
NeurOn-Line Studio

User’s Guide
Version 5.1 Rev. 0

NeurOn-Line Studio User’s Guide, Version 5.1 Rev. 0

June 2016

The information in this publication is subject to change without notice and does not represent a
commitment by Gensym Corporation.

Although this software has been extensively tested, Gensym cannot guarantee error-free
performance in all applications. Accordingly, use of the software is at the customer’s sole risk.

Copyright (c) 1985-2016 Gensym Corporation

All rights reserved. No part of this document may be reproduced, stored in a retrieval system,
translated, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of Gensym Corporation.

Gensym®, G2®, Optegrity®, and ReThink® are registered trademarks of Gensym Corporation.

NeurOn-Line™, Dynamic Scheduling™ G2 Real-Time Expert System™, G2 ActiveXLink™, G2
BeanBuilder™, G2 CORBALink™, G2 Diagnostic Assistant™, G2 Gateway™, G2 GUIDE™,
G2GL™, G2 JavaLink™, G2 ProTools™, GDA™, GFI™, GSI™, ICP™, Integrity™, and SymCure™
are trademarks of Gensym Corporation.

Telewindows is a trademark or registered trademark of Microsoft Corporation in the United States
and/or other countries. Telewindows is used by Gensym Corporation under license from owner.

This software is based in part on the work of the Independent JPEG Group.

Copyright (c) 1998-2002 Daniel Veillard. All Rights Reserved.

SCOR® is a registered trademark of PRTM.

License for Scintilla and SciTE, Copyright 1998-2003 by Neil Hodgson, All Rights Reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/).

All other products or services mentioned in this document are identified by the trademarks or
service marks of their respective companies or organizations, and Gensym Corporation disclaims
any responsibility for specifying which marks are owned by which companies or organizations.

Gensym Corporation
52 Second Avenue
Burlington, MA 01803 USA
Telephone: (781) 265-7100
Fax: (781) 265-7101 Part Number: DOC411-510

Contents Summary
Preface xv

Chapter 1 Overview 1

Chapter 2 Importing and Managing Data 17

Chapter 3 Visualizing Data 49

Chapter 4 Labeling Data 67

Chapter 5 Creating a Preprocessor 77

Chapter 6 Creating a Predictive Model 93

Chapter 7 Analyzing a Trained Model 109

Chapter 8 Creating a Backpropagation Net 129

Chapter 9 Creating an Autoassociative Net 141

Chapter 10 Creating a Radial Basis Function Net 151

Chapter 11 Creating a Rho Net 161

Chapter 12 Creating a Partial Least Square Model 169

Chapter 13 Creating a Principal Component Analysis Model 179

Chapter 14 Optimization 193

Chapter 15 Model Deployment 213

Chapter 16 Optimization Deployment 245

Appendix A NOLPredictor Class 263
iii

Appendix B NOLOptimizer Class 277

Index 291
iv

Contents
Preface xv

About this Guide xv

Audience xvii

Conventions xvii

Related Documentation xviii

Customer Support Services xxi

Chapter 1 Overview 1

Introduction 1

Feature Summary 3

Platform Compatibility 4

Running NeurOn-Line Studio 4

The Main Window 5
Navigating the Tree View 6
The Tool Bar 7
Labeling Tools 9

Terminology 9

Wizards, Data Views, and Property Tables 12

Global Preference Settings 15
Date/Time Format 15
Optimization 15

A Methodology Roadmap 16

Chapter 2 Importing and Managing Data 17

Introduction 17

Data Series 18
Time-Based Data Series 18
Row-Based Data Series 18

Importing Data 19
v

Importing Data Series From Files 19
Selecting a File for Data Import 19
Specifying a File Format 21

Using the Text Import Wizard 22
Predefined Formats 30

Importing Data from G2 32

Importing Data through Networks 34
URL Format 34

Viewing Data Series 36

Exporting Data 39

Appending Data 43

Removing a Data Series 44

Managing Data Formats in NOL Studio 46
Deleting File Formats 46

Chapter 3 Visualizing Data 49

Introduction 49

Viewing Data in a Spreadsheet 50

Viewing Data in a Line Chart 52
Adding and Removing Variables from the Line Chart 53
Setting Axis Styles 55

Y-Axis Styles 55
X Axis Styles 56

Zooming 57
Display of Missing Values 57
Tool Tips 58

Viewing Data in a X-Y Scatter Chart 58
Zooming 59

Viewing Data in Projection Charts 59
Using Projection Charts 60

What is PCA? 63

Viewing Data in a Histogram View 64

Chapter 4 Labeling Data 67

Introduction 67

Defining Label Categories 68

Setting the Active Label 70
vi

Labeling Data in the Spreadsheet View 70

Labeling Data in the Line Chart View 72

Labeling Data in the Scatter Chart Views 75
Projection Chart View 75
X-Y Scatter Chart View 75

Labeling Data 76

Chapter 5 Creating a Preprocessor 77

Introduction 77

Creating a New Preprocessor 78
Using the Create New Preprocessor Wizard 78

Working With an Existing Preprocessor 82
Accessing the Formula List 83
Reapplying the Preprocessor 83
Deleting the Preprocessor 83

Using Formulas to Preprocess Data 83
Showing Variables Before and After Formulas 84
Time Merging Data Series 84
The Formula List 85

Changing the Order of the Formula List 85
Selectively Viewing the Formula List 85
Applying Formulas 86
Exporting Formulas 86
Importing Formulas 86
Inserting a New Formula 87
Modifying an Existing Formula 87
Removing a Formula 87

Editing a Formula 88
The Define Formula Dialog 88
Formula Syntax 90
Navigating a Formula 90
Entering Variables and Functions 91
Adding and Removing Arguments 91

Chapter 6 Creating a Predictive Model 93

Introduction 93

Creating a Predictive Model 94
Naming the Model 95
Selecting to Use Old Model Parameters 95
Selecting the Preprocessor 96
Selecting the Output Data Series 96
vii

Classifying Variables 97
Specifying Time Delays 98

Output Delays 99
Automatic Selection of Inputs and Delays 100

The Training Console 102

Training and Model Selection Algorithms 105
Preparing the Training Set 105
Model Types 106
Model Structure Determination 106
Model Selection 107
Ensemble Models 108

Chapter 7 Analyzing a Trained Model 109

Introduction 109

Viewing the Model Properties 110
General Properties 110
Brief Information of Model Performance 110
Model Variables 111
Statistics 111
Model Structure 114

Performing Operations on the Model 114
Continuing Training 114
Showing the Predicted Versus Actual Plot 115

Viewing Parts of the Ensemble Model 115
Exporting Predictions 116
Zooming 117

Validating a Model Against Another Data Series 117
Zooming 120

Input-Output Sensitivities 120
Background 120
Displaying Sensitivities 121
Saving Sensitivity Values 122
Use Sensitivity Values to Help Select Model Inputs 122

Saving a Model 122

Performing Simulations with a Trained Model 124
Creating a New Simulation 125
Displaying Simulation Results 128

Chapter 8 Creating a Backpropagation Net 129

Introduction 129

Creating Backpropagation Net Models 130
Specifying the Model Architecture 131
viii

The Training Console 132
Choosing the Maximum Number of Iterations 132
Choosing the Training Method 132
Choosing Whether to Accelerate Training 133
Preparing the Training Set 134

Viewing the Model Properties 135
General Properties 135
Brief Information of Model Performance 135
Model Variables 135
Statistics 135
Model Structure 136

Performing Operations on the Model 137
Continuing Training 137
Showing the Predicted Versus Actual Plot 137
Exporting Predictions 138
Viewing the Predicted Error 139
Zooming 139
Validating a Model Against Another Data Series 139
Viewing Input-Output Sensitivities 140
Exporting a Model 140

Performing Simulations with a Trained Model 140

Chapter 9 Creating an Autoassociative Net 141

Introduction 141

Creating Autoassociative Net Models 142
Selecting the Data Series 142
Classifying Variables 143
Defining the Run Mode 143
Specifying the Model Architecture 144

The Training Console 145

Viewing the Model Properties 145
General Properties 146
Brief Information of Model Performance 146
Model Variables 146
Statistics 146
Model Structure 147

Performing Operations on the Model 147
Continuing Training 147
Showing the Predicted Versus Actual Plot 148
Exporting Predictions 148
Viewing the Predicted Error 149
Zooming 149
ix

Validating a Model Against Another Data Series 149
Viewing Input-Output Sensitivities 150
Exporting a Model 150

Performing Simulations with a Trained Model 150

Chapter 10 Creating a Radial Basis Function Net 151

Introduction 151

Creating Radial Basis Function Net Models 152
Specifying the Model Architecture 153

The Training Console 154
Choosing the Training Method 154
Preparing the Training Set 155

Viewing the Model Properties 155
General Properties 155
Brief Information of Model Performance 155
Model Variables 155
Statistics 155
Model Structure 156

Performing Operations on the Model 157
Showing the Predicted Versus Actual Plot 157
Exporting Predictions 157
Viewing the Predicted Error 158
Zooming 158
Validating a Model Against Another Data Series 158
Viewing Input-Output Sensitivities 159
Exporting a Model 159

Performing Simulations with a Trained Model 159

Chapter 11 Creating a Rho Net 161

Introduction 161

Creating Rho Net Models 162
Specifying the Model Architecture 162

The Training Console 164
Choosing the Training Method 164
Preparing the Training Set 165

Viewing the Model Properties 165
General Properties 165
Brief Information of Model Performance 165
Model Variables 165
Statistics 165
x

Model Structure 166

Performing Operations on the Model 167
Showing the Output Table 167
Exporting a Model 167

Chapter 12 Creating a Partial Least Square Model 169

Introduction 169

Creating Partial Least Square Models 170
Specifying the Model Architecture 171
Preparing the Training Set 171

Viewing the Model Properties 172
General Properties 172
Brief Information of Model Performance 172
Model Variables 172
Statistics 172
Model Structure 172

Performing Operations on the Model 173
Showing the Predicted Versus Actual Plot 173
Exporting Predictions 173
Viewing the Predicted Error 175
Zooming 175
Validating a Model Against Another Data Series 175
Viewing Inputs/Outputs Ratio 176
Exporting a Model 176

Performing Simulations with a PLS Model 177

Chapter 13 Creating a Principal Component Analysis Model 179

Introduction 179

Creating Principal Component Analysis Models 180
Selecting the Data Series 180
Classifying Variables 181
Preparing the Training Set 182

Viewing the Model Properties 182
General Properties 183
Model Variables 183
Statistics 183

Performing Operations on the Model 183
Validating a Model Against Another Data Series 183

2D Score Chart 185
Single Score Chart 185
SPE Chart 186
xi

Exporting the Model Parameters 187
SPE Statistic Chart 188
Loading Chart 190
Single Score Chart 191
2D Score Chart 192

Chapter 14 Optimization 193

Introduction 193

Variable Classification for Optimization 194

Developing an Optimization Model 196
Naming the Model 196
Selecting the Preprocessor 197
Selecting the Output Data Series 198
Selecting the State Variable Data Series 199
Classifying Variables 200
Specifying Time Delays 200
Automatic Selection of Inputs and Delays 200
The Training Console 201

The Optimization Objective Function 202

Creating an Optimization Problem 203
Using the Optimization Wizard 204

Running an Optimization 208
Initial Condition and Error Handling in Optimization Calculation 209
Maximum Iterations 210

Running through an Existing Data Set 210

Saving an Optimization 210

Chapter 15 Model Deployment 213

Introduction 213

Exporting Your Model 214

Deploying Your Model in ActiveX 215
Registering the ActiveX Control 215
Using NOLPredictor in Visual Basic 215
Loading the NOL Model 216
Running the Model in ActiveX 219

Data Input 219
Testing Whether the Model is Time-Based Model 222
Calculating Output 222
Obtain Results 222
Clear Data Buffer 222
xii

Training Predictive Models in Real Time 223

Deploying Your Model in G2 223

Deploying Your Model in NOL Classic 224
Exporting Your Model as a Weight File 224
Using the NOL Model 225

Loading Models Programmatically 226
Examining Your Model 226
Saving a Model In Your KB 227
Running the Model in G2 227

Deploying in G2 using G2 JavaLink 228
Loading the Necessary KBs 228
Launching a Remote Process at Startup 229
Launching a Remote Process Using Procedure 230

The Predictive Model and its API 231
Method to Initialize the Predictive Model 232
General Methods 232
Methods to Send Input Data to a Model 233
Methods to Set Input Values for Time-Based Models 234
Method to Test Whether it is a Time-Based Model 235
Methods to Set Input Values for Row-Based Models 235
Methods to Calculate Outputs 235
Training Predictive Model at Run Time 236
Additional Methods for Predictive Model 237
Handle Error Exceptions 241

The Statistical Models and their API 241
Building Online Statistical Models 241

Method for Initializing the Statistical Calculator 241
Principal Component Analysis (PCA) Model 242
Methods for PCA Model 242
Partial Least Squares (PLS) Model 243
Methods for PLS Model 243

Chapter 16 Optimization Deployment 245

Introduction 245

Exporting Optimization 245

Deploying in ActiveX 246
Using NOLOptimizer in Visual Basic 246
Loading the NOL Optimization Object 247
Running the Optimization 249

Data Input 249
Calculating Optimization 250
Obtaining Results 250
xiii

Training Optimization Models in Real Time 250

Deployment in G2 using G2 JavaLink 250
Loading the Necessary KBs 251
Launching a Remote Process 251

The Optimization Model and its API 252
Method to Initialize the Optimization 252

General Methods 253
Methods to Set Weights and Bounds on Variables 254
Methods to Get/Set Variable Values 256
Methods to Calculate the Optimization 257
Training Optimization Models in Real Time 258
Additional Methods for the Optimization 259
Handle Error Exceptions 262

Appendix A NOLPredictor Class 263

Introduction 263

Notation 263

Data Members 264

Methods 267

Appendix B NOLOptimizer Class 277

Introduction 277

Notation 277

Data Members 278

Methods 282

Index 291
xiv

Preface
Describes this guide and the conventions that it uses.

About this Guide xv

Audience xvii

Conventions xvii

Related Documentation xviii

Customer Support Services xxi

About this Guide
This guide describes NeurOn-Line Studio, a graphical environment for building
neural network applications. It consists of these chapters:

This chapter... Describes...

Overview NeurOn-Line Studio, its capabilities,
features, and computational
environment

Importing and Managing Data How to import, export, and perform
other data management tasks in
NeurOn-Line Studio.

Visualizing Data How to visualize and explore data
through charts, graphs, and tabular
views.

Labeling Data How to label data to identify the parts of
the raw data you would like to use to
train a model.
xv

Creating a Preprocessor How to create a preprocessor that
conditions the raw data used to build
models.

Creating a Predictive Model How you create a predictive model,
using data you have prepared using a
preprocessor.

Analyzing a Trained Model How to inspect and validate the
performance of a predictive model.

Creating a Backpropagation Net How how to create a backpropagation
net.

Creating an Autoassociative Net How you create an autoassociative
network.

Creating a Radial Basis Function Net How you create a Radial Basis Function
network

Creating a Rho Net How you create a Rho network.

Creating a Partial Least Square
Model

How to create a partial least square
model.

Creating a Principal Component
Analysis Model

How to create a principal component
analysis model.

Optimization How to use a model and user-defined
criteria to determine correct setpoints
for manipulated variables.

Model Deployment How to export and deploy a predictive
model in ActiveX and G2.

Optimization Deployment How to export and deploy an
optimization in ActiveX and G2

Appendix A, NOLPredictor Class Data members and operations of the
NOLPredictor class.

Appendix B, NOLOptimizer Class Data members and operations of the
NOLOptimization class.

This chapter... Describes...
xvi

Audience
Audience
This guide is for developers of neural network applications. Users should have
some familiarity with neural networks. Depending on the deployment
environment, users should also be familiar with G2, NeurOn-Line Classic, or
G2 ActiveXLink.

Conventions
This guide uses the following typographic conventions and conventions for
defining system procedures.

Typographic

Convention Examples Description

g2-window, g2-window-1,
ws-top-level, sys-mod

User-defined and system-defined
G2 class names, instance names,
workspace names, and
module names

history-keeping-spec, temperature User-defined and system-defined
G2 attribute names

true, 1.234, ok, “Burlington, MA” G2 attribute values and values
specified or viewed through
dialogs

Main Menu > Start

KB Workspace > New Object

create subworkspace

Start Procedure

G2 menu choices and button labels

conclude that the x of y ... Text of G2 procedures, methods,
functions, formulas, and
expressions

new-argument User-specified values in
syntax descriptions

text-string Return values of G2 procedures
and methods in syntax
descriptions
xvii

Note Syntax conventions are fully described in the G2 Reference Manual.

Procedure Signatures

A procedure signature is a complete syntactic summary of a procedure or
method. A procedure signature shows values supplied by the user in italics, and
the value (if any) returned by the procedure underlined. Each value is followed by
its type:

g2-clone-and-transfer-objects
(list: class item-list, to-workspace: class kb-workspace,
delta-x: integer, delta-y: integer)

-> transferred-items: g2-list

Related Documentation

NeurOn-Line

NeurOn-Line Release Notes

NeurOn-Line User’s Guide

NeurOn-Line Reference Manual

NeurOn-Line Studio User’s Guide

File Name, OK, Apply, Cancel,
General, Edit Scroll Area

GUIDE and native dialog fields,
button labels, tabs, and titles

File > Save

Properties

GMS and native menu choices

workspace Glossary terms

c:\Program Files\Gensym\ Windows pathnames

/usr/gensym/g2/kbs UNIX pathnames

spreadsh.kb File names

g2 -kb top.kb Operating system commands

public void main()
gsi_start

Java, C and all other external code

Convention Examples Description
xviii

Related Documentation
Gensym Neural Network Engine

G2 Core Technology

• G2 Bundle Release Notes

• Getting Started with G2 Tutorials

• G2 Reference Manual

• G2 Language Reference Card

• G2 Developer’s Guide

• G2 System Procedures Reference Manual

• G2 System Procedures Reference Card

• G2 Class Reference Manual

• Telewindows User’s Guide

• G2 Gateway Bridge Developer’s Guide

G2 Utilities

• G2 ProTools User’s Guide

• G2 Foundation Resources User’s Guide

• G2 Menu System User’s Guide

• G2 XL Spreadsheet User’s Guide

• G2 Dynamic Displays User’s Guide

• G2 Developer’s Interface User’s Guide

• G2 OnLine Documentation Developer’s Guide

• G2 OnLine Documentation User’s Guide

• G2 GUIDE User’s Guide

• G2 GUIDE/UIL Procedures Reference Manual

G2 Developers’ Utilities

• Business Process Management System Users’ Guide

• Business Rules Management System User’s Guide

• G2 Reporting Engine User’s Guide

• G2 Web User’s Guide

• G2 Event and Data Processing User’s Guide

• G2 Run-Time Library User’s Guide
xix

• G2 Event Manager User’s Guide

• G2 Dialog Utility User’s Guide

• G2 Data Source Manager User’s Guide

• G2 Data Point Manager User’s Guide

• G2 Engineering Unit Conversion User’s Guide

• G2 Error Handling Foundation User’s Guide

• G2 Relation Browser User’s Guide

Bridges and External Systems

• G2 ActiveXLink User’s Guide

• G2 CORBALink User’s Guide

• G2 Database Bridge User’s Guide

• G2-ODBC Bridge Release Notes

• G2-Oracle Bridge Release Notes

• G2-Sybase Bridge Release Notes

• G2 JMail Bridge User’s Guide

• G2 Java Socket Manager User’s Guide

• G2 JMSLink User’s Guide

• G2 OPCLink User’s Guide

• G2-PI Bridge User’s Guide

• G2-SNMP Bridge User’s Guide

• G2-HLA Bridge User’s Guide

• G2 WebLink User’s Guide

G2 JavaLink

• G2 JavaLink User’s Guide

• G2 DownloadInterfaces User’s Guide

• G2 Bean Builder User’s Guide

G2 Diagnostic Assistant

• GDA User’s Guide

• GDA Reference Manual

• GDA API Reference
xx

Customer Support Services
Customer Support Services
You can obtain help with this or any Gensym product from Gensym Customer
Support. Help is available online, by telephone, by fax, and by email.

To obtain customer support online:

 Access G2 HelpLink at www.gensym-support.com.

You will be asked to log in to an existing account or create a new account if
necessary. G2 HelpLink allows you to:

• Register your question with Customer Support by creating an Issue.

• Query, link to, and review existing issues.

• Share issues with other users in your group.

• Query for Bugs, Suggestions, and Resolutions.

To obtain customer support by telephone, fax, or email:

 Use the following numbers and addresses:

Americas Europe, Middle-East, Africa (EMEA)

Phone (781) 265-7301 +31-71-5682622

Fax (781) 265-7255 +31-71-5682621

Email service@gensym.com service-ema@gensym.com
xxi

xxii

1

Overview
Provides an overview of NeurOn-Line Studio, its capabilities, features, and
computational environment

Introduction 1

Feature Summary 3

Platform Compatibility 4

Running NeurOn-Line Studio 4

The Main Window 5

Terminology 9

Wizards, Data Views, and Property Tables 12

Global Preference Settings 15

A Methodology Roadmap 16

Introduction
NeurOn-Line Studio (NOL Studio) is a graphical, object-oriented software
product for building neural network applications. Using NeurOn-Line Studio,
you can model dynamic, nonlinear phenomena that are difficult to describe by
analytical models, using historical data stored in databases, process data
historians, or text files. Typical applications include quality assurance, sensor
validation, diagnosis, and process modeling.

You don’t have to be an expert in neural networks or statistics to use NeurOn-
Line Studio. NOL Studio allows you to focus on your system and your data, while
1

the software handles the technical details, behind the scene. You simply load your
data, graphically select the portions you’d like to use for model development, and
let NOL Studio do the rest. Advanced users can make use of additional, powerful
options for data analysis and custom model building.

NOL Studio is specially designed to allow you to handle large, messy data sets
that are typically produced from industrial operations. These data sets might
have many defects, such as missing and bad data, incompatible formats deriving
from different databases, historians, and lab records, and combine together
different production runs into large files. Limited only by memory capacity, NOL
Studio can readily handle data sets of upwards of 100,000 data points with 100+
variables.

NOL Studio supports three types of models: predictive models, statistical models,
and optimization models. Predictive models are used for creating virtual
analyzers (software sensors), fault detection, sensor validation, and forecasting.
Statistical models are used to perform statistical analysis of your data and can be
used as a statistical monitoring tool for your process. Optimization models are
used for determining the best operational settings for a process to minimize an
objective function you define.

Predictive models can be any of the following six types:

• Predictive model.

• Backpropagation Net model.

• Autoassociative Net model.

• Radial Basis Function Net model.

• Rho Net model.

• Partial Least Square model

The last four models are identical to the models in classic NeurOn-Line.

Once a tentative model is built, you can use a variety of powerful analysis tools to
test and validate the fit. For example, you can apply the model to new data, that
was not used in the training process. Or, you can plot response surfaces to
analysis the input-output relationships learned by the model.

To deploy the resulting models, you can use a supplied ActiveX component that
can be embedded in any COM-compliant container application (COM is
Microsoft’s standard component interface specification). Many databases,
historians, DCSs and desktop applications are COM-compliant. Examples of
suitable containers include Microsoft Office applications, OSI’s Process Book,
Aspen Technology’s InfoPlus.21, and Honeywell’s PHD. You can also use
Gensym’s flagship G2 real-time expert system with the Gensym Neural Network
Engine (GNNE) and GEDP Graphical Language to configure the on-line
deployment, acquire data, and control the context of applying the neural network.
2

Feature Summary
Feature Summary
Here are some of the key features of NeurOn-Line Studio:

• Data Importing

– Accepts a wide variety of ASCII text file formats

– Accepts data sets from G2 online environment

– Able to combine multiple files covering different data ranges

– Search-and-replace capability

– No explicit size limitation on data sets

• Data Preprocessing

– Interactive graphical data labeling

– User-defined label categories

– Projection plots for outlier identification

– User-defined mathematical formulas (transforms)

• Modeling

– Steady-state and dynamic models, which can have recursive behavior

– Automatic selection of relevant inputs

– Automatic selection of time delays

– Automatic feedback of output for auto-recursive models

– Automatic determination of network architecture that optimizes future
prediction accuracy

– Efficient training with upwards of 100,000 samples and 100 variables

• Validation and Simulation

– Predicted versus actual plots

– Response surface plots

– Input sensitivity analysis

• Optimization

– Four-way variable categorization (manipulated, disturbance, state, and
output)

– Hard and soft upper and lower bounds

– Cost-based objective functions
3

• Deployment

– Embedded component deployment as ActiveX component in COM-
compliant containers

– Interface with G2 to leverage G2's data acquisition, expert system, and
object-oriented environment

– Configuration via graphical clone-and-connect block language

Platform Compatibility
NOL Studio runs on Windows 2000 and Windows XP. On Windows platforms,
the user interface follows Microsoft user interface standards.

Running NeurOn-Line Studio
NOL Studio is now a component of NOL bundle software. To install NOL Studio,
insert the NOL bundle CD into your CD drive, launch the setup.exe file, located in
the root directory. Follow the instructions in the setup program.

To launch the application on Windows platforms:

 Do one of the following:

• Choose Start > Programs > Gensym G2 2011 > G2 NeurOn-Line >
G2 NeurOn-Line Studio.

• Execute this command at a DOS command prompt:

install-dir\nolstudio

where install-dir is the directory you chose to install the software.

If your path is properly set to include the directory where NOL Studio is
installed, you can shorten this to just nolstudio.

• Execute this procedure in G2:

nols-launch-nolstudio-by-setting

You might find it convenient to create a shortcut to allow you to launch the
application. To do this, click the right mouse button on the nolstudio.bat file,
and select Create Shortcut.
4

The Main Window
The Main Window
All activities in NOL Studio revolve around the application window, shown here:

The applications use familiar Windows user interface elements:

• Title bar at the top of the window, with tools to iconize, maximize, and close
(quit) the application.

• Menu bar with pull-down menus.

• Toolbar, with common actions such as file operations, creating plots, building
models, etc.

• A tree view, at the left side of the window, showing an inventory of the objects
in the current project.

• A status bar, at the bottom of the window, showing additional information
about the current action.

• A work area (the gray area above), where property tables, plots, and other
sub-windows are displayed.

Mouse gestures, as a rule, follow Microsoft application standards:

To... Do this...

Select an item Click on it with the left mouse button.

Show a pop-up menu of
actions for an item

Click the right mouse button.
5

Navigating the Tree View

The tree view provides access to the objects you create while using NOL Studio.
The tree view contains the following types of objects:

• Data series

• File Formats

• Labels

• Preprocessors

• Predictive Model

• Backpropagation Net

• Autoassociative Net

• Radial Basis Function Net

• Rho Net

• Partial Least Square Model

• Principal Component Analysis Model

• Optimization Model

• Simulations

• Optimizations

Open an item Double-click on the item, using the left
mouse button.

Select a contiguous group of
items, for example, successive
entries in a scroll area

Select the first item in the group, hold
down the shift key, and then select the
last item in the group.

Toggle the selection of an
individual item

Hold down the control key (ctrl) while
selecting the item, using the left mouse
button.

See a pop-up description (tool
tip) of an item

Hold the mouse motionless over the
item for one second, without
depressing either mouse button. The
tool tip disappears automatically after
a brief period, or when the mouse is
moved.

To... Do this...
6

The Main Window
When you create an object, it is automatically added to the tree view. If a node
contains items, the node will be prefaced with a plus (+) sign. To expand a node,
left-click once on the plus sign. To close a node, click on the minus (-) sign.
Initially, the tree view is empty.

Every object in the tree view has a corresponding property table. The property
table contains information about the object, and gives you access to certain actions
on the object.

To navigate to any object from the tree view:

1 Open the appropriate node in the tree view by clicking on the plus (+) sign

2 Double click on the desired object

3 The property table for that object will appear in the main window

The Tool Bar

The tool bar, shown below, gives you easy access to frequently-used functionality.

Option Description

Creates a new project.

Opens an existing project file.

Saves the current project to the disk.

Prints an internal window.

Imports a text file containing raw data.

Search and replace (in a data series).

Opens a spreadsheet view.

Plots a line chart.
7

Like menu choices, the tool bar buttons may be disabled (grayed out) when they
cannot be used. For example, you cannot plot a line chart until you have loaded
data. Therefore, the line chart button is disabled until data is loaded.

Plots a projection chart.

Plots a scatter (X-Y) chart.

Plots a histogram.

Creates a new label.

Creates a new preprocessor.

Creates a new predictive model.

Creates a new backpropagation net.

Creates a new autoassociative net.

Creates a new radial basis function net.

Creates a new rho net.

Creates a new partial least square model.

Creates a new principal component analysis model.

Creates a new optimization model.

Creates a new simulation.

Creates a new optimization.

Option Description
8

Terminology
Labeling Tools

Next to the toolbar, there is a selection box and buttons that determine the active
label and labeling mode. These tools are used when you are categorizing
(labeling) the raw data. The labeling tools are shown below:

To set the active label, use the down arrow to select one of the defined labels. This
selection box will be empty until you have defined one or more labels. To toggle
between label and unlabel mode, click the Label button.

When you are in label mode, selections in the spreadsheet, line chart, or scatter
charts will apply the selected label to the data. In unlabel mode, the label will be
removed when the data is selected on the spreadsheet, line chart or scatter charts.

More information on labeling can be found in the chapter on data selection.

Terminology
When you use NeurOn-Line Studio, you will create several types of objects. These
include:

Object Description

Data series A data series represents a set of
measurements on certain variables. Each row
of a data series represents measurements
taken at a certain time. Each row has a unique
time stamp. Data series can be combined by
appending or time-merging. Appending adds
more rows to a data series. Time-merging
creates a new data series by placing the
variables in two or more data series under the
same set of time stamps.

File Formats A file format is a description of the layout of
an ASCII text file, used to import data into
NOL Studio. Whenever you import a text file,
a file format is automatically created for that
file. You can apply the format to load other,
similar files.
9

Labels Labels are used to mark the raw data, to
indicate regions of special interest. You can
define any label categories appropriate for
your data. Examples of label categories are
outlier, transient, steady state, product
transition, or cut.

Preprocessors A preprocessor defines the pretreatment of
data, before it enters the neural network
model. Each preprocessor contains two parts:
a filter and an optional list of formulas. The
filter defines which parts of the raw data you
want to use in training a model. The filter is
based on the labels you apply to the raw data.
A simple filter might be “all data excluding
data labeled cut”. The formula list allows you
to perform mathematical transformations on
the filtered data, to fill in missing values,
smooth noisy signals, calculate ratios, and the
like.

Predictive Models Models are generated by the training process.
You designate input and output variables,
optional time delays, and other training
parameters. You can generate as many
models as you wish, and compare their
performance. Predictive models are used for
creating virtual analyzers (software sensors),
fault detection, sensor validation, and
forecasting.

Backpropagation Nets BPNs are generated by the training process.
You designate input and output variables,
model architecture, and training parameters.
You can generate as many models as you
want and compare their performance. BPNs
are useful for creating virtual analyzers
(software sensors), fault detection, sensor
validation, and forecasting.

Object Description
10

Terminology
Autoassociative Nets AANs are generated by the training process.
You designate modeled variables, model
architecture, and training parameters. You
can generate as many models as you want and
compare their performance. AANs are useful
for sensor validation.

Radial Basis Function
Nets

RBFNs are generated by the training process.
You designate input and output variables,
model architecture, and training parameters.
You can generate as many models as you
want and compare their performance. RBFNs
are useful for fault detection, pattern
recognition, and forecasting.

Rho Nets Rhos are generated by the training process.
You designate input and output variables,
model architecture, and training parameters.
You can generate as many models as you
want and compare their performance. Rhos
are useful for fault detection and
classification.

Partial Least Square
Models

PLS models are generated by the training
process. You designate input and output
variables, and model architecture. PLS models
are useful for creating virtual analyzers
(software sensors), fault detection, sensor
validation, and forecasting.

Principal Component
Analysis Models

PCA models are used to analyze the statistical
properties of a given data set. PCA models are
useful for fault detection, sensor validation,
and process performance monitoring.

Optimization Models Optimization models are used for
determining the best operational settings for a
process, to minimize an objective function
you define.

Object Description
11

Wizards, Data Views, and Property Tables
The user interface of NOL Studio is composed primarily of three types of items,
wizards, data views, and property tables.

• Wizards are step-by-step dialogs that guide you through a task, usually the
creation of a new item, such as a preprocessor, label, or model. Wizards also
help you through multi-stage activities, such as importing data from text files.
When you are working with a wizard, you move from step to step using the
Back and Next buttons. After the last step, you complete the action by
selecting the Finished button. You can quit the activity at any time using the
Cancel or the close window button.

Simulations Simulations are used to show the response of
a model to user-defined inputs. Like other
objects, simulations are automatically stored
as part of your project, to allow you to return
to scenarios, or apply the same scenarios to
different models.

Optimizations When you create an optimization model, you
can define an objective function that
represents a cost function for your operations.
You can also define hard and soft constraints
on the input and output variables. To run an
scenario using your objective function, you
create an optimization object. The
optimization calculates values for inputs that
minimize your objective function while
satisfying given constraints.

Object Description
12

Wizards, Data Views, and Property Tables
Here is a typical wizard dialog:

• Data views are displays that show your data, or the properties of your data, in
various graphical and tabular forms. The primary data views in NOL Studio
are the spreadsheet, line charts, scatter charts, projection charts, and
histograms. In many contexts, data views are interactive; the views both
display information and receive input from mouse gestures. Views are also
dynamically linked, so changes to the underlying data simultaneously
updates all open views. For example, adding a label in a line chart view
simultaneously adds a label in the spreadsheet view, represented by coloring
a cell. See Visualizing Data, for more information.
13

• Property tables present information on the objects in a project. You access the
property tables by double clicking on an object in the tree view, or by using
the Go To choice on the Object menu. In some cases, the property table accepts
input, allowing you to change some property, such as the object’s name. In
addition, there are buttons along the right side of the table for performing
actions on the object. For example, the property table for a variable allows you
to plot the variable in a line chart, or display a histogram.

Here is an example of a property table for a data series:
14

Global Preference Settings
Global Preference Settings
From the File > Preferences menu, you can set global preferences for Time/Date
format and Optimization maximum iteration.

Date/Time Format

You can define date and time formats that will be used as the default setting for
spreadsheet display and text output of data series. The initial default settings are
Date Format MM/dd/yy and Time Format H:mm:ss. When defining a new
format you should test it with the current time by clicking the Test button before
clicking OK. Invalid formats will be ignored.

Optimization

You can set the number of maximum iterations that NOLStudio will use when
running optimizations. The initial setting is 10000. The setting is used when
creating a new optimization object. If you run an optimization and reach the
maximum iteration, NOLStudio will give you a warning message and allow you
to increase the maximum iteration for this object at that time.
15

A Methodology Roadmap
You use NeurOn-Line Studio by following a simple methodology, which include
these basic steps:

1 Load the raw data.

2 Label (categorizing) the raw data.

3 Preprocess the data.

4 Train the model.

5 Validate the model.

6 Deploy the model.

You begin by loading raw data into NeurOn-Line Studio by importing text files,
creating one or more data series in your project. Next, you add labels to the data,
to indicate parts of the data you want use to build the model, or conversely, to
mark bad data you want to exclude.

You next create a preprocessor, which conditions the raw data. The preprocessor
has two parts: a filter and optional formulas. The filter specifies which parts of the
raw data should be included in the training set, based on the labels you applied.
The formulas can be used to fill in missing values, calculate new derived variables
such as ratios, smooth noisy data, and much more.

Then, you are ready to train a model. After training, there are several ways to
validate the results. Finally, you can deploy your model for on-line use. The
remainder of this User’s Guide explains each of these steps in detail.
16

2

Importing and
Managing Data
Describes how to import, export, and perform other data management tasks in
NeurOn-Line Studio.

Introduction 17

Data Series 18

Importing Data 19

Importing Data Series From Files 19

Importing Data from G2 32

Importing Data through Networks 34

Viewing Data Series 36

Exporting Data 39

Appending Data 43

Removing a Data Series 44

Managing Data Formats in NOL Studio 46

Introduction
One of the biggest obstacles in modeling processes with neural nets is the ability
to manage large sets of data easily and efficiently. NOL Studio allows you to
perform common data manipulations quickly and easily. NOL Studio can read
data from a variety of data sources, with flexible formatting. This chapter takes
you through some basic data operations, such as importing data from outside
17

sources, defining and managing file formats, creating data sets from multiple
files, exporting data, and removing data from the NOL Studio. We preface this
discussion with an overview of data representation in NOL Studio.

Data Series
A data series is a two-dimensional table of data, whose columns represent
variables, and whose rows represent samples. There are two types of data series:

• Time-based

• Row-based.

Time-Based Data Series

In a time-based data series, each row represents observations or measurements at
a certain time. The time for each row is referred to as the timestamp for the row.
Timestamps are represented internally in a format-independent, year 2000
compliant manner, with millisecond precision. All time-based calculations are
performed using this internal representation, and also are year 2000 compliant.

Time stamps must be in a strictly ascending order. However, the time intervals
between rows do not have to be equally-spaced.

Row-Based Data Series

If rows of a data series lack time stamps, each row of the data series is assumed to
represent a set of related observations on the same material, batch, or sample. The
rows are assumed to be non-sequential, and the order of the rows is ignored in all
data manipulations.

With row-based data, certain operations are not defined, in particular, delays and
interpolations. Both delays and interpolations require the assumption that
successive rows represent successive samples in time. However, because the rows
of a row-based data series are not assumed to be sequential, a missing value in
row n cannot be estimated from the values in rows n-1 and n+1. You also cannot
refer to the sample d rows before another sample, without raising the implication
of sequence or time.

If the samples are sequential, then you should consider adding time stamps to the
rows, even if you have to introduce artificial time stamps, starting at an arbitrary
time and incrementing by an arbitrary fixed time interval. This will enable
interpolation and delay calculations.
18

Importing Data
Importing Data
The first step in building a model in NeurOn-Line Studio is to import data from
one or more external data sources. NeurOn-Line Studio provides wizards for
importing data from several sources:

• Text files - NeurOn-Line Studio provides flexible file import facilities.

• G2 - NeurOn-Line Studio has access to G2’s extensive connectivity solutions
to databases, data historians, and raw process data.

• Network - NeurOn-Line Studio can fetch data through the Internet for a
specified URL and a specified data format.

Importing Data Series From Files
To import data from a file into NOL Studio, you follow several predefined steps.

1 Select the file from which data will be imported.

2 Select a pre-existing format, or define a new format, for the data file.

3 Import the file.

This section will take you through all of the above steps.

Selecting a File for Data Import

There are three methods to initiate data import into NOL Studio:

• A menu choice

• A toolbar button

• A tree-view selection.

All three methods launch the same file selection dialog.
19

From the menu bar:

 Choose File > Import. For example:

From the toolbar:

 Click Import. For example:

From the tree view:

 Right-click the Data Series category. For example:
20

Importing Data Series From Files
Any of these actions displays the Import Data Series dialog. For example:

To select a file:

1 Navigate through the directories using standard techniques.

2 Left-click on the file, and choose Open.

If your file has a .ds or .bds extension, it is imported immediately into NOL
Studio. If your file has a different extension, a dialog prompts you to specify
the format of the file.

An existing format can be either a predefined NOL Studio format, or a format you
defined previously, when loading an earlier data set. If there is no suitable format,
you will create one using the File Import wizard. The file type option provides a
drop-down list of predefined file types.

Specifying a File Format

There are two predefined file formats in NeurOn-Line Studio:

• An ASCII file format, which allows you to import or append an ASCII file that
follows a standard formatting convention.

• A BINARY file format, which is used for saving and loading data after it was
already imported into NOL Studio.
21

Files in the predefined ASCII format have the .ds extension. Files in the
predefined BINARY format have the .bds extension.

Files that do not have the extensions described above require a user-defined
format. Defining a data file format is easy with NOL Studio - a Text Import
Wizard takes you step by step through the process, allowing you to go back to
any step you may wish to change. The Wizard is activated immediately if you
answer No to the dialog above. So, let’s imagine for a moment that this is the first
data series being imported into NOL Studio, and that it is not formatted in either
of the predefined formats. In this case, the Wizard will guide you through a new
format creation.

Using the Text Import Wizard

You can open an ASCII file with an unknown format using the Text Import
wizard. The basic assumption is that the data is arranged in rows and columns,
where columns represent values of a certain variable at different times. NOL
Studio provides several options for specifying the format of the delimiters,
handling special symbols, and specifying the time and date information that may
be found in the file. You save these specifications in a format file and associate this
format with the current data series. You can also use this format for loading
similarly formatted data series in the future.

To use the Text Import Wizard to define a format for a specific data series:

1 Let’s continue with the data series started in the previous section. The file
name is jpgdata.txt, and you are asked if you wish to use an existing format.
22

Importing Data Series From Files
2 Click No. This invokes the Text Import wizard with the following dialog:

3 Enter a name for this data series.

Every import command creates a data series. The default name is based on the
name of the file. Alternatively, you can name the data series to be imported by
typing a string in the dialog.

4 Enter a optional comment associated with this data series to remind yourself
any information you may wish to remember in the future.

5 Enter the format name and comment for the format. The format name is
essential if you wish to reuse it later for importing similar data series.

Tip The name of the data series should reflect a meaningful aspect of the imported
data that lies at a higher level of abstraction than the cases to be extracted from
the data series. For example, the name of the data series might be
“JanFeb98Prod”, denoting the entire production data for January and
February. Following consistent naming conventions will help organize your
NeurOn-Line Studio projects by indicating the type of data to be modeled.
23

6 Click Next to advance to the next screen, which asks you to specify the
delimiter format of your data file.

NeurOn-Line Studio supports the reading of text delimited by white space
characters, comma, semicolon and tab. An arbitrary string can also be
specified as the separator.

7 Choose a delimiter by clicking on the appropriate radio button, or enter a
string of your choice into the text box.

Once you choose a delimiter, the effects of the choice on how NeurOn-Line
Studio will separate the data can be seen in the Data Preview window of the
dialog. When the delimiter choice is changed, NeurOn-Line Studio applies the
settings and displays the results in the Data Preview window immediately.
24

Importing Data Series From Files
8 Click Next to advance to the next screen, which asks you to format the
columns in the data file.

You need to select special formats for all columns that do not contain data,
contain special data (such as date and time) or contain data that you wish to
be ignored.

9 Select the column to be formatted clicking on the column header.

10 Choose the format setting by selecting one of the provided radio buttons. For
example, if you select Date&Time, you can then examine the options of the
associated drop-down list box to find the correct format for your data
representation.

11 If you do not find a format to fit your date/time representation, click on the
Custom Formats... button, which will bring up a dialog allowing you to
design your own format.
25

For example:

a Select the Format Type: Date&Time, Date, or Time

b Click in the Format Pattern type-in box. You can either type in the format,
using the Available Format Keys in the list box below, and any separators
you wish, or you can double-click on any key in the Available Format
Keys to insert it into the Format Pattern.

c With the cursor in the Format Pattern type-in box, press Return to insert
the format into the Current Custom Format list.

d If you wish to delete a specific custom format, select it from the Current
Custom Formats list, and click on the Remove Format button.

e Click on the OK button when you finish adding the necessary custom
formats.

f The custom formats will appear at the top of the appropriate format lists
in the Import Wizard, step 3. Select and apply custom formats to chosen
columns.

Caution Date, Time, and Date&Time are handled as three separate choices. If a column
contains both date and time information, you must choose Date&Time.

If a time-based process model is the goal of your modeling efforts, NeurOn-
Line Studio requires accurate accounting of the time associated with each data
sample. It is common for time information to be provided in a devoted
column or columns by the file generation system in some consistent format.
26

Importing Data Series From Files
For each of the main date and time options (Date&Time, Date, Time), there are
several possible date and time formats.

When you enter select a Date, Time, or Date&Time format, NeurOn-Line
Studio will attempt to confirm your selection by reading a small portion of the
file.

• If there is an error parsing the date or time with the format you selected,
you will be informed, and your choice will not be allowed.

• If parsing is successful, you will be asked to confirm that dates and times
have been correctly interpreted. Selecting “yes” will confirm your choice.

Caution You must select a date/time format that exactly matches the date/time
representation in the file, or the file information will not be interpreted
correctly.

12 Click Ignored if the column you selected contains irrelevant data.

13 Click Set to save the format of the current column.The column number and its
format is added to the formatted columns list, below the Current Column text
box.

Caution If you forget to click Set, your specification will not be recorded.

14 To format another column, follow the same steps, starting with selecting the
column number, and ending with clicking Set.

15 To remove a column format, select the column number and its associated
format from the list box, and click Remove.
27

16 Click Next to advance to the next screen, where you are asked to format rows.

Row formatting options are generally provided to deal with header
information that is usually found at the beginning of a file, and often contains
information about the contents and size of a file.

17 Select the row to be formatted, by either typing the row number into the
dialog, or by clicking on the corresponding row header in the data preview
window. Selecting the row by clicking on its header updates the row number
displayed in the dialog.

18 Choose the format setting by selecting one of the radio buttons: Tags, Units,
Names, or Ignore. Format settings allow you to specify that the row entries are
to be interpreted as:

• Tags: unique alphanumeric strings that originate in a DCS (distributed
control system) or data historian. If there are no tags, tag names will be
created.

• Units: strings that indicate the measurement units of a particular variable,
or column of data. Units are not used by NOL Studio, but are included for
clarity.

• Names: a short string naming the variable. Names are usually more
descriptive than tags.

• Ignored: an entire row can be ignored, based solely on its position within
the data file. For example, the first row from a particular data historian
may contain information related to the size of the file, which you will want
NOL Studio to ignore.

Only one setting can be selected for any given row.
28

Importing Data Series From Files
19 When you are done formatting a row, click Set to associate the format with the
current row.

20 To format another row, follow the steps described above.

21 To remove a row setting, select the row with its associated setting from the list
box, and click the Remove button.

22 Click Next to advance to the next dialog, which asks you to format symbols.

You can specify NeurOn-Line Studio’s interpretation of special character
strings, termed symbols, that may be found in the imported file. The system
that originally produced the file may use a certain string to denote an event or
failure in data collection. For example, the string “Error” may have been
written in the data file to denote that a value was not read in correctly.

23 To interpret a symbol (such as “Error”) in NOL Studio there are several
choices:

• Number: a symbol can be interpreted as a fixed value, entered into the text
box next to the Set button.

• NaN (default): a symbol can be interpreted as “not a number” or NaN.
NaN is a common special value that is often used in computer systems to
represent an illogical or unreliable result of some operation, such as the
result of dividing by zero. In NeurOn-Line Studio, NaN is used in this
sense, as well as when there is no value recorded for a data point.

• Ignore Row: ignore any row containing the specified symbol, which
means that any row containing “Error” would not be imported, and
NeurOn-Line Studio would resume importing on the following line.

24 When you have specified the desired format for the first symbol, click Set.
29

25 To add another symbol format, repeat the steps above.

26 To remove a symbol format from the list, select the symbol with its associated
format from the list box, and click Remove.

You can format an unlimited number of symbols.

27 Click Next to advance to the next dialog, which asks you to format the
decimal numbers.

If your data series contains numbers that are in a decimal format other than
English (United States), please specify the format here. The input wizard will
use this format to convert strings to numerical values.

28 Click Finish to import the data series using your new format into NeurOn-
Line Studio.

You have just created a user-defined format, which you can use later to import
similar data series into NOL Studio. Now let’s examine the predefined formats
that NOL studio provides.

Predefined Formats

There are two predefined formats supported by the NOL Studio: ASCII and
BINARY. The ASCII files must have a .ds extension and the BINARY files must
have .bds extension. If your data series is saved as an ASCII file, it will import
automatically into NOL Studio, when you select Open from the Import Data
Series dialog.
30

Importing Data Series From Files
The ASCII format for importing and exporting data series from files consists of
the following lines:

1 The tag information line: contains variables’ tags as strings separated with tab,
commas, or space.

2 The name information line: contains variables’ names as strings separated
with the same separating character as in the tag line.

3 The unit information line: contains variables’ unit names as strings separated
with the same separating character as in the tag line.

4 Lines of data, one line for each data pair in the data series: contains the
following items separated with the same separating character as in the tag line

a The time stamp for the data pair as either a long or an integer.

b The data value of the data pair.

Here is an example of a data series stored as text.

To export data from NOL Studio in the ASCII format:

 Export the data series giving the file a .ds extension. The data is automatically
saved in the NOL Studio predefined format described above.

The predefined BINARY file format is used by NOL Studio for saving and
loading data series between NOL Studios.

Time var1 var2 var3 var4 var5
Time var1 var2 var3 var4 var5
MillisecondNone None None None None
80000000 220 2600 8521.621 82.76367 45.65
80000001 220 2600 8521.621 83.1543 45.65
80000002 223 2443 8957.707 83.05664 46
80000003 221 2705 8989.459 82.91016 46
80000004 221 2705 8989.459 82.51953 46
80000005 221 2647 6255.802 82.66602 45.2
80000006 223 2422 7613.56 81.00586 45.35
80000007 222 2551 7212.631 83.34961 45.2
80000008 221 2737 9679.736 83.74023 45.55
80000009 242 2686 9072.731 83.39844 45.75
80000010 242 2686 9072.731 82.71484 45.75
80000011 241 2621 10145.72 84.17969 45.65
80000012 241 2621 10145.72 84.32617 45.65
80000013 242 2427 9447.666 83.93555 45.1
80000014 241 2230 7284.694 83.83789 45.35
80000015 241 2361 9223.239 84.27734 45.25
80000016 241 2235 5118.755 82.61719 45.25
31

To export data from NOL Studio in the BINARY format:

 Export the data series giving the file a .bds extension. The data series is
automatically saved as a BINARY file with a predefined format.

Importing Data from G2
G2 Gateway supports two-way communication between dynamic external
processes and G2 applications. Through a G2 Gateway bridge to an external
system, you can quickly obtain real-time data that a G2 application needs to make
intelligent control decisions in a time-critical processing environment. G2
Gateway bridges enable G2 KBs to communicate with a wide variety of external
system, such as:

• Database management systems (DBMSs)

• Programmable logic controllers (PLCs)

• Supervisory control and data-acquisition (SCADA) systems

• Distributed control systems (DCSs)

• C/C++ programs, Non-G2 operator consoles or displays

• External simulation software

G2 Gateway bridges can communicate across the network that uses the TCP/IP or
DECnet protocols. Gensym’s Intelligent Communications Protocol (ICP), which is
built into G2 Gateway, handles the details of network communication
automatically, enabling you to develop distributed systems among
heterogeneous platforms without having detailed knowledge of protocols or of
network software in general.

Once you have imported data into G2 using the options mentioned above, you
can import the data into NOL Studio in two different ways:

• Save data in G2 into ASCII files, and import data files into NOL Studio.

• Import data through G2 Gateway.

To import data through the G2 Gateway, you must have a G2 Gateway link
between this NOL Studio and a G2 application. Also, the G2 application should
have compatible dataset objects for NOL Studio to load.

To load a data series from G2:

1 Connect NOL Studio and G2.

There are two ways to connect NOL Studio with G2. You can connect from
NOL Studio to an existing G2 process, or you can launch NOL Studio from G2
to connect that NOL Studio automatically to G2. Please refer to the Gensym
Neural Network Engine for the steps to launch NOL Studio from G2.
32

Importing Data from G2
To connect to G2 from NOL Studio:

 Choose File > Connect G2:

The Connect G2 dialog appears:

If the connection is successful, the connection information appears in the
toolbar, for example:

You can now import data from G2.

Note The NOL Studio and G2 gateway is associated with each G2 window. Each G2
window can have only one NOL Studio connection. If you connect G2 from
NOL Studio, the gateway is associated with the G2 server, even if the NOL
Studio console and the G2 server are not on the same machine. To create a
gateway between NOL Studio and a particular Telewindows, launch NOL
Studio from that Telewindows.

2 Choose File > Import from G2 from the menu bar.
33

The following dialog appears:

Every import command creates a data series. The default name is based on the
item name in G2. If the item does not have a name, the UUID of that item is the
default name for the data series in NOL Studio. You can change the name of a
data series from its property dialog.

Importing Data through Networks
NOL Studio can communicate across Intranet/Internet if it is based on the
TCP/IP protocol. You don’t need to have detailed knowledge of protocols or of
network software in general as long as your machine is connected to the network.
You can load the remote data series files by providing the URL link for the data
files.

URL Format

It’s often easiest, although not entirely accurate, to think of a URL as the name of a
file on the World Wide Web. Most URLs refer to a file on some machine on the
network, however, a URL also can point to other resources on the network, such
as database queries and command output.

Note URL is an acronym for Uniform Resource Locator and is a reference (an address)
to a resource on the Internet.

The following URL example addresses a remote file.

file://www.gensym.com/SW/NeurOnLine/com/gensym/nols/
docs/introduction.html
34

Importing Data through Networks
This URL has two main components:

Note that the protocol identifier and the resource name are separated by a colon
and two forward slashes. The protocol identifier indicates the name of the
protocol to be used to fetch the resource. This example uses the File, which is
typically used to point to a remote file. File is just one of many different protocols
used to access different types of resources on the net. Other protocols include:

• Hypertext Transfer Protocol (HTTP)

• File Transfer Protocol (FTP)

• Gopher

• News

The resource name is the complete address to the resource. The format of the
resource name depends entirely on the protocol used, but for many protocols,
including File and HTTP, the resource name contains one or more of the
components listed in the following table:

• Host Name: The name of the machine on which the resource lives.

• Filename: The pathname to the file on the machine.

• Port Number: The port number to which to connect (typically optional).

• Reference: A reference to a named anchor within a resource that usually
identifies a specific location within a file

To load a data series from a remote file:

1 Select File > Import from Network from the menu bar.

The following dialog appears:

2 Enter the URL link of the file from which to load the data.

3 Click Load.

If the file is in one of the predefined formats, the data series will be loaded
immediately into the NOL Studio.

Protocol identifier file

Resource name The rest of the line, starting with www.gensym
35

4 In case of irregular file format, you will be asked if you wish to use an existing
format or to create a new one.

5 Follow the steps defined in Importing Data Series From Files, starting on , to
create a new format, or to use an existing one.

Viewing Data Series
Once you have imported data successfully into NOL Studio, you can begin to
examine the properties of your data. You do this by accessing the properties table
for the data series, and then drilling down to view individual variables.

To open a property table for any data series:

 In the tree view, double-click on any data series to display its properties table.

For example:

The property table for a data series displays the name and source of the data
series. The source can be Raw Data, any preprocessor, a simulation, or
optimization. You will also see the list of variables in the data series, the start and
end times, number of rows of data, and the average time interval between data
points. Several actions are available from the property table, such as launching
spreadsheet or projection plot views, x-y plots, exporting the data, appending to
the data series, and deleting the data series.
36

Viewing Data Series
Hint After importing a data series, you should verify that the information has been
loaded successfully by examining the data series property table.

You can also view the properties of individual variables by opening their
property tables. Individual variables are not listed in the tree view, because they
are not represented as fully-fledged objects. Variables are subcomponents of a
data series, corresponding to the columns of the data series.

To open a property table for any individual variable contained in a data series:

1 Open the property table of the data series containing the variable.

2 Do one of the following:

• Select the variable you want in the scroll area, which shows all the
variables in the data series, and then click the Details button.

or

• Double-click the variable you want in the scroll area.

For example, selecting the DeC2FeedFlow variable displays the following
properties dialog:

This dialog shows you the name, tag, and units for the variable. You can change
the name and units, and enter a comment by editing the appropriate fields.
Information on the data series, data source, total number of samples, and number
of valid samples is also displayed. Using the buttons on the right side of the
dialog, you can plot a line chart of the variable, and show a histogram of the
variable. For more information on the line chart and histogram views, see the
following chapter.
37

The second tab on this dialog, Statistics, shows summary statistics for the
variable. These statistics include the maximum and minimum values, mean,
standard deviation, variance, and more. This is what the Statistics tab looks like:

To view the statistical summary of all variables in a data series:

1 Open the property table of the data series, as described previously.

2 Click the Statistics button.

A table similar to the following example appears:

The variable statistics are calculated from the data series used to develop models.
This information is also useful in the online environment for data preproccessing.
A set of APIs exist for the OnlinePredictor and OnlineOptimizer classes. The
detail of these APIs can be found in the changes to both the G2 and ActiveX API
sections.
38

Exporting Data
Exporting Data
NOL Studio allows you to export raw data series and processed data into data
files. You can save a data series to a binary file or to an ASCII file. NOL Studio
supports several predefined formats. If the current NOL Studio console is
connected to a G2 process, you can also export data series directly into a data set
object defined in the Gensym Neural Network Engine.

To export a data series from NOL Studio, you use a menu choice or a button on
the data series properties workspace. Either technique displays the Export Data
Series dialog. The steps for exporting the data series depend on whether NOL
Studio is connected to G2.

To export a data series:

 Select File > Export from the menu bar.

or

 Click the Export button in the data series properties dialog:
39

To export data when NOL Studio is not connected to G2:

1 Choosing the Export menu choice or clicking the Export button displays the
Export Data Series dialog Series As dialog:

2 Select the file format by specifying one of these file type extensions:

• .ds for predefined ASCII files.

• .bds for BINARY files.

• .csv for comma separated ASCII file with the time format as specified in
the global preferences.

• .txt for tab separated ASCII file with the time format as specified in the
global preferences.

• .set for Data Set format in NOL Classic and GNNE. This format requires
you specify the input and output variables from the data series.

3 Click the Save button.
40

Exporting Data
4 If you select .set Data Set format, a variable classification dialog appears for
you to specify the input and output:

To export data when NOL Studio is connected to a G2 process:

1 Choosing the Export menu choice or clicking the Export button displays the
following dialog for choosing the export destination:
41

2 Choose the export destination:

 If you choose export the data series to a file, the Export Data Series dialog
appears and you can follow above steps to save the data series to a file.

or

a If you choose export the data series into a G2 data object, a selection dialog
appears:

b Choose the data object into which to export the data in G2.

You can export data into one of two types of data objects: nols-matrix and
gnne-data-set:

• nols-matrix object — Stores the data series as a matrix.

• gnne-data-set — Stores the data series as a data set, which allows you
to classify the input and output for the data series.
42

Appending Data
c If you choose gnne-data-set, the following dialog appears for classifying
the input and output data:

d Click OK to export the data into selected G2 data object.

Appending Data
The append action is used to read additional data into new rows appended to an
existing data series containing the same variables. When you append a new data
series to the existing one, the following checks and actions may be taken:

• The earliest time stamp in the new data series has to be after the latest time
stamp in the existing data series, or

• The latest time stamp in the new data series has to be before the earliest time
stamp in the existing data series

• Variables from two data series with the same Tag and Name have their values
appended row by row according to the time stamp of each row

• A variable from one data series without a matched Tag and Name from other
data series will occupy a column in the appended data series with NaNs filled
in corresponding rows of the other data series

You can append a data file into an existing data series by clicking the Append
button in that data series property workspace. The Append Data Series dialog is
invoked to tell NeurOn-Line Studio where to find the data.
43

To append a data series to an existing data series:

1 Click Append in the data series property workspace:

2 You import the data file to append in the same way as you import a new data
file from the file system.

Removing a Data Series
You can remove a data series from the project as long as it is not being used by
views or preprocessors. The requirements for removing a data series are as
follows:

• There is no view, except its own property workspace, opened for this data
series or any variable in this data series. The views include spreadsheet, line
chart, projection chart, X-Y chart, variable property workspace, and variable
histogram.

• There is no processed data derived from this data series by going through
preprocessors.

There are two methods to delete a data series: by clicking Delete in that data series
property workspace, or by using right mouse click on the data series object in the
tree view and choosing Delete.

To delete a data series using a button on the data series properties workspace:

 Click Delete on the data series properties workspace:
44

Removing a Data Series
To delete a data series from a tree view:

1 Navigate in the tree view to find the data series you wish to remove.

2 Right-click on the data series to display its pop-up menu.

3 Choose Delete from the menu.

For example:
45

Managing Data Formats in NOL Studio
When you import a data series from a text files, the format you define is
automatically saved by NOL Studio. When a format is saved, a file format object
is created automatically and appears in the tree view.

This is an example of a tree view with one user-defined format:

Later you can use this file format object to load similarly formatted files.

Tip In the Data Import wizard, give your file format a name you can remember and
easily associate with the type of file it describes.

Deleting File Formats

There are two methods to remove a file format object from NOL Studio: clicking
on the Delete button in the file format properties workspace, or from a pop-up
menu on the tree view.

To delete a file format from the tree view:

1 Right-click on the selected file format in the tree view and choose Delete from
its pop-up menu.

For example:
46

Managing Data Formats in NOL Studio
To delete a file format from the file format properties workspace:

 Click Delete.
47

48

3

Visualizing Data
Describes how to visualize and explore data through charts, graphs, and tabular
views.

Introduction 49

Viewing Data in a Spreadsheet 50

Viewing Data in a Line Chart 52

Viewing Data in a X-Y Scatter Chart 58

Viewing Data in Projection Charts 59

Viewing Data in a Histogram View 64

Introduction
NOL Studio allows you visualize data in many different views. Each view
presents a different aspect of your data, and helps you gain additional insight into
the underlying process. Having different visualizations of your data also helps
you locate anomalies in your data, so you can remove them before training a
model.

Specifically, these views are:

• Spreadsheet view

This view allows you to view a data series in a tabular, column/row format.

• Line chart view

This view allows you to plot one or more variables versus time or row index.
49

• X-Y scatter chart view

This view allows you to plot one variable versus another variable, with time
implicit. The number of rows of both variables viewed must be of equal
length.

• Projection chart view

This view depicts a projection of selected variables from a single data series,
using Principal Component Analysis (PCA). Projection plots are powerful
ways to examine the multivariate distribution of your data.

• Histogram view

This view depicts a bar chart showing the distribution of a specified variable.

You access any of these views either from the NOL Studio View menu or the
toolbar. You can also open these views from G2 through a procedure call. For
details, see the Gensym Neural Network Engine. All of these views are read-only in
that you cannot modify the data contained within the view. However, the views
are also interactive, allowing you to select and label data using mouse gestures.
Zooming is supported in all chart types, except the histogram view.

The various views are optimized to handle large data sets, and can efficiently
display upwards of 100,000 values. Limitations are based upon the amount of
available memory.

Views are dynamically linked to the source data, so that if source values or labels
change, they are consequently reflected in all open views. Thus, if you label a
range of data on one view, the label simultaneously appears on other views of the
same variable.

Viewing Data in a Spreadsheet
Spreadsheets allow you to visualize data in a tabular, row/column format. Each
spreadsheet allows you to view the data in exactly one data series. Variables from
different data series cannot be displayed as columns of a single spreadsheet, since
the time stamps of each row may not correspond.

To open a spreadsheet view:

 Do one of the following:

Menu Bar: Choose View > Spreadsheet.

Toolbar: Click the Open Spreadsheet button.
50

Viewing Data in a Spreadsheet
The Select Data Series dialog appears, for example:

This dialog allows you to specify the data source and the data series to be
displayed in the spreadsheet. After selecting the data source and data series that
you want to view, click OK to display a spreadsheet view of the specified data
series. For example:

Notice that the first two columns show the date and time of the corresponding
row of the data series. The time stamps apply to the entire row.
51

Viewing Data in a Line Chart
Line charts allow you to view one or more variables, plotted versus time or row.
Line charts are useful for showing the trends of variables. Variables from different
data series can be plotted in the same line chart. Because of this ability, line charts
are useful for comparing data from different data sources, such as raw versus
preprocessed data, or model predicted values versus actual values.

To open a line chart view:

 Do one of the following:

The following dialog appears:

You use this dialog to select the data source, data series, and variable or variables
you wish to plot in the line chart:

If you want to plot more than one variable from a data series, select the desired
variables in the scroll area. Then click OK to open the line chart with the specified
variable(s).

Menu Bar: Choose View > Line Chart.

Toolbar: Click the Open Line Chart button.
52

Viewing Data in a Line Chart
If you select a single variable to plot, the line chart view might look something
like this:

The buttons on the right side of the view control zooming, adding and removing
data series, and changing the handling of the x and y axes. These options are
explained in the following sections.

Adding and Removing Variables from the Line Chart

You may add more variables to the plot by clicking Add, which opens the
following dialog, where you specify the variable(s) to be added to the chart:
53

Note that each variable is described by three attributes:

• Data source

• Data series

• Variable name

Click OK after you have selected the variables you want to add to the chart. If you
added a second variable, the result might look something like this:

To remove a variable (or variables) from the Line Chart, click Remove. A dialog
appears to allow you to select a variable (or variables) to remove. The dialog looks
like this:
54

Viewing Data in a Line Chart
Setting Axis Styles

The line chart offers three styles for the y (vertical) axis, and two styles for the x
(horizontal) axis. The y-axis styles are stacked, overlay, and shared. The x-axis
styles are row or time.

Y-Axis Styles

When multiple data series are displayed on a line chart, by default, they are
shown as separate plots, spanning the same horizontal range, but with separate y
axes. This is called the stacked style. The stacked style is illustrated by the plot in
the previous section.

To overlay variables on top of each other, check the Overlay radio button in the
Style box to the right of the chart. In the overlay style, the plots share the same
area, but each variable has its own y axis, as shown below:
55

The final y axis style is shared y axis. In this style, all variables are shown on the
same scale. This option is most appropriate when the range of all the variables is
approximately the same. To view variables on a shared y axis, check Shared Y
Axis on the Style menu to the right of the chart. The result looks like this:

X Axis Styles
There are two styles for the x axis, row and time. The default view option for the x
axis is by row. To view by time, check Time in the x axis menu to the right of the
chart. Shown in time mode, the line chart looks like this:
56

Viewing Data in a Line Chart
Zooming

The line chart allows you to interactively zoom in/out and scroll through your
data. When you zoom in, the location of the point in the center of the plot is
invariant. Thus, if you want to zoom in on a particular point, scroll the plot
horizontally until the point is shown in the center of the screen. Then select the
zoom in button.

When you zoom in, plot symbols representing the individual data points will
appear. In the line chart view below, the chart has been zoomed in to the point
where individual data points are visible:

In a line chart, you cannot magnify the y axis by zooming.

Display of Missing Values

Missing or invalid values, represented by the symbol NaN (not a number) are
indicated by a gap in the plot. A gap indicates that at least one point between the
visible points has the value NaN. Note a section of missing values in the figure
directly above.
57

Tool Tips

When you place the mouse over a data point in a line chart, a tool tip (a small
pop-up text window) appears, displaying the following information:

• The fully-qualified variable name, which is a concatenation of the data source,
data series name, and variable name.

• The time or row.

• The value.

You can use the tool tip to identify the exact row number, time and value of the
point.

Viewing Data in a X-Y Scatter Chart
X-Y Scatter Charts allow you to plot one variable versus another variable, with
time implicit. The number of rows of both variables viewed must be of equal
length. The variables can be from different data series.

To view an X-Y scatter chart of two variables:

 Do one of the following:

The Select Variables dialog appears, for example:

Menu Bar: Choose View > X-Y Chart.

Toolbar: Click the Open Scatter Chart button.
58

Viewing Data in Projection Charts
This dialog allows you to specify two variables from their corresponding data
series and data sources that you wish to plot in the X-Y chart.

Once you have selected the variables you wish to view in the X-Y chart, click OK
to display an X-Y chart, similar to the following:

Zooming

In X-Y scatter charts, you can zoom in and out on either the X or Y axis, or both.
The zooming mode is controlled by the buttons on the right side of the chart.

Viewing Data in Projection Charts
Projection charts show a “shadow portrait” of your data. Geometrically, your
data set can be represented as a scatter of points in m-dimensional space, where m
is the number of variables. Just as you can shine a light at a three-dimensional
object to cast a two-dimensional shadow, projection charts mathematically reduce
your multivariate data set to two dimensions, so it can be displayed on the screen.

Projection plots are valuable because they capture the distribution of your data in
a single graphic. Since data sets are often large and complex, they can be difficult
to fully assimilate and comprehend using multiple X-Y plots or line charts. As a
result, projection charts let you see the “forest”, not just the “trees”. Projection
charts help you interpret overall patterns in your data, including determining if
your data is distributed uniformly, and whether there are clumps, outliers, or
void areas. In addition, you can use projection charts to compare two or more
data sets, to determine if they cover the same or different parts of the input space.
59

Projection plots use a technique called Principal Component Analysis (PCA) to
project your data onto a planar surface.

Geometrically, this process is equivalent to finding a plane that minimizes the
sum of squared distances between the plane and the data points, as shown below

Because of the mathematical transformation involved, the axes of a projection
chart are not physical variables, but rather, weighted linear combinations of the
original variables. The coordinates are normalized to indicate the number of
standard deviations from the center of gravity of the data. For a brief
mathematical explanation of PCA, see What is PCA?.

Using Projection Charts

To view a data set in a projection chart:

 Do one of the following:

Original data

(3 or more dimensions)

Planar projection of data

(2 dimensions)

Menu Bar: Choose View > Projection Plot.

Toolbar: Click the Open Projection Chart button.
60

Viewing Data in Projection Charts
The Select Data Series dialog appears, for example:

After you specify the data series you wish to plot in the projection chart, click OK
to display a projection chart similar to the following:

By default, all variables in the selected data series are included in the PCA
analysis. If you want to exclude any variables from the PCA analysis, select the
variables you want to exclude in the Variables scroll area to the right of the chart,
and select Remove. When you do this, the PCA will be recalculated, excluding the
variables you selected. To add variables you previously removed, use Add. This
61

feature is useful if you want to see the distribution of the input variables,
excluding the output variables, or any subset thereof.

By default, the first two principal components, PC1 and PC2, are displayed in the
plot, since these variables contain most of the information on the variation in your
data set. However, you can also view less significant principal components (PC3 -
PC5), using the Show selection boxes in the upper right of the projection chart
view. To view higher-order principal components, enter the preferred number in
the Maximum # of PCs edit box.

To compare the distribution of two data sets, use the Add button in the lower
right corner of the window, in the area labelled Data Series. The Select Data Series
dialog appears, listing only the data series with the same variables as plotted on
the current projection plot. If there are no compatible data series, you will not be
allowed to add a data series to the current plot.

When you select a data series to add to the plot, the additional data series will be
superimposed over the original plot, as illustrated below:

This plot shows you that the two data sets cover/do not cover the same area.
Therefore, a model trained on one of these data sets might not predict the second
data set very well. You can add as many data series as you like by repeating this
process, or remove them using the Remove button.

You can export the parameters of the displayed PCA model to a text file by
clicking the Export button, then load it into the G2 environment for online
62

Viewing Data in Projection Charts
statistical monitoring of your process. For information on PCA deployment, see
Model Deployment.

What is PCA?

In-depth descriptions of PCA are available in many statistics and chemometrics
texts, so only a brief description is given here. This section is only relevant to
users who want to understand the mathematical basis of projection plots.

The starting point is the data matrix, X, whose m columns represent variables, and
whose n rows represent observations. Prior to analysis, X is normalized such that
each column has a mean value of 0, and a standard deviation of 1. Normalization
makes the PCA results independent of units.

In projection plots, PCA is used to reduce X (n x m) to an f-dimensional matrix T
(n x f), where f < n. The scores matrix T is produced by multiplying X by a
projection matrix P (m x f), as follows:

T = XP

The P matrix is chosen so that T is an optimum projection, in the sense of
minimizing the “lost information” that results from reducing the number of
columns of X. Mathematically, the lost information can be quantified by a matrix
E (n x m), calculated as follows:

E = X - TPt = X(I - PPt)

PCA chooses the projection matrix P so the 2-norm (equivalent to the mean of the
squares of the elements) of E is minimized. In addition, P is constrained such that
the rows of P are orthogonal and unit length (this constraint ensures a unique
solution to the minimization problem). It is known that the solution to this
problem is that the jth column of P is equal to the jth eigenvector of XtX (the
covariance of X).

The columns of T are ordered according to their importance. The first column of T
is the optimal solution for f = 1. The first two columns of T are the optimal
solution for f = 2, and so on. When NOL Studio generates a projection plot, it
calculates the top five principal components. By default, the top two principal
components (the first two columns of T) are plotted. You can also plot higher
principal components.

To superimpose an additional data set (X2) on the same projection chart, the
columns of the second data set are permuted, if necessary, to correspond to the
order in the first data set. The data is then normalized using the same
normalization constants as the original data. The projection is calculated by
multiplication by the original projection matrix, as follows:

T2 = X2P
63

Viewing Data in a Histogram View
The histogram view is used to show the statistical distribution of individual
variables.

To view a histogram of a specific variable:

 Do one of the following:

The Select Variables dialog appears, for example:

Menu Bar: Choose View > Histogram.

Toolbar: Click the Open Histogram button.
64

Viewing Data in a Histogram View
After specifying a data source, data series, and variable name, click OK to display
the histogram with specified variable. A typical histogram view looks something
like this:

The number of bins that defines the histogram can be changed by increasing or
decreasing the value in the Bins settings text field. The range over which the
histogram is defined can be set by overriding the minimum and maximum values
automatically placed in the text fields.
65

66

4

Labeling Data
Describes how to label data to identify the parts of the raw data you would like to
use to train a model.

Introduction 67

Defining Label Categories 68

Setting the Active Label 70

Labeling Data in the Spreadsheet View 70

Labeling Data in the Line Chart View 72

Labeling Data in the Scatter Chart Views 75

Labeling Data 76

Introduction
At this point, you have loaded data into NOL Studio, and you have used various
graphical views to examine the data. During this process, you may have noticed
some flaws in your data: outliers, shutdown periods, operational transients,
changeovers, and the like. It is necessary to cut out the bad or inapplicable
portions of the data, to get a “clean” data set suitable for training.

Your data may also contain regions that relate to production of different products,
grades of material, or modes of operation. You may want to model one or more of
these products, grades, or modes. To do so, you must create separate data sets
relating to single products, grades, or production modes.
67

To support the extraction of one or more training sets from the raw data, NOL
Studio gives you the capability of classifying the raw data into categories you
define, through a graphical labeling process.

You can define as many label categories as necessary. If you simply want to
eliminate some bad data, you can create just one category, such as “bad”. If you
want to create several training sets from a single raw data source, you will need
several categories.

Graphically, data points you label are highlighted in a particular color in both the
chart and spreadsheet views. NOL Studio allows you to label data in any view,
excluding the histogram view. The views are dynamically linked, so when you
label a point in one view, all views are simultaneously updated.

Note Labels can only be applied to raw data.

After you have labeled the raw data, you create a preprocessor that includes or
excludes particular types of labels. For example, once you have found all the
outliers and labeled them with an “outlier” label, a preprocessor can be made out
of all the points that are NOT labeled as outliers with the following queries:
“include ALL points”, and “exclude ANY point labeled 'Outlier'”. Some data
points may carry more than one label. For example, a data point may
simultaneously be labeled as an outlier, and by the product or grade of material
being produced at that time. When you create a training data set from the labeled
raw data, you can choose to include or exclude points with specific label
combinations, via the joined label facility. For more information on the query
facility, see the following chapter.

Defining Label Categories
To create labels:

 Do one of the following:

Menu Bar: Choose Object > New > Label.

Toolbar: Click the New Label button.

Tree View: Right-click the Labels Category and choose New
from its menu.
68

Defining Label Categories
This brings up the following dialog:

After you type in a name for the label and an optional comment, you can click
Finish to complete the creation of a label with a default color. However, if you
wish to specify a color for this label, click Next. The following dialog appears:

Specify a color and click Finish to dismiss the dialog and create the label. Follow
the steps above to create as many labels as you wish.
69

Once you have created a number of labels, you can open the Labels item in the
tree view. For example:

The name of a label or the color can be changed at any time using the label’s
property table. Access the property table by right-clicking on the desired label in
the tree view.

Setting the Active Label
Once you have created labels, you can label data. At any time, only one label is
active. The toolbar contains a labeling control, which specifies the active label and
the action currently enabled, which is either Label or Unlabel. To select the
labeling mode, click the Label or Unlabel toggle button. To select a different label,
click on the pulldown menu and select the label you wish to be active. You will
see the following in the upper-right toolbar:

Labeling Data in the Spreadsheet View
The first step in labeling from the spreadsheet is to select the active label in the
toolbar, and make sure you are in labeling mode by selecting Label, as explained
above.

The following gestures label data in the spreadsheet view:

• Clicking with the mouse on individual cells labels individual points.

• Dragging over multiple cells labels a region.

• Clicking on the first cell in a range and then shift-clicking on the final cell
results in the selection of the rectangular region of cells with the first and last
cells as the corners.

• Entire rows can be selected by clicking on the row number.
70

Labeling Data in the Spreadsheet View
Unlabeling is done in the same way, with selections applying only to those cells
labeled with the currently chosen label. To label individuals cells, click on the cell
that you wish to label while in the Label mode. After labeling several cells, your
spreadsheet view will look something like this:
71

Labeling an entire row by clicking a row number will result in the following:

If you have accidently labeled a data element or series, you can undo labeling by
choosing Edit > Undo Labeling from the menu bar. This unlabels the last label
action only.

Labeling Data in the Line Chart View
The following gestures can be used to label points in a line chart:

• Clicking on a single point

• Dragging over an area of the chart

• Dragging over a region of the x or y axis

Note Before labeling, you must first set the active label using the selection box on the
tool bar, and you must be in labeling mode.

To label an individual point, click on the point.
72

Labeling Data in the Line Chart View
To label a group of points, drag a bounding box over a region. Releasing the
mouse applies the labeling action to all points within the box. The selection box
can extend over more than one variable. The action would look something like
this:

Another useful gesture is to drag along the x-axis, below or beside the tick marks.
If you drag along the x-axis, a selection region will extend the entire height of the
plot, allowing you to select all displayed points that fall in a certain time or row
range.
73

This gesture works in all plot modes (single, overlayed, and stacked). An example
of dragging on the X-axis to label a specific series of values (either by row or by
time) might be the following:

Note Selections on the x-axis apply to all variables in the data series, regardless of what
particular variables are shown in the chart. This gives you the ability to label all
variables in a data series with a single gesture.
74

Labeling Data in the Scatter Chart Views
Similarly, you can drag on the Y-axis to label all values within a range of Y values.
Even if you are zoomed in to show only a portion of the x axis, the label applies
across all time/rows. Here is an example of that gesture:

If you have accidently labeled a data element or series, you can undo labeling by
choosing Edit > Undo Labeling from the menu bar. This unlabels the last label
action only.

Labeling Data in the Scatter Chart Views

Projection Chart View

In the projection chart view, the labeling gestures are the same as in the line chart
view. Any labeling actions are applied to all the variables used to calculate the
principal components, found in the list of variables on the chart. If all variables
are included in the PCA calculation, selecting a point in the projection chart view
is the same as selecting a row of the spreadsheet. A label is only shown on the
projection chart if all the variables involved in the PCA are selected, for that point.

X-Y Scatter Chart View

In the X-Y scatter chart view the labeling gestures are the same as in the line chart
view. Any labeling actions are applied only to the variables from the Raw data
source.
75

Labeling Data
In some cases, you might need to label the data precisely according to the range of
data values or sample indexes. You can use the custom labeling dialog to label the
data, based on the range you defined through the dialog.

To label data:

1 Choose Edit > Labeling.

2 Select the raw data series from the DataSeries combo box.

3 Select the Variable you want to label.

You can only label one variable at a time.

4 Select the type of label you want to use for labeling the data.

5 Click the range definition button to define the type of range to use.

6 Configure the Y value range or X sample index value.

7 Click the Label button.
76

5

Creating a
Preprocessor
Describes how to create a preprocessor that conditions the raw data used to build
models.

Introduction 77

Creating a New Preprocessor 78

Working With an Existing Preprocessor 82

Using Formulas to Preprocess Data 83

Introduction
In the previous chapter, you learned how labels are applied to data in the
graphical views, designating different data categories. To use these labels, and to
extract data sets suitable for training models, you must create a data preprocessor.

In creating the preprocessor, you need to consider several preprocessing steps.
These steps include:

• Extracting a subset of data from raw data through specific label queries

• Creating new preprocessors for the extracted data

• Reorganizing and conditioning the data by using a list of formulas

This chapter describes how to:

• Create a new preprocessor

• Construct a list of formulas for preprocessing your data
77

Creating a New Preprocessor
A preprocessor is a tool that processes a subset of the raw data used to build
models. You define any model in relation to its preprocessor, i.e. a model derives
from one and only one preprocessor. Preprocessors are constructed from one or
several data series. You create a preprocessor, using the Create New Preprocessor
wizard.

Using the Create New Preprocessor Wizard

To open the Create New Preprocessor wizard:

 Do one of the following:

The Create New Preprocessor wizard appears, for example:

Menu Bar: Choose Object > New > Preprocessor.

Toolbar: Click the New Preprocessor button.

Tree View: Right-click the Preprocessor category and choose
New from its menu.
78

Creating a New Preprocessor
The Create New Preprocessor wizard guides you through the necessary steps, as
follows.

To create a new preprocessor:

1 Enter a new name for the preprocessor.

The default name for a new preprocessor takes the form:

preprocess#

where # specifies the index of default preprocess or names.

2 Enter any comment or information associated with this preprocessor that you
may wish to remember in the future.

3 Click Next to advance to the next screen, to select the data series to use. You
can select any subset of the data series of the raw data for preprocessing.

You select the data series by moving selections to the right or left, using the
arrow buttons. Your ultimate goal is to select variables from within these data
series for building a model. For example:
79

4 Click Next to advance to the next screen, to select the variables to use. You can
include any subset of the variables of a data series for preprocessing.

For example:

5 Click Next to advance to the screen which lets you define queries on labels.

Once the name and the variables are chosen, you must decide which category
of the data to include in the preprocessor. This is done by filtering with
queries. Queries define searches through the data for points that either are
unlabeled or are assigned to a particular label. Those points matching a query
will be included in (or excluded from) the preprocessor.
80

Creating a New Preprocessor
Here is the page for defining the query in the preprocessor wizard:

Queries are constructed by defining labels to include and labels to exclude. By
default, all data is included, and none is excluded. If you want to exclude a
single label category, you select the label, and add it to the excluded labels by
selecting Add, in the Exclude section. To exclude another label, select that
label, and add it to the excluded labels. If you add a label to the Include
section, the default (include all points) will be automatically removed.

Note The Includes are always applied before the Excludes. Thus, if you include
label A and exclude label B, the points labeled B are removed from the set of
points labeled A.

Joined labels allow you to create detailed queries that specify the handling of
data points with multiple labels. Joined labels are defined in a separate dialog.
Once you define a joined label, it is treated as a new, compound label.
Therefore, you can include or exclude the points with your joined label.
81

Here is a example of defining a joined label “cut and transient:”

6 Click Finish in the wizard to create a new preprocessor.

You can view and change the information of this preprocessor through its
property workspace.

Working With an Existing Preprocessor
Once a preprocessor has been defined, you work with the preprocessor using the
preprocessor property workspace, accessed through the Object menu or tree
view. Here is an example of a preprocessor property workspace:

You can change the name and comment of this preprocessor by typing in the
corresponding display field.
82

Using Formulas to Preprocess Data
Caution Press Return when you finish typing the name. Otherwise, the name won’t
changed.

Accessing the Formula List

To view or edit the formulas associated with the preprocessor, use the Formula
tab on the preprocessor property workspace. For details on how to use
preprocessor formulas, see Using Formulas to Preprocess Data.

Reapplying the Preprocessor

If you change the labels on the raw data after creating the preprocessor, these
changes are not automatically propagated to the preprocessed data series. To
capture the effect of changing labels in an existing preprocessor, select the
Reapply Preprocessor button on the preprocessor properties workspace. This will
apply the filter to the current set of labels, and recalculate all formulas.

Deleting the Preprocessor

To delete a preprocessor, use the Delete button on the preprocessor property
workspace. If there is a model that gets its data from the preprocessor, you must
delete the model before you will be allowed to delete the preprocessor.

Using Formulas to Preprocess Data
NeurOn-Line Studio provides the capability to define formulas to further
condition your data. Formulas are functions that operate on variables. NeurOn-
Line Studio provides many built-in formulas—from simple mathematical
functions, such as absolute value and logarithm, to complex model-based
formulas, such as neural network models. You can use formulas to do sensor
validation, to replace missing data, and to smooth noisy signals. Formulas are
also useful for calculating derived variables by algebraically combining measured
quantities. An example of a derived variable is heat flux, calculated as the product
of a heat transfer coefficient and a temperature driving force. The goal of defining
derived variables is to find new variables that are closely correlated with the
target output variable you wish to predict.

For example, suppose you want to predict the taste of a batch of lemonade, made
from three ingredients: water, lemons, and sugar. You know the taste depends
only on the ratio of lemons to water, and sugar to lemons, not the absolute
amounts of the ingredients, which constitute the raw measurements. A model
based on the ratios of ingredients will apply regardless of the size of the batch of
lemonade, and would also require less data, since there will be fewer parameters
83

in a two-input versus a three-input model. Therefore, you use the formula facility
to create the required ratios, and base your model on the derived ratio variables.

When you apply a formula, the results are written into either existing or new
(derived) variables. Formula operations are carried out on a copy of the raw data,
so the raw data is never changed. This allows you to “undo” the action of any
formula, by removing it from the formula list.

The formulas you create are exported as an integral part of the deployment
model, and can be automatically applied in real time through a G2 application or
through an external application, using an ActiveX control.

Showing Variables Before and After Formulas

Charting facilities in NOL Studio have the capability to show, on a single plot,
variables that derive from different data sources. Using this capability, you can
display plots showing raw data variables and the corresponding preprocessed
variables, to assess the effectiveness of the preprocessor. For more details on how
to plot variables from different data sources in various graphical views, see the
chapter on Visualizing Data.

You can also view derived variables, created through formulas, which are not in
the raw data set. When you define a formula that creates a new derived variable,
the variable becomes a first-class member of the preprocessor’s data series. You
can view a property table for the derived variable, examine its statistics, see a
histogram, plot it, etc.

Time Merging Data Series

Sometimes the data series in your preprocessor are sampled on different
frequencies, or the data in a single data series might not be equally spaced in time.
For example, laboratory data might be available approximately each 30 minutes,
while on-line measurements are available every minute. In the application of
formulas, and during training, NOL Studio automatically accounts for different
or irregular frequencies, through a process of smoothing and interpolation. It is
not necessary to explicitly merge these data series using a special time merge
formula.

For more details on the internal handling of irregularly sampled data and data
sampled on different frequencies, see Preparing the Training Set.
84

Using Formulas to Preprocess Data
The Formula List

The current set of formulas for a preprocessor can be viewed by selecting the
Formula tab on the preprocessor workspace. This action shows the Formula List:

This window lists all the formulas you have defined for this preprocessor. The
formulas are applied in sequential top-down order to the data selected by the
preprocessor’s query. The order of formulas can affect the numerical results. For
example, cutting high values and taking the moving average of the result is not
the same as taking the moving average and then cutting high values.

Changing the Order of the Formula List

You can change the order of fomulas in the formula list by dragging a formula to
the desired position in the list. All moves are validated before they are allowed. A
legal move is one in which all the variables used in the input arguments have
already been defined. Therefore, a formula that defines a new (derived) variable
must appear higher in the list than other formulas that use the variable.

Selectively Viewing the Formula List

After you have defined a large number of formulas, it may become difficult to
find the formulas referring to a specific variable. NeurOn-Line Studio provides a
filtering mechanism that allows you to view only formulas containing a specific
variable. Do this by selecting a variable and a location in the drop-down boxes at
the top of the Formula List window. Here you specify:

• Variable — to display only those formulas referring to a particular variable

• Location — to select the formulas where the target variable appears in either
the input or output of the formulas. “Anywhere” denotes both input and
output.
85

Applying Formulas

When you create, modify, or import a formula, the formula is not immediately
applied to the preprocessed data. This enables you to enter several formulas,
without waiting for the numerical calculation to complete after each entry.
Normally, the formulas are not applied until you close the Formula List dialog.
However, to force the calculation to occur at any time, you can apply the formulas
by clicking Apply in the Formula List dialog.

Exporting Formulas

You can save a list of formulas to a file using the Export button on the Formula
List dialog. Together with the Import command, you can copy a set of formulas
from one project to another, independent of any other objects. The formulas are
saved in a file with the suffix .tfm.

Importing Formulas

The Import button allows you to load formulas from a .tfm file, or copy formulas
from another preprocessor. This is an extremely useful feature when you want to
apply the same set of formulas to two different sets of data. For example, you
might want to divide a set of data into two parts, for training and validation. To
divide the data, you will need two preprocessors, with different queries. But both
preprocessors should use the same set of preprocessor formulas. Instead of
entering the formulas twice, you can use the formula import facility to copy the
formulas you need from one preprocessor to the other.

When you select Import, you will see the following dialog:

If you want to copy formulas from an existing preprocessor, select From
Preprocessor, and specify a preprocessor in the list box. If you want to import
formulas from a file, select From File, and then using the File button and resulting
dialog to select a file containing formulas. In either case, when you have selected a
formula source, you will see a list of formulas on the right-hand side of the Import
Formula dialog.
86

Using Formulas to Preprocess Data
If you want to import all formulas in the list, select OK. If you want to exclude any
formulas, select the formulas you want to exclude, and move them using the
arrow button to the left side of this dialog. Then, select OK.

The formulas you import are validated before they are added to the list of
formulas for the preprocessor. If they refer to undefined variables, the import
action will not be permitted.

Inserting a New Formula

You can add a new formula by clicking New in the Formula List window. The
formula is inserted above the currently-selected formula. To add a formula to the
end of the formula list, select the entry labeled “Insert before selected item”. A
Define Formula dialog will appear for you to define a new formula. For
information on using the Define Formula dialog, see Editing a Formula.

Modifying an Existing Formula

To modify an existing formula, select the formula and click Modify. This launches
the Define Formula dialog, where you can modify the formula. For information
on using the Define Formula dialog, see Editing a Formula.

Removing a Formula

To delete a formula, select the formula you want to remove and choose Remove.
Before the formula is deleted, the reduced list of formula is verified. If removing
the formula results in an illegal formula list, the action is not allowed. An example
of an illegal remove action is to remove a formula that defines derived variable
used in subsequent formulas.
87

Editing a Formula

The Define Formula Dialog

To create or modify a formula, you use the Define Formula dialog, accessed from
the Formula List dialog. Here is a example of a formula defined with the Define
Formula dialog.

Here is a description of the various areas of this dialog:

Outputs this is where you specify the outputs of the
formula, the variable or variables whose values
are calculated by this formula.

Formula this is where you specify a function name and
input arguments, using the syntax described in
Formula Syntax.

Variables The Entries in this list are the variables available
to use in this formula. When you click on an entry
in this list, the variable is added to the formula at
the currently-selected location in the formula.

New Variable
Button

Use this button to define a new derived variable
name. New variables can only be defined in the
output of a formula.

Functions These are the functions available to use in this
formula. To add a function to the formula, select
where you want the function to be substituted,
and click on a function.
88

Using Formulas to Preprocess Data
Several keys on your keyboard are also active when editing formulas:

Note You cannot use your keyboard to type variable or function names. To enter
variables or function names, select the variable or function names from the lists
shown on the dialog.

Numerical Inputs Use these buttons to enter numerical values as
function arguments. These buttons are equivalent
to number keys on your keyboard.

Left/Right Arrows These navigation buttons move the focus from
argument to the next argument, at the same level
in the formula. The left and right arrow keys on
the keyboard perform the same function. For
more information on these buttons, see
Navigating a Formula.

Up/Down Arrows These navigation buttons move the focus up and
down levels of nesting. The up and down arrows
on the keyboard perform the same function. For
more information on these buttons, see
Navigating a Formula.

Undo/Redo
Buttons

These buttons undo or redo previous actions.

Add Arg Button
Del Arg Button

Use these buttons to add or remove an input
argument. For more information on adding and
removing arguments, see Adding and Removing
Arguments.

Help Line This line of text provides information on the
function you have selected.

Arrow Keys These keys perform the same actions as the
Left/Right and Up/Down Navigation Arrow
buttons.

Backspace key
Delete key

Use these keys to delete the highlighted entry in
the formula.

Number keys Use these keys to enter numerical values.

The +, -, and e (for scientific notation) keys are
also recognized.
89

Formula Syntax

To define a formula, you specify the output variables, a function, and input
arguments. Functions use prefix notation, so, if you want to multiply two
variables, you express this as:

output = Multiply(input1, input2)

where output, and input1 and input2 are names of variables.

Functions can be nested, so an input argument can be another function with its
own input arguments. An example of a nested function is:

output = Divide(Multiply(input1, input2), 2.0)

Navigating a Formula

When you edit a formula, part of it is highlighted in blue. This is called the current
focus. The current focus indicates the part of the formula you are currently editing.

To edit a particular argument, you must put that argument into focus. There are
two ways to move focus to a particular argument in a formula:

1 Click on the argument you want to edit.

2 Use the navigation arrows to move the focus to the argument you want to
edit.

To move the focus from the Output field to the Function field or visa-versa, you
must use the mouse and click on the field you wish to edit. Once you are on the
field you want to edit, you can shift the focus to other arguments by clicking on
that arguments, or by using the arrow keys to move around the formula.

To understand how to navigate a formula using the arrow keys, consider the
formula

output = Divide(Multiply(input1, input2), 2.0)

The structure of this formula can be diagrammed as follows:

If the current focus is on input1, and you click the up arrow button, the focus shifts
to Multiply. Clicking the right arrow shifts the focus to 2.0. Clicking the up arrow
button again shifts the focus to Divide. Conversely, if the focus is on Divide, and
you click the down arrow, the focus shifts to Multiply. Clicking the down arrow
again shifts the focus to input1. Clicking the right arrow then shifts the focus to
input2.

Divide

2.0

input1 input2

Multiply
90

Using Formulas to Preprocess Data
Entering Variables and Functions

To enter a variable or function, move the focus to the desired position in the
formula’s outputs or function. If you have not yet specified a variable or function
at the target location, three question marks (???) are shown as a placeholder. For
example, when you first enter the function Multiply, the arguments will appear
as:

Multiply(???, ???)

You must replace each ??? with a variable or function, before you click OK.

Once the focus is in the desired position, select a function of variable from one of
the two lists in the lower left of the dialog. Depending on the location of the
current focus, the list of variables or functions may be disabled, appearing in light
gray. For example, if you are focused on the formula outputs, the function list will
be disabled, because functions cannot appear in the outputs of a formula.

When you are focused on the formula’s outputs, you can create a derived
variable, using the New Variable button. The New Derived Variable dialog
appears, prompting you to enter the new variable name. For example:

Once you have defined a derived variable, and entered the formula that defines it,
you can use the derived variable in subsequent formulas, like any other variable.
However, you must observe the rule that the formula defining the derived
variable must appear in the formula list before any formulas that use the derived
variable as an input.

Adding and Removing Arguments

Certain functions, such as Multiply and Sum allow a variable number of
arguments. The Add Arg and Remove Arg buttons may be enabled when the
focus is on the arguments of a variable-argument function. For example, if you
have entered:

Multiply(???, ???)

and the focus is on either argument, you will be able to add a third argument by
selecting Add Arg. The result is:

Multiply(???, ???, ???)

To return to two arguments, use the Del Arg button.
91

92

6

Creating a
Predictive Model
Describes how you create a predictive model, using data you have prepared using a
preprocessor.

Introduction 93

Creating a Predictive Model 94

The Training Console 102

Training and Model Selection Algorithms 105

Introduction
In previous chapters, you have seen how to import data, select the data you want
to use for training through labeling and filtering, and create formulas that
condition the data in a preprocessor. Once you have completed these steps, you
are ready to start building models. This chapter describes how you set up and
train a predictive model.

You do not have to be an expert in statistics, parameter estimation, or neural
network to get an excellent model, using NOL Studio. Most technical decisions,
such as best combination of inputs, time delays, model type, number of hidden
nodes, etc. are determined automatically. This saves you the repetitious, time-
consuming task of training multiple models to determine the best settings for
these parameters. In most cases, a single training run is sufficient to get an
optimal model.

If you desire, you can override the automatic features and create a model with
customized features. However, most users will want to take full advantage of the
built-in, time-saving features of NOL Studio.
93

One NOL Studio project can contain any number of models. This allows you to
train models for different phases of your operation, gives you the freedom to
experiment with different preprocessing strategies, and enables you to compare
models, using the validation tools described in Analyzing a Trained Model until
you are completely satisfied with the performance of your model or models. Then
you save out your best model or models for on-line deployment.

Creating a Predictive Model
To create a predictive model, follow the steps in the modeling wizard. The wizard
guides you through the steps to create a model:

1 Name the model.

2 Select whether to use old model parameters.

3 Specify the preprocessor for the model.

4 Specify the output data series to be used in the model.

5 If the output data series is time-based, specify a recursive model.

6 Classify the variables as input, output, or unused.

7 Specify time delays, if any, for the model inputs.

8 Automatically selecting inputs and delays.

These steps are detailed in the following sections.

To launch the wizard:

 Do one of the following:

All of these actions display the model wizard.

Menu Bar: Choose Object > New > Predictive Model.

Toolbar: Click the New Predictive Model button.

Tree View: Right-click the Predictive Models node and
choose New from its menu.
94

Creating a Predictive Model
Naming the Model

The first panel in the wizard prompts you to enter a name for your model, as well
as a free-form comment.Use the comment to help you remember what data was
used for training, how the data was preprocessed, and other special
characteristics of the model.

For example:

Selecting to Use Old Model Parameters

When you build a new model, you can load the parameters from one of the
existing models, or a model parameter file *.mp and start from there. This way
you can save the works of setting the same parameters. Two buttons on the new
predictive model wizard let you specify to load parameters from an existing
model or a model parameter file. A dialog will let you to select the model
parameters from existing models in current project. Please refer to the sensitivity
workspace discussion to find how to save model parameters as an *.mp file.
95

Selecting the Preprocessor

In the second step of the wizard, specify the preprocessor that provides the
training data: Each model requires a specific preprocessor as the source of
training data. The preprocessor must contain all variables used in your model.
You cannot take data from more than one preprocessor, and you cannot train a
model on raw data. If you do not want to preprocess the raw data, simply create a
preprocessor with no filter, and no formulas, and use this preprocessor as the data
source for your model.

For example:

Selecting the Output Data Series

Next, you select the data series containing the output variable or variables. Only
variables associated with the selected data series can be outputs of your model.
However, both inputs and outputs can be contained in the selected data series. If
you want to model variables from different data series, you must create different
models.

If the output data series is time-based, you can specify whether you want to use
delayed output feedback for input variables by clicking the check box in the
wizard. This type of model is called a recursive model.
96

Creating a Predictive Model
To select data series, click on the desired data series, for example:

Classifying Variables

In the fourth step of the wizard, you specify which variables will be inputs and
outputs, and which variables are not used in the model. The list of variables
include all variables in the selected data series, including derived variables
defined by the preprocessor formulas.

Your selection of input variables at this stage should be considered tentative. A
final decision will be made at a later stage. If you are unsure whether a variable
should be included in the inputs, leave it in at this step. Later, each proposed
input will be tested statistically to determine whether it should really be included
in the model. At that point, the selection of inputs will be finalized.
97

To classify the variables, select the appropriate radio buttons, for example:

Specifying Time Delays

By default, it is assumed that there are no significant time delays between inputs
and outputs. In terms of dynamic systems, this implies that the cause and effect
relationship between inputs and output acts rapidly, compared to the time
interval between measurements. Therefore, the model output at any time is a
function of the inputs at the same time. This is a good assumption for processes
operated at steady state, and processes that reach steady state at a time scale faster
than the time scale of measurements.

A process whose equilibration time scale is fast compared to observation time
scale of the output variable is sometimes referred to as quasi-steady state. A quasi-
steady state process might display dynamics, but these dynamics reflect the
external forcing, and a state of “moving equilibrium” is always maintained. You
can tell if your process operates at quasi-steady state by observing the response of
the process to a step change in external (control or disturbance) parameters. If the
output measurements move to new values at the next measurement time, and
stay at those values, delays are not significant in your process.

In some processes, there are significant lags or delays between input and output
variables. Significant, in this context, means on the same time scale as the interval
between output measurements. Typically, lags are associated with the time it
takes for material or energy to be transported from the input to the output of the
process. To get the best results, you must account for these lags.
98

Creating a Predictive Model
Output Delays

You can specify delays on output variables, which means the variable is both an
input and output of the model. This model structure is suitable when you have
online measurements, where there can be significant lags, or delays, between
cause and effect of the process changes. At the same time, there can be some
unmeasurable disturbances that enter the process. In this context, using delayed
outputs as inputs can account for the effects caused by these undefined
disturbances, which enables you to get the best results.

Note Time delays are only relevant for time-based data. Row-based data (data without
time stamps) cannot have delays. If you want to add delays to row-based data,
you must first specify time stamps.

If you know the delay time or approximate delay between the input and output
variables, enter the delay time as the minimum and maximum delay. This
replaces the input with a lagged value of the same variable. If you only know an
approximate range of delay times, enter a range of values that bracket the actual
delay. Then, enter an interval defining a grid of time points between the
minimum and maximum delay. This creates a “window” of past values that are
inputs to the model. At the next step, you can determine which, if any, of these
delays are most important to actually include in the model. You can specify a
different set of delays for each input variable.

For example, if the minimum delay is 0 hours, the maximum delay is 6 hours, and
the interval is one hour, then your model will tentatively include delayed inputs
of 0, 1, 2, 3, 4, 5, and 6 hours. This is illustrated in the following dialog:
99

If you have selected a recursive model, the outputs with delays appear at the top
of the variable list, as this figure shows. Follow the steps described above to set
the output delays. Note that cannot specify zero delays for any output.

Automatic Selection of Inputs and Delays

At this stage, you have selected a set of tentative input variables, possibly
including some delayed variables. However, not all these variables should
necessarily be included in your model. Some proposed inputs may have no effect,
or very weak effect, on the outputs. In this step of the wizard, NOL Studio will
automatically select the model inputs and optimal delays from your tentative
input set.

Your model should include only those variables significantly correlated with an
output variable. NOL Studio uses a nonparametric (nonlinear) correlation
analysis to determine the correlation of each proposed input variable. Variables
identified as significantly correlated are retained in the set of input variables.
Those variables not significantly correlated are not selected. This rating is
expressed in terms of a number of standard deviations, or sigmas, similar to
statistical quality control. By default, NOL Studio uses the value of 3.0 (meaning 3
sigmas) as the level of significance for inclusion of a variable in the model. At this
level, the input variable is almost certainly correlated with the output, and should
be include in the input set.
100

Creating a Predictive Model
To trigger the calculation of inputs, click Calculate Ratings, as shown below. This
figure shows a non-default threshold of 2.0:

The automatic selection of inputs is shown in the column of check boxes next to
each variable. If a variable is not checked, it will not be included in the model. If a
variable is checked, it is included. You can override these choices by manually
checking or unchecking the boxes.

Hint You can sort the input variables from most to least important by clicking on the
Ratings column header. To reverse the order of the sort (from least to most
important) click on the column header again. To sort the variables alphabetically,
click on the first column header, labelled Variables.

In the case of a delayed input, the program determines the significance rating for
each delay between the minimum and maximum you specified. You may want to
select only the delay that is most highly correlated with the target output value
(with the highest rating).

Even when the output is a multivariate function of the inputs, individual input
variables will register correlations with the outputs, in most cases. For example, if
an output y is the product of two independent, random input variables x1 and x2,
correlations between x1 and y and x2 and y will be detectable, since y generally
increases when either variable increases. However, for small data sets, it may be
difficult to detect the correlation between x1 and y because of the noise injected by
the independent variation of x2. If you have a small data set and few variable
correlations exceed the default threshold, you may have to lower the threshold, or
choose inputs on a physical, causal basis.
101

Tip If you feel an important variable has been excluded from the model, the problem
might be insufficient variation of that variable in the training data set. Variables
with insufficient excitation may be excluded from the model on statistical
grounds, even if there is a real causal effect between the input and output. If this
is the case, consider gathering more data, intentionally varying this input.

Tip Including more input variables in your model than indicated by the program can
degrade the performance of your model.

After ratings have been calculated and the final choice of inputs have been
determined, click Finish.

If the data series that you selected for building a model does not have valid data
point, a message dialog will be display when you click Calculate Ratings button.
If you see this message, you will need to modify the data series to add more valid
points.

The Training Console
When you exit the wizard, the following dialog appears, prompting you to select
a maximum training time, stopping strategy and whether you want to train a
linear model only.
102

The Training Console
In most cases, you will want to employ the Use Automatic Stopping option. When
you select this option, NOL Studio will continue to create and train models until
no further improvements are experienced. Setting a maximum training time
limits the amount of time NOL Studio will use to train the model. If you do not
use automatic stopping, training will continue to the maximum training time,
whether or not the training process is making progress. However, you can
manually stop the training at any time.

Linear models have different characteristics from nonlinear models. In some
cases, if you know that your system is likely to have linear relationship or can be
well approximated by a linear relationship, the best choice is to limit the training
algorithm to train a best linear model only. In such cases, linear models intend to
be more robust than nonlinear models and may have better extrapolation
property, because nonlinear models are more likely over-fit with sample noise.
The ways to validate and deploy the linear models are the same as the unspecified
models. A check box on the training dialog lets you specify that you want to train
a linear model only.

Note A linear model can be exported to a text file and loaded into a G2 environment as
either an ensemble model or as a Partial Least Squares (PLS) model. For details,
see Model Deployment.

Initially, you may opt for a short training time, so you can view the preliminary
results quickly, and if they are promising, train for a longer time. You can
continue the training as many times as needed. Because of the special way that
NOL Studio trains and selects models, extending the training time cannot lead to
overtraining the model. For each model, training is automatically stopped at the
optimal point where the model is neither overtrained nor undertrained.

Once a training time has been selected, the training process begins. Training is
monitored through a special window called the training console. Unlike other
dialogs in NOL Studio, the training console exists outside the main NOL Studio
window. Therefore, the training console can be separately closed or iconized, so
you can continue to use NOL Studio application while the training is underway.
However, during training, performance might be more sluggish because of
increased computational demands.
103

The console is shown below:

The chart on the left shows the current fitting error on test data, averaged over the
best five models trained to date. The top five models together constitute the
ensemble model, as discussed in the following section. The chart on the right
shows a plot of predicted versus actual fit, for the output variable designated in
the selection box in the lower right. To view predicted versus actual for another
variable, change the selection in the selection box. The red line in the predicted
versus actual plot is represents the perfect model where the predicted value
generated by the neural network model exactly equals the training target value.
Because of measurement noise, points are usually scattered around the target line.

Below the plots, the two edit boxes show the number of models trained thus far,
and the iteration when last model that was added to the ensemble. As explained
below, when in automatic mode (the default), the program trains multiple models
as it searches for the best architecture.

Training will terminate when the allotted time has expired. Alternatively, you can
terminate training at any time by selecting the Stop button on the console. To
continue training, use the Continue Training button on the Model Properties
dialog. You navigate to the Model Properties dialog via the tree view.
104

Training and Model Selection Algorithms
Training and Model Selection Algorithms
During the training process, NOL Studio prepares a training set from the
preprocessed data series, trains candidate models, and automatically optimizes
the model architecture. This section describes the internal process that results in
the optimal model. This section is technical and assumes a background in
modeling and statistics. If you do not have a technical background in modeling
and statistics, you can skip this section.

Preparing the Training Set

When you begin training, NOL Studio prepares a training set according to your
specified variables and delays. First, the appropriate columns of data are selected.
Next, the rows of the training set are prepared. The details of this process are
different for row-based and time-based data.

• For row-based data, each sample corresponds to a single row of a one data
series. It is not possible to interpolate missing values, because of the
fundamental assumption that rows are independent of one another.
Therefore, rows containing missing values are discarded.

• For time-based data, the rows are prepared by a process of smoothing and
interpolation. The timestamps of the rows of the training set are taken from
the timestamps of the data series containing the output variable or variables.
Timestamps are discarded if any of the output variables are missing. Once the
output times have been determined, the inputs corresponding to the output
times are determined. For each input variable, the corresponding input times
are determined.

– If there are no delays, the input times are the same as the output times.

– If there is a time delay, the input times are the output times less the delay
time.

The values of the input variables at the input times are determined by
interpolation. The default method is linear interpolation. Other available
methods include polynomial and cubic spline interpolation.

Depending on the interpolation option, an input variable can be smoothed, by
filtering high-frequency variations. Because of smoothing, the interpolated
value at a time might not be equal to the measured value at the same time.
Also, missing values can be filled in by interpolating across gaps in the data.

Note Polynomial and cubic spline interpolation and smoothing options are not
available in this version of NOL Studio.
105

Model Types

NeurOn-Line can create both linear and nonlinear models.

• If your data follows linear trends, NOL Studio will create a linear model.

NOL Studio uses a linear modeling technique known as partial least squares
(PLS) to model linear processes. In contrast to normal linear regression, which
can be ill-conditioned when inputs are correlated, PLS models are very
effective when there are many inputs, even when the inputs are linear
combinations of other inputs. PLS automatically determines input
correlations and creates a new input space with reduced dimension,
containing uncorrelated latent variables (factors). In PLS models, there is one
parameter, the number of latent factors, that must be optimized. Detailed
information on PLS is widely available in the statistics and chemometrics
literature.

• To model nonlinear processes, NOL Studio uses two types of nonlinear
models. Both types combine PLS and backpropagation neural networks. In
both models, PLS automatically determines input correlations and creates
latent variables to reduce the effective dimensionality of the model. The latent
variables are linear combinations of the input variables which maximize
correlation with the output variable.

– In the first type of nonlinear model, the latent factors are developed one at
a time, and a small neural network is used to map each latent variable to
the output variables. The process is repeated until the desired number of
factors is reached.

– In the second type of nonlinear model, all PLS factors are determined at
once, and a multiple-input, multiple-output neural network is used to
relate the factor space and the corresponding reduced variable space
calculated for the outputs.

The first nonlinear model type is quicker to train, but may be less accurate
than the second type.

Model Structure Determination

NOL Studio automatically selects the best architecture through a process of
guided evolution. This evolution starts with simple models, and leads to more
complex structures. Both the basic type (linear versus nonlinear), and model
parameters (e.g. number of hidden nodes) are evolved toward optimality. Many
models may be trained during a short training run when this evolutionary
process is used.

When you initiate training, NOL Studio will train a set of linear models. The
quality of fit of these models will be evaluated to determine whether the data has
been underfit or overfit. A model is underfit if there are systematic variations in
106

Training and Model Selection Algorithms
the target data that are not accounted for, by the model. A model is overfit if the
model fits random variations in the target data.

• When the model is determined to be underfit, the new model is created that
adds some degree of complexity above and beyond that of the earlier model.
This complexity may be to move from linear to nonlinear behavior, add a
latent variable, add more nonlinear elements to the network, or a combination
of these elements.

• If, on the other hand, the model is overfit, complexity will be removed, by
changing nonlinear elements to linear elements, reducing the number of latent
variables, or pruning the network.

When seeking a model to evolve, NOL Studio draws from a pool containing the
most successful models. Source models are selected in random manner, weighted
by the success of the model. Maintaining a pool of models prevents early
termination at suboptimal model structures.

Model Selection

When comparing the performance of multiple models, it is necessary to have an
accurate basis for comparison. It is well known that the accuracy of fit on the
training data is not an accurate predictor of performance. For example, you can fit
5 points perfectly with a fourth order polynomial, thus achieving zero error, but
the polynomial may have wild oscillations and thus be a very poor predictor of
the actual shape of the function. A straight line may be a more reasonable fit, even
though the fitting error is non-zero. A more relevant performance indicator is the
performance of the model on future data, drawn from the same population as the
training data, but unseen during the training process. The error on unseen data is
called the prediction error.

Cross-validation is the best general-purpose technique for determining the
prediction error. The cross-validation technique establishes a testing subset,
extracted from the training data, which is held back from the training process.
Once the model has been trained, the model is run using the inputs in the testing
subset. The result is compared to the targets in the testing subset, yielding an
estimate of the prediction error. The prediction error thus calculated represents
the model performance on “unseen” data, and is a fair predictor of the model
performance on future data, under the assumption that the training set is
representative of future conditions.

NOL Studio always uses the prediction error in assessing model performance and
selecting the most successful models. Because of this strategy, you do not have to
worry about overtraining (continuing training to the point of “memorization” of
the training examples). NOL Studio will always give you a model optimized for
performance on future data.
107

Ensemble Models

Several research studies have shown that combining multiple neural networks
can result in a more robust predictive model. In NOL Studio, we take the
approach of retaining a group (ensemble) of the most successful models, and
having them vote to determine the final prediction. If, for a particular input, one
of the models makes a poor prediction, the voting process will make sure the poor
prediction is not allowed to influence the final result. Mathematically, the voting
process involves taking the median of the individual model predictions. The
median is a more robust statistic than the mean, since the mean can be severely
impacted by an outlier.

The ensemble model approach also provides an indication of the certainty of the
prediction. If all models agree on a prediction, the level of confidence is high. If
there is a large disagreement between the predictions, the confidence is low. This
feature of the ensemble model may be exploited in future releases of NOL Studio.
108

7

Analyzing a
Trained Model
Describes how to inspect and validate the performance of a predictive model.

Introduction 109

Viewing the Model Properties 110

Performing Operations on the Model 114

Performing Simulations with a Trained Model 124

Introduction
Once a model has been trained, you can inspect the model to determine its
suitability, robustness, and performance. Typical activities include:

• Analyzing statistical measures of performance on the original training and
testing data series.

• Viewing scatter plots and line charts of predicted versus actual output on the
training and testing data.

• Viewing plots and statistics of model performance on new data never seen in
the training process. For example, if you have built a model using plant data
from January and February, you might want to validate the model using data
from several subsequent months. The performance of the model on the new
data will indicate how well the model has generalized.

• Creating a simulation that can either run what-if scenarios on existing data
series, or on fictitious data specified by the user to analyze how the model will
perform on a wide range of data values.
109

These exercises will help you determine if the model has been trained on
sufficient data, whether it has generalized well, and within what ranges of input
values it is expected to do well. NOL Studio provides a rapid model development
environment to build-train-validate models. You can easily evaluate the
performance of a model, continue training, or create an entirely new model.

Viewing the Model Properties
When you finish the model wizard, a predictive model object is created and
added to the tree view. You can view the Properties dialog for any model by
double clicking the corresponding tree view node.

General Properties

The General Properties tab on the model properties dialog gives general
information about the model, such as the name of the model, the type of the
model, the name of the preprocessor associated with the model, whether the
model has been trained, a brief description of the model performance, and any
comments you entered about the model.

For example:

Brief Information of Model Performance

In the Statistics section, you can find the specification of available statistics and
the rules of thumb of interpreting them. However, sometimes these statistics are
hard to interpret. Based on the correlation coefficients, which represent the
predictive ability of models, the predictive models are rated as “Good”, “Ok”,
110

Viewing the Model Properties
and “Need Improvement”. This rating is based on the average the correlation
coefficients of all output variables.

1 If 0.75< AVE_COEF, the model is rated “Good”.

2 If 0.55< AVE_COEF < 0.75, the model is rated “Ok”.

3 If AVE_COEF < 0.55, the model is rated “Need Improvement”.

This rating can only be used as a primary indicator of the model performance.
Please refer to the Statistics section for detailed performance indexes.

Model Variables

The Variables tab on the model properties dialog summarizes the classification of
variables and delays for each input and output for this model. Information on this
tab is read only.

The variables in the model may be a subset of the variables that are available in
the data series, since you are allowed to choose which variables are relevant for
predicting the output variables. This tab also shows you the classification of each
variable. For predictive models, this can be either Input or Output. Input
variables of optimization models are categorized as Exogenous, Manipulated, or
State. The list does not display unused variables.

For example:

Statistics

The Statistics tab provides performance statistics for the trained model. During
training, data is divided into training and testing subsets, whose size and content
111

is automatically determined. The statistics show how well the model fits the
training and testing subsets.

Note that the future performance of the model is predicted only by the testing
statistics, since these statistics represents the model performance on data not
directly used for determining the model parameters. The training statistics are
usually slightly better than the testing statistics, since the model is tuned
specifically to this data. If the training statistics are much better than the test
statistics, you probably do not have enough data for the model to have captured
the underlying functionality.

The specific statistics shown for each output are the root mean squared error
(RMSE) and the correlation coefficient (CORRCOEF). For example:

The RMSE is calculated in the following manner:

1 For each training or testing example, calculate the difference between the
model’s prediction and the training target.

2 Square the differences.

3 Determine the mean of the squared differences, over the entire training or
testing set.

4 Calculate the square root of the mean.

The RMSE is not normalized; therefore, its units are the same as the units of the
output.

The correlation coefficient (often given the symbol r in statistics texts) measures
the degree of scatter in the predicted versus actual (target value) plot. It is the
covariance of the predicted and actual values, divided by the square root of the
product of the variance of the predicted values and the variance of the actual
values. If the predicted versus actuals lie perfectly on a line (which is unlikely to
112

Viewing the Model Properties
happen because of measurement noise), the correlation coefficient is 1.0. If the
data is randomly scattered, the correlation coefficient
is 0.0.

As shown in many statistics texts, the square of the correlation coefficient (r2) can
be interpreted as the ratio of the variation explained by the model, to the total
variation in the data. Thus, a value of r = 0.8 indicates that the model accounts for
64% of the variation in the data. The remaining variation has two possible
sources: measurement noise and model mismatch.

It is important to bear in mind that, due to measurement error of the output
variables, a “perfect” model -- one that predicts the true value at times -- does not
necessarily correspond to an RMSE of 0 and a correlation coefficient of 1. In fact, if
there is measurement error on an output variable, the RMSE should always be
greater than or equal to the standard deviation of that error. This is because the
measurement error is essentially unpredictable, and cannot be captured by the
model.

The measurement error associated with an instrument or lab test is sometimes
given in terms of a plus/minus accuracy (a 95% confidence value). In this case,
the measurement standard deviation (MSD) is 1/3 of the accuracy. Otherwise,
you can determine the MSD experimentally by repeatedly analyzing a control
sample, and taking the standard deviation of the resulting values.

In interpreting the RMSE, use the following rules of thumb:

• If RMSE < MSD, the model is fitting the noise, and the model is “too good to
be true.”

• If RMSE = MSD, the neural network model is exact.

• If RMSE = 1.2*MSD, the model has about half the error of the physical
measurement.

• If RMSE = 1.4*MSD, the model is about as accurate as the physical
measurement.

• If RMSE = 1.7*MSD, the model has about twice the error of the physical
measurement.
113

Model Structure

The Structure tab shows the structure of the ensemble model. This gives you a
chance to review and verify the models created by NOL Studio. For example:

To see the internal parameters and other details, you must export the model as a
text file by using the Export Weights button. For details, see Saving a Model. For
more information on the various types of models, see Model Types.

Performing Operations on the Model
This section describes the operations you can perform on the model, using the
buttons along the right side of the model properties dialog.

Continuing Training

To continue training this model, use the Continue Training button. This will
launch the model training time dialog, as described in The Training Console, and
allow you to initiate further training.
114

Performing Operations on the Model
Showing the Predicted Versus Actual Plot

To show a plot of predicted versus actual values attained during training, click
Predicted vs. Actual. This brings up the following dialog:

In this dialog, you can show the prediction of any output versus the training
target values of that output, as a line chart (shown above), or as an x-y (scatter)
chart. You change outputs by selecting from the Variable drop-down list. You
change chart formats by selecting the Chart Style radio buttons. To change colors
on the plot, select the appropriate button in the Legend section.

Viewing Parts of the Ensemble Model

NOL Studio models are actually a group of models working together to make a
prediction (see Ensemble Models). In this dialog, you can see how each model in
the ensemble was trained, and how each performs, independent of the rest of the
ensemble. To focus on a single model in the ensemble, select a submodel from the
Model Component drop-down box. The plot is updated to reflect only the
contribution of that component of the ensemble.

Caution If your models were originally trained using Version 2.0 Rev. 0 or earlier versions
of NOL Studio, you will not be able to use the features described in this section.

In addition, you can see how NOL Studio divided the data into training and test
subsets during the training of the selected submodel, by selecting All Data,
115

Training Data, or Testing Data from the Plot section. The following figure shows
the predicted versus actual plot for submodel 1, on the test data:

In this case, only a fraction of the data was used for testing (up to 95% of the data
can be used for training). The discontinuities in the predicted (yellow) line
indicate data used for training this submodel. When you compare the various
submodels, you will see that different divisions of the data are used for each
submodel. The greater coverage of the data by the ensemble is one reason that the
performance of the ensemble model typically exceeds that of the individual
submodels.

Exporting Predictions

You can save the model predictions to a file, using the Export Comparisons
buttons. The data that is saved reflects the predictions as seen on the screen when
you perform this action. For example, if you are displaying the predictions for the
test data subset when you export the predictions, only selected rows of the data
will be written. The “gaps” -- corresponding to samples not chosen for the test set
-- will be written as not-a-number (NaN). When you select the All Outputs
button, you save as many columns of data as there are outputs in the model. The
Displayed Outputs button saves only the currently-displayed output. Time
stamps are included in the output, regardless of the option selected. The actual
output values corresponding to the specified predictions are also included in the
116

Performing Operations on the Model
exported file. In this way, it is easy than before to make a comparison when using
the exported file.

When writing the file, you can choose either binary (.bds) or text (.ds) formats.
You specify which option by specifying the file extension in the Save File dialog.
An example format of the text file is shown below:

Zooming

All of the charts in the predicted vs. actual dialog allow you to interactively zoom
in/out and scroll through your data. When you zoom in, the location of the point
in the center of the plot does not change. Thus, if you want to zoom in on a
particular point, scroll the plot horizontally until the point is shown in the center
of the screen, then click the Zoom In button. When you zoom in, plot symbols
representing the individual data points appear. In a line chart, you cannot
magnify the y axis by zooming, whereas in a scatter chart, you can.

Validating a Model Against Another Data Series

If you are satisfied with the performance of the model on the present data series,
then you may want to test the model on another data series. You can use any data
series other than the one used for training the model, as long as it contains
variables with the same tags as the original training data series. This is because
validation is meant to be performed with a data series from the same underlying
data sources as during training, but from a different time range or set of operating
conditions.

Time 10A100C3.PV_pred 10A100C3.PV
Time % C3 IN C2 COMP_pred % C3 IN C2 COMP
Millisecond None None

8.71964E+11 1.225174967 1.385540366
8.71964E+11 1.286989442 1.385540247
8.71964E+11 1.366936914 1.385540247
8.71964E+11 1.374557197 1.382564783
8.71965E+11 1.393119682 1.382488489
8.71965E+11 1.409462661 1.367229223
8.71965E+11 1.417492178 1.412197351
8.71966E+11 1.439030908 1.42521441
8.71966E+11 1.466799704 1.42521441
117

To start a validation session from the main model dialog:

1 Click the Validate button to display this dialog:

Only valid data series will be displayed in the drop-down list on the dialog.
Click OK once you have chosen a data series for the validation.
118

Performing Operations on the Model
2 The next step is to view the performance of the model on the new data series.
There are several items of information displayed in the following dialog:

This dialog shows the name of the model, its preprocessor and the name of the
validation data series. The RMSE and CORRCOEF statistics are shown in the table
at the upper right. These statistics are calculated based on how well the model fits
the validation data set. (For more discussion of the meaning of these statistics, see
Statistics).

The bottom of the dialog contains the plot, with its controls arranged on the right
hand side. For multiple-output predictive models, you can choose which output
variable is plotted. You can view the plot as a line chart or scatter chart.

The predictions can be saved by selecting Export Comparison. If you want to save
the predictions as a text file, change the file extension to .ds. If you want to save
the predictions as a binary file, which is faster to reload into NOL Studio, use the
extension .bds. The file will save all outputs, along with the time stamps,
associated with the validation data series. The actual values are saved along with
predictions the of the validation data. The file format is the same as the data file
exported from the Predicted vs. Actual dialog.
119

Zooming

All of the charts in the validation dialog allow you to interactively zoom in/out
and scroll through your data. When you zoom in, the location of the point in the
center of the plot does not change. Thus, if you want to zoom in on a particular
point, scroll the plot horizontally until the point is shown in the center of the
screen, then click the Zoom In button. When you zoom in, plot symbols
representing the individual data points appear. In a line chart, you cannot
magnify the y axis by zooming, whereas in a scatter chart you can.

Input-Output Sensitivities

Background

Sensitivities help you identify which input variables have the most effect on
individual output variables. Sensitivities are useful for understanding the
correlations in your data, which may lead to a greater understanding of the
physical causality of the process. Using sensitivities, you can identify inputs that
have a strong influence on an output variable, or inputs that have little or no
influence on the output.

If there are one or more variables that display very small influences on a variable,
you may want to train another model with these inputs removed. This will reduce
the number of adjustable parameters in the model, and may improve the resulting
model.

Sensitivities are averages of local derivative information. They are calculated via
the following process:

1 Select a random data point from the data series.

2 Generate the outputs for the data point using the model.

3 Perturb the jth input by a small amount, and recalculate the output.

4 For each output, form the ratio Sij = (outputi’ - outputi)/(inputj’ - inputj),
where the prime indicates the perturbed input and output. This is the estimate
of the local derivative at the selected data point.

5 Repeat from step 3, for each input.

6 Repeat for another random data point.

The sensitivity value of output i with respect to input j is then calculated by taking
the average of the Sij values, over the sample of randomly-selected data points. To
calculate absolute sensitivities, the absolute values of Sij are averaged. Finally,
each sensitivity is normalized by dividing the sensitivity by the standard
deviation of the respective input variable. Without normalization, it would be
impossible to compare sensitivities with respect to different inputs, because the
sensitivities would have different units. With normalization, the sensitivities have
the same units, specifically, the units of the output variable.
120

Performing Operations on the Model
For a particular input-output pairing, the absolute sensitivities and the signed
sensitivities have the same magnitude if all the local sensitivities have the same
sign. However, if there are sign changes in the local sensitivities (indicating that
the function passes through a maximum or minimum), the average signed
sensitivity might be misleadingly small, because positive and negative
sensitivities tend to cancel out in the averaging process. Therefore, it is a good
idea to check the absolute sensitivities when assessing the importance of an input.

Displaying Sensitivities

To see the sensitivities, select the Sensitivities button on the model properties
dialog. This will bring up the following dialog:

This dialog shows the sensitivity for each variable, with respect to each output, as
a red or blue bar whose length reflects the magnitude of the sensitivity. A blue bar
that extends to the left of center indicates that, on average, increasing the input
tends to decrease the output. A red bar extending to the right of the center line
indicates that increasing the input tends to increase the output. Larger bars
indicate stronger effects. You can also view the numeric results instead of the
graphical bars, by selecting the Number button at the top right.
121

To switch to absolute sensitivities, select the Absolute radio button on the right
side of the dialog. When you display absolute sensitivities, the zero point is the
left edge of the cell, rather than the midpoint. All values are positive and are
displayed in red.

To help you find the most and least sensitive inputs, you can sort the sensitivities
by clicking on the top of any column. To reverse the sorting order, click again. To
sort the variables alphabetically, click at the top of the variables column.

Saving Sensitivity Values

Click on the Export Values button to save the sensitivity values into a txt file. You
can use this txt file for external analysis.

Use Sensitivity Values to Help Select Model Inputs

Using sensitivities, you can identify inputs that have a strong influence on an
output variable, or inputs that have little or no influence on the output. If there
are one or more variables that display very small influences on a variable, you
may want to train another model with these inputs removed. This will reduce the
number of adjustable parameters in the model, and may improve the resulting
model. You can now specify whether a particular input will be used in later
models. A set of check boxes is included in the sensitivity work space to mark the
input selection based on sensitivity values. An Export Selection button at the
bottom of the sensitivity work space can be used to export the input selection as
model parameters into a file of type *.mp. This *.mp file can be used when you
create a new predictive model using the new model wizard.

Saving a Model

To export a model and its preprocessor for on-line use as an ActiveX control or
with the G2 API, click Export on the right side of the Properties dialog. This will
export the model and its associated preprocessor. You can also use the Export
button to export the model and its input/output information into an XML file,
which can be uploaded into a GNNE Predictive Model object. To export a model
for use with NeurOn-Line Classic, select Export Weights. This will save the model
in a text file containing the weights only, in a format that can be uploaded into a
NOL Classic block. For more information on exporting and deploying a trained
model, see Model Deployment.
122

Performing Operations on the Model
To export the model:

1 Click the Export button on the Model Properties workspace:

2 Specify a path and file name in the dialog:

Specify the file extension as .mod to save the model in a .mod file.
123

3 To export the model and its variable information into an XML file, specify the
file extension as .xml:

For more information on using XML files for GNNE Predictive Models, see the
Gensym Neural Network Engine.

Your model is now ready for deployment.

To export the model weight:

1 Click Export Weight on the Model Properties workspace.

2 Specify a path and file name in the dialog. The model weight will be saved in
a .txt file.

Your model weight is now ready for deployment in NOL Classic as the weight for
an ensemble model.

Note You can export to a text file a single linear model weight, then load it into the
NOL Classic environment as an ensemble model, or into the NOL Studio
deployment environment as a Partial Least Squares (PLS) model. For details, see
Model Deployment.

Performing Simulations with a Trained Model
There are two primary ways to validate a model within NOL Studio:

• Using an existing data series. See Validating a Model Against Another Data
Series.
124

Performing Simulations with a Trained Model
• Using a simulation.

Simulations allow you to specify some data to input to a model, inspect the
output generated from that data, and then save the results. To generate a
range of values for use by the simulation, you specify the range (min to max)
of values and x number of increments for a given variable. NOL Studio will
create a series of x+1 inputs with the variable incremented by (max - min)/x.
The other variables will remain constant. For example, if you specified the
minimum value to be 5, the maximum to be 10, and the number of increments
to be 5, NOL Studio would generate the following range of values: 5, 6, 7, 8, 9,
10.

NOL Studio can display the output data from a simulation in two different
formats:

• A spreadsheet view.

• A line chart.

Creating a New Simulation

To create a new simulation:

1 Do one of the following:

The Simulation wizard appears to guide you through the process of creating a
new simulation.

2 Choose a name for the new simulation, for example:

Menu Bar: Choose Object > New > Simulation.

Toolbar: Click the Simulate button.

Tree View: Right-click Simulation and choose New from its
menu.
125

3 Select the model from the list that you want to test, for example:

4 Tell NOL Studio how many points you want it to create for the surface
calculation by typing in the edit box. Set the Start and End values by typing
values in the spreadsheet.
126

Performing Simulations with a Trained Model
For example:

5 Click Finish to create the simulation.

The simulation is saved with the Project.

You can now view the results of the simulation in a spreadsheet or plots of the
response surface and/or the Predicted vs. Actual by displaying the main
simulation dialog as follows:

• Double-click on its entry in the tree view.

or

• Choose Object > Go to > Simulation from the menu bar.

Here is the property table for the Simulation object:
127

Displaying Simulation Results

When you run a simulation, two new data series are created, representing the
input and output of the simulation. These data series can be visualized in a chart
or spreadsheet, using the techniques described in Chapter 3 Visualizing Data.

You can also display the results, with slightly less navigation, using the action
buttons on the property table for the simulation, shown above.
128

8

Creating a
Backpropagation Net
Describes how to create a backpropagation net.

Introduction 129

Creating Backpropagation Net Models 130

The Training Console 132

Viewing the Model Properties 135

Performing Operations on the Model 137

Performing Simulations with a Trained Model 140

Introduction
The Backpropagation Net, or BPN, is another type of predictive model. It is a
feed-forward, layered network. Each node in a layer is connected to all other
nodes in the layer before it and in the layer after it. It is especially useful for
modeling multivariate functions.

Similar to predictive models, you can start building BPN models after importing
data, labeling and filtering data by using a preprocessor, and creating formulas
that condition the data in the same preprocessor. This chapter describes how you
set up and train a BPN.

NOL Studio helps you make modeling decisions, such as the best combination of
inputs and time delays. You need to manually select the architecture of a
Backpropagation Network model before training.
129

One NOL Studio project can contain any number of BPN models. This allows you
to train models with different architectures for the same problem, then to
compare models, using the validation tools until you are completely satisfied
with the performance of your model or models. You can then save out your best
model or models for online deployment.

Creating Backpropagation Net Models
To create a BPN model, you follow the steps in the modeling wizard. The wizard
guides you through these steps to create a model:

1 Name the model.

2 Select whether to use old model parameters.

3 Specify the preprocessor for the model.

4 Specify the output data series to be used in the model.

5 Classify the variables as input, output, or unused.

6 Specify time delays, if any, for the model inputs,

7 Automatically select inputs and delays.

8 Specify the model architecture.

These steps are detailed in the following sections.

To launch the wizard:

 Do one of the following:

All of these actions display the model wizard.

Note After the wizard is displayed, follow the first seven steps in the procedure
summarized in Creating a Predictive Model.

Menu Bar: Choose Object > New > Backpropagation Net.

Toolbar: Click the New Backpropagation Net button.

Tree View: Right-click the Backpropagation Nets node and
choose New from its menu.
130

Creating Backpropagation Net Models
Specifying the Model Architecture

After you finish defining the input and output structure, the last step is to specify
the internal architecture of the BPN model. The number of nodes in the first layer
and the number of input variables must be the same. The number of nodes in the
last layer and the number of output variables must also be the same. The hidden
or intermediate layers (layers between the first and last layers) can be any size.
You can have up to three hidden layers, for a total of up to five layers. In general,
a network has one hidden layer. The number of nodes depends on the complexity
of the function that the network has to model. The more complex the function, the
more nodes needed.

You can choose whether a layer uses the sigmoidal or linear function for its nodes.
In general, the input and output layers use the linear function, and at least one of
the hidden layers use a sigmoidal function.

When you get to this step, the wizard shows following dialog:

First, specify the number of layers, then press Return. You can change the number
of nodes for each hidden layer. The numbers of nodes for the first and last layer
are read only and are defined by previous steps. You can select the layer function
by choosing the sigmoidal or linear function button for each line.

After specifying the details of the architecture, click Finish.
131

The Training Console
When you exit the wizard, the following dialog appears, prompting you to select
a maximum number of iterations, training method and whether you want to
accelerate training by input projection.

Choosing the Maximum Number of Iterations

The training algorithm improves the weights in a number of individual steps. To
specify the maximum number of steps, enter a number in the Maximum Iterations
attribute. Typically, values range from 50 to as much as 1000. If you are not
satisfied with the trained model, you can Continue Training button in the model
property dialog, the training algorithm continues the training from where it
stopped. Continuing Training.

Choosing the Training Method

To choose how to train the network, select one of the options below Training
Method. The options fall into two main categories:

• Conjugate Gradient options: Conjugate Gradients (Fletcher-Reeves) and
Conjugate Gradients (Polak-Ribiere).

• Second Order options: BFGS (Broyden-Fletcher-Goldfarb-Shanno) and DFP
(Davidon-Fletcher-Powell).

In general, the Second Order options are more powerful and use significantly
more memory, and the Conjugate Gradient options use less memory and take less
time per step. The Conjugate Gradient options are generally better for larger
132

The Training Console
networks (over 100 weights), and the Second Order options are better for smaller
networks.

Once you choose which category of training methods to use, you may want to
experiment with the different methods in each category to find out which is best
for your network.

Note Some neural network packages allow you to choose fixed or scheduled “learning
rates” and “momentum factors.” NOL Studio automatically optimizes the
training parameters and does not require you to configure these option. The
parameters that NOL Studio chooses are always better than those chosen by
hand.

Choosing Whether to Accelerate Training

The Accelerate Training by Input Projection option can speed up the training
time. Select it if your input data has columns that might be correlated. To speed
up training, the block projects your input data vector to a vector with fewer
dimensions, trains with the smaller vector, and projects the smaller vector and its
training results backwards to obtain results useful for the original vector. In
general, this option is recommended if you have more than ten inputs.

Once the training parameters have been selected, the training process begin.
Training is monitored through a special window, called the training console.
133

The chart on the left shows the current fitting error on training data. The chart on
the right shows a plot of predicted versus actual fit for the output variable
specified in the selection box in the lower right. To view predicted versus actual
for another variable, change the selection in the selection box. The red line in the
predicted versus actual plot represents the perfect model, where the predicted
value generated by the neural network model exactly equals the training target
value. Because of measurement noise, points are usually scattered around the
target line.

Below the plots, the two edit boxes show how many times the model is updated,
based on the minimum training cycle, and the time when the update occurs. The
training cycle is defined internally, based on the model architecture.

Training will terminate when the maximum number of iterations is reached.
Alternatively, you can terminate training at any time by clicking the Stop button
on the console. To continue training, click the Continue Training button on the
Model Properties dialog. You navigate to the Model Properties dialog via the tree
view.

Preparing the Training Set

When you begin training, NOL Studio prepares a training set according to your
specified variables and delays. The method to prepare the training set for all
models is the same. See Preparing the Training Set.
134

Viewing the Model Properties
Viewing the Model Properties
When you finish the new model wizard, a backpropagation network object is
created and added to the tree view. You can view the properties dialog for any
model by double-clicking the corresponding tree view node, or by choosing
Object > Go To > Models > Backpropagation Net.

General Properties

The General Properties tab on the model properties dialog gives general
information about the model. This is the same as for the predictive model. See
General Properties.

Brief Information of Model Performance

The ratings of “Good”, “OK”, and “Need Improvement” for a backpropagation
network are based on the same criteria as for the predictive model. See Brief
Information of Model Performance.

Model Variables

The Variables tab on the model properties dialog summarizes the classification of
variables and delays for each input and output for this model. See Model
Variables.

Statistics

The Statistics tab provides performance statistics for the trained BPN model.
During BPN training, all data is used for training. The statistics show how well
the model fits the training data set. You can use other data series to perform the
validation of this BPN model to see the model performance on new data.
135

Here is the statistics panel:

Model Structure

The Structure tab shows the structure of the backpropagation network model.
This gives you a chance to review and verify the models created by NOL Studio.
For example:

To see the internal weights and other details, you must export the model as a text
file, using the Export Weights button.
136

Performing Operations on the Model
Performing Operations on the Model
This section describes the operations you can perform on the model, using the
buttons along the right side of the model properties dialog.

Continuing Training

To continue training this model, click the Continue Training button. This will
launch the model training parameter dialog, as described in The Training
Console, and allow you to initiate further training. The training algorithm will
start the training at the place where it is stopped last time.

Showing the Predicted Versus Actual Plot

To show a plot of predicted versus actual values attained during training, click
the Predicted vs. Actual button to show this dialog:

In this dialog, you can show the prediction of any output versus the training
target values of that output, as a line chart (shown above), or as an x-y (scatter)
chart. You change outputs by selecting from the Variable drop-down list. You
change chart formats by selecting the Chart Style radio buttons. To change colors
on the plot, select the appropriate button in the Legend section.
137

Exporting Predictions

You can save the model predictions to a file, using the Export Comparisons
button. The data that is saved reflects the predictions as seen on the screen when
you perform this action. For example, if you are displaying the predictions for the
test data subset when you export the predictions, only selected rows of the data
will be written. The “gaps”—corresponding to samples not chosen for the test
set—will be written as not-a-number (NaN). When you click the All Outputs
button, you save as many columns of data as there are outputs in the model. The
Displayed Outputs button saves only the currently displayed output. Timestamps
are included in the output, regardless of the option selected. The actual output
values corresponding to the specified predictions are also included in the
exported file. In this way, you can make comparisons between exported files.

When writing the file, you can choose either binary (.bds) or text (.ds) formats.
You specify which option by specifying the file extension in the Save File dialog.
A example format of the text file is shown below:

Time 10A100C3.PV_pred 10A100C3.PV
Time % C3 IN C2 COMP_pred % C3 IN C2 COMP
Millisecond None None

8.71964E+11 1.225174967 1.385540366
8.71964E+11 1.286989442 1.385540247
8.71964E+11 1.366936914 1.385540247
8.71964E+11 1.374557197 1.382564783
8.71965E+11 1.393119682 1.382488489
8.71965E+11 1.409462661 1.367229223
8.71965E+11 1.417492178 1.412197351
8.71966E+11 1.439030908 1.42521441
8.71966E+11 1.466799704 1.42521441
138

Performing Operations on the Model
Viewing the Predicted Error

In the Predicted Error dialog, you can show the prediction error of any output as a
line chart, as shown above. You change outputs by selecting from the Variable
dropdown list. In the chart, the 95% upper and lower limits for the predicted error
are shown in red.

Zooming

All of the charts in this predicted vs. actual dialog allow you to interactively zoom
in/out and scroll through your data. When you zoom in, the location of the point
in the center of the plot does not change. Thus, if you want to zoom in on a
particular point, scroll the plot horizontally until the point is shown in the center
of the screen, then click the Zoom In button. When you zoom in, plot symbols
representing the individual data points appear. In a line chart, you cannot
magnify the y axis by zooming, whereas in a scatter chart you can.

Validating a Model Against Another Data Series

You can validate a BPN model against a new data series. The validation process is
the same as with a predictive model. For details, see Validating a Model Against
Another Data Series.
139

Viewing Input-Output Sensitivities

To see the sensitivities, click the Sensitivities button on the model properties
dialog. You can analyze the sensitivities by clicking the buttons in the sensitivity
dialog. See Input-Output Sensitivities.

Exporting a Model

To deploy a backpropagation network in Gensym Neural Net Engine (GNNE) or
NeurOn-Line (NOL) Classic, you must save the weights of the backpropagation
network to a text file. You can also directly export the model parameters to a BPN
object in GNNE. For more information on deploying a trained BPN model, see
Model Deployment.

To export the model weights:

1 Click the Export Weight button in the Model Properties dialog:

2 Specify a path and file name in the dialog. The model weight will be saved in
a .txt file.

Your model weight is now ready for deployment in GNNE and NOL Classic.

Performing Simulations with a Trained Model
You can validate the backpropagation network model by using simulations in
NOL Studio. Simulations allow you to specify some data as inputs to a model,
inspect the output generated from that data, then save and analyze the results.
For details, see Performing Simulations with a Trained Model.
140

9

Creating an
Autoassociative Net
Describes how you create an autoassociative network.

Introduction 141

Creating Autoassociative Net Models 142

The Training Console 145

Viewing the Model Properties 145

Performing Operations on the Model 147

Performing Simulations with a Trained Model 150

Introduction
The Autoassociative Network model, or ANN, is a type of Backpropagation
network that uses autoassociative mappings. It is a feed-forward, layered
network. Each node in a layer is connected to all other nodes in the layer before it
and in the layer after it. In general, the input and output vectors are targeted to
the same process variables. It is especially useful for sensor validation problems.

Similar to predictive models, you can start building ANN models after importing
data, labeling and filtering data by using a preprocessor, and creating formulas
that condition the data in the same preprocessor. This chapter describes how you
set up and train an ANN model.

NOL Studio helps make modeling decisions, such as selecting variables. You
need to define the architecture of an Autoassociative Network model.
141

One NOL Studio project can contain any number of ANN models. This allows
you to train models with different architectures for the same problem, then to
compare models, using the validation tools until you are completely satisfied
with the performance of your model or models. You can then save out your best
model or models for online deployment.

Creating Autoassociative Net Models
To create an ANN model, you follow the steps in the modeling wizard. The
wizard guides you through these steps to create a model:

1 Name the model.

2 Select whether to use old model parameters.

3 Specify the preprocessor for the model.

4 Specify the output data series to be used in the model.

5 Classify the variables as input, output, or unused.

6 Specify the model architecture.

These steps are detailed in the following sections.

To launch the wizard:

 Do one of the following:

All of these actions display the model wizard.

Note After the wizard is displayed, follow the first three steps in the procedure
summarized in Creating a Predictive Model.

Selecting the Data Series

After you select the preprocessor for your model, you select the data series
containing the variables you want to do the mapping. Only variables inside the
selected data series can be used in your model. That also means you can only use
one selected data series to build an ANN model. If you want to model variables
from different data series, you must create different models.

Menu Bar: Choose Object > New > Autoassociative Net.

Toolbar: Click the New Autoassociative Net button.

Tree View: Right-click the Autoassociative Nets node and
choose New from its menu.
142

Creating Autoassociative Net Models
To select data series, click the desired data series, for example:

Classifying Variables

In the fourth step of the wizard, you specify which variables are to be used in the
model, and which variables are not used. The list of variables include all variables
in the selected data series, including derived variables defined by the
preprocessor formulas. For more information, see Classifying Variables.

Defining the Run Mode

You also define the running mode of the ANN model in the fourth step. The Run
Mode attribute lets you choose whether the network replaces faulty input values.

If you choose the Filter Noise Only option, the network does not perform the
replacement. When you run the network, it performs a single forward pass, which
filters random errors from the inputs but not systematic errors (or biases).

If you choose the Correct Gross Errors option, the network does perform the
replacement. When you run the network, it performs n+1 passes, where n is the
number of elements in the input vector. The first pass is the same as the pass used
for the Filter Noise Only option. In the rest of the passes, one of the input values is
ignored, and the network computes the best replacement value. Using the
standard deviation for the input value, the network computes how far off the
input value is from its replacement value. The network then replaces the input
value that is furthest from its replacement value.
143

To select the variables, check the appropriate radio buttons, for example:

Note There is no time delay for Autoassociative Net models. The time-based data series
and row-based data series are treated the same when preparing the training data
set for ANN model training.

Specifying the Model Architecture

After you finish selecting the variables, the next step is to specify the internal
architecture of the ANN model. Normally, an Autoassociative network contains
five layers. The first layer and the last layer must be the same size. Both have the
same number of nodes as the number of the selected variables. The hidden or
intermediate layers (layers between the first and last layers) can be any size.
Usually, an Autoassociative Network has three hidden layers. The middle layer,
or bottleneck layer, must have fewer nodes than any other.

You can choose whether a layer uses the sigmoidal or linear function for its nodes.
In general, the input, output, and bottleneck layers use the linear function, and
the rest use the sigmoid function.
144

The Training Console
When you get to this step, the wizard shows following dialog:

You first specify the number of layers, then press Return. You can change the
number of nodes for each hidden layer. The numbers of nodes for the first and
last layer are read only and are defined by the previous steps. You can select the
layer function by choosing the sigmoidal or linear function button for an
individual line.

After specifying the details of the architecture, click Finish.

The Training Console
The training console for ANN models is the same console as for BPN models. The
strategies to select maximum number of iterations, training method, and whether
you want to use acceleration for training are all the same as with BPN models. For
details, see The Training Console.

Viewing the Model Properties
When you finish the new model wizard, an autoassociative network object is
created and added to the tree view. You can view the properties dialog for any
model by double-clicking the corresponding tree view node, or by choosing
Object > Go To > Models > Autoassociative Net.
145

General Properties

The General Properties tab on the model properties dialog gives general
information about the model. This is the same as for the predictive model. See
General Properties.

Brief Information of Model Performance

The ratings of “Good”, “OK”, and “Need Improvement” for an autoassociative
network are based on the same criteria as for the predictive model. See Brief
Information of Model Performance.

Model Variables

The Variables tab on the model properties dialog summarizes the classification of
variables and delays for each input and output for this model. See Model
Variables.

Statistics

The Statistics tab provides performance statistics for the trained ANN model.
During ANN training, all data is used for training. The statistics show how well
the model fits the training data set. You can use other data series to perform the
validation of this ANN model to see the model performance on new data.

The statistics panel is shown below:
146

Performing Operations on the Model
Model Structure

The Structure tab shows the structure of the autoassociative network model. This
gives you a chance to review and verify the models created by NOL Studio. For
example:

To see the internal weights and other details, you must export the model as a text
file, using the Export Weights button.

Performing Operations on the Model
This section describes the operations you can perform on the model, using the
buttons along the right side of the model properties dialog.

Continuing Training

To continue training this model, click the Continue Training button. This will
launch the model training parameter dialog, as described in The Training
Console, and allow you to initiate further training. The training algorithm will
start the training at the place where it is stopped last time.
147

Showing the Predicted Versus Actual Plot

To show a plot of predicted versus actual values attained during training, click
the Predicted vs. Actual button to show this dialog:

In this dialog, you can show the prediction of any output versus the training
target values of that output, as a line chart (shown above), or as an x-y (scatter)
chart. You change outputs by selecting from the Variable drop-down list. You
change chart formats by selecting the Chart Style radio buttons. To change colors
on the plot, select the appropriate button in the Legend section.

Exporting Predictions

You can save the model predictions to a file, using the Export Comparisons
button, which is the same as for a backpropagation network. For details, see
Exporting Predictions.
148

Performing Operations on the Model
Viewing the Predicted Error

In the Predicted Error dialog, you can show the prediction error of any output as a
line chart, as shown above. You change outputs by selecting from the Variable
dropdown list. In the chart, the 95% upper and lower limits for the predicted error
are also shown in red.

Zooming

All of the charts in the predicted vs. actual dialog allow you to interactively zoom
in/out and scroll through your data. When you zoom in, the location of the point
in the center of the plot does not change. Thus, if you want to zoom in on a
particular point, scroll the plot horizontally until the point is shown in the center
of the screen, then select the zoom in button. When you zoom in, plot symbols
representing the individual data points appear. In a line chart, you cannot
magnify the y axis by zooming, whereas in a scatter chart you can.

Validating a Model Against Another Data Series

You can validate an ANN model against a new data series. The validation process
is the same as with a predictive model. For details, see Validating a Model
Against Another Data Series.
149

Viewing Input-Output Sensitivities

To see the sensitivities, click the Sensitivities button on the model properties
dialog. You can analyze the sensitivities by clicking the buttons in the sensitivity
dialog. See Input-Output Sensitivities.

Exporting a Model

To deploy an autoassociative network in Gensym Neural Net Engine (GNNE) or
NeurOn-Line (NOL) Classic, you must save the weights of the autoassociative
network to a text file. You can also directly export the model parameters to an
autoassociative network object in GNNE. For more information on deploying a
trained AAN model, see Model Deployment.

To export the model weights:

1 Click Export Weight on the Model Properties dialog:

2 Specify a path and file name in the dialog. The model weight will be saved in
a .txt file.

Your model weight is now ready for deployment in GNNE and NOL Classic.

Performing Simulations with a Trained Model
You can validate the autoassociative network model by using simulations in NOL
Studio. Simulations allow you to specify some data as inputs to a model, inspect
the output generated from that data, then save and analyze the results. For
details, see Performing Simulations with a Trained Model.
150

10
Creating a Radial
Basis Function Net
Describes how you create a Radial Basis Function network

Introduction 151

Creating Radial Basis Function Net Models 152

The Training Console 154

Viewing the Model Properties 155

Performing Operations on the Model 157

Performing Simulations with a Trained Model 159

Introduction
The Radial Basis Function Network, or RBFN, is a 3-layer, feed-forward network,
whose middle layer uses a multi-variate Gaussian function. It is especially useful
for classification problems. The RBFN is best for choosing which class out of
many classes an item belongs to.

Similar to predictive models, you can start building RBFN models after importing
data, labeling and filtering data by using a preprocessor, and creating formulas
that condition the data in the same preprocessor. This chapter describes how you
set up and train an RBFN model.

NOL Studio helps make modeling decisions, such as selecting variables. You
need to define the architecture of an Autoassociative Network model.

One NOL Studio project can contain any number of RBFN models. This allows
you to train models with different architectures for the same problem, then to
151

compare models, using the validation tools until you are completely satisfied
with the performance of your model or models. You can then save out your best
model or models for online deployment.

Creating Radial Basis Function Net Models
To create a RBFN model, you follow the steps in the modeling wizard. The wizard
guides you through these steps to create a model:

1 Name the model.

2 Select whether to use old model parameters.

3 Specify the preprocessor for the model.

4 Specify the output data series to be used in the model.

5 Classify the variables as input, output, or unused.

6 Specify time delays, if any, for the model inputs,

7 Automatically select inputs and delays.

8 Specify the model architecture.

These steps are detailed in the following sections.

To launch the wizard:

 Do one of the following:

All of these actions display the model wizard.

Note After the wizard is displayed, follow the first seven steps in the procedure
summarized in Creating a Predictive Model.

Menu Bar: Choose Object > New > Radial Basis Function Net

Toolbar: Click the New Radial Basis Function Net button.

Tree View: Right-click the Radial Basis Function Nets node
and choose New from its menu.
152

Creating Radial Basis Function Net Models
Specifying the Model Architecture

After you finish defining the input and output structure, the eighth step is to
specify the internal architecture of the RBFN model. A RBFN model contains
exactly three layers. The number of nodes in the first layer is the same as the
number of input variables. The number of nodes of the last layer is the same as the
number of output variables. The middle or hidden layer can have any number of
nodes.

Each node in a layer is connected to all other nodes in the layers before it and after
it. The connections between the input and hidden layers are unweighted.
However, RBFNs weight the connections between the hidden layer and output
layer normally, like a BPN or an Autoassociative network.

The transfer function of the input and output layer is linear. You can choose
whether the transfer functions of the hidden layer are spherical or elliptical
Gaussians.

When you get to this step, the wizard shows following dialog:

You can change the number of nodes for the hidden layer. The numbers of nodes
for the first and last layer are read only and are defined by the previous steps.

To set the unit overlap, choose whether the overlap is automatic or fixed by
clicking the toggle button. If the overlap is automatic, the network chooses the
best unit overlap for you automatically. Generally, you will use an automatic
overlap. If the overlap is fixed, enter a positive value in the Unit Overlap attribute
edit box. The unit overlap affects how smoothly the trainer fits the function to the
data. A larger unit overlap creates a smooth, slowly changing fit. A smaller unit
overlap allows rapid changes in the fit.
153

To choose the function shape for the hidden layer, select one of the options under
Hidden Unit Shapes: Spherical or Elliptical. When data is sparse or the input
values are not correlated to each other, spherical units may perform better. When
more data is available or the input values are correlated to each other, elliptical
units may perform better. If the input dimension is 1, there is no difference
between spherical and elliptical nodes, and the network selects Spherical by
default.

After specifying the details of the architecture, click Finish.

The Training Console
When you exit the wizard, the following dialog appears, prompting you to select
the training method.

Choosing the Training Method

Choose an option for Clustering Method. The option you choose depends on
what kind of problem you are trying to solve:

• If you are fitting the network to a function, choose Regular K-Means
Clustering.

• If you are solving a classification problem, choose Class-Separate K-Means
Clustering.

These methods differ in how they assign locations for unit centers. When regular
clustering assigns locations, it uses all the data in the data set simultaneously.
When class-separate clustering assigns locations, it goes through all the members
of one class before going through the members of another. This method prevents
centers from being placed near the boundaries between classes, where they do not
help to discriminate between the classes.

Once the training parameters have been selected, the training process begin. The
final training result is displayed in the training console.
154

Viewing the Model Properties
Training will terminate when the parameters cannot be further improved.
Normally, you can not stop the training process.

Preparing the Training Set

When you begin training, NOL Studio prepares a training set according to your
specified variables and delays. The method to prepare the training set for all
models is the same. Preparing the Training Set.

Viewing the Model Properties
When you finish the new model wizard, a radial basis function network object is
created and added to the tree view. You can view the properties dialog for any
model by double-clicking the corresponding tree view node, or by choosing
Object > Go To > Models > Radial Basis Function Net.

General Properties

The General Properties tab on the model properties dialog gives general
information about the model. This is the same as for the predictive model. See
General Properties.

Brief Information of Model Performance

The ratings of “Good”, “OK”, and “Need Improvement” for a radial basis
function network are based on the same criteria as for the predictive model. See
Brief Information of Model Performance.

Model Variables

The Variables tab on the model properties dialog summarizes the classification of
variables and delays for each input and output for this model. See Model
Variables.

Statistics

The Statistics tab provides performance statistics for the trained RBFN model.
During RBFN training, all data is used for training. The statistics show how well
the model fits the training data set. You can use other data series to perform the
validation of this RBFN model to see the model performance on new data.
155

The statistics panel is shown below:

Model Structure

The Structure tab shows the structure of the backpropagation network model.
This gives you a chance to review and verify the models created by NOL Studio.
For example:

To see the internal weights and other details, you must export the model as a text
file, using the Export Weights button.
156

Performing Operations on the Model
Performing Operations on the Model
This section describes the operations you can perform on the model, using the
buttons along the right side of the model properties dialog.

Showing the Predicted Versus Actual Plot

To show a plot of predicted versus actual values attained during training, click
the Predicted vs. Actual button to show this dialog:

In this dialog, you can show the prediction of any output versus the training
target values of that output, as a line chart (shown above), or as an x-y (scatter)
chart. You change outputs by selecting from the Variable drop-down list. You
change chart formats by selecting the Chart Style radio buttons. To change colors
on the plot, select the appropriate button in the Legend section.

Exporting Predictions

You can save the model predictions to a file, using the Export Comparisons
button, which is the same as for a backpropagation network. For details, see
Exporting Predictions.
157

Viewing the Predicted Error

In the Predicted Error dialog, you can show the prediction error of any output as a
line chart, as shown above. You change outputs by selecting from the Variable
dropdown list. In the chart, the 95% upper and lower limits for the predicted error
are also shown in red.

Zooming

All of the charts in the predicted vs. actual dialog allow you to interactively zoom
in/out and scroll through your data. When you zoom in, the location of the point
in the center of the plot does not change. Thus, if you want to zoom in on a
particular point, scroll the plot horizontally until the point is shown in the center
of the screen, then select the zoom in button. When you zoom in, plot symbols
representing the individual data points appear. In a line chart, you cannot
magnify the y axis by zooming, whereas you can in a scatter chart.

Validating a Model Against Another Data Series

You can validate an RBFN model against a new data series. The validation
process is the same as with a predictive model. For details, see Validating a Model
Against Another Data Series.
158

Performing Simulations with a Trained Model
Viewing Input-Output Sensitivities

To see the sensitivities, click the Sensitivities button on the model properties
dialog. You can analyze the sensitivities by clicking the buttons in the sensitivity
dialog. See Input-Output Sensitivities.

Exporting a Model

To deploy an radial Basis Function network in Gensym Neural Net Engine
(GNNE) or NeurOn-Line (NOL) Classic, you must save the weights of the radial
basis function network to a text file. You can also directly export the model
parameters to a radial basis function network object in GNNE. For more
information on deploying a trained RBFN model, see Model Deployment.

To export the model weights:

1 Click Export Weight on the Model Properties dialog:

2 Specify a path and file name in the dialog. The model weight will be saved in
a .txt file.

Your model weight is now ready for deployment in NOL Classic.

Performing Simulations with a Trained Model
You can validate the radial basis function network model by using simulations in
NOL Studio. Simulations allow you to specify some data as inputs to a model,
inspect the output generated from that data, then save and analyze the results.
For details, see Performing Simulations with a Trained Model.
159

160

11
Creating a Rho Net
Describes how you create a Rho network.

Introduction 161

Creating Rho Net Models 162

The Training Console 164

Viewing the Model Properties 165

Performing Operations on the Model 167

Introduction
The Rho Network is based on the Radial Basis Function Network. It is a 3-layer
feed-forward, layered network, whose middle layer uses a multi-variate Guassian
function. It is useful for classification problems, especially when deciding
whether an item belongs to one particular class or not, which is generally called
single-class membership problem.

Similar to predictive models, you can start building Rho Net models after
importing data, labeling and filtering data by using a preprocessor, and creating
formulas that condition the data in the same preprocessor. This chapter describes
how you set up and train an RBFN model.

NOL Studio helps make modeling decisions, such as selecting variables. You
need to define the architecture of an Rho Net model.

One NOL Studio project can contain any number of Rho Net models. This allows
you to train models with different architectures for the same problem, then to
compare models, using the validation tools until you are completely satisfied
161

with the performance of your model or models. You can then save out your best
model or models for online deployment.

Creating Rho Net Models
To create a Rho Network model, you follow the steps in the modeling wizard. The
wizard guides you through these steps to create a model:

1 Name the model.

2 Select whether to use old model parameters.

3 Specify the preprocessor for the model.

4 Specify the output data series to be used in the model.

5 Classify the variables as input, output, or unused.

6 Automatically select inputs.

7 Specify the model architecture.

These steps are detailed in the following sections.

To launch the wizard:

 Do one of the following:

All of these actions display the model wizard.

Note After the wizard is displayed, follow the first six steps in the procedure
summarized in Creating a Predictive Model.

Specifying the Model Architecture

After you finish defining the input and output structure, the last step is to specify
the internal architecture of the Rho Net model. A Rho Net model contains exactly
three layers. The number of nodes in the first layer is the same as the number of
input variables. The number of nodes of the last layer is the same as the number of
output variables. The middle or hidden layer can have any number of nodes.

Menu Bar: Choose Object > New > Rho Net.

Toolbar: Click the New Rho Net button.

Tree View: Right-click the Rho Nets node and choose New
from its menu.
162

Creating Rho Net Models
Each node in a layer is connected to all other nodes in the layers before it and after
it. The connections between the input and hidden layers are unweighted.
However, Rho Nets weight the connections between the hidden layer and output
layer normally, like a BPN or an Autoassociative network.

The transfer function of the input and output layer is linear. You can choose
whether the transfer functions of the hidden layer are spherical or elliptical
Gaussians.

When you get to this step, the wizard shows following dialog:

You can change the number of nodes for the hidden layer. The numbers of nodes
for the first and last layer are read only and are defined by previous steps.

To set the unit overlap, choose whether the overlap is automatic or fixed by
clicking the toggle button. If the overlap is automatic, the network chooses the
best unit overlap for you automatically. Generally, you will use an automatic
overlap. If the overlap is fixed, enter a positive value in the Unit Overlap attribute
edit box. If the Unit Overlap is 1.0, each hidden unit’s width is the distance to the
nearest hidden unit. If the overlap parameter is 2.0, for example, the unit’s width
is twice the nearest neighbor distance. The unit overlap affects how smoothly the
trainer fits the function to the data. A larger unit overlap creates a smooth, slowly
changing fit. A smaller unit overlap allows rapid changes in the fit. The Unit
Overlap should usually be between 0.5 and 5.0.

To choose the function shape for the hidden layer, select one of the options under
Hidden Unit Shapes: Spherical or Elliptical. When data is sparse or the input
values are not correlated to each other, spherical units may perform better. When
more data is available or the input values are correlated to each other, elliptical
units may perform better. If the input dimension is 1, there is no difference
163

between spherical and elliptical nodes, and the network selects Spherical by
default.

After specifying the details of the architecture, click Finish.

The Training Console
When you exit the wizard, the following dialog appears, prompting you to select
the training method:

Choosing the Training Method

Which option you choose depends on what kind of problem you are trying to
solve:

• If the data set contains data that belongs to a single class, choose Treat Data as
Single Class. The training algorithm ignores any output values in the data set.
When you later evaluate the Rho Network, its output will be the probability
that the input data is part of the distribution defined by the training data
series.

• If the data set contains data that belongs to several classes, choose Treat
Output Data as Class label. The number of output values in the data series
corresponds to the number of possible classes. In each data pair, the output
that corresponds to the element’s class should be one, and the rest of the
outputs should be zero. When you later evaluate the Rho Network, its output
will be a vector with one element for each class, and each element will be the
probability that the input belongs to that class.

Once the training parameters have been selected, the training process begin.
Training terminates when the parameters cannot be further improved. Normally,
you cannot stop the training process. An information dialog appears when
training is complete.
164

Viewing the Model Properties
Preparing the Training Set

When you begin training, NOL Studio prepares a training set according to your
specified variables and delays. The method to prepare the training set for all
models is the same. See Preparing the Training Set.

Viewing the Model Properties
When you finish the new model wizard, a rho network object is created and
added to the tree view. You can view the properties dialog for any model by
double-clicking the corresponding tree view node, or by choosing Object > Go To
> Models > Rho Net.

General Properties

The General Properties tab on the model properties dialog gives general
information about the model. This is the same as for the predictive model. See
General Properties.

Brief Information of Model Performance

The ratings of “Good”, “OK”, and “Need Improvement” for a rho network with
more than one output are based on the same criteria as for the predictive model.
However, if the rho network has output for a single class, the rating is not valid.
See Brief Information of Model Performance.

Model Variables

The Variables tab on the model properties dialog summarizes the classification of
variables and delays for each input and output for this model. See Model
Variables.

Statistics

The Statistics tab provides performance statistics for the trained Rho Net model.
The statistics are only valid for models with more than one output. During Rho
Net training, all data is used for training. The statistics show how well the model
fits the training data set. You can use other data series to perform the validation of
this Rho Net model to see the model performance on new data.
165

The statistics panel is shown below:

Model Structure

The Structure tab shows the structure of the backpropagation network model.
This gives you a chance to review and verify the models created by NOL Studio.
For example:

To see the internal weights and other details, you must export the model as a text
file, using the Export Weights button.
166

Performing Operations on the Model
Performing Operations on the Model
This section describes the operations you can perform on the model, using the
buttons along the right side of the model properties dialog. Some actions, such as
Predicted vs. Actual, Validation, and Sensitivities, are only available if the model
has more than one output variable.

Showing the Output Table

For single-class membership problem, NOL Studio provides an output table
dialog to sort and display the density function values in a table format. To show
this dialog, click the Output Table button:

To find the threshold for your single-class membership problem, sort the
probability density value first and enter the percentage in the lower table and
press Return to determine the threshold index. The probability density value at
the given index in the upper table is the threshold for your problem.

Exporting a Model

To deploy a rho network in Gensym Neural Net Engine (GNNE) or NeurOn-Line
(NOL) Classic, you must save the weights of the rho network to a text file. You
can also directly export the model parameters to a rho network object in GNNE.
For more information on deploying a trained RHO model, see Model
Deployment.
167

To export the model weights:

1 Click Export Weight on the Model Properties dialog:

2 Specify a path and file name in the dialog. The model weight will be saved in
a .txt file.

Your model weight is now ready for deployment in GNNE and NOL Classic.
168

12
Creating a Partial
Least Square Model
Describes how to create a partial least square model.

Introduction 169

Creating Partial Least Square Models 170

Viewing the Model Properties 172

Performing Operations on the Model 173

Performing Simulations with a PLS Model 177

Introduction
Partial least squares (PLS) is a technique for constructing predictive models when
both input variables and output variables are many and highly co-linear. PLS
simultaneously reduces the dimensions of the input and output space and finds
latent vectors for input and output which maximize the correlation of these two
set of variables. Note that the emphasis is on predicting the responses and not
necessarily on trying to understand the underlying relationship between the
variables. PLS is a useful tool to model multivariate process where linear
correlation dominates the relationship when prediction is the goal and there is no
practical need to limit the number of measured variable space. PLS has been
applied to monitoring and controlling industrial processes; a large process can
easily have hundreds of controllable variables and dozens of outputs.

Similar to predictive models, you can start building PLS models after importing
data, labeling and filtering data by using a preprocessor, and creating formulas
that condition the data in the same preprocessor. This chapter describes how you
set up and build a PLS.
169

NOL Studio helps you make modeling decisions, such as the best combination of
inputs and time delays. You can set the model architecture of a PLS by setting the
number of the latent variable, or you can let NOL Studio find the best architecture
based on the minimum prediction error.

One NOL Studio project can contain any number of PLS models. This allows you
to train models with different architectures for the same problem, then to
compare models, using the validation tools until you are completely satisfied
with the performance of your model or models. You can then save out your best
model or models for online deployment.

Creating Partial Least Square Models
To create a PLS model, you follow the steps in the modeling wizard. The wizard
guides you through these steps to create a model:

1 Name the model.

2 Select whether to use old model parameters.

3 Specify the preprocessor for the model.

4 Specify the output data series to be used in the model.

5 Classify the variables as input, output, or unused.

6 Specify time delays, if any, for the model inputs,

7 Automatically select inputs and delays.

8 Specify the number of factors.

These steps are detailed in the following sections.

To launch the wizard:

 Do one of the following:

All of these actions display the model wizard.

Note After the wizard is displayed, follow the first seven steps in the procedure
summarized in Creating a Predictive Model.

Menu Bar: Choose Object > New > Partial Least Square Model.

Toolbar: Click the New Partial Least Square Model button.

Tree View: Right-click the Partial Least Square Model node and
choose New from its menu.
170

Creating Partial Least Square Models
Specifying the Model Architecture

After you finish defining the input and output structure, the last step is to specify
the internal architecture of the PLS model. The only parameter to set is the
number of factors as latent variables. You set the number of factors by checking
the Fixed Factor Number check box and entering the number in the Factor
Number text field. In general, the number of factors depends on the complexity of
the function the network has to model. The number of factors should define the
number of degrees of freedom of the linear relationship between the joined input
and output space.

When you get to this step, the wizard shows following dialog:

After specifying the number of factors, click Finish.

Note The Partial Least Square model is a special multivariate regression model. It does
not require a multistep training process. There is no training console to show the
status of PLS model training.

Preparing the Training Set

When you begin building a PLS model, NOL Studio prepares a data set according
to your specified variables and delays. The method to prepare the data set for all
models is the same. See Preparing the Training Set.
171

Viewing the Model Properties
When you click Finish in the new model wizard, a partial least square model
object is created and added to the tree view. You can view the properties dialog
for any model by double-clicking the corresponding tree view node, or by
choosing Object > Go To > Models > Partial Least Square Model.

General Properties

The General Properties tab on the model properties dialog gives general
information about the model. This is the same as for the predictive model. See
General Properties.

Brief Information of Model Performance

The ratings of “Good”, “OK”, and “Need Improvement” for a partial least square
model are based on the same criteria as for the predictive model. See Brief
Information of Model Performance.

Model Variables

The Variables tab on the model properties dialog summarizes the classification of
variables and delays for each input and output for this model. See Model
Variables.

Statistics

The Statistics tab provides performance statistics for the PLS model. The statistics
show how well the model fits the training and testing data set. See Statistics.

Model Structure

The Structure tab shows the number of factors for the partial least square model.
To see the internal weights and other details, you must export the model as a text
file, using the Export Weights button.
172

Performing Operations on the Model
Performing Operations on the Model
This section describes the operations you can perform on the model, using the
buttons along the right side of the model properties dialog.

Showing the Predicted Versus Actual Plot

To show a plot of predicted versus actual values attained during training, click
the Predicted vs. Actual button to show this dialog:

In this dialog, you can show the prediction of any output versus the training
target values of that output, as a line chart (shown above), or as an x-y (scatter)
chart. You change outputs by selecting from the Variable drop-down list. You
change chart formats by selecting the Chart Style radio buttons. To change colors
on the plot, select the appropriate button in the Legend section.

Exporting Predictions

You can save the model predictions to a file, using the Export Comparisons
button. The data that is saved reflects the predictions as seen on the screen when
you perform this action. For example, if you are displaying the predictions for the
test data subset when you export the predictions, only selected rows of the data
will be written. The “gaps”—corresponding to samples not chosen for the test
173

set—will be written as not-a-number (NaN). When you click the All Outputs
button, you save as many columns of data as there are outputs in the model. The
Displayed Outputs button saves only the currently displayed output. Timestamps
are included in the output, regardless of the option selected. The actual output
values corresponding to the specified predictions are also included in the
exported file. In this way, you can make comparisons between exported files.

When writing the file, you can choose either binary (.bds) or text (.ds) formats.
You specify which option by specifying the file extension in the Save File dialog.
A example format of the text file is shown below:

Time 10A100C3.PV_pred 10A100C3.PV
Time % C3 IN C2 COMP_pred % C3 IN C2 COMP
Millisecond None None

8.71964E+11 1.225174967 1.385540366
8.71964E+11 1.286989442 1.385540247
8.71964E+11 1.366936914 1.385540247
8.71964E+11 1.374557197 1.382564783
8.71965E+11 1.393119682 1.382488489
8.71965E+11 1.409462661 1.367229223
8.71965E+11 1.417492178 1.412197351
8.71966E+11 1.439030908 1.42521441
8.71966E+11 1.466799704 1.42521441
174

Performing Operations on the Model
Viewing the Predicted Error

In the Predicted Error dialog, you can show the prediction error of any output as a
line chart, as shown above. You change outputs by selecting from the Variable
dropdown list. In the chart, the 95% upper and lower limits for the predicted error
are also shown in red.

Zooming

All of the charts in the predicted vs. actual dialog allow you to interactively zoom
in/out and scroll through your data. When you zoom in, the location of the point
in the center of the plot does not change. Thus, if you want to zoom in on a
particular point, scroll the plot horizontally until the point is shown in the center
of the screen, then select the zoom in button. When you zoom in, plot symbols
representing the individual data points appear. In a line chart, you cannot
magnify the y axis by zooming, whereas in a scatter chart you can.

Validating a Model Against Another Data Series

You can validate a PLS model against a new data series. The validation process is
the same as with a predictive model. For details, see Validating a Model Against
Another Data Series.
175

Viewing Inputs/Outputs Ratio

To see the inputs/outputs ratio, click the Inputs/Outputs Ratio button on the
model properties dialog:

Exporting a Model

To deploy a PLS model in a G2 environment, you should save the weights of the
PLS model to a text file. With NOL Studio and G2 connected, you can upload the
PLS model parameters with a procedure call in G2. For more information on
deploying a PLS model, see Model Deployment.
176

Performing Simulations with a PLS Model
To export the model weights:

1 Click the Export Weight button in the Model Properties dialog:

2 Specify a path and file name in the dialog.

The model weight will be saved in a .pls file.

Your model weight is now ready for deployment in a G2 environment.

Performing Simulations with a PLS Model
You can validate the PLS model by using simulations in NOL Studio. Simulations
allow you to specify some data as inputs to a model, inspect the output generated
from that data, then save and analyze the results. For details, see Performing
Simulations with a Trained Model.
177

178

13
Creating a Principal
Component Analysis Model
Describes how to create a principal component analysis model.

Introduction 179

Creating Principal Component Analysis Models 180

Viewing the Model Properties 182

Performing Operations on the Model 183

Introduction
Principal component analysis (PCA) involves a mathematical procedure that
transforms a number of possibly correlated variables into a smaller number of
uncorrelated variables called principal components. The first principal
component accounts for as much of the variability in the data as possible, and
each succeeding component accounts for as much of the remaining variability as
possible. Mathematically, the main use of PCA is to reduce the dimensionality of
a data set while retaining as much information as is possible. It computes a
compact and optimal description of the data set. PCA is a useful statistical
technique that has found application in fields such as process performance
monitoring, abnormal situation root cause detection, face recognition and image
compression, and is a common technique for finding patterns in data of high
dimension. For a brief mathematical explanation of PCA, see What is PCA?.

Similar to all types of models, you can start building PCA models after importing
data, labeling and filtering data by using a preprocessor, and creating formulas
that condition the data in the same preprocessor. This chapter describes how you
set up and build a PCA model.
179

NOL Studio helps you to build a PCA model through a model building wizard.
One NOL Studio project can contain any number of PCA models. You can build a
PCA model for any one set of variables. You can save out PCA models for online
deployment.

Creating Principal Component Analysis Models
To create a PCA model, you follow the steps in the modeling wizard. The wizard
guides you through these steps to create a model:

1 Name the model.

2 Select whether to use old model parameters.

3 Specify the preprocessor for the model.

4 Specify the data series for the model.

5 Classify the variables as used or unused.

These steps are detailed in the following sections.

To launch the wizard:

 Do one of the following:

All of these actions display the model wizard.

Note After the wizard is displayed, follow the first three steps in the procedure
summarized in Creating a Predictive Model.

Selecting the Data Series

Next, you select the data series containing the variables from which you want to
build a PCA model. The variables used in a PCA model have to be within a single
data series. There is no consideration of time stamps for the model. All the
samples within the data series are treated as independent from previous and later
samples.

Menu Bar: Choose Object > New > Principal Component Analysis
Model.

Toolbar: Click the New Principal Component Analysis Model
button.

Tree View: Right-click the Principal Component Analysis Model
node and choose New from its menu.
180

Creating Principal Component Analysis Models
To select data series, click the desired data series, for example:

Classifying Variables

After you select the data series, the last step is to classify which variables you
want to use to build the PCA model. The default setting is to use all variables in
the selected data series. To exclude any variable, you need to manually disable the
variable in the table.
181

When you get to this step, the wizard shows following dialog:

After classifying the variables, click Finish.

Note The Principal Component model is a linear statistical model. It does not require a
multistep training process. There is no training console to show the status of PCA
model training.

Preparing the Training Set

When you begin building a PCA model, NOL Studio prepares a data set
according to your specified variables. The method to prepare the data set for all
models is the same. See Preparing the Training Set.

Viewing the Model Properties
When you click the Finish button in the new model wizard, a principal
component analysis model object is created and added to the tree view. You can
view the properties dialog for any model by double-clicking the corresponding
tree view node, or by choosing Object > Go To > Models > Principal Component
Analysis Model.
182

Performing Operations on the Model
General Properties

The General Properties tab on the model properties dialog gives general
information about the model. This is the same as for the predictive model. See
General Properties.

Model Variables

The Variables tab on the model properties dialog shows variables used for this
model. See Model Variables.

Statistics

The Statistics tab provides statistics for the PCA model. The specific statistics
shown are the general statistics, such as 95% Squared Predicted Error (SPE) (Q)
value, 95% T2, and 95% limits for each principal component. Because the data are
center scaled before building PCA model, the principal components are also
centered around its axis. For example:

Performing Operations on the Model
This section describes the operations you can perform on the model, using the
buttons along the right side of the model properties dialog.

Validating a Model Against Another Data Series

If you are satisfied with the performance of the model on the present data series,
then you may want to test the model on another data series. You can use any data
183

series other than the one used for training the model, as long as it contains
variables with the same tags as the original training data series. This is because
validation is meant to be performed with a data series from the same underlying
data sources, but from a different time range or set of operating conditions.
Normally, you are trying to look at whether the principal component values are
out of their limits.

To start a validation session from the main model dialog:

1 Click the Validate button to display this dialog:

Only valid data series appear in the dropdown list on the dialog.

2 Click OK once you have chosen a data series for the validation.
184

Performing Operations on the Model
The next step is to view the performance of the model on the new data series.
There are several items of information displayed in the following dialog:

This dialog shows the name of the model and the name of the validation data
series. There are three tabs to show the single score chart with control limits, 2D
score chart, and the SPE chart with limits. These control limits are calculated from
the training data.

2D Score Chart

By default, the first two principal components, PC1 and PC2, are displayed in the
plot, since these variables contain most of the information on the variation in your
data set. However, you can also view less significant principal components
(PC3 - PCn) by using the Show selection boxes in the upper right of the score
chart view.

The scores from validation data series will be superimposed over the original
plot. The green dots represent the PCs calculated from the training data series,
and the red dots represent the PCs from the validation data series.

Single Score Chart

By default, the first principal component, PC1, and its limits are displayed in the
plot. You can also view less significant principal components (PC1 - PCn) by
using the Show selection boxes in the upper right of the projection chart view. The
scores from validation data series will be superimposed over the original plot.
185

The green line represents the PCs calculated from the training data series, and the
red line represents the PCs from the validation data series. The controls for the
chart are arranged on the right-hand side. You can choose which score variable is
plotted. You can zoom in and out for details.

If the scores from validation data series are outside their corresponding control
limits, then the process that generate the validation data series may operate
outside the normal operating range defined by the training data series.

SPE Chart

SPE refers to the Squared Predicted Error of the variables based on the PCA
model. The green line represents the SPE calculated from the training data series,
and the red line represents the SPE from the validation data series. The controls
for the chart are arranged on the right-hand side. You can choose which score
variable is plotted. You can zoom in and out for details.
186

Performing Operations on the Model
If the SPE from validation data series are outside Q limit, calculated from training
data, then the process that generates the validation data series may operate
outside the normal operating range defined by the training data series.

Exporting the Model Parameters

The PCA should be deployed in G2 only. There are two ways to deploy PCA
models in G2. You can save the parameters of the PCA model to a text file, then
load the parameter file into PCA object in G2. When NOL Studio and G2 are
connected, you can upload the PCA model parameters with a procedure call in
G2 without saving them into a file. For more information on deploying a PCA
model, see Model Deployment.
187

To export the model weights:

1 Click the Export Weight button in the Model Properties dialog:

2 Specify a path and file name in the dialog.

The model parameters will be saved in a .pca file.

Your model parameters is now ready for deployment in G2.

SPE Statistic Chart

SPE refers to the Squared Predicted Error of the variables based on the PCA
model. It is the error between the original data and reconstructed values from the
PCA model. With PCA model, the training data X(n x m) are reduced to an f-
dimensional matrix T (n x f), where f < n. The scores matrix T is produced by
multiplying X by a projection matrix P (m x f), as follows:

T = XP

The P matrix is chosen so that T is an optimum projection, in the sense of
minimizing the “lost information” that results from reducing the number of
columns of X. Mathematically, the lost information can be quantified by a matrix
E (n x m), calculated as follows:

E= X - TPt = X(I - PPt)

PCA chooses the projection matrix P so the 2-norm (equivalent to the mean of the
squares of the elements) of E (SPE) is minimized. In addition, the 95% statistic
(Q value) for SPE can be calculated based on the training data set. This Q value
can be used to monitor the performance of new data samples.
188

Performing Operations on the Model
To show a plot of Squared Predicted Error for the training data, click the SPE
Statistic Chart button to show this dialog:
189

Loading Chart

If you want to know how much each variable contributes to the principal
component factors, you can look at the correlations between the variables and the
factors. These correlations are also called factor loadings. Click the Loading Chart
button to show this dialog:

To show loading factors of variables to different principal components, you can
use the Show selection boxes in the right of the chart view to select the component
index. The variable list box shows the index to variable names. If the number of
variables is very large, you can use the Zoom In and Zoom Out buttons to exam
the loadings in details.
190

Performing Operations on the Model
Single Score Chart

A Single Score Chart allows you to view one principal component calculated from
training data. Score line charts are useful for showing the trends of the scores and
also the trend against the 95% control limits. For example:

To show different score variables, use the Show selection boxes in the right of the
chart view. The line chart allows you to interactively zoom in/out and scroll
through your data. When you zoom in, the location of the point in the center of
the plot does not change. Thus, if you want to zoom in on a particular point, scroll
the plot horizontally until the point is shown in the center of the screen, then click
the Zoom In button.
191

2D Score Chart

A 2D Score Chart is the same type of chart as a Projection chart for a data series.
For detailed explanation and benefits of the chart, you can refer to the Viewing
Data in Projection Charts. Click the 2D Chart button to show this dialog:
192

14
Optimization
Describes how to use a model and user-defined criteria to determine correct
setpoints for manipulated variables.

Introduction 193

Variable Classification for Optimization 194

Developing an Optimization Model 196

The Optimization Objective Function 202

Creating an Optimization Problem 203

Running an Optimization 208

Running through an Existing Data Set 210

Saving an Optimization 210

Introduction
At this point, you have trained and verified a model that accurately predicts one
or more performance characteristics of your process. The model can be directly
deployed to make this prediction on-line, in real time, acting as a virtual sensor.
Virtual sensor predictions can be used as part of your existing control system, or
as an input to a supervisory control system.

You may also want to use the model to drive the predicted value to a desired set
point. Or, you might have a more complex economic objective that should be
maximized or minimized. In terms of network inputs and outputs, you are
seeking input values that achieve the desired output value or optimize the
193

economic objective. However, the predictive model cannot be used directly for
this purpose, because some of the inputs to your predictive model might be
functions of other inputs, and therefore, cannot be varied independently.

For example, in a distillation column, you might use measurements of feed flow
rate, reflux rate, reboiler steam flow, and several tray temperatures to predict
overhead product composition. However, tray temperatures are functions of feed
flow rate, reflux rate, reboiler steam flow, not truly independent. So, if you want
to find optimal settings for the reflux rate and reboiler steam flow, you must
know how tray temperatures are affected by these variables. Your predictive
model does not contain this information.

So the first job in solving an input optimization is to develop a model that better
organizes dependent and independent variables, which we call an optimization
model. Given this model, you specify desired values and cost for input and output
variables, initial values for the manipulated variables, and optional constraints
and parameters, and NOL Studio provides setpoints for manipulated variables
that produce the best solution to your specification.

In this Chapter, we first discuss the classification of variables in optimization
models. Next, we discuss the process of creating an optimization model. Then, we
describe the objective function used in NOL Studio optimizations. Finally, we
show how you create an objective function and run optimizations based on your
optimization model.

Variable Classification for Optimization
When you set up an optimization problem, you must classify your measured
variables into four categories:

Category Description

Exogenous (external) variables These variables affect the output and
state variables, but cannot be
controlled. Examples are outside air
temperature or feedstock properties.

Manipulated variables These are input variables that affect
output and state variables, and can be
deliberately changed to meet
production goals. Examples are valve
positions, pump speeds, and flow
ratios.
194

Variable Classification for Optimization
The following figure illustrates the relationship between these variables:

To solve the optimization problem, two models must be developed:

• The first model predicts the state variables as a function of the exogenous and
manipulated variables.

• The second model predicts the output variables as a function of state,
exogenous, and manipulated variables.

During the optimization, when NOL Studio considers hypothetical changes to the
manipulated variables, the first model is used to predict the corresponding
changes to the state variables, given the current measured values of exogenous
variables. The second model is then used to predict the value of the output
variables, corresponding to the predicted state variables, the hypothetical values
of manipulated variables, and current measured values of exogenous variables.
The resulting values of all variables are used to evaluate the objective function.

State (internal) variables These variables are affected by
exogenous and manipulated variables,
but cannot be directly controlled.
Examples are distillation column tray
temperatures, specific reaction rates,
and fermentation cell densities.

Output variables These are variables are affected by
exogenous, manipulated, and state
variables. They are to be predicted by
the optimization model. Usually, the
output variables have specific target
values that are either pushed near
constraints, or held at a set point.

Category Description

exogenous
variables

Manipulated
variables

Optimization
action

output
variables

PROCESS

state
variables
195

Developing an Optimization Model
The process for developing an optimization model is quite similar to the process
of developing a predictive model. To create an optimization model, you follow
the steps in the modeling wizard.

To launch the wizard:

 Do one of the following:

The Create New Optimization Model wizard appears to guide you through the
steps necessary to create the optimization model.

Naming the Model

The first panel in the wizard prompts you to specify a name for your model, and
enter a comment. Use the comment to help you remember what data was used for
training, how the data was preprocessed, and other special characteristics of the
model.

Menu Bar: Choose Object > New > Optimization Model.

Toolbar: Click the New Optimization button.

Tree View: Right-click the Optimization Models node and
choose New from its menu.
196

Developing an Optimization Model
Selecting the Preprocessor

In the second step of the wizard, specify the preprocessor that provides the
training data.

Each model requires a specific preprocessor as the source of training data. The
preprocessor must contain all variables used in your model. You cannot take data
from more than one preprocessor, and you cannot train a model on raw data. If
you do not want to preprocess the raw data, simply create a preprocessor with no
filter, and no formulas, and use this preprocessor as the data source for your
model.

To select the preprocessor:

 Click on the desired preprocessor.

For example:
197

Selecting the Output Data Series

Next, you select the data series containing the output variable or variables. Only
variables associated with the selected data series can be outputs of your model.
However, both inputs and outputs can be contained in the selected data series. If
you want to model variables from different data series, you must create different
models.

To select data series:

 Click on the desired data series.

For example:
198

Developing an Optimization Model
Selecting the State Variable Data Series

Next, you select the data series containing the state variables. Only variables
associated with the selected data series can be state variables of your model.

To select data series:

 Click on the desired data series.

For example:
199

Classifying Variables

In the fifth step of the wizard, you specify which variables will be exogenous,
manipulated, state, and output variables, and which variables are not used in the
model. The list of variables include all variables in the selected data series,
including derived variables defined by the preprocessor formulas.

To classify the variables:

 Click the appropriate radio buttons.

For example:

Specifying Time Delays

Specification of time delays is needed for both state and output models. When
specifying delays in the state model, the delays are the time lag between the
inputs (manipulated and exogenous variables) and the state variables. When
specifying the delays for the output variables, the delays are the time lags relative
to the output variables.

You cannot specify delays for row-based data.

For more information on specifying time delays, see Specifying Time Delays.

Automatic Selection of Inputs and Delays

At this stage, you have selected a set of tentative input variables, possibly
including some delayed variables, for both state and output variables. NOL
200

Developing an Optimization Model
Studio will automatically select the model inputs and optimal delays from your
tentative input set, in the same manner as for predictive models, as described in
Automatic Selection of Inputs and Delays.

Here is the dialog for rating and final specification of inputs to the state model:

After this step, When you exit the wizard, you will be prompted to select a
training time. When you train the model, be sure you specify adequate time, since
internally, two models are being trained.

The Training Console

When you train an optimization model, the training console is slightly different
than the console for a predictive model. In this console, there are two tabs, one for
the state model and one for the output model. You can track the progress of either
model by switching between tabs.
201

This is an example of the console:

The Optimization Objective Function

The following objective function, which NOL Studio minimizes, is defined with
respect to the outputs, state variables and manipulative variables, z:

subject to:

where LBi and UBi are the lower and upper bounds of zi, respectively, where i
ranges over all of the variables, excluding the exogenous variables.

F zi  fi

i

N

 zi =

LBi zi UBi 
202

Creating an Optimization Problem
The function fi(zi) is defined as:

in which the wi are user-defined weights, zisp is the user-defined setpoint of
variable i, and SLBi and SUBi are the soft lower bounds and soft upper bounds of
zi, respectively.

There are four user-defined weights for each variable:

• A linear weight, w0, which multiplies the value of the variable. If w0 is
positive, the variable will tend to be driven to its lower bound. If it is negative,
the variable will tend to be driven to its upper bound.

• A quadratic weight, w1, which multiplies the deviation from a variable’s
setpoint. Usually, this weight is non-zero only for output variables, whose
values you want to control.

• Two linear weights, w2 and w3, which penalize violation of soft upper and
lower bounds, respectively. The contribution of these weights is zero if the
variable is not in the region between the soft bound and the hard bound.

Any weight can be positive or negative, but typically, all weights are positive
except w0, which can be either positive or negative.

Creating an Optimization Problem

During creation of an optimization problem, you will be prompted to fill out
values for the weights. Generally, you determine the targets for each output
variable, and constraints on inputs. It is the task of the optimization routine to
find the best setpoints for the input variables. You only need to give NOL Studio
initial values for the variables to start the calculation.

The setpoints that NOL Studio determines are optimal will always be between the
hard lower and upper bounds that you set for each variable, provided there is a
feasible solution. These limits may correspond to the physical limitations imposed
by the equipment, such as a valve or thermostat. NOL Studio also uses both
upper and lower soft bounds. Violation of the soft bounds imposes a cost.

If you know something about the solution to the optimization problem, you can
speed the computation by providing a starting point close to a solution. Usually
the current operating point is a good starting point.

fi zi  wi0zi wi1 zi zisp– 2 wi2max 0 z i SUBi– 

wi3max 0 SLBi zi– +

+ +=
203

Using the Optimization Wizard

To create an optimization:

 Do one of the following:

The Create New Optimization wizard appears, for example:

To configure an optimization:

1 Enter a name for this optimization.

Every new optimization command creates an optimization object. The default
name is OptimizationN, where N is a count of the number of optimizations
you have thus far created.

2 Enter a comment associated with this optimization to remind yourself of any
information you may wish to remember in the future.

Menu Bar: Choose Object > New > Optimization.

Toolbar: Click the New Optimization button.

Tree View: Right-click the Optimization node and choose
New from its menu.
204

Creating an Optimization Problem
3 Click Next and specify the model to be used in creating your optimization.

For example:

4 Click Next and define the first two adjustable weights for the optimization.

The initial values for all the linear weights are 0.0. The initial setpoint weights
for outputs are 1.0 and 0.0 for inputs.

You can enter new weights in this panel and the weights can be changed later
from the optimization property workspace. The values for linear weights can
be either positive or negative. The weights for setpoints should almost always
be positive.

For example:
205

5 Click Next to define the final two adjustable weights for the optimization.

Again the weights entered through this panel can be changed later from the
optimization property workspace.

For example:

6 Click Finish to complete the creation of the optimization object.

Once you have created an optimization, you can access it from the tree view.

To display the optimization property workspace from the tree view:

 Do one of the following:

• Double-click the name of the optimization object.

• Right-click the name of the optimization object and choosing Go To from its
menu.

The optimization property workspace provides general information and access to
the values of weights and bounds, which include upper and lower limits, soft
upper and lower limits and setpoints.
206

Creating an Optimization Problem
For example:

Upon any changes to the optimization settings, the Run button becomes active
and can be re-run to compute a new set of setpoints. If no changes are made the
Run button remains disabled and the previously computed setpoint is still valid.
You can change the name and comment of this optimization by typing new
strings in corresponding text fields.
207

Running an Optimization
To calculate the optimization, click Run in the optimization workspace.

The following example shows the variable panel of the optimization property
workspace. This panel allows you to select a variable and modify that variable’s
Lower Bound (LB), Upper Bound (UB), Soft Lower Bound (SLB), and Soft Upper
Bound (SUB).

The light-yellow background indicates the state variables. The dark-yellow
background indicates the output variables, with all other variables being
manipulated variables. The exogenous variables will be indicated by white
background color. The initial value for each variable is its mean. The range of the
slider is defined by the Min and Max and is originally derived from the data set.

You can change the setpoints and limits in two ways:

• Use the mouse to move the thumb for each limit or setpoint in the variable
slider. While moving the slider you will note that setpoint changes.

• Enter the value for each limit or setpoint in the variable bounds table. You
select to show the values of the bounds for one variable by click on the
variable row in the variable list.

After calculation, the results will appear in the variable list. The results for
manipulated variables are the best setpoints for these variables. The results for
state variables are the values based on the setpoints of manipulated variables and
208

Running an Optimization
the results for outputs are the achieved best values from the manipulated and
state variables

The results normally show by green color bars. If the any result for a variable
reaches the upper bound, the color bar will turn dark gray. If the result reaches
lower bound, the color bar will turn into red color.

The Bounds tab panel in the optimization property workspace allows you to
edit/modify weights that you entered previously for the limits and setpoints. For
example:

Initial Condition and Error Handling in Optimization
Calculation

A automatic approach for setting the initial condition ensures that the initial
condition is within the hard lower and upper bounds. The default values for the
initial condition are the mean values of every variable from the data series. If any
hard bound is changed and any value of the initial condition is outside its hard
bounds, this value is discarded in favor of the mean of the upper and lower hard
bounds.
209

If an error occurs during optimization, a status code is returned after the
calculation is called.

Maximum Iterations

When an optimization calculation reaches the maximum number of iterations, a
warning dialog appears. When this occurs, you can increase the maximum
iteration and allow the optimization to continue. In this instance, the new number
is only used for the current optimization; it is not used as a global preference.

Running through an Existing Data Set
You can run the optimization with one particular setting through an existing data
series. The values of output variables in the data series serve as proposed
setpoints for outputs. The values of exogenous variables are those in the data
series and the values of manipulated and state variables are not used. The results
are saved in a data series, which you can access from the tree view and the Go To
option of the View menu.

Note This will be a time-consuming process, please be patient.

Saving an Optimization

After you test the settings of the optimization problem to your satisfaction, you
can export the objective function and settings as an optimization object for on-line
use as an Active X control or with the G2 API, click Export on the right side of the
Properties dialog. This will export the objective function and the settings of
bounds and weights into a file. For more information on deploying an
optimization object, see Model Deployment.
210

Saving an Optimization
To export the optimization:

1 From the Optimization Properties workspace, click Export.

2 Specify a path and file name in the dialog. The model will be saved in a .opt
file.

Your optimization object is now ready for deployment.
211

212

15
Model Deployment
Describes how to export and deploy a predictive model in ActiveX and G2.

Introduction 213

Exporting Your Model 214

Deploying Your Model in ActiveX 215

Deploying Your Model in G2 223

Deploying Your Model in NOL Classic 224

Deploying in G2 using G2 JavaLink 228

The Predictive Model and its API 231

The Statistical Models and their API 241

Introduction
When you have trained and validated your model to satisfaction, you can deploy
it for online use. There are two environments where deployment can occur:

• COM (Component Object Model)

• G2

COM is Microsoft’s standard component interface specification. Many databases,
historians, DCSs, and applications such as Microsoft Office applications, Visual
Basic, Delphi, OSI’s Process Book, Aspen Technology’s InfoPlus.21, and
Honeywell’s PHD are COM compliant. Any application that is COM compliant
can be executed on the native Windows NT, Window 2000, or Window XP
213

platform. You may choose to use this environment for the deployment of the
NOL model if you have a ready source of data compliant with COM.

G2 is Gensym’s flagship real-time expert system. Combined with the Gensym
Neural Network Engine and integrated with tools such as NOL Studio, G2 makes
it easy to configure online deployment, acquire data, and control the context of
applying the neural network. G2 provides the capability of reading data from
virtually any source through its family of bridge products. It also provides a
whole range of products for data processing, from basic data filters to
applications such as Optegrity.

G2 is a development environment, as well as a real-time expert system. You may
choose to write an application in G2 and embed the deployed model there. In
doing so, you will combine G2’s powerful inference engine, rule-based analysis,
and GNNE’s neural network prediction and optimization capabilities into one
whole entity - your application.

Your Choice of deployment environment will be based on many factors. In
addition, you should consider the following: end-user interface, location and
transfer of data, pre- and post-processing of data, and the larger application
which may contain the deployed model as an embedded control. However, no
matter what your choice is, you will find the deployment of your model easy and
smooth.

Exporting Your Model
Once you have a trained and validated your model, one of the options is to export
it, then to load it into your deployment environment. You can export the model in
several ways:

• For model deployment with a preprocessor, you can export the model to a
.mod file. You can load this file directly into a COM environment or into a G2
environment, using JavaLink.

• You can export the model weights into an ASCII file, and load the weights
into neural network block in GNNE or NOL Classic environment. For
information on how to do this, see Saving a Model.

• You can connect the NOL Studio and G2, and export models to GNNE
environment through procedure calls.

Note You can deploy a predictive model in both COM and G2 environments. You can
deploy a backpropagation net, autoassociative net, radial basis function net, and
rho net in Gensym Neural Network Engine or NeurOn-Line Classic.
214

Deploying Your Model in ActiveX
Note Once the model is exported, you cannot make any changes to the architecture of
the model or to the associated preprocessor. You can update the weight
parameters by retraining the model with new data series.

Deploying Your Model in ActiveX

NOLOnline, the deployment component of NOL Studio, is shipped with two
ActiveX controls, NOLPredictor and NOLOptimizer. The NOLPredictor control is
the one you will use to deploy predictive models in your ActiveX applications.
The NOLOptimizer control is for deploying optimizations, described later.

When you install NOL Studio on your machine, the ActiveX controls are not
automatically registered on your machine. The next section describes how to
register and use the controls. All of the code examples are performed in Visual
Basic; however, this control can be used in any COM-compliant environment.

Registering the ActiveX Control

When you are ready to deploy a predictive model in the ActiveX environment,
you first need to register the NOLOnline ActiveX controls on the machine where
the deployment will take place.

To register the ActiveX Controls on Windows NT platforms:

1 Make sure that your machine has been rebooted after NOLStudio has been
installed.

2 Choose Start > Programs > Gensym G2 2011 > G2 NeurOn-Line >
Register G2 NeurOn-Line Control.

A dialog appears to inform you that the controls have been registered
successfully.

Now, you are ready to use the controls in an ActiveX container application.

Note The Install Controls command registers both NOLPredictor and NOLOptimizer
ActiveX controls.

Using NOLPredictor in Visual Basic

Before you can deploy your NOL model, you need to add the NOLOnline
ActiveX controls to the application toolbox.
215

To add the controls to component toolbox:

1 Start a Visual Basic application, or start Visual Basic with a new project.

2 Right-click on the Toolbox and choose Components from its menu.

3 Select NolOnline 5.1r0 from the list of controls and click OK.

For example:

Both the NOLPredictor and the NOLOptimizer components are added to the
Toolbox.

Loading the NOL Model

The NOLPredictor control that you have added to your Toolbox is not the actual
model that you exported from NOL Studio. It is a generic component capable of
loading and running any NOL model. To use the control with your model, first
you need to place the control on a form, then you need to load the model. You can
programmatically call the LoadModel method on the NOLPredictor instance to
load the model with specified path and file name.

To create a NOLPredictor instance:

1 Clone the NOLPredictor control and place it on the form. The control is
invisible at run-time, and appears as a string on your form.

2 Examine the Property Window of the control. You need to name your
NOLPredictor control (e.g. “gasplant”), although VB will provide a default
name, such as NOLPredictor1.
216

Deploying Your Model in ActiveX
To load the exported NOL predictive model:

1 Double-click on the form to show the code-window for the form.

2 In the Form_Load subroutine, write the following code:

gasplant.loadModel file, path

where gasplant is the name of your control, and path and file are the two
arguments to the method, pointing to the location where the .mod file is
stored.

You can also load the model at design time, to verify that you have the correct
one, for example.

To verify the model:

1 Select the NOLPredictor object in your form.

2 Choose View->Property Pages to display its property page, or click on the
Custom design property.

The following dialog appears.

3 Click the Browse button to display the File Load dialog.

4 Locate and select your model, and then click the Open button.

The model file name and path appear in the Model File Location input box.

5 Click the Load button to load the model from this location.

You may now look at the variable names of the model itself in the property pages
of the control.
217

By clicking any of the Variables radio buttons, you can display the needed
information, stored in your model. Keep in mind that the names and tags should
appear in the same order as in the trained model.

Note We recommend using the loadModel method to load the model parameters
during run time, rather than using the properties dialog to load model during
design time.

In the ActiveX demo provided in NOL bundle CD-ROM, a Visual Basic
application shows all of the previous actions. The loading of the model and
displaying some of its properties can also be done at run-time with some simple
code. Here is an example of code that performs the these actions on an instance of
an NOLPredictor named gasplant.

Private Sub Form_Load()
gasplant.loadModel "gasplant.mod""gasplant.mod", _
"c:\gensym\g2-2011\nolstudio\examples\ActiveDemo"
outputs = gasplant.getNumberOfOutputs()
inputs = gasplant.getNumberOfInputs()
MsgBox "The number of inputs =" & inputs & ", the number of "

outputs = " & outputs"
MsgBox "The first input name = " & gasplant.inputNames(0)
MsgBox "The first output name = " & gasplant.outputNames(0)

End Sub
218

Deploying Your Model in ActiveX
Running the Model in ActiveX

The basic mechanism by which you run the model consists of three steps:

1 Provide the model with input values.

2 Calculate the outputs.

3 Request output values.

Data Input

Look in the Visual Basic Object Browser to examine the methods associated with
the NOLPredictor control. You will see several methods for data input:

setTimeFormat(TimeFormat As String)

setInputAtTimeByIndex(index As Long, InputValue As Double, Time As
String)

setInputAtTimeByName(name As String, InputValue As Double, Time As
String)

setInputAtTimeByTag(Tag As String, InputValue As Double, Time As
String)

setInputsAtTime(Inputs, Time As String)

setInputForRowByIndex(index As Long, InputValue As Double)

setInputForRowByName(InputName As String, InputValue As Double)

setInputForRowByTag(Tag As String, InputValue As Double)

setInputsForRow(Inputs)

The first method sets the time format for all other methods that require a time
stamp as one of the inputs. The next four methods set the input values to the
model for a specific time stamp. The last four methods allow you to send input
values to a row-based model for a specific row. You can find detailed descriptions
of these methods at the end of this section.

There are also methods for setting data input for recursive models. Use following
methods to set data into the output variable buffer for the predictor with a
recursive model.

setVariableValueAtTimeByName(name As String, InputValue As Double, Time
As String)

setVariableValueAtTimeByTag(tag As String, InputValue As Double, Time
As String)

Before you send any time values to the NOLPredictor, you must set a time format,
which specifies the form of the time stamp. For example:

gasplant.setTimeFormat "M/d/y H:m:s"
219

If you wish to specify a different time format, you can call the setTimeFormat
method at any time.

Caution Your time format must include both date and time information, otherwise
incorrect values or exceptions may occur around midnight. If a12-hour clock is
used, the format code “a” (for am/pm) must be specified, or incorrect values may
occur around noon or midnight.

Think of setting an input as sending an array of input values and a time stamp to
the model. For example, if your model has 4 inputs: Oven1Temperature,
Oven2Temperature, Oven3Temperature, CookieTemperature, here are the lines
of code you would need to set the inputs for a specific time stamp:

Dim inputs As Variant
Dim inarray(0 to 3) as Double

CookieModel.setTimeFormat "mm/dd/yy hh:mm:ss"
inarray(0) = 350.23 ‘Oven1Temperature value
inarray(1) = 370.42 ‘Oven2Temperature value
inarray(2) = 310.99 ‘Oven3Temperature value
inarray(3) = 367.54 ‘CookieTemperature value

‘write the inputs array to the variant
inputs = inarray

CookieModel.setInputsAtTime inputs, "3/12/97 10:31:45"

Note that the array you pass to the method inputs must be of type Variant, but
that the values must be written to an array of Doubles. This is why you need to
include the line:

inputs = inarray

For row based data, no time stamps are needed. However, be aware that you can
only set one row of data at a time. In other words, you set all the inputs for a
specific row, then calculate the output for this row. Next, set all the inputs for
another row and calculate its output. If you do not calculate the output between
row sets, then the next time you set the input data, it will override the data you
had set previously.

Here is an example for the same Cookie Model, if it was row based:

Dim inputs As Variant
Dim inarray(0 to 3) as Double

inarray(0) = 350.23 ‘Oven1Temperature value
inarray(1) = 370.42 ‘Oven2Temperature value
inarray(2) = 310.99 ‘Oven3Temperature value
inarray(3) = 367.54 ‘CookieTemperature value
220

Deploying Your Model in ActiveX
‘write the inputs array to the variant
inputs = inarray

CookieModel.setInputsForRow inputs

Should you wish to set just one input value, then you have to use the methods
setInputAtTime, or setInputForRow. These methods are a little trickier to use,
since you need to understand how the Index parameter works. The Index is the
order-number of the input variable as it was trained in the model, starting at zero.
So, for example, if your model has the same 4 inputs: Oven1Temperature,
Oven2Temperature, Oven3Temperature, and CookieTemperature; then the Index
of Oven1Temperature is 0, and the Index of Oven3Temperature is 2. Here is a
code example that would perform the same functionality as shown above, but
setting one input at a time:

CookieModel.setTimeFormat "mm/dd/yy hh:mm:ss"
‘ 350.23 is Oven1Temperature value
‘ 370.42 is Oven2Temperature value
‘ 310.99 is Oven3Temperature value
‘ 367.54 is CookieTemperature value

CookieModel.setInputAtTimeByIndex 0, 350.23, “3/12/97 10:31:45“
CookieModel.setInputAtTimeByIndex 1, 370.42, “3/12/97 10:31:45“
CookieModel.setInputAtTimeByIndex 2, 310.99, “3/12/97 10:31:45“
CookieModel.setInputAtTimeByIndex 3, 367.54, “3/12/97 10:31:45“

Similarly, if the CookieModel predictive model, accepted row-based data, you
could set the inputs one at a time as follows:

‘ 350.23 is Oven1Temperature value
‘ 370.42 is Oven2Tempeature value
‘ 310.99 is Oven3Temperature value
‘ 367.54 is CookieTemperature value

CookieModel.setInputForRowByIndex 0, 350.23
CookieModel.setInputForRowByIndex 1, 370.42
CookieModel.setInputForRowByIndex 2, 310.99
CookieModel.setInputForRowByIndex 3, 367.54

The question is, when would you set data in a complete array, vs. a single value?
The methods that allow you to send the full array of input values to the model are
extremely useful if you already have your data in a spreadsheet. For example, in
Microsoft Excel you can specify a “range” of values, which could be a row of
inputs. You could write that range to a Variant data type, and send it directly to
the model. On the other hand, if your data is coming in asynchronously from
some process, and you would like to send the values to the model as they come in,
then it makes sense to use the methods that allow you to set one input at a time.
221

Testing Whether the Model is Time-Based Model

Models built from time-based data require different method calls for setting
inputs. You can use a method call to find out whether the model you load is time-
based model.

isTimeBasedModel() As BOOLEAN

Calculating Output

As mentioned in the previous section, for row-based data, you need to calculate
output prior to setting inputs for the next row. For time based data, you can
calculate output on request. Let’s examine the API.

For row-based data:

calculateOutputsForRow() As Variant

For time-based data:

calculateOutputsAtTime(Time As String) As Variant

For auto-recursive models, which use delayed output variables as model inputs,
you can set the time to a time in the future, as long as you have enough historical
data to perform a prediction for the first unavailable outputs. The predictor
automatically finds the last available data samples, calculates intermediate output
values, and feeds them back into the model as inputs until the calculated
timestamp reaches the time specified by the method’s input parameter.

Obtain Results

Both of these methods return a Variant data type, which holds an array of values.
These values are of type Double, and they are in the order of outputs specified in
the trained model. So, for example, if your model returns two outputs,
CookieMoisture and ColorIndex, your code may look like this:

Dim outputs as Variant
Dim counter as Integer

outputs = CookieModel.calculateOutputsAtTime (“3/12/97 10:31:45“)
For counter = 0 to CookieModel.NumberOfOutputs - 1

MsgBox "the output " & counter & " is: " & outputs(counter)
Next counter

Once you have the output value, you can write it back to your spreadsheet, or plot
it, or process it according to your application.

Clear Data Buffer

Models built from time-based data rely on a data buffer to store data from specific
periods of time in order to construct the input data. The data buffer uses a queue
structure. The data are stored in the buffer in the order of their timestamps. You
can only push new data sample with its timestamp later than the earliest data
222

Deploying Your Model in G2
sample into the buffer. If you need to push earlier data into the buffer, you need to
clear the data buffer first.

clearDataBuffer()

Training Predictive Models in Real Time

In a real-time application, you may want to continue performance improvement
of an existing model as new data is collected. The new data may come from real-
time changes in target process such as slow deactivation of a catalyst, mechanical
wear of components, and change in raw materials properties.

Learning should happen in two situations:

• Process enters new X regime, so new areas of the same function Y = f (X) can
be learned. For this case, you should continue the training from where it is
stopped and present the data series containing both new and old data to the
model for training.

• The function itself changes, so Y=FNew(X) does not equal FOld(X) in some
portion of the X space. In such a case, you should start the training after
initializing the model and use new data only.

You can trigger the training of a predictive model in the ActiveX environment if
you detect changes in your process.

Note You cannot change the model input and output structure, or the contents in the
preprocessor. The online training just adjusts the model parameters.

Note For additional API methods of the NOLPredictor class and an explanation of all
methods, see Appendix A, NOLPredictor Class.

Deploying Your Model in G2
You can deploy your model in G2 in one of three ways:

• Using Gensym Neural Network Engine (GNNE)

• Using NeurOn-line Classic

• Using G2 JavaLink

You can deploy all types of model except optimization models in GNNE or NOL
Classic. Deployment through G2 JavaLink is only for predictive and optimization
models and involves using G2, G2 JavaLink, and nolstudio.kb. The following
section describes how to deploy models in G2 JavaLink and NOL Classic. For
information on deploying models in GNNE, see the Gensym Neural Network
Engine
223

Deploying Your Model in NOL Classic

NOL Studio allows you to build all four types of neural network models in NOL
Classic. The Backpropagation net, Autoassociative net, Radial Basis Function net,
and Rho net have direct mappings between these two packages. You can export
the predictive model weights and load them into an Ensemble net block, which
you access through the Neural Networks palette.

To use the deployment option with NOL Classic, you must be licensed to use
NeurOn-Line Classic. This section assumes knowledge of G2 and the
NeurOn-Line block language.

Caution For all model types, data preprocessing steps (formulas and delays) are not
implemented by the network blocks in NOL Classic. Only the model itself is
imported into G2. If you specified time delays in your model, you must
implement them by using time delay blocks in your G2 application. Likewise, in
NOL Classic, preprocessor formulas must be implemented in the NOL block
language. You can also use blocks from G2 Diagnostic Assistant (GDA).

Exporting Your Model as a Weight File

To use the G2 deployment option, first save your model as a weight file. To save a
model as a weight file, go to the model’s property table, and select the Export
Weights button, as shown below:

This will save your model as a text file, which contains a description of your
model that you can load into G2 via the network blocks in GNNE or NOL Classic.
224

Deploying Your Model in NOL Classic
Using the NOL Model

When NOL is loaded, you have access to the Neural Net blocks that represent
NOL Studio models. You implement your model by cloning this block from the
palette and configuring it.

To load and use the Backpropagation net, Autoassociative net, Radial Basis
Function net, and Rho net blocks, see the description of each of these blocks in the
NeurOn-Line Reference Manual.

The following section describes how to use the Ensemble Model block in NOL
Classic.

Note The Ensemble Model block is included on the Neural Net Blocks palette. There is
no separate palette for NOL Studio blocks.

To create and configure the NOL Studio Ensemble Model block:

1 From the NOL top level menu bar, choose Palettes > Neural Networks >
Neural Net Blocks to display this palette:

2 Click the Ensemble Net block. A new instance of the block will be attached to
the mouse.
225

3 Move the block to the desired location on the workspace which you will be
creating your diagram. Click to place the block on the workspace

4 Choose file operations from the block’s menu to display this dialog:

5 Enter the filename containing your model, and select Load from File.

When you complete the last step, the block loads the information from the
designated model file. You are now ready to provide your model with data, and
to calculate the results.

Loading Models Programmatically

You can programmatically load information in the model from a file or save it to a
file, using API procedures. To display these procedures, choose Main Menu >
Get Workspace > Nol API, and click Neural Networks API.

Examining Your Model

Default NOL Studio predictive models are ensemble models, composed of several
submodels, whose outputs are combined to make the final prediction. The
combination operator is the median of the prediction of the submodels. In the
NOL Classic block language, this is implemented as an encapsulation block.
226

Deploying Your Model in NOL Classic
For example, this is the diagram for the encapsulation block:

You can open the subworkspace by selecting view diagram from the block’s menu
choices. Then you can examine each submodel by selecting configure from the
subblock’s menu choices. Consider this information to be read-only; do not make
any changes to the block’s configurations.

Saving a Model In Your KB

If a NOL block you create is used as part of a diagram, that block will be saved
with the rest of your diagram when you save the KB file. However, the weights
will not be stored as a permanent part of the KB unless you select the block’s
make permanent menu choice. If you neglect to make the weights permanent, and
you attempt to run the model, an error will inform you that you must configure
the block (see the Handling Errors section in the NeurOn-Line User’s Guide).

Running the Model in G2

To run the model in NOL, you must connect the configured model to other blocks
in NOL. When a vector of data is received by the block, it will pass the current
output value of the model to the output vector path of the block. In addition, a
model can be asked to produce a current output value based on the current inputs
available, by manually evaluating the block. The NeurOn-Line User’s Guide
contains detailed information on creating, connecting and running diagrams in
the NOL Classic environment.

To determine the size and order of elements for the input vector, consistent with
the number and order of inputs of the model, refer to the model’s property table,
in NOL Studio.
227

The following is a small example wherein three inputs are passed into the NOL
Studio model. The first input has no delay, the second has 30 minutes delay, and
the last input has 1 hour delay:

In this example, a Processor Block has been created and configured as outlined in
the previous sections. To its input vector path, we have connected a Vectorizer.
This is a standard NOL block which allows you collect scalar inputs into a vector.
At the input of the vectorizer, we have connected time delay blocks to two of the
inputs. Each input is receiving values from a scalar entry point. To the output of
the Processor Block we have connected a Vector Path Display. This block is
configured to display the first element (element 0) of the output vector of the
Ensemble Model block.

Note No scaling blocks are required when you use an NOL Studio ensemble model
block. Required scale factors are incorporated into the block itself.

Deploying in G2 using G2 JavaLink
To deploy the NOL Studio model in G2 through G2 JavaLink, you must have a
license for G2 JavaLink, which is part of the G2 Bundle. You also need to have
JavaLink installed on your machine. Go to the Readme file of NOL bundle, and
follow the directions for installing JavaLink. You will need to restart your
machine before proceeding. This section assumes knowledge of G2 and JavaLink.

Loading the Necessary KBs

All the kbs are located in the nol directory. The top-level module is called
nolstudio.kb. However, do not make nolstudio.kb the top level module in
your application. Create a module, or a hierarchy of modules, as your application,
then merge nolstudio.kb into your application, and make it a required module.

Deploying in G2 using G2 JavaLink
This is the top-level workspace of the nolstudio.kb:

It provides a palette of objects such as the Predictive Model, the Optimization, the
Module Settings, the PCA model, the PLS model, and the API for all types of
models:

The basic process of using an NOL Studio model in G2 is to:

• Connect to an interface.

• Initialize the model.

• Send data to the model.

• Receive/request outputs.

• Retrain or build a model, if necessary.

Each of these steps is detailed in the following sections.

Launching a Remote Process at Startup

Before you can run your model in G2, you need to connect to a remote process,
which performs the model calculations. To launch the remote process from the
local machine at startup automatically, set the designated boolean parameter in
the NOL Studio top-level workspace to true. The following dialog appears for
configuring the path to your remote process.
229

When you click OK, the remote process launches and is ready to use.

Launching a Remote Process Using Procedure

You can also launch the remote process, using a procedure. You provide the home
directory, the listener port, and the name of the interface. To facilitate this process,
the NolG2Gateway class is available in the nolstudio\com\gensym\nols\deploy
directory. You can also use the module settings object to launch the remote
process, using a procedure.

To set up module settings:

1 Start G2.

2 Clone a module settings object from the NOLStudio palette, and place it on a
workspace in your top-level module, not nolstudio.kb.

3 Edit the table attributes of the module settings object as follows:

4 Restart G2 to initialize the settings.

Attribute Description

nols-studio-home-
directory

The directory in which NOL Studio is
installed, such as
"c:\Progra~1\Gensym\g2-2011\nolstudio".

nols-remote-process-
listener-port

The port that the NolG2Gateway class uses,
which is 22044, by default.

nols-connection-
timeout

A connection timeout, which is 10 seconds,
by default.

nols-interface-object-
name

The name of the nols-interface object that
provides communication, which is a
subclass of gsi-interface. This object is
created transiently by the launch procedures
and referenced by the initialization
procedures.

nols-execution-
command

The name of execution file to launch the
interface.

others Not used in this version.
230

The Predictive Model and its API
If you click the NOLS Programmers Interface button on the NOLStudio palette,
then click the Remote Process Management Procedures button, you will see four
procedures on a workspace:

• nols-launch-remote-process() = (float)

• nols-launch-remote-process-by-setting(settings:class nols-settings) = (float)

• nols-launch-remote-process-with-message(settings:class nols-settings,
Client: class ui-client-item) = (float)

• nols-kill-remote-process ()

The first procedure uses the default nols-settings, and the next two use the setting
you create for your application. You can create action buttons on a workspace in
your module to start these procedures. When the remote process is started
successfully, you should see the following message in the background window of
G2:

CREATED NolG2Gateway, count = 1; connected to G2 OK.

If you terminate the remote process successfully, the following message should
appear in the G2 background window:

G2 Connection has been closed.

Now, you are ready to set up a NOL Studio model in G2 and use it.

The Predictive Model and its API
To set up the predictive model you need to clone its icon off the NolStudio palette,
and fill in its attributes. Then, use the API methods to send the input data to the
model and receive the output values. The API is split up into three parts: the
general methods - such as getting the name and comment of the model, the sets -
such as setting the inputs by row or by time, by tag or by name of the variable,
and the gets - such as calculating the outputs and receiving them into G2.

To set up a predictive model:

1 Make sure G2 is running, then clone the predictive model onto a workspace in
your application. Make sure the workspace does not belong to the nolstudio
module.

2 Edit the attribute table of the model to fill in the following attributes:

a Names: the name of the model; you will need to refer to it later

b Nols directory name: the directory of the model in quotes

c Nols file name: the file name of the model, such as “model1.mod”

Now, you are ready to write procedures using the predictive model API to send
and receive data. Click on the Nols Programmers Interface button on the palette,
231

then on the Methods for Predictive Models buttons. Examine the methods on this
workspace.

Method to Initialize the Predictive Model

The first method you must call before you can do anything further is
nols-initialize.

nols-initialize
(model: class nols-predictive-model, interface: class nols-gateway)

Initializes the predictive model. The model is an attribute of the predictive
model. The interface is the nols-interface-object-name referenced in your
module settings.

General Methods

The general methods do not send or receive actual model data.

nols-get-name
(model: class nols-predictive-model)
-> model: text

Returns the name of the model created in NOL Studio.

nols-get-comment
(model: class nols-predictive-model)
-> comment: text

Returns the comment associated with the model created in NOL Studio.

nols-get-number-of-inputs
(model: class nols-predictive-model)

-> inputs: integer

Returns the number of inputs in the model. You may need to call this method
to resize your arrays.

nols-get-number-of-outputs
(model: class nols-predictive-model)
-> outputs: integer

Returns the number of outputs in the model. You may need to call this
method to resize your arrays.

nols-get-input-names
(model: class nols-predictive-model)
-> inputs: class text-array

Returns an array of input names for the model.
232

The Predictive Model and its API
nols-get-input-tags
(model: class nols-predictive-model)
-> input-tags: class text-array

Returns an array of input tags for the model.

nols-get-output-names
(model: class nols-predictive-model)
-> output-names: class text-array

Returns an array of output names for the model.

nols-get-output-tags
(model: class nols-predictive-model)
-> output-tags: class text-array

Returns an array of output tags for the model.

nols-get-input-units
(model: class nols-predictive-model)
-> input-units: class text-array

Returns an array of input units for the model.

nols-get-output-units
(model: class nols-predictive-model)
-> output-units: class text-array

Returns an array of output units for the model.

Methods to Send Input Data to a Model

These methods send input data to a model. There are two issues involved with
these methods.

First, all of these methods will signal an error of class nols-error, if something goes
wrong. To capture this error, you should enclose these methods in begin...end
on error statements. The error has three attributes: class-of-error, description-of-
error, and backtrace-of-error. All of these attributes are texts, which you can save
to a log file, print to a message board or workspace, or set up gfr-error-handlers
for.

Second, you need to know if your model is time-based or row-based. For time-
based data, you need to set the time format of the time text-string that you will
provide in the inputs for time based models.

nols-set-time-format
(model: class nols-predictive-model, time-format: text)

Sets the time format for a time-based model. For example:

call nols-set-time-format(model1, "M/d/y H:m:s).
233

You must set the format before calling the other methods that use time.

Methods to Set Input Values for Time-Based Models

For the following methods, you can choose to set the input values by index (the
number of the variable, starting at zero), by name, by tag, or set all of the input
values in one array. These are again, for time-based models only:

nols-set-input-at-time
(model: class nols-predictive-model, index: integer, val: float, time: text)

Sets a value of an input by its index. The index is the number of the variable in
the input array, starting at zero.

nols-set-input-at-time-by-name
(model: class nols-predictive-model, var-name: text, val: float, time: text)

Sets a value of an input by its input name. If the name is incorrect, an error is
signaled.

nols-set-input-at-time-by-tag
(model: class nols-predictive-model, tag: text, val: float, time: text)

Sets a value of an input variable by the variable’s tag. If the tag is incorrect, an
error is signaled.

nols-set-inputs-at-time
(model: class nols-predictive-model; vals: class float-array, time: text)

Sets all the input values at once. Make sure that the values are in the same
order as the variable names or tags. This method is particularly useful if you
are reading values from a file, where the variable values come in
simultaneously.

nols-set-variable-value-at-time-by-name
(model: class nols-predictive-model, name: text, val: float, time: text)

Sets a value of a variable by the variable’s name. If the name is incorrect, an
error is signalled. You use this method to set the delayed output value for a
recursive model. You can also use it to set the input value of a recursive
model.

nols-set-variable-value-at-time-by-tag
(model: class nols-predictive-model, tag: text, val: float, time: text)

Sets a value of a variable by the variable’s tag. If the tag is incorrect, an error is
signalled. You can use this method to set the delayed output value for a
recursive model. You can also use it to set values for input variables of a
recursive model.

The Predictive Model and its API
Method to Test Whether it is a Time-Based Model

nols-has-time-stamps
(model: class nols-predictive-model)
-> timestamps: truth-value

Determines whether a particular model is a time-based or a row-based model.
This method returns true if the model is time-based, false if it is row-based.

Methods to Set Input Values for Row-Based Models

For row-based models, these methods set the inputs by index, by name, by tag, or
as an array.

nols-set-input-for-row
(model: class nols-predictive-model; index: integer, val: float)

Sets a value of an input by its index. The index is the number of the input
variable in the inputs array, starting at zero.

nols-set-input-for-row-by-name
(model: class nols-predictive-model; var-name: text, val: float)

Sets the input variable value by the variable name. If the name is incorrect, an
error is signaled.

nols-set-input-for-row-by-tag
(model: class nols-predictive-model; tag: text, val: float)

Sets the input variable value by the variable tag. If the name is incorrect, an
error is signaled.

nols-set-inputs-for-row
(model: class nols-predictive-model; vals: class float-array)

Sets all the inputs at once. Make sure that the input values order corresponds
to the order of input names or tags in the model.

Methods to Calculate Outputs

These methods calculate the outputs for both the time-based and the row-based
models. The output of these methods is a float-array with the output values in
order of the outputs specified in the model. These methods will also signal an
nols-error if such occurs.

nols-calculate-outputs-at-time
(model: class nols-predictive-model; time: text)
-> outputs: class float-array
235

Calculates the outputs for a time-based model. For a time based model, you
can request a time that does not necessarily correspond to a specific input. In
that case, the output values will interpolated between the closest time steps.

nols-calculate-outputs-for-row
(model: class nols-predictive-model)
outputs: class float-array

Calculates the outputs for a row based model. You must call this method
immediately after you set all the inputs for a row which you want to calculate.
If you set a particular input more than once, without calculating the output
between the sets, the calculate method will take the latest input values for the
row.

Training Predictive Model at Run Time

These methods train predictive models at run time. The common parameters in
these APIs are time, auto-stop, initial-training, and training-display. The time tells
the training algorithm how long you want to spend to train the model. The auto-
stop indicates whether you want the training algorithm to stop training
automatically if no further improvement is detected. The initial-training indicates
whether you want to clear the model and start new training, or to continue
training from last stop state. The training-display indicates whether to show the
training console during the training.

nols-train-model
(model: class nols-predictive-model, xmatrix : sequence , ymatrix: sequence,
time: float, auto-stop: truth-value, initial-training: truth-value,
training-display: true-value)

Trains the model online with pre-formatted input and output matrices. The
sequence type for xmatrix and ymatrix is a sequence of float-arrays. The
column number of xmatrix must be the same as the input number with each
delay, if applicable, served as a input. The column number of ymatrix must be
the same as output number.

This method is used to train a predictive model when the data are collected
and formatted inside G2 and pass it through a nols-gateway interface.

nols-train-model-from-file
(model: class nols-predictive-model , input-file: text, output-file: text,
time-in-minutes: float, auto-stop: truth-value, initial-training: truth-value,
training-display: true-value)

Trains a predictive model from a data file. Use this method when you have
saved the data to a file that contains numerical values only. The format of the
file must be a comma separated ASCII file with the same numerical values at
each line. The column number of the input data file must be the same as the
input number with each delay, if applicable, served as an input. The column
number of output data file must be the same as the output number.
236

The Predictive Model and its API
nols-train-model-from-file
(model: class nols-predictive-model , data-series-files: sequence,
time-in-minutes: float, auto-stop: truth-value, initial-training: truth-value,
training-display: true-value)

Trains a predictive model from a set of data series files. Use this method when
you have saved the data series to files with a fixed .ds format. The data-series-
files contains a set of text strings, which represent to path of the data file. The
data files need to contains all input and output variables. For time-based
model, the output variables has to in one data file. For row-based model, the
sequence should just contains one data file path.

Note Every training method initially sets the nols-complete-training attribute of the
model to false, then spawns the training process through the nols-gateway.
When the training finishes, nols-complete-training is set to true. If an error
occurs during the training, the nols-has-error attribute of the model is set to
true and an error message will be set to nols-error-message. The common
arguments are time-in-minutes, auto-stop, initial-training, and training-
display.

Additional Methods for Predictive Model

nols-clear-data-buffer
(model: class nols-predictive-model)

Clears the data buffer of the online predictor. This method is used only for
models developed from time based data.

Parameter Description

time-in-minutes The number of minutes you want to spend to train this
model.

auto-stop Whether the training process automatically stops based
on a converge criterion. When false, the training process
continues to the end set by the time argument.

initial-training When true, the model weights are initialized to a set of
random numbers. When false, the training process starts
with the existing model weights.

training-display When true, a training console with error information is
displayed during training.
237

nols-get-max-value-by-name
(model: class nols-predictive-model, name: text)
-> value: float

Returns the maximum statistic of the variable by its name. The returned value
is the maximum value of that variable in the data series used to build the
model.

nols-get-max-value-by-tag
(model: class nols-predictive-model, tag: text)
-> value: float

Returns the maximum statistic of the variable by its tag. The returned value is
the maximum value of that variable in the data series used to build the model.

nols-get-min-value-by-name
(model: class nols-predictive-model, name: text)
-> value: float

Returns the minimum statistic of the named variable. The returned value is
the minimum value of that variable in the data series used to build the model.

nols-get-min-value-by-tag
(model: class nols-predictive-model, tag: text)
-> value: float

Returns the minimum statistic of the named variable. The returned value is
the minimum value of that variable in the data series used to build the model.

nols-get-mean-value-by-name
(model: class nols-predictive-model, name: text)
-> value: float

Returns the mean statistic of the named variable. The returned value is the
mean value of that variable in the data series used to build the model.

nols-get-mean-value-by-tag
(model: class nols-predictive-model, tag: text)
-> value: float

Returns the mean statistic of the named variable. The returned value is the
mean value of that variable in the data series used to build the model.

nols-get-median-value-by-name
(model: class nols-predictive-model, name: text)
-> value: float

Returns the median statistic of the named variable. The returned value is the
minimum value of that variable in the data series used to build the model.
238

The Predictive Model and its API
nols-get-median-value-by-tag
(model: class nols-predictive-model, tag: text)
-> value: float

Returns the median statistic of the named variable. The returned value is the
median value of that variable in the data series used to build the model.

nols-get-sum-value-by-name
(model: class nols-predictive-model, name: text)
-> value: float

Returns the sum statistic of the named variable. The returned value is the sum
of that variable in the data series used to build the model.

nols-get-sum-value-by-tag
(model: class nols-predictive-model, tag: text)
-> value: float

Returns the sum statistic of the named variable. The returned value is the sum
of that variable in the data series used to build the model.

nols-get-std-value-by-name
(model: class nols-predictive-model, name: text)
-> value: float

Returns the standard deviation statistic of the named variable. The returned
value is the standard deviation value of that variable in the data series used to
build the model.

nols-get-std-value-by-tag
(model: class nols-predictive-model, tag: text)
-> value: float

Returns the standard deviation statistic of the named variable. The returned
value is the standard deviation value of that variable in the data series used to
build the model.

nols-get-variance-value-by-name
(model: class nols-predictive-model, name: text)
-> value: float

Returns the variance statistic of the named variable. The returned value is the
variance value of that variable in the data series used to build the model.

nols-get-variance-value-by-tag
(model: class nols-predictive-model, tag: text)
-> value: float

Returns the variance statistic of the named variable. The returned value is the
variance value of that variable in the data series used to build the model.
239

nols-get-kurt-value-by-name
(model: class nols-predictive-model, name: text)
-> value: float

Returns the kurt statistic of the named variable. The returned value is the kurt
value of that variable in the data series used to build the model.

nols-get-kurt-value-by-tag
(model: class nols-predictive-model, tag: text)
-> value: float

Returns the kurt statistic of the named variable. The returned value is the kurt
value of that variable in the data series used to build the model.

nols-get-skew-value-by-name
(model: class nols-predictive-model, name: text)
-> value: float

Returns the skew statistic of the named variable. The returned value is the
skew value of that variable in the data series used to build the model.

nols-get-skew-value-by-tag
(model: class nols-predictive-model, tag: text)
-> value: float

Returns the skew statistic of the named variable. The returned value is the
skew value of that variable in the data series used to build the model.

nols-get-range-value-by-name
(model: class nols-predictive-model, name: text)
-> value: float

Returns the range statistic of the named variable. The returned value is the
range value of that variable in the data series used to build the model.

nols-get-range-value-by-name
(model: class nols-predictive-model, name: text)
-> value: float

Returns the range statistic of the named variable. The returned value is the
range value of that variable in the data series used to build the model.

nols-get-formulas
(model: class nols-predictive-model)

Returns the string of formulas inside the preproccessor used for building the
model.
240

The Statistical Models and their API
Handle Error Exceptions

The following is a list of all methods that signal nols-error when an error occurs.
Ensure that you encapsulate all of these method calls into begin-end on error
statements to capture the errors.

nols-calculate-outputs-at-time
nols-calculate-outputs-for-row
nols-set-time-format
nols-set-inputs-at-time
nols-set-inputs-for-row
nols-set-input-at-time
nols-set-input-at-time-by-name
nols-set-input-at-time-by-tag
nols-set-variable-value-at-time-by-name
nols-set-variable-value-at-time-by-tag
nols-set-input-for-row-by-name
nols-set-input-for-row-by-tag
nols-has-time-stamps

The Statistical Models and their API
Two statistical model types exist in the NolStudio deployment environment. They
are the Principal Component Analysis (PCA) model and the Partial Least Squares
(PLS) model.

Building Online Statistical Models

You can build PCA or PLS models in NolStudio, export them into files, and load
into G2 for execution, or you can build PCA and PLS in G2 using online data. To
do this, you need to launch the NolStudio remote process. After the remote
process is established, you should initialize the statistical calculator for model
training process. If you load the model parameter from the text file exported from
NolStudio, you don’t need to initialize the calculator.

If you have a NOL Studio connected to G2, you can directly export the PCA and
PLS parameters into a model object in G2. For detailed description, see “Partial
Least Squares Model” and “Principal Component Analysis Model” in Chapter 3
of the Gensym Neural Network Engine.

Method for Initializing the Statistical Calculator

nols-initialize-statistical-calculator()

This method initializes an internal statistical calculator used for building PCA
and PLS models.
241

Principal Component Analysis (PCA) Model

Principal components analysis (PCA) is a statistical technique applied to a set of
variables to discover which sets of variables form coherent subsets that are
relatively independent of one another. These subsets, principal components, are
thought to be representative of the underlying processes that have created the
correlations among variables. For this reason, PCA models are useful for
analyzing data offline, as well as for online process monitoring.

To set up a PCA model:

1 Make sure G2 is running, then clone the PCA model onto a workspace in your
application.

2 Make sure the workspace does not belong to the nolstudio module.

Now, you are ready to write procedures that use the PCA model API to do the
PCA calculation.

Methods for PCA Model

These are the methods you use to build a PCA model and run data through
the model.

nols-load
(model: class nols-pca-model, stream:class g2-stream)

Load the PCA parameter exported from the NolStudio projection chart.

nols-learn
(model: class nols-pca-model, x: class item-array)

Builds the PCA model from data matrix x, which is an item array of float
arrays.

nols-rescaler-input-vector
(model: class nols-pca-model, input-vector: class float-array,
output-vector: class float-array)

Scales the input data before feeding it into the PCA model. The PCA model
stores the scale weights internally.

nols-execute
(model: class nols-pca-model, x: class float-array, pcs: class float-array)

Runs the scaled input data through the PCA model. Pcs provides the results
of the calculation.
242

The Statistical Models and their API
nols-execute
(model: class nols-pca-model, x: class float-array, pcs: class float-array,
nfactor: integer)

Calculates first nfactor principal components for the scaled input. Pcs
provides the results of the calculation.

Partial Least Squares (PLS) Model

Partial Least Squares (PLS) is a statistical technique for building a linear
regression model. The linear PLS model is simple and robust for correlating
input variables.

To set up a PLS model:

1 Make sure G2 is running, then clone the PLS model onto a workspace in your
application.

2 Make sure the workspace does not belong to the nolstudio module.

Now, you are ready to write procedures that use the PLS model API to make the
model prediction.

Methods for PLS Model

These are the methods you use to build a PLS model and run data through the
model to get model predictions.

nols-load
(model: class nols-pls-model, stream: class g2-stream)

Loads the PLS parameter exported from NolStudio predictive model, which is
trained as a linear model only.

nols-learn
(model: class nols-pls-model, x: class item-array, y: class item-array,
nfactor: integer)

Builds the PLS model from data matrix x and y with a specified number of
internal factors. The data matrix should be an item array of float arrays.

nols-rescaler-input-vector
(model: class nols-pls-model, input-vector: class float-array,
output-vector: class float-array)

Scales the input data before feeding it into the PLS model. The PLS model
stores the scale weights internally.
243

nols-rescaler-output-vector
(model: class nols-pls-model, input-vector: class float-array,
output-vector: class float-array)

Scales the output data back to their normal range after PLS model execution.
The PLS model stores the scale weights internally.

nols-execute
(model: class nols-pls-model, x: class float-array)
-> value: class float-array

Executes a PLS model with the given input data x and returns the output.

nols-execute
(model: class nols-pls-model, x: class item-array, y: class item-array)

Executes a PLS model with the given input data matrix x, where y provides
the resulting matrix. The data matrix should be an item array of float arrays.
244

16
Optimization
Deployment
Describes how to export and deploy an optimization in ActiveX and G2

Introduction 245

Exporting Optimization 245

Deploying in ActiveX 246

Deployment in G2 using G2 JavaLink 250

The Optimization Model and its API 252

Introduction
After you test your settings of an optimization to satisfaction, you can deploy it
online to solve real time optimization problem. Same as deploying predictive
models, there are two environments where deployment can occur: COM and G2.

Exporting Optimization

Once you have a tested optimization, you need to export it. Exportation saves the
optimization object in a .opt file. You will use this file later to load your
optimization in the deployment environment. Exporting an optimization from the
optimization workspace has been explained in the optimization chapter.

Note After an optimization is exported, you can still change the bounds and weights of
the objective function. You can also update the output and state model weights by
retraining them with new data.
245

Deploying in ActiveX

The ActiveX control class of optimization is called NOLOptimizer. You need to
register this control before you can deploy NOLOptimizer in COM environment.
You can follow Registering the ActiveX Control section in model deployment
chapter to register NOLOptimizer control. The registering procedure registers
both NOLPredictor and NOLOptimizer.The following section describes how to
use the NOLOptimizer control in ActiveX environment. All of the code examples
are performed in Visual Basic. However, this control can be used in any COM
compliant environment.

Using NOLOptimizer in Visual Basic

Before you can deploy your NOL optimization, you need to add the NOLOnline
ActiveX controls to the application Toolbox.

To add the controls to the component toolbox:

1 Start a Visual Basic application, or start Visual Basic with a new project.

2 Right-click on the Toolbox and choose Components from its menu.

3 Select NOLOnline 5.1r0 from the list of controls and click OK.

For example:

Both the NOLPredictor and the NOLOptimizer components are added to the
Toolbox.
246

Deploying in ActiveX
Loading the NOL Optimization Object

The NOLOptimizer control that you have added to your Toolbox is a generic
component. To run the optimization, first you need to place the control on a form,
then you need to load the objective function with specified bounds and weights.
The objective function is stored in an optimization object, which stores the
objective function and associated parameters. You can programmatically call the
LoadOptimization method on the NOLOptimizer instance to load the
optimization object with specified path and file name.

To create a NOLOptimizer instance:

1 Clone the NOLOptimizer control and place it on the form. The control is
invisible at run-time, and appears as a string on your form.

2 Examine the Property Window of the control. You need to name your
NOLOptimizer control (e.g. “gasplant”), although VB will provide a default
name, such as NOLOptimizer1.

To load the exported optimization object:

1 Double-click on the form to show the code-window for the form.

2 In the Form_Load subroutine, write the following code:

gasplant.loadOptimization file, path

where gasplant is the name of your control, and path and file are the two
arguments to the method, pointing to the location where the .opt file is
stored.

You can also load the model at design time, to verify that you have the correct
one, for example.

To verify the Optimization Model

1 Select the NOLOptimizer object in your form.

2 Choose View > Property Pages to display its property page, or click on the
Custom design property.
247

The following dialog appears:

3 Click the Browse button to display the File Load dialog.

4 Locate and select your optimization model, and then click the Open button.

The file name and path appears on the dialog.

5 Click the Load, OK, or Apply button to load the model from this location.

You may now look at the variable names of the optimization model itself in the
property pages of the control.

By clicking any of the Variables radio buttons, you can display the needed
information in your optimization model. Keep in mind that the names and tags
should appear in the same order as in the trained model.

For example:

In ActiveX demos provided as part of the NOL Studio package, a Visual Basic
application shows all of the previous actions. The loading of the optimization
object and displaying some of its properties can also be done at run-time with
248

Deploying in ActiveX
some simple code. Here is an example of code that performs the above actions on
an instance of an NOLOptimizer that has been named gasplant.

Private Sub Form_Load()
gasplant.loadOptimization "gasplant.opt", _

"c:\gensym\g2-2011\nolstudio\examples\ActiveDemo"
outputs = gasplant.getNumberOfVariables(0)
For counter = 0 to outputs

ouotputName(counter) = gasplant.outputNames(counter)
MsgBox "The output name [" & counter & "]" & outputName(counter)

Next counter
End Sub

Running the Optimization

You need to perform following three steps to run the optimization.

1 Provide the setpoint values for outputs.

2 Calculate the optimization.

3 Request the calculated input values.

Data Input

Look in the Visual Basic Object Browser to examine the methods associated with
the NOLOptimizer control. You will see several methods for data input:

setBoundsByName(BSTR name, VARIANT value);

setBoundsByTag(BSTR tag, VARIANT value);

setValueByName(BSTR name, double value);

setValueByTag(BSTR tag, double value);

setValues(short index, VARIANT values);

setWeightsByName(BSTR name, VARIANT values);

setWeightsByTag(BSTR tag, VARIANT values);

You can use these method to set the desired values to the optimization. The
detailed description of these methods can be found in appendix.

Caution The bounds and weights parameters in above methods are double arrays of all the
bound and weight values for given variable. To set particular values within the
array without changing others, you can get the values first and change the
corresponding ones with the array you just get, and set the values back with this
array.
249

Here are the some demo of code you would use to set the specification for an
optimization object:

value = 1.16 ‘setpoint for % C3 IN C2 COMP

name = gasplant.outputNames(0) ‘variable name for % C3 IN C2 COMP

bounds = gasplant.getBoundsByName(name)

bounds(2) = value ‘Setpoint is the third element of bounds.

gasplant.setBoundsByName name, bounds

Calculating Optimization

You use one method to calculate the optimization.

calculate();

Obtaining Results

The results of an optimization problem contain the desired values for
manipulated variables, the achieved values for state and output variables. All of
these values can be obtained from following methods:

double getValueByName(BSTR name);

double getValueByTag(BSTR tag);

Once you have the desired value, you can write it back to your spreadsheet, or
plot it, or process it according to your application.

Training Optimization Models in Real Time

In a real-time application, you may want to update your optimization model as
new data is collected. For detailed information, see Training Predictive Models in
Real Time. For the API for training optimization models, see Appendix B,
NOLOptimizer Class.

Deployment in G2 using G2 JavaLink
In order to deploy the NOL Studio optimization in G2 through G2 JavaLink, you
must have JavaLink license. You also need to have JavaLink installed on your
machine. Go to the Readme file of NOL bundle, and follow the directions for
installing JavaLink. You will need to restart your machine before proceeding. This
section assumes knowledge of G2 and JavaLink.
250

Deployment in G2 using G2 JavaLink
Loading the Necessary KBs

All the KBs are located in the nol directory. The top-level module is called
nolstudio.kb. However, do not make nolstudio.kb the top level module in
your application. Create a module, or a hierarchy of modules, as your application,
then merge nolstudio.kb into your application, and make it a required module.

This is the top-level workspace of the nolstudio.kb:

It provides a palette of objects such as the Predictive Model, the Optimization, the
Module Settings, and the API for both the predictive and optimization models.

The basic process of using an nols model in G2 is to:

• Connect to an interface.

• Initialize the model.

• Send data to the model.

• Receive/request outputs.

Each of these steps is detailed in the following sections.

Launching a Remote Process

Launching a remote process for optimization is the same as for any model. For
details, see Launching a Remote Process at Startup and Launching a Remote
Process Using Procedure.
251

The Optimization Model and its API
To set up an optimization model you need to clone its icon from the NolStudio
palette, and fill in its attributes. Then, use the API methods to send data to the
optimization and receive values. The API is split up into three parts: the general
methods - such as getting the name and comment of the model, the sets and gets
of the values, and the sets and gets of the weights and bounds.

To set up an optimization model:

1 Make sure G2 is running, then clone the Optimization onto a workspace in
your application.

Note Make sure the workspace does not belong to the nolstudio module.

2 Edit the attribute table of the model to fill in the following attributes:

Now, you are ready to write procedures using the optimization API to send and
receive data. Click the Nols Programmers Interface button on the palette, then
click the Methods for Optimizations button. The following sections describe each
API procedure.

Method to Initialize the Optimization

The first method you must call before you can do anything further is
nols-initialize.

nols-initialize
(opt: class nols-optimization, interface: class nols-gateway)

Initializes the optimization. The model is an attribute of the optimization. The
interface is the nols-interface-object-name referenced in your module settings.

Attribute Description

names The name of the optimization, which you
reference in the API procedures.

nols-directory-name The directory of the optimization, in quotes.

nols-file-name The file name of the optimization, for
example, "model1.opt".
252

The Optimization Model and its API
General Methods

The general methods do not send or receive actual model data.

nols-get-name
(opt: class nols-optimization)
-> model: text

This method returns the name of the model created in NOL Studio.

nols-get-comment
(opt: class nols-optimization)

-> comment: text

This method returns the comment associated with the model created in NOL
Studio.

nols-get-number-of-variables
(opt: class nols-optimization, type: integer)
-> number: integer

This method returns the number of specified variables in the model. The type
argument determines the variables you want:

0 - outputs
1 - manipulated
2 - exogenous
3 - state.

You may need to call this method to resize your arrays.

nols-get-variable-names
(opt: class nols-optimization, type: integer)
-> names: class text-array

This method returns an array of variable names specified by the type
argument:

0 - outputs
1 - manipulated
2 - exogenous
3 - state

nols-get-variable-tags
(opt: class nols-optimization, type: integer)
-> tags: class text-array

This method returns an array of variable tags specified by the type argument:

0 - outputs
1 - manipulated
2 - exogenous
3 - state.
253

nols-get-variable-units
(opt: class nols-optimization, type: integer)
-> units: class text-array

This method returns an array of variable units specified by the type argument:

0 - outputs
1 - manipulated
2 - exogenous
3 - state

Methods to Set Weights and Bounds on Variables

These methods set the weights and bounds on the variables in the optimization.
You can set or get either the weights or the bounds by the variable name or tag.
The weights are sent to the optimization as a float array in the following order:

linear weight, setpoint weight, soft upper bound weight, soft lower bound
weight

The bounds are also sent to the optimization as an array of floats in the following
order:

hard lower bound, soft lower bound, setpoint, soft upper bound, hard upper
bound

All of the methods in this group will signal an nols-error if something goes wrong
with the method. You must enclose the calls to these methods into a begin-end-
on-error clause to capture the error. The nols-error has three text attributes that
you can view once the error is captured. These attributes are: the class-of-error,
the description-of-error, and the backtrace-of-error.

nols-set-weights-by-name
(opt: class nols-optimization, variable-name: text,
variable-weights: class float-array)

Sets the weights for a particular variable. Remember the order of the weights:
linear weight, setpoint weight, soft upper bound weight, soft lower bound
weight.

nols-set-weights-by-tag
(opt: class nols-optimization, variable-tag: text,
variable-weights: class float-array)

Sets the weights for a particular variable, using the variable’s tag for
identification. Remember the order of the weights: linear weight, setpoint
weight, soft upper bound weight, soft lower bound weight.
254

The Optimization Model and its API
nols-get-weights-by-name
(opt: class nols-optimization, variable-name: text)
-> weights: class float-array

Returns the weights set for a particular variable, using that variable’s name.
The float values returned will be in the same order: linear weight, setpoint
weight, soft upper bound weight, soft lower bound weight.

nols-get-weights-by-tag
(opt: class nols-optimization, variable-tag: text)
-> weights: class float-array

Returns the weights set for a particular variable, using that variable’s tag for
identification. The float values returned will be in the same order: linear
weight, setpoint weight, soft upper bound weight, soft lower bound weight.

nols-set-bounds-by-name
(opt: class nols-optimization, variable-name: text,
variable-bounds: class float-array)

Sets the bounds for a variable using the variable’s name for identification. The
bounds should be all floats, in the following order: hard lower bound, soft
lower bound, setpoint, soft upper bound, hard upper bound.

nols-set-bounds-by-tag
(opt: class nols-optimization, variable-tag: text,
variable-bounds: class float-array)

Sets the bounds for a variable using the variable’s tag for identification. The
bounds should be all floats, in the following order: hard lower bound, soft
lower bound, setpoint, soft upper bound, hard upper bound.

nols-get-bounds-by-name
(opt: class nols-optimization, variable-name: text)
-> bounds: class float-array

Returns the bounds set for a particular variable, by that variable’s name. The
array of floats returned, contains the bounds in the following order: hard
lower bound, soft lower bound, setpoint, soft upper bound, hard upper
bound.

nols-get-bounds-by-tag
(opt: class nols-optimization, variable-tag: text)
bounds: class float-array

Returns the bounds set for a particular variable by that variable’s tag. The
array of floats returned, contains the bounds in the following order: hard
lower bound, soft lower bound, setpoint, soft upper bound, hard upper
bound.
255

Methods to Get/Set Variable Values

This group of methods allows you to get and set variable values. You can get/set
a value for a particular variable by its name or tag, or you can get/set values for a
group of variables, such as all manipulated variables or all outputs. The values set
by this group of method are used as the initial starting point for the optimization
calculation. The values return from get methods show the current status of the
optimization object. For example, if called after one calculation, the values from
get methods for manipulated variables will be the current results returned from
that calculation.

Note Because in the optimization calculation the exogenous variables only provide a
set of fixed values for the calculation, the set value methods are used to set these
fixed values, which are also saved as their setpoints at the same time.

All of the methods in this group will signal an nols-error if something goes wrong
with the method. You must enclose the calls to these methods into a begin-end-
on-error clause to capture the error. The nols-error has three text attributes that
you can view once the error is captured. These attributes are class-of-error,
description-of-error, and the backtrace-of-error.

nols-set-value-by-name
(opt: class nols-optimization, variable-name: text, variable-value: float)

Sets a value for a variable using the variable’s name for identification.

nols-set-value-by-tag
(opt: class nols-optimization, variable-tag: text, variable-value: float)

Sets a value for a variable using the variable’s tag for identification.

nols-get-value-by-name
(opt: class nols-optimization, variable-name: text)
-> value: float

Returns a value set for a particular variable, using the variable’s name for
identification.

nols-get-value-by-tag
(opt: class nols-optimization, variable-tag: text)
-> value: float

Returns a value set for a particular variable, using the variable’s tag for
identification.
256

The Optimization Model and its API
nols-set-values
(opt: class nols-optimization, variable-type: integer,
variable-values: class float-array)

Sets the values for all variables of a particular type. The variable-type
argument is decoded as follows:

0 - outputs
1 - manipulated variables
2 - exogenous variables
3 - state variables.

Make sure that the order of the values in the array corresponds to the order of
those variables in the optimization model.

nols-get-values
(opt: class nols-optimization, variable-type: integer)
-> values: class float-array

Returns an array of values set for variables of a particular type. The variable-
type argument is decoded as follows:

0 - outputs
1 - manipulated variables
2 - exogenous variables
3 - state variables.

The order of the values returned is the same as the order of variables in the
optimization model.

Methods to Calculate the Optimization

These methods calculate the optimization. The calculation only runs if something
has changed since the last calculation, such as a weight, a bound, or a value has
been changed by the user. These methods also signal an nols-error if something
goes wrong.

nols-calculate-optimization
(opt: class nols-optimization)

Calculates the optimization once you have set the weights, bounds, and/or
values as desired.
257

nols-calculate-optimization-with-flag
(opt: class nols-optimization)
-> status: integer

Use this method to calculate the optimization. A integer value is returned to
indicate the status flag of the optimization calculation.

0 - converge normal
1 - Feasible, but not converge (maximum iteration)
2 - could not find feasible solution (maximum iteration)
3 - other error condition.

Training Optimization Models in Real Time

The common parameters in these API are time, auto-stop, initial-training, and
training-display. The time tells the training algorithm how long you want to
spend to train the model. The auto-stop indicates whether you want the training
algorithm to stop training automatically if no further improvement is detected.
The initial-training indicates whether you want to clear the model and start new
training or continue training from last stop state. The training-display indicates
whether to show the training console during the training.

nols-train-output-model
(model: class nols-predictive-model, xmatrix : sequence , ymatrix: sequence,
time: float, auto-stop: truth-value, initial-training: truth-value,
training-display: true-value)

Trains the output submodel of the optimization. Use this method when you
collect data inside G2 and pass the data through a G2 interface. The sequence
type for xmatrix and ymatrix is a sequence of float-arrays. The column
number of xmatrix and ymatrix must be the same as the input number and
output number.

nols-train-output-model-from-file
(model: class nols-predictive-model , input-file: text, output-file: text,
time-in-min: float, auto-stop: truth-value, initial-training: truth-value,
training-display: true-value)

Trains the output submodel of the optimization model. Use this method when
you save the data into data files that contain numerical value only. The format
of the file must be a comma separated ASCII file with the same numerical
values at each line.

nols-train-state-model
(model: class nols-predictive-model, xmatrix: sequence , ymatrix: sequence,
time: float, auto-stop: truth-value, initial-training: truth-value,
training-display: true-value)

Trains the state submodel of the optimization. This method does nothing if
there is no state submodel. Use this method when you collect data inside G2

The Optimization Model and its API
and pass the data through G2 interface. The sequence type for xmatrix and
ymatrix is a sequence of float-arrays. The column number of xmatrix and
ymatrix must be the same as the input number and output number.

nols-train-state-model-from-file
(model: class nols-predictive-model , input-file: text, output-file: text,
time-in-min: float, auto-stop: truth-value, initial-training: truth-value,
training-display: true-value)

Trains the state submodel of the optimization. This method does nothing if
there is no state submodel. Use this method if you save the data into data files.
The data file should contain numerical value only. The format of the file must
be a comma separated ASCII file with same numerical values at each line.

nols-train-model-from-file
(model: class nols-predictive-model , data-series-files: sequence,
time-in-min: float, auto-stop: truth-value, initial-training: truth-value,
training-display: true-value)

Trains the whole optimization model. Use this method if you save the data
into data files. The data files contain the data series with fixed .ds format. The
method will generate training data for both output and state submodels from
these data series.

Additional Methods for the Optimization

nols-get-max-value-by-name
(opt: class nols-optimization, name: text)
-> value: float

Returns the maximum statistic of the named variable. The returned value
is the maximum value of that variable in the data series used to build the
model.

nols-get-max-value-by-tag
(opt: class nols-optimization, tag: text)
-> value: float

Returns the maximum statistic of the named variable. The returned value
is the maximum value of that variable in the data series used to build the
model.

nols-get-min-value-by-name
(opt: class nols-optimization, name: text)
-> value: float

Returns the minimum statistic of the named variable. The returned value
is the minimum value of that variable in the data series used to build the
model.
259

nols-get-min-value-by-tag
(opt: class nols-optimization, tag: text)
-> value: float

Returns the minimum statistic of the named variable. The returned value
is the minimum value of that variable in the data series used to build the
model.

nols-get-mean-value-by-name
(opt: class nols-optimization, name: text)
-> value: float

Returns the mean statistic of the named variable. The returned value is the
mean value of that variable in the data series used to build the model.

nols-get-mean-value-by-tag
(opt: class nols-optimization, tag: text)
-> value: float

Returns the mean statistic of the named variable. The returned value is the
mean value of that variable in the data series used to build the model.

nols-get-median-value-by-name
(opt: class nols-optimization, name: text)
-> value: float

Returns the median statistic of the named variable. The returned value is
the minimum value of that variable in the data series used to build the
model.

nols-get-median-value-by-tag
(opt: class nols-optimization, tag: text)
-> value: float

Returns the median statistic of the named variable. The returned value is
the median value of that variable in the data series used to build the
model.

nols-get-sum-value-by-name
(opt: class nols-optimization, name: text)
-> value: float

Returns the sum statistic of the named variable. The returned value is the
sum of that variable in the data series used to build the model.

nols-get-sum-value-by-tag
(opt: class nols-optimization, tag: text)
-> value: float

Returns the sum statistic of the named variable. The returned value is the
sum of that variable in the data series used to build the model.
260

The Optimization Model and its API
nols-get-std-value-by-name
(opt: class nols-optimization, name: text)
-> value: float

Returns the standard deviation statistic of the named variable. The
returned value is the standard deviation value of that variable in the data
series used to build the model.

nols-get-std-value-by-tag
(opt: class nols-optimization, tag: text)
-> value: float

Returns the standard deviation statistic of the named variable. The
returned value is the standard deviation value of that variable in the data
series used to build the model.

nols-get-variance-value-by-name
(opt: class nols-optimization, name: text)
-> value: float

Returns the variance statistic of the named variable. The returned value is
the variance value of that variable in the data series used to build the
model.

nols-get-variance-value-by-tag
(opt: class nols-optimization, tag: text)
-> value: float

Returns the variance statistic of the named variable. The returned value is
the variance value of that variable in the data series used to build the
model.

nols-get-kurt-value-by-name
(opt: class nols-optimization, name: text)
-> value: float

Returns the kurt statistic of the named variable. The returned value is the
kurt value of that variable in the data series used to build the model.

nols-get-kurt-value-by-tag
(opt: class nols-optimization, tag: text)
-> value: float

Returns the kurt statistic of the named variable. The returned value is the
kurt value of that variable in the data series used to build the model.

nols-get-skew-value-by-name
(opt: class nols-optimization, name: text)
-> value: float

Returns the skew statistic of the named variable. The returned value is the
skew value of that variable in the data series used to build the model.
261

nols-get-skew-value-by-tag
(opt: class nols-optimization, tag: text)
-> value: float

Returns the skew statistic of the named variable. The returned value is the
skew value of that variable in the data series used to build the model.

nols-get-range-value-by-name
(opt: class nols-optimization, name: text)
-> value: float

Returns the range statistic of the named variable. The returned value is the
range value of that variable in the data series used to build the model.

nols-get-range-value-by-name
(opt: class nols-optimization, name: text)
-> value: float

Returns the range statistic of the named variable. The returned value is the
range value of that variable in the data series used to build the model.

Handle Error Exceptions

The following is a list of all methods that signal the nols-error if something
goes wrong. Please ensure that you encapsulate all of these method calls
into begin - end on error statements to capture the errors.

nols-calculate-optimization
nols-set-value-by-name
nols-set-value-by-tag
nols-get-value-by-name
nols-get-value-by-tag
nols-set-values
nols-get-values
nols-set-bounds-by-name
nols-set-bounds-by-tag
nols-get-bounds-by-name
nols-get-bounds-by-name
nols-set-weights-by-name
262

A

NOLPredictor Class
Describes data members and operations of the NOLPredictor class.

Introduction 263

Notation 263

Data Members 264

Methods 267

Introduction
This appendix provides a quick reference for the NOLPredictor class. The
information is listed alphabetically within these two categories:

• Data Members

• Methods

Notation
All VARIANT variables in class members are used as a reference of double arrays.
The VARTYPE for all VARIANT values is VT_ARRAY|VT_R8.
263

Data Members
bstr modelName;

Stores the name of this NOLPredictor instance.

bstr modelComment

Stores the comment of this NOLPredictor instance.

bstr modelFilePath;

Stores the directory string for the predictive model.

bstr modelFileName;

Stores the file name string for the predictive model.

bstr TimeFormat;

Stores the format string of date/time for time stamps.

bstr inputNames(short index);

Stores the input names of the predictive model.

bstr inputTags(short index);

Stores the input tags of the predictive model.

Parameter Description

index Gives the order of inputs specified in the
predictive model.

Parameter Description

index Gives the order of inputs specified in the
predictive model.
264

Data Members
bstr inputUnits(short index);

Stores the input units of the predictive model.

bstr outputNames(short index);

Stores the output names of the predictive model.

bstr outputTags(short index);

Stores the output tags of the predictive model.

bstr outputUnit(short index);

Stores the output units of the predictive model.

boolean loadOnRun

Stores the information on whether a model should be loaded automatically at
runtime:

• If true, the model should be loaded automatically.

• If false, the model can only be loaded through the loadModel method.

Parameter Description

index Gives the order of inputs specified in the
predictive model.

Parameter Description

index Gives the order of outputs specified in the
predictive model.

Parameter Description

index Gives the order of outputs specified in the
predictive model.

Parameter Description

index Gives the order of outputs specified in the
predictive model.
265

long numberOfInputs

Stores the number of inputs in the model.

long numberOfOutputs

Stores the number of outputs in the model.
266

Methods
Methods
NolPredictor::calculateOutputsAtTime
VARIANT calculateOutputsAtTime(bstr Time);

Calculates and returns output values at a specified time. This function can
only be called after a predictive model has been loaded and input data have
been prepared.

NolPredictor::calculateOutputsForRow
VARIANT calculateOutputsForRow();

Calculates and returns output values for models trained from row-based data.

This function can only be called after a predictive model has been loaded and
input data have been prepared.

NolPredictor::clearDataBuffer
void clearDataBuffer();

This function is used to clear the data buffer for models developed from time-
based models.

Parameter Description

Time String used to specify the time stamp, at which
you want to calculate the outputs.

Return Value Description

VARIANT Provides the output values for all model outputs.
The VARIANT variable is a reference to a double
array, which has the same order as outputs
specified in the predictive model.

Return Value Description

VARIANT Provides the output values for all model outputs.
The VARIANT variable is a reference to a double
array, which has the same order as outputs
specified in the predictive model.
267

NolPredictor::getFormulas
bstr getFormulas();

Returns a string representing the formulas in the preproccessor, from which
the model is built.

NolPredictor::getInputDelayByName
VARIANT getInputDelayByName(bstr inputName);

Returns the delays of one variable from variable name.

NolPredictor::getInputDelayByTag
VARIANT getInputDelayByTag(bstr inputTag);

Returns the delays of one variable from variable tag.

NolPredictor::getKurtValueByName
double getKurtValueByName(bstr inputName);

Returns the kurt value of one variable from a variable name. The value is
defined from the data series used to build the model.

NolPredictor::getKurtValueByTag
double getKurtValueByTag(bstr inputTag);

Returns the kurt value of one variable from a variable tag. The value is
defined from the data series used to build the model.

Return Value Description

VARIANT Provides all delay settings for the given variable.
The VARIANT variable is a reference to a long
array, which contains the long value of each delay
with an unit of millisecond.

Return Value Description

VARIANT Provides all delay settings for the given variable.
The VARIANT variable is a reference to a long
array, which contains the long value of each delay
with an unit of millisecond.
268

Methods
NolPredictor::getMaxValueByName
double getMaxValueByName(bstr inputName);

Returns the maximum value of one variable from a variable name. The value
is defined from the data series used to build the model.

NolPredictor::getMaxValueByTag
double getMaxValueByTag(bstr inputTag);

Returns the maximum value of one variable from a variable tag. The value is
defined from the data series used to build the model.

NolPredictor::getMeanValueByName
double getMeanValueByName(bstr inputName);

Returns the mean value of one variable from a variable name. The value is
defined from the data series used to build the model.

NolPredictor::getMeanValueByTag
double getMeanValueByTag(bstr inputTag);

Returns the maximum value of one variable from a variable tag. The value is
defined from the data series used to build the model.

NolPredictor::getMedianValueByName
double getMedianValueByName(bstr inputName);

Returns the median value of one variable from a variable name. The value is
defined from the data series used to build the model.

NolPredictor::getMedianValueByTag
double getMedianValueByTag(bstr inputTag);

Returns the median value of one variable from a variable tag. The value is
defined from the data series used to build the model.

NolPredictor::getMinValueByName
double getMinValueByName(bstr inputName);

Returns the minimum value of one variable from a variable name. The value
is defined from the data series used to build the model.
269

NolPredictor::getMinValueByTag
double getMinValueByTag(bstr inputTag);

Returns the minimum value of one variable from a variable tag. The value is
defined from the data series used to build the model.

NolPredictor::getNumberOfInputs
long getNumberOfInputs();

Returns the number of inputs. This function can only be called after a
predictive model is loaded.

NolPredictor::getNumberOfOutputs
long getNumberOfOutputs();

Returns the number of outputs. This function can only be called after a
predictive model is loaded.

NolPredictor::getRangeValueByName
double getRangeValueByName(bstr inputName);

Returns the range value of one variable from a variable name. The value is
defined from the data series used to build the model.

NolPredictor::getRangeValueByTag
double getRangeValueByTag(bstr inputTag);

Returns the range value of one variable from a variable tag. The value is
defined from the data series used to build the model.

NolPredictor::getSkewValueByName
double getSkewValueByName(bstr inputName);

Returns the skew value of one variable from a variable name. The value is
defined from the data series used to build the model.

NolPredictor::getSkewValueByTag
double getSkewValueByTag(bstr inputTag);

Returns the skew value of one variable from a variable tag. The value is
defined from the data series used to build the model.
270

Methods
NolPredictor::getSTDValueByName
double getSTDValueByName(bstr inputName);

Returns the standard deviation value of one variable from a variable name.
The value is defined from the data series used to build the model.

NolPredictor::getSTDValueByTag
double getSTDValueByTag(bstr inputTag);

Returns the standard deviation value of one variable from a variable tag. The
value is defined from the data series used to build the model.

NolPredictor::getSumValueByName
double getSumValueByName(bstr inputName);

Returns the sum value of one variable from a variable name. The value is
defined from the data series used to build the model.

NolPredictor::getSumValueByTag
double getSumValueByTag(bstr inputTag);

Returns the sum value of one variable from variable tag. The value is defined
from the data series used to build the model.

NolPredictor::getVarianceValueByName
double getVarianceValueByName(bstr inputName);

Returns the variance value of one variable from a variable name. The value is
defined from the data series used to build the model.

NolPredictor::getVarianceValueByTag
double getVarianceValueByTag(bstr inputTag);

Returns the variance value of one variable from a variable tag. The value is
defined from the data series used to build the model.
271

NolPredictor::isTimeBasedModel
BOOLEAN isTimeBasedModel();

Determines whether model was trained from time-based or row-based data.
This function can only be called after a predictive model is loaded.

NolPredictor::loadModel
void loadModel(bstr modelFileName, bstr modelFilePath);

Loads the predictive model from the specified file/directory location.

NolPredictor::setInputsAtTime
void setInputsAtTime(VARIANT inputs, bstr time);

Prepares input data for models trained from time-based data. This function
can only be called after a predictive model is loaded.

Return Value Description

BOOLEAN Returns TRUE if model was trained from time-
based data and FALSE if model was trained from
row-based data.

Parameter Description

modelFileName The file name string.

modelFilePath The directory name string.

Parameter Description

inputs A VARIANT variable used to provide a double
array for all model inputs at the given time.

time String used to specify the current time stamp.
272

Methods
NolPredictor::setInputAtTimeByindex
void setInputAtTimeByindex(long index, double inputValue, bstr time);

Prepares input data for models trained from time-based data. This function
can only be called after a predictive model is loaded.

NolPredictor::setInputAtTimeByName
void setInputAtTimeByName(bstr name, double inputValue, bstr time);

Prepares input data for models trained from time-based data. This function
can only be called after a predictive model is loaded.

NolPredictor::setInputAtTimeByTag
void setInputAtTimeByTag(bstr tag, double inputValue, bstr time);

Prepares input data for models trained from time-based data. This function
can only be called after a predictive model is loaded.

Parameter Description

index Gives the order of inputs specified in the
predictive model.

inputValue The value for the specified input at the given
time.

time String used to specify the current time stamp.

Parameter Description

name Gives the name of input variable.

inputValue The value for the specified input at the given
time.

time String used to specify the current time stamp.

Parameter Description

tag Gives the tag of input variable.

inputValue The value for the specified input at the given
time.

time String used to specify the current time stamp.
273

NolPredictor::setInputsForRow
void setInputsForRow(VARIANT inputs);

Prepares input data for models trained from row-based data. This function
can only be called after a predictive model is loaded.

NolPredictor::setInputForRowByIndex
void setInputForRowByIndex(long index, double inputValue);

Prepares input data for models trained from row-based data. This function
can only be called after a predictive model is loaded.

NolPredictor::setInputForRowByName
void setInputForRowByName(bstr inputName, double inputValue);

Prepares input data for models trained from row-based data. This function
can only be called after a predictive model is loaded.

Parameter Description

inputs A VARIANT variable used to provide a double
array for all model inputs.

Parameter Description

index Gives the order of inputs specified in the
predictive model.

inputValue The value for the specified input.

Parameter Description

inputName Gives the name of input variable,

inputValue The value for the specified input.
274

Methods
NolPredictor::setInputForRowByTag
void setInputForRowByTag(bstr tag, double inputValue);

Prepares input data for models trained from row-based data. This function
can only be called after a predictive model is loaded.

NolPredictor::setVariableValueAtTimeByName
void setVariableValueAtTimeByName(bstr name, double value,
bstr time);

Prepares variable data for models trained from time-based data. This function
can only be called after a predictive model is loaded. You use it to set the data
to the delayed output of a recursive model.

NolPredictor::setVariableValueAtTimeByTag
void setVariableValueAtTimeByTag(bstr name, double value, bstr time);

Prepares variable data for models trained from time-based data. This function
can only be called after a predictive model is loaded. You use it to set the data
to the delayed output of a recursive model.

Parameter Description

Tag Gives the tag of input variable.

inputValue The value for the specified input.

Parameter Description

name Gives the name of variable.

value The value for the specified variable at the
given time.

time String used to specify the current timestamp.

Parameter Description

tag Gives the tag of variable.

value The value for the specified variable at the
given time.

time String used to specify the current time stamp.
275

NolPredictor::setTimeFormat
void setTimeFormat(bstr timeFormat);

Sets the time format within the model for time-based models. This function
must be called before setting inputs for time-based models.

Parameter Description

timeFormat The format string of date/time for time
stamps.
276

B

NOLOptimizer Class
Describes data members and operations of the NOLOptimization class.

Introduction 277

Notation 277

Data Members 278

Methods 282

Introduction
This appendix provides a quick reference for the NOLOptimizer class. The
information is listed alphabetically within these two categories:

• Data Members

• Methods

Notation
All VARIANT variables in class members are used as a reference of double arrays.
The VARTYPE for all VARIANT values is VT_ARRAY|VT_R8.
277

Data Members
bstr optimizationName;

Stores the name of this NOLOptimizer instance.

bstr optimizationComment

Stores the comment of this NOLOptimizer instance.

bstr optimizationFilePath;

Stores the directory string for the optimization object location.

bstr optimizationFileName;

Stores the file name string for the optimization object location.

bstr exogenousNames(short index);

Stores the exogenous names of the optimization model.

bstr exogenousTags(short index);

Stores the exogenous tags of the optimization model.

Parameter Description

index Gives the order of exogenous variables specified
in the optimization model.

Parameter Description

index Gives the order of exogenous variables specified
in the optimization model.
278

Data Members
bstr exogenousUnits(short index);

Stores the exogenous units of the optimization model.

bstr manipulatedNames(short index);

Stores the manipulated names of the optimization model.

bstr manipulatedTags(short index);

Stores the manipulated tags of the optimization model.

bstr manipulatedUnits(short index);

Stores the manipulated units of the optimization model.

Parameter Description

index Gives the order of exogenous variables specified
in the optimization model.

Parameter Description

index Gives the order of manipulated variables
specified in the optimization model.

Parameter Description

index Gives the order of manipulated variables
specified in the optimization model.

Parameter Description

index Gives the order of manipulated variables
specified in the optimization model.
279

bstr outputNames(short index);

Stores the output names of the optimization model.

bstr outputTags(short index);

Stores the output tags of the optimization model.

bstr outputUnits(short index);

Stores the output units of the optimization model.

bstr stateNames(short index);

Stores the state names of the optimization model.

Parameter Description

index Gives the order of outputs specified in the
optimization model.

Parameter Description

index Gives the order of outputs specified in the
optimization model.

Parameter Description

index Gives the order of outputs specified in the
optimization model.

Parameter Description

index Gives the order of state variables specified in the
optimization model.
280

Data Members
bstr stateTags(short index);

Stores the state tags of the optimization model.

bstr stateUnits(short index);

Stores the state units of the optimization model.

Parameter Description

index Gives the order of state variables specified in the
optimization model.

Parameter Description

index Gives the order of state variables specified in the
optimization model.
281

Methods
NolOptimizer::calculate
void calculate();

Performs the calculation of the optimization problem.

NolOptimizer::calculateOptimization
short calculateOptimization();

Used to calculate an optimization problem. The returned value is the status
flag of that calculation.

NolOptimizer::getBoundsByName
VARIANT getBoundsByName(bstr name);

Returns the double array for variable bounds.

Remarks: The array is described in the Notation section. This function can
only be called after an optimization object is loaded.

NolOptimizer::getBoundsByTag
VARIANT getBoundsByTag(bstr tag);

Returns the double array for variable bounds. The array is described in the
Notation section. This function can only be called after an optimization object
is loaded.

Return Value Description

short 0=converge normal
1=feasible, but not converge (maximum iteration);
2=could not find feasible solution
(maximum iteration);
3=other error condition.

Parameter Description

name Stores the variable name.

Parameter Description

tag Stores the variable tag.
282

Methods
NolOptimizer::getKurtValueByName
double getKurtValueByName(bstr inputName);

Returns the kurt value of one variable from a variable name. The value is
defined from the data series used to build the model.

NolOptimizer::getKurtValueByTag
double getKurtValueByTag(bstr inputTag);

Returns the kurt value of one variable from a variable tag. The value is
defined from the data series used to build the model.

NolOptimizer::getMaxValueByName
double getMaxValueByName(bstr inputName);

Returns the maximum value of one variable from a variable name. The value
is defined from the data series used to build the model.

NolOptimizer::getMaxValueByTag
double getMaxValueByTag(bstr inputTag);

Returns the maximum value of one variable from a variable tag. The value is
defined from the data series used to build the model.

NolOptimizer::getMeanValueByName
double getMeanValueByName(bstr inputName);

Returns the mean value of one variable from a variable name. The value is
defined from the data series used to build the model.

NolOptimizer::getMeanValueByTag
double getMeanValueByTag(bstr inputTag);

Returns the maximum value of one variable from a variable tag. The value is
defined from the data series used to build the model.

NolOptimizer::getMedianValueByName
double getMedianValueByName(bstr inputName);

Returns the median value of one variable from a variable name. The value is
defined from the data series used to build the model.
283

NolOptimizer::getMedianValueByTag
double getMedianValueByTag(bstr inputTag);

Returns the median value of one variable from a variable tag. The value is
defined from the data series used to build the model.

NolOptimizer::getMinValueByName
double getMinValueByName(bstr inputName);

Returns the minimum value of one variable from a variable name. The value
is defined from the data series used to build the model.

NolOptimizer::getMinValueByTag
double getMinValueByTag(bstr inputTag);

Returns the minimum value of one variable from a variable tag. The value is
defined from the data series used to build the model.

NolOptimizer::getNumberOfVariables
short getNumberOfVariables(short type);

Returns the number of specified variables. This function can only be called
after an optimization object is loaded.

NolOptimizer::getRangeValueByName
double getRangeValueByName(bstr inputName);

Returns the range value of one variable from a variable name. The value is
defined from the data series used to build the model.

NolOptimizer::getRangeValueByTag
double getRangeValueByTag(bstr inputTag);

Returns the range value of one variable from a variable tag. The value is
defined from the data series used to build the model.

Parameter Description

type Specify the type of variables.

0: OUTPUT
1: MANIPULATED VARIABLE
2: EXOGENOUS VARIABLE
3: STATE VARAIBLE
284

Methods
NolOptimizer::getSkewValueByName
double getSkewValueByName(bstr inputName);

Returns the skew value of one variable from a variable name. The value is
defined from the data series used to build the model.

NolOptimizer::getSkewValueByTag
double getSkewValueByTag(bstr inputTag);

Returns the skew value of one variable from a variable tag. The value is
defined from the data series used to build the model.

NolOptimizer::getSTDValueByName
double getSTDValueByName(bstr inputName);

Returns the standard deviation value of one variable from a variable name.
The value is defined from the data series used to build the model.

NolOptimizer::getSTDValueByTag
double getSTDValueByTag(bstr inputTag);

Returns the standard deviation value of one variable from a variable tag. The
value is defined from the data series used to build the model.

NolOptimizer::getSumValueByName
double getSumValueByName(bstr inputName);

Returns the sum value of one variable from a variable name. The value is
defined from the data series used to build the model.

NolOptimizer::getSumValueByTag
double getSumValueByTag(bstr inputTag);

Returns the sum value of one variable from variable tag. The value is defined
from the data series used to build the model.
285

NolOptimizer::getValueByName
double getValueByName(bstr name);

Returns the double value for given variable. This function is for all variable
types. You use this function to get back results after calculating the
optimization problem. This function should be called after the calculation.

NolOptimizer::getValueByTag
double getValueByTag(bstr tag);

Returns the double value for given variable. This function is for all variable types.
You use this function to get back results after calculating the optimization
problem. This function should be called after the calculation.

NolOptimizer::getValues
VARIANT getValues(short type);

Returns the double array for all variables of given type. You use this function to
get back results after calculating the optimization problem. This function should
be called after the calculation.

NolOptimizer::getVarianceValueByName
double getVarianceValueByName(bstr inputName);

Returns the variance value of one variable from a variable name. The value is
defined from the data series used to build the model.

Parameter Description

name Stores the variable name.

Parameter Description

tag Stores the variable tag.

Parameter Description

type Specify the type of variables.

0: OUTPUT
1: MANIPULATED VARIABLE
2: EXOGENOUS VARIABLE
3: STATE VARAIBLE
286

Methods
NolOptimizer::getVarianceValueByTag
double getVarianceValueByTag(bstr inputTag);

Returns the variance value of one variable from a variable tag. The value is
defined from the data series used to build the model.

NolOptimizer::getWeightsByName
VARIANT getWeightsByName(bstr name);

Returns a double array of variable weights. The weights and the structure of
the array is described in the Notation section. This function can only be called
after an optimization object is loaded.

NolOptimizer::getWeightsByTag
VARIANT getWeightsByTag(bstr tag);

Returns a double array of variable weights. The weights and the structure of
the array is described in the Notation section. This function can only be called
after an optimization object is loaded.

NolOptimizer::loadOptimization
void loadOptimization(bstr directory, bstr file);

Loads the optimization object from the specified directory/file location.

Parameter Description

name Stores the variable name.

Parameter Description

tag Stores the variable tag.

Parameter Description

directory The file name string.

file The directory name string.
287

NolOptimizer::setBoundsByName
void setBoundsByName(bstr name, VARIANT values);

Sets the bounds for a variable, using the variable’s name for identification.
This function can only be called after an optimization object is loaded. We
recommend to first call getBoundsByTag to get the bound array.

NolOptimizer::setBoundsByTag
void setBoundsByTag(bstr tag, VARIANT values);

Sets the bounds for a variable, using the variable’s tag for identification. This
function can only be called after an optimization object is loaded. We
recommend to first call getBoundsByTag to get the bound array.

NolOptimizer::setValueByName
void setValueByName(bstr name, double value);

Sets the initial values for manipulated variables and constants for exogenous
variables. This function can only be called after an optimization object is
loaded.

Parameter Description

name Stores the variable name.

values Stores the double array for variable bounds.

Parameter Description

tag Stores the variable tag.

values Stores the double array for variable bounds.

Parameter Description

name Stores the variable name.

value Stores the initial double value for given variable.
288

Methods
NolOptimizer::setValueByTag
void setValueByTag(bstr tag, double value);

Sets the initial values for manipulated variables and constants for exogenous
variables. This function can only be called after an optimization object is
loaded.

NolOptimizer::setValues
void setValues(short type, VARIANT values);

Sets the initial values for manipulated variables and constants for exogenous
variables. This function can only be called after an optimization object is
loaded.

NolOptimizer::setWeightsByName
void setWeightsByName(bstr name, VARIANT values);

Sets the weights for a variable, using the variable’s name for identification.
This function can only be called after an optimization object is loaded. We
recommend to first call getWeightsByName to get the bound array.

Parameter Description

tag Stores the variable tag.

value Stores the initial double value for given variable.

Parameter Description

type Specifies the type of variables.

0: OUTPUT
1: MANIPULATED VARIABLE
2: EXOGENOUS VARIABLE
3: STATE VARAIBLE

values Stores the initial double array for given variable
type.

Parameter Description

name Stores the variable name.

values Stores the double array for variable weights.
289

NolOptimizer::setWeightsByTag
void setWeightsByTag(bstr tag, VARIANT values);

Sets the weights for a variable, using the variable’s tag for identification. This
function can only be called after an optimization object is loaded. We
recommend to first call getWeightsByTag to get the bound array.

Parameter Description

tag Stores the variable tag.

value Stores the double array for variable weights.
290

Index
 @ A B C D E F G H I J K L M
 # N O P Q R S T U V W X Y Z
A
accessing

objects in NOL Studio
predictive modeling results
properties table for data series
views from the menu

ActiveX
deploying

optimization models in
predictive models in

ActiveX control
adding to VB components toolbox
registering

ANN net
classifying variables
continuing training
creating autoassociative net models
defining run mode
exporting predictions
general properties
Introduction
model structure
performing operations on model
performing simulations with a trained

model
selecting data series
showing predicted versus actual plot
specifying model architecture
training console
viewing model properties

appending data
Application Programmers Interface (API)

optimization model
predictive model
statistical models

application window
labeling tools
mouse gestures defined
navigating the tree view
pull-down menus
status bar
toolbar
tree view
work area

B
BPN net

choosing maximum number of iterations
choosing training method
choosing whether to accelerate training
continuing training
creating backpropagation net models
exporting predictions
general properties
introduction
model structure
performing operations on model
performing simulations with a trained

model
preparing training set
showing predicted versus actual plot
specifying model architecture
training console
viewing model properties

C
COM-compliant applications

list of
Create New Optimization Model wizard

classifying variables
naming the model
selecting the output data series
selecting the preprocessor
selecting the state variable data series
specifying time delays

Create New Optimization wizard
Create New Predictive Model wizard
Create New Preprocessor wizard

opening
using

Create New Simulation wizard
cross-validation

for determining prediction errors
customer support services
291

D
data preprocessor

See preprocessing
data series

adding time stamps to rows
appending data
definition
formatting

choosing a text delimiter
choosing the format setting
columns
example of a specific data series
exporting data in ASCII
exporting data in BINARY
predefined formats
rows
specifying a file format
symbols
using naming conventions
using Text Import wizard

importing from files
removing
row-based
time-based
types of
using in NOL Studio
viewing

data sets
cleaning up
extracting training sets from
typical flaws in

data views
Define Formula dialog
delays

adding to row-based data
automatic selection of
between input and output variables
correlating variables of
including in model
on output variables
time delays

E
editing formulas

adding arguments
Define Formula dialog
entering functions
entering variables
formula syntax
292
navigating
removing arguments

Ensemble Net block

F
features summary
file formats

deleting in NOL Studio
managing in NOL Studio
predefined
specifying in NOL Studio
user-defined
using a Text Import wizard
using in NOL Studio

files
nolstudio.kb

formula list
applying formulas
changing the order of
created for each preprocessor
exporting formulas
importing formulas
inserting a new formula
modifying a formula in
removing a formula
selectively viewing

formulas
editing

G
G2

deploying
optimization models in
predictive models in

G2 JavaLink
deploying

optimization models in
predictive models in

H
histogram view

defining bins for
defining range for
viewing a specific variable

I
Import Data Series wizard
importing data

from G2, using G2 Gateway
from text files

introduction
specifying a file format

through the network
introduction
using URL format

installing NOL Studio
on Windows NT

L
labeling data

create new label dialogs
defining label categories
in the line chart view
in the scatter chart views
in the spreadsheet view
labeling tools on the application window
overview of process
removing labels
setting the active label
undo last label

labels
using in NOL Studio

line charts
adding and removing variables from
displays of missing values
for showing trends of variables
setting axis styles
tool tips
viewing data in
x axis styles
y axis styles
zooming data in

M
model deployment

exporting the model
in ActiveX

saving models
introduction
running in ActiveX
running in NeurOn-Line Classic
viewing results

Model Properties dialog
general properties
structure
training statistics
variables
viewing for any model

modeling techniques
for determining prediction errors
what? automated in NOL Studio

models
as virtual sensors in control systems
optimization models in NOL Studio
types supported

optimization models
predictive models

using in NOL Studio
mouse gestures

defined for NOL Studio

N
navigating tree view
NeurOn-Line Classic

deploying predictive models in
NOL blocks

Autoassociative Net
Ensemble Backpropagation Net
Ensemble Net
Radial Basis Function Net
Rho Net

NOL Studio
application window
basic data operations
basic steps
creating a predictive model
data representation in
exporting data
exporting data from by format
feature summary
graphical views of data
importing data from files
importing data from G2
importing data via network
installing

on Windows NT
shortcut

key features
launching the application

UNIX
Windows

methodology outlined
293

model types supported
modeling techniques
objects you create
optimization models in
overview
platform compatibility
predefined file formats
simulations applied in
text delimiters in
training models in
types of models supported
using Create New Predictive Model

wizard
using data series in
using file formats in
using labels in
using preprocessors in

NOL Studio palette
NOLOptimizer ActiveX control

creating an instance of
using in Visual Basic

NOLOptimizer class
data member
introduction
methods

NOLPredictor ActiveX control
creating an instance of

NOLPredictor ActiveX control

registering
NOLPredictor ActiveX control

using in Visual Basic
NOLPredictor class

data members
introduction
methods

nolstudio.kb

O
objects

created in NOL Studio
optimization

deployment
optimization model

ActiveX deployment
calculation method
data input methods
getting results
running in model
training in real time
using NOLOptimizer
294
as sensor in control systems
automatic selection of delays
automatic selection of model inputs
classifying variables for
configuring
creating
cross-validation technique
developing
exporting the model
G2 deployment

setting up
G2 JavaLink deployment
initial condition and error handling
maximum iterations
naming the model
objective function
running an optimization
saving
selecting

output data series for
state variable data series for

selecting preprocessors for
specifying time delays for
training
using in NOL Studio
using modeling wizard for
variable relationship illustrated
variables classified for

optimization model API
additional models
calculation method
general methods
getting variable values methods
initialization method
introduction
setting variable values methods
setting weights and bounds on variables

methods
training in real time

output delays

P
Partial Least Squares (PLS) Model
PCA model API

general methods
predictive model

ActiveX deployment
calculation methods
clearing data buffer

data input methods
getting results
loading the model
registering the ActiveX control
running the model
setting a time format
training in real time
using NOLPredictor

API
classifying variables for
comparing performance
cross-validation technique
determining

model structure
prediction errors

exporting for use with NOL Classic
G2 deployment

examining the model
exporting
G2 JavaLink
loading models programmatically
overview
running in G2
saving
setting up
using the NOL model

G2 JavaLink deployment
input-output sensitivities
inputs and delays

automatic selection of
launching the wizard
limitations of

distillation column example
model performance, assessing
model types

linear
nonlinear

naming the model
NeurOn-Line Classic deployment
preparing the training set
selecting

output data series for
preprocessors for
the model
training time

showing predicted versus actual plot
specifying time delays for
standard deviations used for
training

and model selection algorithms
training console
training process statistics
using ensemble models
validating trained models
viewing results
what? automated in NOL Studio

predictive model API
calculating outputs methods
general methods
initialization method
sending input data methods
setting input values methods

for row-based model
for time-based model

testing whether model is time-based
model

training at run time
predictive modeling

Model Properties dialog
specifying time delays

preprocessing
applying to new data
create new preprocessor wizard
creating a new preprocessor
defined
handling irregularly sampled data
reapplying the preprocessor
steps to consider
using the formula list
using the property workspace

preprocessors
defined
using in NOL Studio

principal component analysis (PCA)
excluding variables from
used to plot inputs in a projection chart

Principal Component Analysis (PCA) model
projection charts

example view of selected data series in
linear combinations of variables in
using principle component analysis (PCA)
viewing data in

property tables
example for a data series
opening for a variable in a data series
opening for data series
working with in NOL Studio

R
raw data
295

extracting training sets from
labeling

RBFN net
choosing training method
creating radial basis function net models
exporting predictions
general properties
Introduction
model structure
performing operations on model
performing simulations with a trained

model
preparing training set
showing predicted versus actual plot
specifying model architecture
training console
viewing model properties

recursive models
removing a data series
Rho net

choosing training method
creating rho net models
general properties
introduction
model structure
performing operations on model
preparing training set
showing output table
showing predicted versus actual plot
specifying model architecture
training console
viewing model properties

S
scatter chart views

in NOL Studio
projection chart dialog
projection charts
X-Y scatter charts

sigmas, using to rate variables
simulation

creating using wizard
using in NOL Studio

spreadsheet view
example of specified data series
viewing data from

standard deviations
using to rate variables

statistical models
296
API
building online
PCA models

setting up

T
terminology
Text Import wizard

using to define formats
time format

for ActiveX model deployment
timestamps

in data series
Y2K compliance

toolbar button functions
training models in NOL Studio
training optimization model

U
UI features

data views
of NOL application window
working with property tables
working with wizards

URL format
components of
example of
for importing data via the network

V
validating models

on more than one data series
using simulations

displaying results
simulation wizard

variables
choosing for model
classification for optimization
classifying in the Modeling wizard
correlating

for small data sets
for your model

delays between input and output
input, in optimization models
output, observation time-scale of
selecting

input variables

output variables
viewing derived variables

views of data
accessing from the menu
dynamically linked to source data
histogram view
interactive features of
line chart view
optimized for large data sets
spreadsheet view
typical flaws in
viewing derived variables

Visual Basic
adding controls
loading NOL optimization model
loading NOL predictive model
verifying the model

W
wizards

Create New Optimization
Create New Optimization Model
Create New Predictive Model
Create New Simulation
how to use
Import Data Series
typical wizard dialog
working with in NOL Studio

X
x-axis styles, line charts
X-Y scatter charts

viewing data in
viewing two variables,
zooming supported

Y
Y2K compliance
y-axis styles, line charts

Z
zooming charts
297

298

	Contents Summary
	Contents
	Preface
	About this Guide
	Audience
	Conventions
	Related Documentation
	Customer Support Services

	Overview
	Introduction
	Feature Summary
	Platform Compatibility
	Running NeurOn-Line Studio
	The Main Window
	Navigating the Tree View
	The Tool Bar
	Labeling Tools

	Terminology
	Wizards, Data Views, and Property Tables
	Global Preference Settings
	Date/Time Format
	Optimization

	A Methodology Roadmap

	Importing and Managing Data
	Introduction
	Data Series
	Time-Based Data Series
	Row-Based Data Series

	Importing Data
	Importing Data Series From Files
	Selecting a File for Data Import
	Specifying a File Format
	Using the Text Import Wizard
	Predefined Formats

	Importing Data from G2
	Importing Data through Networks
	URL Format

	Viewing Data Series
	Exporting Data
	Appending Data
	Removing a Data Series
	Managing Data Formats in NOL Studio
	Deleting File Formats

	Visualizing Data
	Introduction
	Viewing Data in a Spreadsheet
	Viewing Data in a Line Chart
	Adding and Removing Variables from the Line Chart
	Setting Axis Styles
	Y-Axis Styles
	X Axis Styles

	Zooming
	Display of Missing Values
	Tool Tips

	Viewing Data in a X-Y Scatter Chart
	Zooming

	Viewing Data in Projection Charts
	Using Projection Charts
	What is PCA?

	Viewing Data in a Histogram View

	Labeling Data
	Introduction
	Defining Label Categories
	Setting the Active Label
	Labeling Data in the Spreadsheet View
	Labeling Data in the Line Chart View
	Labeling Data in the Scatter Chart Views
	Projection Chart View
	X-Y Scatter Chart View

	Labeling Data

	Creating a Preprocessor
	Introduction
	Creating a New Preprocessor
	Using the Create New Preprocessor Wizard

	Working With an Existing Preprocessor
	Accessing the Formula List
	Reapplying the Preprocessor
	Deleting the Preprocessor

	Using Formulas to Preprocess Data
	Showing Variables Before and After Formulas
	Time Merging Data Series
	The Formula List
	Changing the Order of the Formula List
	Selectively Viewing the Formula List
	Applying Formulas
	Exporting Formulas
	Importing Formulas
	Inserting a New Formula
	Modifying an Existing Formula
	Removing a Formula

	Editing a Formula
	The Define Formula Dialog
	Formula Syntax
	Navigating a Formula
	Entering Variables and Functions
	Adding and Removing Arguments

	Creating a Predictive Model
	Introduction
	Creating a Predictive Model
	Naming the Model
	Selecting to Use Old Model Parameters
	Selecting the Preprocessor
	Selecting the Output Data Series
	Classifying Variables
	Specifying Time Delays
	Output Delays

	Automatic Selection of Inputs and Delays

	The Training Console
	Training and Model Selection Algorithms
	Preparing the Training Set
	Model Types
	Model Structure Determination
	Model Selection
	Ensemble Models

	Analyzing a Trained Model
	Introduction
	Viewing the Model Properties
	General Properties
	Brief Information of Model Performance
	Model Variables
	Statistics
	Model Structure

	Performing Operations on the Model
	Continuing Training
	Showing the Predicted Versus Actual Plot
	Viewing Parts of the Ensemble Model
	Exporting Predictions
	Zooming

	Validating a Model Against Another Data Series
	Zooming

	Input-Output Sensitivities
	Background
	Displaying Sensitivities
	Saving Sensitivity Values
	Use Sensitivity Values to Help Select Model Inputs

	Saving a Model

	Performing Simulations with a Trained Model
	Creating a New Simulation
	Displaying Simulation Results

	Creating a Backpropagation Net
	Introduction
	Creating Backpropagation Net Models
	Specifying the Model Architecture

	The Training Console
	Choosing the Maximum Number of Iterations
	Choosing the Training Method
	Choosing Whether to Accelerate Training
	Preparing the Training Set

	Viewing the Model Properties
	General Properties
	Brief Information of Model Performance
	Model Variables
	Statistics
	Model Structure

	Performing Operations on the Model
	Continuing Training
	Showing the Predicted Versus Actual Plot
	Exporting Predictions
	Viewing the Predicted Error
	Zooming
	Validating a Model Against Another Data Series
	Viewing Input-Output Sensitivities
	Exporting a Model

	Performing Simulations with a Trained Model

	Creating an Autoassociative Net
	Introduction
	Creating Autoassociative Net Models
	Selecting the Data Series
	Classifying Variables
	Defining the Run Mode
	Specifying the Model Architecture

	The Training Console
	Viewing the Model Properties
	General Properties
	Brief Information of Model Performance
	Model Variables
	Statistics
	Model Structure

	Performing Operations on the Model
	Continuing Training
	Showing the Predicted Versus Actual Plot
	Exporting Predictions
	Viewing the Predicted Error
	Zooming
	Validating a Model Against Another Data Series
	Viewing Input-Output Sensitivities
	Exporting a Model

	Performing Simulations with a Trained Model

	Creating a Radial Basis Function Net
	Introduction
	Creating Radial Basis Function Net Models
	Specifying the Model Architecture

	The Training Console
	Choosing the Training Method
	Preparing the Training Set

	Viewing the Model Properties
	General Properties
	Brief Information of Model Performance
	Model Variables
	Statistics
	Model Structure

	Performing Operations on the Model
	Showing the Predicted Versus Actual Plot
	Exporting Predictions
	Viewing the Predicted Error
	Zooming
	Validating a Model Against Another Data Series
	Viewing Input-Output Sensitivities
	Exporting a Model

	Performing Simulations with a Trained Model

	Creating a Rho Net
	Introduction
	Creating Rho Net Models
	Specifying the Model Architecture

	The Training Console
	Choosing the Training Method
	Preparing the Training Set

	Viewing the Model Properties
	General Properties
	Brief Information of Model Performance
	Model Variables
	Statistics
	Model Structure

	Performing Operations on the Model
	Showing the Output Table
	Exporting a Model

	Creating a Partial Least Square Model
	Introduction
	Creating Partial Least Square Models
	Specifying the Model Architecture
	Preparing the Training Set

	Viewing the Model Properties
	General Properties
	Brief Information of Model Performance
	Model Variables
	Statistics
	Model Structure

	Performing Operations on the Model
	Showing the Predicted Versus Actual Plot
	Exporting Predictions
	Viewing the Predicted Error
	Zooming
	Validating a Model Against Another Data Series
	Viewing Inputs/Outputs Ratio
	Exporting a Model

	Performing Simulations with a PLS Model

	Creating a Principal Component Analysis Model
	Introduction
	Creating Principal Component Analysis Models
	Selecting the Data Series
	Classifying Variables
	Preparing the Training Set

	Viewing the Model Properties
	General Properties
	Model Variables
	Statistics

	Performing Operations on the Model
	Validating a Model Against Another Data Series
	2D Score Chart
	Single Score Chart
	SPE Chart

	Exporting the Model Parameters
	SPE Statistic Chart
	Loading Chart
	Single Score Chart
	2D Score Chart

	Optimization
	Introduction
	Variable Classification for Optimization
	Developing an Optimization Model
	Naming the Model
	Selecting the Preprocessor
	Selecting the Output Data Series
	Selecting the State Variable Data Series
	Classifying Variables
	Specifying Time Delays
	Automatic Selection of Inputs and Delays
	The Training Console

	The Optimization Objective Function
	Creating an Optimization Problem
	Using the Optimization Wizard

	Running an Optimization
	Initial Condition and Error Handling in Optimization Calculation
	Maximum Iterations

	Running through an Existing Data Set
	Saving an Optimization

	Model Deployment
	Introduction
	Exporting Your Model
	Deploying Your Model in ActiveX
	Registering the ActiveX Control
	Using NOLPredictor in Visual Basic
	Loading the NOL Model
	Running the Model in ActiveX
	Data Input
	Testing Whether the Model is Time-Based Model
	Calculating Output
	Obtain Results
	Clear Data Buffer
	Training Predictive Models in Real Time

	Deploying Your Model in G2
	Deploying Your Model in NOL Classic
	Exporting Your Model as a Weight File
	Using the NOL Model
	Loading Models Programmatically
	Examining Your Model
	Saving a Model In Your KB
	Running the Model in G2

	Deploying in G2 using G2 JavaLink
	Loading the Necessary KBs
	Launching a Remote Process at Startup
	Launching a Remote Process Using Procedure

	The Predictive Model and its API
	Method to Initialize the Predictive Model
	General Methods
	Methods to Send Input Data to a Model
	Methods to Set Input Values for Time-Based Models
	Method to Test Whether it is a Time-Based Model
	Methods to Set Input Values for Row-Based Models
	Methods to Calculate Outputs
	Training Predictive Model at Run Time
	Additional Methods for Predictive Model
	Handle Error Exceptions

	The Statistical Models and their API
	Building Online Statistical Models
	Method for Initializing the Statistical Calculator

	Principal Component Analysis (PCA) Model
	Methods for PCA Model
	Partial Least Squares (PLS) Model
	Methods for PLS Model

	Optimization Deployment
	Introduction
	Exporting Optimization
	Deploying in ActiveX
	Using NOLOptimizer in Visual Basic
	Loading the NOL Optimization Object
	Running the Optimization
	Data Input
	Calculating Optimization
	Obtaining Results
	Training Optimization Models in Real Time

	Deployment in G2 using G2 JavaLink
	Loading the Necessary KBs
	Launching a Remote Process

	The Optimization Model and its API
	Method to Initialize the Optimization
	General Methods

	Methods to Set Weights and Bounds on Variables
	Methods to Get/Set Variable Values
	Methods to Calculate the Optimization
	Training Optimization Models in Real Time
	Additional Methods for the Optimization
	Handle Error Exceptions

	NOLPredictor Class
	Introduction
	Notation
	Data Members
	Methods

	NOLOptimizer Class
	Introduction
	Notation
	Data Members
	Methods

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF005b57fa4e8e201c005b9ad88d2891cf62535370005d201d005d00204f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (Euroscale Coated v2)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

