
Integrity

Utilities Guide
Version 5.0 Rev. 0

Integrity Utilities Guide, Version 5.0 Rev. 0

July 2014

The information in this publication is subject to change without notice and does not represent a
commitment by Gensym Corporation.

Although this software has been extensively tested, Gensym cannot guarantee error-free
performance in all applications. Accordingly, use of the software is at the customer’s sole risk.

Copyright (c) 1985-2014 Gensym Corporation

All rights reserved. No part of this document may be reproduced, stored in a retrieval system,
translated, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of Gensym Corporation.

Gensym®, G2®, Optegrity®, and ReThink® are registered trademarks of Gensym Corporation.

NeurOn-Line™, Dynamic Scheduling™ G2 Real-Time Expert System™, G2 ActiveXLink™, G2
BeanBuilder™, G2 CORBALink™, G2 Diagnostic Assistant™, G2 Gateway™, G2 GUIDE™,
G2GL™, G2 JavaLink™, G2 ProTools™, GDA™, GFI™, GSI™, ICP™, Integrity™, and SymCure™
are trademarks of Gensym Corporation.

Telewindows is a trademark or registered trademark of Microsoft Corporation in the United States
and/or other countries. Telewindows is used by Gensym Corporation under license from owner.

This software is based in part on the work of the Independent JPEG Group.

Copyright (c) 1998-2002 Daniel Veillard. All Rights Reserved.

SCOR® is a registered trademark of PRTM.

License for Scintilla and SciTE, Copyright 1998-2003 by Neil Hodgson, All Rights Reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/).

All other products or services mentioned in this document are identified by the trademarks or
service marks of their respective companies or organizations, and Gensym Corporation disclaims
any responsibility for specifying which marks are owned by which companies or organizations.

Gensym Corporation
52 Second Avenue
Burlington, MA 01803 USA
Telephone: (781) 265-7100
Fax: (781) 265-7101 Part Number: DOC108-500

Contents Summary
Preface xxi

Part I OPAC Blocks Reference 1

Chapter 1 Summary of OPAC Blocks 3

Chapter 2 General Action Palette 19

Chapter 3 Decisions Palette 57

Chapter 4 Operating System (OS) Palette 85

Chapter 5 Stack Operations Palette 103

Chapter 6 Local Parameters Palette 115

Chapter 7 Subtask Arguments Palette 131

Chapter 8 Debugging Palette 137

Chapter 9 State Transition Palette 141

Chapter 10 External Interfaces Palette 159

Chapter 11 Generic Blocks Palette 175

Chapter 12 Message Palette 185

Part II Utilities 205

Chapter 13 OpEx Dispatch Engine Reference (ODIE) 207

Chapter 14 Message Parsing Engine (MPE) 275
iii

Part III Autodiscovery 333

Chapter 15 IP Reachability Analyzer (IPRA) 335

Chapter 16 Object Reachability Analysis (ORA-TWO) 345

Chapter 17 Domain Export/Import (DXI3) 359

Chapter 18 Open View Map Importer (OVMAP) 377

Chapter 19 Ping Manager 389

Part IV G2-SNMP Bridges 397

Chapter 20 Overview of the G2-SNMP Bridges 399

Chapter 21 Installation and Startup 407

Chapter 22 G2-SNMP Bridge Setup 423

Chapter 23 G2-SNMP Bridges API 455

Chapter 24 Reporting Errors 507

Part V APIs and Initializations 509

Chapter 25 Core Services APIs 511

Chapter 26 OPAC APIs 533

Chapter 27 Startup Parameters 541

Glossary 551

Index 555
iv

Contents
Preface xxi

About this Manual xxi

Version Information xxii

Audience xxii

Note to Integrity Users xxii

A Note About the API xxiii

Conventions xxiii

Related Documentation xxv

Customer Support Services xxvii

Part I OPAC Blocks Reference 1

Chapter 1 Summary of OPAC Blocks 3

Introduction 3

General Actions Palette 4

Decisions Palette 7

OS Actions Palette 9

Stack Operations Palette 10

Local Parameters Palette 11

Subtask Arguments Palette 13

Debugging Palette 13

State Transition Palette 14

External Interfaces Palette 15

Generic Blocks Palette 16

Message Palette 17
v

Chapter 2 General Action Palette 19

Introduction 20

New Procedure 21

General Procedure 22

Send SMH Message 24

Historical Message Query 27

Hide Workspace 30

Show Workspace Not Stacked 32

Show Workspace 34

Block Pause Capability 36

Control Delay 38

Task Kill 39

Task Spawn 40

Subtask 42

Macro 44

Subtask Completion 46

Subtask Start 47

Procedure Statement 49

Procedure Template 53

Connection Post 56

Chapter 3 Decisions Palette 57

Introduction 58

Comparison Decision 59

2-Way Decision 62

2-Way Manual Decision 66

3-Way Manual Decision 69

4-Way Manual Decision 71

2-Way Pattern Decision 73

3-Way Pattern Decision 76

4-Way Pattern Decision 78
vi

2-Way Pattern Decision By Symbol 81

Chapter 4 Operating System (OS) Palette 85

Introduction 85

Set Local Integer From Source 87

File Exists Test 88

Delete File 90

Kill Process 92

Spawn Return Output 94

Spawn Return PID 96

Spawn No Return 98

Write File 99

Read File 101

Chapter 5 Stack Operations Palette 103

Introduction 103

Generic Put Something On Stack 105

Pop General Stack 107

Put Connected Objects On Stack 108

Pop General Stack And Delete 110

Put Item On Stack 111

Put Float On Stack 112

Put Integer On Stack 113

Put Text On Stack 114

Chapter 6 Local Parameters Palette 115

Introduction 116

Set Local Float From Source 117

Local Float Parameter 119

Set Local Item From Source 121

Local Item 122

Set Local Integer From Source 124
vii

Local Integer Parameter 125

Set Local Text From Source 127

Local Text Parameter 128

Chapter 7 Subtask Arguments Palette 131

Introduction 131

Value Argument 132

Item Argument 134

Chapter 8 Debugging Palette 137

Introduction 137

Show Stack Top 138

Show Token Info 139

Chapter 9 State Transition Palette 141

Introduction 141

State Transition Diagrams 143

Delete State Token 148

Get State 149

Accept New Event 151

Accept New State 153

State Diagram Completion 154

Transition Event 155

Wait State 156

State Diagram Start 157

Chapter 10 External Interfaces Palette 159

Introduction 160

Read Domain Map 161

Write Domain Map 164

SNMP Get Table Column 166

SNMP Set 168

SNMP Get 170
viii

Send CDG Event 172

Chapter 11 Generic Blocks Palette 175

Introduction 175

Get Related Items 176

Historical Numerical Query 178

Iteration 180

Run Domain Object Method 182

Set Local Parameter From Source 184

Chapter 12 Message Palette 185

Introduction 185

Send Message 187

Current Message Query 190

Clear Message History 193

Message Exists 195

Set Message Attribute 197

Delete Message 200

Acknowledge Message 202

Part II Utilities 205

Chapter 13 OpEx Dispatch Engine Reference (ODIE) 207

Introduction 208

Events 209

Publish Subscribe Mechanism 209

Managers 210

Subscribers 210

Old Event Processing 210

Filters 211
Target Class Filter 211
Target Attribute Filter 211
Delay Filter 211
Time Filter 211
ix

Query Filter 211
Attribute Filter 212
Hour of the Day Filter 212
Day of the Week Filter 212
Message Historical Query Filter 212
Message Query Filter 213
Event Count by Start Time 213
Passport Filter 213
Event Class Filter 214
Making Your Own Filter Block 214

Responses 214
Delete Event 214
Delete Events by Start Time 215
G2 Procedure Response 215
Create Message 215
Clears for or Delete Messages 216
Delete Message 216
Acknowledge Message 216
Beep 216
Log_Event 216
Starting an OPAC Procedure 217
Using Indirect References 218

OPAC Blocks for ODiE Events 218
Publish New Event 218
Publish Event 218
Delete Event 219
Delete Events 219
Get Event Attribute 219
Set Event Attribute 219
Add Passport to Event 220
Count Events 220
Gather Evidence 220
Using Indirect References 221

Subscriber Toolbox 221

Classes 223
odie-event 224
odie-event-proxy 226
odie-g2-manager 228

Application Programmer's Interface 230
odie-g2-manager::odie-datastore-add-event-passport-stamp 232
odie-g2-manager::odie-datastore-create-event 233
odie-g2-manager::odie-datastore-delete-event 235
odie-g2-manager::odie-datastore-delete-events 236
odie-g2-manager::odie-datastore-duration-count-query 238
x

Synopsis 238
odie-g2-manager::odie-datastore-duration-proxy-query 240
odie-g2-manager::odie-datastore-get-event-attribute-value 242
odie-g2-manager::odie-datastore-get-passport-stamps 243
odie-g2-manager::odie-datastore-set-event-attribute-value 244
odie-g2-manager::odie-datastore-start-time-count-query 245
odie-g2-manager::odie-datastore-start-time-proxy-query 247
odie-manager::odie-manager-add-event-passport-stamp 249
odie-manager::odie-manager-create-event-class 250
odie-manager::odie-manager-delete-event 251
odie-manager::odie-manager-delete-events 252
odie-manager::odie-manager-duration-count-query 254
odie-manager::odie-manager-duration-proxy-query 256
odie-manager::odie-manager-get-event-attribute-value 258
odie-manager::odie-manager-get-passport-stamps 259
odie-manager::odie-manager-passport-meets-include-exclude-

criteria 260
odie-manager::odie-manager-post-inform-statement 261
odie-manager::odie-manager-publish-existing-event 262
odie-manager::odie-manager-publish-new-event 263
odie-manager::odie-manager-publish-new-event 264
odie-manager::odie-manager-set-event-attribute 266
odie-manager::odie-manager-start-time-count-query 267
odie-manager::odie-manager-start-time-proxy-query 269
odie-manager::odie-manager-subscribe-event-class 271
odie-manager::odie-manager-substitute-attribute-values 272
odie-manager::odie-manager-unsubscribe 273
odie-manager::odie-manager-unsubscribe-event-class 274

Chapter 14 Message Parsing Engine (MPE) 275

Introduction 276

General Information 276
The OMPE String Receiver 276
Message Filter 278

Message Parsing Engine Palette Blocks 279
Conclude Blocks 279

Procedure Conclude 279
Single Regex Conclude 280
Start End Of Text Conclude 280
Start End Regex Conclude 280
Start Of Text To End Of Regex Conclude 281
Static Conclude 281
String Position 281
String Receiver 281
Word Line 283
xi

Debug Blocks 284
Pause 284

Decision Blocks 284
Single Match Decision 284
Start End Of Match Decision 284

Integrity Subsystem Blocks 285
Create Message 285
Delete Message 285
Opac Subtask Start 286

Message Handling 287
Message Filter 287
Text Buffer 287

Terminal Blocks 287
Terminal 287

Classes 288
mpe-message-filter 289
mpe-pause-block 292
mpe-procedure-conclude-block 294
mpe-single-match-decision-block 296
mpe-single-regex-conclude-block 298
mpe-start-end-match-decision-block 300
mpe-start-end-of-text-conclude-block 302
mpe-start-end-regex-conclude-block 304
mpe-start-of-text-to-end-regex-conclude-block 306
mpe-static-conclude-block 308
mpe-string-position-block 310
mpe-string-receiver 312
mpe-terminal-block 313
mpe-text-buffer 314
mpe-word-line-conclude-block 316
create-message-block 318
ompe-delete-message-block 320
ompe-opac-subtask-start-block 322
ompe-string-receiver 324

Application Programmer's Interface 326
mpe-current-real-time-as-time-stamp 326
mpe-text-buffer::mpe-add-text-to-buffer 327
mpe-text-buffer::mpe-clear-buffer 327

User Menu Choices 328
mpe-clear-buffer 328
mpe-show-buffer 328
mpe-turn-debugging-off 328
mpe-turn-debugging-on 329
ompe-go-to-procedure 329

Relations 330
xii

_mpe-from-message-filter 330
_mpe-from-text-buffer 330

Part III Autodiscovery 333

Chapter 15 IP Reachability Analyzer (IPRA) 335

Introduction 335

Setting up G2/IPRA 336

Setting Up the Ping Manager 338
Troubleshooting an IPRA Ping Manager GSI-Interface 339

Summary of IPRA Default Behavior 340

Procedures 341

Chapter 16 Object Reachability Analysis (ORA-TWO) 345

Introduction 346

Concepts 346
Node Types 346
Polling 347

Setup 347

Manager Object 348

Event Methods 350

Domain Methods 351

Support Procedures 354

Additional Procedures 356

Report Procedures 357

Chapter 17 Domain Export/Import (DXI3) 359

Introduction 360

Integrity Export Import Toolbox 360

The DXI3-file Format 360
Remarks on the Syntax 361

A “Bad” Import File and Data Corruption 363
Types and Handling of 'Bad' Data and DXI3 363

Errors Particular to the dxi3-import File 363
Errors Common to the dxi3 API and File Use 363
xiii

Effects of 'Bad' Data on the Domain Map 364

Type to Class Mapping 364

Containment and Other Types of Hierarchies 365

Exporting Domain Maps 365

Importing a Domain Map 368

Example 369
The Example Network 370

The Data Structure 370
Notes/Assumptions 371

DXI3 APIs 372
dxi3-register-domain-item 373
dxi3-register-domain-relation 374
dxi3-register-domain-attribute-value 375

Format 375

Chapter 18 Open View Map Importer (OVMAP) 377

Introduction 377

System Requirements 378

Installation 378
Network Account Setup 378
Ovobjprint Command 379
Testing 379
Installation of Modules 380
Setup of Incremental Addition of Domain Objects 380

Detailed Descriptions 381
Class Definitions 381

dxiov-import-object 381
dxiov-type-to-class-object 383

Translations 384
Initializations 384
File Transfer Routines 385
Translation Objects 385
New Class Creation 386

OV Map Importer Operation 387
Building the Domain 387
Incremental Build 387

Notes on GDXI 388
xiv

Chapter 19 Ping Manager 389

Introduction 389

Components 390

Running the Ping Manager 390

The Remote Procedure Calls 391
Setting the Device Configuration for a Ping Manager 391
Changing a Device’s Configuration for the Ping Manager 392

Application Development 394
Demand Polling 394
Periodic Polling 394

Sample Procedures and Actions for pingmgr.kb 394
A Sample Configuration File 394

Example 395
Example of a Procedure to a get configuration status 395
Example of an Action-Button to Invoke get-device-status 396

Part IV G2-SNMP Bridges 397

Chapter 20 Overview of the G2-SNMP Bridges 399

Introduction 399

Applications 401

Features and Benefits 401

Acquiring Data 401

Building a G2-SNMP Bridge Application 402

G2-SNMP Bridges and the Integrity Product Family 403

Enhancements 404

Chapter 21 Installation and Startup 407

Introduction 407

UNIX Platform Installation 407
Installing from Tape 407

Determining the Device Name 408
G2-SNMP “Generic” Bridge Additional Installation Steps 409

Installing from CD-ROM 411
G2-SNMP “Generic” Bridge Additional Installation Steps 414

Authorizing the G2-SNMP Bridges 415
xv

Authorizing the SNMP Gateway Bridge 415

Executing the G2-SNMP Bridge 416
Executing the SNMP Gateway Bridge 416

Finding an Available Port 417
Running SNMP Gateway Bridges as Background Processes 418

Executing the Integrity Application 418

Connecting G2 to the GSI Bridge Process 419
Creating a GSI Interface Object 419
Configuring the GSI Interface Object 420

Chapter 22 G2-SNMP Bridge Setup 423

Introduction 424

Configuring the G2-SNMP Bridge 424
SNMP Gateway Bridge Configuration 425

Communication Parameters 425
Filtering Traps 425
Telling the SNMP Gateway Bridge Which Traps to Filter 426

Error Handling 426
Creating a New Error Handling Procedure 427

Trap Handling Overview 428

Trap Class Creation and Processing 430
Handling Unrecognized SNMP Traps 431
SNMP Traps 432

Trap Manager 432
Trap Properties 432
Defined Trap Properties 433
Trap Processing 433

MIB Processing 434
Setting Up and Running the MIB Parser 434
MIB Parser Setup 434
Processing MIB Files 434
Viewing a Parsed MIB 435
Installed MIBs 435
Vendor MIBS 436

trapd.conf.ppd Parser 437
Clears-For Attribute 439

Completion Procedure Determination 441

SNMP Transactions 442
Blocking and Non-Blocking Transactions 443
Overloading Remote Procedures 443

Sending Traps to External Systems 443
HP OpenView Interface 443
xvi

Sending an HP OpenView status trap 443
NetView 6000 Interface 444

Simulation Facilities 445
SNMP Trap Simulation 445
SNMP Agent MIB Simulation 450

Chapter 23 G2-SNMP Bridges API 455

Introduction 456

Update for GSI-Based Bridge Process 456
Support for Filtering of Traps from Specified Hosts 456
Passing Variable Values for Variable Bindings in Which the Variable Type

Is 'Object Identifier' 457

Remote Procedure Calls 458
Base RPCs 458

g2snmp_add_filtered-trap 458
g2snmp_delete_filtered_trap 461
g2snmp_modify_comm_params 463
g2snmp_set_agent_filter_mode 463
g2snmp_use_snmp_comm_params 464
g2snmp_use_snmp_defaults 464
g2snmp_blocking_transaction 465
g2snmp_nonblocking_transaction 467

Overloaded RPCs 468
get_nonblocking_single 468
get_blocking_single 469
get_2_blocking 470
set_blocking 472
set_nonblocking_integer 473
set_nonblocking_text 474
send_novar_trap_nonblocking 475
send_trap_nonblocking 477
send_trap_status_nonblocking 479

Receiver Procedures 481
g2snmp_receive_eot 481
g2snmp_receive_float 482
g2snmp_receive_integer 483
g2snmp_receive_message 483
g2snmp_receive_string 484
g2snmp_receive_trap_packet 485

Procedures Listed by Module 488
GNDO Module 488
GMIB Module 491
GSNMP Module 495
xvii

Functions 503

Chapter 24 Reporting Errors 507

Part V APIs and Initializations 509

Chapter 25 Core Services APIs 511

Introduction 511

Procedures Listed by Module 512

GNDO Module 513

GLF Module 529

Functions 530

Methods Listed by Class 532

Chapter 26 OPAC APIs 533

Introduction 533

External APIs Calling OPAC from G2 534

Internal APIs for User-Written Blocks 534

Other Utility API’s for User-Written Blocks 537

OPAC Error Handling 538

State Transition Diagram APIs 538

Debugging OPAC Procedures 540

Chapter 27 Startup Parameters 541

Introduction 541

GNDO Module 542
Error Handling: 542
Object Retrieval 543
Colors and Priority 544

GMIB Module 546

GSNMP Module 546

Global Parameters 547

Performance Parameters 548
MIB Module 548
xviii

GSNMP Module 549

Glossary 551

Index 555
xix

xx

Preface
Describes this document and the conventions that it uses.

About this Manual xxi

Version Information xxii

Audience xxii

Note to Integrity Users xxii

A Note About the API xxiii

Conventions xxiii

Related Documentation xxv

Customer Support Services xxvii

About this Manual
This manual contains reference information about the graphical components
(palette blocks) APIs, and initializations of the Core Services and the OPerator
ACtions (OPAC) components of the Integrity product family.

This manual is designed to help users quickly develop and deploy applications
that monitor and control networks and the systems, services, and applications
that run on them. This manual:

• Provides a detailed reference of OPAC blocks, which are the core objects used
to create an Integrity application.

• Describes the following modules:

– OpEx Dispatch Engine Reference (ODIE) — A tool for handling events
and responses to events.
xxi

– Message Parsing Engine (MPE) — A graphical language specifically for
parsing text messages.

– Data Point Integration — Tools for importing and exporting domain maps
from and to an SQL-compliant database.

– IP Reachability Analyzer (IPRA) — A starting point for providing
reachability analysis, using other products that are part of the Integrity
family of products.

– Object Reachability Analysis (ORA-TWO) — Provides root cause
reachability analysis for any ‘threaded’ network.

– Domain Export/Import (DXI3) —

– Open View Map Importer (OVMAP) — Provides tools for importing and
exporting domain objects.

– Ping Manager — Provides tools for testing the communication path from a
sender to receiver via the Internet.

• Describes the SNMP Bridges, which enable a user application to communicate
with devices that support the Simple Network Management Protocol (SNMP).

• Describes the Integrity application programmers’ interface and initializations.

Version Information
Integrity requires Gensym’s G2 to run. Integrity OPAC also requires the use of
Gensym’s Integrity Core Services product.

Audience
The assumed audience for this guide is applications developers, who have basic
experience in programming computerized applications. This document also
assumes that developers are familiar with G2 terminology and operations, but it
does not require a thorough understanding of G2. If you encounter G2 terms or
concepts that you do not understand, refer to the G2 Reference Manual.

Note to Integrity Users
Integrity demonstrations include object classes for use in network management
applications. However, Integrity applications in general are in no way restricted
to use in network management.

Good candidates for Integrity applications include any system containing alarms
and events in general that must be analyzed, managed, and possibly correlated by
xxii

A Note About the API
using information contained in schematics, where procedures must be automated
and tests run.

A Note About the API
The Integrity API, as described in this manual, is not expected to change
significantly in future releases, but exceptions may occur. A detailed description
of any changes will accompany the Integrity release that includes them.

The techniques by which Integrity implements its capabilities, however, are
subject to change at any time without notice or explanation, and are expected to
change as Integrity evolves. These techniques will not be described in any
Integrity documentation.

Therefore, it is essential that you use Integrity exclusively through its API, as
described in this Integrity manual. If you bypass the API, you cannot rely on your
code to work in the future, since Integrity may change, or in the present, because
the code may not correctly manage the internal operations of Integrity.

Conversely, if you use the Integrity API exclusively, you can rely on Gensym to
notify you of any Integrity changes that might affect your code, and you can rely
on Integrity to manage all internal operations correctly.

Conventions
This guide uses the following typographic conventions and conventions for
defining system procedures.

Typographic

Convention Examples Description

g2-window, g2-window-1,
ws-top-level, sys-mod

User-defined and system-defined
G2 class names, instance names,
workspace names, and
module names

history-keeping-spec, temperature User-defined and system-defined
G2 attribute names

true, 1.234, ok, “Burlington, MA” G2 attribute values and values
specified or viewed through
dialogs
xxiii

Note Syntax conventions are fully described in the G2 Reference Manual.

Main Menu > Start

KB Workspace > New Object

create subworkspace

Start Procedure

G2 menu choices and button labels

conclude that the x of y ... Text of G2 procedures, methods,
functions, formulas, and
expressions

new-argument User-specified values in
syntax descriptions

text-string Return values of G2 procedures
and methods in syntax
descriptions

File Name, OK, Apply, Cancel,
General, Edit Scroll Area

GUIDE and native dialog fields,
button labels, tabs, and titles

File > Save

Properties

GMS and native menu choices

workspace Glossary terms

c:\Program Files\Gensym\ Windows pathnames

/usr/gensym/g2/kbs UNIX pathnames

spreadsh.kb File names

g2 -kb top.kb Operating system commands

public void main()
gsi_start

Java, C and all other external code

Convention Examples Description
xxiv

Related Documentation
Procedure Signatures

A procedure signature is a complete syntactic summary of a procedure or
method. A procedure signature shows values supplied by the user in italics, and
the value (if any) returned by the procedure underlined. Each value is followed by
its type:

g2-clone-and-transfer-objects
(list: class item-list, to-workspace: class kb-workspace,
delta-x: integer, delta-y: integer)

-> transferred-items: g2-list

Related Documentation

Integrity

• Integrity User’s Guide

• Integrity Utilities Guide

• SymCure User’s Guide

G2 Core Technology

• G2 Bundle Release Notes

• Getting Started with G2 Tutorials

• G2 Reference Manual

• G2 Language Reference Card

• G2 Developer’s Guide

• G2 System Procedures Reference Manual

• G2 System Procedures Reference Card

• G2 Class Reference Manual

• Telewindows User’s Guide

• G2 Gateway Bridge Developer’s Guide
xxv

G2 Utilities

• G2 ProTools User’s Guide

• G2 Foundation Resources User’s Guide

• G2 Menu System User’s Guide

• G2 XL Spreadsheet User? Guide

• G2 Dynamic Displays User’s Guide

• G2 Developer’s Interface User’s Guide

• G2 OnLine Documentation Developer’s Guide

• G2 OnLine Documentation User’s Guide

• G2 GUIDE User’s Guide

• G2 GUIDE/UIL Procedures Reference Manual

G2 Developers’ Utilities

• Business Process Management System User’s Guide

• Business Rules Management System User’s Guide

• G2 Reporting Engine User’s Guide

• G2 Web User’s Guide

• G2 Event and Data Processing User’s Guide

• G2 Run-Time Library User’s Guide

• G2 Event Manager User’s Guide

• G2 Dialog Utility User’s Guide

• G2 Data Source Manager User’s Guide

• G2 Data Point Manager User’s Guide

• G2 Engineering Unit Conversion User’s Guide

• G2 Error Handling Foundation User’s Guide

• G2 Relation Browser User’s Guide

Bridges and External Systems

• G2 ActiveXLink User’s Guide

• G2 CORBALink User’s Guide

• G2 Database Bridge User’s Guide

• G2-ODBC Bridge Release Notes

Customer Support Services
• G2-Oracle Bridge Release Notes

• G2-Sybase Bridge Release Notes

• G2 JMail Bridge User’s Guide

• G2 Java Socket Manager User’s Guide

• G2 JMSLink User’s Guide

• G2-OPC Client Bridge User’s Guide

• G2-PI Bridge User’s Guide

• G2-SNMP Bridge User’s Guide

• G2-HLA Bridge User’s Guide

• G2 WebLink User’s Guide

G2 JavaLink

• G2 JavaLink User’s Guide

• G2 DownloadInterfaces User’s Guide

• G2 Bean Builder User’s Guide

G2 Diagnostic Assistant

• GDA User’s Guide

• GDA Reference Manual

• GDA API Reference

Customer Support Services
You can obtain help with this or any Gensym product from Gensym Customer
Support. Help is available online, by telephone, by fax, and by email.

To obtain customer support online:

 Access G2 HelpLink at www.gensym-support.com.

You will be asked to log in to an existing account or create a new account if
necessary. G2 HelpLink allows you to:

• Register your question with Customer Support by creating an Issue.

• Query, link to, and review existing issues.

• Share issues with other users in your group.

• Query for Bugs, Suggestions, and Resolutions.
xxvii

To obtain customer support by telephone, fax, or email:

 Use the following numbers and addresses:

Americas Europe, Middle-East, Africa (EMEA)

Phone (781) 265-7301 +31-71-5682622

Fax (781) 265-7255 +31-71-5682621

Email service@gensym.com service-ema@gensym.com
xxviii

Part I
OPAC
Blocks Reference
Chapter 1: Summary of OPAC Blocks

Provides a summary of the blocks in the OPAC toolbox.

Chapter 2: General Action Palette

Provides descriptions, configuration dialog box and possible attribute values for each item on
the OPAC General Actions palette.

Chapter 3: Decisions Palette

Provides descriptions, configuration dialog box and possible attribute values for each block on
the Decisions palette.

Chapter 4: Operating System (OS) Palette

Provides descriptions, configuration dialog box and possible attribute values for each item on
the OPAC OS Actions palette.

Chapter 5: Stack Operations Palette

Provides a description, the configuration dialog box, and possible attribute values for each
block on the OPAC Stack Operations palette.

Chapter 6: Local Parameters Palette

Provides a description, the configuration dialog box, and possible attribute values for each
item on the OPAC Stack Local Parmeters palette.
1

Chapter 7: Subtask Arguments Palette

Provides a description, the configuration dialog box, and possible attribute values for each
item on the OPAC Subtask Arguments palette.

Chapter 8: Debugging Palette

Provides a description, the configuration dialog box, and possible attribute values for each
item on the OPAC Debugging palette.

Chapter 9: State Transition Palette

Provides descriptions, configuration dialog box and possible attribute values for each item on
the State Transition palette.

Chapter 10: External Interfaces Palette

Provides a description, the configuration dialog boxes, and possible attribute values for each
item on the External Interface palette.

Chapter 11: Generic Blocks Palette

Provides descriptions, configuration dialog box and possible attribute values for each item on
the Generic palette.

Chapter 12: Message Palette

Provides descriptions, configuration dialog box and possible attribute values for each item on
the Message palette.
2

1

Summary of
OPAC Blocks
Provides a summary of the blocks in the OPAC toolbox.

Introduction 3

General Actions Palette 4

Decisions Palette 7

OS Actions Palette 9

Stack Operations Palette 10

Local Parameters Palette 11

Subtask Arguments Palette 13

Debugging Palette 13

State Transition Palette 14

External Interfaces Palette 15

Generic Blocks Palette 16

Message Palette 17

Introduction
The Integrity development environment provides toolboxes to allow a developer
to quickly and easily build or modify an application. Blocks are grouped into
palettes and palettes are grouped in toolboxes. This chapter provides a guide to
the toolboxes that are included in Integrity.
3

Blocks are arranged in one of these palettes:

• General Actions Palette

• Decisions Palette

• OS Actions Palette

• Stack Operations Palette

• Local Parameters Palette

• Subtask Arguments Palette

• Debugging Palette

• State Transition Palette

• External Interfaces Palette

• Generic Blocks Palette

• Message Palette

General Actions Palette

Palette Block Description

OPAC-New-Procedure Assists you in creating a user-defined OPAC
procedure by providing a container
workspace preconfigured with an OPAC-
Subtask-Start block and an OPAC-Subtask
Completion block.

OPAC-General-Procedure Use to embed your own actions within an
OPAC procedure.

Hide Workspace Hides the specified workspace.

OPAC-Show-Workspace-
NOT-Stacked

Show the specified workspace and do not
place it on the general stack of the token.
4

General Actions Palette
OPAC-Show-Workspace Show the specified workspace and place it on
the general stack of the token.

OPAC-Block-Pause-
Capability

Place on a workspace to turn token movement
display on. Connect to blocks on a workspace
to configure procedure execution pause
conditions and generate dialog for operator
action to continue or abort procedure.

OPAC-Control-Delay Specify timed delay in a procedure.

OPAC-Task-Kill Abort processing and delete token.

OPAC-Task-Spawn Start a new procedure with a new token.

OPAC-Subtask-Block Call a subtask, transferring control to the
subtask until the subtask procedure is
complete. Arguments can be passed to the
subtask.

OPAC-Macro Call a macro, transferring control to the
subtask until the macro procedure is
complete. Arguments cannot be passed to the
macro. The macro can use local parameters
created within the macro. Local parameters in
the calling procedure are also available to the
macro.

Palette Block Description
5

OPAC-Subtask-
Completion

Indicate the end of an OPAC procedure.

OPAC-Subtask-Start Indicate the beginning of an OPAC
procedure. The name attribute of this block
identifies the subtask.

OPAC-Procedure-
Statement

Allows you to embed any G2 action into an
OPAC procedure.

OPAC-Procedure Create a new OPAC procedure template.

Connection-Post Allows you to connect OPAC procedures
across workspaces.

Palette Block Description
6

Decisions Palette
Decisions Palette

Note All decision blocks delete the item at the top of the stack.

Palette Block Description

OPAC-2-Way-Decision Provides two-way branching capability.
Branching is based on a user-defined G2
procedure.

OPAC-2-Way-Manual-
Decision

Prompts an operator to decide to continue
processing between two branches, allowing
specificaton of a timout default decision
branch.

OPAC-2-Way-Pattern-
Decision

Provides two-way branching capability.
Branching is based on the comparison of the
items at the top (or beginning) of the token
stack against the patterns specified in the
choice 1 and choice 2 attributes, respectively.

OPAC-2-Way-Decision-By-
Symbol

Provides two-way branching capability.
Branching is based on specified parsing of an
input string into one or more symbols.

OPAC-3-Way-Decision Provides three-way branching capability.
Branching is based on a user-defined G2
procedure.

OPAC-3-Way-Manual-
Decision

Prompts an operator to decide to continue
processing among three branches, allowing
specification of a timout default decision
branch.
7

OPAC-3-Way-Pattern-
Decision

Provides three-way branching capability.
Branching is based on the comparison of the
token against the patterns specified in the
choice 1, choice 2, and choice 3 attributes,
respectively.

OPAC-4-Way-Decision Provides four-way branching capability.
Branching is based on a user-defined G2
procedure.

OPAC-4-Way-Manual-
Decision

Prompts an operator to decide to continue
processing among four branches, allowing
specificaiton of a timout default decision
branch.

OPAC-4-Way-Pattern-
Decision

Provides four-way branching capability.
Branching is based on a comparison of the
token against the patterns specified in the
choice 1, choice 2, choice 3, and choice 4
attributes, respectively.

OPAC-Comparison-
Decision

Provides two-way branching capability.
Branching is based on evalution of a relational
expression that evaluates to True or False.

OPAC-Decision-Procedure Provides a procedure for 2-Way, 3-Way, and
4-Way Decision blocks.

Palette Block Description
8

OS Actions Palette
OS Actions Palette

Palette Block Description

OPAC-File-Exists-Test Determines if the specified file exists.

OPAC-Delete-File Deletes the specified file.

OPAC-Kill-Process Kills an operating system process identified
by the Process ID (PID) that is specified by the
block’s Process ID Source attribute. Valid
sources are the token stack or a local
parameter.

OPAC-Spawn-Return-
Output

Spawns an operating system process and
returns the output of the process to the stack.

OPAC-Spawn-Return-PID On a Unix system, spawns an operating
system process and returns the process ID
(PID) assigned to the process by the operating
system to the specified source. (In Windows,
only the command shell PID of the process is
returned.)

OPAC-Spawn-No-Return Spawns a process and returns no value.
Equivalent to a command line command.
9

Stack Operations Palette

OPAC-Write-File Writes the text at the top of the token stack to
the specified file.

OPAC-Read-File Reads a file and places the result on the token
stack.

Palette Block Description

Palette Block Description

OPAC-Generic-Put-
Something-On-Stack

Puts something on the stack that is user-
defined in the G2 User Procedure named in
the block’s User Procedure attribute.

OPAC-POP-General-Stack Removes the top item from the stack.

OPAC-Put-Connected-
ObjectS-On-Stack

Locates all objects connected to the object
specified, lists them on the stack.

OPAC-POP-General-Stack-
And-Delete

Removes the top item from the stack, and
deletes it.
10

Local Parameters Palette
Local Parameters Palette

OPAC-Put-Item-On-Stack Places the specified item on the top of the
token stack. Substitution variables are
allowed in the specification.

OPAC-Put-Float-On-Stack Places the specified floating decimal value on
the top of the token stack. Substitution
variables are allowed in the specification.

OPAC-Put-Integer-On-
Stack

Places the specified integer on the top of the
token stack. Substitution variables are
allowed in the specification.

OPAC-Put-Text-On-Stack Places the specified text value and places on
the top of the token stack. Substitution
variables are allowed in the specification.

Palette Block Description

OPAC-Local-Float-
Parameter

Defines a local float parameter for the
attached OPAC-Subtask-Start block.

OPAC-Local-Integer-
Parameter

Define a local integer parameter for the
attached Subtask Start block.

OPAC-Local-Item Defines a local item parameter for the
attached OPAC-Subtask-Start block.

Palette Block Description
11

OPAC-Local-Text-
Parameter

Defines a local text parameter for the attached
Subtask Start block.

OPAC-Set-Local-Float-
From-Source

Sets the specified local float parameter to the
value specified by the source.

OPAC-Set-Local-Integer-
From-Source

Sets the specified local parameter to the
integer specified by the source.

OPAC-Set-Local-Item-
From-Source

Sets the specified local parameter to the value
specified by the source. If the stack is empty,
the Local Item is set to the token.

OPAC-Set-Local-
Parameter-From-Source

Assigns a value to a local parameter from a
user-defined G2 procedure.

OPAC-Set-Local-Text-
From-Source

Sets the specified local text parameter to the
text specified by the source.

Palette Block Description
12

Subtask Arguments Palette
Subtask Arguments Palette

Debugging Palette

Palette Block Description

OPAC-Value-Arg Passes the specified value as an argument to
an OPAC subtask .

OPAC-Item-Arg Passes a value referencec by the specified item
name as an argument to an OPAC Subtask.

Palette Block Description

OPAC-Show-Stack-Top Displays the top of the token stack.

OPAC-Show-Token-Info Displays information about the token,
including $block, $caller, $target, $window,
$notify, and the current values of any local
parameters attached to the Subtask-Start
block.
13

State Transition Palette

Palette Block Description

OPAC-Delete-State-Token-
Block

Deletes the token associated with the
specified target within the specified state
diagram.

OPAC-Get-State-Block Retrieves the current state for the specified
target within the specified state transition
diagram and places the result at a specified
destination.

OPAC-Accept-New-Event-
Block

Moves the token and specified target to a new
state, based on the specified event.

OPAC-Accept-New-State-
Block

Moves the token to a new state, bypassing any
transition event blocks.

OPAC-State-Diagram-
Completion

Marks the completion of the processing
designated by a State Transition diagram.

OPAC-Timeout-Transition-
Event

Similar to the Transition-Event block, but
provides timeout capability. After the
timeout, the token transitions to the next
connected Wait State.

OPAC-Transition-Event Waits for the specified event and then
executes the specified Event Action
Procedure.
14

External Interfaces Palette
External Interfaces Palette

OPAC-Wait-State Defines a system state and its associated
procedure.

OPAC-State-Diagram-Start Begins a state diagram. The state diagram is
referenced by the name of this block.

Palette Block Description

OPAC-Write-Domain-Map Creates an ASCII text file from the top-level
object supplied by the user.

OPAC-Read-Domain-Map Reads a formatted ASCII text file and creates
domain objects and connections based on
information in the file and on any specified
translation workspace.

OPAC-SNMP-Get-Table-
Column

Gets a table of values for a specified object id
from a specified agent hostname.

OPAC-SNMP-Set Performs an SNMP Set request to set a value
of a single variable.

Palette Block Description
15

Generic Blocks Palette

OPAC-SNMP-Get Performs an SNMP Get request to obtain the
value of a single variable.

OPAC-Send-CDG-Event Sends an event to SymCure for processing.

Palette Block Description

OPAC-Get-Related-Items-
Block

Collects items that are related by a G2 or user-
defined relation. Valid relations are
connected-to, superior-to, connected-
upstream-to, connected-downstream-to, or
any user-defined relation. Collected items are
placed on the token stack.

OPAC-Historical-
Numerical-Query

Allows access to and calculation of statistics,
based on historical numerical data stored in a
specified target domain object over a specified
time. The specified statistical function
performed on the data can be any defined
method.

OPAC-Iteration Applies a “For Loop,” using the specified
method to iterate over one of three iteration
classes: members of a class, a list of objects, or
a range of numbers.

OPAC-Iteration-
Procedure-Template

Used with the Iteration block to allow you to
provide your own code for iterating over
objects.

Palette Block Description
16

Message Palette
Message Palette

OPAC-Domain-Object-
Method

Allows you to create your own general
method.

OPAC-Run-Domain-
Object-Method

Run the specified method against the
specified object.

Palette Block Description

OPAC-Acknowledge-
Message

Acknowledges messages based either on
specified target, sender, and category; or on a
local item variable.

OPAC-Clear-Message-
History

Clears message history specified by indicated
target, sender, or categories.

OPAC-Current-Message-
Query

Returns either a list of messages or a count of
current messages that match the specified
criteria.

OPAC-Delete-Message Deletes from the message server the messages
identified either on specified target, sender,
and category; or on a local item variable.
Includes deletion of unacknowledged
messages that meet the criteria.

Palette Block Description
17

OPAC-Historical-Message-
Query

Use to specify a query against the message
history.

OPAC-Message-Attribute-
Procedure-Template

Used in conjunction with the Set Message
Attribute block to set attribute values.

OPAC-Message-Exists Determines whether a message exists (on a
server) identified by the specified target,
sender, and category, and returns a truth
value.

OPAC-Send-SMH-Message Create and send a message to a message
server.

OPAC-Set-Message-
Attribute

Sets a specified message attribute to a value.

Palette Block Description
18

2

General Action Palette
Describes the blocks in the General Actions palette.

Introduction 20

New Procedure 21

General Procedure 22

Send SMH Message 24

Historical Message Query 27

Hide Workspace 30

Show Workspace Not Stacked 32

Show Workspace 34

Block Pause Capability 36

Control Delay 38

Task Kill 39

Task Spawn 40

Subtask 42

Macro 44

Subtask Completion 46

Subtask Start 47

Procedure Statement 49

Procedure Template 53

Connection Post 56
19

Introduction
The General Actions palette blocks are described in this chapter. These palette
blocks represent the general actions required to create and modify an Integrity
OPAC application.

Here is the General Actions palette:

To use the OPAC General Actions Palette blocks, drag and drop blocks to a
workspace, then configure the blocks.

• Use General Actions blocks in conjunction with other procedure blocks.

• Use the Subtask Start and Subtask Completion to begin and end all OPAC
procedures.
20

New Procedure
New Procedure
The New Procedure block assists you in creating a user-defined OPAC procedure
by providing a container workspace preconfigured with an Subtask Start block
and an Subtask Completion block.

To configure the new procedure, right-click on the block and select Properties.

Enter the new OPAC procedure name in the text box, enter an optional
description and click on the OK button.

To layout the blocks in the procedure, right-click on the block and select Show
Details. The subworkspace of the new procedure appears. The Subtask Start block
and the Subtask Completion block are already in place on the subworkspace.

To change the name of the procedure, right-click on the block and select
Properties, then enter the new name in the OPAC Procedure Name attribute.

Properties Dialog

The Properties dialog for the block is shown below:

Attributes

Attribute Data Type Default Value Possible Values

Names symbol none any valid symbol

Description text ““ any text
21

General Procedure
Use the General Procedure block to embed your own G2 actions within an OPAC
procedure. To configure the General Procedure block, select Configure from the
right-click drop-down menu. The Configure dialog box appears:

Specify the name of your G2 procedure in the User Defined Procedure attribute.
The default procedure name is OPAC-Do-Nothing. If you have already defined the
procedure, click on the OK button.

If you have not yet defined the G2 procedure, you can use this block to create the
procedure. To create the procedure, click on the ellipsis button next to the User
Defined Procedure attribute. The following dialog box appears:

Enter the name for the new procedure in the Procedure Name attribute and click
on OK. This action creates a Procedure block and displays the new block on the
same workspace with the General Procedure block. To set the properties of this
Procedure block and edit the text of the procedure, see the section “Procedure
Block” in this chapter.

The only argument passed to a procedure called by the block is the token. Error
handling is automatic; the error handler automatically returns the error-name
(symbol) and error-text (text) of any error that occurs.
22

General Procedure
Attributes

Properties Dialog

The Properties dialog for the block is shown below:

Attribute Data Type Default Value Possible Values

opac-g2-action-
proc

symbol opac-do-nothing any G2 procedure
name
23

Send SMH Message
The Send SMH Message block creates and sends a message to the specified
message server. The block sends messages only to servers in the same G2 process.

The attributes of the block match the calling arguments for the SMH Create
Message block, the procedure API for creating and sending any message. The
calling arguments needed for the SMH are specified as attributes of this block.

For information on message handling refer to the Integrity User’s Guide.
24

Send SMH Message
Attributes

Attribute Data Type Default Value Possible Values

opac-message-
text

text ““ any text of message.
If the value contains
($) references, they
are resolved.

opac-additional-
text

text ““ any text. If the
value contains ($)
references, they are
resolved.

opac-server text “smh-browse-
server”

any valid message
server

opac-sender text “$caller” any object

opac-target text “$target” any subclass of
opfo-managed-
object or opfo-
containment-object

opac-message-
category

text “opac” any user-defined
category. If the
value contains ($)
references, they are
resolved.

opac-lifetime number -1 lifetime of message
in seconds. Any
number < 0 means
infinite lifetime

opac-priority number 3 any priority. Local
integer parameters
can also be used as
they are resolved.

opac-show-
display

symbol true true or false
25

Properties Dialog

The Properties dialog for the block is shown below:

opac-window text “$wind” a g2-window or
object

opac-display-
options

text “-r” “-nolist” and/or “-
nack” and/or “-i”
or “-a” or “-r”

Attribute Data Type Default Value Possible Values
26

Historical Message Query
Historical Message Query
The Historical Message Query block specifies a query against the message
history. The block returns the result to the stack. You can use the following
criteria in a query:

• Target - The target of the message. Substitution variables such as $stack or
$target are allowed. Wildcards such as (*) or (?) are not allowed.

• Sender - The sender of the message. This can be a reference to a single item, or
may be left blank to indicate that any sender is an acceptable match.
Substitution variables like $stack or $sender are allowed.

• Message Category Pattern - The category of the messages. Wildcard
characters “*” and “?” are allowed in the category specification. This attribute
does not allow local parameter substitution.

• Begin Pattern Match with Character - The character position to begin the
match at within the Messages Category Pattern attribute.

• Query Length- The length of period for the query, in minutes. For instance,
with Query Length set to 5, the query would count the number of messages
meeting the search criteria within the last 5 minutes.

This block is usually followed by a Comparison Decision block, which can test the
number returned from the history query against a specified number. For details,
see Comparison Decision.
27

Attributes

Attribute Data Type Default Value Possible Values

opac-match-
time-interval-
minutes

number 1.0e6 any number
representing
minutes or any local
parameter
representing a
number.

opac-target text “$target” any subclass of
opfo-managed-
object or opfo-
containment-object,
any opac-local-
item, an attribute of
some object, or the
ext-name of a
managed or
containment object.
If $stack is used, the
stack is not
consumed.

opac-sender text ““ any, object, any
opac-local-item, an
attribute of some
object, or the ext-
name of a managed
or containment
object. If $stack is
used, the stack is
not consumed.

opac-message-
category

text ““ any user-defined
category.

opac-message-
category-
starting-position

number 1 any number valid
in the range of the
length of the
category of message
28

Historical Message Query
Properties Dialog

The Properties dialog for the block is shown below:
29

Hide Workspace
The Hide Workspace block hides the workspace specified in the Workspace Spec
attribute of the block.

The Workspace Spec attributes of this block are:

• Default - If the Hide Workspace block has a subworkspace, selecting this
option hides the subworkspace. If the block has no subworkspace, selecting
this option hides the workspace that contains the block.

• Stack - If the first item in the general stack of the token is a workspace,
selecting this option hides that workspace and removes it from the stack.

• Target - If the target is a workspace that has a subworkspace, selecting this
option hides the subworkspace. If the target is a workspace without a
subworkspace, the option hides the workspace. If the target is an object other
than a workspace, the option hides the workspace containing the target object.

• Caller - If the caller is a workspace that has a subworkspace, selecting this
option hides the subworkspace. If the caller is a workspace without a
subworkspace, the option hides the workspace. If the caller is an object other
than a workspace, the option hides the workspace containing the caller object.

• Workspace or Object - Select this option to specify a symbolic name of a
workspace or object. If you specify the name of a workspace that has a
subworkspace, this option hides the subworkspace. If the specified workspace
does not have a subworkspace, the option hides the workspace. If you specify
any other item, the option hides the item.

The windows hidden are based on the window set for caller of the token. For
instance, if the caller is a single G2 window, the workspace is hidden only for that
window.
30

Hide Workspace
Properties Dialog

The Properties dialog for the block is shown below:
31

Show Workspace Not Stacked
Two variations exist for the Show Workspace block. Both blocks display the
workspace you specify:

• The Show Workspace block shows the specified workspace and places the
workspace on the general stack of the token.

• The Show Workspace Not Stacked block shows the specified workspace, but
does not place the workspace on the general stack of the token.

Possible Values

Specify the workspace to be displayed in the Workspace Spec attribute of the
block. The choices are:

• Default - If the Show Workspace block has a subworkspace, selecting this
option shows the subworkspace. If the block does not have a subworkspace,
select this option to show the workspace that contains the block.

• Stack - If the first item in the general stack of the token is a workspace,
selecting this option shows the workspace and removes it from the stack.

• Target - If the target is a workspace that has a subworkspace, selecting this
option shows the subworkspace. If the target is a workspace without a
subworkspace, the option shows the workspace. If the target is an object other
than a workspace, the option shows the workspace containing the target
object.

• Caller - If the caller is a workspace that has a subworkspace, this option shows
the subworkspace. If the caller is a workspace without a subworkspace, the
option shows the workspace. If the caller is an object other than a workspace,
the option shows the workspace containing the caller object.

• Workspace or Object - Select this option to specify a symbolic name of a
workspace or object. If you specify a workspace that has a subworkspace, this
option shows the subworkspace. If the specified workspace does not have a
subworkspace, the option shows the workspace. If you specify any other item,
the option shows the item.
32

Show Workspace Not Stacked
Attributes

Properties Dialog

The Properties dialog for the block is shown below:

Attribute Data Type Default Value Possible Values

opac-
workspace-spec

symbol default See possible values
for Properties
Dialog.
33

Show Workspace
Two variations exist for the Show Workspace block. Both blocks display the
workspace you specify:

• The Show Workspace block shows the specified workspace and places the
workspace on the general stack of the token.

• The Show Workspace Not Stacked block shows the specified workspace, but
does not place the workspace on the general stack of the token.

Possible Values

Specify the workspace to be displayed in the Workspace Spec attribute of the
block. The choices are:

• Default - If the Show Workspace block has a subworkspace, selecting this
option shows the subworkspace. If the block does not have a subworkspace,
select this option to show the workspace that contains the block.

• Stack - If the first item in the general stack of the token is a workspace,
selecting this option shows the workspace and removes it from the stack.

• Target - If the target is a workspace that has a subworkspace, selecting this
option shows the subworkspace. If the target is a workspace without a
subworkspace, the option shows the workspace. If the target is an object other
than a workspace, the option shows the workspace containing the target
object.

• Caller - If the caller is a workspace that has a subworkspace, this option shows
the subworkspace. If the caller is a workspace without a subworkspace, the
option shows the workspace. If the caller is an object other than a workspace,
the option shows the workspace containing the caller object.

• Workspace or Object - Select this option to specify a symbolic name of a
workspace or object. If you specify a workspace that has a subworkspace, this
option shows the subworkspace. If the specified workspace does not have a
subworkspace, the option shows the workspace. If you specify any other item,
the option shows the item.
34

Show Workspace
Attributes

Properties Dialog

The Properties dialog for the block is shown below:

Attribute Data Type Default Value Possible Values

opac-
workspace-spec

symbol default One of the
following:

• default

• stack

• target

• caller

• workspace or
object symbolic
name
35

Block Pause Capability
Placing an Block Pause Capability block on a workspace displays OPAC tokens
and their movement through the processes on that workspace. The Block Pause
Capability block does not have to be connected to any other block for this action
to occur.

If you attach the Block Pause Capability block to another OPAC block, it pauses
execution of the OPAC procedure at that point, presents a dialog of choices to the
operator, and awaits operator approval to continue with processing the next step.

The token stops at the block preceding the one with the block pause icon. When
this block executes, OPAC generates an operator dialog. The dialog offers a choice
of continuing or aborting the procedure.

This block also has a Timeout attribute. At the end of the specified timeout,
processing continues. Specify a timeout when you require operation to continue if
an operator is not present.

Specify header text for the dialog box in the Header Text attribute. Specify the text
choice for continuing the procedure in the Continue Text attribute. You can use
text substitution variables, such as $target, in either text attribute.
36

Block Pause Capability
Attributes

This block is commonly used for debugging, as well as for obtaining operator
approval of actions. It is also used for demos in order to pace actions taken.

Note Displaying token movement is CPU-processing-intensive; processing time is
increased by approximately a factor of ten.

Properties Dialog

The Properties dialog for the block is shown below:

Attribute Data Type Default Value Possible Values

opac-header-
text

text “Pause in the
$task, for target
= $target. Select
choice:”

Any text message.
Will resolve local
names beginning
with $’s.

opac-continue-
text

text “Continue with
next step,
$block”

Any text message.
Will resolve local
names beginning
with $’s.

opac-timeout symbol 1m Any number
followed by one of:

s = seconds

m = minutes

h = hours

d = days

w = weeks
37

Control Delay
The Control Delay block causes a timed delay, specified by the Delay attribute.
The default time unit is seconds. The time units can be specified by appending (s)
for seconds, (m) for minutes, (h) for hours, (d) for days, and (w) for weeks.

Attributes

Properties Dialog

The Properties dialog for the block is shown below:

Attribute Data Type Default Value Possible Values

opac-delay symbol 2s Any number
followed by one of:

s = seconds

m = minutes

h = hours

d = days

w = weeks
38

Task Kill
Task Kill
The Task Kill block aborts processing and deletes the token. The General Stack
transient items in the general stack is deleted. This action has no effect on any
other tokens that may be processing.

Note This is a nonconfigurable block.

Attributes

Properties Dialog

The Properties dialog for the block is shown below:

Attribute Data Type Default Value Possible Values

N/A
39

Task Spawn
The Task Spawn block starts another OPAC procedure from within an OPAC
procedure. A new token is created, and it now has a life independent of the
originating token, with no return of control to the originating token. Both tokens
continue processing OPAC blocks.

No further communication occurs between the two tokens. The originating token
can be deleted with no effect on the new token. This is analogous to a spawn in
operating systems, such as UNIX, that is launched with nohup. It is equivalent to a
start of a process in the G2 procedural language. If you want the graphical
equivalent of a G2 call of a procedure, however, you should use a Subtask block
instead of a Task Spawn block.

Set the Task Name attribute to the name of the Subtask Start block that begins the
new procedure.

Arguments are passed in a manner similar to the Subtask block.

The context $caller, $target, $window and $notify are specified in the attributes of
the Task Spawn block, with attributes named, respectively: caller, target, window,
and notify. The default values are set, respectively, to $caller, $target, $wind,
$notify. The newly-spawned task, $task now becomes the name of the Subtask
Start block. However, local parameters in the calling procedure are not available
to blocks in the spawned task.
40

Task Spawn
Properties Dialog

The Properties dialog for the block is shown below:

Attributes

Attribute Data Type Default Value Possible Values

opac-task-name symbol no name Name of any opac-
subtask-start block

opac-caller text “$caller” Any object

opac-target text “$target” Any subclass of
opfo-managed
object or opfo-
containment-object

opac-window text “$wind” A G2-window or
object

opac-notify text “$notify” Any message server
41

Subtask
The Subtask block is the equivalent of a subroutine or function call in other
languages in that it transfers control and expects a return of control. The Name
attribute of the Subtask block must be the same as the Subtask Name attribute of
an Subtask Start block.

OPAC allows recursive calls to a subtask. The task can also call itself. You must
ensure that there is a way to return, ultimately, from the task.

The standard context is preserved during a subtask call. That is, $target, $caller,
$window, and $notify are preserved for use in all subtasks. In the subtask, $task
now becomes the name of the subtask. $task returns to its previous value when
the subtask returns.

User-defined local parameters in a procedure are not available in the subtasks
unless you pass them to the subtask. Unless passed, they are local only to the
procedure in which they are defined.

You can pass items to a subtask by placing the items on the General Stack.
However, you will also pass arguments, as described in Passing Arguments to a
Subtask.

Note Most of the information needed in any procedure is often contained in the objects
referenced by $target, $sender, which are already available without passing
arguments.

The ability or necessity to pass arguments to the subtask is a major differentiator
between Subtask blocks and Macro blocks. For a Macro block, no arguments are
passed.
42

Subtask
Attributes

Property Dialog

The Properties dialog for the block is shown below:

Attribute Data Type Default Value Possible Values

opac-subtask-
name

symbol no name Name of any opac-
subtask-start block
43

Macro
The Macro block calls a macro, transferring control to the macro until the macro
procedure is complete. Arguments cannot be passed to the macro.

Specify the name of the macro with the Macro Name attribute. This Macro Name
must be the actual G2 name of an Subtask Start block.

Control is returned to this calling Subtask block when a Subtask Completion
block is encountered (see Subtask Completion).

A macro allows recursive calls (i.e., the macro can call itself.) However, be sure
that you always provide a way to return from the macro.

Caution A stack of calls is kept internally, and, without returns, this stack can grow to fill
all available virtual memory.

The standard context of $target, $caller, $window, and $notify are preserved
during a macro call. The macro $task now becomes the name of the macro;
however, $task returns to its previous value when the macro returns. Unlike a
subtask, though, the local parameters in the calling procedure are also available to
blocks in the macro.

No arguments can be passed to a macro, and no local parameters are expected in
the macro; they are ignored. The complete calling context remains unchanged,
including $target. The existing local parameters from the calling procedure are
also still in effect. Thus, in a macro, you can refer to local parameters in the calling
program, unlike the case of a subtask, where the local parameters are only known
within that subtask.

A macro accomplishes a result in some ways similar to using a Connection-Post to
transfer control to a procedure on another workspace. However the connection
post method does not provide a certain return of control to the calling procedure.
If multiple procedures passed to the procedure through a connection post,
because the called procedure does not track which procedure was the caller.

Because of the resemblance to passing control through connection posts, the icon
for a Macro block includes the suggestion of two Connection Post icons.
44

Macro
Properties Dialog

The Properties dialog for the block is shown below:

Attributes

Attribute Data Type Default Value Possible Values

opac-macro-
name

symbol no name Name of any opac-
subtask-start block
45

Subtask Completion
The Subtask Completion block indicates the end of an OPAC procedure.

When an OPAC token encounters an Subtask Completion block, it returns to any
existing calling task. If no calling task exists, it deletes the token and any
associated storage. It also deletes any space allocated to local variables as well,
unless it is called from an Macro block.

More than one Subtask Completion block is allowable in a graphical program
Subtask block.

Note The Subtask Completion block is a non-configurable block.

Attributes

Properties Dialog

The Properties dialog for the block is shown below:

Attribute Data Type Default Value Possible Values

N/A
46

Subtask Start
Subtask Start
The Subtask Start block defines the beginning of an OPAC procedure. The
Subtask Name attribute of this block identifies the procedure. The block can be
called by a Subtask block, a G2 procedure, or it can be launched manually.

The Subtask Start block has an Argument attribute to specify values or items
passed in as arguments to a subtask.

Attributes

Attribute Data Type Default Value Possible Values

opac-subtask-
name

symbol no name name of any opac-
subtask-start block

opac-args text ““ comma separated
local names
47

Properties Dialog

The Properties dialog for the block is shown below:
48

Procedure Statement
Procedure Statement
The Procedure Statement block allows users to create G2 procedures within the
OPAC block language. Legal G2 procedure statements, actions, and for loops are
allowed.

The following rules apply when creating procedure statements, using the
Procedure Statement block.

Note References are case insensitive.

• Procedures understand $TARGET, $TOK, $WIND, $CALLER, $NOTIFY,
$STACK, and $BLOCK references although these must be used in the proper
context.

• Normal OPAC substitution variables (references to local parameters) are
allowed. Substitution variables must be preceded by the ($) reference, such as
$local-name.

• Unknown substitution variables (indicated by starting with $) are assumed to
be local names within the procedure and a local name of type item or value is
created within the procedure.

• References to ($) symbols (substitution variables) are pointers to the actual
item.
49

Properties Dialog

The Properties dialog for the block is shown below:

Attributes

The OPAC Procedure block is driven by a whenever rule that executes any time
the procedure statement is modified.

• A subworkspace is created for the block that serves as a container for the
procedure.

• A clone of a predefined procedure skeleton is created. This procedure has
built in local bindings for standard references to items such as $stack, $token.

• The procedure statement is scanned to find all ($) references. The ($) is
stripped from the text to be inserted into the procedure. The resulting symbol
matches with local bindings.

Attribute Data Type Default Value Possible Values

opac-procedure
description

text “Description” any text

opac-
procedure-
statement

text ““ any valid procedure
statement(s). Local
names beginning
with $’s are
resolved.

opac-
procedure-notes

text “Inactive” Used as a status
only. Does not
operate on this
attribute.
50

Procedure Statement
• References to things other than the standard symbols cause the creation of a
local name within the procedure. Local name declarations are assigned by an
“if then else statement” that looks for an OPAC local variable connected to the
Start block being passed by the token; if one exists, a binding to that item is
created, otherwise the local name is assigned a value of none

• The name of the procedure is defined as opac-statement-procedure-
[random(1,10000)].

• The text of the skeleton is changed, transferred to the subworkspace, and
made permanent.

• Errors and inconsistencies are displayed in the Procedure Notes attribute of
the block.

Referencing the Stack

You must use the proper syntax for inserting and removing items from the stack.
Some simple examples are:

{Pop top Item from the stack}

 remove the first item from $STACKPTR;

{Delete the top item from the stack;}

 delete $STACK;

{Insert an item into the stack;}

 insert $test at the beginning of $stackptr;

{change the value of the top value on the stack}

 conclude that $STACK = 5;

{assign the value of the top value on the stack to a local parameter test}

 $TEST = $stack;

Examples

The following examples are for procedure statements and functions:

Increment the priority of $target by local-test.

conclude that the _opfo-highest-message-priority of $target = the _opfo-highest-
message-priority of $target + $local-test;

List all the procedure blocks on this workspace.

for $statement = each opac-procedure-statement upon the workspace of $block
do

inform the operator on the workspace of $block for the next 20 seconds that
51

“[the opac-procedure-description of $statement]”;
end;

Create a list of items connected to the test object and insert the list onto the stack.

create an item-list $lst;
for $obj = each object connected to $target do

insert $obj at the end of the item-list list $lst;
end

Show the list without comments.

transfer $lst to the workspace of $BLOCK at (the item-x-position of $block - 75,
the item-y-position of $block);

insert $lst at the beginning of $stackptr;
{Pop and delete the list just put on the stack}

delete $STACK;
52

Procedure Template
Procedure Template
The Procedure Template block provides a template for you to define your own
user block definitions. The Procedure Template block is a G2 feature designed to
help you build and define a procedure by providing a template for a General
Procedure block or a Set Local Parameter block. Configure the block through the
Properties dialog G2 attribute table or by selecting the Edit option of the
procedure menu.

You can define your own G2 procedures and specify the procedure name in the
G2 Action Procedure of the blocks. This template displays a sample procedure to
build from and supplies the additional information on OPAC Tokens.

Note The OPAC procedure template does not show opac-token-error-handler usage
information.

An OPAC G2 procedure must return error-name and error-text at the end of the
procedure and use an on-error statement to return these values.
53

The following is an example of a G2 procedure:
54

Procedure Template
Properties Dialog

The Properties dialog for the block is shown below:
55

Connection Post
The Connection Post block allows you to connect OPAC procedures across
workspaces. The block is not a configurable OPAC block; it is a standard feature
of Gensym’s G2 product that is also used by OPAC. Use these blocks to maintain
connectivity between workspaces by defining two connection ports with the same
G2 name.

For example, if a procedure requires iteration over all objects connected to a
speicfied object, the Connection Post block allows the iteration to occur on objects
located on multiple workspaces .

Note The Connection Post block does not have a configuration dialog box. Edit the
Properties dialog box of the block to configure the block.

Properties Dialog

The Properties dialog for the block is shown below:
56

3

Decisions Palette
Describes the blocks in the Decisions palette.

Introduction 58

Comparison Decision 59

2-Way Decision 62

2-Way Manual Decision 66

3-Way Manual Decision 69

4-Way Manual Decision 71

2-Way Pattern Decision 73

3-Way Pattern Decision 76

4-Way Pattern Decision 78

2-Way Pattern Decision By Symbol 81
57

Introduction
Decisions blocks are used in conjunction with General Action blocks for decision
actions. Manual, Pattern Match and Consume Decision From Stack blocks are
available in either two, three, or four decision choices. The Use Entered Decision
Procedure block is a user defined block.

Here is the Decisions palette:

Decisions palette blocks can only accept connections to their stubs. No external
connections are allowed such as connections from a Block Pause Capability block.
58

Comparison Decision
Comparison Decision
The Comparison Decision block provides two-way branching capability.
Branching is based on evaluation of a relational expression that evaluates to either
True or False.

When the token is input to the block, the expression is evaluated. If the expression
evaluates to True, the token is routed through output 1. If the expression
evaluates to False, the token is routed through output 2.

Enter the expression in the Comparison attribute of the configuration dialog.

Specify the attributes as follows:

• Comparison - A relational expression, which consists of two arithmetic
expressions separated by a relational operator.

• Arithmetic Expression - Relational operators to be used in the comparison
relational expression.

• Choice If Error in Comparison - Default expression for errors.

• Choice 1 - The choice to be taken if True.

• Choice 2 - The choice to be taken if False.

Allowable relational operators are:

<
<=
>
>=
=
/=

Examples:

$stack >= 1

the _opfo-highest-message-priority of $msg > the _opfo-highest-message-
priority of $target

Allowable arithmetic expressions on the left-hand side and right-hand side are
parameter names, or names with attributes. Substitution parameters may be used,
the substitution is done before evaluation. Standard references may be made,
such as $stack, $target, references to local parameters.
59

Properties Dialog

The Properties dialog for the block is shown below:
60

Comparison Decision
Attributes

Attribute Data Type Default Value Possible Values

opac-
expression

text “$stack >= 1” Any expression. ($)
references will be
resolved. Cannot
use any functions in
the expression.
Must follow sample
format. Possible
relational operators
include: >=, <=, >,
<, =, and /=.

opac-default-
decision

number 2 The decision (1 or 2)
to be taken in case
of a timeout or error
condition.
61

2-Way Decision
The 2-Way Decision block provides branching capability based on a user-defined
G2 procedure.

For example, the block shown below has been specified to use the procedure
Consume Decision From Stack. In this example, the block uses the top item on the
stack to decide which path of the block to take. If the value of the item on the stack
is less than or greater than the number of output paths for the block, the default
decision is taken.

Properties Dialog

The Properties dialog for the block is shown below:
62

2-Way Decision
Attributes

Special Instance: If Token Error Free Block

The If Token Error Free block is an instance of the standard 2-Way Decision block.
This instance checks for errors in the token. To create this instance, use the
standard block and specify the If Token Error Free decision procedure in the User
Defined Decision Procedure attribute.

A token that is input to the block is output through one of the two output options.
If the token is error-free, the token continues through output path 1; otherwise, it
is output through path 2.

Usage

One common use of this block is in conjunction with a following manual decision
block that allows operator intervention. If the token is in error, the operator sees
an indicative message on the smh-error-server message server and can take
appropriate action.

Attributes Data Type Default Value Possible Values

opac-decision-
proc

symbol opac-consume-
decision-from-
stack

User-defined G2
procedure with
arguments.

opac-choice-1-
description

text ““ Any text; ($)
references will be
resolved

opac-choice-2-
description

text ““ Any text; ($)
references will be
resolved

opac-timeout number -1 Any number. If a
default decision
should be taken
after a certain time
period, specify it
here, using
appropriate time
specifications.

opac-default-
decision

number 2 The decision (1 or 2)
to be taken in case
of a timeout or error
condition.
63

This block is important in many applications in which calls to external systems
may hang up or time out.

In the event of an error, blocks usually pass on the token, despite the error, so that
information about events is not lost. This block is useful in the process flow before
major actions are taken in the event of an error.

Attributes

Attribute Data Type Default Value Possible Values

opac-decision-
proc

symbol opac-if-token-
error-free

Name of the user-
defined decision
procedure.

choice 1
description

text No error not used

choice 2
description

text Token in error not used
64

2-Way Decision
opac-timeout number -1 Any number. If a
default decision
should be taken
after a certain time
period, specify it
here, using
appropriate time
specifications.

opac-default
decision

number 2 The decision (1 or 2)
to be taken in case
of a timeout or error
condition.

Attribute Data Type Default Value Possible Values
65

2-Way Manual Decision
The 2-Way Manual Decision block provides a two-way branching capability for
OPAC, similar to the 2-Way Decision block. The 2-Way Manual Decision block
differs, however, by presenting a prompt to the operator who can manually enter
a response. The manual response of the operator determines the branch through
which processing continues and the token is output.

The prompt is presented when the token is input to the block. Specify the text
presented to the operator that describe the choices by entering the text in the
Manual Choice 1 Description and Manual Choice 2 Description attribute.

The dialog presented to the operator is generated automatically, based on the
choice descriptions, and the header text is specified by the Header Text for
Manual Choices attribute. Substitution variables are allowable in these attributes.

The optional timeout attribute allows you to specify:

• a time interval for which to await operator response

• the branch to choose if operator response does not occur within the
specifiedtime interval.
66

2-Way Manual Decision
Properties Dialog

The Properties dialog for the block is shown below:

Attributes

Attribute Data Type Default Value Possible Values

opac-header-
text

text “In task $task,
for target =
$target, select
choice:”

Any text; ($)
references will be
resolved

opac-choice-1-
description

text ““ Any text; ($)
references will be
resolved

opac-choice-2-
description

text ““ Any text; ($)
references will be
resolved
67

opac-timeout number -1 Any number. If a
default decision
should be taken
after a certain time
period, specify it
here, using
appropriate time
specifications.

opac-default-
decision

number 2 The decision (1 or 2)
to be taken in case
of a timeout or error
condition.

Attribute Data Type Default Value Possible Values
68

3-Way Manual Decision
3-Way Manual Decision
The 3-Way Manual Decision block provides three-way branching capability,
prompting an operator to decide to continue processing through one of three
branches. The block allows specification of a timeout default decision branch.
Operation is similar to the 2-Way Manual Decision block, except three choices are
presented to the operator.

Properties Dialog

The Properties dialog for the block is shown below:
69

Attributes

Attribute Data Type Default Value Possible Values

opac-header-
text

text “In task $task,
for target =
$target, select
choice:”

Any text; ($)
references will be
resolved

opac-choice-1-
description

text ““ Any text; ($)
references will be
resolved

opac-choice-2-
description

text ““ Any text; ($)
references will be
resolved

opac-choice-3-
description

text ““ Any text; ($)
references will be
resolved

opac-timeout number -1 Any number. If a
default decision
should be taken
after a certain time
period, specify it
here, using
appropriate time
specifications:

opac-default-
decision

number 3 The decision (1, 2,
or 3) to be taken in
case of a timeout or
error condition.
70

4-Way Manual Decision
4-Way Manual Decision
The 4-Way Manual Decision block provides four-way branching capability,
prompting an operator to decide to continue processing through one of four
branches. The block allows specification of a timeout default decision branch.
Operation is similar to the 2-Way Manual Decision block, except four choices are
presented to the operator.

Properties Dialog

The Properties dialog for the block is shown below:
71

Attributes

Attribute Data Type Default Value Possible Values

opac-header-
text

text “In task $task,
for target =
$target, select
choice:”

Any text; ($)
references will be
resolved

opac-choice-1-
description

text ““ Any text; ($)
references will be
resolved

opac-choice-2-
description

text ““ Any text; ($)
references will be
resolved

opac-choice-3-
description

text ““ Any text; ($)
references will be
resolved

opac-choice-4-
description

text ““ Any text; ($)
references will be
resolved

opac-timeout number -1 Any number. If a
default decision
should be taken
after a certain time
period, specify it
here, using
appropriate time
specifications:

opac-default-
decision

number 4 The decision (1, 2, 3,
or 4) to be taken in
case of a timeout or
error condition.
72

2-Way Pattern Decision
2-Way Pattern Decision
The 2-Way-Pattern-Decision block provides two-way branching capability.
Branching is based on the comparison of the items on the top of the token stack
against the patterns specified in the Choice 1 Pattern and Choice 2 attributes,
respectively.

When the token is input to the block, Integrity attempts to match the specified
source (for example, the input token stack) against the specified pattern in choice
1. If a match is made, the token is output through the choice 1 output. If no match
is made, the source is then compared against the pattern specified in choice 2. If a
match is made with this specified pattern, the token is output through the choice 2
output. Thus, the block acts similarly to a case statement

Specify the source to compare in the Source text attribute. Substitution variables
are allowed.

The Default Decision attribute allows you to specify the default output that the
token will route through if no pattern match is made.

Specify the first pattern to check in the Choice 1 Pattern attribute. Specify the
second pattern to check in the Choice 2 Pattern attribute.

OPAC recognizes pattern match language. It is modeled for simplicity after the
methods of specifying wild cards in UNIX and DOS as follows:

• An asterisk (*) means 0, 1, 2, or more arbitrary characters will match that
position in the pattern. For example:

*PA

would be matched by OPAC, GRANDPA, and PA.

• A question mark (?) must match exactly one arbitrary character at that
position. For example:

? PA?

would be matched only by OPAC.

Although substitution variables are allowed in the OPAC Source attribute, they
are not allowed in any of the pattern matching strings.
73

Properties Dialog

The Properties dialog for the block is shown below:

Attributes

Attribute Data Type Default Value Possible Values

opac-source text “$stack” Any text

opac-source-
starting-position

number 1 Any number from 1
to the length of the
source.
74

2-Way Pattern Decision
opac-default-
decision

number 2 1 or 2

opac-choice-1-
description

text “?pattern*” Any text, where ?
represents one
character and *
represents any
sequence of
characters.

opac-choice-2-
description

text ““ Any text

Attribute Data Type Default Value Possible Values
75

3-Way Pattern Decision
The 3-Way Pattern Decision block is similar to the 2-Way Pattern Decision block,
except that it offers three pattern choices. The additional choice is specified in the
Choice 3 Pattern attribute. The statement acts similarly to a case statement, first
checking Choice 1 Pattern, then Choice 2 Pattern, and finally the Choice 3 Pattern.
If none of these match, or if an error condition occurs, the default decision is
taken.

This block may also be used to represent a two-way decision, with the third
choice being the default decision that would be taken only in case of an error
condition such as a timeout.

The third choice can also be an input to another pattern decision block, thus
extending the number of case statements.
76

3-Way Pattern Decision
Properties Dialog

The Properties dialog for the block is shown below:

Attributes

Attribute Data Type Default Value Possible Values

opac-source text “$stack” Any text

opac-source-
starting-position

number 1 Any number from 1
to the length of the
source.

opac-default-
decision

number 3 1, 2, or 3

opac-choice-1-
description

text “?pattern*” Any text, where ?
represents one
character and *
represents any
sequence of
characters.

opac-choice-2-
description

text ““ Any text

opac-choice-3-
description

text ““ Any text
77

4-Way Pattern Decision
The 4-Way Pattern Decision block is similar to the 2-Way Pattern Decision block,
except that it offers four pattern choices. The additional choices are specified in
the Choice 3 Pattern and Choice 4 Pattern attribute.

The statement acts like a case statement, first checking the Choice 1 Pattern,
Choice 2 Pattern, Choice 3 Pattern, then the Choice 4 Pattern. If none of these
match, or if an error condition occurs, the default decision is taken.

This block can also be used to represent a three-way decision, with the fourth
choice being the default decision; this default should be taken only in case of an
error condition such as a timeout.

The fourth choice can also be an input to another pattern decision block, thus
extending the number of case statements.
78

4-Way Pattern Decision
Properties Dialog

The Properties dialog for the block is shown below:

Attributes

Attribute Data Type Default Value Possible Values

opac-source text “$stack” Any text

opac-source-
starting-position

number 1 Any number from 1
to the length of the
source.

opac-default-
decision

number 4 1, 2, 3, or 4

opac-choice-1-
description

text “?pattern*” Any text, where ?
represents one
character and *
represents any
sequence of
characters.

opac-choice-2-
description

text ““ Any text
79

opac-choice-3-
description

text ““ Any text

opac-choice-4-
description

text ““ Any text

Attribute Data Type Default Value Possible Values
80

2-Way Pattern Decision By Symbol
2-Way Pattern Decision By Symbol
The 2-Way Pattern Decision By Symbol block provides two-way branching
capability based on specified parsing of an input string into one or more symbols.

The block parses multiple symbols in the input text string sequentially, one
symbol at a time. This behavior differs from the behavior of other 2-way decision
blocks, which search the entire text for a specified string. The 2-Way Pattern
Decision By Symbol block tokenizes the text into parsable symbols, and matches
as many as you specify. Symbols are separated by spaces in the Choice Pattern
attributes.

Wild cards are also allowed. For example, you could also parse for "* * * *" and
send the fourth word to some local variable for later use.

Substitution variables are not allowed in the pattern match string.

If a match is made with the Choice 1 Pattern, the token is output through port 1,
and that parsable symbol is removed from the text on the stack. If no match
occurs, the token is output through port 2, and the stack is left unchanged.

The block uses text that is on the stack; it does not use any other source.

A common use for this block is to write parsed symbols to local variables for later
use in a procedure.

An arrangement of these blocks can be used to accomplish arbitrary n-symbol
look-ahead parsing. Arranging a series of these blocks vertically, each block
would represent a successful parse. If a match fails, the stack is still intact and
another match is tried, regardless of the number of symbols you tried to match
that are separated by spaces in the pattern specification in the Choice 1 Pattern.

If the Send Parsed Result To attribute is set, OPAC sends the most recently
discovered symbol to the specified location.

As an example, you can check for the first four words of “This is a sample
document for parsing", by setting the Choice 1 Pattern of the block to:

"This is a sample.”
81

Attributes

Attribute Data Type Default Value Possible Values

opac-source text “$stack” Must be $stack

opac-send-
parsed-result-to

symbol no-name The location where
the most recently
discovered symbol
should be sent.

opac-source-
starting-position

number 1 Any number from 1
to the length of the
source.

opac-choice-1-
description

text “?pattern*” Any text, where ?
represents one
character and *
represents any
sequence of
characters.
82

2-Way Pattern Decision By Symbol
Properties Dialog

The Properties dialog for the block is shown below:

Attributes

Attribute Data Type Default Value Possible Values

opac-decision-
proc

symbol opac-consume-
decision-from-
stack

User-defined G2
procedure with
arguments.

opac-choice-1-
description

text ““ Any text; ($)
references will be
resolved

opac-choice-2-
description

text ““ Any text; ($)
references will be
resolved

opac-choice-3-
description

text ““ Any text; ($)
references will be
resolved

opac-choice-4-
description

text ““ Any text; ($)
references will be
resolved
83

opac-timeout number -1 Any number. If a
default decision
should be taken
after a certain time
period, specify it
here, using
appropriate time
specifications.

opac-default-
decision

number 4 The decision (1, 2, 3,
or 4) to be taken in
case of a timeout or
error condition.

Attribute Data Type Default Value Possible Values
84

4

Operating System
(OS) Palette
Describes the blocks in the OS Actions palette.

Introduction 85

Set Local Integer From Source 87

File Exists Test 88

Delete File 90

Kill Process 92

Spawn Return Output 94

Spawn Return PID 96

Spawn No Return 98

Write File 99

Read File 101

Introduction
The Integrity graphical language provides blocks representing standard
interactions with the underlying operating system. OPAC currently supports
UNIX and Windows when making calls outside of the machine running Integrity

Standard operations are supported such as reading, writing, and finding files, and
spawning processes and getting the returned information. You can also replace
UNIX scripts or Windows batch files with these blocks. UNIX-style substitution
variables are supported, such as prefacing an argument with ($).
85

Note When referencing any filename or directory, it is up to the user to provide the
correct directory delimiter, such as (\) for Windows or (/) for UNIX.

Here is the OS Actions palette:
86

Set Local Integer From Source
Set Local Integer From Source
Use the Set Local Integer From Source block to set the specified local integer
parameter specified to the value specified by the source. (for example, the stack).
Substitution variables are allowed.

Properties Dialog

The Properties dialog for the block is shown below:

Attributes

Attribute Data Type Default Value Possible Values

opac-local-
parameter-
name

symbol local-int-var Any opac-local-
integer-parameter

opac-source text “$stack“ stack, $stack. Other
($) references will
be resolved.
87

File Exists Test
Use the File Exists Test block to see if a file exists. Specify the file, including the
file path and file name, to test for in the OPAC Filename attribute.

To browse a list of files from which to choose a file for the test, click on the Browse
Directory button indicated by the ellipsis.

Properties Dialog

The Properties dialog for the block is shown below:

Browse Directory Button
88

File Exists Test
Attributes

Attribute Data Type Default Value Possible Values

opac-filename text ““ Any valid file path
and filename. Make
sure the
appropriate
directory/file
separator is used
for current OS. ($)
references will be
resolved.
89

Delete File
Use the Delete File block to delete a file from the file system. Specify the file to
delete, including the file path and file name, in the OPAC Filename attribute.

To browse a list of files from which to choose a file for deletion, click on the
Browse Directory button indicated by the ellipsis.

Properties Dialog

The Properties dialog for the block is shown below:

Browse Directory Button
90

Delete File
Attributes

Attribute Data Type Default Value Possible Values

opac-filename text ““ Any valid file path
and filename. Make
sure the
appropriate
directory/file
separator is used
for current OS. ($)
references will be
resolved.
91

Kill Process
Use the Kill Process block to kill a process in the UNIX operating system. The
source of the process ID for the process is specified in the OPAC PID Source
attribute. This source is either the Stack of the token, or can be a local variable. See
Spawn Return PID.

Caution If you use the PID returned from the Spawn Return PID block on a Windows
platform as input to the Kill Process block, you will not kill the process. The PID
returned on a Windows platform is the PID of the command shell. Using the
block generates an error because the command shell that initiates the process
terminates.

Properties Dialog

The Properties dialog for the block is shown below:
92

Kill Process
Attributes

Attribute Data Type Default Value Possible Values

opac-pid-source symbol stack Stack or an opac-
local-integer-
parameter.
93

Spawn Return Output
The Spawn Return Output block is used to spawn a process to the operating
system and return the resulting output to the specified source. For example, in the
UNIX operating system, you can spawn a (ls -l) command to get a list of the
files and return them to OPAC for further analysis. As in other spawn commands,
the block is similar to specifying a command at a command line prompt.

Caution Do not embed a carriage return. An embedded carriage return causes the Spawn
Return Output block to terminate.

Specify the command line entry in the Process attribute of the the Configure
dialog. (This attribute is the OPAC Spawn Spec attribute in the Propertied Dialog
box.) The results are returned to the stack. Each line returned is placed as a
separate entry in a text list. (In general, text files are converted to text lists in
OPAC.)

The OPAC Timeout attribute specifies the number of seconds to wait for results to
return. If the specified timeout is exceeded, the token is flagged with an error, and
the token continues.

If a failure to get return information is significant, you can use an If Token Error
Free block (an instance of the 2-Way Decision block) to check the token, either
after the Spawn block, or perhaps later in the code before a significant action
occurs.
94

Spawn Return Output
Properties Dialog

The Properties dialog for the block is shown below:

Attributes

Attribute Data Type Default Value Possible Values

opac-spawn-
spec

text ““ Any valid
command for the
current OS. ($)
references will be
resolved.

opac-timeout integer 30 Maximum number
of seconds to wait
for the returned
output
95

Spawn Return PID
The Spawn Return PID block is used to spawn a process to the operating system.
In the UNIX operating system, the block also returns the resulting process ID
(PID). You may need this PID to later kill the process. As in other spawn
commands, this block is similar to specifying a command at a command line
prompt.

The command line entry is specified in the Process attribute of the the Configure
dialog. (This attribute is the OPAC Spawn Spec attribute in the Propertied Dialog
box.) The results are returned to the destination specified in the Process ID
attribute in the Configure Dialog box. (This attribute is the OPAC PID Destination
attribute in the Properties Dialog Box.) This is normally the Stack or a local
variable.

Note Using this block in the Windows operating system does not return the PID of the
process you specify. Instead, it returns the PID of the command shell in which the
specified process was spawned. Do not use this PID in the Kill Process block, as
doing so terminates the entire command shell.

Properties Dialog

The Properties dialog for the block is shown below:
96

Spawn Return PID
Attributes

Attribute Data Type Default Value Possible Values

opac-spawn-
spec

text ““ Any valid
command for the
current OS. ($)
references will be
resolved.

opac-pid-
destination

symbol stack Stack or an opac-
local-integer-
parameter.
97

Spawn No Return
The Spawn No Return block spawns the specified process to the operating
system. No information is returned about the spawned process. This block is
equivalent to specifying a command at a command line prompt. Specify the
command line entry in the Process attribute of the Configure dialog or in the
OPAC Spawn Spec attribute of the Properties dialog.

Properties Dialog

The Properties dialog for the block is shown below:

Attributes

Attribute Data Type Default Value Possible Values

opac-spawn-
spec

text ““ Any valid
command for the
current OS.
$references will be
resolved.

Write File
Write File
The Write File block writes the text at the top of the token stack to a file specified
by the OPAC Filename attribute. The source of the file content is taken from the
stack and is either a text-list or text. If the source is a text-list, each text in the text-
list corresponds to one line in the output file.

The attribute OPAC Write or Append Mode specifies whether to overwrite (w) or
append (a) to the specified file, if it exists. If the specified file does not exist, it is
created.

Properties Dialog

The Properties dialog for the block is shown below:

Browse Directory Button
99

Attributes

Attribute Data Type Default Value Possible Values

opac-filename text ““ any valid file path
and filename. Make
sure the
appropriate
directory/file
separator is used
for current OS. ($)
references will be
resolved.

opac-write-or-
append-mode

text “w” “w” - write to file

“a” - append to file
100

Read File
Read File
The Read File block reads a file, specified by the OPAC Filename attribute and
places the result on the stack as a text list. Each text in the text list corresponds to
one line in the input file.

Make sure that the OPAC Filename attribute does not point to an empty file. If the
attribute does point to an empty file, the procedure will suspend execution of the
token and timeout after 30 seconds.

Note If you are using Windows, this procedure may have difficulty reading a line with
a backslash (\). This OPAC procedure uses the underlying G2 System procedure
G2-read-line. In this version of G2 on the Windows platform, the backslash is the
escape code; any character after the backslash is interpreted as the escape
sequence.

Properties Dialog

The Properties dialog for the block is shown below:

Browse Directory Button
101

Attributes

Attribute Data Type Default Value Possible Values

opac-filename text ““ Any valid file path
and filename. Make
sure the
appropriate
directory/file
separator is used
for current OS. ($)
references will be
resolved.
102

5

Stack
Operations Palette
Describes the blocks in the Stack Operations palette.

Introduction 103

Generic Put Something On Stack 105

Pop General Stack 107

Put Connected Objects On Stack 108

Pop General Stack And Delete 110

Put Item On Stack 111

Put Float On Stack 112

Put Integer On Stack 113

Put Text On Stack 114

Introduction
The OPAC Tokens maintain a stack for general use. It is possible to place items on
this stack, operate on those items in subsequent blocks, and then delete those
items from the stack in another block.

Note Certain blocks consume the stack (remove an item from the stack). The
description indicates whether a block consumes the stack.
103

Here is the Stack Operations palette:

Using local parameters instead of stack operations, is usually recommended:

• References to named local parameters are clearer than references to a stack.

• Using local parameters allows easier access if several local parameters are
required, rather than just one item at the top of the stack.

• Some blocks may consume elements of the stack, while others do not, so that
the exact behavior is not quite so obvious from the diagram.

However, in many cases the easier design is to get an item from one block, put it
on the stack, and immediately use the stack in the next block. This practice
reduces the number of blocks. Passing items from one block to the block
immediately following is the preferred application of stack operations.

Note The stacks for each token are completely independent of each other. No
interactions exist between the tokens, even if they are executing the same
graphical procedure.
104

Generic Put Something On Stack
Generic Put Something On Stack
The Generic Put Something On Stack block calls a user-defined procedure to place
something on the stack. Specify the user-defined G2 procedure in the User
Procedure attribute of the Configure dialog box or in the OPAC G2 action proc
attribute of the Properties dialog box.

If the specified procedure does not exist, you can use this block to create a new
Procedure block. To create the new Procedure block, click on the ellipsis button.
The Configure Create New Procedure dialog box appears. Enter the name of the
new procedure in the Procedure Name attribute, then click on the OK button.
This action creates a Procedure block and displays the new block on the same
workspace with the Generic Put Something On Stack block. This new Procedure
block includes a skeleton procedure that you may edit. To set the properties of
this Procedure block and edit the text of the procedure, see the section “Procedure
Block” in the “General Actions” chapter.

Properties Dialog

The Properties dialog for the block is shown below:
105

Attributes

Attributes Data Type Default Value Possible Values

opac-g2-action-
proc

symbol put-something-
on-stack-user-
defined

Any G2 procedure.

opac-spec text ““ Can be used by the
procedure specified
in the opac-g2-
action-proc.
106

Pop General Stack
Pop General Stack
The Pop General Stack block pops the general stack of token. (To “pop the stack”
means to remove the top item from the stack.)

A related block, the Pop General Stack And Delete block, pop the stack and
deletes the item. The Pop General Stack block does not delete the item, only its
reference in the stack.

Note Use this block carefully. A common mistake is to omit deleting items popped
from the stack, resulting in an excess of items that are no longer used. This block
is used usually for objects that are permanent, or members of other lists.

Properties Dialog

The Properties dialog for the block is shown below:

Attributes

Attributes Data Type Default Value Possible Values

N/A
107

Put Connected Objects On Stack
The Put Connected Objects On Stack block generates an item-list, without
duplicates, of objects connected to the objects specified by the Argument attribute
of the Configure dialog box or in the OPAC Spec attribute of the Properties
dialog. The argument can reference a list, in which case this block finds all objects
connected to those objects in the specified list.

The procedure places in a list on the stack all objects that are connected to the
specified object.

The OPAC Spec default value is $target. The procedure also allows $stack to be
specified in the OPAC Spec attribute. In that case, the procedure finds all objects
connected to the specified object in the stack. If the stack contains an item-list of
objects, it returns an item-list of all objects connected to all of those objects.

Placing two of these blocks in sequence can find all objects connected within a
distance of two objects from the originally specified one. Placing three blocks in
sequence can find all objects connected within a distance of three objects, and so
on. The list that is generated allows only a single entry for a given object. This
technique is illustrated in the OPAC Demo Chapter of the Integrity User’s Guide.

Properties Dialog

The Properties dialog for the block is shown below:
108

Put Connected Objects On Stack
Attributes

Attribute Data Type Default Value Possible Values

opac-spec text “” Any object or an
opac-local-item.
109

Pop General Stack And Delete
The Pop General Stack And Delete block pops the general stack (removes the top
item from the stack) and deletes the referenced item.

A related block, the Pop General Stack block, pops the stack, but does not delete
the item. The Pop General Stack block deletes only the item reference in the stack.

Caution The Pop General Stack And Delete block does not delete permanent items.

When a list is the item to be popped and deleted, all list items are also deleted.

The Properties dialog for the block is shown below:

Attributes

Attribute Data Type Default Value Possible Values

N/A
110

Put Item On Stack
Put Item On Stack
The Put Item On Stack block takes a value from the item specified by the Input
Item attribute and places it on the stack for the token. The block allows
substitution variables within the specification.

Properties Dialog

The Properties dialog for the block is shown below:

Attributes

Attribute Data Type Default Value Possible Values

opac-input-item value 0.0 Any value.
111

Put Float On Stack
The Put Float On Stack block takes a floating point value from the Input Float
attribute and places it on the token stack. The block allows substitution variables
within the specification.

Properties Dialog

The Properties dialog for the block is shown below:

Attributes

Attribute Data Type Default Value Possible Values

opac-input-float float 0.0 Any float.
112

Put Integer On Stack
Put Integer On Stack
The Put Integer On Stack block takes an integer value from the Input Integer
attribute and places it on the token stack. The block allows substitution variables
within the specification.

Properties Dialog

The Properties dialog for the block is shown below:

Attributes

Attribute Data Type Default Value Possible Values

opac-input-
integer

integer 0 Any integer.
113

Put Text On Stack
The Put Text On Stack block places text from the Input Text attribute on the token
stack. The block allows substitution variables within the specification.

Note OPAC Input Text cannot be in the form: the <attribute> of <instance>.

Properties Dialog

The Properties dialog for the block is shown below:

Attributes

Attribute Data Type Default Value Possible Values

opac-input-text text “” Any text value. ($)
references will be
resolved.
114

6

Local Parameters
Palette
Describes the blocks in the Local Parameters palette.

Introduction 116

Set Local Float From Source 117

Local Float Parameter 119

Set Local Item From Source 121

Local Item 122

Set Local Integer From Source 124

Local Integer Parameter 125

Set Local Text From Source 127

Local Text Parameter 128
115

Introduction
This chapter describes using parameters. Parameters hold data that can be
accessed and manipulated by multiple OPAC blocks within the same OPAC
procedure. These parameters are accessible from the Subtask Start through the
Subtask End.

There is the Local Parameters palette:

Use the OPAC Parameters to define and set parameters for a given Subtask Start
block. You must attach these parameters to the Subtask Start block. Supporting
blocks for setting these parameters also exist.
116

Set Local Float From Source
Set Local Float From Source
Use the Set Local Float From Source block to set the local float parameter specified
by the Local Parameter attribute to the value specified as the source. The source
can be:

• $stack

• a value

• a substitution variable

Properties Dialog

The Properties dialog for the block is shown below:
117

Attributes

Attribute Data Type Default Value Possible Values

opac-local-
parameter-
name

symbol local-name Any local-float-
parameter

opac-source text “$stack“ stack, $stack. Other
($) references will
be resolved.
118

Local Float Parameter
Local Float Parameter
Use the Local Float Parameter block to define local float parameters for a given
Subtask Start block, the entry point for the subtask. These blocks must be attached
directly to the Subtask Start block, the entry point for the subtask.

The Initial Value attribute of these parameters determines the initial value for the
variable of a given token entering that procedure. When the token enters the
procedure, it clones one of these blocks, and keeps its own local copy. Thus,
normal G2 parameter initialization is used. Each token, as a result of encountering
various OPAC blocks, may change the value of its local copy of local parameters.

Tokens do not interact. The next token to enter this subtask starts with the initial
value when it clones its copy of this block.

If arguments are passed to a subtask, and if the local parameters attached to the
Subtask Start block match those specified in the OPAC arguments of the Subtask
Start block, OPAC will insert the values in the new copies of this block, specific to
each Token (see Configuring Arguments Blocks and Creating OPAC Procedure
Arguments From a G2 Procedure).

Properties Dialog

The Properties dialog for the block is shown below:
119

Attributes

Attribute Data Type Default Value Possible Values

opac-local-
name

symbol local-name Any local
parameter name.

initial-value float 0.0 Any float value.
120

Set Local Item From Source
Set Local Item From Source
The Set Local Item From Source block sets the specified local parameter to the
value specified by the source. The Set Local Item From Source block removes the
current relation, if one exists, from and assigns a new relation to the item specified
as the source.

When the Source attribute of the Set Local Item From Source block $stack and the
stack is empty, the OPAC Local Item is set to the token.

Properties Dialog

The Properties dialog for the block is shown below:

Attributes

Attribute Data Type Default Value Possible Values

opac-local-
parameter-
name

symbol local-item-var Any opac-local-
item

opac-source text “$stack“ stack, $stack. Other
($) references will
be resolved.
121

Local Item
Use the Local Item block to define local items for a given subtask. These blocks
must be attached directly to the Subtask Start block, the entry point for the
subtask.

The blocks represent pointers to objects (indicated by the arrow on the icon). You
can refer to the items either directly by name or indirectly, using substitution
variables.

The Initial Value attribute of these parameters determines the initial value of the
name reference for each token entering that procedure.

When the token enters the procedure containing one of these blocks, it clones the
block, and keeps its own local copy. Thus, normal G2 parameter initialization is
used. Each token, as a result of encountering various OPAC blocks, may change
the value of its local copy of local parameters.

Tokens that subsequently enter the procedure do not interact with previous
tokens. The next token to enter this subtask starts with the initial value when it
clones its copy of this block.

If arguments are passed to a subtask, and if the local parameters attached to the
Subtask Start block match those specified in the OPAC arguments of the Subtask
Start block, OPAC will insert the values in the new copies of this block, specific to
each Token (see Configuring Arguments Blocks and Creating OPAC Procedure
Arguments From a G2 Procedure).

Properties Dialog

The Properties dialog for the block is shown below:
122

Local Item
Attributes

Attribute Data Type Default Value Possible Values

opac-local-
name

symbol local-name Any local item
name.

initial-value text ““ Any text specifying
the name of an
item.
123

Set Local Integer From Source
Use the Set Local Integer From Source block to set the local integer parameter
specified by the Local Parameter attribute to the value specified by the Source
attribute.

Properties Dialog

The Properties dialog for the block is shown below:

Attributes

Attribute Data Type Default Value Possible Values

opac-local-
parameter-
name

symbol local-int-var Any opac-local-
integer-parameter

opac-source text “$stack“ stack, $stack. Other
($) references will
be resolved.

Local Integer Parameter
Local Integer Parameter
Use the Local Integer Parameter block to define local integer parameters for a
given subtask. These blocks must be attached directly to the Subtask Start block,
the entry point for the subtask.

The Initial Value attribute of these parameters determines the initial value for the
variable of a given token entering that procedure.

When the token enters the procedure containing one of these blocks, it clones the
block, and keeps its own local copy. Thus, normal G2 parameter initialization is
used. Each token, as a result of encountering various OPAC blocks, may change
the value of its local copy of local parameters.

Tokens that subsequently enter the procedure do not interact with previous
tokens. The next token to enter this subtask starts with the initial value when it
clones its copy of this block.

If arguments are passed to a subtask, and if the local parameters attached to the
Subtask Start block match those specified in the OPAC arguments of the Subtask
Start block, OPAC will insert the values in the new copies of this block, specific to
each Token (see Configuring Arguments Blocks, and Creating OPAC Procedure
Arguments From a G2 Procedure).

Properties Dialog

The Properties dialog for the block is shown below:
125

Attributes

Attribute Data Type Default Value Possible Values

opac-local-
name

symbol local-name Any local
parameter name.

initial-value integer 0 Any integer.
126

Set Local Text From Source
Set Local Text From Source
Use the Set Local Text From Source block to set the item specified in the Local
Parameter attribute to the value specified in the Source attribute.

Properties Dialog

The Properties dialog for the block is shown below:

Attributes

Attribute Data Type Default Value Possible Values

opac-local-
parameter-
name

symbol local-text-var Any opac-local-
text-parameter

opac-source text “$stack“ stack, $stack. Other
($) references will
be resolved.
127

Local Text Parameter
Use the Local Text Parameter block to define local text parameters for a given
subtask. Attach these blocks directly to the Subtask Start block, the entry point for
the subtask.

The Initial Value attribute of these parameters determines the initial value for the
variable of a given token entering that procedure.

When the token enters the procedure containing one of these blocks, it clones the
block, and keeps its own local copy. Thus, normal G2 parameter initialization is
used. Each token, as a result of encountering various OPAC blocks, may change
the value of its local copy of local parameters.

Tokens that subsequently enter the procedure do not interact with previous
tokens. The next token to enter this subtask starts with the initial value when it
clones its copy of this block.

If arguments are passed to a subtask, and if the local parameters attached to the
Subtask Start block match those specified in the OPAC arguments of the Subtask
Start block, OPAC will insert the values in the new copies of this block, specific to
each token.

Properties Dialog

The Properties dialog for the block is shown below:
128

Local Text Parameter
Attributes

Attribute Data Type Default Value Possible Values

opac-local-
name

symbol local-name Any local
parameter name.

opac-input-text text “” Any text.
129

130

7

Subtask Arguments
Palette
Describes the blocks in the Subtask Arguments palette.

Introduction 131

Value Argument 132

Item Argument 134

Introduction
This chapter describes Subtask Arguments palette blocks. Use Subtask
Arguments when you want to pass arguments from one OPAC procedure to
another OPAC procedure. You can pass arguments either by passing a specified
value or by reference. These arguments are attached to the Macro and Subtask
blocks.

Here is the Subtask Arguments palette:
131

Value Argument
The Value Argument block passes the specified value as an argument to a
Subtask.

Use the Value Argument block and the Item Argument blocks to specify passing
arguments from one OPAC procedure to another. Argument blocks are chained,
with the first argument block attached to the Subtask block that calls the
argument. The second argument block is attached to the first argument block, and
so on.

These blocks are normally arranged off to the right of the Subtask block. The
order is important because as the arguments are placed in the stack, they are
removed from the stack when the matching arguments attribute is met from the
subtask.

Use the Value Argument block to specify the value of an argument that will be
passed. Use the Item Argument block to specify passing an argument by
reference. This is explained in a separate topic (see Passing Arguments to a
Subtask).

In the case of a Value Argument block, the value to be passed is specified in the
argument Value to Pass attribute of the block

Properties Dialog

The Properties dialog for the block is shown below:
132

Value Argument
Attributes

Attribute Data Type Default Value Possible Values

opac-arg-to-
pass

text ““

opac-local-integer-
parameter

opac-local-item

opac-local-float-
parameter
133

Item Argument
Use the Item Argument block to pass a value specified by the item name as an
argument to a Subtask block.

Use the Item Argument block and the Value Argument blocks to specify the
passing of arguments to a subtask. The first argument block is attached to the
Subtask block to call a subtask. The second argument block is attached to the first
argument block, and so on.

These blocks are normally arranged off to the right of the Subtask block. The
order is important because as the arguments are placed in the stack, they are
removed from the stack when the matching arguments attribute is met from the
subtask.

Use the Value Argument block to specify the value of an argument that will be
passed. Use the Item Argument block to specify passing an argument by
reference. This is explained in a separate topic (see Passing Arguments to a
Subtask).

In the case of an Item Argument block, the name of the item to be passed is
specified in the Argument to Pass attribute of the block

Properties Dialog

The Properties dialog for the block is shown below:
134

Item Argument
Attributes

Attribute Data Type Default Value Possible Values

opac-arg-to-
pass

text ““

opac-local-integer-
parameter

opac-local-item

opac-local-float-
parameter
135

136

8

Debugging Palette
Describes the blocks in the Debugging palette.

Introduction 137

Show Stack Top 138

Show Token Info 139

Introduction
The Debugging palette blocks provide blocks for debugging an Integrity
application.

Here is the Debugging palette:

Use these blocks to display Token information when testing and debugging
OPAC procedures. You can also use the Block Pause Capabilty block to view the
animated token.
137

Show Stack Top
The Show Stack Top block displays the top of the token stack. This block is useful
for debugging purposes.

This block is an instance of a General Procedure block. Use this procedure for
testing, because in normal operation a G2 window might not be displayed, in
which case the procedure picks a window.

During debugging, when you launch a procedure manually from a window, the
output is sent to the correct window.

Properties Dialog

The Properties dialog for the block is shown below:

Attributes

Attribute Data Type Default Value Possible Values

N/A
138

Show Token Info
Show Token Info
The Show Token Info block displays information about an OPAC token. The
information provided includes:

• A description of $block, $caller, $target, $window, $notify.

• The current value of local parameters attached to the Subtask Start block.

This block is used mainly for debugging.

During debugging, when you launch a procedure manually from a window, the
output is sent to the correct window.

When called from a G2 procedure, the information is sent to the SMH Browse
Server regardless of $notify argument specification.

The Show Token Info Procedure is a sample G2 procedure that can be called as
the OPAC G2 Action Procedure of a terminal OPAC block. This sample shows
how to access the caller and target for a token. The only argument is the OPAC
Token. This is the procedure called by the Show Token Info block:

As with all G2 Action Procedures called from a block, it has a single argument, the
Token, and returns an error symbol and error text. It is provided here as an
example, so you can see what relations and other functions are available.

Properties Dialog

The Properties dialog for the block is shown below:

Attributes

Attribute Data Type Default Value Possible Values

N/A
139

140

9

State Transition Palette
Describes the blocks in the State Transition palette.

Introduction 141

State Transition Diagrams 143

Delete State Token 148

Get State 149

Accept New Event 151

Accept New State 153

State Diagram Completion 154

Transition Event 155

Wait State 156

State Diagram Start 157

Introduction
Use the State Transition blocks for creating state transition diagrams. Two groups
of blocks are represented on this palette: those that are used to construct a state
diagram and those that are used to manipulate a state diagram from within an
OPAC procedure.
141

Here is State Transition palette:

The blocks used to construct a state diagram are:

• State Diagram Start

• Wait State

• Transition Event

• Timeout Transition Event

• State Diagram Completion

The blocks used to manipulate a state diagram are:

• Accept New State

• Accept New Event

• Get State

• Delete State Token

This chapter also provides a general description of creating state transition
diagrams.
142

State Transition Diagrams
State Transition Diagrams
The Wait State block along with the Transition Event and Timeout Transition
Event blocks can be used to build a State Transition model. Each state transition
diagram must exist on a separate workspace. A state diagram is constructed by
connecting Wait State blocks and Transition Event blocks and/or Timeout
Transition Event blocks. Transition blocks must only have one input and one
output connection.

A special Start block, State Diagram Start, is used to signify the entry point for a
state transition diagram. The first Wait State block connected downstream from
the Start block is designated as the initial (default) state of the state transition
model. The State Diagram Start block can accept an initial state for the model by
passing the state as a string through the arg-list parameter of the opac-start-task
API. A state diagram must be initiated by an OPAC procedure.

The current state of a state transition model is represented by an opac-token. The
opac-token is associated with a Wait State block when the model is not in a
transition. The opac-token moves from one opac-wait-state to an opac-transition-
event to another opac-wait-state when a new event for the model is accepted.
Action procedures may be specified both on the opac-wait-state and opac-
transition-event blocks. These action procedures will be executed when the opac-
token is associated with the block. The procedures may be either an OPAC
procedure or a G2 procedure. If the specified procedure names both an OPAC
procedure and a G2 procedure the OPAC procedure will be executed.

In order to manipulate a state diagram through OPAC, four OPAC blocks were
created: Accept New State block, Accept New Event block, Get State block, and
Delete State Token block. These blocks are discussed below.

Two APIs can also be utilized to change the state of a diagram: accept-event and
accept-new-state. Both APIs accept an opfo-domain-object and the event name.
The difference between the two APIs is the opac-accept-new-state will bypass the
Transition Event, thus bypassing the transitions action procedure.
143

Examples of two state diagrams can be viewed and executed by loading in the
OPACDEMO.KB module and selecting the ‘OPAC State Diagram Examples’
button.

The first example can be viewed by selecting the ‘Example State Diagram’ button
from the Examples workspace. This is a state diagram for the status of a computer
144

State Transition Diagrams
going through a boot process. There are type-in-boxes and buttons to manipulate
the state for the diagram.

The System Start example has four states, three transition events, and one timeout
transition event. To initiate the state diagram select the ‘Start Example’ action
button on the previous workspace. This will start the test-state-diagram OPAC
procedure. The opac-token can be seen waiting at the “booting” state. To move
the token to a different state, select either the ‘Set New State’ or ‘Set New Event’
buttons. Experimentation can be accomplished by setting the parameter used for
the new state (new-state) or for the new event (new-event) by editing the type-in-
boxes next to the parameters. Since this example does have a timeout transition
event with a timeout of 55 seconds, it will transition to the completion block if no
new state or new event is sent within the 55 seconds.
145

The second example demonstrates a Link Down state diagram.

This example can be viewed by selecting the ‘Link Down Example’ button from
the Examples workspace. This diagram contains three states, one transition event,
and two timeout transition events.

To start the Link Down example, select the ‘Start Link Down Example’ button
from the ‘Examples’ workspace. This will start the link-down-opac procedure. The
token can be seen waiting at the “link-down-trap” state. If a “link-up-trap” event
is not seen within 180 seconds, the token will transition through the “no-link-up”
timeout transition event to the “link-down-state”. The action procedure for the
“link-down-state” block will generate a message against houston-router. The
button, ‘Link Up Event’, uses the opac-accept-event API and can be used to send a
link-up event against the houston-router.
146

State Transition Diagrams
These two examples can also be manipulated through OPAC. Selecting the State
Transition Actions button on the Examples workspace shows some simple OPAC
procedures which accomplish this.

On this workspace there is an example for each block that can be used to
manipulate a state diagram. At the top of the workspace are three parameters that
are used as parameters for the OPAC procedures: opacsd-test-target, opacsd-test-
delay, and opacsd-test-diagram. The opacsd-test-target identifies the Target,
which can be any opfo-domain-object. The opacsd-test-delay is an integer value
used in the new event OPAC procedure. The opacsd-test-diagram names the
opac-state-diagram-start object that is used in the delete state token OPAC
procedure. By using the type-in-boxes and by changing the attribute values of
these blocks, you can manipulate the example state diagrams.
147

Delete State Token
The Delete State Token block deletes the token associated with the specified target
within the specified state diagram.

The Target attribute names the target for the new event.

The State Transition Diagram attribute specifies the name of the State Diagram
Start block of the state diagram containing the target.

Properties Dialog

The Properties dialog for the block is shown below:

Attributes

Attribute Data Type Default Value Possible Values

opac-target text “$TARGET” Any text
representing a
Target. Local
parameters,
preceded by a ‘$’
may also be used

opac-state-
transition-
diagram

text “unknown” The name of any
opac-state-diagram-
start block
148

Get State
Get State
The Get State block retrieves the current state for the specified target within the
specified state transition diagram and places the result at a specified destination.

The block uses three attributes:

• The Target attribute names the target from which to retrieve the state.

• The State Transition Diagram attribute contains the name of the state diagram
from which to retrieve the state. A target may have several state diagrams
active simultaneously.

• The State Result Destination represents the location at which to place the
retrieved state.

Properties Dialog

The Properties dialog for the block is shown below:
149

Attributes

Attribute Data Type Default Value Possible Values

opac-target text “$TARGET” Any text
representing a
Target. Local
parameters,
preceded by a ‘$’
may also be used

opac-state-
transition-
diagram

text “unknown” Name of any opac-
state-diagram-start
block

opac-state-
result-
destination

text “$STACK” Location to place
the results of the
query
150

Accept New Event
Accept New Event
The Accept New Event block is used to move the opac-token to a new state based
on the specified event. Three attributes are used:

• The Target names the target for the new event.

• The New Event contains the new event for the target.

• The Event Delay value represents the number of seconds by which to delay
the propagation of the new event.

Properties Dialog

The Properties dialog for the block is shown below:

Attributes

Attribute Data Type Default Value Possible Values

opac-target text “$TARGET” Any text
representing a
Target. Local
parameters,
preceded by a ‘$’
may also be used
151

opac-new-event text “unknown” Any user-defined
state

opac-event-
delay

text “0” Number of seconds
to delay the new
event

Attribute Data Type Default Value Possible Values
152

Accept New State
Accept New State
The Accept New State block moves the token to a new state, bypassing any
transition event blocks. The Target attribute names the target for the new state.
The New State attribute specifies the new state. Because this block bypasses any
transition event blocks, the transition event’s action procedure is not executed.

Properties Dialog

The Properties dialog for the block is shown below:

Attributes

Attribute Data Type Default Value Possible Values

opac-target text “$TARGET” Any text
representing a
Target. Local
parameters,
preceded by a ‘$’
may also be used

opac-new-state text “unknown” Any user-defined
state
153

State Diagram Completion
The State Diagram Completion block indicates the end of processing designated
by a State Transition diagram.
154

Transition Event
Transition Event
The Transition Event block waits for the specified transition event and then
executes the specified Event Action Procedure. Transition Event blocks are
connected to no more than one Wait State block. The method or procedure can be
either a G2 procedure or an OPAC procedure.

Properties Dialog

The Properties dialog for the block is shown below:

Attributes

Attribute Data Type Default Value Possible Values

opac-transition-
event-name

text “unknown” Any user-defined
transition event
name.

opac-event-
action-proc

text “default” Default, Opac
procedure name, or
any user-defined
procedure or
method.
155

Wait State
The Wait State block defines a system state and its associated procedure. Specify
the system state in the State attribute. Specify the associated procedure in the Wait
State Action Procedure attribute.

Properties Dialog

The Properties dialog for the block is shown below:

Attributes

Attribute Data Type Default Value Possible Values

opac-state text “unknown” Any user-defined
state.

opac-wait-state-
action-proc

text “default” Default, name of an
OPAC procedure,
or any user-defined
procedure or
method.
156

State Diagram Start
State Diagram Start
The State Diagram Start block indicates the start of processing designated by a
State Transition diagram. Specify arguments to the state diagram process by
specifying the Args attribute.
157

158

10
External
Interfaces Palette
Describes the blocks in the External Interfaces palette.

Introduction 160

Read Domain Map 161

Write Domain Map 164

SNMP Get Table Column 166

SNMP Set 168

SNMP Get 170

Send CDG Event 172
159

Introduction
This chapter describes the External Interfaces blocks. This palette contains blocks
used to interface with external systems. This includes SymCure, formerly known
as CDG, Operations Expert SNMP (OXS), and blocks used to read and write
domain maps.

Here is the External Interfaces palette:
160

Read Domain Map
Read Domain Map
The Read Domain Map block reads an ASCII text file and creates domain objects
and connections based on the information contained in the file. Refer to the
Integrity User’s Guide for file format. You must specify:

• Default class

• Destination workspace

• Translation workspace

• Column height

• Vertical and horizontal spacing

The default class must be a subclass of opfo-domain-object. The destination
workspace is the location where the resulting map is placed. The translation
workspace is a workspace that contains oid-to-name translation objects. These are
used to convert OID numbers to a text description for easy recognition. The
column height and the vertical and horizontal spacing are values for laying out
the objects for the map.

This block is an interface into the Import Map option on the File menu bar. Use
this to update or build a current domain map.
161

When you click OK, the following dialog appears:

Attributes

Attribute Data Type Default Value Possible Values

opac-default-
class

text “opfo-managed-
object”

Any valid opfo-
domain-object or
subclass of opfo-
domain-object.

opac-
destination-
workspace

text “NO-
DESTINATION”

Any workspace,
subworkspace, or
object. A
subworkspace will
be created for
objects which do
not have
subworkspaces.

opac-
translation-
workspace

text “NO-
TRANSLATIONS”

Any workspace
containing
translation objects.

opac-column-
height

integer 10 Any positive value.
162

Read Domain Map
Properties Dialog

The Properties dialog for the block is shown below:

Attributes

opac-vertical-
spacing

integer 100 Any positive value.

opac-horizontal-
spacing

integer 150 Any positive value.

opac-filename text “default=map.txt” Any valid filename
and path

Attribute Data Type Default Value Possible Values

Attribute Data Type Default Value Possible Values

opac-filename text “default-map.txt” Any valid filename
and path.
163

Write Domain Map
The Write Domain Map block creates an ASCII text file from the top-level object
specified in the Top Object attribute. Specify the file name that the domain map
will be written to in the Filename attribute. Refer to the Integrity User’s Guide for
the file format.

The user-specified top-level object is the object used as the starting point for
writing the map. The translations workspace can be the same translation
workspace as described in the Read Domain Map section.

This block is an interface to the Export Map menu choice of the File menu. Use
this block to write a file containing containment information about the domain
map.
164

Write Domain Map
Properties Dialog

The Properties dialog for the block is shown below:

Attributes

Attribute Data Type Default Value Possible Values

opac-filename text “default-map.txt” Any valid filename
or path.

opac-top-object text “Top Object” Any valid object.

opac-
translation-
workspace

text “NO-
TRANSLATIONS”

Any workspace
containing
translation objects.
165

SNMP Get Table Column
The SNMP Get Table Column block retrieves a table of values for a specified
Object ID from the target specified in the Agent Hostname attribute.

The procedure has execution time limit capability, specified by the Timeout
(seconds) attribute. If the result is not returned within this limit, the procedure
aborts.

Properties Dialog

The Properties dialog for the block is shown below:
166

SNMP Get Table Column
Attributes

Attribute Data Type Default Value Possible Values

opac-asn1-type integer 4 4 = octet string
2 = integer

opac-snmp-type symbol snmp Live (snmp) or
simulated
(simulated-snmp).

opac-agent-
hostname

text “$target” Any hostname. ($)
references will be
resolved.

opac-oid text “1.3.6.1.2.1.1.1.0” Any number
representing an
OID. ($) references
will be resolved.

opac-results-
destination

symbol $stack $stack or an opac-
local-item.

opac-
community

text “public” Any community
string. ($)
references will be
resolved.

opac-timeout number 30 Any number. ($)
references will be
resolved.
167

SNMP Set
The SNMP Set block performs an SNMP Set request to set a value of a single
variable.

The procedure has execution time limit capability, specified by the Timeout
(seconds) attribute. If the result is not returned within this limit, the procedure
aborts.

Properties Dialog

The Properties dialog for the block is shown below:
168

SNMP Set
Attributes

Attribute Data Type Default Value Possible Values

opac-asn1-type integer 4 4 = octet string
2 = integer

opac-snmp-type symbol snmp Live (snmp) or
simulated
(simulated-snmp).

opac-agent-
hostname

text “$target” Any hostname. ($)
references will be
resolved.

opac-oid text “1.3.6.1.2.1.1.1.0” Any number
representing an
OID. ($) references
will be resolved.

opac-new-value symbol $stack Same as Get.

opac-
community

text “public” Any community
string. ($)
references will be
resolved.

opac-timeout integer 30 Any number. ($)
references will be
resolved.
169

SNMP Get
The SNMP Get block performs an SNMP Get request, to get the value of a single
variable.

The procedure has execution time limit capability, specified by the Timeout
(seconds) attribute. If the result is not returned within this limit, the procedure
aborts.

Properties Dialog

The Properties dialog for the block is shown below:
170

SNMP Get
Attributes

Attribute Data Type Default Value Possible Values

opac-asn1-type integer 4 4 = octet string
2 = integer

opac-snmp-type symbol snmp Live (snmp) or
simulated
(simulated-snmp).

opac-agent-
hostname

text “$target” Any hostname,
such as a domain
object. ($)
references will be
resolved.

opac-oid text “1.3.6.1.2.1.1.1.0” Any number
representing an
OID. ($) references
will be resolved.

opac-results-
destination

symbol $stack Stack, $stack, an
opac-local-integer-
parameter, or an
opac-local-text-
parameter.

opac-
community

text “public” Any community
string. ($)
references will be
resolved.

opac-timeout integer 30 Any number. ($)
references will be
resolved.
171

Send CDG Event
The Send CDG Event block sends an event to SymCure for processing. Specify the
information necessary to identify the event to SymCure by the following
attributes:

• The Target attribute specifies the domain object against which the event
occurred.

• The Sender attribute specifies the sender of the event.

• The Category attribute specifies.

• The Event type attribute specifies whether it is a fault, test, or symptom, and
the type of fault, test or symptom.

• The Event Value attribute specifies the value associated with the event.

You can also extract this information from the token by using $target, the
category of $caller, if the block is called with appropriate target and caller.

An event to SymCure is uniquely identified by its:

Use the Send CDG Event block to send an event to SymCure. The block works
only when the SymCure module is loaded in Operations Expert.

• Target The domain object against which the event came in.

• Sender The object sending the event.

• Category A unique text identifying the event.

• Event type A fault, symptom, or test.

• Event value True, false, suspect, or unknown.
172

Send CDG Event
Properties Dialog

The Properties dialog for the block is shown below:
173

Attributes

Attribute Data Type Default Value Possible Values

opac-event-type text “symptom” Any one of:

• generic-fault

• generic-or-test

• generic-and-test

• generic-or-
symptom

• generic-and-
symptom

opac-event-val float 0.0 Any fuzzy truth-
value between 0.0
(False) and 1.0
(True)

opac-target text “$target” The domain object
against which the
event came in.

opac-sender text “$caller” The object sending
the event.

opac-category text “the cdg-event-
name of $caller”

Any ($) reference
will be resolved.
174

11
Generic
Blocks Palette
Describes the blocks in the Generic Blocks palette.

Introduction 175

Get Related Items 176

Historical Numerical Query 178

Iteration 180

Run Domain Object Method 182

Set Local Parameter From Source 184

Introduction
Use the Generic Blocks for general applications development along with G2
Action Procedures.

Here is the Generic Blocks palette:
175

Get Related Items
The Get Related Items block collects items that are related to a specified object by
a G2 or user-defined relation. The collected items are placed in a list on the token
stack. Specify the focus object in the Referenced Object attribute.

Specify the relationship of interest in the Relationship attribute. Valid relations
include connected-to, superior-to, subordinate-to, connected-upstream-to,
connected-downstream-to, or any user-defined relation.

A class filter can be used to limit the items collected to those objects within a
specified class. Specify the class by which to filter in the Domain Class Filter
attribute.

Properties Dialog

The Properties dialog for the block is shown below:
176

Get Related Items
Attributes

Attribute Data Type Default Value Possible Values

opac-
referenced-obj

text “$target” Any subclass of
opfo-managed-
object or opfo-
containment-object

opac-
relationship

text “connected-to” connected-to,
superior-to,
subordinate-to,
connected-
upstream-to,
connected-
downstream-to, or
any user defined
relation

opac-domain-
class-filter

text “item” Any valid class to
search on.
177

Historical Numerical Query
The Historical Numerical Query block detects and generates events based on
numerical variables. Typically, these numerical values are from performance
monitoring (statistical quality control). The block allows access to and calculation
of statistics based on historical numerical data stored in or delegated by domain
objects.

• Specify the target object in the Target attribute.

• Specify an attribute of the target object in the Attribute Name attribute.

• Specify the statistical function to perform, such as average, minimum,
maximum, rate-of-change, integral, or derivative, in the Statistical Function
attribute.

• Specify the time period (in minutes) over which to perform the calculation in
the Query Time Interval (Minutes) attribute.

A numerical result is returned to the token stack. This might then be compared to
a threshold, for instance.

You must supply methods for the domain objects, which may directly contain the
numerical attributes, or use any calculation method, or delegate the query to
some external source of information, such as a database.
178

Historical Numerical Query
Properties Dialog

The Properties dialog for the block is shown below:

Attributes

Attribute Data Type Default Value Possible Values

opac-query-
target

text “$TARGET” Any subclass of
opfo-domain-object
or opfo-
containment-object

opac-query-
attribute-name

text “unknown” Any valid attribute
of the message
object.

opac-query-
statistic

text “average” average
maximum
minimum
interpolated
rate-of-change
standard-deviation
value-of

opac-query-
time-interval-
minutes

integer “1.5” Any valid interval
time in minutes.
179

Iteration
The Iteration block operates similarly to a for loop and allows you to specify
configuration of three possible iterations:

• over all members of a class

• over a list of objects

• over a range of numbers

To iterate over all members of a class, specify the word, “class” in the Iteration
Type attribute, specify the class in the Iteration Class attribute, and specify the
method to use for iteration in the Method attribute.

To iterate over a list of objects, specify the word, “list” in the Iteration Type
attribute, specify the variable (local to the OPAC procedure or a permanent list
object) in the List Source attribute, and specify the procedure, method, or OPAC
procedure to use for iteration in the Method attribute.

To iterate over a range of numbers, specify the starting integer value in the Start
Number attribute, specify the ending integer value in the End Number attribute,
and specify and the procedure, method, or OPAC procedure to use for iteration in
the Method attribute.
180

Iteration
Properties Dialog

The Properties dialog for the block is shown below:

Attributes

Attribute Data Type Default Value Possible Values

opac-iteration-
type

text “class” “class”, “list”, or
“range”

opac-iteration-
class

text “opfom-
managed-
object”

Any subclass of
opfo-managed-
object or opfo-
containment-object.

opac-iteration-
list-source

text “unkown” Any list reference.

opac-iteration-
start-number

text “0” Any valid integer
representing a
starting count

opac-iteration-
end-number

text “1” Any valid integer
representing an
ending count

opac-iteration-
method

text “no-method” Any user-defined
method which
operates on the
opac-iteration-class
181

Run Domain Object Method
The Run Domain Object Method block allows you to specify running a specified
method against a specified object. You can configure the block to place a specified
type of return value on the stack of the token. You can also specify a class filter.

Specify the object in the Referenced Object attribute.

Specify the method to run against the object in the Domain Method attribute.

You can filter the objects to those of a specified class. To limit the referenced
objects to a specific class, specify the class in the Domain Class Filter attribute.

Specify the return type in the Domain Method Return type attribute. Valid return
types include none, object, truth-value, or list.
182

Run Domain Object Method
Properties Dialog

The Properties dialog for the block is shown below:

Attributes

Attribute Data Type Default Value Possible Values

opac-
referenced-obj

text “$target” Any subclass of
opfo-managed-
object or opfo-
containment-object

opac-domain-
method-name

text “unknown” Any valid method
for the class
specified by opac-
referenced-obj

opac-domain-
class-filter

text “item” Any class to search
on.

opac-domain-
method-return-
type

text “none” none
object
truth-value
item-list
183

Set Local Parameter From Source
The Set Local Parameter From Source block allows you to use a user-defined G2
procedure to assign a value to a local parameter.

Use this block only with an existing user-defined G2 procedure. Specify the
procedure name in the User Defined Procedure attribute of the Configure dialog
box or the OPAC G2 Action Procedure attribute of the Properties dialog for this
block. Specify the local parameter that will be set by the procedure in the OPAC
Local Parameter Name attribute.

Properties Dialog

The Properties dialog for the block is shown below:

Attributes

Attribute Data Type Default Value Possible Values

opac-local-
parameter

symbol local-name Any local
parameter name.
184

12
Message Palette
Describes the blocks in the Message palette.

Introduction 185

Send Message 187

Current Message Query 190

Clear Message History 193

Message Exists 195

Set Message Attribute 197

Delete Message 200

Acknowledge Message 202

Introduction
Use the Message blocks for general message manipulation including
acknowledging a message, deleting a message, setting a message attribute, testing
for the existence of a message, clearing the message history, querying the current
message, and sending a message.
185

Here is the Message palette:
186

Send Message
Send Message
The Send Message block creates and sends a message to the specified message
server. The block sends messages only to servers in the same G2 process.

The attributes of the block match the calling arguments for the SMH Create
Message block, the procedure API for creating and sending any message.

For information “Message Handling” refer to the Integrity User’s Guide.
187

Properties Dialog

The Properties dialog for the block is shown below:

Attributes

Attribute Data Type Default Value Possible Values

opac-message-
text

text ““ Any text of
message. If the
value contains ($)
references, they will
be resolved.

opac-additional-
text

text ““ Any text. If the
value contains ($)
references, they will
be resolved.

opac-server text “smh-browse-
server”

Any valid message
server

opac-sender text “$caller” Any object

opac-target text “$target” Any object
188

Send Message
opac-message-
category

text “opac” any user-defined
category. If the
value contains ($)
references, they will
be resolved.

opac-lifetime number -1 Lifetime of message
in seconds. Any
number < 0 means
infinite lifetime.

opac-priority number 3 Any priority (1 -
10). Local integer
parameters can also
be used as they will
be resolved.

opac-show-
display

symbol true True or false.

opac-window text “$wind” A g2-window or
object.

opac-display-
options

text “-r” “-nolist” and/or
“-nack” and/or
“-i” or “-a” or “-r”

Attribute Data Type Default Value Possible Values
189

Current Message Query
The Current Message Query block returns a either a list of current messages or the
count of current messages that match the specified criteria. This block differs from
the Historical Message Query, because it places the results on the token stack. The
object placed on the stack can be either the list of messages that match the query
or the count of messages.

To return a list of messages that meet the criteria, specify “list” in the Return Type
attribute, or, to return a count of messages that meet the criteria, specify “count”
in the Return Type attribute.

To narrow the search, you can specify the following:

• The message target in the Target attribute

• The message sender in the Sender attribute

• The message category in the Category attribute

• A particular server in the Server attribute. Or you can specify “all servers in
this process” in the Server attribute.

To search on an attribute, specify the name and value of the attribute in the
Attribute and Value attributes, respectively.
190

Current Message Query
Properties Dialog

The Properties dialog for the block is shown below:

Attributes

Attribute Data Type Default Value Possible Values

opac-target text “$target” Any subclass of
opfo-managed-
object or opfo-
containment-object.

opac-sender text “$caller” Any object.

opac-message-
category

text “opac” Any user-defined
category. If the
value contains ($)
references, they will
be resolved.

opac-message-
server

text “all servers in
this process”

Any valid message
server. The default
implies all message
servers.

opac-message-
category-
starting-position

integer 1 Any number valid
in the range of 1 to
the length of the
category of
message.
191

opac-return-
type

text “count” “count” or “list”

opac-message-
attribute

text “undefined” Any valid attribute
of a message.

opac-message-
attribute-value

text “0.0” Any valid value for
the message
attribute.

opac-match-by-
message-
attribute

symbol false TRUE or FALSE

Attribute Data Type Default Value Possible Values
192

Clear Message History
Clear Message History
The Clear Message History block clears the smh-histories for specified messages.

To identify the messages, specify the following:

• The message target in the Target attribute

• The message sender in the Sender attribute

• The message category in the Category attribute

• The starting position in the message for the category in the Category Starting
Position

Messages are referenced by Target, Sender, and Category. The Target and Sender
may be either a single Target and Sender or a list of Targets and Senders. Wild
cards may be used in specifying the Category.
193

Properties Dialog

The Properties dialog for the block is shown below:

Attributes

Attribute Data Type Default Value Possible Values

opac-target text “$target” Any subclass of
opfo-domain-object
or opfo-
containment-object.

opac-sender text “$caller” Any object

opac-message-
category

text “opac” Any user-defined
category. If the
value contains ($)
references, they will
be resolved.

opac-message-
category-
starting-position

integer 1 Any number valid
in the range of 1 to
the length of the
category of
message.
194

Message Exists
Message Exists
The Message Exists block determines whether a message, identified by the
specified target, sender, and category, exists on a server. The block returns a
truth-value to the token stack. A true value signifies that a message identified by
Target, Sender, and Category exists. A false value signifies a message does not
exist. This block searches all messages servers or a supplied message server. This
block does not base its results on any histories of messages.

Properties Dialog

The Properties dialog for the block is shown below:
195

Attributes

Attribute Data Type Default Value Possible Values

opac-target text “$TARGET” Any subclass of
opfo-managed-
object or opfo-
containment-object.

opac-sender text “$CALLER” Any object.

opac-category text “opac” Any user-defined
category. If the
value contains ($)
references, they will
be resolved.

opac-message-
source

text “$STACK” Any valid reference
to a message object.

opac-use-
message-
source

symbol FALSE TRUE or FALSE
196

Set Message Attribute
Set Message Attribute
The Set Message Attribute block sets the supplied value to the specified message
attribute. You can specify the message either by the combination of Target,
Sender, and Category, or based on a message object, referenced by a local
variable. Local variables are displayed in the list box to the right of the dialog. The
variables displayed in the list box are local only to the OPAC procedure to which
this block is connected. To obtain the message by the variable in the Source
attribute, select the Use Message Source button. Optionally, you can specify a
method by which to set the particular attribute. To invoke a user-defined method
on the message object, select Use User Method, and specify the method in the
User Method attribute.

The user method must include two formal arguments:

• The first argument is the message object.

• The second argument is the value which is set in the dialog.

The method must not return a value.
197

Properties Dialog

The Properties dialog for the block is shown below:

Attributes

Attribute Data Type Default Value Possible Values

opac-target text “$TARGET” Any subclass of
opfo-managed-
object or opfo-
containment-object.

opac-sender text “$CALLER” Any object.

opac-category text “opac” Any user-defined
category. If the
value contains ($)
references, they will
be resolved.

opac-message-
source

text “$STACK” Any valid reference
to a message object.

opac-use-
message-
source

symbol FALSE TRUE or FALSE.

opac-message-
attribute

text “undefined” Any valid attribute
of a message.
198

Set Message Attribute
opac-message-
attribute-value

text “0.0” Any valid value for
the attribute.

opac-user-
method

text “undefined” Any valid user-
defined method.

opac-use-user-
method

symbol FALSE TRUE or FALSE.

Attribute Data Type Default Value Possible Values
199

Delete Message
The Delete Message block deletes messages specified by target, sender, and
category, or by a local item variable, from the message server. The action of the
block includes deletion of unacknowledged messages that meet the criteria. Using
the Delete Message block, you can delete messages in one of two ways:

• Based on the supplied Target, Sender, and Category.

• Based on a local item variable.

When referencing the message by Target, Sender, and Category, you can use wild
cards for the Category.

The local item variable can be either a single message object, or a list containing
message objects. The local item variable is connected to the OPAC procedure Start
Block. You can also specify taking the reference from the token stack by
referencing $stack as the Source.

Note A message does not have to be acknowledged to be deleted by the Delete Message
block. The block deletes messages that meet the specified criteria that are
unacknowledged.
200

Delete Message
Properties Dialog

The Properties dialog for the block is shown below:

Attributes

Attribute Data Type Default Value Possible Values

opac-target text “$TARGET” Any subclass of
opfo-managed-
object or opfo-
containment-object.

opac-sender text “$CALLER” Any object.

opac-category text “opac” Any user-defined
category. If the
value contains ($)
references, the will
be resolved.

opac-mesage-
source

text “$STACK” Any valid reference
to a message object.

opac-force-
delete

symbol TRUE TRUE or FALSE.

opac-use-
mesage-source

symbol FALSE TRUE or FALSE.
201

Acknowledge Message
The Acknowledge Message block acknowledges messages based either on
specified target, sender, and category; or on a local item variable.

When referencing the message by Target, Sender, and Category, wild cards may
be used for the Category.

The local variable can be either a single message object, or a list containing
message objects. The local variable can be either a local-item variable connected to
the Start Block, or it may be on the token stack.

Properties Dialog

The Properties dialog for the block is shown below:
202

Acknowledge Message
Attributes

Attribute Data Type Default Value Possible Values

opac-target text “$TARGET” Any subclass of
opfo-managed-
object or opfo-
containment-object.

opac-sender text “$CALLER” Any object.

opac-category text “opac” Any user-defined
category. If the
values contains ($)
references, they will
be resolved.
203

204

Part II
Utilities
Chapter 13: OpEx Dispatch Engine Reference (ODIE)

Provides an overview of the OpEx Dispatch Engine (ODiE) and describes is API.

Chapter 14: Message Parsing Engine (MPE)

Provides reference information on the Message Parsing Engine (MPE).
205

206

13
OpEx Dispatch Engine
Reference (ODIE)
Provides an overview of the OpEx Dispatch Engine (ODiE) and describes is API.

Introduction 208

Events 209

Publish Subscribe Mechanism 209

Managers 210

Subscribers 210

Old Event Processing 210

Filters 211

Responses 214

OPAC Blocks for ODiE Events 218

Subscriber Toolbox 221

Classes 223
odie-event 224
odie-event-proxy 226
odie-g2-manager 228

Application Programmer's Interface 230
odie-g2-manager::odie-datastore-add-event-passport-stamp 232
odie-g2-manager::odie-datastore-create-event 233
odie-g2-manager::odie-datastore-delete-event 235
odie-g2-manager::odie-datastore-delete-events 236
odie-g2-manager::odie-datastore-duration-count-query 238
odie-g2-manager::odie-datastore-duration-proxy-query 240
odie-g2-manager::odie-datastore-get-event-attribute-value 242
odie-g2-manager::odie-datastore-get-passport-stamps 243
odie-g2-manager::odie-datastore-set-event-attribute-value 244
odie-g2-manager::odie-datastore-start-time-count-query 245
odie-g2-manager::odie-datastore-start-time-proxy-query 247
207

odie-manager::odie-manager-add-event-passport-stamp 249
odie-manager::odie-manager-create-event-class 250
odie-manager::odie-manager-delete-event 251
odie-manager::odie-manager-delete-events 252
odie-manager::odie-manager-duration-count-query 254
odie-manager::odie-manager-duration-proxy-query 256
odie-manager::odie-manager-get-event-attribute-value 258
odie-manager::odie-manager-get-passport-stamps 259
odie-manager::odie-manager-passport-meets-include-exclude-criteria 260
odie-manager::odie-manager-post-inform-statement 261
odie-manager::odie-manager-publish-existing-event 262
odie-manager::odie-manager-publish-new-event 263
odie-manager::odie-manager-publish-new-event 264
odie-manager::odie-manager-set-event-attribute 266
odie-manager::odie-manager-start-time-count-query 267
odie-manager::odie-manager-start-time-proxy-query 269
odie-manager::odie-manager-subscribe-event-class 271
odie-manager::odie-manager-substitute-attribute-values 272
odie-manager::odie-manager-unsubscribe 273
odie-manager::odie-manager-unsubscribe-event-class 274

Introduction
OpEx Dispatch Engine (ODiE) is a tool for handling events and responses to
events.

Events may be generated internally or received from an external system. ODiE
can dispatch events to local or remote subscribers. The history of all events, and
the responses to these events, provides an audit trail of how the system attained
its state.

An event is any occurrence within the system. The occurrence is typically related
to some domain object in the system: this object is the target of the event. The
object which creates the event is the sender.

This chapter provides a description of how to use ODiE, as well as a reference,
including ODiE:

• Classes

• Application Programmer's Interface

• User Menu Choices
208

Events
• Relations

• Functions

• Miscellaneous Items

Events
In ODiE, an event is an object of the odie-event class. Users can create subclasses
of odie-event which can be used by subscribers to receive only events that interest
them.

To access the attributes of an event, use odie-manager-get-event-attibute-value; to
modify the attributes of an event use odie-manager-set-event attribute-value. This
method will change the value of an existing attribute or, if the attribute does not
exist, add a new attribute-value pair to the additional-data of the event.

An event can have a passport added by a response using odie-manager-add-
event-passport-stamp. A passport stamp provides an indication that some action
has already taken place on the event. See Responses.

Publish Subscribe Mechanism
ODiE distribues events through a publish/subscribe mechanism. An ODiE
manager receives event publication requests and notifies every subscriber of that
event class. A subscription may be as general or specific as desired: a subscriber
will receive notification of all event classes it specifically subscribes to as well as
all subclasses of the specified events.

Any object can publish an event by calling odie-manager-publish-new-event (see
API for descriptions of the two methods). The API creates an event proxy which is
sent to the subscribers; it is also returned to the publisher (the sender of the
event). Your application is responsible for consuming the proxy. There is a G2
relation between the proxy(s) and the event (see Event Relations)

Subscribers are notified in an order determined by:

• The module that contains the subscriber (subscribers in lower level modules
are notified prior to subscribers in higher level modules based on the G2
established module hierarchy)

• Position in class hierarchy (specific subscribers are notified prior to generic
subscribers, i.e., subscribers to event subclasses are notified before subscribers
to parent classes)
209

Managers
Every application must instantiate an odie-g2-manager. The manager receives
event publication requests and notifies subscribers. The manager also maintains
the history of events and provides facilities to query event history.

The manager provides APIs to:

• Create and publish new events

• Query event history

• Modify event attributes

The manager handles deletion of old events via a rule that fires every minute.
Events are deleted if they have existed for more than odie-manager-maximum-
event-age.

Subscribers
An ODiE subscriber specifies interest in one or more classes of events. Each
subscriber should have one or more threads of filters and responses attached to it.
The responses instruct ODiE to perform some task when an event is received. A
filter evaluates the event for specified criteria and passes the event to a response
(or another filter) if the criteria are met.

The filters and responses are processed in order:

1 Synchronous responses

2 Filters

3 Asynchronous responses

Subscribers must register with a manager, using odie-subscriber-initialize, in
order to be notified of events. Subscribers can be "turned off" by calling odie-
subscriber-unsubscribe.

Old Event Processing
The manager can be configured to automatically delete old events by placing a
value in odie-manager-maximum-event-age. There is a rule that fires every
minute that checks the minimum-event-age and deletes all messages that have
existed for longer than that value. If odie-manager-maximum-event-age has no
value (the value = ””), the rule does not fire.
210

Filters
Filters
A response filter is the mechanism to provide different responses based on event
criteria. Response Filters are a class of objects that connect directly to a subscriber,
other filters, or responses. Here are some examples of how to use the filters.

Target Class Filter

A target class filter performs the responses attached to it if the target is of the
specified class. For example, you could post a lower message if a notebook were a
reachability root cause than if a desktop were a root cause. Use odie-event-class-
filter.

Target Attribute Filter

A target attribute filter performs the responses attached to it if the specified
attribute equals the specified value. For example, you could differentiate
responses by using opfo-external-name. You could post a higher message if the
mail server were unreachable than I would if the DC Color printer was
unreachable.

Delay Filter

A delay filter waits for the provided amount of time before informing the
attached responses. A delay filter may be the basis for alarm escalation. For
example, an event is received and a message is posted to the operator. The delay
filter then waits for 1 hour. A connected response may check to see that the
original message is still there and escalate the event.

Time Filter

A time filter performs the connected responses only if the current time is within
the specified limits. For example, send a page to the administrator only if it's after
hours.

Query Filter

 A query filter performs the responses attached to it if there are a certain number
events or messages that have already occurred. For example, query for identical
messages prior to publishing a message. If a message already exists, re-published
the message with a new time stamp. Another example queries for several
identical events (link down) within 10 minutes, and publishes an escalated
warning message if this occurs, to indicate a connector problem.

There are eight pre-defined ODiE filters. Some of the filters are logically
reversible, which means that every event outside the filter criteria will pass.
211

Attribute Filter

This filter determines if the event should propagate to the connected odie blocks
based on the attribute of the event. If the value specified in the filter is a text, the
returned value is converted to text and a regular expression comparison is made.
For a description of G2 regular expressions, see "Regular Expression Syntax" in
the G2 Reference Manual. Use of the standard wildcard characters "*" is an invalid
regular expression. An example of a regular expression is: 'abc' to match the
sequence of characters abc in the text. The '.' indicates any single character. '(a-z)'
indicates any character between 'a' and 'z', with the brackets indicating use the '-'
as a meta-character.

 If the value specified in the filter is not a text, then the returned value is directly
compared to the specified value. If the value is a quantity, an exact match will
pass the filter. This filter is reversible by setting the reverse logic attribute to true.

Hour of the Day Filter

Use this filter to pass events created during a certain time interval. The odie-hour-
of-the-day-filter passes the event if the current hour is between the start hour and
end hour. Use 0-24 to specify hours. Use the reverse-logic attribute set to true to
pass events outside the time interval.

Day of the Week Filter

An odie-day-of-the-week-filter checks the current day of the week versus a list of
acceptable days. This filter logic is reversible by using a value of true in the
reverse logic attribute. The days-of-the-week attribute accepts a sequence
containing the weekday names.

Message Historical Query Filter

This query should not be used, but use smh-message-query filter. It is
documented here for completeness. To review events no longer existing, use the
event query.

This filter passes the event if there are X number of messages in history meeting
the filter criteria. The Target, Sender and Category attributes can refer to
attributes of the current event using the "$" notation. The text "any-sender" can be
used to match all targets without regard to sender. The message category text can
contain the wildcards * to match any number of characters and ? which matches
exactly one character. The attribute category-start-position is used with the
attribute message-category text string. The category attribute accepts a string to
match and the category-start-position defines the first character where the match
attempt will start. The operation type attribute accepts greater-than and less-than
as arguments. The time-interval takes a string with abbreviated units i.e. 1h = 1
hour, 1s = 1 second. The interval starts with the current time and searches history
212

Filters
for the length of the time interval. See the section on time intervals for more
information. The passport stamp takes a text string containing comma separated
passport values.

Message Query Filter

This filter passes the event if there are count-threshold number of messages
displayed which meet the filter criteria. The Target, Sender and Category
attributes can refer to attributes of the current event using the "$" notation. The
text "any-sender" can be used to match all targets without regard to sender. The
message category text can contain the wildcards * to match any number of
characters and ? which matches exactly one character. The attribute category-
start-position is used with the attribute message-category text string. The category
attribute accepts a string to match and the category-start-position defines the first
character where the match attempt will start. The operation type attribute accepts
greater-than and less-than as arguments.

Event Count by Start Time

This filter queries event history for the count of matching events. If the count is
greater than or equal to the count-threshold, then the filter passes. The Target,
Sender and Class attributes can refer to attributes of the current event using the
"$" notation. The time interval takes a string with abbreviated units i.e. 1h = 1
hour, 1s = 1 second. See the section on time intervals for more information. The
interval starts with the current time and searches history for the length of the time
interval. The passport stamps to include or exclude must contain comma
separated text values. A comparison type of inside will pass all events matching
the filter criteria, a comparison type of outside will pass all events not matching
the filter criteria.

Passport Filter

Use this filter to pass events that have obtained a certain passport. The odie-
passport-filter conditions are met if the event includes all of the stamps listed in
the include attribute and none of the stamps in the exclude attribute. The include
passport attributes takes a comma separated list of stamps that must be in the
event's passport. Entries between commas will be interpreted as a text stamp.
Specifying 'ODiE Wildcard' means the event must have at least one passport
stamp.

Specifying 'ODiE Wildcard' in the exclude passport stamps means the event can
have no passport stamps.
213

Event Class Filter

Use this filter to pass events of a certain class. Use a text string of comma
separated event classes. The strings are converted to symbols to match classes. An
event that is named or a subclass of a named event is NOT passed.

Making Your Own Filter Block

All filters are a subclass of odie-filter, inherit from this or one of the subclasses. If
you want the filter to have the capability to pass all events within the expression
or all events outside the expression, or to be logically reversible, then your filter
should also inherit from the class odie-logically-reversible-filter.

Implement the method odie-filter-process-connected-blocks@? with this
signature:

odie-filter-process-connected-blocks@? (Filter: class odie-filter {an odie-FILTER},
Proxy: class odie-event-proxy {A proxy for an odie-EVENT}, Manager: class
ODiE-Manager {an ODiE-Manager}, Client: class ui-client-item {the user client
initiating this process}) = (truth-value {true if the evaluation was successful. false
otherwise}, text {a description of the error if the operation failed}, truth-value
{true if blocks connected at the filters output should be invoked})

As an example, to make an odie-event-class filter that passes the named events,
rather than filtering them, make a new class of filter that inherits from odie-event-
class-filter and odie-logically-reversible-filter. Create a method that calls the
superior method. The return value of the superior method should be toggled if
the attribute odie-filter-reverse-logic is true.

Responses
The response objects are the class of objects that take action. Responses connect
directly to subscribers, filters, or other responses. The Delete response is
synchronous (it occurs immediately). The other responses are asynchronous and
occur in parallel.

Responses can reference attributes of the events that they process using "$" nota-
tion.

Delete Event

A block to delete or clear the current event. Deletes the proxy event given the
unique ID of the event. This response procedure is passed a proxy, and deletes the
corresponding event. If $unique-id is used, then the event being processed is
deleted.

Responses
Delete Events by Start Time

Deletes all events that match any of the optionally specified event-class, target,
sender, passports included, passports excluded, time interval from current time.

Class, target and sender can all reference the current event indirectly. The time
interval takes a string with abbreviated units: 1h = 1 hour, 1s = 1 second, 1m = 1
minute and 1s = 1 second. The passport stamp takes a text string containing
comma separated passport values. The response-time-comparison attribute has a
symbolic value of inside or outside to delete events matching the criteria, or
events outside the specified criteria.

This details of this response are to create a list of all proxies matching the criteria
defined in the attributes, and then to delete those proxies and their associated
events. Each time the passport stamp attributes are edited, the list is parsed into a
sequence for internal processing.

G2 Procedure Response

This block invokes the specified G2 procedure. The response creates a proxy and
passes it to the procedure, so the user is responsible for deleting this proxy at the
conclusion of processing. The attribute odie-response-additional-data is reserved
for future use.

The signature of the procedure is:

my-procedure-name
(response: class odie-g2-procedure-response, proxy: class odie-event-proxy,
manager: class odie-manager, client: class ui-client-item)
-> result: truth-value, error-text: text

where:

• response is an odie-g2-procedure-response.

• proxy is a proxy for an odie-event.

• manager is anan odie-manager.

• client is the user client initiating this process.

Create Message

This block creates a smh-message. The target, sender, category, message-text and
additional-text can reference the current events attributes with the "$" notation
described in Indirect Reference to Events. Using these references your application
can provide a default message containing the event text and class. The message
priority must be an integer or text that can be converted to an integer. Message
lifetime is the number of seconds before the message is deleted. For no auto-
deletion specify "-1". A limited summary of options values is use "-r" to replace
215

'duplicate' messages, "-a" to append message-text, and "-i" to count the number of
messages received. The attribute odie-response-additional-data is reserved for
future use.

Clears for or Delete Messages

This block deletes smh-messages. The user should configure which category or
categories of message to delete. It should only delete messages of the specified
category about the target.

Delete Message

This block deletes messages in the specified category. All smh-messages in the
specified server about the target, from the sender and matching the category
given. The target, sender and category can reference attributes of the current
event using indirect references. The attribute odie-response-additional-data is
reserved for future use. The sender and category attributes can be regular
expressions. For a description of G2 regular expressions, see "Regular Expression
Syntax" in the G2 Reference Manual. Use of the standard wildcard characters "*" is
an invalid regular expression. An example of a regular expression is: 'abc' to
match the sequence of characters abc in the text. The '.' indicates any single
character. '(a-z)' indicates any character between 'a' and 'z', with the brackets
indicating use the '-' as a meta-character.

Acknowledge Message

Acknowledges all messages of the given category against the provided target
from the provided sender. The target, sender, category and acknowledger are
indirect references. The sender and category can be regular expressions. The
attribute odie-response-additional-data is reserved for future use. The sender and
category attributes can be regular expressions. For a description of G2 regular
expressions, see the G2 Reference Manual.

Beep

Causes the client to beep the number of times that is entered in the number-of-
beeps attribute - as a text string. The number of beeps can be an indirect reference
to an attribute of the current event.

The attribute odie-response-additional-data is reserved for future use.

Log_Event

Writes the event to a log file. The log file attribute should contain the full path and
the name of the file and can be an indirect reference to an attribute of the current
event. The attribute odie-response-additional-data is reserved for future use.
216

Responses
Starting an OPAC Procedure

This block starts the specified OPAC Procedure. If the Subtask Start block
requires arguments, the requested arguments are searched for in this order:

1 If there is a local parameter defined with the name odie-manager-name, then
the manager of the current event is used to fill the local parameter.

2 If there is a local parameter defined with the name odie-event-class, then the
event class of the current event is used to fill the local parameter.

3 Any event attributes referenced using $ notation are substituted.

4 Any event attributes in the Additional Data attribute referenced using $
notation are substituted.

5 The OPAC start blocks default values are substituted.

Use the following API to start the OPAC procedure:

opac-start-task
(block: class opac-syntax-element, caller: class item,
target: class object, win: class item, notify: class object,
arg-list: class item)
-> token: class opac-token

where:

• block — The OPAC Start block.

• caller — The sender-id of the event.

• target — The target-id of the event.

• win — The client UI.

• notify — The ODIE block processing the response (opac-odie-opac-procedure-
response).

• arg-list — The argument list of the OPAC start block defined in the opac-args
attribute.

You can use the following indirect references in the attribute of the any ODIE
block:

• $target — The target domain object of the event invoking the procedure.

• $caller — The sender domain object of the event invoking the procedure.

• $window — The window object.

• $notify — The OPAC-ODIE start OPAC procedure block.

• $block — The block currently being processed.

• $task — The task or subroutine currently being run.
217

• $stack — The stack of the OPAC token.

Using Indirect References

The following indirect references in the attribute of a response refer to the
attribute of the current event:

• $event-class — The class of the event.

• $unique-id — The unique-id of the event.

• $target — The target that the event was generated against.

• $sender — The sender, the generator of the event.

• $message-text — The message text of the event.

• $additional-data — The additional data of the event.

• $start-time — The time the event happened.

The attributes defined in an event's additional-data attribute structure can also
bereferenced using the "$" notation. For example, an ODIE blocks message-
textattribute can reference the default severity of the event using $default-
severity.

OPAC Blocks for ODiE Events
OPAC blocks for ODiE events allow are graphical representations of ODiE events.
You configure and use these blocks similarly to other OPAC blocks.

Publish New Event

Publishes a new event with the provided information.

Odie Manager Name, Target, Sender, Event-Class, Message Text, and Additional
Text can use indirect references to the variables of the OPAC procedure. The
attribute values in the structure of Event additional Data can use indirect
references. The Event Passport Stamps is a text string of comma separated textual
passport stamps.

Publish Event

Re-publish an event given the unique ID of the event.

The indirect references shown are the defaults for this block and assume that the
OPAC procedure has been configured with the local parameters "odie-manager-
name" and "_odie-event-unique-id" and the opac-args attribute of the start block
includes these paramaters. Indirect references are discussed in References to
218

OPAC Blocks for ODiE Events
OPAC in ODIE blocks using $ on page 27 at the end of this section and in Start an
OPAC procedure on page 21

Delete Event

Deletes the event given the unique ID of the event.

The indirect references shown are the defaults for this block and assume that the
OPAC procedure has been configured with the local parameters "odie-manager-
name" and "_odie-event-unique-id" and the opac-args attribute of the start block
includes these parameters. Indirect references are discussed in References to
OPAC in ODIE blocks using $ on page 27 at the end of this section and in Start an
OPAC procedure on page 21.

Delete Events

Deletes events matching the provided criteria.

The indirect references shown are the defaults for this block. This assumes the
OPAC procedure has been configured with the local parameter "odie-manager-
name". All attributes except the include & exclude passport-stamps can indirectly
reference OPAC token and local parameters as discussed in References to OPAC
in ODIE blocks using $ and in Start an OPAC procedure. The comparison-type is
either inside, describing all matching events inside the time interval, or outside
describing all matching events outside the time interval.

Get Event Attribute

Retreives the value of an attribute of the event with the provided unique id and
places a parameter containing the value on the OPAC token's stack.

The indirect references shown are the defaults for this block. This assumes the
OPAC procedure has been configured with the local parameters "odie-manager-
name" and "_odie-event-unique-id" and the opac-args attribute of the start block
includes these parameters. Event attribute-name can also indirectly reference
OPAC procedure parameters and token attributes. The value of the attribute
retrieved is placed in a parameter and put on the top of the OPAC stack.

Values for the references are discussed in References to OPAC in ODIE blocks
using $ on page 27 at the end of this section and in Start an OPAC procedure on
page 21.

Set Event Attribute

Sets the value of an attribute of the event with the provided unique id.

The indirect references shown are the defaults for this block. This assumes the
OPAC procedure has been configured with the local parameters "odie-manager-
219

name" and "_odie-event-unique-id" and the opac-args attribute of the start block
includes these parameters. The event-attribute-name can also indirectly reference
OPAC procedure parameters and token attributes. The attribute-name is given
the attribute-value in the matching event.

Values for the references are discussed in References to OPAC in ODIE blocks
using $ at the end of this section and in Start an OPAC procedure on page 21.

Add Passport to Event

Adds a stamp to the event with the provided unique id.

The indirect references shown are the defaults for this block. This assumes the
OPAC procedure has been configured with the local parameters "odie-manager-
name" and "_odie-event-unique-id" and the opac-args attribute of the start block
includes these parameters. The event-passport-stamp can also indirectly reference
OPAC procedure parameters and token attributes

Values for the references are discussed in References to OPAC in ODIE blocks
using $ on page 27 at the end of this section and in Start an OPAC procedure on
page 21

Count Events

Counts the number of events matching the criteria specified and places the result
on the OPAC token stack.

The indirect references shown are the defaults for this block. This assumes the
OPAC procedure has been configured with the local parameter "odie-manager-
name". All attributes except the include & exclude passport-stamps can indirectly
reference OPAC token and local parameters as discussed in References to OPAC
in ODIE blocks using $ and in Start an OPAC procedure. The comparison-type is
either inside, describing all matching events inside the time interval, or outside
describing all matching events outside the time interval.

Gather Evidence

Places evidence-text of each matching event on the stack in a text parameter.
Evidence-text = the event start time + the class of the event + the target of the
event + the message text of the event.

The indirect references shown are the defaults for this block. This assumes the
OPAC procedure has been configured with the local parameter odie-manager-
name. All attributes except the include & exclude passport-stamps can indirectly
reference OPAC token and local parameters as discussed in References to OPAC
in ODIE blocks using $ and in Start an OPAC procedure. The comparison-type is
either inside, describing all matching events inside the time interval, or outside
describing all matching events outside the time interval.
220

Subscriber Toolbox
Using Indirect References

Your OPAC ODIE blocks can reference attributes of the token or local OPAC
procedure using indirect references. ODIE OPAC substitution variables include
the following standard reference passed in as arguments to the API to invoke a
graphical procedure including the task or subroutine currently being run:

$stack — A stack accessible to the user.

Subscriber Toolbox
ODiE is a graphical tool, which contains palettes of filters and responses that
provide the familiar clone, connect, and configure paradigm. To prepare an
application to use ODiE, create a new event manager by dragging and dropping
from the palette, then configure the manager.

Create a set of subscribers with their associated responses and filters by dragging
and dropping the appropriate icons and connecting them., then configure all
blocks.

Enable subscribers by calling odie-subscriber-initialize for each of them
individually or writing an procedure to perform this task for all of your
subscribers. You may want to write a startup procedure to handle the
subscriptions.
221

Here are the palettes in the ODiE Subscriber toolbox:
222

Classes
Classes
This section describes the classes defined in the ODiE module:

odie-event

odie-event-proxy

odie-g2-manager
223

odie-event
Odie-event is the base class of all odie-events.

Class Inheritance Path

odie-event, object, item

Attribute Description

_odie-event-start-time When an event is created, its creation time
becomes the event start time. this attribute is
set by the software, during the event creation
process, and should not be modified by the
user.

Allowable values: Any float

_odie-event-target-id (float) The target-id should identify the target of the
event. The value is passed to odie-manager-
publish-new-event. Typically this is the opfo-
external-name of some domain object.

Allowable values: Any text

Default value: ""

_odie-event-sender-id (text) The sender-id should identify the originator
of the event. The value is passed to odie-
manager-publish-new-event. Typically this is
the opfo-external-name of some object.

Allowable values: Any text

Default value: ""

_odie-event-message-text The main contents of any text to be displayed
to the user.

Allowable values: Any text

Default value: ""
224

odie-event
Methods

• To get event attribute values use:

 odie-manager::odie-manager-get-event-attribute-value

• To set event attribute values use:

odie-manager::odie-manager-set-attribute

Relations

 _odie-the-event-of relates an event to one or more proxies

_odie-a-proxy-for relates a proxy to an event

_odie-event-additional-text Additional text to be displayed to the user.

Allowable values: Any text

Default value: ""

_odie-event-additional-data
(structure)

A set of Attribute:Value pairs that are used to
contain any user-defined attributes for an
event.

Allowable values: A structure

Default value: structure()

_odie-event-passport
(sequence)

A set of "stamps" that can be added by any
response to this event. Provides an audit-trail
and can be used to control responses via the
passport stamp filter.

Allowable values: A sequence

Default value: sequence()

Attribute Description
225

odie-event-proxy
An odie-event-proxy is a smart proxy for an odie-event. As such it has many of
the same attributes as the original event. Use odie-manager-get-attribute-value to
read any values. Any attributes not visible in the proxy must be retrieved from
the original event. To set values of the event, you should use odie-manager-set-
attribute-value.

Class Inheritance Path

odie-event-proxy, object, item

An odie-event-proxy(s) is created to represent the original event. The proxy
provides a handle to the event.

Attribute Description

_odie-event-start-time When an event is created, its creation time
becomes the event start time. this attribute is
set by the software, during the event creation
process, and should not be modified by the
user.

Allowable values: Any float

_odie-event-target-id The target-id should identify the target of the
event. The value is passed to odie-manager-
publish-new-event. Typically this is the opfo-
external-name of some domain object.

Allowable values: Any text

Default value: ""

_odie-event-sender-id (text) The sender-id should identify the originator
of the event. The value is passed to odie-
manager-publish-new-event. Typically this is
the opfo-external-name of some object.

Allowable values: Any text

Default value: ""
226

odie-event-proxy
Methods

• To get proxy attribute values use:

 odie-manager::odie-manager-get-event-attribute-value

• To set proxy/event attribute values use:

 odie-manager::odie-manager-set-attribute

_odie-event-message-text The main contents of any text to be displayed
to the user.

Allowable values: Any text

Default value: ""

_odie-event-additional-text Additional text to be displayed to the user.

Allowable values: Any text

Default value: ""

_odie-event-additional-data
(structure)

A set of Attribute:Value pairs that are used to
contain any user-defined attributes for an
event.

Allowable values: A structure

Default value: structure()

Attribute Description
227

odie-g2-manager
An ODiE-G2-Manager is used to dispatch events. A manager also provides
facilities to query the events held in its history.

Class Inheritance Path

odie-g2-manager, odie-manager, object, item

Methods

odie-g2-manager::odie-datastore-start-time-proxy-query

odie-g2-manager::odie-datastore-start-time-count-query

odie-g2-manager::odie-datastore-stop-time-proxy-query

odie-g2-manager::odie-datastore-stop-time-count-query

odie-g2-manager::odie-datastore-duration-proxy-query

odie-g2-manager::odie-datastore-duration-count-query

odie-g2-manager::odie-datastore-create-proxy-for-id

Attribute Description

odie-manager-maximum-event-open-age

Allowable values: inherited

Default value: "1d"

odie-manager-maximum-event-age Determines the lifetime of events.
An odie-g2-manager will delete
any event who has existed longer
than the given value.

Allowable values: {"", 1s, 1m, 1h, 1d}

s = second, m = minute, h = hour, d
= day, "" = disable auto-deletion

Note: Time limits cannot be
combined as "1h5m

Default value: "1d
228

odie-g2-manager
odie-g2-manager::odie-datastore-event-is-a

odie-g2-manager::odie-datastore-stop-event

odie-g2-manager::odie-datastore-get-inheritance-path

User Menu Choices

none

Relations

none

User Menu Choices

odie-turn-on-inform-statements

odie-turn-off-inform-statements

Relations

none
229

Application Programmer's Interface
This chapter describes the procedures and methods defined in the ODiE module:

odie-g2-manager::odie-datastore-add-event-passport-stamp

odie-g2-manager::odie-datastore-create-event

odie-g2-manager::odie-datastore-delete-event

odie-g2-manager::odie-datastore-delete-events

odie-g2-manager::odie-datastore-duration-count-query

odie-g2-manager::odie-datastore-duration-proxy-query

odie-g2-manager::odie-datastore-get-event-attribute-value

odie-g2-manager::odie-datastore-get-passport-stamps

odie-g2-manager::odie-datastore-set-event-attribute-value

odie-g2-manager::odie-datastore-start-time-count-query

odie-g2-manager::odie-datastore-start-time-proxy-query

odie-manager::odie-manager-add-event-passport-stamp

odie-manager::odie-manager-create-event-class

odie-manager::odie-manager-delete-event

odie-manager::odie-manager-delete-events

odie-manager::odie-manager-duration-count-query

odie-manager::odie-manager-duration-proxy-query

odie-manager::odie-manager-get-event-attribute-value

odie-manager::odie-manager-get-passport-stamps

odie-manager::odie-manager-passport-meets-include-exclude-criteria

odie-manager::odie-manager-post-inform-statement

odie-manager::odie-manager-publish-existing-event

odie-manager::odie-manager-publish-new-event

odie-manager::odie-manager-publish-new-event

odie-manager::odie-manager-set-event-attribute

odie-manager::odie-manager-start-time-count-query

odie-manager::odie-manager-start-time-proxy-query

odie-manager::odie-manager-subscribe-event-class
230

Application Programmer's Interface
odie-manager::odie-manager-substitute-attribute-values

odie-manager::odie-manager-unsubscribe

odie-manager::odie-manager-unsubscribe-event-class
231

odie-g2-manager::odie-datastore-add-event-
passport-stamp

Synopsis

odie-g2-manager::odie-datastore-add-event-passport-stamp
(manager: class odie-g2-manager, proxy: class odie-event-proxy,
event-passport-stamp: text, client: ui-client-item)
-> result: truth-value, error: text

Description

Adds the provided text to the passport stamps of the event.

Argument Description

manager An odie-g2-manager.

proxy An odie-event-proxy of an odie-event.

event-passport-stamp The text stamp to add to the passport of the event.

client The user client initiating this process.

Return Value Description

result True if the stamp was added.

error A description of the error if the operation failed.
232

odie-g2-manager::odie-datastore-create-event
odie-g2-manager::odie-datastore-create-event

Synopsis

odie-g2-manager::odie-datastore-create-event
(manager: class odie-g2-manager, event-class: symbol, target: text,
sender: text, message-text: text, additional-text: text, start-time: float,
stop-time: float, passport-stamps: sequence,
additional-data-structure: structure, client: ui-client-item)
-> result: truth-value, error-text: text, proxy: class odie-event-proxy

Argument Description

manager An odie-g2-manager.

event-class The class of the event to create.

target The opfo-external-name of the target opfo-
domain-object.

sender The opfo-external-name of the sender opfo-
domain-object.

message-text The main message text used in user
communications.

additional-text Additional information provided in user
communications.

start-time The start time of the event. You should use the
current subsecond real time as a default.

stop-time The stop time of the event. Use -1.0 if the event is
not stopped.

passport-stamps An initial structure of passport stamps.

additional-data-structure Additional event data as name - value pairs in a
structure.

client The user client initiating this process.
233

Description

Creates an event of with the specified information and stores the event in history.

Return Value Description

result If a new event is created then tru.e

error-text A description of the error if the operation failed.

proxy A proxy for the created odie-event.
234

odie-g2-manager::odie-datastore-delete-event
odie-g2-manager::odie-datastore-delete-event

Synopsis

odie-g2-manager::odie-datastore-delete-event
(manager: class odie-g2-manager, proxy: odie-event-proxy,
client: ui-client-item)
-> result: truth-value, error-text: text

Description

Deletes the event.

Argument Description

manager An odie-g2-manager.

proxy An odie-proxy of an odie-event.

client The user client initiating this process.

Return Value Description

result True if the attribute was found, false otherwise.

error-text A description of the error if the operation failed.
235

odie-g2-manager::odie-datastore-delete-events

Synopsis

odie-g2-manager::odie-datastore-delete-events
(manager: class odie-g2-manager, event-class: symbol, target: text,
sender: text, include-stamps: sequence, exclude-stamps: sequence,
time-attribute: symbol, start-time: float, stop-time: float,
comparison-type: symbol, client: ui-client-item)
-> result: truth-value, error-text: text

Argument Description

manager An odie-manager.

event-class The class of the event to create.

target The opfo-external-name of the target opfo-
domain-objec.t

sender The opfo-external-name of the sender opfo-
domain-object.

include-stamps A sequence of stamps to require.

exclude-stamps A sequence of stamps to prohibi.t

time-attribute Legal values are start-time, stop-time, and
duration.

start-time The beginning of the time interval.

stop-time The end of the time window to compare.

comparison-type Valid values are outside or inside, where inside
means the start time is between the interval
defined by start-time and stop-time.

client The user client initiating this process

Return Value Description

result True if successful, false otherwise

error-text A description of the error if the operation failed
236

odie-g2-manager::odie-datastore-delete-events
Description

Deletes the events matching the provided event-class, target, and sender.
237

odie-g2-manager::odie-datastore-duration-
count-query

Synopsis

odie-g2-manager::odie-datastore-duration-count-query
(manager: class odie-g2-manager, event-class: symbol, target: text,
sender: text, include-stamps: sequence, exclude-stamps: sequence,
smallest-duration: float, greatest-duration: float, comparison-type: symbol,
client: ui-client-item)
-> result: truth-value, error-text: text, count: integer

Argument Description

manager An odie-g2-manager

event-class The class of the event to query

target The opfo-external-name of the target opfo-
domain-object

sender The opfo-external-name of the sender opfo-
domain-object

includes-tamps A sequence of stamps to require

exclude-stamps A sequence of stamps to prohibit

smallest-duration The smallest duration allowed

greatest-duration The largest duration allowed

comparison-type Valid values are outside or inside, where inside
means the event's duration is greater than
smallest-duration and less than greatest-duration

client The user client initiating this process

Return Value Description

result True if the query was successful, false otherwise

error-text A description of the error if the operation failed

count The number of matching events
238

odie-g2-manager::odie-datastore-duration-count-query
Description

Returns a sequence of events matching the specified criteria.
239

odie-g2-manager::odie-datastore-duration-
proxy-query

Synopsis

odie-g2-manager::odie-datastore-duration-proxy-query
(manager: class odie-g2-manager, event-class: symbol, target: text,
sender: text, include-stamps: sequence, exclude-stamps: sequence,
smallest-duration: float, greatest-duration: float, comparison-type: symbol,
proxy-list: class odie-event-proxy-list, client: ui-client-item)
-> result: truth-value, error-text: text

Argument Description

manager An odie-g2-manager

event-class The class of the event to query

target The opfo-external-name of the target opfo-
domain-object

sender The opfo-external-name of the sender opfo-
domain-object

include-stamps A sequence of stamps to require

exclude-stamps A sequence of stamps to prohibit

smallest-duration The smallest duration allowed

greatest-duration The largest duration allowed

comparison-type Valid values are outside or inside, where inside
means the event's duration is greater than
smallest-duration and less than greatest-duration

proxy-list The list to insert matching event proxies at the
end of

client The user client initiating this process
240

odie-g2-manager::odie-datastore-duration-proxy-query
Description

Inserts Proxies at the end of the provided proxy-list.

Return Value Description

result True if the query was successful, false otherwise

error-text A description of the error if the operation failed
241

odie-g2-manager::odie-datastore-get-event-
attribute-value

Synopsis

odie-g2-manager::odie-datastore-get-event-attribute-value
(manager: class odie-g2-manager, proxy: odie-event-proxy,
attribute-name: symbol, client: ui-client-item)
-> result: truth-value, error-text: text, value: value

Description

Returns the value of the event for the given attribute name.

Argument Description

manager An odie-g2-manager

proxy An odie-proxy of an odie-EVENT

attribute-name The name of the attribute to retrieve

client The user client initiating this process

Return Value Description

result True if the attribute was found, false otherwise

error-text A description of the error if the operation failed

value The attributes value or the symbol no-value-
found
242

odie-g2-manager::odie-datastore-get-passport-stamps
odie-g2-manager::odie-datastore-get-passport-
stamps

Synopsis

odie-g2-manager::odie-datastore-get-passport-stamps
(manager: class odie-g2-manager, proxy: odie-event-proxy,
client: ui-client-item)
-> result: truth-value, error-text: text, time-stamps: sequence

Description

Returns a sequence of stamps in the event's passport. Passport stamps are text
values.

Argument Description

manager An odie-g2-manager

proxy A odie-proxy for an odie-EVENT

client The user client initiating this process

Return Value Description

result True if the comparison is successful, false
otherwise

error-text A description of the error if the operation failed

time-stamps A sequence of the stamps in the event's passport
243

odie-g2-manager::odie-datastore-set-event-
attribute-value

Synopsis

odie-g2-manager::odie-datastore-set-event-attribute-value
(manager: class odie-g2-manager, proxy: odie-event-proxy,
attribute-name : symbol, attribute-value: value, client: ui-client-item)
-> result: truth-value, error-text: text

Description

Sets the value of the given attribute in the event.

Argument Description

manager An odie-g2-manager

proxy An odie-proxy of an odie-event

attribute-name The name of the attribute to retrieve

attribute-value The new value for the attribute

client The user client initiating this process

Return Value Description

result True if the attribute value is set, false otherwise

error-text A description of the error if the operation failed
244

odie-g2-manager::odie-datastore-start-time-count-query
odie-g2-manager::odie-datastore-start-time-
count-query

Synopsis

odie-g2-manager::odie-datastore-start-time-count-query
(manager: class odie-g2-manager, event-class: symbol, target: text,
sender: text, include-stamps: sequence, exclude-stamps: sequence,
start-time: float, stop-time: float, comparison-type: symbol,
client: ui-client-item)
-> result: truth-value, error-text: text, count: integer

Argument Description

manager An odie-g2-manager

event-class The class of the event to query

target The opfo-external-name of the target opfo-
domain-object

sender The opfo-external-name of the sender opfo-
domain-object

include-stamps A sequence of stamps to require

exclude-stamps A sequence of stamps to prohibit

start-time The beginning of the time interval

stop-time The end of the time window to compare

comparison-type Valid values are outside or inside, where inside
means the start time is between the interval
defined by start-time and stop-time.

client The user client initiating this process

Return Value Description

result True if the query was successful, false otherwise

error-text A description of the error if the operation failed

count The number of matching events
245

Description

Returns a sequence of events matching the specified criteria.
246

odie-g2-manager::odie-datastore-start-time-proxy-query
odie-g2-manager::odie-datastore-start-time-
proxy-query

Synopsis

odie-g2-manager::odie-datastore-start-time-proxy-query
(manager: class odie-g2-manager, event-class: symbol, target: text,
sender: text, include-stamps: sequence, exclude-stamps: sequence,
start-time: float, stop-time: float, comparison-type: symbol,
proxy-list: class odie-event-proxy-list, client: ui-client-item)
-> result: truth-value, error-text: text

Argument Description

manager An odie-g2-manager

event-class The class of the event to query

target The opfo-external-name of the target opfo-
domain-object

sender The opfo-external-name of the sender opfo-
domain-object

include-stamps A sequence of stamps to require

exclude-stamps A sequence of stamps to prohibit

start-time The beginning of the time interval

stop-time The end of the time window to compare

comparison-type Valid values are outside or inside, where inside
means the start time is between the interval
defined by start-time and stop-time.

proxy-list The list to insert matching event proxies at the
end of

client The user client initiating this process
247

Description

Inserts Proxies at the end of the provided proxy-list that meet the given criteria.

Return Value Description

result True if the query was successful, false otherwise

error-text A description of the error if the operation failed
248

odie-manager::odie-manager-add-event-passport-stamp
odie-manager::odie-manager-add-event-
passport-stamp

Synopsis

odie-manager::odie-manager-add-event-passport-stamp
(manager: class odie-manager, proxy: class odie-event-proxy,
event-passport-stamp: text, client: ui-client-item)
-> result: truth-value, error-text: text

Description

Adds the provided stamp to the passport of the event.

Argument Description

manager An odie-manager

proxy A proxy of the event to be operated on

event-passport-stamp The text stamp to add to the passports of the
event

client The user client initiating this process

Return Value Description

result The success of the operation

error-text A description of the error if the operation failed
249

odie-manager::odie-manager-create-event-
class

Synopsis

odie-manager::odie-manager-create-event-class
(manager: class odie-manager, class-name: symbol, ancestry: sequence,
destination-workspace: kb-workspace, client: ui-client-item)
-> result: truth-value, error-text: text

Description

Confirms the event named by ClassName exists. If it does not, it creates a class
hierarchy using the provided ClassName and Ancestry.

Argument Description

manager An odie-manager

class-name The class to create

ancestry The names (symbols) of the classes making up the
inheritance path. The first entry is the Classes
direct superior class. The next class is superior
class' superior class. The number of ancestors
provided is unlimited. If the Ancestry is empty,
the direct superior class is assumed to be odie-
event. If the last entry in the Ancestry is not odie-
event, then the direct superior class of the last
ancestor is assumed to be odie-event destination

workspace The workspace to place newly created classes
upon

client The user client initiating this process

Return Value Description

result True if the class exists or creating the event class
was successful, false otherwise

error-text A description of the error if the operation failed
250

odie-manager::odie-manager-delete-event
odie-manager::odie-manager-delete-event

Synopsis

odie-manager::odie-manager-delete-event
(manager: class odie-manager, proxy: class odie-event-proxy,
client: ui-client-item)
-> result: truth-value, error-text: text

Description

Deletes the event.

Argument Description

manager An odie-manager

proxy A proxy of the event to be operated on

client The user client initiating this process

Return Value Description

result The success of the operation

error-text A description of the error if the operation failed
251

odie-manager::odie-manager-delete-events

Synopsis

odie-manager::odie-manager-delete-events
(manager: class odie-manager, event-class: symbol, target: text,
sender: text, include-stamps: sequence, exclude-stamps: sequence,
time-attribute: symbol, start-time: float, stop-time: float,
comparison-type: symbol, client: ui-client-item)
-> result: truth-value, error-text: text

Argument Description

manager An odie-manager

event-class The class of the event to create

target The opfo-external-name of the target opfo-
domain-object

sender The opfo-external-name of the sender opfo-
domain-object

include-stamps A sequence of stamps to require

exclude-stamps A sequence of stamps to prohibit

time-attribute Legal values are start-time, stop-time, and
duration

start-time The beginning of the time interval

stop-time The end of the time window to compare

comparison-type Valid values are outside or inside, where inside
means the start time is between the interval
defined by start-time and stop-time.

client The user client initiating this process

Return Value Description

result True if successful, false otherwise

error-text A description of the error if the operation failed
252

odie-manager::odie-manager-delete-events
Description

Deletes the events matching the provided event-class, target, and sender.
253

odie-manager::odie-manager-duration-count-
query

Synopsis

odie-manager::odie-manager-duration-count-query
(manager: class odie-manager, event-class: symbol, target: text,
sender: text, include-stamps: sequence, exclude-stamps: sequence,
smallest-duration float, greatest-duration: float, comparison-type: symbol,
client: ui-client-item)
-> result: truth-value, error-text: text, count: integer

Argument Description

manager An odie-manager

event-class The class of the event to query

target The opfo-external-name of the target opfo-
domain-object

sender The opfo-external-name of the sender opfo-
domain-object

include-stamps A sequence of stamps to require

exclude-stamps A sequence of stamps to prohibit

smallest-duration The smallest duration allowed

greatest-duration The largest duration allowed

comparison-type Valid values are outside or inside, where inside
means the event's duration is greater than
smallest-duration and less than greatest-duration

client The user client initiating this process

Return Value Description

result True if the query was successful, false otherwise
254

odie-manager::odie-manager-duration-count-query
Description

Returns the count of events matching the provided criteria.

error-text A description of the error if the operation failed

count The number of events matching the provided
criteria

Return Value Description
255

odie-manager::odie-manager-duration-proxy-
query

Synopsis

odie-manager::odie-manager-duration-proxy-query
(manager: class odie-manager, event-class: symbol, target: text,
sender: text, include-stamps: sequence, exclude-stamps: sequence,
smallest-duration: float, greatest-duration: float, comparison-type: symbol,
proxy-list: class odie-event-proxy-list, client: ui-client-item)
-> result: truth-value, error-text: text

Argument Description

manager An odie-manager

event-class The class of the event to query

target The opfo-external-name of the target opfo-
domain-object

sender The opfo-external-name of the sender opfo-
domain-object

include-stamps A sequence of stamps to require

exclude-stamps A sequence of stamps to prohibit

smallest-duration The smallest duration allowed

greatest-duration The largest duration allowed

comparison-type Valid values are outside or inside, where inside
means the event's duration is greater than
smallest-duration and less than greatest-duration

proxy-list The proxy list to append matching proxies to

client The user client initiating this process

Return Value Description

result True if the query was successful, false otherwise

error-text A description of the error if the operation failed
256

odie-manager::odie-manager-duration-proxy-query
Description

Appends proxies for the matching events to the end of the provided proxy list.
257

odie-manager::odie-manager-get-event-
attribute-value

Synopsis

odie-manager::odie-manager-get-event-attribute-value
(manager: class odie-manager, proxy: class odie-event-proxy,
event-attribute-name: symbol, client: ui-client-item)
-> result: truth-value, error-text: text, value: value

Description

Retrieves a value from an event. Request the name of the attribute you wish to
retrieve. _odie-event-class retreives the class of the event.

Argument Description

manager An odie-manager

proxy A proxy of the event to be operated on

event-attribute-name The name of the event value to get

client The user client initiating this process

Return Value Description

result The success of the operation

error-text A description of the error if the operation failed

value The attributes value or the symbol no-value-
found
258

odie-manager::odie-manager-get-passport-stamps
odie-manager::odie-manager-get-passport-
stamps

Synopsis

odie-manager::odie-manager-get-passport-stamps
(manager: class odie-manager, proxy: odie-event-proxy,
client: ui-client-item)
-> result: truth-value, error-text: text, time-stamps: sequence

Description

Returns a sequence of stamps in the event's passport. Passport stamps are text
values.

Argument Description

manager An odie-manager

proxy A proxy of the event to be operated on

client The user client initiating this process

Return Value Description

result The success of the operation

error-text A description of the error if the operation failed

time-stamps A sequence of the stamps in the event's passport
259

odie-manager::odie-manager-passport-meets-
include-exclude-criteria

Synopsis

odie-manager::odie-manager-passport-meets-include-exclude-criteria
(manager: class odie-manager, passport: sequence,
include-stamps: sequence, exclude-stamps: sequence, client: ui-client-item)
-> result: truth-value, error-text: text, criteria: truth-value

Description

Determines if the passport stamps meet the include/exclude criteria.

Argument Description

manager An odie-manager

passport The passport stamps of an event

include-stamps A sequence of stamps required

exclude-stamps A sequence of stamps that must not be in the
passport

client The user client initiating this process

Return Value Description

result True if the evaluation was successful. false
otherwise

error-text A description of the error if the operation failed

criteria True if passport meets the include/exclude
requirements
260

odie-manager::odie-manager-post-inform-statement
odie-manager::odie-manager-post-inform-
statement

Synopsis

odie-manager::odie-manager-post-inform-statement
(manager: class odie-manager, sender: item, statement: text,
client: ui-client-item)
-> result: truth-value, error-text: text

Description

Posts a message to the operator.

Argument Description

manager An odie-manager

sender The entity posting the message

statement The message to post

client The user client initiating this process

Return Value Description

result True if the post was successful. false otherwise

error-text A description of the error if the operation failed
261

odie-manager::odie-manager-publish-existing-
event

Synopsis

odie-manager::odie-manager-publish-existing-event
(manager: class odie-manager, proxy: class odie-event-proxy,
client: ui-client-item)
->result: truth-value, error-text: text

Description

Republishes an existing event. Only events with changed values or passport
stamps shoudl be re-published.

Argument Description

manager An odie-manager

proxy A proxy for the event to be re-published

client The user client initiating this process

Return Value Description

result The success of the operation

error-text A description of the error if the operation failed
262

odie-manager::odie-manager-publish-new-event
odie-manager::odie-manager-publish-new-
event

Synopsis

odie-manager::odie-manager-publish-new-event
(manager: class odie-manager, event-class: symbol, target: text, sender: text,
message-text: text, additional-text: text, client: ui-client-item)
-> result: truth-value, error-text: text, proxy: class odie-event-proxy

Description

Creates and publishes a new event. This API creates an event with no additional
data associated with the event.

Argument Description

manager An odie-manager

event-class The class of the event to create

target The opfo-external-name of the target opfo-
domain-object

sender The opfo-external-name of the sender opfo-
domain-object

message-text The main message text used in user
communications

additional-text Additional information provided in user
communications

client The user client initiating this process

Return Value Description

result The success of the requested operation

error-text A description of the error if the operation failed

proxy A proxy for the new event
263

odie-manager::odie-manager-publish-new-
event

Synopsis

odie-manager::odie-manager-publish-new-event
(manager: class odie-manager, event-class: symbol, target: text, sender: text,
message-text: text, additional-text: text, start-time: float, stop-time: float,
passport-stamps:: sequence, additional-data-structure : structure,
client: ui-client-item)
-> result: truth-value, error-text: text, proxy: class odie-event-proxy

Argument Description

manager An odie-manager

event-class The class of the event to create

target The opfo-external-name of the target opfo-domain-
object

sender The opfo-external-name of the sender opfo-
domain-object

message-text The main message text used in user
communications

additional-text Additional information provided in user
communications

start-time The start time of the event. You should use the
current subsecond real time as a default

stop-time The stop time of the event. Use -1.0 if the event is
not stopped

passport-stamps An initial structure of passport stamps.

additional-data-structure Additional event data as name - value pairs in a
structure

client The user client initiating this process
264

odie-manager::odie-manager-publish-new-event
Description

Creates and publishes a new event. If the stop time > the start time and ODiE
Event Stopped is not in the passport, then ODiE Event Stopped will be added to
the passport. If ODiE Event Stopped is in the passport and the stop time < the
start time, then the stop time will be set to the start time.

Return Value Description

result The success of the requested operation

error-text A description of the error if the operation failed

proxy A proxy for the new event
265

odie-manager::odie-manager-set-event-
attribute

Synopsis

odie-manager::odie-manager-set-event-attribute
(manager: class odie-manager, proxy: class odie-event-proxy,
event-attribute-name: symbol, event-attribute-value: value,
client: ui-client-item)
-> result: truth-value, error-text: text, text

Description

Sets a value of the event.

Argument Description

manager An odie-manager

proxy A proxy of the event to be operated on

event-attribute-name The name of the event value to get

event-attribute-value The new value for the event attribute

client The user client initiating this process

Return Value Description

result The success of the operation

error-text A description of the error if the operation failed
266

odie-manager::odie-manager-start-time-count-query
odie-manager::odie-manager-start-time-count-
query

Synopsis

odie-manager::odie-manager-start-time-count-query
(manager: class odie-manager, event-class: symbol, target: text,
sender: text, include-stamps: sequence, exclude-stamps: sequence,
start-time: float, stop-time: float, comparison-type: symbol,
client: ui-client-item)
-> result: truth-value, error-text: text, count: integer

Argument Description

manager An odie-manager

event-class The class of the event to query

target The opfo-external-name of the target opfo-
domain-object

sender The opfo-external-name of the sender opfo-
domain-object

include-stamps A sequence of stamps to require

exclude-stamps A sequence of stamps to prohibit

start-time The beginning of the time interval

stop-time The end of the time window to compare

comparison-type Valid values are Outside or Inside. Inside means
the start time is between the interval defined by
start-time and stop-time.

client The user client initiating this process

Return Value Description

result True if the query was successful, false otherwise
267

Description

Returns the count of events matching the provided criteria.

error-text A description of the error if the operation failed

count The number of events matching the provided
criteria

Return Value Description
268

odie-manager::odie-manager-start-time-proxy-query
odie-manager::odie-manager-start-time-proxy-
query

Synopsis

odie-manager::odie-manager-start-time-proxy-query
(manager: class odie-manager, event-class: symbol, target: text, sender: text,
include-stamps: sequence, exclude-stamps: sequence, start-time: float,
stop-time: float, comparison-type: symbol,
proxy-list: class odie-event-proxy-list, client: ui-client-item)
-> result: truth-value, error-text: text

Argument Description

manager An odie-manager

event-class The class of the event to query

target The opfo-external-name of the target opfo-
domain-object

sender The opfo-external-name of the sender opfo-
domain-object

include-stamps A sequence of stamps to require

exclude-stamps A sequence of stamps to prohibit

start-time The beginning of the time interval

stop-time The end of the time window to compare

comparison-type Valid values are Outside or Inside. Inside means
the start time is between the interval defined by
start-time and stop-time.

proxy-list The proxy list to append matching proxies to

client The user client initiating this process

Return Value Description

result True if the query was successful, false otherwise

error-text A description of the error if the operation failed
269

Description

Appends proxies for the matching events to the end of the provided proxy list.
270

odie-manager::odie-manager-subscribe-event-class
odie-manager::odie-manager-subscribe-event-
class

Synopsis

odie-manager::odie-manager-subscribe-event-class
(manager: class odie-manager, subscriber: class odie-subscriber,
event-class: symbol, subscriber-include-stamps: sequence,
subscriber-exclude-stamps: sequence, client: ui-client-item)
-> result: truth-value, error-text: text

Description

Adds a subscription to the provided event-class for the Subscriber.

Argument Description

manager An odie-manager

subscriber An odie-subscriber

event-class The class of event

subscriber-include-stamps A sequence of the required stamps

subscriber-exclude-stamps A sequence of the stamps that must not be present

client The user client initiating this process

Return Value Description

result True if subscribing was successful, false
otherwise

error-text A description of the error if the operation failed
271

odie-manager::odie-manager-substitute-
attribute-values

Synopsis

odie-manager::odie-manager-substitute-attribute-values
(manager: class odie-manager, proxy: class odie-event-proxy,
original-text: text, client: ui-client-item)
-> result: truth-value, error-text: text, new-text: text

Description

Substitutes attribute values.

Argument Description

manager An odie-manager

proxy A proxy of the event to be operated on

original-text The orginal text.

client The user client initiating this process

Return Value Description

result True if the graphical blocks were processed
Successfully, false otherwise

error-text A description of the error if the operation failed

new-text The text with attribute values substituted
272

odie-manager::odie-manager-unsubscribe
odie-manager::odie-manager-unsubscribe

Synopsis

odie-manager::odie-manager-unsubscribe
(manager: class odie-manager, subscriber: class odie-subscriber,
client: ui-client-item)
-> result: truth-value, error-text: text

Description

Adds a subscription to the provided event-class for the Subscriber.

Argument Description

manager An odie-manager

subscriber An odie-subscriber

client The user client initiating this process

Return Value Description

result True if subscribing was successful, false
otherwise

error-text A description of the error if the operation failed
273

odie-manager::odie-manager-unsubscribe-
event-class

Synopsis

odie-manager::odie-manager-unsubscribe-event-class
(manager: class odie-manager, subscriber: class odie-subscriber,
event-class: symbol, client: ui-client-item)
-> result: truth-value, error-text: text

Description

Removes a subscription to the provided event-class for the Subscriber.

Argument Description

manager An odie-manager

subscriber An odie-subscriber

event-class The class of event

client The user client initiating this process

Return Value Description

result True if subscribing was successful, false
otherwise

error-text A description of the error if the operation failed
274

14
Message Parsing
Engine (MPE)
Describes the Message Parsing Engine (MPE).

Introduction 276

General Information 276
The OMPE String Receiver 276
Message Filter 278

Message Parsing Engine Palette Blocks 279
Conclude Blocks 279
Debug Blocks 284
Decision Blocks 284
Integrity Subsystem Blocks 285
Message Handling 287
Terminal Blocks 287

Classes 288
mpe-message-filter 289
mpe-pause-block 292
mpe-procedure-conclude-block 294
mpe-single-match-decision-block 296
mpe-single-regex-conclude-block 298
mpe-start-end-match-decision-block 300
mpe-start-end-of-text-conclude-block 302
mpe-start-end-regex-conclude-block 304
mpe-start-of-text-to-end-regex-conclude-block 306
mpe-static-conclude-block 308
mpe-string-position-block 310
mpe-string-receiver 312
mpe-terminal-block 313
mpe-text-buffer 314
mpe-word-line-conclude-block 316
create-message-block 318
ompe-delete-message-block 320
ompe-opac-subtask-start-block 322
ompe-string-receiver 324
275

Application Programmer's Interface 326
mpe-current-real-time-as-time-stamp 326
mpe-text-buffer::mpe-add-text-to-buffer 327
mpe-text-buffer::mpe-clear-buffer 327

User Menu Choices 328
mpe-clear-buffer 328
mpe-show-buffer 328
mpe-turn-debugging-off 328
mpe-turn-debugging-on 329
ompe-go-to-procedure 329

Relations 330
_mpe-from-message-filter 330
_mpe-from-text-buffer 330

Introduction
The Integrity Message Parsing Engine (MPE) is a graphical language specifically
for parsing text messages.

General Information
This section provide general information on using the Integrity Message Parsing
Engine (MPE).

The MPE allows you to easily design a message parser, using convenient
graphical blocks for construction. No looping is allowed in the string of blocks.

Note Error-handling procedures can vary and depend on the application of the MPE.
For this reason, the MPE does not include built-in error-handling procedures. The
user should build all necessary error-handling procedures that are specific to the
application.

The OMPE String Receiver

The string receiver object is an object that is passed through the filter blocks, mpe-
filter-block, to hold the identified message, to hold local variables, and to control
276

General Information
block execution. You can think of the attributes of the string receiver as items that
are populated or built as the string receiver passes through the parsing routine.

The developer or administrator can determine how these become populated.
Furthermore, you can subclass this object and define additional attributes. Ompe-
string-receiver attributes include the following:

• ompe-category - Reflects the category of the incoming text i.e., critical, etc.
allowing for message correlation.

• ompe-message-text - Text that reflects the desired message that can be
displayed in the browser via the opac message block.

• ompe-additional-text - Text that reflects the desired additional text to be
displayed in the browser via the opac message block.

sequence (structure (attribute-name: the symbol ompe-sender,
public: true,
allowable-values: "Any text",
description: "The opfo-external-name of the sender

opfo-domain-object."),
structure (attribute-name: the symbol ompe-target,

public: true,
allowable-values: "Any text",
description: "The opfo-external-name of the target

opfo-domain-object."),
structure (attribute-name: the symbol ompe-category,

public: true,
allowable-values: "Any text",
description: "the smh-message-category"),

structure (attribute-name: the symbol ompe-message-text,
public: true,
allowable-values: "Any text",
description: ""),

structure (attribute-name: the symbol ompe-additional-text,
public: true,
allowable-values: "Any text",
description: ""),

structure (attribute-name: the symbol mpe-receiver-text,
public: true,
allowable-values: "inherited",
description: "The identified message text."),

structure (attribute-name: the symbol mpe-working-text,
public: true,
allowable-values: "inherited",
description: "A text area for any processing requiring more

that one block."),
structure (attribute-name: the symbol mpe-description,

public: true,
277

allowable-values: "inherited",
description: "See _mpe-object"))

Message Filter

The following attributes determine what the filter will accept:

• mpe-start-expression - The text string must start with this expression.

• mpe-contains-expression - The text string must contain this particular
expression.

• mpe-end-expression - The end of the string is determined by this expression.

Any of the following elements can be used to build expressions:

• <alphanumeric> refers to any character or number

• <alphabetic> refers to any character

• <numeric> refers to any number

• + refers to multiple occurrences of anything that precedes it

• . refers to anything (a wild card character)

• refers to 0 or more of the previous thing

One filter can accept input from more than one buffer at a time. Furthermore, you
may connect filters in series. The text will travel from one filter to the next until it
finds a filter that will accept it's format. If the filter or filters do not accept
incoming text, then the text will sit in the buffer and will prevent other text from
leaving the buffer. You might want to consider connecting a filter at the end of the
filter series (if applicable) as a 'catch-all' filter so that the text will leave the buffer.
278

Message Parsing Engine Palette Blocks
Message Parsing Engine Palette Blocks
Here are the palettes in the Message Parsing Engine toolbox:

Conclude Blocks

Procedure Conclude
279

This block launches a procedure that is designed to accept two arguments: an
object of procedure block class and an object of the string receiver class. It returns
a value that either pre-appends, overwrites or appends any string receiver object
attribute that you specify in this block's mpe destination attribute.

• You must include the procedure name in the mpe procedure name attribute.

• Any procedure that is called must accept two arguments: the procedure
conclude block object and the string receiver object.

• Any procedure that is called must return a string (even if it is empty).

• The mpe destination attribute determines the return string's destination.

• The mpe write mode determines if the string will append, pre-append or
overwrite the text that exists in the mpe destination.

Single Regex Conclude

This block searches from a determined point within a string for an expression that
matches a pattern and extracts that expression from the string.

Start End Of Text Conclude

This block extracts a string from the source text based on a beginning expression
indicated via the mpe start regex expression. It will extract the part of the text that
follows the mpe start regex expression. The extracted string will either include or
exclude the mpe start regex expression based on the mpe extract mode (inclusive
or exclusive).

Start End Regex Conclude

This block extracts a string from the text based on a beginning expression and
ending expression. You may either include or exclude the beginning and ending
expression in the extracted string by specifying either "inclusive" or "exclusive"
via this block's mpe extract mode attribute.
280

Message Parsing Engine Palette Blocks
Start Of Text To End Of Regex Conclude

This block extracts a string from the text based on a beginning search point in the
text and an ending expression. You may either include or exclude the ending
expression in the extracted string by specifying either "inclusive" or "exclusive"
via this block's mpe extract mode attribute. In other words, this block will remove
any text that follows the mpe end regex expression, and keep the text up to the
mpe end regex expression.

Static Conclude

This block pre-appends, appends, or overwrites a value (string) to any receiver
object attribute.

String Position

This block extracts a string from incoming text based on the location of the
beginning of the string and the location of the end of the string. For example, if
the start position is 1 and the end position is 3, then the string to be extracted will
include all characters between and including the first and third character in the
text.

String Receiver

This block receives the string.
281

Attribute Description

mpe-description Describes the purpose of this receiver
object

mpe-receiver-text Text that this object receives or currently
'owns'

mpe-working-text Can be used for further parsing, etc.

ompe-sender Refers to the opfo-external name of the
sender associated with the incoming text.
Allowable value is any text.

ompe-sender The opfo-external-name of the sender
opfo-domain-object as a sequence:

public:(structure (attribute-name:
the symbol ompe-sender, true))

ompe-target Refers to the opfo-external name of the
target associated with the incoming text

ompe-category Reflects the category of the incoming text
i.e. critical, etc. allowing for message
correlation

ompe-message-text Text that reflects the desired message that
can be displayed in the browser via the
opac message block

ompe-additional-text Text that reflects the desired additional
text to be displayed in the browser via the
opac message block.
282

Message Parsing Engine Palette Blocks
structure (attribute-name: the symbol ompe-target,
public: true,
allowable-values: "Any text",
description: "The opfo-external-name of the target

opfo-domain-object."),
structure (attribute-name: the symbol ompe-category,

public: true,
allowable-values: "Any text",
description: "the smh-message-category"),

structure (attribute-name: the symbol ompe-message-text,
public: true,
allowable-values: "Any text",
description: ""),

structure (attribute-name: the symbol ompe-additional-text,
public: true,
allowable-values: "Any text",
description: ""),

structure (attribute-name: the symbol mpe-receiver-text,
public: true,
allowable-values: "inherited",
description: "The identified message text."),

structure (attribute-name: the symbol mpe-working-text,
public: true,
allowable-values: "inherited",
description: "A text area for any processing requiring more that

one block."),
structure (attribute-name: the symbol mpe-description,

public: true,
allowable-values: "inherited",
description: "See _mpe-object"))

Word Line

This block extracts a word from incoming text based on the word's location within
the text, that is, the line that it is on and the word position it holds in the line, for
example, first word, second word, etc.
283

Debug Blocks

Pause

This block can be used for debugging. It causes the parsing routine to pause as
each string receiver object passes through the pause block. You can control the
pause duration via the pause block's delay attribute.

Decision Blocks

Single Match Decision

This block determines if a match has been made by comparing a source string
with a user specified string. The attibute, mpe match source should be a mpe
string receiver object attribute. The user must also specifiy the search position
within the source in question, for example the first character in the string.

Start End Of Match Decision

This block determines if a match has been made by comparing a source string
(mpe-match-source) with a user specified search position (for example, the value
"1" indicates the first character in the string), beginning of string value and end of
string value. The search will take place by traversing the text from left to right.
The source should be an mpe string receiver object attribute.

Message Parsing Engine Palette Blocks
Integrity Subsystem Blocks

Create Message

This block sends a message to a message server that you specify in the Message
Server attribute. It creates a message using attributes of the String Receiver.
Attributes are described in the following table:

Delete Message

This block deletes messages that fit a category from one, multiple or all server(s)
in question. You specify the category in this block's 'ompe category to delete'
attribute. You specify the server in this block's 'ompe message server' attribute. It

Attribute Description

ompe-message-server The name of the message server to create the
message in. The value can be any symbol.

ompe-category The category of the message created. This
value is over written if the ompe-category of
the ompe-string-receiver has a value. The
value can be any text.

ompe-options "The standard options for creating an smh-
message. e.g. @"-r@",@" -a@",@"-i@", @"-
noack@", @"-nohist@"". The value can be any
text.

ompe-priority The priority of the message to create. The
value can be any integer.

ompe-lifetime "The length of time in seconds the created
message should exist. (-1 = indefininte.)" The
value can be any integer.

mpe-description For your notation.
285

will determine what messages to delete by matching the target and sender that
are specified in the string receiver attributes. Attributes are shown in the
following table:

Opac Subtask Start

This block spawns the opac procedure named in the ompe-opac-subtask-start-
name attribute of this block. The target and sender are provided by the ompe-
string-receiver. Local arguments are also passed to the opac procedure. The local
arguments passed are the values of the string receiver attributes listed in the
ompe-local-arguments of the ompe-opac-subtask-start. Attributes are shown in
the following table:

Attribute Description

ompe-message-server The name of a message server. Specifying
all as the name of the message server
deletes messages matching the target,
sender, and category to delete from all
message servers. The value can be any
symbol.

ompe-category-to-delete The category of message to delete. The
value can be any symbol.

mpe-description For your notation. The value can be any
text.

Attribute Description:

ompe-opac-subtask-start-
name

The name of the opac-subtask-start block.
The value can be any symbol.

ompe-local-arguments "Attribute names of the receiver object"
description: "A comma separated list of
string receiver attribute names. Each entry
will be passed in the specified order to the
opac routine as a local argument."

mpe-description "inherited" description: for your notation
286

Message Parsing Engine Palette Blocks
Message Handling

Message Filter

This block accepts text from the text buffer that matches a pattern that you define.
It can accept text from more than one text buffer at a time. The message filter has
an attribute, mpe-string-receiver-class, that requires you to specify the receiver
object that will carry the incoming text through the parsing routine.

Text Buffer

The first message handling block necessary to begin a parsing routine.

Give it a name and make certain that the maximum buffer length does not exceed
64,000.

Terminal Blocks

Terminal

This block is the last block necessary to complete the parsing routine.
287

Classes
This section describes the classes defined in the Message Parsing Engine module:

mpe-message-filter

mpe-pause-block

mpe-procedure-conclude-block

mpe-single-match-decision-block

mpe-single-regex-conclude-block

mpe-start-end-match-decision-block

mpe-start-end-of-text-conclude-block

mpe-start-end-regex-conclude-block

mpe-start-of-text-to-end-regex-conclude-block

mpe-static-conclude-block

mpe-string-position-block

mpe-string-receiver

mpe-terminal-block

mpe-text-buffer

mpe-word-line-conclude-block

create-message-block

ompe-delete-message-block

ompe-opac-subtask-start-block

ompe-string-receiver
288

mpe-message-filter
mpe-message-filter
A message filter looks for text expressions in a text buffer (mpe-text-buffer). A
message is identified by matching start and end regex expressions in the text
buffer. Some messages require an additional matching contained expression.

An optional feature allows moving any strings rejected by the filter to a text-list
attribute in the filter. To specify this option, use the MPE-filter-rejects-to-filter-
rejects-buffer truth-value attribute of the mpe-message-filter object. When this
attribute is set to true, if a string is rejected upon a no-match with the contains-
expression, then the reject string is copied into the mpe-filter-rejects-buffer.
Parsing will continue. An additional attribute for the mpe-filter, mpe-filter-rejects-
buffer-max-entries (initially set to 100) sets the number of maximum entries to the
buffer. The customer can set max-entries to any number they wish. (If you are
tracking entries manually, over a few hundred may be excessive.)

Class Inheritance Path

mpe-message-filter, _mpe-object, object, item

Attributes

Attribute Description

mpe-start-expression The regex expression which starts a message.

Allowable values: Any text

Default value: ""

mpe-contains-expression A regex espression to be found between the start
and end expressions.

Allowable values: Any text

Default value: "."

mpe-end-expression The regex expression identifying the end of a
message.

Allowable values: Any text

Default value: ""
289

mpe-string-receiver-class When a message is identified by this mpe-
message-filter, an instance of a string receiver
named by this class name is created.

Allowable values: The class-name of mpe-string-receiver

Default value: MPE-STRING-RECEIVER

mpe-description See _mpe-object

Allowable values: inherited

Default value: ""

mpe-filter-rejects-to-filter-
rejects-buffer

See _mpe-object

Allowable values: truth values

Default value: false

mpe-filter-rejects-buffer-
max-entries

See _mpe-object

Allowable values: integer

Default value: 100

mpe-filter-rejects-to-
bottom

Used to put a rejected string to the bottom of the
filter buffer so that it may be processed again after
all of the strings remaining in the buffer are
processed first.

Allowable values: truth-value

Default value: false

Attribute Description
290

mpe-message-filter
The mpe-filter-rejects-to-bottom truth-value attribute is true, if a string is rejected
upon a no-match with the contains-expression, then the reject string is moved to
the bottom of the message-buffer and parsing will continue.

Methods

none

User Menu Choices

configure-message-filter.-.-.

Relations

_mpe-from-message-filter

mpe-filter-rejects-to-filter-
rejects-buffer

Used to put a rejected string directly into a rejects
buffer set aside for isolating the rejected strings.
This will be for the user to parse later in another
block or as a record of the strings that are rejected.

Allowable values: truth-value

Default value: true

mpe-filter-rejects-buffer-
max-entries

The allowable number of entries for the filter-
rejects-buffer. This can be set by the user.

Allowable values: integer

Default value: 100

mpe-filter-rejects-buffer The buffer in the form of a user accessible text-list.

Allowable values: text-list

Default value: an instance of a mpe-filter-rejects-buffer-list

Attribute Description
291

mpe-pause-block
A pause block simply waits for a period of time before sending control to the next
block.

Class Inheritance Path

mpe-pause-block, _mpe-debug-block, _mpe-filter-block, _mpe-object,
object, item

Attributes

Methods

none

User Menu Choices

configure-pause-block.-.-.

Attribute Description

mpe-delay The number of seconds to wait before passing
control to the next block.

Allowable values: Any integer

Default value: 5

mpe-debug-on See mpe-debug-block

Allowable values: inherited

Default value: true

mpe-description See _mpe-object

Allowable values: inherited

Default value: ""
292

mpe-pause-block
Relations

none
293

mpe-procedure-conclude-block
This conclude block calls the specified procedure. The return value of the
procedure is concluded in the destination. The signature of the procedure is (BLK:
class _mpe-filter-block {the filter block currently processing the string receiver},
REC: class mpe-string-receiver {The string receiver}) = (text {the text to return})

Class Inheritance Path

mpe-procedure-conclude-block, _mpe-variable-destination-conclude-block,
_mpe-conclude-block, _mpe-filter-block, _mpe-object, object, item

Attributes

Attribute Description

mpe-procedure-name The name of the procedure to call. The procedure
will be passed the procedure block and the string
receiver. The procedure should return a value.

Allowable values: Any symbol

Default value: MPE-CURRENT-REAL-TIME-AS-TIME-STAMP

mpe-destination See mpe-variable-destination-conclude-block

Allowable values: inherited

Default value: MPE-WORKING-TEXT

mpe-write-mode See mpe-conclude-block

Allowable values: PREPEND, APPEND, OVERWRITE

Default value: OVERWRITE

mpe-description See _mpe-object

Allowable values: inherited

Default value: ""
294

mpe-procedure-conclude-block
Methods

none

User Menu Choices

configure-procedure-conclude-block.-.-.

Relations

none
295

mpe-single-match-decision-block
A decision block based on a single regex expression match.

Class Inheritance Path

mpe-single-match-decision-block, _mpe-decision-block, _mpe-filter-block,
_mpe-object, object, item

Attributes

Methods

none

Attribute Description

mpe-match-string The regex expression to find in the match source.

Allowable values: Any text

Default value: ""

mpe-match-source See _mpe-decision-block

Allowable values: inherited

Default value: MPE-RECEIVER-TEXT

mpe-start-search-position See _mpe-decision-block

Allowable values: inherited

Default value: 1

mpe-description See _mpe-object

Allowable values: inherited

Default value: ""
296

mpe-single-match-decision-block
User Menu Choices

configure-single-match-decision-block.-.-.

Relations

none
297

mpe-single-regex-conclude-block
A mpe-single-regex-conclude-block extracts text by matching a single regex
expression. The matching text is concluded into the destination attribute of the
string receiver.

Class Inheritance Path

mpe-single-regex-conclude-block, _mpe-regex-conclude-block,
mpe-extracting-conclude-block, _mpe-variable-destination-conclude-block,
_mpe-conclude-block, _mpe-filter-block, _mpe-object, object, item

Attributes

Attribute Description

mpe-regex-expression The regex expression to match.

Allowable values: Any text

Default value: ""

mpe-start-search-position See mpe-regex-conclude-block

Allowable values: inherited

Default value: 1

mpe-text-source See mpe-extracting-conclude-block

Allowable values: inherited

Default value: MPE-RECEIVER-TEXT

mpe-destination See mpe-variable-destination-conclude-block

Allowable values: inherited

Default value: MPE-WORKING-TEXT
298

mpe-single-regex-conclude-block
Methods

none

User Menu Choices

configure-single-regex-conclude-block.-.-.

Relations

none

mpe-write-mode See mpe-conclude-block

Allowable values: PREPEND, APPEND, OVERWRITE

Default value: OVERWRITE

mpe-description See _mpe-object

Allowable values: inherited

Default value: ""

Attribute Description
299

mpe-start-end-match-decision-block
A decision block based on a two regex expression matches.

Class Inheritance Path

mpe-start-end-match-decision-block, _mpe-decision-block, _mpe-filter-block,
_mpe-object, object, item

Attributes

Attribute Description

mpe-match-start The first regex expression to find.

Allowable values: Any text

Default value: ""

mpe-match-end The second regex expression to find. The
expression must occur after the match start.

Allowable values: Any text

Default value: ""

mpe-match-source See _mpe-decision-block

Allowable values: inherited

Default value: MPE-RECEIVER-TEXT

mpe-start-search-position See _mpe-decision-block

Allowable values: inherited

Default value: 1
300

mpe-start-end-match-decision-block
Methods

none

User Menu Choices

configure-start-end-match-decision-block.-.-.

Relations

none

mpe-description See _mpe-object

Allowable values: inherited

Default value: ""

Attribute Description
301

mpe-start-end-of-text-conclude-block
Returns the text starting with the start regex expression to the end of the text
source. The start expression is included or excluded based on the extract mode
attribute.

Class Inheritance Path

mpe-start-end-of-text-conclude-block, _mpe-extra-text-regex-conclude-block,
_mpe-regex-conclude-block, _mpe-extracting-conclude-block,
_mpe-variable-destination-conclude-block, _mpe-conclude-block,
_mpe-filter-block, _mpe-object, object, item

Attributes

Attribute Description

mpe-start-regex-
expression

The regular expression defining the start of the
text.

Allowable values: Any text

Default value: ""

mpe-extract-mode See mpe-extra-text-regex-conclude-block

Allowable values: INCLUSIVE, EXCLUSIVE

Default value: EXCLUSIVE

mpe-start-search-position See mpe-regex-conclude-block

Allowable values: inherited

Default value: 1

mpe-text-source See mpe-extracting-conclude-block

Allowable values: inherited

Default value: MPE-RECEIVER-TEXT
302

mpe-start-end-of-text-conclude-block
Methods

none

User Menu Choices

configure-start-end-of-text-conclude-block.-.-.

Relations

none

mpe-destination See mpe-variable-destination-conclude-block

Allowable values: inherited

Default value: MPE-WORKING-TEXT

mpe-write-mode See mpe-conclude-block

Allowable values: PREPEND, APPEND, OVERWRITE

Default value: OVERWRITE

mpe-description See _mpe-object

Allowable values: inherited

Default value: ""

Attribute Description
303

mpe-start-end-regex-conclude-block
This block returns the text found between a starting regex expression and an
ending regex expression. The expressions are included or excluded based on the
extract mode.

Class Inheritance Path

mpe-start-end-regex-conclude-block, _mpe-extra-text-regex-conclude-block,
_mpe-regex-conclude-block, _mpe-extracting-conclude-block,
_mpe-variable-destination-conclude-block, _mpe-conclude-block,
_mpe-filter-block, _mpe-object, object, item

Attributes

Attribute Description

mpe-start-regex-
expression

The regular expression defining the start of the
text.

Allowable values: Any text

Default value: ""

mpe-end-regex-
expression

The regex expression marking the end of the text
to extract.

Allowable values: Any text

Default value: ""

mpe-extract-mode See mpe-extra-text-regex-conclude-block

Allowable values: INCLUSIVE, EXCLUSIVE

Default value: EXCLUSIVE

mpe-start-search-position See mpe-regex-conclude-block

Allowable values: inherited

Default value: 1
304

mpe-start-end-regex-conclude-block
Methods

none

User Menu Choices

configure-start-end-regex-conclude-block.-.-.

Relations

none

mpe-text-source See mpe-extracting-conclude-block

Allowable values: inherited

Default value: MPE-RECEIVER-TEXT

mpe-destination See mpe-variable-destination-conclude-block

Allowable values: inherited

Default value: MPE-WORKING-TEXT

mpe-write-mode See mpe-conclude-block

Allowable values: PREPEND, APPEND, OVERWRITE

Default value: OVERWRITE

mpe-description See _mpe-object

Allowable values: inherited

Default value: ""

Attribute Description
305

mpe-start-of-text-to-end-regex-conclude-block
Extracts the text from the beginning of the text buffer to the end expression.

Class Inheritance Path

mpe-start-of-text-to-end-regex-conclude-block,
_mpe-extra-text-regex-conclude-block, _mpe-regex-conclude-block,
_mpe-extracting-conclude-block, _mpe-variable-destination-conclude-block,
_mpe-conclude-block, _mpe-filter-block, _mpe-object, object, item

Attributes

Attribute Description

mpe-end-regex-
expression

The regular expression defining the end of the
text.

Allowable values: Any text

Default value: ""

mpe-extract-mode See _mpe-extra-text-regex-conclude-block

Allowable values: INCLUSIVE, EXCLUSIVE

Default value: EXCLUSIVE

mpe-start-search-position See _mpe-regex-conclude-block

Allowable values: inherited

Default value: 1

mpe-text-source See _mpe-extracting-conclude-block

Allowable values: inherited

Default value: MPE-RECEIVER-TEXT
306

mpe-start-of-text-to-end-regex-conclude-block
Methods

none

User Menu Choices

configure-start-of-text-to-end-regex-conclude-block.-.-.

Relations

none

mpe-destination See _mpe-variable-destination-conclude-block

Allowable values: inherited

Default value: MPE-WORKING-TEXT

mpe-write-mode See _mpe-conclude-block

Allowable values: PREPEND, APPEND, OVERWRITE

Default value: OVERWRITE

mpe-description See _mpe-object

Allowable values: inherited

Default value: ""

Attribute Description
307

mpe-static-conclude-block
Concludes a static value to a single attribute of the mpe-string-receiver.

Class Inheritance Path

mpe-static-conclude-block, _mpe-variable-destination-conclude-block,
_mpe-conclude-block, _mpe-filter-block, _mpe-object, object, item

Attributes

Methods

none

Attribute Description

mpe-value The value to conlude

Allowable values: Any value

Default value: ""

mpe-destination See mpe-variable-destination-conclude-block

Allowable values: :inherited

Default value: MPE-WORKING-TEXT

mpe-write-mode See mpe-conclude-block

Allowable values: PREPEND, APPEND, OVERWRITE

Default value: OVERWRITE

mpe-description See _mpe-object

Allowable values: inherited

Default value: ""
308

mpe-static-conclude-block
User Menu Choices

configure-static-conclude-block.-.-.

Relations

none
309

mpe-string-position-block
Extracts the text between (inclusive) the start position and the end position in the
source text.

Class Inheritance Path

mpe-string-position-block, _mpe-extracting-conclude-block,
_mpe-variable-destination-conclude-block, _mpe-conclude-block,
_mpe-filter-block, _mpe-object, object, item

Attributes

Attribute Description

mpe-start-position The start position of the text to extract

Allowable values: Any integer

Default value: 1

mpe-end-position The end position of the text to extract

Allowable values: Any integer

Default value: 2

mpe-text-source See _mpe-extracting-conclude-block

Allowable values: inherited

Default value: MPE-RECEIVER-TEXT

mpe-destination See _mpe-variable-destination-conclude-block

Allowable values: inherited

Default value: MPE-WORKING-TEXT

mpe-write-mode See _mpe-conclude-block
310

mpe-string-position-block
Methods

none

User Menu Choices

configure-string-position-block.-.-.

Relations

none

Allowable values: PREPEND, APPEND, OVERWRITE

Default value: OVERWRITE

mpe-description See _mpe-object

Allowable values: inherited

Default value: ""

Attribute Description
311

mpe-string-receiver

Class Inheritance Path

mpe-string-receiver, _mpe-object, object, item

Attributes

Methods

none

User Menu Choices

none

Relations

_mpe-from-text-buffer

_mpe-from-message-filter

Attribute Description

mpe-receiver-text

Allowable values: Any text

Default value: ""

mpe-working-text

Allowable values: Any text

Default value: ""

mpe-description

Allowable values: Any text

Default value: ""
312

mpe-terminal-block
mpe-terminal-block
Marks the end of processing. The terminal block deletes the token.

Class Inheritance Path

mpe-terminal-block, _mpe-filter-block, _mpe-object, object, item

Attributes

Methods

none

User Menu Choices

none

Relations

none

Attribute Description

mpe-description See _mpe-object

Allowable values: inherited

Default value: ""
313

mpe-text-buffer
A message text buffer receives text from external sources via the api mpe-add-
text-to-buffer. Once text is received, the mpe-text-buffer tests the message filters
(mpe-message-filter) connected at an output of the text buffer.

Class Inheritance Path

mpe-text-buffer, _mpe-object, object, item

Attributes

Attribute Description

mpe-data-source-name A word or words naming the source of the text.
(currently not required.)

Allowable values: Any text

Default value: ""

mpe-data-source-
description

A description of the text data source. (currently
not required.)

Allowable values: Any text

Default value: ""

mpe-maximum-buffer-
length

The maximum length of text to store in a text
buffer. The upper limit of the length of this buffer
is the length of a text string in G2 (roughly 64000).
If the length of the buffer exceeds this limit, excess
characters will be removed from the beginning of
the buffer.

Allowable values: Any integer

Default value: 10000
314

mpe-text-buffer
Methods

mpe-text-buffer::mpe-add-text-to-buffer

mpe-text-buffer::mpe-clear-buffer

User Menu Choices

configure-text-buffer.-.-.

mpe-clear-buffer

mpe-show-buffer

Relations

_mpe-from-text-buffer

mpe-description See _mpe-object

Allowable values: inherited

Default value: ""

Attribute Description
315

mpe-word-line-conclude-block
Extracts a single value represented by a given word on a given line. Words are
space delimeted and lines are ^J delimited.

Class Inheritance Path

mpe-word-line-conclude-block, _mpe-extracting-conclude-block,
_mpe-variable-destination-conclude-block, _mpe-conclude-block,
_mpe-filter-block, _mpe-object, object, item

Attributes

Attribute Description

mpe-line-delimeter

Allowable values: Any text

Default value: " "

mpe-line-number The line the word is on.

Allowable values: Any integer

Default value: 1

mpe-word-delimeter

Allowable values: Any text

Default value: " "

mpe-word-number The word number to extract.

Allowable values: Any integer

Default value: 1
316

mpe-word-line-conclude-block
Methods

none

User Menu Choices

configure-word-line-conclude-block.-.-.

Relations

none

mpe-text-source See mpe-extracting-conclude-block

Allowable values: inherited

Default value: MPE-RECEIVER-TEXT

mpe-destination See mpe-variable-destination-conclude-block

Allowable values: inherited

Default value: MPE-WORKING-TEXT

mpe-write-mode See mpe-conclude-block

Allowable values: PREPEND, APPEND, OVERWRITE

Default value: OVERWRITE

mpe-description See _mpe-object

Allowable values: inherited

Default value: ""

Attribute Description
317

create-message-block
Creates a message using attributes of the ompe-string-receiver and the block.

Class Inheritance Path

ompe-create-message-block, _ompe-block, _mpe-filter-block, _mpe-object,
object, item

Attributes

Attribute Description

ompe-message-server The name of the message server to create the
message in.

Allowable values: Any symbol

Default value: NONE

ompe-category The category of the message created. This value is
overridden if the ompe-category of the ompe-
string-receiver has a value.

Allowable values: Any text

Default value: ""

ompe-options The standard options for creating an smh-
message. e.g. "-r"," -a","-i", "-noack", "-nohist"

Allowable values: Any text

Default value: "-r"

ompe-priority The priority of the message to create.

Allowable values: Any integer

Default value: 10
318

create-message-block
Methods

none

User Menu Choices

configure-create-message-block.-.-.

Relations

none

ompe-lifetime The length of time in seconds the created message
should exist. (-1 = indefininte.)

Allowable values: Any integer

Default value: -1

mpe-description See mpe-object

Allowable values: inherited

Default value: ""

Attribute Description
319

ompe-delete-message-block
Deletes messages from one or all servers matching the target and sender specified
in the string receiver and the category to delete in the block.

Class Inheritance Path

ompe-delete-message-block, _ompe-block, _mpe-filter-block, _mpe-object,
object, item

Attributes

Methods

none

User Menu Choices

configure-delete-message-block.-.-.

Attribute Description

ompe-message-server The name of a message server. Specifying all as
the name of the message server deletes messages
matching the target, sender, and category to
delete from all message servers.

Allowable values: Any symbol

Default value: ALL

ompe-category-to-delete The category of message to delete.

Allowable values: Any text

Default value: ""

mpe-description See mpe-object

Allowable values: inherited

Default value: ""
320

ompe-delete-message-block
Relations

none
321

ompe-opac-subtask-start-block
Spawns the opac procedure named in the ompe-opac-subtask-start-name of the
block. The target and sender are provided by the ompe-string-receiver. Local
arguments are also passed to the opac procedure. The local arguments passed are
the values of the string recevier attributes listed in the ompe-local-arguments of
the ompe-opac-subtask-start-block.

Class Inheritance Path

ompe-opac-subtask-start-block, _ompe-block, _mpe-filter-block, _mpe-object,
object, item

Attributes

Methods

none

Attribute Description

ompe-opac-subtask-start-
name

The name of the opac-subtask-start block.

Allowable values: Any symbol

Default value: NONE

ompe-local-arguments A comma separated list of string receiver
attribute names. Each entry will be passed in the
specified order to the opac routine as a local
argument.

Allowable values: Attribute names of the receiver object

Default value: ""

mpe-description See mpe-object

Allowable values: inherited

Default value: ""
322

ompe-opac-subtask-start-block
User Menu Choices

configure-opac-subtask-start-block.-.-.

ompe-go-to-procedure

Relations

none
323

ompe-string-receiver
An object passed through the filter blocks (mpe-filter-block) to hold the identified
message, to hold local variables, and to control block execution.

Class Inheritance Path

ompe-string-receiver, mpe-string-receiver, _mpe-object, object, item

Attributes

Attribute Description

ompe-sender The opfo-external-name of the sender opfo-
domain-object.

Allowable values: Any text

Default value: ""

ompe-target The opfo-external-name of the target opfo-
domain-object.

Allowable values: Any text

Default value: ""

ompe-category the smh-message-category

Allowable values: Any text

Default value: ""

ompe-message-text

Allowable values: Any text

Default value: ""
324

ompe-string-receiver
Methods

none

User Menu Choices

none

Relations

none

ompe-additional-text

Allowable values: Any text

Default value: ""

mpe-receiver-text The identified message text.

Allowable values: inherited

Default value: ""

mpe-working-text A text area for any processing requiring more that
one block.

Allowable values: inherited

Default value: ""

mpe-description See _mpe-object

Allowable values: inherited

Default value: ""

Attribute Description
325

Application Programmer's Interface
This section describes the public procedures and methods defined by Integrity
Message Parsing Engine.

mpe-current-real-time-as-time-stamp

mpe-text-buffer::mpe-add-text-to-buffer

mpe-text-buffer::mpe-clear-buffer

mpe-current-real-time-as-time-stamp

Synopsis

mpe-current-real-time-as-time-stamp
(block: _mpe-filter-block, receiver: mpe-string-receiver)
-> timestamp: text

Description

Returns the current real time as a time stamp.

Argument Description

block The filter block currently processing the string
receiver

receiver The current thread of the block procedure

Return Value Description

timestamp The current real time as a time stamp
326

Application Programmer's Interface
mpe-text-buffer::mpe-add-text-to-buffer

Synopsis

mpe-text-buffer::mpe-add-text-to-buffer
(ltb: mpe-text-buffer, text-to-add: text)

Description

mpe-add-text-to-buffer is the main api to a mpe-text-buffer. Each call to this api
adds the TextToAdd to the buffer and tests the message filters (mpe-message-
filter) connected at an output of the text buffer.

mpe-text-buffer::mpe-clear-buffer

Synopsis

mpe-text-buffer::mpe-clear-buffer
(ltb: mpe-text-buffer)

Description

Calling mpe-clear-buffer empties the internal text buffer.

Argument Description

ltb The mpe-text-buffer to add text to

text-to-add The text to add to the mpe-text-buffer

Argument Description

ltb The mpe-text-buffer to be cleared.
327

User Menu Choices
This section describes the user menu choices defined by Integrity Message
Parsing Engine:

mpe-clear-buffer

mpe-show-buffer

mpe-turn-debugging-off

mpe-turn-debugging-on

ompe-go-to-procedure

mpe-clear-buffer

Applicable Class

mpe-text-buffer

Description

mpe-show-buffer

Applicable Class

mpe-text-buffer

Description

mpe-turn-debugging-off

Applicable Class

_mpe-debug-block

Description

Turns off the debugging functionality of the block.
328

User Menu Choices
mpe-turn-debugging-on

Applicable Class

_mpe-debug-block

Description

Turns on the debugging functionality of the block.

ompe-go-to-procedure

Applicable Class

ompe-opac-subtask-start-block

Description

Shows the OPAC Substask Start Block named by the ompe-opac-subtask-start-
block at the top center of the screen
329

Relations
This section describes the relations defined by Integrity Message Parsing Engine.

_mpe-from-message-filter

_mpe-from-text-buffer

_mpe-from-message-filter

Properties

Description

A relation between a string receiver (mpe-string-receiver) and the message filter
(mpe-message-filter).

_mpe-from-text-buffer

Properties

Property Value

inverse _mpe-the-message-filter-of

first class mpe-string-receiver

second class mpe-message-filter

relation type many-to-one

symmetric? false

permanent? false

Property Value

inverse _mpe-the-text-buffer-of

first class mpe-string-receiver

second class mpe-text-buffer

relation type many-to-one
330

Relations
Description

A relation between a string receiver (mpe-string-receiver) and the text buffer
(mpe-text-buffer). You may wish to reference the text buffer to retrive the data
source name or data source description.

symmetric? false

permanent? false

Property Value
331

332

Part III
Autodiscovery
Chapter 15: IP Reachability Analyzer (IPRA)

Provides information on the IP Reachability Analyzer (IPRA) module of the Integrity product
family.

Chapter 16: Object Reachability Analysis (ORA-TWO)

Provides an overview of the Object Reachability Analyzer (ORA-TWO) product, its setup,
and API.

Chapter 17: Domain Export/Import (DXI3)

Provides a description of how to import and update the domain map.

Chapter 18: Open View Map Importer (OVMAP)

Provides an introduction to the Open View Map Importer (OVMAP module and describes
how to install and setup OVMAP .

Chapter 19: Ping Manager

Introduces the Ping Manager and describes how to install, setup, and run the Ping Manager.
333

334

15
IP Reachability
Analyzer (IPRA)
Provides information on the IP Reachability Analyzer (IPRA) module of the
Integrity product family.

Introduction 335

Setting up G2/IPRA 336

Setting Up the Ping Manager 338

Summary of IPRA Default Behavior 340

Procedures 341

Introduction
The IP Reachability Analyzer (IPRA) product is a starting point for providing
reachability analysis, using other products that are part of the Integrity family of
products. IPRA provides the foundation upon which the end-user application is
based.

The IP Reachability Analyzer provides the configuration items necessary to
support the Ping Manager, SNMP trap handling, Object Reachability Analysis
(ORA-TWO), and HP OpenView and/or Integrity DXI3-format domain map
importation.
335

Setting up G2/IPRA
To set up G2/IPRA:

1 Initializations exist to update predefined parameters automatically.

The initializations are:

• Ipra-synchronous-interface - SNMP get/set/send traps (default = tcp-ip
host "localhost" port-number 22044)

• Ipra-event-interface - SNMP receive traps traps (default = tcp-ip host
"localhost" port-number 22045)

• Ipra-scheduled-ping-interface- scheduled polling traps (default = tcp-ip
host "localhost" port-number 22053)

• Ipra-demand-ping-interface- demand polling traps (default = tcp-ip host
"localhost" port-number 22050)

• Ipra-community-ro- community string for performing snmp gets (default
= public)

• Ipra-nms-module- module name of network management station (default
= ipra)

• Ipra-snmp-timeout- timeout for SNMP gets (default = 20s)

• Ipra-snmp-retry-count- retry count for SNMP gets (default = 10)

• Ipra-use-java-snmp- true if using SNMP Java based bridge, (default =
false)

• Ipra-use-management-file- use a .csv file listing managed devices to
indicate which snmp devices to monitor (default = " ")

• Ipra-snmp-interface-for-gets- the gsi interface configured for snmp
gets/sets (defualt = ipra-synchronous-interface)

• Ipra-poll-interval- the default poll interval for ipra (default = 600s)

• Ipra-poll-timeout- the timeout for ipra polling (default = 30s)

• Ipra-poll-retries- the number of retries for ipra polling (default = 3)

• Ipra-repoll-interval- the minimum time lapse in seconds between
successive polls of an ip card (default = 80s)

• ipra-root-cause-poll-interval- the polling interval for ip cards that are root
causes (default = 300)

• ipra-ping-config-file-path and name of configuration file to write
(default= \tmp\scheduled - accessed by your-upload-proc, see below)
336

Setting up G2/IPRA
2 "your-upload-proc" sets the management status of interfaces depending on
the management state of the containing SNMP device and writes the interface
Ping Manager configurations to a file. It also ensures that at least one interface
of a managed switch is periodically polled. By default interfaces of a switch
are virtual and therefore not connected to anything i.e. unmanaged. This
routine concludes that one of these is managed and adds it to the
configuration file. It also sets the management status of ports - any port not
connected to a managed interface or managed switch (via another port) will
be set as unmanaged.

3 Each time the gsi-interface-status of a gsi-interface is reset from 2, a reset
procedure initiates a reconnection. If the bridge in question is the ipra-
scheduled-ping-interface the configuration file is automatically uploaded. In
addition it calls a routine to periodically poll all managed ports, only if a
procedure invocation for this is not already live.

4 Make changes if necessary to the following ipra methods (for example,
implement logging features, etc.)

• Ipra-card::ora-two-poll-node

• Ipra-port::ora-two-poll-node

• Ipra-domain-object::ora-two-node-type

• Ipra-domain-object::ora-two-fail-method

• Ipra-domain-object::ora-two-recover-method

• Ipra-domain-object::ora-two-poll-fail-method

• Ipra-domain-object::ora-two-predicted-fail-method

• Ipra-domain-object::ora-two-poll-root-cause-method

• Ipra-domain-object::ora-two-poll-recover-method

• Ipra-interface::ora-two-collect-terminal-nodes

• Ipra-interface::ora-two-collect-non-terminal-nodes

• Ipra-interface::ora-two-collect-passive-nodes

• Ipra-router::ipra-collect-snmp-device-interfaces

• Ipra-switch-router:: ipra-collect-snmp-device-interfaces

• Ipra-switch:: ipra-collect-snmp-device-interfaces

• Ipra-ora-two-manager-object::ora-two-domain-consistency-check

• Ipra-ora-two-manager-object::ora-two-collect-all-domain-nodes

• Ipra-ora-two-manager-object::ora-two-collect-related-nodes
337

Setting Up the Ping Manager
Use the following guidelines for using Ping Manager with IPRA:

1 For the ping manager gsi-interface objects in G2, instead of the Ping Manager
object PING-MANAGER-INTERFACE, use the IPRA objects IPRA-
SCHEDULED-PING-INTERFACE and “IPRA-DEMAND-PING-
INTERFACE” provided with IPRA in the Integrity package.

2 Setup and remote procedure calls (RPC’s) should be used the same as noted in
the documentation section on the PING MANAGER.

3 Except for the usage of the IPRA GSI-interface objects instead of the Ping
Manager gsi-interface object PING-MANAGER-INTERFACE, setup and
remote procedure calls (RPC's) should be used the same as noted in the
documentation section on the PING MANAGER.

4 Start a Ping Manager executable for each GSI-interface that you use in IPRA.

5 Ensure that a different port-number is used for each GSI-interface/Ping
Manager executable pair. Ensure that no other GSI-interface is using the same
port-number. To compare port-numbers, use the G2 Inspect: display a table of
every gsi-interface.

6 When you start the Ping Manger executable (pingmgr.exe for Windows),
the version number is displayed.

7 The default port number is 2500 if you start pingmgr without a port
argument. The command with port number to be entered for IPRA-
SCHEDULED-PING-INTERFACE and IPRA-DEMAND-PING-INTERFACE are
respectively:

pingmgr 22050

pingmgr 22052

8 These line commands for Pingmgr executable can use the available ping-
manager argument form. This includes the timeout for the ping manager -
which is set at the startup of the pingmgr executable.

For Unix, the ping manager command is:

$./pingmgr {port-number} {-t[imeout] n} {-r[etries] m}

For the Windows command prompt, the command is:

Pingmgr {port-number} {-v[erbose]} {-t[imeout] n} {-r[etries] m}
338

Setting Up the Ping Manager
Troubleshooting an IPRA Ping Manager
GSI-Interface

Running the Ping Manager requires a gsi-interface status of 2 on the gsi-interface
objects. Reference the GSI interfaces found on the ipra kb workspaces Ipra-Top-
level ws > Application Objects > Receiver objects > Ping/SNMP interface.

The following is a checklist to use when troubleshooting the gsi-interface-status
attribute of a gsi-interface:

1 The ping manager executable is started up on a Unix window or Windows
Command prompt. No error messages should appear at the startup of the
pingmgr executable. If the startup is successful, the executable should output
the line stating that it is Waiting to accept a connection.

2 Check for error messages on the machine that is running the pingmgr. If you
have opened a Unix window or Windows command prompt for the
executable command, look there for execution errors. If you have redirected
the output to a log file via a > or >> in the executable command, then look in
that log file. Check for any suspended execution or repeated error messages
for Ping Manager.

3 If a -2 has been detected on any of the gsi-interfaces of IPRA (IPRA-
SCHEDULED-PING-INTERFACE, IPRA-DEMAND-PING-INTERFACE,
IPRA-SYNCHRONOUS-INTERFACE, IPRA-EVENT-INTERFACE) rules will
fire to reset the IPRA gsi-interfaces via the ipra-reset-interface. You can
accomplish this manually by disabling and then enabling the gsi-interface.

4 Make sure that the Gsi-interface is enabled and not disabled.

5 When a network connection is broken, or a host processor is not available, the
ping manager executable may have stopped. Check for error messages
and/or suspension of the executable, using step 1, above. If the executable has
stopped, then it should be restarted.

6 In G2, ensure that the gsi-interface for the pingmgr has its attribute GSI
connection-configuration set up to point to the machine on which the
executable is running. If the executable is running on the same machine, use
localhost, otherwise use the name of the machine on which the executable is
running. You can also use the ip address for the name.

7 Make sure that you can ping the machines from each other. If the executable is
running on ABC and G2 is running on XYZ, then you should be able to
successfully "ping ABC" from a command line in XYZ, and "ping XYZ" from
a command line in ABC.

8 Make sure that the port-number is not in conflict with another gsi-interface
port-number. Use the G2 inspect: "display a table of every gsi-interface".
339

Summary of IPRA Default Behavior
Two key IPRA classes are:

• ipra-snmp-device

Describes objects that have an SNMP agent installed. This implies that
AutoDiscovery will have obtained information regarding the interfaces of this
device. The assumption is made that this device is in some way important to
the network and therefore merits some form of monitoring. The default
behaviour of IPRA is to therefore set this device as a MANAGED device,
meaning that its pollable interfaces will be schedule polled (see below for an
explanation of pollable and scheduled polling). It is intended that this class
hierarchy be extendable by the user or by future releases of IPRA to contain
previously unknown types of SNMP devices.

• ipra-packet-wrangler

Describes objects that have packet routing capabilities. This includes but is not
limited to: routers, switches, switch-routers. ipra-packet-wrangler is a subclass
of ipra-snmp-device. It is intended that this class hierarchy be extendable by
the user or by future releases of IPRA to contain previously unknown types of
routing devices.

It is imperative that the user place new class definitions in the correct hierarchy.
All non-packet-routing SNMP devices inherit from ipra-snmp-device and all
packet-routing SNMP devices inherit from ipra-packet-wrangler.

IPRA has the following default behavior:

• All SNMP devices are managed.

• All non-SNMP devices are unmanaged.

• All interfaces of devices that inherit from ipra-packet-wrangler are non-
terminal.

• All interfaces of devices that do not inherit from ipra-packet-wrangler are
terminal.

• An interface is considered pollable if:

– It is dxi3-connected-to another interface.

– It is not an ISDN or software-loop-back interface.

• All interfaces that belong to a managed device that are pollable are also
managed.

• All managed interfaces are schedule polled.
340

Procedures
Note that the ipra-ora-two-poll-node method takes care of which poll to perform:

• SNMP if the osi-layer3-address is empty.

• ICMP if the osi-layer3-address is not empty.

When ipra-ora-two-collect-x-nodes is called (where x is terminal/non-
terminal/passive), it checks to see that the node is of type x and if it is pollable.
This accounts for interfaces which have been discovered but are not pollable
because they are not connected to another interface.

Procedures
IPRA procedures are user customizable routines for initializing, checking ipra-
interface objects, and setting the gsi-interfaces used for polling.

ipra-scheduled-poll-initialization
(pi: class gsi-interface)

Initializes the interface and scheduled polls. The user should make changes if
necessary to any of its called procedures. This initialization does the
following, by default:

• Sets the management-state of SNMP Devices by calling ipra-set-snmp-
management-status.

• Decides if an interface is pollable by calling ipra-check-object-pollable.

• Decides if an interface is managed by calling ipra-check-object-managed.

• Creates a ping configuration file of all managed interfaces that have
osi-layer-3-addresses and loads it into the Ping Manager bridge by calling
ipra-set-interfaces-to-icmp-poll. This procedures assumes G2 and the Ping
Manager bridge are on same machine.

• Starts scheduled polling of managed interfaces that have no osi-layer-3-
address.

By default this procedure sets all SNMP devices as managed objects - if
desired override the for-loop to alter the selection of managed/unmanaged
SNMP devices. Note that this directly affects the number of interfaces that will
be schedule polled because only those interfaces whose containing device is
managed will be collected for scheduled polling (both ICMP and SNMP).
341

ipra-set-snmp-device-management-status
()

Checks if an object is an IPRA pollable interface. The user can extend the
number of unpollable interfaces by editing this procedure, at a minimum the
following defaults should be adhered to:

• The interface should not be a software loopback

• The interface should not be ISDN

• The interface should be dxi3-connected-to another interface

ipra-check-object-pollable
(intf: class ipra-interface)
-> result: truth-value

Checks if an ipra-interface is network pollable.

ipra-check-network-cnx
(intf: class ipra-interface)
-> result: truth-value

Checks if an ipra-interface is network connected.

ipra-check-object-managed
(intf: class ipra-interface)

Checks if an ipra-interface is managed. This procedure sets the ipra-interface
object-management-state to either managed or unmanaged. For an interface
to be managed:

• It must be pollable.

• Its superior device must be managed.

ipra-set-interfaces-to-icmp-poll
(pi: class gsi-interface)

Collects the interfaces that are managed and ICMP ping pollable, and writes
them to a ping configuration file. It then uploads the scheduled ping gsi-
interface automatically. This assumes that the G2 process and the scheduled
ping manager are on the same machine. The user should make changes if this
is not the case.

ipra-firewall-cnx
(fwdevice: text, fwdeviceip: text, nwdevice: text, pingupdate: truth-value)

Creates and connects devices that are behind firewall(s) to the devices in the
imported domain map. You specify the fwdevice, which is the opfo-external-
name of the device to which to connect, fwdeviceip, which is the IP address of
the device to which to connect, and the nwdevice, which is the opfo-external-
name of the device to which to connect. The device is created, placed on the
domain map workspace, and connected to an ethernet interface of the
342

Procedures
network device, which must be managed. If pingupdate is true, the device is
added to the scheduled list (file) of polled devices and to the Ping Manager
currently doing scheduled polling.

ipra-reset-domain-objects-nodes
()

Initializes all ora-two list attributes of ipra-interfaces. You typically call this
procedure with ODG Discovery (OpEx Discovery Gateway). You must call
this procedure if the map changes in any way, because the ora-two lists of the
interfaces must be repopulated.

ipra-reset-interface
(pi: class gsi-interface)

Resets a gsi-interface if its bridge connection is lost after 60 seconds.
343

344

16
Object Reachability
Analysis (ORA-TWO)
Provides an overview of the Object Reachability Analyzer (ORA-TWO) product,
its setup, and API.

Introduction 346

Concepts 346

Setup 347

Manager Object 348

Event Methods 350

Domain Methods 351

Support Procedures 354

Additional Procedures 356

Report Procedures 357
345

Introduction
The Object Reachability Analyzer (ORA-TWO) product provides root cause
reachability analysis for any ‘threaded’ network. A threaded network is one in
which a physical or logical path propagates content from one object of interest to
another. The content passed may be any form of concept that follows a given
path, for examples:

• Data, as in the case of communications, or

• Fluid, in the case of a pipeline; or

• Electric as in the case of a power transmission grid.

Reachability analysis determines where along the path the initial cause or
probable cause of the fault, and the objects effected by that failure, are located.
ORA-TWO assumes bi-directional flow of content, and any successful path to an
object provides reachability. ORA-TWO supports multi-path, or looping domain
configurations.

Concepts
The concepts used in determining failures within a network depend upon the
representation of the network and the objects contained within the network. A
network or domain, in this reference, is any collection of objects tied together in
some consistent form.

Within G2, connectivity, hierarchy, or relationships may tie together groups of
objects. The objects themselves are referred to as nodes within a network. A node
represents some part of the network that has significance to the domain.

Node Types

Three distinct types of nodes can exist within a domain:

• Non-terminal nodes imply that content flows through the node with no
concept of direction. Multiple links to other nodes from a non-terminal device
are supported in a bi-directional manner. This type of node has the ability to
be tested (polled) to determine the health of the entity.

For example, a local substation for electrical power may take power or
distribute power from/to other substations within its local network.

• Terminal nodes imply that content may flow into but not exit to other nodes;
they, however, have a means of testing for health.

For example, a house connected to a local substation is a terminal node as long
as a power failure monitor is available for testing.
346

Setup
• Passive nodes are those that cannot be tested. They act as terminal or non-
terminal nodes but cannot be tested for current state. No direct failure events
may be posted against these devices, although implied possible failures may
be posted.

For example, a transformer is used to step down the voltage from the power
station to the house, but the transformer cannot be tested remotely.

Classes, relationships, or other criteria may be used to determine the node type
within the domain. The determination must be consistent from all views (i.e., a
node may not be seen as terminal from one viewpoint and non-terminal from
another).

Polling

Polling is a process to determine the state of health of the node that is polled; it is
followed by a series of polls to the surrounding nodes in order to determine the
state of health of the nearby domain. The initiation of network analysis is called
by the user, either to ora-two-fail-method or ora-two-recover-method. These
methods then begin a series of polls to the surrounding nodes in order to
determine the state of health of the nearby domain. The demand polling of the
local area is done in an asynchronous manner to minimize the time to determine
the root cause of the failure.

Setup
The ora-two.kb module contains the underlying algorithm driving the analysis.

Thes following instructions are for merging the ORA-TWO product into an
existing application.

Note If you are using Integrity, ora-two is already merged into your application.

To merge ora-two into an existing application:

1 Choose File > KB Modules > Merge KB and enter ora-two.kb to merge it into
the existing application.

2 Display the module hierarchy by choosing Tools > Inspect and then entering
the following Inspect command:

show on a workspace the module hierarchy

3 Specify ora-two as the required module by selecting the top most application
module table and entering ora-two in the directly-required-modules attribute.

4 Transfer the methods defined within ora-two-example.kb to an appropriate
location within your application module.
347

Manager Object
The ora-two-top-level workspace contains an ora-two-manager-object used for
creating the ora-two manger object within the user domain.

To create a manager object:

1 Display the ora-two-top-level workspace, select the manger object to attach it
to the mouse, and drop the manager object onto a user workspace near the
object that closely represents the location of G2 within the environment.

2 Name the manager object and attach it to the root node of the domain (the
root node supports the polling of devices).

The ora-two-manager-object is a configuration object that is attached to a node. It
contains the basic configuration for messages that are generated against the node
for which these messages are attached.

You should modify the table of the new ora-two-manager-object to match the
current knowledge base. The two attributes of the manger object are:

ORA-TWO makes asynchronous polls to surrounding nodes whenever the API
for either ora-two-fail-method or ora-two-recover-method is called by the user.
These proactive polls are independent and may be running concurrently in
different parts of the network.

Attribute Description

ora-two-poll-complete-test-
interval

The delay between checks to determine if poll
is complete. (Wait for poll to complete
checking every ora-two-poll-complete-test-
interval.

Allowable values: any positive float

Default value: 1.0

ora-tow-recover-poll-
predicted fail-nodes

The flag to indicate if predicted to fail objects
will be polled to determine health when the
root cause of the predicted fail is recovered.

Allowable values: any truth value

Default value: True
348

Manager Object
Take care to filter noisy fail/recover messages to avoid system overloading due to
polling. If multiple polling nodes or domains exist, create an ora-two-manager-
object for each polling node or domain.
349

Event Methods
The following two methods begin propagation through the domain:

• ora-two-fail-method — Called when a failure event is received.

• ora-two-recover-method — Called when the node recovers.

These methods may be called from either a node down/up trap in the case of
SNMP or poll failure/recover when using the Ping Manager. You are responsible
for calling these API’s from whatever generates an asynchronous event within the
domain.

Each method requires the ora-two-manager-object associated with the object and
the object itself. Multiple domains within the same knowledge base may have
different manager objects defining the categories and priorities. You are
responsible for determining the proper manager object for each domain object
passed into the method.

The signature of these methods is:

ora-two-fail-method
(omo: class ora-two-manager-object, tgt: class opfo-domain-object)

ora-two-recover-method
(omo: class ora-two-manager-object, tgt: class opfo-domain-object)
350

Domain Methods
Domain Methods
The interaction between a node and the surrounding environment requires
methods that determine the:

• Type of devices within the immediate vicinity.

• Health of those devices.

• Message text to be posted against an object.

These methods are provided by the example KB and may be extended by the user
depending upon the domain.

ora-two-poll-node
(tgt: class opfo-managed-object, omo: class ora-two-manager-object)
-> status: symbol

Polls a target node of the specified manager. Returns the symbol OK or the
symbol Fail depending upon the poll response from a node. The discovery of
failed and recovered nodes by ORA-TWO causes the poll-node method to be
executed for nodes around the target. This proactive polling is asynchronous
and autonomous between fail and recover events.

It is the user’s responsibility to ensure that:

• This method operates in a non-blocking manner, i.e. multiple polls may
run concurrently.

• Multiple poll requests to the same node are handled efficiently by the
polling method; for example, if three ping requests are made to the same
device, the method will make only one ping and return that response to all
three requests.

ora-two-poll-recover-method
(tgt: class object, omo: class ora-two-manager-object)
-> main-text: text, additional-text: text

Polls a target node of the specified manager, and returns the text and
additional text used in generating a recover poll message.

ora-two-node-type
(omo: class ora-two-manager-object, tgt: class opfo-managed-object)
-> type: symbol

Determines the node type of a target node of the specified manager, and
returns one of the following symbols: terminal-node, non-terminal-node, or
passive-node. A terminal node is defined as one that will not lead to other
nodes, Non-terminal nodes may lead to other nodes, and passive nodes are
ignored by the analysis. Nodes may be identified by class, connections,
relations, or placement.
351

iora-two-collect-non-terminal-nodes
(tgt: class opfo-managed-object, omo: class ora-two-manager-object)
-> node-list: class item-list

Returns an item-list of all non-terminal nodes associated with a target node
associated with the specified manager. The item-list is deleted when
processing is complete.

ora-two-collect-terminal-nodes
(tgt: class opfo-managed-object, omo: class ora-two-manager-object)
-> node-list: class item-list

Returns an item-list of all terminal nodes associated with a target node
associated with a manager. The item-list is deleted when processing is
complete.

ora-two-collect-passive-nodes
(tgt: class opfo-managed-object, omo: class ora-two-manager-object)
-> node-list: class item-list

Returns an item-list of all passive nodes associated with a target node
associated with the specified manager. The item-list is deleted when
processing is complete.

ora-two-root-cause-message
(tgt: class opfo-managed-object, omo: class ora-two-manager-object)
-> main-text: text, additional-text: text

Returns the text and additional text used in generating root cause messages
for a target node associated with the specified manager.

ora-two-poll-fail-message
(tgt: class opfo-managed-object, omo: class ora-two-manager-object)
-> main-text: text, additional-text: text

Returns the text and additional text used in generating a poll fail message for
a target node associated with the specified manager.

ora-two-predicted-poll-fail-message
(tgt: class opfo-managed-object, omo: class ora-two-manager-object)
-> main-text: text, additional-text: text

Returns the text and additional text used in generating a predicted poll fail
message for a target node associated with the specified manager.

ora-two-domain-consistency-check
(omo: class ora-two-manager-object)
-> node-list: class item-list

Returns a list of lists containing related nodes associated with the specified
manager. Each list contains objects that are related together by ora-two
methods but are not related to the manager object. Only clusters with more
than one member are included. Note that this routine traverses the entire
352

Domain Methods
domain related to the manager object and may cause heavy system loading.
You are responsible for deleting the returned list of lists when processing is
complete.

ora-two-recursive-collect-non-terminal-nodes
(tgt: class opfo-managed-object, omo: class ora-two-manager-object)
-> node-list: class item-list

Returns a list of non-terminal nodes bypassing passive nodes for a target node
associated with the specified manager. The health of the node is not
considered as a condition for addition to this list. You are responsible for
deleting the list when processing is complete.

ora-two-recursive-collect-terminal-nodes
(tgt: class opfo-managed-object, omo: class ora-two-manager-object)
-> node-list: class item-list

Returns a list of terminal nodes bypassing passive nodes for a target node
associated with the specified manager. The health of the node is not
considered as a condition for addition to this list. You are responsible for
deleting the list when processing is complete.

ora-two-recursive-collect-passive-nodes
(tgt: class opfo-managed-object, omo: class ora-two-manager-object)
-> node-list: class item-list

Returns a list of passive-nodes for a target node associated with the specified
manager. The health of the node is not considered as a condition for addition
to this list. You are responsible for deleting the list when processing is
complete.
353

Support Procedures
The following procedures determine root cause nodes for a failure and nodes
affected by a root failure.

Note Because failure processing is asynchronous, root cause determination and
affected nodes routines will not be reliable if called from a single node message.
For example, a root cause failure may be flagged before all predicted failures are
determined. Conversely, a node may be determined as predicted to fail before the
root cause is known.

ora-two-find-down-nodes-for-root-cause
(tgt: class object, omo: class ora-two-manager-object)
-> node-list: class item-list

Returns a list of objects that were down nodes associated with a root cause
message. The returned list contains all the nodes that are predicted to fail a
poll, those that have failed a poll, and all of the root cause alarms surrounding
those nodes. This routine determines all down nodes known at the time of the
call. The user is responsible for deleting the returned list when processing is
complete.

ora-two-find-root-causes-for-manager
(omo: class ora-two-manager-object)
-> node-list: class item-list

Returns a list of objects that were the root cause of the failure or that predicted
failure of this manager object. These are the root causes found that are
associated with the manager object. This routine determines all root cause
failures known at the time of the call. The user is responsible for deleting the
returned list when processing is complete.

ora-two-find-root-causes-for-object
(tgt: class object, omo: class ora-two-manager-object)
-> node-list: class item-list

Returns a list of objects that were the root cause of the failure or that predicted
failure of this node object. These are the root causes found that are associated
with any object. This routine determines all root cause failures known at the
time of the call. The user is responsible for deleting the returned list when
processing is complete.

ora-two-recursive-collect-non-terminal-nodes
(tgt: class opfo-managed-object, omo: class ora-two-manager-object)
-> node-list: class item-list

Returns a list of non-terminal nodes, bypassing passive-nodes. The health of
the node is not considered as a condition for the addition to the returned list.
You are responsible for deleting the list when processing is complete.
354

Support Procedures
ora-two-recursive-collect-terminal-nodes
(tgt: class opfo-managed-object, omo: class ora-two-manager-object)
-> node-list: class item-list

Returns a list of terminal nodes, bypassing passive-nodes. The health of the
node is not considered as a condition for the addition to the returned list. You
are responsible for deleting the list when processing is complete.

ora-two-recursive-collect-passive-nodes
(tgt: class opfo-managed-object, omo: class ora-two-manager-object)
-> node-list: class item-list

Returns a list of passive nodes. The health of the node is not considered as a
condition for the addition to the returned list. You are responsible for deleting
the list when processing is complete.
355

Additional Procedures
ora-two-get-state

(tgt: class object, omo: class ora-two-manager-object)
-> state: symbol

Returns one of the following symbos that represents the reachability state of
the object:

• good — State is assumed to be good.

• predicted-fail — This object is predicted to fail poll.

• poll-fail — This object has failed a poll.

• root-cause — Root cause failure.

ora-two-release-object-states
(omo: class ora-two-manager-object)

Releases any objects that have registered ORA-TWO relations with the
manager object by deleting the relationships. Additionally, this procedure
empties internal reference lists and deletes unused poll objects. Note that this
is done on a per manager basis.
356

Report Procedures
Report Procedures
ipra-ora-two-report

(tgt: class ipra-domain-object, win: class g2-window)
-> report: text

Returns a text string containing a list of all terminal and non-terminal nodes in
the network domain along with their external names (opfo-external-name).
Use this procedure as a debugging tool to determine whether the network has
been set up properly.

ipra-ora-two-report
(tgt: class ipra-domain-object, win: class g2-window)
-> report: text

Returns a text string containing a list of all terminal and non-terminal nodes in
the network domain along with their external names (opfo-external-name).
Unlike ipra-ora-two-report, this method provides an abbreviated list of nodes
without any repeats.
357

358

17
Domain
Export/Import (DXI3)
Provides a description of how to import and update the domain map.

Introduction 360

Integrity Export Import Toolbox 360

The DXI3-file Format 360

A “Bad” Import File and Data Corruption 363

Type to Class Mapping 364

Containment and Other Types of Hierarchies 365

Exporting Domain Maps 365

Importing a Domain Map 368

Example 369

DXI3 APIs 372
dxi3-register-domain-item 373
dxi3-register-domain-relation 374
dxi3-register-domain-attribute-value 375
359

Introduction
The Domain eXport Import (DXI3) component allows you to import and export
domain objects into Integrity.

The two ways of importing or updating the domain map in Integrity are:

• Calling APIs that are defined by the DXI3 module.

• Reading a text file formatted in the dxi3 file format defined by the DXI3-FILE
module.

The DXI3-FILE module is a shell around the DXI3 module. It parses the import
file and calls the DXI3 APIs. Understanding the behavior of the dxi3 file import,
requires an understanding of the DXI3 APIs.

Integrity Export Import Toolbox
Here are the palettes in the Integrity Export Import toolbox:

The DXI3-file Format
The format for the dxi3 import file is the following:

******<object id> (required)

action: {create|delete} [<type>] (optional)

superior: [<object id>] (optional)

delete-superior: [<object id>] (optional)

connected: [<object id>,...] (optional)

delete-connected: [<object id>,...] (optional)

attribute: <attribute name> = <attribute
value>

(Nx optional)
360

The DXI3-file Format
The dxi3 import searches for an empty line followed by the 6 stars and the object-
id.

Every line after this line is optional and can appear in any order. Each line
represents a single call to any of the three register-domain APIs in DXI3. The
‘descriptor at the start of each line determines which of the three is called:

• 'action:' implies call dxi3-register-domain-item(DXI, <object id>, <type>,
{'create'|'delete'})

• 'superior:' implies call dxi3-register-domain-relation(DXI, <object id>,
'superior', <object id>, 'create').

• 'delete-superior:' implies call dxi3-register-domain-relation(DXI, <object id>,
'superior', <object id>, 'delete').

• 'connected:' implies call dxi3-register-domain-relation(DXI, <object id>,
'connected', <object id>, 'create').

• 'delete-connected:' implies call dxi3-register-domain-relation(DXI, <object
id>, 'connected', <object id>, 'delete').

• 'attribute:' implies call dxi3-register-domain-attribute(DXI, <object id>,
<attribute name>, <attribute value>).

• 'relation:' implies call dxi3-register-domain-relation(DXI, <object id>,
<relation name>, <object id>, 'create').

• 'delete-relation:' implies call dxi3-register-domain-relation(DXI, <object id>,
<relation name>, <object id>, 'delete').

Remarks on the Syntax

• The dxi3-file must contain a nonempty header. The dxi3 import searches for
the header, then searches for an empty line followed by the 6 stars and the
object-id. Every line afterwards that is within the object-definition is optional
and can appear in any order. The object definition ends with the next empty
line.

• The SPACE character is NOT ignored unless it is explicitly used as a
separator. For this reason, object-ids and types can be strings that include
spaces.

relation: <relation name> [<object id>,...] (Nx optional)

delete-relation: <relation name> [<object
id>,...]

(Nx optional + required empty
line at end)

******<object id> (required)
361

• The list of object-ids in the 'connected:', 'delete-connected:', 'relation:' and
'delete-relation:' lines should be separated by a comma only. Any space before
or after the comma is considered to be a part of the object-id.

• The 'action:' line does not require a type. In case of delete, a type is ignored. In
case of create, if the type is an empty string, the default class is used (a dxi3
feature).

• If no 'action:' line is specified, the object must exist and is modified by the lines
(a dxi3 feature) that follow.

• The 'superior:', 'delete-superior:', 'connected:', 'delete-connected:', 'relation:'
and 'delete-relation:' can have no object-id(s) specified and these lines are
effectively ignored.

• In 'relation:' and ''delete-relation:' the relation-name should be at least one
character and not a space. Also, the relation-name should be followed by a
single space, otherwise the line is ignored.

• If the descriptor (i.e. any text between the beginning of the line and the first ':')
is unknown, an exception will be reported and the line will be ignored.

• If the action is not 'create' or 'delete', an exception is reported and the line is
ignored.

• If the attribute name cannot be parsed correctly (i.e. the attribute name is an
empty string or the delimiter ' = ' does not exist), an exception is reported and
the line is ignored. The attribute value is allowed to be an empty string (and
thus to have no characters).

• If the relation name cannot be parsed correctly (for example, the relation name
is an empty string or the delimiter ' ' does not exist), an exception is reported
and the line is ignored. The list of object-ids is allowed to be an empty list (and
thus to have no characters).

• The user-defined relations should be read in 'reverse order'. For example:

'******IPAddress1

relation: the-subnet-of SubnetA'

Should be read as: SubnetA will be 'the-subnet-of' IPAddress1.

From dxi3 release 3.1:

• Apart from the first carriage return (which indicates the end of the header), all
other carriage returns are ignored. As a result, the file reader is insensitive to
wrongly placed carriage returns.

• A line that starts with a comment sign ('#') is ignored. Note that for
compatibility reasons, all lines up to the first carriage return are ignored,
regardless of whether the line starts with the comment sign.
362

A “Bad” Import File and Data Corruption
• The 'six stars' containing the object-id effectively sets a local variable
containing the current object-id. All other lines following this statement will
result in dxi3 api-calls using this object-id. It is the responsibility of the dxi3
file generator to ensure that the first statement after the header sets the object-
id. Otherwise, the object-id 'no-name' will be used.

A “Bad” Import File and Data Corruption
Under certain circumstances, the import dxi3 file or calls to the dxi3 APIs might
contain bad data. (A discussion of the definition of bad follows.) Such bad data
has an impact on the domain map in Integrity. This section discusses the types of
bad data that can be recognized, the way the dxi3 import handles the types of bad
data and the effects of it on the domain map in G2.

Types and Handling of 'Bad' Data and DXI3

The following lists the different types of bad data that the dxi3 import may
contain. This list is divided into two parts: errors particularly related to the dxi3
import file, and errors that are common between the dxi3 API and file-import use.

Errors Particular to the dxi3-import File

Errors that apply to the dxi3-import file are:

• Wrong use of delimiters between the object definitions (i.e. other than an
empty line followed by 6 stars and the object-id). Result: import will stop.

• Use of an undefined descriptor. Result: line will be ignored.

• Wrong use of delimiters within a line. Result: if the error in the delimiters is
recognizable, the line will be ignored. Otherwise, inevitably delimiters will be
parsed as part of the contents (e.g. attribute name, object-id, etc.).

In summary, these errors are formatting errors. Any automatic dxi3 file
generation process should be easily debugged such that it will generate a dxi3 file
without these errors.

Errors Common to the dxi3 API and File Use

Errors that are common to the dxi3 API and file use are:

• Use of an object-id of an object that does not exist or will not be generated
within the same commit or that will be deleted within the same commit.
Result: that particular change in a relation or attribute will be ignored. Two
example causes of this type of error are:

– Inconsistent generation of object-ids (i.e. object-id within create line is
generated differently then in a relation or attribute API call). This is a
formatting error and should be easy to debug in the generation process.
363

– Reference to an object outside the set included in the import. This is a
problem of the database query and filter. By ignoring the reference, the
dxi3 import will effectively filter the object.

• Use of an attribute or relation name that is not defined for the class of object(s)
is requested for. Or, the use of an attribute value that does not fit the class
definition. Result: the API call will be ignored. This indicates that the class and
relation definitions in Integrity are not consistent with the expectations in the
generation process. This should be moderately easy to debug.

Effects of 'Bad' Data on the Domain Map

Note Even if bad data enters the dxi3 import process, the domain map in G2 will
never be corrupted from an Integrity perspective. A domain map that results
from an import that contains “bad” data, from an Integrity perspective, will
be a valid domain map; Integrity will not crash because of it.

The only effect of bad data on the domain map is an increase of the differences
between the domain map and the physical network that it represents.

However, many other reasons may exist for differences between the Integrity
domain map and the physical network that it represents in addition to the
exceptions that the dxi3 import process is able to recognize. If the process that
generates the dxi3 file or that is calling the dxi3 APIs is properly debugged, the
number of recognizable exceptions in the dxi3 import will be small. After proper
debugging, the only resulting inconsistencies in the dxi3 import are those that are
very difficult or impossible to detect.

Type to Class Mapping
The type as specified by the dxi3-register-domain-item system procedure is
mapped to a G2 class definition as follows:

1 If a dxi3-type-to-class object (upon the translation workspace) that has an
exact mapping to a g2 class exists, this object is used first.

2 Next, if a dxi3-type-to-class object exists that matches the type using a regular
expression, this object is used.

3 If no matching translations exist, dxi3 looks for an exact mapping to a g2 class
name.

4 If an exact g2 class name is not found, the default class is used.

A dxi3-type-to-class-object can be cloned from the palette upon the top-level
workspace of dxi3.
364

Containment and Other Types of Hierarchies
Containment and Other Types of Hierarchies
In contrast to the dxi(1) import, dxi3 subordinate objects are related to superior
objects via a g2-relation instead of g2-connections. DXI3 builds the hierarchy of
objects via relations at import. For visual organization of the imported objects,
DXI3 places subordinate objects upon the subworkspace of a superior object.
DXI3 depends on the g2-relations for hierarchy operations, not on the placement
of the objects.

As a consequence, the dxi3 imported domain map is no longer intended as a user-
interface. Also, it is not intended to manually modify the domain map.

The reasons for these design decisions are:

1 Many different hierarchical views of the network/domain map are possible.
Users may want to view the same domain map in multiple ways. For instance,
a user may want a view based upon a geographical hierarchy, or based upon a
ip/subnet hierarchy, or based upon a component class hierarchy. Gensym is
currently developing proxy views that can act as a user-interface for the
domain map.

2 The dxi3 import is incremental and allows for deletion of objects. If an object is
deleted in G2, all components on its subworkspace are also deleted. Thus,
from a dxi3 standpoint, objects may be deleted that are not explicitly stated.
Since the hierarchy is very subjective, deletion might cause confusing results.
For instance, using the dxi3 APIs, a user might want to create new subnets
and delete the old ones. If the routers assigned to a subnet have been placed
upon the subworkspace of the subnet, all these routers will be deleted if the
subnet is deleted. By not placing the routers upon the subworkspace, only the
subnet is deleted and all its g2-relations to the routers. The next API calls
might create a new subnet and create new relations to the existing routers.
Conclusion: to delete an object in dxi3 delete the object explicitly.

3 Expressions using g2-relations are much faster to evaluate than those using
g2-connections.

Notes:

• Multiple dxi3-type-to-class definitions may map to the same g2 class.

• Dxi3-type-to-class-objects are NOT used for file export.

Exporting Domain Maps
The domain-map can only be exported to a dxi3 export file using the dxi3-file
module. DXI3 does not contain particular APIs for exporting.

The dxi3 file exports the following data:
365

• All opfo-domain-objects upon the domain-map workspace. (Note that any
non-opfo-domain-object are excluded.)

• The object-id is the opfo-external-name of the object.

• The type is the g2-class name of the object.

• A superior line is only generated if a superior object exists.

• All connected objects.

• All attributes that are of the type value whose names start with any of the
prefixes (as specified in the export-object) and that are not hidden opfo-
domain-object attributes.

• All relations between domain-map objects that are not the standard dxi3
relations. (For example, standard relations would be superior or connected.)

The dxi3-file exporter generates a dxi3-file that can be imported and results in
exactly the same domain map. However, this similarity does not mean that the
dxi3-export file will be identical to the dxi3 file used to import the domain map.
The export file could be different in the following ways:

• The ordering of the object definitions.

• Objects are only be created and never deleted.

• The type of the object. The type is always the name of the g2-class of the
domain item. This means that the dxi3 file export does NOT use dxi3-type-to-
class-objects. The reason is that the type-to-class mapping a multiple to one
mapping is during import. For export, this would result in a one-to-multiple
mapping and is thus infeasible.

• All relations are listed double. That means, if object A is-related-to object B,
the definition of object A would contain the line relation is-related-to B and
the object definition of object B would contain the line relation is-related-to A.
During import, each of these lines alone will set the relation.

• The dxi3 export exports all user-defined relations between objects within the
same domain map, excluding the standard dxi3 relations (i.e., superior and
connected).

• The dxi3 export exports all attributes that start with any of the specified
prefixes.
366

Exporting Domain Maps
To export a domain map:

1 Create an instance of a dxi3-file-export-object, by cloning it from the Toolbox -
Integrity > Export Import palette. Specify the following attributes:

a dxi3-file-name: the full path and file name of the dxi3 export file.

b dxi3-domain-map-workspace: The name of a workspace or the name of an
object with a subworkspace that will hold the instances of the domain
map.

c dxi3-output-prefixes: a sequence of text-strings. The text-strings should
represent prefixes of attribute names to export. The idea is that not all
attributes of an object need to be exported. By starting with a particular
prefix the names of those attributes that need to be exported, the attributes
can be easily selected. By providing a sequence, multiple prefixes can be
specified. If an attribute name starts with any of these prefixes, it will be
exported. The default value is sequence(""), which implies that all user-
defined attributes will be exported. The effect of specifying an empty
sequence sequence() is that no attributes are exported.

2 Choose Start File Export to start the export process. Next to the import object,
the attribute dxi3-status is displayed. This status shows the actual status of the
export process and any exceptions found.

3 The most important status messages and exceptions are logged in the hidden
attribute _dxi3-notes-list. This attribute can be viewed as administrator. In
addition, there is a hidden attribute dxi3-exception-count that counts all
exceptions.

4 The hidden attribute _dxi3-output-attributes can be viewed as administrator
and can be used for debugging. It is an intermediate result. and shows the
classes and their attributes that will be exported. (Note that the dxi3 export
does not and cannot use dxi3-type-to-class-translations since this is not a one-
to-one mapping. Instead it exports the g2-class-name as the type.)

In addition to the actual export of a dxi3 file, the export object can also be used to
generate two types of reports that help you analyze the existing domain map:

• report containment hierarchy writes a text-file that describes the containment
hierarchy and the connections. The path and name of this file is dxi3-file-
name-containment-report.

• report class hierarchy writes a text-file that lists all the objects in the domain
map and their class, sorted by class and name. The path and name of this file
is dxi3-file-name-class-report.
367

Importing a Domain Map
To import a domain map:

1 Determine the classes of objects to import, the object attributes to import and
the type of user-defined relations between these classes to import.

2 Define these classes and relations in G2. (If you ever want to export a dxi3 file,
make sure the name of the attributes you want to export start with a common
prefix. See Exporting Domain Maps.

3 If required, define dxi3-type-to-class-objects that map the type as used in the
dxi3 api-call or file to the correct G2 class name. The use of dxi3-type-to-class-
objects can be avoided by using the G2 class name as the type. See Type to
Class Mapping.

4 Determine a consistent naming convention for the object-ids. The DXI3 import
requires only that object-ids must be unique. However, beware that when
traps arrive, a completion procedure must be able to determine the target of
the trap by generating the object-id out of the information in the trap. Thus,
ensure that the object-id can be constructed out of names that arrive within
the data of a trap.

5 Generate a correct dxi3 import file.

6 Create an instance of a dxi3-file-import-object, by cloning it from the palette on
the dxi3-file-top-level workspace. Specify the following attributes:

a dxi3-translation-workspace: The name of a workspace or the name of an
object with a subworkspace that holds the optional dxi3-type-to-class-
objects. If no translations are required, specify no-translations.

b dxi3-default-class-to-create: a g2 class name (by default opfo-domain-
object). If the type of an object cannot be mapped to a G2 class, this default
class is used.

c dxi3-domain-map-workspace: The name of a workspace or the name of an
object with a subworkspace that will hold the instances of the domain
map. This workspace will hold all instances of the domain map. Therefore
subordinate objects will NOT be placed upon the subworkspace of a
superior object. See Containment and Other Types of Hierarchies. Since
the DXI3 import is incremental, existing objects will be modified. In case
of a completely new import, delete all old domain objects upon this
workspace.

d dxi3-release-after-commit': This is a debugging feature. The dxi3 import
process generates intermediate registration-objects. Being able to look at
these objects can be useful for debugging purposes. The default of this
attribute is true, which implies that these intermediate objects will be
deleted at the end of the import. If this attribute is set to false, the objects
368

Example
are retained. The next start-import will automatically delete them before
the actual import process starts.

e dxi3-only-consider-opfo-domain-objects. This is an optimization feature. If
you are sure that you are only importing subclasses of opfo-domain-object
(as is the case for any regular domain-map import), setting this flag to true
optimizes the performance of the import.

f 'dxi3-do-not-check-for-multiple-registrations. This is an optimization
feature that can improve performance significantly in case of very large
domain maps. Any inconsistent item registration will be detected anyway
by other exception handlers.

g dxi3-default-column-height, dxi3-vert-spacing, and dxi3-horz-spacing: the
dxi3 import places new objects upon the specified domain map workspace
in columns. These three attributes define, respectively, the height of these
columns, and the vertical and horizontal spacing between the objects.

h dxi3-file-name: the full path and file name of the dxi3 import file.

7 Choose Start File Import on the dxi3-file-import-object to start the import
process. Next to the import object, the attribute dxi3-status is displayed. This
status shows the actual status of the import process and any exceptions that it
finds.

8 The most important status messages and exceptions are logged in the
(hidden) attribute _dxi3-notes-list. This attribute can be viewed as
administrator. In addition, there is a (hidden) attribute dxi3-exception-count
that counts all exceptions. The exception list can be viewed in two ways:

a By describing the notes list.

b By choosing Write Exceptions As File. This selection writes the exceptions
list as a file called dxi3-file-name-exceptions.

9 If no exceptions occured or if the exceptions appear to be acceptable, you are
ready to use the domain map.

Example
This example illustrates the use of dxi3. It is a compact example of a hypothetical
and not necessarily realistic network. This example network contains a variety of
components. The dxi3 import file illustrates the use of many features of dxi3.

The example requires the following files:

• dxi3-example.kb

• dxi3-example.txt

Loading dxi3-example.kb loads the dxi and dxi-file modules. It contains all
necessary class definitions and workspaces.
369

To test the dxi3 import:

1 Ensure the path of the import file in the import object is correct.

2 Delete any existing domain map on the domain map workspace.

3 Choose Start File Import on the import object.

To test the dxi3 export:

1 Enure the path of the import file in the import object is correct.

2 Choose Start File Export on the export object.

The Example Network

The following is a drawing of the network in the example. Note that the dxi3
import does NOT result in a similar visual layout. In order to verify the
correctness of the import, one can either inspect the objects and relations directly
in G2, or create the class and containment-hierarchy reports.

(Note the numbers next to the device-connections are the interface-indices.)

The Data Structure

The following is a description of the types of objects and their attributes and
relations:

• Type: Myprefix-Network

• Type: Myprefix-Router

– superior: <a myprefix-network>

• Type: Myprefix-IP-Card

• superior: <a myprefix-router or a myprefix-switch>

• attribute: myprefix-interface-index = <an integer>

• connected: <one or more myprefix-ip-card / myprefix-switch-port /
myprefix-hub-port>

serial

2
0 1 001

2
1 0 1

2

CPU2 Router1 Switch1 Hub1

CPU3

CPU1

Router2 CPU5

CPU6

CPU4
370

Example
• Type: Myprefix-Serial-Card

– superior: <a myprefix-router>

– attribute: myprefix-interface-index = <an integer>

– connected: <one myprefix-serial-card>

• Type: Myprefix-IP-Address

– superior: <a myprefix-ip-card / myprefix-switch-port / myprefix-hub>

– attribute: myprefix-ip-address = <a text>

– relation: the-subnet-of <a myprefix-subnet>

• Type: Myprefix-Subnet

– superior: <a myprefix-network>

– attribute: myprefix-subnet-mask = <a text>

• Type: Myprefix-Switch-Port

– superior: <a myprefix-switch>

– attribute: myprefix-interface-index = <an integer>

– connected: <one or more myprefix-ip-card / myprefix-switch-port /
myprefix-hub-port>

• Type: Myprefix-Hub

– superior: <a myprefix-network>

• Type: Myprefix-Hub-Port

– superior: <a myprefix-hub>

– attribute: myprefix-interface-index = <an integer>

– connected: <one or more myprefix-ip-card / myprefix-switch-port /
myprefix-hub-port>

Notes/Assumptions

• A myprefix-switch might have as subordinate objects both myprefix-ip-
addresses and myprefix-switch-ports.

• A myprefix-switch-port will not have an ip-address.

• A myprefix-hub may or may not have an ip-address as a subordinate.

• A myprefix-hub-port will not have an ip-address.

• When reusing parts of this example in a user's kb, the user should change the
prefix 'myprefix' to any prefixes appropriate to the user's application.

1 Attributes of the superclass opfo-domain-object will never be exported.
371

DXI3 APIs
DXI3 provides APIs to create or destroy objects within G2, relate or unrelate the
objects, and assign attribute values to the objects. Import is associated with an
import object, multiple import objects may exist and operations are independent,
(registrations to one import object have no impact on others).

The general sequence of calls against the import object are as follows:

1 dxi3-release-domain-registrations {deletion of any outstanding registrations
and general initialization}

2 dxi3-register-domain-(item / relation / attribute) {register additions /
deletions}

3 dxi3-commit-domain-registrations {apply items / relations / attributes}

4 dxi3-release-domain-registrations (dxi: class dxi3-import-object) = (truth-
value, text)

5 Releases any registrations associated with the import object and performs
initialization.

6 Returns a success-flag, (true = success), and a text notes string. Failure
indicates some attribute of the import object is incorrect as described in the
notes string.
372

dxi3-register-domain-item
dxi3-register-domain-item
Registers the existence of an item in the domain.

Syntax

dxi3-register-domain-item
(dxi: class dxi3-import-object, node-name: text, type: text,
create-or-delete: text)
-> success: truth-value, notes: text

where:

• dxi is the import object.

• node-name is the opfo-external-name of an opfo-domain-object or the name of
an item.

• type should match either the dxi3-type-string of a dxi3-type-to-class-object or
the name of an object-definition.

• create-or-delete is one of these texts:

– "create" builds the item.

– "delete" destroys an existing item.

The order of checking is:

1 Check for an exact dxi3-type-to-class-object match.

2 Check dxi3-type-to-class-objects for the closest match by using a reg-ex
expression (for example, “test-computer.*” matches closer to a type of “test-
computer-small” than does 'test-computer' which is a better match than 'test'.

3 Test if there exists an object-definition named by type.

4 If none of the above checks is positive, type is the dxi3-default-class-to-create
of DXI.

Returns

Returns a success-flag, (true = success), and a text notes string.
373

dxi3-register-domain-relation
Registers the existence of a relationship between two items.

Syntax

dxi3-register-domain-relation
(dxi: class dxi3-import-object, node-1: text, relation-name: text, node-2: text,
create-or-delete: text)
-> success: truth-value, notes: text

where:

• dxi is the import object.

• node-1 and node-2 are the opfo-external-names of opfo-domain-objects or the
proper names of G2 objects.

• relation-name specifies the name of a G2 relation or one of two keywords:

– superior indicates that node-1 is superior to node-2.

– connected indicates that node-1 is connected to node-2.

• create-or-delete is one of these texts:

– "create" builds the relation.

– "delete" destroys an existing relation.

Returns

Returns a success-flag, (true = success), and a text notes string.
374

dxi3-register-domain-attribute-value
dxi3-register-domain-attribute-value
Registers the change of an attribute of an item.

Format

dxi3-register-domain-attribute-value
(dxi: class dxi3-import-object, node-name: text, attribute-name: text,
attribute-value: text)
-> class dxi3-attribute-receiver

where:

• dxi is the import object.

• node-name is the opfo-external-name of an opfo-domain-object or the name of
an item.

• attribute-name is the name of the user-defined attribute of the item.

• attribute-value is the text equivalent of the value. The current type of the
attribute is used to convert the text to the proper type.

Returns

Returns a success-flag, (true = success), and a text notes string.

Notes

The dxi3 format is inherently differential. If the object already exists, it will be
modified accordingly.

The dxi3 commits relations effectively according to the syntax conclude that
object1 is now relation-name object2. That means that any conflicting relation will
be deleted. For example, the superior relation is a one-to-many relation i.e., an
item can only be subordinate to one other item. If, in the existing map, A is
superior to B and the api concludes C is superior to B, the relation A is superior to
B will be deleted. The same holds for any user-defined relation that has some
restriction, e.g., one-to-many, many-to-one, one-to-one.
375

376

18
Open View Map
Importer (OVMAP)
Provides an introduction to the Open View Map Importer (OVMAP module and
describes how to install and setup OVMAP .

Introduction 377

System Requirements 378

Installation 378

Detailed Descriptions 381

OV Map Importer Operation 387

Notes on GDXI 388

Introduction
The OpenView Map Importer (OVMAP) allows the importation of the IP domain
objects discovered by HP OpenView into a G2 knowledge base. The interface
with OpenView is through the ovobjprint command-line function. This function
creates an ASCII file that describes the IP devices, Nodes, Segments, and Sub-
networks discovered by OpenView.

The product supports two modes of operation:

• Batch mode: Initially, OV Map Importer creates the IP domain within G2 as a
batch process. All devices within OpenView are written to a single file; OV
Map Importer then reads that file and creates the domain.

• Incremental mode: Secondly, it operates in an incremental mode. A “new IP
device discovered” trap from OpenView is received, causing a series of
377

individual object file requests that allow the creation and placement of the
newly discovered items (the module OXS is required for SNMP
communications with OpenView).

OV Map Importer does not create the visual representation of an OpenView
window; it creates only the connectivity between IP aware devices used for
reachability analysis.

The OV Map Importer is referenced within the GDXI module.

Layer 2 discovery information can be obtained from NNM by using the command
ovet_topoquery getAllNodes -ShowIF as tested with NNM 6.5. This information
can also be imported into an Integrity application.

System Requirements
This module has been tested with OpenView NNM Version 6.5.

OV Map Importer works in conjunction with the module OXS (Operations eXpert
Snmp) and a G2 SNMP OpenView SNMP bridge, to provide trap information for
incremental creation of objects. If the knowledge base is not to include OXS, the
import will create the domain only in batch mode.

The GDXI knowledge base module for OV Map Importer is a required module of
IPRA (IP Reachability Analyzer). IPRA changes the loading of modules but not
the testing, setup, or operation.

Installation

Network Account Setup

The GDXI OV Map Importer module communicates with OpenView through
command line calls to the OpenView function ovobjprint. This function creates a
file of the items depending upon the command line options given. In order for the
function to operate properly, a user account must be setup on the machine that is
running G2 as well as the machine supporting OpenView. The account must have
the same name on both machines. The account must be a trusted account on both
machines (your system administrator can help).

Note If G2 is running on a Windows system, the user’s password on OpenView must
be set to a null string ("").
378

Installation
Ovobjprint Command

The ovobjprint command consists of the command, options, and any redirection of
output. Examples of the command:

• To list all objects to /tmp/objprint.txt:

$ /usr/OV/bin/ovobjprint > /tmp/objprint.txt

• To list all objects to /tmp/objprint.txtj:

$ usr/OV/bin/ovobjprint -o 12345

• To list information about selection name serial:device1:

$ /usr/OV/bin/ovobjprint -s serial:device1

Testing

Testing consists of checking that the:

• Command line function operates.

• Command can be performed across the network.

To check that the command line function operates:

 Login to the OpenView machine and execute the following ovobjprint
command:

$ /usr/OV/bin/ovobjprint > /tmp/objprint.txt

Note Depending on the version and installation of OpenView, you may have to
modify the path of the ovobjprint command (e.g. /opt/OV/bin/ovobjprint >
/tmp/objprint.txt).

This command requests all object information to be saved to the file:

/tmp/objprint.txt

This command may take 1-to-25 minutes, depending on the activity on the
OpenView machine. The file may be quite large (10 - 15 Mb is not unusual). After
completion, open the file with any editor and verify that the file is readable and
has a format similar to that described under Translation Objects.After the testing
you may delete the file /tmp/objprint.txt.

To execute the command across the network:

 Login to the G2 machine and execute the following command:

$ rsh hostname -l username -n /usr/OV/bin/ovobjprint > /tmp/objprint.txt

where:
379

hostname is the name or IP-address of the OpenView machine;

optionally, the -l username (-l is a lower case “L”) is the trusted account
name that may have been setup earlier.

Note If rsh does not work on your machine, you may try remsh.

This command should finish in approximately the same amount of time as the
first test and deposit the same file in the /tmp directory of the local machine, or
c:\temp on Windows.

Make a note of the address, account name, and directory of OpenView, as these
will be needed to setup the Initializations of OV Map Importer.

To execute the ovet_topoquery command:

1 Login to the machine running NNM 6.5 or higher.

2 Setup the local environment (refer to the NNM documentation).

3 Change directories to the /opt/OV/support/NM directory.

4 Enter the following command to obtain all nodes and interfaces:

ovet_topoquery getAllNodes -ShowIF > /tmp/layer-2-info.obj

This will create a file called layer-2-info.obj, which can be FTP'd to the G2 machine
and imported through the main Setup dialog under the Domain Import tab.

Installation of Modules

OV Map Importer is a part of IPRA. The installation is included in the IPRA
installation. If using the product as a standalone product or if you want to merge
this product with an existing one, see IP Reachability Analyzer (IPRA).

Setup of Incremental Addition of Domain Objects

If you are merging OV Map Importer (GDXI.KB) into your application and you
would like to incrementally add domain objects into your application, you must
configure GTAP.KB (Operations Expert SNMP) and a G2 SNMP OpenView
Bridge.

You can configure OV Map Importer as follows to receive traps from OpenView
that indicate when new IP devices have been discovered (these changes are
already completed in IPRA).

To create a new trap class:

 Create the new trap class under the Receiver Objects.
380

Detailed Descriptions
Go to a current Class definition and create the new object by choosing New
Definition from the KB Workspace menu, then configure the class as follows:

To create a completion procedure:

1 Display the Completion Procedures workspace in your application.

2 Display the OV-MAP-IMPORTER-PALETTE-WORKSPACE.

3 Clone a Completion procedure by selecting the procedure at the bottom of the
palette, and place it on your Completion Procedures workspace.

4 Change the name to COMPLETION-HPOPENVIEW-6-58785792.

5 Remove all comments in the parameter list and in the body of the procedure.

You must also perform the following setup tasks:

• Include OXS as a required module of the OV Map Importer (DXIOV).

• Configure OpenView to forward this trap to G2.

Detailed Descriptions

Class Definitions

Here are classes defined in the OV Map Importer.

dxiov-import-object

This object is used to configure a session for obtaining and parsing a file
generated from OpenView to create network objects in your application.

Note When the attribute name includes 'workspace', this attribute is a symbol that
points to a named workspace or the name of an item that has a subworkspace.

Attribute Value

Name TRAP-HPOPENVIEW-6-58785792

Direct-superior-
classes

SNMP-GENERIC-TRAP

Class-specific-
attributes

Add:

trapd-format initially is “IF $7 added”
381

Attribute Name Description

dxiov-status The current status of the import
object, read-only.

dxiov-import-object-busy The activity state of the import
object. This flag will be true while
import is active or if an error
occurred during an import. A
menu choice exists to reset this flag
if an error occurred during import.

dxiov-input-translation-workspace The name of the workspace or
name of the object superior to the
workspace that contains
translation objects.

dxiov-default-class-to-create The default object to create if no
translation between the OpenView
description and G2 class can be
determined.

dxiov-input-destination-workspace The final destination of the top
level objects. This may be the name
of a workspace or the name of an
object superior to the workspace
where top objects will be
transferred.

dxiov-new-class-destination-
workspace

The name of a workspace or item
superior to the workspace where
new class definitions will be
placed.

dxiov-file-retrieve-proc The name of the procedure that
requests the ovobjprint from
OpenView. This procedure and
supporting procedures are
transferred to the user module as
part of the installation.

dxiov-file-retrieve-command The command line string that will
be issued to the local machine for
requesting the ovobjprint. This
string is used by the dxiov-file-
retrieve-proc.
382

Detailed Descriptions
dxiov-type-to-class-object

This object is used to translate a known text to a class definition. This is where you
can specify which class gets instantiated based on a piece of text that gets parsed
from the resulting ovobjprint file.

dxiov-local-file-name The directory and name of the
destination of the ovobjprint file.
This attribute will change
depending upon the operating
system type.

dxiov-default-column-height The number of items placed in a
column before starting the next
column.

dxiov-vert-spacing Space between columns of objects.

dxiov-horz-spacing Space between rows of items.

dxiov-local-connected-classes An array of class names that will
be connected on workspaces,
usually a list of nodes, routers, and
IP devices. This must include the
class name of the IP devices (card)
for Reachability Analysis.
Additional classes in this list
define items that will be connected
orthogonally on a workspace for
graphic clarity. This list does not
include classes of items that are
connected diagonally as defined
by OpenView.

Attribute Name Description

Attribute Description

dxiov-type-string A string to be matched in the
resulting ovobjprint generated file

dxiov-type-class The class to instantiate when the
Dxiov-type-string is matched
within the file
383

Translations

Translation objects are located in the Navigator under System Models >
Parsed MIBs. These are instances of the dxiov-type-to-class-object class. They are
used to determine which class type to instantiate given a known text string.

There are two attributes in the dxiov-type-to-class-object:

Note IPRA contains instances of dxiov-type-to-class-object, which have already been
configured.

Initializations

If using IPRA, initialization objects are located in the DXIOV Initializations
workspace (XYZ-TOP-LEVEL > Application Objects > Initializations >
Initializations > DXIOV Initializations).

xyz-dxiov-import: dxiov-file-retrieve-command

rsh OV-hostname -l username -n /usr/OV/bin/ovobjprint

Note where, the rsh may need to be changed to remsh, and the ov-hostname and
the username should be already set during installation and testing (see page
379).

xyz-dxiov-import: dxiov-file-retrieve-name

/tmp/ovobjprint.txt

On UNIX, you may change it to:

/tmp/objprint.txt

On Windows:

C:\temp\objprint.txt

Attribute Description

dxiov-type-string A text string containing a word or
phrase that describes an object in
the OpenView database.

dxiov-type-class A symbol representing the name of
class to instantiate when the there
is a match with the text defined in
dxiov-type-string
384

Detailed Descriptions
Initializations that could be used if merging OV Map Importer (DXIOV.KB) into
your application include the following:

dxiov-mib-lookup

This translation names a procedure that can be used to lookup Enterprise to name
translations.

File Transfer Routines

The requesting of information from OpenView is driven by a procedure, xyz-
retrieve-proc, which spawns the command line function that requests the file.

In IPRA, this procedure can be found in the DXIOV Procedures workspace under
the Reasoning Routines workspace.

If an objprint.txt file is to be manually transferred into the default directory, a
dummy procedure (e.g., xyz-retrieve-proc-dummy) may be created that implies
the file has been returned successfully. This procedure would be entered into the
dxiov-file-retrieve-proc attribute of the dxiov-import-object.

Here is an example:

xyz-retrieve-proc-dummy (DXI: class dxiov-import-object, Command: text) =
(truth-value)
begin

return TRUE;
end

Translation Objects

Translation objects are set up to define the class of item to create, depending upon
the type of object stored by OpenView. To help you understand the structure of
the translation objects, here is an example of an object defined by the ovobjprint:

OBJECT: 1024

FIELD ID FIELD NAME FIELD VALUE
10 Selection Name “hou38”
11 IP Hostname “hou38”
14 OVW Maps Exists 2
15 OVW Maps Managed 2
17 vendor Sun(25)
27 isNode TRUE
29 isComputer TRUE
30 isConnector FALSE
31 isBridge FALSE
32 isRouter FALSE
33 isHub FALSE
36 isWorkstation TRUE
51 isIP TRUE
385

516 IP Status Normal(2)
519 isIPRouter FALSE
540 isSNMPSupported TRUE
542 SNMP sysDescr “SunOS houston38 5.5 Generic sun4m”
543 SNMP sysLocation “Gensym-Conroe”
544 SNMP sysContact “william”
545 SNMP sysObjectID “.1.3.6.1.4.1.11.2.3.10.1.2”
546 SNMPAgent HP Solaris Sparc(20)
555 TopM Interface Count 1
561 TopM Interface List “le0 Normal 195.93.147.38 255.255.255.0
0x080020736839 ethernet csmacd”
562 isMcClusterMember FALSE
563 isCollectionStationNode FALSE

When OV Map Importer reads the file, it looks for field names that begin with “is”
and have a value of TRUE. These fields are then concatenated with hyphens (-).
The translation object for the example has a type string of Node-Computer-
Workstation-IP-SNMPSupported.

Once OV Map Importer finds a match, the type class of that translation is used as
the base class of the object. The SNMP sysObjectID field defines the specific
equipment. The initialization object for DXIOV-MIB-LOOKUP determines if there
is a MIB lookup procedure to convert the ObjectID to a name. If the OXS module
is not part of the knowledge base, the sysObjectID is appended to the end of the
class string to determine the actual class of G2 object to create.

If OXS was loaded, OV Map Importer looks for an oid-to-name-translation that
returns a name for this ObjectID, in this case, the returned name will be appended
to the class string.

New Class Creation

New classes are created by OV Map Importer under two circumstances:

• No translation object could be found that matched the “is” fields in the file.

• The class of object to create does not exist.

When OV Map Importer does not have a translation object that applies to an
object, it will create an object definition with a class name as determined from the
above circumstances. The superior to that class will be the class named by the
default-class-to-create attribute of the import-object. For the above case, with no
translation object, the object-definition class name would be:

Node-Computer-Workstation-IP-SNMPSupported_1.3.6.1.4.1.11.2.3.10.1.2

If OV Map Importer has a translation object but cannot match the SNMP
sysObjectID field, and an oid-to-name translation exists for that ObjectID then the
class definition created would be:

Node-Computer-Workstation-IP-SNMPSupported_Sun-SPARC(20)
386

OV Map Importer Operation
Otherwise, the name would be as in the first example.

The superior class of in this instance would be that named by the type class of the
translation object.

The new class definitions created by OV Map Importer are used to allow the
application to provide specific attributes and icons to different types of
equipment.

OV Map Importer Operation

Building the Domain

To create the initial domain:

 Display the Setup dialog and select the Domain Import tab.

A progress clock will be displayed during the import process. It will then
disappear once the imporation is complete.

To build the domain:

1 Create and transfer the objprint.txt file to the local machine.

2 Optionally, create and transfer the layer-2-info.obj file to the local machine.

3 Fill out the information in the HPOV Setup and Import section of the Domain
Import tab of the Setup dialog. If you have exported the Layer 2 information
from HPOV, be sure to select the checkbox to indicate this.

During the import process, you will notice devices being added to the Navitagor
under the System Models > Network Diagrams node.

Incremental Build

Receiving traps from OpenView whenever a new IP device is discovered
supports incremental addition of objects to the domain. OV Map Importer will
make between two and four calls to OpenView to determine the location and
containment for the new device.

• The first call to OpenView requests information about the IP device (i.e. card),
given the selection name that was received in the trap.

• The response will include the name of the superior node, the segment, and the
subnetwork to which this device belongs.

• Additional requests will be made until a superior device is found to exist in
the current domain.
387

Errors

If an error is encountered during import, the process will terminate. In this event,
selecting the import will not offer the dxiov-start-import menu option but will
instead offer the dxiov-busy-reset menu choice. Selecting dxiov-busy-reset will
allow the import to be attempted again.

• The import object displays all setup errors caused by nonexistent workspaces
or procedures before an import begins. Correct any setup errors and retry the
import.

• During the import, objects are created and transferred to the subworkspace of
the import object along with an object-receiver. The receiver is created to
maintain information read from the file while import is in progress.

• If an error occurs during import, the attribute display shows the last working
state of the import at any given time. Most errors occur during reading of the
file and can quickly be resolved by looking at the last object created by OV
Map Importer (the bottom right object on the subworkspace of the import
object), and finding the next object in the objprint.txt file. Phantom lines in the
objprint.txt file are not uncommon.

• An import error will leave the dxiov-import-object-busy flag true. Selecting the
import object again will provide a menu choice to reset this flag and will retry
import upon the next selection.

Notes on GDXI
• The attribute dxiov-default-class-to-create may be set to ipra-domain-object to

build everything that is referenced in the file. The objects of this type are
unrecognized object in the objprint.txt file. To inhibit building them, the
attribute may be set to dxiov-excluded-object, these will not show up in the
final map.

• Translations for specific items not to be created reference the class dxiov-
excluded-object.

• If an object has an OID, OV Map Importer will look up an OID- to- name
translation and then see if a class of that name exists. If so, it will build one. If
the full OID does not map to a class, the OID string is shortened by one dot (.),
starting at the far right, and tried again. This goes on until a class is found or
the string is back to .1.3.6.1.4.1.

• The connected-local-classes attribute has been removed. Determination of
connected classes is now done through multiple-inheritance by mixing in the
class dxiov-local-connected-object. All items that are a dxiov-local-connected-
object and reside on the same workspace will be connected together.
388

19
Ping Manager
Introduces the Ping Manager and describes how to install, setup, and run the
Ping Manager.

Introduction 389

Components 390

Running the Ping Manager 390

The Remote Procedure Calls 391

Application Development 394

Sample Procedures and Actions for pingmgr.kb 394

Introduction
If internetworks were flawless, datagrams would always be routed to their
intended destination with no errors, excessive delays, or retransmissions.
Unfortunately, this is not the case. Internet Protocol (IP) provides a connectionless
service to the attached hosts, but requires an additional module, known as the
Internet Control Message Protocol (ICMP) to report any errors that may occur in
the processing of those datagrams. The protocol is also used to test the path to a
distant host, which is known as “pinging”.

IP datagrams contain ICMP messages. The ICMP messages contain valuable
information about the network status. The Ping Manager uses the Echo message
(ICMP Type = 8), which tests the communication path from a sender to receiver
via the Internet. The sender transmits an Echo message, which may contain an
identifier and a sequence number as well as data. When the intended destination
389

receives the message, it reverses the source and destination addresses,
recomputes the checksum, and returns an echo reply (ICMP Type = 0). The
contents of the data field (if any) would also return to the sender.

The OpEx Ping Manager issues ICMP Echo Pings to network devices according to
specifications provided through a G2-based graphical user interface. The
configuration defines attributes such as ping-frequency, time-out-interval, and
maximum-retries allowed. The Ping Manager maintains scheduled, multi-
threaded pinging for the devices and only reports to G2 in the event of a status
change. The G2 application can also perform on-demand pings through the Ping
Manager.

The Ping Manager is provided as a stand-alone executable code, interfaced to G2
using the standard “gateway” (GSI) approach. A support KB is also provided.

The stand-alone executable code is supported under HP-UX 10.x, Sun Solaris 2.5,
SunOS 5.5, and IBM AIX 4.x. The KB portion runs on any platform supporting G2
5.1 Rev. 1e, such as Windows, HP-UX, Solaris, AIX.

Components
The Ping Manager consists of two components, the Ping Manager Executable and
the Ping Manager G2 Knowledge Base.

The Ping Manager executables are located in the dependent directory on the
distribution CD. For each platform supported there will be a directory containing
the executable (pingmgr or PingMgr.exe for Windows) and the knowledge base
(pingmgr.kb).

To install the Ping Manager executable:

 Use the installation CD and make sure the Ping Manager component is
selected.

Running the Ping Manager
To run the Ping Manager executable on Unix:

$./pingmgr {port-number} {-t[imeout] n} {-r[etries] m}

To run the Ping Manager executable on Windows:

run PingManager.exe {port-number} {-v[erbose]} {-t[imeout] n}
{-r[etries] m}

The {port-number} is optional. If the port-number is not specified, then the
default port-number 22054 will be used for UNIX and port 2500 will be used for
Windows. The -t and -r are also optional. These options allow users to set their
desired timeout and maximum retries. Where n and m are any integer. If these
390

The Remote Procedure Calls
options are not set by the user, the default timeout is 12 and the maximum retries
is 1.

Note Only perform these steps if you are not using the IPRA product and you want to
use the Ping Manager in an existing application.

To load and run the pingmgr KB:

1 Pause G2.

2 Merge pingmgr.kb into your application.

When running Integrity, this module is included in the module heirarchy.

3 A gsi-interface object, ping-manager-interface, exists in pingmgr.kb. Change
the gsi-connection to read:

tcp-ip host “host-name-or-ip-address” port-number port-number

where:

• host-name-or-ip-address is the hostname or IP address of the machine
running the Ping Manager executable.

• port-number is the port number the Ping Manager execuable is listening
on. Use it to connect to the Ping Manager executable process.

Note To establish a connection, the user needs to re-configure the ping-manager-
interface if either the host-name-or-ip-address is changed or the port-number is
changed, or after the Ping Manager is restarted, even when there are no
changes to the configuration.

A gsi-interface status indicator indicates the following connection status:

The Remote Procedure Calls
The Ping Manager provides the following RPCs (remote procedure calls).

Setting the Device Configuration for a Ping Manager

Use the following RPCs to configure a device for the Ping Manager.

-2 Not connected.

1 Connection is in progress.

2 Connected.
391

pm-add-device-config-rpc
(ext-name: text, ip-address: text, interval: integer {seconds},
time-out: integer {seconds}, retries: integer)

Adds a device to the Ping Manager’s device list.

pm-delete-device-config-rpc
(ext-name: text)

Deletes a device from the Ping Manager’s device list.

pm-get-device-config-rpc
(ext-name: text) => (dev-name: text, ip-address: text,
interval: integer {seconds}, time-out: integer {seconds},
max-retries: integer, status: text)

Get a device’s configuration from the Ping Manager’s device list.

pm-load-config-file-rpc
(filename: text)
-> devices-loaded: integer {number of devices loaded}

Loads a configuration file that contains device(s) configuration information
into a Ping Manager.

Note See “A Sample Configuration File”

pm-write-config-file-rpc
(filename: text)
-> devices-saved: integer {number of devices written}

Writes the Ping Manager’s current device(s) configuration information to a
file. The file is saved in the same location as the Ping Manager executable.

Changing a Device’s Configuration for the
Ping Manager

Use the following RPCs to configure a device for the Ping Manager.

pm-change-ip-address-rpc
(ExtName: text, NewIpAddress: text)

Changes the ip-address.

pm-change-poll-time-out-rpc
(ExtName: text, PollTimeOut: integer)

Changes the poll-time-out.
392

The Remote Procedure Calls
pm-change-polling-info-rpc
(ExtName: text, NewInterval: integer {seconds},
NewTimeOut: integer {seconds}, NewRetries: integer)

Changes the poll-interval, poll-time-out, and number-of-retries.

pm-change-poll-interval-rpc
(ExtName: text, NewPollInterval: integer {seconds})

Changes the poll-interval.

pm-change-max-retries-rpc
(ExtName: text, NewRetries: integer)

Changes the number-of-retries.

pm-manage-device-rpc
(ExtName: text)

Initiates periodic polling of a device.

pm-unmanage-device-rpc
(ExtName: text)

Cancels periodic polling of a device.

pm-send-ping-request-rpc
(ExtName: text, Status: integer)

Sends a ping request to a device. To start polling without waiting for a state
change, specify option as 1. To start polling only when there is a state change,
specify options as 0.

pm-do-demand-poll-rpc
(ExtName: text, Address: text)

Starts demand polling.

pm-do-device-poll
(gsi-interface: text, device-name: text, ip-address: text)
-> status: text

Starts demand polling of a device and returns the status, which is one of:
"OK", "FAIL", "CAN-NOT-PING", "UNKNOWN"

pm-dump-agent-config-rpc
()

Displays the configuration information for all devices in the device list of the
Ping Manager.

pm-kill-agent-rpc
()

Stops the Ping Manager from G2.
393

Application Development
The Ping Manager supports both demand polling and exception-based network
management architectures.

Demand Polling

The following example polls a device on demand:

status-text: text;

status-text = pm-do-device-poll("my-gsi-interface", "my-device-name",
"1.1.1.1");

Periodic Polling

Follow a call to pm-add-device-config-rpc with one of the following calls,
depending on whether you want to poll with or without a state change,
respectively:

call pm-send-ping-request-rpc (“my-device-name”, 1)

call pm-send-ping-request-rpc (“my-device-name”, 0)

Sample Procedures and Actions for pingmgr.kb
To add a device:

 Start pm-add-device-config-rpc(“mypc.com”, “123.45.6.78”, 240, 10, 3)
across ping-manager-interface.

To load a configuration file:

 Start pm-load-device-config-rpc(“/path/ping.cfg”) across ping-manager-
interface.

where, the path on UNIX, may be:

/tmp or ~myhome

on Windows, may be:

C:\data\

A Sample Configuration File

The configuration file contains polling information on devices. Each device is
defined on a separate line containing five fields:

• device name
394

Sample Procedures and Actions for pingmgr.kb
• ip-address

• interval

• time-out

• maximum retries

If the device is not in the configuration file, the default number of retries and
default time-out interval are used.

The Ping Manager interprets a blank space as a delimiter between fields on a
single line. You should surround values containing spaces with double quotation
marks ("").

Blank lines are allowed to separate device configurations.

Comments are designated with a ‘#’ character and can be used at the beginning of
a line or at the end of a configuration for a device. Any text following a ‘#’ on a
single line is ignored.

Example

File name: ping.cfg

#

The configuration fields are described as follows:

"device name" ip-address interval time-out max-retries

A pair of quotes must be used if a device name has any blank space(s) in
it.

"My new computer: enterprise" 123.45.6.78 120 10 3

device name without blank spaces, quotes are optional

abc.gensym.com 123.45.6.79 240 12 2

"def.gensym.com" 123.45.6.80 180 20 3

blank lines are allowed in the configuration files

xyz.gensym.com 123.45.6.99 120 10 1

end of ping.cfg

Example of a Procedure to a get configuration status

get-device-status(ext-name: text)
dev-name, ip-address, status: text;
interval, time-out, max-retries: integer;

begin
395

dev-name, ip-address, interval, time-out, max-retries, status =
call pm-get-device-config-rpc(ext-name) across ping-manager-interface;

inform the operator that “[dev-name]: [ip-address]:[interval]:
[time-out]:[max-retries]:[status]”;

end

Example of an Action-Button to Invoke get-device-status

start get-device-status(“my-device-name.gensym.com”);

Part IV
G2-SNMP Bridges
Chapter 20: Overview of the G2-SNMP Bridges

Describes the G2-SNMP Bridges and their intended applications and provides an overview of
the Integrity product family.

Chapter 21: Installation and Startup

Describes how to install, authorize, and execute the G2-SNMP Bridges software.

Chapter 22: G2-SNMP Bridge Setup

Describes how to configure the G2-SNMP Bridge, to set up Integrity to process SNMP traps,
and to perform additional processing in response to incoming traps.

Chapter 23: G2-SNMP Bridges API

Provides a listing of the G2-SNMP Bridges APIs, remote procedure calls, procedures, and
functions.

Chapter 24: Reporting Errors

Describes how to report bugs in a G2-SNMP Bridge to Gensym customer support.
397

398

20
Overview of the
G2-SNMP Bridges
Describes the G2-SNMP Bridges and their intended applications and provides an
overview of the Integrity product family.

Introduction 399

Applications 401

Features and Benefits 401

Acquiring Data 401

Building a G2-SNMP Bridge Application 402

G2-SNMP Bridges and the Integrity Product Family 403

Enhancements 404

Introduction
The G2 Simple Network Management Protocol (G2-SNMP) Bridges enable a user
application to communicate with devices that support SNMP, through the HP
OpenView Network Management System, the NetView 6000 Network
Management System, or directly through Gensym's G2-SNMP Generic Bridge.
This guide describes the functionality of the G2-SNMP Bridges and explains how
to use them in a G2 application.

The G2-SNMP Bridges provide a set of functions to perform SNMP transactions
(SET, GET, and GET NEXT) and to send and receive SNMP traps.

The G2-SNMP Bridges use the G2 Standard Interface (GSI). GSI is a toolkit for
creating bridges between G2 and external systems. Gensym has used GSI to create
399

the G2-SNMP Bridges for you. See the G2 Standard Interface User? Guide, Version 3.
2 for additional information about GSI.

The G2-SNMP Bridges are made up of three individual GSI based bridges which
are the HP OpenView, NetView 6000, and Generic Bridge. Each of these bridges
interface to G2 using an Integrity application. The user’s application will in turn
interface with the G2-SNMP Bridges through the Integrity application. The
following figure shows the components of the G2-SNMP Bridges.

Note Unless otherwise specified, the term SGB (SNMP Gateway Bridge) refers to the
GSI based component of the G2-SNMP Bridges and the term Integrity refers to the
G2 knowledge base component of the G2-SNMP Bridges.

HP OpenView Bridge

NetView 6000 Bridge

Generic Bridge

Integrity

G2-SNMP Bridge

User Application

G2 Knowledge Base Components

GSI Based Component -
SNMP Gateway Bridge (SGB)
400

Applications
Applications
The G2-SNMP Bridge provides a general infrastructure for the development of
applications for Simple Network Management Protocol (SNMP) based network
management activities.

Features and Benefits
The G2-SNMP Bridge toolkit provides an End User, Value Added Reseller (VAR)
or an Integrated System Vendor (ISV) with an environment that will:

• Reduce application development time

• Promote development of reusable objects

• Allow deployment of the application across diverse hardware platforms

Applications developed with the G2-SNMP Bridge will be:

• Easy to modify, thereby decreasing the time required to respond to customer
requirements

• Easy to maintain, increasing the profitability of the application

Acquiring Data
The SGB can send information to Integrity in either of two ways

• Mode 1: The SGB receives traps from the HP OpenView SNMP trap daemon
(trapd) or the Generic Bridge trap receiver and forwards them to Integrity by
making remote procedure calls to Integrity receiver procedures. Calls to the
receiver functions are non-blocking -- that is, both the SGB and Integrity can
make other calls while the call to the Integrity receiver procedure is being
processed.

• Mode 2: Integrity performs SNMP requests and sends traps through the SGB
by making remote procedure calls (RPC’s) to procedures in the SGB. The SGB
returns data to Integrity only when Ingegrity solicits the data. Calls to remote
procedures in the SGB may be blocking -- that is, neither the SGB nor
Integrity can make other procedure calls while the remote procedure call is
being processed -- or non-blocking.

A typical G2-SNMP Bridge application requires that two SGB processes be
running, one to send traps to Integrity receiver procedures, and one to perform
SNMP transactions at the request of Integrity.

If you are running the SGB to receive traps (Mode 1), the HP OpenView trap
daemon (trapd) or Generic Bridge trap receiver must be running on the same
machine as the SGB.
401

Building a G2-SNMP Bridge Application
The following diagram is a block representation of the architecture of an
application using a G2-SNMP Bridge. The G2-SNMP Bridge is capable of being
fully integrated with Integrity.

In the following diagram the arrows show the progress of an event through a
typical user application.

The event moves through an application as follows:

1 An event enters the system through the SGB.

2 The event is passed to Integrity. Here further parsing and decoding is done as
needed.

3 Integrity creates the appropriate trap class instance.

4 Integrity calls the appropriate user completion routine.

5 The completion routine sometimes completes the parsing and decoding of the
event. In the completion routine you can discard the event, or perform further
processing of the event such as logging the event. The completion routine is a
G2 procedure written by you.

6 You can send an SNMP trap to an external system as part of the application.

Completion
Routines

G
SI

 C
om

po
ne

nt

(1) (2)

(3) (5)(4)

Discard
Event

Log
Event

Take
Action

IntegritySGB User Application

Trap Instance
Creation

(6)

G2-SNMP Bridge
402

G2-SNMP Bridges and the Integrity Product Family
G2-SNMP Bridges and the Integrity Product
Family

The G2-SNMP Bridges are a member of the Integrity (formerly Operations Expert
(OpEx)) product family. The Integrity product family comprises Network,
System, Service, and Application Management tools and applications.

The Integrity product family presently includes the following:

• Integrity - A tool for building alarm management applications.

• CORE Services

– Contains the Integrity foundation classes

– A message management system; servers and browsers

– Tools for building a representation of your managed objects

– A set of development utilities.

– Network analysis utilities

– Logging utilities

• OPAC - A graphical programming language.

• G2-SNMP Bridges - An SNMP interface for the Integrity product family.

The diagram below shows the G2-SNMP Bridges and their relation to the
components of the Integrity product:

Domain Map

Message
Message

Information
Base

Foundation
Classes Utilities

Integrity CORE SERVICES

OPACG2-SNMP
Bridges

 Browsers

Integrity
403

Integrity is a product designed to help companies monitor and control their
operations to increase the availability and service levels of their distributed,
mission-critical environments. Integrity currently includes OPerator ACtions
(OPAC), Integrity Core Services (OPCS), and several demonstrations, and will
include other components in the future.

In addition, the power of the high-level programming environment, G2, makes it
possible to solve non-standard problems, configurations, and situations that lie
outside the scope of most “out-of-the-box” solutions.

For additional information on the Integrity product family contact your Gensym
sales representative.

Enhancements
Enhancements in the G2-SNMP bridge (starting with version 3.1) include the
following:

• Support for filtering of traps from specified hosts

This version of the G2-SNMP bridge supports filtering of incoming traps
based on the agent IP address bound with the trap. You may specify either the
agent hostname or agent IP address for filtering purposes. If the agent
hostname is specified, it must be possible to map it to an IP address through
the gethostbyname() Unix library function.

This additional filtering capability is in addition to the existing filtering
capability based on enterprise, generic, and specific ID's for the trap.

• Support for specifying agent hostnames and agent IP addresses using regular
expression matching

This version of the G2-SNMP bridge supports specifying agent hostnames
and agent IP addresses using glob-style regular expression matching.

• Support for adding new agent hostnames/IP addresses using G2 RPCs and
toggling filtering status of individual agents

This version of the G2-SNMP bridge allows you to add agent hostnames
and/or agent IP addresses (including those specified as regular expressions)
to the filtered hosts list using a G2-based RPC. A complementary RPC allows
you to toggle off the filtering status of any entry in the agent filter list.

• Support for specifying host filtering mode on the command line

This version of the G2-SNMP bridge supports specifying the agent filtering
mode, 0 (OFF), 1 (PASS), or 2 (BLOCK) on the command line using the '-f
<mode>' command line option.

• Support for specification of trapd.conf preprocessed file (ppd) names through
the bridge command line

Enhancements
This version of the G2-SNMP bridge supports two methods of specifying the
trapd.conf preprocessed file (ppd) name: through the existing G2_PPD_
FILENAME environment variable and through a new bridge command line
option, '-p <ppd filename>'. When the '-p' option is specified, it overrides the
G2_PPD_FILENAME environment variable, if it is defined.

• Support for passing the SNMP community name string through the bridge to
G2

This version of the G2-SNMP bridge now passes the community string (and in
the non-NT versions of the bridge, the length of the community string) from
received traps through to G2.

• Support for specifying the path and file name for the filtering log file

This version of the G2-SNMP bridge supports specifying the path and file
name for the filtering log file through a new bridge command line option, ‘-l
<path and log file name>'.

• Bridge returns ‘General failure on agent’ code

This release of the G2-SNMP bridge returns the correct error code associated
with the 'General failure on agent' error.

• Bridge passes variable values for variable bindings in which the variable type
is 'object identifier'

This release of the G2-SNMP HP OpenView bridge under HP-UX passes the
correct variable values for variable bindings in which the variable type is
'object identifier'. The bug fix is restricted to the GSI-based portion of the
bridge. It does not affect the Integrity support KB. Previously, the bridge
passed either a null string ('') or a random value from memory (such as an IP
address) in place of the proper value of the variable. The bridge now correctly
passes varbind variable values of type 'object identifier'.
405

406

21
Installation
and Startup
Describes how to install, authorize, and execute the G2-SNMP Bridges software.

Introduction 407

UNIX Platform Installation 407

Authorizing the G2-SNMP Bridges 415

Executing the G2-SNMP Bridge 416

Connecting G2 to the GSI Bridge Process 419

Introduction
This chapter descrpbies how to install, start, and use the G2-SNMP Bridge.

UNIX Platform Installation
You can install the G2-SNMP Bridges software from tape or from CD-ROM.

Installing from Tape

The distribution tape contains the necessary files for the G2-SNMP Bridges
software.

The steps are:

1 Establish an installation directory.

2 Insert the tape into the tape drive.
407

3 Extract the tar archive.

4 Remove the tape and store it in a safe place.

The G2-SNMP Bridges software is a multiple-file tar archive. It contains two
archives in the following order: SNMP Gateway Bridges (GSI-based component)
and Integrity.

Install the archives, using the tar facility to read the tar archives. Use the mt
(magnetic tape control) and fsf (forward space over current end of file marks)
commands to move through the archives.

Note The following instructions use a percent and pound sign (% and #) to designate
the system prompt. When entering a command, type what follows the sign; do
not type the sign itself. The percent sign designates the user prompt and the
pound sign designates the super user prompt.

Determining the Device Name

UNIX commands that manipulate tapes do so by specifying an option whose
value is a device name. This name indicates both the tape drive to use and the
mode in which to use it. The option letter and the device name differ on different
platforms. The following table lists the options and device names for installing the
G2-SNMP Bridges software on various platforms:

You can install the SNMP Gateway Bridge software either in an existing directory
or in a new directory. We recommend that you install the SNMP Gateway Bridge
software under a new subdirectory, for example, g2snmp-23r0. If you prefer to
use an existing directory, be sure to make appropriate backups because some of
the existing files may be overwritten.

UNIX Options and Device Names

Workstation option device-name

HP 9000 Series 300, 400, 700, 800 -t /dev/rmt/0mn

IBM RISC System/6000 -f /dev/rmt0.1

Sun SPARCstation -f /dev/nrst0

Sun Solaris -f /dev/rmt/0n
408

UNIX Platform Installation
To install the SNMP Gateway Bridge software from tape:

1 Login as the user who should own the installed files.

2 Create a writable directory where you want to install the SNMP Gateway
Bridge software.

For example, if you want to install the SNMP Gateway Bridge software in a
new subdirectory g2snmp-23r0 under /usr/gensym, enter the following
commands:

% cd /usr/gensym

% mkdir g2snmp-23r0

% cd g2snmp-23r0

If you want to install the SNMP Gateway Bridge software in an existing
directory, for example, /usr/gensym/g2snmp, enter:

% cd /usr/gensym/g2snmp

3 Insert the tape into the drive.

4 If necessary, rewind the tape by executing:

% mt option no-rewind-device-name rewind

5 To install the SNMP Gateway Bridge software in this directory, execute the
following command:

% tar -xvf no-rewind-device-name

Your installation of the SNMP Gateway Bridges software is complete, continue
with the installation of the Integrity software.

You can install the Integrity software either in an existing directory or in a new
directory. We recommend that you install the Integrity software under a new
subdirectory, for example, oxs-23r0. If you prefer to use an existing directory, be
sure to make appropriate backups because some of the existing files may be
overwritten.

To install the Integrity software from tape, see the readme-g2.html file.

If you are installing the G2-SNMP “Generic” Bridge, continue with the following
steps to complete your installation of the G2-SNMP Bridges software.

G2-SNMP “Generic” Bridge Additional Installation Steps

The G2-SNMP “Generic” Bridge requires the following additional steps to
complete the installation.

Note You must log in as root user to complete the installation of the G2-SNMP
“Generic” Bridge.
409

To become a root user:

1 At the UNIX prompt, enter:

% exit

This logs you out of your current userid.

2 At the login prompt, log in as root.

For example:

login: root

3 Enter the password for root.

Entering a correct password will grant you root user privileges.

Note The components of the G2-SNMP “Generic” Bridge are bundled in a file
calledpkg_tar.Z. An installation program, install.brg, which unbundles
these G2-SNMP “Generic” Bridge components, is included on the distribution
tape.

The file pkg_tar.Z may have inadvertently been renamed to pkg_tar.z. If
so, rename the file with an upper case Z, pkg_tar.Z.

4 Using the UNIX command cd, change to the directory where the G2-SNMP
“Generic” Bridge files have been installed from the distribution tape, for
example:

cd /usr/gensym/g2snmp-23r0/

5 At the UNIX prompt, execute the command:

./install.brg

This command uncompresses the pkg_tar.Z file and extracts the following
files:

• The G2-SNMP “Generic” Bridge executable, “g2snmpgn.“

• The G2-SNMP “Generic” Bridge trap receiver, /usr/local/bin/straps

• An auxiliary system file, /usr/local/bin/ntping and

• Other files common to all SNMP Gateway Bridges

6 Log out as root, enter:

exit

Your installation of the G2-SNMP “Generic” Bridge software is complete.
410

UNIX Platform Installation
Installing from CD-ROM

You can also install the G2-SNMP Bridges software from a CD-ROM disk.

The essential steps are:

1 Insert the disk into the CD drive.

2 Mount the CD (except under Solaris, which automounts).

3 Run the Install script, this script will guide the user through the installation
process, and install the product(s) that you need.

4 Quit the Install script.

5 Unmount the CD.

Note The following instructions use a percent and pound sign (% and #) to designate
the system prompt. When entering a command, type what follows the sign; do
not type the sign itself. The percent sign designates the user prompt and the
pound sign designates the super user prompt.

To mount the CD:

1 Insert the CD into the CD drive.

2 Under Solaris, and on a Silicon Graphics IRIS-4D machine with an SGI drive,
the CD automounts; no further action is required. On other platforms, you
must login as root and mount the CD. First execute:

% su root

The system prompts you for your system password.

3 Enter your password.

A correct password grants you root user privileges.

4 Execute the mount command shown for your platform in the following table:

5 Log out as root.

UNIX Operating System
or Workstation Platform Example Mount Command

HP 9000 Series 700, 800 mount -rt cdfs /dev/dsk/cdrom /cdrom

IBM RISC System/6000 mount -rt cdrfs /dev/cd0 /cdrom

Sun Solaris mount -rF hsfs /dev/sr0 /cdrom
411

To install the G2-SNMP Bridges software from a CD-ROM disk:

1 Log in as the user who should own the installed files.

Caution Do not install the G2-SNMP Bridges software as root unless you want your
installed files to be owned by root.

2 Locate the G2-SNMP Bridges Install script in the root directory of the disk.
Under Solaris, enter:

% ls /cdrom/cdrom0

On any other platform enter:

% ls /cdrom

The general name of the Install script is unixinst. Depending on your system,
the script will appear as one of the following:

unixinst
UNIXINST
UNIXINST.;1
unixinst.;1
unixinst.-1

Note Installation script filenames can appear in one of several ways due to the
varying levels of support by CD-ROM drivers and operating systems for the
ISO 9660 and Rock Ridge formats.

3 Execute the Install script as it appears on your system. Give a fully qualified
pathname beginning with /cdrom, and surround the name of the script with
double quotes if it contains any trailing nonalphanumeric characters. For
example:

/cdrom/"unixinst.;1"

Note Under Solaris, the pathname would begin with /cdrom/cdrom0 rather than
/cdrom.

4 The Installer prompts you for the name of the mount drive.
Under Solaris, enter:

/cdrom/cdrom0

On any other platform, enter:

/cdrom
412

UNIX Platform Installation
To install the SNMP Gateway Bridges software from a CD-ROM disk

 The Installer prompts you with a list of products to install. Install products
one at a time by selecting each desired product.

• For each product, the Installer proposes a directory in which to install the
product. You should accept the default location unless you have a specific
reason not to.

Note The destination directory must be a new directory. It is recommended that you
install the software in /usr/gensym/g2snmp/. If a directory with this name
already exists, move its contents to another directory (for example,
/usr/gensym/g2snmp.bak/), leaving the /usr/gensym/g2snmp/ directory
empty.

• If you prefer to install in a non-default directory, you can type in its name.
The directory must not already exist; the Install script will create it.

• Installing some software products prompts the Installer to offer to install
other, supporting products. You should accept such installation unless
you have a specific reason not to.

Your installation of the SNMP Gateway Bridges software is complete,
continue with the installation of the Integrity software.

To install the Integrity software from a CD-ROM, see the readme-g2.html.

To unmount the CD drive:

1 At the UNIX prompt, enter:

su root

The system prompts you for your system password.

2 Enter your password.

A correct password grants you root user privileges.

3 At the prompt, unmount the CD drive by executing:

umount /cdrom

4 Log out as root.

5 Store the CD safely away from heat, smoke, dust, and anything that might
scratch its surface.

Your installation of the G2-SNMP Bridges software is complete.

If you are installing the G2-SNMP “Generic” Bridge continue with the following
steps to complete the installation of the G2-SNMP Bridges software.
413

G2-SNMP “Generic” Bridge Additional Installation Steps

The G2-SNMP “Generic” Bridge requires the following additional steps to
complete installation.

Note You must log in as root user to complete the installation of the G2-SNMP
“Generic” Bridge.

To become a root user:

1 At the UNIX prompt, enter:

% exit

This logs you out of your current userid.

2 At the login prompt, log in as root.

For example:

login: root

3 Enter the password for root.

Entering a correct password will grant you root user privileges.

Note The components of the G2-SNMP “Generic” Bridge are bundled in a file
calledpkg_tar.Z. An installation program, install.brg, which unbundles
these G2-SNMP “Generic” Bridge components, is included on the distribution
tape. The file pkg_tar.Z may have inadvertently been renamed to pkg_
tar.z. If so, rename the file with an upper case Z, pkg_tar.Z.

To complete the installation of the G2-SNMP “Generic” Bridge:

1 Using the UNIX command cd, change to the directory where the G2-SNMP
“Generic” Bridge files have been installed from the distribution tape.

2 At the UNIX prompt, execute the command:

./install.brg

This command uncompresses the pkg_tar.Z file and extracts the following
files:

• The G2-SNMP “Generic” Bridge executable, “g2snmpgn.”

• The G2-SNMP “Generic” Bridge trap receiver, /usr/local/bin/straps

• An auxiliary system file, /usr/local/bin/ntping and

• Other files common to all SNMP Gateway Bridges

3 Log out as root.
414

Authorizing the G2-SNMP Bridges
Your installation of the G2-SNMP “Generic” Bridge software is complete.

Authorizing the G2-SNMP Bridges
You must authorize your G2-SNMP Bridge before you execute it. To obtain
authorization codes, call Gensym's Production and Licensing group in
Cambridge, MA (or contact your account representative).

Before you call, be sure to have the hostname (available through the UNIX
hostname command) and machine id (usually the CPU serial number, available
through the UNIX uname -a or hostid command) of your workstation available.

Authorizing the SNMP Gateway Bridge

Production and Licensing will generate authorization codes that you must enter
into your gsi.ok file, located in the same directory as the SNMP Gateway
Bridges executable. A sample gsi.ok file, samp_gsi.ok, is provided with the SNMP
Gateway Bridges.

To create a valid gsi.ok file

1 Using the UNIX cp command, make a copy of the samp_gsi.ok file called
gsi.ok, enter:

% cp samp_gsi.ok gsi.ok

2 Modify the gsi.ok file using a text editor such as vi. The gsi.ok file is
formatted as:

<hostname> <machine id> <bridge name> <bridge version> <codes>

where:

• <hostname> is the hostname of your workstation;

• <machine id> is the machine id obtained through the UNIX uname -a or
hostid command;

• <bridge name> is either G2-HPOV-SNMP for the G2-SNMP HP OpenView
Bridge or G2-GNRC-SNMP for the G2-SNMP Generic Bridge;

• <bridge version> is the version of the bridge; and

• <codes> are a set of integer codes obtained from Gensym Production and
Licensing.

For example, a G2-SNMP HP OpenView Bridge Version 2.3 Rev. 0 gsi.ok file
might look like:

hou51 2011005381 G2-HPOV-SNMP V2 5476642 3470987 234965 2219873
415

while a G2-SNMP Generic Bridge Version 2.3 Rev. 0 gsi.ok file might
appear as:

hou51 2011005381 G2-GNRC-SNMP V2 2376642 3980987 643965 9829873

3 Save the gsi.ok file to disk. It is recommended that the file be saved in the
same directory as the SNMP Gateway Bridges executable files.

Note The actual values of the entries in the gsi.ok file may vary, but the format will
remain the same.

When the gsi.ok file is in place, you must set the GSI_ROOT UNIX environment
variable to the directory in which the gsi.ok file is located. For example, at the
UNIX prompt, type:

% GSI_ROOT=/usr/gensym/g2snmp

% export GSI_ROOT

Note The exact commands needed to set UNIX environment variables vary widely
among different workstations and different versions of the UNIX operating
system. Please consult the documentation for your workstation’s operating
system to determine the proper commands needed to set the GSI_ROOT
environment variable.

You can now execute your SNMP Gateway Bridge.

Executing the G2-SNMP Bridge

Executing the SNMP Gateway Bridge

Invoke the SNMP Gateway Bridge with the following command:

g2snmpov.<HP-OV version> <port-number>

or

g2snmpgn. <port-number>

where:

HP-OV Version

g2snmpov.400 The SNMP Gateway Bridge executable for HP
OpenView v4.00 on the Sun SPARC/Solaris
platform.
416

Executing the G2-SNMP Bridge
For example:

% g2snmpov.400 22041

% g2snmpov.401 22044

% g2snmpov.410 22064

% g2snmpgn. 22051

Messages written to the terminal window describe the status of the SNMP
Gateway Bridge during start-up and execution.

Finding an Available Port

If the port that you specify in the start-up command line (for example, ‘22041’) is
in use or has not yet been released when you restart the SNMP Gateway Bridge,
you see an error message of the following form:

"TCP/IP: Unable to find listener on port 22041"

If the port has not been released, you may need to wait for as long as 120 seconds
or more for the system to release it. If the port is in use and you do not want to
wait for the port to be freed, start the SNMP Gateway Bridge using a higher port

g2snmpov.401 The SNMP Gateway Bridge executable for HP
OpenView v4.01 on the HP 9000/HP-UX
platform.

g2snmpov.410 The SNMP Gateway Bridge executable for HP
OpenView v4.10 on the HP 9000/HP-UX
platform.

g2snmpnv.4 The SNMP Gateway Bridge executable for
NetView 6000 on the IBM RS/6000/AIX
platform.

g2snmpgn. The SNMP Gateway Bridge executable for the
G2-SNMP Generic Bridge on the HP9000/
HP-UX platform

Note: The period (.) at the end of ‘g2snmpgn.’ is required.

port-number The TCP/IP socket number over which G2 and
the SNMP Gateway Bridge communicate.

The get/set SNMP Gateway Bridge is usually
started with a port number of 22041.

The trap receive SNMP Gateway Bridge is
usually started with a port number of 22044.
417

number (e.g. 22051 or 22054). You will likely need to change the port number
in your G2 application as well.

Running SNMP Gateway Bridges as Background Processes

The SNMP Gateway Bridge writes status messages to the terminal window in
which it is started. If you start the SNMP Gateway Bridges as background
processes (by appending an ampersand [&] to the end of each start-up command
line), it is recommended that you start each process (get/set and trap receive) in a
separate terminal window. This helps to avoid confusion in interpreting any
status messages produced by the SNMP Gateway Bridges.

Executing the Integrity Application

You must be running G2 to run Integrity successfully.

To load Integrity:

1 Launch G2, using the usual method of starting G2 for your system.

For more information on loading and starting a knowledge base, see the
G2 Reference Manual.

2 Load your Integrity application, which must include GSNMP and GTRAP.

To see a demonstration of Integrity’s SNMP capabilities:

 Load the file called oxs_demo.kb from the Integrity examples directory.

Once the KB has been loaded, if the workspace labeled Integrity Demo is not
showing, perform the following steps to go to the demo top level workspace:

To bring up the Integrity SNMP Demo workspace:

1 Click on the background of the G2 window to display the G2 Main menu and
choose Get Workspace.

2 Select OXS-DEMO-TOP-LEVEL from the named workspaces list.

The demo gives examples of how to use many of the functions and features of the
knowledge base. The demo top-level workspace is divided into the following
areas:

• Initializations - Initialization items for use with this demo.

• Get, Set & Send Traps - Examples of performing the various SNMP functions
a G2-SNMP Bridge Heartbeat routine, and performance parameters for
measuring SNMP trap input traffic.

• Simulated Traps - An example of using the simulated trap facility.

• Simulated MIBs - Examples of using the simulated MIB facility.
418

Connecting G2 to the GSI Bridge Process
• Reading trapd.conf File - Examples of routines used in reading the trapd.conf
file.

• Sample Code - Sample code for using the Clears For utility and sending traps
to other processes.

Connecting G2 to the GSI Bridge Process
In order for Integrity to be able to perform the SNMP transactions (send/receive
traps, GET, and SET) you must configure Integrity to talk to the SNMP Gateway
Bridge process. The following steps outline what must be done in order for G2
and the SNMP Gateway Bridges to communicate.

Two GSI interface objects already exist in the Integrity product:

• INTEGRITY-GSI-TRAP-SENDER

• INTEGRITY-GSI-TRAP-RECEIVER

To connect G2 to the GSI process, fill out the attributes of the GSI Interface
Objects, and connect G2 to the GSI Bridge processes via the GSI Interface objects.

The oxs_demo.kb contains examples of two GSI Interface objects for connecting to
the SNMP Gateway Bridge processes.

For more information about the GSI interface objects, see the G2 Gateway User’s
Guide.

Creating a GSI Interface Object

You can create a SNMP GSI interface object by navigating to the palette:

• G2 Classic:

View > Palettes > Toolbox - G2 > NetworkInterfaces - SNMP

• TWNG:

View > Toolbox - G2, Network Interfaces - SNMP palette

Select the SNMP Interface from the palette and placing it on a workspace in your
application.
419

Configuring the GSI Interface Object

Once the snmp-interface object has been created it is necessary to fill in the
appropriate attributes.

Updating the attributes of the snmp-interface object:

1 Right click the snmp-interface object and choose properties.

2 Enter values for these properties:

Attribute Description

Name The interface name, which cannot contain spaces.

Bridge host The host where the bridge is running.

Bridge port The port number that the SNMP bridge will be
listening on, for example, 22041.

Remote process
initialization string

The initialization string used by the SNMP
Gateway Bridge to determine the mode of
operation in which it will run. The following flags
make up this string:

-d: Debug ON, no -d flag specified indicates that
debug is OFF.

-t #: The timeout period for SNMP retries, in
tenths of a second specified as an integer. This
value is used directly by the HP OpenView
SNMP API.

-p #: Mode of operation that the SNMP Gateway
Bridge operates in. Possible values are:

1 - Receive Traps
2 - GET, SET, and Send Traps.

For example:

-d -t 20 -p 1

Auto Reconnect To
Bridge

If the interface status goes to -2 (disconnected),
whether to attempt an automatic reconnect.

Shutdown Bridge
Upon Disconnect

If enabled, sends a shutdown command to the
bridge.

Launch Bridge Upon
Connect

If enabled, launches the bridge based on the
Bridge Launch Shell Script value.
420

Connecting G2 to the GSI Bridge Process
Bridge Launch Shell
Script

Script to launch the specified bridge for this
interface.

GSI interface status Status of the connection between this G2 and the
GSI bridge process, automatically updated by G2
after each transmission between G2 and the
bridge process.

Note: This attribute is read only.

Possible values:

-2 (Error) - An error condition occurred, and the
connection has broken between G2 and the GSI
bridge process.

-1 (Timeout) - The G2 process has not heard from
the bridge process within the Interface-timeout-
period specified for the interface object. This code
may also indicate that a communications
overload has occurred.

0 (Inactive) - The interface is either disable or
inactive.

1 (Initializing) - The external system is
initializing. When G2 receives this code, it sends
no further messages to the bridge process until it
receives an OK code.

2 (OK) - The connection between the G2 process
and the bridge process is successful and being
maintained.

Attribute Description
421

422

22
G2-SNMP
Bridge Setup
Describes how to configure the G2-SNMP Bridge, to set up Integrity to process
SNMP traps, and to perform additional processing in response to incoming traps.

Introduction 424

Configuring the G2-SNMP Bridge 425

Trap Handling Overview 428

Trap Class Creation and Processing 430

Completion Procedure Determination 441

SNMP Transactions 442

Sending Traps to External Systems 443

Simulation Facilities 445
423

Introduction
The following steps summarize how you set up your G2-SNMP Bridge
application:

1 Create and configure the synchronous and asynchronous GSI interface
objects. See the G2 Reference Manual for additional information on configuring
GSI interface objects.

2 Customize the configuration of the G2-SNMP Bridge. For details, see
Configuring the G2-SNMP Bridge.

a Integrity. For details, see Defining Initializations.

b SNMP Gateway Bridge (SGB). For details, see SNMP Gateway Bridge
Configuration.

3 Define the trap class definitions. For details, see Trap Handling Overview and
Trap Class Creation and Processing.

a Handling unrecognized traps. For details, seeHandling Unrecognized
SNMP Traps.

b By reading vendor supplied MIBs. For details, see Vendor MIBS.

c By reading the trapd.conf.ppd file. For details, see trapd.conf.ppd Parser.

4 Define the Clears-For attribute. For details, see Clears-For Attribute.

5 Define the completion procedures for trap processing. For details, see
Completion Procedure Determination.

6 Perform SNMP transactions (SET, GET, and GET NEXT) for additional
processing. For details, see SNMP Transactions.

7 Send SNMP traps to external systems for additional processing. For details,
see Sending Traps to External Systems.

8 Perform simulations for testing. For details, see Simulation Facilities.

a Simulated traps. For details, see SNMP Trap Simulation.

b Simulated MIBs. For details, see SNMP Agent MIB Simulation.

Configuring the G2-SNMP Bridge
The G2-SNMP Bridge functions as a point to point connection. There is one SGB
process for one G2 process. This means that only one G2 process can connect to an
SGB Trap Receiver process. However, another SGB GET, SET, and Trap Send
process can connect to the same G2 process that the SGB Trap Receiver process is
connected to. The SGB Trap Receiver process was not designed to handle multiple
G2 connections. To achieve this type of functionality you can run multiple SGB
424

Configuring the G2-SNMP Bridge
Trap Receiver processes with each one connected to a separate G2 process. For
each of the SGB Trap Receiver processes you can define what traps they should
filter, see Filtering Traps, thus dividing up the traps that are sent to each of the
individual G2 processes.

SNMP Gateway Bridge Configuration

Through calls to procedures in the SNMP Gateway Bridge, your G2-SNMP Bridge
application can configure parameters and filter traps.

Communication Parameters

The SNMP Gateway Bridge provides a remote procedure call for modifying a
subset of its communication parameters:

• g2snmp_modify_comm_params

You can also use two procedures to select which communication parameters the
SNMP Gateway Bridge uses:

• g2snmp_use_snmp_defaults

• g2snmp_use_snmp_comm_params

Any remote procedure declarations in your application that modify the SNMP
Gateway Bridge communication parameters must specify one of these functions
as the Name-in-remote-system attribute of the REMOTE PROCEDURE DECLARATION
object. See the G2 Reference Manual for additional information on declaring remote
procedure calls.

Filtering Traps

Two procedures help you manage the SNMP Gateway Bridge's filtered trap
definition list:

• g2snmp_add_filtered_trap

• g2snmp_delete_filtered_trap

The SNMP Gateway Bridge can filter traps that your application does not want or
need to receive. The SNMP Gateway Bridge does not send filtered traps to
Integrity.

The SNMP Gateway Bridge requires a filter definition file to determine which
traps to filter. The trapd_pp utility included with the G2-SNMP Bridges
distribution reads a file in the format of the HP OpenView /usr/OV/C/trapd.
conf file, extracts trap filtering and formatting information, and produces the
filter definition file for use by the SGB. See the appropriate HP OpenView or
NetView 6000 documentation or the HP OpenView man pages for information
about the format of the trapd.conf file.
425

The filter definition file is called filename.ppd, where filename is the name of the
input file. The ppd extension (for pre-processed) is appended to the filename. For
example, trapd.conf becomes trapd.conf.ppd.

The name of the filter definition file is communicated to the SNMP Gateway
Bridge through a UNIX environment variable. The environment variable G2_PPD_
FILENAME should be set to the full path name of the filter definition file (pathname
and filename). When you start the SNMP Gateway Bridge, the SNMP Gateway
Bridge will read this filter definition file, as defined in the environment variable.

Note The exact commands needed to set UNIX environment variables vary widely
among different workstations and different version of the UNIX operating
systems. Please consult the documentation for your workstation’s operating
system to determine the proper commands needed to set the G2_PPD_FILENAME
environment variable.

Telling the SNMP Gateway Bridge Which Traps to Filter

Filtered traps are specified in the trapd.conf file as IGNORE or LOGONLY. The traps
are identified by the three-element identification vector containing enterprise ID,
generic trap ID, and specific trap ID. These traps appear in the filter definition (.
ppd) file. Every trap received by the SNMP Gateway Bridge that matches one of
the specified three-element identification vectors is ignored in the SNMP
Gateway Bridge, without any interaction with Integrity.

While the SNMP Gateway Bridge is running, your Integrity application can turn
filtering on or off for any trap using the following remote procedure calls:

• g2snmp_add_filtered_trap. This remote procedure call toggles the trap ON if it
is already in the filtered trap list, or adds it to the filtered trap list if it is absent.
The SNMP Gateway Bridge will not pass the trap to G2.

• g2snmp_delete_filtered_trap. This remote procedure call toggles the trap OFF
if it is present in the filtered trap list. The SNMP Gateway Bridge will now
pass the trap to G2.

Caution A filter definition file must be specified at start-up in order to enable use of these
procedures. Failure to specify a start-up filter definition file can result in failure of
the SNMP Gateway Bridge process.

Error Handling

The error handling routines in Integrity use the Integrity message system if it is
available. If you are not integrating with an Integrity application, then the
Integrity message system will not be available and error messages will be sent to
the message board. Customize this behavior by using the initialization object
426

Configuring the G2-SNMP Bridge
devu-error-handler-proc to define a user application specific error handler. This
error handler can redirect the error messages to some place other than the
message board if desired.

Define the behavior of the default error handler by using initialization objects.
The table below lists each initialization used as part of the error handling system
and describes how to use it:

You can change any of the default values for these items by using the GFR startup
procedures for your application.

Creating a New Error Handling Procedure

If you decide to define a new error handling procedure by changing the
initialization value of devu-error-handler-proc, you must make the arguments for
your new error handler match the arguments passed to the default procedure.
These arguments are described below:

user-defined-error-handler
(target: class item, sender: class item, error-type: text, priority:integer,
error-name: symbol, error-text: text, error-lifetime: integer)

Initialization Item Error Handling Definition

devu-error-handler-proc Name of the error-handling procedure.

devu-error-lifetime Lifetime of an error message.

devu-high-priority Value assigned to a high-priority error.

devu-medium-priority Value assigned to a medium-priority
error.

devu-low-priority Value assigned to a low-priority error.

devu-system-category Value assigned to the message category of
a system error.

Argument Description

target Item causing the error

sender Sender of the error

error-category Category of the error

priority Priority of the error

error-name Name of the error
427

Trap Handling Overview
Traps are received from SNMP agents by Integrity via the HP OpenView,
Netview 6000, or Generic Bridges.

In general, first the trap is assembled and the incoming values are placed into a
mib-receiver object. Then, the completion procedure for the trap is called, if it
exists. The completion procedure is defined by the user. Refer to Completion
Procedure Determination for details on defining a user defined completion
procedure.

Note Integrity provides a basic message structure for representing alarms, messages,
and/or events received via SNMP traps and other asynchronous events. SNMP
traps received from the SNMP Gateway Bridge map directly into the message
attributes (sender object, target object, message ID, creation-time, etc.) of the
Integrity message. In addition to the textual representation of the message,
Integrity sets relations to the sending objects, target objects, etc.

If you are not integrating the G2-SNMP Bridge with an Integrity application, then
it will be necessary for you to develop additional software, as needed, for the
processing of an SNMP trap.

Values within a single trap are passed separately as object identifier (OID)/value
pairs and assembled in Integrity into a mib-receiver object. The OID identifies a
piece of data defined in the SNMP device's MIB database. The value of that
database field is the second half of the OID/Value pair. The OID's to be passed
with a specific trap are defined by the TRAP-TYPE declaration statements in the
ASN.1 formatted MIB definition file for the SNMP device. Integrity should have
already read and processed these definitions before the trap is sent, although this
is not required. Refer to MIB Processing for details.

When receiving an SNMP trap, Integrity must determine which class of
mib-receiver object is appropriate for storing and managing the data being passed
with the trap. After instantiating the appropriate receiver object and storing the
incoming values in the attributes of that object, Integrity next looks for a
completion procedure to execute. In general, the completion procedure provides a
software-hook for any application specific trap handling.

You may wish to check the values of the traps being received into Integrity. The
MIB-RECEIVER objects contain the trap information and are stored in the mib

error-text Text describing the error

error-lifetime Time interval in seconds before the error is deleted

Argument Description
428

Trap Handling Overview
receiver queues. In addition, you may also want to occasionally clear those
queues.

To view the MIB Receiver Queues workspace:

1 Choose Workspace > Get and select gmib-top-level.

2 Select Programmer’s Interface, then MIB Receiver Queue.

To clear the queues:

 Click the Clear Reception Queue and/or Clear Completed Receives
Queuebuttons.
429

The following figure is an example of a MIB-RECEIVER object for an SNMP trap:

Trap Class Creation and Processing
Several key values are always provided by the SNMP Gateway Bridge as part of
every trap received. These include:

• The enterprise ID of the sending agent

• The generic trap number (0-6)

• The specific trap number (only meaningful if the generic trap is 6)

In determining the class of MIB-RECEIVER object to create for an incoming trap,
Integrity searches for class definitions in the following order:

1 TRAP-[enterprise-id]-[generic-id]-[specific-id]

For example, TRAP-WELLFLEET-6-57789382

2 TRAP-[enterprise-id]-[generic-id]-xx

3 TRAP-[enterprise-id]-xx-xx
430

Trap Class Creation and Processing
4 TRAP-xx-[generic-id]-xx

5 TRAP-xx-xx-xx

Note Class definition names can use xx in place of the enterprise-id, generic-id or
specific-id. Integrity will match xx with any value from the trap for the enterprise-
id, generic-id or specific-id.

Caution If a trap receiver class definition named TRAP-XX-XX-XX (item #5) exists, it will be
instantiated for any enterprise-id/generic-id/specific-id trap combination unless
a more specific class definition (items #1 - #4) exists.

Handling Unrecognized SNMP Traps

An SNMP trap received by Integrity with no corresponding trap class definition,
TRAP-[ENTERPRISE-ID]-[GENERIC-ID]-[SPECIFIC-ID], can have a trap class definition
created automatically and placed upon a storage workspace. Setting the
initialization parameter mib-create-nonexistent-traps to a value of 1 will cause
Integrity to automatically create the trap class definition. See mib-create-
nonexistent-traps for more information on setting this value. The default value for
mib-create-nonexistent-traps is 0, which means do not create unrecognized SNMP
traps. The following diagram shows the workspace where unrecognized trap
class definitions are placed. The initialization parameters oxs-default-
unrecognized-trap-class and oxs-unrecognized-traps-location can be customized
by the user to control the behavior of the creation and placement of unrecognized
SNMP traps

To view the Integrity Unrecognized Traps workspace:

1 Click on the background of the G2 window and choose Get Workspace from
the G2 Main menu.

2 Select OXS-SIMULATION-TOP-LEVEL from the named workspaces menu to
display the workspace.

3 Click the Unrecognized Traps button to display the following workspace:
431

SNMP Traps

With Integrity 4.0, a trap manager and trap properties were introduced and is still
present in the current release of Integrity. This allows all received traps to be
processed by a single completion procedure making the handling of traps easier.
This is accomplished by setting the Use SNMP Java Bridge checkbox on the
SNMP Setup tab of the Setup dialog. If this is not set, trap processing is handled
by the process described in the previous section.

Trap Manager

There is only one trap manager per G2 process. The trap mananger keeps track of
all traps received by the application in a queue. The trap manager has the ability
to create new trap properties if one does not exist for the new trap. It also creates a
new domain object if the domain object does not exist in the current application.

Trap Properties

The class gmib-trap-properties encapsulates a single trap. You can access trap
properties for the application, in the Navigator, by selecting System Models >
SNMP Traps. You can create new trap properties in one of two ways: first, in the
Navigator, by right-clicking the SNMP Traps folder and choosing New Instance,
or second, from the Toolbox - SNMP Traps toolbox.

To view or modify a trap property, right click on the trap property object or right
click on the trap property name within the Navigator and choose Properties.

Here is a description of the properties:

Trap Property Description

Trap OID OID value in the ASN1 format.

Trap Named OID The named OID of the trap.

Short Name The label of the trap.

Trap Variable Labels The MIB object names of the trap.

Description Description of the trap.

Trapd Format The format specification for the trap message
processed by the trapd parser (located in the
Setup dialog).

Custom Message A customer message for the trap.

Passport Stamps Passport stamps used by ODiE.
432

Trap Class Creation and Processing
Defined Trap Properties

Integrity supplies six SNMPv1 trap properties, which provides Integrity with the
ability to process these traps automatically with no configuration. These v1 traps
include to following:

• Cold Start

• Warm Start

• Link Down

• Link Up

• Authentication Failure

• EGP Neighbor Loss

You can access these trap properties in the Navigator by selecting System Models
> SNMP Traps. Any trap property created by MIB parsing or by the Trapd
processing are displayed here as well.

Trap Processing

When a trap event is received through the SNMP bridge, SNMP version-specific
information is processed first, then a generic approach to process the rest of the
information is performed. The generic processing includes locating the trap
properties based on the trap OID. If no trap property exists, one is created with
minimal information. Once a trap property is identified, a trap receiver object is
created. The trap receiver object contains all of the trap information, along with
any OID value pair associated with the trap event. If the trap event is to clear an
existing trap (i.e., the Link Up trap clears the Link Down trap), it is processed
before generating a gtrap-trap-receive-created event. This event is dispatched
using the GRTL event scheme (see the GRTL documentation for information).

An event listener defined in the GTRAP module listens for gtrap-trap-receiver-
created events. When this event is generated, the oxs2-trap-completion method is
called. This is a generic completion procedure used for all trap events. The

Trap Class The trap receiver class to instantiate when a trap
is received by the application.

Signature A two pair value representing the default trap
signature from the MIB file and the short name of
the trap property.

Ignore Trap If true, no processing will be done for the trap.

Severity Severity for the trap.

Trap Property Description
433

completion procedure locates the domain object based on the trap event
information. If no domain object is found and the trap moniter is configured to
create new domain objects, a new domain object is created for the trap event. A
message is then created and posted to the message browser containing the
information in the trap event. When using ODiE, an event is generated for ODiE
as well.

If other trap processing is needed, applications can define their own event listener
and listen for the gtrap-trap-receiver-created event.

MIB Processing

The Integrity MIB parser is a combination of a Java application and a KB module.
It allows you to import MIBs for the equipment you want to monitor and manage.
The import is based on the AdventNet libraries. If the MIB you are importing
requires other MIB files, the parser also parses those files as well.

Setting Up and Running the MIB Parser

The startup and shutdown of the bridge is all controlled from the Integrity
application within the Setup dialog. You can activate the setup dialog by first
changing to Developer mode and selecting the Setup icon within the Integrity
toolbar. The dialog is divided into two sections: MIB Parser Setup and
MIB Processing.

MIB Parser Setup

The Setup dialog controls the startup and shutdown of the MIB Parser process.
The Parser text box contains the absolute path, including the startup batch file, to
launch the parser. If the location has changed, select the "..." button to launch the
File Select dialog to respecify the location and startup file.

To launch the parser, click the Launch Parser button, which executes the
StartJMibParser.bat file. A notification dialog appears while the bridge is
attempting to start. It disappear when the bridge makes a connection or gives up
due to a timeout condition. The first time you start the parser, it may take some
time as the Java VM must load as well. Subsequent launching of the parser will be
faster. The disabled text box to the right of the Launch Parser button displays the
current connection status of the parser.

To shutdown the parser, click the Shutdown Parser button. This will kill the Java
process, and any further attempts to process MIB files will be unsuccessful.

Processing MIB Files

To select a MIB file for processing, click the "..." button next to the File text box. If
the MIB file you are processing requires other MIB files, the parser parses those
files as well, as long as they are contained in the same directory as the original
selected file.
434

Trap Class Creation and Processing
Once the MIB file has been specified, click the Process MIB button to begin
parsing the file. The parsing process includes the creation of a gmib-mib-reader
object. This object contains default settings, parsed information, and the resulting
objects created during the parsing. The gmib-mib-reader object is added to the
Navigator under System Models > Parsed MIBs. From here, you can display the
properties of the gmib-mib-reader object and view all of the objects created during
the parsing of the file, as well as display and modify the properties of these
objects.

Viewing a Parsed MIB

To view the parsed MIB files, in the Navigator, select System Models >
Parsed MIBs. A list of MIB files that have already been parsed for the application
appears. To view the OID to name translation objects created for the MIB, click
the "+" next to the MIB name. The tree expands showing a list of all OID to name
translation objects.

To view or modify the properties of an OID to name translation object, right click
the OID and choose Properies.

To view or modify the properties of the MIB reader object, right click the
gmib-mib-read object and choose Properties.

Installed MIBs

Integrity provides the following MIB files already parsed using the MIB parser:

Installed Parsed MIBs

UPS B Enterprise

Cisco Enterprise OIDs

Cisco OIDs

Controll Enterprises

HP UNIX Enterprises

HP UNIX OIDs

HP UNIX Special Enterprise Entries

ODS 290 ENC Enterprises

ODS 290 FDDI 7-3 Enterprises

ODS 290 FDDI Enterprises

ODS 290 Inf Agent Enterprises
435

Vendor MIBS

Management Information Bases (MIBs) are available in the public domain,
generally supplied by vendors. To save space, you only need to read in the MIBs
relevant to your site and you should delete the ones you don't need. Some MIBs
are provided as a part of Integrity, such as those contained in the asn1.kb
module. You can merge this module into your application and make use of those
MIBs. See the G2 Reference Manual for information on merging modules into a
knowledge base.

Caution Any modifications done directly in the gmib.kb module could potentially be lost
when you install a new version of Integrity. To avoid this situation, transfer the
navigation buttons of the desired MIB from the gmib.kb top-level workspace to
a location in your application.

To go to the GMIB top-level workspace:

1 Click on the background of the G2 window to display the G2 Main menu and
choose Get Workspace.

2 Choose GMIB-TOP-LEVEL from the named workspaces menu, select
Programmer’s Interface, then Enterprise OID to Name Translations to display
the following workspace:

ODS 290 Inf Enterprises

ODS 290 Inf Tr Enterprises

ODS Inf Chassis Enterprises

ODS Inf FDDI Enterprises

RFC1213 Enterprises

RFC1213 OIDs

RMON OIDs

Telenex Enterprises

Wellfleet Enterprises

Wellfleet OIDs

Installed Parsed MIBs
436

Trap Class Creation and Processing
trapd.conf.ppd Parser

The file trapd.conf is supplied with HP OpenView as well as NetView 6000.
This file is the only place where information related to the severity (priority) of
traps and the format of their translation to printed log messages is kept.

Integrity provides a facility for reading this file and creating trap class definitions
for the various Enterprise ID event definitions. In order for Integrity to make use
of this file the C program trapd_pp, supplied as part of the G2-SNMP Bridges,
must be executed to pre-process the contents of the file trapd.conf. The output
of this program is the file named trapd.conf.ppd. The original trapd.conf
file is not changed during the pre-processing.

Note Enterprise ID's are also contained in this file. However, this information is
assumed to exist elsewhere and is ignored.

Use the following procedure for reading in the pre-processed trapd.conf.ppd
file:

mib-trapd-preprocessed-conf-reader
(filename: text, logfile: text, ws: class kb-workspace,
modify-existing: truth-value)
437

Caution Unknown Enterprise IDs will be created as transient OID-TO-NAME-TRANSLATIONS
objects with a resulting name of “Unknown Enterprise”.

The mib-trapd-preprocessed-conf-reader procedure processes the trapd.conf.
ppd file as follows:

1 Reads down to the Enterprise ID entries.

2 Reads the Enterprise ID entries to find the ones that are the beginning of an
event definition.

3 For each Enterprise ID event definition, determine if a corresponding trap
definition, MIB-RECEIVER class, exists by concatenating TRAP-[ENTERPRISE-ID]-
[GENERIC-ID]-[SPECIFIC-ID].

• If the trap definition does not exist then:

Check to see if the same specific trap exists for the immediate parent of the
Enterprise ID (i.e. remove the last element of the Enterprise IDs dot
notation).

• If the immediate parent does not have the trap defined for that Enterprise
ID then:

Create an SNMP-UNRECOGNIZED-TRAP subclass definition and place it on the
kb-workspace defined by ws. This definition will allow the trap to be
received by Integrity and any number of fields to be passed. It will also
provide a place to put the default severity information from the trapd.
conf.ppd file.

4 Retrieves the severity (sev) from the 7th field of the Enterprise ID event
definition and changes the text of the attributes specific to the class of the
corresponding MIB-RECEIVER class definition to include; Default-severity is a
integer, initially is [sev];.

Argument Description

filename The pathname of the trapd.conf.ppd file to
be read

logfile The pathname of the file that logs the results
of the read process.

ws A kb-workspace where the newly created trap
class definitions are to be placed.

modify-existing Determines whether the procedure should
modify existing trap class definitions.
438

Trap Class Creation and Processing
The following function is used to convert trapd.conf.ppd severity values to
Integrity severity values:

mib-default-trapd-priority-conversion
(input-value: integer)
-> priority: integer

This procedure returns an integer priority value (as defined in Integrity)
converted from the severity input-value (as defined in HP OpenView), as
follows:

5 Continues processing Enterprise ID event definitions until the end of file.

Clears-For Attribute

In some systems, such as Wellfleet routers, traps are sent which are intended to
clear earlier traps. Clears-for means that the present incoming trap has cleared a
previously received trap condition. The information linking the original trap and
the traps which clears-for the original trap is missing in the ASN.1 MIB definition
supplied by Wellfleet. Integrity can read and write files which capture the
relations between these traps. See mib-read-clears-file and mib-write-clears-file for
additional information on the use of these procedures. Unfortunately, the
manufacturers do not always publish the clears-for information, so it may have to
be entered by hand.

The developer is responsible for writing the completion procedure to process the
clears-for entries. An example procedure, sample-process-all-clears-for-entries
(...), is provided in the oxs_demo.kb knowledge base. This example procedure
assumes that the G2-SNMP Bridge is integrated with an Integrity application.

input-value priority

1 6

2 4

3 3

4 2

5 1

any value 1
439

To manually enter a clears-for attribute

1 Click the trap class definition to be edited and choose table from its menu.

The following figure is an example of trap class definition attributes table:

2 Edit the Class-specific-attributes attribute of the object definition.
440

Completion Procedure Determination
3 Enter the new attribute in one of the following formats:

• clears-for is a text, initially is “<enterprise-id>-<generic-id>-<specific-id>”

For example:

clears-for is a text, initially is “HPOpenView-6-912875”

This specifies that the reception of this trap will clear the HPOpenView-6-
912875 trap condition.

• clears-for is a text, initially is “<enterprise-id1>-<generic-id1>-<specific-
id1>, <enterprise-id2>-<generic-id2>-<specific-id2>, ... <enterprise-idn>-
<generic-idn>-<specific-idn>, ”

For example:

clears-for is a text, initially is “912875, 874356, 235681”

Completion Procedure Determination
In determining the completion procedure to execute for an SNMP trap, Integrity
searches for procedure definitions in the same order it uses for MIB-RECEIVER class
definitions. This value is specified in the Receive-completion-method attribute of
the MIB-RECEIVER object. This allows an application specific default to be
provided.

The order of the search is as follows:

1 completion-[enterprise-id]-[generic-id]-[specific-id]

For example, completion-wellfleet-6-57789382

2 completion-[enterprise-id]-[generic-id]-xx

3 completion-[enterprise-id]-xx-xx

4 completion-xx-[generic-id]-xx

5 completion-xx-xx-xx

Note Completion procedure names can use xx in place of the enterprise-id, generic-id
or specific-id. Integrity will match xx with any value from the trap for the
enterprise-id, generic-id or specific-id.

Caution If a completion procedure named completion-xx-xx-xx (item #5) exists, it will be
executed for any enterprise-id / generic-id / specific-id trap combination unless a
more specific procedure (items #1 - #4) exists.
441

To see a sample completion procedure:

• G2 Classic

View > Palettes > Toolbox - SNMP Traps > SNMP Trap Processing

• Telewindows

View > Toolbox - SNMP Traps > SNMP Trap Processing

SNMP Transactions
Through calls to procedures in the SNMP Gateway Bridge, your G2-SNMP Bridge
application can perform both blocking and non-blocking transaction requests.
Normally, you will use non-blocking calls, so that Integrity and the SGB can both
work on other tasks while waiting for responses to requests. This means you are
normally operating in a call back manner.

For instance, to do an SNMP GET, you issue a call to the SGB, and the SGB issues
you a unique identifier. When the response comes back from the network, the
SGB calls receiver procedures in Integrity. One call is made for each attribute. The
values returned in these calls are assembled by Integrity into objects called MIB-
RECEIVERS. The MIB-RECEIVER is then placed in the MIB receiver queue.

The oxs_sim-request-handler procedure handles the simulated and real time
SNMP transactions (SET, GET, and GET NEXT) of your G2-SNMP Bridge
application. See oxs_sim-request-handler for information on the argument list
and return values of this procedure.

Integrity acquires data from the SNMP Gateway Bridge through:

• Return values of the SNMP Gateway Bridge RPC’s (GET, GET NEXT). Calls to
remote procedures in the SNMP Gateway Bridge may be blocking or non-
blocking.

• Values that the SNMP Gateway Bridge returns to the Integrity receiver RPC’s
(Traps), through non-blocking RPC’s.

Caution Integer values in G2 are signed with 30-bit precision. A G2 integer value can
range from -229 to (229 - 1). For values outside of this range the SNMP
Gateway Bridge will return the value as a float, see the G2 Reference Manual for
more information.
442

Sending Traps to External Systems
Blocking and Non-Blocking Transactions

The SNMP Gateway Bridge provides two SNMP transaction procedures you
access from Integrity called:

• g2snmp_blocking_transaction

• g2snmp_nonblocking_transaction

These procedures handle any SNMP requests from your G2 application. Any
remote procedure declarations in your G2 application that use SNMP transactions
must specify one of these two functions as the Name-in-remote-system attribute
of the REMOTE-PROCEDURE-DECLARATION object. For descriptions of these
procedures, see Core Services APIs. See also the G2 Reference Manual for
additional information on defining Remote Procedure Calls.

Overloading Remote Procedures

The GSI remote procedure call feature allows overloading of G2-to-GSI RPC’s.
This means that several different G2 remote procedure declarations can reference
a single GSI function in the SNMP Gateway Bridge. This enables a variable
number and variety of types of arguments to be passed to the GSI function.

This overloading capability is an essential feature in the use of the two G2-SNMP
Bridge transaction procedures, blocking and non-blocking.

Sending Traps to External Systems

HP OpenView Interface

Integrity can use traps to send messages directly to an HP OpenView window.
For instance, a common need is to change the color of a status display on the HP
OpenView window. This can be done using the standard status change trap.

Sending an HP OpenView status trap

A status trap changes the status, and hence the color, of an object in HP
OpenView. In order to effect a color change in HP OpenView the status source of
the object must be set to "OBJECT". Note that you can access an object by name,
such as "localhost", or you can address it hierarchically, e.g., "localhost.lan0" for
its ethernet interface.
443

An equivalent method of setting the status, which can be found in the HP
OpenView man pages, is:

/usr/OV/bin/
localhost

.1.3.6.1.4.1.11.2.3.2.3 "" 6 58916871 ""

.1.3.6.1.4.1.11.2.15.2.0 integer 14

.1.3.6.1.4.1.11.2.15.3.0 octetstring $OBJECT

.1.3.6.1.4.1.11.2.15.4.0 octetstring

Object status is

.1.3.6.1.4.1.11.2.15.5.0 octetstring $NEWSTATUS

You should create this script, so that you can test the trap-receive procedures
independently of their generation in Integrity, and for a convenient way to reset
the color in HP OpenView following a change from Integrity. If you write a script
to do this, put a backslash “\” at the end of each line except the last (the backslash
character in a shell script denotes continue at next line).

The oxs_demo.kb knowledge base provides an example of a send status
procedure, sample-send-ov-trap.

This procedure assumes you have defined the environment variables $OBJECT
and $NEWSTATUS. Of course, you can directly put object names in quotes in place
of $OBJECT, and do the same with the possible status values.

The possible status values are "Normal", "Critical", "Marginal", and "Unknown".
The HP OpenView manual also specifies that you can use "Up" for Normal, and
"Down" for Critical. Spelling, spaces, and capitalization must be exact, or HP
OpenView will not understand it. See the HP OpenView trapd.conf man pages
for more details.

Note You can follow these changes in the log /usr/OV/log/trapd.log as well as
watching the HP OpenView window map. You will see errors in format, etc.,
much better in the log.

NetView 6000 Interface

The interface to IBM's NetView 6000 is essentially the same as the HP OpenView
interface. See HP OpenView Interface for more details.
444

Simulation Facilities
Simulation Facilities
Integrity provides facilities for sending simulated SNMP traps and for getting
variables from a simulated MIB. For examples of these facilities see the
oxs_demo.kb knowledge base.

SNMP Trap Simulation

Integrity provides an object, SNMP-SIMULATED-TRAP-RECEIVER, for filling in
simulated trap information and the procedure oxs-sim-simulate-trap (...) for
sending a simulated trap to Integrity. In addition to being able to start a simulated
trap programmatically, Integrity provides a menu choice, simulate trap, for
starting a simulated trap. The completion procedure of a simulated trap can be
run automatically by selecting the menu choice run completion procedure from
the menu choices of the SNMP-SIMULATED-TRAP-RECEIVER object.

Before executing a simulated SNMP trap you will need to configure it.

To configure a simulated SNMP trap object:

1 Click the background of the G2 window and choose Get Workspace from the
G2 Main menu.

2 Select OXS-SIMULATION-TOP-LEVEL from the named workspaces menu to
display the workspace.

3 Click the Simulated Trap object.

An instance of the object is attached to the mouse.

4 Drop the object on the desired workspace.
445

5 Click the object and choose table from its menu.

The following figure is shows an example of the Simulated Trap attributes
table:

You can configure the SNMP-SIMULATED-TRAP-RECEIVER to execute the
simulated trap only and/or to execute the completion procedure only.

6 You must specify values for these attributes to execute the simulation of a
trap:

Attribute Description

enterprise-id The enterprise of the trap being sent.

For example: HP OpenView

agent-address The IP address of the agent sending the trap.

For example: 165.50.61.1
446

Simulation Facilities
7 You must specify values for the following attributes to execute the completion
procedure of a simulated trap:

agent-hostname The hostname of the agent sending the trap.

For example: Gensym-1

generic-trap The generic trap id, possible values are:

0 (coldStart)
1 (warmStart)
2 (linkDown)
3 (linkUp)
4 (authenticationFailure)
5 (egpNeighborLoss)
6 (enterpriseSpecific)

specific-trap The specific trap id, usually vendor specific.

Attribute Description

Attribute Description

receive-completion-
method

The name of the procedure to be executed
after the reception of the trap. The Receive-
completion-method attribute follows the
format:

completion-[enterprise-id]-[generic-id]-
[specific-id]

enterprise-id The enterprise of the trap being sent.

For example: HP OpenView

agent-address The IP address of the agent sending the trap.

For example: 165.50.61.1

agent-hostname The hostname of the agent sending the trap.

For example: Gensym-1
447

Many of the SNMP traps have variable values (OID/Value pairs) associated with
them. Integrity provides a way for the user to specify the variable values of a
simulated trap.

Inputting simulated trap variable values:

1 Click the SNMP-SIMULATED-TRAP-RECEIVER object and choose Go To
Subworkspace from its menu.

2 Click TRAP-FIELD-VAL-ENTRY object and choose Table from its menu.

3 Enter values for these attributes:

generic-trap The generic trap id, possible values are:

0 (coldStart)
1 (warmStart)
2 (linkDown)
3 (linkUp)
4 (authenticationFailure)
5 (egpNeighborLoss)
6 (enterpriseSpecific)

default-category A text attribute for specifying the category
of the trap.

trapd-format “Enterprise $E Generic $G Specific $S”

clears-for For information on this attribute, see Clears-
For Attribute.

specific-trap The specific trap id, usually vendor specific.

default-severity The severity level of the trap as an integer
value.

Attribute Description

Trap-Field-Val-Entry object

oid Dotted IP notation.

oid-val Value for the OID.
448

Simulation Facilities
Note The field-number attribute is updated automatically.

To add a new variable:

1 Click the Add New Field button at the top of the workspace.

A new TRAP-FIELD-VAL-ENTRY object appears on the workspace, for example:

To execute a simulated SNMP trap

1 Click the SNMP-SIMULATED-TRAP-RECEIVER object to display its menu.

For example:
449

2 Choose one of the following two menu options:

Simulated traps can be executed programmatically by using the procedure oxs-
sim-simulate-trap (mib-rec: class snmp-simulated-trap-receiver). Selecting the
menu choice simulate trap or executing the procedure oxs-sim-simulate-trap
result in the same set of actions being performed.

SNMP Agent MIB Simulation

Integrity provides a facility for simulating the GET and GET NEXT SNMP
transactions on agent MIBs. The oxs_demo.kb provides examples of how this
facility is used. Integrity provides the oxs_sim-request-handler procedure for
interacting with simulated MIBs.

To configure a simulated MIB:

1 Click on the background of the G2 window and choose Get Workspace from
the G2 Main Menu.

2 Select OXS-SIMULATION-TOP-LEVEL from the named workspaces menu to
display the workspace.

3 Click the Simulated MIB object.

An instance of the object is attached to the mouse.

4 Drop the object on the desired workspace.

The Names attribute of the SIMULATED-AGENT-MIB is optional but the Reference-
object attribute must be filled out. The Reference-object attribute matches the
opfo-external-name attribute of some OPFO-DOMAIN-OBJECT instance. The OPFO-
DOMAIN-OBJECT is the host of the simulated agent MIB.

simulate trap Simulates the reception of an SNMP trap
from the SNMP Gateway Bridge.

run completion
procedure

Executes the completion procedure of the
simulated trap with no simulation of the
reception of the trap via the SNMP Gateway
Bridge.
450

Simulation Facilities
The following figure shows an example of a SIMULATED-AGENT-MIB and an OPFO-
DOMAIN-OBJECT whose attributes have been filled in:

Once the simulated MIB has been configured you will need to set up the variables
and tables of the MIB. The following steps describe this process:

To configure the variables of the simulated MIB:

1 Click the SIMULATED-AGENT-MIB object and choose Go To Subworkspace from
its menu to display the following workspace:

2 Click the Create Variable button.

The workspace is updated. For example:

3 Click the MIB-FIELD-VAR object and choose Table from its menu.
451

4 Enter values for these attributes:

This is the result:

Continue selecting the Create Variable action button to add additional MIB
variables.

To configure the tables of the simulated MIB:

1 Click the SIMULATED-AGENT-MIB object and choose Go To Subworkspace from
its menu to display the following workspace:

2 Click the Create Table button.

The workspace is updated. For example:

Oid Dotted IP notation of MIB variable.

Resulting-name The text equivalent of the OID value.

Instance-val The value to be returned for a simulated GET.
452

Simulation Facilities
3 Click the MIB-FIELD-TABLE object and choose Table from its menu.

4 Enter values for these attributes:

5 Click the MIB-FIELD-TABLE object and choose Go To Subworkspace from its
menu to display the following workspace:

.

6 Click the Create Table Column button.

The workspace is updated. For example:

7 Click the MIB-FIELD-TABLE-COLUMN object and choose Table from its menu.

8 Enter values for these attributes:

oid Dotted IP notation of MIB table.

resulting-name The text equivalent of the OID value.

oid Dotted IP notation of MIB variable.

index The index of the entry in the table.

resulting-name The text equivalent of the OID value.
453

9 Click the MIB-FIELD-TABLE-COLUMN object and choose Go To Subworkspace
from its menu to display its workspace:

10 Click the Create Table Variable button, and see To configure the variables of
the simulated MIB: to finish the Table Variable creation.

To create additional MIB tables, return to Step 1 of To configure the tables of the
simulated MIB:.
454

23
G2-SNMP Bridges API
Provides a listing of the G2-SNMP Bridges APIs, remote procedure calls,
procedures, and functions.

Introduction 456

Update for GSI-Based Bridge Process 456

Remote Procedure Calls 458

Procedures Listed by Module 488

Functions 503
455

Introduction
This chapter provides a listing of the G2-SNMP Bridge remote procedure calls,
procedures, and functions accessible to the developer.

Update for GSI-Based Bridge Process

Support for Filtering of Traps from Specified Hosts

This version of the G2-SNMP bridge supports filtering of incoming traps based on
the agent hostname and/or agent IP address bound with the incoming trap. This
capability is in addition to the existing filtering capability based on enterprise,
generic, and specific ID's for the trap.

The following capabilities have been added to the G2-SNMP bridge:

• Those hosts for which pass or block filtering is desired are specified in a
separate ASCII text file (the filtered hosts file) that contains the hostnames or
the IP addresses of the hosts to be filtered. This file is specified to the bridge
through the '-h <host filename>' command line option. No modifications to
existing trapd.conf or trapd.conf.ppd files are required.

• The filtered hosts file may contain either a hostname or an IP address for a
particular host. NOTE: Since the identification of the source host in the trap
PDU is based upon the IP address of the source host, all hostnames in the
filtered hosts file are mapped to IP addresses internally within the bridge.
Therefore, hostnames which cannot be identified by the gethostbyname()
Unix library function are not filtered. The file contains one filtered host
identification per line. The hostname must be a string formatted exactly as it is
used by the gethostbyname() Unix library function. All characters, including
whitespace characters, from the start of the line to the carriage return, are used
for matching the hostname. IP addresses must contain no whitespace
characters from the initial decimal point (.) to the final digit in the address. A
sample filtered hosts file might be:

hou38

eeyore

199.93.147.51

hou50

• The hostname/IP address filtering comprises only the first stage in the
filtering process. Once the hostname/IP address filtering has been applied,
the second stage enterprise/generic/specific filtering is applied. (See next
item for details).
456

Update for GSI-Based Bridge Process
• The G2SNMP_SET_AGENT_FILTER_MODE RPC allows a G2 application to
specify one of three states for use of the filtered host identification file:

– Pass: pass only traps from the hosts specified in the file, excluding
(rejecting) traps from all other hosts. Enterprise/generic/specific filtering
is applied to those traps passed.

– Block: block (reject) all traps from the hosts specified in the file, allowing
traps from all other hosts to pass. Enterprise/generic/specific filtering is
applied to those traps passed. This is the default setting for hostname/IP
address filtering.

– Off: bypass hostname/IP address filtering. Only
enterprise/generic/specific filtering is applied to incoming traps.

See the description of the G2SNMP_SET_AGENT_FILTER_MODE RPC in the
“Update for Integrity or G2 Applications” section of this document for guidelines
on constructing the required RPC.

Passing Variable Values for Variable Bindings in
Which the Variable Type Is 'Object Identifier'

This release of the G2-SNMP HP OpenView bridge under HP-UX passes the
correct variable values for variable bindings in which the variable type is 'object
identifier'. The bug fix is restricted to the GSI-based portion of the bridge. It does
not affect the Integrity support KB. Previously, the bridge passed either a null
string ('') or a random value from memory (such as an IP address) in place of the
proper value of the variable. The bridge now correctly passes varbind variable
values of type 'object identifier' .
457

Remote Procedure Calls
The following is a list of the remote procedure calls from Integrity to the SNMP
Gateway Bridge. These RPCs are:

• blocking and non-blocking transaction requests

• configuration of SNMP Gateway Bridge parameters

• addition and deletion of trap filters.

Base RPCs

The following remote procedure calls are the base RPC’s used by the G2-SNMP
Bridges.

g2snmp_add_filtered-trap

g2snmp_add_filtered-trap
(enterprise-id: text, generic-trap-id: integer, specific-trap-id: integer,
agent-ip-address: text, agent-hostname: text)

Argument Description

enterprise-id Defines a unique vendor-specific device. It
is the standard way of identifying an
organization or company.
The enterprise-id is included in the event
header defined in the SNMP protocol that is
passed as a part of every SNMP event. It is a
component of an SNMP Object Identifier
(OID) in dot notation.
For example, Gensym's enterprise ID is 1.3.
6.1.4.1.1097.

generic-trap-id Generic and specific trap IDs refer to two
fields in an SNMP trap definition which,
along with the enterprise ID, identify a trap
event uniquely.
The generic-trap-id field can contain values
0 - 6. Values 0 - 5 refer to generic events,
such as a warm start or a cold start. A value
of 6 indicates that this is an enterprise-
specific trap and that the specific-trap-id
value is meaningful (it is set to zero for
generic traps).
458

Remote Procedure Calls
Enables a G2 knowledge base to add a trap defined by an enterprise id, generic
trap id, and specific trap id to the list of traps that the SGB filters. If the specified
trap is already in the list, it is not duplicated; the existing entry is used. Filtered
traps are deleted at the SGB and not passed to G2.

For example, to ignore all traps with an enterprise id of "1.3.6.1.4.1.597.2.1”, a
generic id of 6 (meaning this is an enterprise-specific trap), and a specific id of 7,
invoke G2SNMP_ADD_FILTERED_TRAP() with these parameters. At the time the
remote procedure is invoked, the SGB begins deleting any traps matching this
enterprise/generic/specific signature; thus, they are not returned to G2.

This RPC now supports the use of the agent hostname and agent address
parameters with the following restrictions:

• Either an agent hostname or an agent IP address may be specified, but not
both. If an agent hostname is specified, then the agent IP address must be set
to the null string, "". If an agent IP address is specified, then the agent
hostname must be set to the null string, "".

• If either an agent hostname or an agent IP address is specified, then the
enterprise, generic, and specific parameters to this RPC must be set to the null
string (""), zero (0), and zero (0), respectively.

• If the enterprise, generic, and specific parameters are specified, then the agent
hostname and agent IP address both must be set to the null string, "".

The following table summarizes these restrictions. To use the table, find the
parameter of interest in the leftmost column, then read across the table to
determine what other parameters must be specified, and in appropriate cases, the
values of those parameters.

specific-trap-id Specifies an enterprise-specific trap event (if
generic-trap-id is set to 6).
Set to 0 if generic-trap-id specifies a generic
event (values 0 - 5).

agent-ip-address Specify none. Not yet implemented.

agent-hostname Specify none. Not yet implemented.

Argument Description

Parameter
of Interest

Agent
Hostname

Agent
Address

Enterprise
ID

Generic
ID

Specific
ID

Agent hostname Specified "" (null string) ""(null string) 0 0

Agent address ""(null string) Specified ""(null string) 0 0

Enterprise ID ""(null string) ""(null string) Specified Specified Specified
459

For G2SNMP_ADD_FILTERED_TRAP. If the agent hostname or IP address does
not exist in the filtered hosts list residing in the G2-SNMP bridge, it is added and
its filtering status is turned ON. If the specified agent already exists in the filtered
hosts list, then its filtering status is turned ON. A filtering status of ON means that
the current filtering behavior applies to this agent entry. That is, if the filtering
mode is BLOCK, then traps from the specified agent are blocked. Likewise, if the
filtering mode is PASS, then traps from the specified agent are passed.

The following table summarizes the effects of this RPC and its complementary
RPC, G2SNMP_DELETE_FILTERED_TRAP. To use the table, find the RPC of
interest in the leftmost column, then read across the table to determine the effect
on filter status for the agent specified and the effect on filtering for different
filtering modes.

Generic ID ""(null string) ""(null string) Specified Specified Specified

Specific ID ""(null string) ""(null string) Specified Specified Specified

Parameter
of Interest

Agent
Hostname

Agent
Address

Enterprise
ID

Generic
ID

Specific
ID

RPC Applied OFF (0) PASS (1) BLOCK (2)

g2snmp_add_filtered_trap Filter Status
ON Passed

Filter Status
ON Passed

Filter Status
ON Blocked

g2snmp_delete_filtered_trap Filter Status
OFF Passed

Filter Status
OFF Blocked

Filter Status
OFF Passed
460

Remote Procedure Calls
g2snmp_delete_filtered_trap

g2snmp_delete_filtered_trap
(enterprise-id: text, generic-trap-id: integer, specific-trap-id: integer,
agent-IP-address: text, agent-hostname: text)

Enables a G2 knowledge base to disable filtering a trap defined by an enterprise
id, generic trap id, and specific trap id from the list of traps that will be filtered by
the SGB. The trap is not removed from the list and filtering may again be enabled
by using G2SNMP_ADD_FILTERED_TRAP(). Filtered traps are deleted at the SGB and
not passed to G2.

For example, to begin receiving a previously filtered trap with an enterprise id of
"1.3.6.1.4.1.597.2.1", a generic id of 6 (meaning this is an enterprise-specific trap),

Argument Description

enterprise-id Defines a unique vendor-specific device. It
is the standard way of identifying an
organization or company.
The enterprise-id is included in the event
header defined in the SNMP protocol that is
passed as a part of every SNMP event. It is a
component of an SNMP Object Identifier
(OID) in dot notation.
For example, Gensym's enterprise ID is 1.3.
6.1.4.1.1097.

generic-trap-id Generic and specific trap IDs refer to two
fields in an SNMP trap definition which,
along with the enterprise ID, identify a trap
event uniquely.
The generic-trap-id field can contain values
0 - 6. Values 0 - 5 refer to generic events,
such as a warm start or a cold start. A value
of 6 indicates that this is an enterprise-
specific trap and that the specific-trap-id
value is meaningful (it is set to zero for
generic traps).

specific-trap-id Specifies an enterprise-specific trap event (if
generic-trap-id is set to 6).
Set to 0 if generic-trap-id specifies a generic
event (values 0 - 5).

agent-IP-address Specify none. Not yet implemented.

agent-hostname Specify none. Not yet implemented.
461

and a specific id of 7, invoke G2SNMP_DELETE_FILTERED_TRAP() with these
parameters. At the time the remote procedure is invoked, the SGB stops deleting
traps matching this enterprise/generic/specific signature, and returns them to
G2.

This RPC now supports the use of the agent hostname and agent address
parameters with the following restrictions:

• Either an agent hostname or an agent IP address may be specified, but not
both. If an agent hostname is specified, then the agent IP address must be set
to the null string, "". If an agent IP address is specified, then the agent
hostname must be set to the null string, "".

• If either an agent hostname or an agent IP address is specified, then the
enterprise, generic, and specific parameters to this RPC must be set to the null
string (""), zero (0), and zero (0), respectively.

• If the enterprise, generic, and specific parameters are specified, then the agent
hostname and agent IP address both must be set to the null string, "".

The following table summarizes these restrictions. To use the table, find the
parameter of interest in the leftmost column, then read across the table to
determine what other parameters must be specified, and in appropriate cases, the
values of those parameters.

The G2SNMP_DELETE_FILTERED_TRAP RPC may be used only on agents that
already have an entry in the filtered hosts list residing within the G2-SNMP
bridge. This RPC turns the filtering status for the specified agent to OFF. A
filtering status of OFF means that the current filtering behavior does not apply to
this agent entry. That is, if the filtering mode is BLOCK, then traps from the
specified agent are passed. Likewise, if the filtering mode is PASS, then traps from
the specified agent are blocked. The filtering mode for the specified agent may be
toggled back to ON using the G2SNMP_ADD_FILTERED_TRAP RPC.

Parameter
of Interest

Agent
Hostname

Agent
Address

Enterprise
ID

Generic
ID

Specific
ID

Agent hostname Specified "" (null string) ""(null string) 0 0

Agent address ""(null string) Specified ""(null string) 0 0

Enterprise ID ""(null string) ""(null string) Specified Specified Specified

Generic ID ""(null string) ""(null string) Specified Specified Specified

Specific ID ""(null string) ""(null string) Specified Specified Specified
462

Remote Procedure Calls
g2snmp_modify_comm_params

g2snmp_modify_comm_params
(time-out-interval: integer, retry-count: integer)
-> error-code: integer, error-string: text

Enables a G2 knowledge base to modify the request time-out interval and the
number of retries for sending the request.

g2snmp_set_agent_filter_mode

This RPC accommodates setting the agent hostname/IP address filtering mode to
one of three permissible values: 0 (OFF-no agent hostname/IP address filtering);
1 (PASS-allow only traps from the specified agent hostnames/IP addresses to
pass); and 2 (BLOCK-block all traps from the specified agent hostnames/IP
addresses). See the following section, “Update for GSI-based Bridge Process,” for
details on the effects of these various modes.

Argument Description

time-out-interval The length of time, in tenths of a second,
before the SGB attempts to try sending the
request again.

retry-count The number of times the SGB makes a
request after the initial request.
For example, if retry-count = 3 and the SGB
sends an initial request that times out, the
SGB sends three additional identical
requests before returning an error. The error-
string is:
"Error sending request: No response arrived
before timeout."

Return Value Description

error-code Returns a value of 0 if the transaction is
successful else the HP OpenView or
NetView 6000 integer error code.

error-string Returns a value of “[the current value of the
time-out-interval]-[the current value of the
retry-count]” if the transaction is successful
else “[the text translation of the error code as
defined in the HP OpenView or NetView
6000 documentation]”
463

This G2-based RPC activates the G2SNMP_setAgentFilterMode() RPC in the GSI-
based portion of the bridge. It accepts the following arguments: integer (filter_
mode). In a G2 application, add the following RPC definition:

g2snmp_set_agent_filter_mode(integer; { Filter mode: 0, 1, 2 }) =
(integer, text)

Set the 'Name in remote system' entry in the remote procedure declaration table
to 'G2SNMP_SET_AGENT_FILTER_MODE.' This procedure can be either 'start'-
ed or 'call'-ed from the G2 application. If called, it returns an integer status code
and a status message string.

g2snmp_use_snmp_comm_params

g2snmp_use_snmp_comm_params
()
-> error-code: integer, error-string: text

Enables a G2 knowledge base to configure the SGB to use the user-specified
values for the request time-out interval (length of time before the SGB attempts to
try sending the request again in tenths of a second) and the number of retries
(after the initial request) for re-sending the request. These values are set using
g2snmp_modify_comm_params.

Note When the SGB is configured to use the user-specified parameters through
G2SNMP_USE_SNMP_COMM_PARAMS(), the retry and timeout values are applied to all
subsequent non-blocking SNMP GETs and SETs for all agents.

g2snmp_use_snmp_defaults

g2snmp_use_snmp_defaults
()
-> error-code: integer, error-string: text

Enables a G2 knowledge base to configure the SGB to use the default values for
the request time-out interval (length of time before the SGB attempts to try

Return Value Description

error-code Returns a value of 0.

error-string Returns a value of GSI_SUCCESS.

Return Value Description

error-code Returns a value of 0.

error-string Returns a value of GSI_SUCCESS.
464

Remote Procedure Calls
sending the request again in tenths of a second) and the number of retries (after
the initial request) for re-sending the request. These parameters apply to all non-
blocking SNMP GETs and SETs. The default parameter values are contained in
the ovsnmp.conf file. See the HP OpenView documentation for configuring the
defaults in this file.

Note The currently supported version of HP OpenView allows configuring different
retry and timeout values for each SNMP agent.

g2snmp_blocking_transaction

g2snmp_blocking_transaction
(transaction-tagname: text, request-code: integer, node-name: text,
community-name: text, variable-oid: text, variable-ASN1-type: integer,
variable-value: text)
-> error-code: integer, error-string: text, node-name: text

Argument Description

transaction-tagname A handle for matching an incoming
response with the outgoing request.

request-code The type of blocking transaction requested.
Possible values are:

160 (GET request)

161 (GETNEXT request)

162 (GETRESPONSE request)

163 (SET request)

node-name The name or dotted IP address of the node
to which the transaction is directed.

community-name A string specifying the administrative
relationship for the transaction.

variable-oid The object identifier (OID), usually in dotted
notation, for the variable involved in the
GET or SET transaction.
465

Enables a G2 knowledge base to perform a blocking SNMP transaction.

variable-ASN1-type The ASN.1 type of the variable involved in
the GET or SET transaction. ASN.1 is a
formal language for describing data and the
properties of data.

variable-ASN1-type is set to one of the
following integer constants:

2 (integer)

4 (octet string)

variable-value The new value of the variable in a SET
transaction.

Return Value Description

error-code Returns a value of 0 if the transaction
completes successfully else the HP
OpenView or NetView 6000 integer error
code.

error-string Returns a value of NO ERRORS if the
transaction completes successfully else “[the
text translation of the error code as defined
in the HP OpenView or NetView 6000
documentation]”.

node-name Returns the node name to which the
transaction was directed.

Argument Description
466

Remote Procedure Calls
g2snmp_nonblocking_transaction

g2snmp_nonblocking_transaction
(transaction-tagname: text, request-code: integer, node-name: text,
community-name: text, variable-oid: text, variable-ASN1-type: integer,
variable-value: text)
-> result-id: integer

Argument Description

transaction-tagname A handle for identifying the outgoing
request.

request-code The type of non-blocking transaction being
requested. Possible values:

160 (GET request)

164 (TRAP send request)

node-name The name or dotted IP address of the node
to which the transaction is directed.

community-name The administrative relationship for the
transaction.

variable-oid The object identifier (OID), usually in dotted
notation, for the variable involved in the
GET or TRAP send transaction.

variable-ASN1-type The ASN.1 type of the variable involved in
the GET or TRAP send transaction. Possible
values are:

4 (octet string)

2 (integer)

variable-value The variable value is the value of the
variable in a TRAP send transaction.

Return Value Description

result-id Returns a handle to the MIB-RECEIVER object
that will receive the results of the SNMP
GET transaction. This value will match the
value of the Result-id of the MIB-RECEIVER
object.
467

Enables a G2 knowledge base to perform a non-blocking SNMP transaction (a
GET or a TRAP send).

Overloaded RPCs

The following remote procedure calls are overloaded RPC’s for use in performing
various GET, SET, and trap SEND SNMP transactions.

get_nonblocking_single

get_nonblocking_single
(transaction-tagname: text, request-code: integer, machine-nodename: text,
community-name: text, OID: text)
-> result-id: integer

Argument Description

transaction-tagname A handle for identifying the outgoing
request.

request-code The type of non-blocking transaction being
requested. Possible values are:

snmp_get_req_msg = 160 (GET Request)

snmp_getnext_req_msg = 161 (GET NEXT
Request)

machine-nodename The name or dotted IP address of the node
to which the transaction is directed.

community-name The administrative relationship for the
transaction.

OID The object identifier, usually in dotted
notation, for the variable involved in the
GET transaction.
468

Remote Procedure Calls
Performs a single non-blocking GET transaction and returns one value the result-
id. The result-id is the unique identifier of the MIB-RECEIVER object where the result
of the GET transaction is stored.

get_blocking_single

get_blocking_single
(transaction-tagname: text, request-code: integer, machine-nodename: text,
community-name: text, OID: text)
-> error-code: integer, error-string: text, machine-nodename: text,

text-OID: text, text-value: text, integer-OID: text, integer-value: integer,
float-OID: text, float-value: float

Return Value Description

result-id Returns a handle to the MIB-RECEIVER object
that will receive the results of the SNMP
GET transaction. This value will match the
value of the Result-id of the MIB-RECEIVER
object.

Argument Description

transaction-tagname A handle for indentifying the outgoing
request.

request-code The type of blocking transaction being
requested. Possible values are:

snmp_get_req_msg = 160 (GET Request)

snmp_getnext_req_msg = 161 (GET NEXT
Request)

machine-nodename The name or dotted IP address of the node
to which the transaction is directed.

community-name The administrative relationship for the
transaction.

OID The object identifier, usually in dotted
notation, for the variable involved in the
GET transaction.
469

Performs a single blocking SNMP GET transaction and returns the results as part
of the call. Depending upon the type of the value being returned, the return value
is placed in one of the following fields: text-value, integer-value or float-value,

get_2_blocking

Performs a blocking SNMP GET transaction on two variables. The results are
returned as part of the call.

get_2_blocking
(transaction-tagname: text, request-code: integer, machine-nodename: text,
community-name: text, OID-1: text, OID-2: text)
-> (error-code: integer, error-string: text, machine-nodename: text, OID-1: text,

value-1: text, OID-2: text, value-2: integer)

Return Value Description

error-code Returns a value of 0 if the transaction is
successful.

error-string Returns a value of NO ERRORS if the
transaction is successful.

machine-nodename The nodename or IP address of the machine
to which the GET transaction was directed.

text-OID The object identifier, usually in dotted
notation, for the variable involved in the
GET transaction.

text-value The variable requested by the GET
transaction for OID.

integer-OID The object identifier, usually in dotted
notation, for the variable involved in the
GET transaction.

integer-value The variable requested by the GET
transaction for OID.

float-OID The object identifier, usually in dotted
notation, for the variable involved in the
GET transaction.

float-value The variable requested by the GET
transaction for OID.
470

Remote Procedure Calls
Argument Description

transaction-tagname A handle for indentifying the outgoing
request.

request-code The type of blocking transaction being
requested. Possible values are:

snmp_get_req_msg = 160 (GET Request)

snmp_getnext_req_msg = 161 (GET NEXT
Request)

machine-nodename The name or dotted IP address of the node
to which the transaction is directed.

community-name The administrative relationship for the
transaction.

OID-1 The object identifier, usually in dotted
notation, for the variable involved in the
GET transaction.

OID-2 The object identifier, usually in dotted
notation, for the variable involved in the
GET transaction.

Return Value Description

error-code Returns a value of 0 if the transaction is
successful.

error-string Returns a value of NO ERRORS if the
transaction is successful.

machine-nodename The nodename or IP address of the machine
to which the GET transaction was directed.

OID-1 The object identifier, usually in dotted
notation, for the variable involved in the
GET transaction.

value-1 The text variable requested by the GET
transaction for OID-1.
471

set_blocking

Use this procedure to perform an SNMP SET transaction.

set_blocking
(transaction-tagname: text, request-code: integer, machine-nodename: text,
community-name: text, OID: text, ASN1-Type: integer, new-value: text)
-> (error-code: integer, error-string: text, machine-nodename: text)

OID-2 The object identifier, usually in dotted
notation, for the variable involved in the
GET transaction.

value-2 The integer variable requested by the GET
transaction for OID-2.

Return Value Description

Argument Description

transaction-tagname A handle for indentifying the outgoing
request.

request-code The type of blocking transaction being
requested.

snmp_set_req_msg = 163 (SET Request)

machine-nodename The name or dotted IP address of the node
to which the transaction is directed.

community-name The administrative relationship for the
transaction.

OID The object identifier, usually in dotted
notation, for the variable involved in the
GET transaction.

ASN1-Type The ASN.1 type of the variable involved in
the SET transaction. Possible values are:

asn1_integer (2)

asn1_octet_string (4)

new-value The new value of the OID, as a text string.
472

Remote Procedure Calls
set_nonblocking_integer

Use this procedure to perform an SNMP SET transaction for an integer value.

set_nonblocking_integer
(transaction-tagname: text, request-code: integer, machine-nodename: text,
community-name: text, OID: text, ASN1-Type: integer, new-value: integer)
-> (result-id: integer)

Return Value Description

error-code Returns a value of 0 if the transaction is
successful else returns the HP OpenView or
NetView 6000 integer error code.

error-string Returns a value of NO ERRORS if the
transaction is successful else “[the text
translation of the error code as defined in
the HP OpenView or NetView 600
documentation]”.

machine-nodename The nodename or IP address of the machine
to which the SET transaction was directed.

Argument Description

transaction-tagname A handle for indentifying the outgoing
request.

request-code The type of blocking transaction being
requested.

snmp_set_req_msg = 163 (SET Request)

machine-nodename The name or dotted IP address of the node
to which the transaction is directed.

community-name The administrative relationship for the
transaction.

OID The object identifier, usually in dotted
notation, for the variable involved in the
GET transaction.
473

set_nonblocking_text

Use this procedure to perform an SNMP SET transaction for a text value.

set_nonblocking_text
(transaction-tagname: text, request-code: integer, machine-nodename: text,
community-name: text, OID: text, ASN1-Type: integer, new-value: text)
-> (result-id: integer)

ASN1-Type The ASN.1 type of the variable involved in
the SET transaction. Possible values are:

asn1_integer (2)

new-value The new value of the OID, as an integer.

Return Value Description

result-id Returns a value of -1 if no SNMP sessions
could be opened in the G2-SNMP bridge,
else a positive number used for a handle to
the result.

Argument Description

Argument Description

transaction-tagname A handle for indentifying the outgoing
request.

request-code The type of blocking transaction being
requested.

snmp_set_req_msg = 163 (SET Request)

machine-nodename The name or dotted IP address of the node
to which the transaction is directed.

community-name The administrative relationship for the
transaction.

OID The object identifier, usually in dotted
notation, for the variable involved in the
GET transaction.
474

Remote Procedure Calls
send_novar_trap_nonblocking

Use this procedure to send a non-blocking SNMP trap with no values.

send_novar_trap_nonblocking
(transaction-tagname: text, request-code: integer, machine-nodename: text,
community-name: text, enterprise-id: text, agent-ip-address: text,
generic-trap-id: integer, specific-trap-id: integer, agent-run-time: integer)

ASN1-Type The ASN.1 type of the variable involved in
the SET transaction. Possible values are:

asn1_octet_string (4)

new-value The new value of the OID, as a string.

Return Value Description

result-id Returns a value of -1 if no SNMP sessions
could be opened in the G2-SNMP bridge,
else a positive number used for a handle to
the result.

Argument Description

Argument Description

transaction-tagname A handle for indentifying the outgoing
request.

request-code The type of blocking transaction being
requested.

snmp_trap_req_msg = 164 (TRAP Send
Request)

machine-nodename The name or dotted IP address of the node
to which the transaction is directed.

community-name The administrative relationship for the
transaction.
475

enterprise-id Defines a unique vendor-specific device. It
is the standard way of identifying an
organization or company.
The enterprise-id is included in the event
header defined in the SNMP protocol that is
passed as a part of every SNMP event. It is a
component of an SNMP Object Identifier
(OID) in dot notation.
For example, Gensym's enterprise ID is 1.3.
6.1.4.1.1097.

agent-IP-address The name or dotted IP address of the agent
node to which the transaction is directed.

generic-trap-id Generic and specific trap IDs refer to two
fields in an SNMP trap definition which,
along with the enterprise ID, identify a trap
event uniquely.
The generic-trap-id field can contain values
0 - 6. Values 0 - 5 refer to generic events,
such as a warm start or a cold start. A value
of 6 indicates that this is an enterprise-
specific trap and that the specific-trap-id
value is meaningful (it is set to zero for
generic traps).

specific-trap-id Specifies an enterprise-specific trap event (if
generic-trap-id is set to 6).
Set to 0 if generic-trap-id specifies a generic
event (values 0 - 5).

agent-run-time The amount of time elapsed between the last
initialization of the agent and the generation
of the trap.

Argument Description
476

Remote Procedure Calls
send_trap_nonblocking

Use this procedure to send a non-blocking SNMP trap with one value.

send_trap_nonblocking
(transaction-tagname: text, request-code: integer, machine-nodename: text,
community-name: text, enterprise-id: text, agent-ip-address: text,
generic-trap-id: integer, specific-trap-id: integer, agent-run-time: integer,
OID: text, ASN1-Type: integer, trap-value: text)

Argument Description

transaction-tagname A handle for indentifying the outgoing
request.

request-code The type of blocking transaction being
requested.

snmp_trap_req_msg = 164 (TRAP Send
Request)

machine-nodename The name or dotted IP address of the
manager node to which the transaction is
directed.

community-name The administrative relationship for the
transaction.

enterprise-id Defines a unique vendor-specific device. It
is the standard way of identifying an
organization or company.
The enterprise-id is included in the event
header defined in the SNMP protocol that is
passed as a part of every SNMP event. It is a
component of an SNMP Object Identifier
(OID) in dot notation.
For example, Gensym's enterprise ID is 1.3.
6.1.4.1.1097.

agent-IP-address The name or dotted IP address of the agent
node to which the transaction is directed.
477

generic-trap-id Generic and specific trap IDs refer to two
fields in an SNMP trap definition which,
along with the enterprise ID, identify a trap
event uniquely.
The generic-trap-id field can contain values
0 - 6. Values 0 - 5 refer to generic events,
such as a warm start or a cold start. A value
of 6 indicates that this is an enterprise-
specific trap and that the specific-trap-id
value is meaningful (it is set to zero for
generic traps).

specific-trap-id Specifies an enterprise-specific trap event (if
generic-trap-id is set to 6).
Set to 0 if generic-trap-id specifies a generic
event (values 0 - 5).

agent-run-time The amount of time elapsed between the last
initialization of the agent and the generation
of the trap.

OID The object identifier, usually in dotted
notation, for the variable involved in the
TRAP send transaction.

ASN1-Type The ASN.1 type of the variable involved in
the SET transaction. Possible values are:

asn1_integer (2)

asn1_octet_string (4)

trap-value The new value of the OID.

Argument Description
478

Remote Procedure Calls
send_trap_status_nonblocking

Use this procedure to send a non-blocking SNMP trap with four values.

send_trap_status_nonblocking
(transaction-tagname: text, request-code: integer, machine-nodename: text,
community-name: text, enterprise-id: text, agent-ip-address: text,
generic-trap-id: integer, specific-trap-id: integer, agent-run-time: integer,
OID-1: text, ASN1-Type-1: integer, trap-value-1: integer, OID-2: text,
ASN1-Type-2: integer, trap-value-2: text, OID-3: text, ASN1-Type-3: integer,
trap-value-3: text, OID-4: text, ASN1-Type-4: integer, trap-value-4: text)

Argument Description

transaction-tagname A handle for indentifying the outgoing
request.

request-code The type of blocking transaction being
requested.

snmp_trap_req_msg = 164 (TRAP Send
Request)

machine-nodename The name or dotted IP address of the node
to which the transaction is directed.

community-name The administrative relationship for the
transaction.

enterprise-id Defines a unique vendor-specific device. It
is the standard way of identifying an
organization or company.
The enterprise-id is included in the event
header defined in the SNMP protocol that is
passed as a part of every SNMP event. It is a
component of an SNMP Object Identifier
(OID) in dot notation.
For example, Gensym's enterprise ID is 1.3.
6.1.4.1.1097.

agent-IP-address The name or dotted IP address of the agent
node to which the transaction is directed.
479

generic-trap-id Generic and specific trap IDs refer to two
fields in an SNMP trap definition which,
along with the enterprise ID, identify a trap
event uniquely.
The generic-trap-id field can contain values
0 - 6. Values 0 - 5 refer to generic events,
such as a warm start or a cold start. A value
of 6 indicates that this is an enterprise-
specific trap and that the specific-trap-id
value is meaningful (it is set to zero for
generic traps).

specific-trap-id Specifies an enterprise-specific trap event, if
the generic-trap-id is set to 6.
Set to 0 if generic-trap-id specifies a generic
event (values 0 - 5).

agent-run-time The amount of time elapsed between the last
(re)-initialization of the agent and the
generation of the trap.

OID-1 The object identifier, usually in dotted
notation, for the variable involved in the
TRAP send transaction.

ASN1-Type-1 The ASN.1 type of the variable involved in
the SET transaction. Possible values are:

asn1_integer (2)

asn1_octet_string (4)

trap-value-1 The new value of the OID.

OID-2 The object identifier, usually in dotted
notation, for the variable involved in the
TRAP send transaction.

ASN1-Type-2 The ASN.1 type of the variable involved in
the SET transaction. Possible values are:

asn1_integer (2)

asn1_octet_string (4)

trap-value-2 The new value of the OID.

Argument Description
480

Remote Procedure Calls
Receiver Procedures

G2 procedures that the SNMP Gateway Bridge calls to return data to G2. The SGB
can call these functions to return:

• Data requested by non-blocking requests.

• Error messages.

• Traps received by the SGB through the SNMP trap receiver process.

g2snmp_receive_eot

Returns an end-of-transaction acknowledgment message to G2 from the SGB for
non-blocking transactions (such as an SNMP trap send or a non-blocking SNMP
get) . The message is formatted as:

"In [the current procedure name] RECEIVED end-of-transaction for
Transaction type: [transaction_type text] RESULT-ID: [result_id value]
number of variables: [counter value] context: [context value]".

The level of the mib-debug parameter determines when messages are sent to the
devu-error-handler() for display, either on the message board or by other methods
that the you have specified.

OID-3 The object identifier, usually in dotted
notation, for the variable involved in the
TRAP send transaction.

ASN1-Type-3 The ASN.1 type of the variable involved in
the SET transaction. Possible values are:

asn1_integer (2)

asn1_octet_string (4)

trap-value-3 The new value of the OID.

OID-4 The object identifier, usually in dotted
notation, for the variable involved in the
TRAP send transaction.

ASN1-Type-4 The ASN.1 type of the variable involved in
the SET transaction. Possible values are:

asn1_integer (2)

asn1_octet_string (4)

trap-value-4 The new value of the OID.

Argument Description
481

g2snmp_receive_eot
(transaction_type: text, result_id: integer, counter: integer, context: integer)

g2snmp_receive_float

Receives a float in G2 from the SNMP Gateway Bridge.

g2snmp_receive_float
(error_code: integer, error_string: text, result_id: integer, node-name: text,
object-id: text, result: float)

Argument Description

transaction_type Either TRAP or NON-BLOCKING.

result_id The return code generated by the
transaction request.

counter Number of variables transferred as part of
the transaction request.

context The SGB context in which the transaction
has been processed. Since multiple G2
processes may connect to a single SGB, and
multiple Telewindows sessions may be
logged in to any of the G2 processes, the
context value helps the user track the
transactions of interest.

Argument Description

error_code Request status. A return value of zero (0)
indicates success; otherwise, an error
condition occurred.

error_string Text description of the request status. A
returned value of NO ERRORS indicates
success; otherwise, an error condition
occurred.

result_id This integer is used to correlate values
which are returned by the SGB to the
request made by the non-blocking call or
trap.

node-name The node-name from which the variables are
requested. This is returned as either the
hostname or the ip-address.
482

Remote Procedure Calls
g2snmp_receive_integer

Receives an integer in G2 from the SNMP Gateway Bridge.

g2snmp_receive_ integer
(error_code: integer, error_string: text, result_id: integer, node-name: text,
object-id: text, result: integer)

g2snmp_receive_message

Receives a message in G2 from the SNMP Gateway Bridge. The message is
formatted as:

"In [the current procedure name] tag: [tag text] node: [node text] error_string:
[error_string text] error_code: [error_code value]".

The level of the mib-debug parameter determines when messages are sent to the
devu-error-handler() for display, either on the message board or by other methods
that the you have specified.

object-id Object-identifier of the returned variable.

result The value of the requested float variable.

Argument Description

Argument Description

error_code Request status. A return value of zero (0)
indicates success; otherwise, an error
condition occurred.

error_string Text description of the request status. A
returned value of NO ERRORS indicates
success; otherwise, an error condition
occurred.

result_id This integer is used to correlate values
which are returned by the SGB to the
request made by the non-blocking call or
trap.

node-name The node-name from which the variables are
requested. This is returned as either the
hostname or the ip-address.

object-id Object-identifier of the returned variable.

result The value of the requested integer variable.
483

g2snmp_receive_message is intended to be used as a general-purpose means of
sending a message back to G2. No verification of any of the returned fields is
performed. It is assumed that the SGB has filled in the values properly.

g2snmp_receive_message
(tag: text, node: text, error_string: text, error_code: integer)

g2snmp_receive_string

Receives a string in G2 from the SNMP Gateway Bridge.

g2snmp_receive_string
(error_code: integer, error_string: text, result_id: integer, node-name: text,
object-id: text, result: text)

Argument Description

tag General text to be displayed as a preface to
the message.

node The node-name from which the message was
sent. This may be returned as either the
hostname or the ip-address.

error_string Text description of the message status.

error_code Message status.

Argument Description

error_code Request status. A return value of zero (0)
indicates success; otherwise, an error
condition occurred.

error_string Text description of the request status. A
returned value of NO ERRORS indicates
success; otherwise, an error condition
occurred.

result_id This integer is used to correlate values
which are returned by the SGB to the
request made by the non-blocking call or
trap.

node-name The node-name from which the variables are
requested. This is returned as either the
hostname or the ip-address.
484

Remote Procedure Calls
g2snmp_receive_trap_packet

Receives a single packet of trap packet information in G2 from the SNMP
Gateway Bridge. The trap receive mechanism differs significantly from the other
receiver functions. In order to improve performance in handling large numbers of
incoming traps (for example, during a trap 'storm'), the values contained in the
trap protocol data unit (PDU) are not returned to G2 individually. Instead, the
PDU information is packetized as a standard header containing PDU and packet
information, plus a packet body of up to sixteen PDU oid/value pairs per packet.
The structure of the packet parallels the order of the arguments to g2snmp_
receive_trap_packet. The header consists of error_code, error_string, result_id,
enterprise_id, agent_address, agent_hostname, generic_trap, specific_trap, agent_
act_time, seq_number, number_packet, vars_in_packet.

The packet body consists of oid/value pairs. Each of these values are described
below. If there are more than sixteen oid/value pairs to be returned to G2 from the
trap, they are split across multiple packets, each with a similar header (error_code
through agent_act_time and number_packet the same in each packet, seq_number
and vars_in_packet varying to reflect the individual packet).

Although the SGB ships the packets to G2 in the proper order, the SGB cannot
guarantee in-order delivery to G2. Therefore, any processing done by G2 on the
received packet should use the seq_number field to identify the group of oid/value
pairs returned in the packet.

g2snmp_receive_trap_packet
(error_code: integer, error_string: text, result_id: integer, enterprise_id: text,
agent_address: text, agent_hostname: text, generic_trap: integer,
specific_trap: text, agent_act_time: integer, seq_number: integer,
number_packet: integer, vars_in_packet: integer oid_1: text, val_1: text,
oid_N: text, val_N: text)

object-id Object-identifier of the returned variable.

result The value of the requested string variable.

Argument Description

Argument Description

error_code Request status. A return value of zero (0)
indicates success; otherwise, an error
condition occurred.

error_string Text description of the request status. A
returned value of "NO ERRORS" indicates
success; otherwise, an error condition
occurred.
485

result_id This integer is used to correlate values
which are returned by the bridge to the
request made by the non-blocking call or
trap.

enterprise_id A dot-notation oid defining the
manufacturer of the device sending the trap.

agent_address The dot-notation IP address of the agent
sending the trap.

agent_hostname The name of the host on which the agent
sending the trap resides.

generic_trap SNMP generic trap code.

specific_trap Enterprise-specific trap code.

agent_act_time Length of time the agent sending the trap
has been active.

seq_number Sequence number of the packet. If more than
sixteen oid/value pairs will be returned to
G2, seq_number will be incremented by the
bridge for each packet sent.

number_packet Total number of packets that this trap
comprises.

vars_in_packet Number of oid/value pairs in this packet.
May be zero (0).

oid_1, val_1 Object-identifier and value of the first
returned variable. If the vars_in_packet
parameter is zero (0), no oid/value pairs are
present.

oid_N, val_N Object-identifier and value of the last
returned variable. Present if more than one
(1) oid/value pair is returned. Up to sixteen
(16) oid/value pairs may be returned in a
single packet.

Argument Description
486

Remote Procedure Calls
Two arguments, community-name and community-length, have been added to the
argument lists of this RPC. The remainder of the argument lists remains the same.
The argument lists now have the form:

g2snmp_receive_trap_packet
(
error-code: integer, error-string: text, result-id: integer, enterprise-id: text,
agent-address: text, agent-hostname: text, generic-trap: integer, specific-trap: text,
agent-act-time: integer, community-name: text, community-length: integer ...
)

487

Procedures Listed by Module
The API procedures are listed according to the module that contains them. The
modules that include API procedures are as follows:

• GNDO Module - Developer utility module which contains procedures for
parsing and looking up domain objects.

• GMIB Module - Management Information Base module which contains
procedures for reading ASN.1 MIB’s and the trapd.conf file.

• GSNMP Module - Integrity SNMP simulation module, which contains
procedures for the simulation of SNMP traps, objects for a simulated agent
MIB, and procedures for performing various SNMP transactions.

GNDO Module

The GNDO module contains procedures for parsing and domain object lookup.

devu-consume-next-field
(txt: text, separator: text)
-> (next-field: text, text-remaining: text)

Parses a text string containing fields separated by a unique separator text.
Returns two text strings. next-field contains txt up to, but not including, the
first occurrence of separator. text-remaining contains what is left in txt after
next-field and the first separator are stripped off.

devu-decode-comma-line
(text-string: text, txt-list: class text-list)

Use this procedure to turn a comma separated text string into a list of text
items. Breaks comma separated strings in text-string into individual strings
and inserts them into the list txt-list without any duplicate items.

devu-domain-object-lookup
(object-name: text)
-> (domain-object: class [opfo-managed-object | opfo-containment-object])

Returns the domain-object with the specified object-name as the value of its _
opfo-external-name attribute or as its name. If you want to lookup an object
based on a different object attribute, you can define a custom procedure which
will be called by devu-domain-object-lookup. The name of this procedure is
defined in the G2 parameter devu-alternate-object-lookup-procedure. The
procedure name is initialized in this parameter using an initialization item.

If no object matching these criteria is found, by default, devu-domain-object-
lookup returns the domain object devu-safe-object. If you want to return
some other default object instead, you can define a custom procedure and
specify the name of the procedure using the initialization for the parameter
devu-unknown-object-procedure.
488

Procedures Listed by Module
devu-error-handler
(target: class item, sender: class item, error-category: text, priority: integer,
errname: symbol, errtext: text, lifetime:integer)

This is the default error handler in Integrity. This procedure executes the error
handler procedure specified in the G2 parameter devu-error-handler-proc.
You can define a custom error handler procedure and specify the name of the
procedure using the initialization for devu-error-handler-proc.

devu-get-field-n
(txt: text, n: integer, separator: text)
-> (nth-field: text)

The argument txt is a text string containing fields separated by a separator
text. This procedure returns the nth-field in txt. If txt does not have n fields, an
empty string is returned.

devu-insert-item-in-sorted-ascending-list
(new-item: class item, list: class item-list, key-proc: class procedure)

Inserts new-item in list in ascending order based on criteria defined in key-
proc. The procedure defined by key-proc should accept an item as an argument
and return an integer which is used for sorting the items.

devu-insert-item-in-sorted-descending-list
(new-item: class item, list: class item-list, key-proc: class procedure)

Inserts new-item in list in descending order based on criteria defined in key-
proc. The procedure defined by key-proc should accept an item as an argument
and return an integer which is used for sorting the items.

devu-insert-msg-in-alphabetical-list
(msg: class message, list: class item-list)

Inserts a msg in alphabetical order into list. No duplicates are allowed in the
list.

devu-insert-msg-in-alphabetical-list-allowing-duplicates
(msg: class message, list: class item-list)

Inserts a msg in alphabetical order into list. Duplicates are allowed in the list.

devu-pattern-matcher-with-indices
(txt: text, txt-pos: integer, pattern: text, pattern-pos: integer)
-> (match-value: truth-value)

Searches for pattern in txt. The symbol “*” in pattern is matched by any
number of arbitrary characters. The symbol “?” in pattern is matched by
exactly one arbitrary character. The characters “*?” together are not matched.
The match begins starting from the position pattern-pos in the pattern and txt-
pos in the text string txt. The procedure returns true if a match is found,
otherwise false.
489

devu-safe-text-for-symbol
(txt: text)
-> (txt-to-symbol: text)

Converts a text string, txt, to a valid G2 symbol string, txt-to-symbol. It replaces
all spaces with "_", and prefixes special characters with "@". Spaces at the end
of the string are removed.

devu-safe-window
()
-> (safe-window: class g2-window)

Returns a safe G2 window.

devu-strip-linefeeds
(txt: text)
-> (txt-without-linefeeds: text)

Strips the linefeeds from txt and returns the text without any linefeeds in txt-
without-linefeeds.

devu-substitute-text
(match-string: text, replace-string: text, txt: text)
-> (new-txt: text)

Finds every occurrence of match-string in txt and replaces it with replace-
string. The new text string is returned in new-txt.

devu-txt-is-ascii-punctuation-p
(character: text)
-> (is-ASCII-character: truth-value)

Returns true if character is an ASCII symbol, otherwise returns false.

The following value for character, enclosed in parenthesis, will return true:

“ “, “!”, “?”, “@””, “<“, “,”, “(“, “)”, “:”, “;”, or “.”

devu-txt-is-ascii-symbol-p
(character: text
-> (is-ASCII-punctuation: truth-value)

Returns true if character is an ASCII punctuation, otherwise returns false.

The following value for character, enclosed in parenthesis, will return true:

“+”, “*”, “/”, “=”, “<“, “>”, “@@”, “#”, “$”, “%”, “^”, “&”, “|”, “\”, “~”, “{“,
“}”, “[“, or “]”

devu-txt-is-digit-p
(character: text)
-> (is-integer: truth-value)

Returns true if character is an integer from 0 to 9, otherwise returns false.
490

Procedures Listed by Module
devu-txt-is-mib-character-symbol-p
(character: text
-> (is-mib-character: truth-value)

Returns true if character is a mib character symbol, otherwise returns false.

The following values for character, enclosed in parenthesis, will return true:

“{“, “}”, “(“, “)”, “[“, “]”, “\”, “/”, “+”, “=”, “!”, “*”, “^”, “<“, “>”, “?”, “|”, “:”,
“;”, “,”

GMIB Module

The GMIB module contains procedures for reading ASN.1 MIB’s and the trapd.
conf file.

mib-return-default-msg-category
(mib-rec: class mib-receiver)
-> (default-category: text)

Returns a value for the default-category attribute of mib-rec based on:

If the default-category of mib-rec /= ““ then use this value

Else build the default-category of mib-rec by concatenating

[enterprise]-[genericTrap]-[specificTrap].

Caution This procedure may change the value of the default-category of mib-rec.

mib-substitute-in-format-spec
(mib-rec: class mib-receiver)
-> (trapd-format: text)

The Trapd-format attribute of mib-rec is substituted according to the rules of
the format description for the trapd.conf file (see the man pages for
trapd.conf). The return value is the fully substituted format specification.

Limitations:

• treats upper and lower case characters as the same

• “$C” is not supported, substitutes “***”

• “$L” is not supported, substitutes “***”

• “-n” and “+n” options treated as “n” option

• Only supports single digit field position on “$n”

• Does not handle all C printf formatting
491

mib-receiver-create-and-queue
(class-type: symbol, nodename: text, number-of-oids-requested: integer)
-> (mib-rec: class mib-receiver)

This procedure is used in conjunction with performing non-blocking SNMP
GET transactions. The user calls this procedure specifying the class-type of the
MIB-RECEIVER object to be created. The class-type must be a subclass of the GET-
REQUEST-RECEIVER class. This object is then placed in the MIB-RECEPTION-
QUEUE to await the results of the SNMP GET transaction from the SGB
process. Once the results of the SNMP GET transaction are returned from the
SGB process Integrity updates the mib-rec object and moves it to the MIB-
COMPLETED-RECEIVES queue. The number-of-oids-requested is an integer value
specifying how many OIDs are being requested in this SNMP GET
transaction. This value will be concluded to the Number-of-expected-values of
the mib-rec object and can be compared against the Number-of-received-values
that is updated by the SGB process. See the oxs_demo.kb non-blocking SNMP
GETs for examples of its usage.

mib-create-name-to-oid-translation
(oid-to-name-translation-obj: class oid-to-name-translation)

Creates a NAME-TO-OID-TRANSLATION object and places it to the right of and
slightly below the OID-TO-NAME-TRANSLATION object. This API can be used in a
G2 procedure to create NAME-TO-OID-TRANSLATION objects for a group of OID-
TO-NAME-TRANSLATION objects upon a workspace. This procedure is called by
the user-menu choice create name translation for OID-TO-NAME-TRANSLATION
objects.

mib-enterprise-oid-text-to-name
(txt: text)
-> (resulting-name: symbol)

Returns the Resulting-name attribute of an OID-TO-NAME-TRANSLATION object as
a symbol if one exists otherwise, returns txt as a symbol.

mib-translate-info-to-trap-name
(enterprise-id: text, generic-id: text, specific-id: text)
-> (trap-class-name: symbol, class-found: truth-value)

Returns the name of the appropriate class definition, TRAP-[ENTERPRISE-ID]-
[GENERIC-ID]-[SPECIFIC-ID], as a symbol with a truth value of TRUE. If no class
definition can be found then the symbol not-found will be returned with a
truth value of FALSE.

mib-translate-info-to-completion-name
(enterprise-id: text, generic-id: text, specific-id: text)
-> (completion-routine-name: symbol, completion-routine-found: truth-value)

Returns the name of the appropriate procedure, completion-[enterprise-id]-
[generic-id]-[specific-id], as a symbol with a truth value of TRUE. If no
492

Procedures Listed by Module
completion routine can be determined then the symbol not-found will be
returned with a truth value of FALSE.

mib-delete-old-list-entries
(lst: class item-list, TTL: integer)

Deletes MIB-RECEIVER objects in the queue specified by lst, mib-reception-
queue or mib-completed-receives, older than their Time To Live (TTL). The
Time To Live is specified via the mib-receiver-time-to-live-in-queues integer-
parameter. The default value for this parameter, TTL, is 600 seconds.

asn1-rfc1212-mib-parser
(filename: text, enterprise-ws: class item, oid-ws: class item, mibrec-
ws: class item)

Reads the ASN.1 formatted MIB file specified by filename based on RFC 1212
definitions. The results of the read are placed on the following workspaces:

• enterprise-ws - Contains the ENTERPRISE-OID-TO-NAME-TRANSLATION objects

• oid-ws - Contains the OID-TO-NAME-TRANSLATION objects

• mibrec-ws - Contains the trap class definitions

mib-write-clears-file
(enterprise-id: text, filename: text, write-mode: symbol)

Writes the specific trap definitions “clears for” entries to the file specified by
filename. The write-mode specifies whether to ‘append’ or ‘overwrite’ the file.
Only MIB-RECEIVER class definitions as specified by the enterprise-id will be
written. The value of enterprise-id must match the value specified in the
Enterprise-id attribute of the SNMP-TRAP-RECEIVER object definition (i.e. by
name such as “HP OpenView” or by dot notation such as “1.3.6.4.1.11”). A
value of “*” for enterprise-id will include all MIB-RECEIVER class definitions.

Tip The Enterprise-id attribute value can be set by editing the Attribute-
initializations of the object definition (e.g. Enterprise-id initially is “HP
OpenView”).

The format of the file is as follows:

-- Header
CLEARS TRAP-[enterprise-id]-[generic-id]-[specific-id] for <specific-id>

for example:

-- Created at 11 Sep 97 4:34:27 p.m. by G2 for enterprise = *
CLEARS TRAP-WFSWSERIES7-XX-XX for 88888

or comma-separated entries such as

-- Created at 11 Sep 97 4:34:27 p.m. by G2 for enterprise = *
CLEARS TRAP-WFSWSERIES7-XX-XX for 88888, 99999, 77777
493

The file will be readable by the mib-read-clears-file procedure for use in
adding Clears-for attributes to MIB-RECEIVER class definitions.

mib-read-clears-file
(filename: text)

Reads the file specified by filename consisting of the ‘CLEARS’ entries and
updates the respective trap class definition. The format of the file is as follows:

-- Header
CLEARS TRAP-[enterprise-id]-[generic-id]-[specific-id] for <specific-id>

for example:

-- Created at 11 Sep 97 4:34:27 p.m. by G2 for enterprise = *
CLEARS TRAP-WFSWSERIES7-XX-XX for 88888

or comma-separated entries such as

-- Created at 11 Sep 97 4:34:27 p.m. by G2 for enterprise = *
CLEARS TRAP-WFSWSERIES7-XX-XX for 88888, 99999, 77777

mib-trapd-preprocessed-conf-reader
(filename: text, logfile: text, ws: class kb-workspace, modify-existing: truth-value)

Reads the trapd.conf.ppd file specified by filename. This file is created
from running the trapd pre-processor executable trapd_pp on the file
trapd.conf. The parameter logfile specifies the path of the file that logs the
results of the read process. The ws parameter specifies where the newly
created trap class definitions are to be placed. The modify-existing parameter,
true or false, specifies whether the procedure should modify existing trap
class definitions.

Note Unknown enterprises will be created as transient OID-TO-NAME-TRANSLATIONS
with a Resulting-name of “Unknown Enterprise”.

mib-delete-dictionary-on-workspace
(end-obj: class item)

Deletes dictionary entries, OID-TO-NAME-TRANSLATION and NAME-TO-OID-
TRANSLATION objects, on the workspace of end-obj. end-obj, by convention, is a
message or other object placed at the bottom of the dictionary entries.

mib-clean-up-ws
(ws: class kb-workspace)

This procedure will attempt to delete everything, mib related, on ws excluding
the opfo-workspace-header, the opxb-go-to-superior-button, the “Go to
Bottom” action-button, and the “Delete MIB Items on this WS” action-button.
494

Procedures Listed by Module
GSNMP Module

The gsnmp.kb module contains procedures for the simulation of SNMP traps
and agent MIBs.

oxs-sim-simulate-trap
(mib-rec: class mib-receiver)

Simulates the reception of an SNMP trap from the SNMP Gateway Bridge.
The information for the trap must be filled out in the mib-rec object. See SNMP
Trap Simulation for additional information on using simulated SNMP traps.

oxs_sim-request-handler
(node: class opfo-domain-object, snmp-type: symbol, node-id: text,
machine-nodename: text, community-name: text, OID: text; ASN1-Type: integer,
new-value: text, time-out: integer, request-type: integer)
-> (error-code: integer, error-name: symbol, error-string: text,

results-list: item-or-value, result-id: integer

Handles the execution of a simulated or actual SNMP transaction (SET, GET,
or GET NEXT). See SNMP Agent MIB Simulation for additional information
on simulated SNMP MIB transactions. This procedure makes calls to snmp-
set-rpc-call or snmp-get-table-column-rpc-call for performing the remote
procedure calls to the SNMP Gateway Bridge.

Argument Description

node The domain object to perform the SNMP the
transaction on.

snmp-type A symbolic value of snmp or simulated-
snmp for specifying either a real or
simulated SNMP transaction.

node-id The dotted IP address of the node to which
the transaction is directed.

machine-nodename The name of the node to which the
transaction is directed.

community-name The administrative relationship for the
transaction.

OID The object identifier, usually in dotted
notation, for the variable involved in the
SNMP transaction.
495

ASN1-Type The ASN.1 type of the variable involved in
the SET transaction. Possible values are:

asn1_integer (2)

asn1_octet_string (4)

new-value The new value of the OID for an SNMP SET
transaction.

time-out The time, in seconds, after which the non-
blocking transaction will be aborted.

request-type The new value of the OID as a text string.

Return Value Description

error-code Returns a value of 0 if the transaction is
successful else the HP OpenView or
NetView 6000 integer error code.

error-name A symbol with values of snmp-not-loaded
(the snmp modules are not loaded; possibly
due to an incorrect module hierarchy),
snmp-agent-not-specified (a value for snmp-
type other than snmp or simulated-snmp was
specified) or OK.

error-string Returns a value of “[the current value of the
time-out-interval]-[the current value of the
retry-count]” if the transaction is successful
else “[the text translation of the error code as
defined in the HP OpenView or NetView
6000 documentation]”

results-list A text list containing the results of the
SNMP GET or GET NEXT transactions.

result-id Returns the integer value of the result-id of
the MIB-RECEIVER object that receives the
results of the SNMP GET or GET NEXT
transactions.

Argument Description
496

Procedures Listed by Module
oxs-heartbeat-trap-procedure
(gsi-1: class gsi-interface, gsi-2: class gsi-interface)

This procedure sends a heartbeat trap to the SNMP Gateway Bridge and
receives a heartbeat trap back if the SGB is up. If the SGB is down then this
procedure will try to reconnect to the SGB once it is up. The gsi-1 parameter is
the synchronous SGB interface object and the gsi-2 parameter is the event SGB
interface object. This procedure is typically started from a scanning rule. See
the oxs_demo.kb module for an example of its use.

snmp-get-mibrec-field-by-name
(field-list: class text-list, nam: text)
-> (oid-value: text)

This procedure will return the value whose OID translates to nam.

field-list should be a text list of the form: oid, value, oid, value, etc. This is
normally the Results-list attribute of the MIB-RECEIVER object.

Note This is the LEAST efficient of the three access procedures; snmp-get-mibrec-
field-by-name, snmp-get-mibrec-field-by-oid, and snmp-get-mibrec-field-by-
pos.

snmp-get-mibrec-field-by-oid
(field-list: class text-list, oid: text)
-> (oid-value: text)

This procedure will return the value whose OID equals the value of the oid
argument passed in.

field-list should be a text list of the form: oid, value, oid, value, etc. This is
normally the Results-list attribute of the MIB-RECEIVER object.

snmp-get-mibrec-field-by-pos
(field-list: class text-list, pos: integer)
-> (oid-value: text)

This procedure will return the value in field-list as specified by the pos
argument (e.g. a pos value of 2 will return the value of the second oid in field-
list).

field-list should be a text list of the form: oid, value, oid, value, etc. This is
normally the Results-list attribute of the MIB-RECEIVER object.
497

snmp-set-rpc-call
(interface-obj: class gsi-interface, machine-nodename: text,
community-name: text, OID: text, new-value: text, ASN1-Type: integer)
-> (error-code: integer, error-string: text, node-name: text)

This procedure handles making the remote procedure call from the oxs_sim-
request-handler procedure to the SNMP Gateway Bridge for performing an
SNMP SET transaction.

Argument Description

interface-obj The asynchronous GSI object.

machine-nodename The name or dotted IP address of the node
to which the transaction is directed.

community-name The administrative relationship for the
transaction.

OID The object identifier, usually in dotted
notation, for the variable involved in the
GET transaction.

ASN1-Type The ASN.1 type of the variable involved in
the SET transaction. Possible values are:

asn1_integer (2)

asn1_octet_string (4)

new-value The new value of the OID as a text string.

Return Value Description

error-code Returns a value of 0 if the transaction is
successful else the HP OpenView or
NetView 6000 integer error code.

error-string Returns a value of “[the current value of the
time-out-interval]-[the current value of the
retry-count]” if the transaction is successful
else “[the text translation of the error code as
defined in the HP OpenView or NetView
6000 documentation]”

node-name Returns the node name to which the
transaction was directed.
498

Procedures Listed by Module
snmp-non-blocking-set-rpc-call
(interface-obj: class gsi-interface, machine-nodename: text,
community-name: text, OID: text, req-name: text, new-value: text,
ASN1-Type: integer, Timeout: integer)
-> (error-code: integer, error-string: text)

This procedure return an error-code (integer, default is 99999) and error-text
(text, default is “OK”). The procedure creates a mib-receiver, sets the
requester-name of the mib-receiver to req-name, and sets the receive-
completion-method of the receiver to the symbol no-method. A check is
performed on the ASN1 type to call the appropriate set non-blocking RPC
(integer or text). When the RPC completes, it returns a result-id. This result-id
is stored in the mib-receiver. If the result-id is greater than 0, the procedure
goes into a loop waiting for the return of information for the set request or
until the specified Timeout is reached. If the Timeout is reached, the error-code is
set to the value of Timeout. If a negative result-id is returned, the error-code
returned is set to the result-id. This indicates the bridge could not process the
set request. Before returning any values, the mib-receiver created at the
beginning of this procedure, is deleted.

Argument Description

interface-obj The asynchronous GSI object.

machine-nodename The name or dotted IP address of the node
to which the transaction is directed.

community-name The administrative relationship for the
transaction.

OID The object identifier, usually in dotted
notation, for the variable involved in the
GET transaction.

req-name The requester’s name. Can be any text.

new-value The new value of the OID as a text string.

ASN1-Type The ASN.1 type of the variable involved in
the SET transaction. Possible values are:

asn1_integer (2)

asn1_octet_string (4)

Timeout The number of seconds to wait for a
response from the SET operation for this
procedure. This value has no effect on the
timeout value for the SNMP SET request.
499

snmp-get-rpc-call
(interface-obj: class gsi-interface, machine-nodename: text,
community-name: text, OID: text, transaction-tagname: text, time-out: integer)
-> (error-code: integer, error-string: text, node-name: text,

results-list: class item-list)

This procedure handles making the remote procedure call, from the oxs_sim-
request-handler procedure, to the SNMP Gateway Bridge for performing an
SNMP GET transaction.

Return Value Description

error-code Returns a value less than 0 if the G2-SNMP
bridge could not process the SET request, a
value of 99999 indicates successful
operation, and a value equal to that of the
specified Timeout indicates no response
from the SNMP agent.

error-string Returns a value of “[the name of this
procedure] received a [result-id] return
value from SET_NONBLOCKING_
SINGLE” if the transaction is successful else
“[the name of this procedure] timed out
waiting for a response for the mib-receiver”

Argument Description

interface-obj The asynchronous GSI object.

machine-nodename The name or dotted IP address of the node
to which the transaction is directed.

community-name The administrative relationship for the
transaction.

OID The object identifier, usually in dotted
notation, for the variable involved in the
GET transaction.

transaction-tagname A handle for matching an incoming
response with the outgoing request.

time-out The time, in seconds, before Integrity gives
up on the SNMP Gateway Bridge returning
the results of the GET transaction.
500

Procedures Listed by Module
snmp-get-table-column-rpc-call
(interface-obj: class gsi-interface, machine-nodename: text,
community-name: text, OID: text, transaction-tagname: text, time-out: integer)
-> (error-code: integer, error-string: text, node-name: text,

results-list: item-or-value)

This procedure handles making the remote procedure call from the oxs_sim-
request-handler procedure to the SNMP Gateway Bridge for performing an
SNMP GET table column transaction. This procedure will traverse the table
and return the results in the results-list.

Return Value Description

error-code Returns a value of 0 if the transaction is
successful else the HP OpenView or
NetView 6000 integer error code.

error-string Returns a value of “[the current value of the
time-out-interval]-[the current value of the
retry-count]” if the transaction is successful
else “[the text translation of the error code as
defined in the HP OpenView or NetView
6000 documentation]”

node-name Returns the node name to which the
transaction was directed.

results-list The Results-list of the MIB-RECEIVER object
that receives the results of the SNMP GET
transaction. The values are stored in this list
as OID/Value pairs. Use the procedures
snmp-get-mibrec-field-by-name, snmp-get-
mibrec-field-by-oid, and snmp-get-mibrec-
field-by-pos to retrieve values from this list.

Argument Description

interface-obj The asynchronous GSI object.

machine-nodename The name or dotted IP address of the node
to which the transaction is directed.

community-name The administrative relationship for the
transaction.
501

OID The object identifier, usually in dotted
notation, for the variable involved in the
GET transaction.

transaction-tagname A handle for matching an incoming
response with the outgoing request.

time-out The time, in seconds, before Integrity gives
up on the SNMP Gateway Bridge returning
the results of the GET Table Column
transaction.

Return Value Description

error-code Returns a value of 0 if the transaction is
successful else the HP OpenView or
NetView 6000 integer error code.

error-string Returns a value of “[the current value of the
time-out-interval]-[the current value of the
retry-count]” if the transaction is successful
else “[the text translation of the error code as
defined in the HP OpenView or
NetView 6000 documentation]”

node-name Returns the node name to which the
transaction was directed.

results-list The Results-list of the MIB-RECEIVER object
that receives the results of the SNMP GET
transaction. The values are stored in this list
as OID/Value pairs. Use the procedures
snmp-get-mibrec-field-by-name, snmp-get-
mibrec-field-by-oid, and snmp-get-mibrec-
field-by-pos to retrieve values from this list.

Argument Description
502

Functions
Functions
devu-ext-name-or-name-as-string

(domain-object: class [opfo-managed-object |opfo-containment-object])
-> (external-name: text)

Used to retrieve a text identification for an object. This function tries to find
the text identification in the following order until an identification is found:

• The opfo-external-name of domain-object.

• The text returned by the function defined in the G2 parameter devu-user-
name-as-string if one is defined. This allows you to define an alternate
method to identify domain objects. You can define a custom devu-user-
name-as-string function using initialization.

• The G2 name that is assigned to domain-object as a text string, if there is a
name assigned. It is not recommended that you use G2 names for
identifying objects since special characters are not easily supported in the
G2 name of an object.

• Text describing domain-object. For example, “the item of <class> located
on the workspace <Workspace>”

If you define a custom function in the G2 parameter devu-user-name-as-
string, you must also be sure to define a new procedure to lookup an object
when the identification text is passed to devu-domain-object-lookup. The G2
parameter devu-alternate-object-lookup provides the name of the alternate
procedure.

is-a-message
(test-item: class item)
-> (is-message: truth-value)

Returns true if test-item is a message or message subclass, else returns false.
This function can be passed in as the ok-to-traverse argument to the
procedures net-traversal and net-traversal-and-collect to make sure that only
messages are added to the list of traversed items.

is-an-object
(test-item: class item)
-> (is-object: truth-value)

Returns true if test-item is an object or an object subclass, else returns false.
This function can be passed in as the ok-to-traverse argument to the
procedures net-traversal and net-traversal-and-collect to make sure that only
objects are added to the list of traversed items.
503

mib-oid-strip-instance-number
(OID: text)
-> (resulting-name: symbol)

Returns a symbol of the Resulting-name attribute of an OID-TO-NAME-
TRANSLATION object. If no OID-TO-NAME-TRANSLATION object exists this function
returns the symbol no-name. The OID-TO-NAME-TRANSLATION object is found by
stripping off the last number of the OID string and then checking for the
existence of an OID-TO-NAME-TRANSLATION object. If no OID-TO-NAME-
TRANSLATION object exists the process is repeated until the OID string is empty.

Caution This is a recursive function and for an extremely long OID the recursion limit
of G2 could be exceeded. The default limit for G2 is 50, see the G2 Reference
Manual for information on resetting the recursion limit value.

mib-oid-symbol-to-name
(OID: symbol)
-> (resulting-name: symbol)

Searches for an OID-TO-NAME-TRANSLATION object named by OID (i.e. an OID
string such as 1.3.6.4.1.11.2.3.1.1.1) where OID is a symbolic value. If one is
found then it returns the Resulting-name attribute of the object as a symbol
else it returns the symbol no-name.

mib-oid-text-to-name
(OID: text)
-> (resulting-name: symbol)

Searches for an OID-TO-NAME-TRANSLATION object named by OID (i.e. an OID
string such as 1.3.6.4.1.11.2.3.1.1.1) where OID is a text value. If one is found
then it returns the Resulting-name attribute of the object as a symbol else it
returns the symbol no-name.

mib-default-trapd-priority-conversion
(input-value: integer)
-> (priority: integer)

Returns an integer priority value (as defined in Integrity) converted from the
priority input-value (as defined in HP OpenView), as follows:

input-value priority

1 6

2 4

3 3

4 2

Functions
snmp-severity-to-status-text-conversion
(input-value: integer)
-> (priority-string: text)

Returns a text string of the priority input-value, as follows:

snmp-desc-value
(mib-rec: class mib-receiver)
-> (trap-description: text)

Returns a text string of the Generic-trap attribute of a MIB-RECEIVER object, as
follows:

5 1

any value 1

input-value priority

input-value priority-string

1 Critical

2 Major

3 Minor

4 Warning

6 Normal

99999 Unknown

any value Normal

the generic-trap of mib-rec trap-description

0 Cold Start

1 Warm Start

2 Link Down

3 Link Up

4 Authentication Failure

5 EGP Neighbor Loss

any value Received [the default-category of mib-rec]
505

506

24
Reporting Errors
Describes how to report bugs in a G2-SNMP Bridge to Gensym customer support.

If you encounter a bug in the G2-SNMP Bridge, please collect as much
information as possible concerning the circumstances of the failure before calling
Gensym Customer Support. Such information should include, but is not limited
to the:

• SNMP Gateway Bridge version you are using. This information is displayed
in the terminal window from which you first start the SGB. If you do not wish
to start the SGB, you may execute it with the -v option, which prints out only
the SGB version information. For example:

At the UNIX prompt, type:

% g2snmpov.41 -v

The SGB prints out:

Gensym G2-SNMP HP OpenView Bridge for Solaris

Version 2.3 Rev 0 Build f01

This software is compatible with Integrity Version 5.0 Rev. 0

The first two lines of this printout provide the SGB version information
needed by Gensym Customer Support.

• Platform operating system version.

• Version of HP OpenView if the SNMP Gateway Bridge is being used with HP
OpenView.

• Integrity version.

• G2 version.
507

• Type of operation being performed: trap sent/received, SNMP get or set
request.

• Number of G2 processes connected to the SNMP Gateway Bridge.

• Any error messages printed out by the SNMP Gateway Bridge or other
processes, including messages displayed on the G2 message board or in the
Operator Logbook.

• Any unusual conditions such as a trap storm or abnormally high network
traffic.

Notify Gensym Customer Support. See Customer Support Services.
508

Part V
APIs and Initializations
Chapter 25: Core Services APIs

Provides information on Integrity Core Services APIs.

Chapter 26: OPAC APIs

Provides information on the Integrity OPAC APIs.

Chapter 27: Startup Parameters

Provides information on Integrity Initializations.
509

510

25
Core Services APIs
Provides a listing of all of the Integrity Core Services APIs: procedures, methods,
and functions.

Introduction 511

Procedures Listed by Module 512

GNDO Module 513

GLF Module 529

Functions 530

Methods Listed by Class 532

Introduction
This chapter describes the OPAC Core Services APIs.
511

Procedures Listed by Module
The API procedures are listed according to the module that contains them. The
modules that include API procedures include:

• GNDO Module - Core Network Domain module that contains procedures for
parsing and looking up domain objects, networking, message handling,
browser and status bar, and Telewindows.

• GLF Module - G2 Log File module that contains all the procedures used to
implement the logging functions.
512

GNDO Module
GNDO Module
The GNDO module contains procedures for parsing and looking up domain
objects, networking, message handling, browser and status bar, and
Telewindows.

devu-consume-next-field
(txt: text, separator: text)
-> next-field, text-remaining: text

Procedure to parse a text string containing fields separated by a unique
separator text. Returns two text strings. next-field contains txt up to, but not
including, the first occurrence of separator. text-remaining contains what is
left in txt after next-field is stripped off.

devu-decode-comma-line
(text-string: text, txt-list: class text-list)

Use this procedure to turn a comma separated text string into a list of text
items. Breaks comma separated strings in text-string into individual strings
and inserts them into the list txt-list without any duplicate items.

devu-domain-object-lookup
(object-name: text)
-> domain-object: class [opfo-managed-object | opfo-containment-object]

This procedure looks for the domain object several different ways:

1 If a procedure is specified for the parameter devu-alternate-object-lookup-
procedure, then devu-domain-object-lookup calls this custom procedure
and passes it object-name. The custom procedure must return a domain
object. You define the name of your custom procedure in devu-alternate-
object-lookup-procedure, using an initialization item.

2 If no custom lookup procedure is defined, devu-domain-object-lookup
looks for a domain object with the opfo-external-name object-name. If none
is found, the procedure looks for an object with a G2 name object-name.

3 Finally, if no domain object can be found to match object-name, the
procedure calls the procedure named by devu-unknown-object-procedure.
The default procedure defined is devu-default-object-return which returns
the object devu-safe-object. If you want to change the default object
returned, you can modify the initialization for devu-unknown-object-
procedure.

devu-error-handler
(target: class item, sender: class item, error-category: text,
priority: integer, error-name: symbol, error-text: text, lifetime: integer)

This is the default error handler in Integrity. This procedure executes the error
handler procedure specified in the G2 parameter devu-error-handler-proc.
513

You can define a custom error handler procedure and specify the name of the
procedure, using the initialization for devu-error-handler-proc.

devu-get-field-n
(txt: text, n: integer, separator: text)
-> nth-field: text

The argument txt is a text string containing fields separated by a separator
text. This procedure returns the nth field in txt. If txt does not have n fields, an
empty string is returned.

devu-insert-item-in-sorted-ascending-list
(new-item: class item, list: class item-list, key-proc: class procedure)

Inserts new-item in list, in ascending order based on criteria defined in key-
proc. The procedure defined by key-proc should accept an item as an argument
and return an integer used for sorting the items.

devu-insert-item-in-sorted-descending-list
(new-item: class item, list: class item-list, key-proc: class procedure)

Inserts new-item in list, in descending order based on criteria defined in key-
proc. The procedure defined by key-proc should accept an item as an argument
and return an integer used for sorting the items.

devu-insert-msg-in-alphabetical-list
(msg: class message, list: class item-list)

Inserts a msg in alphabetical order into list. No duplicates are allowed in the
list.

devu-insert-msg-in-alphabetical-list-allowing-duplicates
(msg: class message, list: class item-list)

Inserts a msg in alphabetical order into list. Duplicates are allowed in the list.

devu-pattern-matcher-with-indices
(txt: text, txt-pos: integer, pattern: text, pattern-pos: integer)
-> match-value: truth-value

Searches for pattern in txt. The symbol “*” in pattern is matched by any
number of arbitrary characters. The symbol “?” in pattern is matched by
exactly one arbitrary character. The characters “*?” together are not matched.
The match begins starting from the position pattern-pos in the pattern and txt-
pos in the text string txt. The procedure returns true if a match is found,
otherwise false.

devu-safe-text-for-symbol
(txt: text)
-> txt-to-symbol: text
514

GNDO Module
Converts a text string to a valid G2 symbol string. It replaces all spaces with "_
", and prefixes all special characters with "@@". Spaces at the end of the string
are removed.

devu-safe-window
()
-> safe-window: class g2-window

Returns a safe G2 window.

devu-strip-linefeeds
(txt: text)
-> txt-without-linefeeds: text

Strips the linefeeds from txt and returns the text without any linefeeds.

devu-substitute-text
(match-string: text, replace-string: text, txt: text)
-> new-txt: text

Finds every occurrence of match-string in txt and replaces it with replace-
string. The new text string is returned in new-txt.

devu-text-is-ascii-punctuation-p
(txt: text)
-> is-symbol: truth-value

Returns true if txt is an ascii punctuation; else returns false.

devu-text-is-ascii-symbol-p
(txt: text)
-> is-symbol: truth-value

Returns true if txt is an ascii symbol; else returns false.

devu-txt-is-digit-p
(character: text)
-> is-integer: truth-value

Returns true if character text is an integer from 0 to 9; otherwise returns false.

devu-txt-is-mib-character-symbol-p
(character: text)
-> is-mib-character: truth-value

Returns true if txt is a mib-character-symbol; otherwise returns false.

do-nothing-at-node-collection-visit
(node: class item, mgr: class item, bag: class item)

This procedure is an example of a procedure that can be passed as the node-
visit-proc argument of the procedure net-traversal-and-collect (node: class
item, child-finder: class procedure, ok-to-traverse: class function-definition,
node-visit-proc: class procedure, search-type: symbol, mgr: class item, list:
515

class devu-item-list-without-duplicates, bag: class item) or net-traversal-and-
collect-2 (node: class item, child-finder-2: class procedure, ok-to-traverse-2:
class function-definition, node-visit-proc: class procedure, search-type:
symbol, mgr: class item, list: class devu-item-list-without-duplicates, bag:
class item). Whenever an item is found and placed on the net traverse list, the
procedure defined in the node-visit-proc argument is called.

This procedure differs from do-nothing-at-node-visit only in that it has an
extra argument, bag, to gather additional information at a visit. bag is usually
an item list without duplicate elements. This is required by the procedures
that add collection to their traversal process.

This procedure is provided as a template for a custom procedure to be called
by those routines.

For more information see net-traversal (node: class item, child-finder: class
procedure, ok-to-traverse: class function-definition, node-visit-proc: class
procedure, search-type: symbol, mgr: class item, visited-node-list: class
devu-item-list-without-duplicates).

do-nothing-at-node-visit
(node: class item, mgr: class item)

This procedure is an example of a procedure that can be passed as the node-
visit-proc argument of the procedure net-traversal (node: class item, child-
finder: class procedure, ok-to-traverse: class function-definition, node-visit-
proc: class procedure, search-type: symbol, mgr: class item, visited-node-list:
class devu-item-list-without-duplicates) or net-traversal-2 (node: class item,
child-finder-2: class procedure, ok-to-traverse-2: class function-definition,
node-visit-proc: class procedure, search-type: symbol, mgr: class item, list:
class devu-item-list-without-duplicates). Whenever an item is found and
placed on the net traverse list, the procedure defined in the node-visit-proc
argument is called.

The procedure is provided as a template for a custom procedure to be called
by those routines.

For more information see net-traversal (node: class item, child-finder: class
procedure, ok-to-traverse: class function-definition, node-visit-proc: class
procedure, search-type: symbol, mgr: class item, visited-node-list: class
devu-item-list-without-duplicates).

find-connected-children
(parent: class object, ok-to-traverse: class function-definition,
children: class devu-item-list-without-duplicates,
list: class devu-item-list-without-duplicates)

This procedure is an example of a procedure that can be passed as the child-
finder argument of the procedure net-traversal (node: class item, child-finder:
class procedure, ok-to-traverse: class function-definition, node-visit-proc:
class procedure, search-type: symbol, mgr: class item, visited-node-list:
516

GNDO Module
class devu-item-list-without-duplicates) or net-traversal-2 (node: class item,
child-finder-2: class procedure, ok-to-traverse-2: class function-definition,
node-visit-proc: class procedure, search-type: symbol, mgr: class item, list:
class devu-item-list-without-duplicates). This procedure defines a criteria for
selecting objects during a net traversal.

ok-to-traverse is the name of a function that takes in an object as argument,
checks a criteria for net traversal, and returns true or false. The list argument
is used as a filter. The find-connected-children (parent: class object, ok-to-
traverse: class function-definition, children: class devu-item-list-without-
duplicates, list: class devu-item-list-without-duplicates) procedure finds all the
objects connected to the parent object that satisfy the criteria specified by the
ok-to-traverse function and that are not already a member of list, and inserts
them at the end of the children list.

For more information, see net-traversal (node: class item, child-finder: class
procedure, ok-to-traverse: class function-definition, node-visit-proc: class
procedure, search-type: symbol, mgr: class item, visited-node-list: class
devu-item-list-without-duplicates).

find-downstream-connected-children
(parent: class object, ok-to-traverse: class function-definition,
children: class devu-item-list-without-duplicates,
list: class devu-item-list-without-duplicates)

This procedure is an example of a procedure that can be passed as the child-
finder argument of the procedure net-traversal or net-traversal-and-collect.
This procedure defines a criteria for selecting an object during a net traversal.

ok-to-traverse is the name of a function that takes in an object as argument,
checks a criteria for net traversal and returns true or false. The list argument is
used as a filter. Find-downstream-connected-children finds all the objects
connected to the output port of the parent object that satisfy the criteria
specified by the ok-to-traverse function and that are not already a member of
list, and inserts them at the end of the children list.

For more information, see net-traversal (node: class item, child-finder: class
procedure, ok-to-traverse: class function-definition, node-visit-proc: class
procedure, search-type: symbol, mgr: class item, visited-node-list: class
devu-item-list-without-duplicates).

find-downstream-connected-children-2
(parent: class object, mgr: class item,
ok-to-traverse-2: class function-definition,
children: class devu-item-list-without-duplicates,
list: class devu-item-list-without-duplicates)

This procedure is an example of a procedure that can be passed as the child-
finder argument of the procedure net-traversal-2 (node: class item, child-
finder-2: class procedure, ok-to-traverse-2: class function-definition, node-
517

visit-proc: class procedure, search-type: symbol, mgr: class item, list: class
devu-item-list-without-duplicates) or net-traversal-and-collect-2 (node: class
item, child-finder-2: class procedure, ok-to-traverse-2: class function-
definition, node-visit-proc: class procedure, search-type: symbol, mgr: class
item, list: class devu-item-list-without-duplicates, bag: class item). This
procedure defines a criteria for selecting an object during a net traversal.

It differs from find-downstream-connected-children (parent: class object, ok-
to-traverse: class function-definition, children: class devu-item-list-without-
duplicates, list: class devu-item-list-without-duplicates) in that it is also passed
mgr by the net traversal procedure.

ok-to-traverse-2 is the name of a function that takes in an object and an item,
mgr, as its arguments, checks a criteria for the object for net traversal and
returns true or false. The list argument is used as a filter. The find-
downstream-connected-children-2 (parent: class object, mgr: class item, ok-
to-traverse-2: class function-definition, children: class devu-item-list-without-
duplicates, list: class devu-item-list-without-duplicates) procedure finds all
the objects that are connected to an output port of the parent that satisfy the
criteria specified by the ok-to-traverse-2 function and that are not already a
member of list, and inserts them at the end of the children list. New items are
added to the end of the list.

For more information, see net-traversal (node: class item, child-finder: class
procedure, ok-to-traverse: class function-definition, node-visit-proc: class
procedure, search-type: symbol, mgr: class item, visited-node-list: class
devu-item-list-without-duplicates).

find-subworkspace-children
(parent: class object, ok-to-traverse: class function-definition,
children: class devu-item-list-without-duplicates,
list: class devu-item-list-without-duplicates)

This procedure is an example of a procedure that can be passed as the child-
finder argument of the procedure net-traversal (node: class item, child-finder:
class procedure, ok-to-traverse: class function-definition, node-visit-proc:
class procedure, search-type: symbol, mgr: class item, visited-node-list:
class devu-item-list-without-duplicates) or net-traversal-and-collect (node:
class item, child-finder: class procedure, ok-to-traverse: class function-
definition, node-visit-proc: class procedure, search-type: symbol, mgr: class
item, list: class devu-item-list-without-duplicates, bag: class item). This
procedure defines a criteria for selecting an object during a net traversal.

ok-to-traverse is the name of a function that takes in an object as argument,
checks a criteria for net traversal and returns true or false. The list argument is
used as a filter. The find-subworkspace-children (parent: class object, ok-to-
traverse: class function-definition, children: class devu-item-list-without-
duplicates, list: class devu-item-list-without-duplicates) procedure finds all the
objects located on the subworkspace of parent that satisfy the criteria specified
518

GNDO Module
by the ok-to-traverse function and that are not already a member of list, and
inserts them at the end of the children list.

For more information, see net-traversal (node: class item, child-finder: class
procedure, ok-to-traverse: class function-definition, node-visit-proc: class
procedure, search-type: symbol, mgr: class item, visited-node-list: class
devu-item-list-without-duplicates).

find-upstream-connected-children
(parent: class object, ok-to-traverse: class function-definition,
children: class devu-item-list-without-duplicates,
list: class devu-item-list-without-duplicates)

This procedure is an example of a procedure that can be passed as the child-
finder argument of the procedure net-traversal (node: class item, child-finder:
class procedure, ok-to-traverse: class function-definition, node-visit-proc:
class procedure, search-type: symbol, mgr: class item, visited-node-list:
class devu-item-list-without-duplicates) or net-traversal-and-collect (node:
class item, child-finder: class procedure, ok-to-traverse: class function-
definition, node-visit-proc: class procedure, search-type: symbol, mgr: class
item, list: class devu-item-list-without-duplicates, bag: class item). This
procedure defines a criteria for selecting an object during a net traversal.

ok-to-traverse is the name of a function that takes in an object as argument,
checks a criteria for net traversal and returns true or false. The list argument is
used as a filter. The find-upstream-connected-children (parent: class object,
ok-to-traverse: class function-definition, children: class devu-item-list-without-
duplicates, list: class devu-item-list-without-duplicates) procedure finds all the
objects connected to the output port of the parent that satisfy the criteria
specified by the ok-to-traverse function and that are not already a member of
list, and inserts them at the end of the children list.

For more information, see net-traversal (node: class item, child-finder: class
procedure, ok-to-traverse: class function-definition, node-visit-proc: class
procedure, search-type: symbol, mgr: class item, visited-node-list: class
devu-item-list-without-duplicates).

net-traversal
(node: class item, child-finder: class procedure,
ok-to-traverse: class function-definition, node-visit-proc: class procedure,
search-type: symbol, mgr: class item,
visited-node-list: class devu-item-list-without-duplicates)

Use to traverse a network starting from node and find a list of visited items
related to node that satisfy a specified criteria. The argument child-finder
procedure defines the type of relationship between the items. Examples of
relationships are: connected items, items connected at the input of node, and
items contained in node. The argument ok-to-traverse function defines the
criteria for items to find. node-visit-proc is a procedure called whenever a
519

node is visited. search-type defines the type of search, depth-first or breadth-
first. The default is breadth-first.

The related items found to satisfy the criteria are placed on the list visited-
node-list. If this list contains items when it is passed as an argument, the items
found will be added to the end of the list and no duplicate items will be added
to the list. The items passed in on visited-node-list filter out those items and
the items related to them in the search.

You can define your own procedures and functions for child-finder, ok-to-
traverse and node-visit-proc, or you can use procedures and functions defined
in the system. The defined system procedures and functions that can be
passed as arguments to net-traversal are listed in the table below:

These procedures are documented in this chapter. They are examples of
procedures that can be used to customize the way net-traversal (node: class
item, child-finder: class procedure, ok-to-traverse: class function-definition,
node-visit-proc: class procedure, search-type: symbol, mgr: class item,
visited-node-list: class devu-item-list-without-duplicates) works. These are
public procedures that can be used as templates for your own special purpose
procedures.

mgr is not used directly by net-traversal. It is there for the user, for any needed
purpose, such as containing additional context or for accumulating results of a
search. mgr is passed to the node-visit-proc.

Procedure or Function Name Description

find-connected-children Finds all objects connected to node.

find-downstream-connected-
children

Finds all objects connected at an
output of the node item.

find-subworkspace-children Finds all items contained on the
subworkspace of the node item.

find-upstream-connected-
children

Finds all objects connected at an
input of the node item.

do-nothing-at-node-visit Sample procedure does nothing at
node visit.

is-an-object Passed as ok-to-traverse function.
Tests to see if item is an object.

is-a-message Passed as ok-to-traverse function.
Tests to see if item is a message.
520

GNDO Module
Note that the starting node is added to the visited-node-list. The list implies
the order of the nodes visited. The traversal can start with a node that does not
satisfy the ok-to-traverse criteria.

Three other net traversal routines are provided. The differences between these
and net-traversal are outlined below:

net-traversal-and-collect (node: class item, child-finder: class procedure, ok-
to-traverse: class function-definition, node-visit-proc: class procedure, search-
type: symbol, mgr: class item, list: class devu-item-list-without-duplicates,
bag: class item) - The procedure defined by node-visit-proc is passed an
additional parameter to let you collect additional information when you visit
an item.

net-traversal-2 (node: class item, child-finder-2: class procedure, ok-to-
traverse-2: class function-definition, node-visit-proc: class procedure, search-
type: symbol, mgr: class item, list: class devu-item-list-without-duplicates) -
mgr is passed to the child-finder procedure and the ok-to-traverse function.

net-traversal-and-collect-2 (node: class item, child-finder-2: class procedure,
ok-to-traverse-2: class function-definition, node-visit-proc: class procedure,
search-type: symbol, mgr: class item, list: class devu-item-list-without-
duplicates, bag: class item) - mgr is passed to the child-finder procedure and
the ok-to-traverse function. Also, the procedure defined by node-visit-proc is
passed an additional parameter to let you collect additional information when
you visit an item.

To view the sample network traversal procedures:

1 Uing the Finder, locate the netu-top-level Workspace.

2 Right-click on workspace and select View Item. The workspace appears on the
desktop.

3 Choose Netu Public.

net-traversal-2
(node: class item, child-finder-2: class procedure,
ok-to-traverse-2: class function-definition, node-visit-proc: class procedure,
search-type: symbol, mgr: class item,
list: class devu-item-list-without-duplicates)

Identical to net-traversal, except that mgr is passed to the child-finder-2
routine and to the ok-to-traverse-2 function, so that more context is available
when generating these children. Note that you must use a different set of
child-finder procedures and ok-to-traverse functions since an extra argument is
required.

The system procedures defined which can be passed as arguments to net-
traversal-2 are listed in the table below:
521

These procedures are provided as templates. See net-traversal (node: class
item, child-finder: class procedure, ok-to-traverse: class function-definition,
node-visit-proc: class procedure, search-type: symbol, mgr: class item,
visited-node-list: class devu-item-list-without-duplicates) for more details.

net-traversal-and-collect
(node: class item, child-finder: class procedure,
ok-to-traverse: class function-definition, node-visit-proc: class procedure,
search-type: symbol, mgr: class item,
list: class devu-item-list-without-duplicates, bag: class item)

Identical to net-traversal (node: class item, child-finder: class procedure, ok-
to-traverse: class function-definition, node-visit-proc: class procedure,
search-type: symbol, mgr: class item, visited-node-list: class devu-item-list-
without-duplicates), except that node-visit-proc is additionally passed a list
bag. An example of how you might use this would be to collect a list of all
messages associated with the nodes traversed in bag.

See net-traversal (node: class item, child-finder: class procedure, ok-to-
traverse: class function-definition, node-visit-proc: class procedure, search-
type: symbol, mgr: class item, visited-node-list: class devu-item-list-without-
duplicates) for details on the procedures and functions that can be passed in
as arguments to net-traversal-and-collect.

net-traversal-and-collect-2
(node: class item, child-finder-2: class procedure,
ok-to-traverse-2: class function-definition,
node-visit-proc: class procedure, search-type: symbol, mgr: class item,
list: class devu-item-list-without-duplicates, bag: class item)

This procedure is identical to net-traversal-2 (node: class item, child-finder-2:
class procedure, ok-to-traverse-2: class function-definition, node-visit-proc:
class procedure, search-type: symbol, mgr: class item, list: class devu-item-

Procedure name Description

find-downstream-connected-
children-2 (parent: class
object, mgr: class item, ok-to-
traverse-2: class function-
definition, children: class
devu-item-list-without-
duplicates, list: class devu-
item-list-without-duplicates)

Finds all objects connected at an
output of the node item.

do-nothing-at-node-visit
(node: class item, mgr: class
item)

Called by procedure but does not
do anything at node visit.
522

GNDO Module
list-without-duplicates) except that node-visit-proc is additionally passed a list,
bag. An example of how this may be uses would be to collect a list of all
messages associated with the nodes traversed in bag.

The system functions and procedures defined which can be passed as
arguments to net-traversal-2 are listed in the table below:

These procedures and functions are provided as templates. See net-traversal
(node: class item, child-finder: class procedure, ok-to-traverse: class function-
definition, node-visit-proc: class procedure, search-type: symbol, mgr: class
item, visited-node-list: class devu-item-list-without-duplicates) for more
details.

sc-toggle
(button: class sc-toggle-button)
-> toggle-value: truth-value

This API toggles button and returns true if the button is toggled-on; otherwise
false.

smh-acknowledgement-proc
(msg: class smh-transient-message, win: class object)

Sets the acknowledgment status of msg to “acknowledged”.

smh-create-message
(server: class smh-message-server, sender: class object,
target: class opfo-domain-object, category: text, txt: text,
additional-text: text, time-sent: float, priority: integer, lifetime: integer,
show-display: truth-value, win: class object, options: text)
-> message-object: class smh-small-message

Creates a new message. The table below describes the arguments:

Procedure or Function Name Description

find-downstream-connected-
children-2 (parent: class
object, mgr: class item, ok-to-
traverse-2: class function-
definition, children: class
devu-item-list-without-
duplicates, list: class devu-
item-list-without-duplicates)

Finds all objects connected at an
output of the node item.

do-nothing-at-node-collection-
visit (node: class item, mgr:
class item, bag: class item)

Called by procedure but does not
do anything at node visit.
523

Argument Description

server Message server to contain the message.

sender Sender of the message.

target Target of the message.

category Message category.

txt Value assigned as the text of the message

additional-text Value assigned to the attribute additional-
text of the message.

time-sent Time the message is created. This is UNIX-
time format. To force this to be set to the
current time, pass in any negative
number.

priority Priority of the message.

lifetime Time in seconds the message is
maintained before being deleted.

show-display Not currently used.
524

GNDO Module
smh-delete-all-history
()

Deletes all the message histories.

smh-delete-history
(target: class object, sender: item-or-value, category: text,
message-category-starting-position: integer)

Deletes the message histories that matches the target, sender, and category. To
match any sender, define sender to be the symbol any-sender. The characters
“*” and “?” can be used to match patterns in the category argument. The
symbol “*” matches any number of unspecified characters. The symbol “?”
matches exactly one unspecified character. The message-category-starting-
position defines a starting position from which to match the category to the
message category of the history.

win Any object or G2 window. Currently not
used.

options -nohist — Do not maintain a history for
the message.

-nack — Set the message as an
acknowledged message.

Several options define how to handle a
new message that is a duplicate of an
existing message. Only one of these may
be used at a time:

-a —txt is appended to the main text of
the existing message and txt2 is appended
to the value of additional-text of the
existing message.

-i —Information regarding the Repetitions
of the message is appended to the main
text of the message and the repetition
counter of the message is incremented.
This is the default option.

-r — The old message is deleted and
replaced with the new message. Escalation
procedures from the old message are
copied to the new message.

Argument Description
525

smh-delete-message
(server: class smh-message-server, sender: class object, target: class object,
category: text, win: class object, options: text)

Use this procedure to delete a message from the specified server or, if the
option “-all” is passed, from all message servers. The message is specified by
defining the sender, target, and category of the message. win can be any G2
window or object.

If you can pass the message object directly, you can delete a message using
smh-message-delete-proc (msg: class smh-transient-message, win: class
object). To delete all messages in a message server, use smh-server-delete-all-
msg (server: class smh-message-server).

smh-delete-server
(server: class: smh-message-server)

Use this procedure to delete server and all of its messages.

smh-get-message-history
(target: class object, sender: item-or-value, category: text,
message-category-starting-position: integer, timestamp-now: float,
match-time-interval-seconds: float, time-stamps-list: class float-list)

Use this procedure to perform a historical query. The arguments for this
procedure are shown in the table below:

Argument Description

target Target of the message.

sender Sender of the message. The symbol any-
sender can be sent to match all messages
with the specified target without regard to
category.

category Message category. This text can contain
the wildcard symbols “*” and “?”.

message-category-
starting-position

Starting position in the category of the
history that you want to match with the
category argument.

timestamp-now Time from which you want to search
backwards for messages. Passing in a
negative integer selects the current time.
526

GNDO Module
For more information about searching message histories, see the “Querying
Message Histories” section in the Integrity User’s Guide.

smh-get-messages-about
(target: opfo-domain-object, msg-list: class item-list)

Use this procedure to place all the messages that target the domain object
target into the item list msg-list.

smh-get-messages-in-server
(server: smh-message-server, msg-list: class item-list)

Use this procedure to place all the messages in server into the item list msg-
list.

smh-get-messages-sent-by
(sender: object, msg-list: class item-list)

Use this procedure to place all the messages sent by sender into the item list
msg-list.

smh-message-delete-proc
(msg: class smh-transient-message, win: class object)

Use this procedure to delete a message. win can be any object or G2 window.
To delete a message with a particular target, sender, and category, use the
procedure smh-delete-message (server: class smh-message-server, sender:
class object, target: class object, category: text, win: class object, options:
text). To delete all messages in a particular message server, use the procedure
smh-server-delete-all-msg (server: class smh-message-server).

smh-message-query
(target: opfo-domain-object, sender: item-or-value, category: text,
category-match-starting-position: integer, msg-list: class item-list)

Use this procedure to place all the messages that match the specified target,
sender, and category into the item list msg-list. You specify category by using
the wildcards “*”, which match any number of characters and “?”, which
matches exactly one character. The argument category-match-starting-position
specifies the position in the message category at which to start the match for
category.

match-time-interval-
seconds

How far back you want to search the
history. This is expressed in seconds and
is measured going back from timestamp-
now.

time-stamps-list Empty list provided to hold the results of
the history query as timestamps.

Argument Description
527

smh-propagate-message-text
(msg: class smh-transient-message, new-text: text)

Updates the message text to new-text. Note that the text of the message
displayed on the browser will get updated only if you use this procedure.

smh-read-server-mib-from-file
(server: class smh-message-server, filename: text)

Use this procedure to read message data from a text file and create and send
those messages into the specified server. You can create the message data text
file, using the procedure smh-write-server-mib-to-file (server: class smh-
message-server, filename: text).

smh-send-error-message
(target: class item, sender: class item, error-category: text, priority: integer,
error-name: symbol, error-text: text, error-lifetime: integer)

This is the default devu-error-handler-proc. When you call the procedure
devu-error-handler, this procedure is called by default. This procedure creates
an error message and sends it to the error message server defined by the G2
parameter smh-system-error-server. The default error message server is smh-
error-server.

For a detailed explanation of error handling and how it can be customized, see
the “Error Handling” section of the Integrity User’s Guide.

smh-server-delete-all-msg
(server: class smh-message-server)

Use this procedure to delete all messages in server. To delete a message by
passing the message object as an argument, use the procedure smh-message-
delete-proc (msg: class smh-transient-message, win: class object). To delete
a message that matches a specified target, sender and category, use the
procedure smh-delete-message.

smh-write-server-mib-to-file
(server: class smh-message-server, filename: text)

Writes the data of the messages in the server to the file filename. The message
data can be read back and turned into messages, using the procedure smh-
read-server-mib-from-file (server: class smh-message-server, filename: text).

twm-hide-screen
(wksp: class kb-workspace, win: class g2-window)

Use this procedure to hide a workspace displayed by using the method twm-
display-screen on a window. To get the handle of the window, win,
displaying wksp, use the following statement:

win = the window that is twm-showing-wksp wksp;
528

GLF Module
GLF Module
The GLF module is the G2 Log File module. It contains all the procedures used to
implement the logging functions.

glf-disable-logging
(log: class glf-logging-manager, client: class object)

Disables the logging and closes the current log file of log.

glf-enable-logging
(log: class glf-logging-manager, client: class object)

Enables logging and opens a new log file for log.

glf-set-fixed-log-closing-times
(log: class glf-logging-manager, closing-time-list: class integer-list,
client: class object)

Use this procedure to set the daily closing schedule of the log files. closing-
time-list is an integer list. A list of closing times is specified to allow you to
close the existing log file and reopen a new file more than one time a day. The
time is specified as the number of minutes since 12 A.M.

glf-write-to-log-file
(log: class glf-logging-manager, log-text: text, client: class object)

Writes log-text to the current log file of log.
529

Functions
The Integrity API includes the following functions:

devu-ext-name-or-name-as-string (domain-object: class [opfo-managed-
object |opfo-containment-object]) -> external-name: text

is-a-message (test-item: class item) -> is-message: truth-value

is-an-object (test-item: class item) -> is-object: truth-value

devu-ext-name-or-name-as-string
(domain-object: class [opfo-managed-object |opfo-containment-object])
-> external-name: text

Used to retrieve a text identification for an object. This function tries to find
the text identification in the following order until one is found:

The opfo-external-name of domain-object.

The text returned by the function defined in the G2 parameter devu-user-
name-as-string, if one is defined. This allows you to define an alternate
method to identify domain objects. You can define a custom devu-user-name-
as-string function by using an initialization.

The G2 name assigned to domain-object as text, if is a name is assigned. It is
not recommended that you use G2 names for identifying objects.

Text describing domain-object. For example:

“the item of <class> located on the workspace <Workspace>”

If you define a custom function in the G2 parameter devu-user-name-as-
string, you must also be sure to define a new procedure to lookup an object
when the identification text is passed to devu-domain-object-lookup (object-
name: text) -> domain-object: class [opfo-managed-object | opfo-
containment-object]. The G2 parameter devu-alternate-object-lookup-
procedure provides the name of the alternate procedure. See devu-alternate-
object-lookup-procedure.

is-a-message
(test-item: class item)
-> is-message: truth-value

Returns true if test-item is a message or message subclass; else returns false.
This function can be passed in as the ok-to-traverse argument to the
procedures net-traversal (node: class item, child-finder: class procedure, ok-
to-traverse: class function-definition, node-visit-proc: class procedure,
search-type: symbol, mgr: class item, visited-node-list: class devu-item-list-
without-duplicates) and net-traversal-and-collect (node: class item, child-
finder: class procedure, ok-to-traverse: class function-definition, node-visit-
proc: class procedure, search-type: symbol, mgr: class item, list: class devu-
530

Functions
item-list-without-duplicates, bag: class item) to make sure that only messages
are added to the list of traversed items.

is-an-object
(test-item: class item)
-> is-object: truth-value

Returns true if test-item is an object or an object subclass; else returns false.
This function can be passed in as the ok-to-traverse argument to the
procedures net-traversal (node: class item, child-finder: class procedure, ok-
to-traverse: class function-definition, node-visit-proc: class procedure,
search-type: symbol, mgr: class item, visited-node-list: class devu-item-list-
without-duplicates) and net-traversal-and-collect (node: class item, child-
finder: class procedure, ok-to-traverse: class function-definition, node-visit-
proc: class procedure, search-type: symbol, mgr: class item, list: class devu-
item-list-without-duplicates, bag: class item) to make sure that only objects are
added to the list of traversed items.
531

Methods Listed by Class
opfom-set-alarm-status

(domain-object: class [opfo-managed-object | opfo-containment-object],
priority: integer)

Sets the attribute _opfo-highest-message-priority of the domain object to
priority and displays the alarm on the object. The object must have an alarm-
region in its icon definition. For information about defining the alarm region,
see the “Creating Icons for Domain Object Classes section in the Integrity
User’s Guide.

opfom-set-acknowledgement-status
(domain-object: class [opfo-managed-object | opfo-containment-object],
ack-status: symbol)

Sets attribute _opfo-acknowledgment-status of the domain-object to ack-status
and displays the acknowledgment status alarm on the object. The object must
have an acknowledgment-region in its icon definition. For information about
defining the acknowledgment region, see the “Creating Icons for Domain
Object Classes” section of the Integrity User’s Guide.

opfom-get-superior
(domain-object: class [opfo-managed-object | opfo-containment-object])
-> superior-object: class [opfo-managed-object | opfo-containment-object]

Returns the superior domain object of a domain object. The default superior
object is the object whose subworkspace contains the domain object.

opfom-get-priority
(domain-object: class [opfo-managed-object | opfo-containment-object])
-> priority: integer

Returns the value of the attribute _opfo-highest-message-priority of a domain
object. This attribute tells the highest priority message against the object.

opfom-get-acknowledgement-status
(domain-object: class [opfo-managed-object | opfo-containment-object])
-> ack-status: symbol

Returns the value of the attribute _opfo-acknowledgement-status of a domain
object. The value of this attribute tells if any unacknowledged messages are
targeting this object.
532

26
OPAC APIs
Describes the Integrity OPAC APIs, including object and procedure assignments,
procedures called from OPAC, and additional procedures that are not called from
an OPAC block.

Introduction 533

External APIs Calling OPAC from G2 534

Internal APIs for User-Written Blocks 534

Other Utility API’s for User-Written Blocks 537

OPAC Error Handling 538

State Transition Diagram APIs 538

Debugging OPAC Procedures 540

Introduction
The procedures referenced inside OPAC blocks perform the following functions:

• Control Procedure - Determines the execution sequence for blocks that make
up an OPAC graphical procedure.

• G2-Action Procedure - Performs the actions for a given OPAC block;

• Decision Procedure - Converts the decision specification to a numbered
branch choice for the block.
533

The Control procedure should not be altered. G2 Action and Decision procedures
that are user-specified are identified as such in the Configure dialog box for
individual OPAC blocks.

For example, the OPAC Generic Put Something On Stack block and the User
Defined Decision Procedure blocks are configured through the User Defined
Decision Procedure field of the block Configure dialog window. These blocks are
located on the OPAC Decisions Palette.

External APIs Calling OPAC from G2
opac-programmed-start

(block: class opac-syntax-element, caller: class item, target: class object;
window: class item, notify: class object)
-> token: class opac-token

This procedure creates a new Token, sets up the necessary relationship
between the Token and its associated data, starts the OPAC procedure, then
returns the Token to the calling procedure.

opac-start-task
(block: class opac-syntax-element, caller: class item, target: class object;
window: class item, notify: class object)
-> token: class opac-token

This procedure does the same as the opac-programmed-start procedure, but it
also accepts an argument list, arg-list. This list is used to pass information to
the OPAC procedure. Each item in the arg-list will be assigned to a local
parameter.

Internal APIs for User-Written Blocks
The following procedures are not directly called from any OPAC block. OPAC
users can create their own blocks and use the following procedures to attach to
the blocks. Notice the last two arguments, symbol and text, are designated for
returning an error code and an error message. An error returned by one of these
procedures is signified by something other than the symbol OK.

opac-pop-general-stack
(token: class opac-token)
-> error-code: symbol, error-message: text

Removes the top item from the stack. This does not delete the item.
534

Internal APIs for User-Written Blocks
opac-task-kill-new-duplicate
(token: class opac-token)
-> error-code: symbol, error-message: text)

If another OPAC token already exists with the same OPAC procedure, target,
and caller, delete this new one and keep the old one.

opac-task-kill-old-duplicate
(token: class opac-token)

-> error-code: symbol, error-message: text)

If another OPAC token already exists with the same OPAC procedure, target,
and caller, delete the old one and keep the new one.

opac-show-stack-top-from-window
(token: class opac-token, showwindow: class g2-window)
-> error-code: symbol, error-message: text

This procedure shows the top of the stack for the given Token. It is mainly
used for testing, because in normal operation a G2 window might not be
available for display, so it just picks one.

opac-show-token-info-from-window
(token: class opac-token, show-window: class g2-window)
-> error-code: symbol, errormessage: text

Same as opac-show-stack-top-from-window, but displays the Token
information, which includes local variables for the Token.

opac-if-token-error-free
(token: class opac-token)
-> priority: integer, errorcode: symbol, error-message: text

Returns 1 if the highest-message-priority of token is greater than 99998;
otherwise it returns 2. The highest-message-priority of token can be set by the
opac-token-error-handler, which sets this to a value of 2. This procedure is
currently used as a decision procedure and is available under the Decisions
Palette within OPAC.

opac-get-local-text-var
(token: class opac-token, parm-name: text)
-> local-text-value: text, errorc-ode: symbol, error-message: text

Returns the value as text for the given local parameter name.

opac-set-local-text-var
(token: class opac-token, parm-name: text, value: text)
-> error-code: symbol, error-message: text

Sets the value of the local parameter named by parm-name to value.
535

opac-get-text-from-stack
(token: class opac-token)
-> value-from-stack: text, error-code: symbol, error-message: text

Retrieves the text value of the top item on the stack. This also removes the
item from the stack.

opac-get-local-integer-var
(token: class opac-token, parm-name: text)
-> local-intege-rvalue: integer, error-code: symbol, error-message: text

Returns the integer value for the local parameter named by parm-name.

opac-set-local-integer-var
(token: class opac-token, parm-name: text, value: integer)
-> error-code: symbol, error-message: text

Sets the value of the local parameter named by parm-name to value.

opac-get-integer-from-stack
(token: class opac-token)
-> value-from-stack: text, error-code: symbol, error-message: text

Retrieves the integer value of the top item on the stack. This also removes the
item from the stack.

opac-get-local-float-var
(token: class opac-token, parm-name: text)
-> local-float-value: float, error-code: symbol, error-message: text

Returns the float value for the local parameter named by parm-name.

opac-set-local-float-var
(token: class opac-token, parmname: text, value: float)
-> error-code: symbol, error-message: text

Sets the value of the local parameter named by parm-name to value.

opac-get-float-from-stack
(token: class opac-token)
-> value-from-stack: text, error-code: symbol, error-message: text

Retrieves the float value of the top item on the stack. This also removes the
item from the stack.

opac-get-local-parameters-as-string
(token: class opac-token)
-> local-parms: text, error-code: symbol, error-message: text

Retrieves all local variables and their values, each one on a separate line. This
is mainly intended for debugging purposes.
536

Other Utility API’s for User-Written Blocks
opac-get-item-via-text
(token: class opac-token, text: text)
-> item: class item, error-code: symbol, error-message: text

Returns an item based on indirect reference through text. This is typically for
substitution, such as, returning the item represented by, $caller, or a
$reference to a local parameter, or also for indirect reference by text or by a
text parameter. The text parameter is assumed to contain the desired reference
- in that case, a recursive call of this procedure is made. The leading ($) must
be present as the first character for substitution to work.

This procedure assumes a single return, not a wildcard, which should be
checked before calling this procedure. If no item is found, the Token itself is
returned, and an error code is set. If Text = $stack, the stack item is not
consumed - it is left on the stack. It is the job of the calling program to decide
what to do with the stack, or any other item returned by this procedure.

opac-token-delete
(token: class opac-token)

Deletes all items in the stack, all local parameters, and the token itself.

Other Utility API’s for User-Written Blocks
opac-get-symbol-from-text

(text: text, position-k1: integer)
-> text: text, end-position: integer

This G2 procedure gets the next (symbol) from text text (in the usual parsing
sense, not a G2 symbol), starting at position-k1 in the text. Note that this
returns a text. It also returns the end position of the symbol as an integer, so
that you can step your way through text one symbol at a time.

This procedure looks for characters that might terminate a symbol. This
includes the obvious case of blank or white space, and also includes:

{,},(,),[,],/,+,=,!,*,^,<,>,?,|,:,;, and the comma.

It uses a standard predicate mib-character-symbol-p to do this. Since MIB
procedures must allow a (dot) in the middle of a symbol, they do not
recognize periods as symbol terminators. Hence, this procedure also checks
for the period.

Symbols starting with ($) or other funny characters are recognized as full
symbols, such as $stack. Funny characters otherwise terminate the symbol.
537

opac-replace-local-parms-in-text
(token: class opac-token, text: text)
-> actual-name: text, error-code: symbol, error-message: text

This procedure is typically called from within OPAC blocks, so that users can
use substitution variables.

This G2 procedure replaces substitution variables such as $sender, $target,
and local variables names (also prefaced with a ($), with their actual names.
text refers to the text that contains the substitution variables. The first return
argument contains the result of the substitution. The remaining return
arguments, symbol and text are the standard error-name and error-symbol.
The token is needed as input so that local names can be found.

OPAC Error Handling
opac-token-error handler

(token: class opac-token, error: symbol, error-string: text)

This procedure sets the token in an error state. It gathers information about
the token and a traceback to the Start block for the token (see Show Token Info
and Show Stack Top). This information is complied into a message and is sent
to the devu-error-handler (see the Integrity User’s Guide for additional
information). The If Token Error Free block can be used to test whether the
token is in an error state or not (see Special Instance: If Token Error Free
Block).

The opac-token-error-handler procedure is used to safely return from an error
condition. An error condition can arise from a G2 procedure exception or any
developer defined error condition. The G2 procedures used in OPAC will
return the OK symbol if the procedure completed successfully and any other
symbol if an error was detected (see the G2 Reference Manual for additional
information on error conditions and error handling).

State Transition Diagram APIs
opfo-domain-object::opac-accept-new-state

(target: class opfo-domain-object, new-state: text)
-> wait-state-block: class item, error-name: symbol, error-text: text

This G2 procedure sets the state transition model associated with target to a
new state specified by the text, new-state. If an opac-wait-state block that
represents new-state exists on the same workspace associated with target, the
current state will become new-state and the opac-wait-state block will be
returned to the caller. If no opac-wait-state block exists, devu-safe-object will
be returned. new-state may contain wildcards (* and ?) characters. This allows
for partial matches to be made on the comparison of new-state and states
538

State Transition Diagram APIs
defined in the state diagram model. Note that no transition event will be
generated by the result of this method.

opfo-domain-object::opac-accept-event
(target: class opfo-domain-object, new-event: text, timeout: integer)
-> error-name: symbol, error-text: text

This G2 procedure transitions the state transition model from one state to
another state based on new-event. Proceeding after the timeout period, the
current state is obtained by accessing the opac-token associated with target.
The opac-wait-state block is then obtained by the opac-token. It then looks at
each opac-transition-event block connected downstream of the opac-wait-
state trying to match the new-event with the opac-transition-event-name of the
event block. If a match is found, the procedure specified in the opac-event-
action-proc of the event block is executed and the opac-token is moved to the
new state. If the event block is an opac-timeout-transition-event block, the
opac-token will wait at the timeout block for the time specified in opac-
transition-event-timeout of the timeout block before continuing to the next
state, if any. If no match is made, the opac-token remains at the current state.
new-event may contain wildcards (* and ?) characters. This allows for partial
matches to be made on the comparison of new-state and states defined in the
state diagram model. Note that no transition event will be generated by the
result of this method.

opfo-domain-object::opac-get-state
(target: class opfo-domain-object, std: symbol)
-> current-state: text, error-name: symbol, error-text: text

This G2 procedure retrieves the current state for the given target. The target
must relate to an opac-token that is currently running a state transition model
specified by std. std is the name of the opac-state-diagram-start block.

opfo-domain-object::opac-delete-state-token
(target: class opfo-domain-object, std: symbol)
-> error-name: symbol, error-text: text

This G2 procedure deletes the opac-token for the specified state transition
model (std) associated with target.
539

Debugging OPAC Procedures
Blocks commonly used for debugging include:

• Connection Post

• Show Token Info

• Put Text On Stack

Note The token has a user menu choice for showing token info and showing the stack
top. Normally, you pause the OPAC procedure in order to access the token user
menu choices or to display its table.
540

27
Startup Parameters
Describes the startup parameters for Integrity blocks.

Introduction 541

GNDO Module 542

GMIB Module 546

GSNMP Module 546

Global Parameters 547

Performance Parameters 548

Introduction
This chapter describes the system parameters defined by using initialization
items. You can change the value of these system parameters by setting the value
within a GFR startup procedure. See the G2 Foundation Resources User’s Guide.
541

GNDO Module

Error Handling:

These parameters define the behavior of the error handler.

devu-alternate-object-lookup-procedure=

Defines a procedure that looks up domain objects based on criteria other than
the opfo-external-name. For example, if you define a class of object with the
attribute Ip-address, you can write a procedure that returns a domain object
based on the value of that attribute.

The procedure you define using this initialization is called by the Integrity
procedure devu-domain-object-lookup. The argument passed to devu-domain-
object-lookup is passed to your new procedure. The procedure must have the
following syntax:

custom-lookup-procedure
(lookup-text: text)
-> lookup-object: class: opfo-domain-object

Your custom lookup procedure should return the domain object that matches
the text string passed to it. When you define a new procedure, it supersedes
devu-domain-object-lookup.

devu-error-handler-proc=smh-send-error-message

Defines a procedure to replace the default Integrity error handler. The
procedure must have the following syntax:

custom-error-handler
(target: class item, sender: class item, error-type: text, priority: integer,
error-name: text, error-text: text, error-lifetime: integer)

devu-error-lifetime=300

The number of seconds an error message is maintained before being deleted.

devu-high-priority=1

When the error handler generates error messages, it decides the priority of the
error message by using the parameters devu-high-priority, devu-medium-
priority, or devu-low-priority. Use this parameter to define the number assigned
to a devu-high-priority message.

devu-low-priority=10

When the error handler generates error messages, it decides the priority of the
error message by using the parameters devu-high-priority, devu-medium-
priority, or devu-low-priority. Use this parameter to define the number assigned
to a devu-low-priority message.
542

GNDO Module
devu-medium-priority=5

When the error handler generates error messages, it specifies the priority of
the error message by using the parameters devu-high-priority, devu-medium-
priority, or devu-low-priority. Use this parameter to define the number assigned
to a devu-medium-priority message.

devu-status-category="Fault Expert Status"

Specifies the text that describes any error message generated using the
category devu-status-category. This is the default category used to generate
status messages.

devu-system-category="Fault Expert System"

Specifies the text that describes any error message generated using the
category devu-system-category. This is the default category used to generate
system messages.

Object Retrieval

These parameters allow you to define custom procedures for retrieving an object
by using an identification string. See devu-ext-name-or-name-as-string and devu-
domain-object-lookup.

devu-unknown-object-procedure=devu-default-object-return

Defines the procedure called when no object can be found by devu-domain-
object-lookup. The procedure you define must accept the argument shown in
the following example:

custom-unknown-object-procedure
(lookup-text: text)
-> lookup-object: class: object

devu-user-name-as-string=

Defines an alternate function to retrieve a text identification from a domain
object. This lets you use attributes other than opfo-external-name to identify
an object. The function is called by devu-ext-name-or-name-as-string.

If you define a new function to look up the name of an object you should also
define a new object lookup procedure, using devu-alternate-object-lookup-
procedure.

The function you define must accept the argument shown in the following
example:

custom-user-name-as-string
(object: item)
-> item-identifier: text
543

The function must return the text string that you want to use to identify the
object passed to the function.

If you define a new function to retrieve an identifier for an object other than
the opfo-external-name, you should also define a new procedure to lookup
the object using the new identifier as described in devu-alternate-object-
lookup-procedure.

devui-default-workspace-for-new=

When the system initialization devui-use-application-object-workspaces is set
to false, new objects created using the object manager are not automatically
placed on the application workspaces defined in an Integrity application. In
this case, whenever you select Create on the object manager, a dialog appears
to prompt you for the name of the workspace on which to place the new
object. devui-default-workspace-for-new contains the name of a workspace
provided as a default in that prompt. See “Objects Created in a New
Application” in the Integrity User’s Guide.

devui-use-application-object-workspaces=true

When this initialization is set to true, new objects created using the Object
Manager are placed on the application workspaces created in an Integrity
application. You can set devui-use-application-object-workspaces to false to
override the use of the application workspaces. When you create a new object
the system prompts you for the name of the workspace on which to place the
new object. Use the initialization devui-default-workspace-for-new to provide
a default value for the prompt. See “Objects Created in a New Application” in
the Integrity User’s Guide.

opcsui-domain-map-workspace=unspecified

Use this parameter if the top level of your domain map is not on the
workspace created for the top level of the domain map by the startup module.
Define the name of the workspace you used in this parameter. This will let the
menu item View > Domain Map know where to retrieve the domain map.

Colors and Priority

These parameters define default colors.

opfom-acknowledge-color=black

Defines the color of the acknowledgment region of a domain object not
targeted by any unacknowledged messages. See “Setting Priority and
Acknowledgment Colors” in the Integrity User’s Guide.

opfom-default-initial-priority=99999

Defines the default value for the initial priority of the domain objects. This
value is saved in the domain object attribute _opfo-highest-message-priority.
See “Setting Default Message Priorities” in the Integrity User’s Guide.
544

GNDO Module
opfom-default-priority-color=sky-blue

Defines the color used as a default for a message assigned a priority that has
not been assigned a color using opfom-priority-alarm-colors. For example, a
message with a priority of 15 is not mapped by the 10 color array specified as
a default. Use the default color to display the message on the browser and to
color the icon alarm region of the target object on the domain map. See
“Setting Priority and Acknowledgment Colors” in the Integrity User’s Guide.

opfom-default-priority-on-delete-of-last-message=6

Defines the priority assigned to a domain object after the last message
targeting it is deleted. This is stored in the object attribute opfo-highest-
message-priority. This value can be overridden when the initialization of
opfom-revert-priority-to-initial is set to true. See “Setting Default Message
Priorities” in the Integrity User’s Guide.

opfom-priority-alarm-colors=red, orange, yellow, green, salmon, thistle, wheat,
sienna, tan, sky-blue

This is a vector initialization item that defines the colors matched to message
priorities. The first color in the list defines priority 1, the second defines a
priority of 2, and so on. Use the color that matches a message priority to define
the color used for the background of the message in the message browser. Use
the item also to color the icon alarm region when the message is the highest
priority message targeting the object. See “Setting Default Message Priorities”
in the Integrity User’s Guide.

opfom-priority-alarm-text-colors=black, black, black, black, black, black, black,
black, black, black

This is a vector initialization item that defines the text colors matched to
message priorities. The first color in the list defines priority 1, the second
defines a priority of 2, and so on. Use the color that matches a message
priority to define the color used for the text of the message in the message
browser. See “Setting Priority and Acknowledgment Colors” in the Integrity
User’s Guide.

opfom-revert-priority-to-initial=true

Defines the priority assigned to a domain object after the last message
targeting it is deleted. This is stored in the object attribute _opfo-highest-
message-priority. When this item is set to true, the value of _opfo-highest-
message-priority is set to the value defined by opfom-default-initial-priority.
This initialization overrides any value set by opfom-default-priority-on-delete-
of-last-message. See “Setting Default Message Priorities” in the Integrity
User’s Guide.

opfom-unacknowledged-color=yellow

Defines the color used to display the icon acknowledgment region of a domain
object targeted by an unacknowledged message. See “Setting Priority and
545

Acknowledgment Colors” in the Integrity User’s Guide.

GMIB Module
mib-create-nonexistent-traps=0

An integer parameter for specifying whether or not Integrity automatically
creates trap class definitions for undefined traps. A value of 0 tells Integrity to
NOT create trap class definitions and a value of 1 means do create trap class
definitions.

mib-debug=0

An integer parameter for specifying the level of information that the Integrity
knowledge base will inform the developer about. The values of this parameter
are 0 - 5 (0 - No Information; 5 - Maximum Information).

mib-receiver-time-to-live-in-queues=600

An integer parameter, in seconds, for specifying the amount of time after
which Integrity will automatically clear the mib-reception-queue and mib-
completed-receives queues.

GSNMP Module
These items let you define your own procedures for handling how the oxs_sim-
request-handler performs SNMP (SET, GET, GET NEXT) transactions.

oxs_sim-snmp-event-gsi-obj-symbol=

A symbolic parameter for specifying the asynchronous G2 Standard Interface
object used by the G2-SNMP Bridge for receiving traps into Integrity.

oxs_sim-snmp-get-symbol=snmp-get-rpc-call

A symbolic parameter for specifying the procedure that the oxs_sim-request-
handler uses in performing an SNMP GET transaction.

oxs_sim-snmp-get-table-column-symbol=snmp-get-table-column-rpc-call

A symbolic parameter for specifying the procedure that the oxs_sim-request-
handler uses in performing an SNMP GET TABLE COLUMN transaction.

oxs_sim-snmp-set-symbol=snmp-set-rpc-call

A symbolic parameter for specifying the procedure that the oxs_sim-request-
handler uses in performing an SNMP SET transaction.

oxs_sim-snmp-sync-gsi-obj-symbol=g2

A symbolic parameter for specifying the synchronous G2 Standard Interface
object used by the G2-SNMP Bridge for the SNMP SET, GET, and GET NEXT
546

Global Parameters
transactions. The procedure oxs_sim-request-handler uses this parameter in
making remote procedure calls to the SNMP Gateway Bridge.

oxs-default-unrecognized-trap-class=sample-unknown-trap-class

A symbolic parameter used for specifying the superior class of the trap class
definition that is automatically created in response to Integrity receiving an
undefined trap. See mib-create-nonexistent-traps for information on
configuring Integrity to automatically create the trap class definitions.

oxs-running-standalone-toggle=

An opxb-gr-toggle-client-server-button used for specifying to Integrity if the
G2 application is running with or without the SNMP Gateway Bridge
connections. The toggle-state attribute of this button is set to a symbolic value
of on (running standalone) or off (connected to a SNMP Gateway Bridge).

oxs-unrecognized-traps-location=oxs-unrecognized-traps

A symbolic parameter used for specifying the location of where Integrity will
store trap class definitions that are automatically created for undefined traps
received. See mib-create-nonexistent-traps for information on configuring
Integrity to automatically create the trap class definitions.

Global Parameters
asn1_integer=2

A global integer parameter for specifying the ASN.1 integer type. The default
value is 2. This value should not be modified.

asn1_octet_string=4

A global integer parameter for specifying the ASN.1 octet string type. The
default value is 4. This value should not be modified.

snmp_get_req_msg=160

A global integer parameter for the SNMP GET request message type. The
default value is 160. This value should not be changed.

snmp_getnext_req_msg=161

A global integer parameter for the SNMP GET NEXT request message type.
The default value is 161. This value should not be changed.

snmp_get_rsp_msg=162

A global integer parameter for the SNMP GET response message type. The
default value is 162. This value should not be changed.

snmp_set_req_msg=163
547

A global integer parameter for the SNMP SET message type. The default
value is 163. This value should not be changed.

snmp_trap_req_msg=164

A global integer parameter for the SNMP Trap message type. The default
value is 164. This value should not be changed.

Performance Parameters
The Integrity performance parameters are used in measuring the SNMP trap
input performance. These parameters can be further used in performing various
diagnostic actions in response to out of tolerance conditions.

MIB Module

mib-number-of-reception-queue-discards

An integer parameter giving the count of MIB-RECEIVER objects that have been
deleted from the item list mib-reception-queue.

mib-number-of-completed-receive-discards

An integer parameter giving the count of MIB-RECEIVER objects that have been
deleted from the mib-completed-receives queue.

mib-maximum-complete-receive-queue-length

An integer parameter giving the maximum number of MIB-RECEIVER objects in
the mib-completed-receives queue. This value should be used in conjunction
with the mib-receiver-time-to-live-in-queues initialization to determine if your
application is getting behind in the processing of incoming traps.

mib-number-of-expected-val-vs-receive-mismatches

An integer parameter giving the total count of MIB-RECEIVER objects whose
Number-of-received-values does not match its Number-of-expected-values.

mib-number-of-receive-errors

An integer parameter giving the total count of MIB-RECEIVER objects return
errors based upon the Number-of-errors attribute of the MIB-RECEIVER object.
This is not a count of MIB-RECEIVER objects with return errors but a count of
total return errors for all MIB-RECEIVER objects.

mib-number-of-completed-receives

An integer parameter giving the total count of MIB-RECEIVER objects processed
by Integrity.
548

Performance Parameters
GSNMP Module

snmp-number-of-ignored-traps

An integer parameter giving the total count of incoming traps that are not
processed by the Integrity knowledge base. Ignored traps are defined as
follows:

No trap class definition could be found for the trap, including TRAP-XX-XX-XX.

The integer parameter mib-create-nonexistent-traps equals zero. Unknown
traps do not have a trap class definition created for them automatically. See
mib-create-nonexistent-traps for more information.

snmp-number-of-ignored-trap-params

An integer parameter giving the total count of OID variable values that could
not be matched with their respective incoming trap.

snmp-number-of-traps-created

An integer parameter giving the total count of MIB-RECEIVER objects created as
a result of a trap class definition not being found in Integrity for the
appropriate TRAP-[ENTERPRISE ID]-[GENERIC ID]-[SPECIFIC ID] information of the
trap. The integer parameter mib-create-nonexistent-traps must be set to a
value of 1 in order for undefined traps to be created automatically.

snmp-traps-per-second-min

A float variable giving an average of the mib-number-of-competed-receives
over the last 10 seconds. The default update rate for this variable is none. See
the oxs_demo.kb for an example action button for setting this value; Get, Set
& Send Traps > Performance Parameters.

snmp-ignored-traps-per-second-min

A float variable giving an average of the snmp-number-of-ignored-traps over
the last 10 seconds. The default update rate for this variable is none. See the
oxs_demo.kb for an example action button for setting this value; Get, Set &
Send Traps > Performance Parameters.

snmp-traps-per-second

A float variable giving the rate of change per second of the integer parameter
mib-number-of-completed-receives during the last 2 seconds. The default
update rate for this variable is none. See the oxs_demo.kb for an example
action button for setting this value; Get, Set & Send Traps > Performance
Parameters.
549

550

Glossary

 A B C D E F G H I J K L M
 N O P Q R S T U V W X Y Z
A

agent: (SNMP) Software installed in each network device; answers incoming data
requests from a manager, and sends unsolicited messages to a manager.
Generally does not interact directly with a human operator. Communicates with a
manager using a standard protocol such as SNMP, and stores data in a standard
format, e.g., as also defined by SNMP.

alarm: (1) a high priority event, including combinations of related events. (2) a
visible indication, to the Operator, of a potential problem CLASS: an object
template which defines a specific set of attributes and behaviors for all instances
of the class.

B

Blocking: When a call to a remote procedure in the SNMP Gateway Bridge is
blocking, neither the bridge nor Integrity can make other procedure calls while
the remote procedure call is being processed.

C

class: An object template which defines a specific set of attributes and behaviors
for all instances of the class.

correlation: the process of grouping related items.

E

enterprise: (SNMP) an object identifier, usually for a vendor product, that names
the originator of a trap. The first field of an SNMP trap.

event: a relatively instantaneous occurrence that changes the state of a system or
element.

F

fault: a failure of some element of a system. It may or may not be detected.

filter: a selection process which eliminates signals or data which do not fall within
specified bounds, e.g., values that are lower than a specified threshold.
551

I

icon: a pictorial representation of an object. In G2 icons are defined at the class
level.

M

management information base(mib): a set of managed objects that hold network
information, generally maintained by agents.

manager: Software which receives data or may access data from agents. The
agents maintain the data, while the manager normally interacts with a human
operator.

message: Represents an event, contains text and other attributes

N

non-blocking: When a call to a remote procedure in the SNMP Gateway Bridge is
non-blocking, both the bridge and Integrity can make other calls while the call to
the Integrity receiver procedure is being processed.

O

object: in G2, is a subclass of the built-in Item class.

P

proxy agent: (SNMP) an agent that acts as a protocol converter for access to data
in non-standard MIBs, so that a manager can access the data using a standard
protocol such as SNMP.

S

SGB: Simple Network Management (SNMP) Gateway Bridge. The GSI based
component of the G2-SNMP Bridges.

SNMP: Simple Network Management Protocol.

state: the mode or condition of an object or system as defined by the values of its
attributes.

status: SYMPTOM: a "zero cost" test. Usually observed through passive
monitoring of a system.

symptom: A zero cost test. Usually observed through passive monitoring of a
system.
552

T

test: Some action that produces a pass/fail result.

trap: (SNMP) a message that reports a problem or a significant event.

W

workspace: an entity in G2 upon which objects are placed. It loosely resembles a
window, except that it may be a "subworkspace" of another object, usually
indicating a containment relationship.
553

554

Index
 @ A B C D E F G H I J K L M
 # N O P Q R S T U V W X Y Z
Symbols
_mpe-from-message-filter
_mpe-from-text-buffer

Numerics
2 Way Decision block

manual
pattern

2-Way-Pattern-Decision block
3 Way Decision block

manual
pattern

4 Way Decision block
manual
pattern

A
Accept New Event block
Acknowledge Message
Acknowledge Message block
acknowledge messages
acquiring data from G2-SNMP Bridges
Add Passport to Event
adding a filtered trap
agent

hostnames
IP addresses

API
functions

devu-ext-name-or-name-as-string
is-a-message
is-an-object

methods
opfom-get-acknowledgement-status
opfom-get-priority
opfom-get-superior
opfom-set-acknowledgement-status
opfom-set-alarm-status

opac-get-float-from-stack
opac-get-integer-from-stack
opac-get-item-via-text
opac-get-local-float-var
opac-get-local-parameters-as-string
opac-get-text-from-stack
opac-if-token-error-free
opac-programmed-star
opac-set-local-float-var
opac-set-local-integer-var
opac-show-stack-top-from-window
opac-show-token-info-from-window
opac-start-task
opfo-domain-object

opac-accept-event
opac-accept-new-state
opac-delete-state-token
opac-get-state

procedures
devu-consume-next-field
devu-decode-comma-line
devu-devu-safe-window
devu-domain-object-lookup
devu-error-handler
devu-get-field-n
devu-insert-item-in-sorted-ascending-

list
devu-insert-item-in-sorted-

descending-list
devu-insert-msg-in-alphabetical-list
devu-insert-msg-in-alphabetical-list-

allowing-duplicates
devu-pattern-matcher-with-indices
devu-safe-text-for-symbol
devu-strip-linefeeds
devu-substitute-text
devu-text-is-ascii-punctuation-p
devu-text-is-ascii-symbol-p
devu-txt-is-digit-p
devu-txt-is-mib-character-symbol-p
do-nothing-at-node-collection-visit
do-nothing-at-node-visit
find-connected-children
find-downstream-connected-children
find-downstream-connected-children-2
555

Index
find-subworkspace-children
find-upstream-connected-children
glf-disable-logging
glf-enable-logging
glf-set-fixed-log-closing-times
glf-write-to-log-file
net-traversal
net-traversal-2
net-traversal-and-collect
net-traversal-and-collect-2
sc-toggle-button
smh-acknowledgement-proc
smh-create-message
smh-delete-all-history
smh-delete-history
smh-delete-message
smh-delete-server
smh-get-message-history
smh-get-messages-about
smh-get-messages-in-server
smh-get-messages-sent-by
smh-message-delete-proc
smh-message-query
smh-propagate-message-text
smh-read-server-mib-from-file
smh-send-error-message
smh-server-delete-all-msg
smh-write-server-mib-to-file
twm-hide-screen

APIs calling OPAC
applications

G2-SNMP Bridges used for
argument
argument block
ASCII text file
asn1_integer global parameter
asn1_octet_string global parameter
asn1-rfc1212-mib-parser procedure
assign a value
Attribute Filter
attribute, message
attributes of

GSI Interface Object
authorizing

G2-SNMP Bridges
SNMP Gateway Bridge (SGB)

B
Beep
556
beginning
block definitions
block filtering
blocking remote procedure calls
blocking SNMP transactions
boot process
branching capability

two-way
building an G2-SNMP Bridges application

C
calling OPAC from G2
CD-ROM

installing G2-SNMP Bridges from
mounting
unmounting

Clear Message History block
clearing mib-receiver object queues
clears for attribute

format of
Clears for or Delete Messages
collect items
Collect Related Items block
column height
community name string
community-length
community-name
Comparison Decision block
completion procedure determination
components

G2-SNMP Bridges
G2-SNMP Generic Bridge

configuration
G2-SNMP Bridges
G2-SNMP Bridges communication

parameters
GSI Interface Object
simulated SNMP traps

variable fields of
SNMP agent MIB

tables of
variables of

connect
connected-downstream-to
connected-to
connected-upstream-to
Connection Posts
Connection-Post
Connection-Post block

Index
connectivity
Consume Decision From Stack
Control Delay block
Control-Procedure
CORE Services
Count Events
create a message
creating

a new error handling procedure
GSI OK file
trap class definitions

Current Message Query block
current messages
current state
customer support services

D
daemon

trapd

Day of the Week Filter
debugging
Debugging Blocks palette

Show Stack Top
Show Token

Debugging OPAC procedures
debugging procedures
Decision Blocks palette

2 Way Manual Decision
2 Way Pattern Decision block
3 Way Manual Decision
3 Way Pattern Decision Block
4 Way Manual Decision
4 Way Pattern Decision Block
Comparison Decision
If Token Error Free

Decision-Procedure
delete a file
Delete Event
Delete Events
Delete Events by Start Time
Delete File block
Delete Message block
delete messages
delete old events
deleting a filtered trap
demonstration

G2-SNMP Bridges
device name

determining on UNIX platform
devu module API procedures
devu-alternate-object-lookup-procedure
initialization

devu-consume-next-field procedure
devu-decode-comma-line procedure
devu-domain-object-lookup procedure
devu-error-handler procedure
devu-error-handler-proc initialization
devu-error-lifetime initialization
devu-ext-name-or-name-as-string function
devu-get-field-n procedure
devu-high-priority initialization
devu-insert-item-in-sorted-ascending-list

procedure
devu-insert-item-in-sorted-descending-list

procedure
devu-insert-msg-in-alphabetical-list procedure
devu-insert-msg-in-alphabetical-list-allowing-

duplicates procedure
devu-low-priority initialization
devu-medium-priority initialization
devu-pattern-matcher-with-indices procedure
devu-safe-text-for-symbol procedure
devu-safe-window procedure
devu-status-category initialization
devu-strip-linefeeds procedure
devu-substitute-text procedure
devu-system-category initialization
devu-txt-is-ascii-punctuation-p procedure
devu-txt-is-ascii-symbol-p procedure
devu-txt-is-digit-p procedure
devu-txt-is-mib-character-symbol-p procedure
devu-unknown-object-procedure initialization
devu-user-name-as-string initialization
domain objects
DXIOV-IMPORT-OBJECT
DXIOV-TYPE-TO-CLASS-OBJECT

E
end
Enterprise/generic/specific filtering
environment variable

G2_PPD_FILENAME
GSI_ROOT
NEWSTATUS
OBJECT

setting on UNIX platform
error

General failure on agent
error handler

creating a new error handling procedure
557

Index
defining
error state
event

progess through G2-SNMP Bridge
Event Action Procedure
Event Class Filter
Event Count by Start Time
executing

G2-SNMP Bridges
simulated traps
SNMP Gateway Bridge (SGB)

existance, message
Export Map
expression matching
External Interfaces palette

Read Domain Map block
Send CDG Event
SNMP Get
SNMP Get Table Column
SNMP Set

F
facilities for simulating
file existance
File Exists Test block
file name for filtering log file
Filter Block
(filter_mode)
filtered hosts
filtered hosts list
filtering

Enterprise/generic/specific
hostname/IP address
stages
turning on and off

filtering log file
filtering traps

from specified hosts
float parameter
float parameters
floating point value
for loop
four-way branching capability
function call
functions

devu-ext-name-or-name-as-string
is-a-message
mib-oid-strip-instance-number
mib-oid-symbol-to-name
558
mib-oid-text-to-name
snmp-desc-value
snmp-severity-to-status-text-conversion

G
G2 Procedure Response
G2 procedure statements
G2 Standard Interface (GSI)
G2_PPD_FILENAME environment variable
G2-Action-Procedure
G2-SNMP Bridges

acquiring data from
adding and deleting filtered traps
application block diagram
authorizing
building an application
completion procedure determination
completion procedures
components of
configuration
configuring communication parameters
creating a new error handling procedure
defining error handler
determining trap class to create
environment variable
event progress
executing
features and benefits of
filter definition file required
filtering traps
Gensym provided MIBs
GSI based component
handling unrecognized traps
installing from CD-ROM on unix
installing from tape on unix
integer value range
Integrity
intended applications of
modes of operation of
outline of setup steps
overloading remote procedure calls
performance parameters
port-number
ports for
processing trapd.conf file
processing trapd.conf.ppd file
relation to Integrity
running as a background process
sending traps to external systems

Index
setting up clears for
simulation facilities
SNMP Gateway Bridge (SGB)
SNMP Gateway Bridge (SGB) processes
SNMP transactions
status messages reported by
transactions

blocking
non-blocking

trap class creation
trap handling
trapd.conf filter definition
trapd.conf.ppd file parser
unable to find port
unique identifier for SNMP transactions
viewing unrecognized SNMP Traps

workspace
what are they ?

G2-SNMP Generic Bridge
components of

G2SNMP_ADD_FILTERED_TRAP
G2SNMP_ADD_FILTERED_TRAP remote

procedure call
G2SNMP_BLOCKING_TRANSACTION base

remote procedure call
G2SNMP_DELETE_FILTERED_TRAP
G2SNMP_DELETE_FILTERED_TRAP remote

procedure call
G2SNMP_MODIFY_COMM_PARAMS remote

procedure call
G2SNMP_NONBLOCKING_TRANSACTION

base remote procedure call
G2SNMP_NONBLOCKING_TRANSACTION

base remote procedure call
G2SNMP_RECEIVE_EOT receiver procedure
G2SNMP_RECEIVE_FLOAT receiver

procedure
G2SNMP_RECEIVE_INTEGER receiver

procedure
G2SNMP_RECEIVE_MESSAGE receiver

procedure
G2SNMP_RECEIVE_STRING receiver

procedure
G2SNMP_RECEIVE_TRAP_PACKET receiver

procedure
G2SNMP_SET_AGENT_FILTER_MODE
G2SNMP_USE_SNMP_COMM_PARAMS

remote procedure call
G2SNMP_USE_SNMP_DEFAULTS remote

procedure call
Gather Evidence
General Actions Palette
Connection Posts
Control Delay block
General Procedure block
Hide Workspace block
Historical Query block
Macro block
Pause Capability block
Procedure Statement block
Procedure Template
Send SMH Message block
Show Workspace block
Show Workspace Not Stacked block
Subtask block
Subtask Completion block
Subtask Start block
Task Kill block
Task Spawn block

General Procedure block
Generic Blocks palette

Collect Related Items
Iteration
Numerical Query with Threshold
Run Domain Object Method
Set Local Parameter from Source

Generic Bridge
components of
straps process

Generic Put Something on Stack Block
Get Event Attribute
Get State block
GET_2_BLOCKING overloaded remote

procedure call
GET_BLOCKING_SINGLE overloaded remote

procedure call
GET_NONBLOCKING_SINGLE overloaded

remote procedure call
gethostbyname()
glf module API procedures
glob-style regular expression matching
GSI Interface Object

connecting G2 to GSI
updating attributes

GSI OK file
creating
example
format

GSI_ROOT environment variable
GSI-based Bridge Process
559

H
Hide Workspace
Hide Workspace block
Historical Message Query block
Historical-Message-Query block
host filtering mode
hostname
hostname/IP address filtering
hostnames

agent
hosts

filtered
filtered list
specified

Hour of the Day Filter
HP OpenView

sending a status trap to

I
If Token Error Free block
IF-TOKEN-ERROR-FREE block
Import Map option
Indirect References
initalizations

user-defined-error-handler
initializations

by groupings
error handling
object retrieval
SNMP transactions

devu-alternate-object-lookup-procedure
devu-error-handler-proc
devu-error-lifetime
devu-high-priority
devui-default-workspace-for-new
devui-use-application-object-workspaces
devu-low-priority
devu-medium-priority
devu-status-category
devu-system-category
devu-unknown-object-procedure
devu-user-name-as-string
mib-create-nonexistent-trap
mib-create-nonexistent-traps
mib-debug
mib-receiver-time-to-live-in-queues
opcsui-domain-map-workspace
opfom-acknowledge-color
opfom-default-initial-priority
opfom-default-priority-color
opfom-default-priority-on-delete-of-last-

message
opfom-priority-alarm-colors
opfom-priority-alarm-text-colors
opfom-revert-priority-to-initial
opfom-unacknowledged-color
oxs_sim-snmp-event-gsi-obj-symbol
oxs_sim-snmp-get-symbol
oxs_sim-snmp-get-table-column-symbol
oxs_sim-snmp-set-symbol
oxs_sim-snmp-sync-gsi-obj-symbol
oxs-default-unrecognized-trap-class
oxs-running-standalone-toggle
oxs-unrecognized-traps-location

install script
unix platform

installing
from CD-ROM on unix

G2-SNMP Bridges
from tape on unix

G2-SNMP Bridges
OV Map Importer

integer parameter
integer parameters
integer value
integer values

range of
Integrity

CORE Services
defining error handler
demonstration of
G2-SNMP Bridges
OPAC

IP address
IP address filtering
IP addresses

agent
IP Reachability Analyzer

See IPRA
ipra-ora-two-report
is-a-message function
Item Argument block
Iteration block
iterations

K
kill a process
Kill Process block

Index
L
laying out objects
list of messages
Local Float Variable block
local integer parameter
Local Integer Parameter block
local integer parameters
Local Item block
local items
Local Parameter
local parameter
Local Parameters palette

Local Float Variable
Local Integer Parameter
Local Item
Local Text Parameter
Set Local Float from Source
Set Local Integer from Source
Set Local Item from Source
Set Local Text from Source

Local Text Parameter block
local text parameters
Log_Event

M
macro
Macro block
Management Information Base (MIB)

provided with G2-SNMP Bridges
simulation facilities
vendor supplied

message
message attribute
Message block
Message Exists block
message filter attributes

Mpe contains expression
Mpe end expression
Mpe start expression

Message Historical Query Filter
message histories
Message palette

Acknowledge Message
Clear Message History
Current Message Query
Delete Message
Message Exists
Send SMH Message block
Set Message Attribute
Message Query Filter
message server
messages
messages, delete
messages,acknowledge
messages,current
mib-clean-up-ws procedure
mib-create-name-to-oid-translation procedure
mib-create-nonexistent-trap initalization
mib-create-nonexistent-traps initialization
mib-debug initialization
mib-delete-dictionary-on-workspace procedure
mib-delete-old-list-entries procedure
mib-enterprise-oid-text-to-name procedure
mib-maximum-complete-receive-queue-length

performance parameter
mib-number-of-completed-receive-discards

performance parameter
mib-number-of-completed-receives

performance parameter
mib-number-of-expected-val-vs-receive-

mismatches performance parameter
mib-number-of-receive-errors performance

parameter
mib-number-of-reception-queue-discards

performance parameter
mib-oid-strip-instance-number function
mib-oid-symbol-to-name function
mib-oid-text-to-name function
mib-read-clears-file procedure
mib-receiver object

clearing queues
queues

mib-receiver-create-and-queue procedure
mib-receiver-time-to-live-in-queues

initialization
mib-return-default-msg-category procedure
mib-substitute-in-format-spec procedure
mib-translate-info-to-completion-name

procedure
mib-translate-info-to-trap-name procedure
mib-trapd-preprocessed-conf-reader

procedure
mib-write-clears-file procedure
modes of operation of G2-SNMP Bridges
mount

CD-ROM
Mpe contains expression attribut
Mpe end expression attribute
MPE Palette Blocks
Mpe start expression attribute
561

Index
mpe-add-text-to-buffer
mpe-clear-buffer
mpe-contains-expression
mpe-current-real-time-as-time-stamp
mpe-data-source-description
mpe-data-source-name
mpe-debug-on
mpe-delay
mpe-description
mpe-destination
mpe-end-expression
mpe-end-position
mpe-end-regex-expression
mpe-extract-mode
mpe-filter-rejects-buffer-max-entries
mpe-filter-rejects-to-bottom
mpe-filter-rejects-to-filter-rejects-buffer
mpe-from-message-filter
mpe-from-text-buffer
mpe-line-delimeter
mpe-line-number
mpe-match-end
mpe-match-source
mpe-match-start
mpe-match-string
mpe-maximum-buffer-length
mpe-message-filter
mpe-message-filter block
mpe-pause-block
mpe-procedure-conclude-block
mpe-procedure-name
mpe-receiver-text
mpe-regex-expression
mpe-show-buffer
mpe-single-match-decision-block
mpe-single-regex-conclude
mpe-single-regex-conclude-block
mpe-start-end-match-decision-block
mpe-start-end-of-match-decision-block
mpe-start-end-of-text-conclude-block
mpe-start-end-regex-conclude-block
mpe-start-expression
mpe-start-of-text-to-end-of-regex-conclude-

block
mpe-start-of-text-to-end-regex-conclude-block
mpe-start-position
mpe-start-regex-expression
mpe-start-search-position
mpe-static-conclude-block
mpe-string-position-block
mpe-string-receiver
562
mpe-string-receiver-block
mpe-string-receiver-class
mpe-terminal-block
mpe-text-buffer
mpe-text-source
mpe-turn-debugging-off
mpe-turn-debugging-on
mpe-value
mpe-word-delimeter
mpe-word-line-block
mpe-word-line-conclude-block
mpe-word-number
mpe-working-text
mpe-write-mode

N
new state
NewEvent
non-blocking remote procedure calls
non-blocking SNMP transactions
Numerical Query with Threshold block
numerical values
numerical variables

O
Object ID
Object Identifier

defined
ocal parameter
Odie Events
ODiE Filters
ODiE Managers
ODiE Responses
ODiE Subscribers
ODiE Wildcard'
odie-event
odie-event-proxy
odie-g2-manager
odie-g2-manager::odie-datastore-add-event-

passport-stamp
odie-g2-manager::odie-datastore-delete-event
odie-g2-manager::odie-datastore-delete-events
odie-g2-manager::odie-datastore-duration-

count-query
odie-g2-manager::odie-datastore-duration-

proxy-query
odie-g2-manager::odie-datastore-get-event-

attribute-value

Index
odie-g2-manager::odie-datastore-get-passport-
stamps

odie-g2-manager::odie-datastore-set-event-
attribute-value

odie-g2-manager::odie-datastore-start-time-
count-query

odie-g2-manager::odie-datastore-start-time-
proxy-query

odie-manager::odie-manager-add-event-
passport-stamp

odie-manager::odie-manager-create-event-
class

odie-manager::odie-manager-delete-event
odie-manager::odie-manager-delete-events
odie-manager::odie-manager-duration-count-

query
odie-manager::odie-manager-duration-proxy-

query
odie-manager::odie-manager-get-event-

attribute-value
odie-manager::odie-manager-get-passport-

stamps
odie-manager::odie-manager-post-inform-

statement
odie-manager::odie-manager-publish-existing-

event
odie-manager::odie-manager-publish-new-

event
odie-manager::odie-manager-set-event-

attribute
odie-manager::odie-manager-start-time-proxy-

query
odie-manager::odie-manager-subscribe-event-

class
odie-manager::odie-manager-substitute-

attribute-values
odie-manager::odie-manager-unsubscribe-

event-class
OID

defined
ompe-additional-text
Ompe-additional-text attribute
ompe-category
Ompe-category attribute
ompe-category-to-delete
ompe-create-message-block
ompe-delete-message block
ompe-delete-message-block
ompe-go-to-procedure
ompe-lifetime
ompe-local-arguments
ompe-message-server
ompe-message-text
Ompe-message-text attribute
ompe-opac-subtask-start-block
ompe-opac-subtask-start-name
ompe-options
ompe-priority
ompe-sender
ompe-string-receiver
ompe-target
OPAC

error handling procedure
miscellaneous procedures

OPAC Agent Hostname
OPAC blocks

debugging
decision
external interfaces
general actions
generic
local parameters
state transition
subtask arguments
used to build state transition models

OPAC Blocks for ODiE Events
OPAC Error Handling
OPAC General Procedure
OPAC requirements
OPAC State Diagram Examples
Opac State Transition palette

Accept New Event
Get State
Transition Event
Wait State

OPAC Subtask
OPAC-2-Way-Decision
OPAC-2-Way-Decision block
OPAC-2-Way-Decision-By-Symbol
OPAC-2-Way-Manual-Decision
OPAC-2-Way-Manual-Decision block
OPAC-2-Way-Pattern-Decision
OPAC-2-Way-Pattern-Decision-By-Symbol

block
OPAC-3-Way-Decision
OPAC-3-Way-Manual-Decision
OPAC-3-Way-Manual-Decision block
OPAC-3-Way-Pattern-Decision
OPAC-4-Way-Decision
OPAC-4-Way-Manual-Decision
OPAC-4-Way-Manual-Decision block
OPAC-4-Way-Pattern-Decision
563

Index
OPAC-4-Way-Pattern-Decision block
OPAC-Accept-New-Event block
OPAC-Accept-New-Event-Block
OPAC-Accept-New-State block
OPAC-Accept-New-State-Block
OPAC-Acknowledge-Message
OPAC-Acknowledge-Message block
OPAC-Block-Pause-Capability
OPAC-Block-Pause-Capability block
OPAC-CLEAR-Message-History
OPAC-Clear-Message-History block
OPAC-Comparison-Decision
OPAC-Comparison-Decision block
OPAC-Control-Delay
OPAC-Control-Delay block
OPAC-Current-Message-Query
OPAC-Current-Message-Query block
OPAC-Decision-Procedure
OPAC-Delete-File
OPAC-Delete-File block
OPAC-Delete-Message
OPAC-Delete-Message block
OPAC-Delete-State-Token block
OPAC-Delete-State-Token-Block
OPACDEMO.KB module
OPAC-Domain-Object-Method
OPAC-File-Exists-Test
OPAC-File-Exists-Test block
OPAC-General-Procedure
OPAC-General-Procedure block
OPAC-Generic-Put-Something-On-Stack
OPAC-Generic-Put-Something-On-Stack block
opac-get-local-text-var
OPAC-Get-Related-Items block
OPAC-Get-Related-Items-Block
OPAC-Get-State block
OPAC-Get-State-Block
opac-get-symbol-from-text
OPAC-Hide-Workspace block
OPAC-Historical-Message-Query
OPAC-Historical-Numerical-Query
OPAC-Historical-Numerical-Query block
OPAC-Item-Arg
opac-item-arg
OPAC-Item-Argument block
OPAC-Item-Argument blocks
OPAC-Iteration
OPAC-Iteration block
OPAC-Iteration-Procedure-Template
OPAC-Kill-Process
OPAC-Kill-Process block
564
OPAC-Local-Float-Parameter
OPAC-Local-Float-Parameter block
OPAC-Local-Integer-Parameter
OPAC-Local-Integer-Parameter block
OPAC-Local-Item
OPAC-Local-Item block
OPAC-Local-Text-Parameter
OPAC-Local-Text-Parameter block
OPAC-Macro
OPAC-Macro block
OPAC-Message-Attribute-Procedure-

Template
OPAC-Message-Exist
OPAC-Message-Exists block
OPAC-New-Procedure
OPAC-POP-General-Stack
OPAC-Pop-General-Stack block
OPAC-POP-General-Stack-And-Delete
OPAC-Pop-General-Stack-And-Delete block
OPAC-Procedure
OPAC-Procedure-Statement
OPAC-Procedure-Statement block
OPAC-Put-Connected-ObjectS-On-Stack
OPAC-Put-Float-On-Stack
OPAC-Put-Float-On-Stack block
OPAC-Put-Integer-On-Stack
OPAC-Put-Integer-On-Stack block
OPAC-Put-Item-On-Stack
OPAC-Put-Item-On-Stack block
OPAC-Put-Text-On-Stack
OPAC-Put-Text-On-Stack block
OPAC-Read-Domain-Map
OPAC-Read-Domain-Map block
OPAC-Read-File
OPAC-Read-File block
opac-replace-local-parms-in-text
OPAC-Run-Domain-Object-Method
OPAC-Run-Domain-Object-Method block
OPAC-Send-CDG-Event
OPAC-Send-CDG-Event block
OPAC-Send-SMH-Message block
OPAC-Set-Local-Float-From-Source
OPAC-Set-Local-Float-From-Source block
OPAC-Set-Local-Integer-From-Source
OPAC-Set-Local-Integer-From-Source block
OPAC-Set-Local-Item-From-Source
OPAC-Set-Local-Item-From-Source block
OPAC-Set-Local-Parameter-From-Source
OPAC-Set-Local-Parameter-From-Source

block
OPAC-Set-Local-Text-From-Source

Index
OPAC-Set-Local-Text-From-Source block
opac-set-local-text-var
OPAC-Set-Message-Attribute
OPAC-Set-Message-Attribute block
OPAC-Show-Stack-Top
OPAC-Show-Stack-Top block
opac-show-stack-top-from-window
OPAC-Show-Token-Info
OPAC-Show-Token-Info block
OPAC-Show-Workspace
OPAC-Show-Workspace block
OPAC-Show-Workspace-NOT-Stacked
OPAC-SMH- Create-Message API
OPAC-SNMP-Get
OPAC-SNMP-Get block
OPAC-SNMP-Get-Table-Column
OPAC-SNMP-Get-Table-Column block
OPAC-SNMP-Set
OPAC-SNMP-SET block
OPAC-Spawn-No-Return
OPAC-Spawn-No-Return block
OPAC-Spawn-Return-Output
OPAC-Spawn-Return-Output block
OPAC-Spawn-Return-PID
OPAC-State-Diagram-Completion
OPAC-State-Diagram-Completion block
OPAC-State-Diagram-Start
OPAC-State-Diagram-Start block
OPAC-Subtask block
OPAC-Subtask-Block
OPAC-Subtask-Completion
OPAC-Subtask-Completion block
OPAC-Subtask-Start
OPAC-Subtask-Start block
OPAC-Task-Kill
OPAC-Task-Kill block
opac-task-kill-new
OPAC-Task-Spawn
OPAC-Task-Spawn block
OPAC-Timeout-Transition-Event
opac-token-delete
opac-token-error handler
OPAC-Transition-Event
OPAC-Transition-Event block
OPAC-Value-Arg
OPAC-Value-Argument block
OPAC-Value-Argument blocks
OPAC-Wait-State
OPAC-Wait-State block
OPAC-Write-Domain-Map
OPAC-Write-Domain-Map block
OPAC-Write-File
OPAC-Write-File block
OpenView Map Importer

See OV Map Importer
Operating System (OS) Actions palette

Delete
File Exists Test
Kill Process
Read File Block
Spawn No Return
Spawn Return Output
Spawn Return PID
Write File

OpEx
Application Programmer? Interface (API)

OpEx functions
OpEx methods
OpEx Reachability Analyzer

See ORA-TWO
ora-release-object-states
ORA-TWO

additional procedures
ora-two-get-state
ora-two-release-object-states

concepts
domain methods

ora-two-collect-non-terminal-nodes
ora-two-collect-passive--nodes
ora-two-collect-terminal-nodes
ora-two-domain-consistency-check
ora-two-node-type
ora-two-poll-fail-message
ora-two-poll-node
ora-two-poll-recover-method
ora-two-predicted-poll-fail-message
ora-two-recursive-collect-non-

terminal-nodes
ora-two-recursive-collect-passive-

nodes
ora-two-recursive-collect-terminal-

nodes
ora-two-root-cause-message

event methods
introduction to
manager object
node types
polling
report procedures

ipra-ora-two-report
setup
support procedures
565

Index
ora-two-find-down-nodes-for-root-
cause

ora-two-find-root-cause-for-manager
ora-two-find-root-cause-for-object
ora-two-recursive-collect-non-

terminal-nodes
ora-two-recursive-collect-passive-

nodes
ora-two-recursive-collect-terminal-

nodes
ORA-TWO event API

domain methods
ora-two-recursive-collect-non-

terminal-nodes
ORA-TWO event methods

ora-two-fail-method
ora-two-recover-method

ora-two.kb module
ora-two-collect-non-terminal-nodes
ora-two-collect-passive--nodes
ora-two-collect-terminal-nodes
ora-two-domain-consistency-check
ora-two-find-down-nodes-for-root-cause
ora-two-find-root-cause-for-manager
ora-two-find-root-cause-for-object
ora-two-get-state
ora-two-manager-object
ora-two-node-type
ora-two-poll-fail-message
ora-two-poll-node
ora-two-poll-recover-method
ora-two-predicted-poll-fail-message
ora-two-recursive-collect-non-terminal-nodes
ora-two-recursive-collect-passive-nodes
ora-two-recursive-collect-terminal-nodes
ora-two-root-cause-message
OV Map Importer

about the product
adding domain objects
attributes of objects
batch mode
building the domain
class definitions used in
creating a completion procedure
creating a new trap class
creating new classes
file transfer routines
incremental mode
initialization objects for IPRA
initializations

dxiov-mib-lookup
566
XYZ-dxiov-import
dxiov-file-retrieve-command
dxiov-file-retrieve-name

installation
merging into applications
modes of operation
module dependencies
network account setup
operation of
ovobjprint function

testing
translation objects

file example
overloading remote procedure calls
overview of trap handling
ovobjprint command
oxs_sim-request-handler procedure
oxs_sim-snmp-event-gsi-obj-symbol

initialization
oxs_sim-snmp-get-symbol initialization
oxs_sim-snmp-get-table-column-symbol

initialization
oxs_sim-snmp-set-symbol initialization
oxs_sim-snmp-sync-gsi-obj-symbol

initialization
OXS.KB

configuring for OV Map Importer
oxs-default-unrecognized-trap-class

initialization
oxs-heartbeat-trap-procedure procedure
oxs-running-standalone-toggle initialization
oxs-sim-simulate-trap procedure
oxs-unrecognized-traps-location
oxs-unrecognized-traps-location initialization

P
PAC-Send-SMH-Message
palettes

Debugging
Decision Blocks
External Interfaces
General Actions
Generic Blocks
Local Parameters
Opac State Transition
Subtask Arguments

parameters
global

asn1_integer

Index
asn1_octet_string
snmp_get_req_msg
snmp_get_rsp_msg
snmp_getnext_req_msg
snmp_set_req_msg
snmp_trap_req_msg

performance
defined
mib-maximum-complete-receive-

queue-length
mib-number-of-completed-receive-

discards
mib-number-of-completed-receives
mib-number-of-expected-val-vs-

receive-mismatches
mib-number-of-receive-errors
mib-number-of-reception-queue-

discards
snmp-ignored-traps-per-second-min
snmp-number-of-ignored-trap-params
snmp-number-of-ignored-traps
snmp-number-of-request-alarms
snmp-number-of-traps-created
snmp-traps-per-second
snmp-traps-per-second-min

parser
trapd.conf.ppd file

trapd_pp pre-processor utility
parsing
passing arguments
Passport Filter
passport stamp
path for filtering log file
pattern choices
Pause Capability block
performance monitoring
PID
PID (process ID)
PID Source
Ping Manager

adding a device
configuration file

loading
sample

get configuration status procedure
example

get-device-status action button
installing
overview
periodic polling

starting
remote procedure calls
PM-ADD-DEVICE-CONFIG-RPC
PM-CHANGE-IP-ADDRESS-RPC
PM-CHANGE-MAX-RETRIES-RPC
PM-CHANGE-POLLING-INFO-RPC
PM-CHANGE-POLL-INTERVAL-RPC
PM-CHANGE-POLL-TIME-OUT-RPC
PM-DELETE-DEVICE-CONFIG-RPC
PM-DO-DEMAND-POLL-RPC
PM-DO-device-POLL-RPC
PM-DUMP-AGENT-CONFIG-RPC()
PM-GET-DEVICE-CONFIG-RPC
PM-KILL-AGENT-RPC()
PM-LOAD-CONFIG-FILE-RPC
PM-MANAGE-DEVICE-RPC
PM-SEND-PING-REQUEST-RPC
PM-UNMANAGE-DEVICE-RPC
PM-WRITE-CONFIG-FILE-RPC

running
two components of

pkg_tar.Z file
Pop General Stack and Delete block
Pop General Stack Block
pop general stack of token
pop the general stack
pop the stack
port-number

G2-SNMP Bridges
ppd,preprocessed file names
preprocessed file (ppd) names
procedure
procedure assignments
Procedure block
Procedure Statement block

referencing the stack
procedure statements
Procedure template
procedures

asn1-rfc1212-mib-parser
debugging
devu-consume-next-field
devu-decode-comma-line
devu-domain-object-lookup
devu-error-handler
devu-get-field-n
devu-insert-item-in-sorted-ascending-list
devu-insert-item-in-sorted-descending-list
devu-insert-msg-in-alphabetical-list
devu-insert-msg-in-alphabetical-list-

allowing-duplicates
devu-pattern-matcher-with-indices
567

Index
devu-safe-text-for-symbol
devu-safe-window
devu-strip-linefeeds
devu-substitute-text
devu-txt-is-ascii-punctuation-p
devu-txt-is-ascii-symbol-p
devu-txt-is-digit-p
devu-txt-is-mib-character-symbol-p
mib-clean-up-ws
mib-create-name-to-oid-translation
mib-delete-dictionary-on-workspace
mib-delete-old-list-entries
mib-enterprise-oid-text-to-name
mib-read-clears-file
mib-receiver-create-and-queue
mib-return-default-msg-category
mib-substitute-in-format-spec
mib-translate-info-to-completion-name
mib-translate-info-to-trap-name
mib-trapd-preprocessed-conf-reader
mib-write-clears-file
opac-get-float-from-stack
opac-get-integer-from-stack
opac-get-item-via-text
opac-get-local-float-var
opac-get-local-integer-var
opac-get-local-parameters-as-string
opac-get-local-text-var
opac-get-symbol-from-text
opac-get-text-from-stack
opac-if-token-error-free
opac-pop-general-stack
opac-programmed-start
opac-replace-local-parms-in-text
opac-set-local-float-var
opac-set-local-integer-var
opac-set-local-text-var
opac-show-stack-top-from-window
opac-show-token-info-from-window
opac-start-task
opac--task-kill-new-duplicate
opac-task-kill-old-duplicate
opac-token-delete
opac-token-error-handler
oxs_sim-request-handler
oxs-heartbeat-trap-procedure
oxs-sim-simulate-trap
sample-process-all-clears-for-entries
sample-send-ov-trap
snmp-get-mibrec-field-by-name
snmp-get-mibrec-field-by-oid
568
snmp-get-mibrec-field-by-pos
snmp-get-rpc-call
snmp-non-blocking-set-rpc-call
snmp-set-rpc-call

process ID (PID)
processes

SNMP Gateway Bridge (SGB)
Publish Event
Publish New Event
publish new events
Publish Subscribe Mechanism
Put Connected Objects on Stack block
Put Float on Stack block
Put Integer on Stack block
Put Item on Stack block
Put Text on Stack block

Q
query event history
Query Filter
queues

clearing
viewing mib-receiver object

R
reachability analysis

defined
read a file
Read Domain Map
Read Domain Map block
Read File block
receiver procedures

defined
G2SNMP_RECEIVE_EOT
G2SNMP_RECEIVE_FLOAT
G2SNMP_RECEIVE_INTEGER
G2SNMP_RECEIVE_MESSAGE
G2SNMP_RECEIVE_STRING
G2SNMP_RECEIVE_TRAP_PACKET

Relationship
remote procedure calls

base
G2SNMP_BLOCKING_

TRANSACTION
G2SNMP_NONBLOCKING_

TRANSACTION
blocking
configuring communication parameters

Index
filtering traps in SGB
G2 to GSI
G2SNMP_ADD_FILTERED_TRAP
G2SNMP_DELETE_FILTERED_TRAP
G2SNMP_MODIFY_COMM_PARAMS
G2SNMP_USE_SNMP_COMM_PARAMS
G2SNMP_USE_SNMP_DEFAULTS
GSI to G2
non-blocking
overloaded

GET_2_BLOCKING
GET_BLOCKING_SINGLE
GET_NONBLOCKING_SINGLE
SEND_NOVAR_TRAP_

NONBLOCKING
SEND_TRAP_NONBLOCKING
SEND_TRAP_STATUS_

NONBLOCKING
SET_BLOCKING

overloading
retrieve the state
root user

becoming
Run Domain Object Method block
running a specified method

S
sample-process-all-clears-for-entries

procedure
sample-send-ov-trap procedure
script

install
send a message
Send CDG Event block
Send SMH Message block
SEND_NOVAR_TRAP_NONBLOCKIN

overloaded remote procedure call
SEND_NOVAR_TRAP_NONBLOCKING

overloaded remote procedure call
SEND_TRAP_NONBLOCKING overloaded

remote procedure call
SEND_TRAP_STATUS_NONBLOCKING

overloaded remote procedure call
Set Event Attribute
Set Local Float from Source block
Set Local Integer from Source block
Set Local Item from Source block
Set Local Parameter from Source block
Set Local Text from Source block
Set Message Attribute block
SET_BLOCKING overloaded remote

procedure call
setup

configuration
outline of steps

SGB (SNMP Gateway Bridge)
Show Stack Top block
Show Token block
Show Token Info Procedure
Show Workspace block
Show Workspace Not Stacked block
simulation facilities

defined
SNMP agent MIB

configuration
configuring tables of
configuring variables of

SNMP traps
configuration
configuring variable fields
executing

smh-histories
SNMP agent MIB simulation facilities
SNMP Gateway Bridge (SGB)

executing
port-number
ports for G2-SNMP Bridges
processes
running as a background process
SNMP transactions
status messages reported by

SNMP Get block
SNMP Get request
SNMP Get Table Column block
SNMP Set block
SNMP Set request
SNMP transactions

blocking and non-blocking
overloading remote procedure calls
remote procedure calls

SNMP traps
simulation of

snmp_get_req_msg global parameter
snmp_get_rsp_msg global parameter
snmp_getnext_req_msg global parameter
snmp_set_req_msg global parameter
snmp_trap_req_msg global parameter
snmp-desc-value function
snmp-get-mibrec-field-by-name procedure
snmp-get-mibrec-field-by-oid procedure
569

Index
snmp-get-mibrec-field-by-pos procedure
snmp-get-rpc-call procedure
snmp-ignored-traps-per-second-min

performance parameter
snmp-non-blocking-set-rpc-call procedure
snmp-number-of-ignored-trap-params

performance parameter
snmp-number-of-ignored-traps performance

parameter
snmp-number-of-request-alarms performance

parameter
snmp-number-of-traps-created performance

parameter
snmp-set-rpc-call procedure
snmp-severity-to-status-text-conversion

function
snmp-simulated-trap-receiver object
snmp-traps-per-second performance

parameter
snmp-traps-per-second-min performance

parameter
spacing
spawn
spawn a process
Spawn No Return block
Spawn Return Output block
Spawn Return PID block
stack
Stack Operations palette

Generic Put Something on Stack
Pop General Stack
Pop General Stack and Delete
Put Connected Objects on Stack
Put Float on Stack
Put Integer on Stack
Put Item on Stack
Put Text on Stack

Start an OPAC procedure
State Transition diagram
State Transition Diagram APIs
State Transition diagram completion
State Transition Diagrams
state transition diagrams
State Transition model
status messages reported by G2-SNMP Bridges
straps process
string
string receiver attributes

Ompe-additional-text
Ompe-category
Ompe-message-text
570
subordinate-to
subroutine
Subscribers
Subtask Arguments palette

Item Argument
Value Argument

Subtask block
Subtask Completion block
Subtask Start block
superior-to
SymCure events

T
target
Target Attribute Filter
Target Class Filter
Task Kill block
Task Spawn block
Text
text
text parameters
three-way branching capability
Time Filter
token
token information
token stack
token stack top
top-level object
Transition Event block
Transition Event blocks
trap classes

crating from trapd.conf.ppd file
trap handling

clears for
defining the attribute
example procedure
manually entering the attribute

completion procedure
determining
example procedure

determing trap class to create
overview
trap class creation
unrecognized SNMP traps
viewing unrecognized SNMP Traps

workspace
trapd daemon
trapd_pp pre-processor utility
trapd.conf

Index
trapd.conf file
severity information
text message format

trapd.conf trap filter definition file
trapd.conf.ppd file

parser
traps

adding and deleting filtered traps
filtering
message structure
sending an HP OpenView status
sending to external systems
snmp-simulated-trap-receiver object
trapd.conf filter definition file
turning filtering on and off

two-way branching capability

U
unix installation

becoming root user
determing device name
G2-SNMP Bridges from CD-ROM
G2-SNMP Bridges from tape
install script
mounting a CD-ROM
unmounting a CD-ROM

Unix library function
UNIX operating system
unmount

CD-ROM
unrecognized SNMP traps handling
user-defined G2 procedure
user-defined relation
user-defined-error-handler initialization
Using Indirect References

V
Value Argument block
variable
vendor MIBS
viewing

mib-receiver object queues
unrecognized SNMP Traps workspace

W
Wait State Action Procedure
Wait State block
WIndows platform
workspace
workspace connectivity
Workspace Spec
Write File block
writing the map
571

Index
572

	Preface
	About this Manual
	Version Information
	Audience
	Note to Integrity Users
	A Note About the API
	Conventions
	Related Documentation
	Customer Support Services

	OPAC Blocks Reference
	Summary of OPAC Blocks
	Introduction
	General Actions Palette
	Decisions Palette
	OS Actions Palette
	Stack Operations Palette
	Local Parameters Palette
	Subtask Arguments Palette
	Debugging Palette
	State Transition Palette
	External Interfaces Palette
	Generic Blocks Palette
	Message Palette

	General Action Palette
	Introduction
	New Procedure
	General Procedure
	Send SMH Message
	Historical Message Query
	Hide Workspace
	Show Workspace Not Stacked
	Show Workspace
	Block Pause Capability
	Control Delay
	Task Kill
	Task Spawn
	Subtask
	Macro
	Subtask Completion
	Subtask Start
	Procedure Statement
	Procedure Template
	Connection Post

	Decisions Palette
	Introduction
	Comparison Decision
	2-Way Decision
	2-Way Manual Decision
	3-Way Manual Decision
	4-Way Manual Decision
	2-Way Pattern Decision
	3-Way Pattern Decision
	4-Way Pattern Decision
	2-Way Pattern Decision By Symbol

	Operating System (OS) Palette
	Introduction
	Set Local Integer From Source
	File Exists Test
	Delete File
	Kill Process
	Spawn Return Output
	Spawn Return PID
	Spawn No Return
	Write File
	Read File

	Stack Operations Palette
	Introduction
	Generic Put Something On Stack
	Pop General Stack
	Put Connected Objects On Stack
	Pop General Stack And Delete
	Put Item On Stack
	Put Float On Stack
	Put Integer On Stack
	Put Text On Stack

	Local Parameters Palette
	Introduction
	Set Local Float From Source
	Local Float Parameter
	Set Local Item From Source
	Local Item
	Set Local Integer From Source
	Local Integer Parameter
	Set Local Text From Source
	Local Text Parameter

	Subtask Arguments Palette
	Introduction
	Value Argument
	Item Argument

	Debugging Palette
	Introduction
	Show Stack Top
	Show Token Info

	State Transition Palette
	Introduction
	State Transition Diagrams
	Delete State Token
	Get State
	Accept New Event
	Accept New State
	State Diagram Completion
	Transition Event
	Wait State
	State Diagram Start

	External Interfaces Palette
	Introduction
	Read Domain Map
	Write Domain Map
	SNMP Get Table Column
	SNMP Set
	SNMP Get
	Send CDG Event

	Generic Blocks Palette
	Introduction
	Get Related Items
	Historical Numerical Query
	Iteration
	Run Domain Object Method
	Set Local Parameter From Source

	Message Palette
	Introduction
	Send Message
	Current Message Query
	Clear Message History
	Message Exists
	Set Message Attribute
	Delete Message
	Acknowledge Message

	Utilities
	OpEx Dispatch Engine Reference (ODIE)
	Introduction
	Events
	Publish Subscribe Mechanism
	Managers
	Subscribers
	Old Event Processing
	Filters
	Target Class Filter
	Target Attribute Filter
	Delay Filter
	Time Filter
	Query Filter
	Attribute Filter
	Hour of the Day Filter
	Day of the Week Filter
	Message Historical Query Filter
	Message Query Filter
	Event Count by Start Time
	Passport Filter
	Event Class Filter
	Making Your Own Filter Block

	Responses
	Delete Event
	Delete Events by Start Time
	G2 Procedure Response
	Create Message
	Clears for or Delete Messages
	Delete Message
	Acknowledge Message
	Beep
	Log_Event
	Starting an OPAC Procedure
	Using Indirect References

	OPAC Blocks for ODiE Events
	Publish New Event
	Publish Event
	Delete Event
	Delete Events
	Get Event Attribute
	Set Event Attribute
	Add Passport to Event
	Count Events
	Gather Evidence
	Using Indirect References

	Subscriber Toolbox
	Classes
	odie-event
	odie-event-proxy
	odie-g2-manager

	Application Programmer's Interface
	odie-g2-manager::odie-datastore-add-event- passport-stamp
	odie-g2-manager::odie-datastore-create-event
	odie-g2-manager::odie-datastore-delete-event
	odie-g2-manager::odie-datastore-delete-events
	odie-g2-manager::odie-datastore-duration- count-query
	Synopsis

	odie-g2-manager::odie-datastore-duration- proxy-query
	odie-g2-manager::odie-datastore-get-event- attribute-value
	odie-g2-manager::odie-datastore-get-passport- stamps
	odie-g2-manager::odie-datastore-set-event- attribute-value
	odie-g2-manager::odie-datastore-start-time- count-query
	odie-g2-manager::odie-datastore-start-time- proxy-query
	odie-manager::odie-manager-add-event- passport-stamp
	odie-manager::odie-manager-create-event- class
	odie-manager::odie-manager-delete-event
	odie-manager::odie-manager-delete-events
	odie-manager::odie-manager-duration-count- query
	odie-manager::odie-manager-duration-proxy- query
	odie-manager::odie-manager-get-event- attribute-value
	odie-manager::odie-manager-get-passport- stamps
	odie-manager::odie-manager-passport-meets- include-exclude-criteria
	odie-manager::odie-manager-post-inform- statement
	odie-manager::odie-manager-publish-existing- event
	odie-manager::odie-manager-publish-new- event
	odie-manager::odie-manager-publish-new- event
	odie-manager::odie-manager-set-event- attribute
	odie-manager::odie-manager-start-time-count- query
	odie-manager::odie-manager-start-time-proxy- query
	odie-manager::odie-manager-subscribe-event- class
	odie-manager::odie-manager-substitute- attribute-values
	odie-manager::odie-manager-unsubscribe
	odie-manager::odie-manager-unsubscribe- event-class

	Message Parsing Engine (MPE)
	Introduction
	General Information
	The OMPE String Receiver
	Message Filter

	Message Parsing Engine Palette Blocks
	Conclude Blocks
	Procedure Conclude
	Single Regex Conclude
	Start End Of Text Conclude
	Start End Regex Conclude
	Start Of Text To End Of Regex Conclude
	Static Conclude
	String Position
	String Receiver
	Word Line

	Debug Blocks
	Pause

	Decision Blocks
	Single Match Decision
	Start End Of Match Decision

	Integrity Subsystem Blocks
	Create Message
	Delete Message
	Opac Subtask Start

	Message Handling
	Message Filter
	Text Buffer

	Terminal Blocks
	Terminal

	Classes
	mpe-message-filter
	mpe-pause-block
	mpe-procedure-conclude-block
	mpe-single-match-decision-block
	mpe-single-regex-conclude-block
	mpe-start-end-match-decision-block
	mpe-start-end-of-text-conclude-block
	mpe-start-end-regex-conclude-block
	mpe-start-of-text-to-end-regex-conclude-block
	mpe-static-conclude-block
	mpe-string-position-block
	mpe-string-receiver
	mpe-terminal-block
	mpe-text-buffer
	mpe-word-line-conclude-block
	create-message-block
	ompe-delete-message-block
	ompe-opac-subtask-start-block
	ompe-string-receiver

	Application Programmer's Interface
	mpe-current-real-time-as-time-stamp
	mpe-text-buffer::mpe-add-text-to-buffer
	mpe-text-buffer::mpe-clear-buffer

	User Menu Choices
	mpe-clear-buffer
	mpe-show-buffer
	mpe-turn-debugging-off
	mpe-turn-debugging-on
	ompe-go-to-procedure

	Relations
	_mpe-from-message-filter
	_mpe-from-text-buffer

	Autodiscovery
	IP Reachability Analyzer (IPRA)
	Introduction
	Setting up G2/IPRA
	Setting Up the Ping Manager
	Troubleshooting an IPRA Ping Manager GSI-Interface

	Summary of IPRA Default Behavior
	Procedures

	Object Reachability Analysis (ORA-TWO)
	Introduction
	Concepts
	Node Types
	Polling

	Setup
	Manager Object
	Event Methods
	Domain Methods
	Support Procedures
	Additional Procedures
	Report Procedures

	Domain Export/Import (DXI3)
	Introduction
	Integrity Export Import Toolbox
	The DXI3-file Format
	Remarks on the Syntax

	A “Bad” Import File and Data Corruption
	Types and Handling of 'Bad' Data and DXI3
	Errors Particular to the dxi3-import File
	Errors Common to the dxi3 API and File Use

	Effects of 'Bad' Data on the Domain Map

	Type to Class Mapping
	Containment and Other Types of Hierarchies
	Exporting Domain Maps
	Importing a Domain Map
	Example
	The Example Network
	The Data Structure
	Notes/Assumptions

	DXI3 APIs
	dxi3-register-domain-item
	dxi3-register-domain-relation
	dxi3-register-domain-attribute-value
	Format

	Open View Map Importer (OVMAP)
	Introduction
	System Requirements
	Installation
	Network Account Setup
	Ovobjprint Command
	Testing
	Installation of Modules
	Setup of Incremental Addition of Domain Objects

	Detailed Descriptions
	Class Definitions
	dxiov-import-object
	dxiov-type-to-class-object

	Translations
	Initializations
	File Transfer Routines
	Translation Objects
	New Class Creation

	OV Map Importer Operation
	Building the Domain
	Incremental Build

	Notes on GDXI

	Ping Manager
	Introduction
	Components
	Running the Ping Manager
	The Remote Procedure Calls
	Setting the Device Configuration for a Ping Manager
	Changing a Device’s Configuration for the Ping Manager

	Application Development
	Demand Polling
	Periodic Polling

	Sample Procedures and Actions for pingmgr.kb
	A Sample Configuration File
	Example
	Example of a Procedure to a get configuration status
	Example of an Action-Button to Invoke get-device-status

	G2-SNMP Bridges
	Overview of the G2-SNMP Bridges
	Introduction
	Applications
	Features and Benefits
	Acquiring Data
	Building a G2-SNMP Bridge Application
	G2-SNMP Bridges and the Integrity Product Family
	Enhancements

	Installation and Startup
	Introduction
	UNIX Platform Installation
	Installing from Tape
	Determining the Device Name
	G2-SNMP “Generic” Bridge Additional Installation Steps

	Installing from CD-ROM
	G2-SNMP “Generic” Bridge Additional Installation Steps

	Authorizing the G2-SNMP Bridges
	Authorizing the SNMP Gateway Bridge

	Executing the G2-SNMP Bridge
	Executing the SNMP Gateway Bridge
	Finding an Available Port
	Running SNMP Gateway Bridges as Background Processes

	Executing the Integrity Application

	Connecting G2 to the GSI Bridge Process
	Creating a GSI Interface Object
	Configuring the GSI Interface Object

	G2-SNMP Bridge Setup
	Introduction
	Configuring the G2-SNMP Bridge
	SNMP Gateway Bridge Configuration
	Communication Parameters
	Filtering Traps
	Telling the SNMP Gateway Bridge Which Traps to Filter

	Error Handling
	Creating a New Error Handling Procedure

	Trap Handling Overview
	Trap Class Creation and Processing
	Handling Unrecognized SNMP Traps
	SNMP Traps
	Trap Manager
	Trap Properties
	Defined Trap Properties
	Trap Processing

	MIB Processing
	Setting Up and Running the MIB Parser
	MIB Parser Setup
	Processing MIB Files
	Viewing a Parsed MIB
	Installed MIBs
	Vendor MIBS

	trapd.conf.ppd Parser
	Clears-For Attribute

	Completion Procedure Determination
	SNMP Transactions
	Blocking and Non-Blocking Transactions
	Overloading Remote Procedures

	Sending Traps to External Systems
	HP OpenView Interface
	Sending an HP OpenView status trap

	NetView 6000 Interface

	Simulation Facilities
	SNMP Trap Simulation
	SNMP Agent MIB Simulation

	G2-SNMP Bridges API
	Introduction
	Update for GSI-Based Bridge Process
	Support for Filtering of Traps from Specified Hosts
	Passing Variable Values for Variable Bindings in Which the Variable Type Is 'Object Identifier'

	Remote Procedure Calls
	Base RPCs
	g2snmp_add_filtered-trap
	g2snmp_delete_filtered_trap
	g2snmp_modify_comm_params
	g2snmp_set_agent_filter_mode
	g2snmp_use_snmp_comm_params
	g2snmp_use_snmp_defaults
	g2snmp_blocking_transaction
	g2snmp_nonblocking_transaction

	Overloaded RPCs
	get_nonblocking_single
	get_blocking_single
	get_2_blocking
	set_blocking
	set_nonblocking_integer
	set_nonblocking_text
	send_novar_trap_nonblocking
	send_trap_nonblocking
	send_trap_status_nonblocking

	Receiver Procedures
	g2snmp_receive_eot
	g2snmp_receive_float
	g2snmp_receive_integer
	g2snmp_receive_message
	g2snmp_receive_string
	g2snmp_receive_trap_packet

	Procedures Listed by Module
	GNDO Module
	GMIB Module
	GSNMP Module

	Functions

	Reporting Errors

	APIs and Initializations
	Core Services APIs
	Introduction
	Procedures Listed by Module
	GNDO Module
	GLF Module
	Functions
	Methods Listed by Class

	OPAC APIs
	Introduction
	External APIs Calling OPAC from G2
	Internal APIs for User-Written Blocks
	Other Utility API’s for User-Written Blocks
	OPAC Error Handling
	State Transition Diagram APIs
	Debugging OPAC Procedures

	Startup Parameters
	Introduction
	GNDO Module
	Error Handling:
	Object Retrieval
	Colors and Priority

	GMIB Module
	GSNMP Module
	Global Parameters
	Performance Parameters
	MIB Module
	GSNMP Module

	Glossary
	A
	B
	C
	E
	F
	I
	M
	N
	O
	P
	S
	T
	W

	Index

