
G2-PI Bridge

User’s Guide
Version 2020

G2-PI Bridge User’s Guide, Version 2020

May 2020

The information in this publication is subject to change without notice and does not represent a
commitment by Gensym Corporation.

Although this software has been extensively tested, Gensym cannot guarantee error-free
performance in all applications. Accordingly, use of the software is at the customer’s sole risk.

Copyright © 1985-2020 Gensym Corporation

All rights reserved. No part of this document may be reproduced, stored in a retrieval system,
translated, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of Gensym Corporation.

Gensym®, G2®, Optegrity®, and ReThink® are registered trademarks of Gensym Corporation.

NeurOn-Line™, Dynamic Scheduling™ G2 Real-Time Expert System™, G2 ActiveXLink™, G2
BeanBuilder™, G2 CORBALink™, G2 Diagnostic Assistant™, G2 Gateway™, G2 GUIDE™,
G2GL™, G2 JavaLink™, G2 ProTools™, GDA™, GFI™, GSI™, ICP™, Integrity™, and SymCure™
are trademarks of Gensym Corporation.

Telewindows is a trademark or registered trademark of Microsoft Corporation in the United States
and/or other countries. Telewindows is used by Gensym Corporation under license from owner.

This software is based in part on the work of the Independent JPEG Group.

Copyright © 1998-2002 Daniel Veillard. All Rights Reserved.

SCOR® is a registered trademark of PRTM.

License for Scintilla and SciTE, Copyright 1998-2003 by Neil Hodgson, All Rights Reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/).

All other products or services mentioned in this document are identified by the trademarks or
service marks of their respective companies or organizations, and Gensym Corporation disclaims
any responsibility for specifying which marks are owned by which companies or organizations.

Ignite Technologies, Inc.
401 Congress Ave., Suite 2650
Austin, TX 78701 USA
Telephone: +1-800-248-0027
Email: success@ignitetech.com Part Number: DOC093-1200

Contents
Preface v

About this Guide v

Version Information v

Audience v

Conventions vi

Related Documentation vii

Customer Support Services x

Chapter 1 Overview of the G2-PI Bridge 1

Introduction 1

Chapter 2 Starting the G2-PI Bridge 3

Introduction 3

Authorizing the G2-PI Bridge 3

Using a Single Server 4

Configuring Multiple Servers 4
Creating the Server Data File 4
Configuring the Servers 4
Configuring Users and Passwords 5

Starting the Bridge Process 5

Using Command-Line Options 5
Command-Line Options 6
Using a Configuration File 8

Chapter 3 Configuring Connections 9

Introduction 9

A Note on Terminology 10

Creating and Configuring GSI Interface Objects 10
Creating the GSI Interface Object 11
Configuring the GSI Interface Object 13
iii

Connecting to the Bridge Process 17
Determining the Connection Status 17

Chapter 4 Accessing PI Data in G2 19

Introduction 19

Retrieving PI Data 20
Common Requirements for Retrieving PI Data 20
Retrieving Current Values 20
Retrieving PI Attributes 22
Retrieving Historical Values 22

Using OSIPI Variables 22
Using the OSIPI Variable Classes 22
Attributes of osipi-int and osipi-real 24
Referring to PI Tag Names 27

Creating Your Own PI Variable Classes 28
Rules for Defining Your Own PI Variable Class 28
Defining a Variable Class that Inherits from OSIPI Variables 29
Example 29
PI Point Attributes 30
How the Bridge Converts Data 33

Exception Reporting 34

Registering Variables 35

Retrieving Historical Values 36
Preparing to Retrieve Historical Values 37
Retrieving Historical Values 38

Writing to PI 39

Chapter 5 Remote Procedure Calls (RPCs) 41

Introduction 41

General Operations 41

Item Operations 42

History Operations 43

Logging Operations 47
Logging to a G2 Procedure 48
RPCs for Logging 49

Index 55
iv

Preface
Describes this guide and the conventions that it uses.

About this Guide v

Version Information v

Audience v

Conventions vi

Related Documentation vii

Customer Support Services x

About this Guide
This guide describes the G2-PI Bridge, which allows you to access PI data from a
G2 application.

Version Information
The G2-PI Bridge is only available on Windows platforms.

Audience
This guide is for developers who must retrieve information from PI for use within
G2 applications and optionally must write information from G2 into PI. It
assumes at least a limited understanding of PI and a basic knowledge of G2.
v

Conventions
This guide uses the following typographic conventions and conventions for
defining system procedures.

Typographic

Convention Examples Description

g2-window, g2-window-1,
ws-top-level, sys-mod

User-defined and system-defined
G2 class names, instance names,
workspace names, and
module names

history-keeping-spec, temperature User-defined and system-defined
G2 attribute names

true, 1.234, ok, “Burlington, MA” G2 attribute values and values
specified or viewed through
dialogs

Main Menu > Start

KB Workspace > New Object

create subworkspace

Start Procedure

G2 menu choices and button labels

conclude that the x of y ... Text of G2 procedures, methods,
functions, formulas, and
expressions

new-argument User-specified values in
syntax descriptions

text-string Return values of G2 procedures
and methods in syntax
descriptions

File Name, OK, Apply, Cancel, 
General, Edit Scroll Area

GUIDE and native dialog fields,
button labels, tabs, and titles

File > Save

Properties

GMS and native menu choices

workspace Glossary terms
vi

Related Documentation
Note Syntax conventions are fully described in the G2 Reference Manual.

Procedure Signatures

A procedure signature is a complete syntactic summary of a procedure or
method. A procedure signature shows values supplied by the user in italics, and
the value (if any) returned by the procedure underlined. Each value is followed by
its type:

g2-clone-and-transfer-objects 
(list: class item-list, to-workspace: class kb-workspace, 
 delta-x: integer, delta-y: integer) 
-> transferred-items: g2-list

Related Documentation

G2 Core Technology

• G2 Bundle Release Notes

• Getting Started with G2 Tutorials

• G2 Reference Manual

• G2 Language Reference Card

• G2 Developer’s Guide

• G2 System Procedures Reference Manual

c:\Program Files\Gensym\ Windows pathnames

/usr/gensym/g2/kbs UNIX pathnames

spreadsh.kb File names

g2 -kb top.kb Operating system commands

public void main()
gsi_start

Java, C and all other external code

Convention Examples Description
vii

• G2 System Procedures Reference Card

• G2 Class Reference Manual

• Telewindows User’s Guide

• G2 Gateway Bridge Developer’s Guide

G2 Utilities

• G2 ProTools User’s Guide

• G2 Foundation Resources User’s Guide

• G2 Menu System User’s Guide

• G2 XL Spreadsheet User’s Guide

• G2 Dynamic Displays User’s Guide

• G2 Developer’s Interface User’s Guide

• G2 OnLine Documentation Developer’s Guide

• G2 OnLine Documentation User’s Guide

• G2 GUIDE User’s Guide

• G2 GUIDE/UIL Procedures Reference Manual

G2 Developers’ Utilities

• Business Process Management System Users’ Guide

• Business Rules Management System User’s Guide

• G2 Reporting Engine User’s Guide

• G2 Web User’s Guide

• G2 Event and Data Processing User’s Guide

• G2 Run-Time Library User’s Guide

• G2 Event Manager User’s Guide

• G2 Dialog Utility User’s Guide

• G2 Data Source Manager User’s Guide

• G2 Data Point Manager User’s Guide

• G2 Engineering Unit Conversion User’s Guide

• G2 Error Handling Foundation User’s Guide

• G2 Relation Browser User’s Guide
viii

Related Documentation
Bridges and External Systems

• G2 ActiveXLink User’s Guide

• G2 CORBALink User’s Guide

• G2 Database Bridge User’s Guide

• G2-ODBC Bridge Release Notes

• G2-Oracle Bridge Release Notes

• G2-Sybase Bridge Release Notes

• G2 JMail Bridge User’s Guide

• G2 Java Socket Manager User’s Guide

• G2 JMSLink User’s Guide

• G2 OPCLink User’s Guide

• G2 PI Bridge User’s Guide

• G2-SNMP Bridge User’s Guide

• G2 CORBALink User’s Guide

• G2 WebLink User’s Guide

G2 JavaLink

• G2 JavaLink User’s Guide

• G2 DownloadInterfaces User’s Guide

• G2 Bean Builder User’s Guide

G2 Diagnostic Assistant

• GDA User’s Guide

• GDA Reference Manual

• GDA API Reference
ix

Customer Support Services
You can obtain help with this or any Gensym product from Gensym Customer
Support. Help is available online, by telephone and by email.

To obtain customer support online:

 Access Ignite Support Portal at https://support.ignitetech.com.

You will be asked to log in to an existing account or create a new account if
necessary. Ignite Support Portal allows you to:

• Register your question with Customer Support by creating an Issue.

• Query, link to, and review existing issues.

• Share issues with other users in your group.

• Query for Bugs, Suggestions, and Resolutions.

To obtain customer support by telephone or email:

 Use the following numbers and addresses:

United States Toll-Free

United States Toll

Email

+1-855-453-8174

+1-512-861-2859

support@ignitetech.com
x

1

Overview of the
G2-PI Bridge
Describes the architecture of the G2-PI Bridge.

Introduction
The G2-PI Bridge allows your G2 application to access the data points monitored
by a PI™ (Plant Information) system. In installations already using PI, the bridge
is a very convenient and cost-effective way of making this data available to your
G2 system.

PI performs plant-wide monitoring and analysis by handling the collection and
storage of numerical data from various sensors in an industrial process. The data
can be used locally within the PI system, for display and logging, as well as
transmitted to G2 via the G2-PI Bridge.

The G2-PI Bridge provides the following features:

• Two-way data transfer between G2 applications and PI systems.

• Communication with multiple PI systems through the same bridge process.

• Support for many G2 data types, facilitated by flexible data conversions.

• Extensive error logging and troubleshooting capabilities.

The G2-PI Bridge allows two ways of accessing PI data:

• Using G2 variables. These variables can be of the classes osipi-int, osipi-real, or
osipi-digital, which are defined in the g2-pi.kb knowledge base. You can also
define your own classes for storing PI data.

• Using remote procedure calls (RPCs) to read the attributes of PI tags and to
obtain historical data stored in PI. You can use this data for trend analysis and
for sophisticated inferencing in G2.
1

The G2-PI bridge uses PI-API to exchange information with PI via TCP/IP.
PI-API must be installed on your system to use the G2-PI bridge. PI-API is a
product from OSIsoft.

A typical configuration might look like this:

G2-PI
Bridge

G2
Real-Time

Expert System

Node A

Node B

PI
System

Process Monitored
Data
Points

TCP/IP
2

2

Starting the
G2-PI Bridge
Describes how to run the G2-PI Bridge under default conditions.

Introduction 3

Authorizing the G2-PI Bridge 3

Using a Single Server 4

Configuring Multiple Servers 4

Starting the Bridge Process 5

Using Command-Line Options 6

Introduction
Before you can start the G2-PI Bridge, you must authorize the bridge. If you are
accessing data from a single PI server, you can simply start the bridge from the
command-line. If you are accessing data from multiple PI servers, you must first
configure the data file that tells the bridge about the available servers, and
optionally which user names and passwords to use.

You start the G2-PI Bridge from the command line. You can also specify the port,
a configuration file, a log configuration file, and command-line options.

Authorizing the G2-PI Bridge
Before you can run the G2-PI Bridge, you must get authorization codes for the G2
Bundle or the gsi.ok file. Contact Order Services for these codes at 
1-781-265-7106.
3

Using a Single Server
If you are reading PI data from a single server, there is no need to configure the
server data file. The G2-PI Bridge will use the default server. When using the
default server, there is no need to use any special syntax to refer to PI data points
or tags.

Configuring Multiple Servers
If you are reading PI data from multiple servers, or if you require password-
protected access to the data, you must create a data file for the bridge that
contains information about the servers, user names, and passwords. The default
name of this file is pisrvrs.dat. Use the program g2piconfig.exe to create and
edit this data file.

To access PI data from a particular server from within G2, you must precede the PI tag
name with the server name and a colon.

Creating the Server Data File

By default, the bridge looks in the directory from which you started the bridge for
the server data file with this name:

pisrvrs.dat

This file exists in the pi directory of your G2 installation directory.

To specify the exact name and location of the server data file, create an
environment variable named G2PSL and specify the name and location there.
For example:

set G2PSL=C:\Gensym\PI\servers.pbf

Configuring the Servers

If you have more than one server and you use the default user names and
passwords for all of them, you can use either the program g2piconfig.exe or a
normal text editor to configure the server data file. If you use g2piconfig.exe,
leave the user name and password fields blank. If you use a text editor enter a list
of servers with carriage returns between each server, for example:

PIServer1
PIServer2
PIServer3
4

Starting the Bridge Process
Configuring Users and Passwords

If you are configuring servers, as well as users and passwords, each entry of the
server data file should consist of a server name, a user name, and an encrypted
password, separated by commas, for example:

PIServer1,user1,encyrpted-password
PIServer2,user2,encyrpted-password
PIServer3,user3,encyrpted-password

You can only associate one user name with a given server; this is a limitation of
PI-API.

Because you cannot use a text editor to enter encrypted passwords, you must use
the program named g2piconfig.exe to edit the server data file. This file is
located in the pi directory of your G2 installation directory.

The program allows you to insert, edit, and delete server descriptions. You can
use menu commands and popup menu commands to perform these functions.
You can also use the Insert, Delete, and Enter keys to edit the server descriptions.

Starting the Bridge Process
You invoke the G2-PI Bridge from the command line, using the following syntax:

g2pi [port-number] [@configuration-file | $configuration-file]
[-option ...]

If you do not provide a port-number, the bridge will attempt to use the default
port number 22041. If the default port is not available, the bridge will attempt to
use the first available port within the next 99 addresses. If you provide a port
number, it must be the first argument after g2pi.

The G2-PI Bridge can read configuration options from a configuration file or
directly from the command line. You can use either the @ symbol or the $ symbol,
followed by the configuration file name, to load any set of command-line options.
For information on the format of this file, see Using a Configuration File.

You can also enter command-line options directly on the command line when
starting the bridge, as described in Using Command-Line Options.

You can specify the configuration file and command-line options in any order. If
you specify contradictory options such as “log to file” and “do not log to file,” the
last option encountered by the initialization process takes precedence.

Using Command-Line Options
As Configuring Connections describes, connections between G2 and the G2-PI
Bridge are controlled by a G2 object called an interface object. You may have up to
5

49 interface objects in a G2-PI application. Each connection defines what is called
a context. You can think of a context as an environment that defines some
behavior such as which errors are reported and how. Different contexts can
behave differently.

Caution Attempting to make all 49 connections at the same time can cause the bridge
to abort.

You can use command-line options and configuration files to configure
connection and logging parameters for the bridge process at startup. In some
cases, a command-line option specifies general bridge behavior. In others, it
specifies the default behavior of context-specific options. Individual contexts can
select non-default behavior by using either initialization-string options or RPCs.
For details, see Remote-process-initialization-string and Logging Operations.

Command-Line Options

The following table describes command-line options that you can include on the
command line when starting the bridge. Each option below that accept values of y
or n (but not y/n/a) sets the default behavior of all contexts and can be
overridden by individual contexts with initialization-string options and RPCs.

For command-line options with arguments, a space between the command-line
option and the argument is optional. For example, the following pairs of
command-line options are equivalent:

-by and -b y

-d5 and -d 5

-llog.log and -l log.log

-m2M and -m 2M
6

Using Command-Line Options
Command-Line Option Description

-help

-tcpipexact

-b[y/n]

-d[0-9, y/n]

-f[y/n]

-g[y/n]

-l log-file-name

-m size

-n[y/n/a]

-o[y/n]
-s[y/n]

-p[y/n]

Displays G2-PI Bridge command-line options and
does not start the bridge process.

Specifies the exact TCP/IP port number to use
when starting the bridge. If the bridge cannot listen
on the specified port, it will not attempt to use
another port and the process will halt.

Determines whether to log output to the G2
Message Board. Default is n.

Sets the debugging level. 0 means the fewest
messages; y means a debug level of 9; n means a
debug level of 2. Default is 2.

Determines whether log messages sent to a file are
buffered (n) or written immediately and flushed (y).
Default is n.

Determines whether log messages are sent to the G2
procedure named osi-error. Default is y.

For more information, see Logging Operations.

Sets the name of the log file. Default is g2pi.log.

Sets the maximum log file size. 0 means as large as
possible. The size can use K for kilobytes (1,024) or
M for megabytes (1,048,576). The minimum is 1K.
The default is 0.

Determines what to do with an existing log file
when starting a new logging session. y means
overwrite the log file; n means rename the log file
by appending a file number to the file name before
creating a new log file; and a means append
messages to the old log file. Default is a.

Determines whether to log output to the screen.
Default is y.

Determines whether to log output to the PI log file.
Default is n.
7

Using a Configuration File

A configuration file is a text file with one command-line option on each line, up to
a maximum of 25 commands. The command-line options use the same syntax as
described in Using Command-Line Options.

You load a configuration file by using either the @ or $ command-line option.

For example, a configuration file might look like this:

-by
-d9
-fy
-gy
-l my-log.log
-m2M
-na
8

3

Configuring
Connections
Describes how to configure attributes of the GSI interface object.

Introduction 9

A Note on Terminology 10

Creating and Configuring GSI Interface Objects 10

Connecting to the Bridge Process 17

Introduction
To access PI data from within G2, you must create and configure a GSI interface
object. The interface object specifies the connection configuration information,
which includes the name and port of the computer on which G2-PI Bridge is
running.

Every variable that uses the G2-PI Bridge to retrieve values from PI has an
attribute that contains a reference to a PI point. This attribute is called the
PI pointer. The interface object specifies the name of the PI pointer. Optionally, it
specifies the attribute of the variable that contains the details about which PI
attributes to retrieve and where to store them. The interface object can override
default logging behavior. It specifies the timeout period and whether the external
system updates the data or whether G2 polls the external system to update the
data. To establish a connection between G2 and PI, you simply configure and
enable the interface object.

The interface object reports its connection status in a read-only attribute.
9

Once a connection is established, you use the interface object to connect G2
variables to data sources in the bridge. The G2 application can also call remote
procedures across the interface.

The GSI interface object serves as the connecting point to the bridge process. All
communication with the bridge takes place through this object.

A Note on Terminology
A variable is a type of G2 object. PI has a similar object, known as a PI point.

In object-oriented terms, a data field of an object is called an attribute. Thus,
Gensym calls the fields of interface objects and variables “attributes,” and OSIsoft
calls the fields of PI points “attributes.” The G2-PI Bridge works with both types
of attributes. When this manual refers to an “attribute,” its type will be explicitly
stated or it will be clear from the context.

A PI variable is a G2 variable that has been configured to store values retrieved
from PI by the G2-PI Bridge.

Whereas “PI tag” and “PI point” are often used interchangeably, technically they
are different. A PI point is a PI structure that holds a current value and numerous
attributes. A PI tag is the name of a PI point.

Creating and Configuring GSI Interface Objects
To connect from G2 to the PI bridge, you can use a standard GSI interface object,
or you can use an osipi_interface object, which is defined in the g2-pi.kb
knowledge base. The advantage of using an osipi_interface object is that it has a
unique icon, which changes its color to green when it successfully connects to the
G2-PI Bridge. Otherwise, the two types of interface objects are identical.

In general, you should merge g2-pi.kb into your knowledge base, because it
contains the remote procedure declarations for all the RPC functions that you can
use. It also defines several classes that you can use to simplify configuration. The
descriptions below assume that g2-pi.kb has been merged into your application.
However, if you created your knowledge base with Version 4.0 of the bridge, if
your application does not contain the g2-pi module, and if it does not need any of
the Version 5.0 RPC function, then you do not need to merge g2-pi.kb into your
knowledge base.
10

Creating and Configuring GSI Interface Objects
Creating the GSI Interface Object

To create a GSI Interface object:

 Choose KB Workspace > New Object > network-interface > gsi-interfaces >
gsi-interface.

or

 Choose KB Workspace > New Object > network-interface > gsi-interfaces >
osipi_interface.

If you have not included the g2-pi module in your application, you will not be
able to create an osipi-interface. In this case, to create a GSI interface object, choose
KB Workspace > New Object > network-interface > gsi-interface.
11

As you can see from the following tables, the two types of interface objects are
identical, except for their icons and class names. Thus, the descriptions in the rest
of this chapter apply equally to either type of object.
12

Creating and Configuring GSI Interface Objects
Configuring the GSI Interface Object

Now, you must configure the attributes of the GSI interface object as described
below. You only need to configure the attributes described below.

Names

The name of the GSI interface object, which must be unique within G2. You must
name the interface object. Because this object represents the connection to a
particular G2-PI Bridge, choose a name that associates it with the PI system.

Gsi-connection-configuration

"host-name"

port-number

Describes the network connection between G2 and the G2-PI Bridge. It specifies
the type of network and the network address of the bridge process. The G2-PI
Bridge supports TCP/IP only.

Note Editing this attribute automatically establishes a connection between G2 and the
bridge.

The syntax for specifying the location of the bridge process is:

tcp-ip host "host-name" port-number port-number

where:

For example:

tcp-ip host "localhost" port-number 22044

Identifying-attributes

Every variable that is to receive values from PI must contain an attribute that
refers to the PI tag that is the source of the variable’s value. For example, if you
create a variable of type osipi-real and you want it to get its value from the
SINUSOID tag in the PI server JUPITER, you must set the osipi-tagname attribute
of the OSIPI variable to "JUPITER:SINUSOID". The variable has an attribute that

The name of the machine running the bridge process.
Note that the host name is enclosed in double quotation
marks.

The port number of the process with which the bridge
process is started. You set the port number from the
command line when you start the bridge process. The
default port is 22041. You can change it to any number
over 3000 and under 30,000 that you are not using for
another process on that machine.
13

refers to a PI tag and, in this case, the name of this attribute is osipi-tagname. G2
removes the hyphen for display purposes.

This attribute is known as the PI pointer. If you define your own PI variable class,
the PI pointer may have a different name. However, regardless of its name, it
must exist. See Referring to PI Tag Names. The first and most important use of
identifying-attributes in an interface object is to specify the name of the PI pointer.

Optionally, you can request that the PI bridge retrieve the values of PI attributes
and store them in attributes of your variable. To do this, your variable must
define an attribute whose value is a structure that specifies the PI attributes to
retrieve and the attributes of the variable in which they should be stored.

Next, you must append to the identifying-attributes of the interface object a
comma followed by the name of the attribute that contains the defining structure.
For example, if you define an attribute named pi-attributes-structure, the value of
the identifying-attributes would be:

osipi-tagname, pi-attributes-structure

If the identifying-attributes contains the name of a variable attribute that contains a
structure, the PI bridge will try to retrieve PI attributes; otherwise, it will not.

For more information, see Accessing PI Data in G2.

External-system-has-a-scheduler

If a variable has a default-update-interval other than none and external-system-
has-a-scheduler is set to no in the associated interface object, the bridge will
request from PI a refresh of the value of the variable as soon as the default-update-
interval expires. If external-system-has-a-scheduler is set to yes, the bridge will
only request a refresh of the value if the variable’s validity-interval has expired and
G2 has requested the value via a rule, a readout table, or some other means.

Note that setting this value to yes may make it appear that a variable is not being
updated. However when G2 requests the variable’s value, the variable will be
properly updated.

Poll-external-system-for-data

If the variables connected to this interface object will be updated by exception
reporting, set this value to yes. Otherwise, set it to no. Setting this value to yes
will cause the bridge to regularly poll PI to see if it has an exception report for it.

For more information, see Exception Reporting.

Grouping-specification

In the G2-PI Bridge, always set this attribute to no grouping. All PI points are
independent, therefore, there is no benefit to grouping them.
14

Creating and Configuring GSI Interface Objects
Remote-process-initialization-string

Many of the command-line options, which you enter when you start the bridge
process, set the default behavior. You can override these defaults by using similar
initialization string options. For example, if you start the bridge with the
command-line option -on, by default, the bridge does not show error messages on
the screen. If you specify –oy in the remote-process-initialization-string of an
interface object, errors associated with variables connected to that interface object
will be displayed on screen.

You can specify the following options in the remote-process-initialization-string
attribute of a particular GSI interface object to configure the behavior for an
individual context. The options use a similar syntax to that of the command-line
options as described in Using Command-Line Options.

The initialization string options are shown in the following table. Successive
options should be separated by one or more spaces. A space between an option
and its parameter is optional.

Command Description

-b[y/n] Determines whether to log output to the G2 Message Board
for this context. Default is n.

-d[0-9, y/n] Sets the debugging level for this context. 0 means the fewest
messages; y means a debug level of 9; n means a debug level
of 2. Default is 2.

-e[y/n] Sends a value to a PI point. The syntax of the set command
references a variable, which references, in turn, a PI point.
When this option is set (y), the variable will be set to the new
value at the same time that the value is sent to PI. Otherwise
(n), the value of the variable will not be changed until the
next time a normal update occurs. Default is n.

-g[y/n] Determines whether to log messages to the G2 procedure
named osi-error for this context. Default is n.

-l[y/n] Determines whether to send messages for this context to the
log file.

-o[y/n] Determines whether to log output to the screen for this
context. Default is y.

-p[y/n] Determines whether to log output for this context to the PI
log. Default is n.
15

The following table shows which initialization string options you use to override
which command-line options. The default value specifies the behavior if neither
the command-line option nor the initialization string option is present.

You can also use RPC functions to set or retrieve log configuration options for a
particular context. For more information, see Logging Operations.

Interface-timeout-period

The length of time G2 will wait for a response from the bridge before reporting an
error. A reasonable setting depends on how busy your network is and other
factors. A good starting value is between 10 and 20 seconds. The minimum setting
is 1 second.

Gsi-interface-status

An attribute that is set by G2 and indicates the status of the connection between
G2 and the G2-PI Bridge. For details, see Determining the Connection Status.

-t[y/n] Determines whether timestamps will take their values from
PI (y) or from the local computer (n), for this context. Default
is n.

-x[y/n]

This initialization
string option...

Overrides this
command-line option...


And the default is...

-b -b n

-d none 2 (n)

-e none n

-g -g y

-l none n

-o -o and -s y

-p -p n

-t none n

-x none n

Determines whether to use exception reporting for this
context. Default is n.

Command Description
16

Connecting to the Bridge Process
Interval-to-poll-external-system

Determines how often G2 polls the bridge to determine if PI has a report of a
changed value. This attribute is only used when poll-external-system-for-data is
set to yes. The default is 1 second. You should not change this attribute.

Connecting to the Bridge Process
Once you have configured an interface object, you connect G2 to the G2-PI Bridge
to begin receiving data from PI. G2 connects to the bridge automatically under
these conditions:

• If the interface object is properly configured and enabled, starting G2 causes
the connection to be made.

• If G2 is running and the interface object is properly configured but disabled,
enabling the interface object causes the connection to be made.

• If G2 is running and the interface object is enabled, editing its gsi-connection-
configuration attribute causes any existing connection to be broken, then
causes a new connection to be made, using the new connection information.

Determining the Connection Status

G2 reports the connection status in the gsi-interface-status attribute of the
interface object. The possible status values are:

2 (OK) The connection between the G2 process and the bridge process
is successful and is being maintained.

1 (Initializing) The PI system is initializing. When G2 receives this
code, it suspends sending messages to the bridge process until it
receives an OK code.

0 (Waiting) The interface is either disabled or inactive.

1 (Timeout) The G2 process has not heard from the bridge process
within the interface-timeout-period specified for the interface object;
thus, the connection has timed out. This code may also indicate that
a communications overload has occurred. It is not necessarily an
alarm condition because the bridge status usually returns to 2
without intervention.

2 (Error) An error condition occurred. The connection between G2 and
the G2-PI Bridge process has been interrupted.
17

18

4

Accessing
PI Data in G2
Describes how to use GSI variables to access PI data in G2.

Introduction 19

Retrieving PI Data 20

Using OSIPI Variables 22

Creating Your Own PI Variable Classes 28

Exception Reporting 34

Registering Variables 35

Retrieving Historical Values 36

Writing to PI 39

Introduction
The G2-PI Bridge can retrieve three types of PI data:

• Current values.

• PI point attributes.

• Historical values.

You store the retrieved values in G2 variables. The PI bridge retrieves current
values and PI point attributes automatically after you configure the interface
object and the variable. To retrieve historical values, you must use Remote
Procedure Calls (RPCs).
19

The automatic update of a variable’s value can occur in one of two ways:

• G2 can request the value.

• PI can inform G2 when a value changes more than a preset amount stored in
PI point attributes. This technique is called exception reporting.

You can also use Remote Procedure Calls to read individual PI attributes. For
details, see the description of get-property in Item Operations.

Retrieving PI Data
Retrieving the three PI data types has various configuration requirements, some
of which are common and others of which depend on the type of PI data you are
retrieving.

Common Requirements for Retrieving PI Data

The following configuration requirements apply when retrieving PI data of any of
the three types:

• The gsi-interface-name attribute of every variable must contain the name of a
properly configured interface object. The configuration of the interface object
determines the behavior of the variable. For example, if the exception report
option (-xy) is included in the remote-procedure-initialization-string of an
interface object, all variables that use that interface object will be updated by
exception. For details, see Creating and Configuring GSI Interface Objects.

• The identifying-attributes of the interface object must contain the name of the
attribute of the variable that is the PI pointer. For details, see Identifying-
attributes.

Retrieving Current Values

When retrieving current values, the PI pointer determines the PI point to read.
The PI pointer is of the form "tagname" or "servername:tagname". For details, see
Referring to PI Tag Names.

The configuration of the interface object determines whether or not the variable is
updated by exception. The configuration of the PI variable depends on whether
exception reporting is enabled.

For more information, see:

• Creating and Configuring GSI Interface Objects

• Using OSIPI Variables.

• Exception Reporting.
20

Retrieving PI Data
Non-Exception Configuration

If you do not want the variable to be updated by exception:

• Configure these attributes of the interface object as follows:

external-system-has-a-scheduler

poll-external-system-for-data

remote-process-initialization-
string

• Configure the variable as follows:

validity-interval

default-update-interval

Exception Report Configuration

If you want the variable to be updated by exception:

• Configure the interface object as follows:

external-system-has-a-scheduler

poll-external-system-for-data

remote-process-initialization-
string

• Configure the variable as follows:

validity-interval

default-update-interval

In general, we recommend that
you set this attribute to no to
avoid update behavior that is
different from what is expected.

Set to no.

Ensure that –xy is not included.

Set to something other than
indefinite.

Set to something other than none.

This attribute it not used because
you are going to set the default-
update-interval of the variable to
none. Set to yes.

Set to yes.

Include –xy.

Set to indefinite.

Set to none.
21

Retrieving PI Attributes

To retrieve PI attributes, the identifying-attributes of the interface object must
contain a second name after the name of the PI pointer. The second name is the
name of an attribute of the variable that contains a structure, which specifies the
PI attributes to retrieve and where they should be stored.

For more information, see PI Point Attributes.

Retrieving Historical Values

If you are using one of the predefined PI variable types in g2-pi.kb, all you need
to do to retrieve historical data is to call get-time-vals or get-interp-vals.

If you have defined your own PI variable class, to retrieve historical data:

• You must ensure that you have defined attributes to hold the historical values.

• Depending upon what you named your history attributes, you might need to
call rpc-define-history-attributes.

• You must call get-time-vals or get-interp-vals.

For more information, see Retrieving Historical Values

Using OSIPI Variables
You can use one of the predefined variable classes in the g2-pi.kb to store the
values you retrieve from PI, or you can define your own PI variable classes. Note
that if you are storing PI attributes in a variable, you must define your own
variable class.

Using the OSIPI Variable Classes

The G2-PI Bridge KB provides these classes of variables:

• osipi-var is a subclass of the G2 quantitative-variable class. It has two
subclasses:

– osipi-real is used for floating point values.

– osipi-int is used for integer values.

• osipi-digital is a subclass of the G2 text-variable class

In general, osipi-real and osipi-int variables behave just like other G2 float
variables and integer variables. You can use them as objects or as data types for
attributes of more complex objects. For example, you might create an osipi-real or
an osipi-int object for each PI point in your application, then connect each of these
objects to your flow diagram. You might also define more complex classes that
22

Using OSIPI Variables
use osipi-real and osipi-int as the data types for attributes that get their values
from the PI system.

The following example shows the table for a pump object on the left, which gets
its data for the inflow attribute from a PI system. The inflow attribute is assigned
the type osipi-real. The subtable for the inflow attribute on the right relates the
inflow attribute to a particular PI system and PI point by specifying the gsi-
interface-name and osipi-tagname.
23

Attributes of osipi-int and osipi-real

The osipi-int and osipi-real classes inherit attributes from G2 quantitative-variable
and gsi-data-service, and they define additional attributes for interfacing with PI
points.

Here is the table for an instance of osipi-int that uses the GSI interface object
named osi_pi1 to get values from the PI point named 001 on the default server:

Attributes inherited
from osipi-var
24

Using OSIPI Variables
The following table describes the PI-specific attributes and the inherited attributes
with special relevance. For information about the other attributes, see Chapter 15,
“Variables and Parameters” in the G2 Reference Manual.

Attribute Description

validity-interval The length of time that the last recorded value should
remain current. The setting depends on whether exception
reporting is enabled. See Exception Reporting.

When exception reporting is enabled, a new value will be
automatically transmitted by the G2-PI Bridge when a
change exceeds preset limits. Thus, you should set this
attribute to indefinite.

When exception reporting is disabled:

• If external-system-has-a-scheduler is set to no in the
interface object, set the validity-interval to several
seconds longer than the default-update-interval. For
example, if the default-update-interval is 5 seconds, set
the validity-interval to 10 seconds.

• If external-system-has-a-scheduler is set to yes in the
interface object, set the value to the amount of time you
are willing to use a retrieved value before it must be
updated.

default-update-interval The interval at which G2 should request a new value for
the variable. The setting depends on whether exception
reporting is enabled. See Exception Reporting.

When exception reporting is enabled, the G2-PI Bridge
automatically transmits changes when the value exceeds
preset limits. Thus, the value of the default-update-interval
is ignored; therefore, set the default-update-interval to
none.

When exception reporting is disabled, this value controls
the rate at which the value is updated when external-
system-has-a-scheduler is set to no. In this case, set the
default-update-interval to the interval at which the value
should be updated. If external-system-has-a-scheduler is
set to yes, the validity-interval controls when the value is
updated.

gsi-interface-name The name of the GSI interface object that this variable will
use to connect to the G2-PI Bridge. This name determines
the variable’s context and, therefore, whether or not the
variable is updated by exception and its logging behavior.
25

gsi-variable-status 0: OK

128: The call to PI functions returned an error.

262146: Bad server. Reasons include the server does not
exist, the server was not added to the server information
file, communication with the server has failed, or the user
name or password is incorrect.

262147: Bad value. Unable to decode digital state name.

262148: Bad type. Type conversion not supported.

262150: Missing PI variable definition. This error should
not normally occur. The likely cause is lack of memory.

262151: No such tag. Request to access non-existent PI tag.

object-index A numerical value identifying this variable object. This
index is often referred to as the variable’s handle. You use
the object-index to identify the object in remote procedure
calls. The G2-PI Bridge sets this value.

pi-point The PI number of the referenced point. PI assigns a number
to each point stored in its database. When a variable is first
registered with the bridge, the bridge looks up the
referenced point and stores its PI number in this attribute.

osipi-tagname The reference to the PI point that supplies this variable
with its value. The reference is of the form "tagname" when
using the default server or "servername:tagname" when
specifying a particular server. Note that double quotes are
required. For details, see Referring to PI Tag Names.

osipi-data-type Whether this variable is an integer (I), a real (R), or a digital
(D). The value is determined by the osipi-int, osipi-real, or
osipi-digital class definition. The bridge does not use this
attribute; it is for your information only.

timed-value The pi-integer-list or pi-quantity-list object that contains a
history of the variable’s values obtained from the PI
system. pi-integer-list is used for osipi-int variables, and pi-
quantity-list is used for osipi-real variables. You store the
historical values in these attributes by calling get-time-vals
or get-interp-vals. See History Operations.

Attribute Description
26

Using OSIPI Variables
Referring to PI Tag Names

To access PI data from a particular server from within G2, you must precede the
PI tag name with the server name and a colon. For example, to read the value of
the PI point named SINUSOID from the server named IE0, you would set the osipi-
tagname attribute of the G2 variable to:

IE0:SINUSOID

If you do not specify a server, the bridge attempts to read the data from the
default server.

PI tag names sometimes contain a colon. If the portion of the tag name preceding
the colon matches the name of a PI server, you must precede the tag name with
the server name, even if you are reading data from the default server. For
example, to read the value of the tag named IE0:003 from the default server,
named PAU, when IE0 is also a PI server, you would set the appropriate attribute
of the G2 variable to:

PAU:IE0:003

timedate-text The pi-text-list object that contains the PI system
timestamps, as text, which corresponds to each of the
values contained in the timed-value attribute. Each
timestamp is of the form MMDDYYYYhhmmss. The time is
expressed as a text string of month, day, year, hour, minute
and second. Leading zeros are used to pad a number out to
the required number of places. The twenty-four hour clock
is used so hours range from 0 to 23.

For instance, you can use this list to supply values for the
time axis in a plot using timed-values.

timedate-seconds The pi-quantity-list object that contains the PI system
timestamps, in seconds, which corresponds to each of the
values contained in the timed-values attribute, above. Each
timestamp is a float.

last-recorded-pi-time The PI system timestamp, as text, which corresponds to the
current value for this variable. The timestamp is of the
form MMDDYYYYhhmmss. Typically, the last-recorded-pi-
time is the time at which the PI system obtained this value.

Attribute Description
27

Creating Your Own PI Variable Classes
The two reasons you might want to create your own PI variable class instead of
using one of the classes that are predefined in g2-pi.kb are:

• You need to retrieve PI attributes for the referenced PI point and store them in
the variable.

• You need a variable of a type other than those that are predefined, that is, a
symbolic or logical variable.

Rules for Defining Your Own PI Variable Class

In the tables that follow, Predefined Name refers to the corresponding attribute
name in the predefined variable classes, Name Fixed? indicates whether the
attribute name you specify must be the same as the predefined name or not, and
Type is the G2 data type for the attribute.

The rules for defining your own PI variable class are:

• The class must inherit its definition from gsi-data-service and either a subclass
of g2-variable or sensor.

• It should have these additional attributes:


Predefined Name

Name
Fixed?


Type


Notes

osipi-tagname text

object-index integer

pi-point integer

last-recorded-pi-time text

• If you are using PI point attribute retrieval, you must have an attribute that
can hold a structure and one attribute of an appropriate type for each PI tag
attribute that you will retrieve. The name you choose for the structure
attribute should be the second name you put in identifying-attributes of
corresponding interface objects.

no The PI pointer. You may give
this attribute whatever name you
like. In prior documentation, this
attribute was sometimes called
itempath. The first attribute name
in the identifying-attributes of
corresponding interface objects
should be the name you choose
for this attribute.

yes

yes

yes
28

Creating Your Own PI Variable Classes
• If you will use RPCs to read historical values from PI archives, you must have
the following 3 attributes:


Predefined Name

Name
Fixed?


Type


Notes

timed-value integer-list

time-data-text text-list

time-data-seconds quantity-list

Defining a Variable Class that Inherits from OSIPI
Variables

g2-pi.kb defines the class osipi-var, which is a quantitative variable, and
osipi-digital, which is a text variable, both of which are pre-configured to retrieve
current values and historical values.

Thus, if you need a quantitative, real, or integer variable that will hold PI tag
attributes, you can define your variable class to inherit its definition from osipi-
var. That way, you will only need to define the attributes required for retrieving
PI tag attributes. In addition, because the attributes to hold historical values use
the predefined names, you will not need to call rpc-define-history-attributes.

Similarly, if you need a text variable that will hold PI tag attributes, define its class
to inherit its definition from osipi-digital.

Example

The following example shows how to define a PI variable that will hold a float or
integer value and will store the PI tag’s descriptor and high-limit values.

To define your own PI variable that stores PI attributes:

1 Merge g2-pi.kb into your application.

2 Create a new object definition by choosing KB Workspace > New Definition >
Class Definition > Object Definition.

3 Configure the names attribute to be the name of your variable class.

4 Configure the direct-superior-classes to be osipi-var.

Notice that the inherited-attributes of the definition updates to include all the
attributes that are required for retrieving the value of the PI tag and for
storing historical values.

no If you use a name other than
the predefined name for any
of these three attributes, you
must call rpc-define-history-
attributes to tell the bridge
where is should store
retrieved historical values.

no

no
29

5 Configure the class-specific-attributes as follows:

piattrs-spec initially is a structure (description: 101, hi-limit: 5018);
description initially is "";
hi-limit is given by a float-parameter, initially is given by a float-parameter

In this specification:

• piattrs-spec contains a structure that specifies the ID of the PI attributes to
retrieve and the attributes of the variable in which to store the values.

• description is the name of the variable attribute that will hold the PI tag’s
descriptor attribute (101).

• hi-limit is the name of the variable attribute that will hold the high entry
limit for this PI data point (5018).

For a list of PI attributes and their corresponding ID codes, see PI Point
Attributes.

6 Create an instance of your variable class and place it on a workspace.

7 Create and configure an interface object whose identifying-attributes is set to:

osipi-tagname, piattrs-spec

8 Configure the attributes of the variable as follows:

Attribute Value

osipi-tagname

validity-interval

default-update-
interval

gsi-interface-name

As soon as the variable is registered with the bridge, the object-index, pi-point,
description, and hi-limit attributes will be updated.

PI Point Attributes

As the Example shows, you can define a variable class that retrieves PI point
attributes and stores them in attributes of the variable. To summarize:

1 Define your own variable class with class-specific attributes for each PI
attribute you want to retrieve, and a structure attribute that will be used to

A reference to a PI point that can be stored
in a quantitative variable.

The length of time that the last recorded
value should remain current.

The interval at which G2 should request a
new value for the variable.

The name of the interface object created in
step 7.
30

Creating Your Own PI Variable Classes
specify the PI attributes to retrieve and the G2 variable attributes in which to
store the values.

2 Configure the second attribute in the identifying-attributes of the interface
object to be the structure attribute of your variable class.

3 Instantiate your variable class and configure its attributes: gsi-interface-name,
osipi-tagname, default-update-interval, and validity-interval.

The bridge automatically retrieves the PI attributes when the variable is
registered.

When configuring the structure, the name of each element is the name of an
attribute of the G2 variable that will hold the value of one of the PI attributes. The
value of each element of the structure is a code for the corresponding PI attribute
to retrieve.

In the example, the structure was defined as follows:

structure(description:101,hi-limit:518)

The code for the PI attribute named Descriptor is 101, and code for the PI attribute
named High Entry Limit is 518. The High Entry Limit is the sum of the Zero and
Span PI attributes, which represents the maximum legal value for the PI point’s
value. Therefore, the structure stores the value of the Descriptor PI attribute in the
G2 variable attribute named description, and it stores the maximum legal value in
the G2 variable attribute named hi-limit.

Normally, PI attributes do not change; they represent static information about the
point. As a result, the bridge only reads their values when a variable is registered.
If you do change a tag’s attributes in PI after they have been read by G2, the
values stored in the G2 variable will not be updated. However, the new values
will be read next time the variable is registered. You can force re-registration by
disabling and then re-enabling the variable or by restarting G2.

The codes for the PI attributes are:

ID PI attribute Type Notes

1 Canonical Data
Type

integer

100 Engineering Units text e.g., "kg/s", "*C"

101 Descriptor text e.g., "Evaporator 6
Temp"

5004 Stepped logical

5005 Archiving logical
31

5006 Extended
Descriptor

text

5009 Instrument Tag text

5010 Point Source text

5013 Tag text

5014 Exception Max
Interval

integer seconds

5015 Exception Min
Interval

integer seconds

5016 Exception
Deviation

float

5017 Filter Time
Constant

integer seconds

5018 High Entry Limit float zero + span

5019 Low Entry Limit float zero

5020 Typical Value float

5200 Display Digits integer

6004 Scanning logical

6005 Compressing logical

6014 Compression Max
Interval

integer seconds

6015 Compression Min
Interval

integer seconds

6016 Compression
Deviation

float

7000 Point ID Number integer

7001 Creation Date float

7002 Creator text

7003 Change Date float

ID PI attribute Type Notes
32

Creating Your Own PI Variable Classes
How the Bridge Converts Data

Generally, the type of variable you use to retrieve a value from a PI point matches
the point’s type. For example, if you are reading a float32 value, you would
probably use a float or quantitative variable to hold the value. However, in most
cases where it makes sense to do so, the PI bridge performs type conversion if the
G2 variable and PI point types do not match.

The following table shows how the G2-PI bridge converts the data. Note that not
all combinations of data types are supported.

7004 Changer text

7005 Location
Parameter #1

integer

7006 Location
Parameter #2

integer

7007 Location
Parameter #3

integer

7008 Location
Parameter #4

integer

7009 Location
Parameter #5

integer

8000 Source Tag text

8001 Square Root integer

8002 Totalization Code integer

8003 Conversion Factor float

ID PI attribute Type Notes
33

 G2

Integer Float Text or Symbol Logical



PI

Integer copy convert to
float

convert to text 0=true;
others=false

Float round copy convert to text 0.0=true;
others=false

Digital tag state

Text copy

Time PI time

If a conversion is not supported, a value of 262148 is stored as the variable’s
status.

Exception Reporting
In general, PI variables update their data based on the default-update-interval or
validity-interval of the variable. In these cases, it is G2 that requests new values for
variables. However, the G2-PI Bridge provides another way of updating variable
values known as exception reporting.

When exception reporting is enabled, it is the bridge that informs G2 that the
value of a variable should be changed. This occurs when the value of the
corresponding PI point changes by more than limits defined within the PI point.
The rules for when this occur are defined by PI and involve several attributes of
the PI point including ExcDev, ExcMin, and ExcMax. The person who configures
the PI point is responsible for setting these attributes. For more information, see
OSIsoft’s documentation on data flow.

Two reasons you might want to use exception reporting are:

• Your system is not responsive because you are updating a large number of
variables with short default update times. Using exception reporting could
significantly improve performance, especially if the values of the PI points are
changing slowly.

• You want to minimize the delay between the time the value of a PI point
changes and the time it is reported to G2. Although it depends upon such
factors as program and network load, the change of the value of a PI point by
more than the preset amount will typically be reported within a few seconds.

For information on configuring exception reporting, see Exception Report
Configuration.

MMDDYYHHmmSS
34

Registering Variables
Registering Variables
G2 is responsible for informing the G2-PI Bridge about any variables that should
receive their values from PI. This process is known as registering the variable.

When the variable is registered, the bridge:

• Uses the first identifying attribute to find the PI point that will be the source of
the variable’s value.

• Stores the variable’s handle and the PI point number in variable’s object-index
and pi-point attributes.

• Retrieves any requested PI attributes and stores them in the variable.

• Saves information that will be needed to quickly process future requests for
values and to process exception reports.

G2 registers a variable, if the variable has not yet been registered and if one of the
following conditions occurs:

• It has a default-update-interval other than none and G2 is started or an
attribute of the variable is changed.

• G2 requests the value of the variable. Examples are: a collect data statement is
executed, the value is needed to evaluate a rule, or a readout table that
displays the value is updated.

• An update action is executed.

• There is a request to set the variable’s value.

• A call to the g2-register-on-network system procedure is executed for the
variable.

If you create variables that should be updated by exception reporting, you should
set their default-update-interval to none and their validity-interval to none. If you
configure them and then watch their tables, you will see that they are not
updated. The reason is that they were never registered.
35

The solution is either to actively use their values from within G2 or to use the
g2-register-on-network system procedure. For example, the following procedure
registers every variable on a workspace:

regall()
I : class variable ;
handle: integer ;
begin

if the gsi-interface-status of XIO = 2 then
begin

for I = each variable upon this workspace do 
handle = call g2-register-on-network(I, xio)

end
end

The g2-register-on-network system procedure is defined in sys-mod.kb, a
knowledge base that is delivered with G2. You need to merge this file with your
application to use g2-register-on-network. For more information, see the
G2 System Procedures Reference Manual.

Retrieving Historical Values
You might need to keep a record of the values of a particular variable over some
period time. Typically, in G2 applications, you keep a history by configuring the
history-keeping-spec of the variable to keep a history. However, for values that
originate from the PI system, keeping a history in G2 would be redundant and
would waste storage space, because the PI system already maintains a record of
each variable’s history.

Thus, the G2-PI Bridge uses a remote procedure call to read history values from
PI. The results are stored in lists, which are attributes of a PI variable. If you use
the classes that are predefined in g2-pi.kb, these attributes are already defined
for you.

As described in Using OSIPI Variables, each PI variable contains a reference to a
PI point. To retrieve values from that point’s history, you call one of these two
RPCs:

• get-time-vals reads historical values.

• get-interp-vals retrieves interpolated values.

In either case, you pass to the RPC a handle to the corresponding PI variable.

The results are stored in a list that is an attribute of the PI variable. The times
associated with the values are stored in two different formats in lists that are also
attributes of the variable.
36

Retrieving Historical Values
Preparing to Retrieve Historical Values

To retrieve historical values, your PI variable class must define three list attributes
of the proper types. If you use the predefined variable classes, these attributes are
predefined.

The attributes of the variable are:

• The results list, which is named timed-value in the predefined PI variable
classes. The type of this list depends upon the PI point type. For example, if
you are reading the history of an integer, the attribute should be of type
integer-list.

When you use a predefined PI variable class, this attribute will be of type pi-
quantity-list, pi-integer-list, or pi-text-list, depending upon which of the
predefined classes you are using. Except for their names, these types are
identical to quantity-list, integer-list, and text-list, respectively. The advantage
of using these alternate names is that it makes it clear to the user that the
attributes of these types are intended to hold values to be retrieved by PI.

• The PI time list, which is named timedate-seconds in the predefined PI
variable classes. The list is of type pi-quantity-list, which is the same as
quantity-list.

Each element of this list is the time in PI format (a floating point number) that
the value in the corresponding position of the results list was recorded.

• The time as text list, which is named timedate-text in the predefined PI
variable classes. The list is of type pi-text-list, which is the same as text-list.

Each element of this list is a string of the format "MMDDYYYYhhmmss",
which represents the time the corresponding value of the results list was
recorded.

Therefore, before you can retrieve history values for a PI point, you must define
the required list attributes in your PI variable class. However, if you use one of the
predefined classes, these attributes are already defined.

If you define your own variable classes, you may use any name for these list
attributes. If you use names other than the defaults, then you must tell the bridge
the names that you used so it knows where it should store the retrieved values.
You do this by calling rpc-define-history-attributes, whose signature is:

rpc-define-history-attributes
("TIMEVECTOR", name-of-value-list-attribute:text, 
name-of-pi-time-list-attribute:text, name-of-time-as-text-list-attribute:text)
across name-of-interface-object 
-> status: integer, message: text
37

For example:

c: integer ;
m : text ;
begin

c, m = call rpc-define-history-attributes("TIMEVECTOR”, “histvals”,
“flttimes”, “txttimes”) across piio ;

where:

TIMEVECTOR is a constant and should appear exactly as shown.

histvals is the name of the attribute that will hold the retrieved values, where
the type depends on the PI point type.

flttimes is the name of the quantity-list or float-list that will hold the PI times.

txttimes is the name of the text-list that will hold the text strings representing
the time the retrieved values were recorded.

piio is the name of an interface object connected to the G2-PI Bridge.

Retrieving Historical Values

The two RPCs you can use to retrieve values from the PI historian are:

• get-time-vals retrieves specific values.

• get-interp-vals retrieves interpolated values.

They have the following signatures:

get-time-vals
(handle-of-pi-variable: integer, start-time: text, end-time: text, 
number-of-points: integer) 
-> status: integer, message: text

get-interp-vals
(handle-of-pi-variable: integer, start-time: text, end-time: text, 
number-of-points: integer) 
-> status: integer, message: text

where:

handle-of-pi-variable is the object-index attribute of a PI variable, which is set
by the bridge to the variable’s handle.

start-time and end-time are of the form "MMDDYYYYhhmmss".

number-of-points is the number of points to retrieve.

For information on the return values, see the description of these RPCs in History
Operations.
38

Writing to PI
For example:

c: integer; 
m: text ;
begin

c, m = call get-time-vals(the object-index of PIVAR3, “07042003000000”,
“07052003000000”, 25) ;

This call passes a request to PI to retrieve from the PI historian 25 values recorded
between midnight July 4, 2003 and midnight July 5, 2003 for the PI point that is
referenced by the G2 variable PIVAR3. Assuming that PIVAR3 uses the default
names for the history attributes, the results will be stored in the timed-value,
timedate-seconds, and timedate-text attributes of PIVAR3.

The decision of which points to retrieve is made by PI, not by the bridge.
Likewise, when requesting interpolated values, it is PI that calculates the times
and the values. The bridge simply acts as an intermediary.

Writing to PI
To write a value to a PI point, use the G2 set action. The format is:

set pi-variable to value

When you execute this command, G2 attempts to write the specified value to the
PI point referenced by the specified variable. If the attempt fails, the bridge logs
an error message. When using this syntax, the value is stamped by the server with
the current time.

You can optionally specify the timestamp that should be used with the SET
command. To do this, set the point to a sequence instead of a single value. The
first element of the sequence is the value to which the point is being set. The
second is the timestamp in the date format defined by OSIsoft.

For example, the following code sets the value of the point named PI to 0.50 with
the specified timestamp:

SET PI TO sequence(0.50, "09-NOV-2005 14:09:02")

See Appendix B of OSIsoft’s PI UDS Reference Guide for details.

The PI server rejects any attempt to use a time in the future.
39

40

5

Remote Procedure
Calls (RPCs)
Describes the Remote Procedure Calls (RPCs) for the G2-PI Bridge.

Introduction 41

General Operations 41

Item Operations 42

History Operations 43

Logging Operations 47

Introduction
This section describes the remote procedures published by the G2-PI Bridge. Each
entry uses the notation as listed below.

General Operations
shutdown

()

Causes the bridge to shut down once all contexts are disconnected.
41

stop-bridge 
(stop: truth-value)

This procedure gives a way to abort the shutdown process. When the
argument is false, the bridge cancels any shutdown requests that were
waiting for all contexts to disconnect. When the argument is true, the
procedure behaves just like shutdown.

Item Operations
read 

(all remaining item-or-value as handle)

Performs a read from device for the specified PI variables. This procedure is
primarily used for diagnostics or for particularly critical operations.

Argument Description

all remaining item-or-value as
handle

translate-status
(class variable as handle)
-> status: text

Returns a text description of the status of the PI variables.

Argument Description

class variable as handle

Return Value Description

The PI variables passed by reference
whose data should be read. The
handle can be found in the variable’s
object-index attribute.

The PI variable, passed by reference,
whose status should be translated. The
handle can be found in the variable’s
object-index attribute.

status Description of variable status.
42

History Operations
get-property 
(class variable as handle, id: integer)
-> property: value

Returns the value of a specified PI attribute associated with the specified
variable.

Argument Description

class variable as handle

Return Value Description

value

For a list of values for the property ID numbers, see PI Point Attributes.

History Operations
rpc-define-history-attributes 

(vector-class text, values-list-attribute: text, timestamps-attribute: text, 
text-timestamps-attribute: text)
-> status: text, message: text

Defines the attribute names used by get-time-vals and get-interp-vals to hold
historical information of a variable’s values. You must call rpc-define-history-
attributes if the attributes you use to store historical values have names other
than the default. See Retrieving Historical Values

The handle of a PI variable that refers
to the PI point in which you are
interested. The handle can be found in
the variable’s object-index attribute.

id The code for the PI attribute to
retrieve. These are the same codes that
are used for automatic retrieval of PI
attributes. See PI Point Attributes.

The value of the specified PI point
attribute.
43

Argument Description

vector-class

values-list-attribute

timestamps-attribute

text-timestamps-attribute

Return Value Description

status

message

Example:

code, msg = call rpc-define-history-attributes
("timevector", "timed-value", "timedate-seconds", "timedate-text") 
across osipi-one;

The name of a specific class of vectors.
In this version of the bridge, use only
the class timevector.

The name of the attribute that will be
used to store a list of values. The type
of this attribute depends upon the
type of the PI point. For example, if the
PI point is an integer, this attribute
should be an integer-list or equivalent.

The name of the attribute that will be
used to store a list of numeric
timestamp values. The list will be a
quantity-list or equivalent.

The name of the attribute that will be
used to store a list of timestamps in
text form. The list will be a text-list or
equivalent.

The status code. It is equal to 1 if the
function completes successfully.
Negative values indicate an error.

A descriptive status message.
44

History Operations
get-time-vals 
(handle-of-pi-variable: integer, start-time: text, end-time: text, 
number-of-points: integer)
-> status: text, message: text

Requests a list of past values from the PI system for a PI variable. If the
attributes that will hold the retrieved values have names other than the
default, the call to rpc-define-history-attributes, which identifies the attributes
to receive the values, must have been made previously during the current G2
session. The values are stored in a list attribute of the variable.

Argument Description

handle-of-pi-variable

start-time

end-time

number-of-points

Return Value Description

status

message

The following call requests 100 values of the variable object-name over the
period starting on January 1, 2003 at 9:15pm and ending on January 2, 2003 at
9:15pm from the PI system identified by the osipi_interface object osipi-one.

code, msg = call get-time-vals
(the object-index of osipi-one, ”01012003211500”, “01022003211500”,

100)
across osipi-one;

Identifies the handle of a PI variable
that refers to a PI point. You obtain
this handle by referring to the object-
index of the PI variable.

Specifies the starting PI system time
for the requested values. Time is
expressed as a text string of the form
MMDDYYYYhhmmss.

Specifies the ending PI system time for
the requested values. Time is
expressed as above.

Specifies the number of values
desired.

The status code. It is equal to 1 if the
function completes successfully.
Negative values indicate an error.

A descriptive status message.
45

get-interp-vals 
(handle-of-pi-variable: integer, start-time: text, end-time: text, 
number-of-points: integer)
-> status: text, message: text

Requests a list of past values from the PI system for PI variable. The values
returned are interpolated values, not actual stored PI data. They are spaced
evenly within the time range given.

If the attributes that will hold the retrieved values have names other than the
default, the call to rpc-define-history-attributes, identifying the attributes that
are to receive the values, must have been made previously during the current
G2 session.

Argument Description

handle-of-pi-variable

start-time

end-time

number-of-points

Return Value Description

status

message

Identifies the handle of a PI variable
that refers to a PI point. You obtain
this handle by referring to the object-
index of the PI variable.

Specifies the starting PI system time
for the requested values. Time is
expressed as a text string of the form
MMDDYYYYhhmmss.

Specifies the ending PI system time for
the requested values. Time is
expressed as above.

Specifies the number of values
desired.

The status code. It is equal to 1 if the
function completes successfully.
Negative values indicate an error.

A descriptive status message.
46

Logging Operations
The following call requests 100 interpolated values of the variable object-name
over the period starting on January 1, 2003 at 9:15pm and ending on January 2,
2003 at 9:15pm from the PI system identified by the osipi_interface object
osipi-one.

code, msg = call get-interp-vals
(the object-index of object-name, ”01012003211500”, “01022003211500”,
100) across osipi-one;

get-pitime
()
-> status: text, message: text, time: text, year: integer, month: integer, 

day: integer, hour: integer, minute: integer, second: integer,

Requests the current PI system time from the default server. You can use this
RPC to determine the amount of skew between the G2 time and the default PI
system time. No arguments are required.

Return Value Description

status

message

time

year, month, day, 
hour, minute, second

Example:

code, msg, time, year, month, day, hour, minute, second = 
call get-pitime() across osipi_one

Logging Operations
The G2-PI Bridge can report various information. The information that is reported
depends upon the “log level” you select. A log level of 1 causes only errors to be
reported. Log level 2 causes errors and warnings to be reported. Higher log levels
may report internal information, which can help Gensym customer support
evaluate unexpected behavior.

You have many choices for logging information. You can report messages to the
screen, write them to a file, send them to the G2 Message Board, send them to a

The status code. It is equal to 1 if the
function completes successfully.
Negative values indicate an error.

A descriptive status message.

The current PI system time, expressed
as a text string of the form
MMDDYYYYhhmmss.

The current PI system time, expressed
as a series of integers.
47

G2 procedure for processing, write them to the PI log, or any combination of these
options.

For each interface object that is connected to the G2-PI Bridge, you have what is
called a context. You may have up to five contexts in a G2-PI Bridge application.
Configuration of most logging options is on a per-context basis. This feature gives
you the ability to partition your set of variables and configure the amount of
information that will be reported for each subset and how that information will be
reported.

If you do nothing to change the configuration, the default log level is 2 and the
default log destinations are the screen and the G2 procedure osi-error. However,
you can also start the bridge with command-line options that change the default
behavior, as described in Command-Line Options. These defaults apply across all
contexts.

Your next level of control is to use initialization string options to set the logging
behavior for individual contexts. For more information, see Remote-process-
initialization-string.

Your final level of control is to use RPCs. You can use them to change the
behavior of individual contexts back and forth, using whatever criteria are
appropriate for your situation. This feature gives you the ability to selectively log
information.

Logging to a G2 Procedure

If you are going to use the option to log to a G2 procedure, which happens by
default, you must define the G2 procedure osi-error in your knowledge base. The
procedure must have the following signature:

osi-error 
(error-code: integer, error: text) 
-> (return: integer).

When a logging event occurs and log-to-g2 is enabled, the bridge calls the
osi-error procedure in G2. If the logging event returns an error code, the code is
passed as the first argument to the procedure. The message that is being logged is
passed as the second argument. The bridge does not use the return value from the
procedure.

g2-pi.kb provides you with a sample osi-error procedure, which performs no
action. If you merged this KB into your application, you can modify the
procedure to respond to logged events.
48

Logging Operations
RPCs for Logging

log-force-writes 
(active: truth-value) 
-> (success: integer)

Normally, when a log message is written to a file, it is buffered in memory
and will be written to disk when the computer is not busy with other
activities. In this case, if some unexpected behavior causes the bridge to
terminate, it can happen that messages never get written to the disk.

If you call log-force-writes(true), log messages will not be buffered. Instead,
they will be written immediately to disk before processing by the bridge
continues.

This is the only log configuration RPC that applies across all contexts.

Argument Description

Return Value Description

active True to activate forced writes, otherwise false.

success Zero if the call is successful, otherwise -1.
49

log-level 
(level: integer) 
-> (success: integer)

Changes the log level.

Argument Description

Return Value Description

log-message 
(message: text, timestamp: truth-value) 
-> (success: integer)

Gives the user the ability to add optionally time-stamped messages to the log.

Argument Description

Return Value Description

success

log-to-file 
(active: truth-value) 
-> (success: integer)

Controls whether log messages are output to a file.

Argument Description

active

Return Value Description

success

level The new log level (0 – 9).

success Zero if the call is successful, otherwise -1.

message The message text to write to the log.

timestamp True to timestamp the log message, otherwise
false.

Zero if the call is successful, otherwise -1.

True to write log messages in a file, otherwise
false.

Zero if the call is successful, otherwise -1.
50

Logging Operations
log-to-g2 
(active: truth-value) 
-> (success: integer)

Controls whether log messages are sent to the osi-error procedure, as
described at the beginning of this section.

Argument Description

Return Value Description

log-to-message-board 
(active: truth-value) 
-> (success: integer)

Controls whether log messages are displayed in G2 on the Message Board.

Argument Description

Return Value Description

active True to send log messages to the osi-error
procedure, otherwise false.

success Zero if the call is successful, otherwise -1.

active True to display log messages in G2 on the
Message Board, otherwise false.

success Zero if the call is successful, otherwise -1.
51

log-to-pi 
(active: truth-value) 
-> (success: integer)

Controls whether log messages are written in the PI log file.

Argument Description

Return Value Description

log-to-screen 
(active: truth-value) 
-> (success: integer)

Controls whether log messages are output to the console window.

Argument Description

Return Value Description

active True to write log messages in the PI log file,
otherwise false.

success Zero if the call is successful, otherwise -1.

active True to display log messages in the console
window, otherwise false.

success Zero if the call is successful, otherwise -1.
52

Logging Operations
log-settings
()
-> (file-name: text, log-level: integer, max-size: integer, force: truth-value,

log-to-screen: truth-value, log-to-message-board: truth-value)

Retrieves the state of the logging options that were available in Version 4.0 of
the bridge.

Return Value Description

file-name

log-level

max-size

force

log-to-screen

log-to-message-board

log-settings2
()
-> (file-name: text, log-level: integer, max-size: integer, force: truth-value,

log-to-screen: truth-value, log-to-message-board: truth-value, 
log-to-g2: truth-value, log-to-pi: truth-value)

Retrieves the current log settings for all logging options, including those that
did not exist in earlier versions of the bridge.

The log file name.

The current log level.

The maximum log file size, in bytes. A value of 0
means that the log file size is limited only by
available disk space.

True if forced writes are active, otherwise false.

True if messages are output to console window,
otherwise false.

True if messages are displayed in the G2 Message
Board, otherwise false.

Return Value Description

file-name The log file name.

log-level The current log level.

max-size The maximum log file size, in bytes. A value of 0
means that the log file size is limited only by
available disk space.

force True if forced writes are active, otherwise false.

log-to-screen True if messages are output to console window,
otherwise false.
53

log-to-message-board True if messages are displayed in the G2 Message
Board, otherwise false.

log-to-g2 True if messages are sent to the osi-error
procedure, otherwise false.

log-to-pi True if messages are displayed in PI, otherwise
false.

Return Value Description
54

Index
 @ A B C D E F G H I J K L M
 # N O P Q R S T U V W X Y Z
A
accessing PI data in G2
attributes, definition
authorizing G2-PI Bridge

B
-b

command-line option
initialization string option

C
command-line options

list of
using

configuration files
configuring

connections
interface objects

attributes
overview

passwords
servers
users

connecting to the bridge process
connection status, determining
connections, configuring
contexts, definition
converting PI data to G2
creating

interface objects
GSI and OSIPI
introduction to

server data files
your own PI variable classes

customer support services

D
-d

initialization string option
command-line option
data conversion
default-update-interval attribute

E
-e initialization string option
exception reporting

configuring
definition
introduction to

external-system-has-a-scheduler attribute

F
-g command-line option
files

g2-pi.kb

using OSIPI interface objects in
using OSIPI variables in

g2piconfig.exe
pisrvrs.dat

G
-g

command-line option
initialization string option

G2-PI Bridge
authorizing
how the bridge converts data
overview
starting

from command line
using configuration files

using
multiple servers
single server

g2-pi.kb

using OSIPI interface objects in
using OSIPI variables in

g2piconfig.exe

G2PSL environment variable
55

get-interp-vals RPC
get-pitime RPC
get-property RPC
get-time-vals RPC
grouping-specification attribute
GSI interface objects

See interface objects
gsi-connection-configuration attribute
gsi-interface attribute
gsi-interface-name attribute
gsi-interface-status attribute
gsi-variable-status attribute

H
handles
-help command-line option
historical values

overview
preparing to retrieve
retrieving using RPCs

I
identifying-attributes attribute
interface objects

configuring
attributes
overview

creating
interface-timeout-period attribute
interval-to-poll-external-system attribute

L
-l

command-line option
initialization string option

last-recorded-pi-time attribute
log-force-writes RPC
log-level RPC
log-message RPC
log-settings RPC
log-settings2 RPC
log-to-file RPC
log-to-g2 RPC
log-to-message-board RPC
log-to-pi RPC
log-to-screen RPC
56
M
-m command-line option

N
-n command-line option
names attribute
non-exception configuration

O
-o

command-line option
initialization string option

object-index attribute
osi-error G2 procedure
OSIPI interface objects
OSIPI variables

attributes of
classes
creating
overview

osipi_interface class
osipi-data-type attribute
osipi-digital class
osipi-int

attributes
class

osipi-real
attributes
class

osipi-tagname
configuring

for OSIPI variables
identifying-attributes, using

osipi-var class

P
-p

command-line option
initialization string option

passwords, configuring
PI data

accessing in G2
converting to G2
retrieving

PI pointers
PI points

attributes of

definition
writing to

PI servers
using a single
using multiple

PI tags
definition
referring to

PI variables
creating

OSIPI
your own classes of

definition
example of creating your own classes of

pi-point attribute
pisrvrs.dat

poll-external-system-for-data attribute

R
read RPC
registering variables
remote procedure calls

See RPCs
remote-process-initialization-string attribute
retrieving

historical values
overview
using RPCs

PI data
current values
historical values
overview
PI attributes
requirements for

rpc-define-history-attributes RPC
RPCs

general operations
history operations
introduction to
item operations
logging operations
logging to a G2 procedure

S
-s command-line option
servers

configuring data files
configuring multiple
shutdown RPC
starting G2-PI Bridge

from command line
using configuration files

stop-bridge RPC

T
-t initialization string option
-tcpipexact command-line option
terminology
timedate-seconds attribute
timedate-text attribute
timed-value attribute
translate-status attribute

U
users, configuring

V
validity-interval attribute
variables

creating
OSIPI
your own PI

definition
OSIPI

classes
overview

registering

W
writing to PI

X
-x

initialization string option
57

58

	Preface
	About this Guide
	Version Information
	Audience
	Conventions
	Related Documentation
	Customer Support Services

	Overview of the G2-PI Bridge
	Introduction

	Starting the G2-PI Bridge
	Introduction
	Authorizing the G2-PI Bridge
	Using a Single Server
	Configuring Multiple Servers
	Creating the Server Data File
	Configuring the Servers
	Configuring Users and Passwords

	Starting the Bridge Process
	Using Command-Line Options
	Command-Line Options
	Using a Configuration File

	Configuring Connections
	Introduction
	A Note on Terminology
	Creating and Configuring GSI Interface Objects
	Creating the GSI Interface Object
	Configuring the GSI Interface Object

	Connecting to the Bridge Process
	Determining the Connection Status

	Accessing PI Data in G2
	Introduction
	Retrieving PI Data
	Common Requirements for Retrieving PI Data
	Retrieving Current Values
	Retrieving PI Attributes
	Retrieving Historical Values

	Using OSIPI Variables
	Using the OSIPI Variable Classes
	Attributes of osipi-int and osipi-real
	Referring to PI Tag Names

	Creating Your Own PI Variable Classes
	Rules for Defining Your Own PI Variable Class
	Defining a Variable Class that Inherits from OSIPI Variables
	Example
	PI Point Attributes
	How the Bridge Converts Data

	Exception Reporting
	Registering Variables
	Retrieving Historical Values
	Preparing to Retrieve Historical Values
	Retrieving Historical Values

	Writing to PI

	Remote Procedure Calls (RPCs)
	Introduction
	General Operations
	Item Operations
	History Operations
	Logging Operations
	Logging to a G2 Procedure
	RPCs for Logging

	Index

