
NeurOn-Line

Reference Manual
Version 5.1 Rev. 0

NeurOn-Line Reference Manual, Version 5.1 Rev. 0

June 2016

The information in this publication is subject to change without notice and does not represent a
commitment by Gensym Corporation.

Although this software has been extensively tested, Gensym cannot guarantee error-free
performance in all applications. Accordingly, use of the software is at the customer’s sole risk.

Copyright (c) 1985-2016 Gensym Corporation

All rights reserved. No part of this document may be reproduced, stored in a retrieval system,
translated, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of Gensym Corporation.

Gensym®, G2®, Optegrity®, and ReThink® are registered trademarks of Gensym Corporation.

NeurOn-Line™, Dynamic Scheduling™ G2 Real-Time Expert System™, G2 ActiveXLink™, G2
BeanBuilder™, G2 CORBALink™, G2 Diagnostic Assistant™, G2 Gateway™, G2 GUIDE™,
G2GL™, G2 JavaLink™, G2 ProTools™, GDA™, GFI™, GSI™, ICP™, Integrity™, and SymCure™
are trademarks of Gensym Corporation.

Telewindows is a trademark or registered trademark of Microsoft Corporation in the United States
and/or other countries. Telewindows is used by Gensym Corporation under license from owner.

This software is based in part on the work of the Independent JPEG Group.

Copyright (c) 1998-2002 Daniel Veillard. All Rights Reserved.

SCOR® is a registered trademark of PRTM.

License for Scintilla and SciTE, Copyright 1998-2003 by Neil Hodgson, All Rights Reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/).

All other products or services mentioned in this document are identified by the trademarks or
service marks of their respective companies or organizations, and Gensym Corporation disclaims
any responsibility for specifying which marks are owned by which companies or organizations.

Gensym Corporation
52 Second Avenue
Burlington, MA 01803 USA
Telephone: (781) 265-7100
Fax: (781) 265-7101 Part Number: DOC126-510

Contents Summary
Preface xix

Part I Entry and Paths 1

Chapter 1 Entry Points 3

Chapter 2 Path Displays 41

Chapter 3 Connections 47

Part II Data Processing 59

Chapter 4 Scalar Blocks 61

Chapter 5 Vector Blocks 115

Chapter 6 Data Set Blocks 159

Part III Neural Networks 213

Chapter 7 Neural Network Blocks 215

Chapter 8 Training Blocks 241

Part IV Action and Other 267

Chapter 9 Action Utilities 269

Chapter 10 Inference Blocks 299

Chapter 11 Capabilities 321
iii

Part V Application Programmer’s Interface 337

Chapter 12 Application Programmer’s Interface 339

Glossary 371

Index 379
iv

Contents
Preface xix

About this Guide xix

Audience xxi

Conventions xxii

Related Documentation xxiii

Customer Support Services xxvi

Part I Entry and Paths 1

Chapter 1 Entry Points 3

Introduction 3

Using Entry Points 4
Enabling Data Input 4
Reading the Output Value 5
Specifying How Often to Generate Values 6

Entry Points 7
Using Entry Points to Obtain Data from a G2 Variable 8
Choosing Between Embedded and External Data Sources 13
Using a G2 Variable Directly 15
Viewing the Variable 15
Obtaining Values from External Datapoints 16
Specifying the Embedded Value for an Entry Point 18
Using Vector Entry Points 28
Making Vector Values Permanent 28
Configuring 29
See Also 32

White Noise 34
Configuring 34
Example 35
See Also 35

Sine Wave 37
Specifying the Shape 37
Specifying a Phase 37
v

Resetting 38
Configuring 38
See Also 39

Chapter 2 Path Displays 41

Introduction 41

Data Path Display 42
Determining Which Path Attribute to Display 42
Configuring 42
Example 42
See Also 43

Vector Path Display 44
Configuring 45
See Also 46

Chapter 3 Connections 47

Introduction 47

Connection Posts 49
Highlighting 49
Configuring 50
Examples 50
See Also 52

Connectors 53
Configuring 53
Example 54
See Also 54

Circuit Breakers 55
Configuring 55
Example 57
See Also 57

Part II Data Processing 59

Chapter 4 Scalar Blocks 61

Introduction 62
Performing Arithmetic Operations 63
Adding and Filtering Noise 64
Averaging Values 64
Stopping and Pausing Data 64
Outputting Data 64
Computing Statistical Properties 64
vi

Defining Your Own Function 65

Summation 66
Configuring 66
Example 66
See Also 66

Difference 68
Configuring 68
Example 68
See Also 68

Change Sign 69
Configuring 69
Example 69
See Also 69

Bias 70
Configuring 70
Example 70
See Also 71

Multiplication 72
Configuring 72
Example 72
See Also 73

Quotient 74
Configuring 74
Example 74
See Also 74

Inverse 75
Configuring 75
Example 75
See Also 75

Gain 76
Configuring 76
Example 76
See Also 76

Additive Noise 78
Configuring 78
Example 78
See Also 79

Outlier Filter 80
Specifying a Range 80
Specifying How to Round Output Values 80
Configuring 81
vii

Examples 82
See Also 83

First-Order Exponential Filter 84
Filtering 84
Specifying How to Round Output Values 85
Configuring 85
Example 86
See Also 86

Sample Median 87
Configuring 87
Example 88
See Also 88

Average Input Value 89
Configuring 89
Example 89
See Also 90

Median Input Value 91
Configuring 91
Example 91
See Also 92

Data Delay 93
Handling Multiple Signals 93
Resetting 93
Configuring 93
See Also 94

Data Inhibit 95
Resetting 95
Configuring 95
Example 96
See Also 96

Data Output 97
Configuring 97
See Also 98

Set Attribute 99
Configuring 99
Example 100
See Also 100

Data Shift 101
Specifying How to Delay Values 101
Configuring 101
Example 102
See Also 102
viii

Variance 103
Configuring 103
See Also 104

Moving Average 105
Configuring 105
Example 106
See Also 106

Arithmetic Function 107
Built-in G2 Function 107
User-Defined Function 108
Procedure 108
Tabular Function 109
Configuring 110
See Also 110

Arithmetic Function of Two Arguments 111
Using Built-in G2 Function 111
Using a User-Defined Function 111
Using a Procedure 112
Configuring 113
See Also 113

Chapter 5 Vector Blocks 115

Introduction 116
Choosing When to Evaluate 116
Creating Vectors and Scalars 117
Using Vectors with Classifiers 117
Manipulating Vectors 118
Inhibiting Vectors 118
Operating on Vector Elements 118

Vectorizer 119
Configuring 119
Example 120
See Also 120

Scalarizer 122
Configuring 122
Example 123
See Also 123

Windower 124
Configuring 124
Example 125
See Also 125

Classifier Input Converter 126
ix

Configuring 126
Example 127
See Also 127

Classifier Output Converter 128
Configuring 128
Example 128
See Also 128

Vector Combiner 129
Configuring 129
Example 130
See Also 130

Vector Splitter 131
Configuring 131
Example 132
See Also 132

Vector Order Swapper 133
Making Values Permanent 133
Configuring 133
Example 134
See Also 135

Vector Inhibit 136
Configuring 136
See Also 137

Vector Rescaler 138
Making Values Permanent 138
Configuring 138
Example 139
See Also 140

Vector Sum 141
Configuring 141
Example 142
See Also 142

Vector Difference 143
Configuring 143
Example 144
See Also 144

Vector Product 145
Configuring 145
Example 146
See Also 146

Vector Quotient 147
x

Configuring 147
Example 148
See Also 148

Vector Function 149
Using a Built-in G2 Function 149
Using a User-Defined Function 150
Using a Procedure 150
Using a Tabular Function 151
Configuring 152
See Also 153

Vector Function of Two Arguments 154
Using a Built-in G2 Function 154
Using a User-Defined Function 155
Using a Procedure 155
See Also 157

Chapter 6 Data Set Blocks 159

Introduction 160
Creating Data Pairs 161
Filtering Data 161
Reading Data 162
Copying Data 162
Scaling Data 162

Data Pair Buffer 163
Specifying Whether Values are Concurrent 163
Resetting 164
Clearing the Data Pair Buffer 164
Configuring 164
Example 164
See Also 165

Data Pair Converter 166
Configuring 166
Example 166
See Also 167

Data Pair Divider 168
Configuring 168
Example 168
See Also 168

Data Pair Random Gate 169
Configuring 169
Example 170
See Also 170
xi

Data Pair Outlier Filter 171
Configuring 171
Making Values Permanent 172
Example 173
See Also 174

Data Pair Quality Filter 175
Configuring 175
Example 175
See Also 176

Data Set 177
Editing the Data Set 177
Entering and Viewing Data 179
Saving and Loading Data 180
Plotting Data 181
Text Format for Data Sets 181
Customizing the Text Format 182
Clearing the Data Set 183
Making Values Permanent 183
Configuring 183
See Also 183

Maximum Age Filter 185
Configuring 185
Example 186
See Also 186

Size Limitation Filter 187
Configuring 187
Example 188
See Also 188

Data Set Reader 189
Resetting 189
Configuring 189
Example 190
See Also 190

Random Divider 191
Configuring 191
Example 192
See Also 192

S-Fold Divider 193
Configuring 193
Example 194
See Also 194

Data Set Copier 195
xii

Configuring 195
Example 196
See Also 196

Data Set Rescaler 197
Making Values Permanent 198
Configuring 199
See Also 200

Data Set Plot 201
Configuring 201
Choosing What to Display 201
Choosing How to Display the Data 203
Choosing Where to Display the Data 206
Creating and Deleting Data Series 206
Making Values Permanent 207
Example 207
See Also 208

Novelty Filter 209
Choosing Which Points to Keep 209
Deciding Whether a Data Pair is Novel 210
Making Values Permanent 211
Configuring 211
Example 212
See Also 212

Part III Neural Networks 213

Chapter 7 Neural Network Blocks 215

Introduction 216
Saving and Loading Network Weights 216
Backpropagation and Autoassociative Networks 220
Radial Basis Function and Rho Networks 220
Ensemble Networks 220

Backpropagation Net (BPN) 221
Configuring 222
Adjusting Weights 222
Saving and Loading Weights 224
Making Values Permanent 224
Examples 225
See Also 226

Autoassociative Net 227
Configuring 228
Choosing the Run Mode 229
xiii

Adjusting Weights 230
Saving and Loading Weights 230
Making Values Permanent 230
See Also 230

Radial Basis Function Net (RBFN) 231
Configuring 232
Saving and Loading Weights 233
Making Values Permanent 233
See Also 233

Rho Net 234
Configuring 235
Saving and Loading Weights 236
Making Values Permanent 236
See Also 236

Ensemble Net (ENN) 238
Adjusting Weights 239
Saving and Loading Weights 239
Making Values Permanent 240
Examples 240
See Also 240

Chapter 8 Training Blocks 241

Introduction 241
Basic Training and Testing 243
Finding the Best Network Configuration 243
Finding Which Inputs are Significant 243

Trainer 244
Watching the Training Happen 244
Configuring the Trainer for a Backpropagation, Autoassociative, or

Ensemble Network 246
Choosing the Maximum Number of Training Iterations 246
Choosing the Training Method 246
Choosing Whether to Accelerate Training 247
Configuring the Trainer for a Radial Basis Function Network 247
Configuring the Trainer for a Rho Network 249
Example 249
See Also 250

Fit Tester 251
Configuring 251
Example 252
See Also 253

Train and Test 255
Configuring 256
xiv

The Train and Test Block's Subworkspace 257
Example 258
See Also 258

Five Fold CV 260
Configuring 261
Example 261
See Also 262

Sensitivity Tester 264
Making Values Permanent 264
Configuring 264
See Also 265

Part IV Action and Other 267

Chapter 9 Action Utilities 269

Introduction 270
Looping 271
Stopping Paths 271
Outputting Data 271
Branching 271
Performing Actions on Blocks 271
Invoking a Rule 272

Control Path Loop 273
Resetting 273
Configuring 273
Example 274

Control Path Circuit Breaker 275

N-to-1 Sieve 276
Resetting 276
Configuring 276
Example 276
See Also 277

Control Counter 278
Resetting 278
Configuring 278
Example 278
See Also 279

Control Inhibit 280
Resetting 280
Configuring 280
Example 281
xv

See Also 281

Inference Output 282
Configuring 282
Example 283
See Also 284

Control Switch 285
Configuring 285
Example 285
See Also 285

Reset 286
Configuring 286
Example 286
See Also 287

Evaluate 288
Configuring 288
See Also 288

Clear 289
Configuring 289
Example 289
See Also 290

Make Permanent 291
Configuring 291
Example 291
See Also 292

Restore Permanent Values 293
Configuring 293
See Also 293

Attribute Transfer 294
Configuring 294
Example 294
See Also 295

Rule Action 296
Configuring 296
Example 296
See Also 297

Chapter 10 Inference Blocks 299

Introduction 299
Observations 300
Performing Logical Operations 301
Pausing Paths 301
xvi

High Value Observation, Low Value Observation 302
Specifying a Threshold 302
Configuring 303
See Also 304

Equality Observation 305
Configuring 306
See Also 307

Conclusion 308
Configuring 308
Example 309
See Also 310

AND Gate 311
How the Block Handles no-value Quality Inputs 311
Configuring 312
Example 313
See Also 313

OR Gate 314
Configuring 314
Example 315
See Also 316

NOT Gate 317
Configuring 317
Example 318
See Also 318

Inference Inhibit 319
Configuring 319
Example 320
See Also 320

Chapter 11 Capabilities 321

Introduction 321
Charting and Graphing Attributes 322
Forcing a Block to Evaluate 322
Starting a Control Signal 322

Chart Capability 323
Setting Up a Chart 323
Configuring a Chart 325
Choosing How a Block’s Data is Displayed 327
Going to a Chart 330
Resetting 330
Configuring 331
Examples 332
xvii

See Also 333

Clock 334
Configuring 334
Example 335
See Also 335

Control Initiation Capability 336
Configuring 336
See Also 336

Part V Application Programmer’s Interface 337

Chapter 12 Application Programmer’s Interface 339

Introduction 339

Accessing the NOL API Procedures 340

Path Displays 341

Vector Blocks 342

Data Set Blocks 351

Neural Networks 360

Action Utilities 367

File Operations 369

Glossary 371

Index 379
xviii

Preface
Describes this manual and the conventions that it uses.

About this Guide xxi

Audience xxiii

Conventions xxiv

Related Documentation xxv

Customer Support Services xxviii

About this Guide
NeurOn-Line is a graphical, object-oriented software product for building neural
network applications. Typical applications include quality assurance, sensor
validation, diagnosis, and process modeling. Users of NeurOn-Line can model
dynamic, nonlinear phenomena that are difficult to describe by analytical models.

This guide documents each block that can appear in these diagrams.

This guide is strictly a reference and does not teach you how to use NeurOn-Line.
It assumes you are familiar with G2. See the NeurOn-Line User’s Guide for basic
information on how to use NOL, and for information on how to customize the
NOL environment.
xix

This guide is divided into these parts and chapters:

This part/chapter... Describes...

Part Part I, Entry
and Paths

The palettes in the Entry & Paths submenu. These
palettes contain blocks that let you enter data into your
application and manipulate paths.

Chapter 1,
Entry Points

Blocks that let you enter data into you NeurOn-Line
application.

Chapter 2, Path
Displays

Blocks that display the data that a path is carrying.

Chapter 3,
Connections

Blocks that let paths cross workspaces, join paths
together, and create loops.

Part Part II, Data
Processing

The palettes in the Data Processing submenu. These
palettes contain blocks that let you create and manipulate
scalar vales, vectors, data pairs, and Data Sets

Chapter 4,
Scalar Blocks

Blocks that perform various operations on scalar data,
including arithmetic, filtering, and statistical.

Chapter 5,
Vector Blocks

Blocks that create, manipulate, and perform operations
on vectors.

Chapter 6, Data
Set Blocks

Blocks that create, manipulate, and filter the data pairs
and Data Sets that you use to train and test a Neural
Network.

Part Part III, Neural
Networks

The palettes in the Neural Networks submenu. These
palettes contain blocks that implement, train, and test
Neural Networks.

Chapter 7,
Neural
Network Blocks

Blocks that implement Backpropagation,
Autoassociative, Radial Basis Function, and Rho Neural
Networks.

Chapter 8,
Training Blocks

Blocks that train and test Neural Networks.

Part Part IV, Action
and Other

The palettes in the Action & Other submenu. These
palettes contain blocks that execute actions, allow you to
graph data, and test inference values.
xx

Audience
Each block in NeurOn-Line has a section that contains these components:

Audience
This book is intended to be used primarily by programmers using NOL to
develop end-user applications. You should be familiar with G2.

This reference manual provides a menu-by-menu, palette-by-palette description
of all the blocks in NeurOn-Line. Each menu has its own part, each palette in a
menu has its own chapter, and each block as its own section in that chapter.

Chapter 9,
Action Utilities

Blocks that perform a variety of actions on objects in the
G2 environment, including other NeurOn-Line blocks.

Chapter 10,
Inference Blocks

Blocks that add features to other NeurOn-Line blocks,
such as graphing.

Chapter 11,
Capabilities

Blocks that create and manipulate inference values.

This section... Contains this information...

Name The name of the block that appears on the palette.

Icon A full-size icon of the block. All stubs and attribute displays
are labeled with their names.

Description A description of what the block does and how to configure it.

Configuring A picture of the configuration panel for the block, and a
description of each attribute label in the panel.

Example An example of how the block works. It could show how to use
the block in a diagram or show what output values it passes
given certain input values. If the block's description contains
many examples, this section may be missing.

See Also References to related sections in this manual. If some of a
block's features are not discussed in the description, this
section contains a reference to where that feature is described.
If other blocks are similar to this block, this section contains
references to them.
xxi

Conventions
This guide uses the following typographic conventions and conventions for
defining system procedures.

Typographic

Convention Examples Description

g2-window, g2-window-1,
ws-top-level, sys-mod

User-defined and system-defined
G2 class names, instance names,
workspace names, and
module names

history-keeping-spec, temperature User-defined and system-defined
G2 attribute names

true, 1.234, ok, “Burlington, MA” G2 attribute values and values
specified or viewed through
dialogs

Main Menu > Start

KB Workspace > New Object

create subworkspace

Start Procedure

G2 menu choices and button labels

conclude that the x of y ... Text of G2 procedures, methods,
functions, formulas, and
expressions

new-argument User-specified values in
syntax descriptions

text-string Return values of G2 procedures
and methods in syntax
descriptions

File Name, OK, Apply, Cancel,
General, Edit Scroll Area

GUIDE and native dialog fields,
button labels, tabs, and titles

File > Save

Properties

GMS and native menu choices

workspace Glossary terms
xxii

Related Documentation
Note Syntax conventions are fully described in the G2 Reference Manual.

Procedure Signatures

A procedure signature is a complete syntactic summary of a procedure or
method. A procedure signature shows values supplied by the user in italics, and
the value (if any) returned by the procedure underlined. Each value is followed by
its type:

g2-clone-and-transfer-objects
(list: class item-list, to-workspace: class kb-workspace,
delta-x: integer, delta-y: integer)

-> transferred-items: g2-list

Related Documentation

NeurOn-Line

NeurOn-Line Release Notes

NeurOn-Line User’s Guide

NeurOn-Line Reference Manual

NeurOn-Line Studio User’s Guide

Gensym Neural Network Engine

G2 Core Technology

• G2 Bundle Release Notes

• Getting Started with G2 Tutorials

• G2 Reference Manual

c:\Program Files\Gensym\ Windows pathnames

/usr/gensym/g2/kbs UNIX pathnames

spreadsh.kb File names

g2 -kb top.kb Operating system commands

public void main()
gsi_start

Java, C and all other external code

Convention Examples Description
xxiii

• G2 Language Reference Card

• G2 Developer’s Guide

• G2 System Procedures Reference Manual

• G2 System Procedures Reference Card

• G2 Class Reference Manual

• Telewindows User’s Guide

• G2 Gateway Bridge Developer’s Guide

G2 Utilities

• G2 ProTools User’s Guide

• G2 Foundation Resources User’s Guide

• G2 Menu System User’s Guide

• G2 XL Spreadsheet User’s Guide

• G2 Dynamic Displays User’s Guide

• G2 Developer’s Interface User’s Guide

• G2 OnLine Documentation Developer’s Guide

• G2 OnLine Documentation User’s Guide

• G2 GUIDE User’s Guide

• G2 GUIDE/UIL Procedures Reference Manual

G2 Developers’ Utilities

• Business Process Management System Users’ Guide

• Business Rules Management System User’s Guide

• G2 Reporting Engine User’s Guide

• G2 Web User’s Guide

• G2 Event and Data Processing User’s Guide

• G2 Run-Time Library User’s Guide

• G2 Event Manager User’s Guide

• G2 Dialog Utility User’s Guide

• G2 Data Source Manager User’s Guide

• G2 Data Point Manager User’s Guide

• G2 Engineering Unit Conversion User’s Guide
xxiv

Related Documentation
• G2 Error Handling Foundation User’s Guide

• G2 Relation Browser User’s Guide

Bridges and External Systems

• G2 ActiveXLink User’s Guide

• G2 CORBALink User’s Guide

• G2 Database Bridge User’s Guide

• G2-ODBC Bridge Release Notes

• G2-Oracle Bridge Release Notes

• G2-Sybase Bridge Release Notes

• G2 JMail Bridge User’s Guide

• G2 Java Socket Manager User’s Guide

• G2 JMSLink User’s Guide

• G2 OPCLink User’s Guide

• G2-PI Bridge User’s Guide

• G2-SNMP Bridge User’s Guide

• G2-HLA Bridge User’s Guide

• G2 WebLink User’s Guide

G2 JavaLink

• G2 JavaLink User’s Guide

• G2 DownloadInterfaces User’s Guide

• G2 Bean Builder User’s Guide

G2 Diagnostic Assistant

• GDA User’s Guide

• GDA Reference Manual

• GDA API Reference
xxv

Customer Support Services
You can obtain help with this or any Gensym product from Gensym Customer
Support. Help is available online, by telephone, by fax, and by email.

To obtain customer support online:

 Access G2 HelpLink at www.gensym-support.com.

You will be asked to log in to an existing account or create a new account if
necessary. G2 HelpLink allows you to:

• Register your question with Customer Support by creating an Issue.

• Query, link to, and review existing issues.

• Share issues with other users in your group.

• Query for Bugs, Suggestions, and Resolutions.

To obtain customer support by telephone, fax, or email:

 Use the following numbers and addresses:

Americas Europe, Middle-East, Africa (EMEA)

Phone (781) 265-7301 +31-71-5682622

Fax (781) 265-7255 +31-71-5682621

Email service@gensym.com service-ema@gensym.com
xxvi

Part I
Entry and Paths
Chapter 1: Entry Points

Describes the blocks you use to get data into a diagram by using sensor data from outside the
application.

Chapter 2: Path Displays

Describes the blocks that display the value on paths

Chapter 3: Connections

Describes the blocks you use to get data into a diagram by using sensor data from outside the
application.
1

2

1

Entry Points
Describes the blocks you use to get data into a diagram by using sensor data from
outside the application.

Introduction 3

Using Entry Points 4

Entry Points 7

White Noise 34

Sine Wave 37

Introduction
The blocks on the Entry Points palette let you enter data into your application.
The Entry Points enable you to get data externally from a G2 procedure, variable,
parameter, from G2 Gateway (GSI), or from an embedded variable in the table for
the block. The Signal Generators let you simulate values and test your
application.

The blocks are: Numeric Entry Point, Control Entry Point, Vector Entry Point,
Belief Entry Point, Sine Wave Generator, and White Noise Generator.
3

You can find these blocks on the Entry Points palette under the Entry & Path
submenu of the Palettes menu:

Using Entry Points
This section describes general information about using entry points.

Enabling Data Input

Entry points and signal generators do not pass data until you explicitly enable
data to flow.After you enable data input, the signal generators immediately
update their output values, then update their value regularly.

To enable data to flow through a diagram:

 Select Enable Data Input from the Controls menu.

A check mark appears next to the entry, indicating that data is enabled.

To stop data from flowing through a diagram:

 Select Enable Data Input from the Controls menu when the menu choice is
already selected.

You might want to turn data input off if you want G2 to run quicker as you
modify a diagram.

Note Choosing the override menu choice from a block always passes a value, even
when you disable data input.
4

Using Entry Points
Reading the Output Value

Entry points hold their current values in an attribute that defines a G2 variable or
in the attribute sensor-value, depending on the current data source. Unlike all
other blocks attributes, these attributes are displayed in the table for the block.
Signal generators hold their current values in an attribute of the block named
output-value.

This table shows the attribute that defines a G2 variable for each type of entry
point:

You can display the output value of an entry point or signal generator by showing
the attribute display from the table.

Note You cannot display the output value of a Vector Entry Point because the value is
contained in a list.

To see the output value beside the block:

1 Display the block’s attribute table.

2 Click on the attribute’s value (but not directly on the text) to display the menu.

3 Select show attribute display to display the current value.

For this entry point...
The attribute of the block
that stores the output value is...

Numeric Entry Point dp-out

Belief Entry Point ip-out

Control Entry Point cp-out

Vector Entry Points vpv-out
5

This figure shows how to show the attribute display for a Numeric Entry Point:

You change an entry point’s output value by changing the value of the block’s G2
variable. For information on how to change a block’s output value, see Specifying
the Embedded Value for an Entry Point.You change a signal generator’s output
value, you configure or override the block.

Note If you manually override the value of an entry point, the output value in the table
for the block does not show the manually overridden value.

Specifying How Often to Generate Values

The field Sample Period specifies how often a signal generator passes a new
value. If this value is large, the block produces a coarser signal and your
application runs faster. By default, the value is 5 seconds.

For example, if a Real Time Clock block has a Sample Period of 1 second, it might
send out these values over 10 seconds: 4001, 4002, 4003, 4004, 4005, 4006, 4007,
4008, 4009, and 4010. If the block has a Sample Period of 2 seconds, it would
send out the following values over the same period of time: 4002, 4004, 4006,
4008, and 4010.

If you change a block’s Sample Period while your application is running,
NeurOn-Line resets the block and starts passing values according to the new
period.

1.

2.

3.
6

Entry Points
Entry Points

The five blocks are from left to right: Numeric Entry Point, Text Entry Point,
Symbolic Entry Point, Belief Entry Point, and Control Entry Point.

Any Entry Point except a Vector Entry Point enters data into a diagram from a G2
procedure, variable, parameter, or GSI. Any Entry Point other than a Vector Entry
Point can get its current value from one of two sources:

• From an embedded data source, which is a G2 variable that is an attribute of
the block. You use an embedded data source when you want to obtain data
from a procedure, formula, or action button, or rule. You can conclude a value
directly into the G2 variable.

• From an external data source, which provides data directly from a G2 sensor.
You use an external data source when you want to obtain data from a
variable, parameter, or sensor.

The name of the attribute that contains the G2 variable that is the embedded data
source depends on the type of Entry Point, as described in Reading the Output
Value. For example, for a Numeric Entry Point, the name of this attribute is
dp-out.

You configure the name of the G2 variable in the Name of Sensor attribute of the
Entry Point. You configure how long the internal data is valid in the Validity
Interval attribute of the entry point. You configure the data source, the formula,
and the update interval of the embedded data source in the variable’s subtable

You can toggle between the embedded and external data source while running
your diagram to toggle between simulated and real-time data.

dp-out ip-outcp-out dp-out

dp-out

ip-out

cp-out

dp-out
7

Using Entry Points to Obtain Data from a G2
Variable

You use Entry Points to obtain data from G2 variables. For example, you do this
when you want to place all sensors for a diagram on a single workspace.

Entry Points obtain output data from one of two locations, depending on whether
you are using an embedded or external data source:

• When you are using an embedded data source, the block obtains its output
value from an attribute of the block, which is itself a variable. The name of this
attribute depends on the type of entry point. For example, a Numeric Entry
Point defines the attribute dp-out, which is an embedded variable.

• When you are using an external data source, the block obtains its output data
directly from the external sensor. The Entry Point stores the current value of
the external variable in an attribute of the block named sensor-value.

You can switch between these two data sources by configuring the Data Source
attribute of the block. The output value of the block depends on the data source
the block is using.

When you configure the attributes of the block through the configuration panel,
you are configuring the embedded data source, namely, the attribute of the block
that contains a variable, for example, dp-out. Configuring the block has no effect
on the external data source.

To configure the block to use an external or embedded data source:

1 Create, name, and specify a G2 variable that supplies data to the Entry Point.

Typically, the data server for this variable is an external data source, such as a
GSI data server or G2. This variable is the external data source. You must
specify the Formula and Default-update-interval attributes. You typically also
specify the Validity-interval and Data-server attributes.

2 Click on the embedded variable, for example, dp-out, select the subtable menu
choice, and specify the attributes the embedded variable.

This variable is the embedded data source. You must specify the Formula and
Default-update-interval attributes. You do not need to specify the Validity-
interval attribute because you configure this attribute for the block. Also, you
do not typically specify the Data-server attribute because the variable
typically simulates real-time data in its formula.

3 Configure the Name of Sensor attribute of the Entry Point to specify the G2
variable that supplies data to the Entry Point.

If the Data Source attribute is external, the named sensor must exist before
you enter its name in the Name of Sensor. If the Data Source attribute is
embedded, the named sensor does not have to exist before you enter it.
8

Entry Points
When you configure the Name of Sensor, you are configuring the Name-of-
sensor attribute in the subtable of the embedded G2 variable, for example, dp-
out.

You can specify the Name of Sensor as an expression that evaluates to a G2
variable. For more information, see Evaluating Expressions in Attributes in
the NeurOn-Line User’s Guide.

4 Configure the Data Source to be either embedded or external.

• Embedded means the Entry Point will use the G2 variable stored in the
attribute of the block, for example, dp-out.

• External means the Entry Point will use the external sensor whose value is
stored in the Sensor-value attribute of the block.

5 Configure the Validity Interval of the Entry Point to how long the value of the
embedded data source remains valid.

When you configure the Validity Interval, you are configuring the Validity-
interval attribute in the subtable of the embedded G2 variable, for example,
dp-out.

The default Validity Interval is supplied, which means the Entry Point uses the
Validity-interval supplied by the specified data source.

Specify the Validity Interval as either a time interval, for example, 5 seconds,
or indefinite, in which case the data value never expires.

You can also override the Validity Interval given by an Entry Point by creating
a rule that concludes a value directly into the dp-out output path attribute of
the Entry Point, using the with expiration syntax, e.g., conclude that the dp-out
of EP-1 = the current time with expiration (the current time + 5).

6 Specify Value on Initialization to supply a default value when the Entry Point
is reset.

Note Initial values never expire, even if you specify Value on Initialization and Validity
Interval for a block. Also, manual values that you provide by overriding the block
never expire.

This next figure shows a Numeric Entry Point whose Name of Sensor is pointing
to a variable named float-var-1, which is the external data source.
9

The configuration panel specifies a Validity Interval of 5 seconds, which
determines the validity of the embedded data source. The default Data Source is
embedded, which means the block uses the value generated by the dp-out
embedded variable.
10

Entry Points
This next figure shows the external data source, the variable named float-var-1,
and its associated table. The variable generates random numbers between 1 and
10 once every 20 seconds, and the data is valid for 10 seconds.

The following figure shows the table for the Numeric Entry Point, which contains
the dp-out attribute and the sensor-value attribute, and the subtable for the dp-out
attribute.

The dp-out attribute defines an embedded variable, which is the embedded data
source for the Entry Point. The embedded variable generates random numbers
between 11 and 20 once every 10 seconds, as the subtable shows.

Notice that the Validity-interval of the embedded variable corresponds to the
Validity Interval attribute in the configuration panel for the block. The Sensor-
value attribute shows the current value of the external data source, the variable
named float-var-1.
11

12

Entry Points
Choosing Between Embedded and External Data
Sources

By default, all Entry Points obtain their output values from the embedded data
source, for example, the variable dp-out. You can cause the Entry Point to obtain
its data from the external data source by reconfiguring the entry point. In this
way, you can switch between simulated data that the embedded data source
generates, and live data that the external data source generates.

To choose between embedded and external data sources:

 Configure the Data Source attribute to be external or embedded.

When the block is obtaining its data from the embedded data source, for example,
the dp-out variable, the arrow in the Entry Point’s icon is black. When you
configure the Data Source attribute to be external, the arrow in the Entry Point’s
icon changes to the active color of the block, whose default is cyan. In this way,
you can determine the current data source.

Note Even when you are using the external data source, the value of the embedded
variable that is the embedded data source, for example, the dp-out, continues to
update. To verify that the block is using the correct data source, display the table
for the output path of the block.

The following figure shows the table for the output data path for a Numeric Entry
Point when Data Source is embedded. Notice that the Data-value on the output
data path of the Numeric Entry Point corresponds to the value of the dp-out
embedded variable in the block’s table. The output value is greater than 10, thus
the inference output path of the High Value observation is true.
13

The following figure shows the result of configuring the Data Source attribute to
be external.

Notice that the arrow on the icon of the Numeric Entry Point is now cyan,
indicating it is using the external data source. The Data-value on the output data
path of the Numeric Entry Point corresponds to the value of the Sensor-value
attribute in the block’s table, which is the current value of the float-var-1 external
variable. The output value is less than 10, thus the inference output path of the
High Value observation is false.

Numeric Entry

dp-out path table

Point table
14

Entry Points
Using a G2 Variable Directly

You do not need to use an Entry Point to obtain data from a G2 variable in a
diagram. Instead, you can connect variables directly to a path simply by dragging
a path into the variable and making the connection. For more information on how
to do this, see Using Variables and Parameters in the NeurOn-Line User’s Guide.

Viewing the Variable

You can view the variable that is the sensor for a particular Entry Point, using a
menu choice. This menu choice is especially useful if the Entry Point and the
variable are on different workspaces.

To view the variable for an Entry Point:

 Choose go to sensor from the Entry Point’s menu.

Numeric Entry

dp-out path table

Point table
15

NOL shows the workspace of the variable and places an arrow near the variable
for a number of seconds. If the variable is embedded in another G2 object, the
arrow points to that object, as the following figure shows.

Obtaining Values from External Datapoints

You can use an external datapoint to set the output value for an Entry Point to
obtain data from external systems, such as Distributed Control Systems (DCS).
You create and configure external datapoints by using an External Datapoint
Configuration block, which creates external datapoints from a .csv file. This
block also requires a Network Interface to provide communication with the
external system.

Once you create the external datapoints, you can then create Entry Points
automatically from some or all of the external datapoints.

This feature is available in the Gensym Data Point Management System (GDPM)
module, which is available as part of NeurOn-Line. This module also provides
datapoint logging and data replay capabilities.

For more information, see the Optegrity User’s Guide.

To create entry points from external datapoints:

1 Choose Palettes > Datapoint Configuration > Data Points to display this
palette:

2 Create and configure an External Datapoint Configuration block.

Choose Properties on the block and specify a unique name for the Block
Name. Select the Interface Name to use for communicating with the external
system. Specify the name of the .csv file that contains configuration
information for the external datapoints.
16

Entry Points
Here is the properties dialog for an External Datapoint Configuration block:

For detailed information on configuring an External Datapoint Configuration
block, see Chapter 8 “Configuring External Datapoints” in the Optegrity User’s
Guide.

3 Create the external datapoints.

You create the external datapoints by clicking the Create External Datapoints
button in the properties dialog or by choose Create External Datapoints on the
block.

The external datapoints are created from the configuration information in the
specified file and appear on the detail of the block.
17

4 Choose Create Entry Point from the popup menu of the workspace.

A dialog appears for choosing the external datapoints from which to create
Entry Points:

5 Click OK.

The Entry Points appear on the same workspace as the External Datapoint
Configuration block.

You can now build your diagram from these Entry Points to obtain values from
external systems through these external datapoints.

Specifying the Embedded Value for an Entry Point

In addition to using a variable to set the output value for an Entry Point as
described in Using Entry Points to Obtain Data from a G2 Variable, you can set
the output value of the embedded variable by using:

• A button. Any G2 button, such as sliders and action buttons, can set the value
for an Entry Point.

• A rule or procedure. A G2 rule or procedure can conclude a value for an Entry
Point.
18

Entry Points
• A formula. In the subtable for the Entry Point’s variable, you can specify a
formula that G2 evaluates when it needs the Entry Point’s value.

• Your own variable or parameter. You can replace the Entry Point’s variable
with a variable or parameter created from your own object definition.

Note The Data Output block performs the opposite action of the Entry Points; it passes
information from a diagram to a G2 variable or parameter.

Using a Button

Buttons are especially useful when you are testing an application or creating a
demo. They let the operator choose the value for an Entry Point. If you are using a
slider, radio button, or check box, set the attribute Variable-or-parameter to the
Entry Point’s variable. If you are using an action button, use a conclude statement
to set the Entry Point’s variable.

For example, the following figure shows a slider that sets the output value for a
Numeric Entry Point:

19

In this figure, an action button starts a sequence of action blocks.

Using a Rule or Procedure

A G2 rule or procedure can set the value for an Entry Point. Whenever the rule or
procedure executes, it sets the value of the Entry Point, which then passes it. To
set the value of the Entry Point, use a conclude statement.

Note You cannot set the value of a Vector Entry Point with a rule or procedure.

This figure shows a Belief Entry Point that gets a value from a rule. Whenever any
tank has a temperature over 100, the Entry Point passes along the status value.

20

Entry Points
The next figure shows a Control Entry Point that gets a value from the procedure
process-bottles. When you call the procedure, the Entry Point passes along one
control signal for each bottle.

This figure shows a Numeric Entry Point that gets a value from the procedure
adjust-speed. The procedure decrements the value of the Entry Point by an
amount you specify.

Using a Formula

You can give a formula to an Entry Point’s variable. G2 evaluates the formula at
the interval specified in the variable’s Default-update-interval attribute.

To specify the formula:

1 In the attribute table for the Entry Point, click on the attribute dp-out, ip-out, or
cp-out, and select subtable from the menu.

NOL displays the attribute’s subtable.

2 Edit the attribute Formula in the subtable.

3 Set the attribute Default-update-interval to the interval at which you want
NOL to evaluate the formula.
21

1.
22

Entry Points

Using Your Own Variable Definition

You can replace the variable in an Entry Point with a variable created from your
own object definition. This method is especially useful when the you would like
to add attribute to the Entry Point or change the inheritance of the embedded
variable.

2.and 3.
23

To use your own variable definition:

1 Create the variable definition.

This figure shows a completed attribute table for a variable definition that
uses GSI:

2 Go into Administrator mode.
24

Entry Points
3 Delete the subtable for the Entry Point’s variable by clicking on the variable in
the Entry Point’s attribute table, and selecting delete subtable from the menu
that appears:

4 Click OK in the dialog that G2 displays, asking you to confirm that you want
to delete the subtable.

25

5 Add a new subtable for your variable definition by clicking on the variable in
the Entry Point’s attribute table, and selecting add optional subtable from the
menu that appears:

G2 displays a menu asking you to choose a class.

6 Choose g2-variable from the menu, and follow the menu hierarchy down until
you see the name of the superior class used to define the new variable class
specified in Step 1.

The final menu contains your new variable definition. Click on the name of
your variable definition.

G2 displays the subtable for your variable.
26

Entry Points
7 Edit the variable to suit your needs.

27

Using Vector Entry Points

To generate values from a Vector Entry Point, you override the block. You specify
the dimension of the vector, and then the vector values.

To override a Vector Entry Point:

1 Select the override menu choice on the entry point.

NOL displays this dialog:

2 Enter the dimension of the vector and select OK.

NOL displays a spreadsheet for editing the vector values. For example, here is
a spreadsheet for entering a 3-dimensional vector:

3 Enter the values for each dimension, and select OK.

For more information about using the spreadsheet to edit vectors, see Using the
GXL Spreadsheet to Edit Data.

Making Vector Values Permanent

When you choose make permanent from a Vector Entry Point’s menu, the block
saves its current output value. If you later reset G2, the block restores that value,
but that value is not passed until the block evaluates.
28

Entry Points
Configuring

This is the configuration panel for the Numeric Entry Point.

Attribute Description

Name of Sensor The name of the G2 variable that supplies data
to the Entry Point. The sensor you specify must
exist when Data Source is external. For
information on how to use an expression for the
Name of Sensor, see Evaluating Expressions in
Attributes in the GDA User’s Guide.

Data Source Determines whether the entry point obtains its
output value from the embedded variable,
which is an attribute of the entry point, for
example, dp-out, or from an external variable,
which is the value of the Name of Sensor
attribute. When Data Source is external, the
arrow on the icon changes to the active color for
blocks.
29

This is the configuration panel for the Belief Entry Point.

Validity Interval The amount of time that the current value of the
Entry Point remains valid, specified either as a
time interval, for example, 5 seconds, or
indefinite, in which case the data value never
expires.

The default Validity Interval is supplied, which
means the Entry Point uses the Validity-interval
supplied by the Name of Sensor variable.

The specification of this attribute overrides the
Validity-interval given by the variable.

Value on
Initialization

See Specifying Initial Values in the NeurOn-Line
User’s Guide.

Attribute Description
30

Entry Points
Attribute Description

Name of Sensor The name of the G2 variable that supplies
data to the Entry Point.

Data Source Determines whether the entry point obtains
its output value from the embedded
variable, which is an attribute of the entry
point, for example, dp-out, or from an
external variable, which is the value of the
Name of Sensor attribute. When Data
Source is external, the arrow on the icon
changes to the active color for blocks.

Validity Interval The amount of time that the current value of
the Entry Point remains valid, specified
either as a time interval, for example, 5
seconds, or indefinite, in which case the data
value never expires.

The default Validity Interval is supplied,
which means the Entry Point uses the
Validity-interval supplied by the Name of
Sensor variable.

The specification of this attribute overrides
the Validity-interval given by the variable.

Logic This attribute is not supported in NOL.

Status on Initialization See Specifying an Initial Status Value in the
NeurOn-Line User’s Guide.

Output Uncertainty This attribute is not supported in NOL.

Description when True,
Description when False,
Description when
Unknown

These attributes are not supported in NOL.
31

This is the configuration panel for the Control Entry Point.

A Vector Entry Point has no configuration dialog. Instead, you override the vector
entry point, as described in Using Vector Entry Points.

See Also

For general information on how to use this block, see the sections below.

Attribute Description

Name of Sensor The name of the G2 variable that supplies data
to the Entry Point.

Data Source Determines whether the entry point obtains its
output value from the embedded variable,
which is an attribute of the entry point, for
example, dp-out, or from an external variable,
which is the value of the Name of Sensor
attribute. When Data Source is external, the
arrow on the icon changes to the active color for
blocks.

Value on
Initialization

See Specifying an Initial Data Value in the
NeurOn-Line User’s Guide.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Overriding Block Values User’s Guide

Controlling the Flow of Data in an
Application

User’s Guide
32

Entry Points
Reading the Output Value Reference
Manual

Specifying How Often to Generate Values Reference
Manual

For more information on... See... In this book...
33

White Noise

The White Noise block generates random values that are normally distributed
around a mean. Its current output value does not depend on any previous output
value. This block is especially useful when you add it to another signal to
simulate noise.

This figure shows the output from a White Noise block. The Disturbance Mean is
0 and the Disturbance Variance is 1.0.

To specify the range of output values, set the attributes Disturbance Mean and
Disturbance Variance. Disturbance Mean is the mean output value, and
Disturbance Variance is the variance of the output values.

Configuring

This is the configuration panel for the White Noise block.

dp-out
34

White Noise
Example

The White Noise block in this figure adds noise to a Sine Wave signal. The
Disturbance Mean is 0.0 and the Disturbance Variance is 0.025.

See Also

For more information on how to use this block, see the sections below.

Attribute Description

Disturbance Mean The mean output value of the block.

Disturbance Variance The variance of the output values of the block.

Sample Period How often the block passes a new value.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Overriding Block Values User’s Guide

Controlling the Flow of Data in an
Application

User’s Guide
35

Reading the Output Value Reference
Manual

Specifying How Often to Generate Values Reference
Manual

For more information on... See... In this book...
36

Sine Wave
Sine Wave

The Sine Wave block generates sine values. It is a periodic signal generator and
repeats its pattern of outputs cyclically.

Specifying the Shape

The attributes Amplitude, Bias, and Period specify the shape of the sine wave.
The Amplitude is half the difference between the minimum and maximum
values. The Bias is the mean value between the minimum and the maximum. The
Period is the amount of time that the block takes to complete a cycle.

Specifying a Phase

The Phase Angle determines where the Sine Wave block starts its cycle. It is a
number of degrees between 0 and 360. For example, a Sine Wave block with a
Phase Angle of 0 starts its cycle at the Bias going towards the maximum value. A
Sine Wave block with a Phase Angle of 90 starts its cycle at the maximum value.

This figure shows a graph of a sine wave with a Period of 60, an Amplitude of 1.
0, and a Bias of 0.0, and a Phase of 270.

Note Another way to change the place where the block starts its cycle is to set the
attribute Reset Phase to yes and choose reset from the block’s menu. For more
information see “Resetting” below.

dp-out

Period

Bias

Amplitude
37

Resetting

The attribute Reset Phase determines what happens when you choose reset from
the block’s menu:

If you change Phase Angle as NOL is running, NOL uses the new value the next
time you reset the block.

Configuring

This is the configuration panel for the Sine Wave block with its default values.

If Reset Phase is… The block does this when you choose reset …

yes Returns to the beginning of the wave’s cycle.

no Continues as before.

Attribute Description

Period The amount of time that the block takes to
complete a cycle.

Bias The value between the minimum and the
maximum.

Phase Angle A number of degrees between 0 and 360, which
determines where the Sine Wave block starts its
cycle.
38

Sine Wave
See Also

For more information on how to use this block, see the sections below

Amplitude Half the difference between the minimum and
maximum values.

Sample Period How often the block passes a new value.

Reset Phase Whether the block returns to the beginning of
the cycle when reset (the default) or continues
where the signal left off.

Attribute Description

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Overriding Block Values User’s Guide

Specifying Initial Values User’s Guide

Controlling the Flow of Data in an
Application

User’s Guide

Reading the Output Value Reference
Manual

Specifying How Often to Generate Values Reference
Manual
39

40

2

Path Displays
Describes the blocks that display the value on paths

Introduction 41

Data Path Display 42

Vector Path Display 44

Introduction
NeurOn-Line provides you with two blocks that let you view the attributes of a
data path or vector path.

You can find the Path Displays palette under the Entry & Paths submenu of the
Palettes menu:
41

Data Path Display

The Data Path Display block displays the value, quality, or collection time of its
input value. By default, it displays the value. When it is displaying quality, a Q
appears on the icon. When it is displaying collection time, a T appears on the icon.

Determining Which Path Attribute to Display

Use the menu choices show collection time, show value, and show quality, to
display the path’s Collection-time, Data-value, and Quality attributes, respectively.

The diagram below uses three Data Path Displays to display the value, quality,
and collection time of one Entry Point.

Configuring

The Data Path Display block has no configurable attributes.

Example

In the diagram below, Data Path Displays show an addition in progress.

dp-outdp-in
42

Data Path Display
See Also

For more information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Displaying the Value on a Path User’s Guide
43

Vector Path Display

The Vector Path Display block displays the value of one element in its input
vector, or the vector's quality or collection time. By default, it displays the
element's value. When it's displaying quality, a Q appears on the icon. When it's
displaying collection time, a T appears on the icon.

If you want to change which attribute it displays, choose an option from the
block's menu. To display quality, choose show quality. To display collection time,
choose show collection time. To display value, choose show value.

The diagram below uses three Data Path Displays to display the value, quality,
and collection time of the first element in a Vector Entry Point.

To change which element it displays, change the attribute Vector Element to
Display in the block's configuration panel. To show all the elements in a vector,
connect several Vector Path Displays to a path and change the Vector Element to
Display attribute for each. Alternatively, choose the show value menu choice on
the vector path to display a spreadsheet that shows the entire vector.

In the diagram below, Vector Path Displays show a vector addition in progress.
Note that under normal circumstances, you should not use so many path
displays, because doing so would significantly degrade the efficiency of your
application.
44

Vector Path Display
Configuring

This is the configuration panel for Vector Path Display.

Field Description

Vector Element
to Display

Specifies which element in the input vector to
display.
45

See Also

For more information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Displaying the Value on a Path User’s Guide

Using Vector Paths User’s Guide
46

3

Connections
Describes the NeurOn-Line objects that control how data flows through the
various types of paths.

Introduction 47

Connection Posts 49

Connectors 53

Circuit Breakers 55

Introduction
The Connections palette contains connections that control how information flows
through paths.
47

You find the Connections palette on the Other submenu of the Palettes menu:

These objects do not modify data or perform an action, but they let you control
how information flows through paths. You can let paths cross workspaces, join
paths together, and create loops.

The Connection Posts let paths cross workspace boundaries so you can create
diagrams that span several workspaces.

The Connectors allow you to join paths with a branch-in topology. They pass the
last value received.

NOL allows you to create diagrams containing loops. You use circuit breakers to
prevent NOL from entering an infinite loop. The Circuit Breakers let you control
loops in your diagram.

The Connection Posts, Connectors, and Circuit Breakers associated with Item
Paths behave the same way as the connections associated with the other types of
paths, except they pass items. For more information, see Connection Posts,
Connectors, andCircuit Breakers.

For more information on item paths, see Using Item Pathsin the NeurOn-Line
User’s Guide, Customizing the Connection Stubsin the NeurOn-Line User’s Guide,
and the GDA API Reference.
48

Connection Posts
Connection Posts

Connection Posts let paths cross workspace boundaries so you can create
diagrams that span several workspaces. G2 passes the data from an output
connection post to all input connection posts with the same name. NeurOn-Line
has six types of Connection Posts: Data Path Connection Posts, Inference Path
Connection Posts, Control Path Connection Posts, Vector Path Connection Posts,
Data Pair Path Connection Posts, and Action Link Connection Posts. They are
identical except for the type of data they handle.

A Connection Post must have a name to work. An output connection post and its
corresponding input connection posts must have the same name to pass data
properly. To name the connection post, configure the connection post.

The Connection Posts on the Connections palette can function as input or output.
To change one to an input post, just delete the input stub by dragging it onto the
post, and vice versa for an output post.

Connection Posts let you break up a complex diagram and put related parts of the
diagram on different workspaces. You can also use input and output connection
posts on the same workspace to reduce the number of crossed paths.

Note Do not modify the Superior-connection attribute of a connection post.

Highlighting

If your diagram is large and contains many Connection Posts, you may want to
see the output Connection Post that sends data to another post, or you may want
to find all the input posts that receive data from another post. To highlight all
connection posts with the same name, choose highlight from a Connection Post’s
menu. NOL brings to the front all workspaces that contain a connection post with
that name, colors the post the block highlight color (pink, by default), and places
an arrow beside it.
49

To change the post’s color back and remove the arrow, choose do not highlight
from the post menu for any of the highlighted posts.

Configuring

This is the configuration panel for a Data Path Connection Post:

Examples

The following figure shows the equation:

The Connection Posts let you use the value from Entry Point A in two different
places, without crossing paths.

Attribute Description

Name The name of the connection post.

a b+ a c+
50

Connection Posts
The example below uses action link Connect Posts to simplify a diagram in which
a Backpropagation is trained and tested with a Data Set:
51

See Also

For more information on how to use this block, see the sections below.

For more information on... See... In this book...

Using Paths User’s Guide
52

Connectors
Connectors

A Connector lets you combine two output paths, so a block’s input port can get a
value from either path. A connector passes the last value received on any of its
input paths. NeurOn-Line has five types: Data Path Connectors, Inference Path
Connectors, Control Path Connectors, Vector Path Connectors, and Data Pair Path
Connectors.

The various types of Connectors are nearly identical, except for the type of data
they handle.

Connectors are similar to splitters, which split an output path into two paths, so
that one output path can enter two ports. G2 creates splitters for you
automatically whenever you connect an input path to another path.

You can drag additional paths into a connector, similar to a peer input block.

Note G2 does not create Connectors automatically. You must create them yourself by
cloning them from the Connections palette. If you try to connect an output path to
another path without a Connector, G2 deletes the path and generates a warning
message.

Configuring

The Connectors have no configurable attributes.
53

Example

The following diagram checks the temperature of some equipment. The
temperature can come from one of two Entry Points. A Connector combines the
output paths from the Entry Points, so the High Value Observation can get input
from either.

See Also

For more information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide
54

Circuit Breakers
Circuit Breakers

Circuit Breakers allow you to control a NOL diagram with a loop. They are not
required if another block can halt the iteration of the loop. Otherwise, you use the
circuit breaker to prevent infinite loops in a diagram.

When the Circuit Breaker is open, the value on the path is propagated across the
breaker unchanged, but NOL does not evaluate the downstream block
immediately. The next block evaluates when it receives data from somewhere
else. When the Circuit Breaker is closed, the value on the path is propagated
across the breaker, and the downstream block evaluates immediately.

Circuit Breakers contain a menu choice for opening and closing the circuit
breaker. If the circuit breaker is open, the menu choice is close breaker, and if the
circuit breaker is closed, the menu choice is open breaker.

Opening and closing the circuit breaker also changes the icon as shown in the
following figure:

‘All types of circuit breakers are open by default.

Configuring

Circuit Breaker configuration panels vary depending on the type of circuit
breaker.

open closed
55

Configuring the Data Path Circuit Breaker

This is the configuration panel for the Data Path Circuit Breaker.

Configuring the Inference Path Circuit Breaker

This is the configuration panel for the Inference Path Circuit Breaker.

Configuring the Control Path, Vector Path, and Data Pair Path Circuit
Breakers

The Control Path Circuit Breaker, Vector Path Circuit Breaker, and Data Pair Path
Circuit Breaker have no configurable attributes.

Attribute Description

Value on
Initialization

See Specifying an Initial Data Value in the
GDA User’s Guide.

Attribute Description

Status on
Initialization

See Specifying an Initial Status Value in the
GDA User’s Guide.
56

Circuit Breakers
Example

In the following example, the Circuit Breaker is open, which allows the
Summation block to accumulate values from the Numeric Entry Point each time a
new value appears on the path. Do not close the Circuit Breaker in this situation.

See Also

For more information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Specifying Initial Values User’s Guide

Understanding the NOL Block Evaluation
Engine

User’s Guide
57

58

Part II
Data Processing
Chapter 4: Scalar Blocks

Describes blocks that operate on scalar values, such as by performing arithmetic, averaging,
filtering, and delaying functions.

Chapter 5: Vector Blocks

Describes the blocks that create, manipulate, and operate on vectors.

Chapter 6: Data Set Blocks

Describes the blocks that store and manipulate the data with which you train a neural
network.
59

60

4

Scalar Blocks
Describes blocks that operate on scalar values, such as by performing arithmetic,
averaging, filtering, and delaying functions.

Introduction 62

Summation 66

Difference 68

Change Sign 69

Bias 70

Multiplication 72

Quotient 74

Inverse 75

Gain 76

Additive Noise 78

Outlier Filter 80

First-Order Exponential Filter 84

Sample Median 87

Average Input Value 89

Median Input Value 91

Data Delay 93

Data Inhibit 95

Data Output 97

Set Attribute 99

Data Shift 101
61

Variance 103

Moving Average 105

Arithmetic Function 107

Arithmetic Function of Two Arguments 111

Introduction
NeurOn-Line provides a number of blocks that let you perform operations on
scalar values, such as arithmetic, averaging, filtering, delaying, and applying your
own functions.
62

Introduction
You can find the Scalar Blocks palette under the Data Processing submenu of the
Palettes menu:

Performing Arithmetic Operations

These blocks let you add, subtract, multiply, and divide data:

• The Summation block adds any number of input values.

• The Difference block subtracts one value from another.

• The Change Sign block inverts the sign of a values.

• The Bias block adds a constant value to its input.

• The Multiplication block multiplies any number of input values.
63

• The Quotient block divides one input value by another.

• The Inverse block passes the inverse of a value.

• The Gain block multiplies its input by a constant value.

Adding and Filtering Noise

• The First-Order Exponential Filter block performs low-pass filtering and is
useful for noise reduction.

• The Outlier Filter block passes only those values that stay inside the range.
This filter is useful for ignoring large sampling errors and impossibly extreme
sensor readings.

Averaging Values

These blocks compute the average or median value of their input values:

• The Average Input Value block computes the average value of any number of
input values.

• The Median Input Value block computes the median value of any number of
input values.

• The Moving Average block computes the average of the history of values.

Stopping and Pausing Data

These blocks let you stop or pause the flow of data:

• The Data Delay block holds a value for a set period of time.

• The Average Input Value block stops data propagation as long as an inference
input has a given value.

• The Data Shift block delays passing its input value until it's received more
input values.

Outputting Data

These blocks let you set a block's attribute, a G2 parameter, or a G2 variable to the
input data value:

• The Set Attribute block sets another block's attribute to the input data value.

• The Data Output block sets a G2 parameter or variable to the input data value.

Computing Statistical Properties

The Variance block computes the variance of the history of values.
64

Introduction
Defining Your Own Function

These blocks let you apply your own function or a built-in G2 function to its input
value:

• The Arithmetic Function block lets you apply a function with one argument.

• The Arithmetic Function of Two Arguments block lets you apply a function
with two arguments.
65

Summation

The Summation block adds all its input values together and passes the result. This
block is a peer input block; you can add inputs by dragging additional input
paths into the block.

Configuring

This is the configuration panel for the Summation block.

Example

This figure shows a diagram that computes (a + b) - (c + d). Note that the
Summation block has an extra input port and has been enlarged with the Change
Size menu choice.

See Also

For more information on how to use this block, see the pages below.

dp-out
dp-in

.
.

.

Attribute Description

Use Expired Inputs See Determining Whether a Block Uses Expired
Inputs in the NeurOn-Line User’s Guide.

For more information on... See... In this book...

Basic Block Behavior User’s Guide
66

Summation
Connecting to Peer Input Blocks User’s Guide

Vector Sum Reference
Manual

For more information on... See... In this book...
67

Difference

The Difference block subtracts the value of the lower path from the value of the
upper path and passes the result.

Configuring

The Difference block has no configurable attributes.

Example

This figure shows the equation a - b.

See Also

For more information on this block, see the sections below.

dp-outdp-in-1
dp-in-2

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Vector Difference Reference
Manual
68

Change Sign
Change Sign

The Change Sign block changes the sign of the input value, as if you multiplied it
by –1. This block makes negative values positive and positive values negative.

Configuring

The Change Sign block has no configurable attributes.

Example

This figure shows a diagram that computes this equation:

.

The block marked “1/x” is an Inverse block. The block marked “–” is a Difference
block.

See Also

For more information on this block, see the sections below.

dp-outdp-in

a– 1
b
---–

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Vector Rescaler Reference
Manual
69

Bias

The Bias block adds a fixed constant to its input value. Specify the constant in the
block’s Bias attribute.

Configuring

This is the configuration panel for the Bias block.

Example

This figure shows the equation for converting temperatures from Fahrenheit to
Celsius:

or

The block marked “K” is the Gain block.

dp-outdp-in

Bias

Attribute Description

Bias The value that the block adds to its input.

C F 32–
1.8

-------------------=

C F 32– + 0.56=
70

Bias
See Also

For more information on this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Editing Attribute Displays User’s Guide

Vector Rescaler Reference
Manual
71

Multiplication

The Multiplication block multiplies all its input values and passes the result.

Configuring

This is the configuration panel for the Multiplication block.

Example

This figure shows a diagram that computes this equation:

The Multiplication block has an extra input port and has been enlarged with the
Change Size menu choice.

dp-out
dp-in

.
.

.

Attribute Description

Use Expired Inputs See Determining Whether a Block Uses Expired
Inputs in the NeurOn-Line User’s Guide.

ab
cd

72

Multiplication
See Also

For more information on this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Connecting to Peer Input Blocks User’s Guide

Vector Product Reference
Manual
73

Quotient

The Quotient block divides the value of the upper path by the value of the lower
path and passes the result.

Configuring

The Quotient block has no configurable attributes.

Example

This figure shows this equation:

See Also

For more information on this block, see the sections below.

dp-out
dp-in-1
dp-in-2

a b+
c

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Vector Quotient Reference
Manual
74

Inverse
Inverse

The Inverse block computes the multiplicative inverse of the input value.

Configuring

The Inverse block has no configurable attributes.

Example

This figure shows a diagram that computes this equation:

The block marked “” is a Summation block.

See Also

For more information on this block, see the sections below.

dp-outdp-in

a 1
b
---+

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Vector Quotient Reference
Manual

Vector Rescaler Reference
Manual
75

Gain

The Gain block multiplies its input value by a fixed constant. Specify the constant
in the block’s Gain attribute.

Configuring

This is the configuration panel for the Gain block.

Example

This figure shows the equation for converting temperatures from Celsius to
Fahrenheit using this equation:

The block marked “b” is the Bias block.

See Also

For more information on this block, see the sections below.

dp-outdp-in

Gain

Attribute Description

Gain The value that the block multiplies by its input.

F C 1.8 32+=

For more information on... See... In this book...

Basic Block Behavior User’s Guide
76

Gain
Editing Attribute Displays User’s Guide

Vector Quotient Reference
Manual

For more information on... See... In this book...
77

Additive Noise

The Additive Noise block adds a random value to its input and passes the sum.
The random value is normally distributed around zero. Specify the standard
deviation for the random value in block's configuration panel.

Configuring

This is the configuration panel for the Additive Noise block.

Example

The figure below shows the output of an Additive Noise block that is connected
to a Numeric Entry Point that passes 0. The Standard Deviation for the Additive
Noise block is 1.0.

Attribute Description

Standard Deviation The standard deviation for the random values
that this block produces.
78

Additive Noise
See Also

For more information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide
79

Outlier Filter

The Outlier Filter passes only values that are within a band you specify. Specify
the band with the attributes Band Center and Band Range. If Outlier Replacement
is yes, the filter replaces out-of-range values with the nearest in-range value. If
Outlier Replacement is no, the filter discards out-of-range values.

The band can be fixed or floating. If Band Type is floating, each time the block
passes a value, that value becomes the center of the range. If Band Type is fixed,
the range always remains the same.

Specifying a Range

The attribute Band Range specifies the size of the block’s range. Set it to the
difference between the highest and lowest values in the range. The filter’s range
contains the values between the range’s center minus Band Range/2 and the
range’s center plus Band Range/2.

The attribute Band Type controls how the range’s center is set. If Band Type is
fixed, you set the attribute Band Center and NOL uses the value of Band Center as
the center of the range.

If Band Type is floating, NOL uses the last value it passed as the center, and NOL
ignores the value of the attribute Band Center. Because the block always passes
in-range values, the center is always set to an in-range input value.

When the block receives an out-of-range value, what it passes depends on the
value of Outlier Replacement, the attribute which controls whether the block
replaces an out-of-range value with another value. If Outlier Replacement is yes,
it changes the center of the range to the in-range value nearest to the input value.
If Outlier Replacement is no, the center does not change.

Note If Band Range is none, NOL uses a Band Range of 0.0. If Band Center is none,
NOL proceeds as if Band Type were floating.

Specifying How to Round Output Values

To round the output values, set the field Quantization. The block rounds its
output value to the unit you specify. For example, if Quantization is 0.1, the block
rounds to the nearest tenth, and if Quantization is 1.0, the block rounds to the
nearest integer.

This table shows some examples of rounding.

dp-outdp-in
80

Outlier Filter
This field is especially useful when you need to keep output values within known
accuracy limits.

Configuring

This is the configuration panel for the Outlier Filter.

If Quantization is... The filter passes these values…

none 0.5 1.43 1.77

0.1 0.5 1.4 1.8

0.5 0.5 1.5 2.0

1.0 1.0 1.0 2.0

Attribute Description

Quantization A number that specifies the smallest increment
that the block uses when rounding output
values.

Band Center The center of the band when Band Type is fixed;
otherwise, this attribute is ignored.
81

Examples

This section has some examples of a fixed and floating Outlier Filter.

Fixed Band

This figure shows some input values for an Outlier Filter with Band Type set to
fixed. The Band Range and Band Center are marked. Letters mark values that are
passed without replacement. If Outlier Replacement is yes, the filter replaces
unmarked values with the nearest in-range value. Otherwise, the filter does not
pass any value.

Floating Band

The next two figures show some input values for an Outlier Filter with Band Type
set to floating. They differ in how Outlier Replacement is set. In both, the range is
marked with a bold line, and the center of the range is marked with a thin line.

In this figure, Outlier Replacement is no. Notice that the center of the range
changes only when a new input value falls in the same range as the previous
value. Letters mark values that the block passes.

Band Type How the center of the range is set. The values
are either fixed, in which case the block uses the
value of Band Center as the center, or floating, in
which case the current output value is the new
band center.

Band Range The extent of the band’s range.

Outlier Replacement When Band Type is floating, whether the block
replaces the band center with the nearest in-
range value when the block receives an out-of-
range value (yes), or whether the center
remains the same (no).

Attribute Description

A

B

C

D

E

Band
Center

F

G Band Range
82

Outlier Filter

In this figure, Outlier Replacement is yes. Notice that when a value is out of
range, the center of the new range becomes the maximum or minimum of the old
range. Letters mark values that the block passes without replacing. For unmarked
values, the filter passes the closest in-range value.

See Also

For more information on how to use this block, see the sections below.

A
B

C
D

E

A
B

C

D

E

F

G

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Data Pair Outlier Filter Reference
Manual

Novelty Filter Reference
Manual
83

First-Order Exponential Filter

The First Order Exponential Filter performs low-pass filtering to filter out high
frequency noise. Its output value depends on the previous output value and the
current input value. To specify how much the filter weights previous output
values, set the attribute Filter Constant. The larger the Filter Constant, the more
weight the previous output values have.

This filter does not require inputs that are equally spaced in time.

Filtering

The First-Order Exponential Filter uses this equation to compute its output value.
The variables in the equation are explained in the table that follows.

The coefficient is the amount of weight that the filter gives the current input,
and the coefficient (1–) is the amount of weight that the filter gives the previous
output value. The block computes with both the Filter Constant and the
difference in time between the arrival of the last input and the arrival of the
current input. The constant is computed such that values received long ago will
not have as much effect on the current value as ones that were received a short
time ago.

dp-outdp-in

This variable… Is…

outputn The current output value

outputn-1 The previous output value

input The current input value

time The difference in time between the arrival of the
last input value and the current input value

outputn = input 1 – outputn 1–+ , where e

time
Filter-constant
---–

=

84

First-Order Exponential Filter
Specifying How to Round Output Values

To round the output values, set the field Quantization. The block rounds its
output value to the unit you specify. For example, if Quantization is 0.1, the block
rounds to the nearest tenth, and if Quantization is 1.0, the block rounds to the
nearest integer.

This table shows some examples of rounding.

This field is especially useful when you need to keep output values within known
accuracy limits.

Configuring

This is the configuration panel for the First Order Exponential Filter.

If Quantization is... The filter passes these values…

none 0.5 1.43 1.77

0.1 0.5 1.4 1.8

0.5 0.5 1.5 2.0

1.0 1.0 1.0 2.0

Attribute Description

Quantization A number that specifies the smallest increment
that the block uses when rounding output
values.

Filter Constant The amount of weight that the filter gives the
current input over the previous input.
85

Example

This figure shows the chart of a First-Order Exponential Filter with a Filter
Constant of 5. The raw signal has more variation and the filtered signal is
smoother.

See Also

For more information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide
86

Sample Median
Sample Median

The Sample Median block passes the median of the history of its input values.

If the Sample Median block has an odd number of history values, it passes the
middle value. If the block has an even number of history values, it passes the
lesser of the two middle values.

Configuring

This is the configuration panel for the Sample Median block.

dp-outdp-in

Attribute Description

Sample Type and
Sample Size

See Specifying the Size of the History in the
NeurOn-Line User’s Guide.

Update Type and
Update Size

See Specifying When to Propagate Data in the
NeurOn-Line User’s Guide.

Erase History when
Reset

See Specifying What Happens to History Upon
Reset in the NeurOn-Line User’s Guide.
87

Example

If the history of a Sample Median block has the five points 0.7, 0.9, 0.3, 0.7, and 0.
5, it passes on the value 0.7, the middle value. If the history of a Sample Median
block has the four points 0.3, 0.9, 0.6, and 0.8, it passes on the value 0.6, the lesser
of 0.6 and 0.8.

See Also

For more information on how to use this block, see the sections below.

Require Full History See Specifying What to Do With Partial
History in the NeurOn-Line User’s Guide.

Value on
Initialization

See Specifying an Initial Data Value in the
NeurOn-Line User’s Guide.

Attribute Description

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Maintaining a History of Values User’s Guide

The Median Input Value block Reference
Manual
88

Average Input Value
Average Input Value

The Average Input Value block passes the average of all its input values. It
accepts any number of inputs.

Configuring

This is the configuration panel for the Average Input Value block.

Example

This figure shows an Average Input Value block with the input values 3, 9, 6, and
8. It passes the value 6.5. Note that the Average Input Value block has an extra
input port and has been enlarged with the Change Size menu choice.

dp-out
dp-in

.
.

.

Attribute Description

Use Expired Inputs See Determining Whether a Block Uses Expired
Inputs in the NeurOn-Line User’s Guide.
89

See Also

For more information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Connecting to Peer Input Blocks User’s Guide

The Moving Average block Reference
Manual
90

Median Input Value
Median Input Value

The Median Input Value block passes the median of all its input values. It accepts
any number of inputs.

If the Median Input Value block has an odd number of input values, it passes the
middle input value. If the block has an even number of input values, it passes the
minimum of the two middle input values.

Configuring

This is the configuration panel for the Median Input Value block.

Example

The following figures are examples of how a Median Input Value block handles
both odd and even numbers of inputs. In both cases, note that the Median Input
Value block has extra input ports and has been enlarged with the Change Size
menu choice.

dp-out
dp-in

.
.

.

Attribute Description

Use Expired Inputs See Determining Whether a Block Uses Expired
Inputs in the NeurOn-Line User’s Guide.
91

This figure shows a Median Input Value block connected to five inputs. It passes
7. (The median of 3, 5, 7, 7, 9 is the middle value.)

This figure shows a Median Input Value block connected to four inputs. It passes
6. (The median of 3, 6, 8, 9 is the lesser of 6 and 8.)

See Also

For more information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Connecting to Peer Input Blocks User’s Guide
92

Data Delay
Data Delay

The Data Delay block delays passing its input value for a specified amount of
time. It does not modify its input value. Specify the length of the delay with the
Delay attribute.

Handling Multiple Signals

If Multiple Invocations is ok, the block can begin a delay while in the midst of
delaying another value. If Multiple Invocations is queue, the second and
subsequent delays will be started after the previous delay is finished, using the
current input value. If Multiple Invocations is ignore, the block handles only one
delay at a time, and inputs received during another delay are ignored. We
recommend specifying Multiple Invocations for a Data Delay as either ok or
ignore.

Resetting

When you reset a Data Delay block, values being delayed are lost.

Configuring

This is the configuration panel for the Data Delay block.

dp-outdp-in

Delay

Attribute Description

Delay The amount of time to delay passing the value.

Multiple Invocations See Specifying How to Handle Multiple
Values in the NeurOn-Line User’s Guide.
93

See Also

For more information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Editing Attribute Displays User’s Guide
94

Data Inhibit
Data Inhibit

The Data Inhibit block lets an inference path turn a data path on and off.

When the status value of the block’s input inference path matches the value of the
attribute Trigger On, the block inhibits the input data value. If Value on
Initialization has a value, it passes that value. Otherwise it passes nothing.

When the status value of the inference path no longer matches Trigger On, the
block passes the current value of the input data path and continues to pass input
data values normally.

If the block’s inference path has not received a value yet (that is, it has a quality of
no-value), the block passes nothing even when it receives a value from its data
path.

NOL evaluates this block whenever the data path receives a new value or when
the data inference path changes to or from the Trigger On value. It also evaluates
the block when the data inference path changes from one non-trigger value to
another, for example, from false to unknown.

Resetting

When you reset a Data Inhibit Block, the block does not pass a value until it
receives a value from its inference input path, even if it receives a value from its
input data path.

Configuring

This is the configuration panel for the Data Inhibit block.

dp-outdp-in

ip-in
95

Example

This figure shows a portion of a flow diagram that uses two Data Inhibit blocks to
test whether a tank is on before analyzing its temperature. Tank-1 is off and the
path that crosses through the middle of the Data Inhibit block is filled in to show
that it is inhibiting its input. Tank-2 is on and the middle of the Data Inhibit block
is empty to show that the block is passing along its input.

See Also

For more information on how to use this block, see the sections below.

Attribute Description

Value on
Initialization

See Specifying an Initial Data Value in the
NeurOn-Line User’s Guide.

Trigger On The truth value that causes the block to inhibit
data.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

The Inference Inhibit block Reference
Manual

The Control Inhibit block Reference
Manual
96

Data Output
Data Output

The Data Output block is obsolete, because you can connect variables and
parameters directly to the output of any block. For information on how to do this,
see Using Variables and Parameters in the NeurOn-Line User’s Guide.

Use this block only when you cannot attach a data path directly to the target
variable or parameter. For example, if the variable or parameter is an attribute of
an object or if you want variables and parameters to appear on a separate
workspace, use the Data Output block.

When you set the Data-server attribute in the table of the variable or parameter to
inference engine, NOL uses the G2 conclude action to change values locally
within NOL. When you set the Data-server attribute to anything other than
inference engine, however, NOL uses the G2 set action to change values in the
external system outside of G2.

Note You can set Target Variable to an expression that evaluates to a G2 variable or
parameter. For more information, see Evaluating Expressions in Attributes in the
NeurOn-Line User’s Guide.

This block is especially useful for setting external setpoints or controlling external
events.

The Entry Points perform the opposite action of the Data Output block: they pass
information from G2 parameters and variables into NOL diagrams.

Configuring

This is the configuration panel for the Data Output block.

dp-outdp-in
97

See Also

For more information on how to use this block, see the sections below.

Attribute Description

Target Variable The name of the variable or parameter whose
value the block updates.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Using Variables and Parameters User’s Guide

Entry Points Reference
Manual
98

Set Attribute
Set Attribute

The Set Attribute block sets the value of an attribute to the block’s input data
value. Specify the object whose attribute you would like to set by connecting the
Set Attribute block’s action link to it. You can connect the action link to any G2
object or block. Specify the attribute you would like to set by setting Target
Attribute to its name.

When you connect a block to the Set Attribute block’s action link, the
configuration panel displays a list of all attributes defined by the connected block.
Thus, you should always connect the Action Link to the target before configuring
the block.

Take the following precautions when using the Set Attribute block:

Caution When you use the Set Attribute block, be sure that the changes to the attribute
value leave the target block in a valid state; otherwise, errors will result. For
example, if you use the Set Attribute block to set the Upper Threshold of an
observation block to a number that is less than the Lower Threshold, you will
receive a warning and a runtime error might result.

Configuring

This is the configuration panel for the Set Attribute block.

dp-in

Target Attribute

Action Link
99

Example

The following figure uses the Set Attribute block to test whether the temperature
of tank-2 is more than twice the temperature of tank-1:

See Also

For more information on how to use this block, see the sections below.

Attribute Description

Target Attribute An attribute of the block connected to the action
link, whose value the Set Attribute block sets.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Editing Attribute Displays User’s Guide

Attribute Transfer Reference
Manual
100

Data Shift
Data Shift

The Data Shift block delays its input by a certain number of inputs; it waits to pass
an input value until it has received more data. You specify how many more input
values it must receive with the Sample Size attribute.

Specifying How to Delay Values

The block buffers its inputs in a first-in first-out queue of length Sample Size.
When it receives a value, it deletes the value at the beginning of the queue and
passes that value.

If the block does not have a value that satisfies its conditions, it passes no value.
For example, when the block does not have Sample Size points yet, it outputs
nothing.

Configuring

This is the configuration panel for the Data Shift block.

dp-in dp-out

Attribute Description

Sample Size The number of points the block must receive
before passing a value.
101

Example

This table shows sample input and output for a Data Shift block with a Sample
Size of 3. The first row is the values it received. The second row is the values it
passed on.

See Also

For more information on how to use this block, see the sections below.

Value on
Initialization

See Specifying an Initial Data Value in the
NeurOn-Line User’s Guide.

Erase History When
Reset

See Specifying What Happens to History Upon
Reset in the NeurOn-Line User’s Guide.

Attribute Description

Input 1.3 2.3 4.5 5.0 7.2

Output 1.3 2.3

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Data Delay Reference
Manual
102

Variance
Variance

The Variance block passes on either the statistical variance or the standard
deviation of the history of its input value. You can choose which it passes with the
attribute Output as Std Deviation. If Output as Std Deviation is yes, the block
passes the standard deviation. Otherwise, it passes the variance, which is the
square of the standard deviation.

Configuring

This is the configuration panel for the Variance block.

dp-outdp-in

Attribute Description

Sample Type and
Sample Size

See Specifying the Size of the History in the
NeurOn-Line User’s Guide.

Update Type and
Update Size

See Specifying When to Propagate Data in the
NeurOn-Line User’s Guide.
103

See Also

For more information on how to use this block, see the sections below.

Output as Std
Deviation

Whether the block outputs the value as a
standard deviation (yes) or variance (no).

Require Full History See Specifying What to Do With Partial
History in the NeurOn-Line User’s Guide.

Erase History when
Reset

See Specifying What Happens to History Upon
Reset in the NeurOn-Line User’s Guide.

Value on
Initialization

See Specifying an Initial Data Value in the
NeurOn-Line User’s Guide.

Attribute Description

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Maintaining a History of Values User’s Guide
104

Moving Average
Moving Average

The Moving Average block passes the average of the history of its input values.

Configuring

This is the configuration panel for the Moving Average block.

dp-outdp-in

Attribute Description

Sample Type and
Sample Size

See Specifying the Size of the History in the
NeurOn-Line User’s Guide.

Update Type and
Update Size

See Specifying When to Propagate Data in the
NeurOn-Line User’s Guide.

Erase History when
Reset

See Specifying What Happens to History Upon
Reset in the NeurOn-Line User’s Guide.
105

Example

If the block’s history contains 3, 0, 5, 8, 2, and 6, it passes on 4 or:

See Also

For more information on how to use this block, see the sections below.

Require Full History See Specifying What to Do With Partial
History in the NeurOn-Line User’s Guide.

Value on
Initialization

See Specifying an Initial Data Value in the
NeurOn-Line User’s Guide.

Attribute Description

3 0 5 8 2 6+ + + + +
6

--

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Maintaining a History of Values User’s Guide

Average Input Value Reference
Manual
106

Arithmetic Function
Arithmetic Function

The Arithmetic Function block lets you use a function or procedure as a block in a
diagram. The block applies the function or procedure to its input value and
passes the result. Specify the name of the function in the attribute Arithmetic
Function.

You can use any:

• Built-in G2 function

• User-defined function

• Procedure

• Tabular-function

Note The input value for this block can be text, symbolic, or numeric.

Built-in G2 Function

You may set the attribute Arithmetic Function to any of these built-in G2
functions:

This figure shows a diagram that computes the absolute value of the difference of
two values:

dp-outdp-in

Arithmetic-function

abs arctan ceiling cos

exp floor int ln

log random sin sqrt

tan truncate
107

User-Defined Function

You may use any user-defined function that accepts one quantitative argument
and returns one quantitative value. Set the attribute Arithmetic Function to the
name of the function. This figure shows a diagram that figures the factorial of a
value:

Procedure

You can use a procedure that accepts three arguments, described in the following
table, and returns a single value. Set the attribute Arithmetic Function to the name
of your procedure. The block passes the procedure’s return value as its output
value. The block automatically passes the Collection-time and Quality of the
block’s input data path.

Argument Type Description

input-value value The block’s input value.

collection-time float The Collection-time of the block’s input
path.

quality symbol The Quality of the block’s input path.
108

Arithmetic Function
This figure shows a diagram with an Arithmetic Function block that uses a
procedure:

Tabular Function

You can use a tabular-function-of-1-arg that accepts one argument and returns a
value. Set the attribute Arithmetic Function to the name of your function. The
block passes its input value to the function as an argument and passes the
function’s return value as its output value. If the function cannot evaluate the
input value, NOL signals an error. For information on a G2 tabular-function-of-1-
arg, see the G2 Reference Manual.

This table shows a diagram with an Arithmetic Function block that uses a tabular-
function-of-1-arg:

109

Configuring

This is the configuration panel for the Arithmetic Function block.

See Also

For more information on attributes and menu choices that are not described in
this section, see the sections below.

Attribute Description

Arithmetic Function The name of a G2 function that the block
executes.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Editing Attribute Displays User’s Guide

Custom Block Wizard User’s Guide

The Arithmetic Function of Two
Arguments block

Reference
Manual

Rule Action Reference
Manual
110

Arithmetic Function of Two Arguments
Arithmetic Function of Two Arguments

The Arithmetic Function of Two Arguments block lets you use a function or
procedure as a block in a NeurOn-Line diagram. The block applies the function or
procedure to its input values and passes a single result. Specify the name of the
routine in the field Arithmetic Function.

You can use any:

• Built-in G2 function

• User-defined function

• Procedure

Note The input value for this block can be text, symbolic, or numeric.

Using Built-in G2 Function

You can set the field Arithmetic Function to any of these built-in G2 functions:

For example, this diagram computes 25.

Using a User-Defined Function

You can use any user-defined function that accepts two quantitative arguments
and returns one value. Set the field Arithmetic Function to the name of the
function.

arctan average expt max

min quotient random remainder
111

For example, this diagram uses the Pythagorean Theorem to figure the size of a
right triangle's hypotenuse given the sizes of the other two sides.

Using a Procedure

You can use a procedure that accepts six arguments, described below, and returns
a single value. Set the field Arithmetic Function to the name of your function. The
block passes the procedure's return value as its output value. The block
automatically passes the collection-time and quality of the block's input data path.

For example, this diagram uses the Pythagorean Theorem to figure the size of a
right triangle's hypotenuse given the sizes of the other two sides.

Argument Type Description

input-value-1 value The block's top input value.

collection-time-1 float The collection-time of the block's top input path.

quality-1 symbol The quality of the block's top input path.

input-value-2 value The block's bottom input value.

collection-time-2 float The collection-time of the block's bottom input path.

quality-2 symbol The quality of the block's bottom input path.
112

Arithmetic Function of Two Arguments
Configuring

This is the configuration panel for Arithmetic Function of Two Arguments.

See Also

For more information on menu choices that are not described in this section, see
the sections below.

Field Description

Arithmetic Function The name of the function to apply to this block's two
input values.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Editing Attribute Displays User’s Guide
113

114

5

Vector Blocks
Describes the blocks that create, manipulate, and operate on vectors.

Introduction 116

Vectorizer 119

Scalarizer 122

Windower 124

Classifier Input Converter 126

Classifier Output Converter 128

Vector Combiner 129

Vector Splitter 131

Vector Order Swapper 133

Vector Inhibit 136

Vector Rescaler 138

Vector Sum 141

Vector Difference 143

Vector Product 145

Vector Quotient 147

Vector Function 149

Vector Function of Two Arguments 154
115

Introduction
NeurOn-Line provides you with a number of blocks that let you create,
manipulate, and operate on vectors.

You can find the Vector Blocks palette under the Data Processing submenu of the
Palettes menu:

Choosing When to Evaluate

The attribute Triggering Method lets you choose when a block executes. A block
can execute when it receives one new input, all new inputs, or an input from a
particular port.

If Triggering Method is... The block evaluates when...

trigger on any Any of its input ports receives a new value.

trigger on all All of its input ports receive new values.

trigger on 1 The top input port receives a new value.

trigger on 2 The bottom input port receives a new value.
116

Introduction
The following blocks contain this attribute:

• Vectorizer

• Vector Combiner

• Vector Sum

• Vector Difference

• Vector Product

• Vector Quotient

• Vector Function of Two Arguments

Note that in the Vectorizer block, you can only choose trigger on any or trigger on
all.

When you reset a block that supports the attribute Trigger Method, NOL treats all
the valid values at its input ports as newly received values. If its input values are
valid, it will pass a vector the next time you evaluate it, regardless of the setting of
Triggering Method.

Creating Vectors and Scalars

These blocks let you create a single vector path out of one or more scalar data
paths, or create multiple scalar paths out of one vector data path:

• The Vectorizer block combines the scalars from several data paths into one
vector.

• The Windower block creates a vector out of consecutive data from one scalar
path.

• The Scalarizer block creates multiple scalar data paths from one vector data
path.

Using Vectors with Classifiers

These blocks are useful when you are using a neural network to classify data:

• The Classifier Input Converter block converts a number that represents a class
to a vector that represents a class.

• The Classifier Output Converter block returns the index of the maximum
element in a vector. If each element in the vector is the probability that an
input belongs to a class, the maximum element is the class to which the input
most likely belongs.
117

Manipulating Vectors

These blocks let you combine, split, and reorder vectors:

• The Vector Combiner block combines two vector paths into one.

• The Vector Splitter block splits one vector path into two.

• The Vector Order Swapper block reorders the elements in a vector.

Inhibiting Vectors

The Vector Inhibit block cuts off the flow of data in a vector path until an
inference input port receives a particular value.

Operating on Vector Elements

These blocks let you perform arithmetic operations and other functions on the
elements of a vector:

• The Vector Rescaler block lets you rescale each element of a vector using
different factors for each element.

• The Vector Sum block adds the elements from one vector to the elements of
another.

• The Vector Difference block subtracts the elements of one vector from the
elements of another.

• The Vector Product block multiplies the elements of one vector by the
elements of another.

• The Vector Quotient block divides the elements of one vector by the elements
of another.

• The Vector Function block applies a function to each element of a vector, or
collectively on its elements.

• The Vector Function of Two Arguments block applies a function to each
element of two vectors, or collectively on its elements.
118

Vectorizer
Vectorizer

The Vectorizer block appends its input scalar values to its input vector. If there is
no input vector, the block creates a new vector with its input scalar values as its
elements.

To add more than ten values to a vector, append several Vectorizer blocks
together. To add fewer than ten values to a vector, delete the remaining ports by
dragging them onto the block. If you do not delete the unused ports, the block
will not execute.

Note All the Vectorizer's input ports (including the vector input port dp-in-0) must be
connected and have valid values before the block will pass a vector. The block
does not pass a vector if it has any input ports that are not connected to a path or
if any of the paths for the input ports has a quality of no-value.

Configuring

This is the configuration panel for Vectorizer.
119

Example

The diagram below shows how to use a Vectorizer block to create a vector out of
twelve input Data Entry Points.

See Also

For general information on how to use this block, see the sections below.

Attribute Description

Triggering
Method

When to evaluate the block. For more information, see
Choosing When to Evaluate.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Using Vector Paths User’s Guide

Scalarizer Reference
Manual

Windower Reference
Manual
120

Vectorizer
121

Scalarizer

The Scalarizer block passes the elements of its input vector as scalar values. If the
input vector contains more elements than the number of output ports, the block
passes the remaining elements as an output vector.

To pass more than ten values from a vector, append several Scalarizer blocks
together. To pass fewer than ten values from a vector, delete the remaining ports
by dragging them into the block. If the block passes all the elements of the vector,
you can also delete the output vector port by dragging it into the block.

NeurOn-Line displays an error if the input vector is larger than the number of
output scalar ports and the output vector port is deleted.

Configuring

This block has no configuration panel.
122

Scalarizer
Example

The diagram below shows how to convert a 12-element vector into 12 scalar
values.

See Also

For general information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Using Vector Paths User’s Guide

Vectorizer Reference
Manual

Vector Splitter Reference
Manual
123

Windower

The Windower block creates a vector from consecutive input values. You specify
the size of the vector with the attribute Window Width. The block combines the
specified number of previous input values into a vector, with the most recently
received value being the first element of the vector. The block does not pass an
output vector until it has received enough input to fill its window.

Configuring

This is the configuration panel for Windower.

Attribute Description

Window
Width

Specifies how many consecutive input values to put in
the output vector.
124

Windower
Example

The six diagrams below show a Windower with a Window Width of 4 over a
period of time. Note that it does not pass a vector until it has received 4 values.

See Also

For general information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Using Vector Paths User’s Guide

Vectorizer Reference
Manual
125

Classifier Input Converter

The Classifier Input Converter block converts an integer to a vector that you can
use as a training target for a classification problem.

Specify the total number of possible classes in the attribute Output Dimension.
The input value specifies one of those classes. The block outputs a vector which
contains all zeros, except that the element specified by the input contains a 1. For
example, if the Output Dimension is 5 and the input value is 2, the output vector
contains (0,0,1,0,0). Note that the first element in the vector is 0.

If the input value is a floating-point number, the block rounds it to the nearest
integer value. If the input value is greater than the Output Dimension or less than
zero, the block generates an error.

Configuring

This is the configuration panel for Classifier Input Converter.

Attribute Description

Output Dimension Specifies the total number of possible classes.
126

Classifier Input Converter
Example

The two diagrams below show a Classifier Input Converter with an Output
Dimension of 4.

See Also

For general information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Using Vector Paths User’s Guide

Classifier Output Converter Reference
Manual
127

Classifier Output Converter

The Classifier Output Converter block outputs the index of the largest element in
its input vector. This block is especially useful when you need to understand the
output of a neural network classifier. The largest value in the network's output
vector usually corresponds to the most likely class as predicted by the network.

For example, if the input vector is (0.1, 0.0, 0.5, 0.2, 0.3), the output would be 2.
Note that the first index for the vector is 0.

Configuring

This block has no configuration panel.

Example

The two diagrams below show a Classifier Output Converter.

See Also

For general information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Using Vector Paths User’s Guide

Classifier Input Converter Reference
Manual
128

Vector Combiner
Vector Combiner

The Vector Combiner combines two vectors together by appending the second
vector to the end of the first.

This block will not pass a value if the quality of either input path is no-value.

Configuring

This is the configuration panel for Vector Combiner.

Attribute Description

Triggering
Method

When to evaluate the block. For more information,
see Choosing When to Evaluate.
129

Example

The diagram below shows how a Vector Combiner appends a two-element vector
to a three-element vector.

See Also

For general information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide
130

Vector Splitter
Vector Splitter

The Vector Splitter splits the input vector into two smaller vectors. Specify the
size of the top input vector with the attribute Output 1 Dimension. The bottom
vector contains what remains of the input vector after removing the specified
number of elements.

If the size of the input vector is less than the Output 1 Dimension, the block
generates an error.

Configuring

This is the configuration panel for Vector Splitter.

Attribute Description

Output 1 Dimension Specifies the size of the first output vector.
131

Example

The diagram below shows a Vector Splitter with Output 1 Dimension set to 3.

See Also

For general information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide
132

Vector Order Swapper
Vector Order Swapper

The Vector Order Swapper re-orders the elements of a vector.

To specify how to reorder the elements, choose configure from the block's menu.
NeurOn-Line displays a GXL spreadsheet for editing the vectors.

If the dimension on the input vector does not equal the dimension of the block's
vector, the block generates an error.

Making Values Permanent

When you choose make permanent from the block's menu, it saves the current
swapping order.

Configuring

When you choose configure from the block's menu, NOL displays this dialog,
which lets you enter the dimension of the vector to swap:

Enter a value for Vector Dimension, and click the Edit Swap Vector button to
display a spreadsheet for swapping the vector.
133

Here is the spreadsheet for swapping the order of a vector of length 4:

In the Output column, enter the new positions for the indexes. You cannot repeat
indexes, and you must use each index once.

When you are done editing the vector, click the OK button in the spreadsheet, and
click the OK or Apply button in the configuration panel.

For more information on how to use the spreadsheet, see Using the GXL
Spreadsheet to Edit Data.

Example

This spreadsheet for a Vector Order Swapper reverses the order of the elements in
the input vector:
134

Vector Order Swapper
This diagram shows that Vector Order Swapper in action.

See Also

For general information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Saving a Block's Data After Resetting G2 User’s Guide
135

Vector Inhibit

The Vector Inhibit block prevents data propagation on a vector path.

When the status value of the inference path matches the value of the attribute
Trigger On, the block inhibits the input vector.

When the status value of the inference path no longer matches Trigger On, the
block passes the current value of the input vector path and continues to pass the
input vector normally.

If the block's inference path has not received a value yet (that is, it has a quality of
no-value), the block passes nothing even when it receives a value from its vector
path.

Configuring

This is the configuration panel for Vector Inhibit.

Attribute Description

Trigger On Specifies when to inhibit the vector value.
136

Vector Inhibit
See Also

For general information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Data Inhibit Reference
Manual

Inference Inhibit Reference
Manual
137

Vector Rescaler

The Vector Rescaler block rescales the elements of the input vector by applying
additive and multiplicative factors to each element. The block has different factors
for each element.

Each element Input is rescaled according to this formula, where Ai is the additive
factor for that element and Mi is the multiplicative factor for that element:

Making Values Permanent

When you choose make permanent from the block's menu, it saves the current
scaling factors.

Configuring

When you choose configure from the block's menu, NOL displays this dialog,
which lets you enter the dimension of the vector to rescale:

Enter a number for Vector Dimension, and click the Edit Scale Factors button to
display the spreadsheet for rescaling the vector.
138

Vector Rescaler
Here is the spreadsheet for rescaling a vector of length 4:

Enter values in the Additive and/or Multiplicative columns to add values to the
current index and/or multiply values by the current index.

When you are done editing the vector, click the OK button in the spreadsheet, and
click the OK or Apply button in the configuration panel.

For more information on how to use the spreadsheet, see Using the GXL
Spreadsheet to Edit Data.

Example

These are the scale factors for a four-element vector.
139

Here is an example of how it scales a vector.

See Also

For general information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Saving a Block's Data After Resetting G2 User’s Guide

Vector Function Reference
Manual
140

Vector Sum
Vector Sum

The Vector Sum block adds the elements of its two input vectors. It passes a
vector in which each element is the sum of the input vectors' corresponding
elements. For example, the first element of the output vector is the sum of the first
elements of the first input vector and the first element of the second input vector.

This block will not pass a value if the quality of either input path is no-value. If
the two input vectors have different lengths, NeurOn-Line generates an error.

Configuring

This is the configuration panel for Vector Sum.

Attribute Description

Triggering Method When to evaluate the block. For more
information, see Choosing When to Evaluate.
141

Example

The example below adds the elements of two vectors.

See Also

For general information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Summation Reference
Manual
142

Vector Difference
Vector Difference

The Vector Difference block subtracts the elements of its second input vector from
the elements of its first input vector. For example, the first element of the output
vector is the first element of the first vector minus the first element of the second
vector.

This block will not pass a value if the quality of either input path is no-value. If
the two input vectors have different lengths, NeurOn-Line generates an error.

Configuring

This is the configuration panel for Vector Difference.

Attribute Description

Triggering Method When to evaluate the block. For more
information, see Choosing When to Evaluate.
143

Example

The example below subtracts the elements of two vectors.

See Also

For general information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Difference Reference
Manual
144

Vector Product
Vector Product

The Vector Product block multiples the elements of its two input vectors. It passes
a vector in which each element is the product of the input vectors' corresponding
elements. For example, the first element of the output vector is the product of the
first elements of the first input vector and the first element of the second input
vector.

This block will not pass a value if the quality of either input path is no-value. If
the two input vectors have different lengths, NeurOn-Line generates an error.

Configuring

This is the configuration panel for Vector Product.

Attribute Description

Triggering
Method

When to evaluate the block. For more information,
see Choosing When to Evaluate.
145

Example

The example below multiplies the elements of two vectors.

See Also

For general information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Multiplication Reference
Manual
146

Vector Quotient
Vector Quotient

The Vector Quotient block divides the elements of its first input vector by the
elements of its second input vector. For example, the first element of the output
vector is the first element of the first vector divided by the first element of the
second vector.

This block will not pass a value if the quality of either input path is no-value. If
the two input vectors have different lengths, NeurOn-Line generates an error.

Configuring

This is the configuration panel for Vector Quotient.

Attribute Description

Triggering
Method

When to evaluate the block. For more information,
see Choosing When to Evaluate.
147

Example

The example below divides the elements of two vectors.

See Also

For general information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Quotient Reference
Manual
148

Vector Function
Vector Function

The Vector Function block lets you use a function or procedure as a block in a
NeurOn-Line diagram. The block applies the function or procedure to its input
vector and passes the result. Specify the name of the routine in the attribute
Arithmetic Function.

If Arithmetic Function is a function that takes a numeric argument, the block
applies the function to each element in the input vector and passes a vector of the
results. If Arithmetic Function is a procedure, the block applies the procedure to
the input vector as a whole and passes the resulting vector.

You can use any:

• Built-in G2 function

• User-defined function

• Procedure

• Tabular-function

Using a Built-in G2 Function

You can set the attribute Arithmetic Function to any of these built-in G2 functions:

abs arctan ceiling cos

exp floor int ln

log random sin sqrt

tan
149

The picture below shows a diagram that applies the function exp to each element
of a vector.

Using a User-Defined Function

You can use any user-defined function that accepts one quantitative argument
and returns one quantitative value. Set the attribute Arithmetic Function to the
name of the function.

The picture below shows a diagram that figures the factorial of every element in a
vector.

Using a Procedure

You can use a procedure that accepts a vector as an argument and returns a
vector. Use a procedure if you want to operate on a vector as a whole, instead of
operating on each element individually.

Set the attribute Arithmetic Function to the name of the procedure. The block
passes the procedure's return value as its output value. The input vector and
output vector can have different lengths. The vectors that the procedure accepts
and returns should be of type vector-path-value, which has the superior class
float-array and contains the following two additional attributes.
150

Vector Function
This diagram contains a Vector Function block with a procedure that creates a
two-element vector containing the minimum and maximum values of the input
vector.

This is the definition of the procedure.

minmax(in-vec:class vector-path-value) = (class vector-path-value)
 out-vec: class vector-path-value;

begin
create a vector-path-value out-vec;
change the array-length of out-vec to 2;
change out-vec[0] = the maximum over each float F in in-vec of (F);
change out-vec[1] = the minimum over each float F in in-vec of (F);
return out-vec;

end

Using a Tabular Function

You can use the G2 tabular-function-of-1-arg function that accepts one argument
and returns a value. Set the attribute Arithmetic Function to the name of your
function. The block passes its input value to the function as an argument and
passes the function's return value as its output value. If the function cannot
evaluate the input value, NeurOn-Line signals an error. For information on a G2
tabular-function-of-1-arg, see the G2 Reference Manual.

Attribute Type Description

collection-time float The collection-time of the block's input
vector.

quality symbol The quality of the block's input vector.
151

This diagram shows a Vector Function block that uses a tabular-function-of-1-arg.

Configuring

This is the configuration panel for Vector Function.

Attribute Description

Arithmetic Function The function to apply to each element of the
input vector.
152

Vector Function
See Also

For general information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Vector Function of Two Arguments Reference
Manual
153

Vector Function of Two Arguments

The Vector Function of Two Arguments block lets you use a function or
procedure as a block in a NeurOn-Line diagram. The block applies the function or
procedure to its two input vectors and passes one vector as the result. Specify the
name of the routine in the attribute Arithmetic Function.

You can use any:

• Built-in G2 function

• User-defined function

• Procedure

This block will not pass a value if the quality of either input path is no-value.

Using a Built-in G2 Function

You can set the attribute Arithmetic Function to any of these built-in G2 functions:

The Vector Function of Two Arguments block applies the function to each of the
elements in the two input vectors and creates an output vector of the results. For
example, this diagram computes 25 and 34.

arctan average expt max

min quotient random remainder
154

Vector Function of Two Arguments
Using a User-Defined Function

You may use any user-defined function that accepts two quantitative arguments
and returns one quantitative value. Set the attribute Arithmetic Function to the
name of the function.The Two Argument Vector Function block applies the
function to each of the elements in the two input vectors and creates an output
vector of the results. For example, the diagram below applies the function to each
member of two vectors. In this case, it computes and

Using a Procedure

You can use a procedure that accepts two vectors as arguments and returns a
vector. Use a procedure if you want to operate on the vectors as a whole, instead
of operating on each element individually.

Set the attribute Arithmetic Function to the name of the procedure. The block
passes the procedure's return value as its output value. The input vectors and the
output vectors can all have different lengths. The vectors that the procedure
accepts and returns should be of type vector-path-value, which has the superior
class float-array and contains the following two additional attributes.

Attribute Type Description

collection-time float The collection-time of the block's input
vector.

quality symbol The quality of the block's input vector.
155

This diagram contains a Vector Function of Two Arguments block with a
procedure that creates a two-element vector containing the average values of the
two input vectors.

This is the definition of the procedure.

ave-2(v1: class vector-path-value, v2: class vector-path-value) =
(class vector-path-value)
out-vec: class vector-path-value;
begin

create a vector-path-value out-vec;
change the array-length of out-vec to 2;
change out-vec[0] = the average over each float F in v1 of (F);
change out-vec[1] = the average over each float F in v2 of (F);
return out-vec;

end

This is the configuration panel for Vector Function of Two Arguments.
156

Vector Function of Two Arguments
See Also

For general information on how to use this block, see the sections below.

Attribute Description

Arithmetic
Function

The function to apply to each element of the input
vectors.

Triggering
Method

Specify when to evaluate the block. For more
information, see Choosing When to Evaluate.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Vector Function Reference
Manual
157

158

6

Data Set Blocks
Describes the blocks that store and manipulate the data with which you train a
neural network.

Introduction 160

Data Pair Buffer 163

Data Pair Converter 166

Data Pair Divider 168

Data Pair Random Gate 169

Data Pair Outlier Filter 171

Data Pair Quality Filter 175

Data Set 177

Maximum Age Filter 185

Size Limitation Filter 187

Data Set Reader 189

Random Divider 191

S-Fold Divider 193

Data Set Copier 195

Data Set Rescaler 197

Data Set Plot 201

Novelty Filter 209
159

Introduction
NeurOn-Line provides you with a number of blocks that store and manipulate
the data with which you train a neural network.

You can find the Data Set Blocks palette under the Data Processing submenu of
the Palettes menu:

The blocks on this palette let you store, filter, and manipulate the data you need to
train and test a neural network. First, you create a data pair, which contains two
vectors: the input data (X) and the target data (Y). Next, you add the data pairs to
a data set. You can filter the data to make sure the data set has data pairs that are
of a certain age, within certain bounds, and so on. You can copy the data in a data
set to other data sets. Finally, you can view the data in a plot.
160

Introduction
Creating Data Pairs

These blocks let you create data pairs and add them to a data set:

• The Data Pair Buffer block creates a data pair by combining two vectors: one
vector becomes the data pair's input vector, the other becomes the data pair's
output vector.

• The Data Pair Converter block creates a Data Pair by splitting a vector: one
part of the vector becomes the data pair's input vector, the other becomes the
data pair's output vector.

• The Data Pair Random Gate block randomly places a data pair into one of its
two output data sets.

Filtering Data

These filter blocks let you exclude certain types of data from a data set. Every
filter block can put the excluded data pairs into another data set.

These filters intercept data pairs before they are added to a data set:

• The Data Pair Outlier Filter block excludes data pairs that fall outside
specified bounds.

• The Data Pair Quality Filter block excludes data pairs whose Quality attribute
is not OK.

These filters attach directly to the data set. Each time the data set receives a data
pair, the filter checks whether other data pairs in the data set need to be removed.

• The Maximum Age Filter block removes data pairs that are older than a
specified age.

• The Size Limitation Filter block removes data pairs when the size of the data
set exceeds a specified maximum.

• The Novelty Filter block removes data pairs that have values close to the
newly received data pair.

Choosing When a Data Set Filter Executes

NeurOn-Line contains three filters that attach directly to a data set: the Novelty
filter, the Size Limitation Filter, and the Maximum Age Filter. Whenever the data
set receives a data pair, these filters remove other data pairs if they fit certain
criteria. You can choose the order in which they evaluate by setting the attribute
161

Execution Priority, a number from 1 to 10, where 1 is the highest priority and 10 is
the lowest. The table below shows the default values for each filter:

Reading Data

These blocks read and plot the data that is stored in a data set:

• The Data Set Reader block copies consecutive data pairs from a data set onto a
data pair path. It does not remove data pairs from the data set.

• The Data Pair Converter block converts a data pair path into two vector paths:
one carrying the data pair's input vector, the other carrying the data pair's
output vector.

• The Data Set Plot block plots the contents of a data set onto a G2 chart.

Copying Data

These blocks let you copy data from one or more input data sets into one or more
output data sets:

• The Random Divider block randomly copies all the data pairs from one or
more data sets to two output data sets.

• The S-Fold Divider block randomly copies all the data pairs from one or more
input data sets to one or more output data sets. Each output data set receives a
subset of approximately equal size.

• The Data Set Copier block copies or combines data sets. It pools the data pairs
from all its input data sets and copies the complete pool to all the output data
sets.

Scaling Data

The Data Set Rescaler block scales the input and target data in a data set. It can
also create two Vector Scaling blocks that scale vectors in the same way that the
Data Set Rescaler scales a data set's input and target data.

For this filter... The default Execution Priority is...

Novelty Filter 1

Size Limitation Filter 2

Maximum Age Filter 3
162

Data Pair Buffer
Data Pair Buffer

The Data Pair Buffer creates a data pair from two vectors. The left input becomes
the X vector and the right input becomes the Y vector.

This block can operate two ways:

• If the Concurrency Window is none, it pairs X and Y vectors in the order they
arrive, buffering any vectors from an input port if there are no corresponding
inputs from the other vector port. For example, if two vectors arrive from the
left input port and one from the right input port, the block pairs the first
vector from the left port with the one from the right port and saves the second
vector from the left port until another vector arrives on the right port.

• If the Concurrency Window is any other value, it pairs X and Y vectors only if
they arrive within the specified concurrency window, discarding vectors that
arrive outside the window. The following heading describes this situation in
more detail.

Specifying Whether Values are Concurrent

Usually, you want to combine two vectors only if they were created at
approximately the same time. However, vectors that were created at the same
time may arrive at slightly different times due to computer speed or network
speed. This block considers two vectors to be concurrent if they arrive within the
period of time you specify in the attribute Concurrency Window.

For example, suppose that Concurrency Window is 1 second. If you receive a
vector in the left port and then a half second later receive a value in the right port,
the block considers the two values to be concurrent and passes them as a data
pair. However, if you receive a value in the left port, and one second passes with
no value received on the right port, the block discards the vector it received on the
left port and does not pass a new data pair.

Note If you are testing a diagram by entering data manually (for example, by using the
override menu choice), make sure the Concurrency Window is large enough so
you can enter values at a reasonable pace.
163

Resetting

After you reset the Data Pair Buffer, the block treats all the valid values at its
input ports as newly received values. If its input values are valid, it will pass a
data pair the next time you evaluate it.

Clearing the Data Pair Buffer

To clear the x and y vector values, select the clear data pair buffer menu choice.
The attribute displays indicate the stored x and y vectors are reset to zero. The
block only clears the data pair buffer when Concurrency Window is none. If
Concurrency Window is a value, clearing the data buffer does nothing; NOL does
not clear the current waiting value.

Configuring

This is the configuration panel for the Data Pair Buffer.

Example

In the example below, the Data Pair Buffer combines two vectors into a data pair
and then adds the data pair to a Data Set. The input vector contains the room
temperature and room humidity. The output vector contains the batch quality, a
single number that represents the quality of the batch created in that room.

Attribute Description

Concurrency Window The period of time in which two values must
be received for the block to consider them to
be concurrent.
164

Data Pair Buffer
See Also

For general information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Data Pair Converter Reference
Manual

Data Pair Divider Reference
Manual
165

Data Pair Converter

The Data Pair Converter forms a data pair by dividing its input vector into X and
Y vectors. To specify how to split the vector, use the attribute X Dimension. The
Data Pair Converter puts that many elements into the data pair's X vector and the
rest of the elements into the data pair's Y vector.

NeurOn-Line generates an error if the dimension of the input vector is equal to or
smaller than X Dimension.

Configuring

This is the configuration panel for the Data Pair Converter.

Example

In the example below, the Data Pair Converter creates a data pair from a vector
and adds the data pair to a Data Set. The X Dimension is 2, so the input vector
contains the room temperature and room humidity, and the output vector
contains the batch quality.

Attribute Description

X Dimension How many of the vector elements to put into the
input part of the data pair.
166

Data Pair Converter
See Also

For general information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Data Pair Buffer Reference
Manual

Data Pair Divider Reference
Manual
167

Data Pair Divider

The Data Pair Divider splits its input data pair into two separate vectors: the left
output port is the data pair's X vector and the right vector is the data pair's Y
vector.

Configuring

This block has no configuration panel.

Example

In the example below, the Data Pair Divider takes a data pair from a Data Set and
passes the input and target vectors to a Vector Function of Two Arguments block.

See Also

For general information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Data Pair Buffer Reference
Manual

Data Pair Converter Reference
Manual
168

Data Pair Random Gate
Data Pair Random Gate

The Data Pair Random Gate randomly propagates its input data pair to one of
two output paths. You must specify which proportion of the data pairs go to the
top output port with the attribute Fraction to Output 1. For example, if Fraction to
Output 1 is 0.6, then approximately 60% of the input data pairs go to the top
output port, and approximately 40% go to the bottom output port.

This block is especially useful for splitting data pairs between a training and a test
Data Set. To split data already contained in a data set, use a Random Divider.

Configuring

This is the configuration panel for the Data Pair Random Gate.

Attribute Description

Fraction to Output 1 The proportion of the data pairs that go to the top
output port.
169

Example

In the example below, the Data Pair Random Gate takes data pairs from a Data
Pair Buffer and randomly splits them between two Data Sets: one for training and
one for testing.

See Also

For general information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Random Divider Reference
Manual

S-Fold Divider Reference
Manual
170

Data Pair Outlier Filter
Data Pair Outlier Filter

The Data Pair Outlier Filter separates any data pairs whose elements do not fall
within specified bounds. The data pairs whose elements fall within the bounds
are passed through the right output port. The other elements are passed through
the bottom output port.

Configuring

To set the upper and lower bounds for each element, use the configure command.
NOL displays this configuration panel:

To specify the number of elements of each vector, enter the dimensions for the
data pair's x and y vectors in the Number of Inputs and Number of Targets
attributes, respectively.

To edit the input vector's bounds, click the Edit Input Bounds button. To edit the
target vector's bounds, click the Edit Target Bounds button. NOL displays a
spreadsheet for editing the input and output bounds.
171

Here are the spreadsheets for editing the x and y bounds of a data pair with two
inputs and 1 target:

The editor has two columns: Lower and Upper bounds. When you enter the
bounds, the Upper bounds must always be greater than the Lower bounds.
Therefore, you must enter the values in a specified order.

When you are done editing the bounds, click the OK button in the spreadsheet
and edit the other dimension. Click the OK or Apply button in the configuration
panel when you are finished.

For more information on how to use the spreadsheet, see Using the GXL
Spreadsheet to Edit Data.

Making Values Permanent

When you choose make permanent from the block's menu, the block saves the
filter's upper and lower bounds.
172

Data Pair Outlier Filter
Example

In the example below, the Data Pair Outlier Filter takes data pairs from a Data
Pair Buffer. It passes data pairs that fit into its bounds to the In-Bounds Data Set
and the rest to the Out-of-Bounds Data Set.

These spreadsheets show the bounds for the Data Pair Outlier Filter above.
173

See Also

For general information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Outlier Filter Reference
Manual

Data Pair Quality Filter Reference
Manual

Maximum Age Filter Reference
Manual

Size Limitation Filter Reference
Manual

Novelty Filter Reference
Manual
174

Data Pair Quality Filter
Data Pair Quality Filter

The Data Pair Quality Filter separates out data pairs from a path whose Quality
attribute is not OK. data pairs with a Quality of OK are passed through the right
output port. Other data pairs are passed through the bottom output port.

Configuring

This block has no configuration panel.

Example

In the example below, the Data Pair Quality Filter takes data pairs from a Data
Pair Buffer. It passes data pairs with OK quality to the Valid Data Set and the rest
to the Invalid Data Set.
175

See Also

For general information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Outlier Filter Reference
Manual

Data Pair Quality Filter Reference
Manual

Maximum Age Filter Reference
Manual

Size Limitation Filter Reference
Manual

Novelty Filter Reference
Manual
176

Data Set
Data Set

A Data Set stores data pairs for training and testing neural networks.

A Data Set contains three matrices: input, target, and predictions. Whenever the
Data Set receives a data pair, it adds the data pair's X vector to the end of the input
matrix and the data pair's Y vector to the end of the target matrix. When a Fit
Tester tests a neural network with a Data Set, it fills the predictions matrix with
the values that the network predicts for each element of the input matrix.

The number of columns in the input matrix is the same as the dimension of the
largest X vector. The number of columns in the target and predictions matrices is
the same as the dimension of the largest Y vector. If the Data Set receives a data
pair with an X or Y vector that is smaller than the input or target matrix, the Data
Set pads that vector with zeros. If the Data Set receives a data pair with an X or Y
vector that is larger than the input or target matrix, the Data Set adds a column to
the appropriate matrix and pads the previous elements with zeros.

The dp-out of the Data Set is the number of data pairs.

A Data Set has no configurable attributes.

Editing the Data Set

To edit a data set, you must:

• Set the dimensions of the data set.

• Edit the data set.

To set the dimensions of the data set, select the edit data set menu choice on the
Data Set block. When you first edit a Data Set that contains no data, NeurOn-Line
177

displays this dialog for entering the Number of Samples, the Number of Inputs,
and the Number of Targets:

Enter values for each of these attributes, and click the OK button to display the
spreadsheet for editing the data set.

If your data set already contains data and you select the edit data set menu choice,
NeurOn-Line does not display this dialog. Instead, NeurOn-Line displays the
spreadsheet directly.

You can edit the dimensions of the data from the spreadsheet by selecting this
button in the spreadsheet:

Selecting this buttons displays the Edit Data Set Dimensions dialog for you to edit
the dimensions of the existing data.
178

Data Set
Entering and Viewing Data

To edit the contents of a Data Set that is initially empty, click OK in the Enter Data
Set Dimensions dialog displayed above. NeurOn-Line displays a spreadsheet for
editing the inputs and targets of the data set, and for viewing the predictions,
timestamps, and quality.

To view or edit the contents of a Data Set that already contains data, simply select
the edit data set menu choice. NeurOn-Line displays the spreadsheet directly.

Here is a spreadsheet for a data set with four inputs and three targets:

The samples are numbered down the left side of the editor. The editor shows
samples 1 through 8. To see the other samples, use the vertical scroll bar. The data
is split into four sections labeled Timestamps, Quality, Inputs, and Outputs. If
there is more than one input or output in each sample, these sections can contain
several columns, numbered 0, 1, and so on. The editor shows samples 1 through 3.
To see the other samples, use the horizontal scroll bars.

You enter input and output data for the data set by:

• Editing the spreadsheet cells directly, or

• Reading the data from a file.

For more information on how to use the spreadsheet, see Using the GXL
Spreadsheet to Edit Data.
179

Saving and Loading Data

You can save or load the complete data set or any part of the data set to or from a
file.

To load a data set from a file, select the file operations menu choice on the Data
Set block to display this dialog:

Enter the name of the file from which to load the data, and click the Load from
File button.

To save a data set to a file, select the file operations menu choice, enter the
filename, and click the Save to File button.

You can also load and save parts of the data set by first selecting the cells or rows
in the spreadsheet and then using the spreadsheet buttons for loading and saving
data.

For more information on how to use the spreadsheet, see Using the GXL
Spreadsheet to Edit Data.
180

Data Set
Plotting Data

To create a chart of the Data Set's input target data or predictions, select the plot
data menu choice on the Data Set. NeurOn-Line displays this dialog:

For more information on how to use this dialog, see the Data Set Plot block.

There is one difference between how the plot data menu choice and the Data Set
Plot block work. If the attribute Chart Name is set to G2, NeurOn-Line creates a
workspace for your chart, like the following.

When creating plots from the Data Set configuration dialog, this subworkspace
includes two buttons that are not included if you are configuring a Data Set Plot
block. If you press Delete Plot, NeurOn-Line deletes the subworkspace and its
chart. If you press Iconify, NeurOn-Line creates a Data Set Plot block with the
configuration you specified, and attaches it to the Data Set.

Text Format for Data Sets

The text format for saving and loading data sets from files consists of the
following lines:

• The version number. For this version of NeurOn-Line, it is 1.

• The number of data pairs in the Data Set.
181

• The number of elements in each input vector.

• The number of elements in each target vector.

• Several lines of data, one line for each data pair in the Data Set. Each line
contains the follow items, separated with commas:

– The number of the data pair, numbered consecutively starting with 0.

– The time stamp for the data pair. It can be either a float or an integer.

– The quality of the data pair. It can be either OK, manual, or no-value.

– The input and target values of the data pair, starting with the input values.

Optionally, a line can contain a comment, which begins with a semicolon and
continues to the end of the line.

Here is an example of a Data Set stored as text.

1; Version of this save/restore protocol for data sets
4 ; Number of samples in this data-set
2 ; Length of each input data vector
1 ; Length of each output data vector
0, 9516, OK, 0.000000000,0.000000000, 0.000000000
1, 9520, OK, 0.000000000,1.000000000, 1.000000000
2, 9524, OK, 1.000000000,0.000000000, 1.000000000
3, 9528, OK, 1.000000000,1.000000000, 0.000000000

Customizing the Text Format

By writing your own G2 procedures, you can customize the file format associated
with a data set.

Note For more information on NeurOn-Line's application programmers' interface
(API), see Chapter 12, Application Programmer’s Interface in the NeurOn-Line
User’s Guide.

In the data set block's attribute table, set the attributes File-save-procedure and
File-load-procedure to the names of the procedures that read and write using
your format. Your file save and load procedures must save and load the following
attributes of a data set:

• Input-data-set (class a-matrix).

• Output-data-set (class a-matrix).

• Time-stamps (class quantity-array).

• Qualities (class symbol-array).
182

Data Set
Use the API procedure nol-configure-data-set to resize the elements of a data set.
The procedure g2-get-matrix-dimensions tells you the current dimensions of the
input Data Set and output Data Set matrices. These API procedures are provided
for saving and loading parts of data sets:

• nol-read-array

• nol-write-array

• nol-read-matrix

• nol-write-matrix

Clearing the Data Set

To clear the data set, select the clear data set menu choice. NeurOn-Line displays
this dialog:

Click Yes to clear the data set. Click No to keep the data set, unchanged.

Making Values Permanent

When you choose make permanent from the Data Set's menu, it saves all the Data
Set's current values.

Configuring

A Data Set has no configurable attributes.

See Also

For general information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Saving a Block's Data After Resetting G2 User’s Guide

Training Blocks Reference
Manual
183

184

Maximum Age Filter
Maximum Age Filter

The Maximum Age Filter limits the age of the data pairs stored in the attached
Data Set. Whenever the attached Data Set evaluates, the Maximum Age Filter
removes any data pair whose age is greater than a specified limit. The filter can
also archive the removed data pairs to another Data Set.

To filter a data set, connect the filter's capability link to the Data Set. To archive
the removed data pairs in another data set, connect the filter's action link to the
other Data Set. Neither of these connections requires a port. To specify the age
limit, enter a number of seconds in the attribute Maximum Age. The block
computes the age for a data pair by subtracting the data pair's timestamp from the
current time.

Configuring

This is the configuration panel for the Maximum Age Filter.

Attribute Description

Maximum Age
(seconds)

The maximum of number of seconds that a data pair
can be in the attached Data Set before the filter
removes it.

Execution
Priority

The order in which to execute this filter, if more than
one filter is attached to the Data Set. For more
information, see Choosing When a Data Set Filter
Executes.
185

Example

In the example below, whenever the Current Data Set receives a data pair, the
Maximum Age Filter removes any data pairs from Current Data that are older
than a specified age and places those data pairs in Old Data.

See Also

For general information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Outlier Filter Reference
Manual

Data Pair Outlier Filter Reference
Manual

Data Pair Quality Filter Reference
Manual

Size Limitation Filter Reference
Manual

Novelty Filter Reference
Manual
186

Size Limitation Filter
Size Limitation Filter

The Size Limitation Filter limits the number of data pairs stored in the attached
Data Set. Whenever the attached Data Set evaluates, the Size Limitation Filter
checks its size. If the Data Set contains more data pairs than the maximum you
specified, the filter removes enough data pairs from the top of the Data Set to
keep the size at the maximum. The filter can also archive the removed data pairs
to another Data Set.

To filter a data set, connect the filter`s capability link to the Data Set. To archive
the removed data pairs in another data set, connect the filter's action link to the
other Data Set. Neither of these connections requires a port. To specify the
maximum, enter a number in the attribute Maximum Size.

Configuring

This is the configuration panel for the Size Limitation Filter.

Attribute Description

Maximum Size
(Points)

The maximum of number of points that the attached
Data Set may contain. When it contains more, the
filter removes old data pairs.

Execution
Priority

The order in which to execute this filter, if more than
one filter is attached to the Data Set. For more
information, see Choosing When a Data Set Filter
Executes.
187

Example

In the example below, whenever the 100 Data Points Data Set receives a data pair
and the Data Set contains over 100 data pairs, the Size Limitation Filter removes
old data pairs from the 100 Data Points Data Set until its size is back to 100. It
places the removed data pairs into Excess Data.

See Also

For general information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Outlier Filter Reference
Manual

Data Pair Outlier Filter Reference
Manual

Maximum Age Filter Reference
Manual

Novelty Filter Reference
Manual
188

Data Set Reader
Data Set Reader

The Data Set Reader passes a copy of a data pair from the attached Data Set to its
output data pair path. The first time it evaluates, it sends out the Data Set's first
data pair. The second time it evaluates, it sends out the second. It continues
sending out the successive pairs until it comes to the end of the Data Set. Then it
starts from the beginning again.

Connect the Data Set to the Data Set Reader's action link. The Data Set Reader
passes a data pair out its data pair path and the position of that data pair out its
scalar data path. Note that the Data Set Reader does not remove data pairs from
the Data Set. It passes copies of them.

Resetting

When you reset the Data Set Reader, it starts reading from the beginning of the
Data Set again.

Configuring

This is the configuration panel for the Data Set Reader.

Attribute Description

Line Pointer The next data pair to pass. The block increments this
attribute each time it passes a data pair. Remember
that the first data pair is number 0.
189

Example

In the example below, the Data Set Reader is in a loop. It reads points from one
Data Set and passes them to a Data Pair Outlier Filter, which puts the points into
another Data Set if they are within the filter's bounds. In the picture below, the
Data Set Reader has just passed its sixteenth data pair. Since the data pairs are
numbered starting with 0, the data pair's scalar output port passes 15.

See Also

For general information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Data Set Copier Reference
Manual
190

Random Divider
Random Divider

The Random Divider randomly copies all the data pairs from one or more Data
Sets to two output Data Sets. This block is especially useful when you need to
split data into two sets: one for training a neural network and the other for testing
a neural network.

Connect all the input Data Sets to the left action link. Connect one output Data Set
to the top right action link and another output Data Set to the bottom right action
link.

When the Random Divider evaluates, it pools the data pairs from all the input
data sets together, and randomly copies some to the top output Data Set and the
rest to the bottom output Data Set. If the attribute Clear Output Data Set is yes, it
clears the output Data Sets before copying. Otherwise, it appends the data pairs to
them. You choose the proportion of the data pairs that go to the top output Data
Set with the attribute Fraction to Output 1.

Configuring

This is the configuration panel for the Random Divider.
191

Example

In the example below, the Random Divider splits the Original Data Set into two
smaller Data Sets: Training and Testing.

See Also

For general information on how to use this block, see the sections below.

Attribute Description

Fraction to
Output 1

The proportion of the data pairs that go to the top
output Data Set.

Clear Output
Data Set?

Whether to clear the output Data Sets before adding
data pairs to them.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Data Pair Divider Reference
Manual

S-Fold Divider Reference
Manual
192

S-Fold Divider
S-Fold Divider

The S-Fold Divider copies all the data pairs from one or more input Data Sets to
one or more output Data Sets, randomly dividing the input data between the
output Data Sets.

Connect all the input Data Sets to the left action link. Connect all the output Data
Sets to the right action link.

When the S-Fold Divider evaluates, it pools the data pairs from all the input data
pairs together, and randomly distributes copies of the data pairs to each of the
output Data Sets, as evenly as possible. If the attribute Clear Output Data Set is
yes, it clears the output Data Sets before copying. Otherwise, it appends the data
pairs to them.

Configuring

This is the configuration panel for the S-Fold Divider.

Attribute Description

Clear Output Data Set? Whether to clear the output Data Sets before
adding data pairs to them.
193

Example

In the example below, the S-Fold Divider pools the Data from the two input Data
Sets, randomly splits that pool into three approximately equal subsets, and puts
those subsets of the pool into the three output Data Sets.

See Also

For general information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Data Pair Divider Reference
Manual

Random Divider Reference
Manual
194

Data Set Copier
Data Set Copier

The Data Set Copier copies or combines Data Sets. It pools the data pairs from all
its input Data Sets and copies the complete pool to all the output Data Sets.

Connect the left action link to all the input Data Sets. Connect the right action link
to all the output Data Sets.

When the S-Fold Divider evaluates, it pools the data pairs from all the input data
pairs together, and randomly distributes copies of the data pairs to each of the
output Data Sets, as evenly as possible. If the attribute Clear Output Data Set is
yes, it clears the output Data Sets before copying. Otherwise, it appends the data
pairs to them.

If the Clear Output Data Set attribute is yes, the Data Set Copier clears the output
Data Sets before copying to them. If Clear Output Data Set is No, the Data Set
Copier appends all the new data pairs to the end of each output Data Set. If an
output Data Set has smaller input or target matrix dimensions, the Data Set
Copier increases the dimensions of the matrix and pads the elements with zeros.
If an output Data Set has larger input or target matrix dimensions, the Data Set
Copier decreases the dimensions of the matrix and deletes the extra elements.

Configuring

This is the configuration panel for the Data Set Copier.
195

Example

In the example below, the Data Set Copier pools the Data from the two input Data
Sets, and puts the complete pool in the output Data Set.

See Also

For general information on how to use this block, see the sections below.

Attribute Description

Clear Output Data Set? Whether to clear the output Data Sets before
adding data pairs to them.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Data Set Reader Reference
Manual

Data Pair Divider Reference
Manual

Random Divider Reference
Manual
196

Data Set Rescaler
Data Set Rescaler

The Data Set Rescaler scales the input and target data in a Data Set. You can
specify your own scaling factors or let the Data Set Rescaler create them using one
of two standard scaling methods: Min-Max scaling or Mean-Standard Deviation
scaling. It can also create two Vector Scaling blocks that scale vectors in the same
way that the Data Set Rescaler scales a Data Set's input and target data.

If your data has wide variations, you may need to rescale it to train the network
best. After you train the network with scaled data, however, you will get invalid
results if you apply that network to raw data. Also the network's output data is
scaled and is different from the raw target data. To solve these problems, the Data
Set Rescaler not only scales the training data, it also creates two Vector Rescalers
that undo the scaling so you can apply the network to raw input data and
interpret the network's output.

This procedure explains how to use the Data Set Rescaler:

1 Attach the Data Sets to the Data Set Rescaler.

Attach the original Data Set to the Data Set Rescaler's left action link and
another Data Set to the Data Set Rescaler's right action link.

2 Choose the scaling factors.

Choose configure from the Data Set Rescaler's menu and select one of the
scaling options. For more information, see Configuring.

3 Rescale the Data Set.

Either pass the Data Set Rescaler a control signal or choose evaluate from the
Data Set Rescaler's menu. The block reads data from the left Data Set and
places the scaled data in the right Data Set.

4 Create Vector Rescaler blocks.
197

Choose make vector rescalers from its menu. The block creates two Vector
Rescalers and places them near the Data Set Rescaler: the left one contains the
scaling factors that the Data Set Rescaler used for input data, and the right one
contains the scaling factors the Data Set Rescaler used for target data.

5 Train the neural network with the scaled Data Set.

Attach the scaled Data Set and the neural network to a training block and
evaluate the training block.

6 Attach the trained neural network to the Vector Rescalers.

The Vector Rescalers undo the scaling that the Data Set Rescaler applied. You
can both use raw input data and interpret the original units.

Making Values Permanent

When you choose make permanent from the block's menu, the block saves the
scale factors.
198

Data Set Rescaler
Configuring

To choose how the Data Set Rescaler performs its scaling, choose configure from
the block's menu. NeurOn-Line displays this configuration panel.

First, enter the number of inputs in the Number of Inputs attribute and the
number of targets in the Number of Targets attribute.

Next, choose the scaling options for the input and output data by selecting
options for Input Scaling and Target Scaling. These are the options:

If you choose custom scaling, NeurOn-Line activates the Input Scale Factors
and/or Target Scale Factors buttons, depending on whether you chose custom
scaling for the input or target data. To enter your own scale factors, click the Input

Option Description

no scaling Do not scale the data. For each column, use 0 as the
additive scaling factor and 1 as the multiplicative scaling
factor.

0-1 min-max Scale each column so that the maximum value is 1 and the
minimum value is 0.

0-1 mean-stdev Scale each column so that the column's mean is 0 and its
standard deviation is 1.

custom scaling Scale each column using scaling factors that you specify.
199

Scale Factors button or the Target Scale Factors button, and enter the factors in the
spreadsheet that appears. Here is a table for entering custom scale factors for a
target vector of width 2:

Each element in a column Column is rescaled according to the following formula,
where Ai is the additive factor for that column's elements and Mi is the
multiplicative factor for that column's elements:

For more information on how to use the spreadsheet, see Using the GXL
Spreadsheet to Edit Data.

If the attribute Clear Output is yes, the block clears the output Data Set before it
copies the rescaled data to it. Otherwise, the block appends the rescaled data to
the end of the Data Set.

See Also

For general information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Saving a Block's Data After Resetting G2 User’s Guide

Vector Rescaler Reference
Manual
200

Data Set Plot
Data Set Plot

The Data Set Plot block lets you display charts of the data stored in the Data Set
attached to its action link.

Configuring

When you choose configure from the block's menu, and you have attached a Data
Set to its action link, the block displays the configuration panel below.

The following headings describe how to interact with the configuration panel.

Choosing What to Display

To specify what data from the Data Set is displayed on the chart, specify one of
these options for X Axis and Y Axis:

Option Description

Inputs The input values

Targets The target values for neural network training
201

If the data set has more than one column of data for the option you selected, enter
the number for the column you want displayed in the field under the options.

Predictions The predictions of a neural network

Time Stamps The time the sample was received

Rows The row number for this sample
202

Data Set Plot
Choosing How to Display the Data

To specify how the data is displayed, use the options on the right of the dialog.
Choose the type of chart from the options listed under Chart Style. You can
choose a line, scatter, or column chart, as shown below.

To put a marker on each point in a data series, choose one of the options listed
under Indicator. If the Chart Style is Line, you can choose any of these options. If
203

the Chart Style is Scatter, the option None is not available. If the Chart Style is
Column, only the option Column is available. The chart below shows you what
the indicators look like.

Option Icon

Square

Rectangle

Triangle

Cross

X

Bar See below

Column See below

None Points are unmarked
204

Data Set Plot
The bar and column indicators are a little different from the rest. They draw a line
from the point to an axis. A bar goes to the Y axis, and a column goes to the X axis,
as shown below.

To choose a color for the data series, use the Color list. It contains all the available
G2 colors. You can scroll through the list by using the scroll bar on the left. The
names of the unselected colors are black. When you select a color, its name
becomes white.
205

Choosing Where to Display the Data

To specify the chart to display the data on, enter the chart's name in the attribute
Chart Name.

If you enter G2 as the chart name, the Data Set Plot block creates a subworkspace
for itself and places a chart on that workspace, as shown below. To hide the
subworkspace, click the Hide Plot button.

Creating and Deleting Data Series

Sometimes you might want to display more than one view of your data on a
single chart. For example, you might want to plot a view of the inputs versus the
targets, and a view of the inputs versus the predictions. Each of these views is
called a data series. The second line from the top of the dialog displays which data
series you are editing and how many data series there are for this data set. (For
example, if the second line reads Data Series 2 of 3, there are three data series and
you are editing the second.) The buttons in the lower left corner of the dialog let
you create, delete, and move between data series.

By default, the Data Set Plot block has only one data series. To create a new data
series, click the New Data Series button. The dialog changes the settings of the
options to their defaults. To delete the currently displayed data series, click the
Delete Data Series button.

To move between data series, use the Next>> and <<Prev buttons. When you go
to a data series, the dialog changes the settings of the options to the series'
settings.
206

Data Set Plot
Making Values Permanent

When you choose make permanent from the block's menu, the block saves the
data set.

Example

In the diagram below, the Data Set Plot block graphs the progress of the Fit Test
block. The Data Set Plot block has two data series: one to show the target values
and one to show the neural net's predictions. In the first data series, the X Axis is
inputs, the Y Axis is predictions, the Chart Style is Line, and the Indicator is None.
In the second data series, the X Axis is inputs, the Y Axis is Targets, the Chart
Style is Scatter, and the Indicator is Square.
207

See Also

For general information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Saving a Block's Data After Resetting G2 User’s Guide

Plotting Data Reference
Manual
208

Novelty Filter
Novelty Filter

The Novelty Filter is a filter that prevents a Data Set from being filled with
redundant data. Whenever you add a data pair to the attached Data Set, the
Novelty Filter checks whether there are more than a specified number of data
pairs within a specified distance of the new data pair. If there are, the Novelty
Filter removes the older data pair. The filter can also archive the removed data
pairs to another Data Set.

To filter a Data Set, connect the filters`s capability link to it. To archive the
removed data pairs in another Data Set, connect the filter's action link to it.
Neither of these connections requires a port in the Data Set.

The Novelty Filter sends a control signal on its cp-out path whenever the filter
detects a novel data pair.

Choosing Which Points to Keep

Whenever the attached Data Set receives a new data pair, the Novelty Filter
encloses the input value with a rectangular cell. If that cell contains more than the
maximum specified in the attribute Points per Cell, the Novelty Filter removes the
oldest data pair from it. You set the sizes of the cell in the configuration panel.
Each input has its own cell size, which is one-half the cell's width.

In the example below, there are three newly added data pairs (the filled circles)
and a large number of existing data pairs (the empty circles). Each data pair has
two inputs (X1 and X2). In the Novelty Filter's configuration panel, the size for X1
209

is 1 and the size for X2 is 2. This means that each new point is enclosed by a cell
that is 2 by 4 units large. The maximum Points per cell is 3.

The following list describes how the Novelty Filter handles the three new points:

• Since the cell contains fewer than the maximum Points per cell, nothing is
removed.

• Since the cell contains exactly the maximum Points per cell, nothing is
removed.

• Since the cell contains more than the maximum Points per cell, the oldest data
pair in the cell is removed. In this picture, that data pair has an X through it.

Deciding Whether a Data Pair is Novel

The Novelty Filter passes a control signal when it receives a data pair that it
determines is novel. However, a data pair is not novel just because the filter keeps
it. An incoming data pair is judged to be novel if either of the following criteria is
satisfied:

1 If the input cell contains only the newly received data pair, the data pair is
novel.

2 If the input cell contains other data pairs, the Novelty Filter averages the
target values (or Y values) for those data pairs. Then, it computes the target
values for the received data pair and encloses it in a cell. You specify the
dimensions for the cell in the filter's configuration panel. These are different
dimensions from the ones for the input cell. If the average output values fall
outside the cell, the newly received data pair is novel.
210

Novelty Filter
Making Values Permanent

When you select make permanent from the block's menu, the block saves the sizes
of all the input and output values.

Configuring

This is the configuration panel for the Novelty Filter.

Set Number of Inputs to the number of input values in each data pair, and set
Number of Targets to the number of output values in each data pair. Set Points
per Cell to the maximum number of data pairs you want inside each cell.

Once you have specified these attributes, click Edit Input Cell Sizes and Edit
Target Cell Sizes to edit the cell sizes. The block displays a spreadsheet, which lets
you enter the size for each input and output value.

For more information on the spreadsheet, see Using the GXL Spreadsheet to Edit
Data.

When you connect more than one filter to a Data Set, Execution Priority lets you
determine when each executes. For more information, see Choosing When a Data
Set Filter Executes.
211

Example

In the example below, whenever the Current Data Set receives a data pair, the
Novelty Filter removes any data pairs from the Unique Data Set that are close to it
and places those data pairs in the Excess Data Set.

See Also

For general information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Saving a Block's Data After Resetting G2 User’s Guide

Outlier Filter Reference
Manual

Data Pair Outlier Filter Reference
Manual

First-Order Exponential Filter Reference
Manual

Data Pair Quality Filter Reference
Manual

Maximum Age Filter Reference
Manual

Size Limitation Filter Reference
Manual
212

Part III
Neural Networks
Chapter 7: Neural Network Blocks

Describes the blocks that let you create feed-forward, layered networks.

Chapter 8: Training Blocks

Describes the blocks that test and train networks.
213

214

7

Neural Network
Blocks
Describes the blocks that let you create feed-forward, layered networks.

Introduction 216

Backpropagation Net (BPN) 221

Autoassociative Net 227

Radial Basis Function Net (RBFN) 231

Rho Net 234

Ensemble Net (ENN) 238
215

Introduction
The Neural Network blocks are the heart of NeurOn-Line.

You can find the Neural Networks palette under the Neural Networks submenu
of the Palettes menu:

Saving and Loading Network Weights

All the Neural Network blocks let you save and load what they have learned so
far. NeurOn-Line saves the information to text files, which you can examine
yourself. This section describes the formats used for these files.

Backpropagation and Autoassociative Network File Format

The text format for saving and loading BPNs from files consists of the following
lines.

Note All lists are comma-separated, and are in order beginning with the item for the
first layer. A comment begins with a semicolon and continues to the end of the
line.
216

Introduction
1 The version number. For this version of NeurOn-Line, it is 1.

2 The number of layers in the network.

3 A list of the number of nodes in each layer.

4 A list of the transfer functions for each layer. The number 0 stands for linear,
and the number 1 stands for sigmoid.

5 The weight of each node in the network. Each weight is on a separate line and
is followed by a comment that identifies which nodes it is for. The convention
used to identify the nodes is described below. Note that the bias node is
included as an extra node in each layer, except the output layer.

6 The weights are listed in order. The first is for the connection from the first
node in the first layer to the first node in the second layer. The last is for the
connection from the last node in the second-to-last layer to the last node in the
last layer.

Each weight is followed by a comment that identifies which nodes it is for. The
comment contains three numbers, as follows.

; i j k

This is the weight from node i in layer k to node j in layer k+1. For example, the
following weight is for the second node in the third layer to the first node in the
fourth layer.

0.7242780000 ; 2 3 1

Here is an example of a file for a BPN, with 3 layers, 2 input layer nodes, 3 hidden
layer nodes, and 1 output layer node:

; Version of this file save/restore protocol for BPNs
3 ; Number of layers
2, 3, 1 ; Layer sizes of BPN.
0, 1, 0 ; Transfer functions of BPN.
-0.32507146396688 ; 1 1 1
-0.82195669379450 ; 1 2 1
0.19680059179068 ; 1 3 1
-0.97116809332961 ; 2 1 1
0.61150472166297 ; 2 2 1
-0.12016215756566 ; 2 3 1
0.84987859399967 ; 3 1 1
-0.74007775586113 ; 3 2 1
-0.63971444152242 ; 3 3 1
0.84097431197944 ; 1 1 2
-0.79330091884975 ; 2 1 2
-0.01523408110297 ; 3 1 2
0.43417445464837 ; 4 1 2
217

Radial Basis Function and Rho Network File Format

The text format for saving and loading RBFNs from files consists of the following
lines.

Note All lists are comma-separated. A comment begins with a semicolon and continues
to the end of the line.

1 The version number. For this version of NeurOn-Line, it is 1.

2 A list of the number of nodes in each layer.

3 The unit overlap.

4 Whether the network uses spherical or elliptical units. The number 0 stands
for spherical units, and the number 1 stands for elliptical units.

5 The locations of the sphere or ellipse centers. The locations for each row are on
a separate line. Each line contains as many numbers as there are elements in
the input vector. The number of location lines is the same as the number of
hidden units.

6 The shapes of the units. If you are using spherical units, there is one line for
each hidden unit, and each line contains the width for the unit. If you are
using elliptical units, there are N*H lines, and each line contains N values,
where N is the number of input values and H is the number of hidden units.
The first N lines represent the inverse covariance matrix of radial unit 1, the
next N lines represent the inverse covariance of the second radial unit, etc.

7 The weights for the output layer. There is one line for each node in the hidden
layer, and each line contains the weights from the hidden node to the node in
the output layer. If this is a RBFN, the weights for the bias node are on an
extra line at the end.

Here is an example of a file for an RBFN with spherical units.

1; Version of this file save/restore protocol for RBFNs
3, 6, 1 ; Layer sizes of RBFN.
2 ; Unit overlap parameter
0 ; Spherical unit shape
1 ; Bias on
10.8896000000, 5.0603000000, 5.1376100000 ; Unit centers row 1
11.4327000000, 5.5737400000, 5.6030400000 ; Unit centers row 2
7.8846400000, 5.0246100000, 5.0246100000 ; Unit centers row 3
9.4227900000, 5.1608600000, 5.1608600000 ; Unit centers row 4
10.1503000000, 5.5839500000, 5.2830700000 ; Unit centers row 5
6.7058600000, 5.0688600000, 4.9504500000 ; Unit centers row 6
0.8992220000 ; Unit shapes row 1
1.1230300000 ; Unit shapes row 2
1.3784100000 ; Unit shapes row 3
218

Introduction
1.2011400000 ; Unit shapes row 4
0.8846430000 ; Unit shapes row 5
2.1013600000 ; Unit shapes row 6
-2.3439900000 ; Second layer weights row 1
-0.3743570000 ; Second layer weights row 2
-0.3669410000 ; Second layer weights row 3
-3.9031200000 ; Second layer weights row 4
0.6760480000 ; Second layer weights row 5
-0.9269620000 ; Second layer weights row 6
11.1002000000 ; Second layer weights row 7

Here is a file for an RBFN that has the same basic architecture as the one above,
but that uses elliptical units.

1; Version of this file save/restore protocol for RBFNs
3, 6, 1 ; Layer sizes of RBFN.
2 ; Unit overlap parameter
1 ; Elliptical unit shape
1 ; Bias on
6.6357800000, 5.2808800000, 4.9493200000 ; Unit centers row 1
7.2610900000, 5.1641900000, 5.1641900000 ; Unit centers row 2
10.3036000000, 5.3620800000, 5.1868500000 ; Unit centers row 3
8.2783000000, 5.0083000000, 5.0083000000 ; Unit centers row 4
6.6201000000, 4.8137500000, 4.8137500000 ; Unit centers row 5
11.2850000000, 5.3348900000, 5.4306300000 ; Unit centers row 6
5.3577500000, 0.1998100000, -4.0963000000 ; Unit shapes row 1
0.1998100000, 2.8251900000, -1.3811100000 ; Unit shapes row 2
-4.0963000000, -1.3811100000, 7.7281600000 ; Unit shapes row 3
1.0171300000, 0., -1.2055800000 ; Unit shapes row 4
0.7242780000, 9.4219700000, -7.0106700000 ; Unit shapes row 5
-1.2055800000, -7.0106700000, 11.3346000000 ; Unit shapes row 6
0.3653470000, 0.2290360000, -0.7771570000 ; Unit shapes row 7
0.2290360000, 4.0050800000, -3.5144000000 ; Unit shapes row 8
-0.7771570000, -3.5144000000, 7.2356000000 ; Unit shapes row 9
0.3881750000, -0.1173250000, -0.4112650000 ; Unit shapes row 10
-0.1173250000, 17.4052000000, -15.6234000000 ; Unit shapes row 11
-0.4112650000, -15.6234000000, 25.1755000000 ; Unit shapes row 12
4.1952000000, 0.2980240000, -3.6536000000 ; Unit shapes row 13
0.2980240000, 5.1403200000, -4.1436400000 ; Unit shapes row 14
-3.6536000000, -4.1436400000, 11.2164000000 ; Unit shapes row 15
0.2617710000, 0.1799830000, -0.6148770000 ; Unit shapes row 16
0.1799830000, 3.1725600000, -2.8314600000 ; Unit shapes row 17
-0.6148770000, -2.8314600000, 5.4504000000 ; Unit shapes row 18
3.7661200000 ; Second layer weights row 1
0.4220330000 ; Second layer weights row 2
-0.8155410000 ; Second layer weights row 3
0.9443360000 ; Second layer weights row 4
-0.5184290000 ; Second layer weights row 5
219

1.9278200000 ; Second layer weights row 6
7.8096200000 ; Second layer weights row 7

Ensemble Network File Format

The text format for saving and loading ensemble networks from files consists of
the following lines.

Note All lists are comma-separated. A comment begins with a semicolon and continues
to the end of the line.

1 The version number. For this version of NeurOn-Line, it is 1.

2 The number of submodels in the network.

3 The text for all submodels. The format for the submodel is the same as the
format for BPNs.

Backpropagation and Autoassociative Networks

Both the Backpropagation Net (BPN) block and the Autoassociative Net block are
feed-forward networks with multiple layers. The Autoassociative Network is a
type of Backpropagation Network with a specific architecture, which is especially
good for handling certain types of problems, including sensor validation.

Radial Basis Function and Rho Networks

Both the Radial Basis Function Net (RBFN) block and the Rho Net block are 3-
layer, feed-forward networks, whose middle layers use a multivariate Gaussian
function. Both are especially good at handling classification problems. Their
biggest difference is what their output values are. The Radial Basis Function
Network can return any type of number. The Rho Network passes a number
between 0.0 and 1.0, which represents the probability that the input value is in a
particular class.

Ensemble Networks
The Ensemble Net (ENN) block is an encapsulation block. The Ensemble Network
is a set of Backpropagation Net blocks, which have been trained in NOL Studio. It
has a specific architecture, which gives it accuracy and robustness.
220

Backpropagation Net (BPN)
Backpropagation Net (BPN)

The Backpropagation Network, or BPN, is a feed-forward, layered network. Each
node in a layer is connected to all other nodes in the layer before it and the layer
after it. It is especially useful for modeling multivariate functions.

The first layer and the input vector must be the same size. The last layer and the
output vector must have the same size. The hidden or intermediate layers (layers
between the first and last layers) can be any size. You can have up to three hidden
layers, for a total of up to five layers. In general, a network has one hidden layer.
The number of nodes depends on the complexity of the function that the network
has to model. The more complex the function, the more nodes needed.

You can choose whether a layer uses the sigmoidal or linear function for its nodes.
In general, the input and output layers use the linear function, and at least one of
the hidden layers use a sigmoidal function.

Note NeurOn-Line does not use G2 objects to represent the nodes and connections in a
BPN. Instead, NeurOn-Line stores the network internally and lets you change the
network's architecture with the configure menu choice.

Before you can pass data through a network, you must train the network. For
more information, see Chapter 8, Training Blocks The number of data pairs in the
training data set should be greater than the number of weights over the number
of outputs. For example, if a network has 5 inputs, 10 hidden nodes and 3 outputs,
its training data set should have at least this many data pairs.

In practice, several times this number is recommended.

When you pass a vector to a network, it calculates the value for its output vector
by passing the input vector's data through the layers of its network. Passing data
through a network does not change the values of its weights.

10hidden 5inputs 1bias+ 3outputs 10hidden+1bias +
3outputs

--- 31=
221

Configuring

To set the number of layers, number of nodes, and the transfer functions, you
configure the BPN block.

When you select configure on the block, NeurOn-Line displays this dialog:

To set the number of layers, use the arrows to the right of the Number of Layers
attribute. To increase the number, click the up arrow. To decrease the number,
click the down arrow. You can select 2 to 5 layers.

The rows below Number of Layers let you set the number of nodes and transfer
function for each input layer. If the network contains fewer than five layers, some
of the fields will be inactive. You specify the nodes and transfer functions for the
output layers.

To set the number of nodes for a layer, enter a number in the Nodes attribute for
each layer. To set the transfer function for a layer, click the linear or sigmoid
button for the Transfer Function attribute for each layer. Selecting the button
toggles the button between linear and sigmoid.

Caution: If you change the architecture for a trained network by reducing the size
of any layer, you must retrain the network.

Adjusting Weights

When you first clone a BPN off the palette, all its weights are set to zero.
However, the network needs to contain small random weights to train properly.
To fill the network with weights appropriate for training, click the randomize
222

Backpropagation Net (BPN)
weights button. NeurOn-Line overwrites the block`s current weights with new
random weights.

Caution: When you click the randomize weights button, NeurOn-Line
immediately commits your changes. Clicking the Cancel button does not discard
them.

NeurOn-Line displays the dialog below, which lets you specify an absolute
amount to randomize by, a percentage to randomize by, or both:

This is the formula that the block uses to jiggle the weights, where P is the
percentage you entered, A is the absolute amount you entered, and R1 and R2 are
random numbers from -1.0 to 1.0.

When you are training a network and it seems to be stuck in a local minimum,
slightly changing the weights can help push the network back onto the right
track.

NewWeight 1 R1 P 100+ OldWeight R2 A+=
223

Saving and Loading Weights

You can save the network's weights to a text file so you can load them later. The
file format for saved weights is described in Saving and Loading Network
Weights.

To save or load network data, select the file operations menu choice to display this
dialog:

Edit the File Pathname attribute to specify the filename. To save the weights, click
the Save to File button. To load weights, overwriting the weights that are
currently in the network, click the Load from File button.

Making Values Permanent

When you choose make permanent from the block's menu, it saves the network's
internal configuration and weight so that resetting G2 has no effect on their
values.
224

Backpropagation Net (BPN)
Examples

The following configure dialog is for a BPN that is being trained with a data set of
angles and their sines. It contains three layers: the input layer, the output layer,
and one hidden layer. Both the input and output layers have 1 node and use the
linear function. The hidden layer has 4 nodes and uses the sigmoid function.

Below is a simple diagram for training a network. The data set on the left is filled
with a sample of angles and their sines. The BPN is configured as described
above. To train this network, choose configure from the BPN's menu and click
Randomize Weights, then choose evaluate from the Training block's menu.

This diagram uses a trained BPN to estimate the sine for of a 45-degree angle:
225

See Also

For general information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Saving a Block's Data After Resetting G2 User’s Guide
226

Autoassociative Net
Autoassociative Net

The Autoassociative Network is a type of Backpropagation network that uses
autoassociative mappings. It is a feed-forward, layered network. Each node in a
layer is connected to all other nodes in the layer before it and the layer after it. In
general, the input and output vectors are the same size and the network contains
three hidden layers. It is especially useful for sensor validation problems.

An Autoassociative Network contains 5 layers. The first and last layers must be
the same size as the input and output vectors. The hidden or intermediate layers
(layers between the first and last layers) can be any size. Usually, an
Autoassociative Network has 3 hidden layers. The middle layer, or bottleneck
layer, must have fewer nodes than any other.

You can choose whether a layer uses the sigmoidal or linear function for its nodes.
In general, the input, output, and bottleneck layers use the linear function, and
the rest use the sigmoid function.

Note NeurOn-Line does not use G2 objects to represent the nodes and connections in
an Autoassociative Network. Instead, NeurOn-Line stores the network internally
and lets you change the network's architecture with the configure menu item.

Before you can pass data through a network, you must train the network. For
more information, see Chapter 8, Training Blocks. When you pass a vector to a
network, it calculates the value for its output vector by passing the input vector's
data through the layers of its network. Passing data through a network does not
change the values of its weights.

If you run an Autoassociative network when it is configured to correct gross
errors, the Remote Process generates output like the following on the background
window:

For no fault, f = 45.1403
For sensor 1, f = 6.33029, estimated bias = -8.995572
For sensor 2, f = 45.1061, estimated bias = 0.410265
For sensor 3, f = 45.0235, estimated bias = 0.482471
For sensor 4, f = 44.8587, estimated bias = 0.760695
For sensor 5, f = 44.4518, estimated bias = -1.263943
227

The f value is the input/output residual. To correct gross errors from various
sensors, NOL estimates the possible error or “estimated bias,” based on the
calculation of an expected value.

The higher the bias (a value away from 0), the more the Autoassociative network
is correcting the sensor value. The sensor with the least input/output residual,
like sensor 5 in the example output, is replaced by the Autoassociative network
with its corrected value.

Configuring

When you choose configure from the block's menu, NeurOn-Line displays this
dialog.

To configure the Network Architecture, choose the number of layers, specify the
number of nodes, and specify the transfer functions for each layer.

Caution If you reduce the number of nodes in any layer or reduce the number of layers for
a trained network, the network's current weights will be meaningless, and you
will need to retrain the network.
228

Autoassociative Net
To set the number of layers, use the arrows to the right of the Number of Layers
attribute. By default, the network has 5 layers, which is the recommended number
for an Autoassociative network. To decrease the number, click the down arrow.
To increase the number, click the up arrow. You can select 2 to 5 layers.

The rows below Number of Layers let you set the number of nodes and transfer
function for each input layer. We recommend that the first and last layer of an
Autoassociative Network have the same number of nodes. If the network contains
fewer than five layers, some of the fields will be inactive. You specify the number
of nodes and transfer functions for the output layers.

To set the number of nodes for a layer, enter a number in the Nodes attribute for
each layer. To set the transfer function for a layer, click the linear or sigmoid
button for the Transfer Function attribute for each layer. Selecting the button
toggles the button between linear and sigmoid. By default, the values for the
transfer functions alternate in the manner that is recommended for an
Autoassociative Network: linear, sigmoid, linear, sigmoid, linear, for the input,
first hidden, bottleneck, second hidden, and output layers, respectively.

Choosing the Run Mode

The Run Mode attribute lets you choose whether the network replaces faulty
input values. If you choose the filter noise only option, the network does not
perform the replacement. When you run the network, it performs a single
forward pass, which filters random errors from the inputs but not systematic
errors (or biases).

If you choose the correct gross errors option, the network does perform the
replacement. When you run the network, it performs N+1 passes, where N is the
number of elements in the input vector.

The first pass is the same as the pass used for the noise filter only option. In the
rest of the passes, one of the input values is ignored and the network computes
the best replacement value. Using the standard deviation for the input value, the
network computes how far off the input value is from its replacement value. The
network then replaces the input value that is furthest from its replacement value.

Caution Correct gross errors mode requires several times more computational work than
the filter noise only option.

When you choose the correct gross errors option, the Noise Standard Deviations
button becomes active. Click this button to display a spreadsheet that lets you
choose the standard deviations the block uses.
229

Adjusting Weights

You can overwrite the current weights with random weights and adjust the
current weights by a random amount. For more information on adjusting
weights, see Adjusting Weights for the BPN block.

Saving and Loading Weights

You can save the network's weights to a text file so you can load them later. For
information on how to do this, see Saving and Loading Weights for the BPN
block.

To save or load network data, select the file operations menu choice to display this
dialog:

Edit the File Pathname attribute to specify the filename. To save the weights, click
the Save to File button. To load weights, overwriting the weights that are
currently in the network, click the Load from File button.

Making Values Permanent

When you choose make permanent from the block' s menu, it saves the network's
internal configuration and weights.

See Also

For general information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Saving a Block's Data After Resetting G2 User’s Guide
230

Radial Basis Function Net (RBFN)
Radial Basis Function Net (RBFN)

The Radial Basis Function Network (or RBFN) is a 3-layer, feed-forward network,
whose middle layer uses a multi-variate Gaussian function. It is especially useful
for classification problems. The RBFN is best for choosing which class out of
many classes an item belongs to. In general, RBFNs take less time to train but
more time to execute than BPNs and Autoassociative Networks.

An RBFN contains exactly 3 layers. The first layer and the input vector must be
the same size. The last layer and the output vector must be the same size. The
middle or hidden layer can be any size.

Each node in a layer is connected to all other nodes in the layers before it and after
it. The connections between the input and hidden layers are unweighted.
However, RBFNs weight the connections between the hidden layer and output
layer normally, like a BPN or an Autoassociative network.

The transfer function of the input and output layer is linear. You can choose
whether the transfer functions of the hidden layer are spherical or elliptical
Gaussians.

Note NeurOn-Line does not use G2 objects to represent the nodes and connections in a
neural network. Instead, NeurOn-Line stores the network internally and lets you
change the network's architecture with the configure menu item.

An RBFN can take a vector of any length as an input value, and it passes an
output vector and an output scalar. The vector is the same size as the last layer in
the network. The scalar is the maximum hidden node activation, which indicates
how well the hidden layer covers the input vector. This number is between 0.0
and 1.0. If it is close to zero, for example less than 0.2, the hidden layer does not
cover the input well, indicating that the network possibly predicted inaccurately
due to extrapolation.
231

Configuring

When you choose configure from the block's menu, it displays the dialog below.

To configure the Network Architecture, specify the number of nodes in the input,
hidden, and output layers, the overlap between the nodes, and the shapes of the
hidden nodes.

Caution If you change the architecture for a trained network by reducing the size of any
layer, you will need to retrain the network.

To set the number of nodes in the input layer, enter a number in the Input Nodes
field. To set the number of nodes in the hidden layer, enter a number in the
Hidden Nodes field. To set the number of nodes in the output layer, enter a
number in the Output Nodes field.

To set the unit overlap, choose whether the overlap is automatic or fixed by
selecting the toggle button next to the Unit Overlap attribute. If the overlap is
automatic, the network chooses the best unit overlap for you automatically.
Generally, you will use an automatic overlap. If the overlap is fixed, enter a
positive value in the Unit Overlap attribute edit box. The unit overlap affects how
smoothly the trainer fits the function to the data. A larger unit overlap creates a
smooth, slowly changing fit. A smaller unit overlap allows rapid changes in the
fit.

To choose the function shape for the hidden layer, select one of the options under
Hidden Unit Shapes: spherical or elliptical. When data is sparse or the input
values are not correlated to each other, spherical units may perform better. When
more data is available or the input values are correlated to each other, elliptical
units may perform better. If the input dimension is 1, there is no difference
between spherical and elliptical nodes, and the network selects Spherical by
232

Radial Basis Function Net (RBFN)
default. To choose the option for other cases, you may need to perform cross-
validation with the Train and Test block or the Five-Fold CV block.

Saving and Loading Weights

You can save the network's weights to a text file so you can load them later. For
information on how to do this, see Saving and Loading Weights for the BPN
block.

To save or load network data, select the file operations menu choice to display this
dialog:

Edit the File Pathname attribute to specify the filename. To save the weights, click
the Save to File button. To load weights, overwriting the weights that are
currently in the network, click the Load from File button.

Making Values Permanent

When you choose make permanent from the block's menu, it saves the network's
internal configuration and weights.

See Also

For general information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Saving a Block's Data After Resetting G2 User’s Guide

Rho Net Reference
Manual
233

Rho Net

The Rho Network is a 3-layer, feed-forward network, whose middle layer uses a
multi-variate Guassian function. It is especially useful for classification problems.
The Rho Net is best for deciding whether an item belongs to one particular class
or not. In general, Rho Networks take less time to train but more time to execute
than BPNs and Autoassociative Networks.

A Rho Network contains exactly 3 layers. The first layer and the input vector must
be the same size. The last layer and the output vector must be the same size. The
middle or hidden layer can be any size.

Each node in a layer is connected to all other nodes in the layers before it and after
it. The connections between the input and hidden layers are unweighted.
However, a Rho Net weights the connections between the hidden layer and
output layer by using a probability function, which returns the likelihood that an
input belongs to a particular class.

The transfer functions of the input and output layers are linear. You can choose
whether the shape for the transfer functions of the hidden layer are spherical or
elliptical.

Note NeurOn-Line does not use G2 objects to represent the nodes and connections in a
neural network. Instead, NeurOn-Line stores the network internally and lets you
change the network's architecture with the configure menu item.

A Rho Net can take a vector of any length as an input value, and it passes a vector.
The contents of the vector depends on how you trained the network. When you
connect a Trainer block to a Rho Network and choose configure from the Trainer's
menu, you choose whether the Rho Network treats the training data as data from
a single class or from multiple classes. If you choose single class, the output vector
contains one element, which is the probability that the input element is in that
class. If you choose multiple classes, the output vector contains an element for
each class, and the value of each element is the probability that the output belongs
to that element's class.
234

Rho Net
Configuring

When you choose configure from the block's menu, it displays the dialog below.

To configure the Network Architecture, specify the number of nodes in the input,
hidden, and output layers, the overlap between the nodes, and the shapes of the
hidden nodes.

Caution If you change the architecture for a trained network by reducing the size of any
layer, you will need to retrain the network.

To set the number of nodes in the input layer, enter a number in the Input Nodes
field. To set the number of nodes in the hidden layer, enter a number in the
Hidden Nodes field. To set the number of nodes in the output layer, enter a
number in the Output Nodes field.

To set the unit overlap, choose whether the overlap is automatic or fixed by
selecting the toggle button next to the Unit Overlap attribute. If the overlap is
automatic, the network chooses the best unit overlap for you automatically in the
course of training. Generally, you will use an automatic overlap.

If the overlap is fixed, enter a positive value in the Unit Overlap attribute edit box.
The overlap parameter is a multiplicative factor applied to a basic hidden unit
width, which is the nearest neighbor distance between the radial units. If the Unit
Overlap is 1.0, each hidden unit's width is the distance to the nearest hidden unit.
If the overlap parameter is 2.0, for example, the unit's width is twice the nearest
neighbor distance. The unit overlap affects how smoothly the trainer fits the
function to the data. A larger unit overlap creates a smooth, slowly changing fit. A
smaller unit overlap allows rapid changes in the fit. The Unit Overlap should
usually be between 0.5 and 5.0.
235

To choose the function shape for the hidden layer, select one of the options under
Hidden Unit Shapes: spherical or elliptical. When data is sparse or the input
values are not correlated to each other, spherical units may perform better. When
more data is available or the input values are correlated to each other, elliptical
units may perform better. If the input dimension is 1, there is no difference
between spherical and elliptical nodes, and the network selects Spherical by
default. To choose the option for other cases, you may need to perform cross-
validation with the Train and Test block or the Five-Fold CV block.

Saving and Loading Weights

You can save the network's weights to a text file so you can load them later. For
information on how to do this, see Saving and Loading Weights for the BPN
block.

To save or load network data, select the file operations menu choice to display this
dialog:

Edit the File Pathname attribute to specify the filename. To save the weights, click
the Save to File button. To load weights, overwriting the weights that are
currently in the network, click the Load from File button.

Making Values Permanent

When you choose make permanent from the block's menu, it saves the network's
internal configuration and weights.

See Also

For general information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide
236

Rho Net
Saving a Block's Data After Resetting G2 User’s Guide

Radial Basis Function Net (RBFN) Reference
Manual

For more information on... See... In this book...
237

Ensemble Net (ENN)

The Ensemble Network, or ENN, is a feed-forward network. It has a specific
architecture, which includes a set of submodels of Backpropagation Nets, or
BPNs, and an output median calculator. The ENN provides accuracy and
robustness, and especially useful for modeling multivariate functions.

The Ensemble Net block is an encapsulation block whose subworkspace is
shown below:

The first layers of all BPNs and the input vector must be the same size. The last
layers of all BPNs and the output vector must also be the same size.

Before you can use the Ensemble Net block, you must train the network. The
Ensemble Net must be trained initially, using NOL Studio, which is an offline,
neural network modeling tool. For more information, see the NeurOn-Line Studio
User’s Guide.
238

Ensemble Net (ENN)
Note NeurOn-Line does not let you configure the architecture of an Ensemble Net. The
architecture of an Ensemble Net is automatically determined when it is trained
within NOL Studio.

Before you can pass data through an Ensemble Net the first time, you must
initialize the ENN block by loading its settings and weights through file
operation. When you pass a vector to an Ensemble Net, it passes the vector
through all its submodels, and it uses the Median block to calculate the median
values of the output from all submodels. The output vector of the Ensemble Net is
composed of these median values.

Adjusting Weights

When you first create an ENN block, all its weights are set to zero, and its
architecture is set to a null initial state. You must load its architecture settings and
its weights from a text file exported from NOL Studio. You cannot change the
architecture of an Ensemble Net; however, if you detect the network has large
prediction errors, you can adjust the weights by retraining the network. For more
information, see Chapter 8, Training Blocks.

Saving and Loading Weights

You can save the network's weights to a text file so you can load them later. For
information on how to do this, see Saving and Loading Weights for the BPN
block.

To save or load network data, select the file operations menu choice to display this
dialog:

Edit the File Pathname attribute to specify the filename. To save the weights, click
the Save to File button. To load weights, overwriting the weights that are
currently in the network, click the Load from File button.
239

Making Values Permanent

When you choose make permanent from the block's menu, it saves the network's
internal configuration and weight so that resetting G2 has no effect on their
values.

Examples

Below is a simple diagram for training an Ensemble Network. The data set on the
left is filled with data collected in real time. The ENN is loaded from a text file
exported from NOL Studio. The data set must have the same number of inputs
and outputs as specified in the model architecture. The data should be filtered to
remove outliers. To train the network, connect a trainer block to the Ensemble
Network, then choose evaluate from the Training block's menu.

The deployment of ENN is similar to the deployment of BPN. This diagram uses a
trained ENN to estimate the sine of a 45-degree angle, just as in the example of
BPN.

See Also

For general information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Saving a Block's Data After Resetting G2 User’s Guide
240

8

Training Blocks
Describes the blocks that test and train networks.

Introduction 241

Trainer 244

Fit Tester 251

Train and Test 255

Five Fold CV 260

Sensitivity Tester 264

Introduction
NeurOn-Line comes with several blocks that test and train neural networks.

You will find the Training Blocks palette under the Neural Networks submenu of
the Palettes menu:
241

Usually, you will follow this procedure to find the best neural network and
train it:

1 Find the best neural network configuration.

Use either the Train and Test Block or the Five Fold CV block with several
different neural networks to find which network solves your problem best.
You can test different types of neural networks and different configurations of
the same neural network.

You can also create your own testing algorithms with the Trainer and Fit
Tester blocks.

2 Train the neural network.

After you find the best neural network configuration, use the Trainer block
with that network and all available data to train the network.

You might even add a step after the last step. If you are not sure whether all the
input values you have actually affect the output, use a Sensitivity Tester.
Removing unimportant inputs and repeating the training cycle may improve the
performance of your final network.
242

Introduction
Basic Training and Testing

These blocks perform basic training and testing:

• The Trainer block trains a neural network on a particular data set using a
training method that you specify.

• The Fit Tester block applies a neural network to see how well it fits a data set,
using a fitting criteria you specify. It also fills the prediction matrix of the data
set with predicted values corresponding to each test case.

Finding the Best Network Configuration

These blocks help you find the best neural network configuration for your
problem:

• The Train and Test block trains and tests your network a specified number of
times, each time randomly splitting the data set into two subsets: training and
testing.

• The Five Fold CV block splits the data set into five subsets and then trains and
tests your network a total of five times, each time using a different one of the
five subsets for training.

Finding Which Inputs are Significant

The Sensitivity Tester block determines which inputs of a neural network you
actually need to predict the output. It accomplishes this by testing the influence of
each input on each output by using a trained neural network and a data set of
sample data.
243

Trainer

The Trainer block can train any neural network in NeurOn-Line. Attach one of its
action links to a neural network, and attach the other action link to a data set. You
cannot attach more than one neural network or data set to the block.

To configure the Trainer block, first, it must be connected to a neural network,
then you can choose configure from the Trainer block's menu. The configuration
panel contains different options depending on what type of neural network is
connected to it. For more information, see Configuring the Trainer for a
Backpropagation, Autoassociative, or Ensemble Network.

To evaluate the Trainer block, either pass it a control signal or choose evaluate
from its menu. The Trainer trains the neural network with the data from the data
set by adjusting the network's weights and other internal parameters. The Trainer
Block does not modify the network's architecture or modify any data in the data
set. You may evaluate either the attached neural network or data set during
training. If you evaluate the neural network during training, the output is based
on the weights before the training started.

To cancel training, choose Controls > Remote Process > Kill and then reset the
block. The neural network's weights and other internal parameters are left
unchanged and the Trainer outputs nothing.

When the Training block finishes evaluating, it passes a control signal on cp-out
and a scalar value on dp-out. The scalar value tells you how well it trained. If you
are training a Backpropagation, Autoassociative, or Radial Basis Function
Network, it passes the square root of the mean of the squared errors for all the
training data. If you are training a Rho Network, it passes the negative mean of
the logarithms of the predicted probabilities for all training data. In both cases,
lower numbers mean a closer fit of the training data.

Watching the Training Happen

Sometimes you may want to watch the Trainer's progress, especially for long
training runs. When you select Enable RPC from the Remote Procedure menu in
the Print Configuration Tools menu bar, the Trainer displays an output of its
progress. If you launched the NeurOn-Line remote procedure yourself, the table
244

Trainer
appears in the window where you launched it. If you let NeurOn-Line launch the
remote procedure automatically, the table will be saved in a log file. For more
information, see “Launching a G2 Process” in G2 Reference Manual.

Here is a sample of the output for Backpropagation Network training:

GRADIENTS FUNCTIONS OBJECTIVE METHOD

0 1 49.87

1 4 3.65 steepest descent

2 7 3.56 Broyden

3 11 3.445 Broyden

4 15 3.239 Broyden

6 18 2.81 steepest descent

7 23 2.402 Broyden

8 26 1.54 Broyden

9 30 1.041 Broyden

10 33 0.9416 Broyden

11 36 0.8692 Broyden

12 39 0.8096 Broyden

Maximum number of function calls exceeded

The first column is how many passes, or gradient calculations, have happened so
far. Each pass represents a change of direction as the Trainer searches for the best
weights.

The second column is how many times the Trainer needed to evaluate the
objective function in that pass. Each evaluation of the objective function
represents one “step,” and the total is bounded by the maximum iterations (in this
case 40). Typically, the trainer takes 3 to 5 steps in a given direction before it
calculates a new gradient.

The third column is the value of the least-squares objective function. The lower
the value, the closer the Trainer is to a good fit. Typically, when the training
begins, the objective decreases greatly with each pass (or gradient). As the
training comes to an end, the object decreases much more slowly.

The last column is the training method used on this pass (or gradient). This is
usually the method you specified in the configuration panel. However, the trainer
may use steepest descent from time to time to accelerate the training.
245

Configuring the Trainer for a Backpropagation,
Autoassociative, or Ensemble Network

The configuration of the trainer depends on the type of the network being trained.
To configure the trainer, it must first be connected to a specific network using an
action link. The configure menu option will then bring up a configuration panel
appropriate to the type of network to be trained.

This is the configuration panel you see when you are training a Backpropagation,
Autoassociative, or Ensemble Network.

The following headings describe how to configure the block.

Choosing the Maximum Number of Training
Iterations

The Trainer improves the weights in a number of individual steps. To specify the
maximum number of steps, enter a number in the Maximum Iterations attribute.
Typically, values range from 50 to as much as 1000. However, you will usually
want to use several short training runs so you can monitor the Trainer's progress.
When you evaluate the Trainer again, it continues the training from where it
stopped.

Choosing the Training Method

To choose how to train the network, select one of the options below Training
Method. The options fall into two main categories:

• Conjugate Gradient options: Conjugate Gradients (Fletcher-Reeves) and
Conjugate Gradients (Polak-Ribiere).
246

Trainer
• Second Order options: BFGS (Broyden-Fletcher-Goldfarb-Shanno) and DFP
(Davidon-Fletcher-Powell).

In general, the Second Order options are more powerful and use significantly
more memory, and the Conjugate Gradient options use less memory and take less
time per step. The Conjugate Gradient options are generally better for larger
networks (over 100 weights), and the Second Order options are better for smaller
networks.

Once you choose which category of training methods to use, you may want to
experiment with the different methods in each category to find out which is best
for your network.

Note Some neural network packages allow the user to choose fixed or scheduled
“learning rates” and “momentum factors.” NeurOn-Line automatically optimizes
the training parameters and does not require the user to do this. The parameters
that NeurOn-Line chooses will always be better than those chosen by hand.

Choosing Whether to Accelerate Training

The Accelerate Training by Input Projection? option can speed up the training
time. Set it to yes if your input data has columns that might be correlated.

To speed up training, the block projects your input data vector to a vector with
fewer dimensions, trains with the smaller vector, and projects the smaller vector
and its training results backwards to obtain results useful for the original vector.
In general, this option is recommended if you have more than ten inputs.

Configuring the Trainer for a Radial Basis Function
Network

This is the configuration panel you see when you are training a Radial Basis
Function Network. When you have selected your option, click the Done button.

Choose an option for Clustering Method. The option you choose depends on
what kind of problem you are trying to solve:

• If you are fitting the network to a function, choose regular k-means clustering.
247

• If you are solving a classification problem, choose class-separate k-means
clustering.

These methods differ in how they assign locations for unit centers. When Regular
clustering assigns locations, it uses all the data in the data set simultaneously.
When class-separate clustering assigns locations, it goes through all the members
of one class before going through the members of another. This method prevents
centers from being placed near the boundaries between classes, where they do not
help to discriminate between the classes.

During training, NOL finds and outputs to the background window the cluster
centers as shown in this matrix. Each row represents the coordinates of a cluster
center. Up to five centers are shown. Each column represents the coordinates for a
dimension.

Matrix In cluster, now m = size = 14 by 10

1 2 3 4 5 6 7 8

--

1 |0.565 0.738 0.374 0.38 0.415 0.257 0.372 0.345

2 |0.536 0.532 0.536 0.83 0.509 0.482 0.275 0.356

3 |0.603 0.687 0.328 0.243 0.394 0.287 0.604

4 |0.573 0.446 0.337 0.363 0.749 0.656 0.437 0.777

5 |0.675 0.774 0.391 0.328 0.3 0.419 0.685 0.399

If the Unit Overlap attribute is automatic, NOL then determines the optimum unit
widths by searching for the value of p that minimizes the training error, with the
unit centers previously determined by k-means clustering during the first stage of
the training, as shown in the following output:

Optimizing overlap parameter

Trying p = 1.000000, objective = 19.973553

Trying p = 2.000000, objective = 18.852538

Trying p = 3.618034, objective = 17.939625

Trying p = 4.135448, objective = 17.873745

Trying p = 4.972642, objective = 18.574853

Trying p = 4.455228, objective = 17.979710

Trying p = 3.937814, objective = 17.871113

Trying p = 4.025800, objective = 17.867350

Trying p = 3.985542, objective = 17.868146

Trying p = 4.066058, objective = 17.868195
248

Trainer
Optimized overlap with p = 4.025800

Final objective function value = 17.665130

Configuring the Trainer for a Rho Network

This is the configuration panel you see when you are training a Rho Network.
When you have selected your option, click the OK button

Which option you choose depends on what kind of problem you are trying to
solve:

• If the data set contains data that belongs to a single class, choose treat data as
single class. The Trainer ignores any output values in the data set. When you
later evaluate the Rho Network, its output will be the probability that the
input data is part of the distribution defined by the training set.

• If the data set contains data that belongs to several classes, choose treat output
data as class label. The number of output values in the data set corresponds
to the number of possible classes. In each data pair, the output that
corresponds to the element's class should be one, and the rest of the outputs
should be zero. When you later evaluate the Rho Network, its output will be a
vector with one element for each class, and each element will be the
probability that the input belongs to that class.

Example

Below is a simple diagram for training a network. To train this network, configure
the network architecture and the trainer, then choose evaluate from the Training
block's menu.
249

See Also

For general information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Neural Network Blocks Reference
Manual

Data Set Reference
Manual

Fit Tester Reference
Manual

Train and Test Reference
Manual

Five Fold CV Reference
Manual
250

Fit Tester
Fit Tester

The Fit Tester block can evaluate the performance of any neural network in
NeurOn-Line. Attach one of its action links to a neural network that has been
trained, and attach the other action link to a data set for the neural network (not
necessarily the data set used for training the network). You cannot attach more
than one neural network or data set to the block.

Configuring

To configure the Fit Tester, choose configure from its menu. It displays the
configuration panel below.

Specify the Fit Metric. Choose an option depending on the type of network you
are using and the type of problem you are solving:

• If you are fitting a function, choose rms (functional approximation).

• If you are solving a classification problem, choose fraction misclassified
(classified).

• If you are estimating a probability density function, choose probability error
(density estimation by rho net).

To evaluate the Fit Tester, either pass it a control signal or choose evaluate from
its menu. The block applies the neural network to the data set's input data, and
251

stores the result in the data set as the prediction data. It then compares the data
set's prediction data and target data.

When the Fit Tester finishes evaluating, it passes a control signal and a scalar
value. The scalar value tells you how well the prediction data matches the target
data. The Fit Tester computes that number differently depending on the option
you chose in the configuration panel:

• If you chose rms error, it passes a positive number. The closer the number is to
0, the better the network fits the function. To compute the number, the Fit
Tester subtracts the target value from the predicted value to get the error,
squares that error, and takes the square root of the mean of the errors over the
entire training set.

• If you chose fraction misclassified, it passes a number from 0 to 1, where 0
means all samples were classified correctly, and 1 means no samples were
classified correctly. To compute the number, the Fit Tester figures the ratio of
misclassified samples to total samples.

• If you chose probability error, the Fit Tester figures the negative mean of the
logarithm of the probability predictions of the Rho Network. The lower the
number, the more accurately the Rho Network matches the probability
distribution implied by the examples in the data set.

In addition to the calculation of the scalar error, the function of the Fit Tester is to
fill up the predictions matrix in the data set; otherwise, the predictions are empty.

To view the predictions stored in the data set, use the data set's configuration
panel. For more information, see Data Set.

Example

In this example, a Fit Tester tests a Backpropagation network after it has been
trained. The network is trained and tested a total of five times. A Path Display
shows you the error number to let you know how well the network fits the data it
is training on.
252

Fit Tester
The figure also shows the plot of predicted values against target values. Notice
that they lie on a 45 degree line, which means the predicted and target values are
equal, i.e., they are a good fit.

See Also

For general information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Neural Network Blocks Reference
Manual
253

Data Set Reference
Manual

Trainer Reference
Manual

Train and Test Reference
Manual

Five Fold CV Reference
Manual

For more information on... See... In this book...
254

Train and Test
Train and Test

The Train and Test block helps you determine whether you have chosen the best
neural network configuration for your problem. You can use it to test a data set
against different types of neural networks or different configurations of the same
type of neural network. It trains and tests your network a specified number of
times, each time randomly splitting the data set into two subsets: training and
testing.

Note The Train and Test block is an encapsulation block that contains a NeurOn- Line
diagram on its subworkspace. For more information on what the subworkspace
contains, see The Train and Test Block's Subworkspace.

Attach the Train and Test block's top action link to your data set and the bottom
action link to your neural network. You cannot attach more than one neural
network or data set to the block.

To configure the Train and Test block, choose configure from its menu. It displays
three dialogs, one on top of the other. The topmost is for the Train and Test Block.
It is described in Configuring. The other dialogs are for the Training and Fit Tester
blocks that are on the Train and Test block's subworkspace. For more information
on how to configure them, see Trainer and Fit Tester.

To evaluate the Train and Test block, you must pass it a control signal or choose
evaluate from the menu. The block trains and tests your neural network a
specified number times. Each time it randomly splits the attached data set into
two different subsets using a proportion you specify: one subset for training and
one for testing.

To cancel training, choose Controls > Remote Process > Kill and then reset the
block. The neural network's weights and other internal parameters might be
changed if the Train and Test completed one or more iterations before it cancels
training. The Train and Test block outputs nothing. If you cancel training, you
must restart the remote process.

When the block has finished all the iterations, it passes a control signal and two
scalar values. The scalar value from its top output port is the median value of the
results from the Trainer block. The scalar value from its bottom port is the median
255

value of the results from the Fit Tester block. The meaning of these values
depends on how you configure the Trainer and Fit Tester blocks. For more
information on these values, see Trainer and Fit Tester.

In each case, the training error is an indicator of how well the network fits the
training data. The error will generally decrease if you expand the network
architecture, even when the network is overfitting. Therefore, do not use the
training error to select the optimum network architecture.

The test error indicates how well the network fits data not used in training. In
general, you should select the smallest network architecture that minimizes the
test error. This value will increase or stay nearly constant when the network is too
large.

Configuring

To configure the Train and Test block, choose configure from its menu. It displays
three dialogs, one on top of the other. The topmost dialog is shown below.

To specify the number of times to train and test your network, enter a number in
the attribute Resampling Trials. To specify how much of the data set to use for
training and how much for testing, enter the proportion for training in the
attribute Fraction to Training Subset. The block uses the rest of the data for
testing.

You must also configure the dialog for the Trainer block on the subworkspace of
the Train and Test block. For more information on configuring this block, see
Configuring the Trainer for a Backpropagation, Autoassociative, or Ensemble
Network.

Finally, you must configure the dialog for the Fit Tester on the subworkspace of
the Train and Test block. For more information on configuring this block, see
Configuring:
256

Train and Test
The Train and Test Block's Subworkspace

The Train and Test Block has a subworkspace with the following diagram, which
you can access by using the view diagram menu choice.

For the number of times that you specified in the configuration panel, the block
follows this procedure:

1 Clear the neural network to prepare it for a new training session.

2 Randomly separate the data set into two smaller data sets: one for training
and one for testing. The training set contains the fraction of the data set that
you specified in the configuration panel. The testing set contains the rest.

3 Train the network with the training set.

4 Test the network with the testing set.

Note Do not configure blocks on the subworkspace directly, because this can cause
inconsistencies. Use the configuration panels instead.
257

Example

This example uses Train and Test blocks to see which of three neural network
configurations is the best. All networks use exactly the same data set. To
determine which configuration fits the data best, look at the number passed from
the test output of the Train and Test block. The lower the number, the better the fit
for data not seen in the training process.

See Also

For general information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Neural Network Blocks Reference
Manual

Data Set Reference
Manual
258

Train and Test
Trainer Reference
Manual

Fit Tester Reference
Manual

Five Fold CV Reference
Manual

For more information on... See... In this book...
259

Five Fold CV

The Five Fold CV block helps you determine whether you have chosen the best
neural network configuration for your problem. You can use it to test a data set
against different types of neural networks or different configurations of the same
type of neural network. It splits the data set into five subsets and then trains and
tests your network a total of five times, each time using a different one of the five
subsets for training.

Note The Train and Test block is an encapsulation block that contains a NeurOn-Line
diagram on its subworkspace.

Attach the Five Fold CV block's top action link to your data set and the bottom
action link to your neural network. You cannot attach more than one neural
network or data set to the block.

To configure the Five Fold CV block, choose configure from its menu. It displays
two dialogs, one on top of the other. They are for the Training and Fit Tester
blocks that are on the Five Fold CV block's subworkspace. For more information
on how to configure them, see Trainer and Fit Tester.

To evaluate the Five Fold CV block, you must pass it a control signal. The block
randomly divides the data set into five subsets of equal size. It trains and tests
your neural network five times. The first time, it trains the network with the first
subset and tests it with the other four. The second time, it trains the network with
the second subset and tests it with the other four. The block continues until its
trained and tested the block five times, each time using a different fifth of the data
set for training.

When the block has finished all the iterations, it passes a control signal and two
scalar values. The scalar value from its top output port is the median value of the
results from the Trainer block. The scalar value from its bottom port is the median
value of the results from the Fit Tester block. The meaning of these values
depends on how you configured the Trainer and Fit Tester blocks. For more
information on these values, see Trainer and Fit Tester.
260

Five Fold CV
In each case, the training error is an indicator of how well the network fits the
training data. The error will generally decrease if you expand the network
architecture, even when the network is overfitting. Therefore, do not use the
training error to select the optimum network architecture.

The test error indicates how well the network fits data not used in training. In
general, you should select the smallest network architecture that minimizes the
test error. This value will increase or stay nearly constant when the network is too
large.

Configuring

When you choose configure from the block's menu, it displays two dialogs, one
for configuring the Training block and the other for configuring the Fit Tester
block, both of which are on the Five Fold CV block's subworkspace.

For information on configuring the Trainer block, see Configuring the Trainer for
a Backpropagation, Autoassociative, or Ensemble Network.

For information on configuring the Fit Tester block, see Configuring.

Example

This example uses Five Fold CV blocks to see which of three neural network
configurations is the best. All networks use exactly the same data set. To
determine which configuration fits the data best, look at the number passed from
the bottom port of the Five Fold CV block. The lower the number, the better the fit
for data not seen in the training process.
261

See Also

For general information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Neural Network Blocks Reference
Manual

Data Set Reference
Manual

Trainer Reference
Manual

Fit Tester Reference
Manual

Train and Test Reference
Manual
262

Five Fold CV
263

Sensitivity Tester

The Sensitivity Tester helps you determine which inputs of a neural network you
actually need to predict the output. When you eliminate unnecessary inputs, you
reduce the possibility of a prediction error. Attach one of its action links to a
neural network and the other action link to a data set. You cannot attach more
than one neural network or data set to the block.

You apply this block after a network is trained, and it gives you an idea about
how to improve the fit by finding low-influence inputs.

To evaluate the Sensitivity Tester, either pass it a control signal or choose evaluate
from its menu. The Sensitivity Trainer performs tests using the data set to
determine which inputs most strongly affect the predictions. It creates a matrix
that tells you how each input affects each output. When it is done, the Sensitivity
Tester passes a control signal.

To view the results, select view results from the block's menu. It displays a
spreadsheet, described in Using the GXL Spreadsheet to Edit Data in the
NeurOn-Line User’s Guide. Each column represents the importance of the inputs to
one output. The inputs are rated on a scale from 0.0 to 1.0, where 0.0 means that
this input has no affect on this output, and 1.0 means that this input is the only
input that affects that output. The scores for each column add up to 1.0.

If an entire row contains relatively small values, that input probably does not
affect the network's predictions and can be removed from the input set.

Making Values Permanent

When you choose make permanent from the block's menu, the block saves the
matrix of inputs and outputs.

Configuring

This block has no configuration panel.
264

Sensitivity Tester
See Also

For general information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Saving a Block's Data After Resetting G2 User’s Guide

Neural Network Blocks Reference
Manual

Data Set Reference
Manual
265

266

Part IV
Action and Other
Chapter 9: Action Utilities

Describes the blocks that perform actions, such as creating loops, evaluating conditions,
performing generic actions, and executing rules.

Chapter 10: Inference Blocks

Describes the blocks that create and manipulate truth values.

Chapter 11: Capabilities

Describes the blocks that add features and attributes to other NeurOn-Line blocks, such as
charts, graphs, and clocks.
267

268

9

Action Utilities
Describes the blocks that perform actions, such as creating loops, evaluating
conditions, performing generic actions, and executing rules.

Introduction 270

Control Path Loop 273

Control Path Circuit Breaker 275

N-to-1 Sieve 276

Control Counter 278

Control Inhibit 280

Inference Output 282

Control Switch 285

Reset 286

Evaluate 288

Clear 289

Make Permanent 291

Restore Permanent Values 293

Attribute Transfer 294

Rule Action 296
269

Introduction
NeurOn-Line provides you with Action blocks, which let you create loops,
evaluate conditions, perform actions on other blocks, and execute rules.

You can find the Action Utilities under the Action & Other submenu of the
Palettes menu:

You connect Action blocks together with Control Paths, which carry control
signals. A block receives a control signal, performs its action, passes the control
signal to the next block, and so on. A control signal does not have a value, but it
makes sure that an action block is evaluated only after the previous one is done.

Unlike other blocks, an Action block's paths are on the top and bottom: the input
path is on top and the output path is on the bottom, as in the figure below.

Some Action blocks also have an Action Link, which you connect to another
NeurOn-Line block. It is shown in the figure above. When the Action block is
evaluated, it performs its action on any block connected to its Action Link. For
270

Introduction
example, the Block Erase erases the data stored in the block connected to its
Action Link.

Looping

These blocks let you create loops:

• The Control Path Loop block lets you execute a loop for a specified number of
times or until a specified condition is met.

• The Control Path Circuit Breaker block lets NeurOn-Line know that a loop in
your diagram is intentional. It is fully described in Circuit Breakers.

Stopping Paths

These blocks let you stop the flow of data:

• The N-to-1 Sieve block discards a specified number of signals before passing
one.

• The Control Inhibit block discards an incoming control signal if an inference
input has a given value.

Outputting Data

These blocks let you pass an inference value or a count of control signals:

• The Control Counter block passes on a data path the number of times it
received a control signal. It also passes the control signal on an output control
path.

• The Inference Output block chooses which inference value to pass depending
on which of its three input control paths it receives a signal on.

Branching

The Control Switch block lets an inference path choose on which path to send a
control signal.

Performing Actions on Blocks

These blocks perform actions on other blocks. Most of these actions are similar to
the menu choices available in a block's menu. Notice that there can be some small
but important differences in how these blocks and the menu choices operate.

• The Reset block resets a block.

• The Evaluate block forces a block to evaluate.

• The Clear block erases the data a block has stored.
271

• The Make Permanent block makes permanent the data that a block has stored.

• The Restore Permanent Values block restores to a block the data that you have
previously made permanent.

• The Attribute Transfer block transfers attribute values from one block to
another.

Invoking a Rule

The Rule Action block can invoke a G2 rule you have written when it receives a
control signal.
272

Control Path Loop
Control Path Loop

The Control Path Loop block allows you to add control loops to a diagram. This
block iterates from 0 to the value specified by the Iteration Limit attribute, or until
the text expression in the Exit If attribute turns .true.

For more information on how to specify text expressions, see Evaluating
Expressions in Attributes in the NeurOn-Line User’s Guide.

Diagrams that include the Control Path Loop block must contain a circuit breaker
somewhere in the cycle.

Resetting

When you reset the Control Path Loop, the block sets its counter back to zero.

Configuring

This is the configuration panel for the Control Path Loop block.

cp-in cp-out

cp-loop-start cp-loop-end

Attribute Description

Iteration Limit The number of times that the block executes.

Exit If An expression that when .true, causes the
block to stop executing. For information on
specifying the expression, see Evaluating
Expressions in Attributes in the NeurOn-Line
User’s Guide.
273

Example

The following example illustrates how you use this block to create a loop that
counts from 0 to 10, inclusive:

For more information on... See... In this book...

Resetting Blocks User’s Guide

Evaluating Blocks User’s Guide

Reading Notes and Errors User’s Guide
274

Control Path Circuit Breaker
Control Path Circuit Breaker

The Control Path Circuit Breaker is also on the Connections palette in the Entry &
Paths menu, along with all the other Circuit Breakers. For more information, see
Circuit Breakers.
275

N-to-1 Sieve

The N-to-1 Sieve block reduces the number of control signals that flow in a path
by selectively passing and discarding signals. For every Trigger Number signals
that the block receives, it passes one signal. After it passes a signal, the block
resets its counter and starts again. For example, if Trigger Number is 5, the block
discards the first four signals it receives and passes the fifth signal. Then the block
resets its counter, ignores the next four signals, and passes the tenth.

Resetting

When you reset the N-to-1 Sieve block, it resets its counter does not pass a signal
until it receives Trigger Number more signals.

Configuring

This is the configuration panel for N-to-1 Sieve.

Example

This example contains an N-to-1 Sieve that discards 2 out of every 3 signals
received. In the figure below, the Trigger Count is 3 and the block has received
one signal since it last passed a signal.

Attributes Description

Trigger Number How many signals the block must receive before
it passes a signal.
276

N-to-1 Sieve

This figure shows what the Message Board contains after the N-to-1 Sieve has
received 7 signals.

See Also

For general information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide
277

Control Counter

The Control Counter counts the number of times it receives a control signal and
displays the count on its icon. It passes the control signal on its output control
path and the count on its output data path.

Resetting

When you reset this block, it resets its counter to the value of the attribute Value
on Initialization and passes that value on its data path.

Configuring

This is the configuration panel for the Control Counter.

Example

The following diagram writes “This is a test,” to the Message Board five times and
finally writes “The test is over.” The Control Counter counts the number of times
“This is a test” has been written. The High Value block then checks whether it has

dp-out

cp-in

cp-out

Attribute Description

Multiple Invocations See Specifying How to Handle Multiple
Values in the NeurOn-Line User’s Guide.

Value on Initialization See Specifying an Initial Data Value in the
NeurOn-Line User’s Guide .
278

Control Counter
been written ten times. If the High Value block passes .false, the Control Switch
passes control to the Rule Action block, which writes “This is a test” and passes
control back to the Control Counter. If the High Value block passes .true, the
Control Switch passes control to the Rule Action block, which displays “The test
is over.”

To start this diagram, choose evaluate from the Control Counter’s menu.

See Also

For more information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Specifying an Initial Data Value User’s Guide
279

Control Inhibit

The Control Inhibit block lets an inference path turn a control path on and off.
You can use the block to turn on and off entire sections of a flow diagram.

When the status value of the block’s input inference path matches the value of the
attribute Trigger On, the block discards the input control signal. When the status
value of the inference path no longer matches Trigger On, the block passes the
current value of the input control path and continues to pass the input control
signal normally.

If the block’s inference path hasn’t received a value yet (that is, it has a quality of
no-value), the block passes nothing even when it receives a value from its control
path.

Resetting

When you reset a Data Inhibit Block, the block does not does not pass a signal
until it receives a value from its inference input path, even if it receives a signal
from its input control path.

Configuring

This is the configuration panel for the Control Inhibit block.

ip-in-1

cp-in

cp-out

Attribute Description

Trigger On The truth value that causes the block to
discard its input control signal.
280

Control Inhibit
Example

The following diagram fills up tank 1 only if the tank is on-line. If the Control
Inhibit block receives a control signal while the tank is off-line, the block discards
the signal. It must receive a signal while the tank is on-line before it fills up the
tank.

See Also

For more information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Specifying How to Handle Multiple
Values

User’s Guide
281

Inference Output

The Inference Output block chooses an inference value to pass depending on
which input control path it receives a signal from. Whenever it receives a control
signal on one of its input control paths, it passes the inference value for that path
on its output inference path and passes the control signal on its output control
path.

This table lists the inference values associated with each input control path:

Configuring

This is the configuration panel for the Inference Output block.

ip-out

cp
-in
-1

cp
-in
-2

cp
-in
-3

cp-out

If the block receives a control
signal on the path marked…

It passes this
inference value…

“T” (cp-in-1) .true

“U” (cp-in-2) unknown

“F” (cp-in-3) .false
282

Inference Output

Example

The diagram in the following figure passes .true if the two Control Entry Points
on the left pass a control signal.

Attribute Description

Output Uncertainty This attribute is used with fuzzy logic,
which NeurOn-Line does not support.

Status on Initialization See Specifying an Initial Status Value in the
NeurOn-Line User’s Guide.

Description when True,
Description when False,
Description when
Unknown, and
Description of Input

These attributes allow you to display
descriptions, which NeurOn-Line does not
support.
283

See Also

For more information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Specifying an Initial Status Value User’s Guide
284

Control Switch
Control Switch

The Control Switch lets an inference value choose which path to send a control
signal down. It is useful when you need to perform a sequence of control blocks
until some condition is met.

The Control Switch block only passes values when it receives a new control
signal; it does not pass values when the inference value changes.

The value of the side inference path (ip-in) determines where the control signal
(cp-in) will go. This table shows on which output path the signal will go:

Configuring

The Control Switch has no configurable attributes.

Example

For an example, see the example for Control Counter.

See Also

For more information on how to use this block, see the sections below.

cp
-o
ut
-1

cp
-o
ut
-2

ip-in

cp-in

cp
-o
ut
-3

If the side input is…
The left input is passed
on the port labeled…

.true “T” (cp-out-1)

unknown “U” (cp-out-2)

.false “F” (cp-out-3)

For more information on... See... In this book...

Basic Block Behavior User’s Guide
285

Reset

The Reset block resets the blocks connected to its action link. It performs the same
action as choosing reset from the blocks’ menus.

Note Reset block does not clear the weights in a Neural Network or the Data Pairs in a
Data Set. To clear data in those blocks, see Clear.

If more than one block is connected to the Reset Blocks’s action link, it resets all
the blocks.

Configuring

The Reset block has no configurable attributes.

Example

In the example below, the Reset block resets a Control Counter before the counter
counts up to 10.

Al-out

cp-in

cp-out
286

Reset
See Also

For more information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide
287

Evaluate

The Evaluate block evaluates the blocks connected to its action link. It performs
the same action as choosing evaluate from the blocks’ menus.

If a connected block has a Clock Capability which has the attribute Allow
Intermediate Evaluation set to no, Evaluate block does not evaluate the block. If
more than one block is connected to Evaluate Blocks’s action link, it evaluates all
the blocks.

Configuring

The Evaluate block has no configurable attributes.

See Also

For more information on how to use this block, see the sections below.

Al-out

cp-in

cp-out

For more information on... See... In this book...

Basic Block Behavior User’s Guide
288

Clear
Clear

The Clear block clears the data of the blocks that are connected to its action link.
Clear works with these blocks only.

If more than one block is connected to the action link, Clear clears all of them.

Note Clear does not reset other blocks to their original states. To do that, see Reset
block.

Configuring

This block has no configuration panel.

Example

In the figure below, Clear clears a Backpropagation Network before it is trained.

If it is connected to a... Clear does this...

Back Propagation Network Randomizes the network's weights

Autoassociative Network Randomizes the network's weights

Data Sets Clears the data in the data set

Data Pair Buffers Clears the contents of the buffer
289

See Also

For more information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide
290

Make Permanent
Make Permanent

The Make Permanent block makes permanent the data stored in the blocks
connected to its action link. It performs the same action as choosing make
permanent from the connected blocks' item menus. You can connect it to any
block that has restore permanent or make permanent in its menu, including all
Neural Networks and Data Sets.

If more than one block is connected to Make Permanent's action link, it makes
permanent the data for all the blocks.

Configuring

This block has no configuration panel.

Example

In the example below, a Make Permanent block makes the data in a Neural
Network and Data Set permanent after the Neural Network has been trained and
tested.
291

See Also

For general information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Saving a Block's Data After Resetting G2 User’s Guide
292

Restore Permanent Values
Restore Permanent Values

The Restore Permanent Values block restores the permanent values of the block to
which it is connected. It performs the same action as choosing restore permanent
values from the connected block's item menu. You can connect it to any block that
has restore permanent or make permanent in its menu, including all Neural
Networks and Data Sets.

If more than one block is connected to Restore Permanent Values's action link, it
restores the data for all the blocks.

Configuring

This block has no configuration panel.

See Also

For general information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Saving a Block's Data After Resetting G2 User’s Guide
293

Attribute Transfer

The Attribute Transfer block copies one block's attribute values to another block.
It copies the values of user-defined attributes, the internal architecture of a Neural
Network, the weights in a Neural Network, and the Data Pairs in a Data Set. It
does not copy the values of system-defined attributes, such as names, notes, and
user-restrictions. It can copy attributes between blocks if the blocks are the same
type or if the block receiving the values is a subclass of the block giving the
values.

The table below lists the blocks that can receive values from other types of blocks.

Attach the block to give the values at the left action link, and attach the block to
receive the values at the right action link.

Configuring

This block has no configuration panel.

Example

In the example below, the Block Attribute Transfer block copies the user attributes
of the Neural Net labelled Original Net to the Neural Net labelled Net Copy.

You can copy from this block... To this block...

Backpropagation Network Autoassociative Network

Radial Basis Function Network Rho Network
294

Attribute Transfer
See Also

For general information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide
295

Rule Action

The Rule Action block lets you evaluate one or more rules in your NeurOn-Line
diagram. Place the rules on the subworkspace of the block. When you first clone
Rule Action Block, it has an empty subworkspace.

When a Rule Action block evaluates, the rules on its subworkspace are executed
in order of priority, from 0 to 10. Rules with the same priority execute in arbitrary
order. Like rules in any G2 knowledge base, these rules can forward and
backward chain to any other rules in your knowledge base.

Configuring

This block has no configuration panel.

Example

The example below uses a Rule Action block to shutdown all your equipment if
the room temperature goes beyond a safe range (40 to 90 degrees Fahrenheit).
296

Rule Action
See Also

For general information on how to use this block, see the sections below.

Click here for more information...

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Arithmetic Function Reference
Manual

Arithmetic Function of Two Arguments Reference
Manual

Vector Function Reference
Manual

Vector Function of Two Arguments Reference
Manual

Basic Block Behavior

Arithmetic Function

Arithmetic Function of Two Arguments

Vector Function

Vector Function of Two Arguments
297

298

10
Inference Blocks
Describes the blocks that create and manipulate truth values.

Introduction 299

High Value Observation, Low Value Observation 302

Equality Observation 305

Conclusion 308

AND Gate 311

OR Gate 314

NOT Gate 317

Inference Inhibit 319

Introduction
NeurOn-Line lets you create and manipulate truth values, which NeurOn-Line
calls Inference Values.

You can find the Inference Blocks palette under the Action & Other submenu of
the Palettes menu:
299

Observations

The first three blocks on this palette High Value Observation, Low Value
Observation, Equality Observation, and Conclusion detect features in (or draw
“observations” from) your data. These blocks take a data value as input, test it,
and pass the inference value that the test produced as output. Since you can state
the test as an observation, such as “the input temperature is greater than or equal
to 100°,” these blocks are called Observations. They mark the transition from the
data stage to the inference stage of your diagram.

The Observation blocks and the Conclusion block have special properties that the
rest of the blocks on this palette do not have:

• Triggering action blocks. Every condition has an output Control Path on the
bottom of its icon. The block passes a control signal down that path whenever
it passes a .true status value.

• Triggering capabilities. You can attach any capability to a Condition,
including those dealing with alarms.

• Overriding. Every condition has an override menu choice that lets you
manually enter the value it passes on.
300

Introduction
• Locking. Every condition also has a lock menu choice, described in Locking
and Unlocking Blocks, that lets you lock in the value. The output value won't
change until you choose the unlock menu choice.

The first three blocks test values against a threshold:

• The High Value Observation block tests whether the input value is higher
than a threshold.

• The Low Value Observation block tests whether the input value is lower than
a threshold.

• The Equality block tests whether the input value is equal to a reference value.

• The Conclusion block is the simplest of these blocks. It serves no function
other than providing you with an Observation block's special properties.

Performing Logical Operations

The blocks listed below perform basic logical operations on inference values:

• The AND Gate block passes .true if all its input status values are .true.

• The OR Gate block passes .true if any of its input status values are .true.

• The NOT Gate block passes the opposite of its input status value.

Pausing Paths

The Inference Inhibit block lets you enable or disable an inference path depending
on another inference value.
301

High Value Observation, Low Value
Observation

The High Value block and the Low Value block test whether an input value is
above or below the Threshold attribute. The High Value block tests whether the
input value is greater than or equal to the Threshold. The Low Value block tests
whether the input value is less than or equal to the Threshold.

Specifying a Threshold

The block compares the attribute Threshold against the input value.

• In a High Value block, the comparison returns .true if the value is greater than
or equal to the Threshold and returns .false otherwise.

• In a Low Value block, the comparison returns .true if the value is less than or
equal to the Threshold, and returns .false otherwise.

Note When you use High Value or Low Value with NeurOn-Line, make sure Threshold
Uncertainty is set to none. This field is for fuzzy logic, which NeurOn-Line
doesn’t support. If you want to use fuzzy logic and have GDA, refer to the GDA
documentation.

ip-outdp-in

Threshold

ip-outdp-in

Threshold

cp-out cp-out
302

High Value Observation, Low Value Observation
Configuring

This is the configuration panel for the High Value block. The panel for the Low
Value block is identical except for the block name.

Attribute Description

Threshold The value against which the block compares its
inputs to determine the output inference value.

Threshold
Uncertainty

This attribute is for fuzzy logic, which NeurOn-
Line does not support. If you want to use fuzzy
logic and have GDA, refer to the documentation
that came with GDA.

Output Uncertainty This attribute is for fuzzy logic, which NeurOn-
Line does not support. If you want to use fuzzy
logic and have GDA, refer to the documentation
that came with GDA.

Status on
Initialization

See Specifying an Initial Status Value in the
NeurOn-Line User’s Guide.
303

See Also

For more information on attributes and menu choices that are not described in
this section, see the sections below.

Hysteresis When This attribute is for fuzzy logic, which NeurOn-
Line does not support. If you want to use fuzzy
logic and have GDA, refer to the documentation
that came with GDA.

Description when
True, Description
when False,
Description when
Unknown, and
Description of Input

These attributes allow you to display
explanations, which NeurOn-Line does not
support.

Attribute Description

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Overriding Block Values User’s Guide

Editing Attribute Displays User’s Guide
304

Equality Observation
Equality Observation

The Equality block checks whether an input value is equal to the attribute
Reference Value. It passes .true if they are equal and .false otherwise. The
Reference Value can either be a number, a symbol, or a text string, but its data
type must match the data type of the input value.

If you want to check whether the input is approximately equal to the Reference
Value, use the Equivalence Band attribute. When the input value is in the
following range, the Equality block considers the values equal and passes .true:

Reference Value – Equivalence Band/2 input value <
Reference Value + Equivalence Band/2

For example, if an Equality block has a Reference Value of 0.5 and an Equivalence
Band of 0.1, as shown in the following figure, it passes .true for when the input
value is less than 0.55 and greater than or equal to 0.45. This attribute is
especially useful for comparing floating-point numbers, which can differ by small
amounts due to rounding errors but still appear to be equal.

ip-outdp-in

Reference-
value

cp-out

Equivalence Band

0.5
0.0 1.00.45 0.55

Reference Value

0.25 0.75
305

Configuring

This is the configuration panel for the Equality block.

Attribute Description

Output Uncertainty This attribute is for fuzzy logic, which NeurOn-
Line does not support. If you want to use fuzzy
logic and have GDA, refer to the documentation
that came with GDA.

Reference Value The value against which the block compares its
inputs to determine equality.

Equivalence Band The amount of uncertainty that the block
applies to the input value to determine
equivalency. The number represents an
uncertainty band around the input value.

Status on
Initialization

See Specifying an Initial Status Value in the
NeurOn-Line User’s Guide.
306

Equality Observation
See Also

For more information on attributes and menu choices that are not described in
this section, see the sections below.

Hysteresis When This attribute is for fuzzy logic, which NeurOn-
Line does not support. If you want to use fuzzy
logic and have GDA, refer to the documentation
that came with GDA.

Description when
True, Description
when False,
Description when
Unknown, and
Description of Input

 These attributes allow you to display
explanations, which NeurOn-Line does not
support.

Attribute Description

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Overriding Block Values User’s Guide

Editing Attribute Displays User’s Guide

Evaluating Expressions in Attributes User’s Guide
307

Conclusion

The Conclusion block lets you perform these actions after drawing a conclusion:

• Activate action blocks.

• Override the path’s value with the override menu choice.

It is especially useful after blocks that do not connect to action blocks, such as the
AND, OR, and NOT gates.

Configuring

This is the configuration panel for the Conclusion block.

ip-outip-in

cp-out
308

Conclusion

Example

The figure below shows a Conclusion block connected to an AND Gate that
concludes whether both the temperature of a tank is high and the volume of the
tank is low. The Conclusion block is attached to a Rule Action block that writes a
warning to the Message Board.

Attribute Description

Output Uncertainty This attribute is for fuzzy logic, which
NeurOn-Line does not support. If you want
to use fuzzy logic and have GDA, refer to
the documentation that came with GDA.

Status on Initialization See Specifying an Initial Status Value in the
NeurOn-Line User’s Guide.

Hysteresis When This attribute is for fuzzy logic, which
NeurOn-Line does not support. If you want
to use fuzzy logic and have GDA, refer to
the documentation that came with GDA.

Description when True,
Description when False,
Description when
Unknown, and
Description of Input

 These attributes allow you to display
explanations, which NeurOn-Line does not
support.
309

See Also

For more information on how to use this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Overriding Block Values User’s Guide
310

AND Gate
AND Gate

The AND Gate passes .true if all its input status values are .true.

This table lists what the AND Gate passes:

Note If any input is .false, the AND Gate always passes .false, even if the number of
unknown inputs is greater than Maximum Unknown Inputs.

How the Block Handles no-value Quality Inputs

An input path having a value of unknown and a Quality of no-value is not counted
toward the number of Maximum Unknown Inputs.

For example, an AND Gate has 3 inputs and the Maximum Unknown Inputs is 1.
If one of the inputs has a value of true, another a value of unknown and a Quality
of OK, and the third a value of unknown and a Quality of no-value, the block
output is true. When determining whether the number of unknown inputs
exceeds the Maximum Unknown Inputs, the third path is ignored.

For more information about how blocks handle no-value inputs, see the
GDA User’s Guide.

ip-out
ip-in

.

.

.

If… It passes…

Any input is .false .false

All inputs are .true .true

Maximum Unknown Inputs or
fewer are unknown, and the rest
are .true

.true

More than Maximum Unknown
Inputs are unknown, and the rest
are .true

unknown

All inputs are unknown unknown
311

Configuring

This is the configuration panel for the AND Gate.

Attribute Description

Logic This attribute is for fuzzy logic, which NeurOn-
Line does not support. If you want to use fuzzy
logic and have GDA, refer to the documentation
that came with GDA.

Use Expired Inputs See Determining Output Path Attributes for
Peer Input Blocks in the NeurOn-Line User’s
Guide.

Maximum Unknown
Inputs

The number of inputs that can have a Status-
value of unknown when determining whether
the output inference value is .true or unknown.

Output Uncertainty This attribute is for fuzzy logic, which NeurOn-
Line does not support. If you want to use fuzzy
logic and have GDA, refer to the documentation
that came with GDA.
312

AND Gate
Example

This figure shows an AND Gate connected to four Belief Entry Points:

This table shows some sample input and output values for the AND block in the
previous figure, with Maximum Unknown Inputs set to 2:

See Also

For more information on this block, see the sections below.

If the input values are… The block passes…

.true .false .true .true .false

.true .true .true .true .true

unknown unknown .false unknown .false

unknown .true unknown unknown unknown

.true .true unknown unknown .true

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Connecting to Peer Input Blocks User’s Guide
313

OR Gate

The OR Gate passes .true if any of its input status values are .true.

This table lists what the OR Gate passes:

Note If any input is .true, the OR Gate always passes .true, even if the number of
unknown inputs is greater than Maximum Unknown Inputs.

Configuring

This is the configuration panel for the OR Gate.

ip-in
ip-out

. .
 .

If… It passes

Any input is .true .true

All inputs are .false .false

Maximum Unknown Inputs or fewer
are unknown, and the rest are .false

.false

More than Maximum Unknown
Inputs are unknown, and the rest are .
false

unknown

All inputs are unknown unknown
314

OR Gate
Example

This figure shows an OR Gate connected to four entry points:

This table shows some sample input and output values for the OR block in the
previous figure, with Maximum Unknown Inputs set to 2:

Attribute Description

Logic This attribute is for fuzzy logic, which NeurOn-
Line does not support. If you want to use fuzzy
logic and have GDA, refer to the documentation
that came with GDA.

Use Expired Inputs See Determining Output Path Attributes for
Peer Input Blocks in the NeurOn-Line User’s
Guide.

Maximum Unknown
Inputs

The number of inputs that can have a Status-
value of unknown when determining whether
the output inference value is .false or unknown.

Output Uncertainty This attribute is for fuzzy logic, which NeurOn-
Line does not support. If you want to use fuzzy
logic and have GDA, refer to the documentation
that came with GDA.

If the input values are… The block passes…

.true .false .true .true .true

.false .false .false .false .false

unknown unknown .false unknown unknown

unknown .true unknown unknown .true

.true .true unknown unknown .true
315

See Also

For more information on this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Connecting to Peer Input Blocks User’s Guide
316

NOT Gate
NOT Gate

The NOT Gate passes the logical inverse of its input value, as this table shows:

Configuring

This is the configuration panel for the NOT Gate.

ip-outip-in

If the input is… It passes…

.true .false

.false .true

unknown unknown

Attribute Description

Logic This attribute is for fuzzy logic, which NeurOn-
Line does not support. If you want to use fuzzy
logic and have GDA, refer to the documentation
that came with GDA.

Output Uncertainty This attribute is for fuzzy logic, which NeurOn-
Line does not support. If you want to use fuzzy
logic and have GDA, refer to the documentation
that came with GDA.
317

Example

This figure shows a diagram that implements NOT(A AND B) OR C:

See Also

For more information on this block, see the sections below.

For more information on... See... In this book...

Basic Block Behavior User’s Guide
318

Inference Inhibit
Inference Inhibit

The Inference Inhibit block enables and disables an inference path. You can use it
to control entire flow diagrams or an important subsection of one.

When the status value of the top inference path (ip-in-2) matches the value of the
attribute Trigger On, the block inhibits the bottom input inference value (ip-in-1).
When the block is inhibiting the inference path, it does not evaluate any attached
chart or graph capabilities nor does it update their associated charts or graphs.

When the status value of the top inference path does not match Trigger On, the
block passes the bottom input inference value normally.

If Status on Initialization has a value, the block passes that value when it is
initialized or reset; otherwise it passes nothing when initialized or reset.

Also, if the block has a Status on Initialization, and the top inference path value
matches the Trigger On, the block passes the Status on Initialization.

NeurOn-Line evaluates this block whenever either of the input ports receives a
new value.

Configuring

This is the configuration panel for the Inference Inhibit block.

ip-out

ip-in-2

ip-in-1
319

Example

This figure shows a portion of a flow diagram that uses two Data Inhibit blocks to
test whether a tank is on before analyzing its temperature. Trigger On is .true.
Tank-1 is on and Tank-2 is off.

See Also

For more information on how to use this block, see the sections below.

Attribute Description

Trigger On The status value that determines when the block
inhibits the flow of data.

Status on
Initialization

See Specifying an Initial Status Value in the
NeurOn-Line User’s Guide.

For more information on... See... In this book...

Basic Block Behavior User’s Guide

The Data Inhibit block Reference
Manual

The Control Inhibit block Reference
Manual
320

11
Capabilities
Describes the blocks that add features and attributes to other NeurOn-Line blocks,
such as charts, graphs, and clocks.

Introduction 321

Chart Capability 323

Clock 334

Control Initiation Capability 336

Introduction
Capabilities are special blocks that let you add features and attributes to other
NeurOn-Line Blocks. They attach directly to the top of other blocks. A Capability
is a small attachment on top of a block that adds functionality to the block. For
example, a Control Initiation Capability lets a block pass a control signal every
time its evaluated, and a Graph Capability lets a block display its values on a
graph.
321

You can find the Capabilities palette under the Action & Other submenu of the
Palettes menu:

Charting and Graphing Attributes

These Capabilities let you display a NeurOn-Line block's data on a G2 chart or
graph:

• The Chart Capability lets you display a block's data on a chart. It lets you
configure the chart from a dialog and change how the data is displayed.

• The Graph Capability lets you display a block's data on a graph. It lets you
change how the data is displayed.

Forcing a Block to Evaluate

The Clock block forces the attached block to evaluate at specified times.

Starting a Control Signal

The Control Initiation Capability block passes a control signal whenever the
attached block receives a value.
322

Chart Capability
Chart Capability

A Chart Capability is a link between the attribute of a block you want to display
and the chart on which it is displayed. The Capability lets you choose where and
how the attribute’s data is displayed. In addition, it adds a menu choice to the
chart that lets you modify the chart.

You can attach a Chart capability to any block that has a named data or inference
input or output path, for example, dp-out or ip-in.

Setting Up a Chart

To set up a chart to display data from a block:

1 Create a new chart using KB Workspace > New Display. This attaches a new
display to your mouse.

2 Position the display on the workspace and click with the mouse to place it.

3 Select configure from the chart’s menu to display the configuration panel for
the display.

4 Configure the chart and select the OK button to update the display.

NOL creates a Chart Capability with a system-defined chart name and places
it next to the display.

5 Connect the Chart Capability to the block whose values you want to plot.

6 Select configure from the capability’s menu to display its configuration panel.
Configure the capability and select the OK button. For more information, see
Configuring a Chart.
323

The following figure illustrates these steps for a chart:

Caution When there is a single capability associated with a particular chart, NOL prevents
you from configuring the chart and its associated capability at the same time.
When there are multiple capabilities that plot data on a single chart, however, you
should avoid simultaneous editing of the display and its capability, because NOL
cannot prevent this.

1. 2.

3.

4. 5.

6.

. .
 .
324

Chart Capability
Configuring a Chart

You configure the chart associated with its capability by using a configuration
panel. The panel lets you set how much data the chart displays, how frequently
the chart is updated, and what its axes look like.

To display the configuration panel for a chart, select configure from the chart’s
menu as shown:

6.
325

Setting the Amount of Data Displayed

The field Sample Type specifies how points are displayed on the chart and how
the field Sample Size is interpreted.

For example, if Sample Type is Points and Sample Size is 60, the chart displays the
last 60 points. If Sample Type is Time and Sample Size is 60 seconds, the chart
displays the points received in the 60 second interval before the block last
evaluated.

Setting How Frequently a Chart is Updated

When a block attached to a Chart Capability receives a value, the Chart Capability
checks the setting of the attribute May Cause Chart Update. If that attribute is yes,
the capability signals the chart to let it know it has received a new value. The chart
then decides whether to update itself by checking the settings of Update Type and
Update Size. If Update Type is Points, the chart is updated if it has received a total
of Update Size signals since the last update. If Update Type is Time, the chart is
updated if Update Size seconds have passed since the last update.

Note Updating a chart can consume a significant amount of your computer’s time.

Specifying the Axes

To set how many tickmarks are on the chart’s axes, edit X Ticks and Y Ticks. To
display the tickmarks on the chart, set Grid Visible to true. To turn off the
tickmarks, set Grid Visible to false.

If Sample Type is… Data points are displayed… And Sample Size is…

Points At equal intervals,
regardless of when they
arrived.

Number of points to
display.

Time According to the time they
arrived.

Time interval to
display.

If Update Type is…
The chart is updated when
a capability signals it and …

Points The chart has received a total of Update Size
signals since the last update.

Time Update Size seconds have passed since the last
update.
326

Chart Capability
To set the upper and lower limits for the Y axis, edit Y Max and Y Min, and set
Auto Scale to no. To cause the chart to set its own upper and lower limits, set
Auto Scale to yes; the chart ignores the values of Y Max and Y Min.

Determining How the Plot is Displayed

To chart values using a line between plot points, set Chart Style to line.

To chart values using points only, with no line between points, set Chart Style to
scatter. When using a scatter-type plot, you must also set Indicator Visible to yes
in the Chart Capability’s configuration panel as shown in Choosing How a
Block’s Data is Displayed.

Setting the Chart Colors

You can set the following colors for a chart:

To set a color:

1 Click on the color you want to set.

2 Choose a color from the list of colors in the scroll area.

3 Select the OK button in the scroll area.

4 Select the Apply or OK button in the configuration panel.

Choosing How a Block’s Data is Displayed

By default, a Chart Capability displays a block’s data as a black line on the chart.
To change how a Chart Capability displays its data on its chart, edit the
capability’s attribute table.

The color labeled... Sets...

Background The background color of the entire
chart

Grid The line color of the grid

Border The line color of the border

Text The text color of all text in the chart

X Axis The line color of the x axis

Y Axis The line color of the y axis
327

Specifying the Name of the Chart

The name of the chart must correspond to the Chart Name specified in the
capability. NOL automatically inserts a system-generated name in the
configuration panel for the Chart Capability when you configure the associated
chart; thus, there is no need to update these attributes in the capability unless you
want to change the name. For a description, see step 4 under Setting Up a Chart.

You can also enter an expression that evaluates to the name of a chart. For
example, you can use an expression such as “[chart-variable]” to refer to a variable
whose value is the name of a chart, or you can use an expression such as
“[(the chart-name of chart-object)]” to refer to an attribute of an object whose value
is the name of a chart.

Specifying The Attribute to Plot

The attribute Chart Attribute determines which attribute is plotted in the chart.
The default value of this attribute is dp-out, which plots the data output value of
the block to which the capability is connected. For example, when plotting entry
points and signal generators, you do not need to edit this attribute.

Specifying the Type of Connection Between Points

To choose how the display connects the points in a block’s data set, set the
attribute Plot Mode to one of the values in the following table. The figure shows
you what a chart that uses these modes looks like.

This attribute is ignored by charts when Chart Style is scatter in the Chart
Capability configuration panel as discussed in Determining How the Plot is
Displayed.

If Plot Mode is… Then the display…

continuous Directly connects the points in the block’s dataset.

discrete Inserts extra points into the block’s dataset so the
transitions are square.
328

Chart Capability
Specifying a Marker

In a Chart Capability, you can mark each point in a block’s data set. Set the
attribute Indicator Visible to yes. To choose a marker, set the attribute Indicator
Shape to one of these values:

The bar and column indicators are a little different from the rest. They draw a line
from the point to an axis. A bar goes to the Y axis, and a column goes to the X axis,
as shown in this figure:

Specifying Whether a Capability Can Update a Display

In a Chart Capability, you can choose whether getting a new value can force the
chart to update. If the attribute May Cause Chart Update is yes, the capability
signals the chart every time it receives a new value, and the chart may update if
the time is right. (You determine when the right time is by setting the fields
Update Type and Update Size in the chart’s configure dialog, described in Setting
How Frequently a Chart is Updated.) If May Cause Chart Update is no, the
capability does not let the chart know it has received a new value.

If several Chart Capabilities use a single chart, it is good practice to let only the
one furthest downstream update the chart. This practice lessens the time NOL
spends updating charts and makes sure that the displayed values are consistent.

Attribute Picture

rectangle

square

triangle

cross

x

bar see below

column see below
329

Specifying the Line Color

To specify the color of the line used to plot data in a chart:

1 Click on Line Color in the configuration panel for the Chart Capability.

2 Choose a color from the color palette.

3 Select the OK button in the scroll area.

4 Select the Apply or OK button in the configuration panel.

Going to a Chart

Sometimes you need to put a chart on a different workspace from a Chart
Capability. To see the display for a capability, choose go to chart from the
capability’s menu. NOL brings the workspace containing the display to the front.

Resetting

What happens when you reset a Chart Capability depends on the setting of the
attribute Erase History When Reset. If Erase History When Reset is yes, the
capability deletes its history of values. The next time it plots a point, it erases the
line before plotting the new point.
330

Chart Capability
Configuring

This is the configuration panel for the Chart Capability.

Attribute Description

Chart Name The name of the chart on which the
capability plots its data.

Chart Attribute The attribute of the block to which the
capability is attached whose data will plot.

Plot Mode Whether the capability connects the data
points to form a continuous plot, or whether
the capability inserts additional points to
create a step-like plot.

Indicator Visible Whether the data points are visible or not.

Indicator Shape When Indicator Visible is yes, the shape of
the indicators that are the data points of the
plot.
331

Examples

The Chart Capabilities in the following figure display the values from an Entry
Point, in addition to the minimum and maximum values from the entry point for
the past fifteen points. The Entry Point’s values are marked with an X.

The following table lists some of the attribute values for the Chart Capabilities.
Notice that there are two capabilities attached to the Moving Range block: one
charts the maximum and one charts the minimum.

May Cause Chart
Updating

Whether the chart automatically updates
each time it receives a new data value or
not.

Erase History When
Reset

See Specifying What Happens to History
Upon Reset in the NeurOn-Line User’s Guide.

Sample Type and
Sample Size

See Specifying the Size of the History in the
NeurOn-Line User’s Guide.

Update Type and
Update Size

See Specifying When to Propagate Data in
the NeurOn-Line User’s Guide.

Line Color The color of the plot.

Attribute Description
332

Chart Capability

See Also

For more information on how to use this block, see the sections below.

Attribute Name Entry Point Maximum Minimum

Chart Name chart-1 chart-1 chart-1

Chart Attribute dp-out dp-out-1 dp-out-3

Line Color black black black

Indicator x rectangle rectangle

Indicator Visible yes no no

Plot Mode continuous continuous continuous

May Cause Chart
update

no no yes

Erase History When
Reset

no no no

For more information on... See... In this book...

Basic Block Behavior User’s Guide

Evaluating Expressions in Attributes User’s Guide
333

Clock

The Clock capability forces the attached block to evaluate at a specified interval
and not necessarily when the block receives new input data. You can attach a
Clock capability to any block.

To specify the interval, set the attribute Evaluation Period. For example, if
Evaluation Period is 1 minute, the block will evaluate once every minute.

If you do not want the block to evaluate when it receives new data, set Allow
Intermediate Evaluation to no. The block will evaluate only at the specified
interval.

To turn the Clock capability on and off, use the menu choices enable evaluation
and disable evaluation.

When you turn the clock off, the block to which the Clock capability is attached
evaluates whenever it receives a new value, as opposed to every Evaluation
Period. When you turn the clock on, the attached block evaluates once every
Evaluation Period.

If the Clock capability has Allow Intermediate Evaluation set to no, the attached
block does not fire when the clock is turned off.

You can attach a Clock capability to a Graph Capability to cause the attached
capability to update at regular intervals.

Configuring

This is the configuration panel for the Clock capability.
334

Clock

Example

The Clock capability in this figure forces the Data Entry Point to pass a value at a
regular interval, even if its value does not change:

See Also

For more information on how to use this block, see the sections below.

Attribute Description

Evaluation Period The time interval at which the clock
evaluates.

Allow Intermediate
Evaluation

Whether the clock also evaluates when it
receives new data (yes) or only every
Evaluation Period (no).

For more information on... See... In this book...

Basic Block Behavior User’s Guide
335

Control Initiation Capability

The Control Initiation Capability initiates a control action whenever its associated
block receives a value. You connect the capability to any block via the link, and
you connect the control path to any control action. For example, you can use a
Control Initiation Capability to increment a counter each time a block evaluates,
as shown in the following diagram:

Configuring

The Control Initiation Capability has no configurable attributes.

See Also

For more information on how to use this block, see the sections below.

cp-out

For more information on... See... In this book...

Basic Block Behavior User’s Guide
336

Part V
Application
Programmer’s Interface
Chapter 12: Application Programmer’s Interface

Describes the NeurOn-Line Application Programmer’s Interface.
337

338

12
Application
Programmer’s Interface
Describes the NeurOn-Line Application Programmer’s Interface.

Introduction 339

Accessing the NOL API Procedures 340

Path Displays 341

Vector Blocks 342

Data Set Blocks 351

Neural Networks 360

Action Utilities 367

File Operations 369

Introduction
This section describes how to use the NeurOn-Line Application Programmer’s
Interface (API), and it serves as a quick reference guide for application developer.

You can control NOL objects from within a G2 procedure or function by using the
API procedures. The API includes procedures that perform the same actions as
executing NeurOn-Line blocks.
339

Accessing the NOL API Procedures
To see the declarations of the NeurOn-Line functions:

 Choose Help > Programmer’s Interface menu choice.

NeurOn-Line displays this workspace:

Click the subworkspace buttons to look at the declarations. Many of the API
procedures require the following arguments:

• The block to execute.

• The mode of execution, which can be one of two symbols: system or manual.
Typically, you use system, although most NeurOn-Line procedures do not
use this argument.

• The input value or values that the block requires.

• A list or lists of objects or other blocks that the block uses. These are
equivalent to the blocks that would be connected to the executing block with
an action link, if the block were on a diagram.

• The output value or values that the block produces.

If a block has an input or output data path, the API procedure for the block
requires an object of class data-path-value. Your calling procedure must create the
data-path-value objects. If the argument represents an input to the block, assign
the input value to the data-value attribute of the data-path-value object. If the
block has vector inputs or outputs, the block’s procedure passes a vector-path-
value object. If the block has data pair inputs or outputs, the block’s procedure
passes a data-pair object.

To see the class definitions for data-path-value, vector-path-value and data-pair,
click the Class Definitions button. The other APIs are listed according to the
sequence of the layout in individual subworkspace.
340

Path Displays
Path Displays
nol-execute-data-path-display

(path-display: class gdl-data-path-display, mode: symbol,
input-data: class data-path-value, output-data: class data-path-value)

Display the value, quality, or collection time of the input data in a Data Path
Display block.

nol-execute-vector-path-display
(path-display: class vector-path-display, mode: symbol,
input-vector: class vector-path-value, output-vector: item-or-value)

Display the vector values, quality, or collection time of the input vector in a
Vector Path Display block.

Parameter Description

path-display The Data Path Display block whose data is to be
displayed.

mode The mode of execution, which is not used in this
case. You can use the symbol system to be
consistent with other APIs.

input-data The input data path value passed into the block.

output-data The output data path value produced by the
block.

Parameter Description

path-display The Vector Path Display block whose data is to be
displayed.

mode The mode of execution, which is not used in this
case. You can use the symbol system to be
consistent with other APIs.

input-vector The input vector path value passed into the block.

output-vector The output vector path value produced by the
block.
341

Vector Blocks
nol-execute-windower

(blk: class windower, mode: symbol, input-data: class data-path-value,
output-vector: class vector-path-value)

Pushes the data path value into a Windower block to create a vector from
consecutive input values. The block combines the specified number of
previous input values into a vector, with the most recently received value
being the first element of the vector. The block does not pass an output vector
until it has received enough input to fill its window.

nol-execute-classifier-input-converter
(blk: class classifier-input-converter, mode: symbol,
input-data: class data-path-value, output-vector: class vector-path-value)

Converts an integer to a vector, using a Classifier Input Converter block. You
can use the output vector as a training target for a classification problem.

Parameter Description

blk The Windower block used to process data into a
vector.

mode The mode of execution, which can be one of two
symbols: system or manual. Usually, you use
system.

input-data The input data path value passed into the block.

output-vector The output vector path value produced by the
block.

Parameter Description

blk The Classifier Input Converter block used to
process data into a vector.

mode The mode of execution, which can be one of two
symbols: system or manual. Usually, you use
system.
342

Vector Blocks
nol-execute-classifier-output-converter
(blk: class classifier-output-converter, mode: symbol,
input-vector: class vector-path-value, output-data: class data-path-value)

Outputs the index of the largest element in the input vector, using a Classifier
Output Converter block. The largest value in the output vector usually
corresponds to the most likely class as predicted by the network.

nol-execute-vector-combiner
(blk: class vector-combiner, mode: symbol,
input-vector1: class vector-path-value, input-vector2: class vector-path-value,
output-vector: class vector-path-value)
-> truth-value

Combines two vectors together by appending the second vector to the end of
the first, using a Vector Combiner block.

input-data The input data path value passed into the block.
The data should be an integer, which specifies
which class element of output vector should be 1.
If it is a floating-point number, it will be rounded
to the nearest integer value.

output-vector The output vector path value produced by the
block. The vector contains all zeros except the
element specified by the input integer.

Parameter Description

Parameter Description

blk The Classifier Output Converter block used to
process vector into data.

mode The mode of execution, which can be one of two
symbols: system or manual. Usually, you use
system.

input-vector The input vector path value passed into the block.

output-data The output data path value produced by the
block. The data will be an integer, which points to
the largest element of the input vector.
343

nol-execute-vector-splitter
(blk: class vector-splitter, mode: symbol,
input-vector: class vector-path-value, output-vector1: class vector-path-value,
output-vector2: class vector-path-value)
-> truth-value, truth-value

Splits the input vector into two smaller vectors, using a Vector Splitter block.
Specify the size of the top input vector with the attribute Output 1 Dimension
of the block. The bottom vector contains what remains of the input vector after
removing the specified number of elements.

If the size of the input vector is less than the Output 1 Dimension, the block
generates an error.

Parameter Description

blk The Vector Combiner block used to process the
vectors.

mode The mode of execution, which can be one of two
symbols: system or manual. Usually, you use
system.

input-vector1 The first input vector path value passed into the
block.

input-vector2 The second input vector path value passed into
the block.

output-vector The output vector path value produced by the
block. The vector will be the combination of the
two input vectors.

Return Value Description

truth-value Returns false if the quality of either input path is
no-value, and no value will be passed. Otherwise
returns true.
344

Vector Blocks
nol-execute-vector-order-swapper
(blk: class vector-order-swapper, mode: symbol,
input-vector: class vector-path-value, output-vector: class vector-path-value)

Reorders the elements of a vector, using a Vector Order Swapper block.

If the dimension on the input vector does not equal the dimension of the
block’s vector, the block generates an error.

Parameter Description

blk The Vector Splitter block used to process the
vectors.

mode The mode of execution, which can be one of two
symbols: system or manual. Usually, you use
system.

input-vector The input vector path value passed into the block.

output-vector1 The first output vector path value produced by
the block.

output-vector2 The second output vector path value produced by
the block.

Return Value Description

truth-value Returns false if the first vector dimension is less
than zero. Otherwise returns true.

truth-value Returns false if the second vector dimension is
less than zero. Otherwise returns true.

Parameter Description

blk The Vector Order Swapper block used to process
the vectors.

mode The mode of execution, which can be one of two
symbols: system or manual. Usually, you use
system.

input-vector The input vector path value passed into the block.

output-vector The output vector path value produced by the
block.
345

nol-execute-vector-rescaler
(blk: class vector-rescaler, mode: symbol,
input-vector: class vector-path-value, output-vector: class vector-path-value)

Rescales the elements of the input vector by applying additive and
multiplicative factors to each element, using a Vector Rescaler block.

nol-execute-vector-sum
(blk: class vector-sum, mode: symbol, input-vector1: class vector-path-value,
input-vector2: class vector-path-value, output-vector: class vector-path-value)
-> truth-value

Adds the elements of the two input vectors, using a Vector Sum block. The
procedure passes a vector in which each element is the sum of the input
vectors’ corresponding elements.

If the two input vectors have different lengths, the block generates an error.

Parameter Description

blk The Vector Rescaler block used to process the
vectors. The block contains scale factors for each
element.

mode The mode of execution, which can be one of two
symbols: system or manual. Usually, you use
system.

input-vector The input vector path value passed into the block.

output-vector The output vector path value produced by the
block.

Parameter Description

blk The Vector Sum block used to process the vectors.

mode The mode of execution, which can be one of two
symbols: system or manual. Usually, you use
system.

input-vector1 The first input vector path value passed into the
block.

input-vector2 The second input vector path value passed into
the block.

output-vector The output vector path value produced by the
block.
346

Vector Blocks
nol-execute-vector-difference
(blk: class vector-difference, mode: symbol,
input-vector1: class vector-path-value, input-vector2: class vector-path-value,
output-vector: class vector-path-value)
-> truth-value

Subtracts the elements of the second input vector from the elements of the first
input vector, using a Vector Difference block.

If the two input vectors have different lengths, the block generates an error.

nol-execute-vector-product
(blk: class vector-product, mode: symbol,
input-vector1: class vector-path-value, input-vector2: class vector-path-value,
output-vector: class vector-path-value)
-> truth-value

Return Value Description

truth-value Returns false if the quality of either input path is
no-value, and no value will be passed. Otherwise
returns true.

Parameter Description

blk The Vector Difference block used to process
vectors.

mode The mode of execution, which can be one of two
symbols: system or manual. Usually, you use
system.

input-vector1 The first input vector path value passed into the
block.

input-vector2 The second input vector path value passed into
the block.

output-vector The output vector path value produced by the
block.

Return Value Description

truth-value Returns false if the quality of either input path is
no-value, and no value will be passed. Otherwise
returns true.
347

Multiples the elements of the two input vectors, using a Vector Product block.
The procedure passes a vector in which each element is the product of the
input vectors’ corresponding elements.

If the two input vectors have different lengths, the block generates an error.

nol-execute-vector-quotient
(blk: class vector-quotient, mode: symbol,
input-vector1: class vector-path-value, input-vector2: class vector-path-value,
output-vector: class vector-path-value)
-> truth-value

Divides the elements of the first input vector by the elements of the second
input vector, using a Vector Quotient block.

If the two input vectors have different lengths, the block generates an error.

Parameter Description

blk The Vector Product block used to process the
vectors.

mode The mode of execution, which can be one of two
symbols: system or manual. Usually, you use
system.

input-vector1 The first input vector path value passed into the
block.

input-vector2 The second input vector path value passed into
the block.

output-vector The output vector path value produced by the
block.

Return Value Description

truth-value Returns false if the quality of either input path is
no-value, and no value will be passed. Otherwise
returns true.
348

Vector Blocks
nol-execute-vector-function
(blk: class vector-function, mode: symbol,
input-vector: class vector-path-value, output-vector: class vector-path-value)

Applies a function or procedure to the input vector and passes the result,
using a Vector Function block. Specify the name of the function in the
Arithmetic Function attribute of the block. The function can be a built-in G2
function, user-defined function, procedure, or tabular-function.

Parameter Description

blk The Vector Quotient block used to process the
vectors.

mode The mode of execution, which can be one of two
symbols: system or manual. Usually, you use
system.

input-vector1 The first input vector path value passed into the
block.

input-vector2 The second input vector path value passed into
the block.

output-vector The output vector path value produced by the
block.

Return Value Description

truth-value Returns false if the quality of either input path is
no-value, and no value will be passed. Otherwise
returns true.

Parameter Description

blk The Vector Function block used to process the
vector.

mode The mode of execution, which can be one of two
symbols: system or manual. Usually, you use
system.

input-vector The input vector path value passed into the block.

output-vector The output vector path value produced by the
block.
349

nol-execute-vector-function-of-two-args
(blk: class vector-function-of-two-args, mode: symbol,
input-vector1: class vector-path-value, input-vector2: class vector-path-value,
output-vector: class vector-path-value)
-> truth-value

Applies a function or procedure to the two input vectors and passes one
vector as the result, using a Vector Function of Two Arguments block. Specify
the name of the function in the Arithmetic Function attribute of the block. The
function can be a built-in G2 function, user-defined function, or procedure.

Parameter Description

blk The Vector Function of Two Arguments block
used to process the vector.

mode The mode of execution, which can be one of two
symbols: system or manual. Usually, you use
system.

input-vector1 The first input vector path value passed into the
block.

input-vector2 The second input vector path value passed into
the block.

output-vector The output vector path value produced by the
block.

Return Value Description

truth-value Returns false if the quality of either input path is
no-value, and no value will be passed. Otherwise
returns true.
350

Data Set Blocks
Data Set Blocks
nol-execute-data-pair-buffer

(blk: class data-pair-buffer, mode: symbol,
input-vector1: class vector-path-value, input-vector2: class vector-path-value,
output-dp: class data-pair)
-> truth-value

Stores the input vectors into a data pair buffer, using a Data Pair Buffer block. The
first input becomes the X vector, and the second input becomes the Y vector. If
new data is output, that data will be placed into the output data pair. The
concurrency of input values is determined by the timestamps of the two input
vectors.

nol-clear-data-pair-buffer
(blk: class data-pair-buffer)

Clears the data pair buffer for later storage, using a Data Pair Buffer block.
The stored X and Y vectors are reset to zero.

Parameter Description

blk The Data Pair Buffer block whose data is to be
stored.

mode The mode of execution, which can be one of two
symbols: system or manual. Usually, you use
system.

input-vector1 The first input vector path value passed into the
block. This is the X vector.

input-vector2 The second input vector path value passed into
the block. This is the Y vector.

output-dp The output data pair object produced by the
block.

Return Value Description

truth-value Returns false if no data are passed into the data
pair object. Otherwise returns true.

Parameter Description

blk The Data Pair Buffer block whose data is to be
cleared.
351

nol-execute-data-pair-converter
(blk: class data-pair-converter, mode: symbol,
input-vector: class vector-path-value, output-dp: class data-pair)

Forms a data pair by dividing its input vector into X and Y vectors, using a
Data Pair Converter block. The X Dimension attribute of the block specifies
how many elements to place into the data pair’s X vector. The rest of the
elements are placed into the data pair’s Y vector.

nol-execute-data-pair-divider
(blk: class data-pair-divider, mode: symbol,
input-dp: class data-pair, output-vector1: class vector-path-value,
output-vector2: class vector-path-value)

Splits the input data pair into two separate vectors, using a Data Pair Divider
block. The left output port is the data pair’s X vector, and the right vector is
the data pair’s Y vector.

Parameter Description

blk The Data Pair Converter block whose data is to be
converted.

mode The mode of execution, which can be one of two
symbols: system or manual. Usually, you use
system.

input-vector The input vector path value passed into the block.

output-dp The output data pair object produced by the
block.

Parameter Description

blk The Data Pair Divider block whose data is to be
divided.

mode The mode of execution, which can be one of two
symbols: system or manual. Usually, you use
system.

input-dp The input data pair passed into the block.

output-vector1 The first output vector path value produced by
the block. This is the X vector.

output-vector1 The second output vector path value produced by
the block. This is the Y vector.
352

Data Set Blocks
nol-execute-data-pair-outlier-filter
(blk: class data-pair-outlier-filter, mode: symbol, input-dp: class data-pair)
-> truth-value

Tests the input data pairs whose elements do not fall within specified bounds,
using a Data Pair Outlier Filter block. The procedure returns true if all data
elements within the data pair are within the specified bounds; otherwise it
returns false.

nol-execute-data-set
(blk: class data-set , mode: symbol, input-dp: class data-pair,
output-data: class data-path-value)

Inserts the data contained in the input data pair into a new row at the end of
the Data Set block. The input data pair is not added to the data structure of the
data set. The data is copied from the input-dp structure to the data set. The
calling procedure must manage the data structure by deleting the input data
pair after the call to the procedure has been made; otherwise, the procedure
can leak items.

Parameter Description

blk The Data Pair Outlier Filter block whose data is to
be filtered.

mode The mode of execution, which can be one of two
symbols: system or manual. Usually, you use
system.

input-dp The input data pair passed into the block.

Return Value Description

truth-value Returns false if any element of the data pair is out
of the bounds specified in the block. Otherwise
returns true.

Parameter Description

blk The Data Set block to which data is to be added.

mode The mode of execution, which can be one of two
symbols: system or manual. Usually, you use
system.
353

nol-read-data-set-from-file
(blk: class data-set, file-name: text)

Populates the contents of a Data Set block with the contents of a file. If the
procedure named by the File Load Procedure attribute of the Data Set block
exists, then that procedure is used to load the file. Otherwise, the file must be
in the standard format created when the procedure saves a file.

nol-write-data-set-to-file
(blk: class data-set, file-name: text)

Stores the contents of a Data Set block to a file. The format of the output file
can be customized by providing the name of user-defined procedure in the
File Load Procedure of the Data Set block. Otherwise, the procedure uses the
standard file format.

input-dp The input data pair that contains the row of data
to be added to the data set.

output-data An object that contains the number of rows in the
data set.

Parameter Description

Parameter Description

blk The Data Set block to populate.

file-name The name of the file containing the data values,
including a path appropriate for the file system
type.

Parameter Description

blk The Data Set block that contains the data to write.

file-name The name of the file in which to save the data,
including a path appropriate for the file system
type.
354

Data Set Blocks
nol-configure-data-set
(blk: class data-set, number-of-samples: integer, width-of-input: integer,
width-of-output: integer)

Configures a Data Set block to a given specification.

nol-clear-data-set
(blk: class data-set)

Clears transient values of a data set without affecting the permanent values.

nol-execute-data-set-reader
(blk: class data-set-reader, mode: symbol, input-ds: class data-set,
output-dp: class data-pair, output-data: class data-path-value)

Reads the contents of a data set and places the contents into the output data
pair, using a Data Set Reader block. The procedure maintains the line pointer
during and after each procedure call.

Parameter Description

blk The Data Set block to be configured.

number-of-
samples

The number of rows for the data set.

width-of-input The number of input variables for the data set.

width-of-output The number of output variables for the data set.

Parameter Description

blk The Data Set block to be cleared.

Parameter Description

blk The Data Set Reader block used to read data from
the data set.

mode The mode of execution, which can be one of two
symbols: system or manual. Usually, you use
system.

input-ds The data set to read.

output-dp The output data pair into which the reader reads
the data.

output-data The line pointer after the procedure call.
355

nol-execute-random-divider
(blk: class random-divider, mode: symbol, obj-list: class item-list,
ds1: class data-set, ds2: class data-set)

Randomly copies all the data pairs from one or more data sets to two output
data sets, using a Random Divider block. This procedure is especially useful
when you need to split data into two sets: one for training a neural network
and the other for testing a neural network.

nol-execute-s-fold-divider
(blk: class s-fold-divider, mode: symbol, obj-list1: class item-list,
obj-list2: class item-list)

Copies all the data pairs from one or more input data sets to one or more
output data sets, using a S-Fold Divider block. The procedure randomly
divides the input data between the output data sets.

Parameter Description

blk The Random Divider block used to read data
from the data set.

mode The mode of execution, which can be one of two
symbols: system or manual. Usually, you use
system.

obj-list The list of data sets to read.

ds1 The first data set into which the data is copied.

ds2 The second data set into which the data is copied.

Parameter Description

blk The S-Fold Divider block used to read data from
the data sets.

mode The mode of execution, which can be one of two
symbols: system or manual. Usually, you use
system.

obj-list1 The list of data sets to read.

obj-list2 The list of data sets into which the data is copied.
356

Data Set Blocks
nol-execute-data-set-copier
(blk: class gdl-block, mode: symbol, obj-list1: class item-list ,
obj-list2: class item-list)

Copies all of the data sets in the first object list to each of the data sets in the
second object list, using a Data Set Copier block.

nol-execute-data-set-rescaler
(blk: class data-set-rescaler, mode: symbol,
obj-list1: class item-list, obj-list2: class item-list)

Scales the data from all of the data sets in the first object list into each of the
data sets in the second object list, using a Data Set Rescaler block.

nol-execute-maximum-age-filter
(filter: class maximum-age-filter, ds: class data-set, obj-list: class item-list,
output-data: class data-path-value)

Removes any data pair whose age is greater than a specified limit, and
archives the removed data pairs to a list of data sets, using a Maximum Age
Filter block.

Parameter Description

blk The Data Set Copier block used to read data from
the data sets.

mode The mode of execution, which can be one of two
symbols: system or manual. Usually, you use
system.

obj-list1 The list of data sets to read.

obj-list2 The list of data sets into which the data is copied.

Parameter Description

blk The Data Set Rescaler block used to read data
from the data sets.

mode The mode of execution, which can be one of two
symbols: system or manual. Usually, you use
system.

obj-list1 The list of data sets containing the data to be
scaled.

obj-list2 The list of data sets into which the scaled data is
copied.
357

nol-execute-size-limitation-filter
(filter: class size-limitation-filter, ds: class data-set, obj-list: class item-list,
output-data: class data-path-value)

Limits the number of data pairs stored in the data set, using a Size Limitation
Filter block. If the data set contains more data pairs than the maximum
specified, the filter removes enough data pairs from the top of the data set to
keep the size at the maximum, and it archives the removed data pairs to the
data sets in the given list.

nol-execute-novelty-filter
(filter: class novelty-filter, ds: class data-set, obj-list: class item-list,
output-data: class data-path-value)
-> truth-value

Filters the data set, using a Novelty Filter block. You configure the filtering
algorithm in the block.The calling procedure must manage the data structures

Parameter Description

filter The Maximum Age Filter block whose data is to
be filtered.

mode The mode of execution, which can be one of two
symbols: system or manual. Usually, you use
system.

ds The data sets to be filtered.

obj-list The list of data sets used to archive the filtered
data pairs.

output-data The data set size after the procedure call.

Parameter Description

filter The Size Limitation Filter block to whose data is
to be filtered.

mode The mode of execution, which can be one of two
symbols: system or manual. Usually, you use
system.

ds The data set to be filtered.

obj-list The list of data sets used to archive the filtered
data pairs.

output-data The data set size after the procedure call.
358

Data Set Blocks
by deleting the object list and output data after the call to the procedure has
been made; otherwise, the procedure can leak items.

Parameter Description

filter The Novelty Filter block that filters the data.

ds The primary data set to be filtered. In a diagram,
this would be the data set to which the capability
link on the Novelty Filter block would attach.

obj-list The list of data sets in which the removed data
points are stored.

output-data The new number of rows in the data set.

Return Value Description

truth-value Return true if the new data point is none.
359

Neural Networks
nol-execute-bpn

(net: class bpn, mode: symbol, x: class vector-path-value,
y: class vector-path-value)

Executes a Backpropagation Network block with an input X vector, and
pushes the output values into an output Y vector.

.

nol-configure-bpn
(net: class bpn, layer-sizes: class integer-array,
transfer-functions: class integer-array)

Configures a Backpropagation Network block with a given specification.

nol-clear-bpn
(net: class bpn)

Clears a Backpropagation Network block of its weights.

Parameter Description

net The Backpropagation Network block to be
executed.

mode The mode of execution, which can be one of two
symbols: system or manual. Usually, you use
system.

x The input vector X for the network.

y The output vector Y from the network.

Parameter Description

net The Backpropagation Network block to be
configured.

layer-sizes The integer array that contains the size parameter
of each layer.

transfer-
functions

The integer array that contains the flag of transfer
functions for each layer.

Parameter Description

net The Backpropagation Network block to be
cleared.
360

Neural Networks
nol-write-bpn-to-file
(net: class bpn, stream: class g2-stream)

Saves parameters of a Backpropagation Network block to a file stream.
.

nol-read-bpn-from-file
(net: class bpn, stream: class g2-stream)

Reads parameters of a Backpropagation Network block from a file stream.

nol-execute-rbfn
(net: class rbfn, mode: symbol, x: class vector-path-value,
y: class vector-path-value, maximum-activation-path: class data-path-value)

Executes a Radial Basis Function Network block with an input X vector, and
pushes the output values into an output Y vector. The Maximum Activation
attribute of the block indicates the performance of the inner layer.

Parameter Description

net The Backpropagation Network block whose
parameters are to be saved.

stream The G2 file stream into which the parameters are
saved.

Parameter Description

net The Backpropagation Network block whose
parameters are to be read.

stream The G2 file stream from which the parameters are
read.

Parameter Description

net The Radial Basis Function Network block to be
executed.

mode The mode of execution, which can be one of two
symbols: system or manual. Usually, you use
system.

x The input vector X for the network.

y The output vector Y from the network.

maximum-
activation-path

The maximum hidden node activation value.
361

nol-configure-rbfn
(net: class rbfn, inputs: integer, hidden: integer, outputs: integer,
overlap: float, unit-type: symbol)

Configures a Radial Basis Function Network block with a given specification.

nol-write-rbfn-to-file
(net: class rbfn, stream: class g2-stream)

Save the specification and weights of a Radial Basis Function Network block
into a file stream.

nol-read-rbfn-from-file
(net: class rbfn, stream: class g2-stream)

Reads the specification and weights of a Radial Basis Function Network block
from a file stream.

nol-execute-rho-net
(net: class rho-net, mode: symbol, x: class vector-path-value,
y: class vector-path-value)

Parameter Description

net The Radial Basis Function Network block to be
configured.

inputs The number of inputs.

hidden The size of the hidden layer.

outputs The number of outputs.

overlap The type of overlap.

unit-type The unit type.

Parameter Description

net The Radial Basis Function Network block to be
saved.

stream The G2 file stream into which the data is saved.

Parameter Description

net The Radial Basis Function Network block whose
data is to be read.

stream The G2 file stream to read.
362

Neural Networks
Executes a Rho Network block with an input X vector, and pushes the output
values into an output vector Y.

nol-execute-ensemble-model
(net: class ensemble-network , mode: symbol,
x: class vector-path-value, y: class vector-path-value)

Executes an Ensemble Network block with an input X vector, and pushes the
output values into an output vector Y.

nol-read-ensemble-model-from-file
(net: class ensemble-network, stream: class g2-stream)

Reads the specification of an Ensemble Network block from a file stream.

nol-write-ensemble-model-to-file
(net: class ensemble-network, stream: class g2-stream)

Save the specification of an Ensemble Network block into a file stream.

Parameter Description

net The Rho Network block to be executed.

mode The mode of execution, which can be one of two
symbols: system or manual. Usually, you use
system.

x The input vector X for the network.

y The output vector Y from the network.

Parameter Description

net The Ensemble Network block to be executed.

mode The mode of execution, which can be one of two
symbols: system or manual. Usually, you use
system.

x The input vector X for the network.

y The output vector Y from the network.

Parameter Description

net The Ensemble Network block whose data is to be
read.

stream The G2 file stream to read.
363

nol-execute-autoassociative-net
(net: class autoassociative-net, mode: symbol,
input-vector: class vector-path-value, output-vector: class vector-path-value)

Executes an Autoassociative Network block with an input X vector, and
pushes the output values into an output vector Y.

nol-write-autoassociative-net-to-file
(net: class autoassociative-net, stream: class g2-stream)

Save the specification of an Autoassociative Network block into a file stream.

nol-read-autoassociative-net-from-file
(net: class autoassociative-net, stream: class g2-stream)

Reads the specification of an Autoassociative Network block from a file
stream.

Parameter Description

net The Ensemble Network block to be saved.

stream The G2 file stream into which the data is saved.

Parameter Description

net The Autoassociative Network block to be
executed.

mode The mode of execution, which can be one of two
symbols: system or manual. Usually, you use
system.

input-vector The input vector X for the network.

output-vector The output vector Y from the network.

Parameter Description

net The Autoassociative Network block to be saved.

stream The G2 file stream into which the data is saved.

Parameter Description

net The Ensemble Network block to be loaded into.

stream The g2 file stream.
364

Neural Networks
nol-execute-trainer
(blk: class trainer, mode: symbol, net: class neural-network,
ds: class data-set, output-data: class data-path-value)

Uses a Trainer block to train a neural network, using a data set.

nol-execute-fit-tester
(blk: class fit-tester, mode: symbol, net: class neural-network,
ds: class data-set, output-data: class data-path-value)

Uses a Fit Tester block to train a neural network, using a data set.

nol-execute-sensitivity-tester
(blk: class sensitivity-tester, mode: symbol, net: class neural-network,
ds: class data-set)

Parameter Description

blk The Trainer block to be executed.

mode The mode of execution, which can be one of two
symbols: system or manual. Usually, you use
system.

net The network block to be trained.

ds The data set to use for training.

output-data The RMSE error value after the network has been
trained.

Parameter Description

blk The Fit Tester block to be executed.

mode The mode of execution, which can be one of two
symbols: system or manual. Usually, you use
system.

net The network block to be tested.

ds A data set containing the inputs and associated
output data against which the neural net fitness is
to be tested. Predictions are placed in the
prediction columns of this data set.

output-data A data path value into which the result of the
fitness test is placed.
365

Uses a Sensitivity Tester block to calculate the sensitivity of a neural network,
given a data set.

Parameter Description

blk The Sensitivity Tester block to be executed.

mode The mode of execution, which can be one of two
symbols: system or manual. Usually, you use
system.

net The network block to be tested.

ds The data set to be tested.
366

Action Utilities
Action Utilities
nol-execute-block-attribute-transfer

(blk: class block-attribute-transfer, mode: symbol, input-obj: class object,
obj-list: class item-list)

Uses the Block Attribute Transfer block to copy one block’s attribute values to
another block.

nol-execute-block-make-permanent
(blk: class block-make-permanent, mode: symbol, obj-list: class item-list,
client-obj: class object)

Uses the Makes Permanent block to make a list of objects permanent. This
procedure can invoke the G2 make permanent action, or it can make
permanent any array or matrix data associated with the object. The NOL
blocks that can have permanent data are: Novelty Filter, Data Set, Data Pair
Outlier Filter, Vector Order Swapper, Vector Rescaler, Data Set Rescaler,
Vector Path Entry Point, Data Set Plot, Sensitivity Tester, and any Neural
Network block. If an error occurs during the execution of this procedure, the
error is posted to the error queue.

Parameter Description

blk The Block Attribute Transfer block to be executed.

mode The mode of execution, which can be one of two
symbols: system or manual. Usually, you use
system.

input-obj The block from which to copy attributes.

obj-list The list of blocks into which to copy the
attributes.

Parameter Description

blk The Make Permanent block to be executed. To
make the API call, an instance must be supplied;
however it has no affect on the execution of this
procedure.

mode The mode of execution, which can be one of two
symbols: system or manual. Usually, you use
system.
367

nol-execute-block-restore-permanent-values
(blk: class block-restore-permanent-values, mode: symbol,
obj-list: class item-list, client-obj: class object)

Uses the Restore Permanent Values block to restore the permanent values of a
list of blocks.

obj-list The list of objects to be made permanent. If an
object in the list is a subclass of nol-block-with-
permanent-array, then the procedure makes
permanent the NOL data associated with the
block. If the object is any other class of object, the
procedure calls the G2 make permanent action on
the object. Non-objects in the list are ignored. The
procedure must manage the creation and deletion
of this list; otherwise, the procedure can leak
items.

client-obj A G2 window or client object to be used for
posting errors. If no window is available, use the
default window gfr-default-window.

Parameter Description

Parameter Description

blk The Restore Permanent Values block to be
executed. To make the API call, an instance must
be supplied; however, it has no affect on the
execution of this procedure.

mode The mode of execution, which can be one of two
symbols: system or manual. Usually, you use
system.

obj-list The list of objects whose values are to be restored.
If an object in the list is a subclass of nol-block-
with-permanent-array, then the procedure
restores the NOL data associated with the block.
If the list contains objects that are not of this class,
the objects are ignored. The procedure must
manage the creation and deletion of this list;
otherwise, the procedure can leak items.

client-obj A G2 window or client object to be used for
posting errors. If no window is available, use the
default window gfr-default-window.
368

File Operations
File Operations
nol-read-array

(stream: class g2-stream, number-of-values: integer,
destination-array: class g2-array, delimiter: text)

Reads a line of values, separated by delimiters. This procedure can read
integer, float, quantity, symbol, text, and truth-value arrays.

nol-write-array
(stream: class g2-stream, array: class g2-array, delimiter: text, comment: text)

Writes a line of values, separated by delimiters. This procedure can write
integer, float, quantity, symbol, text, and truth-value arrays.

nol-read-matrix
(stream: class g2-stream, x: class a-matrix, rows: integer, cols: integer,
delimiter: text)

Reads two-dimensional arrays of values, separated by delimiters, into a
matrix. The matrix is redimensioned, if necessary.

Parameter Description

stream The G2 file stream to read.

number-of-
values

The number of values to read.

destination-
array

The G2 array in which to store the values.

delimiter The delimiter string.

Parameter Description

stream The G2 file stream to write.

array The G2 array from which to write the values.

delimiter The delimiter string.

comment Comment text to write with the file stream.

Parameter Description

stream The G2 file stream to read.

x The matrix in which to store the values.
369

nol-write-matrix
(stream: class g2-stream, x: class a-matrix, delimiter: text, comment: text)

Writes a matrix into a G2 file stream, separated by delimiters.

rows The number of rows for the two-dimensional
array.

cols The number of column for the two-dimensional
array.

delimiter The delimiter string.

Parameter Description

Parameter Description

stream The G2 file stream to write.

x The matrix from which to write the values.

delimiter The delimiter string.

comment Comment text to write with the matrix.
370

Glossary
 A B C D E F G H I J K L M
 N O P Q R S T U V W X Y Z
A

action block: Performs actions on other blocks or on the environment when an
inference value becomes true.

action link: Serves as a pointer when a block is to perform an action on a target
object. For example, you can reset a block by using a control signal by attaching
any block to the action link associated with the Reset block. When the block
receives a control signal, NOL resets the block. Action links appear on many
blocks on the Action Utilities palette.

API procedure: Enables you to control NeurOn-Line objects from within a G2
procedure or function. The Application Programmer’s Interface (API) includes
procedures that perform the same actions as executing NeurOn-line blocks.

attributes: Specify the particular behavior of a block. You specify block attributes
in the configuration panel.

B

block menu: Enables you to perform G2 operations on blocks, such as cloning,
transferring, deleting, and configuring.

C

capability link: Adds various types of features to blocks, such as charts, graphs,
and clocks.

configuration panel: A dialog that enables you to specify the attributes of a block.

configure: To specify the attributes of a block in a configuration panel or in the
attribute display of a block.

connection post: Enables a block on one workspace to pass data to a block on
another workspace.

control path: A type of path that passes control signals, which cause downstream
blocks to execute.
371

D

data block: Operates on numeric values.

data pair path: Carries Data Pairs, which contain two vectors: the input vector
and the target vector. Generally you add Data Pairs to a Data Set and use the Data
Set to train and test a neural network. The input vector represents the input data
for a neural network, and the target vector represents the data that the neural
network should output.

Data pair paths have the attributes Collection-time, Quality, and Timestamp.

data path: An input or output path to a block that contains numeric values.

data set blocks: Enable you to store and manipulate the data with which you train
a neural network. The Data Set Blocks palette under the Data Processing submenu
of the Palettes lists the various data set blocks.

developer mode: A user mode that provides access to all the basic functionality
required for building schematic diagrams.

disable evaluation: Stops a block from passing its output value and responding
to new values. Disabling evaluation enables you to “turn off” entire portions of a
NOL diagram.

discrete logic: A form of inferencing whereby a block passes discrete inference
values, for example, a Status-value of .true, .false, or unknown, and a Belief-value
of 1.0, 0.0, or 0.5.

E

enable data input: To run a diagram, you must enable data input, which:

• Starts data flowing into entry points.

• Evaluates signal generators.

• Evaluates clock capabilities.

enable evaluation: Allows a block to pass its output value and respond to new
values.

entry point: Receives data externally from a variable, a GSI (G2 Standard
Interface) variable, G2 procedure, or from an embedded variable in the table for
the block. Entry points are the starting point of a NOL diagram. NOL supports
four kinds of entry points: numeric, belief, control, and vector.

evaluate: To execute the procedure for a block. For example, when you evaluate
an entry point, the current value is propagated with a new timestamp. When you
evaluate a block with a single input control path, the block acts as if it has
received a new control signal.
372

F

filter: A category of block that you use after data entry blocks in a diagram to
filter out noise and find trends in data.

G

G2 Main Menu: Controls whether G2 is running or paused, and allows you to
load and save applications.

G2 menus: Provide all the functionality of G2 within the NOL environment, for
example, the creation of class definitions, variables, parameters, rules, and
procedures.

H

history: A store of past input values. Numerous NOL blocks operate on the stored
values, such as computing the average of the last 25 input values.

HTML: Hypertext Markup Language. Online documentation is a collection of
HTML files, which you can display in any HTML browser.

I

inference block: Translates data values to truth values and operates on truth
values. For example, observations observe data values and pass inference values,
and logic gates use Boolean logic to combine reference values.

inference path: A type of path that carries truth values. Inference paths carry two
values:

• Belief value - a number between 0.0 to 1.0, where 0.0 is false and 1.0 is true.

• Status value - one of the symbols .true, .false, or unknown. NOL derives status
values from belief values.

initial value: The value a block passes when you first start G2 or when you reset
the block.

input port: Carries data to a block. A block has one or more input ports
depending on the type of block.

invoke: To execute the procedure for a block. The block is invoked when:

• An entry point receives a value from its data source.

• A value is propagated onto the input path of the block due to the behavior of
an upstream block.

• You evaluate a block manually.
373

K

KB Workspace menu: Enables you to create G2 definitions and objects on a
workspace and set up applications.

L

link: A special-purpose type of connection that you use to add features or
behaviors to a block, or to perform actions on a block. For example, you use links
to add a graph or chart capability to a block.

There are two types of links:

• Action

• Capability

lock: When locked, a block does not respond to input data or pass its output
values. NOL locks a block when you manually override its value.

M

multiple values: Simultaneous control signals that a block receives. A block can
ignore or use multiple values as needed.

neural network blocks: Enable you to save and load what the blocks have
learned during training. NeurOn-Line saves the information to text files, which
you can examine. The Neural Networks palette under the Neural Networks
submenu of the Palettes menu lists the four neural network blocks:

• Backpropagation Net (BPN)

• Autoassociative Net

• Radial Basis Function Net (RBFN)

• Rho Net (Density Estimation)

N

no-value inputs: Occur when stubs are unattached or when connected paths
never receive a value. Peer input data blocks and peer input logic blocks ignore
input paths with a Quality of no-value. Non-peer input blocks require all of their
inputs to evaluate, and, therefore, never place a value onto an output path if the
block has a no-value input.
374

O

observation: A category of blocks that detect features in your data. Observation
blocks take data as input, test it against a threshold, and pass as output the
inference value that the test produced.

output port: Carries data from a block. A block has one or more output ports
depending on the type of block.

override: To manually change a block’s output value for testing purposes.
Overriding a block locks the block and propagates a Quality of manual onto the
output path.

P

parameter: A G2 object that stores a data value and keeps a history of it over a
specified time. A parameter can also initiate forward chaining.

path: The connection between two blocks. NOL supports data, inference, control,
vector, and data pair paths.

path attributes: Attributes that provide information about the value and status of
the data on one path. Each type of path defines slightly different path attributes.

path quality: A path attribute that specifies the status of a path’s data. There are
three types:

• Manual

• No-value

• Expired

path splitter: Connects the input stub from one block to the path between two
other blocks so that more than one downstream block can get input from the same
upstream block.

peer input block: A category of block that can have any number of inputs and
does not evaluate the inputs in a specific order. The inputs are treated all alike
and are therefore peers.

port: Connection stub to which another stub can attach. Ports are either named or
unnamed, depending on the type of block and whether the port is input or
output.

Q

queue: A special workspace that displays information about errors.

remote process: A concurrent process that is separate from G2, the NeurOn-Line
uses for numerically intensive tasks such as neural network training, fit testing,
sensitivity testing, and running autoassociative networks.
375

R

reset: Causes the following to happen:

• Sets the block to its initial state, which propagates the block’s initial value.

• Clears any error conditions.

• Unlocks the block, if it was locked.

• Erases the blocks history if the block maintains a history.

S

scalar blocks: Enable you to perform operations on scalar values, such as
arithmetic, averaging, filtering, delaying, and applying your own functions. The
Scalar Blocks palette under the Data Processing submenu of the Palettes menu
lists the various scalar blocks.

signal generator: Generates a continuous signal to a diagram, to simulate real-
time data. Examples of signal generators include the Sine Wave signal and White
Noise signal.

snapshot: A file that contains the current state of the running application as
backup. You can configure NOL to take snapshots automatically at regular
intervals. When you restore a snapshot, NOL resumes running the application
from the point at which you took the snapshot.

spreadsheet editor: Many blocks that operate on vectors, Data Pairs, and Data
Sets let you edit data by using the Gensym Spreadsheet System or GXL. GXL is a
G2 module that provides spreadsheet editing capabilities for editing vector and
data set blocks.

stub: A connection port to which another connection port can attach.

sweep: An internal mechanism where NOL searches for invoked blocks,
evaluates them, and continues until no more blocks are left to evaluate.

system administrator: A category of NOL users who works in Administrator
mode, which enables access to additional attributes and menu choices used for
debugging.

T

top menu bar: Provides access to basic functionality, including controlling the
diagram, cloning blocks from palettes, accessing queues, and customizing the
environment.
376

training block: Trains a neural network when you attach one of its action links to
a neural network block and the other action link to a data set block. Training
blocks train the following neural networks:

• Backpropagation

• Autoassociative

• Radial Basis Function Network

• Rho Network

U

uncertainty: Defines a band around 0.5 that determines the status value unknown.
For example, if the attribute Output Uncertainty is 0.25, then the Belief-value is .
true above 0.625 and .false below 0.375 and Unknown between .65 and .35.

user modes: There are four user modes:

• Administrator - enables system administrators to access attributes and menu
choices used for debugging.

• Developer - enables developers to access all the basic functionality used for
building schematic diagrams.

• User and Browser - enables end users to view diagrams, display menus, and
display configuration panels of objects but not to move blocks, clone blocks,
or edit attributes. Browser mode is slightly more restrictive than User mode.

V

variable: You use variables as starting points in a NOL diagram, either by
referring to the variable in an entry point, or by connecting blocks directly to the
variable. See also parameter.

vector blocks: Enable you to create, manipulate, and operate on vectors. The
Vector Blocks palette under the Data Processing submenu lists the various vector
blocks.

vector path: Carries vectors, which are one-dimensional arrays of numeric data.
Vectors can be of any size. Vector paths have the attributes Collection-time and
Quality.

vertex: An 90bend in the connection between blocks.
377

378

Index
 @ A B C D E F G H I J K L M
 # N O P Q R S T U V W X Y Z
A
abs function

using with data values
Action Utilities palette
actions

API procedures for
branching
introduction to
invoking a rule
looping
outputting data
performing on blocks
stopping paths

adding noise
Additive Noise block
Allow Intermediate Evaluation attribute

Clock
Amplitude attribute

Sine Wave
AND Gate
Application Programmer? Interface (API)

accessing
action utilities
data set blocks
file operations
introduction
neural networks
path displays
vector blocks

applications
connecting to G2

using Data Output block
using entry points

arctan function
using with data values

Arithmetic Function attribute
Arithmetic Function

Arithmetic Function block
arithmetic operations

adding
constants
inputs

changing sign
computing inverse
dividing
multiplying

by constants
inputs

performing
subtracting

Attribute Transfer block
Attribute, Set
attributes, transferring
Autoassociative Net block
average

of a history
of input values

Average Input Value block
Average, Moving
averaging values

B
Backpropagation Net (BPN) block
Band Center attribute

Outlier Filter
Band Range attribute

Outlier Filter
Band Type attribute

Outlier Filter
Belief Entry Point
Bias attribute

Bias
Sine Wave

Bias block
blocks

evaluating
using Evaluate block

overriding
using Set Attribute block

resetting
using Reset block

branching
Breakers, Circuit
buttons

specifying entry point data, using
379

C
capabilities

charting
evaluating blocks at specific time intervals
forcing a block to evaluate
initiating control actions
introduction to
plotting data
starting control paths

Capabilities palette
ceiling function

using with data values
Change Sign block
Chart Attribute attribute

Chart Capability
Chart Capability
Chart Name attribute

Chart Capability
charting
charts

configuring
creating
determining how data is displayed in

Circuit Breakers
Classifier Input Converter block
Classifier Output Converter block
classifiers, using with vectors
Clear block
Clock Capability
clocks

evaluating blocks at specified time
intervals, using

close breaker menu choice
computing statistical properties
Conclusion block
configure menu choice

for charts
Connection Posts
connections
Connections palette
Connectors
Control Counter block
Control Entry Point
Control Inhibit block
Control Initiation Capability
Control Path Loop block
control signals

choosing paths for
based on inference value

converting to inference values
380
counting
evaluating blocks
generating
initiating when blocks receive values
looping
resetting blocks
starting
stopping

Control Switch block
converting

inference values from control signals
cos function

using with data values
Counter, Control
cp-out attribute

reading and displaying
customer support services
cycles, unmanaged

D
Data Delay block
Data Inhibit block
Data Output block
Data Pair Buffer block
Data Pair Converter block
Data Pair Divider block
Data Pair Outlier Filter block
Data Pair Quality Filter block
Data Pair Random Gate block
data pairs, creating
Data Path Display block
Data Set block
Data Set Blocks palette
Data Set Copier block
Data Set Plot block
Data Set Reader block
Data Set Rescaler block
data sets

adding data pairs to
API procedures for
choosing which points to keep
clearing
copying data to
customizing text format of
deciding whether a data pair is novel
editing
entering and viewing data
filtering data from
introduction to

making values permanent
plotting data

choosing how to display the data
choosing what to display
choosing where to display the data
creating and deleting data series
how to

reading data from
saving and loading data
scaling data in
text format of

Data Shift block
Data Source attribute
data sources

of entry points
embedded
external
external datapoints

data values
displaying, using path display
generating

external
plotting

Delay, Data
descriptions

Conclusion
Entry Points
Equality
High and Low Value
Inference Output

deviation
computing

using Variance
Difference block
Display, Data Path
displays, path
Distributed Control Systems (DCS)
Disturbance Mean attribute

White Noise
Disturbance Variance attribute

White Noise
Dp-out attribute

configuring for entry points

E
Ensemble Net (ENN) block
entry points

choosing data source for
enabling data input for
obtaining data from
external datapoints
variables

reading output values for
specifying embedded variables for
vector

Entry Points palette
Equality block
Equivalence Band attribute

Equality
Erase History When Reset attribute

Chart Capability
Data Shift
Moving Average
Sample Median
Variance

Evaluate block
evaluating blocks

at specified time intervals
using Evaluate block

Evaluation Period attribute
Clock

Exit If attribute
Control Path Loop

exp function
using with data values

exponential filters
first-order

external data
connecting to

using Data Output block
using entry points

F
file operations, API procedures for
Filter Constant attribute

First-Order Exponential Filter
filtering noise
filters

low-pass
exponential

outlier
First-Order Exponential Filter
Fit Tester block
Five Fold CV block
floor function

using with data values
forcing blocks to evaluate
formulas, specifying entry points, using
381

functions
average
defining your own
median
using in blocks

G
Gain attribute

Gain
Gain block
go to chart menu choice
go to sensor menu choice

H
High Value block
Hysteresis When attribute

Conclusion
Equality
High and Low Value

I
Indicator Shape attribute

Chart Capability
Indicator Visible attribute

Chart Capability
Inference Blocks palette
Inference Inhibit block
Inference Output block
inference values

converting
from control signals

generating
inhibiting

inferencing
introduction to
making observations
pausing paths
performing logical operations

Inhibit, Control
Inhibit, Data
Inhibit, Inference
int function

using with data values
Inverse block
inverting

data values
Ip-out attribute
382
reading and displaying
Iteration Limit attribute

Control Path Loop

L
Line Color attribute

Chart Capability
ln function

using with data values
log function

using with data values
Logic attribute

AND Gate
entry points
NOT Gate
OR Gate

logical operations
and
not
or

logical operations, performing
looping actions
loops, creating
Low Value block
low-pass filters

exponential

M
Make Permanent block
Maximum Age Filter block
Maximum Unknown Inputs attribute

AND Gate
OR Gate

May Cause Chart Updating attribute
Chart Capability

mean
generating values around

white noise
median

of a history of data values
of input values

Median Input Value block
Moving Average block
Multiple Invocations attribute

Control Counter
Multiplication block

N
Name attribute

Connection Posts
Name of Sensor attribute

entry points
neural networks

adjusting weights
API procedures for
autoassociative networks
backpropagation networks
choosing the run mode
ensemble networks
introduction to
radial basis function networks
rho networks
saving and loading network weights
saving and loading weights

Neural Networks palette
New Display menu choice
noise

adding
filtering

Noise, White
NOT Gate
no-value inputs, AND gate and Maximum

Unknown Inputs
Novelty Filter block
Numeric Entry Point

O
observations

equality
high and low

values
open breaker menu choice
OR Gate
Outlier Filter
Outlier Replacement attribute

Outlier Filter
Output as Std Deviation attribute

Variance
Output Uncertainty attribute

AND Gate
Conclusion
entry points
Equality
High and Low Value
Inference Output
NOT Gate
OR Gate
Output, Data
Output, Inference
outputting data

P
parameters

putting data into, using block
path

API procedures for displays
path display blocks
Path Displays palette
path splitters
paths

combining
connecting

using circuit breakers
using connectors

stopping
pausing data
Period attribute

Sine Wave
Phase Angle attribute

Sine Wave
Plot Mode attribute

Chart Capability
plotting

data values
in data sets
using charts

Posts, Connection
procedures

specifying entry point data, using
using

in blocks

Q
Quantization attribute

First-Order Exponential Filter
Outlier Filter

Quotient block

R
Radial Basis Function Net (RBFN) block
Random Divider block
random function

using with data values
383

ranges
filtering values within

outlier filter
RBFN block
Reference Value attribute

Equality
Require Full History attribute

Moving Average
Sample Median
Variance

Reset block
Reset Phase attribute

Sine Wave
resetting

blocks
using Reset block

Restore Permanent Values block
Rho Net block
Rule Action block
rules

invoking
specifying entry point data, using

S
Sample Median block
Sample Period attribute

Sine Wave
specifying how often to generate values,

using
White Noise

Sample Size attribute
Chart Capability
Data Shift
Moving Average
Sample Median
Variance

Sample Type attribute
Chart Capability
Moving Average
Sample Median
Variance

scalar blocks
Scalar Blocks palette
Scalarizer block
scalars, creating
Sensitivity Tester block
Set Attribute block
S-Fold Divider block
Shift, Data
384
show collection time menu choice
show quality menu choice
show value menu choice
signal generators

periodic
sine wave

random
white noise

specifying how often to generate values
sin function

using with data values
Sine Wave block
Size Limitation Filter block
sqrt function

using with data values
standard deviation
Standard Deviation attribute

Additive Noise block
statistical properties, computing
Status on Initialization attribute

Conclusion
entry points
Equality
High and Low Value
Inference Inhibit
Inference Output
Inference Path Circuit Breaker

stopping data
Summation block
Superior-connection attribute

in Connection Posts
Switch, Control
Symbolic Entry Point
symbolic values, generating

T
tabular-function-of-1-arg function

using with data values
tan function

using with data values
Target Attribute attribute

Set Attribute
Target Variable attribute

Data Output
text

values, generating
Text Entry Point
Threshold attribute

High and Low Value

Threshold Uncertainty attribute
High and Low Value

time
evaluating blocks at specified intervals

Train and Test block
description
subworkspace

Trainer block
training

and testing
basic
choosing

maximum number of iterations
training method
whether to accelerate

configuring
for Radial Basis Function network
for Rho network

finding
the best network configuration
which inputs are significant

introduction to
watching the training happen

Training Blocks palette
transferring attributes
Trigger On attribute

Control Inhibit
Data Inhibit
Inference Inhibit

truncate function
using with data values

U
Update Size attribute

Chart Capability
Moving Average
Sample Median
Variance

Update Type attribute
Chart Capability
Moving Average
Sample Median
Variance

Use Expired Inputs attribute
AND Gate
Average Input Value
Median Input Value
Multiplication
OR Gate
Summation

V
Validity Interval attribute

entry points
Value on Initialization attribute

Control Counter
Data Inhibit
Data Path Circuit Breaker
Data Shift
entry points
Moving Average
Sample Median
Variance

variables
obtaining data from

external
using entry points

putting data into, using block
specifying entry point data, using your

own
viewing data source for entry points

Variance block
Vector Blocks palette
Vector Combiner block
Vector Difference block
Vector Function block
Vector Function of Two Arguments block
Vector Inhibit block
Vector Order Swapper block
Vector Path Display block
Vector Product block
Vector Quotient block
Vector Rescaler block
Vector Splitter block
Vector Sum block
vector values

displaying, using path display
Vectorizer block
vectors

API procedures for
blocks for
choosing when to evaluate blocks
creating
inhibiting
manipulating
operating on elements of
using with classifiers

Vpv-out attribute
385

reading and displaying

W
Wave, Sine
White Noise block
Windower block
386

	Contents Summary
	Contents
	Preface
	About this Guide
	Audience
	Conventions
	Related Documentation
	Customer Support Services

	Entry and Paths
	Entry Points
	Introduction
	Using Entry Points
	Enabling Data Input
	Reading the Output Value
	Specifying How Often to Generate Values

	Entry Points
	Using Entry Points to Obtain Data from a G2 Variable
	Choosing Between Embedded and External Data Sources
	Using a G2 Variable Directly
	Viewing the Variable
	Obtaining Values from External Datapoints
	Specifying the Embedded Value for an Entry Point
	Using Vector Entry Points
	Making Vector Values Permanent
	Configuring
	See Also

	White Noise
	Configuring
	Example
	See Also

	Sine Wave
	Specifying the Shape
	Specifying a Phase
	Resetting
	Configuring
	See Also

	Path Displays
	Introduction
	Data Path Display
	Determining Which Path Attribute to Display
	Configuring
	Example
	See Also

	Vector Path Display
	Configuring
	See Also

	Connections
	Introduction
	Connection Posts
	Highlighting
	Configuring
	Examples
	See Also

	Connectors
	Configuring
	Example
	See Also

	Circuit Breakers
	Configuring
	Example
	See Also

	Data Processing
	Scalar Blocks
	Introduction
	Performing Arithmetic Operations
	Adding and Filtering Noise
	Averaging Values
	Stopping and Pausing Data
	Outputting Data
	Computing Statistical Properties
	Defining Your Own Function

	Summation
	Configuring
	Example
	See Also

	Difference
	Configuring
	Example
	See Also

	Change Sign
	Configuring
	Example
	See Also

	Bias
	Configuring
	Example
	See Also

	Multiplication
	Configuring
	Example
	See Also

	Quotient
	Configuring
	Example
	See Also

	Inverse
	Configuring
	Example
	See Also

	Gain
	Configuring
	Example
	See Also

	Additive Noise
	Configuring
	Example
	See Also

	Outlier Filter
	Specifying a Range
	Specifying How to Round Output Values
	Configuring
	Examples
	See Also

	First-Order Exponential Filter
	Filtering
	Specifying How to Round Output Values
	Configuring
	Example
	See Also

	Sample Median
	Configuring
	Example
	See Also

	Average Input Value
	Configuring
	Example
	See Also

	Median Input Value
	Configuring
	Example
	See Also

	Data Delay
	Handling Multiple Signals
	Resetting
	Configuring
	See Also

	Data Inhibit
	Resetting
	Configuring
	Example
	See Also

	Data Output
	Configuring
	See Also

	Set Attribute
	Configuring
	Example
	See Also

	Data Shift
	Specifying How to Delay Values
	Configuring
	Example
	See Also

	Variance
	Configuring
	See Also

	Moving Average
	Configuring
	Example
	See Also

	Arithmetic Function
	Built-in G2 Function
	User-Defined Function
	Procedure
	Tabular Function
	Configuring
	See Also

	Arithmetic Function of Two Arguments
	Using Built-in G2 Function
	Using a User-Defined Function
	Using a Procedure
	Configuring
	See Also

	Vector Blocks
	Introduction
	Choosing When to Evaluate
	Creating Vectors and Scalars
	Using Vectors with Classifiers
	Manipulating Vectors
	Inhibiting Vectors
	Operating on Vector Elements

	Vectorizer
	Configuring
	Example
	See Also

	Scalarizer
	Configuring
	Example
	See Also

	Windower
	Configuring
	Example
	See Also

	Classifier Input Converter
	Configuring
	Example
	See Also

	Classifier Output Converter
	Configuring
	Example
	See Also

	Vector Combiner
	Configuring
	Example
	See Also

	Vector Splitter
	Configuring
	Example
	See Also

	Vector Order Swapper
	Making Values Permanent
	Configuring
	Example
	See Also

	Vector Inhibit
	Configuring
	See Also

	Vector Rescaler
	Making Values Permanent
	Configuring
	Example
	See Also

	Vector Sum
	Configuring
	Example
	See Also

	Vector Difference
	Configuring
	Example
	See Also

	Vector Product
	Configuring
	Example
	See Also

	Vector Quotient
	Configuring
	Example
	See Also

	Vector Function
	Using a Built-in G2 Function
	Using a User-Defined Function
	Using a Procedure
	Using a Tabular Function
	Configuring
	See Also

	Vector Function of Two Arguments
	Using a Built-in G2 Function
	Using a User-Defined Function
	Using a Procedure
	See Also

	Data Set Blocks
	Introduction
	Creating Data Pairs
	Filtering Data
	Reading Data
	Copying Data
	Scaling Data

	Data Pair Buffer
	Specifying Whether Values are Concurrent
	Resetting
	Clearing the Data Pair Buffer
	Configuring
	Example
	See Also

	Data Pair Converter
	Configuring
	Example
	See Also

	Data Pair Divider
	Configuring
	Example
	See Also

	Data Pair Random Gate
	Configuring
	Example
	See Also

	Data Pair Outlier Filter
	Configuring
	Making Values Permanent
	Example
	See Also

	Data Pair Quality Filter
	Configuring
	Example
	See Also

	Data Set
	Editing the Data Set
	Entering and Viewing Data
	Saving and Loading Data
	Plotting Data
	Text Format for Data Sets
	Customizing the Text Format
	Clearing the Data Set
	Making Values Permanent
	Configuring
	See Also

	Maximum Age Filter
	Configuring
	Example
	See Also

	Size Limitation Filter
	Configuring
	Example
	See Also

	Data Set Reader
	Resetting
	Configuring
	Example
	See Also

	Random Divider
	Configuring
	Example
	See Also

	S-Fold Divider
	Configuring
	Example
	See Also

	Data Set Copier
	Configuring
	Example
	See Also

	Data Set Rescaler
	Making Values Permanent
	Configuring
	See Also

	Data Set Plot
	Configuring
	Choosing What to Display
	Choosing How to Display the Data
	Choosing Where to Display the Data
	Creating and Deleting Data Series
	Making Values Permanent
	Example
	See Also

	Novelty Filter
	Choosing Which Points to Keep
	Deciding Whether a Data Pair is Novel
	Making Values Permanent
	Configuring
	Example
	See Also

	Neural Networks
	Neural Network Blocks
	Introduction
	Saving and Loading Network Weights
	Backpropagation and Autoassociative Networks
	Radial Basis Function and Rho Networks
	Ensemble Networks

	Backpropagation Net (BPN)
	Configuring
	Adjusting Weights
	Saving and Loading Weights
	Making Values Permanent
	Examples
	See Also

	Autoassociative Net
	Configuring
	Choosing the Run Mode
	Adjusting Weights
	Saving and Loading Weights
	Making Values Permanent
	See Also

	Radial Basis Function Net (RBFN)
	Configuring
	Saving and Loading Weights
	Making Values Permanent
	See Also

	Rho Net
	Configuring
	Saving and Loading Weights
	Making Values Permanent
	See Also

	Ensemble Net (ENN)
	Adjusting Weights
	Saving and Loading Weights
	Making Values Permanent
	Examples
	See Also

	Training Blocks
	Introduction
	Basic Training and Testing
	Finding the Best Network Configuration
	Finding Which Inputs are Significant

	Trainer
	Watching the Training Happen
	Configuring the Trainer for a Backpropagation, Autoassociative, or Ensemble Network
	Choosing the Maximum Number of Training Iterations
	Choosing the Training Method
	Choosing Whether to Accelerate Training
	Configuring the Trainer for a Radial Basis Function Network
	Configuring the Trainer for a Rho Network
	Example
	See Also

	Fit Tester
	Configuring
	Example
	See Also

	Train and Test
	Configuring
	The Train and Test Block's Subworkspace
	Example
	See Also

	Five Fold CV
	Configuring
	Example
	See Also

	Sensitivity Tester
	Making Values Permanent
	Configuring
	See Also

	Action and Other
	Action Utilities
	Introduction
	Looping
	Stopping Paths
	Outputting Data
	Branching
	Performing Actions on Blocks
	Invoking a Rule

	Control Path Loop
	Resetting
	Configuring
	Example

	Control Path Circuit Breaker
	N-to-1 Sieve
	Resetting
	Configuring
	Example
	See Also

	Control Counter
	Resetting
	Configuring
	Example
	See Also

	Control Inhibit
	Resetting
	Configuring
	Example
	See Also

	Inference Output
	Configuring
	Example
	See Also

	Control Switch
	Configuring
	Example
	See Also

	Reset
	Configuring
	Example
	See Also

	Evaluate
	Configuring
	See Also

	Clear
	Configuring
	Example
	See Also

	Make Permanent
	Configuring
	Example
	See Also

	Restore Permanent Values
	Configuring
	See Also

	Attribute Transfer
	Configuring
	Example
	See Also

	Rule Action
	Configuring
	Example
	See Also

	Inference Blocks
	Introduction
	Observations
	Performing Logical Operations
	Pausing Paths

	High Value Observation, Low Value Observation
	Specifying a Threshold
	Configuring
	See Also

	Equality Observation
	Configuring
	See Also

	Conclusion
	Configuring
	Example
	See Also

	AND Gate
	How the Block Handles no-value Quality Inputs
	Configuring
	Example
	See Also

	OR Gate
	Configuring
	Example
	See Also

	NOT Gate
	Configuring
	Example
	See Also

	Inference Inhibit
	Configuring
	Example
	See Also

	Capabilities
	Introduction
	Charting and Graphing Attributes
	Forcing a Block to Evaluate
	Starting a Control Signal

	Chart Capability
	Setting Up a Chart
	Configuring a Chart
	Choosing How a Block’s Data is Displayed
	Going to a Chart
	Resetting
	Configuring
	Examples
	See Also

	Clock
	Configuring
	Example
	See Also

	Control Initiation Capability
	Configuring
	See Also

	Application Programmer’s Interface
	Application Programmer’s Interface
	Introduction
	Accessing the NOL API Procedures
	Path Displays
	Vector Blocks
	Data Set Blocks
	Neural Networks
	Action Utilities
	File Operations

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V

	Index
	@
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	#
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF005b57fa4e8e201c005b9ad88d2891cf62535370005d201d005d00204f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (Euroscale Coated v2)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

