
Integrity

User’s Guide
Version 5.0 Rev. 0

Integrity User’s Guide

July 2016

The information in this publication is subject to change without notice and does not represent a
commitment by Gensym Corporation.

Although this software has been extensively tested, Gensym cannot guarantee error-free
performance in all applications. Accordingly, use of the software is at the customer’s sole risk.

Copyright (c) 1985-2016 Gensym Corporation

All rights reserved. No part of this document may be reproduced, stored in a retrieval system,
translated, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of Gensym Corporation.

Gensym®, G2®, Optegrity®, and ReThink® are registered trademarks of Gensym Corporation.

NeurOn-Line™, Dynamic Scheduling™ G2 Real-Time Expert System™, G2 ActiveXLink™, G2
BeanBuilder™, G2 CORBALink™, G2 Diagnostic Assistant™, G2 Gateway™, G2 GUIDE™,
G2GL™, G2 JavaLink™, G2 ProTools™, GDA™, GFI™, GSI™, ICP™, Integrity™, and SymCure™
are trademarks of Gensym Corporation.

Telewindows is a trademark or registered trademark of Microsoft Corporation in the United States
and/or other countries. Telewindows is used by Gensym Corporation under license from owner.

This software is based in part on the work of the Independent JPEG Group.

Copyright (c) 1998-2002 Daniel Veillard. All Rights Reserved.

SCOR® is a registered trademark of PRTM.

License for Scintilla and SciTE, Copyright 1998-2003 by Neil Hodgson, All Rights Reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/).

All other products or services mentioned in this document are identified by the trademarks or
service marks of their respective companies or organizations, and Gensym Corporation disclaims
any responsibility for specifying which marks are owned by which companies or organizations.

Gensym Corporation
52 Second Avenue
Burlington, MA 01803 USA
Telephone: (781) 265-7100
Fax: (781) 265-7101 Part Number: DOC038-500

Contents
Preface xi

About this Guide xi

Audience xii

A Note About the API xii

Conventions xii

Related Documentation xiv

Customer Support Services xvi

Chapter 1 Overview 1

Introduction 1
Integrity Core Services 2
Discovery Import Tools 4
Reasoning Engines 4

Installing Integrity 4

Features and Benefits 4

The Integrity Core Services 6
What is a Domain Map? 7
What is a Message Base? 9
What are Reasoning Routines? 9
What are Completion Routines? 10

Handling Events 10

Building an Application 12

The Basic Components of G2 12
What is a Knowledge Base? 13
What is an Object? 13
What is a Workspace? 14
What are Modules? 14
What are Classes? 15

Integrity Bundle 15
iii

Chapter 2 Running Integrity 17

Introduction 17

Starting the Server and Connecting the Client 18

Connecting to a Specific Server at Startup 19
Connecting the Client to the Default Server 19
Starting the Server on a Specific Port 20
Connecting the Client to a Specific Server 20

Starting the Server with Your Application Loaded 21

Exiting Integrity 21

Chapter 3 Working with Models 23

Introduction 24

Summary of Common Tasks 24

Using the Project Menu 25
Using the Project Menu 25
Using the Manage Dialog 25
Using the Project Submenus 27

Navigating Applications 27
Using the Navigator 27
Searching for Objects 29

Interacting with Workspaces 30
Displaying a Detail Workspace 30
Hiding a Workspace 30
Deleting a Workspace 31
Editing Workspace Properties 31
Scaling a Workspace 31
Shrink Wrapping a Workspace 32
Showing the Superior Object of a Detail Workspace 32
Printing a Workspace 32
Saving a Workspace to a JPEG File 33
Loading Background Images 33
Creating and Accessing Top-Level Workspaces 33

Using the Menus 34
Using the File Menu 35
Using the Edit Menu 35
Using the View Menu 36
Using the Layout Menu 38
Using the Go Menu 39
Using the Project Menu 40
Using the Workspace Menu 42
iv

Using the Tools Menu 42
Using the Help Menu 43

Using the Integrity Toolboxes 44

Using the G2 Toolbox 46

Interacting with Objects 46
Selecting Objects 46
Cutting, Copying, Pasting, and Deleting Objects 47
Controlling the Layout of Objects 47
Displaying the Properties Dialog for an Object 48
Resizing an Object 48
Editing Icon Color Regions 48

Using the Toolbars 49
Standard Toolbar 49
Web Toolbar 50
Layout Toolbar 51
Integrity Toolbar 52
Status Bar 52

Switching User Modes 53

Configuring User Preferences 54
Specifying User Preferences for Different Types of Users 54
Configuring User Preferences 56
Delivering Messages by Email 59

Starting the G2 JMail Bridge Process 60
Creating, Configuring, and Connecting the JMail Interface Object

60
Configuring Integrity to Send Email Messages 63
Configuring Startup Parameter for Sending Email Messages 64

64

Chapter 4 Customizing the Application 65

Introduction 65

Constructing an Operator Menu 65
Selecting a Menu Template Workspace 67
Enabling List and Array Editing 67
Creating a Text Resource and a Local Text Resource 68
Creating a Menu Bar Template 69
Configuring a Menu Template Item 69
Adding the Menu Selection Icon 70
Cloning a Menu Group 71
Creating a Cascade Menu Item 73
Creating a Show Workspace Menu Item 73
Creating a Choice Menu Item 74
v

Displaying Browsers from a Menu 75
Connection Menu Items 76
Compiling the Menu 77

Defining Initializations 78
Creating an Initialization for a New Item 80
Editing the Value of an Initialization 80

Setting Preferences 81
Tip of the Day Preferences 82
Load Options Preferences 82
Save Options Preferences 83
Message Browser Preferences 83
Desktop Layout Preferences 84
Finder Options Preferences 86
Navigator Button Preferences 87

Creating New Palettes 87
Add a Palette Group 88
Add a Palette 89
Adding Palette Items 89
Property Files 90

Customizing the User Interface Using Cyberformer 91
Understanding Properties Files 91

Origination and Purpose 91
What are Property files? 91
Scope 92

Location 93
UI Structure 93
Functionality 94

CyberFormer.properties 94
registeredPlugins.properties 95

Keywords 97
Cyberformer Reference 98

Syntax 98

Chapter 5 Getting Started 131

Introduction 131

Creating a New Application 132

Using the Integrity Setup Dialog 133
Importing Management Information Base (MIBs) 133
Process PPD File 135
SNMP Setup 136
Domain Import 137

ODBC Setup and Import 137
Import from Translayer 138
vi

Import from MS Visio ENT 138
Importing from other ODBC Sources 138
Configuration of the ODBC Import 138

HPOV Setup and Import 138

Building a Simple Domain Map 139
Creating Domain Map Subclasses 140
Creating Domain Objects 141
Working with Modules 141
Creating Modules 142
Merging Modules 142
Renaming Modules 142
Saving Modules 142
Deleting Modules 143
G2 Mode 143

Working with G2 Objects 144

Other Integrity Modules 144

Adding Integrity Functionality to an Existing Application 145

Out-of-Box Functionality 145
Auto-Clearing 145
Time-Based Events 146

Chapter 6 Handling Events 147

Introduction 147

Setting up an External Interface 148

Processing Unsolicited Events in the External Bridge 150
Parsing in the External Bridge 151
Performing Low-Level Filtering in the Bridge 151

Interpreting the Event in the Internal Bridge 152
Relating an Event to the Domain Objects 152
Defining Completion Routines 153

Automatic Trap Processing 154
Processing The Trap 154
Generic Trap Completion Procedure 154

Chapter 7 Creating a Domain Map 155

Introduction 155

The Components of a Domain Map 156
Containment Objects 156
Managed Objects 157
Connections and Connection Posts 157
vii

Defining Domain Map Subclasses 158
Viewing Attributes of a Subclass 159
Adding Attributes to a Subclass 160
Displaying Attributes for a Subclass 161
Creating Icons for Domain Object Classes 161
Creating Patterns for Connections 162
Adding Connection Stubs to Class Definitions 163
Importing Class Definitions 163

Manually Building the Domain Map 164
Creating Domain Objects 165
Naming Domain Objects 166
Connecting Domain Objects 167
Adding and Deleting Connection Stubs from Instances 167
Creating a Connection Configuration Object 168
Using a Stub to Create a Connection 168
Using Connection Posts 169

Importing and Exporting a Domain Map 171
Exporting a Sample Domain Map 171
Importing a Sample Domain Map 172
Using Translation Objects 173

Chapter 8 Message Handling 177

Introduction 177

Setting up the Message System 178
Defining Message Servers 179
Defining Browsers 180

Creating Browser Templates 180
Configuring a Browser 182
Creating and Configuring Subscribers 183
Creating and Configuring Filters 184
Defining the Sorting Characteristics of the Browser 185
Configuring the Columns of the Browser 187
Arranging the Items on the Browser Template 193
Writing Custom Procedures to Display and Hide a Browser 193

Defining Status Bars 195
Writing Custom Procedures to Display and Hide a Status Bar 198

Defining Escalation Specifications 200
Specifying the Target of an Escalation Specification 202
Specifying the Category of an Escalation Specification 203
Specifying the Priority of an Escalation Specification 203
Specifying the Procedures Called in Escalation Specifications 203
Timing the Invocation of Escalation Phases 203

Working with Messages 205
What is a Message? 205
viii

Creating a Message 207
Maintaining Message Histories 209
Using the Browser to View and Interact with Messages 210
Acknowledging Messages 212
Deleting Messages 213
Reading and Writing Messages to a File 214

Message Alarm Propagation 215
Setting Priority and Acknowledgment Colors 215
Setting Default Message Priorities 216

Logging Messages and Events 217
Creating a Logging Manager 218
Logging Messages 219
Logging Events Programmatically 220
Defining Closing Times for a Log File 220
Customizing the Logging Manager 221

Error Handling 221
Creating a New Error Handling Procedure 222
Logging System Errors 223

Creating User Defined Effects 223

Chapter 9 Reasoning About Events 225

Introduction 225

Examples of Reasoning Routines 226

Creating Reasoning Routines 227

Searching for Related Messages 227

Querying Message Histories 228

Filtering Messages and Events 229
Filtering Duplicate Messages 229
Filtering Based on Past Events 230

Filtering Events that Occur in Pairs 230
Filtering Events Based on Domain Relationships 231

Filtering Events in the Bridge 232

Implementing Alarm Thresholding 232

Correlating Events 234

Diagnosing Faults 235

Automating Recovery and Preventing Faults 235

Index 237
ix

x

Preface
Describes this document and the conventions that it uses.

About this Guide xi

Audience xii

A Note About the API xii

Conventions xii

Related Documentation xiv

Customer Support Services xvi

About this Guide
This guide describes how to use Integrity Core Services and OPAC features of the
Integrity product family of Network, System, Service, and Application
Management tools and applications.

This guide includes:

• User information about the Integrity Core Services and OPAC capabilities and
components.

• Examples that illustrate the use of the Integrity Core Services and OPAC.

• Task-oriented sections to help you use the information in this book to develop
effective Integrity applications.
xi

Audience
This guide is written for application developers and system integrators. Because
Integrity uses the G2 programming environment, a previous knowledge of G2 is
helpful but not essential. For descriptions of advanced G2 topics refer to the
G2 Reference Manual.

This guide addresses the application developer as you, and refers to the end user
as the user.

A Note About the API
The Integrity Core Services and OPAC API, as described in this guide, is not
expected to change significantly in future releases, but exceptions may occur. A
detailed description of any changes will accompany the Integrity product release
that includes them.

If Integrity Core Services and OPAC do not seem to provide the capabilities that
you need, contact Gensym Customer Support at (781) 265-7301 for further
information.

Conventions
This guide uses the following typographic conventions and conventions for
defining system procedures.

Typographic

Convention Examples Description

g2-window, g2-window-1,
ws-top-level, sys-mod

User-defined and system-defined
G2 class names, instance names,
workspace names, and
module names

history-keeping-spec, temperature User-defined and system-defined
G2 attribute names

true, 1.234, ok, “Burlington, MA” G2 attribute values and values
specified or viewed through
dialogs
xii

Conventions
Note Syntax conventions are fully described in the G2 Reference Manual.

Main Menu > Start

KB Workspace > New Object

create subworkspace

Start Procedure

G2 menu choices and button labels

conclude that the x of y ... Text of G2 procedures, methods,
functions, formulas, and
expressions

new-argument User-specified values in
syntax descriptions

text-string Return values of G2 procedures
and methods in syntax
descriptions

File Name, OK, Apply, Cancel,
General, Edit Scroll Area

GUIDE and native dialog fields,
button labels, tabs, and titles

File > Save

Properties

GMS and native menu choices

workspace Glossary terms

c:\Program Files\Gensym\ Windows pathnames

/usr/gensym/g2/kbs UNIX pathnames

spreadsh.kb File names

g2 -kb top.kb Operating system commands

public void main()
gsi_start

Java, C and all other external code

Convention Examples Description
xiii

Procedure Signatures

A procedure signature is a complete syntactic summary of a procedure or
method. A procedure signature shows values supplied by the user in italics, and
the value (if any) returned by the procedure underlined. Each value is followed by
its type:

g2-clone-and-transfer-objects
(list: class item-list, to-workspace: class kb-workspace,
delta-x: integer, delta-y: integer)

-> transferred-items: g2-list

Related Documentation

Integrity

• Integrity User’s Guide

• Integrity Utilities Guide

• SymCure User’s Guide

G2 Core Technology

• G2 Bundle Release Notes

• Getting Started with G2 Tutorials

• G2 Reference Manual

• G2 Language Reference Card

• G2 Developer’s Guide

• G2 System Procedures Reference Manual

• G2 System Procedures Reference Card

• G2 Class Reference Manual

• Telewindows User’s Guide

• G2 Gateway Bridge Developer’s Guide
xiv

Related Documentation
G2 Utilities

• G2 ProTools User’s Guide

• G2 Foundation Resources User’s Guide

• G2 Menu System User’s Guide

• G2 XL Spreadsheet User? Guide

• G2 Dynamic Displays User’s Guide

• G2 Developer’s Interface User’s Guide

• G2 OnLine Documentation Developer’s Guide

• G2 OnLine Documentation User’s Guide

• G2 GUIDE User’s Guide

• G2 GUIDE/UIL Procedures Reference Manual

G2 Developers’ Utilities

• Business Process Management System User’s Guide

• Business Rules Management System User’s Guide

• G2 Reporting Engine User’s Guide

• G2 Web User’s Guide

• G2 Event and Data Processing User’s Guide

• G2 Run-Time Library User’s Guide

• G2 Event Manager User’s Guide

• G2 Dialog Utility User’s Guide

• G2 Data Source Manager User’s Guide

• G2 Data Point Manager User’s Guide

• G2 Engineering Unit Conversion User’s Guide

• G2 Error Handling Foundation User’s Guide

• G2 Relation Browser User’s Guide

Bridges and External Systems

• G2 ActiveXLink User’s Guide

• G2 CORBALink User’s Guide

• G2 Database Bridge User’s Guide

• G2-ODBC Bridge Release Notes
xv

• G2-Oracle Bridge Release Notes

• G2-Sybase Bridge Release Notes

• G2 JMail Bridge User’s Guide

• G2 Java Socket Manager User’s Guide

• G2 JMSLink User’s Guide

• G2-OPC Client Bridge User’s Guide

• G2-PI Bridge User’s Guide

• G2-SNMP Bridge User’s Guide

• G2-HLA Bridge User’s Guide

• G2 WebLink User’s Guide

G2 JavaLink

• G2 JavaLink User’s Guide

• G2 DownloadInterfaces User’s Guide

• G2 Bean Builder User’s Guide

G2 Diagnostic Assistant

• GDA User’s Guide

• GDA Reference Manual

• GDA API Reference

Customer Support Services
You can obtain help with this or any Gensym product from Gensym Customer
Support. Help is available online, by telephone, by fax, and by email.

To obtain customer support online:

 Access G2 HelpLink at www.gensym-support.com.

You will be asked to log in to an existing account or create a new account if
necessary. G2 HelpLink allows you to:

• Register your question with Customer Support by creating an Issue.

• Query, link to, and review existing issues.

• Share issues with other users in your group.

• Query for Bugs, Suggestions, and Resolutions.
xvi

Customer Support Services
To obtain customer support by telephone, fax, or email:

 Use the following numbers and addresses:

Americas Europe, Middle-East, Africa (EMEA)

Phone (781) 265-7301 +31-71-5682622

Fax (781) 265-7255 +31-71-5682621

Email service@gensym.com service-ema@gensym.com
xvii

xviii

1

Overview
Contains an overview of the Integrity family of products, describes the architecture
and basic operation of Integrity, and presents an outline of the documentation
provided with Integrity.

Introduction 1

Installing Integrity 4

Features and Benefits 4

The Integrity Core Services 6

Handling Events 10

Building an Application 12

The Basic Components of G2 12

Integrity Bundle 15

Introduction
The Integrity (formerly Operations Expert or OpEx) product family comprises
Network, System, Service, and Application Management tools and applications.
Integrity has three key features:

• Integrity Core Services

• Discovery Import Tools

• Reasoning Engines
1

The knowledge base (.kb file) that loads all of the functionality is:

integrity.kb

To load Integrity on Windows:

 Choose Start > Programs > Gensym G2 2011 > G2 Integrity >
Start G2 Integrity Server.

To load Integrity on UNIX:

 Change to the integrity/bin directory and enter the following at the
command prompt:

StartServer.sh

Integrity Core Services

Integrity Core provides foundational components for network and system
management applications. Integrity Core contains the Integrity foundation
classes, a message management system, tools for building a representation of
your managed objects, and a set of utilities. It includes a graphical programming
language and G2-Gateway Products for interfacing external systems to Integrity.
Also included are industry- and vendor -specific libraries that provide classes,
objects, and tools specific to certain domains or vendors.

The specific components of Integrity Core includes:

• Integrity Core Services — The foundation of the Integrity platform. Integrity
Core Services provides essential capabilities for automating problem
resolution, which are leveraged and extended in the other Integrity packages.

• OPAC (Operator Action) — Integrity’s general-purpose graphical language.
OPAC provides graphical representation of operational procedures often
outlined in workflow procedure diagrams. Using "clone (by drag and drop
from palettes), connect, and configure" visual programming, OPAC facilitates
rapid deployment of new systems that require minimal customization.

• G2-SNMP Bridges — Bridges between Integrity and SNMP.

• G2 Java Socket Manager — Bridges between Integrity and Java sockets.

• MPE — Message Parser Engine

• ODiE — OpEx Dispatch Engine

• GMIB — Processes MIB files

• GTRAP — SNMP Trap management
2

Introduction
• Ping Manager — Provides ping management to network devices according to
user specifications through a graphical interface.

• DSM — Domain Synchronization Manager synchronizes updating of the
domain map for additions and deletions of domain objects.

The diagram below shows the components of Integrity:

Integrity Core Services encompasses a set of modules that are designed to help
companies monitor and control their operations to increase the availability and
service levels of their distributed, mission-critical environments. These modules
contain several demonstrations to assist you in becoming familiar with them.
These demonstration modules include sample class libraries for some commonly-
used equipment and software. The Integrity family of products continues to
expand to respond to evolving technologies.

In addition to the structure built into Integrity, the power of the high-level
programming environment, G2, makes it possible to solve non-standard
problems, configurations, and situations that lie outside the scope of most "out-of-
the-box" solutions.

Core Services

G2-Gateway

Reasoning
Modules

G2/SNMP
Bridge

SymCure

Discovery
Tools

Network
3

Discovery Import Tools

Discovery import tools included in Integrity allow you to import your domain in
several different ways. You have the following import options:

• Regenative’s Translayer

• Microsoft’s Visio Enterprise Network Tools (ENT)

• HP OpenView Map Importer

• Generic SQL Importer

Each of these import tools represents the data a little differently. Please refer to
the documentation for these tools on how each product represents the discovered
elements.

Reasoning Engines

Integrity ships with the SymCure reasoning engine. SymCure allows you to
develop cause-and-effect models that are represented at the class level. This
allows a single model to reason over multiple instances of a class. Please refer to
the SymCure User’s Guide for details.

Installing Integrity
To install Integrity, follow the directions on the distribution CD. Enter the key
number located on the Integrity CD when requested by the Install Shield. This
key authorizes your Integrity package.

Features and Benefits
The Integrity modules provide the tools for performing alarm and event filtering,
correlation, and diagnosis including:

• Early detection of problems from event patterns, reducing the time spent with
unrecognized problems.

• Suppression of repetitive alarms (filtering), reducing operator overload, so
operators can more quickly notice and react to real problems.

• Grouping of related alarms (correlation), further reducing operator overload.
4

Features and Benefits
• Pinpointing the causes for events (diagnosis), which:

– Reduces downtime by speeding the time to start corrective actions.

– Reduces the mean time to repair by providing more accurate analysis of
the exact problem.

– Prevents excessive testing and retesting.

OPAC is also used to automate procedures in these areas:

• Testing for diagnostic and filtering purposes

• Enforcing standard automated or manual procedures

• Guiding operators

• Mitigating faults and resolving problems

• Operator interface procedures such as alarm management

In general, automated procedures assure faster testing, eliminate delays in
starting and carrying out the steps of corrective action, and enable faster
recognition of fully recovered status.

Integrity Core Services also provides:

• General infrastructure for network and message-based applications, (for
example, configuration management of objects, topology, and hierarchy).

• Online information and help.

Overall, Integrity improves the availability of all the applications running on your
networks. In addition to these run-time benefits, Integrity tools increase
productivity. These tools provide an End User, Value Added Reseller (VAR), or
System Integrator (SI) with an environment that:

• Reduces application development time.

• Promotes development of reusable objects.

• Allows deployment of the application across diverse hardware platforms.

Applications developed with Integrity are:

• Easy to modify, thereby decreasing the time required to respond to customer
requirements.

• Easy to maintain, increasing the profitability of the application.
5

The Integrity Core Services
At the heart of the entire Integrity family is Integrity Core Services. The core
services consist of:

• Foundation classes - used to create objects that represent your managed
equipment, and also, utility objects. You can specialize these classes to
represent specific types of objects.

• Domain Mapping - allows you to represent the specific external equipment
you are managing in your system, as well as the containment and connectivity
relationships between them. These objects are instances of classes you derive
from the foundation classes. The map provides a visible and useful user
interface with easy navigation through the containment hierarchy, in addition
to providing an object repository.

• Domain Map Importer and Exporter - lets you import a text file that describes
the names and physical relationships among the managed equipment. You
can export a domain map to a text file and update the domain map from a text
file.

• Message Base - The message base is a collection of messages, their histories,
and their relationships to the domain objects. A message stores information
about an incoming event. It stores information about the sender of the event,
the object associated with the event, the type of event, and the actual content
of the information sent with the event. Messages are created and stored in
message servers. When a message is created, a message history is maintained,
allowing you to reason about new events based on the history of related
events. The message history query facility provided is central to many alarm
correlation applications. The message system propagates message (alarm)
priorities and acknowledgment status to the domain map for display of status
animated by colors.

• Browsers - Integrity provides a facility for creating and configuring browsers
for viewing and interacting with messages. Interactions include
acknowledgment, deletion, and addition of user comments. Browsers can be
configured to subscribe to messages published by any number of message
servers and can provide extensive filtering capabilities.

• Utilities - Utilities are included for:

– logging information to a log file.

– traversing the domain object network.

– building and maintaining menus.

– building and maintaining palettes of objects for cloning commonly-
needed domain objects.
6

The Integrity Core Services
An Integrity application models a collection of objects in the real world. These
objects are referred to as external objects to distinguish them from the objects
used in the Integrity application which are, in fact, a representation of the external
objects. These external objects can be actual physical objects, software processes,
databases or any other collection of items linked together to form a system.

The external objects in this system send information about themselves and about
other external objects to a manager linked to the system. Information sent from an
external object is referred to as an event. The events can go directly to the
Integrity application or through another managing layer. For example, a data
network can use a manager such as Hewlett-Packard’s Open View, which passes
events into Integrity where filtering, correlation, and other reasoning occurs. The
processed events can be displayed with Integrity, or information can be sent back
to the manager for display or operator response.

Before you look at how the incoming events move through the system, it is
helpful to understand the relationships among the key functional components of
Integrity. These components are:

• The domain map

• The message base

• Reasoning routines

• Completion routines

Each of these components is described in the following sections.

What is a Domain Map?

In an Integrity application, the external objects and their relationships are
represented in the application by using a set of objects called a domain map. For
example, a domain map that represents a network might contain external objects
such as servers, routers and workstations. The domain map would represent the
7

objects in the network and would represent the relationships between the objects.
The figure below shows part of a domain map:

Each domain object represents an external object. The connections between
domain objects mirror the actual connections among the external objects. When
an external object contains other objects, a containment relationship exists
between the objects. In the domain map, you maintain containment relationships
by placing contained objects on subworkspaces under the domain objects that
contain them. In the example shown above, the smaller window is a
subworkspace of the domain object Router-NY1. The external object represented
by Router-NY1 contains the serial card shown in the small workspace. The
connectivity and containment relationships in the domain map provide important
information used for reasoning about the external system.

The individual objects in the domain map are instances of subclasses you create
using Integrity Foundation Classes. These define the relationship between objects
with similar characteristics. The characteristics can be functional, operational
protocols applied to the objects, or a set of attributes shared by the objects.

Integrity provides a User Interface for creating and managing object classes used
to create the domain objects. When you start a new application, Integrity creates a
complete working environment. This environment contains the Integrity top-level
classes and a set of workspaces that organizes the objects you create within your
application. How to build a domain map is described in Creating a Domain Map.
8

The Integrity Core Services
What is a Message Base?

A message base is a collection of messages, their histories and their relationships
to the domain objects. Any event entering an Integrity application can be used to
generate an Integrity message. Integrity messages have the following
characteristics:

• Messages relate the event to the domain objects. Relationships are formed
between the message and both the target, sender, and category of the event.
The target of an event is the object described by the event. The sender of an
event is the object that sends the event. The category of an event defines the
type of event. The relationship between the event and the target is displayed
graphically on the objects contained in the domain map. Objects change color
to indicate the highest priority message targeting the object and the
acknowledgment status of the object. These graphical message displays
propagate up through the containment hierarchy.

• Each unique message can have a history associated with it. A message is
considered unique when it has a unique target, sender, and category. Each
time a message is created with the same target, sender, and category, the time
of the new message is added to the message history.

The domain map provides each message with a context. The message system
provides each object with a history of the events that have targeted it.

What are Reasoning Routines?

Reasoning routines contain knowledge about how events should be handled.
This knowledge applies the historical and contextual information of the message
information base and domain map to the incoming events to make intelligent
decisions about the event itself and the status of the system. Since an Integrity
application can both monitor and control external objects, this intelligent
reasoning can have wide-ranging effects.

Actions that can be taken in response to an event can include one or more of:

• Creating a message from the event that is displayed in the Integrity
application or on another system.

• Logging the event.

• Discarding the event.

• Querying the external objects or their manager for further information.

• Taking an action in response to the event.

Reasoning routines declared as methods of domain classes are also directly
related to the knowledge implicit in the organization of the class hierarchy. This
adds a means of organizing and applying knowledge within the application.
9

You can create reasoning routines either by using G2 procedures and methods, or
by using the OPAC graphical programming environment. For a description of
how to create a reasoning routine see Creating Reasoning Routines.

What are Completion Routines?

Completion routines are the methods and procedures that provide the threads
that pull all of the other parts of the system together. The completion procedures
finish the reception of the external event, relate the event to the domain objects,
and determine how the event is initially handled. In the completion routines, you
might decide to act directly based on what is already known about the event, or
you might call a reasoning routine to do further processing of the event.

You can define completion routines as methods of the domain classes. Use of
completion routines is entirely dependent on the design of your particular
system. If you do not organize completion routines and reasoning routines by
using the domain hierarchies, you must define a methodology for relating
incoming events to their completion routines and reasoning routines.

You can create completion routines by using G2 procedures and methods.
Completion routines are described in Defining Completion Routines.

Handling Events
Once you have created a domain map, you can interface the external objects to
Integrity and bring the events from the external objects into the Integrity
application. You can make external interfaces using software called a bridge. You
can purchase bridges from Gensym or build them using Gensym’s G2 Standard
Interface (GSI) product. A bridge consists of an external part, usually written in C
or C++, and an internal part, which is a part of the Integrity application used to
bring the external events into G2.

The function of the bridge is to parse the event to determine these key pieces of
information:

• Sender - the domain object that sent the event

• Target - the domain object to which the event applies

• Category - the type of event that occurred

These three pieces of information are what define a unique event. You can use
them to relate the incoming event to the objects in the domain map that match the
sender and the target of the event.

The following diagram shows the components of the Integrity application along
with the bridge processes. The arrows show the progress of an event through the
10

Handling Events
system. The dotted lines show information used from a component in a given
step.

The event moves through an Integrity application as follows:

1 An event enters the system through the external bridge. The external bridge
parses and decodes the information contained in the event.

2 The event is passed to the portion of the bridge internal to the Integrity
application. Here any further parsing and decoding occurs as needed.

3 The internal bridge calls the appropriate completion routine. You can use the
class hierarchy of the domain objects to select a completion method to handle
the event. If completion methods are not defined in the hierarchy, some
alternate coding method must be designed to select the proper completion
routine.

4 The completion routine sometimes completes the parsing and decoding of the
event. In the completion routine you can discard the event, create a message
from the event, or call a reasoning routine to further process the event. The
completion routine is a G2 procedure or method.

5 The reasoning routine uses the connectivity and containment relationships in
the domain map and the message histories to reason about the event. The
reasoning routine is a G2 procedure or method or an OPAC graphic
procedure.

(1) (2) (3) (4)

(4)

(5)

(5)(5)
(4)

(3)

Non-G2 G2 portion of application

Bridge OPAC and Core Services

E
xt

er
na

l b
ri

dg
e

In
te

rn
al

 b
ri

dg
e

Domain
Map

Completion
Routines

Reasoning
Routines

Message
Info
Base

Send
message

discard
event

log
event

take
action

query
system
11

Building an Application
Before you actually begin to build your application, you need to define the
following basic system requirements:

• The modules required.

• The class structure of the domain.

• How many levels of priority are required.

• How to receive and parse events.

• The kinds of filtering and correlation that need to be done.

• How the end user interface should appear and behave.

Assuming that the basic design and end result have been determined from a
project point of view, the steps below provide an overview of the mechanics to
implement the design. Each step contains a reference to the applicable section of
the manual.

1 Create the top level module and module hierarchy as described in the
Introduction.

2 Build a domain map as described in Creating a Domain Map. Create a sample
of the domain on the ‘domain map’ workspace.

3 Set up the number and color of priorities.

4 Set up the interface to bring the events into the system. Although this is highly
specific to each application, Handling Events describes the general principles
for bringing events into the application.

5 Create supporting completion routines.

6 Create messages from external events to test the input of events from the
external system.

7 Set up any required logging.

8 Add reasoning routines and/or OPAC procedures for correlation and
evaluation. For a discussion of reasoning routines, see Reasoning
About Events.

The Basic Components of G2
Integrity gives you full access to the programming power of the G2 environment.
This document does not attempt to provide detailed descriptions of G2’s many
features. This section provides a basic orientation to some of the important
elements of the G2 environment. For complete documentation on G2, refer to
12

The Basic Components of G2
G2 Reference Manual. The tutorial manual, Getting Started With G2 Tutorial, is also
an excellent way to learn the G2 basics.

What is a Knowledge Base?

G2 applications are stored in knowledge bases. A knowledge base, or KB, is an
ASCII file with a .kb extension that contains all of the information your
application needs to run. G2 knowledge bases, also known as G2 applications,
can have a single file or many files. Knowledge comes in many forms in G2:

• Objects that represent the physical systems in your application and the
connections between them.

• Definitions that describe the common features of the objects.

• Rules, methods, and procedures that describe the behavior of the objects in
the real-time environment.

• Graphical user interface components that enable end users to interact with
the application.

What is an Object?

G2 is an object-oriented development environment. This means that G2
represents certain kinds of knowledge as objects in the application.

An object is a piece of information that contains all related knowledge about that
object in one location. The object contains all the data that defines the object, and
all the operations that the object can perform. In object-oriented terms an object’s
data are called its attributes, and an object’s operations are called its methods.

An object has particular attributes based on its type. In object-oriented terms, an
object’s type is called its class. For example, the attributes of a video
teleconferencing site might be its location, network type, number of connected
sites, and connection status.

Using object-oriented techniques, you can create classes of objects that share
characteristics with other classes. This technique is called inheritance, where the
subclass of an object inherits all of the characteristics of its superior class,
including all of its attributes and methods. In the subclass, you describe only the
unique features of the class.

Objects represent a powerful way of organizing knowledge and avoiding
redundancy in an application, by describing objects with similar characteristics in
a single place.

A G2 application describes the behaviors of its objects, reasons about those
objects, and provides expertise about those objects in a real-time environment. For
example, in a video teleconferencing application, you might describe the
behaviors of an office when it is actively connected to another office, and you
13

might reason about whether the site is over budget while it is connected in real
time.

Each object in the knowledge base has an icon representation. This means you can
use objects to communicate information graphically to the end user, for example,
by animating the icon to reflect its status. You can create your own icon
representation of an object, or you can use one of the many available icons in the
G2 icon library.

In G2, almost all knowledge is represented as an object, including:

• The physical systems

• The connections between systems

• The rules and procedures that describe the behavior of the systems

• The workspaces on which objects exist

• The graphical user interface elements of the application

What is a Workspace?

G2 calls the “blank pages” upon which you create and maintain objects
workspaces. A KB can contain one or many workspaces. The objects upon
workspaces are capable of having their own subsidiary workspaces. Thus, you
can create a logical hierarchy of objects and workspaces to group and organize
your KB data. Workspaces can contain anything from text messages to entire
schematics that model real-time activity.

What are Modules?

G2 applications typically consist of numerous KB files, each of which contains one
or more modules. A module is a set of related information contained in the KB.
For example, an application might have two modules, one for the object
definitions, expert system rules, and procedures that describe behaviors, and
another for the graphical user interface components.

Modules represent a powerful way of organizing your application, as well as
reusing existing knowledge across G2 applications.

Depending on the needs of the application, some modules can be stand-alone
modules, which means they can run independently of the other KB files in the
application, while other modules are dependent modules, which means they
require additional information contained in one or more other modules to run.

G2 represents the modules of an application in a hierarchy to show the module
dependencies. The module at the top of the hierarchy is called the top-level
module. If the application has lower-level modules, the top-level module is by
definition a dependent module. Modules at the bottom of the module hierarchy
14

Integrity Bundle
are by definition independent modules, because they do not depend on any other
module in the hierarchy.

The name of individual KB files typically corresponds to the name of the modules
in the application.

What are Classes?

G2 development is based on object-oriented design. Knowledge representation is
maintained and extended through classes in the G2 class hierarchy. G2 includes a
large set of system-defined classes, many of which you can use as the foundation
of customized, user-defined classes.

Classes have attributes, which define the inherited and locally defined properties
of the class. G2 maintains class attributes within attribute tables.

Classes can have associated methods, which define the operations characteristic
of each class. Methods allow generic operations to be implemented in class-
specific ways. Code that invokes a method needs only to know the method’s
name. The details of how to perform the operation exist in the method, not in the
code that invokes it.

Integrity Bundle
The Integrity bundle is represented by the following KBs, which are included in
your application when you create a new application with the New menu choice or
when you merge in the integrity.kb module into your own module. The table
shows KB modules that are included in the Integrity bundle:

KB File Description

gndo All core services

gsnmp SNMP support

gdxi Domain map import utilities, including
HPOV support (map importer)

pingmgr Ping Manager support

ompe-ui Message Parsing Engine support
15

All of these modules are included when you load integrity.kb.

ode-opac ODiE support

gsockman Socket Manager support

ipra IP Reachability Analysis support

symcure SymCure support (Causal Directed
Graphs)

KB File Description
16

2

Running Integrity
Describes how to start the server and connect the client.

Introduction 17

Starting the Server and Connecting the Client 18

Connecting to a Specific Server at Startup 19

Starting the Server with Your Application Loaded 21

Exiting Integrity 21

Introduction
Integrity is a client/server application. Integrity provides a batch file that, by
default, starts the G2 server as a hidden process on the local machine at a default
port (1111).

To run Integrity, you must connect the Telewindows client to the server. By
default, Telewindows automatically connects to the server running on the local
machine on the default port.

You can run Integrity in a secure G2 environment, which means users must
provide a password before Integrity grants access to a KB. User names and
passwords are stored in the g2.ok file. For details on how to configure Integrity to
run in a secure G2 environment, see Chapter 54 “Licensing and Authorization” in
the G2 Reference Manual.
17

Starting the Server and Connecting the Client
You can start the server and connect the client by using the Start menu.

To start the server and connect the client:

1 Choose Start > Programs > Gensym G2 2011 > G2 Integrity >
Start G2 Integrity Server.

This menu choice starts the G2 server, using the StartServer.bat batch file,
located in the g2 directory of your Integrity installation directory. It starts the
server on the local machine on TCP/IP port number 1111, and it automatically
loads the KB named integrity.kb.

When the server has been started, the G2 icon appears in the system tray.
When the server is running, the icon looks like this:

2 Once the server is running, connect the client in one of two ways:

 To connect Telewindows to the server running on the default host and
port, choose Start > Programs > Gensym G2 2011 > Telewindows Next
Generation.

or

 To connect Telewindows to the server running on the local host on the
current port, right-click the G2 icon in the system tray and choose Connect
Telewindows.

The Telewindows client is now connected to the G2 server.
18

Connecting to a Specific Server at Startup
When the client is connected and all files have finished loading, you will see this
window:

Connecting to a Specific Server at Startup
You can run the Integrity client and server on different computers, or multiple
Integrity servers on the same computer.

You can:

• Connect the client directly to the server.

• Start the server on a specific port.

• Connect the client to a specific server.

Connecting the Client to the Default Server

To connect the client to the default server:

1 Start the Integrity server from the Start menu.

By default, the server starts on the local host at port 1111. Each time you start a
new server on the same machine, the port number increments by one. For
example, if you start another server, the port number would be 1112.

2 To determine the host and port, hover the mouse over the G2 server icon in
the system tray.
19

For example, MY-HOST:1111 means the server is running on the machine
named MY-HOST at port 1111.

3 Right-click the G2 server icon in the system tray and choose Connect
Telewindows.

The Telewindows client connects to the specific host and port of that server.

Starting the Server on a Specific Port

To start the server on a specific port:

1 Right-click the Start G2 Integrity Server menu choice in the Start menu and
choose Create Shortcut.

2 Rename the shortcut and/or drag it to your desktop, as needed.

3 Display the properties dialog for the shortcut and click the Shortcut tab.

4 Configure the Target property in the dialog to be the specific port on which to
start the server, using the -tcpport command-line option.

For example, to start the server on port 1115, the shortcut would look like this:

"C:\Program Files\Gensym\g2-2011\g2\StartServer.bat"
-kb ..\integrity\kbs\integrity.kb -nowindow -tcpport 1115

Connecting the Client to a Specific Server

To connect the client to a specific server:

1 Create a shortcut to the twng.exe file located in the g2 directory of your
Integrity product installation, either directly or by creating a shortcut from the
Telewindows Next Generation menu choice in the Start menu.

2 Display the properties dialog for the shortcut and click the Shortcut tab.

3 Configure the Target by appending the host and port of the Integrity server to
which to connect, using this syntax: host:port.

For example, to connect to my-host at port 1115, the shortcut would look like
this:

"C:\Program Files\Gensym\g2-2011\g2\twng.exe"
my-host:1115
20

Starting the Server with Your Application Loaded
Starting the Server with Your Application
Loaded

By default, the server starts up with the default Integrity application running,
integrity.kb. Once you create an application, you might want to create a
shortcut to the Integrity server that automatically loads your application at
startup.

To start the server with your application loaded:

1 Copy the Start G2 Integrity Server shortcut from the Start menu.

You can rename the shortcut and drag it to your desktop, as needed.

2 Display the properties dialog for the shortcut and click the Shortcut tab.

3 Configure the application to load by editing the Target.

For example, to load the application named opx_demo.kb located in the
\integrity\examples directory, the Target should look like this:

"C:\Program Files\Gensym\g2-2011\g2\StartServer.bat"
-kb "c:\Program Files\Gensym\g2-2011\integrity\examples\
opx_demo.kb" -nowindow

Exiting Integrity
To exit Integrity, you disconnect the client from the server, then shut down the
server. By default, you can only exit the server directly from the client in
Developer mode.

To disconnect the client from the server:

 Choose File > Close.

To exit the server:

 Right-click the G2 server icon in the system tray and choose Shut Down G2.

or

1 Choose Tools > User Mode > Developer.

2 Choose File > Exit.

3 Click Yes in the confirmation dialog.
21

22

3

Working with Models
Describes how to work with models through the menus and toolbars.

Introduction 24

Summary of Common Tasks 24

Using the Project Menu 25

Navigating Applications 27

Interacting with Workspaces 30

Using the Menus 34

Using the Integrity Toolboxes 44

Using the G2 Toolbox 46

Interacting with Objects 46

Using the Toolbars 49

Switching User Modes 53

Configuring User Preferences 54

64
23

Introduction
To work with Integrity models, you perform these tasks:

• Use the Project menu.

• Navigate models.

• Interact with workspaces.

• Use the menus.

• Use the Integrity toolbox.

• Use the G2 Toolbox.

• Interact with objects in the model.

• Use toolbars.

• Switch user modes.

• View messages.

You can also view a summary of command tasks.

Summary of Common Tasks
This section summarizes how to perform common tasks in Integrity:

To... Do this...

Display the popup menu for an
object on a workspace

Click the right mouse button on the object.

Display the properties dialog for
an object on a workspace

Double-click the object, select the object
and press the F4 key, or choose Properties
from the object’s popup menu. You can
also select the item, then choose Edit >
Properties or click the equivalent toolbar
button:

Display the detail for an object Choose Show Detail from the popup menu
for the object, choose View > Show Details,
enter Ctrl + right click on the object, or
click the equivalent toolbar button:

Display the Integrity toolbox Choose View > Toolbox - Integrity.
24

Using the Project Menu
Using the Project Menu
You create, configure, and interact with Integrity objects to create a model by
using the Project menu.

You can also create and interact with objects through the Navigator, and you can
search for objects once they exist. For more information, see:

• Using the Navigator.

• Searching for Objects.

Using the Project Menu

The Project menu allows you to create and manage the various objects you need
to build an Integrity application.

For details, see Using the Project Menu.

Using the Manage Dialog

The Manage dialog allows you to create and configure new Integrity objects,
show model details, copy and delete objects, and perform specific operations.

The Manage dialog provides these toolbar buttons:

Adjust the size of a workspace and
its associated window to fit the
contents of the workspace

Choose Shrink Wrap on the workspace,
choose Layout > Shrink Wrap, or click the
equivalent toolbar button:

Hide a workspace Click the Minimize button on the window,
choose Hide on the workspace, choose
View > Hide, or enter Ctrl + right click on
the workspace.

To... Do this...

New

Properties

Model

Go To

Copy

Delete
25

The buttons in the Manage dialog are enabled or disabled, as appropriate, for the
particular type of object.

The Go To button is disabled in Modeler mode because, typically, you interact
with objects through properties dialogs and model details. You can go to objects
directly through the Navigator or search, if desired.

For information about interacting with objects directly, see Interacting with
Objects in Developer Mode.

To use the Manage dialog:

1 Choose a submenu from the Project menu and choose Manage.

If the submenu has additional submenus, choose one of the submenus. The
Manage dialog appears, which includes all objects in the submenu.

2 To create a new object, click the New button in the Manage dialog.

A properties dialog appears for configuring the object. The default name is a
unique, system-generated name.

3 Configure the properties, depending on the type of object, and click OK.

For information on configuring the properties, see the various chapters in this
guide.

The object now appears in the Manage dialog.

4 Select an object in the list to enable the toolbar buttons, as appropriate for the
type of object.

5 To display the properties dialog for an object, click the Properties button.

Note that the only way to configure the properties of a container object once it
has been created is through the Manage dialog.

6 To display the detail associated with a container object, click the Model
button.

7 To copy an existing object, select the object you want to copy, then click the
Copy button.

A properties dialog appears for configuring the copy. The default name is the
existing object name with -copy appended.

8 To delete an object, select the object you want to delete and click the Delete
button.
26

Navigating Applications
Using the Project Submenus

Integrity provides access to the various objects in a model through submenus of
the Project menu. Selecting the menu choice for a configuration object displays the
properties dialog for the object. Selecting the menu choice for a container object
displays its detail.

To use the project submenus:

1 Choose a submenu from the Project menu.

If the submenu has additional submenus, choose a submenu until you see a
submenu that includes the names of all objects of that type.

2 Choose an object from the submenu.

Navigating Applications
To navigate applications, you can:

• Use the Navigator.

• Search for objects.

For information on creating and managing objects through the Project menu, see
Using the Project Menu.

Using the Navigator

The Navigator displays all the elements of a project.

You can interact with objects in the Navigator, for example, showing its
properties or going to the detail, depending on the type of object. You can also
create new objects from the Navigator.

To display the Navigator:

 Choose View > Navigator or click the equivalent toolbar button () and
expand the tree view to the desired level.
27

Here is the Navigator for the opx_demo application with the tree expanded:

To interact with objects in the Navigator:

 Right-click a node in the Navigator and choose the desired menu choice.

In addition to the menu choices that you normally get when you right-click the
object, you can choose Go To to show the selected object. Depending on the type
28

Navigating Applications
of object, you might go to the object on a detail or you might go to the object in a
repository.

You can also choose New Instance on the Network Diagrams folder to create a
new domain mapnetwork diagram directly from the Navigator.

Searching for Objects

You can search for specific types of objects, by matching text in the label field
and/or the target class, depending on the type of object. You can also go directly
to named objects.

To search for objects:

1 Choose Tools > Search and choose a category of object to be found.

2 Enter the Keyword text to match and, depending on the type of object,
optionally, the Target Class.

3 Configure Search By to search for the keyword only, class only, keyword or
class, or keyword and class.

4 Click the Search button.

The search results include all objects whose label matches the specified text.

5 Select an object and click the Go To button.

An arrow appears next to the found object, if it exists; otherwise, the Search dialog
display No Matches Found.

Depending on the type of object, you might go to the object on a detail or you
might go to the object in a repository. You can interact with the object through its
menu choices, for example, to go its detail or show its properties.

To go to a named object in the model:

 Enter the exact name of an object in the Go To type-in box on the toolbar:

A red arrow points to the named object on a workspace.
29

Interacting with Workspaces
You place all model objects on detail workspaces, which appear their own
window. You display and interact with workspaces in these ways:

• Display a detail workspace.

• Hide a workspace.

• Delete a workspace.

• Edit workspace properties.

• Scale a workspace.

• Shrink wrap a workspace to fit the enclosed elements.

• Show the superior object for a workspace.

• Print a workspace.

• Save a workspace as a JPEG file.

• Assign a background image to a workspace.

• Create and access top-level workspaces.

Displaying a Detail Workspace

A number of objects define detail, which is a workspace associated with the object
on which you place other objects.

To display detail for an object:

 Right-click the background of a workspace and choose Show Detail, choose
View > Show Details, or click the equivalent toolbar button: ()

Hiding a Workspace

To hide a workspace:

 Right-click the background of a workspace and choose Hide or press
Ctrl + right-click on the workspace.
30

Interacting with Workspaces
Deleting a Workspace

Deleting a workspace permanently deletes it from the server, including all objects
on the workspace.

To delete a workspace:

 Select a workspace and choose Edit > Delete, right-click the background of a
workspace and choose Delete, or click the equivalent toolbar button: ()

Editing Workspace Properties

You can edit the name of the workspace, as well as the background and
foreground colors, and the margins around the objects at the edges of the
workspace. By default, the background color is white and the foreground color is
black.

For information about configuring the background image, see Loading
Background Images.

To edit workspace properties:

1 Select a workspace and choose Edit > Properties, right-click the background of
a workspace and choose Properties, or click the equivalent toolbar button:
()

2 Configure the Names to be any text.

The text is converted to a symbol, with hyphens in place of spaces when you
accept the dialog.

3 Configure the Workspace Margin by entering the number of pixels.

4 Configure the Foreground Color and Background Color by choosing a color.

The name appears at the top of the workspace when you accept the dialog.

Scaling a Workspace

You can scale a workspace to fit the current window, or zoom a workspace in,
out, or to a specific scale.

To scale a workspace:

 Choose View > Zoom In or Zoom Out, enter Ctrl + = to zoom in or Ctrl + -
(minus) to zoom out, or click the equivalent toolbar buttons: ()

or

 Choose View > Zoom, then choose or enter a zoom scale, or enter a specific
zoom scale in the zoom scale on the toolbar: ()

or
31

 Choose View > Zoom to Fit or click the equivalent toolbar button: ()

Shrink Wrapping a Workspace

When you move objects on a workspace beyond the visible borders, the borders
adjust to fit the objects. When you move objects on a workspace such that the
workspace contains extra space at its borders, you can adjust the borders by
shrink wrapping the workspace. Shrink wrapping a workspace also adjusts the
window size. You can resize the window to make it smaller to add scroll bars to
the window.

To shrink wrap a workspace:

 Select a workspace and choose Layout > Shrink Wrap or click the equivalent
toolbar button: ()

This figure shows a workspace that has extra space around its borders:

This figure shows the result of shrink wrapping the workspace:

This figure shows the result of dragging the object on the workspace so it has
extra space around its borders, then adjusting the window size to make it smaller,
which adds scroll bars:

Showing the Superior Object of a Detail Workspace

You can show the superior object of a detail workspace.

To show the superior object of a detail workspace:

 Right-click the background of a workspace and choose Go to Superior, or
select a detail workspace and choose View > Go to Superior or click the
equivalent toolbar button: ()

The workspace with the superior object is now on top with an indicator arrow
next to the object.

Depending on the type of object, you might go to the object in a repository. You
can interact with the object through its menu choices, for example, to show its
properties.

Printing a Workspace

To print a workspace:

 Choose File > Print, or enter Ctrl + P or click the equivalent toolbar button
(), and configure the Print dialog.
32

Interacting with Workspaces
Saving a Workspace to a JPEG File

To save a workspace to a JPEG file:

 Choose File > Save as JPEG and specify a file name.

Loading Background Images

You can load one or more JPEG, XMB, or GIF files as the background for a
workspace.

To load a single background image:

 Choose Workspace > Load Background Image, navigate to the image to use as
the background, and click Open.

To remove background images:

 Choose Workspace > Delete Background Image.

Creating and Accessing Top-Level Workspaces

Typically, you create new workspaces when you create network diagrams
through the Project menu. However, you can also create new workspaces directly
through the Workspace menu, which are top-level workspaces that you can
access by name.

To create a new top-level workspace:

1 Choose Workspace > New.

The workspace is assigned a unique number, which starts with unnamed-
workspace.

2 Configure the workspace properties as described in Editing Workspace
Properties.

To access the top-level workspace:

1 Choose Workspace > Get or click the equivalent toolbar button: ()

A list of all top-level workspaces available in the current user mode appears.

2 Select a workspace and click OK.
33

Using the Menus
The top-level menu bar consists of these menus:

The following sections summarize each of these menus.

For information about how to use specific menu choices, see the referenced
sections.

Menu Description

File Standard file operations, and print and export
operations for workspaces.

Edit Standard editing operations for objects on
workspaces.

View Display the various toolboxes and toolbars, display
the Navigator, zoom workspaces, show details, and
show superior objects.

Layout Standard layout operations for objects on
workspaces, including align, distribute, rotate,
reflect, order, nudge, as well as shrink wrapping
workspaces.

Go Standard browser navigation operations and
interaction with the server.

Project Manage system models, object models, reports,
charts, system settings, and user preferences.

Workspace Create new and get existing workspaces, and edit
background images for workspaces.

Tools Find model objects, show users, and switch user
modes.

Window Control window positioning and choose the active
window.

Help Display online help.
34

Using the Menus
Using the File Menu

The File menu allows you to perform basic file and module operations.

Using the Edit Menu

The Edit menu allows you to perform basic edit operations for objects.

Menu Choice Description

New Creates a new project.

See Working with Projects.

Open Opens an existing project, replacing the one
currently loaded.

Save Saves the top-level module of the current
project.

Save As Saves the top-level module of the current
project to a user filename. You save models to
filenames with a .kb extension.

Save as JPEG Exports the currently selected workspace as a
.jpg file.

Print Prints the currently selected workspace to a
postscript printer.

Close Exits the client.

Menu Choice Description

Delete Deletes the selected object.

Transfer Transfers the selected object to the mouse.
Click on a workspace to transfer the object.

Clone Transfers the selected object to the mouse.
Click on a workspace to clone the object.

Select All Selects all objects on a workspace.

Properties Displays the properties dialog for the selected
object.

Colors Changes the colors of the icon regions of the
selected objects.
35

Using the View Menu

The View menu allows you to show and hide toolboxes and toolbars, and to
control the zoom scale.

For details about each of the toolboxes, see Using the Integrity Toolboxes.

The View menu contains the menu choices in the following table:

Menu Choice Description

Toolbars > Standard Toggles the Standard toolbar, which contains
standard buttons for file and edit operations.

Toolbars > Layout Toggles the Layout toolbar, which contains
buttons for performing standard layout
operations for objects on workspaces.

Toolbars > Web Toggles the Web toolbar, which contains
standard buttons for browsing HTML and
text pages.

Toolbars > Integrity Toggles the Integrity toolbar, which contains
buttons that provide tools for Integrity users.

Status Bar Toggles the status bar, which displays the
connection status to the server.

Message Board Displays the G2 Message Board, which displays
text messages.

Message Browser Displays a message browser of operator
messages.

Navigator Toggles the display of a tree view of all objects in
the current project.

See Navigating Applications.

Toolbox - Integrity Toggles the display of the Integrity toolbox,
which contains location and network containers,
and network objects.

Toolbox - Integrity Export
Import

Toggles the display of the Integrity toolbox,
which contains tools for importing and exporting
network diagrams.

Toolbox - SNMP Traps Toggles the display of the SNMP Traps toolbox,
which contains tools for SNMP trap processing.
36

Using the Menus
Toolbox - Message Parsing
Engine

Toggles the display of the Message Parsing
Engine toolbox, which contains blocks for parsing
message text.

Toolbox - OPAC Toggles the display of the OPAC toolbox, which
contains OPAC blocks.

Toolbox - ODiE Subscriber Toggles the display of the ODiE Subscriber
toolbox, which contains OpEx Dispatch Engine
(ODiE) for handling events and responses to
events.

Zoom

Zoom In

Zoom Out

Zoom to Fit

Scales the selected workspace.

Hide Hides the currently selected workspace.

Go to Superior Displays the superior object of the currently
selected workspace.

Show Details Shows the detail workspace of the currently
selected object.

Menu Choice Description
37

Using the Layout Menu

The Layout menu allows you to interact with objects on workspaces. For details,
see Interacting with Objects.

Menu Choice Description

Order >

Bring to Front

Send to Back

Controls the stacking order of
selected objects on workspaces.

Nudge >

Nudge Up

Nudge Down

Nudge Right

Nudge Left

Micro-adjusts the position of
selected objects in each
direction.

Align or Distribute >

Align Left

Align Center

Align Right

Align Top

Align Middle

Align Bottom

Distribute Horizontally

Distribute Vertically

Aligns two or more selected
objects along various axes.
Distributes three or more
selected objects vertically or
horizontally.
38

Using the Menus
Using the Go Menu

The Go menu allows you to perform standard browser navigation and interact
with the server.

Rotate or Flip >

Normal

90 Clockwise

90 Counterclockwise

180

Flip Horizontally

Flip Vertically

Rotates and reflects the
selected objects.

Shrink Wrap Adjusts the borders of the
selected workspace to just fit
the contained objects.

Menu Choice Description

Menu Choice Description

Back

Forward

Stop

Refresh

Home

Provides standard browser operations for
HTML and text pages.
39

Using the Project Menu

The Project menu allows you to interact with all the objects in the current project,
as follows:

Menu Choice Description

Initialize Application

Uninitialize Application

Initializes all process maps in the
application, which creates specific
GEDP diagrams for each domain
object with an associated generic
diagram template, resets datapoint
histories, compiles all SymCure
diagrams, and clears all diagnoses
from the various message
browsers.

Uninitialize deletes specific GEDP
diagrams that Optegrity creates for
domain objects associated with
generic diagram templates.

My User Preferences Configures user preferences for the
current user.

See Configuring User Preferences.

Logic >

Diagnose >

Fault Models

Diagnosis Managers

Diagnostic Console

Debug Specific Fault Models

Import

Enable Tuning

Operator Actions

Text Parsing

Creates and manages Integrity
logic models that diagnose
abnormal conditions.

For information on the menu
choice in the Diagnose menu, see
Creating Generic Fault Models and
the SymCure User’s Guide.

Reports Creates and manages a variety of
reports.
40

Using the Menus
Charts Creates and manages various
types of charts.

Object Models >

Networks & Devices

Creates and manages networks
and devices.

System Settings Creates and manages the various
system settings described below.

System Settings >

Interfaces >

SQL

SMTP

JMS

SNMP

HTTP

Socket Manager

Creates and manages network and
database interface objects for
communicating with various types
of external systems.

System Settings >

Interface Pools >

SQL

SMTP

JMS

Creates and manages network and
database interface pools for
communicating with various types
of external systems.

System Settings >

Message Browsers >

Queues

Events

Messages

Access Tables

Templates

Creates and manages custom
message browsers and queues.

Menu Choice Description
41

Using the Workspace Menu

The Workspace menu allows you to interact with workspaces. For details, see
Interacting with Workspaces.

Using the Tools Menu

The Tools menu allows you to browse objects in the model.

System Settings >

Users

Creates and manages user
preferences.

See Configuring User Preferences.

System Settings >

System Performance

Enables, disables, and configures
system performance metrics.

System Settings >

Event and Alarm Metrics

Enables and disables event and
alarm metrics.

Menu Choice Description

Menu Choice Description

New Creates a new workspace.

Get Displays a list of named workspaces, which
you can display.

Load Background Image

Delete Background Image

Loads and deletes background images for
the selected workspace.

Menu Choice Description

Search Allows you to search for objects in a
model by name or label.

See Searching for Objects.
42

Using the Menus
Using the Help Menu

The Help menu allows you to access online help that displays as a window within
the client:

You can view PDF versions of the following guides:

• Integrity User’s Guide

• Integrity Utililies Guide

Show Users Shows the users currently logged into
the server.

User Mode >

Administrator

System-Administrator

Developer

Modeler

Operator

Changes the user mode. The default
user mode is Modeler, which allows
you to create models by copying,
connecting, and configuring objects,
and to run simulations. Operator
mode allows end users to view models
only. Developer mode allows
developers to customize the
application.

Note: In general, you work in Modeler
mode. Very occasionally, modelers
need to switch to Developer,
Administrator, or System
Administrator mode to perform
particular tasks.

See Switching User Modes.

Menu Choice Description

Menu Choice Description

G2 Help Topics Display the G2 online help.

Integrity Help Topics Displays the Integrity online help.

Server Information Displays version information about the
server.

About G2 Displays the G2 title block, which shows
the current version.

About Integrity Displays the Integrity title block, which
shows the current version.
43

To view the online manuals:

 Choose Start > Programs > Gensym G2 2011 > Documentation > G2 Integrity
and choose the manual you want to view.

Using the Integrity Toolboxes
The Integrity toolboxes contain all of the objects that you use to create a model.

Integrity provides the following toolboxes:

• Toolbox - Integrity

See Getting Started.

• Toolbox - Integrity Export Import

See Chapter 17 “Domain Map Export/Import (DXI3)” and Chapter 18
“Open View Map Importer (OVMAP)” in the Integrity Utililies Guide.

• Toolbox - SNMP Traps

See Part IV “SNMP-Bridges” in the Integrity Utililies Guide.

• Toolbox - Message Parsing Engine

See Chapter 14 “Message Parsing Engine (MPE)” in the Integrity Utililies
Guide.

• Toolbox - OPAC

See Part I “OPAC Blocks Reference” in the Integrity Utililies Guide.

• Toolbox - ODiE Subscriber

See Chapter 13 “OpEx Dispatch Engine Reference (ODiE)” in the Integrity
Utililies Guide.
44

Using the Integrity Toolboxes
To display and interact with the Integrity toolboxes:

1 Choose a toolbox from the View menu.

The toolbox appears with the first palette in the toolbox visible. The palettes
are organized alphabetically. You access the various palettes in the toolbox by
clicking the buttons at the bottom of the toolbox.

Here is the Location and Network Containers palette of the Integrity toolbox:

2 To access the various palettes in the toolbox, hover the mouse over a button to
display its tool tip, then click the button to display the palette.

Depending on the size of toolbox, the toolbar at the bottom shows only a
subset of the available buttons in the toolbox.

3 To display the additional buttons in the toolbox, click the configure button at
the far right of the toolbar (), then choose a palette.

4 To configure the buttons that are visible in the toolbar and associated
configuration menu, choose Add or Remove Buttons to display a list of all
palettes, then choose a button to add or remove.

Once you have configured the buttons you want, you can expand the buttons
to show their labels for some or all of the buttons.

5 To show button labels in the toolbox, drag the divider at the bottom of the
toolbox up to expose the buttons with their labels.

Once you have configured the buttons you want to appear in the toolbox, you
can auto hide the toolbox by clicking the pin in the upper right corner of the
toolbox.

Click the buttons to
display the various
palettes in the toolbox.
45

Note Do not close the toolbox or the toolbox reverts to the default set of buttons.

6 Click the pin to autohide the toolbox, and move the mouse over the tab to
display the toolbox after it has been hidden.

You can display, configure, and autohide multiple toolboxes, as needed, each
of which will have its own toolbox tab.

Using the G2 Toolbox
In general, you use the G2 toolbox when customizing models.

For details, see the G2 Reference Manual.

Interacting with Objects
You can interact with objects in a network diagram by using the Edit menu, the
object’s popup menu, and the Layout menu. Many of the menu choices have
shortcuts and/or equivalent toolbar buttons.

When you create a process mapnetwork diagram, we recommend that first, you
place the domain objectsnetwork objects on the workspace, then you align and
distribute them, using buttons on the Layout toolbar, then you connect them, as
needed.

You configure attributes of objects through properties dialogs.

Selecting Objects

To select one or more objects:

 Click an object to select it.

or

 Click and drag a rectangular area to select all the objects in the rectangle.

or

 Use Shift key and click on an object to add or remove it to or from an existing
selection.

or

 Use the Alt key and click on a connected network of objects to select all the
connected objects.
46

Interacting with Objects
To select all objects on a workspace:

 Choose the Edit > Select All or enter Ctrl + A.

Cutting, Copying, Pasting, and Deleting Objects

When you copy an object, the new object has the same property values as the
existing object. If the object has details, the new object has the same details. You
can transfer objects from one workspace to another.

To copy and paste objects:

 Select one or more objects to copy, choose Edit > Clone, then click on any
workspace to paste the selected objects to the workspace.

To cut and paste objects:

 Select one or more objects to cut, choose Edit > Transfer, then click on any
workspace to paste the selected objects to the new workspace.

To delete objects:

 Select an object, then choose Delete from the Edit menu or from the popup
menu, press the Delete key, or click the equivalent toolbar button (), then
click Yes to confirm the deletion.

Controlling the Layout of Objects

To adjust the order of objects:

 Select an object, then choose Layout > Order > Bring to Front or Send to Back
or click the equivalent toolbar button: ()

To rotate or flip objects:

 Select an object, choose Layout > Rotate or Flip, then choose the desired action
from the submenu or click the equivalent toolbar button:

To align objects:

 Select two or more objects, choose Layout > Align or Distribute, then choose
the desired align action from the submenu or click the equivalent toolbar
button: ()

To distribute objects:

 Select three or more objects, choose Layout > Align or Distribute, then choose
the desired distribute action from the submenu or click the equivalent toolbar
button: ()
47

To nudge an object up, down, right, or left:

 Select an object, choose Layout > Nudge, then choose the desired nudge
action from the submenu; or hold down the Ctrl key while pressing the up,
down, right, and left arrow keys to nudge the item in the desired direction; or
click the equivalent toolbar button:

For information on the Shrink Wrap toolbar button on the Layout toolbar, see
Shrink Wrapping a Workspace.

Displaying the Properties Dialog for an Object

To display the properties dialog for an object:

 Double-click the object.

or

 Select the object and press the F4 key.

or

 Choose Properties from the object’s popup menu.

or

 Select the object, then choose Edit > Properties or click equivalent toolbar
button: ()

Resizing an Object

You might need to resize an object.

To resize an object:

 Click an object to select it, and drag the selection handles to resize the object.

Editing Icon Color Regions

You can edit the color of any named region of any icon.

To edit icon colors:

1 Click an object to select it, and choose Edit > Colors.

2 Configure the color of the named icon region for the object, as desired.
48

Using the Toolbars
Using the Toolbars
Integrity provides a number of toolbars that you can use to interact with models.

The toolbars are all docked, by default. You can drag the toolbar to a new location
or off the toolbar to make it a floating toolbar.

The available toolbars are:

• Standard toolbar

• Web toolbar

• Layout toolbar

• Integrity toolbar

• Status bar

Standard Toolbar

The Standard toolbar contains many of the toolbar buttons that you need to work
with the model:

To hide and show the Standard toolbar:

 Choose View > Toolbars > Standard.

Open

Save

Print

Delete

Properties

Go to Superior

Zoom In

Zoom Out

Zoom
Percent

Show Details

Zoom to Fit

User Mode
Go ToNavigator

Message
Browser

Get Workspace

For information
on this button... See...

Open Opening a Project.

Save Saving a Project.

Print Printing a Workspace.
49

Web Toolbar

The Web toolbar provides the standard browser navigation buttons and
commands for browsing HTML pages:

To hide and show the Web toolbar:

 Choose View > Toolbar > Web.

Delete Cutting, Copying, Pasting, and Deleting Objects.

Properties Displaying the Properties Dialog for an Object.

Navigator Using the Navigator.

Get Workspace Creating and Accessing Top-Level Workspaces.

Go to Superior Showing the Superior Object of a Detail Workspace.

Show Detail Displaying a Detail Workspace.

Zoom In, Zoom Out,
Zoom Percent, and
Zoom to Fit

Scaling a Workspace.

User Mode Switching User Modes.

Go To Searching for Objects.

For information
on this button... See...

Refresh

Home AddressBack

Forward

Stop
50

Using the Toolbars
You can go to any URL, including any HTML file on the World Wide Web or on
the file system, or any RTF file.

To go to an HTML file on the World Wide Web, you use the standard HTTP
protocol, for example, http://www.gensym.com.

To go to an HTML or RTF file on the file system, you use this protocol:

file:\<drive>:\<directory>\<filename>

For example, to go to the readme file, you would use:

file:\C:\Program Files\Gensym\g2-2011\doc\integrity\integrity-readme.
html

You navigate by using standard buttons in the Web toolbar or in the Go menu.

You configure the Home button URL in your user preferences. For more
information, see Configuring User Preferences.

Layout Toolbar

The Layout toolbar contains toolbar buttons that you need to control the visual
layout of objects on a workspace:

To hide and show the Layout toolbar:

 Choose View > Toolbars > Layout.

Nudge Align Distribute

Bring to Front
Send to Back

Shrink
Wrap

Rotate

Flip

For information
on this button... See...

Shrink Wrap Shrink Wrapping a Workspace.

Send to Front, Send to
Back, Nudge, Align,
Distribute, Rotate, Flip

Controlling the Layout of Objects.
51

Integrity Toolbar

To hide and show the Integrity toolbar:

 Choose View > Toolbars > Integrity.

Status Bar

The status bar shows various status information, such as the host and port of the
client, the current file being loaded, and the progress bar.

By default, the status bar also shows the current message in the operator Message
Browser. For information on how to disable this feature, see Configuring User
Preferences.

To hide and show the status bar:

 Choose View > Status Bar.

Manage
Ping Polling

Setup

Physical
Mapping

Ping

Telnet

Trace
Route

Scan IP
Addresses

SNMP
Get

SNMP
Get

Connect to
HTTP Server
52

Switching User Modes
Switching User Modes
You build and run applications in one of four built-in user modes, or you can
define you own user mode. The user mode determines what you can and cannot
do when you create your application and run it. For example, the user mode
determines whether you can move, edit, and delete objects, and whether you can
use the full set of G2 features in your model. For example, the user mode
determines the parameters that you can configure.

Integrity supports the following user modes for these classes of users:

End users of fully developed applications generally work in Operator mode.
Operator mode is restricted so that users may run a model but may not create,
configure, or delete objects.

As a model developer, you will almost always be working in Modeler mode. This
manual assumes you are working in Modeler mode, unless otherwise stated.
Occasionally, as a model developer, you will also need to go into Developer mode
to perform certain tasks.

If you are an expert who is customizing Integrity, you will be working mostly in
Developer mode.

The user mode that is available to you depends on your login privileges.

To switch to a different user mode:

 Choose Tools > User Mode or configure the User Mode on the toolbar.

This type of user...
Works in this user
mode... Which allows you to...

 and end users Operator View pre-built applications without
damaging them in any way. Operators
cannot open, save, run, or configure
applications.

 who create
applications

Modeler This is the default user mode.

Integrity experts and
G2 programmers

System-
Administrator

Administrator

 Customizes the behavior of Integrity.
53

Configuring User Preferences
Integrity allows you to configure different levels of access and default behavior
for different categories of users. When a particular user starts Integrity, the user
preference associated with that user restricts the access and provides default
behavior, as appropriate for the given user.

You can configure the following preferences:

• The default user mode, which determines the level of access to Integrity
features.

• Subscription to queues.

• Message filter to subscribed queues, for filtering messages based on priority,
process map, type, category, target, assigned to, age, and acknowledgement
status.

• Acknowledgement and deletion permission and behavior in the Message
Browser.

• Client disconnection, server shutdown, and modeling configuration
permissions, and whether the user is an administrator.

• The default behavior for interacting with objects through menus and showing
the logbook.

• Email and mobile email addresses for use with the JMail interface.

Specifying User Preferences for Different Types
of Users

Integrity creates a default user preference for the server to determine the level of
access and default behavior for all users that log into the server. Similarly,
Integrity creates one user preference for each user associated with a G2 login
account. The name of the user preference corresponds with the user name
specified in the g2.ok file. For more information, see Chapter 62 “Licensing and
Authorization” in the G2 Reference Manual.

If you are logged in as the user named administrator, you are automatically
configured to be the Administrative User and can create and configure user
preferences for all users. If you are logged in as any other user, you can only
configure your own user preferences. You can be logged in either to your
windowing system or to the Integrity server through a secure G2 as administrator.
54

Configuring User Preferences
We recommend that the user preference for the server provide access to all
available features, and that it use either Modeler or Developer mode. The user
preferences for the clients should provide appropriate levels of access and should
use the appropriate user mode, depending on the type of user. For example, you
might configure user preferences as follows for these types of users:

For this type of user...
Use this default
user mode...

And provide these
permissions and defaults...

Operators, who interact
with messages only

operator • Disconnect permission

• Acknowledge message
permission

• Show message in operator
mode by default

• Subscribe to appropriate
queues, depending on the
model

Modelers, who create
network diagrams

modeler • Disconnect permission

• Configuration permission

• Acknowledge message
permission

• Delete message permission

• Subscribe to Messages
queue

Developers, who use G2 to
customize models

developer • Indicate items upon menu
selection

• Disconnect permission

• Shutdown permission

• G2 Logbook

• Acknowledge message
permission

• Delete message permission

• Subscribe to all queues
55

Configuring User Preferences

In Modeler mode, you can configure these attributes for each user preference. For
information about additional attributes that you can configure in administrator
mode, see .

Administrators, who
configure user preferences
for all users, using the
Integrity user interface

system-
administrator

The same as developers, plus
Administrative User.

Administrators, who
configure user preferences
for all users, using G2’s
user interface

administrator Note: You must log in as
administrator to enable the
Administrative User option.

For this type of user...
Use this default
user mode...

And provide these
permissions and defaults...

Attribute Description

General

User Name The user name of the user that starts either the
server or the client, which is read-only.

If you are an administrative user, you can create
new user preferences for specific users. For details,
see .

Default User Mode The default user mode for the specified user, which
is modeler, by default. The options are: operator,
modeler, developer, system-administrator, and
administrator.

User Interface Theme The Windows user interface theme. The default
value is window-theme-2003.

Email Address
Mobile Email

E-mail and mobile e-mail address of the specified
user for sending email when a message occurs. For
more information, see Delivering Messages by
Email.
56

Configuring User Preferences
Home Process Map A process map to use as the background in the
operator interface. The default process map is
default view, which is associated with the process
map named guif-default-main-view. Click Select to
display a list of all process maps in the KB and
choose a map to use as the default background.

Telnet Command The command for launching a Telnet session.

Default Web Location The default URL when clicking the Home button in
the Web toolbar.

Set Default User
Mode

Whether the default user mode should be set upon
startup.

Indicate Items Configures the behavior when choosing items from
the Project menu. By default, Integrity displays the
properties dialog or the model detail, depending on
the type of item.

Developers who are familiar with G2 and prefer to
work with the iconic representations of items might
want to enable the Indicate Items option, in which
case, choosing items from the Project menu goes
directly to the item.

Extended Menus Whether to display the complete list of objects in
the Project submenus, the default. If your project
has many domain models, for example, you might
want to disable this option, in which case, selecting
Project > System Models > Network Diagrams
displays the Manage dialog for interacting with
object.

Show Logbook Whether to show the G2 Logbook when errors
occur. By default, the G2 Logbook does not appear.
Modelers or developers who are familiar with G2
might want to enable the Show Logbook option. We
recommend that you disable this option for
operators and modelers who are not familiar with
G2.

Tabbed Mdi Mode Whether to display workspaces in tabs in the
window.

Attribute Description
57

Restore Last Pane
Settings

Whether to restore the settings for panes upon
connection.

Message Browser

Email Notification
Mobile Email
Notification

The format when sending e-mail and mobile e-mail
messages. By default, the value is never, which
means email messages are not sent. For details, see
Delivering Messages by Email.

Modeler Browser The browser to use in Modeler mode. The default is
gevm-modeler-message-view-template, which is
the browser that appears when you choose View >
Message Browser.

Operator Browser The browser to use in Operator mode. The default
is gevm-operator-message-view-template, which is
the browser that appears when you are in Operator
mode.

Acknowledge
Messages Upon
Selection

Whether to acknowledge messages automatically
when the operator selects a message in the Message
Browser view of the operator interface. By default,
messages are not automatically acknowledged.
When Ack Msg Upon Selection is enabled, Ack Msg
Permission must also be enabled.

Show Browser in
Operator Mode

Whether to show the Message Browser by default
view in the operator interface, or whether to show
the process map view. By default, the Message
Browser appears as the default view in the operator
interface.

Enable Status Bar
Message Browser

Whether to show the most recent message in the
status bar.

Beep Enabled Whether to enable beeping when new messages
arrive in the Message Browser, as well as when they
are acknowledged and deleted. By default, beeping
is enabled.

Attribute Description
58

Configuring User Preferences
To configure user preferences for yourself:

 Choose Project > My User Preferences and configure the user preferences,
as needed.

For example, here is the default user preferences dialog appears for the user
named nrs:

To configure user preferences for other users:

 Choose Project > System Settings > Users and choose the user whose
preferences you want to configure.

Delivering Messages by Email

You can configure the user preference for individual users to provide an email
address and a mobile email address, then configure rules for when to send email
messages when an event occurs.

You can configure Integrity to format the message as short plain text, suitable for
cell phones, for example, plain text with full message contents, or as an HTML
document. You can also configure when to send a message, based on when it was
created or updated, whether the user is currently connected to the server, and the
priority of the message.
59

To deliver messages by email, you:

• Start the G2 JMail Bridge process.

• Create, configure, and connect a JMail Interface object.

• Configure Integrity to send email messages.

• Configure startup parameter for sending email.

Starting the G2 JMail Bridge Process

To deliver messages by email, you must start the G2 JMail Bridge process. You
identify the host and port to which the bridge is connected for configuring in the
JMail Interface object.

To start the G2 JMail Bridge process:

 Choose Start > Programs > Gensym G2 2011 > Bridges > G2 JMail Bridge.

The G2 JMail Bridge process appears in the command window.

To determine the bridge port:

 Open the command window for the bridge process.

The last line indicates the TPC/IP host and port number, for example:

TCP_IP:NSALVO-1165:22080

Creating, Configuring, and Connecting the JMail Interface Object

To deliver messages by email, you must create and configure a JMail Interface
object, which specifies:

• A name.

• The host and port of the machine running the G2 JMail Bridge.

• Information about the SMTP mail server, including the user name, password,
incoming and outgoing SMTP mail host, and SMTP protocol.

If the bridge process is running on the local machine, the host is localhost. The
default port number is 22080, 22081, 22082, etc., depending on the number of
clients that are currently connected on that port.

Note To configure a JMail Interface object, you must be in Developer mode.

Once you have configured the JMail interface object, you can connect it to the
G2 JMail bridge process.
60

Configuring User Preferences
To create, configure, and connect a JMail Interface object:

1 Choose Tools > User Mode > Developer.

2 Choose Project > System Settings > Interfaces > SMTP > Manage and click the
New button to create a new JMail Interface object.

Alternatively, you can choose View > Toolbox - G2, click the Network
Interfaces tab, and create a JMail Interface object.

3 In the properties dialog for the JMail Interface object, configure the Interface
Name attribute to be any symbol, for example, my-jmail-interface.

4 Configure the Bridge Host and Bridge Port to be the host and port of the
machine on which you started the G2 JMail Bridge process.

5 Configure the following additional information:

Attribute Description

User Name The user name of the account to which
email should be sent.

Password The password of the user account to
which email should be sent.

Incoming Host The name of the host computer used
for incoming email.

Incoming Port The port number of the host computer
used for incoming mail.

Incoming Protocol The SMTP protocol that the incoming
mail host uses. The default is pop3.

Incoming Folder The folder name of the user account to
which to send email. The default is
inbox.

Delete Messages on Server Whether to delete the email message
on the mail server after it is sent. By
default, messages are not deleted.

Outgoing Host The name of the host computer used
for outgoing email.

Outgoing Port The port number of the host computer
used for outgoing mail.
61

6 Click Apply to apply these values.

7 Click the Connect button in the dialog to connect the interface to the bridge.

8 Choose Tools > User Mode > Modeler to return to Modeler mode.

For example:

Outgoing From The name to use as the From address
when the email message is sent, which
cannot contain spaces.

Auto Reconnect to Bridge Whether to automatically reconnect if
the connection goes down.

Shutdown Bridge Upon
Disconnect

Whether to shutdown the bridge when
the connection is closed.

Launch Bridge Upon Connect Whether to launch the bridge when a
connection is made.

Bridge Launch Shell Script Pathname to script for launching the
bridge.

Attribute Description
62

Configuring User Preferences
Configuring Integrity to Send Email Messages

You configure Integrity to send email messages through the user preferences
dialog.

To configure Integrity to send email messages:

1 Choose Project > My User Preferences.

2 Configure Email Address and/or Mobile Email.

3 Choose the rule to use for each of the configured email addresses, as follows:

• never — Do not send e-mail messages. This is the default rule.

• send-as-text — Send the message text and details as plain text.

• send-as-short-text — Send the message text only as plain text.

• send-as-html — Send the message text and details as HTML.

• only-high-priority-as-text — Send the message text and details as plain text
only if the priority is 1.

• only-high-priority-as-short-text — Send the message text as plain text only
if the priority is 1.

• only-high-priority-as-html — Send the message text and details as HTML
only if the priority is 1.

• if-not-connected-send-short-text — Send the message text as plain text
only if the user is not connected to the server.

• if-not-connected-send-as-text — Send the message text and details as
plain text only if the user is not connected to the server.

• if-not-connected-send-as-html — Send the message text and details as
HTML only if the user is not connected to the server.
63

When a message occurs, Integrity also sends an email to the specified addresses.

Here is the User Preferences dialog with both email addresses and rules
configured:

Configuring Startup Parameter for Sending Email Messages

You can configure the following startup parameter in the configuration file:

JMAIL-INTERFACE-NAME=none

Specifies the default JMail interface to use for sending email messages.

For details about using the configuration file, see the G2 Run-Time Library User’s
Guide.
64

4

Customizing
the Application
Describes how to create an operator menu and how to use intitializations to
customize your application.

Introduction 65

Constructing an Operator Menu 65

Defining Initializations 78

Setting Preferences 81

Creating New Palettes 87

Customizing the User Interface Using Cyberformer 91

Introduction
This chapter describes techniques you can use to customize the appearance of
your application and to modify the user interface. You will learn how to create
user-selectable menus and how to change the behavior and appearance of the
system, using Initializations.

Constructing an Operator Menu
In your application, you might want to design a menu as a part of the operator
interface. The G2 Menu System (GMS) provides a powerful set of tools that allow
you to construct menus. Using GMS, you build a menu resource and then compile
the menu resource to create the menu. A menu resource is built by cloning
templates off the GMS palette and connecting them together. GMS allows you to
65

build multiple menus in a single application and to switch between the menus.
Therefore, you can create a customized operator menu and still use the Integrity
developers menu.

To create a menu resource you must:

• Select a workspace for the menu resource.

• Create and edit the initialization objects.

• Create the items contained in the menu.

• Link together the menu items.

• Compile the menu.

In this chapter we will present a tutorial that creates a simple menu using the
doc_demo.kb application. To build complex menus, refer to the G2 Menu System
User’s Guide which is provided with the G2 documentation set.

The example in this chapter uses the operator menu implemented in the doc_
demo.kb sample application.

To view the doc_demo operator menu:

1 Load doc_demo.kb.

2 Click on the Gensym logo to the left of the File entry on the menu.

3 Choose Doc Demo Operator Menu from the list of available menus.

Select some of the options to see this menu. This menu provides an example of an
operator interface.

To view the components of the doc_demo operator menu:

1 Using the Workspace Finder, locate and view the Docdemo-top-level
workspace.

2 Select Miscellaneous Information from the top level workspace to display the
workspace where the operator menu is defined.
66

Constructing an Operator Menu
The figure below shows the operator menu defined in doc_demo:

To create your own application operator menu, you must construct a menu
resource similar to this one.

Selecting a Menu Template Workspace

To build a menu you must define a menu resource. In your application you
should choose a workspace that can be accessed from the top-level workspace. In
doc_demo, we used the Miscellaneous Information workspace. To keep this
example simple, we will simply create a new workspace from the File menu.

To create a menu resource workspace:

1 Choose File > New > Workspace.

2 Select the background of the new workspace, select Name from the KB
Workspace menu, then enter menu-resource to give the workspace a name.

Enabling List and Array Editing

Before you begin to create menu items, you should turn on the G2 facility that lets
you edit lists and arrays in a spreadsheet format.

To enable list and array editing:

1 Using the Workspace finder, locate the GXL Spreadsheet workspace.

2 Click the check box Array and List Editing.

3 Select the background of the GXL Spreadsheet workspace and select Hide
Workspace.
67

Note When the system is restarted, Array and List Editing is turned off. If you want to
re-edit a menu resource after a restart, you must complete these steps again to
turn on Array and List Editing.

Creating a Text Resource and a Local Text Resource

Each menu resource must define a Text Resource Group and a Local Text
Resource. These are part of the Gensym Foundation Resources (GFR). They
provide multi-language capabilities for the menuing system.

To create a Text Resource Group and a Local Text Resource items:

1 Using the Workspace finder, locate the gfr-top-level workspace and display
the Gensym Foundation Resources workspace.

The items you clone from this workspace are shown in the figure below:

Select Text Resource Group, move it to your menu workspace, then click to
drop it on your menu resource workspace.

2 Select Local Text Resource, move it to your menu template workspace, then
click to drop it on your menu resource workspace.

If your application supports multiple languages, you create a Local Text
Resource for each language. In this example we will create only an English
language resource.

3 Click on the background of the Gensym Foundation Resources workspace
and select Hide Workspace.

4 Select the Text Resource Group item, select name, then type in the name new-
text-resource.

5 Select the Local Text Resource item, select table, then enter the name of the
Text Resource Group, new-text-resource, for the attribute gfr-resource-group.
68

Constructing an Operator Menu
Creating a Menu Bar Template

The menu bar template defines the name of the menu that appears on the list of
menus under the Gensym logo. A menu bar template is shown in the figure
below:

To create a menu bar template:

1 Using the Workspace finder, locate the gms-top-level workspace.

2 Select the Menu Bar Template from the Gensym Menu System workspace.

3 Move the cursor your menu resource workspace then click to drop the Menu
Bar Template.

4 Select the menu bar template, select table, enter new-operator-menu as the
value for the gms-label.

Configuring a Menu Template Item

After you create any type of menu template item, you must configure the item by:

• Defining the gms-text-resource-group.

• Assigning a gms-user-key to the item.

• Defining a text string linked to the gms-user-key in each local text resource
defined for the menu.

The procedure shown below shows how to configure the menu bar template item
defined in this example. You can use the same procedure to configure any menu
template item.

To configure the menu bar template:

1 Select the menu bar template then select table from the menu.

Enter the following values in the attribute table:

a new-operator-menu for the attribute gms-user-key.

b new-text-resource, for the attribute gms-text-resource-group.

2 Select the Local Text Resource and select edit resource.
69

If this selection does not appear, you need to turn on array editing as
described in Enabling List and Array Editing on page 67. The local text
resource text editor is shown in the figure below: The values shown are all
defined in as part of this example.

Enter the value of the gms-user-key, new-operator-menu, in the column
labeled Key... , New Operator Menu in the column labeled Text... , click OK,
then click Yes.

Note Be sure to enter a carriage return after entering a value in a local text resource
value to update the spreadsheet cell.

To add a new row in the Local Text Resource spreadsheet:

1 Click on the first column of an existing row.

2 Click one of the first two buttons on the left above the cells to insert a row
above or below the current selection.

Adding the Menu Selection Icon

Click on the Gensym logo on the main menu to switch between the available
menus in an application. This icon is created with a menu selection icon. You can
clone this icon from the menu resource that defines the Integrity main menu.

To create the menu selection icon:

1 Choose Tools > Inspect.

2 Type in go to opcsui-developer-menu, click End, then click Hide on the
workspace that displays the search results.
70

Constructing an Operator Menu
The figure below shows the Integrity main menu resource:

The menu selection icon is the rectangle on the top line, which contains the
label none.

3 Select the menu selection icon from the OPSCUI Developer Menu Resource
workspace, select clone, move the item to your menu resource workspace,
then click to drop the item.

Tip To select menu template items, click on the left-hand border of the item. If you
click on other areas, you may display the label edit box or table.

This item does not need to be reconfigured.

Cloning a Menu Group

The sample menu we are building will use part of the File menu defined on the
Integrity main menu. You can clone any part of the Integrity menu resource and
include it in your own menu definitions.

To clone a menu item from the Integrity main menu:

1 Select the item opex-file on the OPSCUI Developer Menu Resource
workspace, select clone, move the item to your menu resource workspace,
then click to drop the item.

2 Click on the yellow arrow under the item opex-file on the OPSCUI Developer
Menu Resource workspace, select clone, move the item to your menu
resource workspace, then click to drop the item.

This item is a gms-submenu-connection-post. It is used to connect a top-level
menu definition to the items connected to a gms-submenu-connection-post with
the same name at the other end.
71

3 Use the same cloning procedure to clone the gms-subpanel located under the
label OPEX FILE MENU STUB.

A gms-subpanel is an object used to organize menu components. It provides a
subworkspace to place sub-items of the menu. This item is shown below:

When an item is cloned, its attribute values are copied into the new item so
you do not need to reconfigure the gms-user-key or the gms-text-resource-
group. However, the name used for the gms-submenu-connection-post items
is not copied so you need to enter a name for these items. Both connection
posts should be assigned the same name.

To name a set of gms-submenu-connection-posts:

1 Select the gms-submenu-connection-post, select name, then enter the name
for the connection post, which is new-connection for the example.

The other connection post is located on the subworkspace of the subpanel.

2 Click on the subpanel, and select go to subworkspace.

3 Click on the connection post at the top of the workspace, select name, then
enter the same name as the name used for the connection post at the other
end, new-connection.

In this example we do not want to include the File menu items Modules... or Get
Workspace so we will delete them from the menu template items defined on the
subpanel subworkspace.

To delete items from a cloned menu:

1 Select the gms-submenu-connection-post next to opex-modules and select
delete.

2 Select the item opex-modules on the subpanel subworkspace, select delete,
then click OK.

3 Select the gms-separator-template on the subpanel subworkspace, select
delete, then click OK.

The separator template places across the submenu. The template item is a
thick brown line.

4 Select the item opex-get-workspace on the subpanel subworkspace, select
delete, then click OK.
72

Constructing an Operator Menu
5 Drag the connection to connect opex-file to opex-clear-application.

6 Click the X button to hide the subpanel subworkspace.

Creating a Cascade Menu Item

You use a gms-cascade-template to create a cascading menu item. This item is
shown in the figure below:

If the gms-top-level workspace is not showing, use the Workspace finder to locate
and view the gms-top-level workspace.

7 Select the cascade template on the Gensym Menu System workspace, move
the item to your menu resource workspace, then click to drop the item.

8 Select the cascade template and select table.

Enter the following values in the attribute table:

a new-options for the attribute gms-label and for gms-key.

b new-text-resource for the attribute gms-text-resource-group.

9 Configure the item as described in Configuring a Menu Template Item on
page 69 entering new-options for the Key... and Options for the Text... in the
local text resource.

Creating a Show Workspace Menu Item

Now we will add a new menu item that displays the Docdemo-top-level
workspace. We will place this item under the main menu item Options.

The menu template used to create a menu item that displays workspace is a gms-
show-workspace-template. This template is shown in the figure below:
73

To add a show workspace template:

1 If the gms-top-level workspace is not showing, using the Workspace finder,
locate and view the gms-top-level workspace.

2 Select the show workspace template on the Gensym Menu System workspace,
move the item to your menu resource workspace, then click to drop the item.

3 Select the show workspace template and select table.

Enter the following values in the attribute table:

a show-top for the attribute gms-label and for gms-key.

b new-text-resource for the attribute gms-text-resource-group.

c docdemo-top-level for the attribute gms-display-target.

You define the name of the workspace to display using the gms-display-
target attribute. If you enter the name of an item, the subworkspace of the
item is displayed.

4 Configure the item as described in Configuring a Menu Template Item on
page 69 entering show-top for the Key... and Show Top-Level Workspace for the
Text... in the local text resource.

Creating a Choice Menu Item

A choice menu item lets you call a procedure from a menu item. We will place
this item under the show workspace item. The figure below shows a choice
template:

The final item we will create in our example is a choice item that calls a procedure
to display the doc-demo browser.

1 If the gms-top-level workspace is not showing, using the Workspace finder,
locate and view the gms-top-level workspace.

2 Select the choice template on the Gensym Menu System workspace, move the
item to your menu resource workspace, then click to drop the item.

3 Select the choice template and select table.
74

Constructing an Operator Menu
Enter the following values in the attribute table:

a show-browser for the attribute gms-label and for gms-key.

b new-text-resource for the attribute gms-text-resource-group.

c new-call-browser for the attribute gms-activation-callback.

In a choice template, the attribute gms-activation-callback defines the
procedure called when you select the menu item. The procedure new-call-
browser is described in the section Displaying Browsers from a Menu on
page 75.

4 Configure the item as described in Configuring a Menu Template Item on
page 69 entering show-browser for the Key... and View Doc-Browser for the
Text... in the local text resource.

Displaying Browsers from a Menu

The procedure doc-menu-call-view-browser is defined in doc_demo to display the
browser selected from the Operator Menu. This procedure is shown below:

doc-menu-call-view-browser (handle: integer, activation-path: item-or-value,
menu-index: integer)
item-selected: symbol;
win: class g2-window;

begin
item-selected = call gms-get-key-for-index (handle, menu-index);
win = call gms-get-window-for-handle (handle);
if item-selected = the symbol all

then call opcsrui-view-browser (doc-browser, win)
else call opcsrui-view-browser (doc-high-priority, win)

end

The procedure called to display the browser is:

opcsrui-view-browser (browser-name: symbol, win: class G2-window)

Pass this procedure the name of the browser to display and the handle of the
window where you want to display the browser. The window handle is retrieved
by the GMS procedure gms-get-window-for-handle. This procedure returns the
handle of the window containing the menu. gms-get-key-for-handle returns the
menu key for the menu item selected.

Because our example directly calls one browser, we can use this procedure as a
template.
75

To create a procedure to view the browser from the menu:

1 Select the background of the Menu Resource workspace, select new definition,
procedure and procedure one more time.

2 Click to drop the definition of the procedure item on the workspace.

3 Select the procedure icon, select edit, then type in the following text:

new-call-browser (handle: integer, activation-path: item-or-value,
menu-index: integer)
win: class g2-window;

begin
win = call gms-get-window-for-handle (handle);
call opcsrui-view-browser (doc-browser, win);
end

4 Click End.

Connection Menu Items

Two types of connections are used for menu template items:

• Submenu connections - used to connect a cascade menu item to its sub-items.
Submenu connections are green.

• Peer connections - used to connect a set of peer items together under the
cascade menu item. Peer connections are yellow.

To create connection stubs on a menu template item:

 Select the menu template item and select add submenu stubs or add peer
stubs depending on the type of stub you want to add.

This adds menu stubs on all sides of the menu template item.

To remove unused stubs:

 Select the menu template item and select remove stubs.

This remove stubs of both types of connections.

To connect the menu items:

 Click on the end of the connection stub, then drag the connection stubs to the
item you want to connect, then click to connect the items.
76

Constructing an Operator Menu
Connect all of the menu items in the example. If you have followed along with
this example, your competed menu should look like the one in the figure below:

Compiling the Menu

The final step to define the new menu is to compile the menu.

Tip Before compiling your menu, be sure that all the menu connections are firmly in
place.

To compile a new menu resource:

1 Select the menu bar template. This is the triangular item at the left of the menu
resource.

2 Select Compile all.

The top-level of the new operator menu defined in the example is shown in the
figure below along with the expanded list of available menus:
77

If you get an error when you compile your menu, check each item and be sure
that:

• The attribute values are correctly defined.

• An entry for the item is in the local text resource.

• All connections on the item are firmly in place.

After you identify and fix the error, try re-compiling the menu. If an error still
occurs, the error might have corrupted the menu system and you might have to
restart the system.

When you build your menu, it is best to build a small piece and then compile it to
test it. If you build and compile incrementally, it is easier to find errors that might
occur.

Defining Initializations
Initializations are objects that let you define initial values for any G2 item that can
be assigned a value. Items assigned values are attributes of objects, G2
parameters, variables, arrays, and lists. You can use initializations to customize
many aspects of the Integrity environment.

At startup, Integrity contains a number of predefined system initializations used
to:

• Define the colors used to show the message priority and acknowledgment
status of both the domain objects and the browser messages.

• Customize the way Integrity displays and handles error messages.

• Provide flexibility in defining how domain objects are retrieved.

• Allow custom procedures to be called as part of the execution of certain
Integrity procedures.

• Define the workspaces used for certain operations within Integrity.

More than one initialization can target an item. When this occurs, the value of the
initialization with the highest priority is used as the initial value of the item.
Priorities range from 1 to 10, where 1 is the highest priority.

To view the items that have initializations defined:

 Choose Tools > Initializations from the Integrity main menu.

The function of the individual initializations is described in detail in the Integrity
Reference Manual.
78

Defining Initializations
The figure below shows the current initializations table.

Each item that has an initialization is shown in the scroll area. If the item targeted
by the initialization is an object, the target attribute is also shown. Parameters,
variables, arrays and lists do not have target attributes.

To view the value of an item with an initialization object:

 Click on the item in the scroll list.

The information shown includes:

• Description of the use of the initialization.

• Number of initialization objects defined for the selected item.

• Current value of the targeted item, this can be of the type scalar, vector, or
GSI.

When an initialization is displayed in red with an exclamation point, it means the
current value of the item is different than the value defined by the highest priority
initialization item. Because item values can be changed as an application runs,
this might not be a problem. The total number of items with values that do not
match the initialization value is shown by the small red number above the scroll
bar.
79

Creating an Initialization for a New Item

To create an initialization for a new item:

1 Click on the Initializations palette.

2 Click on the type of initialization to create. A dialog box appears, prompting
you to specific the Destination Module.

3 Select the type of initialization object. Initialization objects can be one of:

a Scalar - a single value

b Vector - an array of values

c GSI - a special initialization used with interface objects

4 After selecting the correct module from the drop-down box, click OK.
Integrity creates in the specified module an initialization. This initialization
has the generic name of the type of initialization you selected.

5 Edit the initialization as discussed below and be sure to rename it to indicate
its specific purpose. Be sure to specify the name of the target object. If the
target is an object, specify which attribute of the object is the target of the
initialization in Target Attribute.

6 Click OK.

Editing the Value of an Initialization

To edit the value of an initialization:

1 Choose Tools > Initializations from the Integrity main menu. The Current
Initializations window appears.

2 Right-click on the name of the initialization object to edit.

3 Select View Properties. The properties dialog appears. You can change the
properties of the initialization and set its value from this dialog box.

You can edit these values:

• Value - the value assigned to the target item on initialization. If there is more
than one initialization for a specified target, the value of the initialization with
the highest priority is assigned.

• Priority - the priority assigned to the initialization where 1 is the highest
priority.

• Procedure - the name of an optional procedure which will be called when the
target item is initialized.

• Description - a brief description of the function of the target item.
80

Setting Preferences
Note You cannot edit the initializations in system modules. You must define a new
initialization for the same item.

Note When a new definition targets an item defined within Integrity, it overrides the
system’s default values.

Setting Preferences
The Integrity Preferences window allows you to set preferences for using the
Integrity client UI. To access the window, click on Tools > Preferences. The
window is displayed.

The Preferences window allows you to set preferences for the following:

• Tip of the Day

• Load Options

• Save Options

• Message Browser

• Desktop Layout

• Finder Options

• Navigator Button
81

Tip of the Day Preferences

The window to set Tip of the Day preferences is shown below:

Load Options Preferences

The window to set Load Option preferences is shown below:

This window allows you to set the options for loading a module.
82

Setting Preferences
Save Options Preferences

The window to set save options preferences is shown below:

Message Browser Preferences

The window to set message browser preferences is shown below:
83

This window allows you set the way message browsers are displayed by checking
the appropriate checkbox. You can display newly opened message browers in:

• The Integral Tabbed Area in the palettes/message browser area.

• An internal window

• An external window.

The Message Browser Preferences window also allows you select or deselect the
audible alarm feature. When selected, this feature enables an audible alarm
accompanies any messages of priorty 1, 2, or 3.

Desktop Layout Preferences

Desktop Layout Preferences allows you to customize how the Descriptors and
Palette/Messages area are positioned, and how to set the virtual desktop.

The window to set desktop layout descriptor preferences is shown below:
84

Setting Preferences
The window to set preferences for the desktop layout of the palette/messages
area is shown below:

The window to set virtual desktop preferences is shown below:
85

The window to set how minimized icons appear on the desktop is shown below:

Finder Options Preferences

The window to set Finder options preferences is shown below:
86

Creating New Palettes
Navigator Button Preferences

The Navigator preferences window allows you to set the options that are
available to a particular user mode. The window to set Navigator preferences is
shown below:

Creating New Palettes
New Palette Groups and Palettes can be added to the Integrity client UI. A Palette
Group is a Tab component containing other Tab components comprising of class-
definition icons.
87

Add a Palette Group

To add a Palette Group, move the mouse over the palette area and Right-Click.
This will display the Palette Group menu. From this menu select Add a new
Group. Once selected the New Palette Group dialog box will apprear.

Enter the group name for the Palette Group Name. This will be the reference in
the property files that are created and modified.

Enter a label for the Palette label. This will be displayed in the Tab area used for
selecting the tab.

The PluginID contains the G2 module that is required to be loaded in order for the
palette group to be accessible by the user. If this module is not required by your
application, then the palette will not be loaded.

To create the Palette Group, select OK from the New Palette Group dialog. Once
created the Palette Group is displayed in the palette area.
88

Creating New Palettes
Add a Palette

A palette is a Tab component containing G2 class-definition icons. One the palette
and icons are created, users can drag the icons onto a workspace to create an
instance of the class represented by the icon. To create a palette, position the
mouse in the palette are and Right-Click. Select Add Palette to Group from
the Palette Group menu.

The New Palette dialog will be displayed:

Simply enter the name for the palette in the Palette Name area. Once you select OK
from the dialog the new palette will be created.

Adding Palette Items

Adding palette items will allow users to drag icons from the palette to a
workspace to create an instance of a class. To create a palette item, move the
mouse over the palette and Right-Click. Select Edit palette from the
displayed menu. This will display the Palette Contents list.

The Palette Contents list is divided into two lists. The list on the left are all classes
defined in the connected G2. The list on the right is the list of classes to be
displayed as your new palette. Some of these classes have icons displayed in the
list along side the class name and some do not. Those that do, already have their
icon as part of the client UI application. Once you add a class that does not have
89

an icon, displayed along side its class name, it will become part of the UI just as
the others.

To create your list of palette items, select a class name from the Source List. Once
an item is selected from the Source List the Right-Arrow-Button will be selectable.
This allows you to select the button to move the selected class to the Palette Items
list. The Up and Down arrows in the middle allow you to move the class names
(icons) up or down to provide some type of ordering to your palette. The Left
Arrow button allows you to remove the class name from the Palette List, and the
Double-Left Arrow button allows you to remove all class names from the Palette
List. Once all class names that you want are displayed in the Palette List, select the
OK button to create the palette.

Note If a class name is not present in the Source List, make sure the class-definition
exists in the connected G2 process.

After selecting OK, the class icons are placed in the palette.

The items on the palette are now ready to be dragged and placed on your
workspace.

Property Files

The files listed below were either created or modified based on the addition of a
group or palette:

• myobjectsPalette.properties

• userDefinedPalettes.properties

Note The file mentioned above, myobjectsPalette.properties, is listed because this is the
example that was used for documentation purposes. The myobjects name comes
from the information you entered on the previous dialogs.
90

Customizing the User Interface Using Cyberformer
If the object you placed on the palette are not part of the standard objects defined
with Integrity, then a .jpg image is created and placed in the
%USERPROFILE%\opex\images\palettes directory. This image is based on the
icon-definition for the class-definition placed in your palette.

Customizing the User Interface Using
Cyberformer

The cyberformer is an environment used to create and or modify the Integrity
client UI. This includes the dialog title, icons, palettes, menu items and actions
associated with the menu items.

Understanding Properties Files

The Integrity client UI allows the user to fully customize its features to meet
customer-specific requirements. Instead of a hard-coded, unchangeable UI,
Integrity uses an application generator which determines from a set of property
files the features to build and present to the user as the Integrity client UI. (Even
the name is an entry in a properties file). There is no class file (for example, com.
gensym.integrity.shell.Shell) that serves as the UI.

The Integrity client UI builds from scratch each time you run it. Much of the form
that it takes the behavior is determined by the contents of these properties files.

Origination and Purpose

Part of the function of the properties files is to allow you to define the context of
an action without having to resort to hard coding it in java - its then the job of the
CyberFormer class to decide figure out what bits of the UI is applicable at any one
time.

What are Property files?

Think of these files as digital genes, the UI builder simply expresses what is
encoded in these digital genes and creates what appears in the Integrity client UI.
The purpose of this design is to allow users to alter the UI without too much
difficulty or experience in Java programming.

The properties file include files that:

• Define the form of the UI - its menus / toolbars pallets etc.

• Define connection sessions/details

• Define layout/position of windows

• Define the contents of projects.
91

Although the format is basically the same, some files are simply ASCII text files
designed to be edited by the user. Others contain binary information that should
not be changed by direct editing, (basic tools are provided to manipulate some of
these files).

Modify the digital genes and the result will be a different UI.

USER1 may not see exactly the same Integrity client UI as USER2 sees since either
user may have made changes to his set of properties files.

Scope

Properties files affect:

• menus

• title bars

• tabbed dialogs

• actions related to menu items

• palettes

• labels next to the trees in the browser

• finders panel

• the "finder types" seen in the finder panel

• the properties seen under tools->properties

• the toolbar buttons

• the addition of Java Panels into the UI

• the footer at the bottom of the screen...

• the main panel seen in the UI

• the dynamic / class specific editor (allows you to specify a java class

• that supports visualization of the selected object -)

• the labels seen to the right of items in the trees - so you can display the
attribute's to be part of the label.

• permited G2 user modes

• login profiles

• projects and project contents

• NetSleuth connection details

• how the UI builds certain classes of objects

• the layout of the UI
92

Customizing the User Interface Using Cyberformer
• some behaviour of the finder

• the activation/size/behaviour of the Virtual Desktop

Location

The properties files are in the USERPROFILE\opex directory. The properties files
must be in this directory. The application uses the files in this directory to load the
UI. If you install the client for more than one user on the same machine, then an
opex directory is created for each user under the user profiles directory and the
properties files are copied to that directory.

For example: C:\WINNT\Profiles\username\opex.

If you need the original files as shipped, backup copies are included in
C:\gensym\OpEx30r0\Client\OPEXproperties.

How the application loads the properties files:

When the application loads the properties files, it looks at the beginning of the
CLASSPATH for the location of the files that it will use. If you want to modify a
properties file that all users will share, you can put the location of this modified
file in the CLASSPATH. For example, suppose you want several users to use one
modified file. Logon as a user such as "common". Modify the properties file for
the "common" user in the opex directory under the user profile directory for that
user. For example, c:\WINNT\Profiles\common\opex. Then put this path in each
user's CLASSPATH.

UI Structure

Instead of a hard coded UI the UI structure is in three parts.

• The Actions that perform some function.

• The menus and toolbars.

• Logic to determine applicability.

Rather than have each menu or menu item try and determine its applicability we
have a central core which determines what is and what is not applicable at any
given time.

How it determines applicability is largely controlled by ASCII text properties
files, so again you can change the applicability without having to know about or
change Java code.

Likewise the menus and the actions are all referenced from property files.

This is a simplified view, but basically it allows us to wire any action to any
menu/toolbar button and to change the forms of the menus ... the hook between
menu and action being soft wired at run time.
93

In fact the majority of the UI can be broken down and re assembled in a different
configuration while the application is still running - allowing quite sophisticated

changed to be made with minimum effort.

If an action is no longer applicable to a particular class of item, simply add that
class to the exclusion key for the menu item, that's it - no delving intosource code
to figure out how the command file determines applicability.

Think of the central core as being like a switch center, or telephone exchange, it
simply routes the input of the user, to a particular action... but with the ability to
add new inputs and actions without taking the exchange down.

There are a number of keys which together combine to allow the UI to determine
if a particular action is applicable at any given time (see Standard Menu Keys
Standard Palette Keys).

While this scheme is okay for most customization, there may be times when you
want to add checks that are not covered by this mechanism.

To allow you to easily slot in addition logic - we have the GoNoGo key; this
allows you to write a Java class that holds all your additional logic... all it must do
is implement the GoNoGo interface which basically returns true of false.

After all the "basic" checks for applicability have been run, if there is a go/nogo
class associated with a particular action, the UI will consult that class before
finally setting the action available or un available. The gonogo class has the last
word on applicability, so if the "basic" checks (which are evaluated by the UI's
inbuilt applicability logic) determine that an action is available, the gonogo class
gives you the ability to override that value.

Functionality

This section describes the functionality of common properties files.

CyberFormer.properties

The most frequently modified file is the CyberFormer.Properties file.
CyberFormer.properties is the "Grandaddy" of them all. It is the first one that the
application calls on when loading the UI. It dictates what is on the menu, how the
tabs are defined, how the toolbar is arranged, what modes allow various
components to be seen, etc. Here is some code from this file to provide an
example of what will get loaded and how these components are defined:

paletteImageFile=palette.images - This is used to indicate which serialized images
to load.

palletGroups=_opacPallet _telecomsPallet etc, etc. Defines the palette groupings

Title=Integrity - this defines what is on the title bar.

Form :ASCII
94

Customizing the User Interface Using Cyberformer
Keys : 11 public

Title

String seen as the Application Name eg Integrity

TitleIcon icon to be used in the corner of frames

currentVersion String holding the current version of the constructed UI eg 3.0r1

panel The class of JPanel which will be instantiated as the main panel of the UI

footer The class of JPanel which will be instantiated as the footer of the UI

PanelAdditions : RESERVED

menubar A list of menu's which will be placed on the application frames menu
bar

paletteImageFile The name of the image file holding the serialized images for the
palettes

palletGroups A list of "Top level" palettes - each represents a distinct subsystem
eg SYMCURE / G2

toolbarGroups A list of toolbar groups - each group represents a series of buttons
which will appear in the toolbar of the application frame.

pluginRegistrationFile The name of the file which holds the list of currently
registered susbsystems

registeredPlugins.properties

Form : ASCII

Function : To allow actions to be attributed to a particular sub system - or plug-in

For example, menu items pertaining to SymCure are flagged a being part of the
SYMCURE subsystem. Menus not part of a distinct subsystem are marked as
belonging to the UI. Even if property files hold keys marked as belonging to
SYMCURE, if SYMCURE is not a registered plugin, the UI builder will not
include those menu, (this also extends to Finders)

Obsolete Property files:

DynamicFinderPanel

CdgExplorer

MsgBrowser

NeutralShellBuilder

opacPalette

opexPalette
95

runtimeWksp

systemWindowLocations

UIDescriptor

Some of the properties files create themselves:

• windowLocations.properties

• projects.properties

The advantage of this type of properties files is that, for example, if your windows
have been moved to a point beyond where you can see them, you can delete
windowLocations.properties file and it will recreate itself. Similarly, if something
goes wrong with the projects, you can delete projects.properties file.

The registeredPlugins.properties file tells the UI what restrictions are allowed.
For example, if you remove AUTODISCOVERY from this properties file, this user
will not be able to access AUTODISCOVERY.

Here is a list of the remaining properties files.

• CdgExplorer.properties

• cdggui.properties

• CdgGuiLib.properties

• desktop.properties

• DynamicFinder.properties

• DynamicFinderPanel.properties

• EasyAccessUIJTreePanel.properties

• EditorDispatcher.properties

• g2control.properties

• g2corePalette.properties

• g2UserModes.properties

• gog2.properties

• LabelGeneratorDispatcher.properties

• lastActiveFile.properties

• lastLoadedFiles.properties

• lastOpenedFiles.properties

• LoginMangerFrame.properties

• LokupDriverDispatcher.properties
96

Customizing the User Interface Using Cyberformer
• mainFrame.properties

• mibbrowser.properties

• MsgBroswer.properties

• NeutralShellBuilder.properties

• ObjectIndicatorImages.properties

• ObjMgrSupport.properties

• opacPalette.properties

• opexPalette.properties

• palette.properties

• pallet.properties - outdated

• projectmenu.properties

• PropertyViewer.properties

• RuntimeDynamicDisplay.properties

• runtimeWksp.properties

• sessionLibrary.properties

• symcurePalette.properties - defines the palettes for the SymCure tab

• systemWindowLocations.properties

• telcoPalette.properties

• ui.properties

• UIDescriptor.properties

• uitabs.properties

• userModes.properties - defines the user modes

• windowMenu.properties

Keywords

In general, keywords exist in every properties file. Most keywords are pre-
appended with a variable name that you define. The keyword is usually
descriptive of its purpose. You assign values to the keywords.

To keep things simple, we will focus on the CyberFormer.Properties file and
examine some of the keywords in this file.

menubar - allows you to create one or more new menu items.
97

To do this you declare and assign one or more variables to the keyword
"menubar".

menubar=newitem1 newitem2.

Label - dictates what text will appear as a label for the user interface widget
associated with that keyword. For example, if you create a new menu item and
you want the menu item to appear as "Help If You Need It", you will assign a text
value, "Help If You Need It" to the newitem1Label so that "Help If You Need It"
appears on the menu bar. You do not need to put quotation marks around Help.

newitem1Label= Help If You Need It

Image - dictates the image that is associated with the item that you defined.
Choose an image or create one. It can either be a .gif or .jpg file. All of the images
that come with the Integrity package are located in jar files. This allows the image
value to be a path images/nameOfImageFile.

newitem1Image=images/nameOfImageFile

Shortcut - defines the shortcut key for the item. Choose a character that exists in
the label text.

newitem1ShortCut=H

IsPopup - tells the system to create a popup menu for this item when clicked on

newitem1IsPopup=true

ActionClass - tells the system to go to a particular java class that will cause an
action to take place when the user chooses the menu item.

newitem1ActionClass=com.gensym.cdggui.ui.actions.g2server.
ExportAllFileAction

Context - defines the modes that the user must be in to allow this item to function.

newitem1Context=ADMINISTRATOR DEVELOPER

Tooltip - determines the tool tip for the item

newitem1Tooltip=Create a new file

Cyberformer Reference

Syntax

Pound sign. Used for comments.

- Dash. Generates a horizontal line that separates menu items as they appear on
any menu. Wherever you desire a separation on any menu, simply insert it in
between any two variables that are listed in that menu.
98

Customizing the User Interface Using Cyberformer
_ Underscore. Pre-append it to any variable listed in any menu. It tells the
system that this menu item will have a sub-menu associated with it. It generates
an arrow to the right of the menu item represented by the variable pre-appended
with this underscore.

Format:

Use "Title=" to create or modify the title that appears in the title bar of the client.

Title=OpEx

Choose an icon for the title bar. It can either be a .gif or .jpg file. Most of the image
files are in the jar files. This allows the TitleIcon path to be images/.

TitleIcon=images/ico1.jpg

The icon used for the application when its iconified.

MDI=true

This indicates the current version of the client.

currentVersion= 3.5

This defines some of the components for the UI

opPanel=com.gensym.cdggui.ui.BaseOpPanel

adminPanel=com.gensym.cdggui.uiBaseAdminPanel

panel=com.gensym.cdggui.ui.BaseIDEPanel

footer=com.gensym.cdggui.CdgComsIndicator

PanelAdditions=

MenuBar Declaration:

menubar=var1 var2 var3 var4 . . .

Where each variable reserves a space on the menu bar.

Menu item Label

var1Label=any text

var2Label=any text

where var1 and var2 are items on the menubar and "any text" is the label that will
appear on the menu bar. (Do not put quotes around the text.)

Shortcut

var1Shortcut=any character

Choose a character that exists in the label text.

This is used to indicate which serialized images to load
99

paletteImageFile=palette.images

Defines the palette groupings

palletGroups=_opacPallet _telecomsPallet _opexObjects _symcurePallet _
g2SystemPallet

#indicates which additional products are to be used

G2 OPEX OPAC SYMCURE IPRA AUTODISCOVERY

pluginRegistrationFile=registeredPlugins

northToolBar=

centralToolBar=

southToolBar=

adminToolBar= pauseG2 resetG2 restartG2

Defines the toolbar groupings

toolbarGroups=_uiControl _projects _finders _workspace _smhMessage _
symcureViewing _symcureChecking _symcureSetting

#_autoDiscovery

workspaceToolbarGroup= zoomIn zoomOut zoom2Fit zoom2FitAR

workspacePluginID=G2

projectsToolbarGroup=openThisProj closeThisProj addToProj rmFromProj

projectsPluginId=UI

autoDiscoveryToolbarGroup=discoveryTemplate - StartAutoDiscovery
StopAutoDiscovery StatAutoDiscovery PropertiesOfDiscovery - showWan

autoDiscoveryPluginID=AUTODISCOVERY

uiControlToolbarGroup=toggleDesc togglePallets tglControls

#tglControls

uiControlPluginID=UI

findersToolbarGroup= find viewObject props domainMap viewHistory

findersPluginID= UI

smhMessageToolbarGroup=viewMessages msgAck msgDel msgCom target
sender msgDet

smhMessagePluginID=OPEX

symcureSettingToolbarGroup=runTest falseValue trueValue

symcureSettingPluginID=SYMCURE
100

Customizing the User Interface Using Cyberformer
symcureCheckingToolbarGroup=configuration detectability isolatability getSig

symcureCheckingPluginID=SYMCURE

symcureViewingToolbarGroup=exploreDiagnosis mitiga exploreTests
conclusions

symcureViewingPluginID=SYMCURE

configureBlockLabel=Configure

configureBlockShortCut=V

configureBlockActiveWhenPaused=false

configureBlockAction=ConfigureBlock

configureBlockActionClass=com.gensym.cdggui.ui.actions.core.ConfigureBlock

configureBlockImage=images/ide.gif

configureBlockContext=com.gensym.classes.modules.opacore.
OpacLanguageClass

configureBlockGoNoGoClass=com.gensym.cdggui.ui.actions.core.ViewGoNoGo

configureBlockIsPopup=true

smhmessage= viewMessages - msgAck msgDel msgDet msgCom mitiga
exploreTests conclusions exploreDiagnosis

smhmessageLabel=Message

smhmessageShortCut=M

smhmessagePluginID=OPEX

getSigLabel=Get Signature

getSigShortCut=G

getSigAction=GetSignature

getSigActionClass=com.gensym.cdggui.ui.actions.symcure.GetSignatureAction

getSigTooltip=Graphical representation of the fault

#getSigUserModeContext=ADMINISTRATOR DEVELOPER

getSigImage=images/fsig.gif

getSigContext=com.gensym.classes.modules.cdg.CdgGenericFault

getSigIsPopup=true

tglControlsLabel=Messages // Palettes

tglControlsShortCut=s

tglControlsImage=images/a125.gif
101

tglControlsAction=TglControls

tglControlsActionClass=com.gensym.cdggui.ui.actions.core.TglControlsAction

tglControlsTooltip=Toggle Messages <-> Palettes

tglControlsUserModeContext= ADMINISTRATOR DEVELOPER

zoomInLabel=Zoom In

zoomInShortCut=I

zoomInImage=images/zin.gif

zoomInContext=com.gensym.classes.KbWorkspace

zoomInAction=ZoomIn

zoomInActionClass=com.gensym.cdggui.ui.actions.zoom.ZoomInAction

zoomInTooltip=Zoom In

zoomInIsPopup=true

zoom2FitARContext=com.gensym.classes.KbWorkspace

zoom2FitARLabel=Aspect Ratio 1:1

zoom2FitARShortCut=1

zoom2FitARImage=images/zfitar.gif

zoom2FitARTooltip=set aspect ratio of the workspace to 1:1

zoom2FitARAction=ZoomToFitAR

zoom2FitARActionClass=com.gensym.cdggui.ui.actions.zoom.
ZoomFitARAction

zoom2FitARIsPopup=true

zoom2FitContext=com.gensym.classes.KbWorkspace

zoom2FitLabel= Variable X:Y aspect ratio

zoom2FitShortCut=F

zoom2FitImage=images/zfit.gif

zoom2FitTooltip=Set the aspect ratio to fit in the window

zoom2FitAction=ZoomToFit

zoom2FitActionClass=com.gensym.cdggui.ui.actions.zoom.ZoomFitAction

zoom2FitIsPopup=true

zoomOutLabel=Zoom Out

zoomOutShortCut=O
102

Customizing the User Interface Using Cyberformer
zoomOutImage=images/zout.gif

zoomOutTooltip=Zoom Out

zoomOutAction=ZoomOut

zoomOutActionClass=com.gensym.cdggui.ui.actions.zoom.ZoomOutAction

zoomOutContext=com.gensym.classes.KbWorkspace

zoomOutIsPopup=true

MENU ITEMS

viewObjectLabel=View Object

viewObjectShortCut=V

viewObjectActiveWhenPaused=false

viewObjectAction=ViewObject

viewObjectActionClass=com.gensym.cdggui.ui.actions.core.ViewAction

viewObjectImage=images/gotodot.gif

viewObjectExclude=java.lang.String com.gensym.util.Symbol com.gensym.util.
Sequence com.gensym.util.Structure com.gensym.classes.ModuleInformation
com.gensym.opex2000.project.Project

viewObjectGoNoGoClass=com.gensym.cdggui.ui.actions.core.ViewGoNoGo

viewObjectIsPopup=true

viewHistoryLabel=History

viewHistoryShortCut=H

viewHistoryActiveWhenPaused=false

viewHistoryAction=ViewHistory

viewHistoryActionClass=com.gensym.cdggui.ui.actions.core.
ShowHistoryAction

viewHistoryImage=images/showhist.gif

#snapshotExport

export= domainmapExport

exportLabel=Export

exportShortCut=E

exportImage=images/noimage.gif

exportUserModeContext=

allFileLabel=Save All file
103

allFileShortCut=A

allFileImage=images/save_as_all.gif

allFileAction=ExportAllFile

allFileActionClass=com.gensym.cdggui.ui.actions.g2server.ExportAllFileAction

moduleExportLabel=Save Module

moduleExportShortCut=M

moduleExportImage=images/modulesave.gif

moduleExportAction=ExportKb

moduleExportActionClass=com.gensym.cdggui.ui.actions.g2server.
ExportKbAction

moduleExportContext=com.gensym.classes.ModuleInformation

moduleExportUserModeContext=ADMINISTRATOR DEVELOPER

snapshotExportLabel=Snapshot

snapshotExportShortCut=S

snapshotExportImage=images/snap.gif

snapshotExportAction=ExportSnapshot

snapshotExportActionClass=com.gensym.cdggui.ui.actions.g2server.
ExportSnapshotAction

domainmapExportLabel=Domain Map

domainmapExportShortCut=D

domainmapExportImage=images/export-map.gif

domainmapExportAction=ExportDomainMap

domainmapExportActionClass=com.gensym.cdggui.ui.actions.opex.
ExportDomainMapAction

#snapshotImport

import= domainmapImport

importLabel=Import

importShortCut=I

importUserModeContext=ADMINISTRATOR DEVELOPER

importImage=images/noimage.gif

moduleImportLabel=Add Module

moduleImportShortCut=M
104

Customizing the User Interface Using Cyberformer
moduleImportImage=images/moduleadd.gif

moduleImportUserModeContext=ADMINISTRATOR DEVELOPER

moduleImportAction=ImportKb

moduleImportActionClass=com.gensym.cdggui.ui.actions.g2server.
ImportKbAction

snapshotImportLabel=Snapshot

snapshotImportShortCut=S

snapshotImportImage=images/snap.gif

snapshotImportUserModeContext=ADMINISTRATOR DEVELOPER

snapshotImportAction=ImportSnapshot

snapshotImportActionClass=com.gensym.cdggui.ui.actions.g2server.
ImportSnapshotAction

domainmapImportLabel=Domain Map

domainmapImportShortCut=D

domainmapUserModeContext=ADMINISTRATOR DEVELOPER

domainmapImportImage=images/import-map.gif

domainmapImportAction=ImportDomainMap

domainmapImportActionClass=com.gensym.cdggui.ui.actions.opex.
ImportDomainMapAction

renameLabel=Rename

renameShortCut=r

renameImage=images/noimage.gif

renameAction=Rename

renameActionClass=com.gensym.cdggui.ui.actions.g2server.
RenameObjectAction

renameGoNoGoClass=com.gensym.cdggui.ui.actions.g2server.
RenameObjectGoNoGo

propsLabel=Properties...

propsIsPopup=true

propsShortCut=P

propsImage=images/properties.gif

propsAction=G2Properties
105

propsActionClass=com.gensym.cdggui.ui.actions.g2server.
ShowPropertiesAction

propsGoNoGoClass=com.gensym.cdggui.ui.actions.g2server.PropertiesGoNoGo

propsUserModeContext=ADMINISTRATOR DEVELOPER

propsExclude=java.lang.String com.gensym.util.Symbol com.gensym.util.
Sequence com.gensym.util.Structure com.gensym.opex2000.project.Project

runTestLabel=Run Test

runTestShortCut=T

runTestImage=images/runtest.gif

runTestAction=RunTest

runTestActionClass=com.gensym.cdggui.ui.actions.symcure.RunTestAction

runTestContext=com.gensym.classes.modules.cdg.CdgSpecificTest

runTestIsPopup=true

webLinkPanelTabLabel=WebLink

webLinkPanelClass=com.gensym.cdggui.CdgHtmlPanel

webLinkPanelTabImage=images/bmcpanel.gif

file Menu definition

file=_newInstance - _newProj openProj - save saveAs - saveProject removeProject
- load allFile moduleExport moduleImport unload - _import _export - rename -
print printPreview - exit

printPreviewLabel=Print Preview...

printPreviewShortCut=r

printPreviewImage=images/noimage.gif

printPreviewAction=PrintPreview

printPreviewActionClass=com.gensym.cdggui.ui.actions.core.
PrintPreviewAction

printPreviewContext=com.gensym.classes.KbWorkspace

printSetupLabel=Print Setup...

printSetupShortCut=s

printSetupImage=images/noimage.gif

printSetupAction=PrintSetup

#printSetupActionClass=com.gensym.cdggui.ui.actions.core.PrintPreviewAction
106

Customizing the User Interface Using Cyberformer
printLabel=Print

printShortCut=P

printImage=images/print.gif

printAction=Print

printActionClass=com.gensym.cdggui.ui.actions.core.PrintAction

printContext=com.gensym.classes.KbWorkspace

senderLabel=Goto Sender

senderShortCut=S

senderImage=images/sender.gif

senderActiveWhenPaused=false

senderAction=GotoSender

senderActionClass=com.gensym.cdggui.ui.GotoSenderAction

senderContext=com.gensym.classes.modules.smh.SmhTransientMessage com.
gensym.classes.modules.cdg.CdgSpecificFault com.gensym.classes.modules.cdg.
CdgSpecificOrPropagation com.gensym.classes.modules.cdg.
CdgSpecificAndPropagation

senderIsPopup=true

mitigaLabel=Suspect Faults

mitigaShortCut=F

mitigaImage=images/mfault.gif

mitigaWhenPaused=false

mitigaAction=SuspectMitigations

mitigaTooltip=See Suspect Faults

mitigaActionClass=com.gensym.cdggui.ui.actions.messagebrowser.
SuspectMitigationsAction

mitigaGoNoGoClass=com.gensym.cdggui.ui.actions.messagebrowser.
CheckForDiagnosis

mitigaContext=com.gensym.classes.modules.smh.SmhTransientMessage com.
gensym.classes.modules.cdg.CdgCorrelationManager

mitigaIsPopup=true

exploreTestsLabel=Candidate Tests

exploreTestsShortCut=T

exploreTestsImage=images/mtests.gif
107

exploreTestsWhenPaused=false

exploreTestsTooltip=See Candidate Tests

exploreTestsAction=Tests

exploreTestsActionClass=com.gensym.cdggui.ui.actions.messagebrowser.
ExploreTestsAction

exploreTestsContext=com.gensym.classes.modules.smh.SmhTransientMessage
com.gensym.classes.modules.cdg.CdgCorrelationManager

exploreTestsIsPopup=true

msgAckLabel=Acknowledge

msgAckrShortCut=A

msgAckImage=images/ack.gif

msgAckActiveWhenPaused=false

msgAckTooltip=Acknowledge the message

msgAckAction=MsgAck

msgAckActionClass=com.gensym.cdggui.ui.actions.messagebrowser.
AckMsgAction

msgAckContext=com.gensym.classes.modules.smh.SmhTransientMessage

msgDelLabel=Delete

msgDelShortCut=D

msgDelImage=images/delete.gif

msgDelActiveWhenPaused=false

msgDelAction=DelMsg

msgDelTooltip=Delete the message from the browser

msgDelActionClass=com.gensym.cdggui.ui.actions.messagebrowser.
DelMsgAction

msgDelGoNoGoClass=com.gensym.cdggui.ui.actions.messagebrowser.
DelMsgGoNoGo

msgDelContext=com.gensym.classes.modules.smh.SmhTransientMessage

msgDetLabel=Detail

msgDetShortCut=T

msgDetImage=images/moreinfo.gif

msgDetActiveWhenPaused=false
108

Customizing the User Interface Using Cyberformer
msgDetAction=MsgDetail

msgDetTooltip=Get further details on this message

msgDetActionClass=com.gensym.cdggui.ui.actions.messagebrowser.
MsgDetailsAction

msgDetContext=com.gensym.classes.modules.smh.SmhTransientMessage

exploreDiagnosisLabel=Diagnosis Detail

exploreDiagnosisShortCut=F

exploreDiagnosisImage=images/diagdet.gif

exploreDiagnosisActiveWhenPaused=false

exploreDiagnosisAction=Diagnosis

exploreDiagnosisTooltip=Get the Diagnosis Detail

exploreDiagnosisActionClass=com.gensym.cdggui.ui.actions.messagebrowser.
ExploreDiagnosisAction

exploreDiagnosisGoNoGoClass=com.gensym.cdggui.ui.actions.messagebrowser.
CheckForDiagnosis

exploreDiagnosisContext=com.gensym.classes.modules.smh.
SmhTransientMessage com.gensym.classes.modules.cdg.
CdgCorrelationManager

exploreDiagnosisIsPopup=true

msgComLabel=Add Comments

msgComShortCut=T

msgComImage=images/addcom.gif

msgComActiveWhenPaused=false

msgComAction=MsgComment

msgComTooltip=Add a Comment to the Message

msgComActionClass=com.gensym.cdggui.ui.actions.messagebrowser.
MsgCommentsAction

msgComContext=com.gensym.classes.modules.smh.SmhTransientMessage

conclusionsLabel=Known Faults

conclusionsShortCut=F

conclusionsImage=images/nfaults.gif

conclusionsActiveWhenPaused=false

conclusionsAction=Conclusions
109

conclusionsTooltip=See Known Faults

conclusionsActionClass=com.gensym.cdggui.ui.actions.messagebrowser.
ConclusionMitigationsAction

conclusionsGoNoGoClass=com.gensym.cdggui.ui.actions.messagebrowser.
CheckForDiagnosis

conclusionsContext=com.gensym.classes.modules.smh.SmhTransientMessage
com.gensym.classes.modules.cdg.CdgCorrelationManager

conclusionsIsPopup=true

newApplicationLabel=New Application

newApplicationShortCut=N

newApplicationImage=images/closebrowser.gif

newApplicationAction=NewApplication

newApplicationActionClass=com.gensym.cdggui.ui.actions.opex.
NewApplicationAction

newApplicationUserModeContext=ADMINISTRATOR

dynamicViewerLabel=Dynamic Viewer

dynamicViewerAction=DynamicEditor

dynamicViewerImage=images/newclass.gif

dynamicViewerShortCut=V

dynamicViewerActionClass=com.gensym.cdggui.ui.actions.core.
ClassSensitivePanelAction

openProjLabel=Open Project

openProjAction=OpenProj

openProjImage=images/opproj.gif

openProjShortCut=O

openProjActionClass=com.gensym.opex2000.actions.project.OpenProjectAction

openProjContext= com.gensym.opex2000.project.Project

addToProjLabel=Add To Project

addToProjAction=AddToProject

addToProjImage=images/addprj.gif

addToProjShortCut=A

addToProjActionClass=com.gensym.opex2000.actions.project.
AddToProjectAction
110

Customizing the User Interface Using Cyberformer
addToProjGoNoGoClass=com.gensym.opex2000.actions.project.
AddToProjectGoNoGo

addToProjIsPopup=true

#addToProjExclude=java.lang.String com.gensym.util.Symbol com.gensym.util.
Sequence com.gensym.util.Structure

addToProjContext=com.gensym.classes.ModuleInformation com.gensym.classes.
KbWorkspace

rmFromProjLabel=Remove From Project

rmFromProjAction=RemoveObjectFromProject

rmFromProjImage=images/rmprj.gif

rmFromProjShortCut=r

rmFromProjActionClass=com.gensym.opex2000.actions.project.
RemoveFromProjectAction

rmFromProjGoNoGoClass=com.gensym.opex2000.actions.project.
RemoveFromProjectGoNoGo

rmFromProjIsPopup=true

rmFromProjContext=com.gensym.classes.ModuleInfo com.gensym.classes.
KbWorkspace

#rmFromProjExclude=java.lang.String com.gensym.util.Symbol com.gensym.
util.Sequence com.gensym.util.Structure

newProj=newPersonalProject newGroupProject

newProjLabel=New Project

newProjShortCut=P

newProjImage=images/newprj.gif

newPersonalProjectLabel=Personal Project

newPersonalProjectShortCut=P

newPersonalProjectImage=images/smallpeprj.gif

newPersonalProjectAction=NewPersProj

newPersonalProjectActionClass=com.gensym.opex2000.actions.project.
NewPersonalProjectAction

newGroupProjectLabel=Group Project

newGroupProjectShortCut=G

newGroupProjectImage=images/smallgrprj.gif
111

newGroupProjectAction=NewGrpProj

newGroupProjectActionClass=com.gensym.opex2000.actions.project.
NewGroupProjectAction

newGroupProjectUserModeContext=ADMINISTRATOR DEVELOPER

newInstance= newApplication - newModule newWS - newItem newObject
newMessage

#- discoveryTemplate

newInstanceLabel=New

newInstanceShortCut=N

newInstanceImage=images/new.gif

discoveryTemplateLabel=Discovery Job

discoveryTemplateShortCut=O

discoveryTemplateImage=images/newdisc.gif

discoveryTemplateAction=NewDiscovery

discoveryTemplateActionClass=com.gensym.opex2000.actions.nm.
NewDiscoveryAction

newObjectLabel=Object...

newObjectShortCut=O

newObjectImage=images/new.gif

newObjectAction=NewObjectInstance

newObjectActionClass=com.gensym.cdggui.ui.actions.core.NewObjectAction

newObjectContext=com.gensym.classes.KbWorkspace

newMessageLabel=Message...

newMessageShortCut=M

newMessageImage=images/mb.gif

newMessageAction=NewMessageInstance

newMessageActionClass=com.gensym.cdggui.ui.actions.core.
NewMessageAction

newMessageContext=com.gensym.classes.KbWorkspace

newItemLabel=Item...

newItemShortCut=I

newItemImage=images/blueball.gif
112

Customizing the User Interface Using Cyberformer
newItemAction=NewItemInstance

newItemActionClass=com.gensym.cdggui.ui.actions.core.NewItemAction

newItemContext=com.gensym.classes.KbWorkspace

newWSLabel=Workspace

newWSShortCut=W

newWSImage=images/new_wksp.gif

newWSAction=NewWorkSpace

newWSActionClass=com.gensym.cdggui.ui.actions.core.NewWSAction

newModuleLabel=Module

newModuleShortCut=D

newModuleImage=images/modules.gif

newModuleAction=NewModule

newModuleActionClass=com.gensym.cdggui.ui.actions.core.NewModuleAction

newModuleUserModeContext=ADMINISTRATOR DEVELOPER

fileLabel=File

fileShortCut=F

filePluginID=UI

connection= openConnection closeConnection

connectionLabel=Connection

connectionShortCut=C

openConnectionLabel=Open

openConnectionShortCut=O

closeConnectionLabel=Close

closeConnectionShortCut=C

opex=relink initializations

opexLabel=OpEx

opexShortCut=O

relinkLabel=Relink Escalation Procedures

relinkShortCut=R

relinkAction=EscalationSpecifications
113

relinkActionClass=com.gensym.cdggui.ui.actions.opex.
EscalationSpecificationsAction

relinkImage=images/relink.gif

initializationsLabel=Initializations...

initializationsShortCut=i

initializationsAction=Initializations

initializationsActionClass=com.gensym.cdggui.ui.actions.opex.
InitializationsAction

initializationsImage=images/devinit.gif

methodsLabel=Methods

methodsAction=GetMethods

methodsImage=images/methods.gif

methodsActionClass=

#This is a temporary feature untill I hook in to mode changes.

#But it will be useful when putting the tool in menu edit mode

reloadLabel=Load Properties

reloadShortCut=R

reloadAction=reloadProperties

reloadActionClass=ReloadPropertiesAction

reloadImage=images/reload.gif

reloadUserModeContext=ADMINISTRATOR

openLabel=Load

openShortCut=L

openImage=images/open.gif

openAction=LoadKb

openActionClass=com.gensym.cdggui.ui.actions.g2server.LoadKbAction

loadLabel=Load

loadShortCut=L

loadImage=images/open.gif

loadAction=LoadKb

loadActionClass=com.gensym.cdggui.ui.actions.g2server.LoadKbAction
114

Customizing the User Interface Using Cyberformer
loadUserModeContext=ADMINISTRATOR DEVELOPER

unloadLabel=Remove Module

unloadShortCut=R

unloadImage=images/modulerem.gif

unloadAction=UnloadKb

unloadActionClass=com.gensym.cdggui.ui.actions.g2server.UnloadKbAction

unloadContext=com.gensym.classes.ModuleInformationImpl

unloadUserModeContext=ADMINISTRATOR DEVELOPER

#new=newClassDefinition

saveLabel=Save

saveShortCut=S

saveImage=images/save.gif

saveActionClass=com.gensym.cdggui.ui.actions.g2server.SaveModuleAction

saveAction=Save

saveAsLabel=Save As...

saveAsShortCut=A

saveAsImage=images/noimage.gif

saveAsActionClass=com.gensym.cdggui.ui.actions.g2server.
SaveModuleAsAction

saveAsAction=SaveAs

saveProjectLabel=Save Project As...

saveProjectShortCut=P

saveProjectImage=images/saveproj.gif

saveProjectActionClass=com.gensym.opex2000.actions.project.
SaveProjectAsAction

saveProjectAction=SaveProjectAs

saveProjectContext=com.gensym.opex2000.project.Project

removeProjectLabel=Remove Project

removeProjectShortCut=R

removeProjectImage=images/delproj.gif

removeProjectActionClass=com.gensym.opex2000.actions.project.
RemoveProjectAction
115

removeProjectAction=RemoveProject

removeProjectContext=com.gensym.opex2000.project.Project

RemoveProjectGoNoGoClass=com.gensym.opex2000.actions.project.
RemoveProjectGoNoGo

exitLabel=Exit

exitShortCut=x

exitAction=Exit

exitActionClass=com.gensym.cdggui.ui.actions.core.ExitAction

exitTooltip=Closedown this client

exitImage=images/exit.gif

project=descProj openThisProj closeThisProj

projectLabel=Project

projectShortCut=p

descProjLabel=Describe Project

descProjAction=DescribeProject

descProjShortCut=D

descProjActionClass=com.gensym.opex2000.actions.project.
ProjectDescribeAction

descProjContext=com.gensym.opex2000.project.Project

descProjIsPopup=true

openThisProjLabel=Make Active project

openThisProjAction=ProjectOpen

openThisProjImage=images/opproj.gif

openThisProjShortCut=A

openThisProjActionClass=com.gensym.opex2000.actions.project.
ProjectOpenAction

openThisProjContext=com.gensym.opex2000.project.Project

openThisProjIsPopup=true

closeThisProjLabel=Deactive project

closeThisProjAction=ProjectClose

closeThisProjImage=images/opproj.gif

closeThisProjShortCut=D
116

Customizing the User Interface Using Cyberformer
closeThisProjContext=com.gensym.opex2000.project.Project

closeThisProjActionClass=com.gensym.opex2000.actions.project.
ProjectCloseAction

closeThisProjIsPopup=true

#tglControls

view =viewHistory domainMap zoomIn zoomOut zoom2Fit zoom2FitAR - log
messages - toggleDesc togglePallets tglControls [X]toolbarDisplay
[X]statusDisplay []tglNavigatorMode - _desktopTabs

toolbarDisplayLabel=ToolBar

toolbarDisplayAction=ToggleToolBar

toolbarDisplayImage=images/tools.gif

toolbarDisplayShortCut=B

toolbarDisplayActionClass=com.gensym.cdggui.ui.actions.core.TglToolBar

statusDisplayLabel=Status Bar

statusDisplayAction=ToggleStatusBar

statusDisplayImage=images/statbari.gif

statusDisplayShortCut=S

statusDisplayActionClass=com.gensym.cdggui.ui.actions.core.TglStatusBar

desktopTabs=FILE::uitabs::desktopTabs

desktopTabsLabel=Desktop Tabs main

desktopTabsShortCut=k

desktopTabsImage=images/ltabs.gif

uiMode=FILE::g2UserModes::uiMode

uiModeLabel=Mode

uiModeShortCut=M

uiModeImage=images/mode.gif

window=FILE::windowMenu::window

windowLabel=Window

windowShortCut=w

logLabel=Logbook

logShortCut=L

logImage=images/lb.gif
117

logAction=ShowLogBook

logActionClass=com.gensym.cdggui.ui.actions.g2server.ShowLogBookAction

viewMessagesLabel=View Messages

viewMessagesTooltip=View the messages of the selected message browser

viewMessagesShortCut=s

viewMessagesImage=images/dlg.gif

viewMessagesAction=ViewMessages

viewMessagesContext=com.gensym.classes.modules.scroll.ScBrowserTemplate

viewMessagesActionClass=com.gensym.cdggui.ui.actions.messagebrowser.
ViewMessagesAction

viewMessagesActiveWhenPaused=false

viewMessagesGoNoGoClass=com.gensym.cdggui.ui.actions.messagebrowser.
ViewMessagesGoNoGo

viewMessagesIsPopup=true

messagesLabel=Message Board

messagesShortCut=M

messagesImage=images/mb.gif

messagesAction=ShowMessageBoard

messagesActionClass=com.gensym.cdggui.ui.actions.g2server.
ShowMessageBoardAction

messagesActiveWhenPaused=false

domainMapLabel=Domain Map

domainMapShortCut=D

domainMapImage=images/webLink.gif

domainMapAction=GetDomainMap

domainMapActionClass=com.gensym.cdggui.ui.actions.opex.
GetDomainMapAction

domainMapActiveWhenPaused=false

viewLabel=View

viewmage=images/view.gif

viewShortCut=V

viewPluginID=UI
118

Customizing the User Interface Using Cyberformer
diagramFolderShortCut=D

diagramFolderLabel=Diagram Folder

diagramFolderImage=images/dfldr.gif

diagramFolderAction=newDiagramFolder

diagramFolderActionClass=com.gensym.cdggui.ui.actions.symcure.
NewDiagramFolderAction

diagramFolderContext=com.gensym.classes.modules.cdg.CdgDiagramFolder
com.gensym.classes.KbWorkspace

diagramFolderIsPopup=true

diagramFolderPluginID=SYMCURE

newGenericEventShortCut=E

newGenericEventLabel=Event Node

newGenericEventAction=newFault

newGenericEventActionClass=com.gensym.cdggui.ui.actions.symcure.
NewFaultAction

newGenericEventContext=com.gensym.classes.modules.cdg.CdgDiagramFolder
com.gensym.classes.KbWorkspace

newGenericEventIsPopup=true

newNodeViewLabel=Node View

newNodeViewShortCut=V

newNodeViewAction=newNodeView

newNodeViewActionClass=com.gensym.cdggui.ui.actions.symcure.
NewViewAction

newNodeViewContext=com.gensym.classes.modules.cdg.CdgDiagramFolder
com.gensym.classes.KbWorkspace

newNodeViewIsPopup=true

explainContext=com.gensym.classes.modules.cdg.CdgSpecificEvent

newClassDefinitionLabel=Class

newClassDefinitionShortCut=C

newClassDefinitionImage=images/newclass.gif

#newClassDefinitionAction=newClass

#newClassDefinitionActionClass=com.gensym.cdggui.ui.actions.core.
NewClassDefinitionAction
119

HELP MENU

help=about

helpLabel=Help

helpShortCut=H

helpPluginID=UI

aboutLabel=About

aboutShortCut=A

aboutAction=About

aboutActionClass=com.gensym.cdggui.ui.actions.core.AboutAction

aboutImage=images/ico1.jpg

ITEM MENU

#

The _ tells the system that the menu is a sub menu

#

_specify - addToProj rmFromProj

item= viewObject props configureBlock - sender target - trueValue falseValue
runTest explorer - configuration detectability isolatability getSig - addToProj
rmFromProj

#item= viewObject props - sender target - trueValue falseValue runTest
explorer - configuration detectability isolatability getSig - descProj addToProj
rmFromProj

#status

goBackLabel=Go Back

goNextLabel=Go Next

goBackShortCut=B

goNextShortCut=N

goBackImage=images/back.gif

goNextImage=images/next.gif

goBackAction=back

goBackActionClass=com.gensym.cdggui.ui.actions.core.HistoryBackAction

goNextAction=next

goNextActionClass=com.gensym.cdggui.ui.actions.core.HistoryNextAction
120

Customizing the User Interface Using Cyberformer
itemLabel=Item

itemShortCut=I

itemPluginID=UI

wizards=newApplication diagramFolder newGenericEvent newNodeView

wizardsLabel=Wizards

newApplication=W

wizardsWhenPaused=false

wizardsImage=images/create.gif

The () prefix tells the system to build radio buttons

the one with (*) is the defdault selection

#

specify= ()trueValue (*)falseValue

specifyImage=images/ballcyan.gif

specifyLabel=Specify Value

specifyShortCut=S

specifyContext=com.gensym.classes.modules.cdg.CdgSpecificEvent

trueValueLabel=Specify True

trueValueShortCut=T

trueValueContext=com.gensym.classes.modules.cdg.CdgSpecificEvent

trueValueAction=SpecifyTrue

trueValueActiveWhenPaused=false

trueValueActionClass=com.gensym.cdggui.ui.actions.symcure.
SpecifyTrueAction

trueValueImage=images/ballred.gif

trueValueIsPopup=true

falseValueLabel=Specify False

falseValueShortCut=F

falseValueContext=com.gensym.classes.modules.cdg.CdgSpecificEvent

falseValueActiveWhenPaused=false

falseValueAction=SpecifyFalse
121

falseValueActionClass=com.gensym.cdggui.ui.actions.symcure.
SpecifyFalseAction

falseValueImage=images/ballgreen.gif

falseValueIsPopup=true

explorerLabel=Diagnosis Details

explorerShortCut=D

explorerActiveWhenPaused=false

explorerAction=UploadToNewBrowser

explorerTooltip=Get Diagnosis Details

explorerActionClass=com.gensym.cdggui.ui.actions.symcure.
UploadToNewBrowserAction

explorerImage=images/mtb.gif

explorerContext=com.gensym.classes.modules.cdg.CdgCorrelationManager

gotoLabel=Goto

gotoShortCut=G

gotoAction=GotoItem

gotoActionClass=com.gensym.cdggui.ui.actions.core.GotoItemAction

gotoImage=images/goto.gif

gotoActiveWhenPaused=false

gotoAdditionalSupportClass=com.gensym.cdggui.ui.indicators.core.
GotoItemSupport

gotoRequiresSelection=true

#means that if the selection is null, dont apply this option

gotoExclude=java.lang.String com.gensym.util.Symbol com.gensym.util.
Sequence com.gensym.util.Structure null.class

targetLabel= Goto Target

targetShortCut=T

targetAction=GotoTarget

targetActiveWhenPaused=false

targetImage=images/target.gif

targetActionClass=com.gensym.cdggui.ui.actions.opac.GotoTargetAction
122

Customizing the User Interface Using Cyberformer
targetContext=com.gensym.classes.modules.cdg.CdgSpecificFault com.gensym.
classes.modules.cdg.CdgSpecificOrPropagation com.gensym.classes.modules.
cdg.CdgSpecificAndPropagation com.gensym.classes.modules.smh.
SmhTransientMessage

targetIsPopup=true

senderLabel=Goto Sender

senderShortCut=S

senderImage=images/sender.gif

senderActiveWhenPaused=false

senderAction=GotoSender

senderActionClass=com.gensym.cdggui.ui.actions.opac.GotoSenderAction

senderContext=com.gensym.classes.modules.cdg.CdgSpecificFault com.gensym.
classes.modules.cdg.CdgSpecificOrPropagation com.gensym.classes.modules.
cdg.CdgSpecificAndPropagation com.gensym.classes.modules.smh.
SmhTransientMessage com.gensym.cdggui.ui.OpExInitializationsFrame

senderIsPopup=true

detectabilityLabel=Check Detectability

detectabilityShortCut=D

detectabilityActiveWhenPaused=false

detectabilityImage=images/detect.gif

detectabilityAction=Detectability

detectabilityContext=com.gensym.classes.modules.cdg.CdgGenericFault com.
gensym.classes.modules.cdg.CdgDiagramFolder

detectabilityActionClass=com.gensym.cdggui.ui.actions.symcure.
DetectabilityAction

detectabilityIsPopup=true

isolatabilityLabel=Check Isolatability

isolatabilityShortCut=I

isolatabilityAction=Isolatability

isolatabilityImage=images/iso.gif

isolatabilityActiveWhenPaused=false

isolatabilityActionClass=com.gensym.cdggui.ui.actions.symcure.
IsolatabilityAction

isolatabilityContext=com.gensym.classes.modules.cdg.CdgDiagramFolder
123

isolatabilityIsPopup=true

configurationLabel=Check Configuration

configurationShortCut=C

configurationActiveWhenPaused=false

configurationImage=images/check.gif

configurationAction=Configuration

configurationActionClass=com.gensym.cdggui.ui.actions.symcure.
ConfigurationAction

configurationGoNoGoClass=com.gensym.cdggui.ui.actions.symcure.
CheckConfigGoNoGo

configurationIsPopup=true

configurationExclude=java.lang.String com.gensym.util.Symbol com.gensym.
util.Sequence com.gensym.util.Structure com.gensym.classes.modules.cdg.
CdgSpecificFault com.gensym.classes.modules.cdg.CdgCorrelationManager
com.gensym.classes.modules.cdg.CdgSpecificOrPropagation com.gensym.
classes.modules.cdg.CdgSpecificAndPropagation com.gensym.classes.
KbWorkspace

configurationContext= com.gensym.classes.modules.cdg.CdgDiagramFolder
com.gensym.classes.modules.cdg.CdgGenericFault com.gensym.classes.modules.
cdg.CdgGenericSymptom com.gensym.classes.modules.cdg.CdgGenericTest

//SYMCURE SPRCIFICS

//EOF

MENU

tools= find clean - _session - relink initializations - properties

#tools= find clean _opex - properties

#- showInternals

systemLabel=System Tables

systemShortCut=T

systemImage=images/ide.gif

#_connection

session= _uiMode _g2

sessionLabel=Session Details

sessionShortCut=D

pallets= addgroup addpalette
124

Customizing the User Interface Using Cyberformer
palletsLabel=Palettes

palletsShortCut=P

propertiesLabel=Default Properties

propertiesImage=images/pallets.gif

propertiesAction=UIProperties

propertiesShortCut=D

propertiesActionClass=com.gensym.cdggui.ui.actions.core.UIPropertiesAction

MIBBrowserLabel=MIB Browser

MIBBrowserImage=images/pallets.gif

MIBBrowserAction=ShowMibBrowser

MIBBrowserShortCut=M

MIBBrowserActionClass=com.gensym.opex2000.actions.adventnet.
ShowMibBrowserAction

discovery=StartAutoDiscovery StopAutoDiscovery StatAutoDiscovery
PropertiesOfDiscovery

discoveryLabel=Discovery

discoveryShortCut=D

discoveryPluginId=AUTODISCOVERY

showWanLabel=WAN

showWanTooltip=W

showWanTooltip=Show WAN Schematic

showWanAction=ShowWAN

showWanImage=images/wan.gif

showWanActionClass=com.gensym.opex2000.actions.nm.ShowWANAction

showWanPluginId=AUTODISCOVERY

#showWanGoNoGO=

showWanUserModeContext= ADMINISTRATOR DEVELOPER

StartAutoDiscoveryLabel=Start Auto Discovery

StartAutoDiscoveryImage=images/run.gif

StartAutoDiscoveryTooltip=Start Auto Discovery

StartAutoDiscoveryShortCut=S
125

StartAutoDiscoveryAction= StartDiscovery

StartAutoDiscoveryActionClass=com.gensym.opex2000.actions.nm.
StartDiscoveryAction

#StartAutoDescoveryGoNoGO=

StartAutoDiscoveryUserModeContext= ADMINISTRATOR DEVELOPER

StopAutoDiscoveryLabel=Stop Auto Discovery

StopAutoDiscoveryImage=images/stop.gif

StopAutoDiscoveryTooltip=Stop Auto Discovery

StopAutoDiscoveryShortCut=T

StopAutoDiscoveryAction= StopDiscovery

StopAutoDiscoveryActionClass=com.gensym.opex2000.actions.nm.
StopDiscoveryAction

#StopAutoDiscoveryGoNoGO=

StopAutoDiscoveryUserModeContext= ADMINISTRATOR DEVELOPER

StatAutoDiscoveryLabel=Auto Discovery Status

StatAutoDiscoveryImage=images/wanstat.gif

StatAutoDiscoveryTooltip=Auto Discovery Status

StatAutoDiscoveryShortCut=u

StatAutoDiscoveryAction=DiscoveryStatus

StatAutoDiscoveryActionClass=com.gensym.opex2000.actions.nm.
DiscoveryStatusAction

#StopAutoDiscoveryGoNoGO=

StatAutoDiscoveryUserModeContext= ADMINISTRATOR DEVELOPER

PropertiesOfDiscoveryLabel=Properties

PropertiesOfDiscoveryImage=images/properties.gif

PropertiesOfDiscoveryTooltip=See Properties

PropertiesOfDiscoveryShortCut=p

PropertiesOfDiscoveryAction=DiscoveryProperties

PropertiesOfDiscoveryActionClass=com.gensym.opex2000.actions.nm.
DiscoveryPropertiesAction

#PropertiesOfDiscoveryGoNoGO=

PropertiesOfDiscoveryUserModeContext= ADMINISTRATOR DEVELOPER
126

Customizing the User Interface Using Cyberformer
configureLabel=Configure Palettes

configureImage=images/pallets.gif

configureAction=ConfigurePalettes

configureActionClass=com.gensym.cdggui.ui.actions.core.
ConfigurePalettesAction

addgroupLabel=Add Palette Group

addgroupAction=AddPaletteGroup

addgroupActionClass=com.gensym.cdggui.ui.actions.core.
AddPaletteGroupAction

addpaletteLabel=Add Palette

addpaletteAction=AddPalette

addpaletteActionClass=com.gensym.cdggui.ui.actions.core.AddPaletteAction

controlLabel=Server Control

controlShortCut=S

controlAction=G2ServerControl

controlImage=images/led.gif

controlUserModeContext= ADMINISTRATOR DEVELOPER

controlActionClass=com.gensym.cdggui.ui.actions.g2server.
G2ServerControlAction

showInternalsLabel=Details

showInternalsShortCut=D

showInternalsAction=ShowInternals

showInternalsImage=images/led.gif

toolsLabel=Tools

toolsShortCut=T

toolsPluginID=UI

tglNavigatorModeLabel=Navigator Mode

tglNavigatorModeShortCut=g

tglNavigatorModeAction=ToggleNavigatorMode

tglNavigatorModeImage=images/nav.gif

tglNavigatorModeActionClass=com.gensym.cdggui.ui.actions.core.TglNavMode

toggleDescLabel=Toggle Description
127

toggleDescShortCut=p

toggleDescAction=ToggleDesc

toggleDescImage=images/a123.gif

toggleDescActionClass=com.gensym.cdggui.ui.actions.core.TglDescAction

togglePalletsLabel=Toggle Controls

togglePalletsShortCut=N

togglePalletsAction=TogglePallets

togglePalletsImage=images/a124.gif

togglePalletsActionClass=com.gensym.cdggui.ui.actions.core.TglPalletsAction

findLabel=Find

findShortCut=F

findAction=Find

findImage=images/find.gif

findActionClass=com.gensym.cdggui.ui.actions.core.FindAction

notepadLabel=Notepad

notepadShortCut=N

notepadAction=Notepad

notepadImage=images/np.gif

notepadActionClass=com.gensym.cdggui.ui.NotepadAction

cleanLabel=Clean Up Model

cleanShortCut=C

cleanAction=Clean

cleanImage=images/clear.gif

cleanActionClass=com.gensym.cdggui.ui.actions.symcure.CleanAction

cleanContext=com.gensym.classes.modules.cdg.CdgDiagramFolder

cleanIsPopup=true

optionsLabel=IDE Options

optionsShortCut=I

optionsAction=IDE

optionsImage=images/tools.gif

optionsActionClass=com.gensym.cdggui.ui.actions.core.IDEOptionsAction
128

Customizing the User Interface Using Cyberformer
#

edit Menu definition

edit=cut copy paste delete

editLabel=Edit

editShortCut=E

cutLabel=Cut

cutAction=cut-to-clipboard

cutImage=images/cut.gif

cutShortCut=T

copyLabel=Copy

copyAction=copy-to-clipboard

copyImage=images/copy.gif

copyShortCut=C

pasteLabel=Paste

pasteAction=paste-from-clipboard

pasteImage=images/paste.gif

pasteShortCut=P

deleteLabel=Delete

deleteAction=Undo

deleteShortCut=t

deleteAction=Delete

deleteActionClass=com.gensym.cdggui.ui.DeleteAction

deleteImage=images/delete.gif

g2Label=Servertt

g2ShortCut=S

g2Image=images/sd.gif

g2=FILE::g2Control::g2

g2PluginID=G2

##################################

PALLETS

##################################
129

opacPalletTabLabel=OPAC

opacPallet =FILE::opacPalette::opacPallet

opacPalletPluginID=OPAC

telecomsPalletTabLabel=Network

telecomsPallet=FILE::telcoPalette::telecomsPallet

telecomsPalletPluginID=OPEX

symcurePallet=FILE::symcurePalette::symcurePallet

symcurePalletTabLabel=SymCure

symcurePalletPluginID=SYMCURE

opexObjects=FILE::opexPalette::opexObjects

opexObjectsTabLabel=OpEx

opexObjectsPluginID=OPEX

g2SystemPallet=FILE::g2corePalette::g2SystemPallet

g2SystemPalletTabLabel=Core G2 Objects

g2SystemPalletPluginID=G2

newTooltip=Create a new file

openTooltip=Open folder
130

5

Getting Started
Describes how to start building Integrity applications, the objects created in a new
application, and the Integrity menu system; also how to interact with G2 objects.
It also provides a tutorial on how to build a sample application.

Introduction 131

Creating a New Application 132

Using the Integrity Setup Dialog 133

Building a Simple Domain Map 139

Working with G2 Objects 144

Other Integrity Modules 144

Adding Integrity Functionality to an Existing Application 145

Out-of-Box Functionality 145

Introduction
To create an Integrity application, you must first install G2, the Integrity Module,
and any other modules you have purchased. See the installation sections in the
“Overview” chapter of this manual for information regarding the installation of
these products.

This chapter provides a tutorial that leads you through the creation of a new
Integrity application. The Integrity menu system and the application objects
created in a new application are described at the end of this chapter.
131

Creating a New Application
Before creating a new application, an understanding of modular structure is
required. Ensure that consistent modularization within an application is
maintained. For more information on consistent modularization and module
hierarchies, refer to the section “Creating a Module Hierarchy” in the G2 Reference
Manual.

The top-level module is the module that provides all the functionality for running
the Integrity UI. This module includes all of the necessary modules to develop
and run your application

To create a new application:

1 Choose File > New.

All libraries currently installed have a check mark next to the library name.

2 Review the checked libraries and ensure the Integrity and SNMP Interfaces
libraries are selected; deselect any other library you do not wish to be
included in your application.

3 Enter a name for your application in the Project Name text box.

4 Click OK.

Once the new application has been created and saved, it is loaded into the G2
server. You are now ready to start building your application domain objects and
other items.

Package Top-Level Module

Integrity package integrity.kb
132

Using the Integrity Setup Dialog
Using the Integrity Setup Dialog
The Integrity Setup Dialog helps you to get your application up and running. To
access the Integrity Setup dialog, first switch to Developer mode, then click the
Setup button in the Integrity toolbar. Here is the Setup dialog:

The Setup dialog helps you set up these aspects of your application: naming your
application, importing MIBs, optionally processing the PPD file, starting the
necessary SNMP bridges, and importing a domain from an SQL-compliant
database. The sections below describe these four steps.

Importing Management Information Base (MIBs)

The Import MIBs feature allows you to import MIBs of the equipment you want
to monitor and manage. The importer is based on the AdventNet libraries and
requires the g2MibParser bridge to be running. If the MIB you are importing
requires other MIB files, the Import MIBs feature imports those as well. Note that
133

the supporting MIB files must be located in the same directory as the imported
MIB file. Here is the Import MIBs tab page:

Before processing the MIB file, the wizard must start the g2MibParser bridge. The
Parser value in the dialog should already display the correct path for the MIB
Parser batch file.

To launch the MIB parser bridge, click the Launch Parser button. When the bridge
has been launched, the status message indicates that the bridge is connected.

To parse MIB files, specify the MIB File Path location and the MIB File to Parse by
clicking the "..." button to the right of the File text box. This will launch a file
selection dialog allowing you to navigate to the MIB file. Click the Process MIB
button to process the selected MIB file. Repeat this process for each MIB file that
you need to parse.

Note The MIB File Path must be specified as an absolute path.

The wizard places the parsed information on a subworkspace of a gmib-mib-
reader object located on the Application Objects > Translation Objects workspace.
If you need to parse this file again, you can repeat the above process or you can
choose gmib parse mib on the gmib-mib-reader object.

Once you have processed all MIB files, click the Process PPD File tab.
134

Using the Integrity Setup Dialog
Process PPD File

For HP OpenView users, you can optionally process the trapd.conf file to
produce the trapd.conf.ppd file. This file contains trap information and message
format specifications. If you do not use HP OpenView, you can also use this
feature to create the file by hand. Consult the SNMP User’s Guide for details. This
figure shows the Process PPD File tab page:

To process the trapd.conf.ppd file, specify the name and location of the file. If
the file has already been processed, enable the Modify Existing Definitions option
to modify definitions instead of creating new ones. To process the file, click the
Process PPD File button.

Note The wizard deletes all existing trap instances of the object before creating new
object definitions.

Once the trapd.conf.ppd file is processed, click the SNMP Setup tab.
135

SNMP Setup

The SNMP Setup feature allows you to start both the Sender SNMP bridge and
the Receiver SNMP bridge. You can start and shutdown each bridge process
separately.

Note If the bridge is installed on a remote machine, then you must start the bridge and
connect manually. The GSI variables for starting and connecting the bridge are
located in the Navigator under System Settings > Interfaces > SNMP.

Here is the SNMP Setup tab page:

The SNMP Bridge Location text box should already have the complete path and
startup batch file; however, if this needs to be changed, click the "..." button to
select the StartJsnmpBridge.bat file.

Specify the Receiver and Sender Hostname and Port Number to be the host name
and port number for each bridge process.

Note If you are using the Java SNMP Generic Bridge, enable the Java Bridge option to
enable the automatic processing of trap information. For more information, see
Out-of-Box Functionality.

To start the SNMP Receiver bridge, click the Start Receiver button. To start the
SNMP Sender bridge, click the Start Sender button. The bridge status appears
above each button. To shut down either bridge, click the appropriate Shutdown
button.
136

Using the Integrity Setup Dialog
Once the bridges are running and connected, click the Domain Import tab.

Domain Import

The Domain Import feature uses the G2-ODBC Bridge to import domain
information from an SQL-compliant database. You have three options for
importing domain information: Regenative’s Translayer, Microsoft’s Visio
Enterprise Network Tools, and an ODBC database. For information about the
required format of the ODBC database, see the DXI3DB chapter in the Integrity
User’s Guide. Another option of importing your domain is through the import of
an HP OpenView saved exported file. If the ovet_topoquery getAllNodes -ShowIF
command was also used to export HP OpenView’s Layer 2 information, this file
can also be imported.

Note If the bridge is installed on a remote machine, then you must start the bridge and
connect manually.

The Domain Import tab is shown below:

The Domain Import tab is divided into two sections: ODBC Setup and Import and
HPOV Setup and Import.

ODBC Setup and Import

Before you can import the domain information, you must create an ODBC data
source for the database to import. Refer to Microsoft Help for information on how
to create an ODBC data source.
137

Once the ODBC data source exists, you must start the G2-ODBC Bridge. Specify
the ODBC Bridge Location and ODBC Bridge Name to refer to the directory
location of the ODBC bridge executable, which is named
run-g2-odbc.bat and is located in the odbc\bin directory of the G2 installation
directory. Be sure to specify the ending separator in the path name, for example,
C:\Program Files\Gensym\g2-2011\odbc\bin\.

Click the Start ODBC Bridge button to start the bridge. To shut down the bridge,
click the Shutdown ODBC Bridge button.

Import from Translayer

This feature allows you to import from an ODBC data source that was populated
by Regenative’s Translayer product. Translayer’s auto-discovery discovers
network items, WMI information, and Windows user accounts. All of this
information is imported into Integrity.

Import from MS Visio ENT

This feature allows you to import from an ODBC data source that was populated
by Microsoft’s Visio Enterprise Network Tools product. Visio ENT’s auto-
discovery discovers network items and WMI information. All of this information
is imported into Integrity.

Importing from other ODBC Sources

Allows you to import from an ODBC data source populated by means other than
Translayer or Microsoft Visio.

Configuration of the ODBC Import

Specify the Bridge Hose and Bridge Port of the G2-ODBC Bridge process. Specify
the Username and Password for accessing the ODBC data source. Specify the
Data Source to be the name of the ODBC data source you created through
Windows.

To connect to the ODBC bridge and import the data, click the Start Domain
Import button. When Integrity connects to the bridge, a workspace appears
showing readout tables of the types of information being imported. The instances
that are created are placed in a repository object.

HPOV Setup and Import

This section allows you to import a domain map based on an export of an
HP OpenView map. If the Layer 2 information was also exported, this
information can also be imported and used by Integrity. To be compatible with
the Layer 2 import facility of Integrity, be sure the ovet_topoquery command uses
the getAllNodes and -ShowIF command arguments.
138

Building a Simple Domain Map
Here is a description of the information required by HPOV Setup and Import:

• Translations Location — Specifies the location of translation objects used to
translate between the HPOV specified fields and Integrity objects. You should
not have to create additional translation objects for this section because
Integrity already provides these translations.

• Default Class To Create — If no translation object exists for the imported
object, an instance of this class will be created.

• Domain Map Destination — Specifies the destination of the imported objects.

• New Class Destination — Specifies the location of new classes created by the
import process.

• Export Retrieve Procedure — Specifies the retrieve procedure to be called to
generate the HPOV export file. This is only used when running the G2 server
on the same machine as HPOV.

• Export Retrieve Command — Specifies the export command to issue to
generate an export file from HPOV. This is only used when running the G2
server on the same machine as HPOV.

• Exported File Already Exists — If selected, the Export Retrieve Procedure and
Command will not be executed and will import the file specified in the Export
File Location.

• Export File Location — Specifies the direct path of the export HPOV file.

• Import Layer 2 — If selected, the Layer 2 File Location is processed to import
HPOV Layer 2 information.

• Layer 2 File Location — Specifies the exported Layer 2 file. This file must be
generated by the following command: ovet_topoquery getAllNodes -ShowIF.

To start the import, click the Start HPOV Domain Import button. During the
import, a progress notification dialog is displayed and is dismissed when the
import process has completed.

Building a Simple Domain Map
The first step to build an Integrity application is to build a domain map. You can
obtain a domain map for use in Integrity by:

• Building the domain map manually.

• Import an existing domain map, for example, from HP OpenView.
139

• Import an SQL-compliant database that contains your domain objects,
including:

– A pre-built database.

– Auto-discovery results from a TransLayer session.

– Auto-discovery results from a Microsoft Visio Enterprise Network Tools
session.

Building a domain map manually helps you to understand how Integrity works
with the domain map. In this tutorial you will build the domain map
manually by:

1 Creating subclasses from the Integrity Foundation Classes.

2 Creating instances of those classes.

3 Placing the instances on a domain map.

Creating Domain Map Subclasses

Domain objects are created from subclasses of the Integrity Foundation Classes
opfo-managed-object and opfo-containment-object, both of which are subclasses
of opfo-domain-object.

• A containment object is an object whose sole purpose is to contain other
objects on its subworkspace. Examples of typical containment objects are
states, cities, and rooms.

• A managed object is an object that represents an external object managed by
the application. Examples of managed objects are routers, computers, and
sensors. Managed objects can also contain other objects but it is not their sole
purpose.

In this example, you must create a subclass:

• test-computer - used to create the domain objects that represent the external
objects you are managing in the application. This is a subclass of opfo-
managed-object.

First, create the TEST-TOP-NODE subclass.

To create the subclass:

1 Display the Toolbox - G2 palette by selecting View > Toolbox G2.

2 Select the Definitions and Relations palette and select Class Definition. Move
your mouse and drop it on a new workspace you have created.
140

Building a Simple Domain Map
3 Right-click on the new object and select table (or double-click on the new
object) to display the table.

4 Enter the class name for the new object subclass, TEST-COMPUTER, then enter
opfo-managed-object for the Direct Superior Classes.

Creating Domain Objects

Now that you have defined the application subclass, you are ready to create
instances and place them on the domain map.

To create a domain map container:

1 From the Navigator, select System Models. Right-click on Network Diagrams
and select “New Instance...”. This will create an instance of the gndo-network-
topology class

2 When you create a new instance, the properties dialog is displayed for the
new object.

3 Enter a name of a-top-node for the Domain Object Name and select the OK
button. After pressing the OK button, you will notice in the Navigator the
addition and new name of the gndo-network-topology object.

4 From the Navigator right-click on a-top-node and select Show Details. this is
the subworkspace of a-top-node.

You defined the subclass test-computer to create instances of managed objects. At
this point you can now create instances of your test-computer class and place
them on the a-top-node subworkspace.

Working with Modules

G2 allows you to organize your knowledge base into high-level units called
modules. To gain a thorough understanding of modules and how they are used
in G2, refer to the G2 Reference Manual. The menu option Modules provides
facilities for working with G2 modules.
141

Creating Modules

To create a new module in an application

1 Choose File > KB Modules > New.

2 Type in the name of the new module then click OK.

Merging Modules

To merge a module into an application:

1 Choose File > KB Modules > Merge.

2 Locate the module by using the file selection button "..." to the right of the File
Name text box.

3 Select any of the following options:

• Resolve Conflicts Automatically - When this option is selected, the
merging routine automatically checks the existing application for naming
conflicts which can occur as a result of the objects coming into the
application from the new module. It is best to select this option.

• Bring Formats up to Date - This option applies the formats of the current
version of G2 to all objects merged into the application. It is generally not
recommended that you select this option unless you want to mix items
developed under different G2 versions.

• Install System Tables of Merged KB - When you want to bring a module
into an application and designate it as the top-level module of the
application you should select this option.

Renaming Modules

To rename a module:

1 Choose File > KB Modules > Rename.

2 Enter a name for the module in the New Name text box.

3 Select a module from the Module To Rename list and click OK.

Saving Modules

To save an individual module:

1 Choose File > KB Modules > Save.

2 Enter or select the File name, and select the Module to save.
142

Building a Simple Domain Map
3 Select any of the following options from the bottom of the file selection dialog:

• Including all required modules — Saves all modules required by the
module you selected above.

• Save all modules to one file — Saves all modules regardless of the selected
module above into a single file.

Deleting Modules

To delete a module from an application:

1 Choose File > KB Modules > Delete.

2 Select the name of the module you want to delete from the dialog window.

3 Select any of the following options:

• Delete Associated Workspaces — This option deletes all workspaces
associated with the module you choose to delete. This option is usually
selected.

• Remove References to Module in Hierarchy — This option removes all
references to the deleted module in other modules in the module
hierarchy. If deleting a module leaves another module that is not required
by any other modules, a warning message is posted.

G2 Mode

G2 allows you to declare distinct categories of usage, called user modes, for your
application. Each user mode represents a style of interaction with the
application’s knowledge. The meaning of each style depends on how your
application organizes its knowledge and the user interface to it.

Five modes are defined on the Tools > User Mode menu item:

• Administrator

• System-Administrator

• Developer

• Modeler

• Operator

Administrator and System-Administrator modes offer the least restrictions on
what you can do in the application. Each mode becomes successively more
restrictive. In general, you use Developer mode when you are developing your
application. In this mode, all buttons function as buttons. In Administrator mode,
when you click on a button you view its item menu. So, when you want to modify
or define behaviors of buttons, you will need to switch to Administrator mode.
143

The behavior of Operator mode is defined by the application. The behavior of the
different modes and the details of item and instance configuration is described in
the G2 Reference Manual.

Working with G2 Objects
G2 provides a flexible programming environment. You can customize the
appearance and user interface of the all the workspaces and items you create in
your application. For a complete description of the G2 environment, see the
G2 Reference Manual.

Other Integrity Modules
When you create a new application, these additional modules are included in
your application.

These modules are:

• Integrity family

– symcure.kb — The Integrity SymCure Reasoning Module, which is a
graphical environment for building causal directed graph models for
reasoning about events. This module is included in the Reasoner and
Premium Integrity bundles.

– gsnmp.kb — The Integrity SNMP Module, which is an internal bridge KB
for use with the SNMP bridges.

• Demonstration knowledge bases, which demonstrate Integrity functions. It
can be useful to include demo knowledge bases in an application because
functionality from a demo can be used as the basis of similar functionality in
your application. When you just want to view the demonstration systems, it is
better to load them as the main application as described in Building a Simple
Domain Map.

Demonstration knowledge bases include:

– opx_demo.kb demonstrates features of Integrity.

– dxi_demo.kb demonstrates features of the domain map importer.

– opac_demo.kb demonstrates features of the OPAC module.

– svcmdemo.kb provides an example of using SymCure as a basis of Service
Level Agreement application.

• Application libraries - The modular structure of Integrity lets you design
applications so that functions can be encapsulated in modules and reused in
other applications. You can create your own library of modules, which you
can merge into applications as needed.
144

Adding Integrity Functionality to an Existing Application
When you create a new application, select the libraries you want to include from
the dialog. For more information about the module structure of G2, refer to the
G2 Reference Manual.

Note If all the modules required by your Integrity application do not reside in a single
directory, then you must create a module search path or module map as
described in the G2 Reference Manual.

Adding Integrity Functionality to an Existing
Application

If you are adding Integrity functionality to an existing G2 application, you can
take two approaches depending on the needs of your application:

• Create a new Integrity application as described in the Introduction and merge
in your application as one of the required modules of the new application.
This is the recommended procedure.

• Load your existing application, then merge in the Integrity module,
integrity.kb. If you take this approach, you have to define the dependencies
between your top-level module and the new modules you have merged. For
information on module dependencies, refer to the G2 Reference Manual.

Out-of-Box Functionality
Integrity provides a limited set of functionality without any configuration or
setup by the user. This functionality is provided to allow you to start using the
features of Integrity right after installation. The out-of-the-box functionality
includes auto-clearing and time-based events.

Auto-Clearing

The auto-clearing feature allows one trap to clear another trap. Auto-clearing
traps are provided for LinkDown and LinkUp events. When Integrity receives a
trap, it searches based on the the-gmib-clears-for relation. This relation is created
when the G2 MIB Parser reads in MIB information. This relation can be used to
relate any two gmib-trap-properties together. When the method that searches for
the LinkUp and LinkDown gmib-trap-properties runs, it also looks for a
procedure named by the symbolic parameter gmib-clears-for-procedure. This
allows you to customize how any two gmib-trap-properties objects are related.
145

Time-Based Events

Time-based events uses ODiE to create time-based events. Integrity creates an
ODiE subscriber object that listens for events. When the subscriber receives an
snmp-event, it calls the OPAC procedure named pps-time-based-threshold-filter,
which checks the event history to see if it matches the time and count threshold
set by the OPAC procedure. By default, the time threshold is 5 minutes, and the
count threshold is 3, which means if the same snmp-event is received more than
three times within a five minute period, an SMH message is created.

For information on ODiE, see the Integrity Utilities Guide.
146

6

Handling Events
Describes how you interface an Integrity application to a set of external objects
and how the Integrity application handles events.

Introduction 147

Setting up an External Interface 148

Processing Unsolicited Events in the External Bridge 150

Interpreting the Event in the Internal Bridge 152

Automatic Trap Processing 154

Introduction
The previous chapter showed how you construct a domain map to represent your
external objects. The objects in the domain map can represent actual physical
objects, software processes, databases or any other collection of items linked
together to form a system. An Integrity application gathers information about the
objects in the domain map by:

• Receiving unsolicited information directly from the external objects, their
agents, or from a manager process linked to the objects.

• Polling the status of the external objects.

This chapter describes how information relating to the external objects enters
Integrity, how the information is related to the domain map, and how procedures
are called to take appropriate action for a particular type of event.
147

Setting up an External Interface
An event is a stream of data that contains information regarding the status of
some external object. Events are either unsolicited or solicited. A solicited event is
one that occurs in response to a request for information. An unsolicited event is
one that is directly generated by the external object or an agent for that object to
notify a management process of a change in the status of the object. The object
originating an event is called the sender. The object an event is about is called the
target. In some cases, the sender of the event is also the target of the event, but this
is not always true. For example, one object can be configured to send information
about objects contained within it, or a device can send a message about another
device after failing in an attempt to communicate with the device. The description
of the type of event from among the possible events the sender can generate is
called the category. The syntax and codes used to represent these events depends
on the protocols adopted by the type of object sending the event.

The application can receive a solicited or unsolicited event directly from an
external object or through a manager layered between the external object and the
application.

You interface Integrity to external objects, processes, and systems, using software
called a bridge. You create a bridge using the G2 Gateway. Standard bridges exist
for many devices. The G2-SNMP Bridge is designed to interface Integrity to
systems that use the SNMP protocol.

Each bridge contains an external part, usually written in C or C++, and an internal
part that resides within the Integrity application. The internal and external parts
of the bridge communicate by means of a remote procedure call (RPC). When a
bridge process receives incoming information, the external bridge calls the
internal RPC to place the information into the Integrity application. When a
bridge process sends requests, the internal RPC calls a procedure in the external
part of the bridge and passes it the data forming the request. You can define more
than one bridge process to run at the same time.
148

Setting up an External Interface
The figure below shows a generalized view of an Integrity application interfaced
directly to a group of external objects:

The basic components of an Integrity application include:

• A group of external objects.

• An external bridge to move information to and from the objects to the
Integrity application.

• An internal bridge to complete processing of the incoming information and
relate the events to the Integrity domain objects.

• An Integrity knowledge base that contains:

– domain objects related to the external objects

– a message information base of past events

– knowledge allowing you to reason about the events based on the histories
and the relationships among the domain objects

External Objects

G2 Knowledge Base

External
Bridge

Internal
Bridge

Integrity
KB
149

In addition to these basic components, other components, such as a manager, can
be layered between the external objects and the external bridge, as shown in the
diagram below:

No assumptions are made as to the physical locations of any of these components.
For example, the external objects can be software processes, and the entire system
can be running on a single machine, or the external objects can be individual
pieces of equipment managed by a central computer. The system configuration is
entirely application-dependent and does not effect the basic operation of the
application.

The details of how to construct a G2 Bridge are beyond the scope of this
document. For information on how to construct a bridge and hook it up to
external objects, refer to the GSI Bridge Developer’s Guide. Users of the G2 SNMP
Bridge should refer to the G2-SNMP Installation and Operation Guide. The rest of
this chapter describes the functionality that you incorporate into your bridge to
receive unsolicited events from a group of external objects and how to relate these
events to the domain objects in the Integrity application.

Processing Unsolicited Events in the External
Bridge

The external bridge process receives unsolicited events from the external objects,
their agents, or an event manager, and should perform the following tasks:

• Parse and decode the events to determine the sender, target and category of
each event.

• Apply low-level filtering to incoming events.

• Pass the parsed and decoded events along to the internal bridge via a remote
procedure call (RPC).

External
G2 Knowledge Base

Objects

Manager

External
Bridge

Internal
Bridge

FEX
KB
150

Processing Unsolicited Events in the External Bridge
This describes an ideal situation. Keeping as much of the parsing as possible in
the external bridge maximizes the efficiency of the system. Unfortunately, in
some cases, the complexity of the events passed can not make this feasible. This
complexity can result from complicated protocols used by some types of object or
from an application that models diverse objects, each using widely varying event
protocols.

Parsing in the External Bridge

To extract the sender, target, and category for an event you need to:

• Parse the information that forms the event into the individual parameters the
event defines. This includes translating coded fields in the event into
meaningful text.

• Decode the names passed for the sender and the target into the external
names used for the domain objects. The external names are stored as the value
of the domain object attribute Opfo-external-name. Ideally, you can use
external names that directly map to the sender and target parameters passed
with the event.

• Determine a category name for the event. The category name must be chosen
so it is easily parsed from the event and uniquely identifies the particular type
of event or a grouping of similar events.

When the complexity of the system makes it too difficult to determine all of this
information at a low level, the call to the RPC passes as much information as
possible to the internal bridge.

Once the event is in the internal bridge, you can use the high-level functionality of
G2 to perform other parsing and decoding tasks. Parsing and decoding that is
highly individualized to a particular class of object can be done in routines related
specifically to that one object class as described in Defining Completion Routines.

When deciding whether to parse and decode in the external bridge or within the
application itself, you must take into account the demands of the volume of
incoming messages and the complexity of the parsing required.

Performing Low-Level Filtering in the Bridge

Low-level filtering does not depend on any previous events that have occurred or
on any of the relationships in the domain map. It is filtering purely based on
eliminating events that are sent from certain objects or are about certain targets or
categories of events. When you decide to filter an event in the bridge, you can
decide to simply discard the event and have it move no further along in the
system, or you might decide to log the event to a text file.

Doing some filtering in the external bridge is particularly important in systems
with a large volume of incoming messages. This filtering can significantly
improve the throughput and efficiency of the system.
151

Interpreting the Event in the Internal Bridge
The call you make to the RPC from the external bridge brings the information
contained in the event into the Integrity environment. The form of the
information you pass as arguments to the RPC will depend on how much parsing
and decoding you could complete in the external bridge. In the case where all
parsing and decoding is done externally, the call to the RPC can specifically pass
the sender, target, and category associated with the event along with any other
informational arguments defined as part of the event.

The job of the internal bridge is to:

• Attempt to complete any parsing and decoding not done in the external
bridge to determine the sender, target, and category of the event.

• If the sender and target are known, locate these objects in the object domain.

• Locate the appropriate completion routine to complete the reception of the
event. A completion routine completes the reception of the event and initiates
other handling required as a result of the event. Completion routines are
described in Defining Completion Routines.

Relating an Event to the Domain Objects

An Integrity application contains a representation of each of the external objects
in a domain map. When you build the domain map, you assign each object an
external name as described in Naming Domain Objects. Whenever possible, the
external name you assign to the domain objects should match the name of the
target and sender passed in the event.

If the names passed with the event do not match the external names used in the
domain map, the parsing and decoding routines must extract the external names
from the information passed. Some situations might only require a simple
transformation such as concatenating text to the event string or stripping text off
an event string. Other event information can be more complex and can require
more complicated parsing and decoding routines.

Once you have extracted the external name, you can retrieve the domain object,
using this procedure:

devu-domain-object-lookup
(ext-name: text)

For example, an event might send the text string “Router-
Hous1&ModemA&Noisy” to the external bridge. In the external bridge you
would parse this into:

sender-string = Router-Hous1
target-string = ModemA
category = noisy
152

Interpreting the Event in the Internal Bridge
Next you would pass these strings to the internal part of the bridge and match the
sender and target of the event with their domain objects:

sender, target: class opfo-managed-object;

sender = call devu-domain-object-lookup (sender-string);
target = call devu-domain-object-lookup (target-string);

If you want to retrieve domain objects, using criteria other than the opfo-external-
name, you can create your own lookup procedure and define it as an alternate
domain object lookup method, using the initialization item smh-alternate-object-
lookup-procedure. For more information on how domain objects are retrieved and
writing custom access methods, see devu-alternate-object-lookup-procedure and
devu-domain-object-lookup in the Integrity Utilities Guide.

Defining Completion Routines

The purpose of a completion routine is to complete the reception of the incoming
event. This can include further parsing of an event, creating Integrity messages or
calling reasoning routines applied to the event. Your application must provide
some method for selecting a completion procedure based on the type of incoming
event.

The complexity of the completion routine depends on:

• The amount of parsing and decoding completed in the bridge. If all decoding
is done in the bridge, the completion routine does not need to provide this
functionality.

• How incoming events are handled. For example, some applications can
automatically create an Integrity message for each event. Others can apply
further reasoning routines to decide the outcome of the event. The event can
be logged to a text file, discarded, or represented as an Integrity message.

• The complexity of the reasoning routines applied to the incoming events. The
completion routine calls the reasoning routines applied to the event.

You can define your completion routines many different ways. One approach
might be to create only one completion routine and call it regardless of the event
type. This is possible when all of the events are structured in a similar manner and
do not need a lot of special-purpose parsing. At the opposite extreme, you might
create a completion procedure for each unique type of event that can occur. This
is usually impractical in applications of any significant size and unnecessarily
complex.

A useful technique is to define the completion routine based on the sender or
category of the event. Because each type of sender has its own particular protocols
for the events it generates, you will find it useful to use the class of the sender to
determine which completion routine to call. The G2 SNMP Bridge uses the
category of the event to determine the completion routine. The category in that
153

case combines information that relates both to the sender and the type of the
event.

Automatic Trap Processing
For automatic trap processing, use the Java SNMP bridge and the current version
of the GTRAP and GMIB modules. To avoid having to create your own
completion procedures, use the Java SNMP bridge, because this process is
automatically handled for you.

Processing The Trap

During the initial setup of the application using the Setup Wizard, the Import
MIBs tab and the SNMP Setup tab play a roll in setting up the automatic trap
processing. The Import MIB tab imports mibs by creating gmib-trap-properties
objects and post import, defines a relationship between LinkUp and LinkDown
traps by default. This relationship allows the LinkUp trap to automatically clear
the LinkDown trap. Other trap properties can be related this way to provide
additional clearing of traps.

The gmib-trap-properties play a role in defining what varbinds are associated
with the traps and allows the processing of those varbinds. It also contains the
default gtrap-trap-receiver class to create.

When the SNMP Setup tab is used there is a check-box for the Java Bridge. If this
is set some internal settings are made. These settings include setting the oxsj-
create-trap-mib-receiver truth-value to false. It also sets the oxsj-process-trap-
structure-proc to the oxs2-default-process-trap-structure method.

The oxs2-default-process-trap-structure method finds the associated gmib-trap-
properties object and creates a gtrap-trap-receiver based on the trap-class of the
trap properties object. It then translates the non-default varbinds and searches for
a clears-for relationship. The clears-for relationship is described above. Finally, it
generates an event to be automatically processed by the generic trap completion
procedure.

Generic Trap Completion Procedure

The generic trap completion procedure can automatically process traps. By
utilizing this method it can process traps that have the clears-for relationship
defined. This will automatically clear the message that was posted for a
previously received trap. If there is no clears-for relationship defined for the
newly received trap, a SMH message is created and posted to the applications
message server. In addition to a message being created an ODiE event is created
and posted. These ODiE events are utilized to provide out-of-box capabilities.
154

7

Creating a
Domain Map
Describes how to build a domain map to represent your external objects in the
Integrity application.

Introduction 155

The Components of a Domain Map 156

Defining Domain Map Subclasses 158

Manually Building the Domain Map 164

Importing and Exporting a Domain Map 171

Introduction
The first step to build an Integrity application is to build a domain map. The
domain map models objects, connections, and containment relationships in the
real, external world. This makes it easy to build and maintain extremely large
collections of objects and still be able to fine tune and customize object placement.

Domain map objects, connections, and relationships are represented by G2
Integrity classes and objects. Map building and editing can be performed
manually, by running a discovery job, and/or by reading in object information
from an external text file. Understanding how to manually create a domain map
helps you to fully understand how Integrity works.
155

The Components of a Domain Map
The diagram that follows shows a section of two subworkspaces representing a
domain map. This figure shows examples of the following domain map building
blocks:

• Containment objects are objects that represent virtual external objects whose
sole purpose is to contain other objects. Houston, LA, and NY are examples of
containment objects.

• Managed objects are the objects that have messages directed against them.
Router-Hous1 and Printer-B1 are examples of domain objects.

• Connections link objects together. All the lines linking objects on the domain
map are connections.

• Connection Posts connect objects that reside on different workspaces.
Houston-to-NY and Houston-to-LA are examples of connection posts.

Containment Objects

Containment Objects are the domain objects that represent virtual external objects
whose sole purpose is to contain other objects. You place the objects contained on
a subworkspace of the containment object. Containment objects can contain
domain objects of all kinds, including other containment objects. These nested
objects create a containment hierarchy.
156

The Components of a Domain Map
On the domain map shown in the preceding figure, Houston, LA and NY are
containment objects. Containment objects are instances of a subclass of opfo-
containment-object. The prefix opfo indicates Integrity Foundation classes, which
are base classes needed in most applications. How to create new containment
object subclasses is described in Defining Domain Map Subclasses.

Managed Objects

Managed objects are objects that are not pure containment objects. Managed
objects are instances of a subclass of opfo-managed-object. Although a managed
object is not used only for containment, it can contain other objects on its
subworkspace. For example, on the domain map shown in the proceeding figure,
the object Router-Hous1 is a managed object that contains other objects. The
objects contained in Router-Hous1 are shown in the following figure:

You can add subworkspaces to domain objects at any time.

Managed objects are generally the active objects with attributes representing state
values managed by your application. They represent real-world entities that have
behavior determined by a set of states and failure modes that change over time.

How to create new managed object subclasses is described in Defining Domain
Map Subclasses.

Connections and Connection Posts

Connections link objects together. They are instances of the connection class or
one of its subclasses. The domain map in the preceding figure uses several classes
of connections to represent wires, phone lines, and ethernet wires.
157

You use Connection Posts to connect objects that reside on different workspaces.
The connection post labeled LA, connects Router-Hous1 to Router-LA1 on the
subworkspace of the object LA. Two types of connection post are used in Integrity
applications:

• dxi-linking-connection-post is a connection post class provided as part of the
Integrity Foundation Classes. Connections across subworkspaces built using
the domain map importer use this class of connection post. When you click on
a dxi-connection-post, the connection post at the other end is displayed. The
opexpkg3.kb automatically creates a subclass of a dxi-linking-connection-post
and places it on the Object Definitions workspace. The subclass created is
named xxx-connection-post, where xxx is the prefix you assign to your
application at startup.

• You define G2 connection posts in the G2 programming environment. You
can create objects that automatically create subworkspaces containing G2
connection posts.

Defining Domain Map Subclasses
Before you build or import a domain map, you must create subclasses to
represent the unique types of objects you are modeling and the connections that
exist between them. This section describes how to define a new class, its
attributes, and the icon used to display instances of the class.

You build your application subclasses by using these classes:

• opfo-containment-object is a class of objects whose sole purpose is to contain
other objects on their subworkspaces.

• opfo-managed-object is a class of objects that are not pure containment
objects.

• connection is a class of objects used to connect together domain objects.
Subclasses of the basic class can define different types of wires and
connections such as phone lines and ethernet cables.
158

Defining Domain Map Subclasses
The following figure shows a section of the class hierarchy in an Integrity
application:

An item is the highest level class in G2. Subclasses of item include object,
message, and connection subclasses. These subclasses are all built into G2. The
next set of subclasses shown are part of the Integrity Foundation classes. opfo-
domain-object is the superior class to both opfo-containment-object and opfo-
managed-object. Another Integrity object subclass used in the domain map is the
dxi-connection-post.

The domain object classes should be designed to take advantage of the
relationships among the domain objects. For example, you might create a class for
modems and have subclasses for different types of modems used. The modem
class can contain attributes and behaviors (methods) common to all modems,
while the specialized subclasses can contain additional attributes and model the
behavior unique to that modem.

Viewing Attributes of a Subclass

Each class has attributes associated with the class.

To view the attributes of a class:

1 Navigate to the name of the class, then select it.

2 Double-click on it to display it on a workspace.

3 Right-click on the object to display its menu.

4 Click on Properties.

object opfo-domain-object

opfo-containment-object

opfo-managed-object

message smh-small-message xxx-message

xxx-containment-object

xxx-managed-object

xxx-connectionconnection

item

G2 Classes Integrity Classes Application Classes

xxx-connection-postdxi-connection-post
159

The attribute Class-specific-attributes defines attributes defined specifically for
the class. Subclasses can inherit the attribute definitions from their superior class.

You can also view a table that contains the attributes of a class by selecting the
icon of an instance of the class.

The basic Integrity classes opfo-managed-object and opfo-containment-object
have the attributes shown in the following table:

Adding Attributes to a Subclass

You might have a type of object with specific attributes that you want to save
along with the object.

To add a new attribute to a class definition:

1 Click View Object to display the workspace containing the class definition.

2 Select the object-definition icon of the class to display the menu and select
table.

3 If the table is too small to read, use CTRL+B to expand it.

CTRL+S shrinks it. These keys can be used to expand and shrink any
workspace.

4 Click over the text in the right-hand column next to Class-specific-attributes
then select edit from the menu.

Attribute Description

opfo-external-name Name you enter to refer to the object.

_opfo-highest-message-priority Highest priority message targeting the
object. This is set by the domain object
alarm propagation methods, as
initiated by the message system. The
underscore before the name defines
this as a read-only attribute.

_opfo-acknowledgment-status Acknowledgment status of messages
targeting the object. Set to
unacknowledged when there are
unacknowledged messages targeting
the object. Otherwise acknowledged.
This is set by the domain object alarm
propagation methods, as initiated by
the message system. The underscore
before the name defines this as a read-
only attribute.
160

Defining Domain Map Subclasses
If you click on the cell but not directly on the text, you must select edit from a
menu to display the edit box.

5 Type the name of any new attributes separated by a semi-colon.

For complete information about defining attributes specific to a class, refer to
the G2 Reference Manual.

After you add attributes to a class definition, they appear on the tables for the
instances of the class.

Advanced techniques for managing and customizing object classes are described
in the G2 Reference Manual.

Displaying Attributes for a Subclass

You can set up your subclass to display the value of an attribute. Usually the opfo-
external-name is displayed next to each instance of a domain object and
containment object.

To display the external name of the domain object:

1 Select the object-definition of the class, then select table from the menu.

2 Click over the text in the right hand column next to Attribute-displays.

If you click on the cell but not directly on the text, you must select edit from a
menu to display the edit box.

3 Type in opfo-external-name at standard position.

Use this technique to display any attribute in a class.

Creating Icons for Domain Object Classes

Every class has an icon description. When you create and place an instance of the
class on a workspace, this icon becomes visible and provides direct access to that
instance. When you create a new class, the class initially inherits the icon
description of its superior class.

In most applications, you will want to modify the descriptions for your objects to
better distinguish between them visually. You can do this by creating completely
new icon descriptions, editing existing descriptions, or copying descriptions from
other class definitions.

You can define and edit an icon either graphically or by using a text description:

• To edit an icon description graphically, select the object-definition and select
edit icon from the menu.

• To edit an icon’s text description, select the object-definition, select table from
the menu, and then click on the value assigned to the attribute icon description
161

in the table. You can use the G2 editor to cut and paste these descriptions from
other object-definitions as well.

Icon definitions can also include images imported from GIF files.

You define icons to contain multiple graphical layers. You can assign each one of
these layers a different name and a different color.

To define an icon region:

1 Select the class object-definition.

2 Select edit icon from the menu.

3 Click New. This creates a new icon area.

4 Click over the text in the right hand column next to Region.

If you click on the cell but not directly on the text, you must select edit from a
menu to display the edit box.

5 Type in the name of the region.

6 Draw the region in the edit rectangle to the right of the display of the icon
definition rectangles.

Note Icon descriptions for domain classes you define within Integrity applications
must contain definitions for two special-purpose regions: alarm-region and
acknowledgment-region. These regions display the alarm priority and
acknowledgment status on the domain map.

For a complete description of defining icons, refer to the G2 Reference Manual.

Creating Patterns for Connections

When you define subclasses of connection, you should also define how the
connection appears. This is called the cross-section pattern.

To define a cross-section pattern for a connection:

1 Go to the object-definition defining the connection subclass.

2 Select the object-definition to display the menu.

3 Select table from the menu.

4 Click over the text in the right-hand column of the table next to Cross-section-
pattern.

If you click on the cell but not directly on the text, you must select edit from a
menu to display the edit box.

5 Type in the cross section in the edit window.
162

Defining Domain Map Subclasses
Here is an example of a cross-section pattern: 1 black, 3 gold, 1 black. This
specifies a connection appearance that is five lines thick, gold with black borders,
where the black borders are each one pixel thick. You can also display the
available G2 colors on the color palette for changing workspace colors.

You can also define the length of the stub by editing the value of stub-length in the
definition table of the connection subclass.

These operations are described in the G2 Reference Manual.

Adding Connection Stubs to Class Definitions

Most domain objects are connected to at least one other domain object. The
definition of a domain class can include the definition for one or more default
connection stubs. Connection stubs let you associate the proper connection class
for the object, simplifying creating connections on the domain map.

The figure that follows shows an item without a connection stub and the same
item with a stub. The stub provides a handle you can grab with the mouse and
extend to another object.

To specify default connection stubs for new instances of any class:

1 Select the object-definition.

2 Select table from the menu.

3 Click on the right-hand column in the row containing the definition for Stubs.

4 Type in the definition for the stub.

At the bottom of the edit box, prompts appear to guide you through the
syntax required to define a stub. The stub definition specifies the connection
class, the location of the stub, and whether the stub is diagonal or orthogonal.
Stub definition is described in the G2 Reference Manual.

Importing Class Definitions

Instead of creating new class definitions manually, you might want to use classes
that have already been defined in other applications. You can also decide to create
module libraries that contain class definitions that you commonly use.

You can use classes defined in another module several ways:

• Merge the module into your application and use the classes directly from the
merged in module. This is the simplest technique, but you are left with the

Connection stub
163

overhead of everything contained in the module. You can delete unwanted
items then re-save the module with a new file name. Merging modules is
described in Merging Modules.

• Transfer selected classes onto the workspace of a module in your application.
This must be done with caution because when the classes are removed from
the merged in module, any objects depending on the classes will generate
inconsistency errors.

• Clone class definitions onto a workspace in your application. When object
definitions are cloned, the attributes, configuration and icon definitions are all
copied to the new definition, but the superior class and the name of the class
must be redefined in the cloned version.

When you transfer or clone new class definitions to a module in your application,
be sure to place it on subworkspaces of a workspace containing the other class
definitions in the application. This will make it easy to locate.

Manually Building the Domain Map
When you manually build a domain map, you must create all of the classes
needed for the domain objects and connections, create the instances and
subworkspaces, place them on workspaces, and make any needed connections.

When you import a domain map from a text file, the map importer creates the
domain objects based on information in the file. Imported domains reflect the
hierarchy and connectivity of the domain. Imported domains do not preserve the
connection class, icon scale, or icon rotation. Automatic builds are described in
Importing a Sample Domain Map.

Even if you are reading most of your domain information from an external file, it
is still useful to be familiar with the principles of manually building domain maps
as you might want to fine tune or edit domain maps manually after a build.

The steps that follows describe how you manually build a new domain map. Each
of these steps is described in detail in the sections that follow.

To manually build a domain map:

1 Create a new application framework as described in the Introduction.

2 Define a class for each unique type of object you will need for your domain
map. If just one or two standard connection classes are used (highly
recommended), then container-object class definitions should generally be
given G2’s subworkspace-connection-post capability. Define a class for each
unique type of object you are modeling on the domain map.

3 Define the types of connections used between domain objects.

4 Create an instance of a containment subclass, place it on a workspace, and
then create its subworkspace. This is your top-level domain object. Place
164

Manually Building the Domain Map
subsequent containment or domain objects on the new subworkspace until
you have created a complete containment hierarchy. By having a single top-
level object to represent your entire domain, you simplify specification of
imports and exports of the domain map. If your domain has many disparate
portions, you can use a very general, abstract containment object for your top
level.

5 Create instances of domain objects and place them on the appropriate
workspaces in the containment hierarchy.

6 Connect the domain objects on each workspace to reflect the connectivity of
the domain objects.

7 Place connection posts on workspaces as needed to connect items that reside
on different workspaces.

The rest of this chapter describes the specific techniques for building the domain
map and importing map items. It can be helpful to create a new application and
follow along as the steps to creating a domain map are described.

Creating Domain Objects

Once you have created a class hierarchy to represent the different types of domain
objects in your application, you are ready to create instances of those classes and
place them on a domain map. The domain objects on the map are related to each
other by the containment hierarchy, by connections you place between objects on
the same workspace, and by connection posts with which you link objects on
different workspaces.

When you begin your domain map, you generally create a top-level object that
contains all the other domain objects. This simplifies importing and exporting
maps, and helps navigation as users will know that all domain objects can be
found underneath a single, top-level containment object, even if it has just an
abstract name like “all-domain-objects”.

The top-level object is subclassed from the opfo-containment-object class. In your
new application create a top-level object and place it on the domain map.

To create and place a top-level object on the domain map:

1 Create a container object using the Navigator by right-clicking on Network
Diagrams and choosing New Instance.

2 Enter a name for the container and click OK.

3 Right-click the new container object you just created and choose Show Details
to view its subworkspace.

4 Select the object-definition of the class you defined and choose Create
Instance.
165

5 Drag the icon onto the subworkspace you created above and drop it by
clicking on the workspace.

6 Name the item as described in Naming Domain Objects.

In some cases, you may need to create a subworkspace for an item. Below are the
steps to create subworkspaces.

To create a subworkspace of an object:

1 Select the object to display its menu.

2 Select create subworkspace from the menu.

Once you have created a subworkspace for the top-level object, place the next
level of domain objects on the subworkspace. Create the domain objects by using
the technique described above for creating the top-level object or use the palette
objects to create a new item.

To clone objects from a palette:

1 Display the palettes by choosing View > Toolbox - Integrity.

2 Display the workspace where you want to create the new instance.

3 Click the mouse button to select the palette item, move the mouse to the
workspace where you want to create it, and click the workspace.

4 Release the mouse button to drop the item on the workspace.

5 Name the item as described in Naming Domain Objects.

Naming Domain Objects

You must assign all domain objects a value for their opfo-external-name attribute.
This is the value you use whenever you want to refer to the domain object by
name. When you want to retrieve an item using its name, you pass the opfo-
external-name to the procedure devu-domain-object-lookup. Integrity does not
use the G2 name facility because it does not support embedded blanks, use upper
and lower case for display purposes, or allow special purpose characters often
found in names used for external objects.

To assign an opfo-external-name:

1 Right-click the item and choose Properties.

2 Enter a name in the Domain Object Name text box.

If the Domain Object Name text box is read-only, then you will not be able to
change the name because the object already has a name.

3 Click the OK button.
166

Manually Building the Domain Map
4 If the external name was not defined to be displayed for all instances of a class
and you want the external name to be displayed next to the item, click on
Opfo-external-name in the left column of the table. When the menu appears,
select show attribute display.

Defining attribute displays for all instances of a class is described in
Displaying Attributes for a Subclass.

Connecting Domain Objects

After you create the domain objects, you need to connect the objects together by
using the connection subclasses you have defined. You make a connection
between two objects by using connection stubs. You can add stubs to a class of
domain objects as described in Adding Connection Stubs to Class Definitions.
You can also add stubs to instances of domain objects as described in the sections
that follow.

Adding and Deleting Connection Stubs from
Instances

The stub definitions in a domain object-definition provide default connections as
a starting point. You can add or delete stubs to or from specific objects once they
are created.

To add a connection stub to an instance of an object

1 Select an item that uses the type of connection you want to use, select clone to
make a copy of the item, then click to drop the item on the workspace next to
the item you want to provide with a connection stub.

2 Click on the end of the unused stub connected to the cloned object, then drag
the end into the item that you are giving the stub, and click to anchor the
connection.

3 Click on the middle of the connection between the objects to display the
connection menu, then select delete.

4 Select the cloned item, which is no longer needed, and select delete.

If you already have an object on the same workspace that has an unused stub of
the right class, you do not need to clone an object. In this case you can use the
unused stub and follow steps 2 and 3 shown in the preceding steps.

Another technique for creating stubs is to create special objects that provide stubs
of several classes. This method is described in Creating a Connection
Configuration Object.

To delete an unused connection stub:

 Click on the unused stub and drag it into the center of the object.
167

Creating a Connection Configuration Object

It is sometimes convenient to create a special-purpose object specifically designed
to provide connection stubs for your application. This is called a connection
configuration object.

To create a connection configuration object:

1 Create a subclass of the top-level object in your module.

2 Define a connection stub for each connection subclass you use in your
application.

Defining connection stubs for classes is described in Adding Connection Stubs
to Class Definitions.

To connect two objects by using a connection configuration object:

1 Create an instance of the connection configuration object.

2 Connect the connection configuration object to one of the objects you want to
connect, using the stub for the desired class of connection.

3 Delete the connection you have just made.

This leaves behind a connection stub on the object.

4 Delete the connection configuration object.

Using a Stub to Create a Connection

Once you have attached the proper class of connection stub to an object, either by
using a class definition, or by placing a stub on the instance, you can use the stub
to form a connection of the class defined for the stub.

To use a stub to form a connection:

1 Click on the end of the stub and drag it into the center of the object you want
to connect.

2 Click once to make the connection and a second time to secure the connection.

It is only necessary for a stub to be on one of the objects to be connected.

If neither object has a stub, you need to create an instance of an object with the
proper stub, connect it to one of the objects, and then delete the connection you
just made. To delete a connection, click on the connection, then select delete from
the item menu. The stubs from the connection remain on both objects after you
delete the connection.
168

Manually Building the Domain Map
Using Connection Posts

When you need to connect two objects that reside on different workspaces, you
use connection posts. An Integrity application uses two types of connection posts:

• A dxi-linking-connection-post is a special class of connection provided in
Integrity. You can click on one end of a dxi-linking-connection-post to display
the dxi-linking-connection-post at the other end.

• A G2 connection post is a connection post that is part of the G2 environment.
You can define classes so every instance of the class automatically creates a
subworkspace that contains a G2 connection post. The system assigns the
names to the connection posts.

To create and use a DXI-linking-connection post:

1 Create a connection class by creating a class-definition with a direct superior
class of dxi-linking-connection.

2 Select the object-definition for the connection post class and select create
instance from the menu.

3 Drag the instance to the first workspace and drop it by clicking.

4 Create a second connection post and place it on the second workspace.

5 Choose Tools > User Mode > Administrator.

You need to change modes because the default behavior of connection posts
in developer mode is to go to the other end of the post. You must be in
administrator mode to display the item table.

6 Select the connection post, select table from the menu, and enter a name for
the names attribute.

This must be a G2 symbolic name, which cannot contain any spaces.

7 Select the second connection post, select table, and enter the same name for
the name attribute.

dxi-linking-connection-posts also use a second naming attribute called Dxi-link-
name. When a domain map is imported, the map importer sets the value of this
attribute to the name of the superior object containing the matching dxi-linking-
connection-post. The connection post displays this attribute on the domain map
so you can easily identify the location of the other end of the connection.

If you manually build a dxi-linking-connection-post, you might want to define a
value for this attribute.
169

to define a Dxi-link-name:

1 Choose Tools > User Mode > Administrator.

2 Select the connection post, select table from the menu, and enter a name for
the Dxi-link-name attribute.

A G2 connection post does not automatically display the other end when you
select it. However, you can define a G2 connection post as part of a class
definition. This saves the time needed to create subworkspaces and connection
posts each time an instance of the class is created.

To create and use a subworkspace connection post:

1 Click on the object-definition for the object that will have the subworkspace,
then select table from the menu.

2 Select the text in the right hand column next to the attribute Instance
Configuration. Type in declare properties as follows: subworkspace-connection
posts.

3 Check to be sure that the object-definition contains at least one stub definition.
If no stub definition exists, define one as described in Adding Connection
Stubs to Class Definitions.

4 Create an instance of the object. This is the superior object.

5 Click on the superior object and select create subworkspace from its menu. If
you go to the subworkspace of this object, you will see that there are
connection posts placed automatically, arranged in the same layout as the
stubs. The connection posts are automatically given names that link them to
the stubs on the superior object.

You can hook up connections to the stubs of the superior object, and hook up
objects via connections to the subworkspace connection posts. Connectivity is
maintained between all objects connected to the superior object and to objects
connected to the subworkspace connection posts. This allows multiple levels of
connectivity to be tested in your applications.

If you delete a stub, you must manually delete the corresponding connection post.
If you add an additional stub to the superior object, a corresponding connection
post is automatically placed on the subworkspace.

These features are described in the G2 Reference Manual.
170

Importing and Exporting a Domain Map
Importing and Exporting a Domain Map
In most Integrity applications, the large number of external objects makes it
impractical to build the domain map by hand. Integrity provides a map import
facility to let you automate the building of the domain map. The domain map
importer reads information about the external objects from a text file. You create
the text file using whatever system you use to manage the objects.

Integrity also provides a domain map exporter. This lets you save your domain
map to a text file that can later be imported back into your application or into
another application.

The sections that follow describe an example using the doc_demo.kb sample
application that demonstrates the use of the map export and import features.

Exporting a Sample Domain Map

This example shows how you can export a portion of the opx_demo domain map.
Later you will delete the exported objects from the domain map, then use the
domain map importer to restore the deleted objects.

First, you will export the MASTER-CONTROL-FACILITY and all of the object
contained within NY.

To export a section of the opx_demo domain map:

1 Load opx_demo.kb.

2 Choose View > Toolbox - Integrity Export Import to display the
export/import palette.

3 Create a new workspace.

4 Select the Dxi3 File Export Object from the File Export/Import palette, move
the mouse over the new workspace, and click to place the object on the
workspace.

5 Right click on the export object and choose Properties to configure these
properties:

a Enter MASTER-CONTROL-FACILITY for the Source Workspace.

b Click "..." button to navigate to a destination directory to specify a
destination file.

c Click the OK button to close the Properties dialog.

d Right-click on the export object and choose Start File Export to start the
export process.
171

An attribute display on the export object tells you how many objects were
exported. The file exported is an ASCII text file that defines the domain objects
using the Domain map eXport/Import (DXI) file format.

The exported file uses the following format:

******<object id>(required)

action: {create|delete} [<type>] (optional)

superior: [<object id>] (optional)

delete-superior: [<object id>] (optional)

connected: [<object id>,...] (optional)

delete-connected: [<object id>,...] (optional)

attribute: <attribute name> = [<attribute value>] (Nxoptional)

relation: <relation name> [<object id>,...] (Nxoptional)

delete-relation: <relation name> [<object id>,...] (Nx optional
+ required empty line at end)

Importing a Sample Domain Map

To import a domain map, you create a text file that is similar to the one shown in
the preceding example. As in the example, your file must contain a two line
informational header, the ten-line definition header shown in the preceding table
and at least two lines to define the values an relationships of each domain object
to be imported. You create the file by outputting the text file in the DXI format
from a database or other manager connected to your external objects.

Caution When you create a file for import, be sure that extra lines are not embedded in or
at the end of the import file. This file should NOT contain tabs.

You can step through the process of importing a text file by following this
example. Before you can follow these directions, you must export a DXI file using
the preceding instructions to produce the file master-control-facility.txt. Before
importing the objects, you also must delete the exported objects from the domain
map. This will let you see how the objects are recreated using the Integrity import
feature.

To delete the objects exported in the preceding example:

1 Using the Go To feature in the Standard toolbar, enter master-control-facility
and press the Enter key.

A red arrow points to the item.

2 Right-click the master-control-facility and choose Show Details.
172

Importing and Exporting a Domain Map
3 Select all devices on the subworkspace of the master-control-facility.

4 Right-click on one of the devices and choose Delete, then click OK to confirm
the deletion.

Now that you have deleted all the objects exported to master-control-
facility.txt, you can use the Integrity importer to return them to the
application.

Caution Do not save opx_demo.kb after you have modified it for this example.

To import a sample DXI file:

1 Choose View > Toolbox - Integrity Export Import.

2 Click on the Dxi3 File Import object, move your mouse over the workspace
you created in the import section, and click on the workspace to drop the item.

3 Right-click on the import object and choose Properties.

4 Select DXIDB-EXAMPLE-TRANSLATIONS for the Type To Class Workspace.

This defines the workspace where translation objects reside that will translate
text to a symbol representing a class defined in the application.

5 Select OPFO-CONTAINMENT-OBJECT for the Default Class To Create.

6 Specify different values for the Column Height, Vertical Spacing, and
Horizontal Spacing, as needed.

These are used as buffers between the placement of the newly created items.

7 Use the "..." button for the Local File Name to select the master-control-
facility.txt file you created earlier in the import example.

8 Click OK to close the properties dialog.

9 To begin the import, right-click the import object and choose Start File Import.

You can display the domain map after the import to view the results. If you want
to add connections on your domain map, you must add them manually after the
objects are imported.

Using Translation Objects

When your application reads an object definition from a DXI import file, one of
the first things it must do is determine the class of the object to create. The value
written to the Type line in the DXI text file provides this information. You can
supply two different values to type to provide information about the class of the
object:

• The name of the class
173

• A string that is mapped to the class, using a translation object that maps the
name of the string to a class

If it is easy to produce a DXI file that directly contains the name of the class of
each object; this is an effective method to use to determine the class. Depending
on the application, however, you may find it easier to translate a text string into a
class name by using translation objects.

The translation object has two attributes, a class name and a text string. The
importer matches the text string of the Type field to the text string in each
translation object on the specified workspace. If the importer finds a match, it
creates the class specified by the translation. If it finds no exact string match, the
importer uses a “contained-in” approach to match translation strings to type
string. If all efforts to determine a class fail, the importer creates an instance of the
default class defined within the import object.

For example, two translation objects are shown in the following figure. The top
label is the name of the type string from the external file and the bottom label is
the class name that matches the type.

The table that follows shows how the importer maps several different type text
strings, using these translation objects.

You create translation objects by using the palette blocks.

To create a translation object:

1 Choose View > Toolbox - Integrity Export Import.

2 Click on the Dxi3 Type To Class object, move your mouse to the workspace
you created for the export example, and click on the workspace to drop
the item.

Type Text String Class

Modem modem

Modem XYZ modem-type2

Modem DEF modem

Modem XYZ4 modem-type2
174

Importing and Exporting a Domain Map
3 Right-click on the block and choose Properties.

The translation object dialog is shown in the following figure:

4 Enter in the Type text string in the Name edit line.

5 Click the button displaying the triangle, then select the class you want to use
for the Type text string you have defined and click OK.
175

176

8

Message Handling
Defines the Integrity message system including how to create message servers,
browsers, and status bars, how to manage Integrity messages and their histories,
and how to use the logging facility.

Introduction 177

Setting up the Message System 178

Working with Messages 205

Message Alarm Propagation 215

Logging Messages and Events 217

Error Handling 221

Creating User Defined Effects 223

Introduction
The previous chapter described how events come into Integrity. Once an event
exists, you must make a decision as to how to respond to the event. The possible
responses include:

• Display information about the event to an operator.

• Maintain a history of the event.

• Take an action.

• Discard an unimportant event.
177

You can select any combination of these to respond to an event.

You accomplish both the display of information and the maintenance of histories
by using an Integrity structure called a message. Messages relate the events that
occur to the domain objects they describe.

Each message is uniquely defined by the attributes:

• Sender - The object that sent the event.

• Target - The object the event is about.

• Category - The type of event.

By the time you decide to create a message, you have already defined the target,
sender, and category of the event in the bridge or in a completion routine.

When you create a message, you give it a priority and assign it to a message
server. A message server is an object that holds messages. A browser is an object
used to view the messages in servers. A browser can subscribe to one or more
message servers. More than one browser can subscribe to a single message server
at the same time. When a browser has subscribed to a message server, the
message server will send new messages to the browser as they are received.
Browsers can also filter messages they receive from message servers. Filtering can
be based on message priority, the sender of the message, the target of the
message, patterns in the category of the message, or the value of any attribute of a
message.

When you create a message, the message sends an alarm to the target object on
the domain map. This alarm causes the alarm region of the object to change to the
color associated with the priority of the message. When you use the default alarm
propagation methods, the alarm propagates to the object that contains the target
object. This propagation continues up until the top of the object containment
hierarchy is reached. You can also define custom alarm propagation methods.

The rest of this chapter discusses the items you create to support the message
system, the behavior of messages and how to create, acknowledge, delete and
display messages.

Setting up the Message System
Before you can use the message system, you need to define certain objects within
your application. These include:

• Servers that contain the messages.

• Browsers to view the messages.

• Status Bars to view the priority and acknowledgment status of the servers.
These are optional objects.
178

Setting up the Message System
• Escalation Objects to define routines called during defined phases of the
message’s life. These are optional objects.

• Custom Message Handling Routines that you provide to add additional
behaviors to the basic message system. These are optional objects.

In addition to creating these objects and procedures, you might want to initialize
certain parameters that affect the behavior of the message system. These are
described in Setting Priority and Acknowledgment Colors on page 215.

Defining Message Servers

A message server is a container that holds messages. When you create a message,
you assign it to a server. When you create a new application, the startup routine
creates a server workspace and creates a server with the name xxx-message-
server, where xxx is the prefix you selected for your application, on the server
workspace. This default message server can be re-configured or deleted. By
creating multiple servers, and assigning similar messages to a server, you can
organize messages. For example, you might want to create one server that
receives all Out of Service messages. You create, configure, and manage servers
by using the palette blocks.

To create a new message server:

1 From the Integrity Components palette, select the message server block.

2 Select the module where you want to place the message server. Click OK.

3 Complete the configuration dialog shown below and click OK.
179

The following table describes the items on the configuration dialog:

To configure a message server:

1 Select the message server.

2 Double click on the message server you want to configure, then click
Configure...

The configuration dialog is identical to the one shown above for creating a
new message server.

Defining Browsers

A browser displays the messages in one or more message servers. You can also
configure browsers to show the values of any attributes of the messages in
columns of the scrolling message display. You can add filters to a browser to
display only messages with a specified priority, acknowledgment status, target,
sender, category that matches a specified text pattern, or that match a particular
value for any attribute of the message.

Creating Browser Templates

A browser template is a master copy of the browser. The first time a user views a
browser, a copy of the browser template is created and displayed on the user’s
window. The browser template does not display messages. A quick way to
distinguish a browser template from a copy of the browser is that on the browser
template the word "sample" appears in each column of the message scroll area.
Any changes made to a copy of a browser are temporary and will be lost the next

Configuration Item Description

Name G2 symbolic name used to define the message
server.

Message class Class of the message created and stored in the
message server. It must be a subclass of smh-
small-message. To view a list of the message
classes defined in the application, select the
button displaying the triangle next to the Message
Class edit line.

Maximum history
length per message

 Maximum number of history timestamps stored
for a message in the message server.

Logging Manager Logging manager used for logging the messages
in the message server. Existing logging managers
appear in the scroll area. Logging managers are
described in Logging Messages on page 219.
180

Setting up the Message System
time the system is started. If you want your changes to the browser permanent,
make the changes to the browser template.

To create a browser template:

1 Click Browser Templates block from the Integrity Components palette.

2 Select the module, then click OK.

3 Complete the configuration dialog shown below and click OK.

The following table describes what to enter in the configuration dialog:

Configuration Item Description

Name G2 symbolic name to define the browser.

Display Procedure Procedure called to display the browser. Leave
the default unless you want to call a custom
procedure. See Writing Custom Procedures to
Display and Hide a Browser on page 193.

Hide Procedure Procedure called to hide the browser. Leave the
default unless you want to call a custom
procedure. See Writing Custom Procedures to
Display and Hide a Browser on page 193.
181

After you select OK, a browser template and a Subscriber/Filters palette appear.
The browser template is shown in the following figure:

Configure this template according to the directions below.

Configuring a Browser

You can configure a browser by cloning and placing objects from a
Subscribers/Filters palette onto the browser template to define the message
servers and filters available to the browser. The Subscribers/Filters palette is
shown in the following figure:

To configure a browser template:

1 Display the browser template.

The template and palette is automatically displayed after a browser is created.
To display a browser template for an existing browser:

a Locate the browser using the finder or the explorer view.

b Select the name of the browser and click Configure...
182

Setting up the Message System
The configuration dialog is shown below:

c Click the Layout button on the configuration dialog.

2 Create and configure the subscribers. See Creating and Configuring
Subscribers on page 183.

3 Create and configure the filters. See Creating and Configuring Filters on
page 184.

4 Define the sorting characteristics of the browser. See Defining the Sorting
Characteristics of the Browser on page 185.

5 Configure the columns on the message scroll area. See Configuring the
Columns of the Browser on page 187.

6 Arrange the items on the browser template. See Arranging the Items on the
Browser Template on page 193.

7 When you have completed the configuration, select the hide button in the
upper right hand corner of the browser template.

If copies of the browser exist, you will be prompted to delete these copies.

Creating and Configuring Subscribers

You can configure the browser to receive messages from one or more message
servers. You define the message servers displayed by a browser by selecting the
palette item smh-subscriber from the Subscribers/Filters palette and by placing it
on the browser template. The subscriber object provides a check box used at run
time to subscribe or unsubscribe to the server it represents. This palette and the
browser template must be visible to configure the choice of message servers.

The Subscribers/Filters palette is shown in Configuring a Browser on page 182.

To create a subscriber for a browser template:

1 Display the browser template and the Subscribers/Filters palette as described
in Configuring a Browser on page 182.

2 Click the SMH Subscriber check-box on the Subscribers/Filters palette to
clone it.

3 Click on the Browser Template to drop the check box on the template.
183

4 Click on the check box to display the menu and choose configure...

The figure below shows the dialog you use to configure the subscriber button:

5 Select the message server from the scroll area whose messages you want to
show in the browser.

6 If you want the browser to display all messages contained in the message
server the first time it is displayed, click on the check box to display its menu
and select sc-toggle.

7 If you have finished configuring the subscribers, filters, and scroll area of the
browser, select the hide button in the upper right corner of the browser
template.

If copies of the browser exist, you will be prompted to delete these copies.

Creating and Configuring Filters

You can configure the browser to filter the messages contained in the message
servers it displays. You define the filters used by a browser by selecting the filter
items from the Subscribers/Filters palette and placing them on the browser
template. The Subscribers/Filters palette is shown in Configuring a Browser on
page 182. You can apply five different types of filters:

• Generic Attribute Filter to filter messages using any attribute of the message.

• Priority Filter displays only messages with the specified priority.

• Category Filter displays only messages with the specified category. The
characters “?” for one character and “*” for multiple characters can be used as
wildcards.

• Target filter displays only the messages that target the specified domain object
and all the domain objects in its subworkspace hierarchy.

• Sender filter displays only the messages that are sent by the specified domain
object and all the domain-objects in its subworkspace hierarchy.
184

Setting up the Message System
To create a filter for a browser template:

1 Display the browser template and the Subscribers/Filters palette as described
in Configuring a Browser on page 182.

2 Click the check-box next to the filter on the Subscribers/Filters palette to clone
it.

3 Click on the Browser Template to drop the check box on the template.

4 Click on the check box to display the menu and choose configure...

5 Configure the filter.

The value depends on the type of filter used. Filter values for each type of
filter are:

a Generic Attribute Filter - The name of the attribute of the message to
match and the value for the attribute.

b Priority - A priority value selected from a list of priority values defined for
the system, each of which has an associated color.

c Category - A text string matching the category of the filter. The text string
can contain "*" for matching any 0 or more characters and "?" for matching
any one character in order to perform wild card matches. The text string
does not require quotes.

d Target - The Opfo-external-name of the target object matched by the filter.

e Sender - The Opfo-external-name of the sending object matched by the
filter.

6 If you want the browser to activate the filter the first time it is displayed, click
on the check box to display its menu and select sc-toggle.

7 If you have finished configuring the subscribers, filters, and scroll area of the
browser, select the hide button in the upper right corner of the browser
template.

If copies of the browser exist, you will be prompted to delete these copies.

Defining the Sorting Characteristics of the Browser

You can define a browser to automatically sort incoming messages or to place
new messages at the top or bottom of the browser. When you create a new
browser template, automatic sorting is disabled by default.

Caution Automatic sorting adds a performance overhead to the message handling of the
browser. If your system receives a high volume of messages, you should leave
automatic sorting disabled.
185

To define the sorting characteristics of the browser:

1 Display the browser template as described in Configuring a Browser on
page 182.

2 Click the mouse between the double lines that form the border of the scroll
area containing the browser columns, then select table.

The figure below shows the attributes used to configure the sorting characteristics
of the browser view:

The attributes on this table are:

• Add new items first or last - Specify first to add all new messages to the top of
the browser rows; last to add new messages to the bottom of the browser
rows. This option only matters if Automatically sort new items is false. The
default for a new browser template is last.

• Scroll to display new items - Specify true to enable scrolling when a new
message is added to browser view; false to disable automatic scrolling. Setting
this to true adds a performance overhead to the message handling of the
browser. If your system receives a high volume of messages, you should leave
this attribute as false. The default for a new template is false.

• Automatically sort new items - Specify true to sort messages as they are created
and displayed; false to disable automatic sorting. The initial sort criteria is
specified in Key for column to sort initially. The user can change the sort
criteria by selecting the title of a column or, the time sort button on the
browser view. When no columns are selected, the sort is done on time. To
maximize performance, do not use automatic sorting. The default for a new
template is false.

Note To enable sorting based on time, there is a 0 width column on the default
browser template defined for the attribute smh-creation-time. This is not
visible to the user but is used for sorting purposes. Do not delete this column.

• Automatically resort attribute changes - Specify true to resort the messages
whenever an attribute used in the table selected as the sort criteria changes;
186

Setting up the Message System
false not to resort. The default for a new template is false. To maximize
performance leave this set to false.

• Key for column to sort initially - The initial sort criteria used when the browser
is displayed for the first time. Enter the name of the column you want to use
for the initial sort criteria. The default is smh-creation-time.

• Initial sorting order - Specify ascending to sort in ascending order; descending
to sort in descending order. The user can reset this value using the Reverse
sort order button on the browser view. The default is ascending.

In addition, the user can sort all the messages in the browser based on the values
displayed in a column by clicking on a column header if that option is allowed in
the column header configuration of the column. This can be done even when the
browser is locked. Also, the user can go from any column value sort criteria to a
sort based on smh-creation-time of messages by selecting the time-sort button on
the browser.

When automatically-sort-new-items is set to false, the system adds all new
messages at the top or the bottom depending on the value of add-new-items-first-
or-last, regardless of the sort criteria selected.

Configuring the Columns of the Browser

Columns in the scroll area correspond to attributes of messages. You can display
the values of any attribute of a message in named columns. At run time, users can
click on a column heading to display the messages in a sorted order based on the
values of that attribute.

You must configure changes to the columns on the message scroll area on the
browser template. Displaying the template is described in Configuring a Browser
on page 182.

To change the location of a column:

 Drag the title of the column to the new location and release the mouse button.

To delete a column:

 Click the mouse on the title row of the column you want to delete and Select
delete column.

When you have finished configuring the subscribers, filters, and scroll area of the
browser, select the hide button in the upper right corner of the browser template.
If copies of the template exist, you will be prompted to delete these copies.

To add a new column:

1 Click the mouse on the title row of a column and select Add new column after
or Add new column before.

2 Configure the new column as described below.
187

To configure a column on the browser template:

 Click on the column title and select configure... then complete the
configuration dialog.

The dialog shown below appears:

The table below describes this dialog:

Dialog item Description

Label Column header label.

Font size Size of the font. Can be small, large or extra
large.

Background color Default background color of the title of the
column.

Text color Default text color of the title of the column.

Border color Default border color of the title of the
column.

Attribute or key value Name of a message attribute or a key which
defines the contents of the column.
188

Setting up the Message System
When you add a new column, you need to define how the system determines the
value to place in the column. You also must define the colors to use to display the
background, text and border of the column.

The contents of the browser column are defined by the procedure entered as the
Key Value Converter. The procedure defined as the key value converter is passed
a message and the Attribute or Key Value entered for the column. You can write
your own key value converter procedure, or you can use one of the two
procedures Integrity provides. These are:

• opcs-get-msg-text - This procedure places the text of the message in the
column. This procedure is the default called to get the value of the Text
column on the default browser.

• gqsv-get-attribute-value - This procedure uses the Attribute or Key Value to
find the value of the message attribute specified. If you use this procedure be
sure that the Attribute or Key Value is the name of a valid message attribute
for the class of message passed to gqsv-get-attribute-value. This procedure is

Key value converter Name of a procedure that takes in an item
(message) and a symbol (attribute or key),
and returns the value to display in the
column cells.

Dynamic color formatter Name of a procedure that takes in an item
(message) and a symbol (attribute or key),
and returns three symbols representing the
background, text and the border color for
the cell. The default opcs-get-msg-colors
returns colors that signify the priority and
acknowledgment status of the message.
When a new column is added no default is
provided so you must enter opcs-get-msg-
colors if you want to use the default
Integrity message colors.

Width Width of the column. If the width of a
column is set to 0, the column does not
appear on the browser view.

Allow click to sort true if you want to allow the user to sort the
messages displayed on the browser based
on the values in this column, otherwise
false. This sorts existing messages. If
automatic sorting is enabled, incoming
messages are also sorting using the values
in the column

Dialog item Description
189

called to get the value for the Priority and Acknowledgement columns on the
default browser.

To create a custom Key Value Converter procedure:

1 Display the browser template as described in Configuring a Browser on
page 182.

2 Select the label of the column you want to configure, then select configure ...

3 Select the button next to the Key Value Converter edit box.

This button icon displays ...

4 Type in the name of your custom procedure and click OK.

This creates a template for your custom procedure and places it next to the
browser template item.

To view and edit your custom procedure:

1 Locate the browser and highlight it.

2 Click Go To on the toolbar.

This takes you to the workspace where the browser template is defined.

3 Select the definition of the procedure, then select edit to define the contents of
the procedure.

The template provided for a custom key value converter procedure named my-
key-value-converter is shown below:

my-key-value-converter (Msg: class message, Key: symbol) = (value)
begin
{The type of value returned by this procedure should match the cell-type
attribute of the column}
end

doc_demo.kb provides examples of custom browser configurations on the
browser doc-custom-browser. On this browser, the two column Target and
Category both use the Integrity procedure gqsv-get-attribute-value to provide the
text for the column. In the Target column the attribute smh-target is passed to
gqsv-get-attribute-value. In the Category column the attribute smh-category is
passed to gqsv-get-attribute-values.
190

Setting up the Message System
The column Ack uses a custom key value converter procedure named doc-get-
ack-status. This procedure is shown below:

doc-get-ack-status(Msg : class message, Key : symbol) = (value)
status: text;
begin
if the smh-acknowledgement-status of msg is acknowledged

then status = "X" else status = " ";
return status;
end

This procedure uses the value of the attribute smh-acknowledgement-status to
place an “X” in the Ack column when the message is acknowledged and an empty
string when the message is unacknowledged.

When you create a new column, you must also define the procedure to use to set
the colors for the column. If you want to use the default color formatter, enter
opcs-get-msg-colors as the value for the attribute Dynamic Color Formatter on
the Configure Column Header dialog. This default procedure sets the
background color of the cell to the background color assigned to the priority of
the message by the initialization opfom-priority-alarm-colors. The text is set to the
text color assigned to the priority of the message by the initialization opfom-
priority-alarm-text-colors.

When the message is acknowledged, the background color of the cell is set to
white and the border is set to the color associated with the priority of the message.

You can also create a custom color formatter.

To create a custom dynamic color formatter procedure:

1 Display the browser template as described in Configuring a Browser on
page 182.

2 Select the label of the column you want to configure, then select configure ...

3 Select the button next to the Dynamic Color Formatter edit.

This button icon displays ...

4 Type in the name of your custom procedure and click OK.

This creates a template for your custom procedure and places it next to the
browser template item.

To view and edit your custom procedure:

1 Locate the browser and highlight it.

2 Click Go To on the toolbar.

This takes you to the workspace where the browser template is defined.
191

3 Select the definition of the procedure, then select edit to define the contents of
the procedure.

The template provided for a custom key value converter procedure named my-
dynamic-color-formatter is shown below:

my-dynamic-color-formatter (Msg: class message, KeyOrAttribute: symbol) =
(symbol,symbol,symbol)
begin
{This procedure should return the name of three G2 colors representing the
background color, the text color, and the border color of the column}

return the symbol white, the symbol, the symbol black, the symbol black;
end

The message and the key defined for the column is passed to the dynamic color
formatter. The procedure must return the symbols that define the background,
text, and border colors for the cell in this order.

The browser doc-custom-browser contains a column used to display the name of
the city that contains the target object. The color of the column for the city is
determined using the procedure doc-color-by-city.

The custom color formatting procedure from doc_demo is shown below:

doc-color-by-city(Msg : class smh-transient-message, KeyOrAttribute
:symbol) = (symbol, symbol, symbol)
color-back, color-text, color-border: symbol;
target-object: class doc-managed-object;
begin
target-object = call devu-domain-object-lookup (the smh-target of msg);
if the workspace of target-object is the same object as the subworkspace of

Houston
OR the workspace of target-object is the same object as the subworkspace of

Router-HOUS1
then color-back = the symbol light-yellowelse color-back = the symbol

light-cyan;
if the smh-message-category of msg = "Possible Problem"

then color-text = the symbol red
else color-text = the symbol black;

color-border = the symbol black;
return color-back, color-text, color-border;
end

In this example, the color of the background of the cell is determined by the city
that is the container of the target object. The text is set to black unless the message
category is “Possible Problem” in which case the text is red. The border color is set
to black.
192

Setting up the Message System
When you do not use the default procedure opcs-get-msg-colors to define the
Dynamic Color Formatter for a new column, the colors are not affected by
changes in priority or acknowledgment status.

Arranging the Items on the Browser Template

Once you have selected all the filters and subscribers and have configured all of
the columns on the browser template, you can move the items around into the
design that you prefer. You can also add other objects such as text or buttons to
the browser.

Note To make your changes permanent, you need to make them on the browser
template not on the view of the browser.

You can drag items on the browser template to move them to any desired
location. You can also move a group of objects as described in Working with G2
Objects on page 144. By moving an entire group of objects you can move the tool
bar on the browser template and the column scroll area.

Other objects can be added to the browser template just as to any other
workspace. Customizing a workspace is described in Working with G2 Objects on
page 144.

Writing Custom Procedures to Display and Hide a Browser

You can write your own procedures to customize what happens when a browser
is displayed or hidden. You enter the name of your custom procedures in the
browser configuration dialog.

To define a custom procedure to display a browser:

1 Locate the browser.

2 Double-click on the name of the browser and click Configure...

The browser configuration dialog is shown below:

3 Click the square button labeled ... that is next to the edit box for the Display
Procedure.

A dialog appears that asks for the name of the new procedure.
193

4 Enter the name you want to use for your custom procedure in the dialog then
click OK.

5 If you have finished configuring the rest of the browser, click the OK button
on the Configure Message Browser dialog.

The system creates the procedure you named and places it alongside the
browser definition.

The dialog to Create a browser is the same as the one to Configure an existing
browser, so you can also define custom procedures when you create the browser.

Use the same technique to create a custom procedure called when you hide the
browser.

To view and edit your custom procedure:

1 Locate the browser and highlight it.

2 Click Go To on the toolbar.

This takes you to the workspace where the browser is defined. The browser
workspace from doc_demo.kb is shown in the figure below:

In doc_demo the procedures, doc-browser-display and doc-browser-hide were
created for the message browser doc-option-browser using the technique
described above. When the system creates the procedures, it assigns them the
arguments that your custom procedure must contain.

Note If your procedure definitions overlap, drag them apart to view them clearly.

3 Select the appropriate procedure object, then select edit to define the contents
of the procedure.
194

Setting up the Message System
The doc_demo custom procedures are shown below. Nothing has been added
to these procedures. The system creates this code to provide the arguments
and calls you must include in your custom procedures.

doc-browser-display (source: class item, target: class item,
wksp:class kb-workspace, win: class g2-window)

begin
call sc-display-browser (source, target, wksp, win);

end

doc-browser-hide (wksp: class kb-workspace)
begin
end

Note Integrity hides the browser before it calls doc-browser-hide.

The arguments passed to these procedures are:

You can see from the example that a new display procedure must call the Integrity
procedure sc-display-browser to display the browser. You can add any other
behavior in the procedure. Custom hide procedures do not need to call any
Integrity procedures.

Defining Status Bars

A status bar is an indicator that displays the highest priority message posted in a
specified message server and whether the message has been acknowledged or
not. It provides an overview of the status of the message servers. Like browser
templates, status bar templates are a master copy of the status bar. The indicators
for each message server do not change colors on the status bar template, but do on
a status bar copy. When a user selects a Status Bar, a copy of the status bar is
created for a window.

Argument Description

source Browser template you are
configuring

target Browser template you are
configuring

wksp Workspace of the view of the
browser created when you select
the Browser.

win G2-window displaying the view of
the browser.
195

At run time, the color of an indicator always corresponds to the highest priority
message for that server, regardless of acknowledgement status. An sc-smh-status-
subscriber’s icon has two concentric icon-regions. The inner circle is only filled in
when there are unacknowledged messages. This applies regardless of the priority
of the unacknowledged messages. When all messages in a server are
acknowledged, only the outer concentric circle is colored.

To create a new status bar template:

1 Click on the Status-bar block from the Integrity Components palette.

2 Select the module where you want to place the status bar, then click OK.

3 Complete the configuration dialog shown below and click OK.

The following table describes what to enter in the configuration dialog:

Configuration Item Description

Name G2 symbolic name to define the message
server.

Message Servers Message servers whose message status is
displayed on the status bar.
196

Setting up the Message System
The figure below shows the dialog for selecting the initial position of the status
bar:

To select the initial location of the status bar:

 Click on the check box in the position you want to select.

An sc-smh-status-subscriber is created on the status bar for each message server
selected.

After you complete the dialog, the status bar template is displayed. You can re-
arrange the position of the message server indicators and the clock. You can also
delete the clock.

When you have finished configuring the status bar, select the hide button in the
upper right corner of the status bar template. If copies of the status bar exist, you
will be prompted to delete these copies.

Display Procedure Procedure called to display the status bar.
Leave the default unless you want to call a
custom procedure. See Writing Custom
Procedures to Display and Hide a Status Bar
on page 198.

Hide Procedure Procedure called to hide the status bar. Leave
the default unless you want to call a custom
procedure. See Writing Custom Procedures to
Display and Hide a Status Bar on page 198.

Screen Location Click if you want to select the initial position
of the status bar.

Configuration Item Description
197

Writing Custom Procedures to Display and Hide a Status Bar

You can write your own procedures to customize what happens when a status bar
is displayed or hidden. You enter the name of your custom procedures in the
status bar configuration dialog.

To define a custom procedure to display a status bar:

1 Locate the status bar.

2 Select the name of the status bar and click Configure...

3 Click the square button labeled ... that is next to the edit box for the Display
Procedure.

A dialog appears that asks for the name of the new procedure.

4 Enter the name you want to use for your custom procedure in the dialog, then
click OK.

5 If you have finished configuring the rest of the status bar, click the OK button
on the Configure Status Bar dialog.

The system creates the procedure you named and places it alongside the
status bar definition.

The dialog to Create a status bar is the same as the one to Configure an existing
status bar so you can also define custom procedures when you create the status
bar.

Use the same technique to create a custom procedure called when you hide the
status bar.
198

Setting up the Message System
To view and edit your custom procedure:

1 Locate the status bar.

2 Click Go To on the toolbar.

This takes you to the workspace where the status bar is defined. The status bar
workspace from doc_demo.kb is shown in the figure below:

In doc_demo the procedures, doc-status-display and doc-status-hide were
created for the status bar doc-error-status, using the technique described
above.

Note If your procedure definitions overlap, drag them apart to view them clearly.

3 Select the definition of the procedure, then select edit to define the contents of
the procedure.

The doc_demo custom procedures are shown below. Nothing has been added
to these procedures. The system creates this code to provide the arguments
and calls you must include in your custom procedures.

doc-status-display (source: class item, target: class item,
wksp:class kb-workspace, win: class g2-window)

begin
call sc-display-status (source, target, wksp, win);

end

doc-status-hide (wksp: class kb-workspace)
begin
end
199

The arguments passed to these procedures are:

You can see from the example that a new display procedure must call the Integrity
procedure sc-display-status to display the status bar. You can add any other
behavior in the procedure. Custom hide procedures do not need to call any
Integrity procedures.

Defining Escalation Specifications

When a message is not acknowledged within a defined time period, Integrity can
follow certain procedures that escalate the message status. You create an
escalation specification object to define the procedures Integrity should follow.
The procedures that the escalation specification defines are called escalation
procedures.

You associate an escalation specification with messages containing a specified
target, category, and/or priority. You can define five phases for the escalation
specification. Each phase has a duration after which the next phase is invoked.
When a new phase is invoked, it calls the escalation procedure for that phase and
passes it the message as the argument.

The demonstration application contains an example of an escalation specification.

To see an example of an escalation specification in the demo application:

1 Load doc_demo.kb.

2 List the Escalation Specifications by using the Finder.

3 Click on Doc-Printer-Escalation and select the Configure... button.

The configuration of this escalation specification is displayed. Three phases
are defined. Each phase calls the same procedure, Doc-RaisePriority. This

Argument Description

source Status bar template you are
configuring

target Status bar template you are
configuring

wksp Workspace of the view of the
status bar created when you select
Status Bar from the Applications
Objects menu.

win G2-window of the view of the
status bar.
200

Setting up the Message System
procedure increases the priority of the message every minute that elapses
without the message being acknowledged by the user.

4 To see the escalation object work:

a Choose View > Domain Map.

b Navigate through the domain map until you select the object for the
Houston site.

c Select View External Objects from the Houston domain map.

d Use the Finder to locate the Doc-Browser.

e Select Ext-printer-B1 and select Noisy from the menu.

This sends a Noisy message which targets Printer-B1. The escalation
specification defined for the printer replaces the old message with a new
one with a higher priority every minute that the message remains
unacknowledged. You can see the effects of this escalation as the color of
both the message in the browser and the color of the printer on the domain
map changes every minute to match the priority of the message.

5 To view the procedure Doc-RaisePriority:

a From the Explorer view, double click the “+” next to Escalation
Specifications.

b Select doc-printer-escalation, click Go To, then select Escalation
Procedures.

c Select the procedure definition icon and select table.

To define an escalation specification:

1 Click on the Escalation Specification block from the Integrity components
palette.

2 Select the tab for the module where you want to place the escalation
specification.

3 Select the item Escalation Specifications.
201

4 Click Create to display the dialog shown below:

5 Configure the dialog as described in the following headings.

Specifying the Target of an Escalation Specification

The target defines the domain objects associated with the escalation specification.
The escalation specification applies to every message that targets the domain
object you specify. You can specify the target by:

• The class of the target.

• The external name of the target. The specification for the external name can
contain the wildcard “*” to specify a match for any characters or the wildcard
“?” to match a single unspecified character.

Caution Using wildcards to define external names can cause a performance loss to the
system. We strongly recommend that you do not use wildcards when the target
type is an object class. This can significantly slow system performance.

The target specifications of the escalation specifications are initialized on start-up
and on re-configuration.
202

Setting up the Message System
Specifying the Category of an Escalation Specification

When you define an escalation specification, you can specify the category of the
targets that you want to be linked to the escalation specification.

Note Because each domain object can only be linked to a single escalation specification,
you cannot define more than one escalation specification for the same target even
if the categories of the target are different. The category definition simply allows
you to limit the application of the escalation specification of a particular target.

Specifying the Priority of an Escalation Specification

You assign each escalation specification a priority. Before a message is linked to
an escalation specification, the priority of the message is checked with the priority
of the escalation specification. The priority can:

• Match any priority, using Any Priority.

• Match a specific defined priority, using Priority =.

• Match any priorities less than or equal to a defined priority, using Priority <=.

You select the type of priority by checking using the radio buttons on the
configuration dialog.

Specifying the Procedures Called in Escalation Specifications

An escalation specification can have from one to five phases, each of which is
associated with a procedure. You can specify three types of information in the
escalation procedure associated with each phase of an escalation specification:

• The name of a G2 procedure. This procedure is called when the escalation
specification completes the phase associated with the procedure.

• The name of an OPAC procedure. This is a graphical procedure you create
with the OPAC module of Integrity. The OPAC procedure is started when the
escalation specification completes the phase associated with the OPAC
procedure.

• The name of another escalation specification. After the message enters the
escalation phase, a relationship is formed between the new message and the
new escalation specification.

Timing the Invocation of Escalation Phases

Each escalation specification contains five phases. Each of these phases has a
delay time attribute which determines the time at which the phase is invoked for
a message related to the escalation specification. When a message is created, it has
an attribute called Creation-time, which is set to the time the message was created.
This time is set using G2 time, which represent the date and time in seconds
measured from a preset starting point.
203

The phase delay times are added sequentially to the message creation time to
create an array of times at which each phase is invoked. The time of the first phase
is saved in the message attribute Revisit-time. The table below shows an example
of how the delay times are used to create an array that defines the times at which
each phase begins.

In this example, assume the message creation time was 12:02.

Because there is overhead in testing to see if the revisit times have been reached
for all the messages related to escalation specifications, the messages are tested
only at an interval defined by the parameter smh-gep-update-rate. You set this
parameter, using an initialization, as described in Editing the Value of an
Initialization on page 80.

If you assume that last escalation specification update occurred at 12:00 and smh-
gep-timed-update is set to update escalations every five minutes, the phases
defined for the message shown in the table above are invoked as follows:

Phase Delay
Time

Revisit-Time

1 5 min. 12:07

2 7 min. 12:14

3 7 min. 12:21

4 7 min 12:28

5 5 min 12:32

Test Time Message Status

12:00 not yet created

12:05 not yet created

12:10 enter phase 1

12:15 enter phase 2

12:20 still in phase 2

12:25 enter phase 3

12:30 enter phase 4

12:35 enter phase 5
204

Working with Messages
The message status is only updated if the update time is greater than or equal to
the revisit-time of the message.

Note You can see from these tables that it is important to define an smh-gep-update-
rate that is less than the delay times defined in the escalation specifications. If the
test interval is called only every 30 minutes and escalation phases are defined
every 5 minutes, the escalations will not be invoked as defined. On the other
hand, a very low smh-gep-update-rate will cause a serious performance loss to
the system.

Working with Messages
This section describes how to create, view, acknowledge and delete messages. It
also describes message histories and how messages propagate through the
domain map.

What is a Message?

In an Integrity application, a message is an object that stores information about an
event. A message is stored in a message server and can be displayed on a message
browser. The main message class in Integrity is an smh-small-message. When
you create a new application, a new message class named xxx-message, where
xxx is the name of the prefix you selected for your application, is automatically
created. The hierarchy of an xxx-message is shown in the figure below:

A message is created by calling the procedure smh-create-message. This
procedure defines the message attributes and assigns the message to a message
server. The message server you select determines the class of the message created
by smh-create-message. For information about specifying the message class for a
message server, see Defining Message Servers on page 179.

xxx-messagesmh-small-messagemessageitem
205

The smh-small-message class has the attributes described in the table below:

Attribute Description

text Text of the message. Set by the argument
txt in the procedure smh-create-message.

smh-sender Domain object that is the sender of the
message. Set by the argument sender in the
procedure smh-create-message.

smh-target Domain object that is the target of the
message. Set by the argument target in the
procedure smh-create-message.

smh-message-category Category of the message. Set by the
argument category in the procedure smh-
create-message.

smh-repetitions Number of repetitions of the message.
When a message with the same target,
sender and category as an existing
message is created, this value is
incremented in the existing message
unless the message is created using the -r
option.

smh-creation-time Time the message is created shown in G2-
time. Set by the argument time-sent in the
procedure smh-create-message.

smh-formatted-creation-
time

Time the message is created in the format
MM/DD/YY HH:MM:SS.

smh-revisit-time Time the current escalation routine
targeting the message is invoked. See
Timing the Invocation of Escalation
Phases on page 203. This value is set by
the values specified in from the Escalation
Specification configuration dialog.

smh-revisit-method Name of the current escalation routine. Set
by the values specified in the Escalation
Specification configuration dialog.
206

Working with Messages
Creating a Message

You create a message by using either an Integrity procedure or, if you use the
OPAC graphical language module, an OPAC graphical procedure. The call to
create a message usually occurs in a completion routine or a reasoning routine
after you have parsed an incoming event to determine the target, sender and
category and have decided that a message should be created.

In the example shown below from doc_demo, the method doc-out-of-service is
called whenever an event of the category “out-of-service” occurs. The target,

smh-deletion-time Calculated from the smh-creation-time
and the value of the argument lifetime
specified in the procedure smh-create-
message.

smh-priority Priority of the message. Set by the
argument priority in the procedure smh-
create-message.

smh-acknowledgement-
status

By default a message is created with the
status of unacknowledged. If the option -
nack is used in smh-create-message, the
message is created with a status of
acknowledged. The status of an
unacknowledged message is updated
when the message is acknowledged either
by the user or a call to the procedure smh-
acknowledge-message.

smh-acknowledger Name of the window that sent the
message acknowledgment. If it is the local
window, the value is set to the current G2-
mode.

smh-additional-text A second text field added to the message.
Set by the argument additional-text in the
procedure smh-create-message.

smh-user-comment Comment added to the message by the
user. This is added by selecting a message
in the browser then clicking the add
comment button. See Using the Browser to
View and Interact with Messages on
page 210.

Attribute Description
207

sender, category, and text of the event are passed to the method and a message is
created and placed in the doc-message-server.

doc-out-of-service (target: class doc-object, sender: class doc-object,
category: text, info: text)

msg: class doc-message;
begin
msg = call smh-create-message (doc-message-server, sender, target,
category, info, "",-1,2, 300, false, sender, "-r");
end

The Integrity procedure to create a message is:

smh-create-message
(server: class smh-message-server, sender: class object,
target: class opfo-domain-object, category: text, txt: text, additional-text: text,
time-sent: float, priority: integer, lifetime: integer, show-display: truth-value,
win: class object, options: text)
 message: class smh-small-message

Argument Description

server Message server to contain the message.

sender Sender of the message.

target Target of the message.

category Message category.

txt Value assigned as the text of the message

additional-text Value assigned to the attribute additional-text of the
message.

time-sent Time the message is created. This is G2-time format.
Pass in any negative number to set the time to the
current time.

priority Priority of the message, which is an integer.

lifetime Number of seconds the message is maintained
before being deleted. If a value of -1 is entered, the
message will not be automatically deleted.

show-display Either true or false. Currently not used.
208

Working with Messages
The call to smh-create-message returns the smh-small-message that is created.

Note When you call smh-create-message, you can use only one of the options -a, -r or
-i.

For information on creating a message, using OPAC, see the OPAC User’s Guide.

Maintaining Message Histories

Histories are an important component of the messaging system because they
allow you to reason about and filter incoming events based on the time and
frequency of identical events. This can prevent alarm flooding resulting from
repeated events generated from a single fault.

When you create a message, the system searches to see if a history object already
exists for the type of message. A history object which matches the target, sender
and category arguments of the new message is considered an existing history.
When there is an existing history, the time-sent of the new message is added to the
end of the history list unless -nohist is included in the options argument of the call
to create the message.

win Any G2 window or object. Currently not used.

options -nohist - Do not maintain a history for the message.
-nack - Set the message as an acknowledged
message.

Several options define how to handle a new
message which is a duplicate of an existing
message. Only one of these can be used at a time:

-a - txt is appended to the main text of the existing
message and txt2 is appended to the value of
additional-text of the existing message.

-i - information regarding the Repetitions of the
message is appended to the main text of the
message and the repetitions counter attribute of the
message is incremented. This is the default option.

-r - the old message is deleted and replaced with the
new message. Escalation procedures from the old
message are copied to the new message. The text of
the new message replaces the text of the old
message.

Argument Description
209

Note When you create a message with -nohist passed as one of the options arguments,
no history objects are created or updated.

For information on how to search message histories see Querying Message
Histories on page 228.

Using the Browser to View and Interact with
Messages

You can display the browser by selecting the browser name from the Browser
finder list, or from the Explorer tree, then selecting View Object. When you select
a message in the browser, the buttons at the top of the browser become active.

To select browser messages:

1 If you want to select a single message, click on the message..

2 To select a group of messages, click on the first message in the group then
hold down Shift and then click on the last message in the group.

To deselect browser messages:

1 Click on another message.

2 If only one message is shown on the browser, to deselect it (so that its status
color is visible), hold down the Control-key and click on the message.

Tip To display the name of a browser button name, place the cursor over the browser
button then hold down the mouse button.

Each of the Message browser toolbar options is described below:

Option Description

Acknowledge the selected messages.

Delete the selected messages.

Note: Only acknowledged messages can be deleted.

Go To Sender of the message. A flashing arrow points to
the item on the domain map that is the sender of the
message.
210

Working with Messages
The message subscribers define the message servers whose messages appear in
the browser. Filters limit the browser to display only messages with the attributes
defined by the filter.

To activate and deactivate filters and subscribers on the browser:

 Click on the filter or subscriber check box and select sc-toggle from the menu.

In Operator Mode, you click on a check box to select it.

The message server subscribers on the browser display the status summary of the
messages in the corresponding message server. Each message server subscriber’s
icon has two concentric icon-regions displayed on the side of the check boxes. The
inner circle icon displays the alarm status of the highest priority unacknowledged
message in the specified message server. The outer concentric icon displays the
alarm status of the highest priority acknowledged message in the specified
message server. It provides at a glance an overview of the status of the messages
in message servers even when the message server is not selected.

Messages can be sorted by the cell values contained in any column on the browser
or by the creation time of the message. The sort order can be changed by selecting
the Sort button on the button bar.

Go to Target of the message. A flashing arrow points to
the item on the domain map that is the target of the
message.

View message details of the selected message. This
button displays the values of the attributes of the
message.

Add Comment to the selected message. This button lets
the user add a comment to the message.

Time Sort the messages. To sort a group of messages by
time, click on this button.

Reverse the sort order of the messages. To sort a group
of messages, click on the title of the column you want to
use as the sort key.

Lock or Unlock the view of the browser. This locks out
all operations on messages and disables updating the
browser with new messages.

Option Description
211

To sort the messages displayed on a browser by the value of a column:

 Click on the title bar of the column you want to use for the sort key. The order
can be switched from ascending to descending by selecting the Reverse Sort
Order button from the toolbar.

To sort the messages displayed on a browser by time:

 Click on the button with the clock icon that is in the tool bar. The order can be
switched from ascending to descending by selecting the Reverse Sort Order
button from the toolbar.

Note When you select a column or the Time Sort button to sort messages, the messages
in the browser are sorted. If the automatic sort feature is enabled, all incoming
messages are also sorted according to the criteria selected. For information on
setting the sorting characteristics of the browser, see Defining the Sorting
Characteristics of the Browser on page 185.

Acknowledging Messages

Every message you create has an attribute called Acknowledgment-status. This
attribute keeps track of whether a message is acknowledged or unacknowledged.
The acknowledgment-status of the message determines the color of the message
and the acknowledgement-region color of the target object and the objects above
the target in the containment hierarchy.

To acknowledge a message from a browser:

1 Display a browser that shows the message you want to acknowledge.

2 Click on the message.

3 Select the acknowledge button on the browser.

The button icon shows a check mark.

When a message is acknowledged on one browser, all views of the message on
other browsers are also acknowledged.

To acknowledge a message programmatically:

 Use the procedure:

smh-acknowledgment-proc (Message: class smh-small-message, win: class
object)
212

Working with Messages
Deleting Messages

Every message created in an Integrity application should eventually be deleted. If
messages are not deleted, the message information base will continue to grow
until its size eventually becomes a bottleneck to the system. Messages are deleted
several ways:

• The user can delete a message from a browser.

• Specify the lifetime argument of the smh-create-message procedure when
you create the message. After the specified time, the message is automatically
deleted.

• Delete a message programmatically using an Integrity procedure. These are
described in the section below.

When a message is deleted from the browser, the system can display a dialog
verifying that the message should be deleted. This feature can be enabled or
disabled by setting the value of the initialization item opcsrui-confirm-message-
deletion to true or false.

To delete a message from the browser:

1 Display a browser which shows the message you want to delete.

2 Click on the message.

3 If the message has not been acknowledged, click on the acknowledge button
to acknowledge it.

4 Select the delete button on the browser. The button icon shows an X.

When a message is deleted on one browser, all views of the message on other
browsers are also deleted.

To delete a specific message programmatically:

 smh-delete-message
(server: class smh-message-server, sender: class object,
target: class opfo-domain-object, category: text, win: class object,
options: text)

Argument Description

server Message server to contain the message.

sender Sender of the message.

target Target of the message.

category Message category.
213

This procedure is used to delete a specified message with the designated
sender, target and category either in one message server, or in all message
servers.

To delete all messages within a specified message server:

 smh-server-delete-all-messages
(server: class: smh-message-server)

To delete an entire message server and all its messages:

 smh-delete-server
(server: class: smh-message-server)

Reading and Writing Messages to a File

You can write the contents of a message server out to an external message
information base text file, and read the contents of an message base information
base text file back into a message server.

To write the contents of a message server to a message information base text
file:

 smh-write-server-mib-to-file
(server: class smh-message-server, filename: text)

Where server is the handle to a message server defined in the application and
filename is a legal file name.

To read a message information base text file into a message server:

 smh-read-server-mib-from-file
(server: class smh-message-server, filename: text)

Where server is the handle to a message server defined in the application and
filename is a legal file name.

smh-read-server-mib-from-file requires that the message information base be
stored in the file in the same format in which smh-write-server-mib-to-file writes
the message information base. Both of these procedures should be used in
conjunction with each other.

win Any G2 window or object.

options -all - Deletes the message in all message servers
irrespective of the message server argument
specified.

Argument Description
214

Message Alarm Propagation
Message Alarm Propagation
When you create a message, the message sends an alarm to the domain object
targeted by the message. From the target domain object, the alarm propagates up
through the containment hierarchy. When an alarm reaches a domain object, it
compares the _opfo-highest-message-priority to the priority of the message that
generated the alarm. If the _opfo-highest-message-priority is lower than the
message priority, it is reset to the new high value. Next, the alarm propagation
routine checks the acknowledgment status of the message generating the alarm. If
the status is unacknowledged, the alarm sets the _opfo-acknowledgement-status
of each domain object in the containment hierarchy to unacknowledged.

The values of _opfo-highest-message-priority and _opfo-acknowledgement-status
define the colors used to display the alarm-region and the acknowledge-region of
the domain object. You map specific colors to priority values using Initializations
as described below in Setting Priority and Acknowledgment Colors.

Setting Priority and Acknowledgment Colors

When you create a message, you assign the message a priority. A priority is an
integer value. The highest priority message has a priority value of 1. Each priority
has an associated background color, called the priority color, and text color. When
a browser displays a message, it uses the priority to set the background and text
color of the message.

The priority color also affects the color of the alarm regions of domain objects. The
highest priority message targeting a domain object defines the color used for the
alarm-region icon region of the object.

The priority colors are defined in the array opfom-priority-alarm-colors. The text
colors are defined in the array opfom-priority-alarm-text-colors. If a message has a
priority that does not have a color assigned to it, the color defined by the opfom-
default-priority-color object is used as the message background color on the
browser and the domain objects.

Colors are also used to show the acknowledgment status of objects on the domain
map. If an object is targeted by an unacknowledged message, the color of the
acknowledgement-region of its icon changes to the color defined by the opfom-
unacknowledged-color object. If no unacknowledged messages target the object,
its acknowledgement-region is displayed in the color specified by the opfom-
acknowledged-color object.

To edit an object that defines a priority color, you edit the Initializations that
targets the object. For details on how to edit initializations, see Editing the Value
of an Initialization on page 80.
215

The table below summarizes the color assignments used to set the priority colors
and the initialization targets you can edit to change them. For detail about these
initializations, see the Integrity Reference Manual.

Setting Default Message Priorities

Domain map objects have an attribute named _opfo-highest-message-priority
which keeps track of the highest priority of the messages targeting the object. The
value of this attribute determines the color used to display the alarm-region of the
object’s icon.

When the domain map is initialized at system startup, a default value of 9999 is
assigned to this attribute, using an initialization with the target opfom-default-
initial-priority. Because this priority is not mapped to a color, the opfom-default-
priority-color is used, which is transparent.

The _opfo-highest-message-priority of an object changes when a higher priority
message targets the object. Keep in mind that the highest priority has a value of 1,
so the lower the numeric value, the higher the priority. The priority of the
message determines the alarm color of the target object and the objects above the
target in the workspace containment hierarchy. When the last message targeting
an object is deleted, the value of the object’s _opfo-highest-message-priority
attribute is reset to the value of the integer parameter opfom-default-priority-on-

Initialization Target Color Defined

opfom-priority-alarm-colors Background colors used for
messages and domain object
alarm-region.

opfom-priority-alarm-text-colors Text colors used for messages and
domain object alarm-region.

opfom-default-priority-color Color used for the background and
domain object alarm-region of a
priority not defined in opfom-
priority-alarm-color.

opfom-unacknowledged-color Color used for the
acknowledgement-region of a
domain object targeted by an
unacknowledged message.

opfom-acknowledged-color Color used for the
acknowledgement-region of a
domain object not targeted by an
unacknowledged message.
216

Logging Messages and Events
del-of-last-message or opfom-default-initial-priority depending on whether the
parameter, opfom-revert-priority-to-initial (a boolean) is set to true or false.

In Integrity the default values for opfom-default-priority-on-del-of-last-message,
opfom-default-initial-priority, and opfom-revert-priority-to-initial are set to 6, 9999
and true respectively. The values of all these parameters can be changed by
editing their initializations.

The initial priority of an object changes when a higher level priority message
targets the object. When the last message targeting an object is deleted, the value
of the object’s _opfo-highest-message-priority attribute is reset to the value of the
parameter opfom-default-priority-on-delete-of-last-message. A system
initialization defines this default to equal 6. Another parameter, opfom-revert-
priority-to-initial is a boolean can be set to true to override the opfom-default-
priority-on-delete-of-last-message with the value of the opfom-default-initial-
priority.

To edit an object that defines a priority color, you edit the Initializations that
targets the object. For details on how to edit initializations, see Editing the Value
of an Initialization on page 80.

The table below summarizes the initializations defined that affect the priorities set
after the last message targeting an object is deleted. For details of these
initializations see the Integrity Reference Manual.

Logging Messages and Events
Integrity includes a logging facility that lets you create and manage log files. You
can use a log manager to log all the actions performed on the messages in a
message server or to log events which never became messages.

You can configure a logging manager to enable or disable logging and to
automatically delete any empty log files.

Initialization Target Priority value set

opfom-default-initial-priority Initial priority.

opfom-default-priority-on-delete-of-
last-message

Priority after all messages against
target are deleted.

opfom-revert-priority-to-initial Revert to initial priority or default
priority after all messages against
a target are deleted. This results in
the domain objects color being set
to the value of opfom-default-
priority-color.
217

The logging facility is used to log error messages as described below in Logging
System Errors on page 223.

Creating a Logging Manager

Before you can log any events you need to create a log manager.

To create a logging manager:

1 Click on the logging manager block from the Integrity components palette.

2 Select the module where you want to place the logging manager, then click
OK.

3 Complete the configuration dialog shown below:

Configuration Item Description

Name Name of the logging manager.

Logging Enabled Whether the logging manager is
enabled or disabled.

Directory Directory where log files are
written.
218

Logging Messages and Events
Logging Messages

You can configure the Integrity message system to automatically log all messages
sent to a specified message server. The creation of the messages themselves and
all actions performed on the messages are logged. The actions logged include:

• Creation

• Deletions

• Acknowledgments

• Addition of user comments

• Changes to the text of a message

File Name Template Log file names are generated based
on this template. In the default
template, * is replaced by the digits
of the year, month, day, hour and
minute at which the log file is
created.

File Name Generator Name of the procedure to
generates the file names. You can
specify a custom procedure.

File Header Writer Name of the procedure to generate
the file header. You can specify a
custom procedure.

Time Interval to Open New File Length of time interval in seconds
when a new log file is opened.

Maximum File Size in Bytes Maximum file size of the log file.
When the size is reached, a new
log file is opened.

Log File Scheduler Name of the procedure used to
schedule log file creation. The
default can be replaced with a
custom procedure.

Automatically Delete Empty Log
Files

Select whether empty log files are
automatically deleted.

Configuration Item Description
219

To log all messages in a particular message server:

1 Create a Logging Manager as described in Creating a Logging Manager on
page 218.

Be sure that the Logging Manager is enabled.

2 Navigate to Message Servers, double click on the “+” to view the message
servers defined and select the message server you want to log.

3 Select the Configure... button.

4 Choose a the Logging Manager from the scroll area on the message server
configuration dialog.

Logging Events Programmatically

You can use the logging facility to log any kind of information to a log file. For
example, events can come into the system for which you do not create messages
but which you want to send to a log file.

To write text to a log file:

 glf-write-to-log-file
(log-name: class glf-logging-manager, info: text)

log-name is the name of the Logging Manager. The Logging Manager writes
the info passed to its current log file.

Defining Closing Times for a Log File

You can use several different methods to specify when a log file should be closed
and a new file opened. These include:

• Defining a time interval in the logging manager dialog item Time Interval to
Open New File. This method is implemented in the default Log File Scheduler
Procedure.

• Setting a list of daily closing times using the API procedure glf-set-fixed-log-
closing-times. See the Integrity Reference Manual for a description of this
procedure.

• Defining a maximum size for the log file set in the logging dialog item
Maximum File Size in Bytes

• Writing a custom scheduling procedure and naming it in the logging dialog
item Log File Scheduler.
220

Error Handling
Customizing the Logging Manager

Three attributes of the logging manager configuration dialog define procedures
used to customize the behavior of the logging manager. All of the following
custom procedure take two arguments: (log: class glf-logging-manager, client:
class object).

• File Name Generator is the name of the procedure to generate the names of
the log files. The default procedure uses the File Name Template and the File
Directory to name the log files. Any custom procedure defined should return
a text which will be the name of the log file.

• File Header Writer writes out a header text for the log files. The default writes
out time stamp information. Any custom procedure defined should write a
header text to the log file of Log.

• Log File Scheduler defines a procedure that times the opening and closing of
log files. The default closes the file after a time interval defined by Time
Interval to Open New File. Any custom procedure defined should return an
integer time-interval (in seconds) after which a new file will be opened.

Error Handling
The error handling routines in Integrity use the Integrity message system. When
an error occurs, a default system procedure creates an Integrity message for each
error and sends the message to the message server smh-error-server. You
configure the default browser created as part of a new application to display the
error messages.

You define the behavior of the default error handler using initialization objects.
The table below lists each initialization used as part of the error handling system
and describes how it is used:

Initialization Item Error handling definition

smh-system-error-server Message Server that receives error
messages.

devu-error-handler-proc Name of the error-handling
procedure.

devu-error-lifetime Lifetime of an error message.

devu-high-priority Value assigned to a high-priority
error.

devu-medium-priority Value assigned to a medium-
priority error.
221

You can change any of the default values for these items by defining an
initialization item in your application module. Setting initializations is described
in Editing the Value of an Initialization on page 80. For a detailed description of
these initializations, see the Integrity Reference Manual.

Creating a New Error Handling Procedure

If you decide to define a new error handling procedure by changing the
initialization value of devu-error-handler-proc, you must make the arguments for
your new error handler match the arguments passed to the default procedure,
smh-send-error-message. These arguments are described below:

smh-send-error-message
(target: class item, sender: class: item, error-type: text, priority: integer,
error-name: symbol, error-text: text, error-lifetime: integer)

devu-low-priority Value assigned to a low-priority
error.

devu-system-category Value assigned to the message
category of a system error.

Initialization Item Error handling definition

Argument Description

target Item causing the error.

sender Sender of the error.

error-category Category of the error.

priority Priority of the error.

error-name Name of the error.

error-text Text describing the error.

error-lifetime Time interval in seconds before the error is deleted.
222

Creating User Defined Effects
Logging System Errors

The default message server used to receive error messages is named smh-error-
server. This message server is defined to log all messages, using a Log Manager
named smh-error-log.

To disable or enable error logging:

1 Select Tools > Inspect from the Integrity main menu.

2 Type go to smh-error-log.

3 Click on End.

4 Select smh-error-log to display its menu.

5 Select turn on logging to enable logging. Select turn off logging to disable
logging.

To disable or enable logging programmatically:

 glf-enable-logging
(obj: class glf-logging-manager, win: class object)

 glf-disable-logging
(obj: class glf-logging-manager, win: class object

These procedures are described in the reference section.

Creating User Defined Effects
Integrity defines a set of parameters that contains the names of procedures called
when messages are created, acknowledged, deleted, or modified. These
parameters are defined in the table below:

Action on message Calls Procedure Contained in
Parameter

Create a new message smh-user-message-creation-proc

Delete a message smh-user-message-deletion-proc

Acknowledge a message smh-user-message-
acknowledgement-proc

Add a comment to a message smh-user-message-comment-proc

Change the text of a message smh-user-message-text-change-
proc
223

When you start your application, the system initializes the default values of these
parameters, using Initializations. You can modify the behavior of the message
system by editing the Initializations to change the names of the procedures called
by these parameters.

To add a custom procedure when a message is created, modified, or deleted:

1 Create the new procedure.

Procedures called using smh--user-message-text-change-proc must accept
the arguments:

(msg: class smh-transient-message, old-text: text, win: object)

All other procedures called by these initializations should accept the
arguments:

(msg: class smh-transient-message, win: object)

2 Edit the Initialization that targets the parameter you want to change.

Editing initialization objects is described in Editing the Value of an
Initialization on page 80. For a detailed description of the initializations, see
the Integrity Reference Manual.

The doc_demo sample application provides an example of the use of a custom
procedure. The message class used in doc_demo, doc-message defines the
new attribute city-of-target. A procedure named doc-set-city-value is assigned
to the system initialization smh-user-message-creation-proc. The system calls
this procedure every time it creates a new message. The procedure uses
information from the domain map to set the value of city-of-target. You can
view this procedure by selecting the Application Workspaces >
Miscellaneous.

The default procedures defined in Integrity add logging behavior to the
message system, as described in Logging Messages on page 219. If you call a
custom procedure, and you want to retain the logging functionality, you must
call the original default logging routines in your custom procedures.The
default values for these procedures are defined in the alphabetic listing of
initializations in the Integrity Reference Manual.
224

9

Reasoning
About Events
Describes how you use message histories and the domain map to reason about
incoming events in Integrity.

Introduction 225

Examples of Reasoning Routines 226

Creating Reasoning Routines 227

Searching for Related Messages 227

Querying Message Histories 228

Filtering Messages and Events 229

Implementing Alarm Thresholding 232

Correlating Events 234

Diagnosing Faults 235

Automating Recovery and Preventing Faults 235

Introduction
Integrity provides a rich environment for reasoning about events generated by a
group of external objects. Events coming into an Integrity application are related
to the objects in the domain map to which the event refers. The domain map
objects are related to history objects, which keep track of the message histories of
each object. The histories let you reason about the occurrence and timing of
related messages. The domain map itself contains information about connectivity
225

and containment relationships among the objects. These relationships make it
possible to reason using the occurrence of messages to objects related to the
current object.

You reason about incoming events in order to:

• Filter out events containing unnecessary or redundant information.

• Perform alarm thresholding to add information to events based on the
number and time of events received.

• Correlate events to determine a likely source of a fault.

• Diagnose symptoms of a problem.

• Monitor the progress of a process.

• Perform automated recovery.

• Prevent faults from occurring.

This chapter discusses how an Integrity application can use the domain map and
message structure to reason about incoming events.

Examples of Reasoning Routines
Many of the examples used in this chapter are shown in the doc_demo.kb sample
application. It can be helpful to load this application and try some of the examples
to see some of the different types of reasoning routines described.

To view reasoning routines in doc_demo:

1 Load doc_demo.

2 Choose View > Domain Map from the Integrity main menu.

3 Click on the Gensym logo, then select go to subworkspace from the menu.

4 Click on Houston, then select go to subworkspace from the menu.

5 Click on View External Objects.

This shows a simulated set of external objects, which are the objects modeled
on the Houston workspace of the domain map.

6 From the DOC Application Objects workspace, select Message browsers >
Doc-Browser from the Integrity main menu.

7 Press CTRL+S with the mouse cursor over each of the windows to shrink
them so you can view several windows at one time.

8 Using the workspace finder, locate and view the Docdemo-top-level
workspace, select Application Objects, then select Reasoning Routines.
226

Creating Reasoning Routines
This workspace shows the definitions of the Reasoning Routines used in the
examples.

Creating Reasoning Routines
When you use the startup KB for your package to create a new application, the
system creates a workspace for you to place reasoning routines. Reasoning
routines are subclasses are methods or procedures. The user interface lets you
create and navigate to methods that are reasoning routines.

To create a new reasoning routine:

1 Open the DOC Reasoning Routines workspace.

2 From the Core G2 Objects > Definition Objects palette, select Method
declaration, method and/or procedures you need for your reasoning routine.

3 Drag and drop the blocks to the workspace.

4 Right-click on a block, then select properties. Edit the fields to configure the
block.

5 If you are creating a method, enter the name of the class to which the method
applies. You can select the button displaying the symbol of the triangle to
view a list of the classes defined in the application.

6 Close the Properties box to save the configuration.

This creates an object for the method or procedure you define and places it on the
Completion Routines workspace. When you create a method, the system
automatically defines a method declaration as well as the class definition for the
method specified.

To define the reasoning method or procedure:

1 Select the name of the method or procedure from the Finder.

2 Select the Configure button.

3 Type in the method or procedure in the edit window.

Searching for Related Messages
Reasoning routines often make use of information about the previous messages
involving a specified target, sender, category or a combination of these attributes.

Several procedures are provided that let you search the message information base
for existing messages that match certain specifications. Each of these procedures
places all messages that match the specified criteria on a list passed as an
argument to the procedure. These procedures include:
227

• smh-get-messages-about searches for all messages with a specified target.

• smh-get-messages-sent-by searches for all messages sent by a specified
sender.

• smh-get-messages-in-server searches for all the messages in the specified
server.

• smh_message-query searches for all messages with a specified target, sender
and category.

For information on these procedures see the API reference in the Integrity Utilities
Guide.

Querying Message Histories
The procedures described above let you directly search the message information
base. Another way you can obtain information about previous messages to use in
reasoning routines is to query the message histories.

The Integrity messaging system maintains a history for each message with a
unique target, category, and sender. You can query these message histories to
return a list that contains the times a message of a specific description was
created.

To query a message history call the procedure:

 smh-get-message-history
(target: item, sender: item-or-value, category: text,
message-category-starting-position: integer, timestamp-now: float,
match-time-interval-seconds: float, time-stamps-list: class float-list)

Argument Description

target Target of the message.

sender The sender of the message. The symbol no-
sender can be sent to match all messages
with the specified target without regard to
category.

category Message category. This text can contain the
wildcard symbols “*” and “?”. The symbol
“*” is matched by any number of arbitrary
characters. The symbol “?” is matched by
exactly one arbitrary character.
228

Filtering Messages and Events
This procedure searches for a history related to the specified target, sender and
category. It returns a list of all the times between timestamp-now and (timestamp-
now) - (match-time-internal-seconds) that messages were received for that
particular history.

The sections below provide examples of how you can use message histories in
different types of reasoning routines.

Filtering Messages and Events
In a large network of external objects, unnecessary events often occur for a wide
variety of reasons. These events can congest the system and make it difficult for
operators to sort out and respond to the real events that need attention. Filtering
is done on several different levels in an Integrity application:

• The filtering of duplicate messages automatically done by the Integrity
message system.

• Filtering routines called in response to a particular target, sender or category
of an event. These routines can filter events based on past events and on
relationships among the domain objects.

• Filtering done in the external bridge to prevent events from entering the
system. This filtering is done without regard to any previous events.

Filtering Duplicate Messages

When an Integrity message is created, the system checks the existing messages to
see if a message with the same target, sender, and category already exists. If it
does, a duplicate message is not created. When you create a message, using smh-
create-message, the options argument determines how Integrity handles a new

message-category-
starting-position

Starting position in the category from which
wildcard symbols used in the category
argument are matched.

timestamp-now Time from which you want to search
backwards for messages. Entering -1 selects
the current time.

match-time-interval-
seconds

Number of seconds back from the
timestamp-now time you want to search for
messages.

time-stamps-list Empty list provided to hold the results of
the history query.

Argument Description
229

message with the same target, sender and category as an existing message. These
options are summarized in the table below:

When you use the -i option to create a duplicate message, instead of creating a
new message, the message system adds the new information to the text of the
existing message and adds the time of the new message to the end of the list
maintained by the message history. If -nohist is added to the options argument,
the time is not added to the history list.

Since duplicate messages are not created or displayed, the message system
automatically filters duplicate messages.

Filtering Based on Past Events

The filtering done automatically by the message system only filters duplicate
messages. You might also want to filter events before they become messages
because of their relationships to past messages. These relationships can involve
messages targeting the same object or messages targeting related domain objects.

Filtering Events that Occur in Pairs

Some things that happen to an external object can result in not one but a pair of
events. For example, the failure of a piece of equipment can result in an event of
the category Out-of-Service which is always followed by an event of the category
Connection-Restored. If you know that these event relationships exist, you can
write a filtering routine that responds to the Connection-Restored by immediately
deleting the Out-of-Service event instead of by displaying the Connection-
Restored message. This filters out an unnecessary message and initiates the
response appropriate to the message.

The doc_demo application shows an example of this type of filtering.

Options Argument Description

-i Add information about the number of
messages to the text of the message. This is the
system default.

-a Append the text of the new message to the old
text.

-r Replace the old message.
230

Filtering Messages and Events
To view an example of filtering paired events:

1 Load doc_demo and display the External Object Simulation, Doc-Browser,
and Houston workspace as described in the beginning of this chapter.

2 Click on any object in the right hand column on the External Object
Simulation workspace and Select Out of service from the menu.

The Out of Service message appears on the browser and displays an alarm on
the target object on the Houston section of the domain map.

3 Select the same object you just selected but this time send a Connection
Restored event.

The Out of Service message and alarms are deleted.

In this example, a reasoning method is called whenever any event occurs with the
category Connection Restored. Instead of creating a new message, this routine
deletes the existing Out of Service message targeting the object.

Filtering Events Based on Domain Relationships

You can do filtering based on past messages received by objects related to the
target of an event. For example, you might have a situation with a external object,
BigDevice which, after a certain type of failure, generates an Out-of-service event.
As a side effect of this failure, a secondary device, SmallDevice, might begin to
generate its own Failure events at regular intervals whenever BigDevice is out of
service. To eliminate these messages, you would create a reasoning routine called
by the completion routine whenever an event is received by SmallDevice. Before
creating a message for a Failure event coming from SmallDevice, you test to see if
the event could be a result of an out of service from BigDevice. For example,

smh-get-message-history (BigDevice, BigDevice, “Out-of-Service”, 1, -1, 300,
bad-list)
smh-get-message-history (BigDevice, BigDevice, “In-Service”, 1, -1, 300,
good-list)
if the last item of good-list > the last item of bad-list then {failure message is
not the result of BigDevice, post new message for SmallDevice}

In this example, you check to see if an Out-of-Service message has been posted
against BigDevice. If so, you test to see if an In-Service message has been posted to
clear the out of service condition. As long as the BigDevice remains out of service,
the Failure event from SmallDevice is ignored. You can filter the event by
discarding it, logging it and then discarding it, or by creating a message and then
immediately deleting the message. You might create and then immediately
discard a message to maintain history of the message event.
231

Filtering Events in the Bridge

Some events enter an Integrity application through a GSI bridge. You can add
event filtering directly into the external and/or the internal bridge. Generally, the
closer to the event the filtering occurs, the more efficient is the throughput of the
system. Filtering in the bridge usually involves writing code to recognize certain
events that are not necessary to pass to the Integrity application. These events are
never passed into the internal bridge.

It might be more convenient to make an initial event filter in the G2 side of the
bridge rather than in the external bridge. Procedures written in G2 are easier to
develop and maintain; however, there is a performance premium to pay in
moving the event further along into the system. Event filtering at this level
usually consists of a very basic procedure of discarding the event based on one or
more of its target, sender, and category attributes, or one of the values of one of
the parameters passed with the event.

In the doc_demo sample application, a simple filter is included in the doc-
simulated-external-bridge procedure. This can be viewed by selecting Supporting
Procedures from the External Object Simulation Workspace. You would write a
real external bridge procedure by using the GSI library routines. The simulation
simply shows that it is the function of the external bridge to begin parsing and
decoding the incoming events. This example implements a simple filter for any
events that are received from a serial card. Whenever the sender-name matches
the name of a serial card, the event is logged and then discarded.

Implementing Alarm Thresholding
The occurrence of many duplicate messages against an object in a certain time
period can signify an event that needs particular attention. A reasoning routine
can be designed to recognize this scenario and to create a special message to
inform the operator of the situation. This is called an alarm threshold. An alarm
threshold defines a number of messages and a time period. When the messages
sent with the same target, sender and category exceed this threshold, you create a
new message or increase the priority of the message.
232

Implementing Alarm Thresholding
For example, in the doc_demo application, a special warning is sent whenever
three “Noisy” messages are sent against a target within a 5 minute period.
Whenever an event with the Noisy category is received, doc-reasoning-routine
calls the method doc-noise-handler, which is shown next:

doc-noise-handler (target: class doc-managed-object, sender: class doc-
object,category: text, info: text)
n: float;

begin

call smh-create-message (doc-message-server, sender, target, category,
info, "",the current time,4, 999, false, sender, "-a");
call doc-clean-list (doc-hist-list1);
call smh-get-message-history (target, the symbol any-sender, "Noisy" , 1,
the current time, 300, doc-hist-list1);
if the number of elements in doc-hist-list1 > 3 then call smh-create-
message (doc-message-server, sender, target, "Serious-noise", "There is
a serious noise problem with [the opfo-external-name of target]", "", -1, 1,
99999, false, target, "-a");

end

doc-noise-handler creates a message to represent the event, calls a procedure that
empties a list to hold the results of the history search, and calls smh-get-history to
find how many messages have targeted the object of the new event in the past five
minutes. If there are more than three such messages, doc-noise-handler sends a
new message that warns the operator that a serious problem with noise exists for
this object.

To view an alarm threshold in doc_demo:

1 Click on any object in the right hand column of the External Object Simulation
workspace.

2 Select Noisy from the list of events.

The Noisy message appears on the browser and displays an alarm on the
target object on the Houston section of the domain map.

3 Select the same object and send three more Noisy events.

After the fourth event, a new message with a higher priority is displayed. This
message informs the operator that there is a serious noise problem.
233

Correlating Events
The message histories and the domain object relationships provide valuable
information about the state of the external objects. When you combine
information about the state of several related devices, you can sometimes infer
that there can be a problem with a higher-level device. This is called alarm
correlation.

For example, in doc_demo three tape drive devices are defined on the Houston
workspace of the domain map. These drives are all connected to a common object,
computer-H1. In doc_demo a special reasoning method handles Out-of-Service
events on the doc-tape-drive class.

When an Out-of-Service event occurs targeting a tape drive, doc-tape-drive::doc-
out-of-service checks the message histories of all the tape drives for Out of Service
events. If all the tape drives have had an Out of Service event posted in the last
five minutes, doc-tape-drive::doc-out-of-service creates a message in the message
server doc-test-server to notify the operator that a problem might exist with
computer-H1. The application defines doc-test-server to hold messages generated
by reasoning routines instead of external events.

To view an example of alarm correlation in doc_demo:

1 Using the finder, locate and view the Doc-Browser.

Be sure that the check box in front of the message server doc-test-server is
checked.

2 Select Ext-Tape-Drive1 on the External Object Simulation workspace and
Select Out of Service from the menu.

The Out of Service message appears on the browser and displays an alarm on
the target object on the Houston section of the domain map.

3 Repeat steps 1 and 2 for the objects Ext-Tape-Drive2 and Ext-Tape-Drive3.

After each tape drive has posted an Out of Service event, a new message is
displayed which warns that computer-H1 might be out of order.

The method that implements this correlation routine, doc-tape-drive::doc-out-of-
service, is on the Reasoning Routines workspace in doc_demo.
234

Diagnosing Faults
Diagnosing Faults
Alarm correlation, described above, is one method of diagnosing the source of
faults based on relationships among domain objects. Another way you can
diagnose faults is to use the information provided in an event to initiate a query to
uncover other relevant information needed to diagnose the source of a fault.

For example, assume you are managing a file server. One of the functions of this
server is to save daily log files that only need to be maintained for a certain period
of time. If an Out of Disk Space event is received from this server, it can be
displayed as a message to the operator. However, to make the message more
useful, you can create a reasoning routine that not only accepts the incoming
event but also finds the source of the problem.

In this example, the reasoning routine would initiate a request to the actual file
server to receive a list of the files on the server. The procedure receiving the
requested information would analyze the new information to determine the
source of the problem and tell the operator which type of files are causing the
problem.

To initiate requests from external objects, you must define a bridge process, which
handles the communication from the Integrity application to the external objects.
Chapter 6, Handling Events, describes bridges that allow external objects to send
unsolicited events to an Integrity application. You set up the bridge to send
information from Integrity to the external objects in a similar fashion. An internal
part resides within the Integrity application that has links to calls in the external
bridge. This external bridge is linked to the managed equipment and passes
messages to them. The bridges must be individualized to the protocols defined by
the types of equipment you manage.

Automating Recovery and Preventing Faults
The example in Diagnosing Faults on page 235 describes how you might query an
external device to determine the cause of an error. In that example, the diagnosis
was presented to the operator for action. In some cases you can go a step further
and automate the action needed to recover from a fault. Because an Integrity
application can communicate directly with the external equipment it manages,
once the cause of a fault is discovered, using the reasoning routines in the
application, you can define a recovery procedure to automatically recover.

In the example of the disk drive overloaded with out-of-date log files, when an
alarm is received, a reasoning routine checks to see if the log files are a possible
source of the out-of-disk space problem. In the diagnostics example, the system
adds information to the alarm by discovering the cause of the problem. Instead of
simply informing the operator of the problem, the system can immediately take
the necessary actions, which is to delete the out-of-date files.
235

In complicated situations, you can build the knowledge of skillful operators into
the system to create an expert system, which queries both the system and the
operator to decide or suggest the best possible course of action. This insures that
there is a uniform procedure to respond to certain types of alarms and makes the
knowledge of the most skilled operators available to those that are less
experienced.

In situations where reliability of a component is critical, an Integrity application
can monitor the component to prevent faults from occurring. For example,
Integrity can periodically query system components to see if they are reaching an
overloaded state and you can design procedures to relieve the overload before a
failure occurs.

The G2 language is designed for automating and monitoring complex real-time
systems of many different kinds. Since an Integrity application has full access to
G2, you can seamlessly integrate the functionality of fault prevention and fault
response.
236

Index
 @ A B C D E F G H I J K L M
 # N O P Q R S T U V W X Y Z
Numerics
180 menu choice

Layout menu
90 Clockwise menu choice

Layout menu
90 Counterclockwise menu choice

Layout menu

A
About Integrity menu choice
Access Tables menu choice
Acknowledge Messages Upon Selection

attribute
acknowledgment region

setting colors of
Address field
adjusting

micro position of objects
order of objects

Administrator mode
configuring user preferences for
description of
Tools menu

alarm propagation
alarm thresholding
Align or Distribute menu choice

Layout menu
application

steps for building
applications

interacting with objects in
navigating

attributes
adding to a subclass
displaying

B
Back menu choice

Go menu
Background Color attribute
background images, loading
Beep Enabled attribute
borders, adjusting workspace
bridge

definition of
external
filtering in
parsing in

Bring to Front menu choice
Layout menu

browser
arranging items on template
configuring

overview
subscribers

configuring columns
creating
custom display and hide procedures for
defining
defining filters
defining sorting characteristics
displaying from a custom menu
using with messages

Bundles

C
cascade menu item

creating
category

definition of
Charts menu choice
choice menu item

creating
class

components of
creating a hierarchy
definition of
importing definition
message
object hierarchy

client
connecting
237

directly to server
to a specific server

disconnecting
Clone menu choice

Edit menu
Close menu choice

exiting client, using
File menu

color
setting priority of

colors
configuring

for workspaces
editing for objects

Colors menu choice
Edit menu

completion routine
creating
definition of

configuring
browser
browser columns
menu bar template
message server

connection
adding stubs for
creating a configuration object for
creating icons for
creating using a stub
definition of

connection post
creating
definition of

connection stubs
creating

consistent modularization
containment object

definition of
containment relationship

definition of
creating

browser
cascade menu item
choice menu item
completion routines
connection icons
connection posts
connection stubs
domain map subworkspace
domain object
initialization
238
JMail interface objects
log manager
logging manager
menu bar template
message
message server
reasoning routines
show workspace menu item
top-level domain object
translation objects

cross-sections
creating

customer support services

D
Debug Specific Fault Models menu choice
Default User Mode attribute
Default Web Location attribute
defining

browser
escalation specification
initializations
status bar

Delete Background Image menu choice
deleting background images, using
Workspace menu

Delete menu choice
deleting objects, using
deleting workspaces, using
Edit menu

deleting
message
modules
objects
workspaces

descriptor preferences
Desktop Layout
details

displaying for objects
showing

for container objects
superior object of

Developer mode
configuring user preferences for

Diagnose menu choice
summary

Diagnosis Managers menu choice
summary

Diagnostic Console menu choice

summary
disconnecting

from the client
using menu

Documentation menu choice
domain map

components of
definition of
exporting
importing
placing domain object on
tutorial

domain object
connecting
connecting across workspaces
creating
creating subworkspace for
importing

using wizard
naming
placing on domain map

Down menu choice

E
Edit menu
editing

initializations
email

configuring
address
format
to send

delivering messages by
starting JMail Bridge
startup parameters for sending

Enable Status Bar Message Browser attribute
Enable Tuning menu choice
error handler

customizing
description of
logging facility

errors
creating new handler
default handler
logging

escalation specification
defining
duration of phases of
priority of
procedures called in
target of
timing of

event
definition of
interpreting
parsing

Event and Alarm Metrics menu choice
events

correlating
filtering
handling
logging
relating to domain objects

Events queue
existing application

adding Integrity functionality to
Exit menu choice

exiting the server, using
exporting a domain map
Extended Menus attribute

F
F4 key
Fault Models menu choice

summary
faults

diagnosing
preventing

file
closing a log file

File menu
files

g2.ok
StartServer.bat
twng.exe

filtering
based on domain relationships
duplicate messages
events
in the bridge
paired events
using message histories
using past events

filters
using with browser

Finder Options
Finder options preferences
Flip Horizontally menu choice

Layout menu
239

Flip Vertically menu choice
Layout menu

Foreground Color attribute
Forward menu choice

Go menu

G
G2

components of
G2 Help Topics menu choice
G2 JMail Bridge menu choice, Start menu
G2 toolbox
g2.ok file
Get menu choice

Workspace menu
GIF files, loading as background images
Go menu
Go To menu choice

manage dialog
project hierarchy
Search dialog

Go to Superior menu choice
View menu

H
Help menu
Hide menu choice

View menu
histories

message
history

message
querying

Home menu choice
Go menu

Home Process Map attribute
HTTP menu choice

I
icons

creating
for connections

Import menu choice
importing

domain map
from text file
using wizard
240
MIBs
Indicate Items attribute

configuring
inheritance

definition of
initialization

creating
editing

initializations
defining

Initialize Application menu choice
Project menu

Integrity
adding functionality to existing

application
Core Services
exiting
other modules for
starting server

in secure G2 environment
Integrity Help Topics menu choice
Integrity toolbar

View menu
Integrity toolbox

using
interface

setting up
Interface Pools menu choice

Project menu
Interfaces menu choice

Project menu
SMTP

J
Java Mail (JMail)

configuring
in configuration file
in user preferences

JMS menu choice
JPEG files

loading as background images
saving workspaces to

K
knowledge base

definition of

L
layering
Layout menu
Layout toolbar

View menu
Left menu choice
list and array editing

enabling
Load Background Image menu choice

loading background images, using
Workspace menu

Load Options
local text resource

adding columns in spreadsheet of
logging

closing log file
customizing
definition
description of
events
information
messages

logging manager
creating

Logic menu choice
summary

M
Manage dialog

displaying object properties and details
using

Manage menu choice
managed object

definition of
managing

objects
using Manage dialog
using Project menu

menu
cascade item
cloning
compiling
connection items
constructing
displaying browser on
local text resource for
selecting a workspace for
text resource for
using
view components of
menu bar template

configuring
creating

menu selection icon
adding

menus
Edit
File
Go
Help
Layout
Model
Project
Tools
Workspace

merging
modules

message
acknowledging
alarms
classes
color of
creating
definition
definition of
deleting
histories
history
interacting with using browser
logging
querying history

Message Board menu choice
View menu

Message Browser
Message Browser menu choice

View menu
message browsers

configuring
for modeler mode
for operator mode

showing by default in operator mode
Message Browsers menu choice
message information base

description of
message server

configuring
creating
defining
read and write contents to file

message system
241

customizing
setting up

messages
acknowledging
delivering by email
search for related

Messages queue
method

definition of
MIBS, importing
Mobile Email

address
Notification

Model menu
Modeler Browser attribute
Modeler mode

configuring
user preferences for

description of
models

working with
modules

available for Integrity
definition of
deleting
merging
renaming
saving
working with

My User Preferences menu choice
configuring user preferences, using
Project menu

N
Navigator

menu choice
Navigator Button
Navigator menu choice

View menu
Navigator preferences
network

viewing information about
Networks & Devices menu choice, Project

menu
New Instance menu choice, project hierarchy
New menu choice

creating
top-level workspaces, using

File menu
242
Workspace menu
Normal menu choice
Nudge menu choice

Layout menu

O
Object Models menu choice
objects

adjusting the order of
aligning
copying
definition of
deleting
displaying properties for
distributing
editing colors
flipping
interacting with

in Modeler mode
managing
nudging
resizing
rotating
selecting

all
individual

transferring
working with

Open menu choice
File menu

Operations Expert
features and benefits

Operator Actions menu choice
Operator Browser attribute
Operator mode

configuring user preferences for
description of
user mode

opfo-external-name
assigning

Order menu choice
Layout menu

P
palette/messages preferences
palettes

using items from
popup menus

interacting with objects, using
popup menus, displaying
PPD files, processing
Preferences
Print menu choice

File menu
priority

color of
setting colors of
setting default

Project
menu

managing objects, using
using
using submenus

Project menu
properties dialogs

shortcuts for displaying
properties dialogs, displaying
properties files

backup copies
Properties menu choice

Edit menu
for items on workspaces

Q
Queues menu choice

R
reasoning routine

creating
definition of
examples of

Refresh menu choice
Go menu

remote procedure call
renaming

modules
Reports menu choice
resizing objects
Restore Last Pane Settings attribute
Right menu choice
Rotate or Flip menu choice

Layout menu

S
Save as JPEG menu choice
File menu
Save As menu choice

File menu
Save menu choice

File menu
Save Options
saving

modules
scaling workspaces
search

for related messages
Search menu choice

Tools menu
secure G2, running in
selecingt browser messages
Select All menu choice

Edit menu
Send to Back menu choice

Layout menu
sender

definition of
server

connecting to
default
specific

disconnecting from
shutting down

using menus
starting

on specific port
Server Information menu choice
Set Default User Mode attribute
Setting Preferences
setup wizard
Show Detail menu choice

summary of common tasks
View menu
workspaces

Show Logbook attribute
Show Users menu choice
show workspace menu item

creating
Shrink Wrap menu choice

Layout menu
Shut Down G2 menu choice
shutting down server

using menus
SMTP menu choice
SNMP setup
sorting

configuration on browser
243

SQL menu choice
Standard toolbar

View menu
StartServer.bat file
status bar

custom display and hide procedures for
defining

Status Bar menu choice
View menu

Stop menu choice
Go menu

stubs
adding and deleting
creating

subclass
adding attributes to
creating icons for
defining
displaying attributes for
viewing attributes of

subscribers
configuring

subworkspace
creating

System Performance menu choice
System Settings menu
System-Administrator mode

configuring user preferences for
description of

T
Tabbed Mdi Mode attribute
target

definition of
Telnet Command attribute
Templates menu choice
Text Parsing menu choice
Tip of the Day
toolbars

Integrity
Layout
Standard
using
Web

toolbox
G2
Integrity

Toolbox - G2 menu choice
using
244
Toolbox - Integrity Export Import menu choice
Toolbox - Integrity menu choice
Toolbox - Message Parsing Engine menu

choice
Toolbox - ODiE Subscriber menu choice
Toolbox - OPAC menu choice
Toolbox - SNMP Traps menu choice
Tools

menu
top-level domain object

creating
Transfer menu choice

Edit menu
translation objects

creating
using

trapd.conf.ppd file
twng.exe file

U
Uninitialize Application menu choice

Project menu
Up menu choice
User Interface Theme attribute
User Mode menu choice

switching user modes, using
Tools menu

user mode options
user modes

configuring default
specifying user preferences for different
switching

User Name attribute
Modeler mode

user preferences
configuring

in Modeler mode
creating and configuring
specifying for different types of users

User Preferences menu choice
configuring user preferences, using
Project menu

Users menu choice

V
virtual desktop preferences

W
Web toolbar

View menu
Window menu
wizard, setup
workspace

definition of
Workspace Margin attribute
Workspace menu

Delete Background Image
description of
Get
Load Background Image
New

workspaces
adjusting borders for
deleting
editing

colors of
margins of
name of
properties

hiding
interacting with
loading background images
printing
saving as JPEG
scaling
showing superior object of detail
shrink wrapping

X
XMB files, loading as background images

Z
Zoom In menu choice

View menu
Zoom menu choice

View menu
Zoom Out menu choice

View menu
Zoom to Fit menu choice

View menu
245

246

	Contents
	Preface
	About this Guide
	Audience
	A Note About the API
	Conventions
	Related Documentation
	Customer Support Services

	Overview
	Introduction
	Integrity Core Services
	Discovery Import Tools
	Reasoning Engines

	Installing Integrity
	Features and Benefits
	The Integrity Core Services
	What is a Domain Map?
	What is a Message Base?
	What are Reasoning Routines?
	What are Completion Routines?

	Handling Events
	Building an Application
	The Basic Components of G2
	What is a Knowledge Base?
	What is an Object?
	What is a Workspace?
	What are Modules?
	What are Classes?

	Integrity Bundle

	Running Integrity
	Introduction
	Starting the Server and Connecting the Client
	Connecting to a Specific Server at Startup
	Connecting the Client to the Default Server
	Starting the Server on a Specific Port
	Connecting the Client to a Specific Server

	Starting the Server with Your Application Loaded
	Exiting Integrity

	Working with Models
	Introduction
	Summary of Common Tasks
	Using the Project Menu
	Using the Project Menu
	Using the Manage Dialog
	Using the Project Submenus

	Navigating Applications
	Using the Navigator
	Searching for Objects

	Interacting with Workspaces
	Displaying a Detail Workspace
	Hiding a Workspace
	Deleting a Workspace
	Editing Workspace Properties
	Scaling a Workspace
	Shrink Wrapping a Workspace
	Showing the Superior Object of a Detail Workspace
	Printing a Workspace
	Saving a Workspace to a JPEG File
	Loading Background Images
	Creating and Accessing Top-Level Workspaces

	Using the Menus
	Using the File Menu
	Using the Edit Menu
	Using the View Menu
	Using the Layout Menu
	Using the Go Menu
	Using the Project Menu
	Using the Workspace Menu
	Using the Tools Menu
	Using the Help Menu

	Using the Integrity Toolboxes
	Using the G2 Toolbox
	Interacting with Objects
	Selecting Objects
	Cutting, Copying, Pasting, and Deleting Objects
	Controlling the Layout of Objects
	Displaying the Properties Dialog for an Object
	Resizing an Object
	Editing Icon Color Regions

	Using the Toolbars
	Standard Toolbar
	Web Toolbar
	Layout Toolbar
	Integrity Toolbar
	Status Bar

	Switching User Modes
	Configuring User Preferences
	Specifying User Preferences for Different Types of Users
	Configuring User Preferences
	Delivering Messages by Email
	Starting the G2 JMail Bridge Process
	Creating, Configuring, and Connecting the JMail Interface Object
	Configuring Integrity to Send Email Messages
	Configuring Startup Parameter for Sending Email Messages

	Customizing the Application
	Introduction
	Constructing an Operator Menu
	Selecting a Menu Template Workspace
	Enabling List and Array Editing
	Creating a Text Resource and a Local Text Resource
	Configuring a Menu Template Item
	Adding the Menu Selection Icon
	Compiling the Menu

	Defining Initializations
	Creating an Initialization for a New Item
	Editing the Value of an Initialization

	Setting Preferences
	Tip of the Day Preferences
	Load Options Preferences
	Save Options Preferences
	Message Browser Preferences
	Desktop Layout Preferences
	Finder Options Preferences
	Navigator Button Preferences

	Creating New Palettes
	Add a Palette Group
	Add a Palette
	Adding Palette Items
	Property Files

	Customizing the User Interface Using Cyberformer
	Understanding Properties Files
	Origination and Purpose
	What are Property files?
	Scope

	Location
	UI Structure
	Functionality
	CyberFormer.properties
	registeredPlugins.properties

	Keywords
	Cyberformer Reference
	Syntax

	Getting Started
	Introduction
	Creating a New Application
	Using the Integrity Setup Dialog
	Importing Management Information Base (MIBs)
	Process PPD File
	SNMP Setup
	Domain Import
	ODBC Setup and Import
	Import from Translayer
	Import from MS Visio ENT
	Importing from other ODBC Sources
	Configuration of the ODBC Import

	HPOV Setup and Import

	Building a Simple Domain Map
	Creating Domain Map Subclasses
	Creating Domain Objects
	Working with Modules
	Creating Modules
	Merging Modules
	Renaming Modules
	Saving Modules
	Deleting Modules
	G2 Mode

	Working with G2 Objects
	Other Integrity Modules
	Adding Integrity Functionality to an Existing Application
	Out-of-Box Functionality
	Auto-Clearing
	Time-Based Events

	Handling Events
	Introduction
	Setting up an External Interface
	Processing Unsolicited Events in the External Bridge
	Parsing in the External Bridge
	Performing Low-Level Filtering in the Bridge

	Interpreting the Event in the Internal Bridge
	Relating an Event to the Domain Objects
	Defining Completion Routines

	Automatic Trap Processing
	Processing The Trap
	Generic Trap Completion Procedure

	Creating a Domain Map
	Introduction
	The Components of a Domain Map
	Containment Objects
	Managed Objects
	Connections and Connection Posts

	Defining Domain Map Subclasses
	Viewing Attributes of a Subclass
	Adding Attributes to a Subclass
	Displaying Attributes for a Subclass
	Creating Icons for Domain Object Classes
	Creating Patterns for Connections
	Adding Connection Stubs to Class Definitions
	Importing Class Definitions

	Manually Building the Domain Map
	Creating Domain Objects
	Naming Domain Objects
	Connecting Domain Objects
	Adding and Deleting Connection Stubs from Instances
	Creating a Connection Configuration Object
	Using a Stub to Create a Connection
	Using Connection Posts

	Importing and Exporting a Domain Map
	Exporting a Sample Domain Map
	Importing a Sample Domain Map
	Using Translation Objects

	Message Handling
	Introduction
	Setting up the Message System
	Creating Browser Templates
	Configuring a Browser
	Creating and Configuring Subscribers
	Creating and Configuring Filters
	Defining the Sorting Characteristics of the Browser
	Configuring the Columns of the Browser
	Arranging the Items on the Browser Template
	Writing Custom Procedures to Display and Hide a Browser
	Writing Custom Procedures to Display and Hide a Status Bar
	Specifying the Target of an Escalation Specification
	Specifying the Category of an Escalation Specification
	Specifying the Priority of an Escalation Specification
	Specifying the Procedures Called in Escalation Specifications
	Timing the Invocation of Escalation Phases

	Working with Messages
	What is a Message?
	Creating a Message
	Maintaining Message Histories
	Using the Browser to View and Interact with Messages
	Acknowledging Messages
	Deleting Messages
	Reading and Writing Messages to a File

	Message Alarm Propagation
	Setting Priority and Acknowledgment Colors
	Setting Default Message Priorities

	Logging Messages and Events
	Creating a Logging Manager
	Logging Messages
	Logging Events Programmatically
	Defining Closing Times for a Log File
	Customizing the Logging Manager

	Error Handling
	Creating a New Error Handling Procedure
	Logging System Errors

	Creating User Defined Effects

	Reasoning About Events
	Introduction
	Examples of Reasoning Routines
	Creating Reasoning Routines
	Searching for Related Messages
	Querying Message Histories
	Filtering Messages and Events
	Filtering Duplicate Messages
	Filtering Based on Past Events
	Filtering Events that Occur in Pairs
	Filtering Events Based on Domain Relationships

	Filtering Events in the Bridge

	Implementing Alarm Thresholding
	Correlating Events
	Diagnosing Faults
	Automating Recovery and Preventing Faults

	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

