 (false) and 1.0 (true)
if the PV is between the Low Limit plus the Low Limit Deadband and the Low
Limit.

For a description of the Discretize Fuzzy Value block, see PV High.
119

Here is the properties dialog for the Low Limit block that detects process values
between 1.0 and 1.25:
120

Built-in Event Detection for Instruments
PV Projected High

The PV Projected High event detects a process value that is about to violate a high
limit, based on a linear regression of future values. The event generates an
operator message when the event is true and sends a SymCure Projected High
event on a sensor.

To configure the PV Projected High event:

1 Choose Show Logic on an instrument and choose the PV Projected High
event.

Here is the specific event detection diagram for the PV Projected High event
of the T-1001 sensor:

2 Display the properties dialog for the Projected High block in the specific event
detection diagram.

3 Configure the High Limit to be the projected high PV limit for the sensor.

4 Configure the High Limit Deadband to be a range for determining when to
pass a fuzzy truth value.

5 Configure the Response Time to be the time period for event detection,
in minutes.

6 Configure the Minimum History Points to be the minimum number of history
points required for event detection.

7 Configure the Pearson R Limit to be the minimum absolute Pearson R
correlation value required for validating the regressed slope.

The Pearson R is a quantitative measure of how well a straight line fits the
historical data within the response time. The Pearson R is a value between -1.0
(perfect negative slope correlation) and 1.0 (perfect positive slope correlation).

The block calculates the Projected Value by multiplying the calculated Slope by
the Response Time and adding the result to the current value of the attribute
being evaluated.

The Projected High block passes a fuzzy truth value between -1.0 (false) and 1.0
(true) if the Projected Value is between the High Limit minus the High Limit
Deadband and the High Limit, and the Pearson R value is above the Pearson R
Limit.
121

For a description of the Discretize Fuzzy Value block, see PV High.

Here is the properties dialog for the Projected High block that detects projected
high values between 0.75 and 1.0:
122

Built-in Event Detection for Instruments
PV Projected Low

The PV Projected Low event detects a process value that is about to violate a low
limit, based on a linear regression of future values. The event generates an
operator message when the event is true and sends a SymCure Projected Low
event on a sensor.

To configure the PV Projected Low event:

1 Choose Show Logic on an instrument and choose the PV Projected Low event.

Here is the specific event detection diagram for the PV Projected Low event of
the T1 sensor:

2 Display the properties dialog for the Projected Low block in the specific event
detection diagram.

3 Configure the Low Limit to be the projected low PV limit for the sensor.

4 Configure the Low Limit Deadband to be a range for determining when to
pass a fuzzy truth value.

5 Configure the Response Time to be the time period for event detection,
in minutes.

6 Configure the Minimum History Points to be the minimum number of history
points required for event detection.

7 Configure the Pearson R Limit to be the minimum absolute Pearson R
correlation value required for validating the regressed slope.

The Pearson R is a quantitative measure of how well a straight line fits the
historical data within the response time. The Pearson R is a value between -1.0
(perfect negative slope correlation) and 1.0 (perfect positive slope correlation).

The block calculates the Projected Value by multiplying the calculated Slope by
the Response Time and adding the result to the current value of the attribute
being evaluated.

The Projected Low block passes a fuzzy truth value between -1.0 (false) and 1.0
(true) if the Projected Value is between the Low Limit plus the Low Limit
Deadband and the Low Limit, and the Pearson R value is above the Pearson R
Limit.

For a description of the Discretize Fuzzy Value block, see PV High.
123

Here is the properties dialog for the Projected Low block that detects projected
low values between 1.0 and 1.25:
124

Built-in Event Detection for Instruments
PV Change

The PV Change event detects a process value that has changed by more than a
specified amount within a given time period. The event generates an operator
message when the event is true and sends a SymCure Value Change event on
a sensor.

To configure the PV Change event:

1 Choose Show Logic on an instrument and choose the PV Change event.

Here is the specific event detection diagram for the PV Change event of the
T-1001 sensor:

The event filters out unchanged values and generates a SymCure Value
Change event when the change limit is detected.

2 Display the properties dialog for the Change block in the specific event
detection diagram for a sensor.

3 Configure the Change Limit to be the high limit for process value changes.

4 Configure the Response Time to be the time period for event detection,
in minutes.

5 Configure the Minimum History Points to be the minimum number of history
points required for event detection.

The Change block passes a value of true if the PV changes by more than the
Change Limit within the Response Time.

The block calculates the Change Direction to indicate the direction of change,
which is Increased, Decreased, or No-Change.
125

Here is the properties dialog for the Change block that detects a change in process
value of more than 1 within one hour:
126

Built-in Event Detection for Instruments
PV Flatline

The PV Flatline event detects a process value that has not changed within a given
time period. The event generates an operator message when the event is true.

To configure the PV Flatline event:

1 Choose Show Logic on an instrument and choose the PV Flatline event.

Here is the specific event detection diagram for the PV Flatline event of the
T-1001 sensor:

The event filters out unchanged values.

2 Display the properties dialog for the Flatline block in the specific event
detection diagram for a sensor.

3 Configure the Response Time to be the time period for event detection,
in minutes.

4 Configure the Minimum History Points to be the minimum number of history
points required for event detection.

The block passes a value of true if the PV has not changed within the Response
Time.

The block calculates the Minimum Value and Maximum Value of the PV during
the Response Time.
127

Here is the properties dialog for the Flatline block that detects no changes within
an hour:
128

Built-in Event Detection for Instruments
PV Noisy

The PV Noisy event detects a process value whose standard deviation has
violated a limit within a given time period. The event generates an operator
message when the event is true.

To configure the PV Noisy event:

1 Choose Show Logic on an instrument and choose the PV Noisy event.

Here is the specific event detection diagram for the PV Noisy event of the
T-1001 sensor:

The event filters out unchanged values.

2 Display the properties dialog for the Noisy block in the specific event
detection diagram for a sensor.

3 Configure the Standard Deviation Limit to be the limit for changes in the
standard deviation of the process value.

4 Configure the Response Time to be the time period for event detection,
in minutes.

5 Configure the Minimum History Points to be the minimum number of history
points required for event detection.

The block calculates the Average Value and Standard Deviation during the
Response Time.

The block passes a value of true if the Standard Deviation changes by more than
the Standard Deviation Limit within the Response Time.
129

Here is the properties dialog for the Noisy block that detects a noisy signal if the
standard deviation of the process value within an hour is greater than 1:
130

Built-in Event Detection for Controllers
Built-in Event Detection for Controllers
Controllers provide a generic methodology for monitoring and diagnosing
common problems with controllers. Controllers perform these functions by
analyzing current and historical process values. Recognizing a controller problem
or failure can be critical to preventing process upsets.

Controllers can detect all the events that a sensor detects, as well as these events:

• OP Projected High

• OP Projected Low

• Setpoint Error

In the description of configuring each of the following events, you must first
create and configure a controller from the Controllers palette of the Process
Modeling toolbox, then you must initialize the process map. For details, see:

• Creating Instruments.

• Configuring Internal Datapoints.

• Initializing Process Maps.

OP Projected High

The OP Projected High event detects an OP value that is about to violate a high
limit, based on a linear regression of future values. The event generates an
operator message when the event is true.

To configure the OP Projected High event:

1 Choose Show Logic on a controller and choose the OP Projected High event.

Here is the specific event detection diagram for the OP Projected High event
of the PC-1 controller:

The event converts the projected high value to a fuzzy truth value.

2 Display the properties dialog for the Projected High block in the specific event
detection diagram.

3 Configure the High Limit to be the projected high OP limit for the controller.
131

4 Configure the High Limit Deadband to be a range for determining when to
pass a fuzzy truth value.

5 Configure the Response Time to be the time period for event detection,
in minutes.

6 Configure the Minimum History Points to be the minimum number of history
points required for event detection.

7 Configure the Pearson R Limit to be the minimum absolute Pearson R
correlation value required for validating the regressed slope.

The Pearson R is a quantitative measure of how well a straight line fits the
historical data within the response time. The Pearson R is a value between -1.0
(perfect negative slope correlation) and 1.0 (perfect positive slope correlation).

The block calculates the Projected Value by multiplying the calculated Slope by
the Response Time and adding the result to the current value of the attribute
being evaluated.

The Projected High block passes a fuzzy truth value between -1.0 (false) and 1.0
(true) if the Projected Value is between the High Limit minus the High Limit
Deadband and the High Limit, and the Pearson R value is above the Pearson R
Limit.
132

Built-in Event Detection for Controllers
Here is the properties dialog for the Projected High block that detects projected
high values between 75.0 and 100.0:
133

OP Projected Low

The OP Projected Low event detects an OP value that is about to violate a low
limit, based on a linear regression of future values. The event generates an
operator message when the event is true.

To configure the OP Projected Low event:

1 Choose Show Logic on a controller and choose the OP Projected Low event.

Here is the specific event detection diagram for the OP Projected Low event of
the PC-1 controller:

The event converts the projected low value to a fuzzy truth value.

2 Display the properties dialog for the Projected Low block in the specific event
detection diagram for a controller.

3 Configure the Low Limit to be the projected low OP limit for the controller.

4 Configure the Low Limit Deadband to be a range for determining when to
pass a fuzzy truth value.

5 Configure the Response Time to be the time period for event detection,
in minutes.

6 Configure the Minimum History Points to be the minimum number of history
points required for event detection.

7 Configure the Pearson R Limit to be the minimum absolute Pearson R
correlation value required for validating the regressed slope.

The Pearson R is a quantitative measure of how well a straight line fits the
historical data within the response time. The Pearson R is a value between -1.0
(perfect negative slope correlation) and 1.0 (perfect positive slope correlation).

The block calculates the Projected Value by multiplying the calculated Slope by
the Response Time and adding the result to the current value of the attribute
being evaluated.

The Projected Low block passes a fuzzy truth value between -1.0 (false) and 1.0
(true) if the Projected Value is between the Low Limit plus the Low Limit
Deadband and the Low Limit, and the Pearson R value is above the Pearson R
Limit.
134

Built-in Event Detection for Controllers
Here is the properties dialog for the Projected Low block that detects projected
low values between 0 and 25:
135

Setpoint Error

The Setpoint Error event detects when the average of the absolute value of the
difference between the PV and SP violates a specified limit. The event generates
an operator message when the event is true.

To configure the Setpoint Error event:

1 Choose Show Logic on a controller and choose the Setpoint Error event for the
controller.

Here is the specific event detection diagram for the Setpoint Error event of the
PC-1 controller:

The event converts the average setpoint error to a fuzzy truth value.

2 Display the properties dialog for the Setpoint Error Event block in the specific
event detection diagram for a controller.

3 Configure the Average Error Limit to be the error limit for the controller.

4 Configure the Average Error Deadband to be a range for determining when to
pass a fuzzy truth value.

5 Configure the Response Time to be the time period for event detection,
in minutes.

The block calculates the Setpoint Error to be the absolute value of the difference
between the SP and the PV of the controller, and the Average Error to be an
average of the Setpoint Error during the Response Time.

The Setpoint Error Event block passes a fuzzy truth value between -1.0 (false) and
1.0 (true) if the Average Error is between the Average Error Limit minus the
Average Error Deadband and the Average Error.
136

Built-in Event Detection for Controllers
Here is the properties dialog for the Setpoint Error Event block that is configured
to detect an average setpoint error between 0.75 and 1.0:
137

Built-in Event Detection for Base Derived
Sensors

The 2nd Sensor Delta derived sensor defines the 2nd Sensor Mismatch event to
detect the difference between two sensor values. The event occurs if the absolute
value of the difference exceeds a high limit. The event generates an operator
message when true.

To detect the 2nd Sensor Mismatch event, you create a 2nd Sensor Delta derived
sensor and configure the PV to be the difference between two related sensors. You
then configure the High Limit of the 2nd Sensor Mismatch event detection
diagram to specify the high limit for the delta.

To configure the 2nd Sensor Delta event:

1 Create a 2nd Sensor Delta derived sensor from the Base Derived Sensors
palette of the Process Modeling toolbox:

2 Create two or more sensors or controllers from the Instruments or Controllers
palette of the Process Modeling toolbox and place them on your process map.

For details, see Creating Instruments and Configuring Internal Datapoints.
138

Built-in Event Detection for Base Derived Sensors
For example, here is the F-102 heater with an inlet and outlet temperature
sensor, and a 2nd Sensor Delta derived sensor:

2nd Sensor Delta
derived sensor

Temperature
sensors
139

3 Display the properties dialog of the 2nd Sensor Delta derived sensor and click
the PV internal datapoint.

Here is the properties dialog for the Delta T 2nd Sensor Delta derived sensor
with the PV internal datapoint selected:

4 Click the Properties button and configure Tag1 and Tag2 to be the sensors for
which to compute the difference.

The derived sensor computes the absolute value of the difference by using the
formula abs(Tag1 minus Tag2).

For example, here is how you would configure the 2nd Sensor Delta derived
sensor to calculate the delta between the T-1001 and T-1002 temperature
sensors:

5 Initialize the process map.

For details, see Initializing Process Maps.
140

Built-in Event Detection for Heaters
6 Choose Show Logic on the 2nd Sensor Delta derived sensor to display the
specific 2nd Sensor Mismatch event detection diagram.

Here is the specific 2nd Sensor Mismatch event detection diagram for the
Delta T 2nd Sensor Delta derived sensor:

This event detection diagram monitors the PV of the Delta T derived sensor,
which is the difference between the two temperatures specified in Tag1 and
Tag2. The event occurs when the absolute value of the delta exceeds the
specified high limit.

7 Display the properties dialog for the High Limit block in the specific event
detection diagram and configure the High Limit and High Limit Deadband,
as needed.

For information on configuring these values, see PV High.

The 2nd Sensor Delta derived sensor is now configured to detect the 2nd Sensor
Mismatch event for the specified temperature sensors.

Built-in Event Detection for Heaters
Heaters provide a generic methodology for monitoring and diagnosing common
problems with heaters. The heater performs event detection by analyzing current
and historical process values from process sensors and derived sensors that are
related to the heater.

A heater can detect these events:

• Related Sensor Events

• Tube Skin Delta T

• Efficiency Severe Change

• Low Efficiency

• Heat Release Projected High

All events generate operator messages when the event occurs. Some events also
generate a SymCure fault model event, which triggers diagnostic reasoning to
determine root causes.

For information about the generated SymCure events, see Built-in Generic Fault
Models for Heaters and Built-in Generic Fault Models for Process Equipment.
141

In the description of configuring each of the following events, you must first
create and configure a heater from the Heaters palette of the Process Modeling
toolbox, then you must initialize the process map. For details, see:

• Connecting Process Equipment.

• Initializing Process Maps.

Related Sensor Events

All process equipment can detect built-in sensor events for these related sensors:
Process Flow, Process Inlet Temperature, Process Outlet Temperature, Process
Inlet Pressure, and Process Outlet Pressure.

In addition, a heater can detect built-in sensor events for these related sensors:

• Draft Oxygen

• Draft Pressure

• Stack NOx

• Tube Skin Temperatures

For general information on configuring the common related sensor events, see
Configuring Related Sensors.

Draft Oxygen

To configure the draft oxygen related sensor event:

1 Create and configure an oxygen analyzer from the Instruments palette of the
Process Modeling toolbox and place it on your process map near a heater.

For details, see Creating Instruments and Configuring Internal Datapoints.

For example, here is the F-102 heater with the A-1001 oxygen analyzer:

2 Display the properties dialog for a heater and click the Configuration tab.

Oxygen Analyzer

Heater
142

Built-in Event Detection for Heaters
3 Select Draft Oxygen from the Relations list and click the Configure button.

4 Move the oxygen analyzer to the Related Domain Objects list.

The oxygen analyzer is now a related sensor of the heater.

5 Configure the sensor events of the oxygen analyzer, as needed.

For details, see Built-in Event Detection for Instruments.

For example, here is how you would configure the Draft Oxygen of the F-102
heater to be the A-1001 oxygen analyzer:
143

Draft Pressure

To configure the draft pressure related sensor event:

1 Create a delta P sensor from the Instruments palette of the Process Modeling
toolbox and place it on your process map near a heater.

For details, see Creating Instruments and Configuring Internal Datapoints.

For example, here is the F-102 heater with the P-1050 delta P sensor:

2 Display the properties dialog for a heater and click the Configuration tab.

3 Select Draft Pressure from the Relations list and click the Configure button.

4 Move the delta P sensor to the Related Domain Objects list.

The delta P sensor is now a related sensor of the heater.

5 Configure the sensor events of the delta P sensor, as needed.

For details, see Built-in Event Detection for Instruments.

Delta P
Sensor

Heater
144

Built-in Event Detection for Heaters
For example, here is how you would configure the Draft Pressure of the F-102
heater to be the P-1050 delta P sensor:
145

Stack NOx

To configure the stack NOx related sensor event:

1 Create a NOx analyzer from the Instruments palette of the Process Modeling
toolbox and place it on your process map near a heater.

For details, see Creating Instruments and Configuring Internal Datapoints.

For example, here is the F-102 heater with the NOX-1001 NOx sensor:

2 Display the properties dialog for a heater and click the Configuration tab.

3 Select Stack NOx from the Relations list and click the Configure button.

4 Move the NOx analyzer to the Related Domain Objects list.

The NOx analyzer is now a related sensor of the heater.

5 Configure the sensor events of the NOx analyzer, as needed.

For details, see Built-in Event Detection for Instruments.

NOx Analyzer

Heater
146

Built-in Event Detection for Heaters
For example, here is how you would configure the Stack NOx of the F-102 heater
to be the NOX-1001 NOx analyzer:
147

Tube Skin Temperatures

To configure the tube skin temperatures related sensor event:

1 Create two or more temperature sensors from the Instruments palette of the
Process Modeling toolbox and place them on your process map near a heater.

For details, see Creating Instruments and Configuring Internal Datapoints.

For example, here is the F-102 heater with five tube skin temperature sensors:

Tip You can resize the temperature sensors and the heater by choosing Edit > Size,
as needed.

2 Display the properties dialog for a heater and click the Configuration tab.

3 Select Tube Skin Temperature Sensors from the Relations list and click the
Configure button.

4 Move the tube skin temperature sensors to the Related Domain Objects list.

The temperature sensors are now a related sensor of the heater.

5 Configure the individual sensor events of each temperature sensors, as
needed.

For details, see Built-in Event Detection for Instruments.

To monitor the difference between two tube skin temperatures, you can also
configure the Tube Skin Delta T event, using a derived sensor. For details, see
Tube Skin Delta T.

Temperature Sensor

Heater
148

Built-in Event Detection for Heaters
For example, here is how you would configure the Tube Skin Temperatures of the
F-102 heater:
149

Tube Skin Delta T

The Tube Skin Delta T event detects the difference between two related tube skin
temperature sensors of a heater. To detect the Tube Skin Delta T event, you create
a Tube Skin Delta T sensor, which is a derived sensor, and relate it to a heater.
You configure the PV of the derived sensor to be the difference between two
related tube skin temperature sensors of the heater. You then configure the High
Limit of the Tube Skin Delta T event detection diagram for a particular heater.

The event generates an operator message when the event is true and generates a
SymCure High event on the derived sensor.

To configure the Tube Skin Delta T event:

1 Create and configure two or more tube skin temperature sensors of a heater.

For details, see Tube Skin Temperatures.

2 Display the Heater Derived Sensors palette of the Process Modeling toolbox,
create a Tube Skin Delta T derived sensor, and place it on your process map
near a heater.
150

Built-in Event Detection for Heaters
Here is the Heater Derived Sensors palette of the Process Modeling toolbox:

For example, here is the F-102 heater with a Tube Skin Delta T derived sensor
named F102-PASS1-T1015-T1014-DELTA, which will monitor the difference
between the T-1014 and T-1015 tube skin temperature sensors of the heater:

Tube Skin Delta T
derived sensor

Tube Skin Delta T
derived sensor will
monitor delta T
between these two
tube skin temperature
sensors of the heater.
151

3 Display the properties dialog of the Tube Skin Delta T derived sensor and
click the PV internal datapoint.

Here is the properties dialog for the F102-PASS1-T1015-T1014-DELTA Tube
Skin Delta T derived sensor with the PV internal datapoint selected:

4 Click the Properties button and configure Tag1 and Tag2 to be the tube skin
temperature sensors for which to compute the difference.

The derived sensor computes the delta by using the formula Tag1 minus
Tag2, so the higher temperature sensor should be Tag1.

For example, here is how you would configure the Tube Skin Delta T derived
sensor to calculate the temperature difference between the T-1015 and T-1014
tube skin temperature sensors:

5 Display the properties dialog for the heater whose Tube Skin Delta T event
you want to detect and click the Configuration tab.

6 Move the Tube Skin Delta T derived sensor to the Related Domain Objects list.
152

Built-in Event Detection for Heaters
The Tube Skin Delta T sensor is now a related sensor of a heater.

For example, here is how you would configure the Tube Skin Delta T of the
F-102 heater to be the F102-PASS1-T1015-T1014-DELTA Tube Skin Delta T
derived sensor:

7 Initialize the process map.

For details, see Initializing Process Maps.
153

8 Choose Show Logic on the Tube Skin Delta T derived sensor to display the
specific Tube Skin Delta T event detection diagram.

Here is the specific Tube Skin Delta T event detection diagram for the
F102-PASS1-T1015-T1014-DELTA Tube Skin Delta T derived sensor:

This event detection diagram monitors the PV of the Tube Skin Delta T
derived sensor, which is the difference between the two tube skin
temperatures specified in Tag1 and Tag2. If the difference exceeds the
specified high limit, the diagram creates a fuzzy truth-value, filters out
unchanged truth values, and, when true, generates a SymCure High event.

9 Display the properties dialog for the High Limit block in the specific event
detection diagram and configure the High Limit and High Limit Deadband,
as needed.

For information on configuring these values, see PV High.

The heater is now configured to detect the Tube Skin Delta T event for the
specified tube skin temperatures.

Efficiency Severe Change

The Efficiency Severe Change event detects a severe change in the calculated
efficiency value of the Heater Efficiency derived sensor of a heater. The efficiency
calculation of a heater requires these sensors:

• Process Flow related sensor.

• Process Inlet Temperature related sensor.

• Process Outlet Temperature related sensor.

• Heater Efficiency related sensor, which is a derived sensor for the heater.

• Flow Sensor, which is connected to an input fuel line.

• Heating Value Analyzer, which is connected to an input fuel line.

In addition, you must configure internal datapoints of the Heater Efficiency
derived sensor to provide these values:

• Averaging time

• Process fluid heat capacity
154

Built-in Event Detection for Heaters
The Heater Efficiency derived sensor calculates the process heat gain, fuel heat
release, efficiency, and average efficiency. The Efficiency Severe Change event for
the heater detects changes in the efficiency calculation that exceed the specified
limit within the response time. The event generates an operator message when the
event is true.

To configure the Efficiency Severe Change event:

1 Create and configure the Process Flow, Process Inlet Temperature, and
Process Outlet Temperature related sensors of a heater.

For details, see Configuring Domain Objects.

For example, here is the F-102 heater with the required related sensors for
process flow, inlet temperature, and outlet temperature:

Process Flow

Process Inlet
Temperature

Process Outlet
Temperature

Heater

Temperature
Sensor

Flow Sensor
Temperature
Sensor
155

2 Display the Heater Derived Sensors palette of the Process Modeling toolbox,
create a Heater Efficiency derived sensor, and place it on your process map
near a heater.

Here is the Heater Derived Sensors palette of the Process Modeling toolbox:

For example, here is the F-102 heater with a Heater Efficiency derived sensor
named F102-Efficiency, which will calculate the heater efficiency:

Heater Efficiency
derived sensor
156

Built-in Event Detection for Heaters
3 Display the properties dialog of the heater, click the Configuration tab, and
configure the Heater Efficiency related sensor.

Here is how you would configure the Heater Efficiency of the F-102 heater to
be the F102-efficiency derived sensor:

The Heater Efficiency derived sensor defines internal datapoints for the
process flow, inlet temperature, and outlet temperature, which are obtained
from the related sensors of the heater. To automatically configure these
internal datapoints, you must initialize the process map.
157

4 Initialize the process map.

For details, see Initializing Process Maps.

Now you must configure additional internal datapoints of the Heater
Efficiency derived sensor.

5 Configure the internal datapoints of the Heater Efficiency derived sensor.

a Display the properties dialog for the Heater Efficiency derived sensor.

Once you have configured the related sensors of the heater and initialized
the process map, the process-flow, inlet-temp, outlet-temp internal
datapoints of the derived sensor are automatically configured to use the
process values of the related sensors.

In addition, you must manually configure the averaging-time and
process-cp internal datapoints. The derived sensor uses these internal
datapoint values to calculate the heater efficiency.

The remaining internal datapoints—process-heat-gain, fuel-heat-release,
efficiency, and avg-efficiency—are calculated values of the derived sensor.
You must scroll down to see all the calculated values.

Here is the dialog for the F102-Efficiency derived sensor:

Automatically
configured

Configure
manually

Calculated
158

Built-in Event Detection for Heaters
b Select the process-flow internal datapoint and click the Properties button.

Notice that the Source Datapoint is automatically configured to be f-1001.
pv, which is the PV of the Process Flow related sensor of the F-102 heater:

c Verify the Source Datapoint for the inlet-temperature and outlet-
temperature of the Heater Efficiency.

d Display the properties of the averaging-time internal datapoint and
configure the Datapoint Value to be the number of minutes over which to
calculate the average efficiency.

Here is the properties dialog for the f102-efficiency.averaging-time
internal datapoint, which is configured to be 5 minutes:
159

e Display the properties of the process-cp internal datapoint and configure
the Datapoint Value to be the heat capacity of the heater process fluid.

Here is the properties dialog for the f102-efficiency.process-cp internal
datapoint, which is configured to be 2.5:

In addition to configuring the related sensors of the heater and the Heater
Efficiency derived sensor, you must also create and connect a Flow Sensor and
Heating Value Analyzer to the fuel gas line of the heater. The Heater
Efficiency derived sensor uses these values to calculate the fuel-heat-release,
which is used in the efficiency calculation.

You can also detect a projected high value for the fuel heat release. For details,
see Heat Release Projected High.

Unlike the process flow, inlet temperature, and outlet temperature, which are
related sensors of the heater, these sensors must be physically connected to
the fuel gas line of the heater.
160

Built-in Event Detection for Heaters
6 Create a Flow Sensor and Heating Value Analyzer from the Instruments
palette of the Process Modeling toolbox and place them near the fuel gas line
of the heater.

Here is the F-102 heater with the two sensors:

Now you must connect these sensors to the fuel gas line of the heater. The
easiest way to do this is by creating two fuel gas connections and connecting
the sensors through these connections.

You can also use the directed or undirected connections on the Connections
palette; however, note that the connections must be connected through a gas
fuel line connection stub shown in the following figures.

Fuel Sensor Heating Value
Sensor

Fuel gas line
161

7 Create and connect the Flow Sensor and Heating Value Analyzer to the fuel
gas line of the heater, as follows:

a Display the Gas, Oil, and Hydrogen Lines connection palette of the
Process Modeling toolbox:

b Create two Fuel Gas Line connections and place them below the two
sensors:

c Drag the top connection stubs into each sensor, connect the two
connection stubs together, and connect the fuel gas line of the heater to the
right-most connection stub:

d Drag the unused connection stubs into the connection stub tools:
162

Built-in Event Detection for Heaters
The sensors are now connected to the input fuel gas line of the heater. The
Heater Efficiency derived sensor can now use these values in its calculation.

If there is more than one fuel source for the heater, you can connect separate
fuel sources to the heater, each with their own flow and heating value sensors.
The Heater Efficiency derived sensor will take into account all fuel sources
connected to the heater in the efficiency calculation.

The last step in configuring the Efficiency Severe Change event of a heater is
to configure the change limit for the efficiency calculation, which you do in
the specific event detection diagram for a particular heater.

8 Choose Show Logic on the heater and select the Efficiency Severe Change
event for the heater.

The process map must be initialized to configure the specific event detection
diagram.

For example, here is the Efficiency Severe Change event detection diagram for
the F-102 heater:
163

9 Display the properties dialog for the Change block and configure the Change
Limit to be the limit for the efficiency value change.

You can also configure the Response Time, and the Minimum History Points,
as needed.

Here is the properties dialog for the Change block that causes the event to
trigger when the calculated efficiency of the heater changes by more than 5.
Notice that the Attribute to Analyze is efficiency, which is calculated in the
Heater Efficiency derived sensor of the heater.

The heater is now fully configured to detect the Efficiency Severe Change event.
164

Built-in Event Detection for Heaters
Low Efficiency

The Low Efficiency event detects low average heater efficiency, a calculated value
of the Heater Efficiency derived sensor of a heater. If the draft oxygen of the
heater is, at the same time, not high, the Low Efficiency event generates a
SymCure Excess Coking event.

The Low Efficiency event requires all the same sensors as the Efficiency Severe
Change event, as well as the Draft Oxygen related sensor.

To configure the Low Efficiency event:

1 Create and configure a heater with the same related and connected sensors
that the Efficiency Severe Change event requires.

For details, see Efficiency Severe Change.

2 Create and configure the Draft Oxygen related sensor of the heater.

For details, see Draft Oxygen.

3 Choose Show Logic on the heater and select the Low Efficiency event for the
heater.

The process map must be initialized to configure the specific event detection
diagram.

Here is the Low Efficiency event detection diagram for the F-102 heater. The
diagram detects low heater efficiency and high draft oxygen. If the efficiency
is low, a message is generated. If the draft oxygen is also not high, the event
converts the combined values to a fuzzy truth value and generates a SymCure
Excess Coking event.
165

4 Show the properties dialog for the Low Limit block and configure the Low
Limit and Low Limit Deadband for low average heater efficiency.

For information on how to configure the deadband, see PV Low.

By default, the Low Limit block is configured to detect low average heater
efficiency between 80.0 and 85.0. Notice that the Attribute to Analyze is
avg-efficiency, which is calculated in the Heater Efficiency related sensor of
the heater.
166

Built-in Event Detection for Heaters
5 Show the properties dialog for the High Limit block and configure the High
Limit and High Limit Deadband for high draft oxygen.

By default, the High Limit block is configured to detect high draft oxygen
between 2.5 and 3.0:

The heater is now configured to detect the Low Efficiency event.
167

Heat Release Projected High

The Heat Release Projected High event detects a projected high value for the fuel
heat release calculated value of the Heater Efficiency derived sensor of a heater.
The event generates an operator message when the event is true.

The Heat Release Projected High event requires all the same sensors as the
Efficiency Severe Change event.

To configure the Heat Release Projected High event:

1 Create and configure a heater with the same related and connected sensors
that the Efficiency Severe Change event requires.

For details, see Efficiency Severe Change.

2 Choose Show Logic on the heater and select the Heat Release Projected High
event for the heater.

The process map must be initialized to configure the specific event detection
diagram.

Here is the Heat Release Projected High event detection diagram for the F-102
heater. The diagram detects a projected high value for the fuel-heat-release
internal datapoint of the Heater Efficiency related sensor of the heater.

3 Show the properties dialog for the Projected High block and configure the
High Limit and High Limit Deadband for a projected high value for the fuel
heat release.
168

Built-in Event Detection for Heaters
You can also configure the Response Time, Minimum History Points, and
Pearson R Limit, as needed. For information on how to configure these values,
see PV Projected High.

Here is the Projected High block configured to detect high fuel heat release
between 9.75 and 10.0. Notice that the Attribute to Analyze is
fuel-heat-release, which is calculated in the Heater Efficiency related sensor of
the heater.

The heater is now configured to detect the Heat Release Projected High event.
169

Built-in Event Detection for Compressors
Compressors provide a generic methodology for monitoring and diagnosing
common problems with compressors. The compressor performs these functions
by analyzing current and historical process values from process sensors and
derived sensors that are related to the compressor.

Compressors can detect these events:

• Compression Ratio Decrease

• Power Projected High

• Polytropic Head Change

All events generate operator messages when the event occurs. The events also
generate a SymCure event when the event is true, which triggers diagnostic
reasoning to determine root causes.

For information about the generated SymCure events, see Built-in Generic Fault
Models for Compressors.

In the description of configuring each of the following events, you must first
create and configure a compressor from the Compressors palette of the Process
Modeling toolbox, then you must initialize the process map. For details, see:

• Connecting Process Equipment.

• Initializing Process Maps.

Compression Ratio Decrease

The Compression Ratio Decrease event detects when the ratio of the discharge
and suction pressures of a compressor decreases enough to violate a specified
limit. The event generates an operator message when the event is true and
generates a SymCure Compression Ratio Decrease event.

The event requires the inlet and outlet pressure related sensors of a compressor.

To configure the Compression Ratio Decrease event:

1 Create a pressure sensor from the Instruments palette, create a pressure
controller from the Controllers palette, and place them near a compressor in a
process map.

2 Configure the Process Inlet Pressure and Process Outlet Pressure related
sensors of the compressor.
170

Built-in Event Detection for Compressors
For details, see Configuring Domain Objects.

For example, here is the C-101 compressor with the required instruments:

3 Initialize the process map.

For details, see Initializing Process Maps.

4 Choose Show Logic on the compressor and select the Compression Ratio
Decrease event for the compressor.

The process map must be initialized to configure the specific event detection
diagram.

Here is the Compression Ratio Decrease event detection diagram for the C-101
compressor. The diagram detects a decrease in the compression ratio, filters
out unchanged values, and generates a SymCure Compression Ratio Decrease
event when true.

Process Inlet
Pressure

Process Outlet
Pressure

Pressure SensorPressure
Controller

Centrifugal
Compressor
171

5 Show the properties dialog for the Compression Ratio Event block and
configure the Ratio Decrease Limit for a decrease in compression ratio during
the response time.

Here is the Compression Ratio Event block configured to detect a decrease in
the compression ratio of more than 1.0 during the last 60 minutes:

The Compression Ratio is calculated by dividing the discharge pressure by
the suction pressure of the compressor. The calculation is based on the Process
Inlet Pressure and the Process Outlet Pressure related sensors of the
compressor.

The compressor is now configured to detect the Compression Ratio Decrease
event.
172

Built-in Event Detection for Compressors
Power Projected High

The Power Projected High event detects a projected high value for the calculated
power of the Compressor Power derived sensor of a compressor. The power
calculation of a compressor requires these instruments:

• Process Flow related sensor.

• Process Inlet Pressure related sensor, which is a pressure controller used as
the suction pressure for the compressor.

• Process Outlet Pressure related sensor, which is the discharge pressure.

• Compressor Power related sensor, which is a derived sensor for the
compressor.

In addition, you must configure internal datapoints of the Compressor Power
derived sensor to provide these values:

• Gas molecular weight

• Compressor stages

• Specific heat ratio

The Compressor Power derived sensor calculates the power and polytropic head
for the compressor. The Power Projected High event for the compressor detects a
projected high value for the calculated power within a response time. The event
generates an operator message when the event is true and generates a SymCure
Power Projected high event.

To configure the Power Projected High event:

1 Create a flow and pressure sensor from the Instruments palette, create a
pressure controller from the Controllers palette, and place them near a
compressor in a process map.

2 Configure the Process Flow, Process Inlet Pressure, and Process Outlet
Pressure related sensors of the compressor.
173

For details, see Configuring Domain Objects.

For example, here is the C-101 compressor with the required instruments:

3 Create a Compressor Power derived sensor from the Compressor Derived
Sensors palette of the Process Modeling toolbox and place it on your process
map near the compressor.

Here is the Compressor Derived Sensors palette:

For example, here is the C-101 compressor with a Compressor Power derived
sensor named C-101-Power, which will calculate the compressor power:

Process Flow
Process Inlet
Pressure

Process Outlet
Pressure

Flow Sensor Pressure SensorPressure
Controller Centrifugal

Compressor

Compressor Power
derived sensor
174

Built-in Event Detection for Compressors
4 Display the properties dialog of the compressor, click the Configuration tab,
and configure the Compressor Power related sensor.

Here is how you would configure the Compressor Power of the C-101
compressor to be the C-101-Power derived sensor:

The Compressor Power derived sensor defines internal datapoints for the
flow, suction pressure, and discharge pressure, which it obtains from the
related sensors of the compressor. To automatically configure these internal
datapoints, you must initialize the process map.

5 Initialize the process map.

For details, see Initializing Process Maps.

Now you must configure additional properties of the Compressor Power
derived sensor.
175

6 Configure the properties of the Compressor Power derived sensor.

a Display the properties dialog for the Compressor Power derived sensor.

Once you have configured the related sensors of the compressor and
initialized the process map, the flow, suction-pressure, and discharge-
pressure internal datapoints of the derived sensor are automatically
configured to use the process values of the related sensors.

In addition, you must manually configure the gas-molecular-weight
internal datapoint.

The derived sensor uses these internal datapoint values to calculate the
compressor power.

The remaining internal datapoints—power and polytropic-head—are
calculated values of the derived sensor. You must scroll down to see all
the calculated values.

Here is the dialog for the C-101-Power derived sensor:

Automatically
configured

Configure
manually

Calculated
176

Built-in Event Detection for Compressors
b Select the flow internal datapoint and click the Properties button.

Notice that the Source Datapoint is automatically configured to be f1.pv,
which is the PV of the Process Flow related sensor of the C-101
compressor:

c Verify the Source Datapoint for the suction-pressure and discharge-
pressure of the Compressor Power.

d Display the properties of the gas-molecular-weight internal datapoint and
configure the Datapoint Value to be the molecular weight of the process
gas.

Here is the properties dialog for the c-101-power.gas-molecular-weight
internal datapoint, which is configured to be 17.5:
177

e Finally, in the properties dialog for the Compressor Power derived sensor,
configure these properties:

• Compressor Stages — The number of stages in the compressor.

• Specific Heat Ratio — The specific heat ratio of the process gas.

The last step in configuring the Power Projected High event of a compressor is
to configure the projected high limit for the power calculation, which you do
in the specific event detection diagram for the compressor.

7 Choose Show Logic on the compressor and select the Power Projected High
event for the compressor.

The process map must be initialized to configure the specific event detection
diagram.

Here is the Power Projected High event detection diagram for the C-101
compressor. The diagram detects a decrease in the power, filters out
unchanged values, and generates a SymCure Power Projected High event.
178

Built-in Event Detection for Compressors
8 Display the properties dialog for the Projected High block and configure the
High Limit and High Limit Deadband to be the limit for the compressor
power.

You can also configure the Response Time, Minimum History Points, and
Pearson R Limit, as needed. For information on how to configure these values,
see PV Projected High.

Here is the properties dialog for the Projected High block that causes the event
to trigger when the calculated power of the compressor is projected to be
between 9.5 and 10.0 during an hour. Notice that the Attribute to Analyze is
power, which the Compressor Power derived sensor calculates.
179

The compressor is now fully configured to detect the Power Projected High event.

Polytropic Head Change

The Polytropic Head Change event detects a change in the calculated polytropic
head of the Compressor Power derived sensor of a compressor. The event
generates an operator message when the event is true and generates a SymCure
Polytropic Head Change event.

The Polytropic Head Change event requires all the same sensors as the Power
Projected High Event.

To configure the Polytropic Head Change event:

1 Create and configure a compressor with the same related sensors that the
Power Projected High event requires.

For details, see Power Projected High.

2 Choose Show Logic on the compressor and select the Polytropic Head Change
event for the compressor.

The process map must be initialized to create the specific event detection
diagrams.

Here is the Polytropic Head Change event detection diagram for the C-101
compressor. The diagram detects a change in compressor polytropic head,
filters out unchanged values, and generates a SymCure Polytropic Head
Change event.
180

Built-in Event Detection for Compressors
3 Show the properties dialog for the Change block and configure the Change
Limit for a change in compressor polytropic head.

You can also configure the Response Time and Minimum History Points,
as needed.

For information on how to configure these values, see PV Change.

Here is the Change block configured to detect a change in compressor
polytropic head greater than 0.1. Notice that the Attribute to Analyze is
polytropic-head, which is calculated in the Compressor Power related sensor
of the compressor.

The compressor is now configured to detect the Polytropic Head event.
181

Built-in Event Detection for Equipment Drivers
Equipment drivers provide a generic methodology for monitoring and
diagnosing common problems with motor and steam turbine equipment drivers.
The equipment drivers perform these functions by analyzing current and
historical process values from process sensors and derived sensors that are
related to the equipment driver.

Equipment drivers can detect these events:

• Motor Power Projected High

• Turbine Power Projected High

All events generate operator messages when the event occurs.

Motor Power Projected High

The Power Projected High event for a motor driver detects a projected high value
for the calculated power of the Motor Power derived sensor of a motor driver.
The power calculation of a motor driver requires these instruments:

• Motor Amps related sensor.

• Motor Voltage related sensor.

• Motor Power related sensor, which is a derived sensor for the motor driver.

The Motor Power derived sensor calculates the power for the motor driver. The
Power Projected High event for the motor driver detects a projected high value
for the calculated power within a response time. The event generates an operator
message when the event is true.

To configure the Power Projected High event for a motor driver:

1 Create a motor driver from the Equipment Drivers palette of the Process
Modeling toolbox:

2 Create two general sensors from the Instruments palette, one for motor amps
and the other for motor voltage, and place them near the motor driver.

3 Configure the Motor Amps and Motor Voltage related sensors of the motor
driver by using the two general instruments.
182

Built-in Event Detection for Equipment Drivers
For details, see Configuring Domain Objects.

For example, here is the M-101 motor driver with the required sensors:

4 Create a Motor Power derived sensor from the Equipment Driver Derived
Sensors palette of the Process Modeling toolbox and place it on your process
map near the compressor.

Here is the Equipment Driver Derived Sensors palette:

For example, here is the M-101 motor driver with a Motor Power derived
sensor named M-101-Power, which will calculate the motor power:

Motor Amps

Sensors

Motor Driver

Motor Voltage

Motor Power
derived sensor
183

5 Display the properties dialog of the motor driver, click the Configuration tab,
and configure the Driver Power related sensor.

Here is how you would configure the Driver Power of the M-101 motor driver
to be the M-101-Power derived sensor:

The Driver Power derived sensor defines an internal datapoint that calculates
the motor power.
184

Built-in Event Detection for Equipment Drivers
6 Initialize the process map.

For details, see Initializing Process Maps.

7 Display the properties dialog for the Motor Power derived sensor.

The derived sensor uses the related sensors of the motor driver to calculate the
power internal datapoint.

Here is the dialog for the M-101-Power derived sensor:

The last step in configuring the Power Projected High event of a motor driver
is to configure the projected high limit for the power calculation, which you
do in the specific event detection diagram for the motor driver.

8 Choose Show Logic on the motor driver and select the Power Projected High
event.

The process map must be initialized to configure the specific event detection
diagram.

Here is the Power Projected High event detection diagram for the M-101
motor driver. The diagram detects a projected high value for the power and
filters out unchanged values.
185

9 Display the properties dialog for the Projected High block and configure the
High Limit and High Limit Deadband to be the limit for the projected high
power.

You can also configure the Response Time, Minimum History Points, and
Pearson R Limit, as needed. For information on how to configure these values,
see PV Projected High.

Here is the properties dialog for the Projected High block that causes the event
to trigger when the calculated power of the motor driver is projected to be
between 9.5 and 10.0 during an hour. Notice that the Attribute to Analyze is
power, which is calculated in the Motor Power derived sensor.
186

Built-in Event Detection for Equipment Drivers
The motor driver is now fully configured to detect the Power Projected High
event.

Turbine Power Projected High

The Power Projected High event for a turbine driver detects a projected high
value for the calculated power of the Turbine Power derived sensor of a turbine
driver. The power calculation of a turbine driver requires these instruments:

• Steam Flow related sensor.

• Inlet Steam Pressure and Outlet Steam Pressure related sensors.

• Inlet Steam Temperature and Outlet Steam Temperature related sensors.

• Turbine Power related sensor, which is a derived sensor for the turbine driver.

The Turbine Power derived sensor calculates the power for the turbine driver.
The Power Projected High event for the turbine driver detects a projected high
value for the calculated power within a response time. The event generates an
operator message when the event is true.

To configure the Power Projected High event for a turbine driver:

1 Create a turbine driver from the Equipment Drivers palette of the Process
Modeling toolbox:

2 Create a flow sensor, two temperature sensors, and two pressure sensors from
the Instruments palette, and place them near the turbine driver.

3 Configure the Steam Flow, Inlet Steam Pressure, Outlet Steam Pressure, Inlet
Stream Temperature, and Outlet Stream Temperature related sensors of the
turbine driver.
187

For details, see Configuring Domain Objects.

For example, here is the T-101 turbine driver with the required sensors:

Steam Flow Inlet Steam
Temperature

Turbine
Driver

Outlet Steam
Temperature

Inlet Steam
Pressure

Outlet Steam
Pressure
188

Built-in Event Detection for Equipment Drivers
4 Create a Turbine Power derived sensor from the Equipment Driver Derived
Sensors palette of the Process Modeling toolbox and place it on your process
map near the turbine driver.

Here is the Equipment Driver Derived Sensors palette:

For example, here is the M-101 compressor with a Turbine Power derived
sensor named T-101-Power, which will calculate the turbine driver power:

Turbine Power
derived sensor
189

5 Display the properties dialog of the turbine driver, click the Configuration
tab, and configure the Driver Power related sensor.

Here is how you would configure the Driver Power of the T-101 turbine
driver to be the T-101-Power derived sensor:
190

Built-in Event Detection for Equipment Drivers
6 Initialize the process map.

For details, see Initializing Process Maps.

7 Display the properties dialog for the Turbine Power derived sensor.

The derived sensor uses the related sensors of the turbine driver to calculate
the power, inlet-steam-enthalpy, outlet-steam-enthalpy, and energy internal
datapoints.

Here is the dialog for the T-101-Power derived sensor:

The last step in configuring the Power Projected High event of a turbine
driver is to configure the projected high limit for the power calculation, which
you do in the specific event detection diagram for the turbine driver.

8 Choose Show Logic on the turbine driver and select the Power Projected High
event.

The process map must be initialized to configure the specific event detection
diagram.
191

Here is the Power Projected High event detection diagram for the T-101
turbine driver. The diagram detects a projected high value for the power and
filters out unchanged values.

9 Display the properties dialog for the Projected High block and configure the
High Limit and High Limit Deadband to be the limit for the projected high
power.

You can also configure the Response Time, Minimum History Points, and
Pearson R Limit, as needed.

For information on how to configure these values, see PV Projected High.
192

Built-in Event Detection for Equipment Drivers
Here is the properties dialog for the Projected High block that causes the event
to trigger when the calculated power of the turbine driver is projected to be
between 9.5 and 10.0 during an hour. Notice that the Attribute to Analyze is
power, which is calculated in the Turbine Power derived sensor.

The turbine driver is now fully configured to detect the Power Projected High
event.
193

Built-in Generic Fault Models
When the intelligent object libraries are loaded, domain objects define a number
of generic fault models. The built-in generic event detection templates generate
some of the SymCure events in these generic fault models. For example, the PV
High event detection template of a sensor generates a SymCure High event.
Similarly, the Low Efficiency event of a heater generates a SymCure Excess
Coking event.

A number of the built-in generic fault models define causal relationships between
events for further root cause analysis. For example, the generic Tube Skin
Temperature fault model defines three possible root causes for the High Tube
Skin Temperature event, which is caused by the High event on the Tube Skin
Delta T derived sensor of a heater: High Burner Pressure, Flame Impingement,
and Excess Coking.

Other built-in generic fault models define simple causal relationships between
process equipment events and their related sensor events. For example, in the
generic flow sensor fault model, the High event on a related flow sensor is
directly caused by the High Process Flow event on the process equipment.

You can customize the built-in generic fault models or you can subclass the built-
in domain objects and create your own generic fault models.

For general information on generic fault models, see Part V, Diagnostic
Reasoning. For detailed information, see the SymCure User’s Guide.

Displaying Built-in Generic Fault Models

To display the built-in generic fault models:

 Choose Project > Logic > Diagnose > Generic Fault Models, choose a category,
then choose the generic fault model to view.

or

 Choose View > Project, expand the Fault Models > Generic Fault Models,
expand the tree to view the generic fault model in the desired category, and
choose Show Details.
194

Built-in Generic Fault Models
For example, here is a portion of the Navigator with the Generic Fault Models
folder expanded to show the generic fault models for Optegrity sensors:

Built-in Generic Fault Models for Sensors

All sensor classes define these generic fault models:

• Flow Sensor Fault Model

• Level Sensor Fault Model

• Temperature Sensor Fault Model

• Pressure Sensor Fault Model

• Sensor Fault Model

• Analyzer Sensor Fault Model

• Delta P Sensor Fault Model

• Motor Driver Fault Model

Flow Sensor Fault Model

The built-in generic flow sensor fault model defines direct causal relationships
between process flow events on equipment and events on their related flow
sensors.

For example, the PV High event for a flow sensor generates the SymCure High
event on the flow sensor when the PV exceeds the specified limit. The generic
flow sensor fault model defines a direct causal relationship between the High
Process Flow event of the process equipment and the High event on its related
Process Flow sensor.
195

Here are the causal relationships in the generic flow sensor fault model:

This sensor event...
Generates this SymCure
event on the sensor...

Which has this root cause
on the related process
equipment...

PV High High High Process Flow

PV Low Low Low Process Flow

PV Projected High Projected High Increasing Process Flow

PV Projected Low Projected Low Decreasing Process Flow

PV Change Value Change Process Flow Change
196

Built-in Generic Fault Models
Level Sensor Fault Model

The built-in generic level sensor fault model defines direct causal relationships
between events on process equipment and events on level sensors that are
connected to the equipment via any type of connection.

For example, the PV High event for a level sensor generates the SymCure High
event on the level sensor when the PV exceeds the specified limit. The generic
level sensor fault model defines a direct causal relationship between the High
Level event of the process equipment and the High event on its connected level
sensor.

Here are the causal relationships in the generic level sensor fault model:

This sensor event...
Generates this SymCure
event on the sensor...

Which has this root cause
on the related process
equipment...

PV High High High Level

PV Low Low Low Level

PV Projected High Projected High Increasing Level

PV Projected Low Projected Low Decreasing Level

PV Change Value Change Level Change
197

Temperature Sensor Fault Model

The built-in generic temperature sensor fault model defines causal relationships
between process temperature events on process equipment and events on their
related temperature sensors.

For example, the PV High event for a temperature sensor generates the SymCure
High event on the temperature sensor when the PV exceeds the specified limit.
The generic temperature sensor fault model defines a causal relationship between
the High Process Temperature event of the process equipment and the High event
on either its related Process Inlet Temperature or Process Outlet Temperature
related sensor.
198

Built-in Generic Fault Models
Here are the causal relationships in the generic temperature sensor fault model:

Pressure Sensor Fault Model

The built-in generic pressure sensor fault model defines causal relationships
between process pressure sensor events on process equipment and events on their
related pressure sensors.

For example, the PV High event for a pressure sensor generates the SymCure
High event on the pressure sensor when the PV exceeds the specified limit. The
generic pressure sensor fault model defines a causal relationship between the

This sensor event...
Generates this SymCure
event on the sensor...

Which has this root cause
on the related process
equipment...

PV High High High Process Temperature

PV Low Low Low Process Temperature

PV Projected High Projected High Increasing Process
Temperature

PV Projected Low Projected Low Decreasing Process
Temperature

PV Change Value Change Process Temperature
Change
199

High Process Pressure event of the process equipment and the High event on
either its related Process Inlet Pressure or Process Outlet Pressure related sensor.

Here are the causal relationships in the generic pressure sensor fault model:

This sensor event...
Generates this SymCure
event on the sensor...

Which has this root cause
on the related process
equipment...

PV High High High Process Pressure

PV Low Low Low Process Pressure

PV Projected High Projected High Increasing Process Pressure

PV Projected Low Projected Low Decreasing Process
Pressure

PV Change Value Change Process Pressure Change
200

Built-in Generic Fault Models
Sensor Fault Model

The built-in generic sensor fault model defines generic events for each built-in
sensor event that can occur on a sensor; it defines no causal relationships.

Here are the events in the generic sensor fault model:

This sensor event...
Generates this SymCure
event on the sensor...

PV High High

PV Low Low

PV Projected High Projected High

PV Projected Low Projected Low

PV Change Value Change
201

Analyzer Sensor Fault Model

The built-in generic analyzer sensor fault model defines generic events for each
built-in sensor event that can occur on an analyzer.

Here are the events in the generic analyzer sensor fault model:

This analyzer event...
Generates this SymCure
event on the analyzer...

PV High High

PV Low Low

PV Projected High Projected High

PV Projected Low Projected Low

PV Change Value Change
202

Built-in Generic Fault Models
Delta P Sensor Fault Model

The built-in generic delta P sensor fault model defines generic events for each
built-in sensor event that can occur on a delta P sensor.

Here are the events in the generic delta P sensor fault model:

Motor Driver Fault Model

The built-in generic motor driver fault model defines a causal relationship
between a high amps event on a motor driver and a high event on its related
sensor.

Specifically, the High Amps event for a sensor generates the SymCure High event
on the sensor when the PV exceeds the specified limit. The generic motor driver
fault model defines a direct causal relationship between the High Amps event of a
motor driver and the High event on its related Motor Amps sensor.

This analyzer event...
Generates this SymCure
event on the analyzer...

PV High High

PV Low Low

PV Projected High Projected High

PV Projected Low Projected Low

PV Change Value Change
203

Here is the causal relationship in the generic motor driver fault model:

Built-in Generic Fault Models for Process
Equipment

All process equipment classes define generic fault models that describe causal
relationships between events on the process equipment and events on domain
objects that are connected upstream via a hydrocarbon line connection.

These generic fault models provide limited event propagation for certain types of
process equipment, such as a heater, which requires two independent systems to
operate—a fuel system and a hydrocarbon system.

For example, a high pressure on the fuel gas system of a heater does not
propagate a high pressure to a pump connected upstream of the heater. A high
pressure on the upstream pump propagates a high pressure to the heater that is
connected via a hydrocarbon line; however, it does not propagate a high pressure
to the fuel system, because the fuel system and hydrocarbon systems are
independent.

All process equipment classes define these generic fault models:

• Process Equipment Flow Fault Model

• Process Equipment Level Fault Model

• Process Equipment Temperature Fault Model

• Process Equipment Pressure Fault Model

Process Equipment Flow Fault Model

The built-in generic equipment flow fault model defines causal relationships
between flow events on the process equipment and flow events on the domain
object that is connected upstream via a hydrocarbon line connection.

This sensor event...
Generates this SymCure
event on the sensor...

Which has this root cause
on the related process
equipment...

PV High High High Amps
204

Built-in Generic Fault Models
The downstream event may be caused by an event on the Process Flow related
sensor of the equipment. See Flow Sensor Fault Model.

Here are the causal relationships in the generic equipment flow fault model:

This generic event on process
equipment...

Causes this generic event on the domain
object that is connected upstream...

High Process Flow High Process Flow

Low Process Flow Low Process Flow

Increasing Process Flow Increasing Process Flow

Decreasing Process Flow Decreasing Process Flow

Process Flow Change Process Flow Change
205

Process Equipment Level Fault Model

The built-in generic equipment level fault model defines causal relationships
between level events on process equipment and level events on domain objects
that are connected upstream via a hydrocarbon line connection.

The downstream event may be caused by an event on a level sensor that is
connected to the downstream equipment. See Level Sensor Fault Model.

Here are the causal relationships in the generic equipment level fault model:

This generic event on process
equipment...

Causes this generic event on the domain
object that is connected upstream...

High Level High Level

Low Level Low Level

Increasing Level Increasing Level

Decreasing Level Decreasing Level

Level Change Level Change
206

Built-in Generic Fault Models
Process Equipment Temperature Fault Model

The built-in generic equipment temperature fault model defines causal
relationships between temperature events on process equipment and temperature
events on domain objects that are connected upstream via a hydrocarbon line
connection.

The downstream event may be caused by an event on the Process Inlet
Temperature or Process Outlet Temperature related sensor of the equipment. See
Temperature Sensor Fault Model.

Here are the causal relationships in the generic equipment temperature fault
model:

This generic event on process
equipment...

Causes this generic event on the domain
object that is connected upstream...

High Process Temperature High Process Temperature

Low Process Temperature Low Process Temperature

Increasing Process Temperature Increasing Process Temperature

Decreasing Process Temperature Decreasing Process Temperature

Process Temperature Change Process Temperature Change
207

Process Equipment Pressure Fault Model

The built-in generic equipment pressure fault model defines causal relationships
between pressure events on process equipment and pressure events on domain
objects that is connected upstream via a hydrocarbon line connection.

The downstream event may be caused by an event on the Process Inlet Pressure
or Process Outlet Pressure related sensor of the equipment. See Pressure Sensor
Fault Model.

Here are the causal relationships in the generic equipment pressure fault model:

This generic event on process
equipment...

Causes this generic event on the domain
object that is connected upstream...

High Process Pressure High Process Pressure

Low Process Pressure Low Process Pressure

Increasing Process Pressure Increasing Process Pressure

Decreasing Process Pressure Decreasing Process Pressure

Process Pressure Change Process Pressure Change
208

Built-in Generic Fault Models
Built-in Generic Fault Models for Heaters

The heater class defines these generic fault models:

• Draft Pressure Fault Model

• O2 Fault Model

• Tube Skin Temperature and Derived Delta T Fault Models

Draft Pressure Fault Model

The built-in generic delta P fault model defines causal relationships between
events on a heater that monitors Draft Pressure and events on its related delta
P sensor.

For example, the PV Projected High event for a sensor generates the SymCure
High event on the sensor when the projected PV exceeds the specified limit. The
generic delta P fault model defines a direct causal relationship between the Draft
Pressure Projected High event of the heater and the Projected High event on the
Draft Pressure related delta P sensor.

Here are the causal relationships in the generic draft pressure fault model:

This sensor event...
Generates this SymCure
event on the sensor...

Which has this root cause on
the related process equipment...

PV Projected High Projected High Draft Pressure Projected High

PV Change Value Change Draft Pressure Severe Change
209

O2 Fault Model

The built-in generic O2 fault model defines causal relationships between events
on a heater that monitors Draft Oxygen and events on its related oxygen analyzer.

For example, the PV Projected High event for an oxygen analyzer generates the
SymCure Projected High event on the analyzer when the projected PV exceeds
the specified limit. The generic O2 fault model defines a direct causal relationship
between the Excess O2 Projected High event of the heater and the Projected High
event on the Draft Oxygen related oxygen analyzer.

Here are the causal relationships in the generic O2 fault model:

This sensor event...
Generates this SymCure
event on the sensor...

Which has this root cause on
the related process equipment...

PV Projected High Projected High Excess O2 Projected High

PV Change Value Change Excess O2 Severe Change

PV Low Low Insufficient Air
210

Built-in Generic Fault Models
NOx Fault Model

The built-in generic NOx fault model defines causal relationships between events
on a heater that monitors Draft NOx and events on its related NOx analyzer.

For example, the PV Projected High event for a NOx analyzer generates the
SymCure Projected High event on the analyzer when the projected PV exceeds
the specified limit. The generic NOx fault model defines a direct causal
relationship between the Excess NOx Projected High event of the heater and the
Projected High event on the Draft NOx related oxygen analyzer.

Here are the causal relationships in the generic NOx fault model:

Tube Skin Temperature and Derived Delta T Fault Models

The tube skin temperature fault model defines causal relationships between the
High event on the Tube Skin Delta T derived sensor of a heater, a High Tube Skin
Temperature event on the heater, and three probable root causes: High Burner
Pressure, Flame Impingement, or Excess Coking.

Here are the causal relationships in the generic tube skin temperature fault model:

This sensor event...
Generates this SymCure
event on the sensor...

Which has this root cause on
the related process equipment...

PV Projected High Projected High NOx Projected High

PV Change Value Change NOx Severe Change

This sensor
event...

Generates this
SymCure event on
the sensor...

Which generates this
SymCure event on the
heater...

Which has these
possible root causes...

PV High High High Tube Skin
Temperature

High Burner Pressure
Flame Impingement
Excess Coking
211

The built-in generic delta T sensor fault model defines a generic event for the
Tube Skin Delta T derived sensor on a heater.

Here is the event in the generic delta T fault model:

This event on the Tube Skin
Delta T derived sensor...

Generates this SymCure
event on the sensor...

Tube Skin Delta T High
212

Built-in Generic Fault Models
Built-in Generic Fault Models for Compressors

The compressor classes define a generic fault model that provides generic events
for each built-in event that can occur on a compressor; it defines no causal
relationships.

Here are the events in the generic compressor fault model:

This compressor event...
Generates this SymCure
event on the compressor...

Power Projected High Power Projected High

Polytropic Head Change Polytropic Head Change

Compression Ratio Decrease Compression Ratio Decrease
213

214

7

Creating Domain
Object Definitions
Describes how to create your own domain object definitions, which are based on
the built-in Optegrity equipment and instrument definitions.

Introduction 215

Built-in Domain Object Foundation Classes 217

Built-in Process Equipment and Instrument Classes 218

Creating Domain Object Definitions 224

Accessing User-Defined Domain Objects 229

Managing Domain Object Definitions 230

Introduction
Optegrity defines a number of built-in class definitions, which you can use to
create a process map. The built-in class definitions define icons and various
internal datapoints relevant for each type of object. You create instances of
built-in equipment and instrument classes by using the Process Modeling toolbox.
215

For example, here is the properties dialog for a heater named F-102, which
defines built-in internal datapoints for process inlet flow, temperature, and
pressure, and process outlet temperature and pressure. You can configure the
source datapoints for each internal datapoint, as needed for your application.

You can also use the built-in classes as the superior class to create your own
domain object definitions. To create a domain object definition, you configure the
name, superior class, internal datapoints, and icon. You can define the internal
datapoints to obtain their values from external variables, or to derive their values
from a formula. Internal datapoints can contain any type of data—quantity, float,
integer, symbol, boolean, and text.

When you create a class definition, Optegrity allows you to place an icon for the
new definition on a user-defined palette.
216

Built-in Domain Object Foundation Classes
You access user-defined domain objects through user-defined palettes, which
Optegrity creates when you create the definition.

Built-in Domain Object Foundation Classes
Optegrity provides the following foundation classes, upon which all other built-in
domain object classes are built:

You can build your own domain object definitions by creating subclasses of the
foundation classes. A subclass of a foundation class inherits the icon and the
internal datapoints of the built-in definition.

Class Description

opt-equipment Use the equipment classes to create process equipment,
such as heat exchange equipment, rotating equipment,
vessels, and valves.

opt-sensor Use the sensor classes to create sensors that measure
things like flow, pressure, temperature. These classes
define a built-in datapoint for the process value (pv).

opt-controller Use the controller classes to create controllers such as
PID controllers and feed forward controllers.

grtl-datapoint Use the datapoint classes to create internal datapoints
in subclasses of opt-equipment, opt-sensor, and
opt-controller. These datapoints obtain their values from
external variables that you create from CSV files. You
can create datapoints of any value type, such as float,
integer, text, symbol, or boolean. You can also create
derived datapoints and specify formulas to compute
their values.
217

Built-in Process Equipment and Instrument
Classes

Optegrity provides a large variety of built-in equipment and instrument classes,
upon which you can build your own classes.

Process Equipment Classes

Here are the equipment classes that you can subclass to define your own process
equipment:

• Absorbers

• Boilers

• Compressors

• Distillation Columns

• Equipment Drivers

• Evaporators

• Fin Fans

• General

• Generators

• Heat Exchangers

• Heaters

• Pumps

• Reactors

• Storage Tanks

• Turbines

• Valves

• Vessels

Each equipment class defines various internal datapoints relevant to that class.
218

Built-in Process Equipment and Instrument Classes
Absorbers

Boilers

Compressors

Distillation Columns

Equipment Drivers

opt-absorber

opt-amine-treater

opt-boiler-class

opt-centrifugal-compressor-stage
opt-centrifugal-compressor

opt-reciprocal-compressor

opt-tray-tower-distillation-column

opt-reflux-drum

opt-motor-driver
opt-turbine-driver
219

Evaporators

Fin Fans

General

Generators

Heat Exchangers

opt-desal-heat-rejection-multi-effect-evaporator

opt-finfan
opt-fan-bank

opt-exhaust-stack
opt-flange
opt-flare
opt-orifice-plate

opt-gtg-generator

opt-heat-exchanger
220

Built-in Process Equipment and Instrument Classes
Heaters

Pumps

Reactors

Storage Tanks

Turbines

opt-heater

opt-pump

opt-reactor

opt-tank

opt-ball-tank

opt-gas-turbine
221

Valves

Vessels

Instrument Classes

There are two categories of sensor classes that you can subclass to define your
own instruments:

• Sensors and Analyzers

• Controllers

Each class defines internal datapoints appropriate to the instrument.

opt-gate-valve

opt-needle-valve
opt-plug-valve

opt-diverter-valve
opt-drain-valve

opt-vent-valve
opt-three-way-valve

opt-motorized-valve

opt-control-valve

opt-butterfly-valve
opt-check-valve

opt-diaphragm-valve

opt-stop-check-valve

opt-excess-flow-valve

opt-ball-valve

opt-globe-valve

opt-back-press-reg-cv

opt-positioner-cv
opt-press-relief-cv

opt-drum

opt-vertical-separator
opt-jacketed-vessel
222

Built-in Process Equipment and Instrument Classes
Internal Datapoints of Instruments

All the sensor and analyzer classes define the following internal datapoint:

All the controller classes define the following internal datapoints:

Sensors and Analyzers

Datapoint Description

pv A grtl-simple-quantitative-datapoint that defines
the process variable value.

Datapoint Description

pv A grtl-simple-quantitative-datapoint that defines the process
variable value.

sp A grtl-simple-quantitative-datapoint that defines the
controller setpoint.

op A grtl-simple-quantitative-datapoint that defines the
controller output value.

mode A grtl-simple-quantitative-datapoint that defines the
controller mode value.

opt-sensor
opt-temperature-sensor

opt-flow-sensor

opt-nox-analyzer

opt-heating-value-sensor

opt-analyzer-sensor
opt-delta-p-sensor

opt-level-sensor

opt-pressure-sensor
opt-oxygen-analyzer
223

Controllers

Creating Domain Object Definitions
When you create a domain object definition, you must specify its name and its
superior class. You may also define internal datapoints for this class, assign it to a
toolbox, and edit its icon.

You can define two basic categories of datapoints:

• Simple datapoints, which get their values from external datapoint sources:

– grtl-simple-quantity-datapoint

– grtl-simple-float-datapoint

– grtl-simple-float-datapoint-with-statistics

– grtl-simple-integer-datapoint

– grtl-simple-integer-datapoint-with-statistics

– grtl-simple-symbolic-datapoint

– grtl-simple-logical-datapoint

– grtl-simple-text-datapoint

• Derived datapoints, which compute their values based on a formula:

– grtl-derived-quantity-datapoint

– grtl-derived-float-datapoint

– grtl-derived-integer-datapoint

– grtl-derived-symbolic-datapoint

opt-temperature-controller

opt-pid-controller

opt-ff-controller

opt-multiplier

opt-summer

opt-analyzer-controller

opt-level-controller
opt-flow-controller

opt-pressure-controller
224

Creating Domain Object Definitions
– grtl-derived-logical-datapoint

– grtl-derived-text-datapoint

For information on these datapoint classes, see the G2 Developers’ Utilities Runtime
Library User’s Guide.

Note If you change the name of a class definition in the Domain Object Definition
dialog and that class has been configured as the Target Class of a GEDP generic
diagram template, a SymCure generic fault model folder, or a SymCure generic
event or action, Optegrity automatically updates the Target Class of the affected
GEDP and SymCure items.

Creating the Domain Object Definition

To create a domain object definition:

1 Choose Project > Object Models > Instruments and Equipment > Manage to
display the Manage dialog, then click the New button.

The dialog for creating a new domain object definition appears.

2 Edit the Class Name to identify your domain object class definition.

The class name must be a symbol, with no spaces. We recommend that you
prefix class names with your application name, for example, myapp-heater.

Note By default, Optegrity strips the module name from the domain object label in
the palette.

3 Choose an existing class as the Superior Class by clicking the button to the
right of the type-in box.

A tree view of built-in equipment and instrument classes appears. Expand the
tree until you find the desired class.

The new class inherits its definition from its superior class, including its icon
and any internal datapoints. For example, to create a custom heater class
definition, the superior class would be opt-heater.

4 Specify a Palette Name on which to place the icon for the new domain object.

For example, to place the user-defined domain object in the Myapp palette,
the Palette Name would be Myapp. You can also choose from a list of existing
user-defined palettes.

The Palette Group is always Process Modeling, which places the user-defined
palette in the Process Modeling toolbox.
225

Note Do not use the “&” character in the palette name. Use the word “and” instead.

5 Specify any text in the Description to provide information about the class
definition.

This information serves to document your class definition and is used by
Optegrity’s search tools to find domain object definitions.

6 To create internal datapoints that are embedded in your domain object
definition, enter the name of the internal datapoint in the Datapoints column.

7 To configure the type of datapoint, click in the Type column corresponding
with the datapoint and choose the datapoint type from the list.

8 To create additional datapoints, select the left-most column of an existing row,
then click the Insert Before or Insert After toolbar button to add rows, then
configure the datapoint name and type of each.

Tip Create the rows first, then configure the name and type of each datapoint.

The toolbar buttons are only enabled when a row is selected. You can also
delete the selected row by using the Delete Row button.

9 Click Apply or OK to create the domain object definition.

The Notes field indicates the status of the definition. For instance, the Notes
indicate if the name you specify already exists. Once you accept the dialog and
open it again, if your newly created class definition is free of errors, the Notes
indicate that the domain object definition is OK.
226

Creating Domain Object Definitions
Here is the domain object definition and properties dialog for myapp-heater,
which inherits its definition from opt-heater. The domain object appears in the
Process Modeling palette group, which puts it in the Process Modeling toolbox,
and in the Myapp palette. The class defines an internal datapoint named t-in-c,
which is a type of grtl-derived-float-datapoint. The domain object definition also
has a number of inherited datapoints, which are a type of grtl-simple-derived-
datapoint, by default.
227

Editing the Domain Object Definition Icon

You can edit the icon associated with a domain object by using the Icon Editor.
For more information, see Chapter 39 “The Icon Editor and Icon Management” in
the G2 Reference Manual.

To edit the domain object definition icon:

1 Choose Project > Object Models > Instruments and Equipment > Manage,
select the definition whose icon you want to change, and click the Properties
button.

The properties dialog for the class definition appears.

2 Click the Edit Icon button to display the Icon Editor.

Tip You can also show the class definition object and choose Edit Icon to display the
Icon Editor.

Configuring Derived Internal Datapoints

Configuring derived internal datapoints is the same as configuring simple
internal datapoints except that instead of configuring the source datapoint, you
configure a formula.

To configure a derived internal datapoint:

1 Follow the steps under Configuring Internal Datapoints, except do not
configure the Source Datapoint.

2 Configure the Formula to compute the value.

To refer to an internal datapoint in the formula, use dot notation to refer to the
internal datapoint, and surround the name with vertical bars (| |), for example,
(| F1.PROCESS-INLET-TEMPERATURE| - 32 /1.8).

The formula for derived datapoints supports arithmetic operators only, not
functions.

Note Do not refer to the current internal datapoint in the formula; otherwise, an error
will occur due to a cyclical reference.
228

Accessing User-Defined Domain Objects
Accessing User-Defined Domain Objects
You access user-defined domain objects from palettes. Optegrity creates toolbox
entries automatically when a domain object definition is created. You create and
configure a domain object and its internal datapoints when you create the
process map.

Note To delete a user-defined palette, go into Administrator mode, choose Tools >
Inspect, enter show on a workspace-every grtl-palette-group containing
PaletteName, choose go to original on the object representation, then choose delete
on palette group object.

To access user-defined domain objects:

 Choose View > Toolbox - Process Modeling and click the button associated
with the user-defined palette.

For example, if the Palette Name is Myapp, you would access the user-defined
domain object by choosing View > Toolbox - Process Modeling and displaying
the Myapp palette.

Here is the Myapp palette in the Process Modeling toolbox, which contains the
myapp-heater domain object. Notice that Optegrity automatically strips the
module prefix from the label.

To customize the label:

 Add an entry such as the following to the resources-english.txt file in the
g2i\kbs directory:

PALETTE.ITEM.MYAPP-HEATER.LABEL, "Custom Heater"
229

Managing Domain Object Definitions
To manage domain object definitions:

1 Choose Project > Object Models > Equipment and Instruments > Manage.

All user-defined domain object classes appear in the submenu, for example:

2 To configure the properties of a domain object definition, choose one from the
appropriate Object Models submenu.

3 To display a dialog for managing all domain objects, choose Manage.
230

Managing Domain Object Definitions
Here is the Object Models Manage dialog:

For information on using this dialog and the Project menu to manage domain
objects, see Using the Project Menu.
231

232

Part III
Data Sources
Chapter 8: Configuring Network Interfaces

Describes how to create and configure network interfaces for communicating with external
systems through a bridge.

Chapter 9: Configuring External Datapoints

Describes how to configure external datapoints using a CSV file.

Chapter 10: Converting Engineering Units

Describes how to create and configure engineering unit conversions.

Chapter 11: Configuring Logging

Describes how to configure logging for internal and external datapoints.

Chapter 12: Replaying Data

Describes how to replay internal and external datapoint values from continuous and
differential CSV files.

Chapter 13: Simulating Datapoint Values

Describes how to simulate values for internal and external datapoints.
233

234

8

Configuring
Network Interfaces
Describes how to create and configure network interfaces for communicating with
external systems through a bridge.

Introduction 235

Creating and Connecting Network Interfaces 237

Advanced Features 239

Using Interface Pools 242

Managing Network Interfaces 246

Introduction
To communicate with external DCS systems, you must create and configure a
DCS interface object. Optegrity provides two types of interface objects for
communicating with DCS systems over a network:

You associate a DCS interface object with an External Datapoints container, which
defines the external datapoints whose values you want to monitor and manage.

Name Description

OPC Interface Communicates with external OPC systems,
using the G2 OPCLink bridge.

PI Interface Communicates with external PI systems,
using the G2-PI Bridge.
235

The interface is responsible for communicating with the external system and
providing data to each external datapoint.

Optegrity also provides three additional types of interface objects for
communicating with these external systems:

You can interact with network interfaces through the Interfaces submenu of the
System Settings menu.

Note To create and configure network interfaces, you must be in Developer mode.

Once you configure the network interface, you must establish a connection to the
bridge process. To do this, you must first start the bridge process. If the interface
connection goes down, Optegrity automatically attempts to restart the
connection.

If you have a large number of external DCS datapoints, you can create multiple
interfaces and interface pools to distribute processing across multiple
connections. One reason you might want to distribute processing is if you need to
poll external datapoints at different intervals.

The G2 Data Source Management (GDSM) module is responsible for
communicating with external DCS systems.

For information about associating interface objects with external datapoints, see
Configuring External Datapoints.

For information about message logging to a database, see Logging Messages to a
Database.

For information on creating and interacting with interfaces, using the Project
menu, see Using the Project Menu.

Name Description

Database
Interface

Communicates with external Oracle, Sybase, and ODBC
databases, using the G2-Oracle Bridge, G2-Sybase
Bridge, and G2-ODBC Bridge. You connect to databases
for message logging. Optegrity provides built-in support
for logging messages to databases.

JMail Interface Communicates with external Java Mail systems, using
the G2 JMail Bridge. You connect to JMail systems to
send and receive e-mail messages.

JMS Interface Communicates with external Java Messaging Service
systems, using G2 JMSLink. You connect to JMS systems
to send and receive text and XML messages.
236

Creating and Connecting Network Interfaces
Creating and Connecting Network Interfaces
To create a network interface, you configure the interface name, and the host and
the port of the machine that is running your bridge process. The default host is
localhost and the default port is 22041.

Depending on the type of network interface, you must also configure additional
information for connecting to the bridge process. For example, when connecting
to a database, you must configure the type of database, and the user name and
password for logging into the database.

Once you have configured the interface, you can connect it to the bridge process.

You determine the status of the connection in the properties dialog for the
interface. The color of the arrow in the network interface object also indicates its
connection status. The status can be any of these colors and values:

For information on configuring additional features such as time outs, see
Advanced Features.

To create and connect the network interface:

1 Choose Start > Programs > Gensym G2 2011 > Bridges, then choose the bridge
to which you want to connect, for example, G2 OPC Client Bridge or G2 PI
Bridge.

The bridge process starts in a command window, and an icon for the bridge
process appears in the system tray. Note the host and port of the bridge
process.

2 Switch to Developer mode.

For details, see Switching User Modes.

3 Choose Project > System Settings > Interfaces, then choose the type of
interface you want to create, depending on the external system, and choose
Manage to display the Manage dialog for the specified type of interface.

4 Click the New button to display the properties dialog for configuring the
network interface.

This color... Has this connection status... Which indicates...

Red -2 An error has occurred.

Yellow -1 A timeout has occurred.

Khaki 0 The connection is inactive.

Blue 1 The connection is initializing.

Green 2 The connection is active.
237

5 Configure the Interface Name to be a unique name, which is system-
generated, by default.

The name must be a symbol without spaces.

Tip We recommend that you prefix the name with your application name, for
example, myapp-interface.

6 Configure the Bridge Host and Bridge Port of your bridge process.

7 Connect the interface to the bridge process by using one of these techniques:

• Click Manual Connect in the properties dialog.

• Click the Connect button in the Manage dialog for the particular type of
network interface.

• Choose Connect to Bridge on the interface object.

Here is the properties dialog for an OPC Interface named myapp-interface:

For information on configuring the other options, see Advanced Features.

For information on configuring the interface-specific properties for Database
(SQL), JMail (SMTP), and JMS Interfaces, see the relevant guides for the
associated bridges as described in Advanced Features.
238

Advanced Features
To disconnect from the bridge process:

 Click the Disconnect button in the Manage dialog for the particular type
of interface.

or

 Choose Disconnect from Bridge on the interface object.

Advanced Features
Network interfaces communicate with external systems, using various bridges.
These bridges support additional features for communicating with external
systems, such as configuring the remote process initialization string, polling the
external system, rather than receiving data when it changes, and creating multiple
interface object connections.

You must also configure interface-specific properties defined by the Database
(SQL), JMail (SMTP), JMS, and HTTP interfaces.

Here is the properties dialog for a database interface:
239

Here is the properties dialog for the JMail interface:

Here is the properties dialog for the JMS interface:
240

Advanced Features
Here is the properties dialog for the HTTP interface:

For information on configuring user preferences for sending messages by email,
see Delivering Messages by Email.

For information on configuring the advanced features, as well as the Database,
JMail, JMS, and HTTP Interfaces, see the appropriate guide, depending on the
type of network interface:

This interface...
Uses this bridge
process... Described in...

OPC Interface G2 OPC Client G2-OPC Client Bridge User’s
Guide

PI Interface G2-PI Bridge G2-PI Bridge User’s Guide

Database Interface G2-Oracle Bridge
G2-Sybase Bridge
G2-ODBC Bridge

G2 Database Bridge User’s Guide
G2-Oracle Bridge Release Notes
G2-Sybase Bridge Release Notes
G2-ODBC Bridge Release Notes

JMail Interface G2 JMail Bridge G2 JMail Bridge User’s Guide

JMS Interface G2 JMSLink G2 JMSLink User’s Guide

HTTP Interface N/A G2 Web User’s Guide
241

Using Interface Pools
For scalability, Optegrity supports pools of interfaces to communicate with
databases or other remote programs. The pool uses parallel bridges and
communication channels to interact with external databases and improve
performance. This means that Optegrity can perform multiple database queries or
updates in parallel and use multiple instances of remote programs performing
processing-intensive tasks. For each request, Optegrity selects an available or the
least-used network object from the pool at run time.

Optegrity provides several types of interface pools, which are configured to create
network objects that connect to a database, JMail bridge, JMS Message server, or
another Optegrity process.

To configure multiple communication channels, you configure the initial interface
count to be the desired number of connections. When the model resets, Optegrity
automatically creates and configures the network objects to connect to the remote
process or bridge. Alternatively, you can configure the network communication
pool manually, and when the model resets, Optegrity launches the remote
programs or bridges.

If you use the default procedures to launch the remote process or bridge, the
command line to launch it must accept one argument, which is the TCP/IP port
name to use for listening for connections.

To configure an interface pool:

1 Choose View > Toolbox - G2 and choose the desired Network Interfaces
palette.

Alternatively, choose Project > System Settings > Interface Pools, choose the
desired type of interface, and choose Manage to create a new interface pool.

For example, here is the Network Interfaces - SMTP palette:
242

Using Interface Pools
2 Create a network interface pool from the palette, display its properties dialog,
the interface pool and configure these attribute on the General tab:

3 Click the Network Interface tab and configure these attributes:

Attribute Description

Label Any label for the object.

Comments Any comment for the object.

User Name User name to connect to interfaces.

Password Password used to connect to
interfaces.

Initial Network Interface
Count

The default number of interfaces
created in the pool at reset time.

Network Connection Timeout The timeout of the network
connection.

Enable Initialization During
Reset

Enables and disables the initialization
of the pool at reset time of the model.

Attribute Description

Interface Default Host The host where the interface to
connect to is running.

Interface Base Port Number The TCP/IP port to which the remote
interfaces connect. For every
additional interface automatically
added at reset time, this port number
is incremented by 1, except for G2-to-
G2 interfaces.

Network Interface Timeout The timeout for the network interface.

Network Interface
Initialization String

The initialization string for the
network interface.

Remote Process Launch
Arguments

Arguments to the Bridge Process
Launch Command.
243

Bridge Process Launch
Command

The command line to launch the
bridge or process. Optegrity expects
the command line to take one
argument, which is the TCP/IP port
number the bridge should use to listen
for G2 connections. Standard G2
bridges such as database bridges
offered by Gensym comply with this
requirement.

Bridge Process Launch
Procedure

The name of a procedure to launch a
bridge or process. This procedure can
be a executable (.exe) or a batch file.
The procedure should return the
process ID of the process it launched
or –1 if it failed. The default procedure
is gdsm-launch-bridge-process.

Bridge Process Kill Procedure The name of a procedure to kill the
bridge to which an interface is
connected. The default procedure is
gdsm-kill-bridge-process.

Auto Connect to Bridge Whether to automatically connect to
the bridge when required.

Shutdown Bridge on
Disconnect

Whether to automatically shutdown
the bridge when disconnecting.

Launch Bridge Upon Connect Whether to automatically launch the
bridge when attempting a connection.

Attribute Description
244

Using Interface Pools
4 For Database Interface Pools, click the Database tab and configure these
attributes:

For details, see the G2 Database Bridge User’s Guide.

5 For JMail Interface Pools, click the JMail tab and configure these attributes:

For details, see the G2 JMail Bridge User’s Guide.

Attribute Description

Database Connect String The database name to connect to or the
ODBC DSN to use to connect to the
database.

Maximum Number of Cursors The maximum number of cursors to
manage in each database bridge. The
default value is 100.

Bind Variable Prefix The prefix used by the database to tag
arguments as being bind variables.
The default value is colon (:).

Attribute Description

Incoming Host The name of the host computer used
for incoming email.

Incoming Port The port number of the host used for
incomign email.

Incoming Protocol The protocol used for incoming email.

Incoming Folder The name of the folder for incoming
email.

Delete Messages on Server Whether to delete messages on the
server when sent.

Outgoing Host The name of the host computer used
for outgoing email.

Outgoing Port The port number of the outgoing host.

Outgoing From The email address to use as the From
address when the email message is
sent.
245

6 For JMS Interface Pools, click the JMS tab and configure the attribute.

For details, see the G2 JMSLink User’s Guide.

Managing Network Interfaces
To manage network interfaces:

1 Choose Project > System Settings > Interfaces, then choose the network
interface type to display its submenu, for example:

2 To configure the properties of an interface object, choose one from the
appropriate submenu in the Interfaces submenu.

3 To display a dialog for managing all interface objects, choose Manage.

Note To enable the buttons for interacting with network interfaces through the
Manage dialog, you must be in Developer mode.
246

Managing Network Interfaces
Here is the OPC Interfaces Manage dialog in Developer mode:

For information on using this dialog and the Project menu to manage process
maps, see Using the Project Menu.

For information on using the buttons specific to network interfaces, see
Performing Specific Operations.

Network interface
specific buttons
247

248

9

Configuring
External Datapoints
Describes how to configure external datapoints using a CSV file.

Introduction 249

Creating External Datapoint Configuration Files 250

Creating External Datapoints from a CSV File 258

Creating Individual External Datapoints 265

Translating External Datapoint Values 266

Managing External Datapoints 269

Introduction
One of the most tedious tasks in building an intelligent fault management
application is creating the hundreds and maybe thousands of G2 variables
corresponding to the monitored tag variables in your external DCS system.

An important feature of Optegrity is the ability to create external variables for
each DCS tag variable—automatically—using CSV files. You simply export to a
file the OPC or PI configuration data for the tag variables you want to manage,
specify a name for each external variable, and specify the interface type and
datapoint type. Optegrity reads the file and automatically creates variables of the
correct type.

When creating external datapoints from a CSV file, you also have the option of
automatically linking the external datapoints to internal datapoints in a process
map. To do this, for each external datapoint in the CSV file, you provide the name
of an internal datapoint that will get its data from the external datapoint. You
249

express the internal datapoint name, using dot notation, which concatenates the
domain object name with its internal datapoint, for example, f-1001.pv where
f-1001 is an object and pv is an attribute of f-1001. When Optegrity reads the file,
it automatically links the external and internal datapoints.

When creating the datapoints from a file, you can configure limits, targets, and
deviations to perform data validation of external datapoint values. When a
datapoint value is out of range, a data validation message occurs in the Messages
browser.

You can configure engineering units for external datapoints in the CSV file. For
details, see Configuring External Datapoint Units in the CSV File.

Once the datapoints have been created from the CSV file, you can change them
through the external datapoints properties dialog, as needed.

In addition to creating external datapoints from a CSV file, you can create external
datapoints from a palette.

You can also configure logging for external datapoints. For details, see
Configuring Datapoints for Logging.

You create external datapoints in an External Datapoints container:

Creating External Datapoint Configuration Files
The CSV file that configures external datapoints contains the following
information. The order of the information is preconfigured. Only some of the
information is required; the rest is optional.

• Datapoint Name — A unique name for the external datapoint.

• Datapoint Server Information — Information about how the external
datapoint is configured in the server, which includes:

– Default Update Interval — How often to update data from the DCS
system.

– Datapoint Tag Type — The type of DCS tag variable the external
datapoint represents.

Container Description

External Datapoints Allows you to create external datapoints from
DCS tag variables, using a CSV file.
250

Creating External Datapoint Configuration Files
– Datapoint Type — The value type for the external datapoint. The options
depend on the type of external system.

– Datapoint Units — The engineering unit that the external datapoint uses.
You can specify any of the built-in engineering unit or a user-defined
synonym.

– Related Process Map Datapoint Names — The name of an internal
datapoint that gets its data from the external datapoint. If you do not want
to associate external datapoints with internal datapoints when you create
the external datapoints, you can leave this slot empty.

• Data validation limits, targets, and rates, which perform data validation on
the external datapoint values. Data validation is optional.

• DCS configuration information for the external OPC or PI system that
provides the external data.

You can configure the optional information in the external datapoints
configuration CSV file, or you can configure it manually for individual internal
datapoints in the process map. For more information, see Configuring Domain
Objects.

Configuring the External Datapoint Name

You use the external datapoint name as the source datapoint of an internal
datapoint in a process map. The external datapoint name must be a symbol, with
no spaces.

To configure the external datapoint name:

 In the CSV file that configures external datapoints, configure the Datapoint
Name column, the first column, to be a unique symbol.

Configuring the Default Update Interval

By default, external datapoints update their data whenever the value in the DCS
system changes. To update external datapoints at regular intervals, you can
configure the default update interval. The value is any time interval, such as
1 hour and 30 minutes or 1 minute.
251

Configuring the Datapoint Tag Type

Each external datapoint represents a DCS tag variable for a sensor or controller.
For sensors, the datapoint tag type is pv, which represents the process value.
Controllers can have the following datapoint tag types: pv, sp, which represents
the controller setpoint, op, which represents the controller output, and mode,
which represents the controller mode.

By configuring the type of datapoint tag type, you see only external datapoints of
the required type when manually configuring the source datapoint of an internal
datapoint.

Configuring the Datapoint Type

The external datapoint must define a data type, which depends on the external
DCS system you are using:

• For OPC variables, the options are:

– float

– integer

– logical

– text

• For PI variables, the options are:

– real

– integer

– digital

When you create the external datapoints, Optegrity creates a datapoint of the
proper class, based on the specified data type.

To configure the external datapoint type:

 In the CSV file that configures external datapoints, configure the Datapoint
Type column to be one of the types listed above, depending on your
DCS system.

Configuring the Datapoint Units

For information on configuring the datapoint units, see Configuring External
Datapoint Units in the CSV File.
252

Creating External Datapoint Configuration Files
Configuring the Related Internal Datapoint

If you know ahead of time which internal datapoints should obtain their values
from external datapoints, you can configure this information in the external
datapoints configuration file. This step requires that you have already created and
configured your process map.

If you do not have this information at the time that you create the external
datapoints configuration file, you can configure each internal datapoint manually
to refer to a particular external datapoint as the source datapoint.

Of course, if you have this information ahead of time, you will save time
configuring this information from the CSV file. On the other hand, you might be
creating your application in stages, adding domain objects to the process map
incrementally as you manage more and more of your external process. You must
decide which approach works best for your application. You can also use a
combination of both approaches by automatically configuring some internal
datapoints and adding others later.

To relate external datapoints to internal datapoints:

 In the CSV file that configures external datapoints, configure the Related
Process Map Datapoint Names column to be the name of the internal
datapoint that gets its data from the particular external datapoint.

When referring to the internal datapoint name, you must use dot notation, which
concatenates the domain object name and its internal datapoint, using a period as
a separator. For example, to relate the external datapoint named f-1001-external
to the pv datapoint for the f-1001 flow sensor, you would use f-1001.pv.

Configuring Data Validation

In the CSV file that configures external OPC float and PI real datapoints, you can
set up limits, targets, and rates for validating external data as it arrives. You can
perform three types of data validation:

When an external data value does not conform to the specified data validation
limits, targets, and/or rates, Optegrity generates an operator message, which
indicates the reason the value is invalid. You can view these messages in the

This type of data validation... Validates external datapoint values based on...

Detected limit Minimum and maximum limits.

Detected target Minimum and maximum targets, based on
a value.

Detected rate Minimum and maximum rates, based on a
time interval.
253

Message Browser. For more information, see Interacting with Operator Messages.

Just as you can relate external and internal datapoints manually for individual
datapoints in a process map, you can configure data validation for internal
datapoints manually.

You cannot configure data validation for integer, logical, text, or digital
datapoint types.

To configure data validation:

 In the CSV file that configures external datapoints, configure some or all of
these columns for a particular external datapoint, where the Enabled options
are true or false:

Column Value

Min-Max Enabled

Min-Max High-High

Min-Max High

Min-Max Low-Low

Min-Max Low

true or false

High-high limit value

High limit value

Low-low limit value

Low limit value

Target Enabled

Target High-High

Target High

Target Low-Low

Target Low

Target Value

true or false

High-high target value

High target value

Low-low target value

Low target value

The target value to which the external
datapoint value is compared, relative to the
high and low targets.

Rate Enabled

Rate High-High

Rate High

Rate Low-Low

Rate Low

Rate Interval

true or false

High-high rate value

High rate value

Low-low rate value

Low rate value

The rate at which the time interval between
external datapoints is compared.
254

Creating External Datapoint Configuration Files
Configuring the DCS Datapoint Data

Depending on the type of DCS system you are using, you need to identify the
actual OPC or PI tag variable for which you are creating an external variable. The
configuration information varies, depending on your DCS system.

To configure the DCS datapoint data:

 Use the last columns in the CSV file to configure the datapoint data for your
DCS system.

For example, to configure an OPC tag variable, you would configure these values:

• OPC Item ID

• OPC Access Path

For both OPC and PI tag variables, you can also configure these values in the
second-to-last and last columns of the CSV file, respectively:

• High Process Limit — The high limit for external datapoint values.

• Low Process Limit — The low limit for external datapoint values.

Summary of the CSV File Format

The CSV file that configures external datapoints defines each external datapoint
in its own row and the configuration information in each column. The following
table defines the order of columns, from left to right, where the separators
indicate groups of related configuration information.

Column Description

Datapoint

Datapoint Name The name of the external datapoint.

Datapoint Server Configuration

Default Update
Interval

How often to update data from the DCS system. The
value is any time interval, such as 1 minute or
1 hour and 30 minutes.
255

Datapoint Tag Type The type of datapoint the external datapoint represents.
The options are: pv, sp, op, or mode. Pv represents the
process value for a sensor or controller; sp represents
the setpoint of a controller; op represents the controller
output; and mode represents the controller mode.

By configuring the type of datapoint tag, Optegrity
shows you only datapoints of the required type when
manually configuring the source datapoint of an
internal datapoint.

Datapoint Type The value type for the external datapoint. The options
depend on the type of external system.

For OPC variables, the options are:

• float

• integer

• logical

• text

For PI variables, the options are:

• real

• integer

• digital

Datapoint Units The engineering unit that the external datapoint uses,
for example, C or deg C.

Related Process Map
Datapoint Names

The name of the internal datapoint that gets its value
from the external datapoint.

Data Validation

Min-Max

Enabled
High-High
High
Low-Low
Low

Detected target settings for data validation.

Column Description
256

Creating External Datapoint Configuration Files
Using an Existing CSV File as a Template

Optegrity provides sample CSV files that you can use as templates for configuring
external datapoints. These files provide configuration data for the heater tutorial
that ships with Optegrity.

The data file that the tutorial uses provides configuration data for external OPC
tag variables.

Target

Enabled
High-High
High
Low-Low
Low
Value

Detected target settings for data validation.

Rate

Enabled
High-High
High
Low-Low
Low
Interval

Detected deviation settings for data validation.

Animation

Animation Enabled Animation Enabled is currently not supported.

Animation Object
Name

Animation Object Name is currently not supported.

DCS Configuration

OPC Item ID The ID of the OPC tag variable from which the external
variable gets its data.

OPC Access Path The access path to the OPC tag variable in the external
OPC system.

High Process Limit The high limit for external data. Values above this limit
are rejected.

Low Process Limit The low limit for external data. Values below this limit
are rejected.

Column Description
257

For information on how the sample KB uses these files, see the Optegrity Furnace
Tutorial.

To use an existing CSV file as a template:

 Open the following file, located in the \optegrity\data directory of your
Optegrity installation directory:

f102-external-datapoints-configuration.csv

Creating External Datapoints from a CSV File
Once you have created the CSV file for configuring external datapoints, you
create an External Datapoints container that refers to this file. The container also
refers to the OPC or PI Interface that it will use to obtain data through the bridge.

You can configure the external datapoints to propagate data when their values
change or based on a schedule.

Once you have created the external datapoint configuration, you can create the
external variables.

Note In the sections that follow, the menu choices assume that enable-menus-and -
toolbars-upon-startup is enabled in the grtl-module-settings object. For more
information, see the G2 Run-Time Library User’s Guide.

Creating the External Datapoints Container

By default, the value of an external datapoint is propagated to its associated
internal datapoint whenever the value changes. In some cases, the value of an
external datapoint must be propagated to its internal datapoint at regular time
intervals, based on a schedule. For example, this situation arises when using a
bridge in synchronous mode.

You can configure External Datapoints containers to update, based on event-
driven evaluation or based on a schedule. By default, external datapoints update
their values based on event-driven evaluation, that is, when the external
datapoint value changes. When configuring datapoints to update based on a
schedule, you configure the update interval.
258

Creating External Datapoints from a CSV File
To create the External Datapoints container:

1 Choose Project > System Settings > External Datapoints > Manage and click
the New button.

The properties dialog for configuring external datapoints appears.

2 Configure a unique Name, which is system-generated, by default.

Tip We recommend that you prefix the name with your application name, for
example, Myapp External Datapoints.

3 Click the arrow to configure the Interface Name to refer to an existing
network interface to use for obtaining external data.

4 Configure Value Propagation to determine how you want datapoint values to
propagate, based on event-driven evaluation or based on a schedule.

The default value is Event Driven.

5 If you choose Schedule Driven, configure Update Period to be the number of
seconds between updates.

6 Accept the dialog.

To configure the CSV filename, you must be in developer mode.

To configure the CSV filename:

1 Switch to Developer mode.

For details, see Switching User Modes.

2 Display the properties dialog for the External Datapoints container you want
to configure.

3 Configure the Filename to be a complete path name to the CSV file that
contains the external datapoints configuration data.

We recommend that you use the data subdirectory of the optegrity directory
for CSV files.

For information on the format of the CSV file, see Creating External Datapoint
Configuration Files.

4 Click OK.

You can create the external datapoints directly from the properties dialog by
clicking the Create External Datapoints button. For details, see Creating and
Configuring External Datapoints.
259

Once you have created the external datapoints, the properties dialog displays
them in a spreadsheet. You can filter the external datapoints, based on the
category.

Here is the properties dialog and associated External Datapoints container named
Myapp External Datapoints, which obtains it data through the network interface
named myapp-interface and from the specified CSV file. It propagates datapoint
values once every 30 seconds, based on a schedule. This figure shows the dialog
in Developer mode.

Creating and Configuring External Datapoints

You create the external datapoints from the External Datapoints container
properties dialog.

Optegrity reads the data from the CSV file and creates one external datapoint for
each row in the file. The external datapoints appear on the External Datapoints
container detail. The external datapoints are automatically related to the specified
internal datapoint as specified in the CSV file.

Each external datapoint has an associated dialog, which contains all the
information obtained from the CSV file. OPC float and PI real datapoints have
two tabs, the General tab and the Alarm Limit Detection tab. The other datapoint
types have only the General tab.

Once the external datapoints have been created, you can configure various
additional information, such as the category, description, value translation
260

Creating External Datapoints from a CSV File
procedure, persistence, and data logging. You can also override values in the
properties dialog.

Note Overriding values in the external datapoint properties dialog does not update the
corresponding CSV file.

To create and configure the external datapoints:

1 Display the properties dialog for the External Datapoints container and click
the Create from File button:

All external datapoints specified in the CSV file appear in the spreadsheet at
the bottom of the properties dialog. For example, here is the result of creating
external datapoints from the f102-external-datapoints-configuration.
csv file:

2 Select a row in the spreadsheet and click the Properties button to display the
properties dialog for the external datapoint.

3 Configure the Category to filter external datapoints in the external datapoints
configuration dialog.

You can define a category for external datapoints, then filter them in the
external datapoint configuration properties dialog, based on the category. For
example, you might want to specify the equipment subsystem as a category to
show only those datapoints related to that subsystem, such as the fuel system.
261

You can also categorize the datapoints, based on the type of sensor, such as
flow or temperature.

4 Configure the Description to provide a textual description of the external
variable.

5 To translate the value, configure the Value Translation to be the name of an
existing procedure.

For details, see Translating External Datapoint Values.

6 To filter values from the external system, configure the High Limit and Low
Limit, and enable or disable the High Limit Check or Low Limit Check
options, as needed.

You can also configure these values in the CSV file. When process limits are
enabled, Optegrity rejects data values that are above the high limit or below
the low limit.

7 Configure the Min Persistence Value and Min Persistence Units to determine
how long to keep operator messages in the Message Browser when an alarm
limit is detected.

The default value is 0 seconds, which keeps the alarm limit detection message
until the operator deletes it.

8 To log external datapoint values, configure Data Logging, as needed.

For details, see Configuring Datapoints for Logging.

9 For OPC float and PI real datapoints, click the Alarm Limit Detection tab and
override the rate, target, and min-max limits for data validation, as needed.
262

Creating External Datapoints from a CSV File
Here is the General tab in the properties dialog for the external datapoint named
t-1015-external, which is a type of OPC float. The Category has been specified as
temperature. The OPC configuration identifies the tag variable in the external
OPC system. The GSI Variable Status indicates the connection status of the
external datapoint to the network interface, where 0 means inactive, 1 means in
transition, 2 means ok, -1 means timeout, and -2 means error. The datapoint sets
high and low process limits, and it keeps history for one day.
263

Here is the Alarm Limit Detection tab, which configures Alarm Limit Detection
for data validation.

For an example of limit detection, see Viewing Data Validation Alarms.

Manually Relating External Datapoints

When you initialize process maps, Optegrity automatically relates all internal
datapoints to their source external datapoints, where an external datapoint can be
the source datapoint for one or more internal datapoints. When you uninitialize
process maps, Optegrity de-links all internal and external datapoints.

You might want to manually relate an individual external datapoint to its
associated internal datapoint(s), either to re-link the datapoints after they have
already been linked or to link them after they have been de-linked. Manually
relating external datapoints re-links the external datapoint with all of its
associated internal datapoints.

To manually relate external datapoints to their internal datapoints:

1 Display the Navigator.

For details, see Navigating Applications.

2 Choose Show Detail on an External Datapoints container in the Navigator to
show its detail.
264

Creating Individual External Datapoints
The detail contains the individual external datapoints in the container.

3 Choose Relate Sensors and Controllers on an individual external datapoint to
relate the external datapoint to all internal datapoints that specify it as the
source datapoint.

Creating Individual External Datapoints
In addition to creating external datapoints automatically from a CSV file, you can
create individual external datapoints from a palette. You might want to do this if
you add a datapoint after you have created them automatically. Alternatively,
you might build your application by starting with the domain objects and adding
the external datapoints individually later.

Note When creating individual external datapoints manually, be sure to configure the
Source Datapoint of the internal datapoint that gets its values from the external
datapoint you create.

For information about configuring the source datapoint of an internal datapoint,
see Configuring Domain Objects.

To create individual external datapoints:

1 Create an External Datapoints container.

2 Display the properties dialog for the container and configure its properties.

For details, see Creating the External Datapoints Container.

3 Click the New button in the Datapoints area.

A dialog for choosing the external datapoint class appears.

4 Choose a class and click OK.

The properties dialog of the external datapoint appears.

5 Configure the properties of the external datapoint manually.

For details, see Creating and Configuring External Datapoints.

You can also create individual external datapoints and manually add them to the
External Datapoints container detail. To do this, show the detail of the External
Datapoint container through the Navigator, create external datapoints from the
265

OPC Datapoints and PI Datapoints palettes in the External Datapoints toolbox,
and place them on the detail. Here are the external datapoints palettes:

Translating External Datapoint Values
You can translate values for external datapoints by writing a custom procedure
that takes a value, translating the value, then assigning the resulting value to the
corresponding internal datapoints. The original external datapoint value is
unchanged.

The signature for the translation procedure is:

my-translate-value-procedure
(item: class grtl-external-datapoint, val: value, collection-time: quantity)
-> new-value: value, new-collection-time: quantity

where:

• item is the external datapoint that received the value.

• val is the new raw value from the external datapoint.

• collection-time is the collection time of the new value.

The procedure returns these values:

• new-value is the new translated value.

• new-collection-time is the collection time, if updated by this procedure.

Once the procedure has been defined, you can specify the translation procedure
for any external datapoint by configuring the Value Translation Procedure in the
properties dialog for the external datapoint. The dropdown list contains all the
procedures that are a subclass of grtl-value-translation-procedure. Only
procedures that are cloned from the palette appear in the dropdown list.

Translating external datapoint values requires knowledge of G2 and is, therefore,
a developer task.
266

Translating External Datapoint Values
To translate external datapoint values:

1 Choose View > Toolbox - External Datapoints and display the Customization
palette:

2 Create a Value Translation Procedure from the palette and place it within
your application module.

3 Modify the procedure to perform the type of translation you want to occur.

Defining a procedure require knowledge of G2 and is an advanced feature.
See the G2 Reference Manual.

Be sure to change the name of the procedure to a unique name.

4 Display the properties dialog for the external datapoint whose value you want
to translate and configure the Value Translation Procedure.

If you do not want any value translation to occur, choose no-procedure, which is
the default for all external datapoints.
267

This dialog shows how to configure the Value Translation Procedure procedure
for an OPC Float datapoint:
268

Managing External Datapoints
Managing External Datapoints
To manage external datapoints:

1 Choose Project > System Settings > External Datapoints.

All External Datapoints containers appear in the submenu, for example:

2 To configure the properties of an external datapoint container, choose one
from the External Datapoints submenu.

3 To display a dialog for managing all external datapoint configuration objects,
including displaying the detail, choose Manage.
269

Here is the External Datapoints Manage dialog:

For information on using this dialog and the Project menu to manage external
datapoints, see Using the Project Menu.
270

10
Converting
Engineering Units
Describes how to create and configure engineering unit conversions.

Introduction 271

Working with Engineering Unit Conversions 272

Viewing Built-in Engineering Unit Conversion Definitions 275

Defining Engineering Unit Conversion Synonyms 277

Defining Engineering Unit Conversion Definitions 282

Converting Engineering Units on Demand 283

Managing Engineering Units 284

Introduction
Optegrity provides a way of specifying the engineering units for entering and
displaying values, as well as a large number of synonyms for those conversions in
both the English and metric systems. Optegrity defines a large set of built-in
engineering unit conversions and synonyms for dimensions such as pressure,
length, volume, volumetric flow, mass, density, temperature, power, heat
transfer, and time. It also provides a mechanism for defining custom dimensions,
engineering units, and synonyms.

When you create external datapoints from a CSV file, you specify the engineering
units that the DCS system uses for datapoints, which are known as the field units.
You can configure the units that Optegrity uses for entering property values and
displaying computed metrics, which are known as the user units or external
271

units. Optegrity converts all field units and external units to a set of common
units that it uses for its internal calculations, which are known as internal units.

In addition, Optegrity provides API procedures and functions that you can call to
work with engineering unit conversions programmatically. For details, see
Working with Engineering Unit Conversions.

Working with Engineering Unit Conversions
You work with engineering unit conversions in various ways in an Optegrity
application.

Configuring External Datapoint Units in the CSV File

You can import units from the CSV file used for configuring external datapoints.
You configure the Datapoint Units in the column to the right of the Datapoint
Type column in the CSV file. The datapoint units that you configure are
equivalent to the field units that domain objects use as sensor values.

You can specify any of the built-in engineering units or a synonym. For
information on determining the built-in engineering units, see Viewing Built-in
Engineering Unit Conversion Definitions.

If you specify an engineering unit that does not exist, Optegrity automatically
creates a unit synonym definition and places it in the Undefined-Dimension
category in the Unit Synonyms submenu. For more information, see Creating
New Engineering Units and Synonyms.

Note Sometimes units provided in the DCS system are inaccurate, thus Optegrity
requires you to enter the units explicitly rather than obtaining them directly from
the DCS system.

Here is part of an external datapoint configuration file, which defines field units
for several datapoints in the metric system:
272

Working with Engineering Unit Conversions
Caution When upgrading older versions of Optegrity, you must add the Units column to
the CSV file before creating external datapoints. Creating external datapoints
from a CSV file that does not include the Units column generates an error.

Configuring Engineering Units for Domain Objects

You can configure engineering units for entering and displaying various event
parameters and metrics. For example, here is the properties dialog for the Heater
Efficiency derived sensor of a heater, which specifies units for the various internal
datapoints of the sensor:
273

Here is the properties dialog for the calculated heat-gain internal parameter,
which shows a dropdown list with some of the available engineering units:

Displaying Engineering Units for Datapoints

Units appear in the datapoint displays for internal and external datapoints.

For example, here is a display that shows the units of a flow sensor:
274

Viewing Built-in Engineering Unit Conversion Definitions
Configuring the Internal Units

You configure the unit system that Optegrity uses for its internal units in the
configuration file by setting this parameter:

IOC-INTERNAL-UNIT-SYSTEM=english

The engineering unit system that all domain object parameters and metrics
use for internal calculations. The default value is english. The other option is
metric.

For more information on configuring parameters, see Customizing Optegrity.

Viewing Built-in Engineering Unit Conversion
Definitions

When configuring engineering units for a given dimension, you choose from a list
of engineering units in the given system, either English or metric. Similarly, when
configuring the units for external datapoints, you specify the engineering units in
a CSV file.

You can view the built-in engineering unit conversions for each dimension to see
how they are defined. Each conversion definition specifies the following
information:

• The dimension type, such as area, pressure, or temperature.

• The input and output units for the conversion.

• Whether the conversion defines a multiplier and/or offset.

• A multiplier and offset for the conversion.

• Input and output synonyms.

You might want to view the built-in engineering unit conversion definitions to see
which synonyms are defined for the input and output units and whether you
need to define additional synonyms.

For example, the area dimension defines an engineering unit conversion called
square meter->square feet, which converts square meters to square feet. The
input and output units define these synonyms:

Engineering Unit Synonyms

square meter m2 meter2

square feet ft2 foot2 feet2
275

To view built-in engineering unit conversion definitions:

 Choose Project > System Settings > Units > Conversions, then choose the
dimension and conversion definition you want to view.

For example, to view the conversion definition for the area dimension that
converts square meters to square feet, you would choose:
276

Defining Engineering Unit Conversion Synonyms
Here is the Engineering Unit Conversion dialog for the square meter->square
feet conversion definition. Notice that the conversion has three synonyms for
square meter, and four synonyms for square feet. The conversion definition
multiplies the input value by the specified multiplier to calculate the
output value.

Defining Engineering Unit Conversion
Synonyms

You can configure additional synonyms for any of the built-in engineering unit
conversion definitions. You can also define new engineering units and synonyms
to create new engineering conversion unit definitions.

Adding New Synonyms to Existing Engineering Unit
Conversion Definitions

Suppose you want to add a new synonym called meters2 for the square meter
engineering unit.

To add a new synonym to an existing engineering unit conversion definition:

1 Choose Project > System Settings > Units > Synonyms, then choose the
dimension and corresponding conversion unit for which you want to define a
new synonym.
277

For example, to add meters2 as a synonym for square meter, choose:

The Synonym Definition dialog appears with the packaged synonyms for the
specified unit in the list on the left.

2 To create a new synonym, click the New button in the Custom Synonyms list
and enter a synonym.

3 To enter additional synonyms, click in the number column of the row where
you want to insert a new synonym, and click the Insert Before or Insert After
toolbar button to insert a new row before or after the selected row.

4 Enter a new synonym in the new row.
278

Defining Engineering Unit Conversion Synonyms
5 Click OK in the dialog, then click OK in the confirmation dialog to save the
synonym to the custom synonyms file.

Here is the Synonym Definition dialog that defines meters2 as a new synonym for
the square meter unit:

The new synonym now appears in the Engineering Unit Conversion dialog for
the conversion definition:
279

Creating New Engineering Units and Synonyms

Suppose you want to create a new engineering unit conversion definition for the
area dimension that converts square centimeters to square inches. You would
create two new engineering units called square centimeter and square inch, each
of which might define several synonyms.

When you initially create new engineering units, they appear in the Undefined-
Dimension category in the Unit Synonyms submenu. As soon as you create a new
engineering unit conversion definition that uses the new conversion units, they
appear in the appropriate dimension category in the submenu.

Note Any existing unit synonyms that have not yet been used as part of an engineering
unit conversion definition appear in the Undefined-Dimensions category.

To create a new engineering unit and synonyms:

1 Choose Project > System Settings > Units > Synonyms > Manage to display
the Manage dialog for all the unit synonyms.

2 Click the New button to create a new engineering unit definition.

3 Configure the Synonym Key to be most generic form of the engineering unit.

4 To create a synonym, click the New button in the Custom Synonyms list and
enter a synonym.

5 Click OK in the dialog, then click OK in the confirmation dialog to save the
engineering unit and its synonyms to the custom synonyms file.

6 Repeat for the input and output engineering units required for the new
engineering unit conversion definition.
280

Defining Engineering Unit Conversion Synonyms
Here is the Synonym Definition dialog that defines the square centimeter
engineering unit and two synonyms:

Here is the Synonym Definition dialog that defines the square inch engineering
unit and two synonyms:
281

Initially, the new engineering units appear in the Undefined-Dimension category
in the Unit Synonyms menu, along with other engineering units that are not yet
used in any engineering unit conversion definitions.

Defining Engineering Unit Conversion
Definitions

Once you have defined the input and output units and their synonyms, you can
define a new engineering unit conversion definition that uses those engineering
units. For example, you might want to create a new engineering unit conversion
definition for the area dimension that converts square centimeters to square
inches.

To do this, first, you must create the engineering units and synonyms for
square centimeter and square inch, as described in Defining Engineering Unit
Conversion Synonyms.

To create a new engineering unit conversion definition:

1 Choose Project > System Settings > Units > Conversions > Manage to display
the Manage dialog for all unit conversions.

2 Click the New button to create a new engineering unit conversion definition.

3 Configure the Dimension Class for the engineering unit conversion definition.

You can configure an existing dimension, such as area, or you can create a
new dimension. For example, to create an engineering unit conversion called
square centimeter->square inch, you would configure the dimension to be
area.

4 Configure the Input Units and Output Units for the dimension.

In the example, the Input Units would be square centimeter and the Output
Units would be square inch.

5 Configure the Equation Type to be one of the following:

• multiplier-only — Specifies a Multiplier only.

• offset-only — Specifies an Offset only.

• multiply-first — Specifies both a Multiplier and Offset, where the
multiplication operation happens before the offset.

• offset-first — Specifies both an Offset and a Multiplier, where the offset
operation happens before the multiplication.

6 Depending on the value of Equation Type, configure the Multiplier and Offset
to be the values to use for multiplying and offsetting the input value to
calculate the output value.
282

Converting Engineering Units on Demand
7 Click OK in the dialog, then click OK in the confirmation dialog to save the
engineering unit conversion to the custom conversions file.

Here is the engineering unit conversion definition for square centimeter->square
inch, which converts square centimeter to square inch, using a multiplier. Once
you initially accept the dialog, the custom synonyms for the input and output
units all appear in the dialog.

The engineering unit conversion definition appears in the menus under the area
dimension along with the built-in conversion definition.

Now that the custom engineering units have been used in an engineering unit
conversion definition, they appear under the appropriate dimension in the
menus, in this case, area. They no longer appear under the Undefined-Dimension
category.

Converting Engineering Units on Demand
You can perform engineering unit conversions on demand through the
Engineering Unit Converter dialog. You might want to do this to verify a unit
conversion before choosing the units.

To convert engineering units on demand:

1 Choose Project > System Settings > Units > Converter.

2 Choose the Dimension type.

3 Configure the Input Units and the Output Units.

4 Enter an Input Value in the input units and press Return.
283

The converted value in the output units appears with a status value of converted
with a status of converted. The converted value also updates automatically if you
change the Input Units and Output Units for a given Input Value.

Here is the Engineering Unit Converter dialog that shows the unit conversion
from ft2 to m2:

Managing Engineering Units
You manage engineering unit conversions and synonyms separately.

Managing Engineering Unit Conversions

To manage engineering unit conversions:

1 Choose Project > System Settings > Unit > Conversions > Manage.

All engineering unit conversion classes appear in the submenu, and all
built-in and custom engineering unit conversions appear in the submenus for
each conversion class. For example, here is the submenu for the Area unit
conversion, which includes the built-in square meter->square foot unit
284

Managing Engineering Units
conversion and the user-defined square centimeter->square inch unit
conversion:

2 To configure the properties of a unit conversion, choose one from the
appropriate category in the Unit Conversions submenu.

3 To display a dialog for managing all unit conversions, choose Manage.
285

Here is the Unit Conversions Manage dialog:

Managing Engineering Unit Synonyms

To manage engineering unit conversions:

1 Choose Project > System Settings > Units > Synonyms > Manage.

All engineering unit conversion classes appear in the submenu, and all
built-in and custom engineering unit synonyms appear in the submenus for
each conversion class. For example, here is the submenu for the Area unit
286

Managing Engineering Units
synonym, which includes the built-in square feet and square meter synonyms,
as well as the user-defined square centimeter and square inch synonyms:

2 To configure the properties of a unit synonym, choose one from the
appropriate category in the Unit Synonyms submenu.

3 To display a dialog for managing all unit synonyms, choose Manage.
287

Here is the Unit Synonyms Manage dialog:

For information on using this dialog and the Project menu to manage process
maps, see Using the Project Menu.
288

11
Configuring Logging
Describes how to configure logging for internal and external datapoints.

Introduction 289

Configuring Datapoints for Logging 290

Log File Format 294

Managing Data Logging 295

Introduction
You can configure your application to log internal or external datapoints as the
application runs. By default, Optegrity logs data values as they arrive. You can
also log data on a schedule. You can filter logged data, based on the rate at which
it arrives and the variation of data values.

To log internal datapoints, you create a Data Logging configuration object:

To configure data logging, you must specify the name of a CSV where data is to
be logged. You also specify the name of a process map container object, whose
internal datapoints you want to log. When logging is enabled, Optegrity logs all
internal datapoints in the process map, by default. You can selectively enable and
disable logging for individual datapoints, through a spreadsheet. You can also
configure logging for individual datapoints.

Configuration Object Description

Data Logging Logs internal datapoints in a process
map to a CSV file.
289

You can also log internal and external datapoint values to the default Message
Browser.

One use of a log file is for data replay. For more information, see Replaying Data.

For information on logging messages to a file, database, or JMS provider, see
Logging Messages.

Configuring Datapoints for Logging
You can configure logging for internal and external datapoints to:

• Post log messages to the Message Browser.

• Post log messages to a CSV file.

• Log data values each time they change, the default, or on a schedule, which
you might do when the values change infrequently.

To configure datapoints for logging, you can assign all internal datapoints in a
process map and/or all external datapoints in one or more External Datapoints
containers. Once you assign internal and external datapoints for logging, you can
configure logging parameters for individual datapoints.

By default, Optegrity does not perform data logging. You must explicitly enable
data logging to begin logging.

You can also configure datapoints to filter logged values by enabling and
configuring these logging parameters:

• Heartbeat Interval, which logs data according to a schedule, rather than each
time the value changes. The value cannot exceed the Maximum Heartbeat
given in the Data Logging configuration object. The default value is the
Default Heartbeat in Minutes given in the Data Logging configuration object.

• Repeat Interval, which allows you to reduce the number of logged datapoints,
based on the rate of incoming data. The datapoint logs value is logged each
time it changes or once every Repeat Interval, whichever is longer. The data is
not logged if the elapsed time from the last logged value is less than the
Repeat Interval. You configure this attribute when the rate of incoming data is
greater than the rate at which you want to log data.

• Deadband, which only logs a new value if that value differs from the last
logged value by more than the deadband.

You can configure logging parameters for all assigned datapoints through a
spreadsheet, or you can configure logging for individual datapoints through the
individual properties dialogs.

For information on configuring the properties of internal datapoints, see
Configuring Internal Datapoints.
290

Configuring Datapoints for Logging
For information on configuring the properties of external datapoints, see Creating
and Configuring External Datapoints.

To configure datapoints for logging:

1 Choose Project > System Settings > Datapoint Logs > Manage and click the
New button.

The properties dialog for configuring data logging appears.

2 Configure a unique Name, which is system-generated, by default.

The name must be a symbol, without spaces.

Tip We recommend that you prefix the name with your application name, for
example, myapp-logging-configuration.

3 To send log messages to the Message Browser, enable the Enable Message
Browser Logging option.

For information on accessing the Message Browser, see Interacting with
Operator Messages.

4 To send log messages to a log file, enable the Enable CSV Logging option and
click the browse button to configure the Filename to be a complete path name
to a CSV file to use for logging.

The Filename can refer to an existing file, or you can specify a new file, in
which case Optegrity creates the file. The logs subdirectory of the optegrity
directory is available for you to place log files.

5 To log data on a schedule, enable the Enable Heartbeat Manager option, and
configure the Maximum Heartbeat and Default Heartbeat in Minutes.

Maximum Heartbeat is the maximum value that any internal or external
datapoint can use for the Default Heartbeat.

Default Heartbeat in Minutes is the default heartbeat for each internal or
external datapoint, in minutes.

6 To assign internal datapoints for logging, configure the Assign from Process
Map to be a process map whose internal datapoints you want to assign.

You can assign internal datapoints from as many process maps as you need.
291

7 To assign external datapoints for logging, configure the Assign External
Datapoints to be the External Datapoints container whose external datapoints
you want to assign.

Here is the properties dialog for the Data Logging configuration object named
myapp-data-logging, which logs all internal datapoints in the Myapp Process
Map and Myapp External Datapoints to the specified CSV file and to the
Message Browser:

8 To assign the internal and external datapoints, click Apply.

Now that you have assigned internal and external datapoints for logging, you
can configure logging parameters for each assigned datapoint through a
spreadsheet.

9 Click the Configure button to display a spreadsheet of all assigned internal
and external datapoints, then configure the individual logging parameters for
each datapoint.

You must specifically enable logging for each datapoint. You can also enable,
disable, and configure the Heartbeat Interval, Repeat Interval, and Deadband
for each datapoint.

To enable a logging parameter, click the spreadsheet cell labeled Disabled to
toggle it to Enabled. To disable it, click the Enabled label to toggle it back to
Disabled.
292

Configuring Datapoints for Logging
For example, this spreadsheet enables logging for all internal datapoints in the
Myapp Process Map and all associated external datapoints:

Configuring logging parameters in this spreadsheet automatically updates the
logging specification in the properties dialogs for the individual internal and
external datapoints.
293

Log File Format
The first column in the log file is the time at which the value was logged. Each
subsequent column in the log file corresponds with an external or internal
datapoint whose value is being logging. Each row represents the logged value for
that datapoint.

By default, Optegrity appends data to the log file.

Here is a sample log file for the Myapp Process Map application, which logs both
external and internal datapoints:
294

Managing Data Logging
Managing Data Logging
To manage data logging:

1 Choose Project > System Settings > Datapoint Logs.

All Data Logging configuration objects appear in the submenu, for example:

2 To configure the properties of a data logging configuration object, choose one
from Data Logging submenu.

3 To display a dialog for managing data logging, choose Manage.
295

Here is the Data Logging Manage dialog:

For information on using this dialog and the Project menu to manage data
logging, see Using the Project Menu.
296

12
Replaying Data
Describes how to replay internal and external datapoint values from continuous
and differential CSV files.

Introduction 297

Creating Data Series 298

Creating Data Replay Files 301

Configuring Data Replay 303

Replaying Data from CSV Files 305

Viewing Data Validation Alarms 307

Managing Data Series 309

Managing Data Replay 310

Introduction
You replay data to:

• Test an application in offline mode.

• Validate control algorithms prior to placing a system online.

You can simulate data for internal datapoints or external datapoints.
297

You use these configuration objects for replaying data from CSV files:

You must configure a Data Replay object to specify the data file. You can replay
data from one or more CSV files at once.

You can use datapoint displays to see how internal and external data values are
updated. Datapoint displays are available in the Optegrity toolbox.

When simulating data or when the application is online, Optegrity performs data
validation, depending on how the external datapoints are configured.

For information on configuring external datapoints for data validation, see
Configuring Data Validation.

Creating Data Series
You can create one of two types of data series for data replay, depending on the
type of process you want to simulate:

Configuration Object Description

Data Replay Configures the data file(s) to use for replaying
data, and controls when to start and stop
replaying data.

Data File Configures various information about the CSV
file to use for data replay, depending on the type.

To simulate...
Use this type of
data series... Which sends new values...

A continuous process Continuous At regular time intervals,
5 seconds, by default.

A batch process Differential At a specified timestamp,
based on an acceleration
factor.
298

Creating Data Series
Creating a Continuous Data Series

To create a continuous data series:

1 Choose Project > System Settings > Datapoint Series > Continuous Data Series
> Manage and click the New button.

The properties dialog for configuring the data series appears.

2 Configure a unique Name, which is system-generated, by default.

The name must be a symbol without spaces.

3 Configure the File Name to be a complete path to a CSV file to use for data
simulation.

By default, the first row of the data replay file contains the name of the
internal or external datapoint whose values should be replayed, and the
second row of the file contains the data.

4 If necessary, configure the Tagname Row and First Data Row to refer to
different rows.

By default, the data replay file sends a value once every 5 seconds.

5 To increase or decrease the rate at which the data file sends values, configure
the Scan Rate, in seconds.

By default, the data replay file sends all the values in the file.

6 To limit the number of rows of data to send, configure the Maximum Rows.

Here is the properties dialog for a continuous data file named myapp-f102-replay-
data-to-external-datapoints:
299

Creating a Differential Data Series

For a differential data series, you can configure the following attributes, in
addition to those you configure for a continuous data series:

• Start Time allows you to skip the beginning portion of the data series up to the
first row greater than or equal to the specified time. The start time must use
the same time format as the timestamp in the first column of the CSV file.

• Acceleration Factor specifies the speed at which to send data to the specified
datapoints, which is 1.0, by default. For example, an acceleration of 20 means
that each timestamp specified in the CSV file is divided by 20 to determine the
actual time at which the data is sent. For example, if the CSV file specifies a
timestamp of 2 minutes (120 seconds), the data is actually sent at 6 seconds
(120/20 seconds).

• Time Format indicates how to interpret time values specified in the CSV file.
By default, the data series assumes time values are in decimal hours. For
example, 90 minutes is expressed as 1.5 hours. You can specify time values,
using one of the other formats, including a custom format. If you use a custom
time format, you must provide a Time Conversion Procedure that determines
how to interpret time values in the CSV file.

• Time Conversion Procedure is the name of a G2 procedure that interprets the
time value in the differential data series.

To create a differential data series:

1 Choose Project > System Settings > Datapoint Series > Differential Data Series
> Manage and click the New button.

The properties dialog for configuring the data file appears.

2 Follow steps 2 through 6 under Creating a Continuous Data Series.

3 Configure the additional attributes, described above, as needed.
300

Creating Data Replay Files
Here is the properties dialog for a differential data file named myapp-f102-replay-
data-to-internal-datapoints. The data file assumes timestamps are expressed in
decimal hours, with an acceleration factor of 20.0.

Creating Data Replay Files
The format of a data replay file is similar to the format of a log file, where each
column represents data values for an internal or external datapoint, and each row
represents a new value. By default, the first row contains the name of the internal
or external datapoint, and the second row contains the first row of data.

For differential data series, the first column of the data file provides a timestamp
that determines the rate at which to replay the data, expressed in decimal hours.
The rate is determined by calculating the difference in time between consecutive
rows. The time interval between rows does not need to be evenly spaced. For
continuous data files, the first column is ignored.

Tip You can use a log file as a data replay file. For details, see Configuring Logging.
301

To create a data replay file:

1 Create a CSV file in which the first row contains the names of each internal or
external variable whose value you want to replay, and the subsequent rows
contain the data values to replay.

To replay external datapoint values, use the names of external datapoints in
the External Datapoints container, for example, t-1001-external.

To replay internal datapoint values, use dot notation to refer to the name of
the internal datapoint and its corresponding domain object, for example,
t-1001.pv.

2 For differential data files, the first column must be a timestamp.

Here is a partial CSV file for replaying external datapoint values:
302

Configuring Data Replay
Configuring Data Replay
To configure data replay, you create a Data Replay configuration object to
determine which data series to use for data replay.

To configure data replay:

1 Choose Project > Logic > Datapoint Replay > Manage and click the New
button.

The properties dialog for configuring data replay appears.

2 Configure a unique Name, which is system-generated, by default.

Tip We recommend that you prefix the name with your application name, for
example, Myapp Data Replay.

3 Click the Add File button () to display a list of available data files to
replay.

The list includes all continuous and differential data files, and all log files that
have been created. For example:

4 Select a data file to use for data replay.

You can add as many data series as you want to the dialog. For continuous
data series, when data replay finishes replaying from the first data series, it
begins replaying data from the next data series, and so on. For differential
data series, it simulates data from both data series simultaneously according
to the specified time differentials. You can use this feature to create more
complex simulations.
303

5 To remove a data series from the simulation, select a file and click the Remove
File button () in the dialog.

6 To create a new data series, click the New button (), choose the type of
data series to create, and click OK.

7 Configure the properties of the new data series and add it to the list in the
Data Replay dialog.

8 Configure the Acceleration Factor to speed up the rate at which data is sent.

For details, see Creating Data Series.

Here is the properties dialog for the Data Replay configuration object named
Myapp Data Replay configured to replay data from a single differential data file
that simulates internal datapoint values. The Acceleration Factor is set to 100.0,
which, combined with an Acceleration Factor of 20.0 in the data file, means the
timestamps in the CSV file are divided by 200.0.
304

Replaying Data from CSV Files
Replaying Data from CSV Files
You control data replay from the Data Replay properties dialog or manage dialog.
You can start, pause, and stop the replaying of data at any time.

Before you can replay data, you must create and configure at least one data series,
create the associated CSV file, and create and configure Data Replay to use a
specific data series.

Note Before you replay data from a CSV file, you must initialize the process map. For
more information, see Initializing Process Maps.

When replaying data, Optegrity detects errors in the associated CSV data series,
for example, a bad file name or bad data. For information about the error, see the
Message Browser.

To replay data from a CSV file:

1 After initializing the process map, click the Start button () in the data
replay properties dialog.

You can also click the Start button in the manage dialog. For details, see
Managing Data Replay.

The Data Replay object sends values to the specified internal or external
datapoints at the specified time interval and acceleration, depending on the
type of data file. Datapoint values update.

2 To pause the simulation, click the Pause button ().

3 To continue the simulation, click the Resume button ().

4 To stop the simulation, click the Stop button ().
305

Here is the Myapp process map with datapoint displays that show the values of
internal datapoints in the process map after running a simulation:

Displaying Trend Charts of Datapoint Values

In addition to viewing datapoint values in displays, you can display trend charts
of internal datapoint values so you can see a visual representation of the data as it
arrives.

To display trend charts of datapoint values:

1 Display the properties dialog for the domain object whose internal datapoint
you want to view in a trend chart.

2 Select a datapoint and click the Show Trend button.

Note If you create multiple trend charts, the charts are placed on top of each other. You
must move the new chart to uncover the exiting charts.
306

Viewing Data Validation Alarms
When the internal datapoint receives values, the trend chart is automatically
updated. For example, here is the result of running the simulation for Myapp
Process Map with trend charts:

Viewing Data Validation Alarms
When simulating data, Optegrity performs data validation on all external
datapoints that configure validation limits and targets. If the external datapoint
value violates these limits, Optegrity generates an operator message, which you
can view in the Message Browser.

For information about interacting with the Message Browser, see Interacting with
Operator Messages.

To view data validation alarms:

1 Run a simulation in which the simulated value for an external datapoint
violates a data validation limit.

2 Choose View > Message Browser to view the data validation alarm.
307

Here is the Message Browser with a data validation message for the F-102 demo:

Here is the alarm properties:
308

Managing Data Series
Managing Data Series
To manage data series:

1 Choose Project > System Settings > Datapoint Series > Continuous Data Series
or Differential Data Series.

All data series appear in the submenu, for example:

2 To go to a data series, choose one from appropriate submenu of the Data
Series menu.

3 To display a dialog for managing data files, choose Manage.
309

Here is the dialog for managing data series:

Managing Data Replay
To manage data replay:

1 Choose Project > Logic > Datapoint Replay.

All Data Replay configuration objects appear in the submenu, for example:

2 To configure the properties of a data replay configuration object, choose one
from the Data Replay submenu.

3 To display a dialog for managing data replay, choose Manage.
310

Managing Data Replay
Here is the Data Replay Manage dialog:

For information on using this dialog and the Project menu to manage data series
and data replay, see Using the Project Menu.

For information on using the buttons specific to data replay, see Performing
Specific Operations.

Data replay-
specific buttons
311

312

13
Simulating
Datapoint Values
Describes how to simulate values for internal and external datapoints.

Introduction 313

Creating a Simple Data Simulation 314

Creating a Data Simulation with Transitions 318

Managing Data Simulations 321

Introduction
You can use data drivers to simulate internal or external datapoint data. This
feature provides an alternative to using data replay to simulate datapoint data
from a CSV file.

The data driver provides the ability to:

• Simulate external or internal datapoint data.

• Specify the time interval for updating datapoint values.

• Specify the average value and noise.

• Simulate state transitions.

• Selectively activate and deactivate the simulation.

You can create one or more data drivers for individual datapoints.
313

Creating a Simple Data Simulation
Before you create a data simulation, you must first create either:

• A sensor or controller whose process value (pv), set point (sp), or controller
output (op) you want to simulate.

• An external datapoint that is the source datapoint for the internal datapoint of
any type of domain object.

The simplest way to simulate data is to create a single data driver that simulates
datapoint values around an average, with noise. The data driver configures:

• The name of the sensor object and its associated datapoint (pv, sp, or op), or
the name of the external datapoint whose values you want to simulate.

• The average value and the signal noise.

For information on creating sensors and controllers, see Building a Process Map.

For information on creating external datapoints, see Configuring
External Datapoints.

To create a simple data simulation:

1 Create a sensor or controller whose datapoint you want to simulate, or create
an external datapoint that is the source datapoint for an internal datapoint of
any type of domain object.

2 Choose Project > Logic > Datapoint Simulations > Manage and click the New
button.

The properties dialog for configuring the Data Driver appears.

3 Configure the Organizer Name.

4 Click the New button () to create a new data driver.

The properties dialog for configuring the data driver appears.

5 Configure these attributes, depending on the type of data driver:

Attribute Description

Datapoint Name The name of an internal or external datapoint
whose data should be simulated.

Active Whether the simulation is currently active.

Average Value The average value for the specified datapoint.
314

Creating a Simple Data Simulation
6 Create as many data drivers as you need.

The simulation is disabled, by default. You must explicitly enable it to
simulate data.

7 Enable the Simulation Active toggle button and click the Apply button.

Tip You can also activate and deactivate the simulation from the Manage dialog
by selecting a Data Simulation and clicking the Activate and Deactivate
buttons.

The properties dialog for the data simulation shows all associated data drivers.
You can also delete a data driver from the data simulation and display its
properties, using the Delete and Properties toolbar buttons. For example:

For information on configuring the other data driver attributes and on using the
other toolbar buttons, see Creating a Data Simulation with Transitions.

Noise The maximum value above and below the average
that represents noise in the current datapoint value.

Interval Seconds The time interval, in seconds, for updating
datapoint values.

Attribute Description
315

Example: Internal Datapoint Simulation for a Sensor

This example shows a simple data simulation that is configured to simulate data
for the pv of a flow sensor named f-1001. The data values update once every five
seconds, and the simulated values range between 1300 +/- 2.

Here is the trend chart for the f-1001 sensor, which shows the history of the pv
datapoint:
316

Creating a Simple Data Simulation
Example: External Datapoint Simulation for
a Sensor

This example shows a simple data simulation for an external datapoint named
f-1001-external, which is the source datapoint of the flow sensor named f-1001.
The pv of the f-1001 sensor gets its data from the external datapoint. The data
driver is configured to simulate data for the f-1001-external, using the same
update interval, average, and noise as the internal data simulation.

Here is the properties dialog for the flow-sensor, which shows the history of the
pv datapoint, which gets its data from the external datapoint named flow-dp:
317

Creating a Data Simulation with Transitions
Rather than creating a simple data simulation with a single data driver, you might
want to create multiple data drivers for a single datapoint, each of which
represents a transition from one state to another. For example, you might create a
data driver that represents the normal state, another that represents a high state,
another that represents a severe change, another that represents a noisy signal,
and another that represents a flat-line.

You create data simulations with transitions by creating a data driver for each
state, a symbolic parameter that represents the current state, and buttons for
choosing each state. In addition to the basic configuration information, you must
configure each data driver with the following information:

• The name of a symbolic parameter that determines the current state.

• The symbolic state associated with the data driver.

• The transition value to use when switching to the specified symbolic state.

Before you create a data simulation with transitions, you must first create the
internal or external datapoint whose data you want to simulate. For details, see
Creating a Simple Data Simulation.

To create a data simulation with transitions:

1 Create and configure a data driver for an internal or external datapoint that
represents a normal state.

For details, see Creating a Simple Data Simulation.

2 Configure these additional attributes for the data driver:

Note If the Symbolic Name does not exist, Optegrity creates a symbolic parameter
of that name.

Attribute Description

Transition Move A value by which the datapoint should increment,
either up or down, when making a state transition.

Symbolic Name The name of a symbolic parameter that provides
state transition values for the specified datapoint.

Symbolic Value The value of the specified symbolic parameter
associated with the specified state.
318

Creating a Data Simulation with Transitions
For example, you might specify Symbolic Name of flow-status, whose
Symbolic Value is normal to represent the normal operating state of the
datapoint.

The Transition Move is the value to increment the datapoint when
transitioning back to a normal state from some other state. Typically, you
specify a large transition, relative to the average values of each transition
state, so as to return to the normal average relatively quickly.

For example, if the normal average is 100 and the high average is 120, a
Transition Move of 10 would cause the datapoint value to return to the
normal average in approximately two transitions, depending on the specified
noise. On the other hand, a Transition Move of 2 would cause the datapoint
value to return to normal in approximately ten transitions.

3 Create and configure a data driver for the same datapoint to represent the
transition to another state.

For example, to simulate a high state, the Average Value might be 120, and the
Symbolic Value might be high. The Transition Move determines how quickly
the simulation moves from the normal state to the high state. To simulate a
projected high, you would configure the transition to be a small increment,
relative to the average values of each state. Thus, a Transition Move of 1.0
would cause the datapoint value to rise to the high average in approximately
20 steps.

4 Create and configure additional data drivers for the same datapoint to
represent transitions to additional states, as needed.

For example, to simulate a severe change, configure the Transition Move to be
a large number, relative to the average values of each state, such as 20, which
would cause the datapoint value to spike to the specified average in one
transition.

To simulate a noisy signal, configure the Noise to be a large number relative to
the average, and to simulate a flat-line, configure the Noise to be zero. In both
cases, you would configure the Average Value and Transition Move to be the
same as the normal signal, 100.0 and 10.0, so the noisy and flat-line signal are
based on a normal signal.

Tip In general, you should set the Noise to be less than the Transition Move;
otherwise, the noise counteracts the transition and causes the datapoint value
to take a long time to transition to the new state.

5 To set the current state, display the properties dialog for a particular data
driver and enable the Set Value for Symbol option.

In the properties dialog for the Data Simulation, the Symbolic Value has **
next to the value to indicate that it is the currently active data driver.
319

6 Enable the Simulation Active toggle button in the Data Simulation properties
dialog to activate the data drivers, and click OK or Apply.

The data driver with the default state determines the datapoint values to use
for the simulation.

Example: External Datapoint Simulation with
Transitions

This example shows a data simulation for an external datapoint with five states
for normal, high, severe change, noisy, and flat-line, where the current state is
normal:

This table summarizes the values of the relevant attributes for each data driver:

Normal High
Severe
Change Noisy Flat-Line

Symbolic
Parameter Value

normal high severe-
change

noisy flat-line

Average Value 1300.0 1350.0 1350.0 1300.0 1300.0

Noise 1.0 1.0 1.0 50.0 0.0

Transition Move 10.0 1.0 20.0 10.0 10.0
320

Managing Data Simulations
Here is a trend chart for the f-1001 sensor, which shows the pv history for a
normal state that transitioned to a severe change state:

Managing Data Simulations
To manage data simulations:

1 Choose Project > Logic > Datapoint Simulations.

All data simulations appear in the submenu, for example:

2 To configure the properties of a data simulation, choose one from the Data
Simulations submenu.

3 To display a dialog for managing all data simulations, choose Manage.
321

Here is the Data Simulation Manage dialog:

For information on using this dialog and the Project menu to manage data
simulations, see Using the Project Menu.

For information on using the buttons specific to data simulation, see Performing
Specific Operations.

Data simulation-
specific buttons
322

Part IV
Event Detection
Chapter 14: Creating Generic Dataflow Diagrams

Describes how to create generic dataflow diagrams for domain object classes that detect, test,
and respond to application events.

Chapter 15: Initializing Process Maps

Describes how to initialize process maps to create specific event detection diagrams for each
domain object.

Chapter 16: Reporting and Charting

Describes how to generate event metrics reports and system performance reports, as well as
charts.
323

324

14
Creating Generic
Dataflow Diagrams
Describes how to create generic dataflow diagrams for domain object classes that
detect, test, and respond to application events.

Introduction 325

Creating Generic Dataflow Template Folders 326

Creating Generic Dataflow Templates 328

Managing Dataflow Templates and Diagrams 331

Introduction
When the intelligent object libraries are loaded, Optegrity provides a variety of
built-in generic dataflow diagrams, which detect common events on sensors and
process equipment. These dataflow diagrams monitor internal datapoints for
domain objects in a process map, test the values against some kind of criteria, and
generate some kind of event when the criteria is met.

The event detection diagrams are defined generically for classes of domain
objects. When you initialize the domain map, Optegrity creates specific event
detection diagrams for each instance of the target class.

You create also create your own generic dataflow diagrams that detect, test for,
and respond to other types of events that are relevant in your particular process.
325

You create dataflow diagrams, using blocks in the various palettes in the Event
Detection toolbox. The diagrams flow from left to right. The first blocks are entry
points, which can:

• Subscribe to datapoints in an Optegrity process map to obtain data values
from domain objects.

• Generate continuous data, for example, a real-time clock signal.

A dataflow diagram can trigger SymCure diagnostics by sending SymCure
events. A dataflow diagram can get and set values of domain objects. Dataflow
diagrams can also post low-level notifications and operator messages.

You can also create custom domain object events, as described in Creating
Custom Event Detection.

For detailed information about using the G2 Event and Data Processing (GEDP)
module to create dataflow diagrams, see the G2 Event and Data Processing User’s
Guide.

Creating Generic Dataflow Template Folders
You create generic dataflow templates on the detail of a generic detection
template folder. The template applies to a domain object definition, as specified
by its target class.

You can create generic dataflow templates for event detection, testing, or
response. By creating dataflow templates in one of these categories, you both
organize application logic, as well as provide the ability to run diagrams in each
category associated individual domain objects.

To create a generic dataflow template folder:

1 Choose Project > Logic > Detect > Dataflow Templates > Manage and click the
New button.

Similarly, to create a generic diagram template for testing or response, choose
Project > Logic > Test or Respond, respectively.

A properties dialog for configuring the generic template appears.

2 Configure the Template Name to be any text value.

The name can include spaces, for example, O2 Monitoring.

3 Configure the Target Class to refer to a domain object definition to which the
generic diagram applies.

For example, to obtain datapoint values and generate events for the Draft
Oxygen related sensor of a heater, the target class would be opt-oxygen-
analyzer.
326

Creating Generic Dataflow Template Folders
4 Optionally, configure the Version to be any user-defined value that indicates
the diagram revision, for example, 1.1, 1.2, 1.3.

5 Configure the Category to be a system-defined category or enter any user-
defined text to define a new category.

The event detection diagram appears in the specified category in the
Project > Logic > Detect, Test, or Respond submenu.

Here is the properties dialog for the generic dataflow template named
O2 Monitoring, which is defined for the opt-oxygen-analyzer target class in the
Myapp Heater Analysis category:
327

Creating Generic Dataflow Templates
A generic dataflow template:

• Obtains data and events from domain objects in a process map in form of
entry points.

• Optionally filters data, performs calculations, and reasons over time.

• Makes logical inferences about the data.

• Generates operator messages and SymCure events, based on the inferences.

You create generic dataflow templates by using these palettes in the Event
Detection toolbox:

Palette Description

Arithmetic Perform arithmetic operations on data values.

Compressor Events Built-in event detection blocks for compressors. This
palette is only available when the intelligent
compressor library is loaded.

Controller Events Built-in event detection blocks for controllers. This
palette is only available when the intelligent controller
library is loaded.
328

Creating Generic Dataflow Templates
Data Control Control how data flows through a diagram.

Data Filters Filter out noise and find data trends.

Entry Points Provide float, integer, boolean, text, and symbolic
values to the diagram. You can specify the value
directly, or you can specify a source datapoint from
which the entry point obtains its data.

Event and Alarm
Mgmt

Generate, manage, and listen for low-level notifications
and operator messages related to specific domain
objects.

Fault Model
Diagnostics

Trigger SymCure events that apply to specific object
instances.

Functions Perform statistical operations on data values, including
user-defined functions.

Generic Template
Blocks

Listen for property changes, set property values, and
generate low-level notifications, messages, and
SymCure events for domain objects that are the target
class of a generic event detection template.

Intelligent Event
Fetch Blocks

Get domain objects. This palette is available when any
intelligent object library is loaded.

Logic Gates Perform logical operations on boolean values.

Objects Get specific domain objects, and get and set property
values of those objects.

Path Displays Display the content of any path.

Relational Operators Perform comparisons on incoming data values and
pass boolean values, based on the result of the test.

Sensor Events Built-in events for sensors. This palette is only available
when the intelligent sensor library is loaded.

Signal Generators Provide sample data for testing GEDP diagrams.

Time Series Perform operations on data histories.

Palette Description
329

To create a generic event detection template:

1 Go to the detail of a generic dataflow template folder.

For information on how to do this, see Managing Dataflow Templates and
Diagrams.

2 Choose View > Toolbox - Event Detection and choose a palette.

3 For each block required in the template, clone it from its palette and place it on
the generic template.

4 Connect the blocks together.

Note When you first connect blocks from the Generic Template Blocks palette, the icon
turns partially red, indicating that the block is not yet initialized. After you have
configured the model, you can initialize the blocks.

Here is a generic dataflow template for event detection for the opt-oxygen-
analyzer class:

1. The Generic Property
Change Entry Point
listens for changes in the
value of the pv of the
Draft Oxygen related
sensor of any heater.

2. These blocks perform
statistical analysis on the data.

3. Relational operator
blocks test whether the
computed values
exceed a threshold.

4. The Or block tests
whether any input is true.

6. If true, the Generic Send Fault Model
Event block generates a SymCure event.

6. If true, the Generic Post
Message block sends an
operator message to the
Message Browser.

5. The Data
Switch branches
its input based
on the input.
330

Managing Dataflow Templates and Diagrams
For a description of the blocks in this diagram, see the G2 Event and Data
Processing User’s Guide.

Managing Dataflow Templates and Diagrams
To manage dataflow diagrams and templates:

1 Choose Project > Logic > Detect/Test/Respond > Dataflow Templates or
Dataflow Instances, then choose a category.

All generic dataflow templates or specific dataflow instances appear in the
submenu under the specified category or in the Unspecified submenu if no
category is assigned. Here is the Project > Logic > Detect > Dataflow
Templates submenu with the O2 monitoring generic dataflow template
defined in the Myapp Heater Analysis category:

2 To display the detail of an event detection template or diagram, choose one
from the appropriate category of the Dataflow Templates or Dataflow
Instances submenu of the Detect menu.

3 To display a dialog for managing all event detection diagrams and templates,
choose Manage.
331

Here is the Detection Dataflow Manage dialog, which includes the built-in
generic dataflow templates:

For information on using this dialog and the Project menu to manage event
detection templates and diagrams, see Using the Project Menu.
332

15
Initializing Process Maps
Describes how to initialize process maps to create specific event detection diagrams
for each domain object.

Introduction 333

Initializing Process Maps 334

Showing Specific Dataflow Diagrams 335

Uninitializing Process Maps 336

Introduction
Before you can run an Optegrity application or replay data for simulation
purposes, you must initialize the process map. Initializing process maps performs
these tasks:

• Creates specific GEDP diagrams for each domain object with an associated
generic diagram template.

• Creates and initializes external datapoints and relates them to internal
datapoints.

• Resets datapoint histories.

• Compiles all SymCure fault model folders.

• Clears all diagnoses and their messages from the various message browsers.

Note Each time you restart your application, you must initialize the process map.
333

Note If you change the name of a domain object after your application has been
deployed, Optegrity automatically updates messages and SymCure events to
reflect this change. However, we recommend that you initialize process maps
after any domain object name change.

Initializing Process Maps
You can initialize each domain object individually through their menu options, or
you can initialize all domain objects simultaneously using the Project menu. You
can also initialize all GEDP blocks in a diagram or individual GEDP blocks.

Note If the generic event detection template is configured to be persistent, initializing
does not create new specific event detection diagrams. Instead, the specific event
detection diagrams persist when the process map is reinitialized to allow
persistent configuration of events for specific domain objects. For details, see the
G2 Event and Data Processing User’s Guide.

To initialize all domain objects in all process maps:

 Choose Project > Initialize Application.

To initialize all domain objects in a process map:

 Choose Initialize Domain Objects on the process map detail.

To initialize individual domain objects:

 Choose Initialize Domain Object on an individual domain object in a
process map.

To initialize all GEDP blocks in a diagram:

 Choose Initialize Blocks on the generic diagram template detail that contains
GEDP blocks.

To initialize individual GEDP blocks in a diagram:

 Choose Initialize on a GEDP block in an diagram folder or generic diagram
template folder.
334

Showing Specific Dataflow Diagrams
Showing Specific Dataflow Diagrams
When a domain object has been initialized, you can show its specific dataflow
diagrams.

To show specific dataflow diagrams:

1 Choose Show Logic on a domain object in a process map.

A dialog with all associated specific dataflow diagrams for the domain object
appears.

This menu choice only appears when the domain object has been initialized
and has any associated specific dataflow diagrams.

2 Select a specific dataflow diagram from the dialog and click OK to go to its
detail.

Here is the specific event detection diagram associated with the A-1001 oxygen
analyzer, which looks identical to the generic event detection template except for
the title, which refers to the specific oxygen analyzer:

Uninitializing Process Maps
Uninitializing process maps deletes specific event detection diagrams for domain
objects in all process maps. You can also uninitialize individual domain objects.
You might need to uninitialize a process map if you change the GEDP diagram
for a domain object.

Note If the generic event detection template is configured to be persistent,
uninitializing does not delete specific event detection diagrams. Instead, the
specific event detection diagrams persist when the process map is uninitialized
and reinitialized to allow persistent configuration of events for specific domain
335

objects. You can explicitly delete persistent specific event detection diagrams, if
necessary. For details, see the G2 Event and Data Processing User’s Guide.

To uninitialize all domain objects in all process maps:

 Choose Project > Uninitialize Application.

To uninitialize all domain objects in a process map:

 Choose Uninitialize Domain Objects on the process map detail.

To uninitialize individual domain objects:

 Choose Uninitialize Domain Object on an individual domain object in a
process map.
336

16
Reporting and Charting
Describes how to generate event metrics reports and system performance reports,
as well as charts.

Introduction 337

Creating GRPE Reports and Charts 338

Configuring Event Metrics Reports 338

Viewing Event Metrics Reports 342

Configuring and Viewing System Performance Reports 343

Introduction
Optegrity provides two types of built-in reports:

• Event metrics — Calculates frequency and duration statistics about events,
based on the event type, event target, and event category. You can view event
metrics on an hourly, daily, or monthly basis.

• System performance — Calculates various statistics related to system
performance, including the count of various types of objects such as events,
messages, and errors, memory and scheduler statistics.

You can save event metrics to a file or to a database.

By default, reporting is disabled; you must explicitly enable both types of reports.

You can also create and configure various types of standard reports and charts,
using the G2 Reporting Engine (GRPE).
337

Creating GRPE Reports and Charts
You can create the following standard reports and charts through the Project
menu or Navigator:

For information on creating and configuring these types of reports and charts, see
the G2 Reporting Engine User’s Guide.

Configuring Event Metrics Reports
You can configure event metrics reports to generate metrics for various event
types, including domain object events and SymCure events, low-level
notifications and operator messages, and general errors, for example, messages
from bridge failures.

Note Optegrity computes metrics for events of the specified types only, not subclasses
of those types.
338

Configuring Event Metrics Reports
Here is a partial class hierarchy of gevm-event, the superior class of all
event types:

To configure event metrics reports:

1 Choose Project > System Settings > Event & Alarm Metrics.

2 Choose one or more event types, whose metrics you want to compute.

Use the Shift key to select multiple event types.

3 Enable the Enable Event Metrics option.

When events of the specified type occur, Optegrity generates the event metrics in
a report.

Superior class for
all event types

Intelligent
object events

Operator message
events generated from
GEDP diagrams

SymCure events
Specific types of
operator messages
339

Here is the properties dialog for configuring event metrics, which computes
statistics for all subclasses of gevm-event:

In System-Administrator mode, you can also log event metrics to a file and/or to
a database. The database interface must exist before you can log events to a
database. In most cases, the database table must also exist. See note below.

To log event metrics to a file and/or database:

1 Switch to System-Administrator mode.

For details, see Switching User Modes.

2 Create and configure a database interface for message logging.

For details, see Creating and Connecting Network Interfaces.

3 Choose Project > System Settings > Event & Alarm Metrics.

4 Choose one or more event types, whose metrics you want to compute.

5 Enable the Enable Event Metrics option.

6 To log metrics to a file, enable the Log to File option and specify the Log
Directory to be the directory name in which to create the log files.

Optegrity creates log files named hourly-metrics.csv, daily-metrics.csv,
and monthly-metrics.csv. Each report contains columns for the event target,
event type, and event category, as well as frequency and duration columns for
24 hours, 31 days, and 12 months, respectively, based on the type of report.

7 To log metrics to a database, enable the Log to Database option and select a
database interface object to use as a database bridge.
340

Configuring Event Metrics Reports
By default, Optegrity writes hourly, daily, and monthly metrics to the
specified database tables.

8 Configure Hourly Metrics, Daily Metrics and Monthly Metrics to specify the
name of a database table in which to write the event metrics, or use the
defaults.

The database table must exist before you can log metrics to the database.

9 If the database table does not already exist, click Create Metrics Database to
create the specified database table.

Note The Create Metrics Database button only works for the SQL Server database
when using the G2-ODBC Bridge. If the G2-ODBC Bridge is connecting to any
other database, such as Access or Oracle, then you must create the database table
manually, because the database data types of the fields in the table are not
common to all databases. You can also customize the procedure that creates the
database table for your particular database. For more information, see the
G2 Database Bridge User’s Guide.

Here is the properties dialog for configuring event metrics to log to a file or
database:
341

Viewing Event Metrics Reports
You can view event metrics reports in modeler mode or operator mode.

To view event metrics reports in modeler mode:

1 Choose Project > Message Queues > Metrics > Hourly Event Metrics, Daily
Event Metrics, or Monthly Event Metrics.

Here is an hourly metrics report for the f102demo.kb application after
running the simulation:

For information on... See...

Generating built-in events on
domain objects

Configuring Domain Objects

Generating SymCure events SymCure User’s Guide

Creating dataflow diagrams and
templates for generating low-level
notifications and operator
messages

G2 Event and Data Processing User’s
Guide
342

Configuring and Viewing System Performance Reports
For Hour 13, the report looks like this, which indicates that events occurred:

2 To compute daily or monthly metrics, click the buttons at the top of the report.

To view event metrics reports in operator mode:

3 In Operator mode, display the process map view.

For information on displaying the process map view in Operator mode, see
Using the Operator Interface.

4 Click the Metrics button () to show the Hourly Metrics Report, by default.

5 Click the H (Hourly), D (Daily), or M (Monthly) button at the top of the report
to view the metrics on an hourly, daily, or monthly basis.

Configuring and Viewing System Performance
Reports

You can configure how often to update system performance reports and how
much information to keep. You configure and view system performance in the
same dialog. Here are the attributes you can configure:

Attribute Description

Lag Time (sec) The degree to which system performance metrics
smooth data. For details, see “Specifying the Meter
Lag Time” in Chapter 46 “G2-Meters” in the
G2 Reference Manual.

Update Interval (sec) How often to update the system performance
metrics. The default value is 30 seconds.
343

To configure and view system performance reports:

1 Choose Project > System Settings > System Performance and configure the
attributes, as needed.

2 Enable the Enable Performance option:

Historical Values The number of history values to keep. The default is
120 points. Use this setting to limit the system
performance history, based on the number of
datapoints.

Historical Age The maximum length of the history of the
performance counter, minus one hour. Use this
setting to limit the system performance history,
based on time. The default value is 0 seconds,
which does not limit the history.

Attribute Description
344

Configuring and Viewing System Performance Reports
3 Display the Navigator, expand the System Settings node, and choose
Show Metrics on the System Performance node:

A dialog appears with all the system metrics.
345

4 Select a system performance metric that you want to view in the trend chart.

Here is a system performance report and the trend chart associated with the count
of gevm messages:
346

Configuring and Viewing System Performance Reports
This table describes each of the system performance metrics. Many of the system
performance metrics are based on G2 meters, which are fully described in the
G2 Reference Manual.

Metric Description

clock time length The number of seconds a G2 clock tick lasts. See the
description of the clock-tick-length meter in Chapter 50
“G2-Meters” in the G2 Reference Manual.

count of error objects The number of instances of the class error or any
subclass. This metric helps to find memory leaks, in
cases where error objects are created and not deleted.

count of GEVM
messages

The number of instances of the class gevm-message or
any subclass. For more information on this class, see
Chapter 3 “GEVM Event Types and API” in
G2 Developers’ Utilities Runtime Library User’s Guide.

count of procedure
invocations

The number of G2 procedure invocations. See the
discussion of procedure invocations in Chapter 22
“Procedures” and in Chapter 51 “Memory
Management” in the G2 Reference Manual.

count of raw GEVM
events

The number of instances of the class gevm-event or any
subclass. For more information on this class, see
Chapter 3 “GEVM Event Types and API” in
G2 Developers’ Utilities Runtime Library User’s Guide.

count of
Telewindows clients

The number of Optegrity clients currently connected to
the server.

instance creation
count

The number of instances. See the description of the
instance-creation-count-as-float meter in Chapter 50
“G2-Meters” in the G2 Reference Manual.

maximum clock tick
length

The duration in seconds of the longest clock tick that G2
has experienced since the knowledge base started
running. See the description of the maximum-clock-tick-
length meter in Chapter 50 “G2-Meters” in the
G2 Reference Manual.

memory available The total amount of memory currently allocated by the
operating system but not used by G2. See the
description of the memory-available meter in Chapter
50 “G2-Meters” in the G2 Reference Manual.
347

memory size The total memory allocated to G2 by the operating
system for holding data. See the description of the
memory-size meter in Chapter 50 “G2-Meters” in the
G2 Reference Manual.

memory usage The total amount of memory that G2 currently uses. See
the description of the memory-usage meter in Chapter
50 “G2-Meters” in the G2 Reference Manual.

percent runtime The processing time G2 is using, as a percent of the
processing time available for it to use. See the
description of the percent-run-time meter in Chapter 50
“G2-Meters” in the G2 Reference Manual.

priority 1-10
scheduler time lag

The number of seconds behind current system time the
scheduler is for a given priority. See the description of
the priority-n-scheduler-time-lag meter in Chapter 50
“G2-Meters” in the G2 Reference Manual.

region 1, 2, and 3 size The memory in the G2 region specified by n. The figure
includes both used and available memory. See the
description of the region-n-memory-size meter in
Chapter 50 “G2-Meters” in the G2 Reference Manual.

For a description of region 1, 2, and 3 memory, see
Chapter 51 “Memory Management” in the G2 Reference
Manual.

region 1, 2, and 3
usage

The amount of memory that G2 currently uses in the G2
region specified by n. See the description of the region-
n-memory-usage meter in Chapter 50 “G2-Meters” in
the G2 Reference Manual.

For a description of region 1, 2, and 3 memory, see
Chapter 51 “Memory Management” in the G2 Reference
Manual.

region 1, 2, and 3
available

The total amount of memory currently available to G2
but not used by it in the G2 region specified by n. See
the description of the region-n-memory-available meter
in Chapter 50 “G2-Meters” in the G2 Reference Manual.

For a description of region 1, 2, and 3 memory, see
Chapter 51 “Memory Management” in the G2 Reference
Manual.

Metric Description
348

Part V
Diagnostic Reasoning
Chapter 17: Creating Generic Fault Models

Describes how to create generic fault models to perform diagnostic reasoning.

Chapter 18: Running SymCure Fault Models

Describes how to run SymCure fault models for diagnosis.
349

350

17
Creating Generic
Fault Models
Describes how to create generic fault models to perform diagnostic reasoning.

Introduction 351

Creating Generic Fault Model Folders 352

Creating Generic Fault Models 353

Creating Generic Actions 355

Managing Generic Fault Models 357

Introduction
You create generic fault models to perform diagnostic reasoning on events that
are generated by specific event detection diagrams for domain objects in a
domain map. You define these models generically for domain object classes.
When an event is generated for a particular domain object, SymCure creates a
specific fault model that includes the specific events that are either observed to be
true or are predicted to be true, based on event propagation.

The specific fault model includes alarms, which appear in the Alarms Browser,
and root causes, which appear in the Root Causes browser. As part of diagnosis,
SymCure can also execute external tests to help diagnose root causes, and external
repair actions that execute when a root cause is known to be true.

For detailed information about building generic fault models and interacting with
specific fault models, see the SymCure User’s Guide.
351

Creating Generic Fault Model Folders
You create generic fault models on a generic fault model folder detail. The folder
is associated with a target class, which is the domain object class to which the fault
model applies.

To create a generic fault model folder:

1 Create a generic fault model folder and display its properties dialog, using
one of these two techniques:

 Choose Project > Logic > Diagnose > Generic Fault Models > Manage and
click the New button to create a new folder and display its properties
dialog.

or

 Display the Fault Models toolbox and clone a Fault Model Folder from the
Fault Model Folder palette, and choose Properties on the folder.

2 Configure the Folder Name to be any text value.

The name can include spaces, for example, Myapp Fault Models.

3 Configure the Category to be a user-defined text or one of the built-in
categories that is used to organize folders in the Project menu.

4 Configure the Target Class to refer to a domain object class to which the
generic fault model applies.

For example, to perform diagnostics on the heater, the target class would be
opt-heater.

5 Optionally, configure the Description to be any user-defined text that
describes the generic fault model.
352

Creating Generic Fault Models
Here is the properties dialog for the generic fault model folder named
Myapp Fault Models:

Creating Generic Fault Models
A generic fault model describes the causal relationships between events for
classes of domain objects.

For detailed information about building generic fault models, see Chapter 4
“Creating Generic Fault Models” in the SymCure User’s Guide.

To create a generic fault model:

1 Go to the detail of a generic fault model folder.

For information on how to do this, see Managing Generic Fault Models.

2 Choose View > Toolbox - Fault Models and display the Generic Events
palette:
353

3 Select generic events from the palette and place them on the detail of the
generic fault model folder.

4 Connect and configure the generic events to create a generic fault model.

Here is a generic fault model that describes the causal relationships between
events for the F102 heater application described in the Optegrity Heater Tutorial:

For a description of how this generic fault model is used in the F102 heater
application, see the Optegrity Heater Tutorial.

Creating Generic Actions
SymCure defines external actions in the form of tests and repair actions to isolate
and recover from root causes. You can associate tests and repair actions with each
generic event in a fault model. During diagnosis, SymCure creates and activates
specific actions for specific events when the value of the underlying event
changes, depending on the type of generic action. By default, a generic test action
actives when the value of the underlying event becomes suspect, and a generic
repair action activates when the value of the underlying event becomes true.

For detailed information about creating and configuring generic actions, see
Chapter 5 “Creating Generic Fault Models” in the SymCure User’s Guide.

To create generic actions:

1 Create a generic fault model folder and go to its detail.

You can create generic fault models and generic actions in separate folders or
even place them in separate modules.

For information on how to do this, see Managing Generic Fault Models.
354

Creating Generic Actions
2 Choose View > Toolbox - Fault Models and display the Generic Actions
palette.

3 Select generic actions from the palette and place them on the detail of the
generic fault model folder.

4 Configure the generic actions.

Here are the generic actions for the F102 heater application described in the
Optegrity Heater Tutorial:

For a description of how these actions are used in the heater application, see the
Optegrity Heater Tutorial.
355

Managing Generic Fault Models
To manage generic fault models:

1 Choose Project > Logic > Diagnose > Generic Fault Models, then choose a
category.

All generic folders appear in the submenu under the specified category or in
the Unspecified submenu if no category is assigned, for example:

2 To display the detail of a generic fault model, choose one from the appropriate
category in the Generic Fault Models submenu.

3 To display a dialog for managing all generic fault models, including
displaying the properties dialog, choose Manage.
356

Managing Generic Fault Models
Here is the Generic Fault Models Manage dialog, which includes the built-in
generic fault models:

For information on using this dialog and the Project menu to manage generic fault
models, see Using the Project Menu.

For information on using the buttons specific to generic fault models, see
Performing Specific Operations.

These buttons are
available for generic
fault models only.
357

358

18
Running SymCure
Fault Models
Describes how to run SymCure fault models for diagnosis.

Introduction 359

Compiling Generic Fault Models 360

Checking for Errors and Warnings 360

Enabling Fault Models 361

Sending Fault Model Events 362

Introduction
Before SymCure can diagnose events, the generic fault models must be compiled.
Compiling generic fault models verifies that the fault models are syntactically
correct for building specific fault models.

When you start your application, SymCure automatically compiles all existing
generic fault models. You must compile generic folders after you make any
changes to them.

When a specific event occurs on a domain object, SymCure creates a specific fault
model with specific events and actions. You view specific alarm and root cause
events through the Alarms and Root Causes Browsers, and you view specific
actions through the Test Actions Browser and the Repair Actions Browser.

You can simulate fault model events for domain objects.

For a description of the built-in SymCure browsers, see Interacting with SymCure
Diagnostic Console Browsers.
359

For detailed information about running SymCure applications, see Chapter 5,
“Running SymCure Applications” in the SymCure User’s Guide.

Compiling Generic Fault Models
When you compile a single fault model folder, SymCure compiles all other
generic fault models as well. The color of the folder indicates whether it compiled
correctly.

For more information, see Chapter 5 “Running SymCure Applications” in the
SymCure User’s Guide.

To compile all generic fault models:

1 Choose Project > Logic > Diagnose > Generic Fault Models > Manage.

2 Select the folder and click the Compile button.

Tip You can also compile the folder by choosing the Compile menu choice on the
generic fault model folder in the Navigator. For details, see Navigating
Applications.

3 To check compilation status, show the properties dialog for the folder.

If compilation is successful, the Compilation Status should be COMPLETE.

Checking for Errors and Warnings
SymCure creates errors and warnings for a generic fault model if it does not
compile correctly.

For information on what these errors and warnings mean, see Chapter 5
“Running SymCure Applications” in the SymCure User’s Guide.

To check for errors and warnings:

1 Choose Project > Logic > Diagnose > Generic Fault Models > Manage.

2 Select a folder and click the Errors or Warnings button.

or

 Choose View Errors or View Warnings on a fault model folder in the
Navigator.

For details, see Navigating Applications.
360

Enabling Fault Models
Enabling Fault Models
Before you can send SymCure events for a domain object in a process map, you
must check the Enable Fault Model option for the domain object. By default, this
option is enabled for all domain objects that you create from the Process Modeling
toolbox. This means that when the intelligent object libraries are loaded, all
built-in fault models are automatically enabled.

To enable fault models for a domain object:

 In the popup menu for a domain object, check the Enable Fault Model option.

Here is the popup menu for a heater with the Enable Fault Model option enabled:
361

Sending Fault Model Events
To simulate events for domain objects in a process map, you choose an event and
specify the event value as true, false, or suspect. The list of available events
includes all generic events defined for the domain object class.

To send a fault model event for a domain object, the fault model must be enabled.

For more information, see Chapter 5 “Running SymCure Applications” in the
SymCure User’s Guide.

To send a fault model event:

1 Choose Send Fault Model Event on a domain object in a process map.

Note This menu choice is only available if the Enable Fault Model menu choice is
enabled. For details, see Enabling Fault Models.

2 Choose an event from the list of available events.

3 Specify the event value as true, false, or suspect.

4 Click the OK button to send the event.

Here is the Send Fault Model Event dialog for a heater, which is configured to
send a value of true for the Excess Coking built-in event:
362

Part VI
Alarm and Message
Management
Chapter 19: Interacting with Operator Messages

Describes how to interact with operator messages through the operator interface.

Chapter 20: Interacting with SymCure Diagnostic Console Browsers

Describes how to interact with the SymCure Alarms Browser, Root Causes Browser, Test
Actions Browser, and Repair Actions Browser.

Chapter 21: Using Message Queues

Describes how to manage the message queues associated with the various types of browsers.
363

364

19
Interacting with
Operator Messages
Describes how to interact with operator messages through the operator interface.

Introduction 365

Using the Operator Interface 366

Interacting with Operator Messages in Modeler Mode 373

Introduction
Optegrity provides an end user interface for interacting with operator messages
and their associated process maps. The operator interface has two views:

• The message browser view shows all operator messages in a single browser,
by default. Individual operators can subscribe to different types of messages,
based on their user preference.

• The process map view provides a default process map for viewing and
interacting different aspects of the model.

By default, the message browser view includes all types of messages, including
messages associated with:

• Event detection diagrams.

• SymCure alarms, root causes, test actions, and repair actions.

• General operator information, for example, related to network interface
connection status and logging.

For information on configuring the operator interface for individual users, see
Configuring User Preferences.
365

For information on creating custom message browsers, see Custom Messaging.

Using the Operator Interface
You display the operator interface by switching to operator mode. You can
configure user preferences such that operators go directly to the operator
interface when they start the client.

By default, the operator interface displays the message browser view, which
shows the message text, creation/update time, and acknowledgement status for
all operator messages to which the current user subscribes. Operators can choose
to display a mini browser view instead of the message browser view. The most
recent message also appears in the status bar.

Operators can also display a default process map in the operator interface. You
can configure the user preferences to choose the default process map to display in
the operator interface. For details, see Configuring User Preferences.

You can configure the use-basic-message-browser parameter to determine the
type of message browser to display, by default. For details, see Message Browser.
366

Using the Operator Interface
To display the operator interface:

 Choose Tools > User Mode > Operator.

Here is the operator interface for the f102demo.kb after running the simulation.
The process map view includes a toolbar for interacting with various aspects of
the model, and the message browser view includes a toolbar for interacting with
individual messages.

For information on configuring the default operator interface, see the description
of Home Process Map and Show Browser in Operator Mode in Configuring User
Preferences.
367

Interacting with the Process Model

Operators can interact with various aspects of the process model in the operator
interface, using the following toolbar buttons:

Home Process Map

Process Map Instruments

Instrument Plot

Message Browser

Mini Browser

Metrics

Print

Go to Superior

Show Details

Zoom Out

Zoom Percentage

Zoom In

Zoom to Fit

User Mode Go To
368

Using the Operator Interface
To interact with the process model:

1 To show the default process map, click the Home Process Map button.

Here is the home process map for the f102demo.kb application:

The process map appears in its own tab page. If other tab pages are showing,
click the process map tab page to show the map. You can hide the process
map by clicking the close button.

For information on configuring the default process map, see the description of
Home Process map in Configuring User Preferences.
369

2 To show a list of all the internal datapoints in the process map, click the
Process Map Instruments button.

Here are the process map instruments for the f102demo.kb application:

3 To update the datapoint values, click the Activate Update button ().

4 To stop updating the datapoint values, click the Deactivate Update button
().
370

Using the Operator Interface
5 To display a plot of a datapoint value, click the Instrument Plot button and
select an internal datapoint in the process map to plot.

Here is how you would plot the A-1001.pv internal datapoint:

You can add multiple plots, each of which appears in its own tab page.

6 Click the Message Browser button.

Here is the message browser for the f102demo.kb application after running
the simulation:

For details, see Interacting with Operator Messages.
371

7 To show a mini message browser view, click the Mini Browser button.

Here is the mini browser:

8 To show a report of metrics related to messages, click the Metrics button.

For more information and an example, see Reporting and Charting.

9 To go to the superior process map or show the detail of the selected object,
click the Go to Superior button or Show Details button.

You use these options when configuring hierarchical process maps. For more
information and an example, see Creating a Process Map.

10 To zoom the process map, click the Zoom In, Zoom Out, Zoom Percentage,
and Zoom to Fit buttons.

11 To configure the application, choose Modeler mode.

For information about configuring the operator interface to disallow
configuring the model, see the description of Configuration Permission in
Configuring User Preferences.

12 To search for objects in the process map, enter the exact name in the Search
field.
372

Interacting with Operator Messages in Modeler Mode
Interacting with Operator Messages

You view and interact with operator messages in the message browser or mini
browser view by selecting a message and clicking the various toolbar buttons.
You can acknowledge and delete messages, show properties, filter messages, go
to the message target, and sort messages.

Here is the toolbar in the Message Browser in the operator interface:

To view and interact with operator messages:

1 Click one or more messages in the Message Browser to select it.

To select multiple contiguous messages, select the starting message, then hold
down the Shift key and click the ending message or drag the cursor to select
multiple messages. To select multiple non-contiguous messages, hold down
the Ctrl key and click a message to add to the selection.

2 Click a toolbar button to operate on the selected message or messages.

For details on the behavior of these buttons, see the Optegrity Heater Tutorial.

Interacting with Operator Messages in
Modeler Mode

In Modeler mode, you interact with operator messages through the Message
Browser. In Modeler mode, the Message Browser provides additional buttons,
including buttons for interacting with SymCure messages.

Note Messages about SymCure events are not representations of the actual events; they
are merely messages about the underlying events. For such messages, deleting the
message does not delete the underlying event.

You can select a range of messages by selecting the starting message, then holding
down the SHIFT key and selecting the ending message. You can also drag the
cursor across a range of messages to select multiple contiguous messages. You
can select multiple non-contiguous messages by using the Ctrl key.

Delete Target

Acknowledge

 Properties

Configure
Filters

 Filters
373

Note By default, Optegrity sorts messages chronologically by creation time, based on
the current subsecond time. If multiple messages are created within the same
subsecond, the sort order is not predictable.

For information on the SymCure specific buttons, see Interacting with SymCure
Diagnostic Console Browsers.

To display the message browser in Modeler mode:

1 Choose View > Message Browser or click the equivalent toolbar button:

2 Select a message in the browser and click a toolbar button.

To interact with the Message Browser:

 Select a message in the browser and click a toolbar button.

Here is the Message Browser for the f102demo.kb application after running the
simulation and selecting a message:
374

20
Interacting with SymCure
Diagnostic Console Browsers
Describes how to interact with the SymCure Alarms Browser, Root Causes
Browser, Test Actions Browser, and Repair Actions Browser.

Introduction 375

Displaying SymCure Browsers 377

Interacting with the Alarms Browser 377

Interacting with the Root Causes Browser 378

Interacting with the Test Actions Browser 379

Interacting with the Repair Actions Browser 380

Introduction
You interact with specific events and actions through these built-in
SymCure browsers:

• Alarms Browser — Shows specific events of type alarm.

• Root Causes Browser — Shows specific events of type root-cause.

• Test Actions Browser — Shows specific test actions.

• Repair Actions Browser — Shows specific repair actions.

The built-in SymCure browsers show various information about the specific event
or specific action, depending on the browser, such as the event or action name, the
target object, a text message, the event value, the action status and type, and the
time at which the event or action was last updated.
375

You can interact with specific events and actions in various ways, such as:

• Showing the causal fault model for an alarm or root cause.

• Showing the root causes of an alarm

• Showing an event summary of symptoms, predications, root causes,
and actions.

• Showing the sequence of events that led up to a specific alarm or root cause.

• Showing the specific event underlying a specific external action.

• Explaining and running external test and repair actions.

For a complete description of interacting with SymCure browsers, see Chapter 5
“Running SymCure Applications” in the SymCure User’s Guide.

The SymCure browsers include all the buttons that are available in the default
Message Browser, as well as those specific to SymCure. Just as you can log
operator messages in the Message Browser, you can log messages for alarms, root
causes, test actions, and repair actions.

You can configure the default browser to use for alarms, root causes, test actions,
and repair actions. For example, you might want to display both alarms and root
causes in the same browser, and both test actions and repair actions in the same
browser. To do this, you configure SymCure initialization parameters. For details,
see CDGUI (SymCure) in Configuring Startup Parameters
376

Displaying SymCure Browsers
Displaying SymCure Browsers
For information about the default Message Browser, see Interacting with
Operator Messages.

To display the SymCure browsers:

 Choose Project > Logic > Diagnose > Diagnostic Console and choose browser
or click one of the equivalent Fault Modeling toolbar buttons:

The Diagnostic Console submenu includes the four SymCure browsers—Alarms,
Root Causes, Test Actions, and Repair Actions:

Interacting with the Alarms Browser
The Alarms Browser shows the target, event name, event value, message, and last
update time. You interact with alarms in the Alarms Browser, using these
toolbar buttons:

Root
Causes

Summary

Chronology True

Save

Causal
Model

Properties

Target

Show Generic
Event

Lock
View Trigger

Configure
Filers

Filters FalseDetailed
Explanation
377

The Alarms Browser has these columns:

• Target — The domain object that is the target of the event.

• Event Name — The name of the specific event.

• Value — The value of the event, which is true, false, suspect, or unknown.

• Status — The status of the event, which is upstream inferred, downstream
inferred, specified, or mutually exclusive.

• Last Update Time — The time at which the event value or status was
last updated.

To interact with the Alarms Browser:

 Select an alarm in the Alarms Browser.

Here is the Alarms Browser with an alarm for the F-102 heater that is inferred to
be true:

Interacting with the Root Causes Browser
The Root Causes Browser shows the target, event name, event value, message,
and last update time. You interact with root causes, using these toolbar buttons.
The buttons are identical to those in the Alarms Browser except that the Root
Causes Browser does not include the Root Causes button. The Root Causes
Browser has the same columns as the Alarms Browser.

To interact with the Root Causes Browser:

 Select a root cause in the Root Causes Browser.

Here is the Root Causes Browser with several root causes for the F-102 heater:
378

Interacting with the Test Actions Browser
Interacting with the Test Actions Browser
The Test Actions Browser shows the target, test name, status, type, and last
update time. You interact with tests, using the toolbar buttons:

The Test Actions Browser has these columns:

• Target — The domain object that is the target of the test action.

• Test Name — The name of the specific test.

• Status — The status of the test. The options are: create, enabled, running, and
inactive.

• Type — The type of test. The options are: manual and automatic.

• Last Update Time — The time at which the event status was last updated.

To interact with the Test Actions Browser:

 Select a test in the Test Actions Browser.

Here is the Test Actions Browser with a test action for the F-102 heater:

Events

Explanation

RunProperties

Target

Show Generic
Action

Lock
View

Configure
Filters

Filters
379

Interacting with the Repair Actions Browser
The Repair Actions Browser shows the target, test name, status, type, and last
update time. You interact with the Repair Actions Browser, using the toolbar
buttons, which are the same as in the Test Actions Browser. The Repair Actions
Browser has the same columns as the Test Actions Browser.

To interact with the Repair Actions Browser:

 Select a repair action in the Repair Actions Browser.

Here is the Repair Actions Browser with a repair action for the F-102 heater:
380

21
Using Message Queues
Describes how to manage the message queues associated with the various types of
browsers.

Introduction 381

Creating a New Message Queue 382

Logging Messages 382

Configuring the Browser Template for a Message Queue 390

Managing Message Queues 391

Introduction
Each type of browser is associated with a configurable message queue. You can
configure logging for the built-in message queues. You can also create custom
message queues.

Note To configure message queues, you must be in System-Administrator mode.

For information on creating custom message queues, see Custom Messaging.
381

Creating a New Message Queue
When creating a new message queue, you can configure the update latency,
maximum entries in the queue, and the browser template. By default, message
queues update their values once a second and allow a maximum of 10,000
messages before they start deleting messages. When the maximum is exceeded,
the queue deletes the oldest messages first.

Note You cannot configure these attributes for the built-in queues; you can only
configure them for custom queues.

To configure the general queue properties:

1 Choose Project > System Settings > Message Browsers > Queues > Manage
and click the New button.

The dialog for configuring a new message queue appears.

2 Configure the following attributes of the queue:

Logging Messages
In System-Administrator mode, you can configure each message queue to log
messages to a file, to a database, and/or to a JMS provider. You can log message
additions, deletions, and changes. By default, logging is not enabled; thus, you
must explicitly enable logging.

Optegrity creates log files in the Archives directory, using a default log filename.
By default, it creates a new log file when the file size exceeds 1 MB or once a day,
whichever comes first.

Various initialization parameters control the default behavior of message logging.
For more information, see Appendix , Configuring Startup Parameters.

Attribute Description

Label The name of the message queue.

Update Latency The frequency with which to update the message
queue. The default value is 1 second.

Maximum Entries
in Queue

The maximum number of entries in the queue. The
default value is 10,000.

Browser Template The name of the browser template or access table to
use for displaying queue messages in a browser.
382

Logging Messages
Logging Messages to a File

To log messages to a file:

1 Switch to System-Administrator mode.

For details, see Switching User Modes.

2 Choose Project > System Settings > Message Browsers > Queues > and choose
the queue whose messages you want to log to a file.

The dialog for configuring the message queue appears.

3 To log messages to a file, configure the following attributes of the queue:

Attribute Description

Log Directory The directory in which to create the log file, relative
to current KB’s directory. The default value is
..\Archives\.

Log Filename
Template

A template for the log file, including a file extension
and a wildcard for the unique ID. The unique ID
consists of the year, date, and number. For example,
the default value for the Alarms queue is
log-alarms-*.csv; thus, a sample log file might be
called log-alarms-2004-11-27-7.csv.

Interval to Open New
Log File (s)

The time interval, in seconds, for creating a new log
file, when neither the number of entries nor the file
size has exceeded the maximum. The default value
is 86400 seconds, or one day.

Maximum Log Size
(Bytes)

The maximum size of the log file, in bytes. The
default value is 100000 bytes.

Logging Enabled Whether to enable message logging. By default,
logging is disabled; thus, you must explicitly enable
logging to log messages.

Log to File Whether to log messages to a file. This option must
be enabled to log messages to a file.

Log Changes Whether to log changes to messages to the log file.
Changes includes acknowledging messages and
editing comments. By default, changes are logged.
383

Here is the properties dialog for the Messages queue, which logs message
changes, additions, and removals to a file:

Log Additions Whether to log new messages to the log file. By
default, new messages are logged.

Log Removals Whether to log message deletions to the log file. By
default, message deletions are logged.

Attribute Description
384

Logging Messages
Logging Messages to a Database

You can log messages to an Oracle, Sybase, or ODBC database. To log messages to
a database, first, you create a database interface, then you configure the message
queue to log messages, using the database interface. You must also specify a
database table. The database interface must exist before you can log messages to a
database. In most cases, the database table must also exist. See note below.

To log messages to a database:

1 Switch to System-Administrator mode.

For details, see Switching User Modes.

2 Create and configure a database interface for message logging.

For details, see Creating and Connecting Network Interfaces.

3 Choose Project > System Settings > Message Browsers > Queues > and choose
the queue whose messages you want to log to a database.

The dialog for configuring the message queue appears.

4 To log messages to a database, configure the following attributes of the queue:

Attribute Description

Database Interface The name of a database interface object to use for
message logging.

Database Table The name of a database table within the specified
database interface object.

Logging Enabled Whether to enable message logging. By default,
logging is disabled; thus, you must explicitly enable
logging to log messages.

Log to Database Whether to log messages to a database. By default,
logging to a database is disabled; thus, you must
explicitly enable database logging to log messages.

Log Changes Whether to log changes to messages to the
database, which includes acknowledging messages.
By default, changes are logged.

Log Additions Whether to log new messages to the database. By
default, new messages are logged.

Log Removals Whether to log message deletions to the database.
By default, message deletions are logged.
385

5 If the database table does not already exist, click Create Database Table to
create the specified database table.

Note The Create Table button only works for the SQL Server database when using the
G2-ODBC Bridge. If the G2-ODBC Bridge is connected to any other database,
such as Access or Oracle, then you must create the database table manually,
because the database data types of the fields in the table are not common to all
databases. You can also customize the procedure that creates the database table
for your particular database. For more information, see the G2 Run-Time Library
User’s Guide.

This dialog configures message logging in the Message Browser to log message
changes, additions, and removals to a database, using the database interface
named myapp-database-interface and the database table named
gevm_messages, the default:
386

Logging Messages
Logging Messages to a JMS Provider

You can log messages to a JMS provider. To log messages to a JMS provider, first,
you create a JMS interface, then you configure the message queue to log
messages, using the JMS interface. The database interface must exist before you
can log messages to a database. You can also log messages to a JMS provider as
XML.

To log messages to a JMS provider:

1 Switch to System-Administrator mode.

For details, see Switching User Modes.

2 Create and configure a JMS interface for message logging.

For details, see Creating and Connecting Network Interfaces.

3 Choose Project > System Settings > Message Browsers > Queues > and choose
the queue whose messages you want to log to a JMS provider.

The dialog for configuring the message queue appears.

4 To log messages to a JMS provider, configure the following attributes of
the queue:

Attribute Description

JMS Interface The name of a JMS interface object to use for
message logging.

Logging Enabled Whether to enable message logging. By default,
logging is disabled; thus, you must explicitly enable
logging to log messages.

Log to JMS Provider Whether to log messages to a JMS provider. By
default, logging to a JMS provider is disabled; thus,
you must explicitly enable JMS logging to log
messages.

Log JMS as XML Whether to log messages to the JMS provider as
XML. By default, messages are logged as text.
387

This dialog configures message logging in the Message Browser to log message
changes, additions, and removals to a JMS provider, using the JMS interface
named myapp-jms-interface:

Contents of Log File

The log file contains the following columns for each entry. This is the same
information that appears in the Message Browser and on the detail for each
message. Some of this information, such as the message, category, details, and
advice, is configured in the event source, for example, a GEDP Post Message
block. Other information, such as user comments, is entered by the end user in the
Message Browser. Still other information, such as the entry type, timestamp,
target name, and source name, is generated by Optegrity.

Column Description

Timestamp The timestamp at which the message occurred. This
value is determined by Optegrity.

Entry Type A description of why the entry was logged. The options
are: added, event-repetition, publish-event, comments-
changed-event, deleting-event, and removed.
388

Logging Messages
Target Name The name of the domain object on which the event has
occurred. This value is determined by Optegrity.

Source Name The name of the event source. This value is determined
by Optegrity.

Event Type The class of message. This value is specified in the
event source.

Priority The message priority, which is a number from 1 to 9.
This value is specified in the event source.

Repetition The number of times that the same message has
occurred on the same target object. This value is
generated by Optegrity.

Category The message category. This value is specified in the
event source.

Message The message text, with text substitutions. This value is
specified in the event source.

Message Detail The message detail text, with text substitutions. This
value is specified in the event source.

Message Advice The message advice text, with text substitutions. This
value is specified in the event source.

Assigned to User The value of the Assigned to User field on the message
detail. This value is specified by the operator of the
application at runtime.

Acknowledgement
Required

Whether the message requires acknowledgement. This
value is specified in the event source.

Acknowledged Whether the message has been acknowledged. This
value is determined by Optegrity.

Acknowledged By The value of the Acknowledged By field on the
message detail. This value is specified by the operator
of the application at runtime.

Column Description
389

Configuring the Browser Template for a
Message Queue

A message queue uses a configurable browser template to display its messages.
To do this, you create a custom message queue and associated browser template,
then configure the queue to use the custom template.

For information about creating custom browser templates and queues, see
Custom Messaging.

Acknowledgement
Timestamp

The timestamp at which the message was
acknowledged. This value is determined by Optegrity.

User Comment The value of the Comments on the message detail. This
value is entered by the operator of the application at
runtime.

Column Description
390

Managing Message Queues
Managing Message Queues
To manage message queues:

1 Choose Project > System Settings > Message Browsers > Queues.

The Queues appear in the submenu:

2 To configure the properties for a message queue, choose it from the list.

3 To display a dialog for managing all message queues, choose Manage.
391

Here is the dialog for managing message queues:

For information on using this dialog and the Project menu to manage message
queues, see Using the Project Menu.

For information on using the button specific to message queues, see Performing
Specific Operations.

Message-queue
specific button
392

Part VII
Customization
Chapter 22: Creating Custom Event Detection

Describes how to create custom event detection for domain objects.

Chapter 23: Customizing Optegrity

Describes how to customize Optegrity.

Chapter 24: Configuring Startup Parameters

Describes the parameters that you can configure in the Optegrity startup file.
393

394

22
Creating Custom
Event Detection
Describes how to create custom event detection for domain objects.

Introduction 395

Creating Custom Domain Objects and Relations 396

Creating a Custom Event Object Hierarchy 397

Configuring the Custom Event Logic 401

Configuring the Generic Event Detection Diagram for the Custom Event 403

Configuring the Specific Event Detection Diagram for the Custom Event 408

Testing the Custom Event 412

Introduction
To create custom event detection, you create:

• A custom domain object definition and its associated relations.

• A custom event object hierarchy.

• Event logic for each custom event.

Depending on the event, deploying a custom domain object with custom events
involves:

• Configuring domain object parameters and related objects.

• Selecting and configuring specific domain object events for the domain object.
395

Creating Custom Domain Objects and
Relations

A domain object represents process equipment by defining its properties and its
relationship to other domain objects in the process. Domain objects can also have
methods that define the behavior of the object, including simulation, event
monitoring, detection, and diagnostic activity. Optegrity provides built-in classes
for defining custom domain objects and their relationship to other domain
objects. The two built-in classes that you can subclass to define your own custom
equipment hierarchy are opt-instrument and opt-equipment:

For information on how to create a custom domain object, see Creating Domain
Object Definitions.

When creating event detection and fault models, it is often necessary to know
how the domain object is related to other domain objects in the process. You
define this relationship by creating a G2 connection on an Optegrity process map
or by creating a G2 relation. To define a G2 relation between domain objects, you
create a Domain Relation Definition, which is a subclass of g2-relation.

To create a custom domain object relation:

1 Choose View > Toolbox - Process Modeling, display the Optegrity Definitions
and Relations palette, and create a Domain Relation Definition from the
palette:
396

Creating a Custom Event Object Hierarchy
2 Configure the properties of the domain relation definition.

For example, here is a Domain Relation Definition that defines a relation between
an opt-pump and an opt-pressure-sensor. The relation is named
discharge-pressure-monitored-by and the inverse relation is named
the-discharge-pressure-of.

Creating a Custom Event Object Hierarchy
Once you have defined a set of domain objects and domain object relations, the
next step is to define the custom events for use in event detection on the domain
object. To create and encapsulate complex event detection algorithms for a
domain object, you create a custom event definition, which is a subclass of
opt-domain-object-event. You then create instances of these event definitions and
use them in generic event detection templates that apply to your custom domain
object class.

You typically define class-specific attributes for event definitions, which specify
parameters that determine when the event is true. To display class-specific
attributes in the properties dialog of the custom event, configure the class-specific
attribute of the definition to be a subclass of the g2-parameter class, for example,
grtl-simple-quantitative-datapoint.
397

When configuring an event definition, you also specify the palette on which to
place the custom event block for use in generic event detection templates.

Typically, you create a custom event definition hierarchy to organize events
based on the type of event, as well as based on the class of domain object the event
object monitors.

The inherited attributes of a custom event block are:

• Event Name (text) is the name of the event.

• Event Evaluation Time (read-only) is the time at which the Domain Object
Event block was processed.

• Event Exists (truth-value) specifies whether the event exists after the Domain
Object Event block is processed. This may be a fuzzy truth-value.

• Event Logic Status (read-only) displays any errors that occur when processing
the Domain Object Event block.

• Description (text) is a textual description of the event.

For details on configuring the custom event block, see Configuring the Specific
Event Detection Diagram for the Custom Event.

To create a custom event object hierarchy:

1 Choose View > Toolbox - Process Modeling, display the Optegrity Definitions
and Relations palette, and create an Intelligent Event Definition from the
palette:
398

Creating a Custom Event Object Hierarchy
2 Create a custom event definition hierarchy by creating subclasses of
opt-domain-object-event.

For example, here is an event hierarchy for sensors and equipment:

3 Configure the properties for each custom event definition in the hierarchy.

Configure a unique name, configure the icon for the class, and define class-
specific attributes that the event requires. Any function, procedure, or method
that you create for your new class can access the class-specific attributes. To
display the event on a palette, configure the Palette Name. By default, the
event appears in the specified palette in the Event Detection toolbox.
399

Here is the pump-discharge-event definition and its properties dialog. It
defines the discharge-low-limit class-specific attribute, which is of type float-
parameter. The event will appear in a Pump Events palette of the Event
Detection toolbox.
400

Configuring the Custom Event Logic
Here is the Pump Events palette in the Event Detection toolbox, which includes
the custom event block:

Configuring the Custom Event Logic
Once you have created a custom event hierarchy, the next step is to create the
associated event logic for each event class in the hierarchy. Detecting events for
domain objects can require complex mathematical analysis, which you typically
perform within a method, procedure, or function.

The gedp-user-routine attribute of a domain object event specifies the name of the
method, procedure, or function to execute when the block evaluates. By default,
the gedp-user-routine is a method named opt-domain-object-event-logic with this
signature:

opt-domain-object-event-logic
(block: class opt-domain-object-event, input-value: item-or-value,
domain-object: item-or-value)
-> return: truth-value

where:

• block is the opt-domain-object-event block.

• input-value is the item or value on the input path to the block.

• domain-object is the domain object that is assigned to the GEDP diagram on
which the opt-domain-object-event block resides or, if no domain object is
assigned, the symbol none.

Thus, the custom event block takes any item or value on its input path, and it
passes a discrete or fuzzy truth-value on its output path.

The easiest way to create the event logic for a custom event is to create a method
for the custom event definition named opt-domain-object-event-logic. The block
automatically calls this method when it executes.

If you do not want to implement a method, you can also create a procedure or
function with the same signature of the opt-domain-object-event-logic method.
You must then specify the gedp-user-routine attribute to be the name of your
custom procedure or function in the attribute-initializations of the custom event
401

definition. The custom event block that appears on the palette will then use the
user routine you initialized in the class definition instead of the default method.

To configure the custom event logic:

1 Choose View > Toolbox - G2, display the Procedure palette, and create a
Method:

2 Choose Properties on the method and create a method named opt-domain-
object-event-logic with the signature above that describes the event logic.

For example, here is the opt-domain-object-event-logic method for the
pump-discharge-event custom event definition. The method checks for the
existence of an opt-pressure-sensor that is the-discharge-pressure-of the
input value of the event, which is an instance of opt-pump. If the pv of the
pressure sensor is below the discharge-low-limit of the event, then the method
returns true. The method is called for any pump-discharge-event instance.

opt-domain-object-event-logic (event: class pump-discharge-event,
input-value: item-or-value, domain-object: item-or-value) = (item-or-value)
begin

{Check for Discharge Pressure sensor existence and if pv violates low limit}
if there exists an opt-pressure-sensor P that is

the-discharge-pressure-of input-value
and the pv of P < the discharge-low-limit of event

then return true
else return false

end
402

Configuring the Generic Event Detection Diagram for the Custom Event
Configuring the Generic Event Detection
Diagram for the Custom Event

Once you define the event logic for the classes in your event hierarchy, you can
create custom event blocks and use them with other GEDP blocks to create
generic dataflow templates for monitoring domain object classes for event
detection, testing, or response.

To configure the generic event detection diagram for the custom event:

1 Choose View > Toolbox - Event Detection, display the Event Detection
Diagrams palette, and create an Event Detection Template of the desired type:
403

2 Configure the properties of the Event Detection Template for the custom
event.

Here is the Event Detection Template for the Low Discharge Pressure event:

The Template Name is Low Discharge Pressure, the Target Class is opt-pump,
the Category is Pump Analysis, the Evaluation Interval is 5. Enable the
Activated option to activate the diagram. Enable the Is Persistent option to
allow limits configured in the specific event detection diagram to persist
through application initialization.
404

Configuring the Generic Event Detection Diagram for the Custom Event
3 Create a generic event detection template that incorporates your custom event
block.

Here is the detail of the Low Discharge Pressure generic event detection
template for an opt-pump, which uses the Low Discharge Pressure custom
event block:

You create the Pump Discharge Event from the Pump Events palette in the
Event Detection toolbox. The Fetch Intelligent Object block gets the opt-pump
instance for the specific event detection diagram and passes it to the custom
Low Discharge Pressure event. For details, see the G2 Event and Data
Processing User’s Guide.

When this event detection diagram is executed for an instance of opt-pump,
the pump is passed as the input to the Low Discharge Event block, which
executes the opt-domain-object-event-logic method to determine if a low
discharge pressure exists.

Custom event
block

Fetch Intelligent
Object
405

4 Configure the user-defined attributes of the custom event block in the
properties dialog.

Here is the properties dialog for the Pump Discharge Event event block,
which configures the Discharge Low Limit to be -99999.0:

You configure limits for the custom event block in the specific event detection
diagrams for specific domain objects. See Configuring the Specific Event
Detection Diagram for the Custom Event.
406

Configuring the Generic Event Detection Diagram for the Custom Event
5 To generate a message when the event is true, click the Event Message tab in
the properties dialog for the custom event block in the generic diagram and
configure the Message Text and other properties, as needed.

Here is the Event Message tab for the properties dialog of the Low Discharge
Pressure event block:

In the Message Text, the $Key and $discharge-low-limit references cause actual
values for the name of the pump being monitored and the Discharge Low
Limit of the event to be substituted in the message. The Event Priority is
configured to be 1.
407

Configuring the Specific Event Detection
Diagram for the Custom Event

Once you have created and configured the generic event detection template for
the target class, you must configure the specific event detection diagram for each
instance of the target class in your process map. For details, see Configuring
Domain Objects.

To configure the specific event detection diagram for the custom event:

1 Create and configure a process map that includes instances of the target class
and any related sensors that the custom event requires.

Here is a pump and a pressure sensor, where the P-100 pressure sensor is
configured as the Discharge Pressure related sensor of the P-1 pump:
408

Configuring the Specific Event Detection Diagram for the Custom Event
409

2 Enable the custom event detection diagram for the domain object in the
process map.

To enable the specific Low Discharge Pressure event for the P-1 pump, choose
Enable Dataflow Event Detections and move the Low Discharge Pressure
event from the Available list to the Active list:

You can also enable the custom event detection diagram by initializing the
application.

3 Choose Show Logic on the domain object and choose the specific event
detection diagram to configure.

Here is the specific Low Discharge Pressure event detection diagram for the
P-1 pump:
410

Configuring the Specific Event Detection Diagram for the Custom Event
4 Configure the attributes of the custom event block in the specific diagram for
the particular domain object.

To configure the Pump Discharge Event block for the P-1 pump, choose
Properties on the Low Discharge Pressure Event block:

If the Discharge Low Limit is set to 250.0, a message is generated when the PV
of the Discharge Pressure related sensor of the P-1 pump goes below 250.0.
411

Testing the Custom Event
To test the custom event:

1 Display the properties dialog for the P-100 pressure sensor and display the
properties dialog for the p-100.pv internal datapoint.

2 Configure the Datapoint Value to be a value below the Discharge Low Limit
of the Low Discharge Pressure custom event.

3 Choose Run Detection Logic on the P-1 pump to test the logic and choose the
specific event detection diagram to run:

4 Choose View > Message Browser.

Here is the message that occurs when the discharge pressure is 249:
412

23
Customizing
Optegrity
Describes how to customize Optegrity.

Introduction 413

Interacting with Objects in Developer Mode 414

Using the G2 Toolbox 415

Configuring User Preferences 419

Application Initialization 426

Custom Data Source Integration 426

Working with Engineering Unit Conversions 432

Custom Messaging 436

Custom Menus 437

Introduction
Optegrity allows you to customize and work with these features:

• Objects.

• User preferences.

• Application initialization.

• Data source integration with DCS systems.

• Engineering unit conversions.
413

• These aspects of messaging:

– Message browsers.

– Message log handling.

– Message classes.

– Message text substitution.

– Message color lookup tables.

– Timestamp format.

– Message correlation.

– Message priority escalation.

• Top menu bar and popup menus.

To customize Optegrity, you must switch to Developer mode. You might also be
required to switch to System-Administrator or Administrator mode.

To customize Optegrity, you use objects in the various palettes of the G2 toolbox,
for example, G2 procedures and methods.

Interacting with Objects in Developer Mode
In general, in Modeler mode, Optegrity hides container objects, such as the
process map container. When you choose an object in the Project menu, Optegrity
displays the properties dialog or the model detail, as appropriate for the type of
object. For example, it displays the properties dialog for data replay, and it goes to
the model detail for a process map. Similarly, you cannot go to these objects
through the Manage dialogs.

You can access objects directly through the Navigator or search by using the Go
To menu choice. You can also switch to Developer mode to enable the Go To
menu choice in the Manage dialogs.
414

Using the G2 Toolbox
Depending on the type of object, when you go to the object, the object appears in a
repository. For example, here is the result of choosing Go To on a Process Map
container:

If you prefer to interact with objects directly, you can configure the Indicate Items
user preference to go directly to the object itself in its repository when choosing
objects from the Project menu. For details, see Configuring User Preferences,

Using the G2 Toolbox
Optegrity provides palettes for various core G2 objects for customizing
applications. The Core G2 Objects palette is only available in Developer mode.

For information on using these G2 objects, see the G2 Reference Manual.

To display the Core G2 Objects palettes:

1 Switch to Developer mode.

For details, see Switching User Modes.

2 Choose View > Toolbox - G2.
415

Here are the palettes from which to choose:
416

Using the G2 Toolbox
Here are the palettes in the G2 toolbox:
417

For information on this palette... See...

Button
Definitions and Relations
Displays
G2 Array
G2 List
G2 Parameter
G2 Variable
Procedures and Rules

G2 Reference Manual

Domain Model Building a Process Map
418

Configuring User Preferences
Configuring User Preferences
In System-Administrator and Administrator modes, you can configure additional
attributes for each user preference. For information about basic user preferences,
see Configuring User Preferences.

In addition to configuring user preferences that Optegrity creates automatically
when you start the server and client, you can also create new user preferences for
specific clients, based on their user name.

To configure user preferences:

1 Switch to System-Administrator or Administrator mode.

2 Choose Project > System Settings > Users and choose the user preference to
configure or create a new user preference, using the Manage dialog.

Network Interfaces Configuring Network Interfaces

Interface Pools Using Interface Pools

Message Browsers
Message Queues

G2 Event Manager User’s Guide

User Interface G2 Run-Time Library User’s Guide

UIL Navigation Buttons G2 GUIDE User’s Guide

Web Requests G2 Web User’s Guide

For information on this palette... See...
419

The User Preferences dialog appears:
420

Configuring User Preferences
3 Configure the customization attributes, as follows:

Attribute Description

General

User Name The user name associated with the user preference.
The default User Name is the user name for the
current user. To create a user preference for a new
user, enter the user name of a user in the g2.ok file,
which must be a symbol. For details, see Chapter 62
“Licensing and Authorization” in the G2 Reference
Manual.

Configuration
Permission

Whether to allow the user to switch to configure the
application in Modeler mode. By default,
Configuration Permission is enabled, which means
when the operator clicks the close button in the
operator interface, Optegrity switches to Modeler
mode. In Modeler mode, you can create and
configure applications, using the top menu bar.
When Configuration Permission is disabled,
Optegrity closes the client when the operator clicks
the close button in the operator interface. We
recommend that you disable this option for
operators.

Disconnect
Permission

Whether to allow the user to disconnect the client
from the server, using the File > Close menu choice.
By default, all users can disconnect the client from
the server.

Shutdown
Permission

Whether to allow the user to shut down the server,
using the File > Exit menu choice. By default,
modelers and operators cannot shut down the
server.

Show Logbook Whether to show the G2 Logbook when an error
occurs.
421

Message Browser

Subscribe to Queues The message queues to which the specified user
subscribes. By subscribing to a queue, the user sees
messages associated with that queue in the Message
Browser view of the operator interface. Messages
for the Messages queue appear in the Message
Browser. These message include intelligent object
messages; SymCure messages configured for root
causes, alarms, test actions, and repair actions;
messages generated from GEDP diagrams; and
general informational messages.

Note: SymCure queues specific events and actions
in the Alarms, Root Causes, Test Actions, and
Repair Actions queues, and displays them in the
four diagnostic console browsers. SymCure also
allows you to configure operator messages for
individual events and actions, which provide richer
information to the operator, including message
contents, advice, and detail. Operator messages for
events and actions are displayed in the Message
Browser. If you configure operator messages for
SymCure events and actions, we recommend that
you do not subscribe to the four SymCure queues,
because this may result in duplicated messages in
the Message Browser.

Subscribed Queues
Filter

The default filter to apply for filtering messages in
the subscribed queues. For details, see Configuring
Filters.

Visible Message
Attributes

The properties to show in the message details. By
default, all properties are showing. For details, see
Configuring Message Details.

Acknowledge
Messages Permission

Whether to allow the user to acknowledge
messages in the Message Browser view of the
operator interface. By default, operators can
acknowledge messages.

Delete Messages
Permission

Whether to allow operators to delete messages in
the Message Browser view of the operator interface.
By default, users can delete messages.

Attribute Description
422

Configuring User Preferences
Configuring Filters

By default, the Message Browser shows all messages. You might want to restrict
the messages that appear for a particular user in a given user mode. You can filter
messages, based on a variety of criteria, including priority, object type, category,
and age.

To configuring filters:

 In the user preferences dialog, click the Subscribed Queues Filter button and
configure the filter criteria.

Here is the default filter dialog:

Attribute Description

Filter Messages by
Priority

The priority of the messages to show.

Process Map

Process Map Filter

The process map for which to show messages
when Process Map Filter is enabled.

Class

Class Filter

The classes for which to show messages when
Class Filter is enabled.
423

Category

Category Filter

The category of messages to show when
Category Filter is enabled.

Target

Target Filter

The target object for which to show messages
when Target Filter is enabled.

Target Class

Target Class Filter

The target class for which to show messages
when Target Class Filter is enabled.

User

User Filter

The user for which to show messages when
User Filter is enabled.

Group

Group Filter

The group for which to show messages when
Group Filter is enabled.

Maximum Age

Update Time Filter

The maximum age of messages to show when
Update Time Filter is enabled.

Unacknowledged
Messages Only

Whether to show unacknowledged messages
only. By default, acknowledged messages are
visible.

Exclude Messages
For Inactive Targets

Whether to exclude messages if the target object
status is inactive.

Attribute Description
424

Configuring User Preferences
Configuring Message Details

By default, when you click the Properties button for a message in the Message
Browser, all message details appear. You can restrict the contents of the message
details dialog.

To configure message details:

 In the user preferences dialog, click the Message Details button and configure
the attributes to appear in the Message Detail Selection dialog by removing
attributes from the Selected Attributes column, as needed.

By default, all message details appear:

Here is the default message details for a message with all attributes showing:
425

Here is the message details for a message with just four attributes visible:

Application Initialization
You can call the following APIs to initialize and uninitialize applications
programmatically.

guif-initialization-process-maps
(win: class ui-client-item)

Initializes process maps and domain objects, creates external datapoints,
recompiles SymCure diagrams, and clears message browsers. Initializing
process maps creates specific GEDP diagrams for each domain object in a
process map.

guif-uninitialization-process-maps
(win: class ui-client-item)

Deletes specific event detection diagrams for domain objects in all process
maps. You might need to uninitialize a process map after making changes to
the GEDP diagram for a domain object.

Custom Data Source Integration
Optegrity supports custom data source integration for PLC or DCS systems other
than OPC and PI, which are built into Optegrity. Custom network interfaces
support the same functionality as the built-in network interfaces, namely creating
external datapoints from a specification in a CSV file, relating those datapoints to
internal datapoints, and replaying datapoint from a CSV file.

Creating a custom data source requires the G2 Data Source Manager (GDSM) and
G2 Run-Time Library (GRTL) modules. Here are the high-level steps for creating
a custom data source.
426

Custom Data Source Integration
To create a custom data source:

1 Create a new KB that requires the GDSM and GRTL modules to contain the
custom data source and external datapoint definitions.

2 Create a GDSM network interface class and implement its methods.

For details, see Creating the Custom Network Interface Class.

3 Create GRTL external datapoint classes of the required types and implement
their methods.

For details, see Creating the Custom Network Interface Class.

4 Create a CSV template file to import the external datapoints.

Creating the Custom Network Interface Class

The network interface class definition must inherit from gdsm-dcs-interface. The
class can also multiply inherit from the built-in OPC or PI interface classes,
gdsm-opc-interface or gdsm-pi-interface.

You must implement the following method for your custom network interface
class:

gdpm-get-external-datapoint-class-name
(io: class gdsm-external-system-interface, datapoint-type: symbol)
-> external-datapoint: symbol

Returns a valid grtl-external-datapoint subclass given a GDSM network
interface and a datapoint type. Values for datapoint-type are: real, float,
integer, text, logical, or digital.

You can optionally implement the following method for your custom network
interface class:

gdsm-network-interface-configure
(io: class gdsm-external-system-interface,
network-pool: class gdsm-network-connection-pool)

Configures a GDSM network interface, using a network pool. A network pool
can contain multiple network interface objects on its detail. When allocating
resources for load balancing, Optegrity chooses a network interface, based on
availability.

gdsm-network-interface-get-status
(io: class gdsm-external-system-interface)
-> connection-status: symbol

Determines the status of the network connection between a GDSM network
interface and the external bridge process, refreshes the icon of the interface,
based on the status, and returns the status. The return values are one of these
427

symbols: connected, not-connected, in-transition, timed-out, or
connection-lost.

gdsm-network-interface-connect
(io: class gdsm-external-system-interface, host: text, port: integer,
connection-timeout: integer)

Connects a GDSM network interface to an external bridge process, given a
host and port. The connection times out after connection-timeout seconds.

gdsm-network-interface-disconnect
(io: class gdsm-external-system-interface)

Disconnects a GDSM network interface from the bridge process.

gdsm-network-interface-animate
(io: class gdsm-external-system-interface, allocated: truth-value)

Animates a GDSM network interface as it gets allocated and deallocated for
communication via the bridge, where allocated is true when the interface is
allocated for communication.

grtl-show-properties
(item: class gdsm-external-system-interface,
client: class ui-client-item)
-> exists: truth-value

Displays the properties dialogs of a GDSM network interface in a given client
window. The method returns true if the interface exists; otherwise, it returns
false.

gdsm-network-interface-handle-connection-timeout
(io: class gdsm-external-system-interface)

Implements the connection timeout behavior of a GDSM network interface.

gdsm-network-interface-handle-connection-failure
(io: class gdsm-external-system-interface)

Implements the connection failure behavior of a GDSM network interface.
428

Creating Custom External Datapoint Classes
Creating Custom External Datapoint Classes

Creating Custom External Datapoint Classes
When creating a custom external datapoint class, we recommend inheriting from
these classes:

• gsi-data-service, gdpm-io-variable, variable-or-parameter

• The specific GRTL external datapoint type: grtl-external-float-datapoint, grtl-
external-integer-datapoint, grtl-external-text-datapoint, grtl-external-symbolic-
datapoint, or grtl-external-logical-datapoint.

Your custom class should define attributes to uniquely identity variables and
their associations in the control system.

You must implement the following methods for your external datapoint classes:

gdpm-io-configure-variable
(io-variable: class gdpm-opc-variable, block: class gdpm-io-block,
tokens: sequence, client: class ui-client-item)

Creates and configures external datapoints from a CSV file and places them
on the detail of an External Datapoints container. The method should extract
specific configuration information from the sequences derived from the CSV
file and assign them to the newly created external datapoints.

grtl-show-properties
(item: class gdpm-opc-variable, client: class ui-client-item)
-> truth-value

Displays the properties dialog of an external datapoint. The method returns
true if the user presses OK to exit the dialog, and false otherwise.

Example: TDC Data Source Integration

Here are the key classes and methods for defining a custom DCS interface class
and associated external datapoints for a TDC system.

The complete example is available in gdpm-demo.kb, which is located in the
g2i examples directory.
429

Custom Network Interface Class

Custom Network Interface Class

Here is a custom DCS interface class for interfacing with a TDC system:

Here is the implementation of the gdpm-get-external-datapoint-class-name
method for the custom TDC interface class:

gdpm-get-external-datapoint-class-name(io: class gdpm-g2tdc-gateway-interface ,
datapoint-type: symbol) = (symbol)
{
This method should return a valid grtl-external-datapoint subclass given the the io
interface type and the datapoint type. Values for datapoint-type maybe real, float,
integer, text, logical, or digital.
}
variable-class: symbol ;
begin

case (datapoint-type) of
REAL: variable-class = the symbol gdpm-g2tdc-pv;
FLOAT: variable-class = the symbol gdpm-g2tdc-pv;
INTEGER: variable-class = the symbol gdpm-g2tdc-integer ;
otherwise: variable-class = the symbol gdpm-g2tdc-pv ;

end;
return variable-class;

end
430

Creating Custom External Datapoint Classes
Custom External Datapoint Classes

Here is the class hierarchy for the custom external datapoint classes required by
the TDC interface:

Here is the implementation of the method for the custom TDC interface class:

gdpm-io-configure-variable(io-variable: class gdpm-g2tdc-data-point , block: class
gdpm-io-block, tokens: sequence, win: class ui-client-item)

{
Configures the external datpoint TDC specific configurations based on the values
from the csv file. Starting at the index 24 within the tokens start the column in the
spreadsheet that are specific to each gsi interface. In this example we extract the tag
and the index.
}

bridge-name: symbol = the bridge-name of block;
interface: class gdpm-g2tdc-gateway-interface;
tag: symbol;
index: integer;

begin

call next method;

{ --- Setup the TDC specific fields using the values from the csv file }

tag = call grtl-uppercase-symbol("[TOKENS[24]]");
if text-begins-with-quantity("[TOKENS[25]]") then

index = quantity("[TOKENS[25]]")
else

index = 0;
431

conclude that the g2tdc-tag of io-variable = tag;
conclude that the g2tdc-parameter-index of io-variable = index;

{ --- The interface object must exist, otherwise create it }

if not(there exists a gdpm-g2tdc-gateway-interface interface named by
bridge-name) then
call gdpm-io-create-interface(block, the symbol

gdpm-g2tdc-gateway-interface, win);

end

Here is the implementation of the method for the custom TDC interface class:

grtl-show-properties (Itm: class gdpm-g2tdc-data-point, Client: class ui-client-item) =
(truth-value)

{
This method will open the property dialogs of an object if defined
}

ret: truth-value = true;
Dlg: item-or-value;
Btn: item-or-value;

begin
Dlg, Btn = call uil-control-dialog-callback

("gdpm-external-datapoint-tdc-configuration-dialog" , the symbol none,
gdpm-external-datapoint-tdc-variable-configuration-dialog-actions,
Itm, Client);

if Btn exists and Btn is an uil-button and the label of Btn = "OK" then ret =
true;

if Dlg exists and Dlg is a uil-dialog then call
grtl-cleanup-and-release-dialog (Dlg, Client);

return ret;

end

To view the properties dialog definition, see the gdpm-demo.kb example KB.
432

Working with Engineering Unit Conversions
Working with Engineering Unit Conversions
You can use the following API procedures and functions to work with
engineering unit conversions programmatically your Optegrity or G2 application.
They provide the ability to:

• Convert values from one engineering unit to another for a given dimension.

• Convert from internal to external units, and from external to internal units for
a given dimension.

• Get the internal units of a given dimension in either the metric or English
system.

• Get the units for a given parameter of a sensor or controller.

Dimension Types

Optegrity defines built-in engineering units for a number of dimension types,
which it uses for displaying engineering units. The dimension types categorize
the units that the various parameters and metrics require.

In the API procedures and functions that follow, the dimension-type is one of
these symbols:

pressure
length
area
volume
volumetric-flow
volumetric-heat-capacity,
volumetric-enthalpy
mass
mass-flow
mass-heat-capacity
mass-enthalpy,
density
density-slope
specific-volume
temperature
power
heat-transfer,
time
molar-volume
voltage
current
433

Dimension Units

Optegrity allows you to configure the units of a given dimension for entering
parameters and displaying metrics for domain objects, in a given unit system. For
example, if the unit system is metric and you are configuring the units for the
process-pc of the Heater Efficiency derived sensor of a heater, you can choose
from the following metric units:

Similarly, if the unit system is english, you would choose from these units:

In the API procedures and functions that follow, the dimension units that you
specify as arguments should be one of the built-in synonyms, as a text. These are
either input or output units, or internal or external units, depending on the API.

Note that spaces are stripped from the units, so the spaces you enter do not
matter.

Note If you enter a dimension unit that is not one of the built-in synonyms, Optegrity
automatically creates the specified unit synonym and places it in the Undefined-
Dimensions category in the Unit Synonyms dialog. Typically, undefined
synonyms constitute typographical errors in the API procedure code.

kilojoule per cubic
meter degree celsius

kj/m3-C kj/m3-deg C

joule per cubic meter
degree celsius

j/m3-C j/m3-deg C

kilocalorie per cubic
meter degree celsius

kcal/m3-C kcal/m3-deg
C

calorie per cubic meter
degree celsius

cal/m3-C cal/m3-deg C

btu per cubic foot
degree fahrenheit

btu/ft3-F btu/ft3-deg F
434

Working with Engineering Unit Conversions
Conversion Status

The API procedures that convert engineering units all return the following status
values, as a text, to indicate whether the conversion was successful:

Status Description

converted A conversion definition was found and the input value
was successfully converted.

undefined A conversion definition was not found because of an
unrecognized dimension-type, input-units, or output-
units. This status can mean that either a conversion has
not been defined, or that the user is supplying an input
or output synonym for an existing conversion that is
not yet recognized and needs to be added to the
appropriate synonym definition. Check the API call for
correct units, or create custom synonyms or custom
conversion definitions, as needed.

unrecognized
equation type

The equation type for the conversion definition was not
recognized as one of the following symbols:

MULTIPLIER-ONLY
MULTIPLY-FIRST
OFFSET-ONLY
OFFSET-FIRST

For custom conversions, modify the Equation Type. For
built-in conversions, contact Gensym support.

missing eu organizer The GEUC organizer object is missing. This error can
occur only if a user or procedure specifically deletes the
packaged organizer object. Report occurrences of this
status to Gensym support.

no sequence The requested dimension could not be matched in the
GEUC conversion organizer object. Check the API call
for the correct dimension. The API automatically
creates an empty custom conversion definition, which
you can edit through the manager.

zero multiplier The Multiplier for the requested conversion is zero,
which would create a divide-by-zero error if executed.
For custom conversions, update the Multiplier
parameter and retry the unit conversion. For built-in
conversion, contact Gensym support.
435

API Procedures

geuc-convert-engineering-units
(dimension-type: symbol, input-value: quantity,
input-units: text, output-units: text)
-> output-value: quantity, status: text

Converts an input value to an output value of a given dimension, given the
input and output units.

procedure abort A serious programming error occurred. Send G2
Logbook error messages to Gensym support for
analysis.

abort A serious programming error occurred. Send G2
Logbook error messages to Gensym support for
analysis.

Status Description

Argument Description

dimension-type The dimension type, as a symbol. See Dimension
Types.

input-value The input value to convert.

input-units The input units to use for the conversion, as a text.

output-units The output units to use for the conversion, as a text.

Return Value Description

output-value The converted output value in the given output
units.

status The status of the conversion. See Conversion Status.
436

Custom Messaging
Custom Messaging
You can customize these aspects of messaging:

• The message browser.

• Message logging behavior.

• Message classes, message text, message color, and timestamp format.

• Message correlation.

• Message priority escalation.

For a complete description of how to customize messaging, see the G2 Event
Manager User’s Guide.

Custom Menus
You can customize the menus that Optegrity displays in the top menu bar, as well
as popup menus on items.

To customize menus in the Telewindows user interface, you use API procedures
provided by GRTL. For details, the G2 Run-Time Library User’s Guide.

To customize menus in the classic user interface, you must be familiar with G2
Menu System (GMS), which provides graphical tools and API procedures for
extending the top menu bar and popup menus for various classes. For details, see
the G2 Menu System User’s Guide.

Custom Popups

Suppose you implement a custom DCS interface, and you want to add menu
choices to the popup menu for the network interface or external datapoint classes.
To do this, you must implement the following methods:

grtl-item-exec-menu-callback
(target: class gdpm-g2tdc-gateway-interface, label: symbol, action: symbol,
win: class ui-client-item)

Called after the user selects a popup menu.

grtl-object-popup-menu-constructor
(target: class gdpm-g2tdc-gateway-interface, user-mode: symbol,
cascading-property-menu: truth-value, templates-list: class item-list,
win: class ui-client-item)

Called when a popup menu needs to be displayed. This procedure builds
the popup menu, using the GMS features that dynamically create menus.
The method can take contextual information into account to configure the
item popup menu.
437

For a complete example, load the gdpm-demo.kb located in the g2i examples
directory.

Implementing the Popup Constructor

This example shows a popup constructor that builds a popup menu for a custom
DCS interface class. See Example: TDC Data Source Integration.

grtl-object-popup-menu-constructor(target: class gdpm-g2tdc-gateway-interface,
user-mode: symbol, cascading-property-menu: truth-value,
TemplatesList: class item-list, win: class ui-client-item)

{
This method is called whenever a popup menu of this class needs to be displayed.
The purpose of this procedure is to dynamically build the menu per item class. It
recursively walks through the class hierarchy to build the emnu structure and can into
account any contextual information to build and configure the popup menu system.
}
mct: class gms-choice-template;
cdt: class gms-dynamic-cascade-template;
sep: class gms-separator-template;
isModeler: truth-value = false;
isOperator: truth-value = false;

begin
call next method;

if user-mode = the symbol administrator or user-mode = the symbol
developer or user-mode = the symbol modeler then
isModeler = true;

if isModeler or user-mode = the symbol operator then
isOperator = true;

create a gms-separator-template sep;
insert sep at the end of TemplatesList;

create a gms-choice-template mct;
conclude that the gms-text-resource-group of mct = the symbol

gdpm-demo-text-resources;
conclude that the gms-label of mct = the symbol gdpm-demo-toggle-

has-external-scheduler ;
conclude that the gms-initially-enabled of mct = (if isModeler and the

names of target exists then true else false);
insert mct at the end of TemplatesList;

end
438

Custom Menus
Implementing the Callback that Executes the Popup

This example shows the callback when displaying a popup menu for a custom
DCS interface class. See Example: TDC Data Source Integration.

grtl-item-exec-menu-callback(target: class gdpm-g2tdc-gateway-interface,
label: symbol, action: symbol, Win: class ui-client-item)

{
This method is called when a popup menu is selected and needs to be excecuted.
The action specifies the menu and therefore the action to execute. This example is
very simple and the intend is to show the overall architecture.
}
begin

{ --- Execute action }
case (action) of

gdpm-demo-toggle-has-external-scheduler:
begin

conclude that the external-system-has-a-scheduler of target =
not(the external-system-has-a-scheduler of target);

end;
otherwise :

begin
call next method;

end;
end

end
439

440

24
Configuring
Startup Parameters
Describes the parameters that you can configure in the Optegrity startup file.

Introduction 442

Installation Directory 442

GRTL 442

GDSM 445

GEVM 446

GEUC 449

GRLB 449

CDG (SymCure) 450

CDGUI (SymCure) 451

GEVM-GQS-QUEUE Instances 451

User Interface 457

Intelligent Objects 462

F102Demo 462

Network Interface Connections 462
441

Introduction
You can configure a number of parameters in a startup file to define the default
behavior of the various Optegrity modules. You configure these parameters in the
config.txt file, which is located in the g2i\kbs directory.

The config.txt file defines default values for all these parameters, which you
can modify, as needed. The parameters are organized in the file according to the
module they control.

This chapter documents each parameter and it default value.

Installation Directory
INSTALL-DIR=C:\Program Files\Gensym\g2-2011

The default installation directory for the application.

GRTL

Applications

APPLICATION-ERROR-ENABLED=true

Configures the gfr-error-handling-enabled attribute in the gfr-startup-settings.
For more information, see the G2 Error Handling Foundation User’s Guide.

APPLICATION-ERROR-INFORM-ENABLED=true

If true, enables error logging to the G2 Logbook.

APPLICATION-ERROR-LOG-ENABLE=true

If true, enables error logging to the log file specified by APPLICATION-
ERROR-LOG-FILE.

APPLICATION-ERROR-LOG-FILE=$APPLICATION-ROOT-
DIRECTORY\logs\kb-errors.log

Specifies the default location of the log file. The directory can refer to
$INSTALLATION-DIRECTORY, which is the default installation directory.

APPLICATION-LOCALIZATION-FILES=

The pathname to the GRTL resource file specified as a command-line option
to G2 at startup. The pathname may contain an asterisk (*) in the file name,
which is replaced with the language of the resource file to load, for example,
english. There is no default.
442

GRTL
APPLICATION-ROOT-DIRECTORY=$INSTALLATION-DIRECTORY

The root directory of the application. The default value is $INSTALLATION-
DIRECTORY, which is the default user installation directory.

APPLICATION-URL=

The default URL to access the application via the Web. There is no default.

APPLICATION-IS-WEB-HOSTED=false

If true, specifies that the application is running in a hosted environment,
which means, for example, it can restrict access to some functionality.

User Preferences

USER-PREFERENCES-CONFIGURATION-FILE=$APPLICATION-ROOT-
DIRECTORY/g2i/data/user-preferences.txt

The location of the configuration file for all grtl-user-preferences. The file
contains the preferences for all defined user preferences, each in its own
section. The settings are imported from the file to configure the user
preference objects in G2.

User Audit Files

USER-AUDIT-FILE-ENABLED=false

If true, logs all user log in, log out and change mode activities. The log file is
specified in the user-audit-file.

USER-AUDIT-FILE=$APPLICATION-ROOT-DIRECTORY\logs\user-audit-trail.
csv

The audit log file to use to log activities. The path name can start with the
pattern $APPLICATION-ROOT-DIRECTORY or $INSTALLATION-
DIRECTORY, which is replaced at runtime by their appropriate values.

UTC Offset

UTC-OFFSET=0

An integer giving the time offset for the current time zone from the UTC time,
for example, -5 for the East Coast of the US. This attribute is currently used to
generate the time axis for charts.
443

Repository

REPOSITORY-MODULE=top-level

The module name where Optegrity stores objects that are created
dynamically, using the Project menu. By default, Optegrity stores these
objects in the top-level module. You can also provide any valid module name.

Indicator Arrows

INDICATOR-DELETE-BY-DEFAULT=true

Determines the behavior of the indicator arrow Optegrity uses when you go
to various objects. By default, the indicator is deleted after the timeout given
by indicator-default-timeout. Set this parameter to false to cause the arrow to
remain visible until the user clicks it.

INDICATOR-DEFAULT-TIMEOUT=60

The timeout after which the indicator arrow is removed, in seconds.

INDICATOR-DEFAULT-COLOR=red

The default color of the indicator arrow. You can set this parameter to any
valid G2 color.

INDICATE-ITEMS=true

The default setting for the Indicate Items option in the user preferences
properties dialog, which determines whether to go to objects directly or to
show their properties dialog or detail, depending on the type of object. For
details, see Configuring User Preferences.

Timestamp Format

Optegrity provides the following parameters in the configuration file for
configuring the timestamp format that Optegrity uses in the Message Browser:

DATE-TIME-FORMAT=MONTH-DAY-YEAR-HOUR-MM-SS

Determines the date and time format. The default value shows the month,
day, year, hour, minute, and seconds, using this format: 11/27/03 11:27:03.
You can set it to any of these formats: year-month-day-hour-mm-ss,
month-day-year-hour-mm-ss, or day-month-year-hour-mm-ss.

DATE-TIME-FORMAT-DATE-DELIMITER=/

Determines the delimiter to use for separating the day, month, and year. The
default value is slash, as in 11/27/03.
444

GDSM
DATE-TIME-FORMAT-TIME-DELIMITER=:

Determines the delimiter to use for separating the hour, minutes, and seconds.
The default value is a colon, as in 11:27:03.

User Interface Refresh

USER-INTERFACE-REFRESH-PERIOD=15

The update frequency for updating message details in any of the message
browsers. For example, when the same message arrives on the same domain
object, the Repeat Count on the message details now updates to indicate the
new message count.

GDSM

Network Connections

NETWORK-CONNECTION-FAULT-CATEGORY=Network Connection

The category of the errors generated in GDSM.

CREATE-MESSAGE-UPON-CONNECTION-SUCCESS=false

If true and upon successful connection to the bridge process, causes an
operator message to be generated.

MINIMUM-PERSISTENCE-INTERVAL=5

As rules detect changes, gdsm-handle-bridge-connection waits this amount of
time to confirm the status change prior to posting messages. This delay might
help avoid actions when states change rapidly.

AUTO-CONNECT-INTERVAL=15

As rules detect changes, gdsm-handle-bridge-connection waits this amount of
time after the minimum-persistence-interval to confirm the status change prior
to scheduling auto-recovery actions. This delay might help to clear states, for
example, sockets in the OS or processes shutting down.

DEFAULT-HTTP-INTERFACE-IS-G2-HTTP-SERVER=true

Whether the default HTTP interface is the G2 HTTP server.
445

Enable Interfaces

ENABLE-DEFAULT-OPC-INTERFACE=false

Whether to enable the default OPC interface.

ENABLE-DEFAULT-PI-INTERFACE=false

Whether to enable the default PI interface.

ENABLE-DEFAULT-SQL-INTERFACE-POOL=false

Whether to enable the default SQL interface pool.

ENABLE-DEFAULT-SMTP-INTERFACE-POOL=false

Whether to enable the default SQL interface pool.

ENABLE-DEFAULT-HTTP-INTERFACE=true

The default HTTP interface name.

ENABLE-DEFAULT-SNMP-INTERFACE=false

Whether to enable the default SNMP interface.

ENABLE-DEFAULT-SNMP-TRAP-RECEIVER-INTERFACE=false

Whether to enable the default SNMP trap receiver interface.

GEVM

Messages

MESSAGE-REEVALUATION-ENABLED=false

Determines whether the priority of an operator message in the Message
Browser escalates automatically over time. If this parameter is set to true, the
message priority is reevaluated every period, according to the message-
reevaluation-period, and the priority is decreased by one level. If the life time
of a message has expired, the message is automatically deleted. By default,
message reevaluation is disabled.

MESSAGE-REEVALUATION-PERIOD=3600

The message reevaluation period, in seconds.

MAXIMUM-EVENT-HISTORY-STATES=10

The maximum number of state changes to keep in history for each message.
State changes include information about when the message is created,
acknowledged, and deleted, changes to the repetition count and priority, and
446

GEVM
information on when a message is subsumed by another message, based on
message correlation.

Message Color

Optegrity provides several parameters in the configuration file for configuring
message colors.

REVERSE-MESSAGE-COLOR-IF-ACKNOWLEDGED=true

Determines whether the message color is reversed when the message has been
acknowledged. By default, when a message is acknowledged, the text color
changes to become what was the background color. To avoid contrast
problems, the background color of acknowledged messages is smoke,
by default.

You can customize the background color of acknowledged messages. For
more information, see Custom Messaging.

CDG-MESSAGES-USE-STANDARD-COLOR-MAPPING=true

Determines whether messages about SymCure events use the SymCure color
mappings or whether they use the standard color mapping for operator
message. The default value is true, which uses the standard SymCure color
mappings. Set this parameter to false to provide a unified color mapping for
operators, based on the message-color-based-on parameter.

By default, SymCure uses red for specified as true, yellow for suspect, and
green for specified as false. When the event is inferred to be true or false, the
colors are salmon and lime-green, respectively.

For more information about what these values and status values mean, see the
SymCure User’s Guide.
447

MESSAGE-COLOR-BASED-ON=priority

Sets the mode for determining message color, which is priority, by default. The
default color mapping is based on priority, as follows:

You can also define message color, based on the colors defined in the process
map object containing the target object of the message. To do this, set this
property to process-map. For more information, see Creating a Process Map.

You can also define message color, based on message type. This configuration
requires knowledge of G2. For more information, see Custom Messaging.

Logbook and Message Board Handlers

REGISTER-LOGBOOK-MESSAGE-HANDLER=false

When true, messages posted to the logbook are rerouted to become GEVM
messages (gevm-notification-message) and inserted into the primary message
queue labelled Messages.

LOGBOOK-MESSAGES-PRIORITY=8

The initial priority of logbook messages rerouted as GEVM messages.

REGISTER-MESSAGE-BOARD-HANDLER=false

When true, messages posted to the message board are rerouted to become
operator messages (gevm-notification-message) and inserted into the primary
message queue labelled Messages.

MESSAGE-BOARD-MESSAGES-PRIORITY=9
448

GEUC
The initial priority of message board messages rerouted as GEVM messages.

Message Browser

JMAIL-INTERFACE-NAME=none

Specifies the default JMail interface to use for sending e-mail messages.

GEUC
GEUC-DATA-DIRECTORY=$APPLICATION-ROOT-DIRECTORY/g2i/data

The default directory for custom conversions and synonyms for engineering
units.

GRLB
GRLB-DELETE-HIDDEN-WORKSPACES-MONITOR-INTERVAL=300

The refresh time, in seconds, for a procedure monitoring the display of
workspace views created by the relation browser to detect workspaces that
are not visible on any G2 window and can, therefore, be deleted. If these
workspaces are not deleted, memory leaks can occur.

_GRLB-NAMES-VISIBLE=false

When true, the relation browser shows a name for every item it displays. This
parameter should always be false.

GRLB-DEFAULT-LAYOUT-ALGORITHM=grlb-circular-layout

Controls the layout for the display of relations. By default, the layout is
circular, that is, the selected item is shown at the center of a circle and its
related items are shown along the circumference of the circle. The radius of
the circle is determined by _GRLB-RADIUS. The other option is grlb-default-
layout, which shows the related objects above the selected item.

_GRLB-RADIUS=400

When using a circular layout, the radius of the circle.

GRLB-DELETE-PROXY-CLASS-DEFINITIONS-ON-STARTUP=true

By default, proxy class definitions are deleted whenever there is a restart. Set
this parameter to false to cache proxy class definitions within repositories in
the application KB, in which case they are never deleted.
449

CDG (SymCure)
These parameters control the default behavior of the SymCure diagnosis
manager. For a description of these parameters, see Chapter 6, “Configuring a
SymCure Application” in the SymCure User’s Guide.

CDG-TERMINATE-DIAGNOSIS-EARLY=true

CDG-UPSTREAM-LIMIT=1000

CDG-DOWNSTREAM-LIMIT=1000

CDG-DIAGNOSIS-DELETION-INTERVAL=300

CDG-DIAGNOSIS-DELETION-MONITOR-INTERVAL=300

CDG-INCREMENTAL-DIAGNOSIS-MONITOR-INTERVAL=120

CDG-COMPUTE-PRIORITY-PROCEDURE=unspecified

CDG-DEFAULT-TARGET-PRIORITY=1

CDG-UNCHANGED-EVENTS-MONITOR-NAME=cdg-unchanged-events-monitor

CDG-UNCHANGED-EVENTS-FILTER=false suspect unknown

CDG-UNCHANGED-EVENTS-MONITOR-INTERVAL=21600

CDG-AUDIT-INCOMING-EVENT-PROCEDURE=unspecified

CDG-AUDIT-ROOT-CAUSE-PROCEDURE=unspecified

CDG-AUDIT-ALARM-PROCEDURE=unspecified

CDG-AUDIT-DIAGNOSIS-BEFORE-DELETION-PROCEDURE=unspecified

CDG-AUDIT-DIAGNOSIS-STATUS-PROCEDURE=unspecified

CDG-AUDIT-DIAGNOSIS-AFTER-MERGER-PROCEDURE=unspecified

CDG-HORIZONTAL-DISTANCE=300

CDG-VERTICAL-DISTANCE=100

CDG-DISPLAY-ANIMATED-SPECIFIC-FAULT-MODEL=false

CDG-USER-DEFINED-SCHEDULING-PROCEDURE=unspecified

CDG-ENABLE-DEBUGGING=false

CDG-ALLOW-UNSPECIFIED-EVENT-TO-BE-ROOT-CAUSE=false

CDG-SPECIFIC-FAULT-MODEL-ARCHIVING-DIRECTORY=$APPLICATION-
ROOT-DIRECTORY/archives

CDG-GENERIC-FAULT-MODEL-ARCHIVING-DIRECTORY=$APPLICATION-
ROOT-DIRECTORY/archives
450

CDGUI (SymCure)
CDG-ROOT-CAUSE-EPISODES-ARCHIVING-DIRECTORY=$APPLICATION-
ROOT-DIRECTORY/archives

CDG-EPISODE-DELETION-MONITOR-INTERVAL=86400

CDG-ARCHIVE-GENERIC-FAULT-MODELS-ON-COMPILATION=true

CDG-ENABLE-CHECK-FOR-CHATTERING-EVENTS=true

CDG-LOOKBACK-FOR-CHATTERING=30

CDG-MAX-CHATTERING-REPETITIONS=10

CDG-MESSAGE-SUBSTITUTION-VERB-TAGS=$BECOMES $OCCURS

CDG-LOOKBACK-FOR-CHARTING-ROOT-CAUSE-EPISODES-
DISTRIBUTIONS=86400

CDG-INTERVAL-FOR-CHARTING-ROOT-CAUSE-EPISODES-
DISTRIBUTIONS=3600

CDGUI (SymCure)
These parameters control the default behavior of the SymCure user interface. For
a description of these parameters, see Chapter 6, “Configuring a SymCure
Application” in the SymCure User’s Guide.

RESOURCES-SUBDIRECTORY=resources/symcure

CDG-ALARM-MESSAGE-QUEUE=Alarms

CDG-ROOT-CAUSES-MESSAGE-QUEUE=Root Causes

CDG-TEST-ACTIONS-MESSAGE-QUEUE=Test Actions

CDG-REPAIR-ACTIONS-MESSAGE-QUEUE=Repair Actions

GEVM-GQS-QUEUE Instances
The following sections are used to initialize the configuration of GEVM-GQS-
QUEUE instances. The name in bracket needs to match the key of the queue.

Events

These parameters set the default behavior for archiving raw events. Raw events
do not appear in any browser, by default.

MAX-ENTRIES-IN-MEMORY=10000

The default maximum number of raw events to keep in memory. When the
number of raw events exceeds the maximum, the oldest events are deleted.
451

UPDATE-LATENCY=1.0

How often to update the queue, in seconds.

ARCHIVING-ENABLED=false

The default behavior for logging raw events. Set to true to log raw events. You
can configure additional logging behavior in the properties dialog for the
queue object. See Logging Messages.

ARCHIVING-LOG-TO-FILE-ENABLED=false

Whether logging to a file is enabled, by default.

ARCHIVING-LOG-TO-DATABASE-ENABLED=false

Whether logging to a database is enabled, by default.

ARCHIVING-LOG-TO-JMS-ENABLED=false

Whether logging to a JMS provider is enabled, by default.

ARCHIVING-LOG-CHANGES-ENABLED=true

Whether to log changes, by default.

ARCHIVING-LOG-ADDITIONS-ENABLED=true

Whether to log additions, by default.

ARCHIVING-LOG-REMOVAL-ENABLED=true

Whether to log removals, by default.

ARCHIVING-DIRECTORY=$APPLICATION-ROOT-DIRECTORY/logs

The default directory for archiving raw events, relative to the optegrity\kbs
directory.

ARCHIVING-FILENAME-TEMPLATE=log_events_*.csv

The default file name template to use for logging raw events. The * is replaced
by a key composed of a timestamp corresponding when the log file was
created and an index.

ARCHIVING-INTERVAL-TO-OPEN-NEW-LOG-FILE=86400

The default time interval to force the creation of a new log file, in seconds.

ARCHIVING-MAXIMUM-FILE-SIZE=500000

The default maximum size of a log file, in bytes. If the length of the log file
exceeds this size, a new log file is created.

ARCHIVING-DATABASE-INTERFACE=

The default database interface for logging to a database.
452

GEVM-GQS-QUEUE Instances
ARCHIVING-DATABASE-TABLE=gevm_events

The default table for logging to a database.

ARCHIVING-LOG-JMS-INTERFACE=

The default jms-interface for logging to a JMS provider.

ARCHIVING-LOG-JMS-AS-XML=false

Whether to log to JMS as XML.

Messages

These parameters set the default behavior for archiving operator messages, which
appear in the Message Browser.

MAX-ENTRIES-IN-MEMORY=10000

The default maximum number of operator messages to keep in memory.
When the number of raw events exceeds the maximum, the oldest events
are deleted.

UPDATE-LATENCY=1.0

How often to update the queue, in seconds.

ARCHIVING-ENABLED=false

The default behavior for logging operator messages. Set to true to log operator
messages. You can configure additional logging behavior in the properties
dialog for the queue object. See Logging Messages.

ARCHIVING-LOG-TO-FILE-ENABLED=false

Whether logging to a file is enabled, by default.

ARCHIVING-LOG-TO-DATABASE-ENABLED=false

Whether logging to a database is enabled, by default.

ARCHIVING-LOG-TO-JMS-ENABLED=false

Whether logging to a JMS provider is enabled, by default.

ARCHIVING-LOG-CHANGES-ENABLED=true

Whether to log changes, by default.

ARCHIVING-LOG-ADDITIONS-ENABLED=true

Whether to log additions, by default.

ARCHIVING-LOG-REMOVAL-ENABLED=true

Whether to log removals, by default.
453

ARCHIVING-DIRECTORY=$APPLICATION-ROOT-DIRECTORY/logs

The default directory for archiving operator messages, relative to the
optegrity\kbs directory.

ARCHIVING-FILENAME-TEMPLATE=log-messages-*.csv

The default file name template to use for logging operator messages. The * is
replaced by a key composed of a timestamp corresponding when the log file
was created and an index.

ARCHIVING-INTERVAL-TO-OPEN-NEW-LOG-FILE=86400

The default time interval to force the creation of a new log file, in seconds.

ARCHIVING-MAXIMUM-FILE-SIZE=100000

The default maximum size of a log file, in bytes. If the length of the log file
exceeds this size, a new log file is created.

Alarms

These parameters set the default behavior for archiving alarms, which appear in
the SymCure Alarms Browser.

MAX-ENTRIES-IN-MEMORY=100

The default maximum number of alarms to keep in memory. When the
number of raw events exceeds the maximum, the oldest events are deleted.

ARCHIVING-DIRECTORY=$APPLICATION-ROOT-DIRECTORY/logs

The default directory for archiving alarms, relative to the optegrity\kbs
directory.

ARCHIVING-FILENAME-TEMPLATE=log-messages-*.csv

The default file name template to use for logging alarms. The * is replaced by a
key composed of a timestamp corresponding when the log file was created
and an index.

ARCHIVING-INTERVAL-TO-OPEN-NEW-LOG-FILE=86400

The default time interval to force the creation of a new log file, in seconds.

ARCHIVING-MAXIMUM-FILE-SIZE=100000

The default maximum size of a log file, in bytes. If the length of the log file
exceeds this size, a new log file is created.

ARCHIVING-ENABLED=false

The default behavior for logging alarms. Set to true to log operator messages.
You can configure additional logging behavior in the properties dialog for the
queue object. See Logging Messages.
454

GEVM-GQS-QUEUE Instances
Root Causes

These parameters set the default behavior for archiving root causes, which appear
in the SymCure Root Causes Browser.

MAX-ENTRIES-IN-MEMORY=100

The default maximum number of root causes to keep in memory. When the
number of raw events exceeds the maximum, the oldest events are deleted.

UPDATE-LATENCY=1.0

How often to update the queue, in seconds.

ARCHIVING-DIRECTORY=$APPLICATION-ROOT-DIRECTORY/logs

The default directory for archiving root causes, relative to the optegrity\kbs
directory.

ARCHIVING-FILENAME-TEMPLATE=log-messages-*.csv

The default file name template to use for logging root causes. The * is replaced
by a key composed of a timestamp corresponding when the log file was
created and an index.

ARCHIVING-INTERVAL-TO-OPEN-NEW-LOG-FILE=86400

The default time interval to force the creation of a new log file, in seconds.

ARCHIVING-MAXIMUM-FILE-SIZE=100000

The default maximum size of a log file, in bytes. If the length of the log file
exceeds this size, a new log file is created.

ARCHIVING-ENABLED=false

The default behavior for logging root causes. Set to true to log operator
messages. You can configure additional logging behavior in the properties
dialog for the queue object. See Logging Messages.

Test Actions

These parameters set the default behavior for archiving test actions, which appear
in the SymCure Test Actions browser.

MAX-ENTRIES-IN-MEMORY=100

The default maximum number of test actions to keep in memory. When the
number of raw events exceeds the maximum, the oldest events are deleted.

UPDATE-LATENCY=1.0

How often to update the queue, in seconds.
455

ARCHIVING-DIRECTORY=$APPLICATION-ROOT-DIRECTORY/logs

The default directory for archiving test actions, relative to the optegrity\kbs
directory.

ARCHIVING-FILENAME-TEMPLATE=log-messages-*.csv

The default file name template to use for logging test actions. The * is replaced
by a key composed of a timestamp corresponding when the log file was
created and an index.

ARCHIVING-INTERVAL-TO-OPEN-NEW-LOG-FILE=86400

The default time interval to force the creation of a new log file, in seconds.

ARCHIVING-MAXIMUM-FILE-SIZE=100000

The default maximum size of a log file, in bytes. If the length of the log file
exceeds this size, a new log file is created.

ARCHIVING-ENABLED=false

The default behavior for logging test actions. Set to true to log operator
messages. You can configure additional logging behavior in the properties
dialog for the queue object. See Logging Messages.

Repair Actions

These parameters set the default behavior for archiving repair actions, which
appear in the SymCure Repair Actions browser.

MAX-ENTRIES-IN-MEMORY=100

The default maximum number of repair actions to keep in memory. When the
number of raw events exceeds the maximum, the oldest events are deleted.

UPDATE-LATENCY=1.0

How often to update the queue, in seconds.

ARCHIVING-DIRECTORY=$APPLICATION-ROOT-DIRECTORY/logs

The default directory for archiving repair actions, relative to the
optegrity\kbs directory.

ARCHIVING-FILENAME-TEMPLATE=log-messages-*.csv

The default file name template to use for logging repair actions. The * is
replaced by a key composed of a timestamp corresponding when the log file
was created and an index.

ARCHIVING-INTERVAL-TO-OPEN-NEW-LOG-FILE=86400

The default time interval to force the creation of a new log file, in seconds.
456

User Interface
ARCHIVING-MAXIMUM-FILE-SIZE=100000

The default maximum size of a log file, in bytes. If the length of the log file
exceeds this size, a new log file is created.

ARCHIVING-ENABLED=false

The default behavior for logging repair actions. Set to true to log operator
messages. You can configure additional logging behavior in the properties
dialog for the queue object. See Logging Messages.

User Interface
The following sections are used to configure user interface components such as
menubars, toolbars, status bar and pane windows. For details, see Part III,
User Interface Operations in the G2 Run-Time Library User’s Guide.

Default-Menubar

ENABLED=true

Default-Status-Bar

ENABLED=true

INITIALLY-VISIBLE=true

MINIMUM-HEIGHT=-1

Toolbars

Standard

ENABLED=true

INITIALLY-VISIBLE=true

INITIAL-DOCK=top

INITIAL-DOCK-PRIORITY=0

NEIGHBOR-DOC=left

NEIGHBOR-TOOLBAR=none

ENABLE-TOOLTIPS=true
457

Layout

enabled=true

INITIALLY-VISIBLE=true

INITIAL-DOCK=top

INITIAL-DOCK-PRIORITY=5

NEIGHBOR-DOC=left

NEIGHBOR-TOOLBAR=web

ENABLE-TOOLTIPS=true

Web

ENABLED=true

INITIALLY-VISIBLE=true

INITIAL-DOCK=top

INITIAL-DOCK-PRIORITY=10

NEIGHBOR-DOC=right

NEIGHBOR-TOOLBAR=layout

ENABLE-TOOLTIPS=true

Child Windows

Project-Hierarchy

ENABLED=true

INITIALLY-VISIBLE=true

WINDOW-PRIORITY=0

STATE=normal

CLOSEABLE=true

MINIMIZEABLE=true

MAXIMIZEABLE=true

RESIZEABLE=true

FLOATABLE=true

AUTOHIDEABLE=true

DRAGGABLE=true
458

User Interface
INITIAL-DOCK=left

NEIGHBOR-DOCK=within

NEIGHBOR-WINDOW-NAME=

LEFT=0

TOP=0

WIDTH=250

HEIGHT=350

Class-Hierarchy

ENABLED=true

INITIALLY-VISIBLE=false

WINDOW-PRIORITY=10

STATE=normal

CLOSEABLE=true

MINIMIZEABLE=true

MAXIMIZEABLE=true

RESIZEABLE=true

FLOATABLE=true

AUTOHIDEABLE=true

DRAGGABLE=true

INITIAL-DOCK=left

NEIGHBOR-DOCK=within

NEIGHBOR-WINDOW-NAME=

LEFT=0

TOP=0

WIDTH=240

HEIGHT=350

Module-Hierarchy

ENABLED=true

INITIALLY-VISIBLE=false

WINDOW-PRIORITY=20
459

STATE=normal

CLOSEABLE=true

MINIMIZEABLE=true

MAXIMIZEABLE=true

RESIZEABLE=true

FLOATABLE=true

AUTOHIDEABLE=true

DRAGGABLE=true

INITIAL-DOCK=left

NEIGHBOR-DOCK=within

NEIGHBOR-WINDOW-NAME=

LEFT=0

TOP=0

WIDTH=240

HEIGHT=350

Toolbox-G2

ENABLED=true

INITIALLY-VISIBLE=false

WINDOW-PRIORITY=35

STATE=normal

LARGE-ICON-SIZE=true

CLOSEABLE=true

MINIMIZEABLE=true

MAXIMIZEABLE=true

RESIZEABLE=true

FLOATABLE=true

AUTOHIDEABLE=true

DRAGGABLE=true

INITIAL-DOCK=left

NEIGHBOR-DOCK=bottom
460

User Interface
NEIGHBOR-WINDOW-NAME=project-hierarchy

LEFT=0

TOP=0

WIDTH=240

HEIGHT=350

[html-browser]

ENABLED=true

INITIALLY-VISIBLE=false

WINDOW-PRIORITY=0

STATE=normal

CLOSEABLE=true

MINIMIZEABLE=true

MAXIMIZEABLE=true

RESIZEABLE=true

FLOATABLE=true

AUTOHIDEABLE=true

DRAGGABLE=true

INITIAL-DOCK=left

NEIGHBOR-DOCK=within

NEIGHBOR-WINDOW-NAME=

LEFT=10

TOP=10

WIDTH=650

HEIGHT=450
461

Intelligent Objects
IOC-INTERNAL-UNIT-SYSTEM=english

F102Demo
These initialization parameters are used for the f102demo.kb.

CDG-DIAGNOSIS-DELETION-INTERVAL=10

CDG-DIAGNOSIS-DELETION-MONITOR-INTERVAL=5

Network Interface Connections
The following sections specify the default network interface connections.

default-opc-interface

BRIDGE-HOST-NAME=localhost

BRIDGE-HOST-PORT=22040

BRIDGE-CONNECTION-TIMEOUT=15

AUTO-CONNECT-TO-REMOTE-PROCESS=false

LAUNCH-REMOTE-PROCESS=false

SHUTDOWN-REMOTE-PROCESS-UPON-DISCONNECT=false

default-pi-interface

BRIDGE-HOST-NAME=localhost

BRIDGE-HOST-PORT=22041

BRIDGE-CONNECTION-TIMEOUT=15

AUTO-CONNECT-TO-REMOTE-PROCESS=false

LAUNCH-REMOTE-PROCESS=false

SHUTDOWN-REMOTE-PROCESS-UPON-DISCONNECT=false

default-sql-interface-pool

NETWORK-INITIAL-INTERFACE-COUNT=1

NETWORK-DEFAULT-HOST-NAME=localhost
462

Network Interface Connections
NETWORK-BASE-PORT-NUMBER=22060

NETWORK-CONNECTION-TIMEOUT=15

AUTO-CONNECT-TO-REMOTE-PROCESS=false

LAUNCH-REMOTE-PROCESS=false

SHUTDOWN-REMOTE-PROCESS-UPON-DISCONNECT=false

USER-NAME=

USER-PASSWORD=

DATABASE-CONNECT-STRING=

DATABASE-MAXIMUM-DEFINABLE-CURSORS=100

DATABASE-BIND-VARIABLE-PREFIX=:

default-smtp-interface-pool

NETWORK-INITIAL-INTERFACE-COUNT=1

NETWORK-DEFAULT-HOST-NAME=localhost

NETWORK-BASE-PORT-NUMBER=22050

NETWORK-CONNECTION-TIMEOUT=15

AUTO-CONNECT-TO-REMOTE-PROCESS=false

LAUNCH-REMOTE-PROCESS=false

SHUTDOWN-REMOTE-PROCESS-UPON-DISCONNECT=false

USER-NAME=

USER-PASSWORD=

INCOMING-EMAIL-HOST=localhost

INCOMING-EMAIL-PROTOCOL=pop3

INCOMING-EMAIL-FOLDER=INBOX

INCOMING-EMAIL-DELETE-MESSAGES-ON-HOST=false

OUTGOING-EMAIL-HOST=localhost

OUTGOING-EMAIL-FROM-ADDRESS=g2@localhost

default-http-interface

BRIDGE-HOST-NAME=localhost

BRIDGE-HOST-PORT=22042
463

BRIDGE-CONNECTION-TIMEOUT=15

AUTO-CONNECT-TO-REMOTE-PROCESS=true

LAUNCH-REMOTE-PROCESS=true

SHUTDOWN-REMOTE-PROCESS-UPON-DISCONNECT=true

LOGGING-ENABLED=false

ADD-HTTP-REQUEST-ATTRIBUTES-TO-LOG=false

LOG-FILE=$APPLICATION-ROOT-DIRECTORY/logs/g2-http-server-log.txt

HTTP-SERVER-PORT=8085

HTTP-SERVER-SSL-ENABLED=false

HTTP-SERVER-SSL-CERTIFICATE-FILE=

HTTP-SERVER-ROOT-DIRECTORY=$INSTALLATION-
DIRECTORY/g2i/data/http_root

default-snmp-interface

BRIDGE-HOST-NAME=localhost

BRIDGE-HOST-PORT=22043

BRIDGE-CONNECTION-TIMEOUT=15

AUTO-CONNECT-TO-REMOTE-PROCESS=false

LAUNCH-REMOTE-PROCESS=false

SHUTDOWN-REMOTE-PROCESS-UPON-DISCONNECT=false

REMOTE-PROCESS-INITIALIZATION-STRING=-p 2 -t 8 -d

default-snmp-trap-receiver-interface

BRIDGE-HOST-NAME=localhost

BRIDGE-HOST-PORT=22044

BRIDGE-CONNECTION-TIMEOUT=15

AUTO-CONNECT-TO-REMOTE-PROCESS=false

LAUNCH-REMOTE-PROCESS=false

SHUTDOWN-REMOTE-PROCESS-UPON-DISCONNECT=false

REMOTE-PROCESS-INITIALIZATION-STRING=-p 1 -v 2 -d
464

Index
 @ A B C D E F G H I J K L M
 # N O P Q R S T U V W X Y Z
Numerics
180 menu choice

Layout menu
2nd Sensor Delta derived sensor
90 Clockwise menu choice

Layout menu
90 Counterclockwise menu choice

Layout menu

A
abnormal condition management
About Optegrity menu choice
Absorbers palette

classes
showing

Access Tables menu choice
Acknowledge Messages Upon Selection

attribute
acknowledging messages

configuring message color, based on
configuring permissions for

actions
creating generic
interacting with

repair actions browser
test actions browser

Address field
adjusting

micro position of objects
order of objects

Administrator mode
configuring user preferences for
customizing Optegrity, using
description of
Tools menu

alarms
data validation
displaying browser for
initialization parameters for
interacting with in browser

Align or Distribute menu choice
Layout menu
analyzer sensor fault model
analyzers
application initialization
applications

See Also projects
creating

high-level summary of
Optegrity

initialization parameters for
interacting with objects in
navigating

Arithmetic palette
arrows, initialization parameters for
Auto Scale to Full Screen attribute

B
Back menu choice

Go menu
Background Color attribute
background images, loading
base derived sensors
batch processes, simulating
Beep Enabled attribute
Boilers palette

classes
showing

borders, adjusting workspace
bridges

connecting to
disconnecting from

Bring to Front menu choice
Layout menu

browsers
configuring templates for
displaying

message
SymCure

interacting with
alarms
repair actions
root causes
465

SymCure
test actions

building
See creating

built-in
classes

foundation
process equipment and instrument

event detection diagrams
generic fault models

C
Causal Directed Graphs (CDG)

initialization parameters
module

CDGUI initialization parameters
Charts menu choice
charts, GRPE
client

connecting
directly to server
from Start menu
to a specific server

disconnecting
Clone menu choice

Edit menu
Close menu choice

configuring in user preferences
exiting client, using
File menu

colors
configuring

for messages
for workspaces
initialization parameters for messages

editing for objects
Colors menu choice

Edit menu
compiling generic fault models
Compression Ratio Decrease event
Compressor Events palette
compressors

built-in event detection for
built-in generic fault models for
Compression Ratio Decrease event
Polytropic Head Change event
Power Projected High event

Compressors palette
classes
466
showing
config.txt file
configuration objects
configuring

See Also creating
built-in event detection
data replay
data simulations
data validation
domain objects
external datapoints
interface pools
internal datapoints
logging
network interfaces

Connect to Bridge menu choice
connecting

domain objects
instruments
network interfaces

Connections palette
connecting domain objects, using
connecting instruments, using

container objects
continuous

data series, creating
processes, simulating

Continuous Data Series menu choice
Continuous menu choice
Controller Events palette
controllers

built-in event detection for
OP Projected High event
OP Projected Low event
palette
Setpoint Error event

Controllers palette
classes
creating controllers, using

Conversions menu choice
Converter menu choice
creating

See Also configuring
custom

domain objects
event object hierarchy
relations

data series
continuous
differential
for data replay

datapoint displays
domain objects

definitions
instruments
process equipment

external datapoints
from CSV files
introduction to

generic
actions
event detection template folders
event detection templates
fault model folders
fault models

interface pools
JMail interface objects
message queues
network interfaces
process map containers
projects

customer support services
customization

custom event detection
data source integration
engineering unit conversions
external datapoint classes
introduction to
menus
messaging
network interface classes
TDC data source integration
using G2 objects

Customization palette, External Datapoints
toolbox

D
Daily Event Metrics menu choice
daily-metrics.csv file
Data Control palette
Data Filters palette
data flow
data logging

See logging
data replay

configuring
creating data files for
introduction to
Manage dialog buttons
managing
replaying data from CSV files
data series

creating
continuous
differential

managing
data simulations

creating
simple
with transitions

example
external datapoint simulation
internal datapoint simulation
with transitions

introduction to
Manage dialog buttons
managing

data validation
configuring external datapoints for
viewing alarms for

Database Interface
Dataflow Instances menu choice

summary
Dataflow Templates menu choice

summary
using

Datapoint Logs menu choice
configuring logging, using
System Settings menu

Datapoint Replay menu choice
configuring data replay, using

Datapoint Series menu choice
Continuous Data Series
Differential Data Series
System Settings menu

Datapoint Simulations menu choice
creating data simulations, using

datapoints
See Also internal datapoints and external

datapoints
displays
external

configuring
introduction to

internal
configuring
introduction to

DCS tag variables
deadband
Debug Specific Fault Models menu choice
Default User Mode attribute
467

Default Web Location attribute
definitions, domain object
Delete Background Image menu choice

deleting background images, using
Workspace menu

Delete menu choice
deleting objects, using
deleting workspaces, using
Edit menu

deleting
messages, permissions for
objects
workspaces

delta P sensor fault model
derived delta T fault model
derived internal datapoints

configuring
types

details
displaying for objects
showing

for container objects
for messages
superior object of

Detect menu
Dataflow Templates menu choice

Detect menu choice
summary

Developer mode
configuring user preferences for
customizing Optegrity in
description of

Diagnose menu
Diagnostic Console menu choice
Generic Fault Models menu choice

Diagnose menu choice
summary

Diagnosis Managers menu choice
summary

Diagnostic Console menu choice
summary

diagnostic models
See Also fault models
definition of

diagram folders
generic event detection templates
generic fault model

Differential Data Series menu choice
differential data series, configuring
Differential menu choice
disconnecting
468
from bridges
from the client

permissions for
using menu

Displays palette
displays, datapoint
Distillation Columns palette

classes
showing

Documentation menu choice
domain objects

See Also process equipment and
instruments

accessing user-defined
built-in

foundation classes
process equipment and instrument

classes
configuring

built-in event detection diagrams for
engineering units for
icons for
introduction to
related sensors for

connecting
creating

custom
definitions
process equipment

definitions
creating
introduction to
managing

enabling fault models for
instrument classes
introduction to
popup menu for
process equipment classes
sending fault model events for
showing specific event detection diagrams

for
Domain Relation Definition
Down menu choice
Draft Oxygen related sensor event
draft pressure fault model
Draft Pressure related sensor event

E
Edit Icon menu choice

Edit menu
Efficiency Severe Change event
email

configuring
address
format
to send

delivering messages by
examples of sending
sending and receiving
starting JMail Bridge
startup parameters for sending

Enable Dataflow Event Detections menu
choice

configuring built-in event detection, using
Project menu

Enable Fault Model menu choice
domain objects
enabling fault models, using

Enable Root Cause Episode Management
menu choice

Enable Status Bar Message Browser attribute
Enable Tuning menu choice
engineering unit conversions

adding synonyms to existing definitions
API procedures
configuring

for domain objects
for external datapoints
internal units

configuring in CSV files
converting engineering units on demand
creating

conversion definitions
synonyms

customizing
dimension types
dimension units
displaying for datapoints
introduction to
managing

synonyms
unit conversions

viewing built-in definitions
working with

Entry Points palette
equipment drivers

built-in event detection for
Motor Power Projected High event
Turbine Power Projected High event

Equipment Drivers palette
classes
showing

Evaporators palette
classes
showing

Event & Alarm Metrics menu choice
Event and Alarm Metrics menu choice
Event and Alarm Mgmt palette
event detection diagrams

built-in
configuring
for base derived sensors
for compressors
for controllers
for domain objects
for equipment drivers
for heaters

creating
generic templates
introduction to

custom
configuring generic
configuring specific

definition of
managing
showing specific

Event Detection Diagrams palette
Event Detection toolbox
event metrics reports

configuring
viewing

events
See Also messages
creating custom hierarchy
custom

configuring logic for
configuring specific diagrams for
testing

initialization parameters for
sending fault model

Events queue
Exit menu choice

configuring in user preferences
exiting the server, using

Extended Menus attribute
external datapoints

configuring
data validation for
datapoint tag type
datapoint units
DCS datapoint data
469

default update interval
engineering units for
introduction to
name
related internal datapoints
type

creating
configuration files
containers
custom classes
custom classes, example
from CSV files
individual
introduction to

CSV file format
displaying engineering units for
introduction to
managing
manually relating to internal datapoints
simulating values for

using data replay
using data simulations

translating values
using CSV file template

External Datapoints menu choice
creating external datapoints container,

using
System Settings menu

External Datapoints toolbox

F
F4 key
Fault Model Diagnostics palette
Fault Modeling toolbar

View menu
fault models

See Also generic fault models
creating generic
enabling for domain objects
running SymCure
sending events

Fault Models menu choice
summary

Fault Models toolbox
File menu
files

daily-metrics.csv
f102-external-datapoint-configuration-
OPC.csv

g2.ok
470
hourly-metrics.csv
InstallServerAsNTService
.kb
monthly-metrics.csv
optegrity.kb
StartServer.bat
twng.exe

filtering messages
in browsers
in user preferences

Fin Fan palette
classes
showing

Flip Horizontally menu choice
Layout menu

Flip Vertically menu choice
Layout menu

flow sensor fault model
fo2-external-datapoints-configuration.csv

file
Foreground Color attribute
Forward menu choice

Go menu
Functions palette

G
G2 Data Point Management (GDPM)
G2 Data Source Manager (GDSM)

initialization parameters
introduction to

G2 Engineering Unit Conversion (GEUC)
initialization parameters
introduction to

G2 Event and Data Processing (GEDP)
G2 Event Management (GEVM)

initialization parameters
introduction to

G2 Help Topics menu choice
G2 JMail Bridge
G2 JMail Bridge menu choice, Start menu
G2 JMSLink
G2 OPCLink

advanced features
connecting to bridge

G2 Relation Browser (GRLB)
initialization parameters

G2 Reporting Engine (GRPE)
configuring reports and charts

G2 Run-Time Library (GRTL)
initialization parameters

general

user interface
G2 toolbox
g2.ok file
G2-ODBC Bridge
G2-Oracle Bridge
G2-PI Bridge

advanced features
connecting to bridge

G2-Sybase Bridge
Gas, Oil, and Hydrogen palette
General palette

classes
showing

Generators palette
classes
showing

Generic Actions palette
generic event detection diagrams

See event detection diagrams
Generic Events palette
generic fault models

built-in
checking for errors and warnings
compiling
creating

generic actions
generic fault model folders
introduction to
using SymCure palettes

Manage dialog buttons
managing

Generic Fault Models menu choice
Generic Template Blocks palette
Get menu choice

Workspace menu
gevm-gqs-queue instance initialization

parameters for
GIF files, loading as background images
Go menu
Go To menu choice

interacting with objects, using
manage dialog
project hierarchy
Search dialog

Go to Superior menu choice
View menu

H
heartbeat interval
Heat Exchangers palette
classes
showing

Heat Release Projected High event
heaters

built-in
event detection for
generic fault models for

derived delta T fault model
Draft Oxygen related sensor event
draft pressure fault model
Draft Pressure related sensor event
Efficiency Severe Change event
Heat Release Projected High event
Low Efficiency event
NOx fault model
O2 fault model
related sensor events
Stack NOx related sensor event
Tube Skin Delta T event
tube skin temperature fault model
Tube Skin Temperature related sensor

event
Heaters palette

classes
showing

Help menu
Hide menu choice

View menu
Home menu choice

Go menu
Home Process Map attribute
Hourly Event Metrics menu choice
hourly-metrics.csv file
HTTP menu choice

I
icons, configuring for domain objects
Import menu choice
Indicate Items attribute

configuring
setting default value for

indicator arrows, initialization parameters for
initialization parameters

alarms
configuring at startup
events
F102Demo
for gevm-gqs-queue instance
471

GDSM
GEUC
GEVM
GRLB

general
user interface

GRTL
installation directory
intelligent objects
messages
repair actions
root causes
SymCure

general
user interface

test actions
Initialize Application menu choice

initializing process maps, using
Project menu

Initialize Blocks menu choice
Initialize Domain Object menu choice

domain objects
using

Initialize Domain Objects menu choice
process maps
using

Initialize menu choice
initializing applications
initializing process maps

introduction to
programmatically

installation directory, default
InstallServerAsNTService batch file or shell

script
instrument classes
instruments

2nd Sensor Delta event
built-in event detection for
connecting
creating
PV Change event
PV Flatline event
PV High event
PV Low event
PV Noisy event
PV Projected High event
PV Projected Low event

Instruments and Equipment menu choice,
Project menu

Instruments palette
classes
472
creating instruments, using
integration, module
Intelligent Event Definition
Intelligent Event Fetch Blocks palette
intelligent objects

modules
Interface Pools menu choice

Project menu
interfaces

See Also network interfaces
advanced features
configuring
connecting
creating

and connecting
database
DCS
JMail
JMS
Manage dialog buttons
managing
OPC
PI

Interfaces menu
Interfaces menu choice

Project menu
SMTP

internal datapoints
configuring

derived
for domain object definitions
for domain objects

derived
displaying engineering units for
introduction to
manually relating to external datapoints
of instruments
relating to external
simulating values for

using data replay
using data simulations

types of

J
Java Mail (JMail)

configuring
in configuration file
in user preferences

interfaces

Java Messaging Service (JMS) interfaces
JMS menu choice
JPEG files

loading as background images
saving workspaces to

K
.kb files

description of
opening
saving

L
layering
Layout menu
Layout toolbar

View menu
Left menu choice
level sensor fault model
limits, data validation
Load Background Image menu choice

loading background images, using
Workspace menu

loading projects
logging

configuring
datapoints for
introduction to

log file format
managing
messages

to a database
to a JMS provider
to files

Logic Gates palette
Logic menu

Diagnose menu choice
Logic menu choice

summary
Low Efficiency event

M
Manage dialog

displaying object properties and details
performing specific operations
using

Manage menu choice
managing
data logging
data replay
data series
data simulations
domain object definitions
engineering unit conversions
engineering unit synonyms
event detection diagrams and templates
external datapoints
generic fault models
message queues
network interfaces
objects

using Manage dialog
using Project menu

process maps
SymCure browsers

Manufacturing Processes menu choice
Project menu

menus
customizing
Edit
File
Go
Help
Layout
Model
Project
Tools
Workspace

Message Board menu choice
View menu

Message Browser menu choice
using
View menu

Message Browsers
menu

message browsers
See Also browsers, messages, and message

queues
configuring

for modeler mode
for operator mode
message color
timestamp format

initialization parameters for
interacting with

in Modeler mode
in Operator mode

showing by default in operator mode
473

subscribing to queues
Message Browsers menu choice
message queues

configuring
browser template for
to log messages

configuring filters in user preferences
creating
logging messages

contents of log file
to a database
to a JMS provider
to files

Manage dialog buttons
managing
using

Message Queues menu choice
Metrics

Hourly, Daily, Monthly Event Metrics
messages

See Also message browsers
configuring

colors
visible attributes

delivering by email
initialization parameters for

general
GEVM

interacting with
in Modeler mode
in Operator mode

interacting with operator
logging

to a database
to a JMS provider
to files

message queues
sending and receiving

email
text and XML

Messages queue
messaging

configuring permissions for
acknowledging messages
deleting messages

customizing
Metrics menu choice

Hourly, Daily, Monthly Event Metrics
Mobile Email

address
Notification
474
mode internal datapoint
Model menu
Model menu choice

Manage dialog
Modeler Browser attribute
Modeler mode

configuring
permissions for accessing
user preferences for

description of
models

working with
modules

Causal Directed Graphs (CDG)
G2 Data Point Management (GDPM)
G2 Data Source Management (GDSM)
G2 Event and Data Processing (GEDP)

introduction to
G2 Event Management (GEVM)
integration of
intelligent objects
Optegrity
Optegrity events
SymCure

Monthly Event Metrics menu choice
monthly-metrics.csv file
motor driver fault model
Motor Power Projected High event
My User Preferences menu choice

configuring user preferences, using
Project menu

N
Navigator

menu choice
Navigator menu choice

View menu
network interfaces

creating
custom

example of custom class
New Instance menu choice, project hierarchy
New menu choice

creating
projects, using
top-level workspaces, using

File menu
Workspace menu

Normal menu choice

NOx fault model
NT service, running Optegrity server as
Nudge menu choice

Layout menu

O
O2 fault model
Object Models menu choice

creating domain object definitions, using
objects

adjusting the order of
aligning
copying
deleting
displaying properties for
distributing
editing colors
flipping
interacting with

in Developer mode
in Modeler mode

managing
nudging
performing specific operations on
resizing
rotating
selecting

all
individual

transferring
Objects palette
ODBC databases
op internal datapoint
OP Projected High event
OP Projected Low event
OPC Datapoints palette
OPC Interface
OPC menu choice
Open menu choice

File menu
Operator Browser attribute
operator interface

displaying
interacting with process models in
viewing and interacting with messages

operator messages
See messages

Operator mode
configuring user preferences for
description of
switching to
user mode

Operator toolbar
View menu

Optegrity
architecture
connecting client

from Start menu
to specific server

creating applications
high-level summary
introduction to

customizing
exiting
introduction to
running
starting server

as NT service
from Start menu
in secure G2 environment
with your application loaded

Optegrity Definitions and Relations palette
Optegrity Events module
Optegrity Help Topics menu choice
Optegrity module
Optegrity toolbox

using
optegrity.kb file
Oracle database
Order menu choice

Layout menu

P
palettes

Absorbers
Arithmetic
Boilers
Compressor Events
Compressors
Connections
Controller Events
Controllers
Customization
Data Control
Data Filters
Displays
Distillation Columns
Entry Points
475

Equipment Drivers
Evaporators
Event and Alarm Mgmt
Event Detection Diagrams
Fault Model Diagnostics
Fin Fan
Functions
Gas, Oil, and Hydrogen
General
Generators
Generic Actions
Generic Events
Generic Template Blocks
Heat Exchangers
Heaters
instrument
Instruments
Intelligent Event Fetch Blocks
Logic Gates
Objects
OPC Datapoints
Optegrity Definitions and Relations
Path Displays
PI Datapoints
Process Maps

navigation buttons
process map containers

Pumps
Reactors
Relational Operators
Sensor Events
Signal Generators
Storage Tanks
Time Series
Turbines
user-defined

accessing
creating

Valves
Vessels
Water and Steam Lines

Path Displays palette
PI Datapoints palette
PI Interface
PI menu choice
Polytropic Head Change event
popup menus

customizing
interacting with objects, using

popup menus, displaying
Power Projected High event
476
pressure sensor fault model
Print menu choice

File menu
priority, configuring message color, based on
process equipment

See Also domain objects
built-in generic fault models for
classes
flow fault model
level fault model
palettes
pressure fault model
temperature fault model

process maps
building
configuring message color for
creating

container
hierarchy

initializing
introduction to
managing
navigating across
showing details
uninitializing

Process Maps palette
navigation buttons
process map containers

Process Modeling toolbox
creating

connections
displays
instruments
process equipment
process map hierarchy

Project
menu

managing objects, using
using
using submenus

Project menu
projects

creating
opening
saving
working with

properties dialogs
shortcuts for displaying

properties dialogs, displaying
Properties menu choice

Edit menu

for items on workspaces
Pumps palette

classes
showing

PV Change event
PV Flatline event
PV High event
pv internal datapoint
PV Low event
PV Noisy event
PV Projected High event
PV Projected Low event

Q
Queues menu choice

creating message queues, using

R
rates, data validation
Reactors palette

classes
showing

Refresh menu choice
Go menu

Relate Sensors and Controllers menu choice
Relational Operators palette
relations, creating custom
repair actions

initialization parameters for
repair actions browser

displaying
interacting with

repeat interval
replaying data

from CSV files
introduction to

reporting
event metrics

configuring
viewing

GRPE reports
introduction to
system performance

Reports menu choice
repositories

initialization parameters for
interacting with objects in Developer

mode, using
resizing objects
Respond menu choice
Restore Last Pane Settings attribute
Right menu choice
root causes

displaying browser
initialization parameters for
interacting with in browser

Rotate or Flip menu choice
Layout menu

Run Detection Logic menu choice
domain objects

Run Response Logic menu choice
domain objects

Run Test Logic menu choice
domain objects

S
Save as JPEG menu choice

File menu
Save As menu choice

File menu
Save menu choice

File menu
Save Root Cause Episodes menu choice
scaling workspaces
schedule-driven propagation of external

datapoints
Search menu choice

Tools menu
secure G2, running in
Select All menu choice

Edit menu
Send Fault Model Event menu choice

domain objects
sending events, using

Send to Back menu choice
Layout menu

sending fault model events
Sensor Events palette
sensors

analyzer sensor fault model
built-in generic fault models for
delta P sensor fault model
flow sensor fault model
level sensor fault model
motor driver fault model
palette
pressure sensor fault model
477

sensor fault model
temperature sensor fault model

server
connecting to

default
specific

disconnecting from
shutting down

permission for
using menus

starting
from Start menu
on specific port
with your application loaded

Server Information menu choice
Set Default User Mode attribute
Setpoint Error event
Show Detail menu choice

summary of common tasks
View menu
workspaces

Show Logbook attribute
Show Logic menu choice

domain objects
using

Show Metrics menu choice
Show Root Cause Episodes menu choice
Show Users menu choice
Shrink Wrap menu choice

Layout menu
Shut Down G2 menu choice
shutting down server

permission for
using menus

Signal Generators palette
simulating data

using data replay
using data simulations

SMTP menu choice
sp internal datapoint
specific event detection diagrams

configuring for custom events
showing

SQL menu choice
Stack NOx related sensor event
Standard toolbar

View menu
StartServer.bat file
startup parameters

See initialization parameters
Status Bar menu choice
478
View menu
Stop menu choice

Go menu
Storage Tanks palette

classes
showing

subscribing to message queues
Sybase database
SymCure

creating generic fault models
enabling fault models
initialization parameters for

general
message color
user interface

interacting with browsers
module
running fault models

Synonyms menu choice
System Models menu choice

Manufacturing Processes
System Performance menu choice
System Settings menu

Event & Alarm Metrics menu choice
Message Browsers menu
System Performance menu choice

System-Administrator mode
configuring user preferences for
customizing Optegrity, using
description of

T
Tabbed Mdi Mode attribute
targets, data validation
Telnet Command attribute
temperature sensor fault model
Templates menu choice
test actions

initialization parameters for
test actions browser

displaying
interacting with

Test menu choice
summary

Time Series palette
timestamp format, initialization parameters for
toolbars

alarms browser
browsers

Fault Modeling
Layout
Operator
repair actions browser
root causes browser
Standard
test actions browser
using
Web

toolbox
G2
Optegrity

Toolbox - Event Detection menu choice
Toolbox - External Datapoints menu choice
Toolbox - Fault Modeling menu choice
Toolbox - G2 menu choice

using
Toolbox - Process Modeling menu choice
toolboxes

Event Detection
External Datapoints
Fault Models
G2
Process Modeling

connection palettes
displays palette
instrument palettes
process equipment palettes
process maps palette

Tools
menu

Transfer menu choice
Edit menu

transitions, data simulation with
Tube Skin Delta T event
tube skin temperature fault model
Tube Skin Temperature related sensor event
Turbine Power Projected High event
Turbines palette

classes
showing

twng.exe file

U
Uninitialize Application menu choice

Project menu
using

Uninitialize Domain Object menu choice
domain objects
using
Uninitialize Domain Objects menu choice

process maps
using

Units menu choice
Conversions
Synonyms

Up menu choice
user audit files, initialization parameters
User Interface Theme attribute
User Mode menu choice

switching user modes, using
Tools menu

user modes
configuring default
specifying user preferences for different
switching
switching to Operator mode

User Name attribute
Administrator mode
Modeler mode

user preferences
configuring

in Administrator modes
in Modeler mode

creating and configuring
specifying for different types of users

User Preferences menu choice
configuring user preferences, using
Project menu

user-defined
domain objects
event blocks

Users menu choice

V
Value Translation Procedure
Valves palette

classes
showing

Vessels palette
classes
showing

View Errors menu choice
View Warnings menu choice

W
Water and Steam Lines palette
479

Web toolbar
View menu

Window menu
Windows, running Optegrity server as NT

service
Workspace Margin attribute
Workspace menu

Delete Background Image
description of
Get
Load Background Image
New

workspaces
See Also details
adjusting borders for
deleting
editing

colors of
margins of
name of
properties

hiding
interacting with
loading background images
printing
saving as JPEG
scaling
showing superior object of detail
shrink wrapping

X
XMB files, loading as background images
XML messages, sending and receiving

Z
Zoom In menu choice

View menu
Zoom menu choice

View menu
Zoom Out menu choice

View menu
Zoom to Fit menu choice

View menu
480

	Contents Summary
	Contents
	Preface
	About this Guide
	Version Information
	Audience
	Conventions
	Related Documentation
	Customer Support Services

	Getting Started
	Introduction
	Introduction
	Process Maps and Domain Objects
	External and Internal Datapoints
	Optegrity Modules
	Data Flow and Module Integration
	Architecture

	Running Optegrity
	Introduction
	Starting the Server and Connecting the Client
	Connecting to a Specific Server at Startup
	Connecting the Client to the Default Server
	Starting the Server on a Specific Port
	Connecting the Client to a Specific Server

	Starting the Server with Your Application Loaded
	Starting the Optegrity Server as an NT Service
	Exiting Optegrity

	Working with Models
	Introduction
	Summary of Common Tasks
	Using the Project Menu
	Using the Project Menu
	Using the Manage Dialog
	Performing Specific Operations
	Using the Project Submenus

	Navigating Applications
	Using the Navigator
	Searching for Objects

	Interacting with Workspaces
	Displaying a Detail Workspace
	Hiding a Workspace
	Deleting a Workspace
	Editing Workspace Properties
	Scaling a Workspace
	Shrink Wrapping a Workspace
	Showing the Superior Object of a Detail Workspace
	Printing a Workspace
	Saving a Workspace to a JPEG File
	Loading Background Images
	Creating and Accessing Top-Level Workspaces
	Initializing Domain Objects and Specific Fault Models

	Using the Menus
	Using the File Menu
	Using the Edit Menu
	Using the View Menu
	Using the Layout Menu
	Using the Go Menu
	Using the Project Menu
	Using the Workspace Menu
	Using the Tools Menu
	Using the Help Menu

	Using the Optegrity Toolboxes
	Using the G2 Toolbox
	Interacting with Objects
	Selecting Objects
	Cutting, Copying, Pasting, and Deleting Objects
	Controlling the Layout of Objects
	Displaying the Properties Dialog for an Object
	Resizing an Object
	Editing Icon Color Regions

	Using the Toolbars
	Standard Toolbar
	Web Toolbar
	Layout Toolbar
	Fault Modeling Toolbar
	Operator Toolbar
	Status Bar

	Switching User Modes
	Configuring User Preferences
	Specifying User Preferences for Different Types of Users
	Configuring User Preferences
	Delivering Messages by Email
	Starting the G2 JMail Bridge Process
	Creating, Configuring, and Connecting the JMail Interface Object
	Configuring Optegrity to Send Email Messages
	Examples: Sending Email Messages
	Configuring Startup Parameter for Sending Email Messages

	Creating Optegrity Applications
	Introduction
	Building an Optegrity Application
	Working with Projects
	Creating a New Project
	Saving a Project
	Opening a Project

	Process Maps
	Building a Process Map
	Introduction
	Creating a Process Map
	Creating a Process Map Container
	Creating Process Equipment
	Connecting Process Equipment
	Creating Instruments
	Connecting Instruments

	Configuring Domain Objects
	Configuring Related Sensors
	Configuring Internal Datapoints
	Configuring Built-In Event Detection

	Creating Datapoint Displays
	Creating a Process Map Hierarchy
	Navigating Across Process Maps
	Configuring Message Color Based on the Process Map

	Interacting with Domain Objects
	Managing Process Maps

	Configuring Built-in Event Detection
	Introduction
	Built-in Event Detection for Instruments
	PV High
	PV Low
	PV Projected High
	PV Projected Low
	PV Change
	PV Flatline
	PV Noisy

	Built-in Event Detection for Controllers
	OP Projected High
	OP Projected Low
	Setpoint Error

	Built-in Event Detection for Base Derived Sensors
	Built-in Event Detection for Heaters
	Related Sensor Events
	Draft Oxygen
	Draft Pressure
	Stack NOx
	Tube Skin Temperatures

	Tube Skin Delta T
	Efficiency Severe Change
	Low Efficiency
	Heat Release Projected High

	Built-in Event Detection for Compressors
	Compression Ratio Decrease
	Power Projected High
	Polytropic Head Change

	Built-in Event Detection for Equipment Drivers
	Motor Power Projected High
	Turbine Power Projected High

	Built-in Generic Fault Models
	Displaying Built-in Generic Fault Models
	Built-in Generic Fault Models for Sensors
	Flow Sensor Fault Model
	Level Sensor Fault Model
	Temperature Sensor Fault Model
	Pressure Sensor Fault Model
	Sensor Fault Model
	Analyzer Sensor Fault Model
	Delta P Sensor Fault Model
	Motor Driver Fault Model

	Built-in Generic Fault Models for Process Equipment
	Process Equipment Flow Fault Model
	Process Equipment Level Fault Model
	Process Equipment Temperature Fault Model
	Process Equipment Pressure Fault Model

	Built-in Generic Fault Models for Heaters
	Draft Pressure Fault Model
	O2 Fault Model
	NOx Fault Model
	Tube Skin Temperature and Derived Delta T Fault Models

	Built-in Generic Fault Models for Compressors

	Creating Domain Object Definitions
	Introduction
	Built-in Domain Object Foundation Classes
	Built-in Process Equipment and Instrument Classes
	Process Equipment Classes
	Absorbers
	Boilers
	Compressors
	Distillation Columns
	Equipment Drivers
	Evaporators
	Fin Fans
	General
	Generators
	Heat Exchangers
	Heaters
	Pumps
	Reactors
	Storage Tanks
	Turbines
	Valves
	Vessels

	Instrument Classes
	Internal Datapoints of Instruments
	Sensors and Analyzers
	Controllers

	Creating Domain Object Definitions
	Creating the Domain Object Definition
	Editing the Domain Object Definition Icon
	Configuring Derived Internal Datapoints

	Accessing User-Defined Domain Objects
	Managing Domain Object Definitions

	Data Sources
	Configuring Network Interfaces
	Introduction
	Creating and Connecting Network Interfaces
	Advanced Features
	Using Interface Pools
	Managing Network Interfaces

	Configuring External Datapoints
	Introduction
	Creating External Datapoint Configuration Files
	Configuring the External Datapoint Name
	Configuring the Default Update Interval
	Configuring the Datapoint Tag Type
	Configuring the Datapoint Type
	Configuring the Datapoint Units
	Configuring the Related Internal Datapoint
	Configuring Data Validation
	Configuring the DCS Datapoint Data
	Summary of the CSV File Format
	Using an Existing CSV File as a Template

	Creating External Datapoints from a CSV File
	Creating the External Datapoints Container
	Creating and Configuring External Datapoints
	Manually Relating External Datapoints

	Creating Individual External Datapoints
	Translating External Datapoint Values
	Managing External Datapoints

	Converting Engineering Units
	Introduction
	Working with Engineering Unit Conversions
	Configuring External Datapoint Units in the CSV File
	Configuring Engineering Units for Domain Objects
	Displaying Engineering Units for Datapoints
	Configuring the Internal Units

	Viewing Built-in Engineering Unit Conversion Definitions
	Defining Engineering Unit Conversion Synonyms
	Adding New Synonyms to Existing Engineering Unit Conversion Definitions
	Creating New Engineering Units and Synonyms

	Defining Engineering Unit Conversion Definitions
	Converting Engineering Units on Demand
	Managing Engineering Units
	Managing Engineering Unit Conversions
	Managing Engineering Unit Synonyms

	Configuring Logging
	Introduction
	Configuring Datapoints for Logging
	Log File Format
	Managing Data Logging

	Replaying Data
	Introduction
	Creating Data Series
	Creating a Continuous Data Series
	Creating a Differential Data Series

	Creating Data Replay Files
	Configuring Data Replay
	Replaying Data from CSV Files
	Displaying Trend Charts of Datapoint Values

	Viewing Data Validation Alarms
	Managing Data Series
	Managing Data Replay

	Simulating Datapoint Values
	Introduction
	Creating a Simple Data Simulation
	Example: Internal Datapoint Simulation for a Sensor
	Example: External Datapoint Simulation for a Sensor

	Creating a Data Simulation with Transitions
	Example: External Datapoint Simulation with Transitions

	Managing Data Simulations

	Event Detection
	Creating Generic Dataflow Diagrams
	Introduction
	Creating Generic Dataflow Template Folders
	Creating Generic Dataflow Templates
	Managing Dataflow Templates and Diagrams

	Initializing Process Maps
	Introduction
	Initializing Process Maps
	Showing Specific Dataflow Diagrams
	Uninitializing Process Maps

	Reporting and Charting
	Introduction
	Creating GRPE Reports and Charts
	Configuring Event Metrics Reports
	Viewing Event Metrics Reports
	Configuring and Viewing System Performance Reports

	Diagnostic Reasoning
	Creating Generic Fault Models
	Introduction
	Creating Generic Fault Model Folders
	Creating Generic Fault Models
	Creating Generic Actions
	Managing Generic Fault Models

	Running SymCure Fault Models
	Introduction
	Compiling Generic Fault Models
	Checking for Errors and Warnings
	Enabling Fault Models
	Sending Fault Model Events

	Alarm and Message Management
	Interacting with Operator Messages
	Introduction
	Using the Operator Interface
	Interacting with the Process Model
	Interacting with Operator Messages

	Interacting with Operator Messages in Modeler Mode

	Interacting with SymCure Diagnostic Console Browsers
	Introduction
	Displaying SymCure Browsers
	Interacting with the Alarms Browser
	Interacting with the Root Causes Browser
	Interacting with the Test Actions Browser
	Interacting with the Repair Actions Browser

	Using Message Queues
	Introduction
	Creating a New Message Queue
	Logging Messages
	Logging Messages to a File
	Logging Messages to a Database
	Logging Messages to a JMS Provider
	Contents of Log File

	Configuring the Browser Template for a Message Queue
	Managing Message Queues

	Customization
	Creating Custom Event Detection
	Introduction
	Creating Custom Domain Objects and Relations
	Creating a Custom Event Object Hierarchy
	Configuring the Custom Event Logic
	Configuring the Generic Event Detection Diagram for the Custom Event
	Configuring the Specific Event Detection Diagram for the Custom Event
	Testing the Custom Event

	Customizing Optegrity
	Introduction
	Interacting with Objects in Developer Mode
	Using the G2 Toolbox
	Configuring User Preferences
	Configuring Filters
	Configuring Message Details

	Application Initialization
	Custom Data Source Integration
	Creating the Custom Network Interface Class
	Creating Custom External Datapoint Classes

	Creating Custom External Datapoint Classes
	Example: TDC Data Source Integration
	Custom Network Interface Class

	Custom Network Interface Class
	Custom External Datapoint Classes

	Working with Engineering Unit Conversions
	Dimension Types
	Dimension Units
	Conversion Status
	API Procedures

	Custom Messaging
	Custom Menus
	Custom Popups
	Implementing the Popup Constructor
	Implementing the Callback that Executes the Popup

	Configuring Startup Parameters
	Introduction
	Installation Directory
	GRTL
	Applications
	User Preferences
	User Audit Files
	UTC Offset
	Repository
	Indicator Arrows
	Timestamp Format
	User Interface Refresh

	GDSM
	Network Connections
	Enable Interfaces

	GEVM
	Messages
	Message Color
	Logbook and Message Board Handlers
	Message Browser

	GEUC
	GRLB
	CDG (SymCure)
	CDGUI (SymCure)
	GEVM-GQS-QUEUE Instances
	Events
	Messages
	Alarms
	Root Causes
	Test Actions
	Repair Actions

	User Interface
	Default-Menubar
	Default-Status-Bar
	Toolbars
	Standard
	Layout
	Web

	Child Windows
	Project-Hierarchy
	Class-Hierarchy
	Module-Hierarchy
	Toolbox-G2

	Intelligent Objects
	F102Demo
	Network Interface Connections
	default-opc-interface
	default-pi-interface
	default-sql-interface-pool
	default-smtp-interface-pool
	default-http-interface
	default-snmp-interface
	default-snmp-trap-receiver-interface

	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

